
Pro Continuous
Delivery

With Jenkins 2.0
—
Nikhil Pathania

www.allitebooks.com

http://www.allitebooks.org

Pro Continuous Delivery
With Jenkins 2.0

Nikhil Pathania

www.allitebooks.com

http://www.allitebooks.org

Pro Continuous Delivery

Nikhil Pathania			
Bangalore, Karnataka		
India				

ISBN-13 (pbk): 978-1-4842-2912-5			 ISBN-13 (electronic): 978-1-4842-2913-2
DOI 10.1007/978-1-4842-2913-2

Library of Congress Control Number: 2017946339

Copyright © 2017 by Nikhil Pathania

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Nikhil Karkal
Technical Reviewer: Sanjay Kurra
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham,
Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Prachi Mehta
Copy Editor: Karen Jameson
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Illustrations: Nikhil Pathania

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/978-1-4842-2912-5. Readers can also access source code at SpringerLink in
the Supplementary Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/978-1-4842-2912-5
http://www.allitebooks.org

Dedicated to the open source community

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author��xv

About the Technical Reviewer��xvii

Acknowledgments���xix

Introduction���xxi

■■Chapter 1: Elements of Continuous Delivery�� 1

■■Chapter 2: HA Jenkins Setup Using Pacemaker, Corosync, and DRBD����������������� 23

■■Chapter 3: HA Jenkins Setup Using CoreOS, Docker, and GlusterFS��������������������� 77

■■Chapter 4: Setting Up Jenkins on Docker and Cloud�� 115

■■Chapter 5: Pipeline as a Code��� 145

■■Chapter 6: Using Containers for Distributed Builds�� 187

■■Chapter 7: Pre-tested Commits Using Jenkins��� 223

■■Chapter 8: Continuous Delivery Using Jenkins Pipeline������������������������������������� 237

Index�� 285

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author��xv

About the Technical Reviewer��xvii

Acknowledgments���xix

Introduction���xxi

■■Chapter 1: Elements of Continuous Delivery�� 1

What Is Continuous Delivery?�� 1

Branching Strategy�� 1

Using Separate Branch for Every Feature/Bug-Fix�� 1

Using the Gitflow Workflow��� 2

Continuous Integration�� 4

Codable CI Pipeline�� 4

Reproducible Build Environments��� 7

A Highly Available CI Master�� 10

Scaling Jenkins Master��� 15

Why Do We Need to Scale the Jenkins Master?�� 15

Vertical Scaling�� 16

Horizontal Scaling�� 17

Parallel Testing�� 17

What Is Parallel Testing?��� 17

Broader Compatibility�� 18

Reduce Testing Time�� 19

Summary��� 21

www.allitebooks.com

http://www.allitebooks.org

﻿■ Contents

viii

■■Chapter 2: HA Jenkins Setup Using Pacemaker, Corosync, and DRBD����������������� 23

Designing a High Availability Setup for Jenkins�� 23

HA Setup for Jenkins��� 24

Failover Scenario��� 26

Creating a HA Cluster for Jenkins��� 27

Installing Vagrant��� 27

Installing VirtualBox��� 29

Creating Virtual Machines�� 30

Starting the Virtual Machines�� 31

Configuring Communication Between the node1 and node2�� 33

Configuring ssh Key��� 35

Configuring Time Zone��� 36

Configuring the Firewall�� 36

Installing Apache Tomcat Server��� 37

Installing Jenkins as a Service on Apache Tomcat Server�� 41

Installing the Cluster Software�� 46

Configuring Corosync�� 46

Starting and Configuring Pacemaker��� 51

Create a Floating IP Resource Agent��� 53

Creating a Tomcat Resource Agent�� 54

Ensuring ClusterIP and Apache Tomcat Run on the Same Node�� 55

Ensuring ClusterIP Starts Before Apache Tomcat�� 56

Replicating Jenkins Home Directory Using DRBD��� 56

Creating a Cluster Resource for the DRBD Device��� 65

Creating a Cluster Resource for the Filesystems�� 66

Checking the Apache Tomcat Server��� 69

Simulating a Failover��� 69

Summary��� 75

www.allitebooks.com

http://www.allitebooks.org

﻿■ Contents

ix

■■Chapter 3: HA Jenkins Setup Using CoreOS, Docker, and GlusterFS��������������������� 77

