
Pro Apache
JMeter

Web Application Performance Testing
—
Sai Matam
Jagdeep Jain

www.allitebooks.com

http://www.allitebooks.org

Pro Apache JMeter
Web Application Performance Testing

Sai Matam

Jagdeep Jain

www.allitebooks.com

http://www.allitebooks.org

Pro Apache JMeter: Web Application Performance Testing

Sai Matam					 Jagdeep Jain
Pleasonton, California, USA				 Dewas, Madhya Pradesh, India

ISBN-13 (pbk): 978-1-4842-2960-6			 ISBN-13 (electronic): 978-1-4842-2961-3
DOI 10.1007/978-1-4842-2961-3

Library of Congress Control Number: 2017951240

Copyright © 2017 by Sai Matam and Jagdeep Jain

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Celesting Suresh John
Development Editor: Laura Berendson
Technical Reviewer: Nitesh Kumar Jain
Coordinating Editor: Sanchita Mandal
Copy Editor: Kezia Endsley

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web
page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers
on GitHub via the book’s product page, located at www.apress.com/978-1-4842-2960-6. For more detailed
information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
http://www.apress.com/978-1-4842-2960-6Print
http://www.apress.com/source-code
http://www.allitebooks.org

I dedicate this book to my wife, Jyothi, for inspiration, support, and for single-handedly running
around kids and various chores while I tapped at the keyboard.

—Sai Matam

I dedicate this book to my parents, who always motivated me to do things differently,
and to my sisters and my wife; without their support, I would not be able to manage a tight

schedule on and off work.

—Jagdeep Jain

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Authors���xvii

About the Technical Reviewer���xix

Acknowledgments���xxi

Introduction���xxiii

■■Chapter 1: Foundation�� 1

■■Chapter 2: Performance Testing Primer��� 3

■■Chapter 3: Your First JMeter Test��� 13

■■Chapter 4: JMeter Test Script Recorder��� 25

■■Chapter 5: JMeter Test Plan Components�� 35

■■Chapter 6: Distributed Testing�� 167

■■Chapter 7: JMeter Best Practices��� 179

■■Chapter 8: Troubleshooting JMeter�� 197

■■Chapter 9: JMeter Plugins�� 211

■■Chapter 10: JMeter Recipes��� 221

■■Chapter 11: Case Study: Digital Toys Inc.��� 243

■■Chapter 12: Performance Dashboard��� 303

■■Chapter 13: Appendix A: Setting Up JMeter��� 315

■■Chapter 14: Appendix B: Setting Up Digital Toys Inc.��� 327

Index�� 333

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Authors���xvii

About the Technical Reviewer���xix

Acknowledgments���xxi

Introduction���xxiii

■■Chapter 1: Foundation�� 1

Why Performance Testing?�� 1

Why JMeter?��� 2

■■Chapter 2: Performance Testing Primer��� 3

Performance Testing��� 3

Response Time�� 3

Throughput�� 4

Utilization��� 5

Robustness�� 5

Scalability�� 5

User Perception��� 5

Cost��� 5

Types of Performance Tests�� 5

Stress Tests��� 5

Load Tests�� 6

Peak Load Tests��� 6

Soak Tests or Endurance Tests�� 6

Scalability Tests��� 6

Capacity Tests�� 6

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

Spike Tests and Burst Capacity��� 7

Performance Smoke Tests��� 7

High Availability Test/Fail-Over Tests��� 7

The Performance Test Environment�� 9

The Need for Separate Performance Environment�� 9

The Performance Environment Should Be Like the Production Environment�� 9

The Performance Environment Should Be Isolated��� 9

Performance Testing Tools��� 10

The Performance Testing Strategy Document��� 10

Performance Requirements��� 10

Performance Goals�� 10

Performance Test Suite��� 10

Performance Reporting and Analysis�� 11

Performance Tuning��� 11

Conclusion��� 12

■■Chapter 3: Your First JMeter Test��� 13

Components of a JMeter Test�� 13

Test Plan�� 13

Thread Group��� 13

Controller��� 14

Sampler��� 14

Listener�� 14

Timer��� 14

Assertions�� 14

Config Element�� 14

Pre-Processors�� 15

Post-Processors�� 15

Order of Component Execution��� 15

Simple JMeter Test�� 17

GUI Mode��� 21

www.allitebooks.com

http://www.allitebooks.org

■ Contents

ix

Non-GUI Mode��� 22

Executing a Single Test�� 23

Proxy Server Setting�� 24

Start JMeter in Server Mode��� 24

Stop/Shutdown JMeter�� 24

Conclusion��� 24

■■Chapter 4: JMeter Test Script Recorder��� 25

JMeter WorkBench�� 25

JMeter Recording Controller��� 28

Browser Proxy Settings��� 28

Recording Example��� 29

Conclusion��� 34

■■Chapter 5: JMeter Test Plan Components�� 35

Test Plan�� 35

Configuration��� 36

Serial Execution of Thread Groups�� 37

Parallel Execution of Thread Groups�� 39

User Defined Variables�� 41

Thread Group��� 42

Thread Properties�� 43

Scheduler�� 49

Action After Sampler Error��� 53

Pre-Processors�� 61

HTTP URL Re-Writing Modifier��� 61

Controller��� 63

Simple Controller��� 64

Transaction Controller��� 65

Loop Controller�� 68

Runtime Controller��� 70

www.allitebooks.com

http://www.allitebooks.org

■ Contents

x

Throughput Controller�� 72

Once Only Controller�� 74

Interleave Controller�� 76

Random Controller��� 81

Random Order Controller��� 81

Switch Controller��� 82

ForEach Controller��� 85

If Controller�� 87

Timers��� 92

Constant Timer�� 93

Gaussian Random Timer�� 97

Uniform Random Timer�� 99

Constant Throughput Timer��� 101

Synchronizing Timer�� 103

Sampler��� 105

HTTP Request�� 106

Assertions��� 128

Response Assertion��� 128

Listener��� 138

View Results Tree�� 141

View Results In Table��� 147

Aggregate Report�� 150

Post-Processors�� 152

Regular Expression Extractor�� 152

Properties and Variables��� 157

Comparison of Properties and Variables�� 157

User Defined Variables�� 161

Using the Command Line to Initialize Properties��� 164

Conclusion��� 165

www.allitebooks.com

http://www.allitebooks.org

■ Contents

xi

■■Chapter 6: Distributed Testing�� 167

Distributed Testing Using JMeter�� 167

Prerequisites��� 167

Configuration��� 168

Running the Test�� 170

GUI Mode��� 171

Non-GUI Mode��� 172

RMI Port��� 172

Sample Sender Mode�� 173

Unreachable Remote Hosts��� 176

Limitations��� 177

Conclusion��� 177

■■Chapter 7: JMeter Best Practices��� 179

HTTP Request Defaults�� 179

Follow Redirects�� 180

Cookie Manager�� 182

Cache Manager��� 185

JMeter Using Maven��� 185

Passing Variables Across Thread Groups�� 187

Running Parallel Thread Groups�� 191

Using External File for Parameterizing User Login�� 192

Customizing Properties��� 194

Monitor JMeter Resource Usage��� 194

Standard Test Plan Templates��� 195

Conclusion��� 196

www.allitebooks.com

http://www.allitebooks.org

■ Contents

xii

■■Chapter 8: Troubleshooting JMeter�� 197

Ensure Permissions��� 197

Log File�� 197

Log Level��� 198

HTTP Protocol Logs��� 199

GUI Logs�� 199

Clear GUI Logs��� 200

Remote Host Exception��� 200

Connect Exception��� 201

Solving Proxy Servers Problems��� 202

HTTP Basic Authentication�� 204

Using HTTP Header Manager�� 205

Using the HTTP Authorization Manager��� 206

Debug Test Faster�� 207

Out of Memory Error�� 209

Conclusion��� 210

■■Chapter 9: JMeter Plugins�� 211

PerfMon��� 211

Download the Plugin�� 212

Start the PerfMon Agent�� 213

Non-GUI Mode��� 218

Conclusion��� 219

■■Chapter 10: JMeter Recipes��� 221

JDBC Performance Testing�� 221

Install MySQL��� 221

Install JDBC Driver��� 224

JDBC Test Plan��� 224

FTP Performance Testing�� 228

REST/JSON Performance Testing�� 230

■ Contents

xiii

AJAX Performance Testing�� 232

Mobile Performance Testing�� 234

Simulating Mobile Devices�� 234

Simulating Network Speed�� 234

JMeter to Record User Actions�� 235

SOAP Performance Testing�� 237

Install SOAPUI�� 238

Conclusion��� 242

■■Chapter 11: Case Study: Digital Toys Inc.��� 243

The Need for Speed��� 243

Addressing the Problem�� 244

Performance Goals�� 244

Performance Test Specification��� 244

Tool Selection�� 247

Test Environment��� 247

Test Data Preparation�� 248

User Load Pattern�� 248

Application Build�� 249

Using JMeter��� 249

Test Script Development�� 250

Validation of Test Steps��� 259

Passing Variables Between Samplers��� 263

Running Tests with Multiple Users�� 265

Implementing Actual User Behavior�� 271

Results Metrics�� 275

Organizing Tests�� 285

Combining Multiple Tests�� 293

Questions�� 297

Using Distributed Environment�� 298

Performance Testing and Tuning Cycle��� 301

■ Contents

xiv

Outcome�� 301

Conclusion��� 302

■■Chapter 12: Performance Dashboard��� 303

APDEX�� 303

Configuration��� 303

JMeter Properties�� 304

APDEX�� 304

Global Graph Properties��� 304

Specific Graph Properties�� 305

Generating Graphs��� 306

Performance Dashboard Graphs��� 306

Conclusion��� 313

■■Chapter 13: Appendix A: Setting Up JMeter��� 315

MacOSX��� 315

Download JDK��� 315

Install JDK�� 316

Set Up the Environment Variable��� 316

Download JMeter�� 317

Set Up JMeter�� 317

Windows�� 318

Download JDK��� 318

Install JDK�� 319

Set Up the Environment Variable��� 320

Download JMeter�� 321

Set Up JMeter�� 321

Linux�� 322

Install JDK�� 322

Set Up the Environment Variable��� 323

Download JMeter�� 323

Set Up JMeter�� 324

■ Contents

xv

■■Chapter 14: Appendix B: Setting Up Digital Toys Inc.��� 327

Running Digital Toys Web Application��� 327

Start the Web Application�� 327

Start with URL Rewriting Enabled��� 330

Clean Up�� 331

Index�� 333

xvii

About the Authors

Sai Matam has more than 20 years of diverse experience in software
development, including significant experience in performance testing
and tuning. He has worked on tuning Java and web applications with many
millions of page visits.

Jagdeep Jain has more than a decade of experience in software quality assurance
and testing. He holds a degree in Computer Science and Engineering. He is a
firm believer and advocate of test automation, and he has used Apache JMeter
extensively.

xix

About the Technical Reviewer

Nitesh Kumar Jain has over a decade of experience in the software testing world.
He has an M.Tech in Information technology from IIITM Gwalior and a B.E. in
Computer Science and Engineering. He is a keen technology learner with an
“let’s automate everything” attitude. He is also an ISTQB certified test manager,
technical test analyst, test analyst, and Agile test engineer and loves to make Java-
Swing based tools that can help with software testing. He also spent five years on
performance testing and test automation.

xxi

Acknowledgments

We want to thank the following people who have helped us make sure that the book is useful by providing
timely feedback on our chapters, testing JMeter scripts, and finding bugs in our sample web application.
Without them, it would have been tough to create a good quality book.

Ai Yu, Alap Shah, Amit Devgan, Anand Sinha, Anil Ramesh Malleboyina, Anil Wadghule, Beejal Vibhakar,
Belal Ansari, Bhushan Gupta, Chakradhar Kommera, Charan Das Thota, David Livingstone Gangarapu,
Deepa Mahendraker, Dheeraj Sah, Etender Naini, Ganesh Somaka, Gomtesh Gandhi, Govardhan Aliseri,
Haridev Vengateri, Harshad Savot, Harshvardhan Vipat, Hemanth Presingu, Mangesh Lunawat, Manjula
Gundugollu, Manjula Kavadi, Manohar Gone, Nikhil Agrawal, Nitish Shirsath, Pankaj Saraf, Piyush Singh,
Prashanth Abbagani, Prasoon Kumar, Raj Gopal Marripalli, Rama Gangadhar Mekala, Ram Katru, Roshan
Iqbal, Ruth Rajitha Gangarapu, Sanjeev Kumar, Satish Salandri, Satyapal Reddy Panyala, Sharon Annese,
Shravan Goli, Shyam Palleti, Shyam Palreddy, Sridhar Throvagunta, Srikanth Ganapavarapu, Srinivas
Nagandla, Srinivas Reddy Gaddam, Sudeep Tripathy, Suneeta Donepudi, Sunil Kumar, Sunil Potti, Swamy
Das, Tapan Upadhyay, Tarak Joshi, Vidhut Singh, Vijay Pasupuleti, Yogesh Sharma and Yogesh Yadhav.

We are very thankful to the editorial team at Apress and the technical reviewer for having various
checkpoints in place and providing us with useful feedback in a timely manner, all of which have made this
book more useful for readers.

xxiii

Introduction

This book is intended to get beginners up and running with performance testing using JMeter. This book
provides step-by-step guidance and covers advanced topics for the experienced engineer. Each chapter is
clearly marked with the topics it covers, thereby allowing the reader to skip chapters if appropriate.

Chapter 1 is the foundation of the book where we discuss why performance testing is needed and why
we should user JMeter.

Chapter 2 is general-purpose chapter that covers the performance testing methodology.
Chapters 3 through 5 cover specific topics in JMeter (test plan, thread group, pre-processors, controller,

timers, sampler, assertions, listeners, post-processors, properties, and variables). By going through these
chapters, you will gain an understanding on how to user JMeter for your performance needs.

Chapters 6 through 10 deal with distributed testing, a few advance concepts of JMeter, and
troubleshooting tips that will be useful in some projects.

Chapter 11 contains the case study of a sample web application called Digital Toys Inc. This chapter
contains everything that a performance testing engineer needs to start performance testing a project.

Chapter 12 shows you how to generate a performance dashboard while executing test scripts.
Chapters 13 and 14 help in setting up JMeter and sample web applications to run the test scripts.
Architects, engineers, and quality assurance professionals will greatly benefit by reading this book.

Project managers or other non-technical team members may want to glance through the book and read
Chapter 2, “Performance Testing Primer,” to gain some understanding on performance testing in general.

We have developed an e-commerce web application for a hypothetical company called Digital Toys Inc., for
the express purpose of illustrating the example test scripts in this book. Chapter 14 explains how to set up
this sample application.

Test scripts developed in this book are hosted on GitHub. Any source code or other supplementary material
referenced by the authors in this book is available to readers on GitHub via the book’s product page, located at
www.apress.com/978-1-4842-2960-6. For more detailed information, visit http://www.apress.com/source-code.

For any quires or valuable feedback, feel free to get in touch with authors over e-mail:
Sai Matam at saimatam@yahoo.com.
Jagdeep Jain at jagdeep.jain@gmail.com.

http://dx.doi.org/10.1007/978-1-4842-2961-3_1
http://dx.doi.org/10.1007/978-1-4842-2961-3_2
http://dx.doi.org/10.1007/978-1-4842-2961-3_3
http://dx.doi.org/10.1007/978-1-4842-2961-3_5
http://dx.doi.org/10.1007/978-1-4842-2961-3_6
http://dx.doi.org/10.1007/978-1-4842-2961-3_10
http://dx.doi.org/10.1007/978-1-4842-2961-3_11
http://dx.doi.org/10.1007/978-1-4842-2961-3_12
http://dx.doi.org/10.1007/978-1-4842-2961-3_13
http://dx.doi.org/10.1007/978-1-4842-2961-3_14
http://dx.doi.org/10.1007/978-1-4842-2961-3_2
http://dx.doi.org/10.1007/978-1-4842-2961-3_14
http://www.apress.com/978-1-4842-2960-6
http://www.apress.com/source-code
saimatam@yahoo.com
jagdeep.jain@gmail.com

1© Sai Matam and Jagdeep Jain 2017
S. Matam and J. Jain, Pro Apache JMeter, DOI 10.1007/978-1-4842-2961-3_1

CHAPTER 1

Foundation

In many companies, performance testing is not a priority until it becomes critical. The engineering team
is then asked to complete performance testing in an extremely short time. Most of us are familiar with this
situation and can relate to it. The engineering team needs to come up to speed with performance testing in
general and with performance testing tools in a very short time.

In spite of realizing how critical performance testing is, companies often don’t have an adequate budget
for the needed commercial performance testing tools. Apache JMeter (hereinafter referred to as “JMeter”)
is the leading tool, and thankfully it is open source and thus is free.

While there is plenty of reference material on the Internet, there is no comprehensive guide to take you
through all the steps of creating, running, and interpreting the results of a performance test using JMeter.
This book aims to address this need.

This book discusses the basics and presents a framework for performance testing. You will be able
to create a performance test plan that is based on the requirements. This book follows a step-by-step
approach and guides you through the installation, configuration, test plan creation, execution, and result
interpretation using JMeter.

Why Performance Testing?
Why bother to test the runtime performance of a web site? The answer is much more important than you
realize. Improved web site performance directly translates to the bottom line (profitability) of a business, as
it provides a better user experience, builds the brand, and retains customers. The improved performance
uses fewer resources and utilizes them with more efficiency.

The current generation of web users is very demanding and discerning. They have short attention
spans. They want everything quick. Twenty years ago a study revealed that a web site should load within six
seconds or the user would click elsewhere! This was 20 years ago. Imagine what that attention time would be
now? Four seconds? Financial Times (FT) conducted a performance test that clearly showed that a slow web
site resulted in a bad user experience and negative financial impact. Even a delay of one second, over a long
period of time, can have a huge impact on revenues.1

1Chadburn, Matt, Lahav, Gadi; “A Faster FT.com.” Engine Room, Blog by the Financial Times Technology Department,
April 6, 2016, http://engineroom.ft.com/2016/04/04/a-faster-ft-com/.

http://engineroom.ft.com/2016/04/04/a-faster-ft-com/

Chapter 1 ■ Foundation

2

Why JMeter?
JMeter is an industrial-strength performance testing tool. It is a top-level Apache open source project.
But being free is not the only reason for its popularity. It’s a very capable tool. This mature tool has been
continuously revised since its inception in 2001.

The commercial tools may have fancier user interfaces or better-looking reports, but JMeter can
be configured to provide the same capabilities. JMeter can be run in “distributed mode” in the cloud,
generating the load of thousands of users. JMeter comes with an Apache License, which does not have any
restrictions on usage, distribution, or modification.

JMeter has a standard format for writing the performance test. Most of the commercial tools support
importing/exporting to the JMX (the JMeter test file format).

3© Sai Matam and Jagdeep Jain 2017
S. Matam and J. Jain, Pro Apache JMeter, DOI 10.1007/978-1-4842-2961-3_2

CHAPTER 2

Performance Testing Primer

This chapter discusses the overview of performance testing, performance criteria, types of performance
tests, performance test infrastructure, and performance test strategy. This chapter does not refer to JMeter
itself but to performance testing in general.

At the end of this chapter, you should have a good idea of how to structure your own performance tests
and should be able to work toward a comprehensive performance testing strategy. Those who are already
familiar with performance testing can proceed to the next chapter.

Performance Testing
Performance testing is the testing performed on a system or application to measure some of its attributes
such as response time, throughput, scalability, etc. These attributes are called the performance criteria.

There are many types of performance tests, each of which requires different performance criteria to
be measured. Depending on the nature of the application, some of the performance criteria may be more
important than others.

Performance testing is different than functional testing. In performance testing, we are primarily
focused on speed, whereas functional testing is concerned with correctness of the application behavior.
Although performance tests are a part of the continuous build cycle along with the functional tests, the
results of performance testing should be interpreted only after the application passes the functional tests.

Response Time
The time taken by the application to respond to the user’s request is called the response time. It is measured
in seconds or milliseconds as appropriate for the application. Every application should strive to minimize
the response time. Figure 2-1 shows a typical web application request and response from the browser to the
server (where the web application is hosted) and from the server to the browser.

Chapter 2 ■ Performance Testing Primer

4

Some of the terms related to response time include the following:

•	 Absolute Response Time: This is the total time taken from the instant a user
clicks on a link or submits a form until the response from the server is rendered
completely.

•	 Perceived Response Time: The absolute response time for some complex web
pages may be unacceptably high. To solve this issue, the request/response is
structured into a set of request/responses that could be rendered progressively. This
allows the users to continue reading or filling up a form, creating the perception that
the response was fast even though the absolute response time is roughly the same.
Perceived response time is the response time as perceived by the users.

•	 Server Processing Time: This is the time taken by the server to process the given
input and generate the output. This can vary depending on the complexity of the
request, server hardware, and the system load.

•	 Rendering Time: This is the time taken by the browser to parse and render the
response received from the server. This depends on the complexity of the web page,
presence of multimedia, presence of JavaScript, and whether the browser needs to
generate content. It also depends on the system load on the user’s device.

•	 Network Latency: This is the round-trip time taken by a data packet to travel over
the network the server and back. This does not include the server processing time or
the rendering time. This can vary widely depending on the location of the user, time
of the day, and the network load.

Throughput
A sequence of request/responses constitutes a transaction. The number of transactions per unit time is
called the throughput. It is measured in transactions/second or bandwidth (bytes/second). It depends
on server hardware, system load, and network latency. The application should strive to maximize the
throughput.

Figure 2-1.  HTTP request-response

Chapter 2 ■ Performance Testing Primer

5

Utilization
Utilization is the ratio of the throughput of the application relative to its maximum capacity. This is a
measure of how well the application is being used.

It is not desirable to operate above 80% utilization because the user requests do not arrive evenly, and
the system should be able to handle a spike in the load.

Robustness
This is a measure of how well the application detects and handles various errors and exceptions. If the
system crashes or becomes unavailable, the company’s brand and reputation are at stake. Mean Time
between Failures (MTbF) is a metric that is often used for this purpose.

Scalability
Scalability measures how well the system can expand its capacity when additional resources are added.
Ideally the system capacity will increase linearly as additional resources are added. However, this is rarely
achieved in practice. It’s a good measure to know the resources that would be needed so that the system can
handle the projected future load.

Vertical scalability is achieved by upgrading the hardware. For example, by adding more memory, disk,
a better CPU, or additional CPUs.

Horizontal scalability is achieved by adding servers to the cluster. For example, by adding more web
servers and application servers to a webfarm/cluster.

User Perception
The user is the ultimate judge of performance. The user has a set expectation regarding response time and
robustness. If this is a casual news web site, the response time of six seconds may be okay. However, in the
case of stock trading application, a sub-second response may be needed. Performance tuning is done if
the measured performance is less than expected for that category of application. As mentioned earlier, the
request/response may be restructured to improve the user perceived response time.

Cost
The system should consume fewer resources and save money for the company.

Utilization and throughput are some of the measures that influence cost.

Types of Performance Tests
The term performance test is used loosely to mean many different types of tests. Furthermore, the distinction
between the various flavors of the performance tests is not widely understood. This is all the more reason for
you to include a definition of these tests in your Performance Strategy document to make things clear.

Stress Tests
A stress test is a kind of performance test that tests the application beyond the normal limits. The application
is subjected to excess load and after that its stability and performance are noted. This type of test is used to
determine how the application responds to load spikes.

Chapter 2 ■ Performance Testing Primer

6

■■ Note  Performance tests evaluate and measure the application under a normal expected load. The stress
test subjects the application to loads which are in far excess of normal.

Load Tests
A load test is a kind of performance test that’s performed at the specified load level. So ideally, we would like
to perform load tests at varying load levels to note the behavior of the application.

Peak Load Tests
A peak load test is performed at the load that the application is expected to handle. For example, e-commerce
web sites experience their peak traffic during Black Friday, Cyber Monday, and the Christmas holidays. So a
peak load test in this case would test the application within the load specification but at the higher end.

■■ Note  Stress tests test beyond the peak load.

Soak Tests or Endurance Tests
In a soak test (also called an endurance test), the application is subjected to a specified load that is within the
specified limit but for a long duration. It is performed for many hours at a time. This test determines if the
application is properly reusing its resources.

This test will surface problems like the following:

•	 Memory leaks in the application

•	 Database connections exhaustion

•	 Network connection exhaustion

•	 Log files becoming full and log rotation

•	 Other resource exhaustion

Scalability Tests
Successful web applications experience massive and sometimes exponential growth. So it is wise to measure
how the application scales. Scalability is defined as how well the application handles the increase in load
while still meeting the desired performance criteria.

A scalability test would increase the resources and test whether or not the application is providing
a corresponding increase in capacity. Ideally, we expect linear scalability (i.e., doubling the hardware
resources should result in double the application capacity).

Capacity Tests
A capacity test is a load test that establishes the maximum load that the application can handle while
meeting the desired performance criteria. The resulting metric is called the maximum capacity. It is used in
scaling the application and to estimate costs for future growth.

Chapter 2 ■ Performance Testing Primer

7

Spike Tests and Burst Capacity
A spike test is a load test where the application is subjected to brief periods of sudden increment in load, a
small fraction beyond the maximum capacity. It is usually done to estimate the weakness/strength of an
application. The application is expected to be robust and continue to meet the performance criteria during
the spike. This metric is called the burst capacity.

Performance Smoke Tests
In a performance smoke test, a few common and essential use-cases along with use-cases pertaining to the
code subject to change are together tested for performance. It is only when the smoke test succeeds that
the full suite of performance tests are conducted. If the smoke test fails, no further performance tests are
conducted until the performance defect has been rectified.

High Availability Test/Fail-Over Tests
Modern web application infrastructure is designed to be highly available and resilient to hardware and
software failures. Ideally, the architecture should ensure that there is no single point of failure and that there
are standby servers that can transparently take over without impacting the user experience.

In this test various equipment and software failures are simulated and relevant performance tests are
run to verify that the application is still meeting the performance criteria.

SIMIAN ARMY AT NETFLIX INC.1

Netflix is a well known provider of digital media streaming services, serving more than 74 million
subscribers in 190 countries. Performance and robustness are critical for it to survive.

The Netflix engineering team has come up with the concept of “chaos engineering,” in which defects
are deliberately introduced to the production system to test and validate if the system is robust enough
to fail-over and recover from the errors while meeting the pre-established performance criteria. It
developed a set of tools dubbed as the Simian Army, a couple of which are summarized here.

Chaos Monkey

It randomly disables the production instances to make sure that the system can survive this common
type of failure without any customer impact.

Chaos Gorilla

Similar to Chaos Monkey, but simulates an outage of an entire Amazon availability zone. It verifies that
the services automatically rebalance to the functional availability zones without user-visible impact or
manual intervention.

1“Chaos Engineering Upgraded,” The Netflix Tech Blog, September 24, 2015, http://techblog.netflix.com/
2015/09/chaos-engineering-upgraded.html.

http://techblog.netflix.com/2015/09/chaos-engineering-upgraded.html
http://techblog.netflix.com/2015/09/chaos-engineering-upgraded.html

Chapter 2 ■ Performance Testing Primer

8

Netflix Chaos Kong in Operation

It is very rare that an AWS Region becomes unavailable, but it does happen. On September 20th, 2015,
Amazon’s DynamoDB service experienced an availability issue in their US-EAST-1 region. That instability
caused more than 20 additional AWS services that were dependent on DynamoDB to fail. Some of the
Internet’s biggest sites and applications were intermittently unavailable during a six- to eight-hour
window that day. This had minimal impact on Netflix, thanks to Chaos Kong.

Netflix did experience a brief availability blip in the affected region, but it sidestepped any significant
impact because Chaos Kong exercises prepared them for incidents like this. By running tests on a
regular basis that simulate a region-level outage, they were able to identify any systemic weaknesses
early and fix them. When US-EAST-1 actually became unavailable, their system was already robust
enough to handle a traffic fail-over.

Figure 2-2 shows a chart of Netflix’s video play metrics during a Chaos Kong exercise. These are three
views of the same eight-hour window. The top view shows the aggregate metric, while the bottom two
show the same metric for the West region and the East region, respectively.

In the bottom row in Figure 2-2, you can clearly see traffic evacuate from the West region.

The East region gets a corresponding bump in traffic as it steps up to play the role of savior. The
aggregate metric shown in the top chart does not show any impact, demonstrating that the system was
resilient to the failover. At the end of the exercise, the traffic reverted to the West region. The aggregate
view shows that their members did not experience any adverse effects. Netflix runs Chaos Kong
exercises like this on a regular basis; it gives them confidence that even if an entire region goes down,
they can still serve their customers.

Figure 2-2.  Netflix Chaos Kong in operation

Chapter 2 ■ Performance Testing Primer

9

The Performance Test Environment
The hardware and software used to conduct performance testing is called the performance test environment.
It is usually separate from the production environment. Although not advisable, sometimes performance
testing is done in the production environment itself.

The Need for Separate Performance Environment
Performance testing should not be performed in the production environment as it may negatively impact
the user experience.

The load from performance testing may:

•	 Crash the system

•	 Degrade the application response time

•	 Create security holes due to the use of test accounts

•	 Litter the production databases with performance test input and output data

•	 Fill up the databases, application log files, and system log files

•	 Affect the analytics

In the long run, it is wise to have a dedicated performance environment as it would avoid these pitfalls
and would provide the benefit of Continuous Integration (CI). In fact, some companies have more than one.
The advent of cloud computing enables such environments to be provisioned on demand at a low cost.

Performance testing needs to happen before software is deployed into production. Ideally this needs to
be a part of the build process so that any performance defects introduced as a result of software changes can
quickly be detected and rectified.

Despite the benefits of a performance test environment, sometimes performance testing is done in the
production environment because it is prohibitively expensive to duplicate the production environment in
terms of hardware, additional software licenses, and third-party services.

The Performance Environment Should Be Like the Production
Environment
The performance environment should be modeled after the production environment. In an ideal scenario,
the performance environment should be a replica of the production environment in terms of hardware,
software, network, components, and topology. However, due to budget and other constraints, this may not
be possible. In such cases, the performance environment should mimic the production environment in all
key aspects. Some logical compromises will have to be made. For example, instead of a cluster of four web
servers, the team may choose to go with a minimal cluster of two servers. They may decide to go with a
single instance of the database instead of a master-slave database configuration in production.

The Performance Environment Should Be Isolated
The performance environment should be on a different subnet, isolated from the production environment
so that any activity on the performance subnet will not influence production and vice versa.

Chapter 2 ■ Performance Testing Primer

10

Performance Testing Tools
Performance testing tools should address load generation, performance data collection, and analysis and
reporting. Tools should be identified and their specific features/usage explored and documented well in
advance. These tools need to be installed on relevant servers in the environment.

The Performance Testing Strategy Document
The performance testing strategy is a document that defines performance requirements and goals, as well as
the approach to achieve and maintain them. It contains the performance testing policy and methodology.
This document captures the thinking of the accountable business and IT executives and is signed off by them.

Performance Requirements
As detailed, there are many performance criteria that are used in the industry. While all of them could be
useful, only a subset is applicable to your specific application. Further, an even smaller number may be
of critical importance due to contractual obligations, Service Level Agreements (SLAs), or the application
owner’s stipulations. The criteria thus identified are called performance requirements.

Sometimes the nature of the business dictates these requirements. For example, for a stock trading
application, a sub-second response time is a requirement.

Every release has to meet these requirements.

Performance Goals
Performance goals are criteria that are desired but not critical. These are often determined by the
performance of similar applications from competitors. Meeting these goals would be to the advantage of the
business. For example, for a news web site, a response time of six seconds may be desirable.

■■ Note  Performance requirements are absolute, whereas performance goals are aspirational.

Performance Test Suite
The performance test suite is a set of tests that measures the performance requirements and goals.
The company’s performance testing strategy may call for multiple performance test suites. Not all the test
suites need to be executed each time. For example, a test suite for scalability would be run in preparation
of busy times such as Christmas, while a smoke test suite is executed as a part of the build process.

Application usage patterns can be identified either by analyzing the web application usage logs or the
usage patterns are provided by the product owner or marketing. These are taken into account while creating
the test suite.

The test suite undergoes changes to meet the changing needs of the application. New performance
tests are added to address new product features; old performance tests are deprecated for obsolete features;
existing performance tests are enhanced based on the analysis of performance reports, the feedback from
the product owner, or data from the marketing department.

Chapter 2 ■ Performance Testing Primer

11

Performance Reporting and Analysis
Performance reports are analyzed to detect instances where performance requirements are not being met;
these are logged as critical defects.

The performance is also compared to the baseline to note the trends. Any deviation is brought to the
attention of the team for further analysis and action.

Performance Tuning
The engineering team reviews and modifies the application to address defects and concerns raised by the
performance reports. These tuning changes may include modifications to configuration, code, network,
architecture, topology, etc. Figure 2-3 shows the performance testing/tuning process flow.

Figure 2-3.  Performance testing process

Chapter 2 ■ Performance Testing Primer

12

Conclusion
In this chapter, you learned the basic terms of performance testing, types of performance tests, performance
test environment, and performance test suites. These are helpful in developing a performance testing
strategy. The next chapter starts with JMeter and explains the various components of JMeter. You will be
developing and running a JMeter test script and will also learn various ways of starting/stopping/shutting
down a JMeter test script.

www.allitebooks.com

http://www.allitebooks.org

13© Sai Matam and Jagdeep Jain 2017
S. Matam and J. Jain, Pro Apache JMeter, DOI 10.1007/978-1-4842-2961-3_3

CHAPTER 3

Your First JMeter Test

This chapter discusses the various components of JMeter and helps you develop the first JMeter test script.
You will find out about the various ways (GUI/non-GUI) of running and stopping/shutting down JMeter test
scripts in standalone test execution and server mode of test execution.

At the end of this chapter, you will have a good idea of the various components of JMeter and be able to
write a simple JMeter test script, as well as start/stop/shut down tests from GUI and non-GUI modes.

Before starting with the JMeter test script development, let’s walk through the components of a test plan.

Components of a JMeter Test

■■ Caution  JMeter test scripts have a filename extension of .jmx. This is not related to Java Management
Extensions (JMX).

A JMeter test script consists of hierarchical and ordered components organized in the form of a tree.
Each of these components has properties that can be configured in the following ways:

•	 By jmeter.properties file

•	 By using command-line parameters

•	 By editing the .jmx file directly using a text editor

•	 By using the GUI

•	 By using values extracted from the responses received to sampler requests

Test Plan
The test plan is the top-most element and is the root of the tree. For a test plan, the name, description, and
user variables can be configured.

Thread Group
Every test has one or more thread groups. A thread group is a child element of a test plan. Each thread group
represents a use-case. As you will see later in the book, a thread group can be configured with the number of
threads, ramp-up time, and other useful properties that allow you to control its behavior.

Chapter 3 ■ Your First JMeter Test

14

Controller
Each thread group has one or more controller elements. Logical controllers decide the flow of execution.
They determine the next Sampler to execute. JMeter comes with many built-in logical controllers that
provide precise control flow. For example, the If controller and Switch controller provide branching; the
ForEach, While, and For provide iteration flow. There is a controller for every programming construct.
A custom controller, if needed, could be developed using the plugin API mechanism provided by JMeter.

Sampler
Sampler is a child element of a thread group or a controller. It sends requests to the server. For every
protocol, we need a separate sampler. Out of the box, JMeter comes with many samplers. For example,
to send a HTTP request, you use a HTTP Request Sampler. Custom samplers can be developed using the
JMeter plugin mechanism.

Listener
Listeners listen to the responses from the server and assemble and aggregate the performance metrics.
They are used to display graphs. We need at least one listener per test script so that we can interpret and
understand the results of the performance test.

Timer
A timer introduces a delay in the flow. Delay is needed between sampler requests for the following reasons:

•	 To simulate the time that the user takes to perform the next action on the web page

•	 To simulate a realistic load distribution on the server

Add timers as child elements of samplers or logic controller that need the delay.

Assertions
Assertions are used to verify that the server responses are as expected. Assertions test various status codes,
and then pause, alert, or log bad request/responses. It is important to ensure that the server is not returning
any error codes during the execution.

Adding an assertion as a child of the sampler restricts it to a single sampler. Otherwise, assertions will
apply to all samplers that are in scope.

Add an Assertion Results Listener to the thread group to view the assertion results. Failed assertions will
also be displayed in the View Results Tree and the View Results in Table Listeners, and will count toward the
error percentage, for example, in the Aggregate Reports and Summary Reports.

Config Element
Configuration elements are placeholders for properties, including user-defined properties and variables.
For example, the HTTP Cookie Manager is a configuration element. Configuration elements can be scoped
out with a nesting level.

Chapter 3 ■ Your First JMeter Test

15

Pre-Processors
Pre-processors take the request and modify it (substitution, enhancement, dereferencing variables, etc.)
before the sampler sends it to the server.

Post-Processors
Post-processors process the response from the server. They are used to process the server response and
modify the component settings or to update variables.

Order of Component Execution
Programming languages evaluate expressions by following certain rules based on operator precedence.
For example, in the expression a + b * c, the operation b * c is performed first and the result is added to
a. Although the operator * is not the first operator appearing in the expression, it is applied first as it has a
higher precedence value.

Similarly, JMeter follows certain rules while executing the components in a test plan. Within a thread
group, the order of execution of the components follows the order shown in Figure 3-1. Even if a Listener
component was placed as the first element in the thread group, it will be executed after samplers and post
processors. However, controllers and samplers have the same precedence, so they will be executed in the
order in which they appear in the test plan.

Figure 3-1.  Order of execution

Chapter 3 ■ Your First JMeter Test

16

JMeter allows the elements to be nested. For example, a listener, a timer, and a sampler can be nested
under a logical controller. In this case, when the logical controller is being executed, the order of execution of
its child nodes would be the timer, the sampler, then the listener.

Figure 3-2 shows the order of execution in the test plan.

Figure 3-2.  Test plan

As you can see in the JMeter test plan, the components are not in sequence.
However, JMeter will rearrange them according to the Order of Execution diagram shown in Figure 3-1.

Note that the CSV Data Set Config is nested under the transaction controller. The child elements nested under
the transaction controller would again follow the Order of Execution diagram and get sequenced.

For the given test plan, the execution order will be:

	 1.	 BeanShell Pre-processor

	 2.	 Constant Timer

	 3.	 Constant Throughput Timer

	 4.	 Transaction Controller

	 5.	 CSV Data Set Config

	 6.	 HTTP Request

	 7.	 BeanShell PostProcessor

	 8.	 Aggregate Report

■■ Note  All the examples mentioned in this book have been coded against a sample web application called
Digital Toys Inc. Refer to Chapter 14 for setup instructions.

http://dx.doi.org/10.1007/978-1-4842-2961-3_14

Chapter 3 ■ Your First JMeter Test

17

Simple JMeter Test
This first test script is very simple.

	 1.	 Simulate a user browsing the Digital Toys Inc. web application home page
(http://localhost:8080/dt).

	 2.	 Check for an HTTP status code of 200.

Follow these steps or download FirstTestPlan.jmx.1

	 1.	 Start JMeter GUI.

	 2.	 Create a test plan and give it a meaningful name, such as First Test.

	 3.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users) and add Thread
Group. Configure the Number of Threads (Users) as 1 and Loop Count as 1
(see Figure 3-3).

Figure 3-3.  Thread group

1https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_03/FirstTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_03/FirstTestPlan.jmx

Chapter 3 ■ Your First JMeter Test

18

	 5.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions and add Response
Assertion. Configure Response Field to Test as Response Code, Pattern
Matching Rules as Equals, and Patterns To Test as 200 (see Figure 3-5).

Figure 3-4.  HTTP request

Figure 3-5.  Assertions

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler and add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, and Path as
/dt. Uncheck Follow Redirects (see Figure 3-4).

Chapter 3 ■ Your First JMeter Test

19

	 6.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener and add View Results
Tree (see Figure 3-6).

Figure 3-6.  Run test

	 7.	 Save the test plan.

	 8.	 Go to Run ➤ Start to run the test (on Mac OSX, type CMD+R).

	 9.	 Verify the responses in the View Results Tree (see Figure 3-7).

Chapter 3 ■ Your First JMeter Test

20

Now, let’s simulate a load of 10 users by following these steps.

	 1.	 Highlight Thread Group and configure Number of Threads (Users) as 10,
Ramp-Up Period (in seconds) as 0, and Loop Count as 1.

	 2.	 Save the test plan.

	 3.	 Go to Run ➤ Start to run the test (on Mac OSX, type CMD+R).

	 4.	 Verify the responses in the View Results Tree (see Figure 3-8).

Figure 3-7.  Test results

Chapter 3 ■ Your First JMeter Test

21

Navigate to each response under the View Results Tree and verify the response and response time
(Load Time). Calculate the average response time as the sum of the response time of all threads/number of
threads.

GUI Mode
JMeter GUI mode provides several options to start/stop test(s) (see Figure 3-9).

Figure 3-8.  Execution results

Figure 3-9.  JMeter test execution options

Chapter 3 ■ Your First JMeter Test

22

•	 Start: Start a test on the local machine

•	 Stop: Abruptly stop the test that is running on the local machine

•	 Shutdown: Stop the test gracefully, allowing the threads to wind down

•	 Remote Start All: Start the test on all the remote JMeter hosts

•	 Remote Stop All: Abruptly stop the test on all the remote JMeter hosts

•	 Remote Shutdown All: Gracefully shut down the test on all the remote JMeter hosts

■■ Note  Use the GUI to create and debug the tests scripts. Use the non-GUI mode to execute the test and
collect the results.

Non-GUI Mode
GUI mode is not desirable because:

•	 It consumes a large amount of resources, thus interfering with the test results

•	 It may not be available in some environments (such as a remote shell)

To avoid these issues, use the non-GUI mode.
To see the command line options provided by JMeter, issue the following command in the CMD prompt.

jmeter --help

This will show you the help options provided by JMeter.

C:\apache-jmeter-3.0\bin>jmeter --help
Writing log file to: C:\apache-jmeter-3.0\bin\jmeter.log
 _ ____ _ ____ _ _ _____ _ __ __ _____ _____ _____ ____
 / \ | _ \ / \ / ___| | | | ____| | | \/ | ____|_ _| ____| _ \
 / _ \ | |_) / _ \| | | |_| | _| _ | | |\/| | _| | | | _| | |_) |
 / ___ \| __/ ___ \ |___| _ | |___ | |_| | | | | |___ | | | |___| _ <
/_/ __| /_/ _____|_| |_|_____| ___/|_| |_|_____| |_| |_____|_| _\ 3.0 r1743807

Copyright (c) 1999-2016 The Apache Software Foundation

To list all command line options, open a command prompt and type:

jmeter.bat(Windows)/jmeter.sh(Linux) -?

--

To run Apache JMeter in GUI mode, open a command prompt and type:

jmeter.bat(Windows)/jmeter.sh(Linux) [-p property-file]

--

Chapter 3 ■ Your First JMeter Test

23

To run Apache JMeter in NON_GUI mode:
Open a command prompt (or Unix shell) and type:

jmeter.bat(Windows)/jmeter.sh(Linux) -n -t test-file [-p property-file] [-l log-file]

--

To run Apache JMeter in NON_GUI mode and generate a report at end :
Open a command prompt (or Unix shell) and type:

jmeter.bat(Windows)/jmeter.sh(Linux) -n -t test-file [-p property-file] [-l log-file] -e -o
[Path to output folder]

--
To generate a Report from existing CSV file:
Open a command prompt (or Unix shell) and type:

jmeter.bat(Windows)/jmeter.sh(Linux) -g [log-file] -o [path to output folder (empty or not
existing)]

--

To tell Apache JMeter to use a proxy server:
Open a command prompt and type:

jmeter.bat(Windows)/jmeter.sh(Linux) -H [your.proxy.server] -P [your proxy server port]

To run Apache JMeter in server mode:
Open a command prompt and type:

jmeter-server.bat(Windows)/jmeter-server(Linux)

C:\apache-jmeter-3.0\bin>

Executing a Single Test
Let’s explore command-line options using the following examples.

Download FirstTestPlan.jmx2 and issue the following command in the CMD prompt.

C:\>jmeter -n -t FirstTestPlan.jmx -l test-run.jtl

Note that test-run.jtl is the test execution log file.

2https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_03/FirstTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_03/FirstTestPlan.jmx

Chapter 3 ■ Your First JMeter Test

24

Proxy Server Setting
If you are behind a proxy server, append the following options.

-H <proxy host server name>, -P <port number>

Start JMeter in Server Mode
JMeter also runs in master-slave formation, known as server mode. To run JMeter in server mode, issue the
following command in the CMD prompt.

C:\>jmeter-server
... Trying JMETER_HOME=..
Found ApacheJMeter_core.jar
Writing log file to: C:\apache-jmeter-3.0\bin\jmeter-server.log
Created remote object: UnicastServerRef [liveRef: [endpoint:[172.17.65.111:61425]
(local),objID:[-10c0a943:15c299a388a:-7
fff, -3710696168706880958]]]

Stop/Shutdown JMeter
To stop JMeter test execution, issue the following command in the CMD prompt. Once the command
executes, it sends a stop signal to the JMeter test. The response message in the CMD prompt should read
StopTestNow request to port 4445.

C:\apache-jmeter-3.0\bin>stoptest.cmd
Sending StopTestNow request to port 4445

To shut down JMeter, issue the following command in the CMD prompt. Once the command executes,
it will send a shutdown signal to the JMeter test. The response message in the CMD prompt should read
Shutdown request to port 4445.

C:\apache-jmeter-3.0\bin>shutdown.cmd
Sending Shutdown request to port 4445

Conclusion
In this chapter, you learned about the components of a JMeter test and wrote a simple JMeter test. You also
learned how to start/stop/shut down JMeter test execution via GUI mode and from the command prompt.
In the next chapter, you will learn to record user actions and create JMeter test scripts by using HTTP(s) Test
Script Recorder.

25© Sai Matam and Jagdeep Jain 2017
S. Matam and J. Jain, Pro Apache JMeter, DOI 10.1007/978-1-4842-2961-3_4

CHAPTER 4

JMeter Test Script Recorder

This chapter discusses how to record a JMeter test script by using HTTP(S) Test Script Recorder. We cover
the WorkBench and Recording Controller, how to configure a proxy port for recording HTTP(S) calls, and
inclusion and exclusion of specific URL patterns. You will also see how to record an example using the
Digital Toys Inc. web application.

At the end of this chapter, you will have a good idea of recording user actions via a browser and will
be able to develop a simple JMeter test script. Those who are already familiar with the HTTP(S) Test Script
Recorder can proceed to the next chapter.

Before starting with the HTTP(S) Test Script Recorder, you need to make sure that JMeter understands
browser actions. You need to configure the browser and use JMeter as a proxy server.

Once you complete the configuration, you can use the browser and perform the use-case specific steps
on a browser. JMeter, being in the middle, can intercept the requests from the browser, record them, and
forward them to the server. Similarly, JMeter can record the web application responses before forwarding
them back to the browser. See Figure 4-1.