Designing a High Availability Setup for Jenkins�� 77

HA Setup for Jenkins��� 78

Failover Scenarios��� 79

Creating a HA Cluster for Jenkins��� 82

Installing Vagrant��� 83

Installing VirtualBox��� 84

Creating the CoreOS Host Machines�� 85

Creating Unit Files��� 89

Starting the Cluster��� 92

Starting the GlusterFS Servers�� 92

Configuring the GlusterFS Servers�� 95

Starting Jenkins Server��� 97

Configuring Jenkins Master��� 99

Simulating a Failover��� 106

Failover Scenario 1�� 107

Failover Scenario 2�� 110

Summary��� 113

■■Chapter 4: Setting Up Jenkins on Docker and Cloud�� 115

Running Jenkins Inside a Docker Container�� 115

Installing Docker on Ubuntu�� 118

Creating a Jenkins Container�� 120

Installing Jenkins on Ubuntu��� 124

Install the Latest Stable Version of Jenkins��� 124

Install the Latest Version of Jenkins�� 124

Installing Jenkins on Fedora/Red Hat Linux�� 125

Installing the Latest Stable Version of Jenkins�� 125

Installing the Latest Version of Jenkins��� 125

www.allitebooks.com

http://www.allitebooks.org

﻿■ Contents

x

Installing Jenkins on Cloud (AWS)��� 125
Types of Jenkins Master-Slave Setups�� 126

Type of Cluster for Jenkins Slaves��� 126

Finding the Best Instance Type for Your Jenkins Master��� 127

Selecting a Region��� 128

Creating a Security Group�� 128

Creating an EC2 Instance on AWS��� 133

Connecting to the AWS Instance�� 139

Connecting to Your AWS Instance from Windows�� 139

Connecting to Your AWS Instance from Linux Machine��� 142

Install the Latest Stable Version of Jenkins��� 143

Summary��� 143

■■Chapter 5: Pipeline as a Code��� 145

Prerequisite��� 145
Creating a Personal Access Token in GitHub��� 146

Generating an SSH Key Pair�� 149

Configuring the GitHub Plugin��� 155

Creating Webhooks in GitHub�� 156

Configure Java, Git, and Maven��� 158

Install the Pipeline Maven Integration Plugin�� 160

Using the Jenkins Pipeline Project�� 161
Creating a Pipeline Project in Jenkins��� 161

Testing the Jenkins Pipeline Project�� 168

Using Jenkins Multibranch Pipeline Project�� 171

Create Credentials for GitHub Account�� 171

Creating a Multibranch Pipeline Project�� 172

Using a Jenkinsfile�� 176

Creating a New Branch on the GitHub Repo�� 178

A Better Way of Managing GitHub Webhooks�� 179

Using the GitHub Services��� 179

Automatically Manage Webhooks from Jenkins�� 182

Summary��� 185

www.allitebooks.com

http://www.allitebooks.org

﻿■ Contents

xi

■■Chapter 6: Using Containers for Distributed Builds�� 187

Distributed Builds Using Docker�� 187

Enabling Docker Remote API��� 187

Installing the Docker Plugin��� 189

Configuring the Docker Plugin��� 190

Creating a Docker Image for Creating Docker Containers (Jenkins Slave)�� 191

Adding Credentials Inside Jenkins to Access the Docker Container��� 194

Update the Docker Settings Inside Jenkins��� 194

Create a Jenkins Pipeline�� 196

Distributed Builds Using Kubernetes��� 199

Setting Up a Kubernetes Cluster��� 200

Installing the Kubernetes Plugin for Jenkins��� 210

Creating Credentials for Kubernetes Cluster��� 211

Configuring the Kubernetes Plugin�� 212

Creating a Jenkins Pipeline��� 216

Summary��� 221

■■Chapter 7: Pre-tested Commits Using Jenkins��� 223

Pre-tested Commits�� 223

Pre-tested Commits Using Jenkins and Git��� 223

Creating a Jenkins Pipeline to Perform Pre-tested Commits�� 225

Creating Feature Branch on Github��� 232

Simulating a Failure��� 234

Summary��� 236

■■Chapter 8: Continuous Delivery Using Jenkins Pipeline������������������������������������� 237