Figure 4-1.  JMeter as a proxy server

JMeter WorkBench
JMeter’s WorkBench provides a temporary workspace to store test elements, including a thread group. When
the JMeter GUI starts, it is pre-populated with an empty test plan and an empty WorkBench. When JMeter
is configured as a proxy, it can record the browser activity in the WorkBench. Users can then copy/paste
recorded requests from the WorkBench into the test plan.

Test elements in the WorkBench are considered a work-in-progress. They are not saved with the test
plan unless you check the Save WorkBench check-box. See Figure 4-2.

Chapter 4 ■ JMeter Test Script Recorder

26

Apart from the test elements, it can contain non-test elements like a HTTP(s) Test Script Recorder.
See Figure 4-3.

Figure 4-2.  Save WorkBench

Figure 4-3.  WorkBench options

Chapter 4 ■ JMeter Test Script Recorder

27

WorkBench provides us with a few configuration options for recording test scripts, such as global
settings, test plan content, URL patterns to include, URL patterns to exclude, and notify child listeners of
filtered samplers. See Figure 4-4.

Figure 4-4.  WorkBench

In Global Settings, the Port configuration is used to configure JMeter to listen on a specified port.
Test plan content allows you to specify the controller where the proxy will store the generated samples.

It is set to Recording Controller by default.
The URL Pattern to Include option allows you to add a regular expression that specifies the URLs to

include. For example, use the regular expression .\/product\/. to specify a URL containing the product.
The URL Patterns to Exclude option allows you to add a regular expression to specify the URLs to

exclude. For example, you can use the regular expression .\.(css|js). to indicate that you don’t want
CSS or js.

Selecting the Notify Child Listeners of Filtered Samplers check box causes the child Listener (for example,
the View Results Tree) not to see these requests.

Chapter 4 ■ JMeter Test Script Recorder

28

JMeter Recording Controller
By using Recording Controller in the WorkBench, you can capture the recording of the user actions
performed in the browser.

After recording the test via the WorkBench, the user can run the test to check if it is working as expected.

Browser Proxy Settings
We need to set the JMeter Port setting in Global Settings and the browser proxy port to the same value: --7070.

Let’s set up the proxy in the Firefox browser. See Figure 4-5.

	 1.	 Open Firefox browser and choose Preferences ➤ Advanced ➤ Network ➤
Connection Settings ➤ Manual Proxy Configuration. Configure HTTP Proxy as
localhost and Port as 7070.

	 2.	 Select Use This Proxy Server for All Protocols.

	 3.	 Clear the No proxy For text area.

	 4.	 Click OK.

JMeter is now the proxy between the Firefox browser and the web server.

Figure 4-5.  Firefox proxy settings

Chapter 4 ■ JMeter Test Script Recorder

29

Recording Example
Using the Digital Toys Inc. web application, we will now place an order. Because JMeter has been set up as
the proxy, you can record all the user interactions on the browser.

Follow these steps.

	 1.	 Sign in (user: user1@dt.com, password: user1).

	 2.	 Go to Check Detail ➤ Add To Cart ➤ Checkout ➤ Add Billing/Shipping Address ➤
Add Credit Card ➤ Place Order ➤ Sign Out.

Let’s illustrate the process of developing a test script by recording the user actions.
Follow these steps or download FirstRecordingTestPlan.jmx1:

	 1.	 Create a test plan and give it a meaningful name, such as First Recording Test.

	 2.	 Click on WorkBench and go to Edit ➤ Add ➤ Non-Test Elements. Then add
HTTP(S) Script Test Recorder. In Global Settings, configure Port as 7070. Select
Target Controller as WorkBench > HTTP(S) Test Script Recorder.

	 3.	 Click on the Start button. JMeter will show a Root CA Certificate dialog box. Click OK.

	 4.	 Perform the use-case actions in the browser; they will be shown as in Figure 4-6.

Figure 4-6.  Recording browser actions

1https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_04/FirstRecordingTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_04/FirstRecordingTestPlan.jmx

Chapter 4 ■ JMeter Test Script Recorder

30

	 5.	 Click on the Stop button.

	 6.	 After recording, you will notice requests for .js, .css, and other resources that
are not needed. You can exclude these requests by specifying Exclude Regular
Expression. Click on Add Suggested Excludes, and this action will add a sample
expression. Modify this expression, as shown in Figure 4-7.

.*\.(bmp|css|js|gif|ico|jpe?g|png|swf|woff|woff2|ttf).*

Figure 4-7.  Exclude regular expression

■■ Note  We have excluded .bmp, .css, .js, .gif, .ico, .jpeg, .png, .swf, .woff, .woff2, and .ttf
requests. This is because our focus was to test the performance of the dynamic responses from the server.

	 7.	 Clear the previous recording.

You will now re-record the use-case without the unwanted requests.

	 1.	 Click on the Start button. JMeter will show a dialog box. Click OK.

	 2.	 Perform the use-case actions in the browser.

	 3.	 You will now see that the recorded calls have been filtered for unwanted
resources. See Figure 4-8.

Chapter 4 ■ JMeter Test Script Recorder

31

	 4.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add a thread group.

	 5.	 Select all recorded browser actions from WorkBench and then drag and add
them as child elements of the thread group. The result will look as shown in
Figure 4-9.

Figure 4-8.  Recording browser actions

Chapter 4 ■ JMeter Test Script Recorder

32

	 6.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 7.	 Save the test plan.

■■ Note  Each of the requests in the HTTP(s) Test Script Recorder starts with a request number. However,
these numbers may not be in sequence, as some requests may have been discarded based on the URL
exclusion/inclusion filters.

To verify that the test is working correctly, follow these steps.

	 1.	 Click on Test Plan and go to Edit ➤ Add ➤ Config Element. Add HTTP
Cookie Manager.

	 2.	 Run the test. Results will be similar to those shown in Figure 4-10.

Figure 4-9.  Final recording

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ JMeter Test Script Recorder

33

After the test executes, open the browser, navigate to the Digital Toys Inc. web application, log in with
the user1@dt.com username and user1 password, then navigate to Order History and check if the order
is present. You should see two orders—the first order was created while recording the test and the second
order was created due to the test execution. See Figure 4-11.

Figure 4-10.  View results

Chapter 4 ■ JMeter Test Script Recorder

34

■■ Note  We excluded .js, .css, .ico, .ttf, .woff, etc. requests, which are basically browser-based calls instead
of server calls. This is because the focus here is to test the performance of dynamic responses from the server.

Conclusion
In this chapter, you learned to configure JMeter as a proxy and use the HTTP(S) Test Script Recorder. You
used regular expressions to include/exclude specific URLs in your test script and successfully developed
a JMeter test script. In the next chapter, you will learn about the test plan and its components and explore
various options for each of those components.

Figure 4-11.  Order history

35© Sai Matam and Jagdeep Jain 2017
S. Matam and J. Jain, Pro Apache JMeter, DOI 10.1007/978-1-4842-2961-3_5

CHAPTER 5

JMeter Test Plan Components

This chapter discusses various components of a typical JMeter test plan. Readers are required to read
through this chapter carefully and understand various configuration points of each components. We cover
configurations and use of test plans, thread groups, pre-processors, logic controllers, timers, samplers,
assertions, post-processors, properties, variables, and user defined variables.

By the end of this chapter, you will have a good idea of the various components of a typical test plan and
will have a good understanding of the configurations and uses of these components. You will also be able to
develop a standard JMeter test script. Those who are already familiar with any of these components can skip
the appropriate sections and move forward to the next section.

Test Plan
The test plan is the root element of the JMeter test. It is a container that holds JMeter components like the
thread group, logic controller, sampler, listener, timer, assertion, and config element. A test plan (see Figure 5-1)
consists of one or more thread groups.

Chapter 5 ■ JMeter Test Plan Components

36

Configuration
Figure 5-1 shows the configuration of a test plan. The configuration points are described next.

•	 User Defined Variables: These are defined by using name/value pair(s). Click the
Add button to create a new name/value pair. If you have more than one, create a list
of name/value pairs, one per line, in a text file. Select all of them and then click on
Add Clipboard to add all of them at the same time. Select one or more and click on
the Delete button to delete. Use the Up and Down buttons to change the order.

•	 Run Thread Groups Consecutively (i.e. Run Groups One at a Time): A test plan
can have more than one thread group. If this checkbox is enabled, then the thread
groups are executed one after the other. If this checkbox is not enabled (the default),
the thread groups are executed in parallel.

•	 Run tearDown Thread Groups After Shutdown of Main Threads: If this checkbox
is selected, then tearDown thread groups executes after the test has finished
executing its regular thread group. It is used for doing things post test execution for
reporting purposes or performing cleanup operations.

Figure 5-1.  Test plan configuration

Chapter 5 ■ JMeter Test Plan Components

37

•	 Functional Test Mode (i.e. Save Response Data and Sampler Data): If this
checkbox is selected, then sampler requests and response data are saved in the
listeners. This allows you to verify that the test is working as expected. The use of this
feature is not recommended.

•	 Add Directory or JAR to Classpath: You can add a folder or a JAR file to the
classpath and JMeter can load these classes. For consistent behavior, restart JMeter
after modifying this.

We explore serial execution of thread groups, parallel execution of thread groups, and user defined
variables in the following sections.

Serial Execution of Thread Groups
If the Run Thread Groups Consecutively (i.e. Run Groups One at a Time) checkbox is enabled, then for test
plans that have multiple thread groups, the next thread group will start executing only after the prior thread
group has finished execution.

Let’s illustrate this by the following example.
Follow these steps or download SerialExecutionOfThreadGroupTestPlan.jmx.1

	 1.	 Create a test plan and give it a meaningful name, such as Serial Execution of
Thread Group Test. Enable the Run Thread Groups Consecutively checkbox
(see Figure 5-2).

Figure 5-2.  Serial execution of thread groups

1https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/test-plan/
SerialExecutionOfThreadGroupTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/test-plan/SerialExecutionOfThreadGroupTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/test-plan/SerialExecutionOfThreadGroupTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

38

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.
Configure the Name as Thread Group A and Loop Count as 4 (see Figure 5-3).

Figure 5-3.  Thread group loop count

	 3.	 Click on Thread Group A and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Name as Alpha, Server Name or IP as localhost, Port Number as
8080, and Path as /jmeter/alpha.

	 4.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.
Configure the Name as Thread Group B and Loop Count as 4.

	 5.	 Click on Simple Controller and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Name as Bravo, Path as /jmeter/bravo, and Method as GET.

	 6.	 Click on Test Plan and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 7.	 Save the test plan.

	 8.	 Run the test.

Chapter 5 ■ JMeter Test Plan Components

39

Figure 5-4.  Serial execution of threads results

Parallel Execution of Thread Groups
If the Run Thread Groups Consecutively (i.e. Run Groups One at a Time) checkbox is not enabled, then for
test plans that have multiple thread groups, all the thread groups will start executing at the same time.

Let’s illustrate this in the following example.
Follow these steps or download ParallelExecutionOfThreadGroupTestPlan.jmx.2

	 1.	 Open SerialExecutionOfThreadGroupTestPlan.jmx.

2https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/test-plan/
ParallelExecutionOfThreadGroupTestPlan.jmx

The results are as shown in Figure 5-4.

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/test-plan/ParallelExecutionOfThreadGroupTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/test-plan/ParallelExecutionOfThreadGroupTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

40

	 3.	 Run the test (see Figure 5-6).

Figure 5-5.  Parallel execution of thread groups

	 2.	 Click on the test plan and uncheck the Run Thread Groups Consecutively
checkbox (see Figure 5-5).

Chapter 5 ■ JMeter Test Plan Components

41

Figure 5-6.  Parallel execution of threads results

The results are as shown in Figure 5-6.

■■ Tip P ay attention to the Run Thread Groups Consecutively (i.e. Run Groups One at a Time) checkbox.

User Defined Variables
User defined variables are associated with values that are constant throughout the execution of the test. For
example, if the server name of the HTTP Request is defined as a user defined variable, later when the server
name changes, you just need to change the value of the Server Name field. The important thing to note is
that the value of the server name does not change throughout the execution of the test script.

User defined variables have a scope across the entire test plan. These are copied to the variables in each
of the thread groups before the test starts executing.

Whether the thread groups are being executed consecutively or in parallel, these user defined variables
are available and can be utilized.

■■ Note L ast section of this chapter “Properties and Variables” describes UDV with an example.

Chapter 5 ■ JMeter Test Plan Components

42

Thread Group
The Thread Group element is the starting point of execution. All elements can be the child elements of a
test plan or a thread group (see Figure 5-7), except for controllers and samplers, which can only be the child
elements of a thread group.

Figure 5-7.  Thread group contents

The thread group is simulating the load generated by users performing a use-case. A test plan can have
multiple thread groups, thus simulating multiple use-cases.

Although uncommon, data can be exchanged between thread groups.
The Number of Threads (Users) option is used to specify the number of users accessing the web

application. When the test starts initially, threads are spawned based on the configuration option called
Ramp-Up Period (in Seconds).

You can also schedule tests to run at a particular time.
When a test fails, the behavior to continue or to stop is configurable (see Figure 5-8).

Chapter 5 ■ JMeter Test Plan Components

43

Figure 5-8.  Thread group

Let’s explore each of these options in the following section.

Thread Properties
The Thread Properties option (see Figure 5-9) gives you the flexibility to simulate a realistic load.

Figure 5-9.  Thread group

Chapter 5 ■ JMeter Test Plan Components

44

Figure 5-10.  Thread group test

•	 Number of Threads (Users): This is the number of users we want to use for load
testing a web application.

•	 Ramp-Up Period (in Seconds): This is the time after which all threads will be active.

Assume that you want to start 10 threads, with a thread starting every second, then configure the
thread group with Number of Threads (users) as 10 and RampUp Period (in Seconds) as 10. With this
configuration, 10 threads will start in 10 seconds and all threads will be active after 10 seconds.

Let’s see how to use Number of Threads (Users) and Ramp-Up Period (in Seconds) using the following
example.

Follow these steps or download ThreadGroupTestPlan.jmx.

	 1.	 Create a test plan and give it a meaningful name, such as Thread Group Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.
Configure Number of Threads (users) as 10 and Ramp-Up Period (in seconds)
as 10 (see Figure 5-10).

Chapter 5 ■ JMeter Test Plan Components

45

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, and Path as /dt.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 5.	 Save the test plan.

	 6.	 Run the test.

The results will be similar to those shown in Figures 5-11 and 5-12.

Figure 5-11.  Thread group test results - thread one

Figure 5-12.  Thread group test results - thread two

Chapter 5 ■ JMeter Test Plan Components

46

	 7.	 Click on each of the responses and look for Sample Start. This will show you
when the thread started. You will find that each thread was started after a gap
of 1 second.

•	 Loop Count: This option controls the number of iterations that the thread
group runs.

Let’s see how to use Loop Count using the following example.
Follow these steps or download LoopedThreadGroupTestPlan.jmx.3

	 1.	 Create a test plan and give it a meaningful name, such as Looped Thread Group Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.
Configure Number of Threads (users) as 1, Ramp-Up Period (in seconds) as 1,
and Loop Count as 2 (see Figure 5-13).

Figure 5-13.  Looped thread group test

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, and Path as /dt.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 5.	 Save the test plan.

3https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/thread-group/
LoopedThreadGroupTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/thread-group/LoopedThreadGroupTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/thread-group/LoopedThreadGroupTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

47

	 7.	 Since we have configured Loop Count as 2, two responses are captured inside
View Results Tree.

•	 Forever: By selecting this checkbox, we are telling JMeter that the execution should
iterate until the user clicks the Stop or Shutdown buttons.

Let’s see how to use Forever option using the following example.
Follow these steps or download ForeverRunningThreadGroupTestPlan.jmx.4

	 1.	 Create a test plan and give it a meaningful name, such as Forever Running
Thread Group Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.
Configure Number of Threads (users) as 1, Ramp-Up Period (in seconds) as 1
and click the Forever checkbox (see Figure 5-15).

Figure 5-14.  Looped thread group test results

4https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/thread-group/
ForeverRunningThreadGroupTestPlan.jmx

	 6.	 Run the test. The results are shown in Figure 5-14.

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/thread-group/ForeverRunningThreadGroupTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/thread-group/ForeverRunningThreadGroupTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

48

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, and Path as /dt.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 5.	 Save the test plan.

	 6.	 Run the test.

	 7.	 The test will never end, with responses being added to the View Results Tree
Listener.

	 8.	 Click on the Stop button to stop the test immediately or click on the Shutdown
button to terminate the test gracefully.

Figure 5-15.  Forever thread group test

Chapter 5 ■ JMeter Test Plan Components

49

Figure 5-16.  Scheduler

Web site traffic load patterns vary based on the time of day. This can be simulated by configuring the
scheduler to run the test at a particular time.

Let’s see this in the following example.
Follow these steps or download ScheduledThreadGroupTestPlan.jmx.5

	 1.	 Create a test plan and give it a meaningful name, such as Scheduled Thread
Group Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.
Configure Number of Threads (users) as 1, Ramp-Up Period (in seconds) as 1,
and then click the Forever checkbox (see Figure 5-17).

	 3.	 Click on the Scheduler checkbox. Let’s say the system time is 07:18:10 and you
want the test to run 5 minutes from now. Configure the Start Time to 07:23:10
and End Time to 07:23:11. Here, you are telling JMeter to run the test 5 minutes
from now and to run it for .01 seconds (see Figure 5-17).

5https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/thread-group/
ScheduledThreadGroupTestPlan.jmx

Scheduler
The other properties of the thread group are Scheduler and Delayed Thread Creation until Needed
(see Figure 5-16).

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/thread-group/ScheduledThreadGroupTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/thread-group/ScheduledThreadGroupTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

50

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, and Path as /dt.

	 5.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 6.	 Save the test plan.

	 7.	 Run the test. The test will not run immediately, as execution was scheduled to
start after 5 minutes. Wait for 5 minutes and you will see responses under the
View Results Tree. Look at the Sampler Start time; it will show the configured
value (see Figure 5-18).

Figure 5-17.  Scheduled thread group test

Chapter 5 ■ JMeter Test Plan Components

51

The test will stop automatically after .01 second.
The Sampler Start Time is ignored if Startup Delay (Seconds) is specified. Let’s see this using the

following example.

	 1.	 Open ScheduledThreadGroupTestPlan.jmx.

	 2.	 Click on Thread Group and configure Duration (Seconds) as 2 and Startup
delay (seconds) as 10 (see Figure 5-19).

Figure 5-18.  Scheduled thread group test results

Chapter 5 ■ JMeter Test Plan Components

52

	 3.	 Save the test plan.

	 4.	 Click on the Start button. The test will not start immediately, but will start
automatically after 10 seconds and end after 2 seconds (see Figure 5-20).

Figure 5-19.  Startup delay thread group test

Chapter 5 ■ JMeter Test Plan Components

53

6https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/thread-group/
ThreadGroupActionsTestPlan.jmx

Figure 5-20.  Startup delay thread group test results

■■ Note  The configuration option called Delayed Thread Creation Until Needed is used to minimize the
number of threads. This is an optimization feature.

Action After Sampler Error
When a sampler fails, the thread group execution behavior is configurable.

•	 Continue: If selected, the execution will continue irrespective of the error.

Let’s see this action in the following example.
Follow these steps or download ThreadGroupActionsTestPlan.jmx.6

	 1.	 Create a test plan and give it a meaningful name, such as Thread Group Actions
Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.
Configure Number of Threads (users) as 1, Ramp-Up Period (in seconds) as
1, then click the Forever checkbox and select Actions to be taken after Sampler
error as Continue. Give it the name Thread Group A.

	 3.	 Click on thread group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, and Path as
/dt. Give it the name HTTP Request-A#1.

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/thread-group/ThreadGroupActionsTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/thread-group/ThreadGroupActionsTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

54

Figure 5-21.  Continue thread group test

	 4.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.
Configure Number of Threads (users) as 1, Ramp-Up Period (in seconds) as 1,
select Forever checkbox and select Actions to Be Taken After Sampler Error as
Continue. Give it the name Thread Group B.

	 5.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, and Path as
/dt. Give it the name HTTP Request-B#1.

	 6.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, and Path as
/wrong-dt. Give it the name HTTP Request-B#2.

	 7.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, and Path as
/dt. Give it the name HTTP Request-B#3.

	 8.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree
(see Figure 5-21).

	 9.	 Save the test plan.

	 10.	 Run the test.

	 11.	 Click on View Results Tree. You will notice that there was an error in the sampler,
as indicated by the red color. Despite the error, the test continues to execute
(see Figure 5-22).

Chapter 5 ■ JMeter Test Plan Components

55

•	 Start Next Thread Loop: If selected, when a sampler error occurs, the current thread
loop is terminated and the next thread loop is started.

Follow these steps to observe this behavior.

	 1.	 Open ThreadGroupActionsTestPlan.jmx.7

	 2.	 Click on Thread Group B. Configure Action to Be Taken After a Sampler Error
as Start Next Thread Loop (see Figure 5-23).

Figure 5-22.  Continue thread group test results

7https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/thread-group/
ThreadGroupActionsTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/thread-group/ThreadGroupActionsTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/thread-group/ThreadGroupActionsTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

56

	 3.	 Save the test plan.

	 4.	 Run the test.

	 5.	 Click on View Results Tree. You will see that there was an error at
HTTP Request-B#2, after which the execution of the thread stops, never executing
HTTP Request-B#3. The next iteration of the thread group starts (see Figure 5-24).

Figure 5-23.  Start next thread loop test

Figure 5-24.  Start next thread group test results

Chapter 5 ■ JMeter Test Plan Components

57

Figure 5-25.  Stop thread test

	 6.	 Click on the Stop button to manually stop the test.

•	 Stop Thread: If selected, when a sampler error occurs, the thread is terminated.

Any other threads in the thread group will continue execution.
Follow these steps to observe this behavior.

	 1.	 Open ThreadGroupActionsTestPlan.jmx.8

	 2.	 Click on Thread Group B. Configure Action to be Taken After a Sampler Error
as Stop Thread (see Figure 5-25).

8https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/thread-group/
ThreadGroupActionsTestPlan.jmx

	 3.	 Save the test plan.

	 4.	 Run the test. Click on View Results Tree. You will see that, after the sampler error,
the test will never execute samplers from Thread Group B (see Figure 5-26).

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/thread-group/ThreadGroupActionsTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/thread-group/ThreadGroupActionsTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

58

•	 Stop Test: If selected, this will stop the test entirely but allow the currently executing
samplers to finish.

Follow these steps to observe this behavior.

	 1.	 Open ThreadGroupActionsTestPlan.jmx9.

	 2.	 Click on Thread Group B. Configure Action to be taken after a Sampler error as
Stop Test (see Figure 5-27).

Figure 5-26.  Stop thread test results

Figure 5-27.  Stop test

9https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/thread-group/
ThreadGroupActionsTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/thread-group/ThreadGroupActionsTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/thread-group/ThreadGroupActionsTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

59

	 3.	 Save the test plan.

	 4.	 Run the test. Click on View Results Tree. You will see that, after the sampler error
at HTTP Request-B#2, the test stops just after allowing the currently executing
sampler HTTP Request-A#1 to finish (see Figure 5-28).

Figure 5-28.  HTTP request sampler result

•	 Stop Test Now: If selected, this will stop the test abruptly without waiting for the
currently executing samplers to finish.

Follow these steps to observe this behavior.

	 1.	 Open ThreadGroupActionsTestPlan.jmx10.

	 2.	 Click on Thread Group B. Configure Action to be Taken After a Sampler Error
as Stop Test Now (see Figure 5-29).

10https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/thread-group/
ThreadGroupActionsTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/thread-group/ThreadGroupActionsTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/thread-group/ThreadGroupActionsTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

60

Figure 5-30.  Stop test now results

Figure 5-29.  Stop test now test

	 3.	 Save the test plan.

	 4.	 Run the test.

	 5.	 Click on View Results Tree. You will see that, after the sampler error at
HTTP Request-B#2, the test stops abruptly without allowing the currently
executing samplers HTTP Request-A#1 to finish (see Figure 5-30).

Chapter 5 ■ JMeter Test Plan Components

61

Pre-Processors
Pre-processors take the request and modify (substitution, enhancement, dereferencing variables etc.) it
before the sampler sends it to the server.

Certain web browsers do not support cookies. In such cases, the session-id is passed as a parameter in
the URL. The HTTP URL Re-writing Modifier pre-processes the sampler requests and appends the necessary
session-id information to every embedded URL before the request is sent to the server.

Pre-processors are executed after the Config Elements and before the timers and samplers as per JMeter
test plan execution order.

HTTP URL Re-Writing Modifier
The HTTP URL Re-Writing Modifier (see Figure 5-31) is used to store session ID. It is added as a child to the
thread group. It will automatically determine the session ID of the web application being tested based on the
session variable name used in the web application.

Figure 5-31.  HTTP URL re-writing modifier pre-processor

•	 Session Argument Name: Variable used to store the session ID in the web
application.

•	 Path Extension (Use ";" as Separator): Should be selected only when the URL
parameters are separated by semicolons (;).

•	 Do not use equals in path extension: Should be selected if you do not want name/
value pair separated by equals signs (=).

•	 Do not use question mark in path extension: Should be selected if you do not want
name/value pair separated by question marks (?).

•	 Cache Session Id?: Should be selected if you want to use the Caching feature of
JMeter.

•	 URL Encode: Should be selected if your URL is using any encoding Let’s illustrate
this with the following example.

Chapter 5 ■ JMeter Test Plan Components

62

11https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/pre-processors/
PreProcessorHTTPURLReWritingTestPlan.jmx

Before starting the test, let’s set up the browser for recording steps on JMeter.
Follow these steps or download PreProcessorHTTPURLReWritingTestPlan.jmx.11

	 1.	 Create a test plan and give it a meaningful name, such as Pre Processor
HTTP URL Re Writing Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Elements. Add HTTP
Request Defaults. Configure Server Name or IP as localhost and Port Number
as 8080.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Configure Path as
/user/signIn and Method as POST. Under the parameters, set Send Parameters
With the Request to Name:Value pairs, email to user100@dt.com, and password
to user100.

	 5.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Configure the path to
/order/addToCart and the method to POST. Under the parameters,
Send Parameters With the Request: add Name:Value pair, product as 1.

	 6.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Configure the path
to /user/addAddress and the method to POST. Under the parameters, set
Send Parameters With the Request to Name:Value pairs, set checkOutFlow
to true, and leave addressId empty. Then set line1 as AddressLine1, line2
as AddressLine2, city as Foster, state as CA, and zip as 12345.

	 7.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Configure the path to
/user/addCard and the method to POST. Under the parameters, set
Send Parameters With the Request: to Name:Value pair, checkOutFlow to true,
and leave cardId empty. Then set nameOnCard to user100, cardNumber
to 1234123412341234, and expirationMonthYear to 12/2016.

	 8.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Configure the path to
/order/placeOrder and the method to GET.

	 9.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Configure the path to
/user/signOut and the method to GET.

	 10.	 Click on Thread Group and go to Edit ➤ Add ➤Listener. Add View Results Tree.

	 11.	 Save the test plan.

	 12.	 Run the test.

Login to the Digital Toys Inc. web application using user100@dt.com/user100 and find out if the order
is placed successfully. You will find out that there was no order placed for this user. This is because the user
session information was not passed to the server.

Follow these steps to add the HTTP URL Re-writing Modifier.

	 1.	 Click on Thread Group and go to Edit ➤ Add ➤ Pre Processors. Add HTTP URL
Re-writing Modifier. Configure the session argument name to jsessionid, and
then click the checkbox for Path Extension (use “;” as Separator) (see Figure 5-32).
Leave all other checkboxes unchecked.

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/pre-processors/PreProcessorHTTPURLReWritingTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/pre-processors/PreProcessorHTTPURLReWritingTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

63

	 2.	 Run the test.

	 3.	 Verify the results of the test script execution by logging into the Digital Toys Inc.
web application as user100@dt.com/user100. Navigate to Order History. You
should now see the recently placed order in the Order History for this user.

Controller
Controllers determine the sequence in which the samplers are processed. These are analogous to the control
flow constructs in common programming languages. The names of the controllers are indicative of their
function.

Logical controllers can be categorized as follows:

	 1.	 Controllers for grouping

a.	 Simple Controller

b.	 Transaction Controller

	 2.	 Controllers for looping

a.	 Loop Controller

b.	 While Controller

c.	 ForEach Controller

	 3.	 Controllers for decision making

a.	 If Controller

b.	 Switch Controller

c.	 Once Only Controller

d.	 Interleave Controller

e.	 Random Controller

f.	 Random Order Controller

Figure 5-32.  HTTP URL re-writing modifier

Chapter 5 ■ JMeter Test Plan Components

64

12https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/
SimpleControllerTestPlan.jmx

	 4.	 Controllers for modularity

a.	 Module Controller

b.	 Include Controller

	 5.	 Controllers for recording

a.	 Recording Controller

	 6.	 Other controllers

a.	 Critical Section Controller

b.	 Throughput Controller

c.	 Runtime Controller

JMeter can be extended by writing custom controllers.

Simple Controller
The Simple Controller provides no functionality beyond that of grouping, primarily to organize samplers and
other logic controllers.

■■ Note  The Simple Controller is not often used. Instead, consider using the transaction controller, which is
discussed later in the chapter.

Let’s look at an example that illustrates the use of a Simple Controller.
Follow these steps or download SimpleControllerTestPlan.jmx.12

	 1.	 Create a test plan and give it a meaningful name, such as Simple Controller
Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP
Request Defaults. Configure Server Name or IP as localhost and Port Number
as 8080.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Logic Controller. Add Simple
Controller.

	 5.	 Click on Simple Controller and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Name as Alpha, Path as /jmeter/alpha, and Method as GET.

	 6.	 Click on Simple Controller and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Name as Bravo, Path as /jmeter/bravo, and Method as GET.

	 7.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 8.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results in Table.

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/SimpleControllerTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/SimpleControllerTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

65

	 9.	 Save the test plan.

	 10.	 Run the test.

The results will be similar to those shown in Figure 5-33.

Figure 5-33.  Simple Controller results

Transaction Controller
The Transaction Controller provides the functionality of grouping elements together, similar to Simple
Controller. In addition to that, it generates an additional entry in the listener that measures the overall time
taken to perform the nested test elements.

Let’s look at an example that illustrates the use of a Transaction Controller.
Follow these steps or download TransactionControllerTestPlan.jmx.13

	 1.	 Create a test plan and give it a meaningful name, such as Transaction
Controller Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP
Request Defaults. Configure Server Name or IP as localhost and Port Number
as 8080.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Logic Controller and add
Transaction Controller. Do not select any of the checkboxes.

	 5.	 Click on Transaction Controller and go to Edit ➤ Add ➤ Sampler. Add HTTP
Request. Configure Name as Alpha, Path as /jmeter/alpha, and Method as GET.

	 6.	 Click on Transaction Controller and go to Edit ➤ Add ➤ Sampler. Add HTTP
Request. Configure Name as Bravo, Path as /jmeter/bravo, and Method as GET.

	 7.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 8.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results in Table.

13https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/
TransactionControllerTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/TransactionControllerTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/TransactionControllerTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

66

	 9.	 Save the test plan.

	 10.	 Run the test.

The results will be similar to those shown in Figure 5-34.

Figure 5-34.  Transaction Controller

The Transaction Controller is considered successful only if all the samplers under it are successful.
In the Parent Mode, the individual samples can still appear in the View Results Tree, but no longer

appear as separate entries in View Results in Table or in other listeners. Also, the sub-samples do not appear
in CSV log files, but they can be saved to XML files (see Figure 5-36).

Figure 5-35.  Transaction Controller parent mode

These results indicate that there is a new entry in the results table that has the combined aggregate
values of the sample time (ms), latency, bytes, and connect time.

The Transaction Controller can function in Parent Mode. This can be enabled using a checkbox as
shown in Figure 5-35 and then the additional sample is added as a parent of the nested samples.

Chapter 5 ■ JMeter Test Plan Components

67

Figure 5-36.  Transaction Controller parent mode results

14https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/
TransactionControllerConstantTimerTestPlan.jmx

By default, Transaction Controller does not include the time taken by timers and pre-processors.
However, it can be configured to include the timers by enabling a checkbox, as shown.

Follow these steps or download TransactionControllerConstantTimerTestPlan.jmx.14

	 1.	 Open TransactionControllerTestPlan.jmx.

	 2.	 Go to File ➤ Save Test Plan as and type in a filename, such as
TransactionControllerConstantTimerTestPlan.jmx.

	 3.	 Give the test plan a meaningful name, such as Transaction Controller And
Constant Timer Test.

	 4.	 Click on Transaction Controller and go to Edit ➤ Add ➤ Timer. Add Constant
Timer. Configure Thread Delay (in Milliseconds) to 1000 (see Figure 5-37).

Figure 5-37.  Constant timer

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/TransactionControllerConstantTimerTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/TransactionControllerConstantTimerTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

68

	 5.	 Save the test plan.

	 6.	 Run the test.

The results will be similar to those shown in Figure 5-38.

Figure 5-38.  Consolidated entry of the Transaction Controller

The result indicates that the aggregate is one second more than the sum of the HTTP Request Sampler.
This is because the time taken by the timer has been added to the aggregate.

Loop Controller
The Loop Controller provides a looping mechanism. It can repeat the execution of its nested elements a
specified number of times. It also has a checkbox to configure it to loop forever.

Let’s look at an example that illustrates the use of a Loop Controller.
Follow these steps or download LoopControllerTestPlan.jmx.15

	 1.	 Create a test plan and give it a meaningful name, such as Loop Controller Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP
Request Defaults. Configure Server Name or IP as localhost and Port Number
as 8080.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Name as Alpha, Path as /jmeter/alpha, and Method as GET.

	 5.	 Click on Thread Group and go to Edit ➤ Add ➤ Logic Controller. Add Loop
Controller. Configure the Loop Count as 4 (see Figure 5-39).

15https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/
LoopControllerTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/LoopControllerTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/LoopControllerTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

69

	 6.	 Click on Loop Controller and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Name as Bravo, Path as /jmeter/bravo, and Method as GET.

	 7.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 8.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results in
Table.

	 9.	 Save the test plan.

	 10.	 Run the test.

The results will be similar to those shown in Figure 5-40.

Figure 5-39.  Loop Controller configuration

Figure 5-40.  Loop Controller results

Chapter 5 ■ JMeter Test Plan Components

70

16https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/
RuntimeControllerTestPlan.jmx

As you can see in the results, alpha was called once followed by four requests to bravo.

■■ Note  This controller is used to simulate high traffic to certain pages.

The Loop Controller can be configured to loop indefinitely by enabling the Forever checkbox. This gets
enabled even if you enter any negative number for Loop Count.

If you run the test with the Forever checkbox enabled, you need to click on the Shutdown button and
terminate the test gracefully. Clicking on the Stop button terminates the threads abruptly, and you may see
some errors in the requests.

Runtime Controller
The Runtime Controller controls the duration for which its child elements are run.

A Runtime Controller executes its child elements in its hierarchy for the specified duration. At the end of
the nested elements, it loops through again. Using the same logic, if the specified time runs out, the Runtime
Controller stops execution even if it has executed only a part of the nested elements. The currently executing
element is allowed to complete, but the newer elements are not executed once the specified time is over.

The configuration is very simple. You just have to enter the number of milliseconds for which the child
elements should be run. If the duration field is 0 or a negative number, all the child elements are completely
skipped.

This also works as a looping mechanism; the only difference being that instead of the specified number
of iterations, the child elements are looped for a specified elapsed time.

Let’s look at an example that illustrates the use of a Runtime Controller.
Follow these steps or download RuntimeControllerTestPlan.jmx.16

	 1.	 Create a test plan and give it a meaningful name, such as Runtime Controller Test

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP
Request Defaults. Configure Server Name or IP to localhost and Port Number
to 8080.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Logic Controller. Add Runtime
Controller. Configure Runtime (seconds) to 10 (see Figure 5-41).

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/RuntimeControllerTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/RuntimeControllerTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

71

Figure 5-41.  Runtime Controller configuration

	 5.	 Click on Runtime Controller and go to Edit ➤ Add ➤ Sampler. Add HTTP
Request. Configure Name as Alpha, Path as /jmeter/alpha, and Method as GET.

	 6.	 Click on Runtime Controller and go to Edit ➤ Add ➤ Sampler. Add HTTP
Request. Configure Name as Bravo, Path as /jmeter/bravo, and Method as GET.

	 7.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 8.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results in Table.

	 9.	 Save the test plan.

	 10.	 Run the test.

The results will be similar to those shown in Figure 5-42.

Figure 5-42.  Runtime Controller execution duration

Chapter 5 ■ JMeter Test Plan Components

72

17https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/
ThroughputControllerTestPlan.jmx

Observe that the time difference between the last and the first sample is 9.182 seconds, which is
approximately 10 seconds. This is working as configured. See Table 5-1 for more detail.

Table 5-1.  Difference Between Samples

Time of Last Sample Time of First Sample Difference

08:44:13:161 08:44:03:590 00:00:09:57

Throughput Controller
The Throughput Controller controls the number of executions of its child elements. This is a misnomer, as it
does not control the throughput; use the Constant Throughput Timer for that.

You can configure this in two modes:

•	 Number of Executions: The child elements are executed until the specified count is
reached and the subsequent executions are skipped. To configure this, choose Total
Executions and specify a value for Throughput.

•	 Percentage of Executions: The concept is the same except that the number
of executions of the child elements is restricted by the percentage configured.
To configure this, choose Percent Executions and specify a value for Throughput
(omit the % sign).

Both of these modes limit the number of executions of the controller. These limits apply collectively to
all the threads in the thread group. These limits apply on a per thread basis when the Per User checkbox is
enabled.

The following example demonstrates this concept. We will configure the Throughput Controller in Total
Executions mode to execute based on a count specified.

Follow these steps or download ThroughputControllerTestPlan.jmx.17

	 1.	 Create a test plan and give it a meaningful name, such as Throughput
Controller Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.
Configure Loop Count as 10.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP
Request Defaults. Configure Server Name or IP as localhost and Port Number
as 8080.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Name as Alpha, Path as /jmeter/alpha, and Method as GET.

	 5.	 Click on Thread Group and go to Edit ➤ Add ➤ Logic Controller. Add
Throughput Controller. Configure Throughput as 3, and then select
Total Executions from the drop-down (see Figure 5-43).

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/ThroughputControllerTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/ThroughputControllerTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

73

Figure 5-43.  Throughput Controller configuration

	 6.	 Click on Throughput Controller and go to Edit ➤ Add ➤ Sampler. Add HTTP
Request. Configure Name as beta, Path as /jmeter/beta, and Method as GET.

	 7.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 8.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results in Table.

	 9.	 Save the test plan.

	 10.	 Run the test.

The results will be similar to those shown in Figure 5-44.

Figure 5-44.  Throughput Controller results

Chapter 5 ■ JMeter Test Plan Components

74

The /jmeter/beta HTTP request, being the child element of the Throughput Controller, was executed
only three times, as configured in the Throughput count. The /jmeter/alpha HTTP request, being outside of
the Throughput Controller, was executed for a full 10 times, as configured in the thread group’s Loop Count.

The various combinations of configurations are summarized in Table 5-2.

Table 5-2.  Configuration Summary

Threads
(Users)

Loop
Count

Per User Mode Throughput Req Count
(/jmeter/alpha)

Req. Count
(/jmeter/beta)

1 10 No Count 3 10 3

1 10 No Percent 20 % 10 2

2 10 No Count 3 20 3

2 10 No Percent 20 % 20 4

2 10 Yes Count 3 20 6

2 10 Yes Percent 20 % 20 4

/jmeter/alpha is a direct child element of the thread group and is outside the scope of the Throughput
Controller. The number of requests to the /jmeter/alpha is always determined by the Number of Threads
(users) times the Loop Count configured in the thread group.

/jmeter/beta is a child element under Throughput Controller. The number of requests to the /jmeter/
beta is restricted by the Throughput Controller configuration.

When the Per User flag is enabled and the Throughput Controller is in Total Execution mode, the
number of times the child elements are executed is the Number of Threads (Users) times the Throughput.

When the Throughput Controller is in Percent mode, the result happens to be the same whether or not
the Per User checkbox is enabled. This does not change the execution count when Throughput Controller is
in Percent mode.

Once Only Controller
Once Only Controller executes its child elements only once per thread. This is typically used to perform
logins or another use-case that’s needed only once for a user session.

There is no configuration for this Once Only Controller. The Once Only Controller should be a child
element of the thread group or Loop Controller. Otherwise, the behavior is not defined.

The following is an example of using Once Only Controller as a child of thread group, where thread
group has been configured to do the looping.

Follow these steps or download OnceOnlyControllerTestPlan.jmx.18

	 1.	 Create a test plan and give it a meaningful name, such as Once Only Controller Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.
Configure Number of Threads (Users) as 2 and Loop Count as 4.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP Request
Defaults. Configure Server Name or IP as localhost and Port Number as 8080.

18https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/
OnceOnlyControllerTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/OnceOnlyControllerTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/OnceOnlyControllerTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

75

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Logic Controller. Add Once Only
Controller. It has no configuration.

	 5.	 Click on Once Only Controller and go to Edit ➤ Add ➤ Sampler. Add HTTP
Request. Configure Name as Alpha, Path as /jmeter/alpha, and Method as GET.

	 6.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Name as Bravo, Path as /jmeter/bravo, and Method as GET.

	 7.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Name as Charlie, Path as /jmeter/charlie, and Method as GET.

	 8.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Name as Delta, Path as /jmeter/delta, and Method as GET.

	 9.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 10.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results in Table.

	 11.	 Save the test plan.

	 12.	 Run the test.

The results will be similar to those shown in Figure 5-45.

Figure 5-45.  Once Only Controller with only one request to alpha

Chapter 5 ■ JMeter Test Plan Components

76

19https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/
InterleaveAndLoopControllerTestPlan.jmx

These results indicate that the HTTP request for /jmeter/alpha, the child element of the Once Only
Controller, was executed only two times, which is once per thread, as configured. The HTTP requests for
/jmeter/bravo, /jmeter/charlie, and /jmeter/delta were executed eight times as the Number of Threads
(Users) was 2 and the Loop Count was 4.

Interleave Controller
The Interleave Controller executes only one of its child elements per loop iteration. Each time it iterates, it
picks the next child element in sequence.

A child controller is considered a sub-controller. By default, a sub-controller, including all its children, is
treated as a single unit. If the Ignore Sub-Controller Blocks checkbox is enabled, the grouping implied by the
sub-controller is ignored and the child elements of the sub-controller are treated as the direct child elements
of the Interleave Controller.

The Interleave Controller is used to distribute the requests among a set of URLs. Let’s look at an
example that illustrates the use of the Interleave Controller.

Follow these steps or download InterleaveAndLoopControllerTestPlan.jmx.19

	 1.	 Create a test plan and give it a meaningful name, such as Interleave And Loop
Controller Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP Request
Defaults. Configure Server Name or IP as localhost and Port Number as 8080.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Logic Controller. Add Loop
Controller. Configure Loop Count as 4.

	 5.	 Click on Loop Controller and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Name as Zulu, Path as /jmeter/zulu, and Method as GET.

	 6.	 Click on HTTP Request Zulu and go to Edit ➤ Add ➤ Logic Controller. Add
Interleave Controller. Leave the checkbox titled Ignore Sub-Controller Blocks
unchecked (see Figure 5-46).

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/InterleaveAndLoopControllerTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/InterleaveAndLoopControllerTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

77

Figure 5-46.  Interleave Controller configuration

	 7.	 Click on Interleave Controller and go to Edit ➤ Add ➤ Sampler. Add HTTP
Request. Configure Name as Alpha, Path as /jmeter/alpha, and Method as GET.

	 8.	 Click on Interleave Controller and go to Edit ➤ Add ➤ Sampler. Add HTTP
Request. Configure Name as Beta, Path as /jmeter/beta, and Method as GET.

	 9.	 Click on Interleave Controller and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Name as Charlie, Path as /jmeter/charlie, and Method as GET.

	 10.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 11.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results in Table.

	 12.	 Save the test plan.

	 13.	 Run the test.

The results will be similar to those shown in Figure 5-47.

Chapter 5 ■ JMeter Test Plan Components

78

These results indicate that the Interleave Controller cycles the requests between Alpha, Beta, and
Charlie for each loop iteration.

The Interleave Controller alternates the requests separately for each thread. You can verify this by
modifying this example in the following steps.

	 1.	 Modify the thread group configuration and update Number of Threads (Users) field to 2.

	 2.	 Run the test.

The results will be similar to those shown in Figure 5-48.

Figure 5-48.  Interleave Controller updated results

Figure 5-47.  Interleave Controller alternative requests

Chapter 5 ■ JMeter Test Plan Components

79

In these results, the Interleave Controller alternates the requests for each thread. That is why we see two
requests for Zulu, Alpha, Zulu, Beta, and so on.

Let’s look at the effect of having controllers as child elements of an Interleave Controller.
Follow these steps or download InterleaveAndSimpleControllerTestPlan.jmx.20

	 1.	 Open InterleaveAndLoopControllerTestPlan.jmx.

	 2.	 Go to File ➤ Save Test Plan As and give it a meaningful name, such as
Interleave And Simple Controller Test.

	 3.	 Click on Interleave Controller and go to Edit ➤ Add ➤ Logic Controller. Add
Simple Controller.

	 4.	 Select Beta and Charlie HTTP requests and drag these requests under the Simple
Controller as child elements.

	 5.	 Save the test plan.

	 6.	 Run the test.

The results will be similar to those shown in Figure 5-49.

Figure 5-49.  Interleave Controller updated results

These results indicate that the Interleave Controller alternates requests between its two child
elements—Alpha and the Simple Controller. All the elements inside the Simple Controller are treated as a
unit. So the request sequence is Zulu, Alpha, Zulu, Beta, Charlie.

Let’s enable the checkbox and see how the request is distributed.
Follow these steps or download InterleaveWithIngnoreSubControllersTestPlan.jmx.21

20https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/
InterleaveAndSimpleControllerTestPlan.jmx
21https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/
InterleaveWithIngnoreSubControllersTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/InterleaveAndSimpleControllerTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/InterleaveAndSimpleControllerTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/InterleaveWithIngnoreSubControllersTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/InterleaveWithIngnoreSubControllersTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

80

	 1.	 Open InterleaveAndSimpleControllerTestPlan.jmx.

	 2.	 Go to File ➤ Save Test Plan as and type in a filename, such as
InterleaveWithIngnoreSubControllersTestPlan.jmx.

	 3.	 Give the test plan a meaningful name, such as Interleave Controller With
Ignore Sub Controllers.

	 4.	 Click on Interleave Controller and enable the checkbox Ignore Sub-Controller
Blocks (see Figure 5-50).

Figure 5-50.  Interleave Controller ignore sub-controller block configuration

	 5.	 Save the test plan.

	 6.	 Run the test.

Chapter 5 ■ JMeter Test Plan Components

81

These results indicate that the elements under the Simple Controller are also getting interleaved. It has
changed the request sequence to Zulu, Alpha, Zulu, Beta, Zulu, Alpha, Zulu, Charlie.

Random Controller
The Random Controller is similar to the Interleave Controller except that the order of interleaving is random
instead of sequential. The configuration is just like the Interleave Controller.

In the previous tests, replace Interleave Controller with Random Controller, run the tests, and then
verify the results.

Random Order Controller
The Random Order Controller executes all its child elements but in random order. There is no other
configuration for this controller.

Follow these steps or download RandomOrderControllerTestPlan.jmx.22

	 1.	 Create a test plan and give it a meaningful name, such as Random Order
Controller Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP Request
Defaults. Configure Server Name or IP as localhost and Port Number as 8080.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Logic Controller. Add Random
Order Controller.

Figure 5-51.  Interleave Controller alternate requests

22https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/
RandomOrderControllerTestPlan.jmxx

The results will be similar to those shown in Figure 5-51.

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/RandomOrderControllerTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/RandomOrderControllerTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

82

	 5.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Name as Alpha, Path as /jmeter/alpha, and Method as GET.

	 6.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Name as Bravo, Path as /jmeter/bravo, and Method as GET.

	 7.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Name as Charlie, Path as /jmeter/charlie, and Method as GET.

	 8.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Name as Zulu, Path as /jmeter/zulu, and Method as GET.

	 9.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 10.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results in
Table.

	 11.	 Save the test plan.

	 12.	 Run the test.

The results will be similar to those shown in Figure 5-52.

Figure 5-52.  Random Order Controller results

These results indicate that all the child samplers were executed in random order.

Switch Controller
The Switch Controller is analogous to the switch/case programming construct. The Switch Controller
executes only one of its child elements after matching the element’s name with the configured Switch value.
If the Switch value is an integer, it executes the child element based on the sequence number.

■■ Note  The sequence number starts at 0.

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ JMeter Test Plan Components

83

Let’s look at an example.
Follow these steps or download SwitchControllerTestPlan.jmx.23

	 1.	 Create a test plan and give it a meaningful name, such as Switch Controller
Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP
Request Defaults. Configure Server Name or IP as localhost and Port Number
as 8080.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Logic Controller. Add Switch
Controller. Configure Switch Value as Bravo (see Figure 5-53).

Figure 5-53.  Switch Controller configuration

	 5.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Name as Alpha, Path as /jmeter/alpha, and Method as GET.

	 6.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Name as Bravo, Path as /jmeter/bravo, and Method as GET.

	 7.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Name as Charlie, Path as /jmeter/charlie, and Method as GET.

	 8.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Name as Zulu, Path as /jmeter/zulu, and Method as GET.

	 9.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 10.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results in Table.

23https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/
SwitchControllerTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/SwitchControllerTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/SwitchControllerTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

84

	 11.	 Save the test plan.

	 12.	 Run the test.

The results will be similar to those shown in Figure 5-54.

Figure 5-54.  Switch Controller results

Figure 5-55.  Switch Controller results based on number

In these results, we can see that the Switch Controller has matched the Switch value Bravo with its child
of the same name. So the request goes to the HTTP request Bravo.

Let’s see how the Switch Controller behaves when configured with a number.

	 1.	 In the previous test plan, click on Switch Controller and modify the
Switch value to 3.

	 2.	 Run the test. The results will be similar to those shown in Figure 5-55.

The results indicate that the Switch Controller picked the fourth child element as the Switch value was 3.
(Remember that the numbering starts with 0.)

Chapter 5 ■ JMeter Test Plan Components

85

ForEach Controller
The ForEach Controller has one or more child elements over which it iterates. It can be configured with the
following parameters. For each iteration, the ForEach Controller performs the following:

•	 Forms a sequence number by incrementing the Start Index for loop
(Exclusive) option.

•	 Forms the name of a user defined variable by concatenating the Input Variable
Prefix, “_” and the sequence number.

•	 Sets the Output Variable Name to the value obtained by looking up the user defined
variable. This Output Variable Name is then available to the child elements.

The number of iterations is equal to the difference between the Start index and End index. If the Start
index and the End index have not been specified, JMeter can figure those out by looking at the user defined
variables, starting with the Input Variable Prefix string. Such variables need to be in numerical sequence.
Any break in the sequence will cause ForEach Controller to finish.

If the Add “_” Before Number? checkbox is not checked, then “_” is not used in forming the name of the
user defined variable. Let’s look at an example.

Follow these steps or download ForEachControllerTestPlan.jmx.24

	 1.	 Create a test plan and give it a meaningful name, such as ForEach Controller Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP
Request Defaults. Configure Server Name or IP as localhost and
Port Number as 8080.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add User
Defined Variables. Configure User Defined Variables add Name/Value pairs as
query_1/"alpha", query_2/"bravo", query_3/"charlie", and query_4/"delta"
(see Figure 5-56).

24https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/
ForEachControllerTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/ForEachControllerTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/ForEachControllerTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

86

Figure 5-57.  ForEach Controller configuration

Figure 5-56.  User defined variables

	 5.	 Click on Thread Group and go to Edit ➤ Add ➤ Logic Controller. Add ForEach
Controller. Configure Input Variable Prefix as query, Start Index for Loop
(Exclusive) as 0, End Index for Loop (Inclusive) as 4, and Output Variable
Name as foreachOutput. Enable the Add "_" before number? checkbox
(see Figure 5-57).

Chapter 5 ■ JMeter Test Plan Components

87

	 6.	 Click on ForEach Controller and go to Edit ➤ Add ➤ Sampler. Add
HTTP Request. Configure Name as /jmeter/${foreachOutput}, Path as
/jmeter/${foreachOutput}, and Method as GET. Note that we are referencing
the output variable defined in the ForEach Controller.

	 7.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 8.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results in Table.

	 9.	 Save the test plan.

	 10.	 Run the test.

The results will be similar to those shown in Figure 5-58.

Figure 5-58.  ForEach Controller subsequent request

These results indicate that the ForEach Controller has set foreachOutput successively to alpha, bravo,
charlie, and delta. This has resulted in the HTTP Request Sampler, configured with the URL of
/jmeter/${foreachOutput}, being invoked with /jmeter/alpha, /jmeter/bravo, /jmeter/charlie, and
/jmeter/delta, respectively.

■■ Caution  Input Variable Prefix and Output Variable Name are required parameters. If you omit them, there is
no error checking, not even a log message. JMeter will simply stop execution without warning.

If Controller
The If Controller is useful for decision/branching logic. The configuration is simple, with only two
checkboxes.

The Interpret Condition as Variable Expression? checkbox indicates whether the expression is evaluated
as a JavaScript expression (the default) or as a variable expression (compared with the string "true").

Chapter 5 ■ JMeter Test Plan Components

88

The Evaluate for All Children? checkbox indicates whether the condition should be evaluated before
processing each of the child elements. If it’s not checked, the condition is evaluated only when it is
encountered for the first time.

Let’s look at an example by using user defined variables.
Follow these steps or download IfControllerUserDefinedVariableTestPlan.jmx.25

	 1.	 Create a test plan and give it a meaningful name, such as If Controller User
Defined Variable Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP
Request Defaults. Configure Server Name or IP as localhost and Port Number
as 8080.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add User
Defined Variables. Configure User Defined Variables add Name/Value pair as
myUserVar/alpha.

	 5.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Name as Alpha, Path as /jmeter/alpha, and Method as GET.

	 6.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add Debug Sampler.
Select JMeter Properties as False, JMeter Variables as True, and System
Properties as False.

	 7.	 Click on Thread Group and go to Edit ➤ Add ➤ Logic Controller. Add If
Controller. Configure Condition (Default JavaScript) as "${myUserVar}" ==
"alpha". Leave the other checkboxes unchecked (see Figure 5-59).

Figure 5-59.  If Controller configuration

25https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/
IfControllerUserDefinedVariableTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/IfControllerUserDefinedVariableTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/IfControllerUserDefinedVariableTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

89

	 8.	 Click on If Controller and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Name as Bravo, Path as /jmeter/bravo, and Method as GET.

	 9.	 Click on If Controller and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Name as Zulu, Path as /jmeter/zulu, and Method as GET.

	 10.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 11.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results in Table.

	 12.	 Save the test plan.

	 13.	 Run the test.

The results will be similar to those shown in Figure 5-60.

Figure 5-60.  If Controller results

Click on View Results Tree and then Debug Sampler and then choose the Response Data tab. You will
see that the user defined variable myUserVar is defined as alpha.

These results indicate that the If Controller has evaluated the expression "{myUserVar}" == "alpha" as
a JavaScript expression and found it to be true, and this resulted in the execution of the child elements bravo
and zulu (see Figure 5-61).

Chapter 5 ■ JMeter Test Plan Components

90

■■ Caution  If the condition expression has a syntax error or if the variable is not found, JMeter will simply
stop execution without any error popping up. If you have not selected the Interpret Condition as Variable
Expression flag, a few DEBUG logs are generated.

The condition is interpreted as a JavaScript expression (the default) that evaluates to true or false.
If the Interpret Condition as Variable Expression checkbox is enabled, then you can use other expressions.

If you enable the Interpret Condition as Variable Expression checkbox and replace the JavaScript
condition "{myUserVar}" == "alpha" with ${__jexl("{myUserVar}" == "alpha")}, it will produce the
same behavior.

In the previous examples, you used user defined variables to define the conditions in test scripts that
were statically defined. In the following example, let’s see how you can use variables extracted from the
responses.

Follow these steps or download IfControllerDynamicVariableTestPlan.jmx.26

	 1.	 Open IfControllerUserDefinedVariableTestPlan.jmx.

	 2.	 Click on User Defined Variables and go to Edit ➤ Remove.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Post Processor. Add CSS/JQuery
Extractor. Configure CSS/JQuery Expression as title (a representation of the
JQuery selector of $("title")) and Reference Name as myDynVar. This is the
name of the variable that will be set and available for the If Controller.

	 4.	 Add a Debug Sampler after each of the HTTP requests. So you should have three
Debug Samplers, one after each of the HTTP requests, alpha, bravo, and zulu.
This will allow you to examine the variables after the execution of every sampler.

Figure 5-61.  If Controller condition as true

26https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/
IfControllerDynamicVariableTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/IfControllerDynamicVariableTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/IfControllerDynamicVariableTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

91

	 5.	 Configure the If Controller with the condition "${myDynVar}" == "alpha". Do
not enable any other checkboxes.

	 6.	 Save the test plan.

	 7.	 Run the test.

The results will be similar to those shown in Figure 5-62.

Figure 5-62.  If Controller dynamic variable results

	 8.	 Click on View Results Tree and then on Debug Sampler. Click on the Response
Data tab to check the variable myDynVar; you will find that it has been assigned
to the title of the page. The values were changed to bravo and zulu after further
requests were executed.

The If Controller was placed right after the HTTP sampler alpha. So the variable was set to alpha. The If
Controller evaluated the condition and compared this variable to the value of alpha and found it to be true.
So the child elements bravo and zulu were executed.

■■ Note  Do not enclose the JQuery selector using $(").

Now let’s look at the functionality of the Evaluate for All Children checkbox. As the title indicates,
selecting this checkbox causes the If Controller to evaluate the condition before every child sampler is run.

Let’s illustrate this using the following example.
Follow these steps or download IfControllerDynamicVariableEvaluateChildTestPlan.jmx.27

	 1.	 Open IfControllerUserDefinedVariableTestPlan.jmx.

	 2.	 Click on the If Controller, modify the configuration, and enable the Evaluate for
All Children? checkbox.

27https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/
IfControllerDynamicVariableEvaluateChildTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/IfControllerDynamicVariableEvaluateChildTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/controllers/IfControllerDynamicVariableEvaluateChildTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

92

	 3.	 Run the test.

The results will be similar to those shown in Figure 5-63.

Figure 5-63.  If Controller results evaluate child

	 4.	 Click on View Results Tree and then on Debug Sampler. Click on the Response
Data tab and check the value of the variable myDynVar; you will find that it has
been assigned to the title of the page.

The If Controller was placed right after the HTTP request alpha. So the variable has been set to alpha.
The If Controller evaluated the condition and compared this variable to the value of alpha and found it to be
true. So the child element bravo was executed.

Since the Evaluate for All Children? checkbox was enabled, the condition is evaluated again before
execution of second child element zulu. But the myDynVar is set to bravo, which is the title of the page that
bravo returned. So the condition check fails and the second child element zulu is not executed.

Timers
When users view a web page, they do not click on every link on that page without reason. The user first has
to read the web page, understand it, and then decide on the next course of action. This process varies from
user to user and from web page to web page. Some web pages require that the user enter input or select files
to upload, which introduces delays. You can simulate these delays by using timers.

The duration of the delay varies highly depending on the context and the user. To obtain a feel for the
kind of delay to use, you can study the web access logs. The other way is to observe the users as they interact
with the web site.

Timers are used to introduce a delay or pause before a sampler is run. In a test plan, even if a timer is
placed after the samplers, it will run before the sampler. If the timer is a child element of a sampler, it will
apply only to that sampler. Otherwise, it will apply to all the samplers in that scope. If multiple timers are in
scope, all the timers will apply before a sampler is executed.

Chapter 5 ■ JMeter Test Plan Components

93

Constant Timer
The Constant Timer introduces a specified delay before the samplers in its scope are executed. The only
configuration is the delay that is needed.

Let’s look at the functionality with the help of an example. We will add a Constant Timer and configure
it with a delay value of 5000 milliseconds or 5 seconds. We will make this a child element of a thread group
so that it applies to all the samplers under the thread group.

Follow these steps or download ConstantTimerTestPlan.jmx.28

	 1.	 Create a test plan and give it a meaningful name, such as Constant Timer Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP
Request Defaults. Configure Server Name or IP as localhost and Port Number
as 8080.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Configure Path as
/jmeter/alpha and Method as GET.

	 5.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Configure Path as
/jmeter/bravo and Method as GET.

	 6.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Configure Path as
/jmeter/zulu and Method as GET.

	 7.	 Click on Thread Group and go to Edit ➤ Add ➤ Timer. Add Constant Timer.
Configure it with a value of 5000 milliseconds (see Figure 5-64).

Figure 5-64.  Constant Timer with delay of 5 seconds

28https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/timers/
ConstantTimerTestPlan.jmxx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/timers/ConstantTimerTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/timers/ConstantTimerTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

94

Figure 5-65.  Constant Timer delayed 5 seconds

	 8.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 9.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results in Table.

	 10.	 Save the test plan.

	 11.	 Run the test.

The results will be similar to those shown in Figure 5-65.

In these results, each of the HTTP requests has been delayed by five seconds.
As you saw in the previous example, the Constant Timer delays all the child elements in scope. What

if you wanted to delay only a specific sampler by 5 seconds? You can achieve this by making the Constant
Timer a child element of the sampler to be delayed.

Modify the example as follows:

	 1.	 Drag the Constant Timer and make it a child element of the HTTP request
/jmeter/bravo. Leave the configuration as is (see Figure 5-66).

Chapter 5 ■ JMeter Test Plan Components

95

	 2.	 Save the test plan.

	 3.	 Run the test.

The results will be similar to those shown in Figure 5-67.

Figure 5-66.  Constant Timer as child of bravo

Figure 5-67.  Constant Timer scoped by bravo

In these results, the HTTP request bravo has been delayed by 5 seconds, as it is in the scope of the
Constant Timer. There is no delay before the HTTP request zulu.

Along with the other metrics, the Listeners display the time taken by the samplers. If you want to see
the Timer delay included along with the sampler time, you use a Transaction Controller.

Chapter 5 ■ JMeter Test Plan Components

96

Follow these steps or download ConstantTimerAndTransactionCtrlTestPlan.jmx.29

	 1.	 Open ConstantTimerTestPlan.jmx.

	 2.	 Go to File ➤ Save Test Plan as and type in a filename, such as
ConstantTimerAndTransactionCtrlTestPlan.jmx.

	 3.	 Give the test plan a meaningful name, such as Constant Timer And
Transaction Controller Test.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Logic Controller. Add
Transaction Controller. Enable the Generate Parent Sample checkbox so that
you will get only one entry for the Transaction Controller. Enable the Include
the Duration of the Timer and Pre-Post Processors in the Generated Sample
checkbox so that the Timer delay is included along with the HTTP request.

	 5.	 Drag the HTTP request /jmeter/bravo so it’s the child element of the
Transaction Controller (see Figure 5-68).

Figure 5-68.  Constant Timer enclosing a HTTP request

	 6.	 Run the test.

The results will be similar to those shown in Figure 5-69.

29https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/timers/
ConstantTimerAndTransactionCtrlTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/timers/ConstantTimerAndTransactionCtrlTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/timers/ConstantTimerAndTransactionCtrlTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

97

In these results, the Transaction Controller takes around six seconds, which includes five seconds for
the Timer delay and one second for the /jmeter/bravo sampler.

Gaussian Random Timer
The Gaussian Random Timer introduces a delay according to the Gaussian Distribution (also called the bell
curve). The delay varies around a central mean, as illustrated in Figure 5-70.

Figure 5-69.  Constant Timer results

Figure 5-70.  Gaussian Distribution or bell curve

Chapter 5 ■ JMeter Test Plan Components

98

Let’s assume that the mean value is 10 seconds and the variance is 2 seconds. The delay introduced
would vary as follows:

•	 99% of the time, the delay would vary between mean - variance and mean +
variance (between 4 seconds and 16 seconds).

•	 95% of the time, the delay would vary between mean - 2 * variance and mean + 2 *
variance (between 6 seconds and 14 seconds).

•	 68% of the time, the delay would vary between mean - 3 * variance and mean + 3 *
variance (between 8 seconds and 12 seconds).

Refer to Wikipedia for more details about the Gaussian Distribution.
Let’s look at an example.
Follow these steps or download GaussianTimerTestPlan.jmx.30

	 1.	 Create a test plan and give it a meaningful name, such as Gaussian Timer Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP Request
Defaults. Configure Server Name or IP as localhost and Port Number as 8080.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Configure Path as
/jmeter/alpha and Method as GET.

	 5.	 Click on Thread Group and go to Edit ➤ Add ➤ Logic Controller. Add Loop
Controller. Set the Loop Count to 10.

	 6.	 Click on Loop Controller and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Path as /jmeter/bravo and Method as GET.

	 7.	 Click on the HTTP request /jmeter/bravo and go to Edit ➤ Add ➤ Timer. Add
Gaussian Random Timer. Configure Constant Delay Offset (in Milliseconds) as
10000 and Deviation (in Milliseconds) as 2000 (see Figure 5-71).

Figure 5-71.  Gaussian Timer configuration

30https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/timers/
GaussianTimerTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/timers/GaussianTimerTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/timers/GaussianTimerTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

99

	 8.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Configure Path as
/jmeter/zulu and Method as GET.

	 9.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 10.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results in
Table.

	 11.	 Save the test plan.

	 12.	 Run the test.

The results will be similar to those shown in Figure 5-72.

Figure 5-72.  Gaussian Timer results

In these results, each of the requests to /jmeter/bravo has been delayed by a random delay centered
about the mean value of 10 seconds.

Uniform Random Timer
The delay introduced by the Uniform Random Timer has two parts:

•	 Constant Delay: Fixed and equal to the configured value.

•	 Random Delay: Varies between zero and the configured value.

The actual delay will range between the Constant Delay and the Constant Delay plus the Random
Delay. As the term “uniform” indicates, the delay varies within its range with equal probability.

If the Constant Delay was configured to 10 seconds and the Random Delay was configured to 5 seconds,
then the actual delay will vary between 10 and 15 seconds.

Chapter 5 ■ JMeter Test Plan Components

100

Let’s look at the following example.
Follow these steps or download UniformRandomTimerTestPlan.jmx.31

	 1.	 Create a test plan and give it a meaningful name, such as Uniform Random Timer
Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP
Request Defaults. Configure Server Name or IP as localhost and Port Number
as 8080.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Configure Path as
/jmeter/alpha and Method as GET.

	 5.	 Click on Thread Group and go to Edit ➤ Add ➤ Logic Controller. Add Loop
Controller. Set the Loop Count to 10.

	 6.	 Click on Loop Controller and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Path as /jmeter/bravo and Method as GET.

	 7.	 Click on HTTP request /jmeter/bravo and go to Edit ➤ Add ➤ Timer. Add
Uniform Random Timer. Configure Random Delay Maximum (in Milliseconds)
as 5000 and Constant Delay Offset (in Milliseconds) as 10000 (see Figure 5-73).

Figure 5-73.  Uniform Random Timer configuration

31https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/timers/
UniformRandomTimerTestPlan.jmx

	 8.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Configure Path as
/jmeter/zulu and Method as GET.

	 9.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 10.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results in
Table.

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/timers/UniformRandomTimerTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/timers/UniformRandomTimerTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

101

	 11.	 Save the test plan.

	 12.	 Run the test.

The results will be similar to those shown in Figure 5-74.

Figure 5-74.  Uniform Random Timer results

In these results, each of the requests to /jmeter/bravo has been delayed by a random delay varying
between 10 and 15 seconds.

Constant Throughput Timer
The Constant Throughput Timer calculates and introduces delays between samplers so as to keep the
throughput at the configured value.

Let’s illustrate this with an example.
Follow these steps or download ConstantThroughputTimerTestPlan.jmx.32

	 1.	 Create a test plan and give it a meaningful name, such as Constant Throughput
Timer Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.
Configure Number of Threads (Users) as 1 and Loop Count as 12.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP Request
Defaults. Configure Server Name or IP as localhost and Port Number as 8080.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Configure Path as
/jmeter/alpha and Method as GET.

32https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/timers/
ConstantThroughputTimerTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/timers/ConstantThroughputTimerTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/timers/ConstantThroughputTimerTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

102

	 5.	 Click on Thread Group and go to Edit ➤ Add ➤ Timer. Add Constant Throughput
Timer. Configure Target Throughput (in Samples per Minute) as 4.0 and
Calculate Throughput Based on as All Active Threads (Shared)
(see Figure 5-75).

Figure 5-76.  Constant Throughput Timer results

Figure 5-75.  Constant Throughput Timer set to four requests per minute

	 6.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 7.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results in Table.

	 8.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add Aggregate Report.

	 9.	 Save the test plan.

	 10.	 Run the test.

The results will be similar to those shown in Figure 5-76.

Chapter 5 ■ JMeter Test Plan Components

103

In these results, each of the requests to /jmeter/alpha has been delayed by a varying amount so as to
keep the overall throughput at the configured level (see Figure 5-77).

Figure 5-77.  Constant Throughput Timer configure aggregate

In the Aggregate results, observe that the throughput is 4.4 requests per minute, which is close enough
to the configured value of 4 requests per minute.

Synchronizing Timer
The Synchronizing Timer blocks threads and releases them all at once, thus creating a large load at the same
instant. This is very helpful to test how the application handles simultaneous requests.

Let’s illustrate this with an example.
Follow these steps or download SynchronizingTimerTestPlan.jmx.33

	 1.	 Create a test plan and give it a meaningful name, such as Constant Throughput
Timer Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.
Configure Number of Threads (Users) as 4, Loop Count as 12, and Ramp-Up as 0.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP
Request Defaults. Configure Server Name or IP as localhost and Port Number
as 8080.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Configure Path as
/jmeter/alpha and Method as GET.

	 5.	 Click on Thread Group and go to Edit ➤ Add ➤ Timer. Add Synchronizing
Timer. Configure Number of Simulated Users to Group by as 2 and Timeout in
Milliseconds as 3000 (see Figure 5-78).

33https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/timers/
SynchronizingTimerTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/timers/SynchronizingTimerTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/timers/SynchronizingTimerTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

104

Figure 5-78.  Synchronizing Timer configuration

	 6.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 7.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results in Table.

	 8.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add Aggregate Report.

	 9.	 Save the test plan.

	 10.	 Run the test.

The results will be similar to those shown in Figure 5-79.

Chapter 5 ■ JMeter Test Plan Components

105

In these results, each of the requests to /jmeter/alpha has been delayed so that both the samples are
released at the same time, as marked in red.

Sampler
The Sampler is a component that’s used to send requests to the application being tested. If the test plan has
more than one sampler, they will be executed in the order they are defined in the test plan tree.

JMeter has the following samplers as of release 3.0:

•	 Access Log Sampler

•	 AJP/1.3 Sampler

•	 BeanShell Sampler

•	 BSF Sampler

•	 Debug Sampler

•	 FTP Request

•	 HTTP Request

Figure 5-79.  Synchronizing Timer results

Chapter 5 ■ JMeter Test Plan Components

106

•	 Java Request

•	 JDBC Request

•	 JMS Point-to-Point

•	 JMS Publisher

•	 JMS Subscriber

•	 JSR233 Sampler

•	 JUnit Request

•	 LDAP Extended Request

•	 LDAP Request

•	 Mail Reader Sampler

•	 OS Process Sampler

•	 SMTP Sampler

•	 SOAP/XML-RPC Request

•	 TCP Sampler

•	 Test Action

Sampler properties can be configured as per requirements. However, most of the time, the default
configuration is sufficient.

Each of the samplers generates one or more sample results (the exception is Test Action). These
sampler results have various attributes, such as success/fail/elapsed time, etc., which are viewed by using
various listeners.

With each sampler, you should use assertions to make sure that the sampler is working as per your
requirements. For example, you would use response assertions for the HTTP request to check for status 200.

HTTP Request
The HTTP Request sampler is used when you want to use POST, GET, DELETE, PUT, etc., methods over HTTP(S)
on the target web application (Sampler AJP/1.3 sampler also has these methods).

The minimum configuration required for a HTTP Request test element to work is the server name or
IP. If the port number is 80, it can be omitted. You can specify timeouts (in milliseconds) while waiting for a
response from the server.

JMeter provides several properties to configure the HTTP Request sampler. Let’s walk through each of
these with examples.

Implementing the HTTP Request Sampler
The configuration field Implementation can have any of the following values:

•	 HttpClient4: This uses Apache HttpClient version 4 component.

•	 HttpClient3.1: This uses Apache HttpClient version 3.1 component.

•	 Java: This uses the HTTP implementation provided by the JVM.

•	 Blank value: This uses a value defined in the HTTP Request Defaults configuration
element.

Chapter 5 ■ JMeter Test Plan Components

107

If it’s not defined, it relies on the jmeter.httpSampler property defined in the jmeter.properties file,
failing which it defaults to HttpClient4.

HTTPClient internally uses Apache HTTP components.34

A request with a blank value or HTTPClient will send a HTTP header for UserAgent with a value of
Apache-HttpClient/4.2.6 (java 1.5). However, if the implementation type is Java, then the HTTP header
for UserAgent will not be sent.

Let’s look at the following example.
Follow these steps or download HTTPClientImplTestPlan.jmx.35

	 1.	 Create a test plan and give it a meaningful name, such as HTTP Client
Implementation Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP
Cookie Manager.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, Path as
/user/signIn, and Method as POST. Choose Implementation as Java from the
drop-down. Add the parameters, Name/Value as email/user1@dt.com and
password/user1.

	 5.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Configure Response Field to Test as Response Code, Pattern
Matching Rules as Equals, and Patterns To Test as 200.

	 6.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, Path as
/user/signOut, and Method as HEAD. Leave the Implementation as blank.

	 7.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Configure Response Field to Test as Response Code, Pattern
Matching Rules as Equals, and Patterns To Test as 200.

	 8.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree
(see Figure 5-80).

34https://hc.apache.org/httpcomponents-client-ga
35https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/samplers/
HTTPClientImplTestPlan.jmx

https://hc.apache.org/httpcomponents-client-ga
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/samplers/HTTPClientImplTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/samplers/HTTPClientImplTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

108

	 9.	 Save the test plan.

	 10.	 Run the test.

The results will be similar to those shown in Figure 5-81.

Figure 5-81.  HTTP Request HTTPClient as Java

Figure 5-80.  HTTP client implementation test

In these results, you will not see the User-Agent header in the first HTTP request, due to the
Implementation option being set to Java (see Figure 5-82).

Chapter 5 ■ JMeter Test Plan Components

109

Protocols
JMeter provides http, https, and file protocols. We have already walked through the http protocol. Now,
let’s look at the procedure to record the tests on web sites that use the https protocol.

From JMeter 2.11 onwards, a dummy certificate is created in the /bin directory as soon as you start the
proxy server from the HTTP(S) Test Script Recorder. It creates two files, which you can see under the /bin
directory.

C:\apache-jmeter-3.0>cd bin
C:\apache-jmeter-3.0\bin>Dir ApacheJMeter*
 Volume in drive C has no label.
 Volume Serial Number is DA32-01EE

 Directory of C:\apache-jmeter-3.0\bin

05/13/2016 11:22 PM 12,885 ApacheJMeter.jar
04/22/2017 03:11 AM 1,328 ApacheJMeterTemporaryRootCA.crt
 2 File(s) 14,213 bytes
 0 Dir(s) 7,217,209,344 bytes free

C:\apache-jmeter-3.0\bin>

We need to import ApacheJMeterTemporaryRootCA.crt into the browser being used for recording.
Let’s see this with the help of the following example, using the Firefox browser.

	 1.	 Open JMeter GUI.

	 2.	 Click on WorkBench and go to Edit ➤ Add ➤ Non-Test Elements. Add HTTP(S)
Test Script Recorder. Configure the Target Controller by selecting WorkBench ➤
HTTP(s) Test Script Recorder.

	 3.	 Launch the Firefox browser and go to Preferences ➤ Advanced ➤
Certificates ➤ View Certificates. Click on Import, and then select the
ApacheJMeterTemporaryRootCA.crt certificate (see Figure 5-83).

Figure 5-82.  HTTP Request HTTPClient as a blank value

Chapter 5 ■ JMeter Test Plan Components

110

	 4.	 Open the Firefox browser and launch https://in.yahoo.com.

	 5.	 Stop recording.

	 6.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 7.	 Move all the recorded samplers as child elements of the thread group.

	 8.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 9.	 Run the test and you will see that the https requests are getting executed.

■■ Note  The file protocol is only for testing.

Redirect Automatically
The Redirect Automatically configuration field sets the underlying http protocol handler to automatically
follow redirects. They are not seen by JMeter and thus will not appear as samples. This will be helpful when
you don’t want to see the requests that are redirected. This should only be used for GET and HEAD requests, as
the HttpClient sampler will reject attempts to use it for POST or PUT.

You can use either the Redirect Automatically or Follow Redirects configuration property, but not both
at the same time.

Let’s illustrate this by the following example.
Follow these steps or download RedirectAutoTestPlan.jmx.36

	 1.	 Create a test plan and give it a meaningful name, such as Redirect
Automatically Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

Figure 5-83.  Firefox certificate

36https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/samplers/
RedirectAutoTestPlan.jmx

https://in.yahoo.com/
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/samplers/RedirectAutoTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/samplers/RedirectAutoTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

111

Figure 5-84.  Redirect Automatically checkbox

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP
Cookie Manager.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, Path as /
user/signIn, and Method as POST. Add the parameters, Name/ Value as email/
user1@dt.com and password/user1.

	 5.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Configure Response Field to Test as Response Code, Pattern
Matching Rules as Equals, and Patterns To Test as 200.

	 6.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, Path as
/user/signOut, and Method as HEAD. Enable the Redirect Automatically
checkbox (see Figure 5-84).

	 7.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Configure Response Field to Test as Response Code, Pattern
Matching Rules as Equals, and Patterns To Test as 200 (see Figure 5-85).

Figure 5-85.  Redirect Automatically test

Chapter 5 ■ JMeter Test Plan Components

112

	 8.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 9.	 Save the test plan.

	 10.	 Run the test.

The results will be similar to those shown in Figure 5-86.

Figure 5-86.  View Results Tree Redirect Automatically

Follow Redirect
On the web, the URLs for the web pages or resources change frequently. The browser is informed of the new
URL by the concept of URL redirection. This is also referred to as URL forwarding. HTTP status codes 3XX
are used to indicate redirection.

Let’s illustrate this with an example.
Follow these steps or download FollowRedirectTestPlan.jmx.37

	 1.	 Create a test plan and give it a meaningful name, such as Follow Redirect Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP
Cookie Manager.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, Path as
/user/signIn, and Method as POST. Add the parameters, Name/ Value as
email/user1@dt.com and password/user1.

	 5.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Configure Response Field to Test as Response Code,
Pattern Matching Rules as Equals, and Patterns To Test as 200.

37https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/samplers/
FollowRedirectTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/samplers/FollowRedirectTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/samplers/FollowRedirectTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

113

	 6.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, Path as
/user/signOut, and Method as HEAD. By default, the Follow Redirects flag is
enabled (see Figure 5-87).

Figure 5-87.  Using Follow Redirect

	 7.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Configure Response Field to Test as Response Code, Pattern
Matching Rules as Equals, and Patterns To Test as 200.

	 8.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree
(see Figure 5-88).

Figure 5-88.  Follow Redirect test

	 9.	 Save the test plan.

	 10.	 Run the test.

Chapter 5 ■ JMeter Test Plan Components

114

The results will be similar to those shown in Figure 5-89.

Figure 5-89.  View Results Tree Follow Redirect

Figure 5-90.  Test failure

	 11.	 Remove the selection of Follow Redirects flag in the HTTP Request sampler.

	 12.	 Run the test.

The results will be similar to those shown in Figure 5-90.

In this case, assertions has been configured to match the Response Code of 200. But the redirected
response code received was 302, so the test failed.

Chapter 5 ■ JMeter Test Plan Components

115

38https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/samplers/KeepAliveTestPlan.jmx

Use KeepAlive
The Use KeepAlive checkbox is enabled by default. This allows the same connection to be re-used by
including KeepAlive in the Connection header.

Let’s illustrate this by the following example.
Follow these steps or download KeepAliveTestPlan.jmx.38

	 1.	 Create a test plan and give it a meaningful name, such as Keep Alive Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP
Cookie Manager.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, Path as
/user/signIn, and Method as POST. Add the parameters, Name/ Value as
email/user1@dt.com and password/user1.

	 5.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Configure Response Field to Test as Response Code, Pattern
Matching Rules as Equals, and Patterns To Test as 200.

	 6.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, Path as
/user/signOut, and Method as HEAD. Disable the Use KeepAlive checkbox.

	 7.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Configure Response Field to Test as Response Code, Pattern
Matching Rules as Equals, and Patterns To Test as 200.

	 8.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree
(see Figure 5-91).

Figure 5-91.  Keep Alive test

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/samplers/KeepAliveTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

116

	 9.	 Save the test plan.

	 10.	 Run the test.

The results will be similar to those shown in Figure 5-92.

Figure 5-92.  View Results Tree UseKeepAlive

■■ Note  If you disable the KeepAlive configuration option for the last request, then the next request will use
a new connection.

Use Multipart/Form-Data for POST
When you make a POST request, you have to encode the data that forms the body of the request in some
format. When this property is enabled, it indicates that this request contains file data and allows entire files
to be included in the data. The file needs to be supplied through the Send Files With the Request input.

If this property is not enabled, it will use application/x-www-form-urlencoded format.

Browser-Compatible Headers
This property is used in combination with multipart/form-data for POST. Using this suppresses the
Content-Type and Content-Transfer-Encoding Headers. Only the Content-Disposition Header is sent.

When it’s not checked, it will use Content-Transfer-Encoding: binary.

Chapter 5 ■ JMeter Test Plan Components

117

39http://www.asciitable.com
40https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/samplers/BodyDataTestPlan.jmx

Send Parameter with the Request
With this property, you can specify the request parameters as name/value pairs. Enabling the Encode?
checkbox encodes the special characters in the name/value pair. It is always best to enable this. Enabling the
Include Equals? checkbox will force an '=' character even if the value is empty.

The Send Parameters With the Request option has a Detail button that is useful while reviewing/
modifying verbose values (see Figure 5-93).

Figure 5-93.  Detail button

Body Data
For Body Data, you need to prepare an URL if it has special characters.

URL encoding starts with % and then includes the equivalent Hexadecimal code; refer to asciitable39
to determine the other special characters in an URL.

Let’s illustrate this by the following example.
Follow these steps or download BodyDataTestPlan.jmx.40

	 1.	 Create a test plan and give it a meaningful name, such as Body Data Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP
Cookie Manager.

http://www.asciitable.com/
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/samplers/BodyDataTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

118

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, Path as
/user/signIn, and Method as POST. Click on Body Data and add the post
parameters as email=user1%40dt.com&password=user1 (see Figure 5-94).

Figure 5-94.  Send body data over POST request

Figure 5-95.  Body Data test

	 5.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Configure Response Field to Test as Response Code,
Pattern Matching Rules as Equals, and Patterns To Test as 200.

	 6.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, and Path as
/user/signOut.

	 7.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Configure Response Field to Test as Response Code,
Pattern Matching Rules as Equals, and Patterns To Test as 200.

	 8.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree
(see Figure 5-95).

Chapter 5 ■ JMeter Test Plan Components

119

	 9.	 Save the test plan.

	 10.	 Run the test.

The results will be similar to those shown in Figure 5-96.

Figure 5-96.  View Results Tree Body Data

This option is also useful with the following:

•	 GWT RPC HTTP Request

•	 JSON REST HTTP Request

•	 XML REST HTTP Request

•	 SOAP HTTP Request

Each line in the Body Data field, except the last line, is sent with CRLF appended. To send a CRLF after
the last line of data, just ensure that there is an empty line following it. (This cannot be seen, except by
noting whether the cursor can be placed on the subsequent line.)

Switching Between Name:Value and Body Data
Switching between the Name:Value and Body Data fields requires you to clear the present set of data. For
example, if you are in Body Data and want to move to Name:Value, you have to wipe out all the Name:Value
pairs before moving to Body Data, and vice versa (see Figure 5-97).

Chapter 5 ■ JMeter Test Plan Components

120

Send Files with the Request
This property is used to send files over HTTP via a POST/PUT/PATCH request. You have to provide a file path, a
parameter name, and the MIME type.

The file path is either the absolute path or the path where JMeter starts (that is, the root directory where
JMeter starts). You can see this in the following example.

Follow these steps or download FileLoadTestPlan.jmx.41

	 1.	 Create a test plan and give it a meaningful name, such as File Load Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP
Cookie Manager.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, Path as
/dt/fileUpload, and Method as GET.

	 5.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Configure Response Field to Test as Response Code,
Pattern Matching Rules as Equals, and Patterns To Test as 200.

	 6.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, Path as
/dt/fileUpload, and Method as POST. Under Send Files With the Request, add
fileload.txt. Select the checkbox for Use Multipart/ Form-Data for POST and
Browser-Compatible Headers (this is required while uploading files with a POST
request) (see Figure 5-98).

Figure 5-97.  Switching between Name:Value and Body Data

41https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/samplers/FileLoadTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/samplers/FileLoadTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

121

Figure 5-98.  File load parameter name

	 7.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Configure Response Field to Test as Response Code,
Pattern Matching Rules as Equals, and Patterns To Test as 200.

	 8.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Configure Response Field to Test as Document (text),
Pattern Matching Rules as Contains, and add Pattern To Test as Success!.
Add another pattern as File uploaded successfully.

	 9.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree
(see Figure 5-99).

Figure 5-99.  File Load test

Chapter 5 ■ JMeter Test Plan Components

122

	 10.	 Save the test plan.

	 11.	 Run the test.

The results will be similar to those shown in Figure 5-100.

Figure 5-100.  View Results Tree file load

The MIME type is the content type of the file being used in the request. It is good practice to provide the
MIME type, as the web server may behave based on the MIME type and on the application being tested.

The parameter name used in the HTTP request is taken from the HTML code (see Figure 5-101).

Chapter 5 ■ JMeter Test Plan Components

123

JMeter provides a few additional configuration points that can be used based on specific requirements.

•	 Proxy Server (if an application being tested reached through the proxy server)

•	 Embedded Resources for HTML Files

•	 Source Address

•	 Option Tasks

Proxy Server
JMeter provides a simple way to specify the proxy server details for the HTTP Request sampler. This property
is only applicable to the current request. You can specify the proxy server name and the port number if
needed. In addition, you may also need to specify a username and password.

Figure 5-101.  File load HTML variable

Chapter 5 ■ JMeter Test Plan Components

124

Embedded Resources for HTML Files
When you use this property, the JMeter will parse the HTML file and send HTTP/HTTPS requests for all the
embedded images, Java applets, JavaScript files, CSSs, etc., referenced in the file.

When you select this property, JMeter prompts you to enter these properties.

•	 Use concurrent pool: Use a pool of concurrent connections to get embedded
resources.

•	 Size: Pool size for concurrent connections used to get embedded resources.

The URLs must match. This must be a regular expression that is used to match against any embedded
URLs found. If you only want to download embedded resources from http://www.yahoo.com/, you can use
the expression: http:// www\.yahoo\.com/.*

Let’s illustrate this by the following example.
Follow these steps or download EmbeddedResourceTestPlan.jmx.42

	 1.	 Create a test plan and give it a meaningful name, such as Embedded Resource Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, Path as
/dt, and Method as GET.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree
(see Figure 5-102).

Figure 5-102.  Embedded resource test

42https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/samplers/
EmbeddedResourceTestPlan.jmx

http://www.yahoo.com/
http://www.yahoo.com/.*
http://www.yahoo.com/.*
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/samplers/EmbeddedResourceTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/samplers/EmbeddedResourceTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

125

	 5.	 Save the test plan.

	 6.	 Run the test.

The results will be similar to those shown in Figure 5-103.

Figure 5-103.  View Results Tree without an embedded resource

Figure 5-104.  View Results Tree with embedded resource

	 7.	 Click on HTTP Request and then click on the Advanced tab. Under Embedded Resources
from HTML Files, select the checkbox for Retrieve All Embedded Resources

	 8.	 Save the test plan.

Run the test again and you will see a lot of requests, as shown in Figure 5-104.

Chapter 5 ■ JMeter Test Plan Components

126

There is one JMeter property added after the 2.1.2 release, called HTTPResponse.parsers. This can be
separated with a space, as in htmlParser wmlParser. For each ID found, JMeter checks two more properties.

•	 id.types: A list of content types

•	 id.className: The parser used to extract the embedded resources

If the HTTPResponse.parser property is not set, then JMeter reverts to the previous behavior, i.e., only
text/HTML responses will be scanned.

Source Address
This property is only used with HTTP requests that use the HTTPClient implementation. This property is
used to enable IP spoofing.

IP spoofing is a technique used to gain unauthorized access to machines. In this, the attacker
impersonates another machine by modifying the packet header with a spoofed source IP address.

If the property httpclient.localaddress is defined, it is used for all HttpClient requests.
This property is very rarely used under specific scenarios.

Option Task
This has two properties:

•	 Use as Monitor: This will be used with the Monitor Results listener.

•	 Save Response as MD5 Hash?: By using this property, the response will be encoded
in MD5 hash code.

Let’s look at the following example.
Follow these steps or download MD5TestPlan.jmx.43

	 1.	 Create a test plan and give it a meaningful name, such as MD5 Hash Code Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, Path as
/dt, and Method as GET.

	 4.	 Click on the Advanced tab and select the Save Response as MD5 Hash?
checkbox.

	 5.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree
(see Figure 5-105).

43https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/samplers/MD5TestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/samplers/MD5TestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

127

	 6.	 Save the test plan.

	 7.	 Run the test.

The results will be similar to those shown in Figure 5-106.

Figure 5-105.  MD5 hash code test

Figure 5-106.  MD5 hash code

■■ Note  Use HTTP(S) Test Script Recorder to record the user actions and add HTTP Request Defaults and
Config Element to capture the common parameters for all successive requests.

Chapter 5 ■ JMeter Test Plan Components

128

Assertions
The primary purpose of assertions is to validate the server response and decide if the test passed or failed.

The response to a sampler contains code to indicate success or error. But this is at the protocol level.
JMeter assertions provides a mechanism to validate the content of the response. The specific JMeter assertions
you use depend on the response format. The validation check is configurable based on the assertions type.

JMeter assertions can be a child element of a test plan, thread group, controller, or sampler. Assertions
will apply to all the samplers under the scope of its parent. For example, if an assertion is a child element of a
thread group, then it applies to all the samplers under the thread group. Sometimes, it makes more sense to
have specific assertions for each sampler. JMeter provides the flexibility to add multiple assertions.

Assertions are used to validate the test script. Since they consume CPU and memory resources, you
should remove or disable them before running the performance test to gather statistics.

The Assertion Results listener is a special listener intended specifically for viewing the results of assertions.
In the following examples, you will be using the View Results Tree listener during the test script

development. However, it will be removed before you have to gather the final performance numbers.

■■ Tip  Use assertions and the Assertion Results listener with discretion, as they consume CPU and memory.

Response Assertion
The Response Assertion provides various options to validate the response from a sampler (see Figure 5-107).

Figure 5-107.  Response Assertion console

There are four categories of properties provided by JMeter assertions, discussed next.

Chapter 5 ■ JMeter Test Plan Components

129

Apply to Property
This option specifies where to apply the assertions: Main sample and sub-samples, main sample only,
Sub-samples only, and JMeter variable. Sometimes a sampler may generate a redirected URL, which in turn
will appear as a sub-sample and it is possible to apply assertions to these sub-samples by using Sub-Samples
Only option. If you are using variables inside the test script, you can use JMeter variable option to validate it.

Response Field to Test Property
The assertion can apply to any of the following fields in the response:

•	 Text Response

•	 Document (Text)

•	 URL Sampled

•	 Response Code

•	 Response Message

•	 Response Headers

•	 Ignore Status

The responses with 4XX and 5XX statuses will be unsuccessful.
When Ignore Status is selected, the status code of the response is ignored and the response status is

forced to be successful before evaluating the assertion.

Pattern Matching Rules Property
Table 5-3 lists the pattern matching rules.

Table 5-3.  Pattern Matching Rules

Field Uses Description

Contains Regular expression True if the response contains a sub-string that
matches the regular expression configured in the
Pattern to Test field.

Matches Regular expression True if the response matches the regular expression
configured in the Pattern to Test field.

Equals Case-sensitive comparison of text True if the response equals the text configured in the
Pattern to Test field.

Sub-string Case-sensitive comparison of text True if the response has a sub-string in the text
configured in the Pattern to Test field.

Chapter 5 ■ JMeter Test Plan Components

130

Enabling the Not checkbox negates the operator. For example, select Not and Equals to make the rule
Not Equals.

Refer to the ORO covering Perl5 regular expressions44 and also look at the JMeter User Manual for more
information.45

Pattern to Test Property
This works closely with the Pattern Matching Rules field described previously. This is a regular expression
pattern or plain text, depending on the rule selected.

Take a look at the following example to understand how to utilize these configuration parameters.
Follow these steps or download SamplerAssertionsTestPlan.jmx.46

	 1.	 Create a test plan and give it a meaningful name, such as Sampler Assertions Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 3.	 Click on Test Plan and go to Edit ➤ Add ➤ Config Element. Add HTTP Request
Defaults. Configure Server Name or IP as localhost and Port Number as 8080.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP
Cookie Manager.

	 5.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Path as /user/signIn and Method as POST. Add the parameters,
Name/Value as email/user1@dt.com and password/user1.