Setting Up the Artifactory Server�� 237

Installing and Configuring Artifactory�� 238

Creating a Repository in Artifactory��� 240

Adding Artifactory Credentials Inside Jenkins��� 243

Installing Artifactory Plugin��� 244

Configuring Artifactory Plugin�� 244

www.allitebooks.com

http://www.allitebooks.org

﻿■ Contents

xii

Setting Up the SonarQube Server��� 245

Installing and Configuring SonarQube��� 245

Creating a Project in SonarQube��� 248

Installing the Build Breaker Plugin for Sonar��� 249

Creating a Quality Gate in SonarQube��� 251

Installing the SonarQube Plugin�� 252

Configuring SonarQube Plugin��� 253

Analyzing with SonarQube Scanner for Maven��� 254

Creating a Docker Image for Integration Testing��� 254

Create a User Jenkins�� 255

Install SSH Server�� 256

Install Java and Set the JAVA_HOME Path�� 256

Install Git, Maven, and Nano Text Editor�� 257

Configure the Maven Installation to Work with SonarQube��� 257

Save the Changes Made to the Docker Image��� 258

Adding Docker Image Credentials Inside Jenkins��� 259

Update the Docker Settings Inside Jenkins��� 260

Creating Docker Image for Performance Testing�� 261

Creating a User Jenkins�� 261

Install SSH Server�� 262

Install Java and Set the JAVA_HOME path�� 262

Install Apache Tomcat�� 262

Install Apache JMeter�� 263

Saving the Changes Made to the Docker Image�� 263

Adding Docker Image Credentials Inside Jenkins��� 264

Update the Docker Settings Inside Jenkins��� 265

Creating a Performance Test Using Jmeter��� 266

Install Java and Set the JAVA_HOME Path�� 266

Install Apache JMeter�� 267

Starting Jmeter�� 267

Creating a Performance Test Case�� 267

﻿■ Contents

xiii

Creating Jenkins CD Pipeline�� 271

Creating Pipeline Script��� 271

Creating Pipeline in Jenkins�� 281

Jenkins Continuous Delivery Pipeline in Action��� 282

Summary��� 283

Index�� 285

xv

About the Author

Nikhil Pathania is the author of Learning Continuous Integration with Jenkins. He is currently practicing
DevOps at SIEMENS Gamesa Renewable Energy Brande, Denmark. He started his career in software
configuration management as an SCM engineer and later moved on to learn various other tools and
technologies in the field of automation and DevOps. During his career, Nikhil has architected and
implemented Continuous Integration and Continuous Delivery solutions across diverse IT projects. He
enjoys finding new and better ways to automate and improve manual processes. In his spare time, Nikhil
likes to read, write, and meditate. He is an avid climber, and now hikes and cycles.

xvii

About the Technical Reviewer

Sanjay Kurra is a passionate DevOps Consultant with a specialty in Continuous Delivery and DevOps.
His love for automation and operations since 2008 has allowed him to implement and lead teams to achieve
zero touch deployment using various DevOps tools in a wide range of assignments in industries such as
investment banking and finance, accounting, retail, and healthcare.

xix

Acknowledgments

First and foremost, I would like to thank my beautiful wife Karishma, for encouraging me to write another
book on Jenkins. I would also like to thank Nikhil Karkal for bringing me this wonderful opportunity to write
a second book on Jenkins. And I give great thanks to Sanjay Kurra, who provided me with valuable feedback
throughout the writing process. Most importantly, a special thanks to the following people who worked hard
to make this book the best possible experience for the readers: Prachi Mehta and Laura Berendson, and the
entire Apress publishing team. And finally, a great thanks to the Jenkins, Docker, Kubernetes, CoreOS, and
GitHub communities for creating such wonderful software.

xxi

Introduction

As more and more software projects are moving toward continuous integration (CI) and continuous delivery
(CD), the amount of overhead present on the CI/CD tool continues to increase proportionately, in a way
that there are more pipelines to maintain, more users and permissions to manage, and more projects to
configure. There is also a proportionate increase in demand for the number of build and test agents along
with their maintenance.