	 6.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Give it a name such as Main Sample Only-Text ResponseContains.
Configure Apply To by selecting Main samples only, set Response Field to Test
by selecting Text Response, set Pattern Matching Rule by selecting Contains,
and set Pattern To Test to ((?:Good Shot Camera). Note that the landing page
has products with the name “Good Shot Camera” (see Figure 5-108).

44https://www.savarese.org/oro/docs/OROMatcher/Syntax.html#Perl5Expressions
45http://jmeter.apache.org/usermanual/regular_expressions.html
46https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/assertions/
SamplerAssertionsTestPlan.jmx

https://www.savarese.org/oro/docs/OROMatcher/Syntax.html#Perl5Expressions
http://jmeter.apache.org/usermanual/regular_expressions.html
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/assertions/SamplerAssertionsTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/assertions/SamplerAssertionsTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

131

Figure 5-108.  Main sample only text response contains

	 7.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Give it a name such as Main Sample Only-Response CodeEquals
Not & Ignore Status. Configure Apply To by selecting Main samples only, set
Response Field to Test by selecting Response Code, enable the Ignore Status
checkbox, set the Pattern Matching Rule by selecting Equals, and select the Not
checkbox. For Pattern To Test, add 500. (You have selected the Ignore Status
checkbox, which states that ignore the URL status is successful; this will not be an
ideal condition with the response code set to 5XX or 4XX) (see Figure 5-109).

Figure 5-109.  Main sample only, response code equals not ignore status

Chapter 5 ■ JMeter Test Plan Components

132

	 8.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Give it a name such as Main Sample Only-Text ResponseContains
Not & Ignore Status. Configure Apply To as Main samples only and
Response Field to Test as Text Response. Select the Ignore Status checkbox.
Set the Pattern Matching Rule to Contains and then select the Not checkbox.
Set the Pattern To Test to (?:URL not found) (see Figure 5-110).

Figure 5-110.  Main sample only, text response contains not ignore status

	 9.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Give it a name such as Main Sample Only-Document (text)-
Substring. Configure Apply To as Main samples only, Response Field to Test
as Document (text), Pattern Matching Rule as Substring, and Pattern To Test
as <title>Digital Toys Inc - the electronic goods e-store.</title>
(see Figure 5-111).

Chapter 5 ■ JMeter Test Plan Components

133

Figure 5-111.  Main sample only document text sub-string

	 10.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Give it a name such as Sub-Samples Only-URL SampledSubstring
Not. Configure Apply To as Sub-samples only, Response Field to Test as URL
Sampled, and Pattern Matching Rule as Substring. Select the Not checkbox and
set Pattern To Test to Error (see Figure 5-112).

Figure 5-112.  Sub-samples only URL sampled sub-string Not

Chapter 5 ■ JMeter Test Plan Components

134

	 11.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure the Path as dt/index and the Method as GET.

	 12.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Give it a name as Main Sample Only-Response CodeEquals.
Configure Apply To as Main samples only, Response Field to Test as Response
Code, Pattern Matching Rule as Equals, and Pattern To Test as 200
(see Figure 5-113).

Figure 5-113.  Main sample only, response code equals 200

	 13.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Give it a name such as Main Sample Only-Response Message-Equals.
Configure Apply To as Main samples only, Response Field to Test as Response
Message, Pattern Matching Rule as Equals, and Pattern To Test as OK
(see Figure 5-114).

Chapter 5 ■ JMeter Test Plan Components

135

	 14.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Give it a name such as Main Sample Only-Response Headers-
Contains. Configure Apply To as Main samples only, Response Field to Test as
Response Headers, Pattern Matching Rule as Contains, and Pattern To Test as
(1?)HTTP/1.1 200 OK (see Figure 5-115).

Figure 5-114.  Main sample only, response message equals OK

Figure 5-115.  Main sample only, response headers contains

Chapter 5 ■ JMeter Test Plan Components

136

	 15.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Path as /user/signOut and Method as HEAD.

	 16.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Give it a name such as Main Sample and Sub-SamplesText
Response-Matches Not. Configure Apply To as Main samples and sub-
samples, Response Field to Test as Text Response, and Pattern Matching Rule
as Matches. Select the Not checkbox set the Pattern To Test to (?:Good Shot
Camera) (see Figure 5-116).

Figure 5-116.  Main sample and sub-samples text response, matches not

	 17.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 18.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add Assertion Results
(see Figure 5-117).

Chapter 5 ■ JMeter Test Plan Components

137

Figure 5-117.  Sampler assertions test

	 19.	 Save the test plan.

	 20.	 Run the test.

The results will be similar to those shown in Figure 5-118.

Figure 5-118.  Pass test

Chapter 5 ■ JMeter Test Plan Components

138

Let’s look at an example where the assertion fails.
Follow these steps.

	 1.	 Open SamplerAssertionsTestPlan.jmx.

	 2.	 Click on the first assertion called Main Sample Only-Text Response-Contains
and update as (?:Worst Shot Camera).

	 3.	 Save the test plan.

	 4.	 Run the test. It should fail (see Figure 5-119).

Figure 5-119.  Fail test

Listener
Listeners capture and process the response from the server. Performance testing requires two kinds of
listeners. During the test script development, you need to capture and display the entire server response
for verifying that the output meets the functional specifications. When the performance test scripts are
executed, you need the aggregate results and metrics for the duration of the test execution. You also need
listeners to be able to store these results into an external file for later use.

JMeter Listeners can be configured to capture the required information by selecting individual fields
provided by the JMeter Listener. The test plan can have more than one listener and they are executed after all
the other types of elements in the test plan.

Listeners consume memory and CPU time to perform I/O and to process the results and generate
reports. In Master/Slave mode, it is important to choose the right listeners and as few as possible, because
slave nodes will write data back to the master node and overall it will slow down processing or dry out
memory.

Chapter 5 ■ JMeter Test Plan Components

139

As of JMeter version 3.0, the following listeners are available, but only a few are used frequently:

•	 Aggregate Graph

•	 Aggregate Report

•	 Assertion Results

•	 Backend Listener

•	 BeanShell Listener

•	 BSF Listener

•	 Comparison Assertion Analyzer

•	 Generate Summary Results

•	 Graph Results

•	 JSR233 Listener

•	 Mailer Visualizer

•	 Monitor Results

•	 Response Time Graph

•	 Save Responses to a File

•	 Simple Data Writer

•	 Summary Report

•	 View Results in Table

•	 View Results in Tree

Most of these listeners—except for Backend Listener, BeanShell Listener, BSF Listener, Generate
Summary Results, JSR233 Listener, and Save Responses to a File—can be configured using the Configure
button on the right side.

Listeners allow you to save data in CSV/XML formats. Bear in mind that XML files consume more
memory than CSV files (see Figure 5-120).

Chapter 5 ■ JMeter Test Plan Components

140

■■ Note  All JMeter Listeners store similar data to the external file, but GUI presentation is different.

All of the configuration parameters can be configured through the jmeter.properties file.
Set the following property to either CSV or XML:

legitimate values: xml, csv, db. Only xml and csv are currently supported. #jmeter.save.
saveservice.output_format=csv

Other configuration fields can be set in jmeter.properties, and all these parameters can be found with
the prefix jmeter.save.saveservice.

Timestamp format - this only affects CSV output files
legitimate values: none, ms, or a format suitable for
 SimpleDateFormat
#jmeter.save.saveservice.timestamp_format=ms

JMeter supports additional sample variables you can specify, as shown here. They will appear in the
CSV/XML file as additional fields.

Optional list of JMeter variable names whose values are to be saved in the result data
files. # Use commas to separate the names. For example:
#sample_variables=SESSION_ID,REFERENCE

Figure 5-120.  Listener configuration

Chapter 5 ■ JMeter Test Plan Components

141

JMeter Listeners follow the SimpleDataFormat.47 JMeter first tries to parse this as a long integer. Failing
that, it will try the following formats.

yyyy/MM/dd HH:mm:ss.SSS yyyy/MM/dd HH:mm:ss yyyy-MM-dd HH:mm:ss.SSS yyyy-MM-dd HH:mm:ss
MM/dd/yy HH:mm:ss (this is for compatibility with previous versions; it is not recommended
as a format)

Matching is strict (non-lenient). JMeter 2.8 and earlier used lenient mode, which could result in
timestamps with incorrect dates (times were usually correct).

The most commonly used listeners are View Results Tree, View Results in Table, and Aggregate Report.
Let’s discuss these in the following sections.

View Results Tree
GUI Mode

The View Results Tree listener shows responses in a tree-like structure, thereby allowing users to see
response data (content), sample results, and requests. It also shows the time taken by the request to get the
response.

The HTTP protocol implementation (such as HTTPClient3.1, HttpClient4, Java, or blank) adds an HTTP
header with the name User-Agent. The request panel of the View Results Tree does not show the headers
that may have been added by the HTTP protocol implementation.

JMeter provides three panels with most of the listeners, namely sample results, requests, response data,
and various filters to check the response data.

•	 The Sample Results panel has two views: Raw and Parsed

•	 The Request panel also has two views: Raw and HTTP

•	 The Response Data panel has search enabled and you can find data using regular
expressions as well as perform case-sensitive searches

Let’s illustrate this with the following example.
Follow these steps or download ViewResultsTreeTestPlan.jmx.48

	 1.	 Create a test plan and give it a meaningful name, such as View Results Tree
Listener Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP
Header Manager.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, and Path as /dt.

	 5.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Configure Response Field to Test as Response Code, Pattern
Matching Rules as Equals, and Patterns To Test as 200.

	 6.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree
(see Figure 5-121).

47http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
48https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/listeners/
ViewResultsTreeTestPlan.jmx

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/listeners/ViewResultsTreeTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/listeners/ViewResultsTreeTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

142

	 7.	 Save the test plan.

	 8.	 Run the test.

The results will be similar to those shown in Figure 5-122.

Figure 5-121.  View results tree listener test

Figure 5-122.  View Results Tree sampler results, raw

Chapter 5 ■ JMeter Test Plan Components

143

	 9.	 The View Results Tree has an option to search for the request. You enter the
HTTP request name in the search box and click on Search button. The matched
request will appear in red (see Figure 5-123).

Figure 5-123.  Search request in View Results Tree

Figure 5-124.  View Results Tree sampler results parsed

	 10.	 Look at the sampler results, parsed format. It has the same information as in raw
format but in a tabular format and is more human-readable (see Figure 5-124).

Chapter 5 ■ JMeter Test Plan Components

144

	 11.	 Look at the Request - Raw format as well (see Figure 5-125).

Figure 5-125.  View Results Tree request. raw

Figure 5-126.  View Results tree request HTTP

	 12.	 Look at the Request - HTTP format as well. It has the same information as in raw
format, but in a tabular format and is more human-readable (see Figure 5-126).

Chapter 5 ■ JMeter Test Plan Components

145

Figure 5-127.  View Results Tree response data filters

	 13.	 Look at the Response Filters field. It has search options based on response filters
and works on the visible text. For each filter type, there will be different text
visible on the panel, so make sure that if you are searching for HTML-related text
to open the response data with an HTML filter. The regular expression uses the
Java engine (not an ORO engine like the Regular Expression Extractor or RegExp
Tester view) (see Figure 5-127).

If you want to change the default size of the response data, use the following jmeter.properties
property.

Maximum size of Document that can be parsed by Tika engine; default=10 * 1024 * 1024
(10MB) # Set to 0 to disable the size check
#document.max_size=0

■■ Note  By default, only response data up to 200K is visible in the panel.

Chapter 5 ■ JMeter Test Plan Components

146

This listener also provides an option to save results to a file (see Figure 5-128).

Provide the name of the file and it will save the file inside the /bin directory of JMeter. If you provide
a full path, the file will be saved inside that directory. The generated file is a comma-separated file with the
default configuration.

Look at the contents of the file. Contents may differ based on your configuration of listeners, but the
original objective is the save the results to a file.

c:\apache-jmeter-3.0\bin>type results.csv
1454179982085,3355,HTTP Request,200,OK,Thread Group 1-2,text,true,279689,10,10,456
1454179982187,3418,HTTP Request,200,OK,Thread Group 1-3,text,true,279725,9,9,472
1454179982386,3267,HTTP Request,200,OK,Thread Group 1-5,text,true,279709,8,8,468
1454179982289,3433,HTTP Request,200,OK,Thread Group 1-4,text,true,279695,7,7,476
1454179981982,3772,HTTP Request,200,OK,Thread Group 1-1,text,true,279750,6,6,467
1454179982484,3318,HTTP Request,200,OK,Thread Group 1-6,text,true,279650,5,5,465
1454179982586,3254,HTTP Request,200,OK,Thread Group 1-7,text,true,279760,4,4,470
1454179982687,3244,HTTP Request,200,OK,Thread Group 1-8,text,true,279709,3,3,461
1454179982788,3299,HTTP Request,200,OK,Thread Group 1-9,text,true,279750,2,2,468
1454179982888,3248,HTTP Request,200,OK,Thread Group 1-10,text,true,279707,1,1,458

Non-GUI Mode

When you are running tests in non-GUI mode and want to see results in this listener, pass the -l flag with the
filename in the command.

C:\>jmeter -n -t ViewResultsTreeTestPlan.jmx -l results.jtl -j results.csv

Writing log file to: results.csv
Creating summariser <summary>
Created the tree successfully using ViewResultsTreeTestPlan.jmx
Starting the test @ Mon May 15 12:26:35 PDT 2017 (1494876395416)
Waiting for possible Shutdown/StopTestNow/Heapdump message on port 4445
summary = 1 in 00:00:01 = 1.7/s Avg: 284 Min: 284 Max: 284 Err: 0 (0.00%)
Tidying up ... @ Mon May 15 12:26:36 PDT 2017 (1494876396167)
... end of run

Figure 5-128.  Filename

Chapter 5 ■ JMeter Test Plan Components

147

■■ Note  By default, if you run tests in non-GUI mode, the test results are appended to an .jtl file. Make sure
that you delete .jtl files appropriately.

Open the View Results Tree and from the section called Write Results to File/Read from File. Click on
the Browser button and locate the file (generated using the command) and the tree view will be visible on
GUI (see Figure 5-129).

You can filter logs based on errors or successes, or both, by using the checkbox.
If you have not set the custom fields for the results file configuration section, you will not see any output

under the Request or Response data panels.
Stop JMeter and set the following parameters in the $JMETER_HOME\bin\user.properties file.

Set below parameters for saving response data for listeners
jmeter.save.saveservice.output_format=xml jmeter.save.saveservice.response_data=true
jmeter.save.saveservice.samplerData=true jmeter.save.saveservice.requestHeaders=true
jmeter.save.saveservice.url=true jmeter.save.saveservice.responseHeaders=true

Re-run test in non-GUI mode and open the .jtl file generated by the listener. It will show all the details
just like when you have executed tests in GUI mode.

■■ Caution  View Results Tree takes lot of memory to hold results and should not be used while doing actual
performance testing.

View Results In Table
GUI Mode

The View Results in Table listener shows responses in a table-like structure. It also shows the time taken by
the request/thread to get the response. Unlike View Results Tree, it does not have a panel and does not show
any headers or response contents.

It has the following columns in the view.

•	 Start Time: When this thread started.

•	 Thread Name: Thread group name with the thread number in the format X-X.

•	 Label: Name of HTTP request (sample).

•	 Sample Time (ms): Difference between time when request was sent and time when
response has been fully received.

Figure 5-129.  View Results Tree read from file

Chapter 5 ■ JMeter Test Plan Components

148

•	 Status: It has two statuses: 1. Success, 2. Warning. If the thread sample is not valid, it
shows Warning; otherwise, it shows Success.

•	 Bytes: Total number of bytes received as a part of the response.

•	 Latency: JMeter measures the latency from just before sending the request to just
after the first response is received.

•	 Connect Time(ms): JMeter measures the time it takes to establish the connection,
including the SSL handshake.

Let’s illustrate this with the following example.
Follow these steps or download ViewResultsInTableTestPlan.jmx.49

	 1.	 Create a test plan and give it a meaningful name, such as View Results In
Table Listener Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP
Header Manager.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, and Path as /dt.

	 5.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Configure Response Field to Test as Response Code, Pattern
Matching Rules as Equals, and Patterns To Test as 200.

	 6.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results in
Table (see Figure 5-130).

Figure 5-130.  View Results in Table listener test

49https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/listeners/
ViewResultsInTableTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/listeners/ViewResultsInTableTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/listeners/ViewResultsInTableTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

149

	 7.	 Save the test plan.

	 8.	 Run the test.

The results will be similar to those shown in Figure 5-131.

Provide the name of the file and it will save the file inside the /bin directory of JMeter. If you provide full
path, the file will be saved inside that directory. The generated file is a comma-separated file with the default
configuration.

Non-GUI Mode

When running tests in non-GUI mode, you want to see results in this listener pass l flag with the filename in
the command.

C:\>jmeter -n -t ViewResultsInTableTestPlan.jmx -l results.jtl -j results.csv

Writing log file to: results.csv
Creating summariser <summary>
Created the tree successfully using ViewResultsInTableTestPlan.jmx
Starting the test @ Mon May 15 12:30:04 PDT 2017 (1494876604839)
Waiting for possible Shutdown/StopTestNow/Heapdump message on port 4445
summary + 1 in 00:00:01 = 1.7/s Avg: 293 Min: 293 Max: 293 Err: 0 (0.00%)
Active: 1 Started: 1 Finished: 0
summary = 1 in 00:00:01 = 1.6/s Avg: 293 Min: 293 Max: 293 Err: 0 (0.00%)
Tidying up ... @ Mon May 15 12:30:05 PDT 2017 (1494876605614)
... end of run

Open View Results in Table and locate the section Write Results to File/Read from File. Click on the
Browser button and locate the file (generated using the command). The tree view will be visible on GUI. It
will show the connection time as 0.

You can filter logs based on errors or successes, or both, by using that checkbox.

■■ Caution  View Results in Table takes lot of memory to hold results and should not be used while doing
actual performance testing.

Figure 5-131.  View Results in Table

Chapter 5 ■ JMeter Test Plan Components

150

Aggregate Report
GUI Mode

The Aggregate Report listener also shows the responses in a table-like structure for each differently named
sampler. Similar to View Results in Table, it does not have a panel and does not show any headers or
response contents. Generated results can be saved as .csv files with the use of the Save Table Data button at
the bottom of this listener.

If you have multiple thread groups in your test script, it is useful to display the thread group name. This
can be achieved by enabling the Include Group Name in Label? checkbox (by default, it’s unchecked). By
enabling the Save Table Header checkbox, you can save headers of the table with the generated results.

For each sampler, it shows the following columns in the view:

•	 Label: Name given to the sampler. If the Include Group Name in Label? checkbox is
checked, then the thread group name is prefixed with the sampler name.

•	 Samples: Number of samples for a sampler. If there is more than one sampler with
the same name, it will be combined to a single row and the combined sum is shown.

•	 Average: This is the average time in milliseconds for a set of results.

•	 Median: This is the median time in milliseconds.

•	 90% Line: This is the time in milliseconds below which 90% of the samples fall.
The other samples took at least as long as this.

•	 95% Line: This is the time in milliseconds below which 95% of the samples fall.
The other samples took at least as long as this.

•	 99% Line: This is the time in milliseconds below which 99% of the samples fall.
The other samples took at least as long as this.

•	 Min: This the shortest time in milliseconds for the sampler with the same name.

•	 Max: This the maximum time in milliseconds for the sampler with the same name.

•	 Error %: Percent of requests with errors; it may be in fractions.

•	 Throughput: Calculated as requests/unit of time. It is the time difference between
the end of the last sample and the start of the first sample, including any gaps
between samples. It is expressed as number of requests/total time.

•	 KB/sec: The response received in kilobytes per second.

Let’s illustrate this by the following example.
Follow these steps or download AggregateReportTestPlan.jmx.50

	 1.	 Create a test plan and give it a meaningful name, such as Aggregate Report
Listener Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP
Header Manager.

50https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/listeners/
AggregateReportTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/listeners/AggregateReportTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/listeners/AggregateReportTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

151

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, and Path as /dt.

	 5.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Configure Response Field to Test as Response Code,
Pattern Matching Rules as Equals, and Patterns To Test as 200.

	 6.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add Aggregate Report
(see Figure 5-132).

	 7.	 Save the test plan.

	 8.	 Run the test.

The results will be similar to those shown in Figure 5-133.

Figure 5-132.  Aggregate report listener test

Figure 5-133.  Aggregate report

Chapter 5 ■ JMeter Test Plan Components

152

Provide the name of the file and it will save the file inside the /bin directory of JMeter. If you provide full
path, the file will be saved inside that directory. The generated file is a comma-separated file with the default
configuration.

After opening the generated XML file, you can see an XML representation with a default configuration.
Searching for httpSample shows the HTTP request used in the test.

Non-GUI Mode

When running tests in non-GUI mode, if you want to see results in this listener, pass the -l flag with the
filename in the command.

C:\> jmeter -n -t AggregateReportTestPlan.jmx -l result.jtl -j result.log
Writing log file to: result.log
Creating summariser <summary>
Created the tree successfully using AggregateReportTestPlan.jmx
Starting the test @ Mon May 15 12:34:26 PDT 2017 (1494876866750)
Waiting for possible Shutdown/StopTestNow/Heapdump message on port 4445
summary = 1 in 00:00:01 = 1.7/s Avg: 289 Min: 289 Max: 289 Err: 0 (0.00%)
Tidying up ... @ Mon May 15 12:34:27 PDT 2017 (1494876867527)
... end of run

Open Aggregate Report and find the section Write Results to File/Read from File. Click on the Browser
button and locate the file (generated using the command). The tree view will be visible on GUI.

You can filter logs based on errors or successes, or both, by using that checkbox.

■■ Note  Aggregate Report Listener no longer keeps copies of every single sample. Instead, it aggregates and
keeps only the summary report. This listener is suitable for actual performance testing.

Post-Processors
After the sampler gets executed, you need a post-processor to extract useful information from the response
and store the value in a variable to make it available to the next sampler. Post-processors are executed before
the listener and after the sampler, as per the JMeter test plan execution order.

Regular Expression Extractor
The Regular Expression Extractor is used to extract useful information (mostly values of variables to be used
in successive requests) from the response of a sampler. If it is added as a child to a thread group, then the
Regular Expression Extractor is applied to all the child samplers (see Figure 5-134).

Chapter 5 ■ JMeter Test Plan Components

153

Figure 5-134.  Regular expression extractor

This has the following options:

•	 Apply To: This has four options:

•	 Main samples and sub-samples: Applies to main samples and sub-samples

•	 Main sample only:Applies to main samples

•	 Sub-samples only:Applies to sub-samples

•	 JMeter Variable: Applies to the contents of the JMeter variable

•	 Field to Check: This has eight options:

•	 Body: Body of the response (excluding headers)

•	 Body (Unescaped): Body of the response having HTML escape codes replaced
(use caution, as it consumes additional CPU time and memory)

•	 Body as a Document: Extract text from various types of documents

•	 Response Headers: These are response headers that are returned in the sampler
response.

•	 Request Headers:Request headers used in the sampler (not required for non-
HTTP sampler)

•	 URL, Response Code: These are typical response codes, such as2XX, 3XX, 4XX,
and 5XX

•	 Response Message: These are messages from the response, such as OK

•	 Reference Name: This is the variable name that will be used to store the parsed value.

•	 Regular Expression: This is the regular expression which will parse the sampler
response.51

51http://jmeter.apache.org/usermanual/regular_expressions.html

http://jmeter.apache.org/usermanual/regular_expressions.html

Chapter 5 ■ JMeter Test Plan Components

154

•	 Template: This is used to create a string from the matches found by the regular
expression. 1 refers to the first group, 2 refers to the second group, and 0 refers
to the whole expression matched string.

•	 Match No. (0 for Random): This signifies which match to use in case there are
multiple matches found by the regular expression.

•	 Default Value: This is used to set the default value for Reference Name in case the
regular expression does not result any matches.

Let’s say that you configure the Reference Name as cardId. JMeter will store these as follows:

•	 cardId: Original variable name or reference name

•	 cardId_gn: Where gn is the group number

•	 cardId_g: Where g is the total number of groups.

If you set the Match No. (0 for Random) to -ve then all possible matches in the sampler response data
are processed.

•	 cardId_matchNr: Number of matches found. If none are found then it will be zero

•	 cardId_n: Number of strings generated by the template

•	 cardId_n_gm: gm groups for n matches

•	 cardId: Default value will be used

•	 cardId_gn: This will not be set in this case

Let’s illustrate these with the following example. (For the test script example, we will be using Apply To
as Main sample only and Field to Check as Body.)

Before starting the test, let’s set up the browser for recording steps on JMeter. Set the browser and
JMeter HTTP(S) test script recorder, and the global settings port to the same port.

Next, let’s set up proxy in Firefox browser.

	 1.	 Open Firefox browser and select Preferences ➤ Advanced ➤ Network ➤
Connection Settings ➤ Manual Proxy Configuration. Configure HTTP Proxy as
localhost and Port as 7070.

	 2.	 Select Use this Proxy Server for All Protocols.

	 3.	 Remove anything under No Proxy for. text Area and then click OK.

The Firefox browser is now set up to send HTTP requests to the JMeter proxy.
Follow these steps or download RegularExpressionExtractorTestPlan.jmx.52

	 1.	 Create a test plan and give it a meaningful name, such as Regular Expression
Extractor Test.

	 2.	 Click on WorkBench and go to Edit ➤ Add ➤ Non-Test Elements. Add HTTP(S)
Script Test Recorder. Configure Global Settings, Port as 7070. Select Target
Controller as WorkBench > HTTP(S) Test Script Recorder.

	 3.	 Add Exclude Regular Expression As: .*\.(css|js|ico|ttf|woff).*

	 4.	 Click on the Start button and confirm the dialog box by clicking OK.

52https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/post-processors/
RegularExpressionExtractorTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/post-processors/RegularExpressionExtractorTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/post-processors/RegularExpressionExtractorTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

155

	 5.	 Open the Firefox browser and follow the steps to update the payment
information.

	 6.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 7.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP Request
Defaults. Configure Server Name or IP as localhost and Port Number as 8080.

	 8.	 Select all recorded browser actions from WorkBench. Drag and add them as child
elements of the thread group.

	 9.	 Click on each HTTP request and remove the Server Name or IP and Port
Number options. (We have configured these in HTTP Request Defaults.)

	 10.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add Debug Sampler.
Move this to above the /user/signOut HTTP sampler.

	 11.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 12.	 Save the test plan.

Follow these additional steps to configure the Regular Expression Extractor.

	 1.	 Click on the first HTTP request called /user/addCard and go to Edit ➤ Add ➤
Post Processors. Add Regular Expression Extractor. Configure the options as
shown in Figure 5-135.

Figure 5-135.  Regular expression extractor configuration

Chapter 5 ■ JMeter Test Plan Components

156

Figure 5-137.  Regular expression extractor results

Figure 5-136.  HTTP request AddCard

	 2.	 Click on the second HTTP request called /user/addCard and configure the
options as shown in Figure 5-136. (You need to update the card ID, which you are
extracting from an earlier request).

	 3.	 Run the test.

The results will be similar to those shown in Figure 5-137.

Chapter 5 ■ JMeter Test Plan Components

157

Once the JMeter test is executed, open your browser and launch the Digital Toys Inc. web application.
Log in again as user1@dt.com/user1, navigate to the payment information, and verify the updated
information.

Properties and Variables
JMeter, like any programming language, has the concept of defining and using name/value pairs. JMeter
utilizes this concept for both properties and variables.

Comparison of Properties and Variables
Table 5-4 shows a comparison of the properties and variables.

Figure 5-138.  Debug sampler

	 4.	 You can also click on Debug Sampler to cross-verify the value of cardId after Post-
Processor has parsed the value from the sampler response (see Figure 5-138).

Table 5-4.  Comparison of Properties and Variables

Properties Variables User Defined
Variables

Defined in jmeter.properties
file, JSR223 script, or passed on
the command line.

Defined using JSR223 script or
CSV Data Config component
in a thread group.

Defined using the user defined variable
section in the test plan component.

Shared across the thread
groups.

Local to the thread group in
which it is defined.

Each UDV gets copied as a variable into
each of the thread groups at the start of
the test execution, after which, it behaves
like a variable specific to the thread group.

Use __P() to get the value. Use ${ } to get the value. Use ${ } to get the value.

Chapter 5 ■ JMeter Test Plan Components

158

Figure 5-139 shows a big picture view of the properties, variables, and user defined variables.

Notice that the variables are local to a thread group, whereas the modifications to the properties are
shared across the thread groups.

Let’s illustrate this by the following example.
Follow these steps or download PropertiesAndVariablesTestPlan.jmx.53

	 1.	 Create a test plan and give it a meaningful name, such as User Defined
Variables Test. Enable the Run Thread Groups Consecutively (i.e. Run
Groups One at a Time) checkbox.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.
Configure the name as Thread Group A and the Loop Count as 1.

Figure 5-139.  Properties, variables, and user defined variables

53https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/properties-and-variables/
PropertiesAndVariablesTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/properties-and-variables/PropertiesAndVariablesTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/properties-and-variables/PropertiesAndVariablesTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

159

	 3.	 Click on Thread Group A and go to Edit ➤ Add ➤ Pre Processor. Add JSR223
Pre Processor. Configure Script Language as Java and enter this script: vars.
put("zeta_variable", "variable value");props.put("Alpha_variable",
"property value");. See Figure 5-140.

	 4.	 Click on Thread Group A and go to Edit ➤ Add ➤ Sampler. Add Debug Sampler.
Configure JMeter Properties as True, JMeter Variables as True, and System
Properties as False (see Figure 5-141).

Figure 5-140.  JSR223 configuration

Figure 5-141.  Debug sampler configuration

Chapter 5 ■ JMeter Test Plan Components

160

	 5.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.
Configure the name as Thread Group B and the Loop Count as 1.

	 6.	 Click on Thread Group B and go to Edit ➤ Add ➤ Sampler. Add Debug Sampler.
Configure JMeter Properties as True, JMeter Variables as True, and System
Properties as False.

	 7.	 Click on Test Plan and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 8.	 Save the test plan.

	 9.	 Run the test.

The results are as shown in Figure 5-142.

Observe that the user parameter zeta_variable defined in Thread Group A is not visible in Thread
Group B. However, the property alpha_property defined in Thread Group A is global and is visible in
Thread Group B as well (see Figure 5-143).

Figure 5-142.  Results of debug sampler A

Chapter 5 ■ JMeter Test Plan Components

161

User Defined Variables
The user defined variables (UDV) are copied as variables into every thread group at the start of the test script
execution. After that, any changes to the UDV are local to the thread group.

Follow these steps or download UDVExecuteThreadGroupConsecutivelyTestPlan.jmx.54

	 1.	 Create a test plan and give it a meaningful name, such as User User Defined
Variable Execute Thread Group Consecutively Test. Enable the Run Thread
Groups Consecutively checkbox. Under User Defined Variables, add two
Name:Value pairs as UDV_Alpha/alpha and UDV_Bravo/bravo (see Figure 5-144).

Figure 5-143.  Results of debug sampler B

Figure 5-144.  User defined variables configuration

54https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/properties-and-variables/
UDVExecuteThreadGroupConsecutivelyTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/properties-and-variables/UDVExecuteThreadGroupConsecutivelyTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/properties-and-variables/UDVExecuteThreadGroupConsecutivelyTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

162

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.
Configure the name as Thread Group A and Loop Count as 1.

	 3.	 Click on Thread Group A and go to Edit ➤ Add ➤ Sampler. Add Debug Sampler.
Configure the name as Debug Sampler Thread A.

	 4.	 Click on Thread Group A and go to Edit ➤ Add ➤ Post Processors. Add JSR223
PostProcessor. Configure the language as Java. Add the following in the Script
box (see Figure 5-145).

log.info("The value of UDV_Bravo before: " + vars.get("UDV_Bravo"));
vars.put("UDV_Bravo", "zulu");
log.info("The value of UDV_Bravo after: " + vars.get("UDV_Bravo"));

	 5.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.
Configure the name as Thread Group B and the Loop Count as 1.

	 6.	 Click on Thread Group B and go to Edit ➤ Add ➤ Sampler. Add Debug Sampler.
Configure the name as Debug Sampler Thread B.

	 7.	 Click on Test Plan and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 8.	 Save the test plan.

	 9.	 Run the test.

Figure 5-145.  JSR223 post-processor configuration

Chapter 5 ■ JMeter Test Plan Components

163

Click on the View Results Tree and select Debug Sampler Thread A. You will notice that UDV_Aplha is
alpha and UDV_Bravo is bravo, as defined initially in the test plan element (see Figure 5-146).

The logs show that the value of UDV_Bravo was set to zulu after the JSR223 post-processor executed.
However, this change is local to Thread Group A and is not propagated to Thread Group B.

2017/05/15 13:33:21 INFO - jmeter.extractor.JSR223PostProcessor: The value of
UDV_Bravo before: bravo
2017/05/15 13:33:21 INFO - jmeter.extractor.JSR223PostProcessor: The value of
UDV_Bravo after: zulu

Click on the View Results Tree and select Debug Sampler Thread B. You will find that there was no
change to the value of UDV_Bravo (see Figure 5-147).

Figure 5-146.  Debug sampler A results

Figure 5-147.  Debug sampler B results

Chapter 5 ■ JMeter Test Plan Components

164

Using the Command Line to Initialize Properties
When using non-GUI mode for running the tests, you need to pass different values for various parameters to
the test plan based on the environment. For example, the server name is different between the test and the
production environments and hence can be defined as a property.

In the following example, the server name has been defined as a property and its value set from the
command line using the -J qualifier. A user defined variable has been configured in the test plan element
and initialized using the server name property.

Let’s illustrate this in the following example.
Follow these steps or download UDVUsingCmdLineParamTestPlan.jmx.55

	 1.	 Open UDVExecuteThreadGroupConsecutivelyTestPlan.jmx.

	 2.	 Click on Test Plan and uncheck the Run Thread Groups Consecutively
checkbox. Add a Name:Value pair as SERVER/${__P(SERVER)} (see Figure 5-148).

	 3.	 Click on HTTP Request Defaults and update the Server Name or IP field to
${SERVER} (see Figure 5-149).

Figure 5-148.  Test plan using user defined variables

Figure 5-149.  Thread group utilizing user defined variable

55https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/properties-and-variables/
UDVUsingCmdLineParamTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/properties-and-variables/UDVUsingCmdLineParamTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_05/properties-and-variables/UDVUsingCmdLineParamTestPlan.jmx

Chapter 5 ■ JMeter Test Plan Components

165

	 4.	 Save the test plan.

	 5.	 Run the test from the command line. Issue the following command at the CMD prompt:

C:\>jmeter -n -t UDVExecuteThreadGroupConsecutivelyTestPlan.jmx -JSERVER=localhost -l
UDV-cmd-line-test.log

Writing log file to: jmeter.log
Creating summariser <summary>
Created the tree successfully using UDVExecuteThreadGroupConsecutivelyTestPlan.jmx
Starting the test @ Mon May 15 14:17:34 PDT 2017 (1494883054405)
Waiting for possible Shutdown/StopTestNow/Heapdump message on port 4445
summary = 8 in 00:00:02 = 4.2/s Avg: 1135 Min: 1027 Max: 1272 Err: 0 (0.00%)
Tidying up ... @ Mon May 15 14:17:36 PDT 2017 (1494883056495)
... end of run

	 6.	 Open the test results log file. Issue the following command at the CMD prompt:

C:\>cat UDV-cmd-line-test.log

1494882072124,1232,HTTP Request B,200,OK,Thread Group B 2-2,text,true,,5160,4,8,1230,0
1494882072109,1320,HTTP Request A,200,OK,Thread Group A 1-2,text,true,,5161,4,7,1316,0
1494882072062,1366,HTTP Request B,200,OK,Thread Group B 2-1,text,true,,5161,3,7,1366,0
1494882072359,1090,HTTP Request A,200,OK,Thread Group A 1-3,text,true,,5161,3,5,1086,0
1494882072376,1082,HTTP Request B,200,OK,Thread Group B 2-3,text,true,,5161,2,4,1081,0
1494882072062,1427,HTTP Request A,200,OK,Thread Group A 1-1,text,true,,5162,2,3,1427,0
1494882072609,1035,HTTP Request A,200,OK,Thread Group A 1-4,text,true,,5162,1,2,1035,0
1494882072628,1080,HTTP Request B,200,OK,Thread Group B 2-4,text,true,,5161,1,1,1080,0

Note that the server name has been passed from the command line. This was propagated to the server
defined under user defined variables. The request samplers referred to this value by enclosing it in ${}.

Similarly, you can configure Number of Threads (Users), Ramp-Up Period (in Seconds), and Loop
Count to simulate different loads based on the environment.

Conclusion
In this chapter, you learned to configure your test plan to enable serial and parallel execution of thread groups
to simulate real users while performing load testing. You used pre-processors by using the HTTP URL Rewriting
Modifier. You learned about Logic Controllers for enabling loops based on conditions, You learned about JMeter
timers and their appropriate use in test scripts for setting up hard delays to replicate actual user scenario etc.,
and the HTTP Request Sampler to configure real-world HTTP requests. You also learned about the Response
Assertion and its various options and how to apply them to responses from samplers and sub-samplers to ensure
that tests are running correctly. You also learned about the usage of assertions results, which are especially suited
for viewing the results of assertions. Listeners like View Results Tree, View Results In Table, and Aggregate Report
Listeners are useful in viewing the results of JMeter test script, saving the test results in CSV and XML formats, and
using non-GUI mode to save results to a file. The Regular Expression Extractor extracts value from the sampler and
stores the value locally for successive samplers. You also learned about the use of JMeter properties, variables, and
user defined variables along with their scope with respect to test plans and thread groups.

In the next chapter, you will learn about distributed testing using JMeter in a master-slave environment,
various modes of sending results from the slaves to the master, and current limitations of distributed testing.

167© Sai Matam and Jagdeep Jain 2017
S. Matam and J. Jain, Pro Apache JMeter, DOI 10.1007/978-1-4842-2961-3_6

CHAPTER 6

Distributed Testing

This chapter discusses how to perform distributed testing using JMeter. We cover the prerequisites and
configuration of JMeter with remote hosts in master/slave environments. You’ll see how to run tests in GUI
as well as non-GUI mode and learn about various ways that JMeter sends information from slave(s) to the
master. Lastly, there is a section that will be useful in troubleshooting exceptions while you are developing
tests script and running in distributed environment.

At the end of this chapter, you’ll have a good idea about the distributed load testing approach using
JMeter. You will be able to set up a distributed testing environment and trigger test scripts from various JMeter
slaves. Those who are already familiar with distributed testing using JMeter can proceed to the next chapter.

When the load generated by JMeter reaches the limit of a client machine in terms of CPU, memory,
or network space, then you need to utilize more than one machine. JMeter can be configured to do
distributed testing.

In a distributed testing environment, each JMeter client is configured to simulate the load of a few
hundred users and the combination of these clients will trigger a few thousand requests simultaneously.
It can be thought of as horizontal scaling of load, as you can increase and simulate the test load by adding
client machines to the testing environment.

Distributed Testing Using JMeter
Distributed testing is performed using a master-slave model. A JMeter master node, together with one or
more JMeter slave nodes, constitute a distributed testing cluster.

The test plan is loaded on the master. The hostname or IP address of the slave machines are configured
in the jmeter.properties file on the master. This enables those slave machines to be a part of the JMeter
distributed testing cluster, and they are visible in the master node GUI. It is assumed that JMeter is already
installed on the slave nodes.

The slave nodes obtain a copy of the test plan from the master. The role of the master node is only to
orchestrate the test. It is the slave nodes that execute the test and generate the load.

Distributed testing in JMeter is also called remote testing.

Prerequisites
The prerequisites for setting up the distributed testing cluster using JMeter are as follows:

•	 All the slaves must be on the same subnet as the master.

•	 The application under target should be on the same subnet.

•	 All slaves and the master should have the same version of JMeter and JVM.

Chapter 6 ■ Distributed Testing

168

•	 The firewall on the master and the slaves should be turned off.

•	 There should be no antivirus software installed on the master or the slaves.

•	 The network should be stable.

•	 There should not be any extraneous network activity on the subnet.

Configuration
Open the jmeter.properties file on the master and add each slave’s hostname or IP address, as shown here:

remote_hosts=192.168.0.7,192.168.0.8

This is the only configuration that is required.
External configuration files needed by each slave are located on that machine.
For example, in a shopping-cart application where a username and password is required, you

could store a list of these in files and load them separately in each slave. Make sure that you have distinct
username/password pairs across the entire application to avoid duplicate logins.

On each of the slave machines, create a users.csv file, ensuring that the contents are distinct across
each machine.

In slave #1, here is the users list.

user1@dt.com,user1
user2@dt.com,user2
user3@dt.com,user3
user4@dt.com,user4
user5@dt.com,user5

In slave #2, here is the users list.

user6@dt.com,user6
user7@dt.com,user7
user8@dt.com,user8
user9@dt.com,user9
user10@dt.com,user10

Ensure that the users.csv file is placed in the /bin folder of the slave’s $JMETER_HOME directory. When
the test executes, it will be picked up.

Let’s illustrate this with an example.
Follow these steps or download the DistributedTestPlan.jmx1 file:

	 1.	 Create a test plan and give it a meaningful name, such as Distributed Testing.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.
Configure Number of Threads (Users) as 1 and Loop Count as 1.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP
Cookie Manager.

1https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_06/DistributedTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_06/DistributedTestPlan.jmx

Chapter 6 ■ Distributed Testing

169

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP
Request Defaults. Configure Server Name or IP as <your_machine_ip_or_
hostname> and Port Name as 8080.

	 5.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Path as /user/signIn and Method as POST.

	 6.	 Click on HTTP Request and go to Edit ➤ Add ➤ Config Element. Add CSV Data
Set Config and configure as shown in Figure 6-1.

	 7.	 Click on HTTP Request again and configure the parameters as shown in Figure 6-2.

Figure 6-1.  CSV data set config

Figure 6-2.  HTTP request parameters

	 8.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Configure Response Field to Test as Response Code, Pattern
Matching Rules as Equals, and Patterns To Test as 200.

	 9.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Path as /user/signOut and Method as HEAD.

	 10.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Configure Response Field to Test as Response Code, Pattern
Matching Rules as Equals, and Patterns To Test as 200.

Chapter 6 ■ Distributed Testing

170

	 11.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 12.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results
in Table.

	 13.	 Save the test plan.

Running the Test
After updating the jmeter.properties file with remote_hosts, start the JMeter GUI and load the test plan.
Under the Run menu, the following options are available:

•	 The Remote Start and Remote Start All options will start the test on remote hosts.

•	 The Remote Stop and Remote Stop All options will stop the test on remote hosts.

•	 The Remote Exit and Remote Exit All options will stop the JMeter server on
remote hosts.

•	 The Remote Shutdown and Remote Shutdown All options will stop the test on
remote hosts but not the JMeter server, and we can continue the test on the remote
host by again using the Remote Start option (see Figure 6-3).

Figure 6-3.  JMeter Remote Start option

Chapter 6 ■ Distributed Testing

171

From the apache-jmeter-3.0/bin directory on each slave, you need to start jmeterserver using the
following command:

C:\>jmeter-server

Once started, it will look like the output shown next.
Remote host #1 jmeter-server logs.

C:\> jmeter-server
Could not find ApacheJmeter_core.jar ...
... Trying JMETER_HOME=..
Found ApacheJMeter_core.jar
Writing log file to: C:\apache-jmeter-3.0\bin\jmeter-server.log
Created remote object:
UnicastServerRef [liveRef: [endpoint:[192.168.0.7:51324](local),objID:[535e2c0b:
15c0e3a3328:-7fff, 3496195728845345408]]]

Remote host #2 jmeter-server logs.

C:\> jmeter-server
Could not find ApacheJmeter_core.jar ...
... Trying JMETER_HOME=..
Found ApacheJMeter_core.jar
Writing log file to: C:\apache-jmeter-3.0\bin\jmeter-server.log
Created remote object:
UnicastServerRef [liveRef: [endpoint:[192.168.0.8:63904](local),objID:
[-99f93d6:15c0e3a7148:-7fff, -6488513131611751121]]]

GUI Mode
You have set up two slaves (remote hosts), which are visible on the JMeter GUI. Run the test on one remote
host by selecting Remote Start and selecting any remote host or using the Remote Start All option.

Under Thread Group, you can see that you are running 1 thread and selecting Remote Start All; it will trigger
this test on both remote hosts. The View Results in Table will show four responses, as shown in Figure 6-4.

Figure 6-4.  Master view results tree

Chapter 6 ■ Distributed Testing

172

Also on the remote host, the jmeter-server logs will show the test start and the test end.
Remote host #1 jmeter-server logs.

Starting the test on host 192.168.0.7 @ Mon May 15 15:31:15 PDT 2017 (1494887475261)
Finished the test on host 192.168.0.7 @ Mon May 15 15:31:16 PDT 2017 (1494887476397)

Remote host #2 jmeter-server logs.

Starting the test on host 192.168.0.8 @ Mon May 15 15:31:15 PDT 2017 (1494887475062)
Finished the test on host 192.168.0.8 @ Mon May 15 15:31:15 PDT 2017 (1494887475390)

Non-GUI Mode
GUI mode takes a lot of memory. JMeter provides an option to do a remote run of the tests.

Execute this command with -R and add the remote hosts’ IP addresses.

C:\>jmeter -n -t DistributedTestPlan.jmx -R 192.168.0.7,192.168.0.8

It will show the following output. You can see that tests are executed on remote engines.

C:\>jmeter -n -t DistributedTestPlan.jmx -R 192.168.0.7,192.168.0.8
Writing log file to: jmeter.log
Creating summariser <summary>
Created the tree successfully using DistributedTestPlan.jmx
Configuring remote engine: 192.168.0.7
Configuring remote engine: 192.168.0.8
Starting remote engines
Starting the test @ Mon May 15 15:36:44 PDT 2017 (1494887804089)
summary = 0 in 00:00:00 = ******/s Avg: 0 Min: 9223372036854775807 Max:
-9223372036854775808 Err: 0 (0.00%)

Tidying up remote @ Mon May 15 15:36:45 PDT 2017 (1494887805458)
Remote engines have been started
Waiting for possible Shutdown/StopTestNow/Heapdump message on port 4445
summary = 2 in 00:00:01 = 3.7/s Avg: 106 Min: 105 Max: 107 Err: 0 (0.00%)
Tidying up remote @ Mon May 15 15:36:45 PDT 2017 (1494887805850)
... end of run
... end of run

Execute the following command with -r without the remote hosts’ IP addresses. This command will
take the remote hosts from the jmeter.properties file assigned to the remote hosts property.

C:\>jmeter -n -t DistributedTestPlan.jmx -r

RMI Port
By default, the server_port is set to 1099. Sometimes it may be that this port is blocked, and we are not able
to start JMeter in the master-slave environment. In this case, we need to set the server_port of the slaves to
something else.

Chapter 6 ■ Distributed Testing

173

Open the jmeter.properties file on the slaves and change it to a different port number, such as 1234.