The idea behind this book is to answer the demands discussed above using the new features introduced
in Jenkins, as well as utilizing the advantages provided by some of the key container technologies and
lightweight OS present in the market.

The current book Pro Continuous Delivery with Jenkins 2.0, serves as a step-by-step guide to set up
an advanced continuous delivery system using all the new features in Jenkins 2.0 such as pipeline as a
code and multibranch pipeline. It also demonstrates how tools such as Docker and Kubernetes can be
leveraged to create on-demand build/test machines that are fungible and scalable. The book is 13% theory
and 87% practical. The first chapter of the book starts with explaining the elements of continuous delivery.
The following chapters, thereafter, demonstrate the implementation of the concepts discussed in the first
chapter.

What This Book Covers
Chapter 1, “Elements of Continuous Delivery.” A short talk on Continuous Delivery and its elements,
which are the following: importance of branching strategy, manageable and reproducible pipelines,
scalable build/test infrastructure, fungible build/test environment, and more. All the forthcoming chapters
(Chapters 2–8) are the practical implementation of the concepts discussed in this chapter.

Chapter 2, “HA Jenkins Setup Using Pacemaker, Corosync, and DRBD.” A step-by-step guide to
implement a highly available setup for Jenkins using Pacemaker, Corosync, and DRBD.

Chapter 3, “HA Jenkins Setup Using CoreOS, Docker, and GlusterFS.” A step-by-step guide to implement
a highly available setup for Jenkins using CoreOS, Docker and GlusterFS.

Chapter 4, “Setting Up Jenkins on Docker and Cloud.” A step-by-step guide to install Jenkins on various
platforms such as Linux (Fedora, Ubuntu), Docker, and Cloud (AWS).

Chapter 5, “Pipeline As a Code.” The chapter is all about the Jenkins pipeline, Jenkins multibranch
pipeline, Jenkinsfile, and Jenkins improved integration with GitHub. All this using a practical example that
involves creating a CI (build-test) pipeline for a Maven project.

Chapter 6, “Using Containers for Distributed Builds.” A step-by-step guide to creating a scalable build
farm using Docker alone and using Kubernetes.

Chapter 7, “Pre-Tested Commits Using Jenkins.” A short note on Pre-tested commits (Gated Check-in)
along with a step-by-step guide to achieve it using the distributed nature of Git and the “Merge before build
feature” of Jenkins.

http://dx.doi.org/10.1007/978-1-4842-2913-2_1
http://dx.doi.org/10.1007/978-1-4842-2913-2_2
http://dx.doi.org/10.1007/978-1-4842-2913-2_8
http://dx.doi.org/10.1007/978-1-4842-2913-2_2
http://dx.doi.org/10.1007/978-1-4842-2913-2_3
http://dx.doi.org/10.1007/978-1-4842-2913-2_4
http://dx.doi.org/10.1007/978-1-4842-2913-2_5
http://dx.doi.org/10.1007/978-1-4842-2913-2_6
http://dx.doi.org/10.1007/978-1-4842-2913-2_7

﻿■ Introduction

xxii

Chapter 8, “Continuous Delivery Using Jenkins Pipeline.” A step-by-step guide to creating a continuous
delivery pipeline using Jenkins pipeline Job along with the required DevOps tool chain. All this using a
practical example that involves creating a CD pipeline for a Maven project.

What You Need for This Book
To follow the examples mentioned in the book, it’s recommended that you have the following system
specifications and OS.

Operating System:

Windows 7/8/10

Ubuntu 16.XX.X (LTS)

Hardware requirements:

A machine with a minimum 8 GB of Memory and a Multi-Core Processor.

Who This Book Is For
The book is written keeping in mind readers that are already familiar with Jenkins and the concepts of
continuous integration and continuous delivery.

You already have experience in implementing continuous integration and continuous delivery using
Jenkins freestyle Jobs and now wish to use the new Pipeline as Code feature introduced in Jenkins 2.0.

Your source code is on a Git-like version control system (Git, GitHub, etc.) and you wish to leverage the
advantages of a multibranch pipeline in Jenkins.

Your infrastructure is on a Unix-like platform and you wish to create a scalable, distributed build/test
farm using Docker or Kubernetes.

You are in need of a highly available system for your Jenkins Server using open source tools and
technologies.

What is not covered in the book
The book does not cover Jenkins administrative tasks, such as user management, Jenkins backup, plugin
management, views management, and other exotic plugins that make Jenkins better.

There is a vast ocean of tools that work in conjunction with Jenkins to achieve continuous integration
and continuous delivery for various types of software projects. Therefore it’s impossible to cover every
case. Hence, the concepts and examples discussed in the book must be treated as a template and must be
modified and twisted to suit your purpose.

http://dx.doi.org/10.1007/978-1-4842-2913-2_8

1© Nikhil Pathania 2017
N. Pathania, Pro Continuous Delivery, DOI 10.1007/978-1-4842-2913-2_1

CHAPTER 1

Elements of Continuous Delivery

What Is Continuous Delivery?
Continuous Delivery (CD) is the practice of delivering quality software more frequently. CD practices can
include more or less the following entities:

•	 A good branching strategy.

•	 A working Continuous Integration (CI) process.

•	 Distributed builds.

•	 Automated testing.

•	 Distributed or parallel testing.

•	 Automated and quick environment provisioning.

•	 Automated code promotion.

Branching Strategy
Using a single master branch for all your development might seem the best option for CI. However, having a
multibranch-based workflow is more fruitful than doing everything on a single branch. Following are some
of the different ways of using multiple branches.

Using Separate Branch for Every Feature/Bug-Fix
A feature branch enables you to isolate your development as per features, allowing you to play with the
source code without the risk of breaking the master branch. Every feature and every bug-fix can have its own
branch. Figure 1-1 portrays the usage of feature branches.

Chapter 1 ■ Elements of Continuous Delivery

2

In the following workflow, developers work and push their changes to the Feature branches. A CI tool
(say, Jenkins), is configured to build and unit test each and every push on the feature branches. Only the
changes that pass the build and unit tests are allowed to be merged with the Master branch. In Chapter 5,
you will see how the Jenkins “Multibranch pipeline” job is used to run continuous integration on every
feature branch.

Using the Gitflow Workflow
Gitflow is another way of managing your code using multiple branches. In the following method, the master
branch is kept clean and contains only the releasable: ready to ship code. All the development happens on
the feature branches with the Develop/Development branch serving as a common place to integrate all the
features. Figure 1-2 is a moderate version of the Gitflow.

Figure 1-1.  Using feature branches

http://dx.doi.org/10.1007/978-1-4842-2913-2_5

Chapter 1 ■ Elements of Continuous Delivery

3

Figure 1-3 illustrates the full version of Gitflow. We have a Master branch that contains only the
production-ready code. The Feature branches are where all of the development takes place. The
Development/Develop branch (also known as Integration branch) is where the code gets integrated and
tested for quality. In addition to that, we have Release branches that are pulled out from the development
branch as and when there is a stable release. All bug-fixes related to a release happen on the release branch.
There is also a Hotfix branch that is pulled out of the master branch as and when there is a need for a hotfix.

Figure 1-2.  Using Gitflow workflow (moderate version)

Chapter 1 ■ Elements of Continuous Delivery

4

Continuous Integration
One of the fundamental components of continuous delivery is continuous integration. And it’s important
that you have a robust, working continuous integration model in place. Following are some of the
parameters that define a robust CI.

•	 Codable CI pipelines.

•	 Reproducible build environments.

•	 A highly available CI master.

Codable CI Pipeline
A CI pipeline is a set of sequential or parallel jobs (sometimes a combination of both). These jobs are
designed to perform a set of tasks and are traditionally configured using a GUI interface. However, as the
number of Jobs grows it becomes increasingly difficult for anyone to maintain them. Especially in cases
where a Job is a modified copy of another Job, It becomes crucial to maintain consistency.

Nevertheless, tools like Jenkins and Gitlab (to name a few) have come up with the concept of pipeline
as a code. The idea is to have your CI pipeline written as a code and saved inside a file. The code can be
either in the form of Groovy script (Groovy DSL) or as a Declarative Pipeline Syntax. In Jenkins, the file that
stores the pipeline script is referred to as Jenkinsfile.