RMI port to be used by the server (must start rmiregistry with same port) server_port=1234

The command for running tests should be as follows:

C:\> jmeter -n -t DistributedTestPlan.jmx -R 192.168.0.7:1234, 192.168.0.8:1234

If you forget to use the updated port number in the command, you will get the exception shown here:

C:\> jmeter -n -t DistributedTestPlan.jmx -R 192.168.0.7,192.168.0.8:1234
Writing log file to: jmeter.log
Creating summariser <summary>
Created the tree successfully using DistributedTestPlan.jmx
Configuring remote engine: 192.168.0.7:1234
Connection refused to host: 192.168.0.7; nested exception is:
 java.net.ConnectException: Connection refused: connect
Failed to configure 192.168.0.7:1234
Configuring remote engine: 192.168.0.8:1234
Connection refused to host: 192.168.0.8; nested exception is:
 java.net.ConnectException: Connection timed out: connect
Failed to configure 192.168.0.8:1234
Stopping remote engines
Remote engines have been stopped
Error in NonGUIDriver java.lang.RuntimeException: Following remote engines could not be
configured:[192.168.0.7:1234,
192.168.0.8:1234]

Sample Sender Mode
In distributed testing of the master-slave environment, remote hosts (slaves) do the test execution and send
samples to the client (master). The master gathers input from all the remote hosts and consolidates into a
single view with respect to the target application server.

In the overall process, based on the configuration, remote hosts coordinate with the master to send
samples before executing the next thread. This affects the maximum throughput of the server test, as the
sample result has to be sent back before the thread can continue.

The client node (master) needs to have one of the following sample sending modes:

•	 Standard: Send samples synchronously as soon as they are generated.

#mode=Standard

•	 Batch Mode: Send saved samples when either the count (num_sample_threshold)
or time (time_threshold) exceeds a threshold, at which point the samples are sent
synchronously. The thresholds can be configured on the server using the following
properties:

num_sample_threshold: The number of samples to accumulate; default is 100

Chapter 6 ■ Distributed Testing

174

time_threshold: The time threshold;default is 60000 ms = 60 seconds

#mode=Batch
...
#num_sample_threshold=100
Value is in milliseconds
#time_threshold=60000
...

•	 Statistical Mode: Send a summary sample when either the count or time exceeds a
threshold. The samples are summarized by thread group name and sample label.

The following fields are accumulated:

•	 Elapsed time

•	 Latency

•	 Bytes

•	 Sample count

•	 Error count

Other fields that vary between samples are lost.

#mode=Statistical
#Set to true to key statistical samples on threadName rather than threadGroup
#key_on_threadname=false
...
#num_sample_threshold=100
Value is in milliseconds
#time_threshold=60000
...

•	 Hold Mode: Hold samples in an array until the end of a run. This may use a lot of
memory on the server and is discouraged.

#mode=Hold

•	 DiskStore Mode: Store samples in a disk file (under java.io.temp) until the end of a
run. The serialized data file is deleted on JVM exit.

DiskStore: as for Hold mode, but serialises the samples to disk, rather than
saving in memory
#mode=DiskStore

•	 StrippedDiskStore Mode: Remove responseData from successful samples and use
DiskStore sender to send them.

Same as DiskStore but strips response data from SampleResult
#mode=StrippedDiskStore

•	 Stripped Mode: Remove responseData from successful samples.

Chapter 6 ■ Distributed Testing

175

#mode=Stripped

•	 StrippedBatch Mode: Remove responseData from successful samples and use
Batch sender to send them.

#mode=StrippedBatch

•	 Asynch: Samples are temporarily stored in a local queue. A separate worker thread
sends the samples. This allows the test thread to continue without waiting for the
result to be sent back to the client (the master). However, if samples are being
created faster than they can be sent, the queue will eventually fill up, and the
sampler thread will block until some samples can be drained from the queue. This
mode is useful for smoothing out peaks in sample generation. The queue size can be
adjusted by setting the JMeter property asynch.batch.queue.size (default 100)
on the server node.

Asynchronous sender; uses a queue and background worker process to return the
samples #mode=Asynch
default queue size
#asynch.batch.queue.size=100

•	 StrippedAsynch Mode: Remove responseData from successful samples and use
Async sender to send them.

Same as Async but strips response data from SampleResult
#mode=StrippedAsynch

•	 Custom Implementation Mode: Set the mode parameter to custom sample sender
class name. This must implement the interface SampleSender and have a constructor
that takes a single parameter of type RemoteSampleListener.

#mode=org.example.load.MySampleSender

Open the jmeter.properties file and set the mode as per the requirements.

■■ Note  Stripped modes (StrippedDiskStore, Stripped, StrippedBatch, and StrippedAsynch) strip
responseData, meaning that some elements that rely on the previous responseData being available will not
work. Give attention to this feature while developing the test script.

Chapter 6 ■ Distributed Testing

176

Unreachable Remote Hosts
The Unreachable Remote Host condition will happen when one or more of the remote hosts is not reachable
by the client (the master). Perhaps they have not yet booted up or they are shut down. In this case, when you
trigger the test, it will fail.

C:\>jmeter -n -t DistributedTestPlan.jmx -R 192.168.0.7:1234,192.168.0.8:1234
Writing log file to: jmeter.log
Creating summariser <summary>
Created the tree successfully using DistributedTestPlan.jmx
Configuring remote engine: 192.168.0.7:1234
Connection refused to host: 192.168.0.7; nested exception is:
 java.net.ConnectException: Connection refused: connect
Failed to configure 192.168.0.7:1234
Configuring remote engine: 192.168.0.8:1234
Connection refused to host: 192.168.0.8; nested exception is:
 java.net.ConnectException: Connection timed out: connect
Failed to configure 192.168.0.8:1234
Stopping remote engines
Remote engines have been stopped
Error in NonGUIDriver java.lang.RuntimeException: Following remote engines could not be
configured:[192.168.0.7:1234,
192.168.0.8:1234]

In the first case, when the remote hosts are still booting up, JMeter has a property to wait for some time
and then trigger the test. You can set how many retries JMeter has to make and how much retry delay it has
to wait before starting the test.

By default, client.tries is set to 1 and client.retries_delay is set to 5000 milliseconds.
Uncomment these properties and rerun the test.

When distributed test is starting, there may be several attempts to initialize
remote engines. By default, only a single try is made. Increase the following property
to make it retry additional times
client.tries=1

If there are initialization retries, the following property sets a delay between attempts
client.retries_delay=5000

JMeter has a property to skip the remote hosts if they are not reachable and continue the test with the rest.
Update client.continue_on_fail to true under the jmeter.properties file.

When all initialization tries are made, test will fail if some remote engines are failed
Set the following property to true to ignore failed nodes and proceed with test
client.continue_on_fail=true

Run the test again and it will skip the unreachable host.

C:\>jmeter -n -t DistributedTestPlan.jmx -R 192.168.0.7,192.168.0.8
Writing log file to: jmeter.log
Creating summariser <summary>
Created the tree successfully using DistributedTestPlan.jmx

Chapter 6 ■ Distributed Testing

177

Configuring remote engine: 192.168.0.7
Configuring remote engine: 192.168.0.8
Connection refused to host: 192.168.0.8; nested exception is:
 java.net.ConnectException: Connection timed out: connect
Failed to configure 192.168.0.8
Following remote engines could not be configured:[192.168.0.8]
Continuing without failed engines...
Starting remote engines
Starting the test @ Mon May 15 17:04:14 PDT 2017 (1494893054551)
Remote engines have been started
Waiting for possible Shutdown/StopTestNow/Heapdump message on port 4445
summary = 2 in 00:00:01 = 2.2/s Avg: 376 Min: 279 Max: 474 Err: 0 (0.00%)
Tidying up remote @ Mon May 15 17:04:16 PDT 2017 (1494893056800)
... end of run

Limitations
The limitations with JMeter in distributed testing are listed here:

•	 It is quite expensive to set up dedicated hardware for performance testing on the
premises. A cloud-based distributed testing environment will provide a solution to
this limitation.

•	 RMI cannot communicate across subnets without a proxy; therefore, neither
can JMeter.

•	 Since JMeter sends all the test results to the controlling console, it is easy to saturate
the network. It is a good idea to use the Simple Data Writer to save the results and
view the file later with one of the graph Listeners.

•	 A single JMeter client running on a 2-3 GHz CPU can handle 300-600 threads
depending on the type of test. (The exception is the web-services). XML processing
is CPU intensive and will rapidly consume all the CPU cycles. As a general rule,
performance of XML-centric applications is 4-10 times slower than applications
using binary protocols.

Conclusion
In this chapter, you learned to distribute load generation by using multiple machines, configuring remote
hosts, and verifying that the remote hosts have successfully run the test. You also learned about the
limitations of distributed testing using JMeter. In the next chapter, you will learn JMeter best practices that
will make you a more efficient user of JMeter.

179© Sai Matam and Jagdeep Jain 2017
S. Matam and J. Jain, Pro Apache JMeter, DOI 10.1007/978-1-4842-2961-3_7

CHAPTER 7

JMeter Best Practices

This chapter has examples, each illustrating a concept, feature, or a best practice of JMeter.
At the end of this chapter, you’ll have more insight into JMeter and understand little efficient techniques

that will help you write better and faster tests. It is not mandatory to read through this chapter, and if you
want to skip to next chapter, you can do so.

HTTP Request Defaults
Always use the HTTP Request Defaults configuration element in a test plan. The most important elements
are the Server Name or IP and Port Number.

This is the place to configure the proxy server information. This is also the place to store any REST API
key/values as request parameters.

To make the test plan more portable, you should use HTTP Request Defaults and populate the
Server Name or IP and Port Number fields with the server name and port information relevant to the test
environment. You should use relative URLs in the HTTP Requests field. This is a great advantage, as just by
changing the server and port number fields, you can re-target the test plan for multiple environments.

For example, say you have production servers hosted at http://www.xyz.com, company servers hosted
at test.xyz.com, and a developer environment in the intra-net at a private IP address. In such a scenario,
you can reuse the test plan by merely changing the Server Name or IP and Port Number options inside
HTTP Request Defaults (see Figure 7-1).

http://www.xyz.com/

Chapter 7 ■ JMeter Best Practices

180

Follow Redirects
Always enable the Follow Redirects option.

When you browse web sites or are using a web application, sometimes the browser redirects to a new
URL using the concept of URL redirection. This is also called URL forwarding. HTTP status codes 3XX are
used to indicate redirection.

When you add an HTTP Request Sampler to the test plan, the Follow Redirects flag is enabled by default.
You will see what happens when this flag is not checked in the following example.

Follow these steps or download FollowRedirectTestPlan.jmx.1

	 1.	 Create a test plan and give it a meaningful name, such as Follow Redirect Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, and Path as
/dt/info. Uncheck the Follow Redirects checkbox.

	 4.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Configure Response Field to Test as Response Code, Pattern
Matching Rules as Equals, and Patterns To Test as 200.

Figure 7-1.  HTTP defaults

1https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_07/FollowRedirectTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_07/FollowRedirectTestPlan.jmx

Chapter 7 ■ JMeter Best Practices

181

	 5.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree
(see Figure 7-2).

Figure 7-2.  Follow redirect test

Figure 7-3.  Assertion failures

	 6.	 Save the test plan.

	 7.	 Run the test.

The results will be similar to those shown in Figure 7-3.

Chapter 7 ■ JMeter Best Practices

182

Observe the sampler results shown in Figure 7-4. The assertion failed as the response code was 302
instead of 200. Also note that the Location field in the Response Headers indicates the correct URL to be
http://localhost:8080/dt/newInfo.

Of course, the test will succeed when you select the Follow Redirects flag in the HTTP Request Sampler.

■■ Note  It is a best practice to select the Follow Redirects flag. Also, it is equally important to add assertions
during test script development to make sure that we detect the failures.

Cookie Manager
Always use a cookie manager, as cookies are the most common mechanism for web applications to maintain
session state.

Consider the following use-case for placing an order from the Digital Toys Inc. web application.

	 1.	 Sign in (user user1@dt.com, password user1).

	 2.	 Check Detail.

	 3.	 Choose Add To Cart.

	 4.	 Check out.

	 5.	 Add the billing/shipping address.

	 6.	 Add the credit card details.

Figure 7-4.  Sampler results

Chapter 7 ■ JMeter Best Practices

183

	 7.	 Place your order.

	 8.	 View the order history.

	 9.	 Sign out.

One of the best features of JMeter is the HTTP(S) Test Script Recorder. Let’s use it to record this use-case
by following these steps or downloading CookieManagerTestPlan.jmx.2

	 1.	 Create a test plan and give it a meaningful name, such as Cookie Manager Test.

	 2.	 Click on WorkBench and go to Edit ➤ Add ➤ Non-Test Elements. Add HTTP(S)
Test Script Recorder. Choose Global Settings and then configure Port as 7070,
Test Plan Content, Target Controller as WorkBench > HTTP(S) Test Script
Recorder, and URL Patterns to Exclude as .*\.(css|js|ico|ttf|woff).*

	 3.	 Click on the Start button.

	 4.	 Use the browser and follow the use-case steps to place an order on the Digital
Toys web application.

	 5.	 Click on test plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 6.	 Select all recorded browser actions from WorkBench, and then drag and add
them as child elements of Thread Group.

	 7.	 Save the test plan.

	 8.	 Run the test.

	 9.	 Log in to the Digital Toys Inc. web application and verify the order (see Figure 7-5).

Figure 7-5.  Order History 1

2https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_07/CookieManagerTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_07/CookieManagerTestPlan.jmx

Chapter 7 ■ JMeter Best Practices

184

Figure 7-6.  Order history 2

The process of recording the use-case created an order. After that, the JMeter test execution should have
created another order. However, looking under Order History, we only find one order. Why is the second
order missing? The JMeter test execution was not successful in placing an order because the session was not
maintained between requests. Let’s fix this by adding an HTTP Cookie Manager.

	 1.	 Now click on test plan and go to Edit ➤ Add ➤ Config Element. Add HTTP
Cookie Manager.

	 2.	 Run the test.

	 3.	 Log in to the Digital Toys Inc. web application and verify the order (see Figure 7-6).

	 4.	 Go to Order History under the Digital Toys Inc. web application and verify the
recently placed order. You will see that there were two orders placed.

■■ Note I t is a best practice to always use an HTTP Cookie Manager. It should be a child element of Thread
Group, as this will ensure that each thread is uniquely identified by the server.

Chapter 7 ■ JMeter Best Practices

185

Cache Manager
The Cache Manager simulates a browser cache. You can make JMeter behave closer to a real browser by
including an HTTP Cache Manager.

JMeter is not a real browser. It does not execute JavaScript or render content. A typical web page has many
media files, such as images, video, audio, and script files. A good web page design includes headers that tell the
proxy servers and browsers to cache these resources so that they are downloaded from the origin the first time
and later fetched from the cache. The HTTP Cache Manager, if included, will cache the cache-able resources.

Each thread has its own cache and you can specify the limit on the cache size by configuring the Max
Number of Resources to Cache field. Setting this value too high will increase the memory required by JMeter
(see Figure 7-7).

JMeter Using Maven
Apache Maven is a popular build-management tool. It provides a standard method to build the software
executable and various other project artifacts. It provides a plugin mechanism to support additional tasks.

Inside pom.xml, add the following XML code snippet.3

<build>
 <plugins>
 <plugin>
 <groupId>com.lazerycode.jmeter</groupId>
 <artifactId>jmeter-maven-plugin</artifactId>
 <version>1.10.1</version>
 <executions>
 <execution>
 <id>jmeter-tests</id>
 <phase>verify</phase>
 <goals>
 <goal>jmeter</goal>
 </goals>

Figure 7-7.  Cache manager

3https://github.com/Apress/pro-apache-jmeter/tree/master/Matam_Ch_07/jmeter-mvn-example

https://github.com/Apress/pro-apache-jmeter/tree/master/Matam_Ch_07/jmeter-mvn-example

Chapter 7 ■ JMeter Best Practices

186

 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>

Issue the following command in the CMD prompt to run the JMeter test.

c:\>mvn verify

Output will be similar to the following:

[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building JMeter Maven Example 1.0-SNAPSHOT
[INFO] --
[INFO]
[INFO] --- maven-resources-plugin:2.6:resources (default-resources) @ jmeter-mvn-example ---
[WARNING] Using platform encoding (Cp1252 actually) to copy filtered resources, i.e. build
is platform dependent!
[INFO] skip non existing resourceDirectory c:\github\jmeter-mvn-example\src\main\resources
[INFO]
[INFO] --- maven-compiler-plugin:3.1:compile (default-compile) @ jmeter-mvn-example ---
[INFO] No sources to compile
[INFO]
[INFO] --- maven-resources-plugin:2.6:testResources (default-testResources) @ jmeter-mvn-
example ---
[WARNING] Using platform encoding (Cp1252 actually) to copy filtered resources, i.e. build
is platform dependent!
[INFO] skip non existing resourceDirectory c:\github\jmeter-mvn-example\src\test\resources
[INFO]
[INFO] --- maven-compiler-plugin:3.1:testCompile (default-testCompile) @ jmeter-mvn-example ---
[INFO] No sources to compile
[INFO]
[INFO] --- maven-surefire-plugin:2.12.4:test (default-test) @ jmeter-mvn-example ---
[INFO] No tests to run.
[INFO]
[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ jmeter-mvn-example ---
[WARNING] JAR will be empty - no content was marked for inclusion!
[INFO]
[INFO] --- jmeter-maven-plugin:1.10.1:jmeter (jmeter-tests) @ jmeter-mvn-example ---
[INFO]
[INFO] ---
[INFO] P E R F O R M A N C E T E S T S
[INFO] ---
[INFO]
[INFO]
[info]

Chapter 7 ■ JMeter Best Practices

187

[debug] JMeter is called with the following command line arguments: -n -t c:\github\jmeter-
mvn-example\src\test\jmeter\GoogleSearch.jmx -l c
:\github\jmeter-mvn-example\target\jmeter\results\20170515-GoogleSearch.jtl -d c:\github\
jmeter-mvn-example\target\jmeter -j c:\github\jmete
r-mvn-example\target\jmeter\logs\GoogleSearch.jmx.log
[info] Executing test: GoogleSearch.jmx
[debug] Creating summariser <summary>
[debug] Created the tree successfully using c:\github\jmeter-mvn-example\src\test\jmeter\
GoogleSearch.jmx
[debug] Starting the test @ Mon May 15 22:17:42 PDT 2017 (1494911862824)
[debug] Waiting for possible shutdown message on port 4445
[debug] summary = 1 in 1.2s = 0.8/s Avg: 440 Min: 440 Max: 440 Err: 0 (0.00%)
[debug] Tidying up ... @ Mon May 15 22:17:44 PDT 2017 (1494911864099)
[debug] ... end of run
[info] Completed Test: GoogleSearch.jmx
[INFO]
[INFO] Test Results:
[INFO]
[INFO] Tests Run: 1, Failures: 0
[INFO]
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 7.905 s
[INFO] Finished at: 2017-05-15T22:17:44-07:00
[INFO] Final Memory: 18M/223M
[INFO] --

Passing Variables Across Thread Groups
Sometimes, there is a need to pass information from one thread group to another. We can achieve this by
setting the JMeter Property value in one thread group and using its value in the other thread group.

Let’s assume that we need to extract the URL from the response of an HTTP Request located in Thread
Group A and use this value to update the server name or IP of HTTP Request belonging to the subsequent
Thread Group B.

Follow these steps or download PassingVariableTestPlan.jmx.4

	 1.	 Create a test plan and give it a meaningful name, such as Passing Variable
Test. Choose Test Plan and then check the Run Thread Groups Consecutively
(i.e. run groups one at a time) property (see Figure 7-8).

4https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_07/PassingVariableTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_07/PassingVariableTestPlan.jmx

Chapter 7 ■ JMeter Best Practices

188

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.
Configure the name as Thread Group A.

	 3.	 Click on Thread Group A and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, and Path as /.

	 4.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Configure Response Field to Test as Response Code, Pattern
Matching Rules as Equals, and Patterns To Test as 200.

	 5.	 Click on the HTTP Request of Thread Group A and go to Edit ➤ Add ➤ Post
Processor. Add Regular Expression Extractor. Configure Reference Name as url,
Regular Expression as http:\/\/(.*):8080\/, Template as 1, Match No.(0
for Random) as 1, and Default Value as NONE (see Figure 7-9).

Figure 7-8.  Run thread groups consecutively

Chapter 7 ■ JMeter Best Practices

189

	 6.	 Click on HTTP Request of Thread Group A and go to Edit ➤ Add ➤ Post
Processor. Add BeanShell PostProcessor. Add this code to the Script text area:
${__setProperty(url, ${url})}. See Figure 7-10.

Figure 7-9.  Regular expression extractor

Figure 7-10.  BeanShell PostProcessor

	 7.	 Click again on the test plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread
Group. Configure the name as Thread Group B.

	 8.	 Click on Thread Group B and go to Edit ➤ Add ➤ Sampler and add HTTP
Request. Configure Server Name or IP as ${__property(url)}, Port Number as
8080, and Path as / (see Figure 7-11).

Chapter 7 ■ JMeter Best Practices

190

	 9.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Configure Response Field to Test as Response Code, Pattern
Matching Rules as Equals, and Patterns To Test as 200.

	 10.	 Click on test plan and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 11.	 Save the test plan.

	 12.	 Run the test.

Results are shown in Figure 7-12.

Figure 7-11.  Variable from first thread group

Figure 7-12.  Variable substitution

The regular expression extractor extracts the URL and sets the URL variable, which is used by the
BeanShell PostProcessor to define an URL property. The URL property is accessible to the Thread Group B
and is de-referenced in the server or IP parameter of the HTTP request. You can see that URL variable has
been replaced by the actual value in the second Thread Group B.

Chapter 7 ■ JMeter Best Practices

191

Running Parallel Thread Groups
In the real world, many users are performing different use-cases on the web application. To mimic this
behavior, JMeter has a way to run thread groups in parallel.

Follow these steps or download ParallelThreadGroupTestPlan.jmx.5

	 1.	 Create a test plan and give it a meaningful name, such as Parallel Thread
Group Test. Configure Test Plan and uncheck the Run Thread Groups
Consecutively (i.e. run groups one at a time) property if it’s checked
(see Figure 7-13).

Figure 7-13.  Uncheck the Run Thread Groups Consecutively option

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.
Configure the name as Thread Group 1 and the Number of Threads (Users) as 5.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, Path as /dt,
and Name as Sampler 1.

	 4.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.
Configure Name as Thread Group 2 and Number of Threads (users) as 5.

	 5.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, Path as /dt,
and Name as Sampler 2.

5https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_07/ParallelThreadGroupTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_07/ParallelThreadGroupTestPlan.jmx

Chapter 7 ■ JMeter Best Practices

192

	 6.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 7.	 Save the test plan.

	 8.	 Run the test.

The results are shown in Figure 7-14.

Figure 7-14.  Parallel Threads sampler results

You can conclude that the thread groups have executed in parallel, as the web requests for Sampler 1
have been intermixed with requests for Sampler 2.

Using External File for Parameterizing User Login
In the real world, several different users are normally logged into a web application performing various
operations. While doing performance testing, you’ll want to mimic this behavior. This can be done using the
parameterization of the login page and providing an external CSV file, which consists of a list of users arranged in
columns, such as login-user and login-password. JMeter provides the CSV Data Set Config option to achieve this.

Follow these steps or download CSVDataSetConfigTestPlan.jmx.6

	 1.	 Create a test plan and give it a meaningful name, such as Using External CSV Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.
Configure Number of Threads (Users) as 5.

6https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_07/CSVDataSetConfigTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_07/CSVDataSetConfigTestPlan.jmx

Chapter 7 ■ JMeter Best Practices

193

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, Path as
/user/signIn, and Method as POST.

	 4.	 Click on HTTP Request and go to Edit ➤ Add ➤ Config Element. Add CSV
Data Set Config. Configure Filename as users.csv, Variable Names (comma-
delimited) as username,password, Delimiter as, (see Figure 7-15).

Figure 7-15.  CSV Data Set Config

Figure 7-16.  User login parameterization

	 5.	 Click on HTTP Request and configure Send Parameters with the Request, as
shown in Figure 7-16.

	 6.	 Add the users.csv file to the same folder with these contents: user1@
dt.com,user1 user2@dt.com,user2 user3@dt.com,user3 user4@dt.com,user4
user5@dt.com,user5.

	 7.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

Chapter 7 ■ JMeter Best Practices

194

	 8.	 Save the test plan.

	 9.	 Run the test.

The results will be similar to those shown in Figure 7-17.

Figure 7-17.  CSV data set config sampler results

Customizing Properties
JMeter can be customized by configuring various properties. By default, these are loaded from the jmeter.
properties file. These can be overridden by a custom properties file.

It is a best practice to use your own custom properties file instead of modifying the jmeter.properties
file. The custom properties file can be specified by modifying the user.properties property in the jmeter.
properties file. By default, this property is set to user.properties.

The following snippet shows the custom properties being loaded from the my.properties file.
File: jmeter.properties

Should JMeter automatically load additional JMeter properties? # File name to look for
(comment to disable) user.properties=my.properties

Monitor JMeter Resource Usage
It is a best practice to monitor JMeter resource usage to ensure that tests are executed properly.

The resource usage information can be obtained from JMeter logs or by using a special tool like
JVisualVM. This tool is shipped by default with JDK installation.

Refer to Chapter 8, “Troubleshooting JMeter,” to learn how to increase the HEAP size.

http://dx.doi.org/10.1007/978-1-4842-2961-3_8

Chapter 7 ■ JMeter Best Practices

195

Standard Test Plan Templates
JMeter provides standard templates; see Figures 7-18 and 7-19. Using this, you can create quick standard
test plans.

Figure 7-18.  Standard test plan

Figure 7-19.  Standard test plan options

Chapter 7 ■ JMeter Best Practices

196

■■ Tip  It’s good to have quick layout of the test plan, but make sure that you are not bound to standard
templates and keep on innovating the test plan.

Conclusion
In this chapter, you learned few JMeter best practices that will help in keeping JMeter test scripts portable
and ensure accurate results. In the next chapter, you learn how to troubleshoot various JMeter issues while
developing JMeter test scripts.

197© Sai Matam and Jagdeep Jain 2017
S. Matam and J. Jain, Pro Apache JMeter, DOI 10.1007/978-1-4842-2961-3_8

CHAPTER 8

Troubleshooting JMeter

This chapter explains how to troubleshoot common JMeter issues while developing JMeter test scripts.
At the end of this chapter, you should have a good idea of troubleshooting various issues while

developing JMeter scripts. It is a good idea to read this chapter unless you are an advanced user.

Ensure Permissions
For MacOS/Linux users, after installation, make sure that JMeter has the proper execute permissions. If
you installed using an installer or expanded from a compressed tar (.tgz), then files will have the execute
permission. However, if you have unzipped the binary distribution, the execute permission is not set.

On MacOSX/Linux, issue the following command.

cd <JMeter Installation Folder> cd bin chmod +x jmeter

Log File
The most obvious and important place to look for errors is in the log file. By default, the name of the log file is
jmeter.log and is created in the directory in which you start JMeter. If you don’t have write permissions on
this directory, JMeter prints a FileNotFound error on the console. This issue occurs mostly with the MacOS
and Linux systems. You will see the following error if that’s the case.

$ ls -ld .
dr-x------@ 12 saimatam staff 408 Nov 18 22:32 .

$ jmeter

Writing log file to: /usr/local/apache-jmeter-3.0/ jmeter.log log_file=jmeter.log java.
io.FileNotFoundException: jmeter.log (Permission denied) [log_file-> System.out] 2016/06/23
10:29:06
INFO - jmeter.util.JMeterUtils: Setting Locale to en_US 2016/06/23 10:29:06
INFO - jmeter.JMeter: Loading user properties from: /usr/local/apache-jmeter-3.0/bin/user.
properties 2016/06/23 10:29:06
INFO - jmeter.JMeter: Loading system properties from: /usr/local/apache-jmeter-3.0/bin/
system.properties 2016/06/23 10:29:06
INFO - jmeter.JMeter: Copyright (c) 1998-2016 The Apache Software Foundation 2016/06/23
10:29:06
INFO - jmeter.JMeter: Version 3.0 r1743807

Chapter 8 ■ Troubleshooting JMeter

198

Sometimes, you’ll want to specify a different name or a different directory for the log file. This is useful
when you want to specify a custom directory for managing logs.

You can specify a different log file name or path by:

•	 Specify the -j option on the command line.

•	 Specify the log_file property in the jmeter.properties file.

In the following example, you specify the log file as mylogfile.

$ jmeter -j mylogfile
$ more mylogfile 2015/11/18 23:00:09 INFO - jmeter.util.JMeterUtils: Setting Locale to
en_US
...
...

Log Level
By default, the JMeter logging level is set to INFO. However, you can change this to one of the following
values: FATAL_ERROR, ERROR, WARN, INFO, and DEBUG.

The log level is predefined in the jmeter.properties file. Alternately, use the L option on the command
line to specify the log level at the root level, as shown here.

jmeter -LDEBUG

Use the -L option on the command line to specify the log level at the package level, as shown here.

jmeter -Llog_level.jmeter.engine=DEBUG

In the jmeter.properties file, configure the log level by setting the properties. To specify the log level at
the root level, use the following property:

File: jmeter.properties
log_level.jmeter=INFO

The level of logging for a package or individual class can be set by using the following format. Make sure
that org.apache has been removed from the package name. The class name is optional.

log_level.[package_name].[classname]=[PRIORITY_LEVEL]
File: jmeter.properties
jmeter -Llog_level.jmeter.engine=DEBUG

The package names for the log levels are as follows:
File: jmeter.properties

log_level.jmeter=INFO
log_level.jmeter.junit=DEBUG
log_level.jmeter.control=DEBUG
log_level.jmeter.testbeans=DEBUG
log_level.jmeter.engine=DEBUG
log_level.jmeter.threads=DEBUG
log_level.jmeter.gui=WARN

Chapter 8 ■ Troubleshooting JMeter

199

log_level.jmeter.testelement=DEBUG
log_level.jmeter.util=WARN
log_level.jmeter.protocol.http=DEBUG
log_level.jmeter.protocol.http.control=DEBUG
log_level.jmeter.protocol.ftp=WARN
log_level.jmeter.protocol.jdbc=DEBUG
log_level.jmeter.protocol.java=WARN
log_level.jmeter.testelements.property=DEBUG

Note that jorphan is a root-level package and uses the following to set its log level.

log_level.jorphan=INFO

You can specify a different log file for different categories using log_file.
[category]=[filename], where category is equivalent to the package/class name with org.apache

omitted.
For example, to capture the logs from jmeter.engine into a file, you use the following property.

log_file.jmeter.engine=mylogs_engine.txt

HTTP Protocol Logs
HTTPClient is an open source Java library used to start HTTP connections. This is the core of the HTTP
Request Sampler. HTTPClient was developed under the Apache Software Foundation. Apache and Commons
HTTPClient uses the same logging as JMeter. So if you enable debug logging on the HTTPClient, logs will be
captured under the JMeter log file.

To debug specific issues, you may want to configure the HTTPClient to generate DEBUG logs.

log_level.jmeter.protocol.http=DEBUG
log_level.jmeter.protocol.http.control=DEBUG

You may also want to isolate these logs from the regular logs. To specify a separate file, you can use the
following:

log_file.jmeter.protocol.http=mylogs_http.txt

GUI Logs
When JMeter starts in GUI mode, you’ll find a Log Viewer panel at the bottom of the window. Initially, it may
not be visible and can be enabled by a toggle. Click on the exclamation mark on a yellow triangle icon in the
top-right corner of the toolbar.

Open LogViewerPanelTest.jmx.1

Run the test and observe the log viewer panel (see Figure 8-1).

1https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_08/LogViewerPanelTest.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_08/LogViewerPanelTest.jmx

Chapter 8 ■ Troubleshooting JMeter

200

There is a jmeter.loggerpanel.display property in the jmeter.properties file. The default value is
false. This determines if the Log Viewer Panel is initially displayed or hidden. Regardless of the value, you
can click on the Toggle button in the Toolbar to enable/disable it.

We usually run JMeter in GUI mode during development and debugging of the test plan. GUI mode is
not used when generating performance metrics for real use.

Clear GUI Logs
As you have seen in the previous section, after running the tests, you can see the logs by enabling the Log
Viewer. If you have added listeners like Aggregate, View Results Tree, and other graphs, then after running the
tests, these listeners will show the results. It would be good to clear these logs; navigate to Run ➤ Clear or
Clear All to clear the logs.

Remote Host Exception
While using Linux VMs and starting remote hosts, you may get an error saying java.RMI.RemoteException:
Cannot Start. <vm hostname> is loopback address. This is because under the jmeter.properties file,
remote_hosts is set to 127.0.0.1.

Figure 8-1.  Log viewer panel

Chapter 8 ■ Troubleshooting JMeter

201

...
remote_hosts=127.0.0.1
#remote_hosts=localhost:1099,localhost:2010
...

And in the /etc/hosts file, the same 127.0.0.1 is set to localhost.

127.0.0.1 localhost
127.0.1.1 jagdeep-vm01
...

After removing the 127.0.0.1 localhost line from /etc/hosts, you will be able to start the remote
jmeter-server.

There is another solution. Before starting jmeter-server, execute the following command.

$ export RMI_HOST_DEF=-Djava.rmi.server.hostname=<vm hostname>

After doing either of these two things, we will be able to start the remote jmeter-sever properly.
This will not be a problem if you are using Windows, as the file C:\Windows\System32\Drivers\etc\

hosts is commented.

Connect Exception
If one or more of the remote hosts are not reachable by the client, you will see the following message java.
net.ConnectException: Operation timed out. Perhaps they have not yet booted up or they are shut
down, in which case, when we trigger the test, it will fail.

For this example, we used FirstTestPlan.jmx.2

C:\>jmeter -n -t FirstTestPlan.jmx -R 192.168.0.7:1234,192.168.0.8:1234
Writing log file to: jmeter.log
Creating summariser <summary>
Created the tree successfully using FirstTestPlan.jmx
Configuring remote engine: 192.168.0.7:1234
Connection refused to host: 192.168.0.7; nested exception is:
 java.net.ConnectException: Connection refused: connect
Failed to configure 192.168.0.7:1234
Configuring remote engine: 192.168.0.8:1234
Connection refused to host: 192.168.0.8; nested exception is:
 java.net.ConnectException: Connection timed out: connect
Failed to configure 192.168.0.8:1234
Stopping remote engines
Remote engines have been stopped
Error in NonGUIDriver java.lang.RuntimeException: Following remote engines could not be
configured:[192.168.0.7:1234,
192.168.0.8:1234]

2https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_03/FirstTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_03/FirstTestPlan.jmx

Chapter 8 ■ Troubleshooting JMeter

202

In the first case, when remote hosts are still booting up, JMeter has a property to wait for some time and
then trigger the test. You can set how many retries JMeter has to make and how much retry delay it has to
wait before starting the test.

By default, client.tries is set to 1 and client.retries_delay is set to 5000 milliseconds.
Uncomment these properties and rerun the test.

When distributed test is starting, there may be several attempts to initialize
remote engines. By default, only single try is made. Increase following property
to make it retry for additional times
client.tries=1

If there is initialization retries, following property sets delay between attempts
client.retries_delay=5000

JMeter has a property to skip the remote hosts if they are not reachable and continue the test with the rest.
Update client.continue_on_fail to true under the jmeter.properties file.

When all initialization tries was made, test will fail if some remote engines are failed
Set following property to true to ignore failed nodes and proceed with test
client.continue_on_fail=true

Run the test again. It will skip the unreachable host.

C:\>jmeter -n -t FirstTestPlan.jmx -R 192.168.0.7,192.168.0.8
Writing log file to: jmeter.log
Creating summariser <summary>
Created the tree successfully using FirstTestPlan.jmx
Configuring remote engine: 192.168.0.7
Configuring remote engine: 192.168.0.8
Connection refused to host: 192.168.0.8; nested exception is:
 java.net.ConnectException: Connection timed out: connect
Failed to configure 192.168.0.8
Following remote engines could not be configured:[192.168.0.8]
Continuing without failed engines...
Starting remote engines
Starting the test @ Mon May 15 17:04:14 PDT 2017 (1494893054551)
Remote engines have been started
Waiting for possible Shutdown/StopTestNow/Heapdump message on port 4445
summary = 2 in 00:00:01 = 2.2/s Avg: 376 Min: 279 Max: 474 Err: 0 (0.00%)
Tidying up remote @ Mon May 15 17:04:16 PDT 2017 (1494893056800)
... end of run

Solving Proxy Servers Problems
Sometimes, corporate networks have web proxy servers. Web traffic originating from inside the corporate
network must go through the web proxy servers. One purpose is to conserve bandwidth by allowing only
certain URLs or media types. The other important reason is security; unauthorized users or guests are
prevented from connecting to the web by the username/password mechanism (see Figure 8-2).

Chapter 8 ■ Troubleshooting JMeter

203

JMeter provides a simple way to specify proxy server details. This property is present in the HTTP
Request Defaults component. If the JMeter test does not already have the HTTP Request Defaults component,
add one under the Thread Group and apply it to the entire test plan.

Specify the Proxy Server details: Server Name or IP and Port Number.
Specify the username/password if the proxy server needs it. JMeter requests can now go through the

proxy.
In Figure 8-2, the Proxy Server details are set as follows:

•	 Server Name or IP is set to MyCorpProxy

•	 Username is set to myusername

•	 Password is set to mypass

If you’re using the command line and there is no username and password, leave them blank.

jmeter -H proxyserver -P 7000

If you’re using the command line and the proxy server needs the username and password to
authenticate, you use these additional parameters:

jmeter -H proxyserver -P 7000 -u username -a password

If you want to bypass the proxy and contact hosts directly, you can set the -N option as shown here:

jmeter -H proxyserver -P 7000 -u username -a password -N directHost

You can also use --proxyHost, --proxyPort, --username, and --password instead of -H, -P, -u, and –a.

Figure 8-2.  Proxy server configuration in HTTP request defaults

Chapter 8 ■ Troubleshooting JMeter

204

HTTP Basic Authentication
As the title indicates, HTTP Basic Authentication is a very simple authentication mechanism used by the
web server and the browser to secure access to URLs and resources. This does not need cookies, sessions,
or login forms. The protocol is for the browser to send the username and password encoded in a variant of
Base64 (RFC2045). This is not encrypted but merely encoded. It is straightforward to decode this. This is
insecure, much like exchanging the username and password in plain text!

The protocol mechanism can be explained as follows:

	 1.	 The browser requests an URL or resource protected by the Basic Authentication
mechanism.

	 2.	 The server responds with an HTTP status code of 401, which indicates an
unauthorized request.

	 3.	 The server then responds with the WWW-Authenticate field in the header. For
example:

WWW-Authenticate: Basic realm="abcd_m3VKxodZ2YM9:"

	 4.	 The client displays a dialog to the user to collect the necessary username and
password, as shown in Figure 8-3.

	 5.	 The browser then encodes the string username:password using a variant of
Base64-encoding (RFC2045) and sends it in an HTTP header field to the server.

	 6.	 The server authenticates and allows the request.

	 7.	 All the subsequent requests from the browser need to include the
username:password encoding in the HTTP Request.

Figure 8-3.  Authentication dialog displayed by the browser

Chapter 8 ■ Troubleshooting JMeter

205

Using HTTP Header Manager
If the web application requires authentication, you can use the HTTP Header Manager to accomplish this.

Let’s illustrate this with an example on how you should configure the HTTP Header Manager to run
JMeter test scripts successfully.

Follow these steps or download HeaderManagerTestPlan.jmx.3

	 1.	 Create a test plan and give it a meaningful name, such as Header Manager Test
Plan.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP
Header Manager.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, and Path as /
admin.

	 5.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Configure Response Field to Test as Response Code, Pattern
Matching Rules as Equals, and Patterns To Test as 200.

	 6.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 7.	 Save the test plan.

Now you need to configure the name and value for the Headers Stored in Header Manager option.

	 1.	 In the CMD prompt, issue the following command to encode the user:password
string into the Base64 format.

echo -n "admin:admin" | base64 YWRtaW46YWRtaW4=

The string is admin:admin because the username and password are admin.

	 2.	 Add a header with the name of Authorization and a value of BASIC
YWRtaW46YWRtaW4=, where YWRtaW46YWRtaW4= is the Base64-encoding obtained
from the previous step (see Figure 8-4).

Figure 8-4.  Header manager

3https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_08/HeaderManagerTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_08/HeaderManagerTestPlan.jmx

Chapter 8 ■ Troubleshooting JMeter

206

	 3.	 Run the JMeter test. It should be able to authenticate successfully.

Using the HTTP Authorization Manager
If the web application requires authentication, you can also use the HTTP Authorization Manager to
accomplish this.

Let’s illustrate this with an example of how you should configure the HTTP Authorization Manager to
run JMeter test scripts successfully.

Follow these steps or download AuthorizationManagerTestPlan.jmx.4

	 1.	 Create a test plan and give it a meaningful name, such as Authorization
Manager Test Plan.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element and add HTTP
Authorization Manager. Configure Username as admin and Password as admin.
The Base URL may be configured based on the scope and the need. It is okay to
omit the Domain and Realm. Leave the Mechanism as BAISC_DIGEST
(see Figure 8-5).

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, and Path as
/admin.

	 5.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Configure Response Field to Test as Response Code, Pattern
Matching Rules as Equals, and Patterns To Test as 200.

	 6.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 7.	 Save the test plan.

Run the JMeter test. It should be able to authenticate successfully.

Figure 8-5.  Authorization manager configuration

4https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_08/AuthorizationManagerTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_08/AuthorizationManagerTestPlan.jmx

Chapter 8 ■ Troubleshooting JMeter

207

Debug Test Faster
Prior to JMeter 3.0, we had to configure the thread group before you could run the test. With JMeter 3.0, you
can run the test with a Validate menu option provided with the thread group.

The Validate menu option executes the specified thread group with a single thread and you can check
the results quickly without having to configure thread group. This option is handy for debugging tests prior
to the final run.

Let’s illustrate this with an example of how you can use thread group Validate option.
Follow these steps or download ThreadGroupValidateTestPlan.jmx.5

	 1.	 Create a test plan and give it a meaningful name, such as thread group Validate
Test Plan.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.
Configure Number of Threads (Users) to 10 and Ramp-Up Period (in seconds)
to 10.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, and Path as /dt.

	 4.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Configure Response Field to Test as Response Code, Pattern
Matching Rules as Equals, and Patterns To Test as 200.

	 5.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 6.	 Save the test plan.

	 7.	 Right-click on Thread Group and click on Validate (see Figure 8-6).

5https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_08/ThreadGroupValidateTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_08/ThreadGroupValidateTestPlan.jmx

Chapter 8 ■ Troubleshooting JMeter

208

	 8.	 Click on View Results Tree. You will observe that the test has been executed with
a single thread even though it was configured with 10 threads.

There are two more options introduced with JMeter 3.0; Start and Start No Pause. These two options
provide a shortcut to execute threads individually. The only difference between these two menu options is
that with the latter, Timer if Configured in the thread group are skipped and the thread will run without any
manual pauses.

These two options are useful when the test has multiple thread groups and you are still refining it. You
can use these options to verify individual thread groups selectively.

Figure 8-6.  Thread group validate

Chapter 8 ■ Troubleshooting JMeter

209

Out of Memory Error
When JMeter exhausts its memory, you will notice the java.lang.OutOfMemoryError error in the logs.

C:\> jmeter -n -t DTPerformanceDashBoardTestPlan.jmx -l dt-pd.jtl -e -o C:\tmp\pd\
Writing log file to: jmeter.log
Creating summariser <summary>
Created the tree successfully using DTPerformanceDashBoardTestPlan.jmx
Starting the test @ Tue July 12 22:25:42 IST 2016 (1468342542968)
Waiting for possible Shutdown/StopTestNow/Heapdump message on port 4445
summary + 192 in 00:00:17 = 11.4/s Avg: 11 Min: - Max: 187 Err: 0 (0.00%) Active: 46
Started: 46 Finished: 0
summary + 763 in 00:00:30 = 25.5/s Avg: 14 Min: - Max: 622 Err: 0 (0.00%) Active: 136
Started: 136 Finished: 0
summary = 956 in 00:00:47 = 20.4/s Avg: 13 Min: - Max: 622 Err: 0 (0.00%)
summary + 1474 in 00:00:30 = 49.2/s Avg: 20 Min: - Max: 428 Err: 0 (0.00%) Active: 226
Started: 226 Finished: 0
summary = 2430 in 00:00:17 = 31.6/s Avg: 17 Min: - Max: 622 Err: 0 (0.00%)
summary + 2000 in 00:00:30 = 65.6/s Avg: 174 Min: - Max: 1536 Err: 1 (0.05%) Active: 300
Started: 300 Finished: 0
summary = 4430 in 00:01:47 = 41.3/s Avg: 88 Min: - Max: 1536 Err: 0 (0.02%)
java.lang.OutOfMemoryError: GC overhead limit exceeded
Dumping heap to java_pid63753.hprof ...
Heap dump file created [127430909 bytes in 3.941 secs]

You can monitor the memory and CPU usage of JMeter using JVisualVM. This tool is shipped with the
JDK installation, by default.

The JVisualVM screen shown in Figure 8-7 shows excessive CPU and memory usage by JMeter.

Figure 8-7.  JVisual VM screen

Chapter 8 ■ Troubleshooting JMeter

210

To increase the HEAP memory for JMeter, specify it using the JVM_ARGS environment variable before
starting JMeter. Enter this command in CMD prompt:

set JVM_ARGS="-Xms1024m -Xmx1024m"
C:\> jmeter

Conclusion
In this chapter, you learned to troubleshoot various common errors while working with JMeter test scripts.
In the next chapter, you will learn about JMeter plugins and learn how to use them in your test plan for
monitoring and generating good looking reports.

211© Sai Matam and Jagdeep Jain 2017
S. Matam and J. Jain, Pro Apache JMeter, DOI 10.1007/978-1-4842-2961-3_9

CHAPTER 9

JMeter Plugins

This chapter introduces JMeter plugins, which are developed as a part of Google Code (JP@GC). They are
useful in analyzing performance test results and displaying beautiful graphs. We will illustrate the use of
PerfMon and jp@gc, the PerfMon Metrics Collector, with the help of an example.

At the end of this chapter, you will understand JMeter plugins, including how to install them and use
them in test plans. You will also able to develop and run test plans and export monitoring reports. Those
who are already familiar with JMeter plugins can proceed to the next chapter.

Although JMeter generates very useful performance metrics, it does not have good visualizers and visually
appealing graphs. JMeter Plugins at Google Code (JP@GC) closes this gap and offers several plugins that
generate elegant graphs which help you visualize the performance test results. Additionally, JP@GC provides
plugins that extend JMeter functionality with new config elements, timers, pre-processor,
post-processor, assertions, listeners, and logic controllers.

For more details, look at JP@GC Standard Documentation.1

Each JP@GC plugin has a Help on This Plugin link, which navigates to the Wiki page.2 It also has an
active community. You can also contact the people on the forum on the Mailing List.3

Each JP@GC plugin provides a rich set of options to customize the generation of pleasing graphs to
meet a variety of needs.