A Jenkinsfile or pipeline script gives you the following abilities:

•	 Jenkinsfile can be a version control along with your source code.

•	 Jenkinsfile is easily shareable.

•	 Developers can themselves define what a Jenkinsfile should do.

•	 You can have different Jenkinsfile for different branches.

Figure 1-3.  Using Gitflow workflow

Chapter 1 ■ Elements of Continuous Delivery

5

Following is an example of a Jenkinsfile:

node('master'){
 stage('build'){
 sh 'mvn clean install';
 }
 stage('static code analysis'){
 sh 'mvn verify sonar:sonar';
 }
}

How to Use Jenkinsfile?
Figure 1-4 illustrates the Jenkinsfile usage. As you can see from the figure, the Jenkinsfile is stored along with
the source code inside a version control system. Whenever there is a code commit on the version control
system, the following steps take place:

	 1.	 A Source control webhook (commit) is sent to Jenkins.

	 2.	 The Jenkins pipeline Job is triggered on receiving the webhook condition.

	 3.	 The Jenkins pipeline Job downloads the latest source code as well as the
Jenkinsfile from the version control system.

	 4.	 Jenkins reads the Jenkinsfile and executes the pipeline steps accordingly.

Figure 1-4.  Using Jenkinsfile

Chapter 1 ■ Elements of Continuous Delivery

6

How to Write Pipeline Steps Inside a Jenkinsfile?
Using the Jenkins Groovy DSL (Domain Specific Language) or using the Jenkins Declarative pipeline Syntax,
all of the continuous integration and continuous delivery pipeline steps can be written inside a Jenkinsfile.

To start writing a pipeline, visit the following page https://jenkins.io/doc/pipeline/steps/. Here
you will find the code for most of the pipeline steps. Nevertheless, you can also make use of the Jenkins
pipeline syntax utility available right inside Jenkins.

The Pipeline Syntax link is available inside a Jenkins Pipeline Job. Try creating a new Jenkins pipeline
and scroll down to the Pipeline section. Under the Pipeline section, you will find a link named Pipeline
Syntax, as shown in Figure 1-5.

Figure 1-6.  Generating pipeline code using Pipeline Syntax utility

Figure 1-5.  Pipeline Syntax link

Accessing the link will take you to a new page wherein you can create code out of a GUI configuration.
Figure 1-6 illustrates an example wherein we convert a build step of type shell with some build commands,
into a pipeline script.

In Figure 1-6, under the Steps section, you can see a field named Sample Step. In the following
example, I have chosen a step named sh: Shell Script from the available options. The moment you choose
a step, all parameters related to it get displayed. Then you fill the parameters like I have added: a maven
command under the Shell Script field.

Clicking on the Generate Pipeline Script button will convert your GUI configuration (Jenkins build step
with a maven command) into a script (Figure 1-6).

More about writing a Jenkinsfile for CI/CD is discussed in detail in Chapter 5 and Chapter 8.

https://jenkins.io/doc/pipeline/steps/
http://dx.doi.org/10.1007/978-1-4842-2913-2_5
http://dx.doi.org/10.1007/978-1-4842-2913-2_8

Chapter 1 ■ Elements of Continuous Delivery

7

Reproducible Build Environments
Traditionally, Jenkins build agents are either individual hardware machines or virtual machines maintained
using VMware vsphere or other similar tools. In either case, setting up the build machines requires both time
and effort. From the infrastructure perspective, the tasks include procuring hardware, networking, licenses,
etc. And from the configuration management perspective, the tasks include installing and configuring the
OS and other software.

Nevertheless, most of the tasks pertaining to the infrastructure can be reduced by moving to a cloud-
based solution, for example: AWS, DigitalOcean, etc. And, most of the work pertaining to the configuration
management can be reduced by using tools such as Chef, Puppet, etc.

However, all these measures do not stop things from going wrong. As the famous Murphy’s law states,
Anything that can go wrong, will go wrong. Therefore the point is, “what do we do if things go wrong?”

What Do We Do if the Build Agent Fails?
If the build agents are bare metal machines, then it may take a while to figure out what went wrong. Usually,
in an organization, hardware machines are maintained by the IT department that has SLAs to provide a
resolution. Examples are, Tier1 machines: 3~4 hours; Tier2 machines: 1~2 days, etc.