PerfMon
During performance testing, it is important to know the health of the servers hosting the web application
under test. To address this, the PerfMon package supports server/cluster monitoring. Using this, you can
monitor CPU, memory, swap, disk I/O, and network performance on all platforms. See Figure 9-1.

1http://jmeter-plugins.org/wiki/Start/
2http://jmeter-plugins.org/wiki
3https://groups.google.com/forum/#!forum/jmeter-plugins

http://jmeter-plugins.org/wiki/Start/
http://jmeter-plugins.org/wiki
https://groups.google.com/forum/#!forum/jmeter-plugins

Chapter 9 ■ JMeter Plugins

212

To write this book, we used JMeter 3.0 and ServerAgent 2.2.1.
ServerAgent provides over 75 separate metrics, including CPU, memory metrics per-process, and custom

metrics for measuring things such as file sizes, database row counts, Java heap sizes, and garbage collection time.

Download the Plugin
Download ServerAgent from the URL4 and set it up on the web application host.

Unzip ServerAgent-2.2.1.zip into a preferred folder. We downloaded it into the
C:\ServerAgent-2.2.1 folder.

C:\ServerAgent-2.2.1>dir
 Volume in drive C has no label.
 Volume Serial Number is DA32-01EE

 Directory of C:\ServerAgent-2.2.1

05/15/2017 10:36 PM <DIR> .
05/15/2017 10:36 PM <DIR> ..

Figure 9-1.  The server agent

4http://jmeter-plugins.org/downloads/file/ServerAgent-2.2.1.zip

http://jmeter-plugins.org/downloads/file/ServerAgent-2.2.1.zip

Chapter 9 ■ JMeter Plugins

213

02/25/2013 04:48 PM 10,821 CMDRunner.jar
05/15/2017 10:36 PM <DIR> lib
02/25/2013 04:14 PM 85,433 LICENSE
02/25/2013 04:47 PM 62,848 ServerAgent.jar
02/25/2013 04:14 PM 63 startAgent.bat
02/25/2013 04:14 PM 74 startAgent.sh
 5 File(s) 159,239 bytes
 3 Dir(s) 7,551,549,440 bytes free

C:\ServerAgent-2.2.1>

Start the PerfMon Agent
To run the PerfMon agent, you will need JRE 1.4 or greater. PerfMon also gives you an option to run the agent
in a specific JRE. Create a JRE folder under the root folder of the server agent and copy the JRE. Edit the
startAgent.bat or startAgent.sh file and set the JRE path.

C:\ServerAgent-2.2.1>type startAgent.bat
@echo off
java -jar %0\..\CMDRunner.jar --tool PerfMonAgent %*

Start the agent using the following command.

C:\ServerAgent-2.2.1>startAgent.bat
INFO 2017-05-15 22:40:13.101 [kg.apc.p] (): Binding UDP to 4444
INFO 2017-05-15 22:40:14.099 [kg.apc.p] (): Binding TCP to 4444
INFO 2017-05-15 22:40:14.101 [kg.apc.p] (): JP@GC Agent v2.2.0 started

By default, it opens UDP and TCP connections on port 4444, which are used to connect to JMeter to
collect metrics. Console output indicates that the JP@GC server agent has been started successfully.

To start the server agent on a different port, specify the same on the command line.
The command-line options are --udp-port and --tcp-port.

C:\ServerAgent-2.2.1>startAgent.bat --udp-port 1234 --tcp-port 1234
INFO 2017-05-15 22:42:18.876 [kg.apc.p] (): Binding UDP to 1234
INFO 2017-05-15 22:42:19.874 [kg.apc.p] (): Binding TCP to 1234
INFO 2017-05-15 22:42:19.876 [kg.apc.p] (): JP@GC Agent v2.2.0 started

In the logs, you can see that UDP is bound to port 1234 and TCP is bound to 1235.
To stop the server agent, use this command:

C:\ServerAgent-2.2.1>startAgent.bat --auto-shutdown

Use the --sysinfo option to view available system objects.

C:\ServerAgent-2.2.1>startAgent.bat --sysinfo
INFO 2017-05-15 22:45:09.385 [kg.apc.p] (): *** Logging available processes ***
INFO �2017-05-15 22:45:09.475 [kg.apc.p] (): Process: pid=2080 name=taskhost.exe

args=taskhost.exe
INFO �2017-05-15 22:45:09.477 [kg.apc.p] (): Process: pid=8980 name=dwm.exe

args=C:\Windows\system32\Dwm.exe
INFO �2017-05-15 22:45:09.478 [kg.apc.p] (): Process: pid=7572 name=explorer.exe

args=C:\Windows\Explorer.EXE

Chapter 9 ■ JMeter Plugins

214

INFO �2017-05-15 22:45:09.479 [kg.apc.p] (): Process: pid=6280 name=igfxem.exe
args=igfxEM.exe

INFO �2017-05-15 22:45:09.480 [kg.apc.p] (): Process: pid=6804 name=igfxhk.exe
args=igfxHK.exe

INFO �2017-05-15 22:45:09.481 [kg.apc.p] (): Process: pid=8640 name=igfxtray.exe
args=igfxTray.exe

...

...
INFO �2017-05-15 22:45:10.204 [kg.apc.p] (): Network interface: iface=eth35 addr=0.0.0.0

type=Ethernet
INFO 2017-05-15 22:45:10.207 [kg.apc.p] (): *** Done logging sysinfo ***
INFO 2017-05-15 22:45:10.210 [kg.apc.p] (): Binding UDP to 4444
INFO 2017-05-15 22:45:11.212 [kg.apc.p] (): Binding TCP to 4444
INFO 2017-05-15 22:45:11.217 [kg.apc.p] (): JP@GC Agent v2.2.0 started

You can use --loglevel parameter to set the level of logging. The log levels available are INFO, ERROR,
WARNING, and DEBUG.

C:\ServerAgent-2.2.1>startAgent.bat --loglevel DEBUG
DEBUG 2017-05-15 22:47:19.760 [kg.apc.p] (): Start accepting connections
INFO 2017-05-15 22:47:19.823 [kg.apc.p] (): Binding UDP to 4444
INFO 2017-05-15 22:47:20.824 [kg.apc.p] (): Binding TCP to 4444
INFO �2017-05-15 22:47:20.825 [kg.apc.p] (): JP@GC Agent v2.2.0 startedConfigure PerfMon

Metrics Collector

You can download JMeter standard plugins from the JMeter Plugins web page.5

Extract the plugin into the apache-jmeter-3.0 root folder and execute the command as given. You will
find the latest extracted files, as shown here.

c:\apache-jmeter-3.0\lib\ext>dir /O:-D
 Volume in drive C has no label.
 Volume Serial Number is DA32-01EE

 Directory of c:\apache-jmeter-3.0\lib\ext

.

.

.
05/14/2016 11:47 AM 106 readme.txt
10/12/2015 10:07 AM <DIR> ..
10/12/2015 10:07 AM <DIR> .
10/12/2015 10:07 AM 10,782 CMDRunner.jar
10/12/2015 10:07 AM 1,262,178 JMeterPlugins-Standard.jar
06/17/2015 09:47 AM 95 JMeterPluginsCMD.sh
06/17/2015 09:47 AM 68 TestPlanCheck.bat
06/17/2015 09:47 AM 100 TestPlanCheck.sh
06/17/2015 09:47 AM 63 JMeterPluginsCMD.bat
 22 File(s) 4,387,697 bytes
 2 Dir(s) 7,541,547,008 bytes free

c:\apache-jmeter-3.0\lib\ext>

5http://jmeter-plugins.org/downloads/file/JMeterPlugins-Standard-1.3.1.zip

http://jmeter-plugins.org/downloads/file/JMeterPlugins-Standard-1.3.1.zip

Chapter 9 ■ JMeter Plugins

215

You can configure this plugin by using the following example.
Follow these steps or download PerfMonPluginTestPlan.jmx:6

	 1.	 Create a test plan and give it a meaningful name, such as PerfMon Plugin Test.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.
Configure Number of Threads (users) as 400 and Loop Count to 100.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP
Cookie Manager.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP
Request Defaults. Configure Server Name or IP as localhost and Port Number
as 8080.

	 5.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Path as /user/signIn and Method as POST.

	 6.	 Click on HTTP Request and under Parameters, add Name/Value as
email/user1@dt.com. Add another row and configure password/user1.

	 7.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Path as /user/signOut and Method as HEAD.

	 8.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 9.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add jp@gc - PerfMon
Metrics Collector (see Figure 9-2).

Figure 9-2.  PerfMon plugin test

6https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_09/PerfMonPluginTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_09/PerfMonPluginTestPlan.jmx

Chapter 9 ■ JMeter Plugins

216

	 10.	 Click on jp@gc - PerfMon Metrics Collector. Configure Servers To Monitor by
clicking the Add Row button. Configure HOST/ IP as localhost, Port as 4444,
and Metric to Collect as CPU (change it to meet your requirements).

	 11.	 Click again on the Add Row button to set Metric to Collect for Memory.

	 12.	 Save the test plan.

	 13.	 Start the server agent if it was not started earlier.

	 14.	 Run the test.

The results will be similar to those shown in Figure 9-3.

Figure 9-3.  PerfMon metrics collector listener

Chapter 9 ■ JMeter Plugins

217

To save the results as a graph, right-click on the graph and choose a suitable option (see Figure 9-4).

If you want to monitor different metrics on the same host/IP, click on Copy Row and change the Metric
to Collect parameter. Available metrics are CPU, Memory, Swap, Disk I/O, Network I/O, TCP, JMX, EXEC,
and TAIL. The Metric parameter can be used to set the CPU parameter per scope. Double-click on the cell,
click on the three dots on the right side to open a new pop-up window. From that window, you can control
the appearance of graphs. Mouse over to see the help text.

Figure 9-5 details the kind of metrics that can be collected for CPU.

Figure 9-4.  Save result graph

Chapter 9 ■ JMeter Plugins

218

Non-GUI Mode
JMeter properties can also be used to configure the PerfMon plugin. To do this, add the following properties
to the jmeter.properties file.

•	 jmeterPlugin.perfmon.interval: Metrics collection interval in milliseconds.

•	 jmeterPlugin.perfmon.useUDP: Set to true/false. Enabling this will make JMeter try
a UDP connection if the TCP connection attempts fail.

•	 jmeterPlugin.perfmon.label.useHostname: Set to true/false. Enables using “short”
hostnames. The default pattern is ([\w\-]+)\..*

•	 jmeterPlugin.perfmon.label.useHostname.pattern: String (escaped), regular
expression to extract hostname (first group is matched). ° For example, the default pattern
would be: jmeterPlugin.perfmon.label.useHostname.pattern=([\w\-]+)\..*

•	 Pattern for EC2 us-east/west subdomain matching is as follows: jmeterPlugin.
perfmon.label.useHostname.pattern=([\w\-]+\.us-(east|west)-[0-9]).*

•	 forcePerfmonFile: Set to true/false. Enabling it forces JMeter to write a JTL file with
PerfMon metrics in the current directory.

Figure 9-5.  PerfMon CPU parameters helper

Chapter 9 ■ JMeter Plugins

219

Run JMeter in non-GUI mode. Configure the filename to save the monitoring results too. Later, you can
load the saved file into the GUI and review the timeline.

Conclusion
In this chapter, you learned about JMeter Plugins at Google Code (JP@GC) and explored various options
for the jp@gc - PerfMon Metrics Collector. In the next chapter, you will learn about the advanced concepts
of JMeter, which we call the JMeter recipes. These will be useful while performance testing a database/FTP/
REST API/mobile web application.

221© Sai Matam and Jagdeep Jain 2017
S. Matam and J. Jain, Pro Apache JMeter, DOI 10.1007/978-1-4842-2961-3_10

CHAPTER 10

JMeter Recipes

This chapter explains advanced JMeter features like using JDBC, FTP, REST/JSON, AJAX, mobile web
applications, and SOAP-XML performance testing, which will help you achieve specialized performance
testing needs.

At the end of this chapter, you will have a good idea of a few advanced JMeter features and should be
able to use these features to develop test scripts. Those who are already familiar with these features can
proceed to the next chapter.

JDBC Performance Testing
This section covers a way to use JMeter to generate load and do the performance testing of a database
running on MySQL.

Install MySQL
MySQL is a leading open source database server. Download and install the community server edition.1

Follow the instructions on the web site to start the server.2 Create a user and note the username and
password. It is good to set the \bin folder in the standard path variable to access it from any directory.

C:\mysql-5.6.36-winx64\bin>msysqld

The previous command will start the mysql server. Use the following command to log in as the root.

C:\mysql-5.6.36-win64\bin>mysql -u root
mysql> create user "jmeter_user"@"localhost" identified by "mypass";
Query OK, 0 rows affected (0.00 sec)

mysql> grant all on employees.* to "jmeter_user"@"localhost";
Query OK, 0 rows affected (0.05 sec)

mysql>

For this example, we will use Employees DB, which is a database that contains a large amount of data
(approximately 160MB) spread over six separate tables and consisting of 4 million records in total. The
documentation for this database is available on the MySQL web site.3

1https://dev.mysql.com/downloads/mysql/5.6.html#downloads
2https://dev.mysql.com/doc/refman/5.7/en/windows-start-command-line.html
3https://dev.mysql.com/doc/employee/en/

https://dev.mysql.com/downloads/mysql/5.6.html#downloads
https://dev.mysql.com/doc/refman/5.7/en/windows-start-command-line.html
https://dev.mysql.com/doc/employee/en/

Chapter 10 ■ JMeter Recipes

222

Download a prepackaged archive of the data from LaunchPad.4

Unzip in the employee_db folder.
To set up Employees DB, open the command prompt and enter the following:

C:\employees_db>mysql -u jmeter_user -p -t < employees.sql
Enter password: ******

Here is the output:

+-----------------------------+
| INFO |
+-----------------------------+
| CREATING DATABASE STRUCTURE |
+-----------------------------+
+------------------------+
| INFO |
+------------------------+
| storage engine: InnoDB |
+------------------------+
+---------------------+
| INFO |
+---------------------+
| LOADING departments |
+---------------------+
+-------------------+
| INFO |
+-------------------+
| LOADING employees |
+-------------------+
+------------------+
| INFO |
+------------------+
| LOADING dept_emp |
+------------------+
+----------------------+
| INFO |
+----------------------+
| LOADING dept_manager |
+----------------------+
+----------------+
| INFO |
+----------------+
| LOADING titles |
+----------------+
+------------------+
| INFO |
+------------------+
| LOADING salaries |
+------------------+

C:\employees_db>

4https://launchpad.net/test-db/employees-db-1/1.0.6/+download/employees_db-full-1.0.6.tar.bz2

https://launchpad.net/test-db/employees-db-1/1.0.6/+download/employees_db-full-1.0.6.tar.bz2

Chapter 10 ■ JMeter Recipes

223

Use the console to verify that the data loaded correctly.

C:\>mysql -u root;
Mysql> use employees;
mysql> select count(*) from employees;
+----------+
| count(*) |
+----------+
| 300024 |
+----------+
1 row in set (0.16 sec)

If you see this previous output, you have set up the database correctly.
The schema of the database is shown in Figure 10-1.

Figure 10-1.  Employee schema

Chapter 10 ■ JMeter Recipes

224

Install JDBC Driver
Download the MySQL JDBC connector.5

Unzip and copy the driver to the lib folder of JMeter.

JDBC Test Plan
The JDBC test plan is easy; you’ll see by following an example.

Follow these steps or download JDBCTestPlan.jmx.6

	 1.	 Create a test plan and give it a meaningful name, such as JDBC Test Plan.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Thread (Users). Add Thread Group.
Configure Number of Threads (Users) as 1 and Loop Count as 1000.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Configuration Element to
add JDBC Connection Configuration. Configure Variable Name Bound to
Pool, Variable Name as jdbcConfig, Database Connection Configuration,
Database URL as jdbc:mysql://localhost:3306/employees, JDBC Driver
class as com.mysql.jdbc.Driver, Username as jmeter_user, and Password
as created previously. Choose the defaults for the other parameters
(see Figure 10-2).

Figure 10-2.  JDBC configuration

5http://dev.mysql.com/downloads/connector/j/
6https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_10/JDBCTestPlan.jmx

http://dev.mysql.com/downloads/connector/j/
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_10/JDBCTestPlan.jmx

Chapter 10 ■ JMeter Recipes

225

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Samplers to add JDBC Request.
Configure it with the Variable Name Bound to the Pool option set to jdbcConfig
(this is the same value as configured in the JDBC Connection Configuration).
Configure Query as select count (*) from employee where first_name
like 'Ge%' (see Figure 10-3).

	 5.	 Run the test.

Results will be similar to those shown in the following figures.

Figure 10-3.  JDBC request sampler

Chapter 10 ■ JMeter Recipes

226

Check the sampler results of the JDBC request (see Figure 10-4).

Check the JDBC request that JMeter sent to MySQL (see Figure 10-5).

Figure 10-4.  JDBC request results

Figure 10-5.  JDBC request SQL

Chapter 10 ■ JMeter Recipes

227

Check the response data for the JDBC request (see Figure 10-6).

Look at the performance results as well.
Figure 10-7 shows the result of the test performed on the MySQL database.

Figure 10-6.  JDBC SQL Response

Figure 10-7.  JDBC graph results

Chapter 10 ■ JMeter Recipes

228

FTP Performance Testing
File Transfer Protocol (FTP) is a standard network protocol used to transfer files between computers. FTP
follows a client-server model. The FTP client initiates a network connection (TCP) to the server. FTP uses
separate control and data connections between the client and the server. FTP users authenticate themselves
with a username and password, which is exchanged in clear text. Sometimes, the FTP server is configured to
allow the client to connect anonymously without a password.

■■ Tip  FTP is commonly available, but it is considered insecure. Use SFTP instead.

Follow these steps to set up the FTP if it’s not set up already.

	 1.	 Click on the Control Panel, then choose Programs and Features ➤ Turn Windows
features on or off (left side). Select the Internet Information Service and select
FTP Server, Web Management Tools, and World Wide Web Services. Click OK.

	 2.	 Click on the Control Panel, then choose ➤ Administrative Tools ➤ Internet
Information Services (IIS) Manager. Right-click on the sites and then choose Add
FTP Site.

Fill in the details. You are done setting up the FTP server locally.

	 3.	 Open your browser and launch ftp://<your_ip_address> enter
user/password. You can see the local mapped folder files on the browser.

If you are MacOS user, to start the FTP server, enter the following command in the terminal window.

$ sudo -s launchctl load -w /System/Library/LaunchDaemons/ ftp.plist

■■ Note  Be sure to shut down your FTP server after use for security reasons.

Let’s look at an example to illustrate the performance testing of a FTP server. In this example, we will
use JMeter to connect to the FTP server and transfer a file from the server. The file is an image named
cormorant.jpg, so the transfer should use binary mode.

Follow these steps or download FTPTestPlan.jmx.7

	 1.	 Create a test plan and give it a meaningful name, such as FTP Test Plan.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (users). Add Thread Group.
Configure Number of Threads (Users) as 1 and Loop Count as 5000.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element ➤ FTP Request
Defaults. Add FTP Request Defaults. Configure the Server Name or IP as
localhost (see Figure 10-8).

7https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_10/FTPTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_10/FTPTestPlan.jmx

Chapter 10 ■ JMeter Recipes

229

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add FTP Request.
Configure the username and password. Set the value of the Remote File as /ftp.
jpg and Local File as C:\temp\ftp.jpg. Since this is an image file, enable the
Use Binary mode checkbox (see Figure 10-9).

	 5.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add Graph Result.

	 6.	 Run the test.

Results will be similar to those shown in Figure 10-10.

Figure 10-8.  FTP request defaults

Figure 10-9.  FTP request sampler

Chapter 10 ■ JMeter Recipes

230

REST/JSON Performance Testing
REST stands for REpresentational State Transfer. It is not a specification or a protocol, but rather an
architectural style. Through the use of REST architectural constraints, you can achieve performance,
scalability, simplicity, modifiability, visibility, portability, and reliability.

Roy Fielding introduced REST in 2000 in his doctoral dissertation at UC Irvine.8 He used REST to design
HTTP 1.1 and Uniform Resource Identifiers (URI).

RESTful systems typically communicate over Hypertext Transfer Protocol (HTTP) with the HTTP verbs
GET, POST, PUT, and DELETE. These verbs apply to web resources that are identified by Uniform Resource
Identifiers (URIs).

Let’s define the REST API for the entity called Book. Assume that it has the following attributes:

•	 title: Title of the book

•	 author: Book’s primary author

•	 countryOfPublication: Country in which the book was published

•	 publishedBy: Book publishing company

Figure 10-10.  FTP request results

8http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Chapter 10 ■ JMeter Recipes

231

Now let’s look at the REST API for Create, Read, Update, and Delete (CRUD) operations. The API uses
the HTTP verbs:

•	 POST: Creates the book with a JSON payload

•	 GET: Reads the book given the ID

•	 PUT: Updates the book with a JSON payload

•	 DELETE: Deletes the book given the ID

Let’s illustrate the Create operation through an example.
Follow these steps or download RESTJSONTestPlan.jmx.9

	 1.	 Create a test plan and give it a meaningful name, such as REST Create Book
Test Plan.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Configuration Element. Add
HTTP Header Manager. Configure the Headers Stored in the Header Manager,
Name as Content-Type and Value as application/json. Add another header
with Name set to Accept and Value set to application/json (see Figure 10-11).

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request
Sampler. Configure Server Name or IP as localhost, Port Number as 8080,
Implementation as HttpClient4, Method as POST, and Path as /books. Click on
the body data and use the following JSON payload. It has required attributes for
the Create operation. The ID has not been specified and it will be assigned when
the book gets created (see Figure 10-12).

{
 "title": "The Zen Book",
 "countryOfPublication": "Japan",
 "publishedBy": "Good Books Inc.",
 "author": "Kobayashi"
}

Figure 10-11.  HTTP header manager

9https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_10/RESTJSONTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_10/RESTJSONTestPlan.jmx

Chapter 10 ■ JMeter Recipes

232

	 5.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener to add View Results
Tree.

	 6.	 Run the test.

Results will be similar to those shown in Figure 10-13.

Observe that the response has an ID attribute that was assigned by the server.

AJAX Performance Testing
AJAX stands for Asynchronous JavaScript and XML. AJAX’s most important characteristic is its asynchronous
nature of communication with the server. This lets you update portions of a page instead of having to refresh
the entire web page. It can send/receive information in a variety of formats, including JSON, XML, HTML,
and even text files.

Figure 10-13.  REST JSON response

Figure 10-12.  HTTP request

Chapter 10 ■ JMeter Recipes

233

Unlike the browser, JMeter does not execute JavaScript or render HTML. Testing AJAX is similar to any
other web test. The key is to find all the AJAX requests and their expected responses. You can use the help of
these tools/utilities/plugins:

•	 Firebug on Firefox10

•	 HttpWatch on Internet Explorer11

•	 Developer tools in Chrome12

We use Chrome developer tools to illustrate. You can open the DevTools one of the following ways:

	 1.	 Select the Chrome menu at the top-right of your browser window, and then
select Tools ➤ Developer Tools.

	 2.	 Right-click on any page element and select Inspect Element.

	 3.	 Press Ctrl+Shift+I (or Cmd+Opt+I on the Mac) to open DevTools.

The DevTools window will open at the bottom of your Chrome browser. Select the Network tab. Further,
refine the selection by choosing only AJAX (XHR) requests. The AJAX request URLs are displayed on the left panel.
When you click on a specific AJAX request URL, its request and response details are shown in the panel to the right.

Now you have the AJAX requests and responses to model your JMeter test, as shown in Figure 10-14.

Figure 10-14.  Chrome DevTools showing the AJAX requests

10http://getfirebug.com
11https://www.httpwatch.com
12https://developers.google.com/web/tools/chrome-devtools/

http://getfirebug.com/
https://www.httpwatch.com/
https://developers.google.com/web/tools/chrome-devtools/

Chapter 10 ■ JMeter Recipes

234

Mobile Performance Testing
JMeter can be used to do the performance testing of web applications running on mobile devices.

Simulating Mobile Devices
When a browser, including the browser on a mobile device, interacts with the server, it includes a header
called the User-Agent. So to pretend that the HTTP request originated on a mobile device/browser, you have
to insert the same header value in your request.

You can find a list of User-Agent strings to use for every mobile device by searching the Internet.13 You
can then use the JMeter HTTP Header Manager to send the appropriate User-Agent string.

The following example uses a User-Agent string of Mozilla/5.0 (iPad; CPU OS 6_0 like Mac OS X)
AppleWebKit/536.26 (KHTML, like Gecko) Version/6.0 Mobile/10A5355d Safari/8536.25, which
corresponds to a Safari browser running on an iPad (see Figure 10-15).

Simulating Network Speed
The connection speeds of mobile devices are often slow. It is easy to simulate slow connections.

The network speeds are measured using characters per second (cps), which can be calculated using this
formula: cps = (target bandwidth in kbps * 1024) / 8

13http://www.useragentstring.com/pages/useragentstring.php

Figure 10-15.  Header manager to set user agent

http://www.useragentstring.com/pages/useragentstring.php

Chapter 10 ■ JMeter Recipes

235

Select your device from the list in Table 10-1.14

The JMeter property file jmeter.properties has these two properties that you can configure.

httpclient.socket.http.cps=0
httpclient.socket.https.cps=0

Specify these values in the JMETER_HOME/bin/user.properties file.

JMeter to Record User Actions
Earlier in the book, we explored how to use JMeter to record a test script. You could use the same technique
to record tests for mobile devices. The only difference is that you configure the mobile device to use JMeter
as a proxy.

Table 10-1.  Device Bandwidth

Network Bandwidth CPS Value

Mobile data GPRS 171 kbit/s 21888

Mobile data EDGE 384 kbit/s 49152

Mobile data HSPA 14.4 Mbp/s 1843200

Mobile data HSPA+ 21 Mbp/s 2688000

Mobile data DC-HSPA+ 42 Mbps 5376000

Mobile data LTE 150 Mbp/s 19200000

WIFI 802.11a/g 54 Mbit/s 6912000

WIFI 802.11n 600 Mbit/s 76800000

Ethernet LAN 10 Mbit/s 1280000

Fast Ethernet 100 Mbit/s 12800000

Gigabit Ethernet 1 Gbit/s 128000000

10 Gigabit Ethernet 10 Gbit/s 1280000000

100 Gigabit Ethernet 100 Gbit/s 12800000000

WAN modems V.92 modems 56 kbit/s 7168

ADSL 8 Mbit/s 1024000

ADSL2 12 Mbit/s 1536000

ADSL2+ 24 Mbit/s 3072000

14Credit: Antonio Gomes Rodrigues

Chapter 10 ■ JMeter Recipes

236

Android Proxy Configuration
	 1.	 Go to Settings ➤ Wi-Fi.

	 2.	 Long tap on the connected network and click the Modify Network option.

	 3.	 From the dialog box, check the Advanced Options checkbox.

	 4.	 This will open advanced settings from which you can modify the proxy manually.
For this, set the Proxy option to Manual.

	 5.	 Now set the Proxy hostname to your computer’s IP address and set the Proxy
port to 8080 (see Figure 10-16).

	 6.	 Click on the Save option. Run the application on your mobile device. Its requests
will be recorded in JMeter.

iOS Proxy Configuration
	 1.	 Go to Settings ➤ Wi-Fi.

	 2.	 Click on your connected network.

	 3.	 Select the Manual option from the HTTP Proxy section.

Figure 10-16.  Android proxy settings

Chapter 10 ■ JMeter Recipes

237

	 4.	 Set the Server value to your computer’s IP address and the Port value to 8080.

	 5.	 Click on the Save option. Run the application on your mobile device. Its requests
will be recorded in Jmeter, as shown in Figure 10-17.

SOAP Performance Testing
SOAP stands for Simple Object Access Protocol. This is a specification for exchanging structured information
in the XML message format and relies on application layer protocols, most notably Hypertext Transfer
Protocol (HTTP) for message negotiation and transmission. SMTP and JMS are other possible transport
mechanisms.

SOAP was the desired mechanism to implement the Service Oriented Architecture (SOA). This has
largely been replaced with REST.

W3C has a SOAP specification.15

Figure 10-17.  IOS proxy settings

15https://www.w3.org/TR/#tr_SOAP

https://www.w3.org/TR/#tr_SOAP

Chapter 10 ■ JMeter Recipes

238

Install SOAPUI
SoapUI is a free and open source functional testing tool with very good support for SOAP. Download the
SoapUI package and then follow these steps to create a new project.16

	 1.	 Go to File ➤ New to create a new project. Choose the Description File and
specify the value as Initial WSDL and URL as http://localhost:8080/
services/CurrencyService?WSDL. Enable the Create Sample Requests for
All Operations checkbox to automatically generate sample SOAP requests
(see Figure 10-18).

Figure 10-18.  New SOAP project

16http://www.soapui.org

http://www.soapui.org/

Chapter 10 ■ JMeter Recipes

239

	 2.	 Double-click on Request1 to open the request template on the pane to the right
(see Figure 10-19).

	 3.	 Fill in the XML arguments. Set arg0 to USD and arg1 to JPY (see Figure 10-20).

Figure 10-19.  SOAP request menu

Figure 10-20.  SOAP request

Chapter 10 ■ JMeter Recipes

240

	 4.	 Click the green arrow to submit. You should see the response shown in
Figure 10-21.

The WSDL for the Currency SOAP service is located at:

http://localhost:8080/services/CurrencyService?WSDL

You can view the WSDL using a browser (see Figure 10-22).

Figure 10-21.  SOAP response

Figure 10-22.  WSDL for the Currency SOAP service

Let’s see how to test SOAP using JMeter with an example.
Follow these steps or download SOAPTestPlan.jmx.17

	 1.	 Create a test plan and give it a meaningful name, such as SOAP Test Plan.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.
Configure Number of Threads (Users) as 1 and Loop Count as 1000.

17https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_10/SOAPTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_10/SOAPTestPlan.jmx

Chapter 10 ■ JMeter Recipes

241

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Configuration Element to add
HTTP Header Manager. Configure Headers Stored in the Header Manager,
Name as Content-Type and Value as text/xml (see Figure 10-23).

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, and
Path as /services/CurrencyService. Copy the SOAP Request XML, which was
generated by the SoapUI earlier, into the body data area (see Figure 10-24).

Figure 10-23.  HTTP header manager

Figure 10-24.  SOAP XML-HTTP request

Chapter 10 ■ JMeter Recipes

242

	 5.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 6.	 Run the test.

The results are shown in Figure 10-25.

Conclusion
In this chapter, we learned about the advanced features of JMeter. We learned about JDBC, FTP, and REST/
JSON testing using their specific samplers and SOAP performance testing using the HTTP Request Sampler.
We also learned about AJAX request performance testing as well as mobile web application performance
testing. In the next chapter, we will go through a case study where we will be learning to apply JMeter skills
that we learned in this and previous chapters to deal with a real-life performance testing project.

Figure 10-25.  SOAP response XML format

243© Sai Matam and Jagdeep Jain 2017
S. Matam and J. Jain, Pro Apache JMeter, DOI 10.1007/978-1-4842-2961-3_11

CHAPTER 11

Case Study: Digital Toys Inc.

This chapter presents a case study of a hypothetical e-commerce company called Digital Toys Inc. In the
process, we walk you through various human, financial, and technical dynamics that revolve around web
application performance.

At the end of this chapter, you will gain enough insights about performance test planning and execution
to be of help in your projects. It is good to go through this chapter regardless of your previous experience, as
it talks about performance testing the project.

The Need for Speed
Digital Toys Inc. was a pioneer in selling digital gadgets on the Internet. They became very popular and were
very profitable for a long time. However, with new companies cropping up in the space, they were losing
business, which caused concern to senior management.

In the company meeting, Nancy, their Chief Financial Officer, noted a trend of declining sales. The
Customer Support Manager noted that the support calls had increased. A lot of customers complained about
the web site speed; some of them complained that they were not able to complete their orders, requiring
the support staff to place the orders instead. This caused increased wait times for the customers, further
aggravating the situation.

Jay, their Product Manager, did not see any issues with the merchandise or pricing as nothing had
changed, and it was similar to their competitors.

The management decided to engage Insight Management Consultants Inc. to solve this mystery and to
guide the company on to the right track. They analyzed and submitted their findings and recommendations
to the senior management.

Their report was elaborate and concluded that Digital Toys Inc. was losing business because of the web
site being slow. They also quoted various industry sources in support of their argument.

“If an e-commerce site is making $100,000 per day, a 1-second page delay could cost $2.5
million in lost sales a year.”

—Kissmetrics Blog1

It was clear that they needed to improve the web site’s performance. Martin, the CEO, entrusted this
matter to the Director of Engineering, who in turn delegated it to Alex, one of their best engineers.

1Source: Sean Work, Minister of Propaganda at Kissmetrics, https://blog.kissmetrics.com/loading-time/

http://seanvwork.com/
https://blog.kissmetrics.com/loading-time/

Chapter 11 ■ Case Study: Digital Toys Inc.

244

Addressing the Problem
Alex read through the report prepared by Insight Management Consultants Inc.

Later, he met with the Customer Support Manager, the Product Manager, and the Marketing Manager.
He created a list of the problem web pages and use-cases and prioritized them. He also looked at the web
analytics report and the web access logs to understand the user access patterns of the Digital Toys Inc. web
application.

Performance Goals
Alex obtained the response time of the competitors using Alexa.Com2 and compared the results with
WebPageTest.Org.3 He obtained additional performance metrics of the competitors from WebPageTest.Org.
Alex also referred to the report prepared by Insight Management Consultants Inc. Putting it all together, Alex
established the performance goals shown in Table 11-1.

■■ Tip  Establish measurable performance goals.

Performance Test Specification
Alex selected the use-cases based on the feedback received from various sources, such as Insight
Management Consultants Inc., the Customer Support Manager, the Product Manager, and the Marketing
Manager. He captured sufficient detail for writing the test scripts.

Table 11-1.  Performance Goals

Minimum
Response
Time

Average
Response
Time

Maximum
Response
Time

Web pages 2 seconds 4 seconds 6 seconds

Use-cases 60 seconds 90 seconds 120 seconds

Resource Utilization Percent

CPU 60

Memory 50

Network 10

2http://www.alexa.com
3http://www.webpagetest.org

http://www.alexa.com/
http://www.webpagetest.org/

Chapter 11 ■ Case Study: Digital Toys Inc.

245

He arrived at the use-cases described here.

	 1.	 User Lands on the Home Page and Browses the Products (Table 11-2)

	 2.	 User Registration (Table 11-3)

	 3.	 User Places an Order for the First Time (Table 11-4)

Table 11-2.  Steps for Landing Page

No. Step

1 Home Page

2 Browse Products

Table 11-3.  Steps for User Registration

No. Step

1 Home Page

2 Sign Up

3 Submit the Registration Form

4 Log Out

Table 11-4.  Steps for Ordering the First Time

No. Step

1 Home Page

2 Login Page

3 Index/Product Catalog Page

4 Details

5 Add To Cart

6 Check Out

7 Billing/Shipping Address

8 Credit Card Entry

9 Place Order

10 Order History

11 Sign Out

Chapter 11 ■ Case Study: Digital Toys Inc.

246

	 4.	 User Places an Order for the Second Time (Table 11-5)

	 5.	 User Edits the Billing/Shipping Address (Table 11-6)

	 6.	 User Edits the Payment Information (Table 11-7)

Table 11-6.  Steps for Editing Billing/Shipping Address

No. Step

1 Home Page

2 Login Page

3 Index/Product Catalog Page

4 Billing/Shipping Address

5 Sign Out

Table 11-7.  Steps for Editing Payment Information

No. Step

1 Home Page

2 Login Page

3 Index/Product Catalog Page

4 Add Credit Card Details

5 Sign Out

Table 11-5.  Steps for Ordering the Second Time

No. Step

1 Home Page

2 Login Page

3 Index/Product Catalog Page

4 Details

5 Add To Cart

6 Check Out

7 Place Order

8 Order History

9 Sign Out

Chapter 11 ■ Case Study: Digital Toys Inc.

247

	 7.	 User Uses the Continue Shopping Option (Table 11-8)

■■ Note  Write the test cases in plain English. This can serve as a requirement for creating a performance test
plan and it is easy to get feedback from other team members.

Tool Selection
Alex searched the Internet and found many performance testing tools. He shortlisted two tools that he felt
would solve the problem. They needed the team to learn a proprietary scripting language.

Alex discussed these two tools with Bob, his manager. Bob appreciated Alex for his efforts but informed
him that there was no budget. Further, the problem needed to be solved in a couple of days and there was no
time for training. Bob asked Alex to be creative.

Alex discovered Apache JMeter.4 He soon found out that JMeter is a time-tested, robust tool for
performance testing. JMeter does not require coding in any scripting language. It is an open source tool and
it is accepted very well in the performance testing community.

■■ Note  Use a robust tool with good community support that meets your needs and has a short learning curve.

Test Environment
Later, Alex requested Bob for performance test infrastructure. Bob replied that it would take at least three
weeks to procure new hardware and to provision it. Besides, they did not have the budget. Bob asked Alex to
investigate if he could repurpose the existing functional testing infrastructure to set up the performance test
environment.

Alex was happy that all he had to do was to install JMeter on these servers; everything was already there.

Table 11-8.  Steps for Using the Continue Shopping Option

No. Step

1 Home Page

2 Login Page

3 Index/Product Catalog Page

4 Details

5 Add To Cart

6 Continue Shopping

7 Check Out

8 Billing/Shipping Address

9 Credit Card Details

10 Place Order

11 Order History

12 Sign Out

4http://jmeter.apache.org/

http://jmeter.apache.org/

Chapter 11 ■ Case Study: Digital Toys Inc.

248

Test Data Preparation
Alex asked Bob for a copy of production data to set up a test database. Bob replied that it is not possible due
to security reasons and asked Alex to create a test data set.

Alex obtained special clearance from the Chief Information Officer and used the production data but
obfuscated the critical and personally identifying data. He created the test data for performance testing. This
technique ensured that the performance data resembled the production data without any risk of exposure of
critical data like credit card information, e-mails, or names. For the product catalog, Alex used an in-house
loader to load product information.

■■ Tip  In the test environment, obfuscate the production data to prevent exposing critical data like credit card
information and other personal data.

User Load Pattern
Alex obtained the web access logs and identified the URL patterns and a set of frequently accessed URLs.

He collaborated with the Database Administrator and obtained the following:

•	 The count of active users connecting to the production database servers

•	 The count of users who placed an order and the order count

•	 The number of times that the address/payment information got modified

•	 The count of customers who chose to continue shopping

Alex asked the database administrator for a set of SQL statements that he could run on the database
for getting the count of users for different scenarios. He ran these scripts on the test database and found
out numbers. He then analyzed web server access logs for the URL patterns based on various scenarios and
compared them with the database counts to verify if the information was correct. After confirmation, he
incorporated the data into Table 11-9.

Table 11-9.  User Load Pattern

Variable Result

The count of users who are
logged in at one point in time.

100,000

The use-case and the
percentage of users.

Browsing catalog: 10%

Ordering first time: 60%

Ordering second time: 10%

Changing address: 5%

Changing payment information: 5%

Continue shopping: 10%

Time of day and duration. Most of the users use the application during early morning and at the end
of the day. The duration of load is between 1 to 2 hours.

Critical days of application
usage.

Five days prior to Christmas.

Chapter 11 ■ Case Study: Digital Toys Inc.

249

■■ Tip  Express the usage in terms of percentages. This makes it easier to perform the test with various
counts of simulated users.

Application Build
Alex used the mock payment gateway, which was originally intended for functional testing. Bob provided
him with a custom build that integrated the mock payment gateway to avoid using the production gateway.

Alex set up the application server with the custom build and the database server with obfuscated
production data. He took a backup of the application build and the database dump to utilize it to refresh the
testing environment every time a fresh round of performance testing was needed.

■■ Tip  Use mock services of third-party applications while doing performance testing.

Using JMeter
Before starting with the test script development, Alex went through the JMeter component definitions.

•	 Test Plan: Every JMeter test script contains a test plan as a root node. It contains a
thread group, which contains one or more of the following child nodes:

Sampler, Logical Controller, Listener, Assertions, Timer, Config Element

•	 Thread Group: This is synonymous to a web user.

•	 Samplers: Send requests to the server. JMeter ships with many samplers out of which
the HTTP Request Sampler is used most often. It is used to simulate a web request.

•	 Logical Controllers: Provide common programming constructs that provide control
flow and are used to structure JMeter test scripts. Using controllers, you can specify
the order in which the samplers are processed.

•	 Listeners: Used to display the results of the server responses generated due to
sampler requests. They are processed at the end of the scope in which they are
found.

•	 Assertions: Used to validate the server responses generated due to sampler requests.
For example, to verify that for a HTTP request, the HTTP Response Code is 200.

•	 Timers: Used to insert a delay before the sampler is executed. These are used to
simulate the user think time before the next action. They are processed before
each sampler in the scope in which they are found. Timers are only processed in
conjunction with a sampler.

•	 Config Elements: Used to set up defaults and variables for later use by other
components. They are processed at the start of the scope in which they are found.

Chapter 11 ■ Case Study: Digital Toys Inc.

250

Alex started with the development of JMeter test scripts based on the use-cases. He followed an
incremental approach and learned along the way.

Test Script Development
Use-Case # 1 User Lands on the Home Page and Browses the Products.

Alex followed these steps to create a test plan.

	 1.	 Create a test plan and give it a meaningful name, such as User browsing
products on Home Page.

	 2.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Sampler. Add HTTP Request.
Configure Server Name or IP as localhost, Port Number as 8080, and path as /dt.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 5.	 Run the test.

The results are shown in Figure 11-1.

Figure 11-1.  Home page view results tree

	 6.	 Save the test plan as DTHomePageTestPlan.jmx.5

5https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTHomePageTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTHomePageTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

251

Use-Case # 2 User Registration.
As Alex walked through the steps manually, he realized that the process involved filling out forms and

posting the form data to the server. He found it to be more complex compared to the previous use-case,
where obtaining data from the server using a GET request was easy.

Alex discovered that he could record the manual steps using JMeter. He had to first configure the proxy
and then record the test.

Alex followed these steps to configure the proxy settings in the Firefox browser.

	 1.	 Open the Firefox browser and go to Preferences ➤ Advanced ➤ Network ➤
Connection Settings ➤ Manual Proxy Configuration. Configure HTTP Proxy as
localhost and Port as 7070.

	 2.	 Select Use This Proxy Server for All Protocols.

	 3.	 Clear the No Proxy For text area.

	 4.	 Click OK.

Now, for the JMeter test script, Alex followed these steps.

	 1.	 In JMeter, create a test plan and give it a meaningful name, such as User
Registration.

	 2.	 Click on WorkBench and go to Edit ➤ Add ➤ Non-Test Elements. Add HTTP(S)
Script Test Recorder.

	 3.	 In the Global Settings, configure Port as 7070.

	 4.	 Select Target Controller as WorkBench ➤ HTTP(S) Test Script Recorder.

	 5.	 Click on the Start button to start recording.

	 6.	 In the Firefox browser, perform the steps of the use-case called User
Registration.

You will see the recording in JMeter, as shown in Figure 11-2.

Chapter 11 ■ Case Study: Digital Toys Inc.

252

In these results, the recorded steps have requests for .bmp, .css, .js, .git, .ico, .jpeg, .png,
.swf, .woff, .woff2, and .ttf files, which are not required. Alex wanted to exclude these requests. He
decided to delete the previous recording and re-record the test. You would follow these steps to do so:

	 1.	 In JMeter, click on the Stop button.

	 2.	 To delete the recording, select all the recorded browser requests and go to Edit ➤
Remove. Confirm the dialog box.

Figure 11-2.  Recording the user registration

Chapter 11 ■ Case Study: Digital Toys Inc.

253

	 3.	 Exclude these regular expressions (see Figure 11-3):
.*\.(bmp|css|js|gif|ico|jpe?g|png|swf|woff|woff2|ttf).*

	 4.	 Click on the Start button.

	 5.	 In the Firefox browser, perform the steps of the use-case called User
Registration.

	 6.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 7.	 Select all recorded browser actions from WorkBench, and then drag and add
them as child elements of Thread Group.

	 8.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 9.	 Save the test plan as DTUserRegistrationTestPlan.jmx.6

Alex now understood the process of creating a test script by recording browser activity. He now had a
test script that performed user registration. Next, Alex wanted to simulate the load of hundreds of users.

Alex learned about a configuration element called CSV Data Set Config, which is used to load data from
a file in .csv format. He planned to use it to load the user details for the user registration form.

Alex followed these additional steps.

	 1.	 Click on the user registration HTTP request POST request and go to Edit ➤ Add ➤
Config Element. Add CSV Data Set Config.

Figure 11-3.  Exclusion of regular expressions

6https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTUserRegistrationTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTUserRegistrationTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

254

	 2.	 Configure CSV Data Set Config, as shown in Figure 11-4.

	 3.	 Save the test plan.

Create the user.csv file containing the user details organized into three columns: fullName, email, and
password. Place the file in the same directory as the test script.

Jagdeep,jagdeep@gmail.com,1234
Sai,sai@gmail.com,1234
Ganesh,ganesh@gmail.com,1234
Gopal,gopal@gmail.com,1234

Alex now learned the process of parameterization in JMeter by passing the values from an external CSV
file. He followed the additional steps to configure the test plan to register the users listed in the user.csv file.

	 1.	 Click on Thread Group and configure the Number of Threads (Users) as equal
to the number of rows in the user.csv file.

	 2.	 Save the test plan.

	 3.	 Run the test.

After the test run, Alex noted that the users in the user.csv file were generated successfully. By using
the username/password to manually log in to the Digital Toys Inc. web application, he verified that the order
was created.

Figure 11-4.  User CSV configuration

Chapter 11 ■ Case Study: Digital Toys Inc.

255

Use-Case # 3 User Places an Order for the First Time.
Recording the browser actions is one of the best features of JMeter, and it helped Alex create the test

scripts easily. He configured the browser and JMeter to listen on the same port and followed these steps to
record another use-case.

	 1.	 Create a test plan and give it a meaningful name, such as User Placing an
Order for the First Time.

	 2.	 Click on WorkBench and go to Edit ➤ Add ➤ Non-Test Elements and add
HTTP(S) Script Test Recorder.

	 3.	 In the Global Settings, configure Port as 7070.

	 4.	 Select Target Controller as WorkBench > HTTP(S) Test Script Recorder.

	 5.	 Exclude these regular expressions:
.*\.(bmp|css|js|gif|ico|jpe?g|png|swf|woff|woff2|ttf).*

	 6.	 Click on the Start button.

	 7.	 In the Firefox browser, perform the steps of the use-case called User Placing an
Order for the First Time.

	 8.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 9.	 Select all recorded browser actions from WorkBench, and then drag and add
them as child elements of Thread Group.