If the build agents are virtual machines, then it’s more or less the same time as discussed above.
The only advantage is that there is no need to fetch a new piece of hardware if required. The chances of
a machine going down on a cloud are less. Nevertheless, they are still likely to occur. And if they do, the
situation becomes the same as it were with the bare metal machines. Even the configuration management
tools like Chef and Puppet take some time to configure a new machine.

This is where the container technology comes to the rescue. Tools like Docker enable us to describe a
machine as a code that can be saved inside a file (Dockerfile). Dockerfile is a set of instructions that define
what a machine should look like, what applications it should have, how they should be configured, etc. Using
Dockerfile, we can quickly bring up a lightweight machine with all the necessary software preinstalled.

While Jenkinsfile defines a pipeline as a code, Dockerfile defines infrastructure as a code. And it has the
same advantages as that of Jenkinsfile:

•	 Dockerfile can be a version control along with your source code.

•	 Dockerfile is easily shareable.

•	 Developers can themselves define what a Dockerfile should do.

•	 You can have different Dockerfiles for different types of builds.

How Dockerfile Works?
Following is an example of a Dockerfile:

###
Dockerfile for Maven build container images
Based on Ubuntu
###

Set the base image to Ubuntu
FROM ubuntu

Author / Maintainer
Nikhil Pathania

###

Chapter 1 ■ Elements of Continuous Delivery

8

Update the repository sources list
RUN apt-get update

Install Maven
RUN apt-get install maven

Install Java
RUN apt-get install default-jre

To create a Docker image using Dockerfile, we need to build it using the Docker build command:

docker build -t <docker image name> <path to your docker file>

Example:

Docker build -t maven-build-image .

Sending build context to Docker daemon 45.04 kB
...snip...
Removing intermediate container cb53c9d09fff
Successfully built c2c31529076d

To check the newly created Docker image, use the following Docker command:

docker images

The outcome should be something similar to this:

REPOSITORY TAG IMAGE ID CREATED SIZE
maven-build-image latest c2c3152907b5 10 minutes ago 376 MB
hello-world latest 91c95931e552 5 weeks ago 910 B

To run a container using the above Docker image, issue the following command:

docker run -it maven-build-image /bin/bash

To see all the running containers, open up a new terminal on your Docker host machine and use the
following command:

docker ps

How to Use a Dockerfile with Jenkins?
The idea is to have Dockerfile for each environment. Examples:

•	 Dockerfile for build & Unit test.

•	 Dockerfile for build & Integration test.

•	 Dockerfile for Acceptance testing.

•	 Dockerfile for Performance testing.

•	 Dockerfile for end-to-end testing.

Chapter 1 ■ Elements of Continuous Delivery

9

All these files can be kept under a version control system along with your source code. Whenever there
is a code commit on the version control system. the following steps take place:

	 1.	 A Version control webhook (commit) is sent to Jenkins.

	 2.	 The Jenkins pipeline Job gets triggered on receiving the webhook.

	 3.	 The Jenkins pipeline Job downloads the latest source code as well as the
Jenkinsfile and the set of Dockerfiles from the version control system.

	 4.	 Jenkins reads the Jenkinsfile and executes the pipeline steps accordingly.

	 5.	 The first step inside the Jenkinsfile is to build all the required Docker images
using the Dockerfiles.

	 6.	 With the required Docker images built, Jenkins can now perform various pipeline
steps on the respective Docker containers that are spawned using the Docker
images.

Figure 1-7 illustrates how Dockerfile can be used along with Jenkins.

Figure 1-7.  Using Dockerfile with Jenkins

Kubernetes
In the previous section, we saw how Jenkins along with Docker makes spawning build agents a piece of
cake. Surely Jenkins works brilliantly with Docker. However, with Kubernetes it goes even further, that is, by
making the build farm (Docker host) scalable. In simple terms, Kubernetes can be thought of as a cluster of
Docker hosts that are scalable. It’s a tool to manage containers across a cluster of Docker hosts.