	 10.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 11.	 Save the test plan as DTFirstOrderTestPlan.jmx.7

	 12.	 Run the test.

Alex noticed that the order was not created in the web application. He quickly found the reason for
this—cookies! The web application was using cookies for the session management but JMeter was not
preserving the cookies between requests. He decided to add HTTP Cookie Manager and followed these
additional steps.

	 1.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP
Cookie Manager.

	 2.	 Run the test again.

Alex was able to verify that the new order was created, and it was visible on the web application under
order history.

After the test plan was developed and tested, Alex reviewed it to see if anything could be optimized.
He realized that the Server Name or IP and Port Number options were repeated. He decided to capture the
repeated information in HTTP Request Defaults, so he followed these additional steps.

	 1.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element and add HTTP
Request Defaults. Configure Server Name or IP as localhost and Port Number
as 8080.

	 2.	 Remove the values of Server Name or IP and Port Number from each HTTP
request.

	 3.	 Save the test plan.

7https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTFirstOrderTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTFirstOrderTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

256

■■ Tip  Use HTTP Request Defaults and keep the server configuration in one place to make the test plan
portable. If the test environment changes, it is an easy matter to change it, as it needs to be updated just in one
place.

Use-Case # 4 User Places an Order for the Second Time.
For the next use-case, Alex chose to use the HTTP(S) Test Script Recorder. In addition, he knew that the

test plan should contain the HTTP Cookie Manager and HTTP Request Defaults samplers.
He configured the browser and JMeter to listen on the same port and followed these steps to record

another use-case.

	 1.	 Create a test plan and give it a meaningful name, such as User Placing an
Order for the Second Time.

	 2.	 Click on WorkBench and go to Edit ➤ Add ➤ Non-Test Elements. Add HTTP(S)
Script Test Recorder.

	 3.	 In the Global Settings, configure Port as 7070.

	 4.	 Select Target Controller as WorkBench > HTTP(S) Test Script Recorder.

	 5.	 Exclude these regular expressions:
.*\.(bmp|css|js|gif|ico|jpe?g|png|swf|woff|woff2|ttf).*

	 6.	 Click on the Start button.

	 7.	 In the Firefox browser, perform the steps of the use-case called User Placing an
Order for the Second Time.

	 8.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 9.	 Select all the recorded browser actions from WorkBench, and then drag and add
them as child elements of Thread Group.

	 10.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP
Cookie Manager.

	 11.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP Request
Defaults. Configure Server Name or IP as localhost and Port Number as 8080.

	 12.	 Remove the values of Server Name or IP and Port Number from each HTTP
request.

	 13.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 14.	 Save the test plan as DTSecondTimeOrderTestPlan.jmx.8

	 15.	 Run the test.

Alex was able to verify that the new order was created, and it was visible in the web application under
order history.

8https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTSecondTimeOrderTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTSecondTimeOrderTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

257

Use-Case # 5 User Edits the Billing/Shipping Address.
Alex configured the browser and JMeter to listen on the same port and followed these steps to record

another use-case.

	 1.	 Create a test plan and give it a meaningful name, such as User Editing
Billing/Shipping Address.

	 2.	 Click on WorkBench and go to Edit ➤ Add ➤ Non-Test Elements. Add HTTP(S)
Script Test Recorder.

	 3.	 In the Global Settings, configure Port as 7070.

	 4.	 Select Target Controller as WorkBench > HTTP(S) Test Script Recorder.

	 5.	 Exclude these regular expressions:
.*\.(bmp|css|js|gif|ico|jpe?g|png|swf|woff|woff2|ttf).*

	 6.	 Click on the Start button.

	 7.	 In the Firefox browser, perform the steps of the use-case entitled User Editing
Billing/Shipping Address.

	 8.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 9.	 Select all recorded browser actions from WorkBench, and then drag and add
them as child elements of Thread Group.

	 10.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP
Cookie Manager.

	 11.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP Request
Defaults. Configure Server Name or IP as localhost and Port Number as 8080.

	 12.	 Remove values of Server Name or IP and Port Number from each HTTP
request.

	 13.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 14.	 Save the test as DTChangeAddressTestPlan.jmx.9

	 15.	 Run the test.

Alex was able to verify that the old address was updated.
Use-Case # 6 User Edits the Payment Information.
Alex configured the browser and JMeter to listen on the same port and followed these steps to record

another use-case.

	 1.	 Create a test plan and give it a meaningful name, such as User Editing Payment
Information.

	 2.	 Click on WorkBench and go to Edit ➤ Add ➤ Non-Test Elements. Add HTTP(S)
Script Test Recorder.

	 3.	 In the Global Settings, configure Port as 7070.

	 4.	 Select Target Controller as WorkBench > HTTP(S) Test Script Recorder.

	 5.	 Exclude these regular expressions:
.*\.(bmp|css|js|gif|ico|jpe?g|png|swf|woff|woff2|ttf).*

9https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTChangeAddressTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTChangeAddressTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

258

	 6.	 Click on the Start button.

	 7.	 In the Firefox browser, perform the steps of the use-case called User Editing
Payment Information.

	 8.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 9.	 Select all recorded browser actions from WorkBench, and then drag and add
them as child elements of Thread Group.

	 10.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP
Cookie Manager.

	 11.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP Request
Defaults. Configure Server Name or IP as localhost and Port Number as 8080.

	 12.	 Remove the values of Server Name or IP and Port Number from each HTTP
request.

	 13.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 14.	 Save the test as DTChangePaymentInfoTestPlan.jmx.10

	 15.	 Run the test.

Alex was able to verify that the old payment information was updated.
Use-Case # 7 User Uses the Continue Shopping Option.
Alex configured the browser and JMeter to listen on the same port and followed these steps to record

another use-case.

	 1.	 Create a test plan and give it a meaningful name, such as User Using Continue
Shopping Option.

	 2.	 Click on WorkBench and go to Edit ➤ Add ➤ Non-Test Elements. Add HTTP(S)
Script Test Recorder.

	 3.	 In the Global Settings, configure Port as 7070.

	 4.	 Select Target Controller as WorkBench > HTTP(S) Test Script Recorder.

	 5.	 Exclude the regular expression as:
.*\.(bmp|css|js|gif|ico|jpe?g|png|swf|woff|woff2|ttf).*

	 6.	 Click on the Start button.

	 7.	 In the Firefox browser, perform the steps of the use-case called User Using
Continue Shopping Option.

	 8.	 Click on Test Plan and go to Edit ➤ Add ➤ Threads (Users). Add Thread Group.

	 9.	 Select all recorded browser actions from WorkBench, and then drag and add
them as child elements of Thread Group.

	 10.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP
Cookie Manager.

10https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTChangePaymentInfoTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTChangePaymentInfoTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

259

	 11.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add HTTP Request
Defaults. Configure Server Name or IP as localhost and Port Number as 8080.

	 12.	 Remove the values of Server Name or IP and Port Number from each HTTP
request.

	 13.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add View Results Tree.

	 14.	 Save the test as DTContinueShoppingTestPlan.jmx.11

	 15.	 Run the test.

Alex was able to verify that the new order with multiple products was created, and it was visible in the
web application under order history.

Validation of Test Steps
Alex decided to make sure that every test had assertions so that test execution could be validated. There were
a couple of assertions at his disposal. Since JMeter assertions come with a runtime performance cost, he
decided to limit them to response assertion and size assertion.

Use-Case # 1 User Lands on the Home Page and Browses the Products.
Alex followed these steps to update the existing test plan.

	 1.	 Open DTHomePageTestPlan.jmx.12

	 2.	 Click on HTTP Request and go to Edit ➤ Add ➤ Assertions. Add Response
Assertion. Configure Apply to as Main Sample Only, Response Field To Test as
Response Code, Pattern Matching Rules as Equals, and Patterns To Test as 200.

	 3.	 Run the test.

The results indicated that the test passed successfully.
To make sure that the test assertions were working as expected, Alex updated the Patterns To Test field

to 500. After running the test, the test results indicated that the test failed; this confirmed that the assertions
were working as expected (see Figure 11-5).

11https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTContinueShoppingTestPlan.jmx
12https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTHomePageTestPlan.jmx

Figure 11-5.  Assertion failure home page

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTContinueShoppingTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTHomePageTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

260

Alex change 500 back to 200 and saved the updated test plan. The test was then successful.

■■ Tip  Use assertions to validate test results.

Use-Case # 2 User Registration.
Unlike prior test plans, this use-case involved many HTTP requests. Since assertions are costly, Alex

added assertions only for important HTTP requests that performed POST request calls.
Alex followed these steps to update the existing test plan.

	 1.	 Open DTUserRegistrationTestPlan.jmx.13

	 2.	 Click on the second /user/signUp HTTP Request and go to Edit ➤ Add ➤
Assertions. Add Response Assertion. Configure Apply to as Main Sample Only,
Response Field To Test as Response Code, Pattern Matching Rules as Equals,
and Patterns To Test as 200.

	 3.	 Save the updated test plan.

	 4.	 Run the test.

The results indicated that the test passed successfully.
Use-Case # 3 User Places an Order for the First Time.
A typical web application has multiple HTTP request-response sequences, and Digital Toys Inc. web

application is no different. Alex started with the next test plan. To make it more efficient, he decided to add
assertions only for POST requests.

He decided to focus on /user/signIn, /order/addToCart, /user/addAddress, /user/addCard, and /
user/signOut HTTP Requests.

■■ Caution  Login and subsequent logout are required to make sure that the session is closed. Otherwise, it
may impact the overall performance results.

Alex followed these steps and updated the existing test plan.

	 1.	 Open DTFirstOrderTestPlan.jmx.14

	 2.	 Click on /user/signIn HTTP Request and go to Edit ➤ Add ➤ Assertions. Add
Response Assertion. Configure Apply to as Main Sample Only, Response Field
To Test as Response Code, Pattern Matching Rules as Equals, and Patterns To
Test as 200.

	 3.	 Click on /order/addToCart HTTP Request and go to Edit ➤ Add ➤ Assertions.
Add Response Assertion. Configure Apply to as Main Sample Only, Response
Field To Test as Response Code, Pattern Matching Rules as Equals, and
Patterns To Test as 200.

	 4.	 Click on /user/addAddress HTTP Request and go to Edit ➤ Add ➤ Assertions.
Add Response Assertion. Configure Apply to as Main Sample Only, Response
Field To Test as Response Code, Pattern Matching Rules as Equals, and
Patterns To Test as 200.

13https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTUserRegistrationTestPlan.jmx
14https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTFirstOrderTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTUserRegistrationTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTFirstOrderTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

261

	 5.	 Click on /user/addCard HTTP Request and go to Edit ➤ Add ➤ Assertions. Add
Response Assertion. Configure Apply to as Main Sample Only, Response Field
To Test as Response Code, Pattern Matching Rules as Equals, and Patterns To
Test as 200.

	 6.	 Click on /user/signOut HTTP Request and go to Edit ➤ Add ➤ Assertions. Add
Response Assertion. Configure Apply to as Main Sample Only, Response Field
To Test as Response Code, Pattern Matching Rules as Equals, and Patterns To
Test as 200.

	 7.	 Save the updated test plan.

	 8.	 Run the test.

The results indicated that the test passed successfully.
Use-Case # 4 User Places an Order for the Second Time.
The next test plan also had multiple HTTP request-response sequences. Alex decided to focus

on /user/signIn, /order/addToCart, and /user/signOut POST requests and added assertions.
Alex followed these steps to update the existing test plan.

	 1.	 Open DTSecondTimeOrderTestPlan.jmx.15

	 2.	 Click on /user/signIn HTTP Request and go to Edit ➤ Add ➤ Assertions. Add
Response Assertion. Configure Apply to as Main Sample Only, Response Field
To Test as Response Code, Pattern Matching Rules as Equals, and Patterns To
Test as 200.

	 3.	 Click on /order/addToCart HTTP Request and go to Edit ➤ Add ➤ Assertions.
Add Response Assertion. Configure Apply to as Main Sample Only, Response
Field To Test as Response Code, Pattern Matching Rules as Equals, and Patterns
To Test as 200.

	 4.	 Click on /user/signOut HTTP Request and go to Edit ➤ Add ➤ Assertions. Add
Response Assertion. Configure Apply to as Main Sample Only, Response Field
To Test as Response Code, Pattern Matching Rules as Equals, and Patterns To
Test as 200.

	 5.	 Save the updated test plan.

	 6.	 Run the test.

The results indicated that the test passed successfully.
Use-Case # 5 User Edits the Billing/Shipping Address.
This test plan also had multiple HTTP request-response sequences. Alex decided to focus on /user/

signIn, /order/addAddress, and /user/signOut POST requests and added assertions.
Alex followed these steps to update the existing test plan.

	 1.	 Open DTChangeAddressTestPlan.jmx.16

	 2.	 Click on /user/signIn HTTP Request and go to Edit ➤ Add ➤ Assertions. Add
Response Assertion. Configure Apply to as Main Sample Only, Response Field
To Test as Response Code, Pattern Matching Rules as Equals, and Patterns To
Test as 200.

15https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTSecondTimeOrderTestPlan.jmx
16https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTChangeAddressTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTSecondTimeOrderTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTChangeAddressTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

262

	 3.	 Click on /order/addAddress HTTP Request and go to Edit ➤ Add ➤ Assertions.
Add Response Assertion. Configure Apply to as Main Sample Only, Response
Field To Test as Response Code, Pattern Matching Rules as Equals, and
Patterns To Test as 200.

	 4.	 Click on /user/signOut HTTP Request and go to Edit ➤ Add ➤ Assertions. Add
Response Assertion. Configure Apply to as Main Sample Only, Response Field
To Test as Response Code, Pattern Matching Rules as Equals, and Patterns To
Test as 200.

	 5.	 Save the updated test plan.

	 6.	 Run the test.

The results indicated that the test passed successfully.
Use-Case # 6 User Edits Payment Information.
This test plan also has multiple HTTP request-response sequences. Alex decided to focus on

/user/signIn, /order/addCard, and /user/signOut POST requests and added assertions.
Alex followed these steps to update the existing test plan.

	 1.	 Open DTChangePaymentInfoTestPlan.jmx.17

	 2.	 Click on /user/signIn HTTP Request and go to Edit ➤ Add ➤ Assertions. Add
Response Assertion. Configure Apply to as Main Sample Only, Response Field
To Test as Response Code, Pattern Matching Rules as Equals, and Patterns To
Test as 200.

	 3.	 Click on /order/addAddress HTTP Request and go to Edit ➤ Add ➤ Assertions.
Add Response Assertion. Configure Apply to as Main Sample Only, Response
Field To Test as Response Code, Pattern Matching Rules as Equals, and
Patterns To Test as 200.

	 4.	 Click on /user/signOut HTTP Request and go to Edit ➤ Add ➤ Assertions. Add
Response Assertion. Configure Apply to as Main Sample Only, Response Field
To Test as Response Code, Pattern Matching Rules as Equals, and Patterns To
Test as 200.

	 5.	 Save the updated test plan.

	 6.	 Run the test.

The results indicated that the test passed successfully.
Use-Case # 7 User Uses the Continue Shopping Option.
This test plan also had multiple HTTP request-response sequences. Alex decided to focus on /user/

signIn, /order/addToCart, /user/addAddress, /order/addCard, and /user/signOut POST requests and
added assertions.

Alex followed these steps to update the existing test plan.

	 1.	 Open DTContinueShoppingTestPlan.jmx.18

	 2.	 Click on /user/signIn HTTP Request and go to Edit ➤ Add ➤ Assertions. Add
Response Assertion. Configure Apply to as Main Sample Only, Response Field
To Test as Response Code, Pattern Matching Rules as Equals, and Patterns To
Test as 200.

17https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTChangePaymentInfoTestPlan.jmx
18https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTContinueShoppingTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTChangePaymentInfoTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTContinueShoppingTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

263

	 3.	 Click on /order/addToCart HTTP Request and go to Edit ➤ Add ➤ Assertions.
Add Response Assertion. Configure Apply to as Main Sample Only, Response
Field To Test as Response Code, Pattern Matching Rules as Equals, and
Patterns To Test as 200.

	 4.	 Click on /user/addAddress HTTP Request and go to Edit ➤ Add ➤ Assertions.
Add Response Assertion. Configure Apply to as Main Sample Only, Response
Field To Test as Response Code, Pattern Matching Rules as Equals, and
Patterns To Test as 200.

	 5.	 Click on /user/addCard HTTP Request and go to Edit ➤ Add ➤ Assertions. Add
Response Assertion. Configure Apply to as Main Sample Only, Response Field
To Test as Response Code, Pattern Matching Rules as Equals, and Patterns To
Test as 200.

	 6.	 Click on /user/signOut HTTP Request and go to Edit ➤ Add ➤ Assertions. Add
Response Assertion. Configure Apply to as Main Sample Only, Response Field
To Test as Response Code, Pattern Matching Rules as Equals, and Patterns To
Test as 200.

	 7.	 Save the updated test plan.

	 8.	 Run the test.

The results indicated that the test passed successfully.

Passing Variables Between Samplers
Alex reviewed all the test plans before running tests with multiple users.

For the Edit Address test plan, Alex needed to grab the value of addressId from the response of /user/
addAddress GET HTTP request and pass it to /user/addAddress POST HTTP Request.

Similarly, for the Edit Payment Information test plan, he needed to grab the value of cardId from the
response of /user/addCard GET HTTP request and pass it to /user/addCard POST HTTP request.

Alex followed these steps to update the existing test plan.
Updating Change Address Test Plan.

	 1.	 Open DTChangeAddressTestPlan.jmx.19

	 2.	 Click on /user/AddCard HTTP Request and go to Edit ➤ Add ➤ Post
Processors. Add Regular Expression Extractor. Configure Reference
Name as addressid, Regular Expression as <input type="hidden"
name="addressId" value="(.+?)" id="addressId" \/> that he found
from the HTML code, Template as 1, and Match No. (0 for Random) as 1
(see Figure 11-6).

19https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTChangeAddressTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTChangeAddressTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

264

	 3.	 Pass the reference name to the next HTTP request, as shown in Figure 11-7.

	 4.	 Save the updated test plan.

Updating Change Payment Information Test Plan.

	 1.	 Open DTChangePaymentInfoTestPlan.jmx.20

	 2.	 Click on /user/addCard HTTP Request and go to Edit ➤ Add ➤ Post
Processors. Add Regular Expression Extractor. Configure Reference Name as
cardid, Regular Expression as <input type="hidden" name="addressId"
value="(.+?)" id="addressId" \/> that he found from the HTML code,
Template as 1, and Match No. (0 for Random) as 1 (see Figure 11-8).

20https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTChangePaymentInfoTestPlan.jmx

Figure 11-6.  Address ID regular expression extractor

Figure 11-7.  Pass the address ID to the next HTTP request

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTChangePaymentInfoTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

265

	 3.	 Pass the reference name to the next HTTP request, as shown in Figure 11-9.

	 4.	 Save the updated test plan.

Running Tests with Multiple Users
To simulate the load of multiple users accessing the application concurrently, Alex made a few changes to
the existing test plans.

Required changes to the test plans are as follows:

•	 Add CSV Data Set Config.

•	 In Configure the CSV Data Source, set the filename to the user list CSV file.

•	 In /user/signIn HTTP Request, make CSV Data Set Config the child element.

•	 Update Thread Group configuration with the number of threads/users.

Figure 11-8.  Card ID regular expression extractor

Figure 11-9.  Pass the card ID to the next HTTP request

Chapter 11 ■ Case Study: Digital Toys Inc.

266

Updating Case # 3: User Places an Order for the First Time.

	 1.	 Open DTFirstOrderTestPlan.jmx.21

	 2.	 Click on the second /user/signIn HTTP Request and go to Edit ➤ Add ➤
Config Element. Add CSV Data Set Config. Configure Filename as dtusers.csv,
Variable Names (comma-delimited) as username,password, and Delimiter
(use \t for tab) as "," (see Figure 11-10).

	 3.	 Click on the same /user/signIn HTTP request and configure parameters in the
request transaction (see Figure 11-11).

	 4.	 Save the updated test plan.

21https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTFirstOrderTestPlan.jmx

Figure 11-10.  CSV data set config parameters

Figure 11-11.  Request parameters

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTFirstOrderTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

267

Alex updated the remaining test plans by opening each plan one by one and following the previous
steps.

•	 DTSecondTimeOrderTestPlan.jmx

•	 DTChangeAddressTestPlan.jmx

•	 DTChangePaymentInfoTestPlan.jmx

•	 DTContinueShoppingTestPlan.jmx

To simulate the load of 10 concurrent users, Alex ensured that the dt-users.csv file mentioned in the
CSV Data Set Config had 10 users.

The next step was to configure Thread Group with the number of concurrent users and run the test.
Use-Case # 1 User Lands on the Home Page and Browses the Products.

	 1.	 Open DTHomePageTestPlan.jmx.22

	 2.	 Click on Thread Group. In Thread properties, configure Number of Threads
(users) as 10, Ramp-Up Period (in seconds) as 1, and Loop Count as 1.

	 3.	 Save the updated test plan.

	 4.	 Run the test.

The results are shown in Figure 11-12.

Figure 11-12.  Landing page 10 threads

22https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTHomePageTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTHomePageTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

268

Use-Case # 3 User Places an Order for the First Time.

	 1.	 Open DTFirstOrderTestPlan.jmx.23

	 2.	 Click on Thread Group. In Thread properties, configure Number of Threads
(users) as 10, Ramp-Up Period (in seconds) as 1, and Loop Count as 1.

	 3.	 Save the updated test plan.

	 4.	 Run the test.

The results are shown in Figure 11-13.

Use-Case # 4 User Places an Order for the Second Time.

	 1.	 Open DTSecondTimeOrderTestPlan.jmx.24

	 2.	 Click on Thread Group. In Thread properties, configure Number of Threads
(users) as 10, Ramp-Up Period (in seconds) as 1, and Loop Count as 1.

	 3.	 Save the updated test plan.

	 4.	 Run the test.

23https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTFirstOrderTestPlan.jmx
24https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTSecondTimeOrderTestPlan.jmx

Figure 11-13.  First order 10 threads

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTFirstOrderTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTSecondTimeOrderTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

269

The results are shown in Figure 11-14.

Use-Case # 5 User Edits the Billing/Shipping Address.

	 1.	 Open DTChangeAddressTestPlan.jmx.25

	 2.	 Click on Thread Group. In Thread properties, configure Number of
Threads (users) as 10, Ramp-Up Period (in seconds) as 1, and Loop
Count as 1.

	 3.	 Save the updated test plan.

	 4.	 Run the test.

Figure 11-14.  Second time order 10 threads

25https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTChangeAddressTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTChangeAddressTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

270

The results are shown in Figure 11-15.

Use-Case # 6 User Edits the Payment Information.

	 1.	 Open DTChangePaymentInfoTestPlan.jmx.26

	 2.	 Click on Thread Group. In Thread properties, configure Number of Threads
(users) as 10, Ramp-Up Period (in seconds) as 1, and Loop Count as 1.

	 3.	 Save the updated test plan.

	 4.	 Run the test.

Figure 11-15.  Change address 10 threads

26https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTChangePaymentInfoTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTChangePaymentInfoTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

271

The results are shown in Figure 11-16.

Use-Case # 7 User Uses Continue Shopping Option.

	 1.	 Open DTContinueShoppingTestPlan.jmx.27

	 2.	 Click on Thread Group. In Thread properties, configure Number of Threads
(users) as 10, Ramp-Up Period (in seconds) as 1, and Loop Count as 1.

	 3.	 Save the updated test plan.

	 4.	 Run the test.

You will see the similar user requests under the View Results Tree as in the previous test results.

Implementing Actual User Behavior
Alex wanted to implement the actual user behavior, and this can be achieved by using loop controllers and
timers. Loop controllers are used to loop through the product catalog page. Timers can be used to introduce
a delay to simulate the time taken by the user to look for the products on the catalog page. Actual user
behavior is simulated by combining loop controllers and timers.

The Continue Shopping use-case is a classic example of looping through the products catalog page
multiple times.

Digital Toys Inc. web application does not allow adding the same product twice, so Alex had to manage
the same behavior from the script. He enclosed the three requests−/dt/index, /product/detail and
/order/addToCart−inside a loop controller.

Figure 11-16.  Change payment info 10 threads

27https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTContinueShoppingTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTContinueShoppingTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

272

Alex followed these steps to update the test.

	 1.	 Open DTContinueShoppingTestPlan.jmx28 (see Figure 11-17).

Noting that the number of products purchased depends on the user, Alex wanted to allow for this and
followed these steps to achieve the actual user behavior.

	 1.	 Click on Thread Group and go to Edit ➤ Add ➤ Config Element. Add Random
Variable. Configure Variable Name as numberOfProduct, Minimum Value as 1,
Maximum Value as 6, and under Per Thread (User)? as True (see Figure 11-18).

28https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTContinueShoppingTestPlan.jmx

Figure 11-17.  Looping request

Figure 11-18.  Random variable

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTContinueShoppingTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

273

	 2.	 Click on Loop Controller. Configure Loop Count as the random variable
${numberOfProduct} (see Figure 11-19).

	 3.	 Click on Loop Controller and go to Edit ➤ Add ➤ Config Element. Add Counter.
Configure as shown in Figure 11-20.

	 4.	 Click on /product/detail HTTP Request. In the Send Parameters With
Request field, click on the Add button to add a name-value pair. Configure the
Name as productId and the Value as ${productId}.

	 5.	 Click on /order/addToCart HTTP Request. In the Send Parameters With
Request field, click on the Add button to add a name-value pair. Configure the
Name as productId and the Value as ${productId} (see Figure 11-21).

Figure 11-19.  Loop count

Figure 21-20.  Counter

Chapter 11 ■ Case Study: Digital Toys Inc.

274

	 6.	 Save the updated test plan.

Users typically spend time on the product catalog page thinking about their next action. This can be
simulated by using a timer. Alex decided to use a Gaussian random timer and estimated that the user would
take 2 to 10 seconds. He followed these steps.

	 1.	 Click on /product/detail GET HTTP Request and go to Edit ➤ Add ➤ Timer.
Add Gaussian Random Timer. Configure Deviation (in milliseconds) as 2000
and Constant Delay Offset (in milliseconds) as 10000.

	 2.	 Click on /user/addAddress POST HTTP Request and go to Edit ➤ Add ➤ Timer.
Add Gaussian Random Timer. Configure Deviation (in milliseconds) as 2000
and Constant Delay Offset (in milliseconds) as 10000.

	 3.	 Click on /user/addCard POST HTTP Request and go to Edit ➤ Add ➤ Timer.
Add Gaussian Random Timer. Configure Deviation (in milliseconds) as 2000
and Constant Delay Offset (in milliseconds) as 10000.

	 4.	 Click on /order/orderHistory GET HTTP Request and go to Edit ➤ Add ➤ Timer
and add Gaussian Random Timer. Configure Deviation (in milliseconds) as 2000
and Constant Delay Offset (in milliseconds) as 10000 (see Figure 11-22).

Figure 11-21.  HTTP request value

Figure 11-22.  Gaussian random timer

Chapter 11 ■ Case Study: Digital Toys Inc.

275

Similarly, Alex updated remaining test plans as per Table 11-10.

Alex added a Gaussian random timer on all the pages that required user thinktime in all the test plans.
After updating the JMeter test script, Alex was confident that the script would implement the actual user

behavior. For each of the tests, he prepared a list of users and updated the CSV Data Set Config configuration
as per Table 11-11.

It makes sense to run the test for Placing the Order the Second Time, Editing the Address Information,
and Editing the Payment Information only after running the test for Placing the Order the First Time.

■■ Tip  Ensure that the sequence in which the tests are run follows the real user scenario.

Results Metrics
Once the tests are agreed upon, they are standardized and the results noted as a baseline. The test
results, together with the required performance metrics, are shared with the engineering team. When the
engineering team implements a fix, the tests are re-run and the results are compared with the baseline.

Alex had a discussion with the team and standardized on the performance criteria to be measured.
These were the Average, Min, and Max response times of each HTTP request. They also needed the
utilization metrics for CPU, memory, and network.

Alex added an aggregate report, which gave him Average, Min, and Max response times of each HTTP
request. He added jp@gc - PerfMon Metrics Collector to get CPU, memory, and network utilization stats.

Table 11-10.  Test Plan Vs. Request Mapping

Test Plan POST Request Sampler(s)

DTFirstOrderTestPlan.jmx /product/detail, /user/ addAddress, /user/addCard,
/ order/orderHistory

DTSecondTimeOrderTestPlan.jmx /product/detail, /order/ orderHistory

DTChangeAddressTestPlan.jmx /user/addAddress

DTChangePaymentInfoTestPlan.jmx /user/addCard

Table 11-11.  Test Script vs. Input CSV File Mapping

JMeter Test Script Name Input CSV File Name

DTFirstOrderTestPlan.jmx first-order.csv

DTSecondTimeOrderTestPlan.jmx secondtime-order.csv

DTChangeAddressTestPlan.jmx change-address.csv

DTChangePaymentInfoTestPlan.jmx change-paymentinfo.csv

DTContinueShoppingTestPlan.jmx continue-shopping.csv

Chapter 11 ■ Case Study: Digital Toys Inc.

276

Alex disabled the View Results Tree report for the production run, as it is memory intensive.
As JMeter does not ship with PerMon Agent out of the box, Alex downloaded the server agent from

Server Agent URL.29

In order to add jp@gc - PerfMon Metrics Collector to JMeter, Alex downloaded the plugin from
JMeterPlugins URL30 and extracted it to the JMeter main directory.

Alex followed these steps to update the existing test plans.
Use-Case # 1 User Lands on the Home Page and Browses Products.

	 1.	 Open DTHomePageTestPlan.jmx.31

	 2.	 Click on View Results Tree and go to Edit ➤ Disable.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add Aggregate Report.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add jp@gc - PerfMon
Metrics Collector.

	 5.	 Click the Add Row button on the respective servers to monitor for CPU, memory,
and network.

	 6.	 Run the test.

The results are shown in Figure 11-23.

Figure 11-23.  Home page aggregate report

29http://jmeter-plugins.org/downloads/file/ServerAgent-2.2.1.zip
30http://jmeter-plugins.org/downloads/file/JMeterPlugins-Standard-1.3.1.zip
31https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTHomePageTestPlan.jmx

The PerfMon Metrics Collectors report does not show many of the changes if you just trigger with
10 threads. Try to increase the threads to 100 and then run the test; you will find the results shown in
Figure 11-24.

http://jmeter-plugins.org/downloads/file/ServerAgent-2.2.1.zip
http://jmeter-plugins.org/downloads/file/JMeterPlugins-Standard-1.3.1.zip
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTHomePageTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

277

In the same way, he updated the remaining test plans and generated the reports.
Use-Case # 3 User Places an Order for the First Time.

	 1.	 Open DTFirstOrderTestPlan.jmx.32

	 2.	 Click on View Results Tree and go to Edit ➤ Disable.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add jp@gc - PerfMon
Metrics Collector.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add Aggregate Report.

	 5.	 Click on the Add Row button on the respective servers to monitor for CPU,
memory, and network.

	 6.	 Save the updated test plan.

	 7.	 Run the test.

Figure 11-24.  Home page PerfMon report (see color image in source code file)

32https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTFirstOrderTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTFirstOrderTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

278

The results are shown in Figures 11-25 and 11-26.

Figure 11-25.  First order aggregate report

Figure 11-26.  First order PerfMon report (see color image in source code file)

Chapter 11 ■ Case Study: Digital Toys Inc.

279

Use-Case # 4 User Places an Order for the Second Time.

	 1.	 Open DTSecondTimeOrderTestPlan.jmx.33

	 2.	 Click on View Results Tree and go to Edit ➤ Disable.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add jp@gc - PerfMon
Metrics Collector.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add Aggregate Report.

	 5.	 Click on the Add Row button on the respective servers to monitor for CPU,
memory, and network.

	 6.	 Save the updated test plan.

	 7.	 Run the test.

The results are shown in Figures 11-27 and 11-28.

33https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTSecondTimeOrderTestPlan.jmx

Figure 11-27.  Second time order aggregate report

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTSecondTimeOrderTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

280

Use-Case # 5 User Edits the Billing/Shipping Address.

	 1.	 Open DTChangeAddressTestPlan.jmx.34

	 2.	 Click on View Results Tree and go to Edit ➤ Disable.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add Aggregate Report.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add jp@gc - PerfMon
Metrics Collector.

	 5.	 Click the Add Row button on jp@gc - PerfMon Metrics Collector and add the
respective servers to monitor for CPU, memory, and network.

	 6.	 Save the updated test plan.

	 7.	 Run the test.

Figure 11-28.  Second time order PerfMon report (see color image in source code file)

34https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTChangeAddressTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTChangeAddressTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

281

The results are shown in Figures 11-29 and 11-30.

Figure 11-29.  Change address aggregate report

Figure 11-30.  Change address PerfMon report (see color image in source code file)

Chapter 11 ■ Case Study: Digital Toys Inc.

282

Use-Case # 6 User Edits the Payment Information.

	 1.	 Open DTChangePaymentInfoTestPlan.jmx.35

	 2.	 Click on View Results Tree and go to Edit ➤ Disable.

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add Aggregate Report.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add jp@gc - PerfMon
Metrics Collector.

	 5.	 Click the Add Row button on jp@gc - PerfMon Metrics Collector and add the
respective servers to monitor for CPU, memory, and network.

	 6.	 Save the updated test plan.

	 7.	 Run the test.

The results are shown in Figures 11-31 and 11-32.

Figure 11-31.  Change payment info aggregate report

35https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTChangePaymentInfoTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTChangePaymentInfoTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

283

Use-Case # 7 User Uses the Continue Shopping Option.

	 1.	 Open DTContinueShoppingTestPlan.jmx.36

	 2.	 Click on View Results Tree and go to Edit ➤ Disable

Figure 11-32.  Change payment info PerfMon report (see color image in source code file)

36https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTContinueShoppingTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTContinueShoppingTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

284

	 3.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add Aggregate Report.

	 4.	 Click on Thread Group and go to Edit ➤ Add ➤ Listener. Add jp@gc - PerfMon
Metrics Collector.

	 5.	 Click on the Add Row button on jp@gc - PerfMon Metrics Collector and add the
respective servers to monitor for CPU, memory, and network.

	 6.	 Save the updated test plan.

	 7.	 Run the test.

Results are shown in Figures 11-33 and 11-34.

Figure 11-33.  Continue shopping aggregate report

Chapter 11 ■ Case Study: Digital Toys Inc.

285

Organizing Tests
Alex captured the results from the aggregate report and the jp@gc - PerfMon Metrics Collector report and
showed them to his manager. Bob wanted Alex to identify the problematic use-cases, web pages, and their
associated HTTP requests for further analysis by the team.

Figure 11-34.  Continue shopping PerfMon report (see color image in source code file)

Chapter 11 ■ Case Study: Digital Toys Inc.

286

Each use-case is a sequence of steps and each step comprises multiple HTTP requests. Alex prepared a
table showing the steps and the HTTP requests associated with each step.

Alex combined HTTP requests associated with a use-case under a transaction controller and named
them with the step name. This allows the report to display results on a per-step basis. Alex followed the table
and modified the other test scripts in a similar way.

Use-Case # 1 User Lands on the Home Page and Browses the Products.

	 1.	 Open DTHomePageTestPlan.jmx.37

	 2.	 Click on Thread Group and go to Edit ➤ Add ➤ Logic Controller. Add Transaction
Controller. Configure Generate Parent Sample as true and Name as Home Page.

	 3.	 Save the updated test plan.

	 4.	 Run the test.

Results are shown in Figure 11-35.

Table 11-12.  Use-Case # 1 Test Plan Steps Vs. HTTP Request Mapping

No. Step Name HTTP Request

1 Home Page /dt

Figure 11-35.  Home page aggregate report

37https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTHomePageTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTHomePageTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

287

Use-Case # 3 User Places an Order for the First Time.
Table 11-13 shows the steps and the associated HTTP requests.

Alex added a transaction controller for each of the steps.

	 1.	 Open DTFirstOrderTestPlan.jmx.38

	 2.	 Click on Thread Group and go to Edit ➤ Add ➤ Logic Controller. Add
Transaction Controller. Configure Generate Parent Sample to make it true.

	 3.	 Click on Transaction Controller and go to Edit ➤ Copy. Follow this step 10 times.

	 4.	 Follow Table 11-13 and update the name of each transaction controller and the
associated request.

	 5.	 Save the updated test plan.

	 6.	 Run the test.

Table 11-13.  Use-Case # 2 Test Plan Steps Vs. HTTP Request Mapping

No. Manual Step HTTP Request

1 Home Page /dt

2 Login Page /user/signIn, /user/signIn

3 Index/Product
Catalog Page

/dt/index

4 Details /product/detail

5 Add To Cart /order/addToCart

6 Check Out /order/checkOut

7 Billing/Shipping
Address

/user/addAddress, /user/addAddress, / order/checkOut

8 Credit Card /user/addCard, /user/addCard, /order/ checkOut

9 Place Order /order/placeOrder, /dt/index

10 Order History /order/orderHistory

11 Sign Out /user/signOut, /dt/index

38https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTFirstOrderTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTFirstOrderTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

288

The results are shown in Figure 11-36.

Use-Case # 4 User Places an Order for the Second Time.
Table 11-14 shows the steps and the associated HTTP requests.

Figure 11-36.  First order useful report

Table 11-14.  Use-Case # 4 Test Plan Steps Vs. HTTP Request Mapping

No. Step Name HTTP Request

1 Home Page /dt

2 Login Page /user/signIn, /user/signIn

3 Index/Product
Catalog Page

/dt/index

4 Details /product/detail

5 Add To Cart /order/addToCart

6 Check Out /order/checkOut

7 Place Order /order/placeOrder, /dt/index

8 Order History /order/orderHistory

9 Sign Out /user/signOut, /dt/index

Chapter 11 ■ Case Study: Digital Toys Inc.

289

	 1.	 Open DTSecondTimeOrderTestPlan.jmx.39

	 2.	 Click on Thread Group and go to Edit ➤ Add ➤ Logic Controller. Add
Transaction Controller. Configure Generate Parent Sample to make it true.

	 3.	 Click on Transaction Controller and go to Edit ➤ Copy. Follow this step 8 times.

	 4.	 Follow Table 11-14 and update the name of each transaction controller and the
associated request.

	 5.	 Before running the test, Alex ran the First Order test with the same set of users
assigned for this test script.

	 6.	 Save the updated test plan.

	 7.	 Run the test.

The results are shown in Figure 11-37.

Figure 11-37.  Second time order useful report

39https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTSecondTimeOrderTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTSecondTimeOrderTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

290

Use-Case # 5 User Edits the Billing/Shipping Address.
Table 11-15 shows steps and the associated HTTP requests.

	 1.	 Open DTChangeAddressTestPlan.jmx.40

	 2.	 Click on Thread Group and go to Edit ➤ Add ➤ Logic Controller. Add
Transaction Controller. Configure Generate Parent Sample to make it true.

	 3.	 Click on Transaction Controller and go to Edit ➤ Copy. Follow this step four times.

	 4.	 Follow Table 11-15 and update the name of each transaction controller and the
associated request.

	 5.	 Before running the test, Alex ran the First Order test with the same set of users
assigned for this test script.

	 6.	 Save the updated test plan.

	 7.	 Run the test.

The results are shown in Figure 11-38.

Table 11-15.  Use-Case # 5 Test Plan Steps vs. HTTP Request Mapping

No. Step Name HTTP Request

1 Home Page /dt

2 Login Page /user/signIn, /user/signIn

3 Index/Product
Catalog Page

/dt/index

4 Billing / Shipping
Address

/user/addAddress, /user/addAddress, /dt/ index

5 Sign Out /user/signOut, /dt/index

Figure 11-38.  Change address useful report

40https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTChangeAddressTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTChangeAddressTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

291

Use-Case # 6 User Edits Payment Information.
Table 11-16 shows the steps and the associated HTTP requests.

	 1.	 Open DTChangePaymentInfoTestPlan.jmx.41

	 2.	 Click on Thread Group and go to Edit ➤ Add ➤ Logic Controller. Add
Transaction Controller. Configure Generate Parent Sample to make it true.

	 3.	 Click on Transaction Controller and go to Edit ➤ Copy. Follow this step four times.

	 4.	 Follow Table 11-16 and update the name of each transaction controller and the
associated request.

	 5.	 Before running the test, Alex ran the First Order test with the same set of users
assigned for this test script.

	 6.	 Save the updated test plan.

	 7.	 Run the test.

The results are shown in Figure 11-39.

Table 11-16.  Use-Case # 6 Test Plan Steps Vs. HTTP Request Mapping

No. Manual Step HTTP Request

1 Home Page /dt

2 Login Page /user/signIn, /user/signIn

3 Index/Product
Catalog Page

/dt/index

4 Add Credit Card /user/addCard, /user/addCard, /dt/index

5 Sign Out /user/signOut, /dt/index

Figure 11-39.  Change payment info aggregate report

41https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTChangePaymentInfoTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTChangePaymentInfoTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

292

Use-Case # 7 User Uses the Continue Shopping Option.
Table 11-17 shows the steps and the associated HTTP requests.

	 1.	 Open DTContinueShoppingTestPlan.jmx.42

	 2.	 Click on Thread Group and go to Edit ➤ Add ➤ Logic Controller. Add
Transaction Controller. Configure Generate Parent Sample to make it true.

	 3.	 Click on Transaction Controller and go to Edit ➤ Copy. Follow this step 11 times.

	 4.	 Follow Table 11-17 and update the name of each transaction controller and the
associated request.

	 5.	 Before running the test, Alex ensured that he ran the use-case User Placing the
First Order test with the same set of users as used in this test script.

	 6.	 Save the updated test plan.

	 7.	 Run the test.

Table 11-17.  Use-Case # 7 Test Plan Steps Vs. HTTP Request Mapping

No. Manual Step HTTP Request

1 Home Page /dt

2 Login Page /user/signIn, /user/signIn

3 Index/Product
Catalog Page

/dt/index

4 Details /product/detail

5 Add To Cart /order/addToCart

6 Continue Shopping /dt/index, /product/detail, /order/ addToCart

7 Check Out /order/checkOut

8 Billing/Shipping
Address

/user/addAddress, /user/addAddress, / order/checkOut

9 Credit Card /user/addCard, /user/addCard, /order/ checkOut

10 Place Order /order/placeOrder, /dt/index

11 Order History /order/orderHistory

12 Sign Out /user/signOut, /dt/index

42https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTContinueShoppingTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTContinueShoppingTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

293

The results are shown in Figure 11-40.

Before running the updated JMeter test scripts, Alex initialized his test environment by deploying a
clean schema. He wanted to be doubly sure that the test environment and the data were the same between
the test runs.

Alex ran the tests with 20 users to warm up the test environment. After that, he ran all the scripts with
500 users and approached Bob. Bob was happy to see results but asked for another set of tests where the
users were doing different operations at the same time.

■■ Tip  Run the test scripts with a few users as a warmup before running the real performance test.

Combining Multiple Tests
Alex simulated the load pattern generated by real users in production by running multiple thread groups in
parallel, with each of the thread group executing a different use-case. The percentage of use-case executions
was based on the user distribution table that he prepared earlier.

Alex followed these steps to merge all his test plans into a single test plan.

	 1.	 Create a test plan and give it a meaningful name, such as Digital Toys Main.

	 2.	 Click on Test Plan and go to Edit ➤ Merge. Select a test plan, as shown in Table 11-18.

	 3.	 Save the test plan as DTMainTestPlan.jmx.43

Figure 11-40.  Continue shopping aggregate report

43https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTMainTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTMainTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

294

He added each test plan listed in Table 11-18 as a thread group under Digital Toys Main.

After making the required changes, the test plan looked as shown in Figure 11-41.

Before running the updated JMeter test scripts, Alex initialized his test environment by deploying clean
schema.

The use-cases for DTSecondTimeOrderTestPlan.jmx, DTChangeAddressTestPlan.jmx, and
DTChangePaymentInfoTestPlan.jmx require that an initial order be placed in the system. For this, Alex
runs the DTFirstOrderTestPlan.jmx test with an input user file. This also serves to warm up the test
environment.

Table 11-18.  Test Plan Steps Vs. Thread Group Mapping

Test Plan Thread Group

DTHomePageTestPlan.jmx Home Page

DTFirstOrderTestPlan.jmx First Order

DTSecondTimeOrderTestPlan.jmx Second Time Order

DTChangeAddressTestPlan.jmx Aggregate Report

DTChangePaymentInfoTestPlan.jmx Change Payment Info

DTContinueShoppingTestPlan.jmx Continue Shopping

Figure 11-41.  Multiple thread group test plan

Chapter 11 ■ Case Study: Digital Toys Inc.

295

In order to run the test in parallel mode, Alex ensured that the Run Thread Groups Consecutively
(i.e. run groups one at a time) option was unchecked (which is the default) (see Figure 11-42).

He then ran the test with varying number of threads (users).
This ensures that the thread groups are picked up by JMeter in a random fashion.
Before executing the tests, Alex assumed that he was testing with 500 users, so he updated the Number

of Threads (Users) as per User Load Pattern table. See Table 11-19.

Figure 11-42.  Thread groups parallel

Table 11-19.  Performance Load Distribution Chart

Browsing catalog 10%

Ordering first time 60%

Ordering second time 10%

Changing address 5%

Changing payment
information

5%

Continue shopping 10%

Chapter 11 ■ Case Study: Digital Toys Inc.

296

He added an aggregate report and jp@gc - PerfMon Metrics Collector to generate the reports.

	 1.	 Click on Test Plan and go to Add ➤ Listener. Add Aggregate Report.

	 2.	 Click on Test Plan and go to Add ➤ Listener. Add jp@gc - PerfMon Metrics
Collector.

	 3.	 Disable Aggregate Report and jp@gc - PerfMon Metrics Collector for the
individual thread group to save on CPU/memory consumption.

	 4.	 Save the updated test plan.

	 5.	 Run the test.

The results are shown in Figures 11-43 and 11-44.

Figure 11-43.  Digital Toys main test

Chapter 11 ■ Case Study: Digital Toys Inc.

297

He collected performance results and showed them to Bob.

Questions
Bob and the team asked Alex a few questions:

Question: How do you obtain a count of logged-in users at any point in time?

Answer: Alex replied that this could be obtained from the jp@gc - Active Threads Over Time report.

Question: What is the count of users doing various activities (browsing the catalog, ordering, changing
address, entering payment information, etc.) on the web site?

Answer: Alex said that this could be obtained by using the User Load Pattern table.

To simulate a load of 100,000 users, the number of threads (users) for each use-case can be calculated using
the % distribution detailed in the table.

Question: How do you simulate varying user-load patterns based on the time of the day and duration?

Answer: Alex replied that he would configure the Scheduler field of Thread Group.

Question: How do you run the performance test for multiple days?

Answer: Alex replied that he could configure the thread group scheduler, loop controller, and timer to
continuously run the test for a few days.

Figure 11-44.  Digital Toys main test (see color image in source code file)

Chapter 11 ■ Case Study: Digital Toys Inc.

298

■■ Note  For a set of standard graphs and performance metrics, refer to Chapter 12, “Performance Dashboard”.

Using Distributed Environment
Alex had now established a test framework and a test suite, which he could run time and again for each new build.

Alex updated the performance testing environment from one machine to multiple machines to generate
more load on the application. For this, he configured JMeter in master-slave mode.

DTContinueShoppingTestPlan.jmx44 is a good candidate for starting with performance testing in
distributed testing environment.

Before starting, Alex created a distinct user list for each of the slaves. He started with vm01 (Figure 11-45)
and vm02 (Figure 11-46) as two slaves and placed continue-shopping.csv in the $JMETER_HOME/bin
directory of each of these VMs. This helps in isolating users from each of the slaves.

Figure 11-45.  Users list VM01

Figure 11-46.  Users list VM02

44https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTContinueShoppingTestPlan.jmx

http://dx.doi.org/10.1007/978-1-4842-2961-3_12
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_11/DTContinueShoppingTestPlan.jmx

Chapter 11 ■ Case Study: Digital Toys Inc.

299

Before starting the test, Alex configured the listeners to write to a file so that after the test, he could load
it into JMeter GUI and review performance results (see Figure 11-47).

Alex also set up the PerfMon Server Agent on the application server and configured it in the JMeter
test script so that he could monitor CPU, memory, and network, while executing tests from the slaves
(see Figure 11-48).

Alex ran the test from the console and showed the output here:

C:\>jmeter -n -t DTContinueShoppingTestPlan.jmx -r
Writing log file to: C:\github\jmeter-test-scripts\case-study\jmeter.log
Creating summariser <summary>
Created the tree successfully using DTContinueShoppingTestPlan.jmx
Configuring remote engine: 192.168.1.7
Configuring remote engine: 192.168.1.8
Starting remote engines
Starting the test @ Thu May 18 10:47:34 PDT 2017 (1495129654354)
Remote engines have been started
Waiting for possible Shutdown/StopTestNow/Heapdump message on port 4445
summary = 216 in 00:01:46 = 2.0/s Avg: 86 Min: 0 Max: 930 Err: 0 (0.00%)
Tidying up remote @ Thu May 18 10:49:23 PDT 2017 (1495129763436)
... end of run
C:\github\jmeter-test-scripts\case-study>

Figure 11-47.  Filename aggregate report

Figure 11-48.  Filename PerfMon report

Chapter 11 ■ Case Study: Digital Toys Inc.

300

The vm01 log’s output is as follows.

C:\apache-jmeter-3.0\bin>jmeter-server
Could not find ApacheJmeter_core.jar ...
... Trying JMETER_HOME=..
Found ApacheJMeter_core.jar
Writing log file to: C:\apache-jmeter-3.0\bin\jmeter-server.log
Created remote object: UnicastServerRef [liveRef: [endpoint:[192.168.1.7:53129]
(local),objID:[-34fbde0b:15c1c9dba9e:-7fff, 770769319327732
0207]]]
Starting the test on host 192.168.1.7 @ Thu May 18 10:47:09 PDT 2017 (1495129629730)
Finished the test on host 192.168.1.7 @ Thu May 18 10:48:56 PDT 2017 (1495129736089)

The vm02 log’s output is as follows:

C:\>jmeter-server
Could not find ApacheJmeter_core.jar ...
... Trying JMETER_HOME=..
Found ApacheJMeter_core.jar
Writing log file to: C:\apache-jmeter-3.0\bin\jmeter-server.log
Created remote object: UnicastServerRef [liveRef: [endpoint:[192.168.1.8:49568](local),objID
:[19039a4:15c1c9de321:-7fff, 9104153584973333192]]]
Starting the test on host 192.168.1.8 @ Thu May 18 10:47:09 PDT 2017 (1495129629182)
Finished the test on host 192.168.1.8 @ Thu May 18 10:48:55 PDT 2017 (1495129735393)

The aggregate report captures the data of both the slaves. Alex has 10 threads configured in the test, and
with two slaves, that becomes 20 (see Figures 11-49 and 11-50).

Figure 11-49.  Aggregate report distributed load

Chapter 11 ■ Case Study: Digital Toys Inc.

301

■■ Tip  Use a distributed testing environment to generate more load on the application under test.

Performance Testing and Tuning Cycle
The team iterated through a few rounds of performance testing, followed by performance enhancements
and tuning. After a few rounds, the performance improved and the web application met the established
performance goals.

Outcome
After the new version of Digital Toys Inc. web application was deployed, Bob reviewed the analytics report
and was pleased to see a decrease in response time and an increase in user engagement.

Figure 11-50.  PerfMon report distributed load (see color image in source code file)

Chapter 11 ■ Case Study: Digital Toys Inc.

302

After one month, in the senior management meeting, the Customer Support Manager reported a
decrease in support calls. Nancy, the CFO, reported an increase in revenue.

Martin, the CEO, was very pleased with the overall teamwork and the outcome of the performance testing
and tuning project. He thanked the team and recognized the importance of performance testing and tuning.
He allocated a budget and made performance testing and tuning mandatory for every production release.

Conclusion
In this chapter, you learned how Digital Toys Inc. solved its business problem by using JMeter for
performance test automation. You also learned how Alex planned from start to end and involved all the
stakeholders along the way. In the next chapter, you learn about the APDEX index and its use in analyzing
performance test results. You will also generate Performance Dashboards, which will be useful in
understanding load patterns. You will also learn about JVisualVM, which comes with Java by default.

303© Sai Matam and Jagdeep Jain 2017
S. Matam and J. Jain, Pro Apache JMeter, DOI 10.1007/978-1-4842-2961-3_12

CHAPTER 12

Performance Dashboard

This chapter discusses how to customize and generate the Performance Dashboard.
At the end of this chapter, you will have a good idea of the Performance Dashboard, including how it

should be generated and how to interpret it.

JMeter 3.0 introduced the concept of the Performance Dashboard, using which you can monitor and analyze
the performance of the web application under the test. It consists of a standard set of performance metrics
and graphs. These can be customized to suit specific needs.

APDEX
APDEX stands for Application Performance Index.1 It calculates a user satisfaction score, taking into account
user satisfaction levels.

The users are satisfied if the response times are below a certain threshold. The users who are tolerating
are unhappy with the web site performance but continue to use it grudgingly. The users who are frustrated
have exhausted their patience and abandon the web site Figure 12-1 shows the formula and Table 12-1
shows the APDEX levels.

Configuration
JMeter 3.0 has provided several properties to configure the Performance Dashboard. These properties are
present in the reportgenerator.properties file and they have to be copied to the user.properties file.
These properties have to be updated as per the requirements for generating graphs.

Figure 12-1.  APDEX user satisfaction formula

Table 12-1.  APDEX Levels

Satisfied response time < t Users are satisfied

Tolerating response time >= t and < 4t Users are tolerating

Frustrated response time > 4t Users are frustrated

1https://en.wikipedia.org/wiki/Apdex

https://en.wikipedia.org/wiki/Apdex

Chapter 12 ■ Performance Dashboard

304

The following sections provide the details to generate and customize the Performance Dashboard.

JMeter Properties
The following properties need to be set to true to allow the generation of graphs under the
jmeter.properties files.

jmeter.save.saveservice.label=true
jmeter.save.saveservice.response_code=true
jmeter.save.saveservice.response_message=true
jmeter.save.saveservice.successful=true
jmeter.save.saveservice.thread_name=true
jmeter.save.saveservice.thread_counts=true
jmeter.save.saveservice.latency=true
jmeter.save.saveservice.bytes=true
.
.
.
Timestamp format - this only affects CSV output files
legitimate values: none, ms, or a format suitable for SimpleDateFormat
jmeter.save.saveservice.timestamp_format=ms
jmeter.save.saveservice.timestamp_format=yyyy/MM/dd HH:mm:ss.SSS

We can generate the dashboard in a single step via the command line. Alternatively, the test is run and
the output is captured to a .csv file, which is then used to generate the Performance Dashboard.

APDEX
The following properties under the reportgenerator.properties file are used to configure the satisfaction
and tolerance thresholds.

Sets the satisfaction threshold for the APDEX calculation (in milliseconds).
jmeter.reportgenerator.apdex_satisfied_threshold=500
Sets the tolerance threshold for the APDEX calculation (in milliseconds).
jmeter.reportgenerator.apdex_tolerated_threshold=1500

Global Graph Properties
The following properties are used to set the granularity of the generated graphs.

Regular Expression which Indicates which samples to keep for graphs and statistics
generation.
Empty value means no filtering
#jmeter.reportgenerator.sample_filter=

Sets the size of the sliding window used by percentile evaluation.
Caution : higher value provides a better accuracy but needs more memory.
#jmeter.reportgenerator.statistic_window = 200000

Chapter 12 ■ Performance Dashboard

305

Configure this property to change the report title
#jmeter.reportgenerator.report_title=Apache JMeter Dashboard

Defines the overall granularity for over time graphs
jmeter.reportgenerator.overall_granularity=60000

Sets the destination directory for generated html pages.
This will be overridden by the command line option -o
#jmeter.reportgenerator.exporter.html.property.output_dir=report-output

You can customize the title of the Performance Dashboard by configuring the report_title property.
You can also configure granularity of generated graphs by updating the overall_granularity property.
The samplers that will appear in the graphs can be filtered by updating the sample_filter property

with a suitable regular expression.
We can use the -o option to specify the output directory for the reports. This can be overridden by

configuring the output_dir property in the user.properties file.

Specific Graph Properties
There are a number of graphs that are generated as a part of the Performance Dashboard. The Response
Time Vs Request graph is shown here.

Response Time Vs Request graph definition
jmeter.reportgenerator.graph.responseTimeVsRequest.classname=org.apache.jmeter.report.
processor.graph.impl.ResponseTimeVSRequestGraphConsumer

jmeter.reportgenerator.graph.responseTimeVsRequest.title=Response Time Vs Request

jmeter.reportgenerator.graph.responseTimeVsRequest.exclude_controllers=true

jmeter.reportgenerator.graph.responseTimeVsRequest.property.set_granularity=${jmeter.
reportgenerator.overall_granularity}

It is a best practice to have the names of the transactions appear in the graph. To achieve, that do the
following:

	 1.	 Name the Transaction Controller appropriately.

	 2.	 Enable the Generate Parent Sample checkbox (see Figure 12-2).

Chapter 12 ■ Performance Dashboard

306

	 3.	 Configure the following property as false:

jmeter.reportgenerator.graph.responseTimeVsRequest .exclude_controllers=false

The data points are aggregated based on the granularity, which can be configured using the following:

jmeter.reportgenerator.graph.responseTimeVsRequest.property.set_granularity=${jmeter.
reportgenerator.overall_granularity}

Generating Graphs
To generate the dashboard in a single step, execute the following command in the CMD prompt.

jmeter -n -t <TestName.jmx> -l <logFileName>.jtl -e -o <path of the directory which is used
to store Performance Dashboard>

For example:
jmeter -n -t DTFirstOrderTestPlan.jmx -l dt-firstordertest-plan.jtl -e -o C:\tmp\
performance-dashboard\

Make sure that the output directory exists and is writable.

■■ Tip  Review the jmeter.log file for errors.

Performance Dashboard Graphs
The Performance Dashboard serves two purposes:

•	 Confirms that the test ran as planned with the required user activity and without any
errors.

•	 Obtains the performance metrics.

Let’s look at an example to generate the Performance Dashboard.

Figure 12-2.  Generate parent sample

Chapter 12 ■ Performance Dashboard

307

Follow these steps or download DTPerformanceDashBoardTestPlan.jmx.2

	 1.	 Start JMeter.

	 2.	 Go to File ➤ Open and select the DTFirstOrderTestPlan.jmx file.

	 3.	 Click on Test Plan and update it with a meaningful name, such as Performance
Dashboard Test.

	 4.	 Click on Thread Group, then configure Number of Threads (users) as 100 and
Ramp-Up Period (in seconds) as 100.

	 5.	 Save the test plan as DTPerformanceDashBoardTestPlan.jmx.

	 6.	 Start JVisualVM from the $JAVA_HOME/bin directory to gather CPU and memory
usage of the web application. This will help in correlating the data with the
Performance Dashboard.

	 7.	 Execute the following command in the CMD prompt.

jmeter -n -t DTPerformanceDashBoardTestPlan.jmx -l dt-performance-dashboard-
test-plan.jtl -e -o C:\tmp\performance-dashboard\

	 8.	 To open the Performance Dashboard, navigate to the directory
C:\tmp\performance-dashboard\ and open the index.html file.

The results derived from the Performance Dashboard are shown here.
The following table shows that the APDEX number is .97 (see Figure 12-3), which indicates high user

satisfaction.

Figure 12-3.  APDEX number

2https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_12/
DTPerformanceDashBoardTestPlan.jmx

https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_12/DTPerformanceDashBoardTestPlan.jmx
https://github.com/Apress/pro-apache-jmeter/blob/master/Matam_Ch_12/DTPerformanceDashBoardTestPlan.jmx

Chapter 12 ■ Performance Dashboard

308

The Response Time Over Time graph illustrates how the response time changes over time. It draws our
attention to times when the response time was out of acceptable limits. Any such discrepancies should be
investigated by the team. From Figure 12-4, it is noted that the response time spiked twice: once at 23:33:00
and once at 23:41:00 (see Figure 12-4).

The reason for the spikes can be inferred from the JVisualVM graph. You can see that the CPU also
spiked at the same time. The spike at 23:33:00 was due to general reasons and the spike at 23:41:00 can be
attributed to a garbage collection (GC) activity at the same time (see Figure 12-5).

Figure 12-4.  Response time over time (see color image in source code file)

Chapter 12 ■ Performance Dashboard

309

The Bytes Throughput Over Time graph shows data transfer during the request and response. This
is especially useful when your web application is data intensive. For example, for a photo or a file sharing
application (see Figure 12-6).

Figure 12-5.  JVisualVM statistics

Figure 12-6.  Bytes throughput over time

Chapter 12 ■ Performance Dashboard

310

The Hits Per Second graph shows user activity on the web site. By looking at this graph, you can be
assured that the web application was subjected to the desired load (see Figure 12-7).

The Codes Per Second graph shows HTTP response codes returned from the server. This graph is useful
to confirm that there were no excessive errors while load testing the web application (see Figure 12-8).

The Transactions Per Second graph shows the number of transactions for each use-case. This is useful
to confirm that the web application is getting the proper load with the desired mix of transactions
(see Figure 12-9).

Figure 12-8.  Codes per second

Figure 12-7.  Hits per second

Chapter 12 ■ Performance Dashboard

311

The Response Time Percentiles graph shows the response time deviation (refer APDEX) (see Figure 12-10).

The Active Threads Over Time graph shows that the number of active users (Threads) are as planned
(see Figure 12-11).

Figure 12-9.  Transactions per second (see color image in source code file)

Figure 12-10.  Response time percentiles (see color image in source code file)

Chapter 12 ■ Performance Dashboard

312

The Time Vs Threads graph shows the number of users (Threads) engaged in a particular transaction
over time. In the graph, you can select transactions to compare (see Figure 12-12).

Figure 12-12.  Time vs threads (see color image in source code file)

Figure 12-11.  Active threads over time

Chapter 12 ■ Performance Dashboard

313

The Response Time Distribution graph shows the response time distribution to identify outliers
(see Figure 12-13).

Conclusion
In this chapter, you learned to configure and generate the Performance Dashboard. You also learned to
interpret the results.

Figure 12-13.  Response time distribution

315© Sai Matam and Jagdeep Jain 2017
S. Matam and J. Jain, Pro Apache JMeter, DOI 10.1007/978-1-4842-2961-3_13

CHAPTER 13

Appendix A: Setting Up JMeter

In the following sections we describe the installation of Java Development Kit (JDK) and JMeter. We use the
JMeter executable to start JMeter.

■■ Note  Readers who are already familiar with JMeter setup can start directly with the first chapter.

MacOSX
The following section explains how to install Java and JMeter on MacOSX. If you are using Windows or
Linux, skip to the appropriate section.

Download JDK
Download the Java Development Kit (JDK) from Oracle’s web site.1

JMeter requires Java Runtime Environment (JRE) to run. But for some of the advanced uses, we
recommend installing a complete development environment. Pick the latest JDK version for MacOSX.
This is usually found on the web page by name (jdk-8u60-macosx-x64.dmg). Double-click it and follow the
instructions on the screen (see Figures 13-1 and 13-2).

Figure 13-1.  Launch the installer

1http://java.oracle.com

http://java.oracle.com/

Chapter 13 ■ Appendix A: Setting Up JMeter

316

Install JDK
Follow the instructions and complete the installation. To verify the installation of the Java runtime, run the
following command in the terminal window.

$ java -version
java version "1.8.0_60" Java(TM)
SE Runtime Environment (build 1.8.0_60-b27)
Java HotSpot(TM) 64-Bit Server VM (build 25.60-b23, mixed mode)

Set Up the Environment Variable
To set the JAVA_HOME environment variable, run the following commands in the terminal window.

Open ~/.bash_profile in your favorite editor.

$ vim ~/.bash_profile

Or

$ vim ~/.profile

Add the following line to the file:

export JAVA_HOME=$(/usr/libexec/java_home)

Log out from the current terminal window and open a new terminal window to pick up the new
changes. Or, you can run the following command in the current terminal window.

$ source ~/.bash_profile or source ~/.profile

Figure 13-2.  Accept the installer defaults to install JDK

Chapter 13 ■ Appendix A: Setting Up JMeter

317

Issue the following command to verify that JAVA_HOME has been set under the environment variables.

$ echo $JAVA_HOME
/Library/Java/JavaVirtualMachines/jdk1.8.0_60.jdk/Contents/Home

Issue the following command to verify that JDK has been installed properly and you have Performance
Dashboard environment variable. (This verifies the Java compiler.)

$ javac -version
javac 1.8.0_60

Download JMeter
Download JMeter from the Apache web site.2

Pick the latest version of JMeter; as of now, the latest JMeter available is apache-jmeter-3.0.tgz.

Set Up JMeter
Setting up JMeter just involves extracting the JMeter binaries into the user-defined location on the user
machine. Assuming the downloaded JMeter binaries are in your Downloads folder, run the following
command in the terminal window.

$ tar -xf ~/Downloads/apache-jmeter-3.0.tgz -C /usr/local/

Issue the following command in your terminal window to verify that you have extracted the JMeter
binaries correctly.

$ cd /usr/local/apache-jmeter-3.0/
$ ls -1p
LICENSE
NOTICE
README
bin/
docs/
extras/
lib/
licenses/
printable_docs/

It is good practice to set up the JMETER_HOME environment variable and add the following lines to the PATH.
Open ~/.bash_profile or ~/.profile to your favorite editor.

$ vim ~/.bash_profile

Or

$ vim ~/.profile

2https://archive.apache.org/dist/jmeter/binaries/apache-jmeter-3.0.tgz

https://archive.apache.org/dist/jmeter/binaries/apache-jmeter-3.0.tgz

Chapter 13 ■ Appendix A: Setting Up JMeter

318

And add the following lines.

export JMETER_HOME="/usr/local/apache-jmeter-3.0"
export PATH="$PATH:$JMETER_HOME/bin"

Log out from the current terminal window and open a new terminal window to pick up the changes.
Or you can run the following command in the current terminal window.

$ source ~/.bash_profile or source ~/.profile

Now that you have set up JMeter, you can start JMeter by running the startup script.
Run the following command in the terminal window (see Figure 13-3).

$ jmeter

Figure 13-3.  JMeter GUI

Windows
The following section shows you how to install Java and JMeter on Windows 7. If you are using MacOSX or
Linux, skip to the appropriate section.

Download JDK
Download the Java Development Kit (JDK) from Oracle’s web site.3

3http://java.oracle.com

http://java.oracle.com/

Chapter 13 ■ Appendix A: Setting Up JMeter

319

JMeter requires just the Java Runtime Environment (JRE) to run. But for some of the advanced uses,
we recommend installing a complete development environment. Pick the latest JDK for Windows. This is
usually found on the web page by name. They are called jdk-8u60-windows-x64.exe for 64-bit and
jdk-8u60windows-i586.exe for 32-bit. Depending on your machine configuration, download the required JDK.

Install JDK
Double-click the executable to launch the installer and follow the instructions (see Figures 13-4, 13-5, and 13-6).

Figure 13-4.  Installer step 1

Figure 13-5.  Installer step 2

Chapter 13 ■ Appendix A: Setting Up JMeter

320

To verify the installation of Java runtime, run the following command on the Windows command prompt.

C:\> java -version
java version "1.8.0_60" Java(TM)
SE Runtime Environment (build 1.8.0_60-b27)
Java HotSpot(TM) 64-Bit Server VM (build 25.60-b23, mixed mode)
C:\>

Set Up the Environment Variable
To set the JAVA_HOME environment variable, run the following commands on the Windows command prompt.

C:\> setx JAVA_HOME "C:\Program Files\Java\jdk1.8.0_60"
C:\> setx PATH "%PATH%;%JAVA_HOME%\bin";

Close the Windows command prompt.
Issue the following command to verify that JAVA_HOME has been set under the environment variables.

C:\> echo %JAVA_HOME%
C:\Program Files\Java\jdk1.8.0_60

Issue the following command to verify that JDK has been installed properly and you have set the correct
environment variable. (This verifies the Java compiler.)

C:\> javac -version
javac 1.8.0_60

Figure 13-6.  Installer step 3

Chapter 13 ■ Appendix A: Setting Up JMeter

321

Download JMeter
Download JMeter from the Apache web site.4

Pick the latest version of JMeter; as of the writing of this book, the latest JMeter available is
apachejmeter-3.0.zip.

Set Up JMeter
Setting up JMeter involves extracting the JMeter binaries at a user-defined location. Navigate to your
Downloads folder where you have downloaded the binaries, right-click the file, choose Extract All, and then
follow the instructions on the screen.

Once the extraction is complete, navigate to the JMeter folder to see the contents. The results will
resemble Figure 13-7.

It is a good practice to set up the JMETER_HOME environment variable and add this into the PATH.

C:\> setx JMETER_HOME "C:\apache-jmeter-3.0"
C:\> setx PATH "%PATH%;%JMETER_HOME%\bin";

Figure 13-7.  JMeter contents

4https://archive.apache.org/dist/jmeter/binaries/apache-jmeter-3.0.zip

https://archive.apache.org/dist/jmeter/binaries/apache-jmeter-3.0.zip

Chapter 13 ■ Appendix A: Setting Up JMeter

322

To start Jmeter, run the following command on your Windows command prompt.

C:\> cd C:\apache-jmeter-3.0\bin
C:\apache-jmeter-3.0\bin> jmeter.bat

You will see something similar to Figure 13-8.

Linux
The following section explains how to install Java and JMeter on Linux. If you are using MacOSX or
Windows, skip to the appropriate section.

Install JDK
On Fedora, Oracle Linux, and Red Hat Enterprise Linux, open the terminal window and issue the following
command.

$ su -c "yum install java-1.8.0-openjdk"

Open JDK Java 8 was released in March 2014 and has been made into official Ubuntu repositories for
14.10 Utopic and higher. For Ubuntu 14.04, Ubuntu 12.04, and Linux Mint 17, you have to install it from PPA.
It’s available in Ubuntu Software Center for Ubuntu 14.10 and Ubuntu 15.04.

Open the terminal window in Ubuntu and issue the following command.

$ sudo add-apt-repository ppa:openjdk-r/ppa
$ sudo apt-get update
$ sudo apt-get install openjdk-8-jdk

Figure 13-8.  JMeter GUI

Chapter 13 ■ Appendix A: Setting Up JMeter

323

For more information on JDK installation, check the JDK installation web site.5

To verify the installation of Java runtime, run the following command in the terminal window.

$ java -version
openjdk version "1.8.0_45-internal"
OpenJDK Runtime Environment (build 1.8.0_45-internal-b14)
OpenJDK 64-Bit Server VM (build 25.45-b02, mixed mode)

Set Up the Environment Variable
To set the JAVA_HOME environment variable, run the following commands in the terminal window.

Open ~/.bashrc in your favorite editor.

$ gedit ~/.bashrc

Add the following lines.

export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-adm64
PATH=$PATH:$JAVA_HOME/bin

Log out from the current terminal window and open a new terminal window to pick up the changes.
Or you can run the following command in the current terminal window.

$ source ~/.bashrc

Issue the following command to verify that JAVA_HOME has been set under the environment variables.

$ echo $JAVA_HOME
/usr/lib/jvm/java-8-openjdk-adm64

Issue the following command to verify that JDK has been installed properly and you have set the correct
environment variable. (This verifies the Java compiler.)

$ javac -version
javac 1.8.0_45-internal

Download JMeter
Download JMeter from the Apache web site.6

Pick the latest version of JMeter; as of the writing of this book, the latest JMeter available is
apachejmeter-3.0.tgz.

5http://openjdk.java.net/install/
6https://archive.apache.org/dist/jmeter/binaries/apache-jmeter-3.0.tgz

http://openjdk.java.net/install/
https://archive.apache.org/dist/jmeter/binaries/apache-jmeter-3.0.tgz

Chapter 13 ■ Appendix A: Setting Up JMeter

324

Set Up JMeter
Setting up JMeter just involves extracting the JMeter binaries at a user-defined location. Assuming the
downloaded JMeter binaries are in your Downloads folder, run the following command in the terminal
window.

$ sudo tar -xf ~/Downloads/apache-jmeter-3.0.tgz -C /usr/ local/

Issue the following command in your terminal window to verify that you have extracted JMeter
binaries correctly.

$ cd /usr/local/apache-jmeter-3.0/
$ ls -1p
bin/
docs/
extras/
lib/
LICENSE
licenses/
NOTICE
printable_docs/
README

It is good practice to set up the JMETER_HOME environment variable and add this into the PATH.
Open ~/.bashrc in your favorite editor and add the following lines.

$ gedit ~/.bashrc

Add the following lines.

export JMETER_HOME="/usr/local/apache-jmeter-3.0"
export PATH=$PATH:$JMETER_HOME/bin

Log out from the current terminal window and open a new terminal window to pick up the changes.
Or you can run the following command in the current terminal window.

$ source ~/.bashrc

Now that you have set up JMeter, you can start JMeter by running the JMeter startup script.
Run the following command in the terminal window (see Figure 13-9).

$ jmeter

Chapter 13 ■ Appendix A: Setting Up JMeter

325

■■ Note  Going forward, we use Windows-based examples, but you can use the same steps on MacOS or any
Linux OS.

Figure 13-9.  JMeter GUI Ubuntu

327© Sai Matam and Jagdeep Jain 2017
S. Matam and J. Jain, Pro Apache JMeter, DOI 10.1007/978-1-4842-2961-3_14

CHAPTER 14

Appendix B: Setting Up Digital
Toys Inc.

We have used the Digital Toys Inc. web application for explaining the examples in this book. We describe
setting up this web application in this chapter.

Running Digital Toys Web Application
Clone the GitHub repository1 or download it as a .zip from the URL.

After extracting the .zip in some location on your machine and listing the files in the extracted folder,
you will find these files.

•	 jetty-runner.jar

•	 dt-1.0.war

•	 startDt.sh

•	 startDt.bat

Use .bat if you are using Windows environment, otherwise use .sh.

■■ Note  Make sure that you have JDK 8.0 installed on your machine. The Digital Toys Inc. web application
has been complied using JDK 8.0.

Start the Web Application
Enter the following command in the Windows command prompt.

C:\>startDt.bat

C:\>java -jar jetty-runner.jar dt-1.0.war

2017-05-15 10:53:10.005:INFO::main: Logging initialized @872ms
2017-05-15 10:53:10.045:INFO:oejr.Runner:main: Runner

1https://github.com/Apress/pro-apache-jmeter/tree/master/digital-toys-web-application

https://github.com/Apress/pro-apache-jmeter/tree/master/digital-toys-web-application

Chapter 14 ■ Appendix B: Setting Up Digital Toys Inc.

328

2017-05-15 10:53:10.584:INFO:oejs.Server:main: jetty-9.3.7.v20160115
2017-05-15 10:53:52.719:INFO:/:main: No Spring WebApplicationInitializer types detected on
classpath
SESSION_IN_URL not specified.
2017-05-15 10:53:57.182:INFO:/:main: Initializing Spring root WebApplicationContext
SESSION_IN_URL not specified.
Populating states
 State: [Alabama, AL] -- Alabama and AL
 State: [Alaska, AK] -- Alaska and AK
 State: [Arizona, AZ] -- Arizona and AZ
 State: [Arkansas, AR] -- Arkansas and AR
 State: [California, CA] -- California and CA
 State: [Colorado, CO] -- Colorado and CO
 State: [Connecticut, CT] -- Connecticut and CT
 State: [Delaware, DE] -- Delaware and DE
 State: [Florida, FL] -- Florida and FL
 State: [Georgia, GA] -- Georgia and GA
 State: [Hawaii, HI] -- Hawaii and HI
 State: [Idaho, ID] -- Idaho and ID
 State: [Illinois, IL] -- Illinois and IL
 State: [Indiana, IN] -- Indiana and IN
 State: [Iowa, IA] -- Iowa and IA
 State: [Kansas, KS] -- Kansas and KS
 State: [Kentucky, KY] -- Kentucky and KY
 State: [Louisiana, LA] -- Louisiana and LA
 State: [Maine, ME] -- Maine and ME
 State: [Maryland, MD] -- Maryland and MD
 State: [Massachusetts, MA] -- Massachusetts and MA
 State: [Michigan, MI] -- Michigan and MI
 State: [Minnesota, MN] -- Minnesota and MN
 State: [Mississippi, MS] -- Mississippi and MS
 State: [Missouri, MO] -- Missouri and MO
 State: [Montana, MT] -- Montana and MT
 State: [Nebraska, NE] -- Nebraska and NE
 State: [Nevada, NV] -- Nevada and NV
 State: [New Hampshire, NH] -- New Hampshire and NH
 State: [New Jersey, NJ] -- New Jersey and NJ
 State: [New Mexico, NM] -- New Mexico and NM
 State: [New York, NY] -- New York and NY
 State: [North Carolina, NC] -- North Carolina and NC
 State: [North Dakota, ND] -- North Dakota and ND
 State: [Ohio, OH] -- Ohio and OH
 State: [Oklahoma, OK] -- Oklahoma and OK
 State: [Oregon, OR] -- Oregon and OR
 State: [Pennsylvania, PA] -- Pennsylvania and PA
 State: [Rhode Island, RI] -- Rhode Island and RI
 State: [South Carolina, SC] -- South Carolina and SC
 State: [South Dakota, SD] -- South Dakota and SD
 State: [Tennessee, TN] -- Tennessee and TN
 State: [Texas, TX] -- Texas and TX
 State: [Utah, UT] -- Utah and UT

Chapter 14 ■ Appendix B: Setting Up Digital Toys Inc.

329

 State: [Vermont, VT] -- Vermont and VT
 State: [Virginia, VA] -- Virginia and VA
 State: [Washington, WA] -- Washington and WA
 State: [West Virginia, WV] -- West Virginia and WV
 State: [Wisconsin, WI] -- Wisconsin and WI
 State: [Wyoming, WY] -- Wyoming and WY
Populating products
2017-05-15 10:54:32.277:INFO:/:main: Initializing Spring FrameworkServlet 'grails'
2017-05-15 10:54:33.567:INFO:oejsh.ContextHandler:main: Started o.e.j.w.WebAppContext@707f70
52{/,file:///C:/Users/jjain/AppData/Local/Temp/je
tty-0.0.0.0-8080-dt-1.0.war-_-any-2712378741143744577.dir/webapp/,AVAILABLE}{..}
2017-05-15 10:54:33.751:INFO:oejs.ServerConnector:main: Started ServerConnector@3a2a56f6
{HTTP/1.1,[http/1.1]}{0.0.0.0:8080}
2017-05-15 10:54:33.759:INFO:oejs.Server:main: Started @84653ms

If you want to start the Digital Toys Inc. web application on a different port, enter this command in the
CMD prompt:

C:\>java -jar jetty-runner.jar --port 7070 dt-1.0.war

2017-05-21 17:14:10.317:INFO::main: Logging initialized @387ms
2017-05-21 17:14:10.347:INFO:oejr.Runner:main: Runner
2017-05-21 17:14:10.657:INFO:oejs.Server:main: jetty-9.3.7.v20160115
2017-05-21 17:14:27.002:INFO:/:main: No Spring WebApplicationInitializer types detected on
classpath
SESSION_IN_URL not specified.
2017-05-21 17:14:28.094:INFO:/:main: Initializing Spring root WebApplicationContext
SESSION_IN_URL not specified.
Populating products
2017-05-21 17:14:44.414:INFO:/:main: Initializing Spring FrameworkServlet 'grails'
2017-05-21 17:14:45.304:INFO:oejsh.ContextHandler:main: Started o.e.j.w.WebAppContext@707f70
52{/,file:///C:/Users/jjain/A
ppData/Local/Temp/jetty-0.0.0.0-7070-dt-1.0.war-_-any-5504021582514241800.dir/
webapp/,AVAILABLE}{..}
2017-05-21 17:14:45.344:INFO:oejs.ServerConnector:main: Started ServerConnector@6d035815
{HTTP/1.1,[http/1.1]}{0.0.0.0:70 70}
2017-05-21 17:14:45.344:INFO:oejs.Server:main: Started @35417ms
Found 108 products

Open the browser and launch http://localhost:8080/dt. A home page will be shown as the landing
page of the Digital Toys Inc. web application (see Figure 14-1).

Chapter 14 ■ Appendix B: Setting Up Digital Toys Inc.

330

Start with URL Rewriting Enabled
Enter the following command in the CMD prompt:

C:\>set SESSION_IN_URL=true

C:\>startDt.bat

C:\>java -jar jetty-runner.jar dt-1.0.war
2017-05-15 11:15:53.013:INFO::main: Logging initialized @518ms
2017-05-15 11:15:53.036:INFO:oejr.Runner:main: Runner
2017-05-15 11:15:53.358:INFO:oejs.Server:main: jetty-9.3.7.v20160115
2017-05-15 11:16:16.901:INFO:/:main: No Spring WebApplicationInitializer types detected on
classpath
SESSION_IN_URL specified in environment - enabling session in URL if cookies are not enabled.
2017-05-15 11:16:19.121:INFO:/:main: Initializing Spring root WebApplicationContext
SESSION_IN_URL specified in environment - enabling session in URL if cookies are not enabled.
Populating products

Figure 14-1.  Digital Toys landing page

Chapter 14 ■ Appendix B: Setting Up Digital Toys Inc.

331

2017-05-15 11:16:51.178:INFO:/:main: Initializing Spring FrameworkServlet 'grails'
2017-05-15 11:16:52.225:INFO:oejsh.ContextHandler:main: Started o.e.j.w.WebAppContext@707f70
52{/,file:///C:/Users/jjain/AppData/Local/Temp/je
tty-0.0.0.0-8080-dt-1.0.war-_-any-4592381167383482346.dir/webapp/,AVAILABLE}{..}
2017-05-15 11:16:52.266:INFO:oejs.ServerConnector:main: Started ServerConnector@552fffc8
{HTTP/1.1,[http/1.1]}{0.0.0.0:8080}
2017-05-15 11:16:52.268:INFO:oejs.Server:main: Started @59776ms

■■ Tip  Rev This is required for running the preprocessors test plan.

Clean Up
After jetty-runner has started, it will create two files.

Open the CMD prompt and execute the following command:

C:\>dir prodDb*
 Volume in drive C has no label.
 Volume Serial Number is DA32-01EE

 Directory of C:\

05/15/2017 11:17 AM 124,928 prodDb.h2.db
05/15/2017 11:16 AM 24,033 prodDb.trace.db
 2 File(s) 148,961 bytes
 0 Dir(s) 7,259,287,552 bytes free

C:\>

These files save data. They are useful for deleting files before starting with a fresh chapter.

333© Sai Matam and Jagdeep Jain 2017
S. Matam and J. Jain, Pro Apache JMeter, DOI 10.1007/978-1-4842-2961-3

�       � A, B, C
Case study

exclude regular expression, 253, 255–258

�       � D, E
Distributed testing, 165, 167–177

batch mode, 173–174
custom implementation mode, 175
DiskStore mode, 174
GUI Mode, 171–172
hold mode, 174
limitations, 177
master-slave, 167, 172, 173
server port, 172, 173
statistical mode, 174
StrippedAsynch mode, 175
StrippedBatch mode, 175
StrippedDiskStore mode, 174
Stripped mode, 174–175
unreachable remote host, 176–177

�       � F, G, H, I
First JMeter Test

assertions, 14
configuration elements, 14
controller, 14
executing a single test, 23
GUI mode, 21–22
listener, 14
post-processor, 15
pre-processor, 15
proxy server setting, 24
sampler, 14
start JMeter in server mode, 24
stop/shutdown JMeter, 24
test plan, 13
thread groups, 13
timer, 14

Foundation
why JMeter?, 2
why performance testing?, 1

�       � J, K, L, M, N, O
JMeter best practices

CSV data set config, 192–194
HTTP cookie manager, 184
HTTP request defaults, 179–180

JMeter Plugins
JMeter Plugins at Google Code (JP@GC), 211
JMeter Properties, 218
PerfMon, 211–219
ServerAgent, 212–214

JMeter Recipes
FTP-performance

file transfer protocol (FTP), 228–230
JDBC performance testing

JDBC test plan, 224–227
mobile performance testing

characters per second (cps), 234
mobile device, 234, 235
User-Agent, 234

REST-JSON performance testing
HttpClient4, 231
REST, 230–232

SOAP performance testing
SOAP, 237–242

JMeter test plan components
assertions

apply to, 129
assertion results listener, 128
pattern matching rules, 128–130
pattern to test, 130–138
response assertion, 128
response field to test, 129

Controller
ForEach Controller, 85–87
If Controller, 87–92
Interleave Controller, 76–81

Index

■ INDEX

334

Loop Controller, 68–70
Once Only Controller, 74–76
Random Controller, 81
Random Order Controller, 81–82
Runtime Controller, 70–72
Simple Controller, 64–65
Switch Controller, 82–84
Throughput Controller, 72–74
Transaction Controller, 65–68

Listener, 138
Aggregate Report Listener, 150–152
View Results In Table, 147–149
View Results Tree, 141–147

post processors
regular expression extractor, 152–157

pre processors
HTTP URL re-writing modifier, 61–63

properties and variables, 157–165
JSR223 PostProcessor, 162
properties
user defined variables (UDV), 157, 158,

161–163
variables, 157

sampler
Body Data, 117–119
Browser-compatible headers, 116
Embedded Resources for HTML Files, 124–126
Follow Redirect, 112–114
HTTPClient, 106–109
HTTP Request, 106
Implementation HTTP Request Sampler,

106–109
MD5 hash?, 126–127
MIME Type, 120–122
Option Task, 126–127
proxy server, 123
Redirect Automatically, 110–112
Send Files With the Request, 120–123
Send Parameter With the Request, 117
Source Address, 126
Switching Between Name:Value and Body

Data, 119–120
Use KeepAlive, 115–116
use multipart/form-data for POST, 116

test plan, 35–36
user defined variables, 41

thread group
Number of Threads (users), 46–48
Ramp-Up Period (in seconds), 46–48
scheduler, 49–53
thread properties, 43–48

timers
Constant Delay, 99–100
Constant Throughput Timer, 101–103

Constant Timer, 93–96
Gaussian Random Timer, 97–99
Random Delay, 99–101
Synchronizing Timer, 103–105
Uniform Random Timer, 99–101

JMeter Test Script Recorder
Exclude regular expression, 30
Recording Controller, 28
URL Patterns To Exclude, 27
URL Pattern to Include, 27
WorkBench, 25–27

�       � P, Q, R
Performance Dashboard

active threads over time, 311, 312
APDEX, 303
codes per second, 310
hits per second, 310
response time distribution, 313
response time percentiles, 311
time vs threads, 312
transactions per second, 310, 311

Performance Testing Primer
application usage patterns, 10
capacity test, 6
load test, 6
peak load test, 6
performance criteria, 3
performance goals, 10
performance reports, 11
performance requirements, 10
performance smoke test, 7
performance test environment, 9–10
performance testing strategy, 10–11
performance test suite, 10
response time, 3–4
scalability, 5
soak test, 6
spike test, 7
stress test, 5
throughput, 4
utilization, 5

�       � S
Setting Up Digital Toys Inc.

cleanup, 331
start web application, 327–330
start with URL rewriting enabled,

330–331
Setting Up JMeter

Linux, 322–325
MacOS, 315–318
Windows, 318–322

JMeter test plan components (cont.)

■ INDEX

335

�       � T, U, V, W, X, Y, Z
Troubleshooting JMeter

execute permissions, 197
HTTP Basic Authentication, 204
HTTPClient, 199

java.RMI.Remote
Exception, 200

JMeter logging level, 198
log file, 197
Log Viewer, 199, 200
proxy server, 202–203

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Foundation
	Why Performance Testing?
	Why JMeter?

	Chapter 2: Performance Testing Primer
	Performance Testing
	Response Time
	Throughput
	Utilization
	Robustness
	Scalability
	User Perception
	Cost

	Types of Performance Tests
	Stress Tests
	Load Tests
	Peak Load Tests
	Soak Tests or Endurance Tests
	Scalability Tests
	Capacity Tests
	Spike Tests and Burst Capacity
	Performance Smoke Tests
	High Availability Test/Fail-Over Tests

	The Performance Test Environment
	The Need for Separate Performance Environment
	The Performance Environment Should Be Like the Production Environment
	The Performance Environment Should Be Isolated
	Performance Testing Tools

	The Performance Testing Strategy Document
	Performance Requirements
	Performance Goals
	Performance Test Suite
	Performance Reporting and Analysis
	Performance Tuning

	Conclusion

	Chapter 3: Your First JMeter Test
	Components of a JMeter Test
	Test Plan
	Thread Group
	Controller
	Sampler
	Listener
	Timer
	Assertions
	Config Element
	Pre-Processors
	Post-Processors

	Order of Component Execution
	Simple JMeter Test
	GUI Mode
	Non-GUI Mode
	Executing a Single Test
	Proxy Server Setting
	Start JMeter in Server Mode
	Stop/Shutdown JMeter

	Conclusion

	Chapter 4: JMeter Test Script Recorder
	JMeter WorkBench
	JMeter Recording Controller
	Browser Proxy Settings
	Recording Example
	Conclusion

	Chapter 5: JMeter Test Plan Components
	Test Plan
	Configuration
	Serial Execution of Thread Groups
	Parallel Execution of Thread Groups
	User Defined Variables

	Thread Group
	Thread Properties
	Scheduler
	Action After Sampler Error

	Pre-Processors
	HTTP URL Re-Writing Modifier

	Controller
	Simple Controller
	Transaction Controller
	Loop Controller
	Runtime Controller
	Throughput Controller
	Once Only Controller
	Interleave Controller
	Random Controller
	Random Order Controller
	Switch Controller
	ForEach Controller
	If Controller

	Timers
	Constant Timer
	Gaussian Random Timer
	Uniform Random Timer
	Constant Throughput Timer
	Synchronizing Timer

	Sampler
	HTTP Request
	Implementing the HTTP Request Sampler
	Protocols
	Redirect Automatically
	Follow Redirect
	Use KeepAlive
	Use Multipart/Form-Data for POST
	Browser-Compatible Headers
	Send Parameter with the Request
	Body Data
	Switching Between Name:Value and Body Data
	Send Files with the Request
	Proxy Server
	Embedded Resources for HTML Files
	Source Address
	Option Task

	Assertions
	Response Assertion
	Apply to Property
	Response Field to Test Property
	Pattern Matching Rules Property
	Pattern to Test Property

	Listener
	View Results Tree
	View Results In Table
	Aggregate Report

	Post-Processors
	Regular Expression Extractor

	Properties and Variables
	Comparison of Properties and Variables
	User Defined Variables
	Using the Command Line to Initialize Properties

	Conclusion

	Chapter 6: Distributed Testing
	Distributed Testing Using JMeter
	Prerequisites
	Configuration
	Running the Test
	GUI Mode
	Non-GUI Mode
	RMI Port
	Sample Sender Mode
	Unreachable Remote Hosts
	Limitations
	Conclusion

	Chapter 7: JMeter Best Practices
	HTTP Request Defaults
	Follow Redirects
	Cookie Manager
	Cache Manager
	JMeter Using Maven
	Passing Variables Across Thread Groups
	Running Parallel Thread Groups
	Using External File for Parameterizing User Login
	Customizing Properties
	Monitor JMeter Resource Usage
	Standard Test Plan Templates
	Conclusion

	Chapter 8: Troubleshooting JMeter
	Ensure Permissions
	Log File
	Log Level
	HTTP Protocol Logs
	GUI Logs
	Clear GUI Logs
	Remote Host Exception
	Connect Exception
	Solving Proxy Servers Problems
	HTTP Basic Authentication
	Using HTTP Header Manager
	Using the HTTP Authorization Manager
	Debug Test Faster
	Out of Memory Error
	Conclusion

	Chapter 9: JMeter Plugins
	PerfMon
	Download the Plugin
	Start the PerfMon Agent
	Non-GUI Mode

	Conclusion

	Chapter 10: JMeter Recipes
	JDBC Performance Testing
	Install MySQL
	Install JDBC Driver
	JDBC Test Plan

	FTP Performance Testing
	REST/JSON Performance Testing
	AJAX Performance Testing
	Mobile Performance Testing
	Simulating Mobile Devices
	Simulating Network Speed
	JMeter to Record User Actions
	Android Proxy Configuration
	iOS Proxy Configuration

	SOAP Performance Testing
	Install SOAPUI

	Conclusion

	Chapter 11: Case Study: Digital Toys Inc.
	The Need for Speed
	Addressing the Problem
	Performance Goals
	Performance Test Specification
	Tool Selection
	Test Environment
	Test Data Preparation
	User Load Pattern
	Application Build

	Using JMeter
	Test Script Development
	Validation of Test Steps
	Passing Variables Between Samplers
	Running Tests with Multiple Users
	Implementing Actual User Behavior
	Results Metrics

	Organizing Tests
	Combining Multiple Tests
	Questions
	Using Distributed Environment
	Performance Testing and Tuning Cycle
	Outcome
	Conclusion

	Chapter 12: Performance Dashboard
	APDEX
	Configuration
	JMeter Properties
	APDEX
	Global Graph Properties
	Specific Graph Properties

	Generating Graphs
	Performance Dashboard Graphs
	Conclusion

	Chapter 13: Appendix A: Setting Up JMeter
	MacOSX
	Download JDK
	Install JDK
	Set Up the Environment Variable
	Download JMeter
	Set Up JMeter

	Windows
	Download JDK
	Install JDK
	Set Up the Environment Variable
	Download JMeter
	Set Up JMeter

	Linux
	Install JDK
	Set Up the Environment Variable
	Download JMeter
	Set Up JMeter

	Chapter 14: Appendix B: Setting Up Digital Toys Inc.
	Running Digital Toys Web Application
	Start the Web Application
	Start with URL Rewriting Enabled
	Clean Up

	Index