Chapter 1 ■ Elements of Continuous Delivery

10

How to Use Kubernetes with Jenkins?
Figure 1-8 illustrates how Kubernetes can be used along with Jenkins. The working of it is pretty much
the same as discussed in Figure 1-7. The only difference is that we have more than one Docker host. The
responsibility of running and maintaining containers across multiple Docker hosts is with the Kubernetes
manager. Jenkins is connected with Kubernetes using a plugin.

Figure 1-8.  Using Jenkins with Kubernetes

In Chapter 6 we will learn in detail about distributed builds using Kubernetes and Jenkins.

A Highly Available CI Master
Tools like Docker help in making the build environment (Jenkins build agents) highly available and fungible.
But, what about the CI master? What if the Jenkins Master fails to start? There should be some mechanism to
make it available somewhere else with the same address, and without the users noticing anything.

Right now Jenkins does not provide anything for High availability. Nevertheless, using technologies like
CoreOS, Pacemaker, and Kubernetes we can make Jenkins Service highly available.

Let’s have a look at these technologies.

http://dx.doi.org/10.1007/978-1-4842-2913-2_6

Chapter 1 ■ Elements of Continuous Delivery

11

CoreOS
CoreOS is a Linux-based OS. It is a minimal operating system that supports popular container systems
like Docker and Kubernetes. The operating system is designed to work in clusters. Figure 1-9 shows the
constituents of CoreOS.

Figure 1-9.  CoreOS constituents

Figure 1-10.  CoreOS cluster using etcd

Docker

Docker is a container platform. Containers contain everything that are required to run an application in
an isolated workspace. Unlike VMs, containers do not contain a full operating system; instead, it only has
libraries and settings required to make the software work. This makes a container efficient, lightweight, and
self-contained.

Etcd

Etcd is a distributed key/value store. In simple terms, etcd is a utility that enables a group of machines that
form a cluster to communicate with each other. Etcd serves as a pillar of any distributed system. Kubernetes,
CoreOS, and Fleet all rely on etcd (Figure 1-10).

Chapter 1 ■ Elements of Continuous Delivery

12

Fleet

Fleet is a utility to manage a cluster. It can be considered as an extension of systemd that functions at the
cluster level. Fleet is used to schedule systemd units across multiple nodes in a cluster.

Figure 1-11 shows an HA Jenkins Master setup using CoreOS cluster. Unit files are used to define
services that are to be monitored and made highly available.

Figure 1-11.  CoreOS cluster for Jenkins HA

Figure 1-12.  CoreOS cluster for Jenkins HA with a failover scenario

In the case of a failure, the services are moved to the remaining online nodes of the cluster. Figure 1-12
shows a failover scenario.

Unit Files

A unit file defines how and when a service should start, what must be done if the service becomes offline,
what should start before the service starts, and what should happen after the service is stopped.

Chapter 1 ■ Elements of Continuous Delivery

13

Shown below is a sample unit file to start a Jenkins Master inside a Docker container.

[Unit]
Description=Jenkins Master Server

After=docker.service
Requires=docker.service

[Service]
TimeoutStartSec=0
ExecStartPre=-/usr/bin/docker kill jenkins%i
ExecStartPre=-/usr/bin/docker rm jenkins%i

ExecStart=/usr/bin/docker run --privileged --name jenkins%i -p 8080:8080
jenkinsci/jenkins:lts

ExecStop=/usr/bin/docker stop jenkins%i

[X-Fleet]
Conflicts=jenkins@*.service

The section [Unit] defines the Unit file. The section [Service] is where you define ExecStartPre,
ExecStart, and the ExecPost steps. The section [X-Fleet] defines a few special properties about how a
service should run. Using some of the X-Fleet options, you can make instances of the service to run on each
CoreOS machine.

The above code can be saved inside a file jenkins.service, assuming a CoreOS cluster with three nodes
(172.17.8.101, 172.17.8.102, 172.17.8.103). To bring up the service on any one of the nodes give the following
fleetctl command:

fleetctl start jenkins@1.service

You will get an output as shown below:

Unit jenkins@1.service inactive
Unit jenkins@1.service launched on b40a8da6.../172.17.8.101

To check the status of the units that we just started do,

fleetctl list-units

And you should see something as shown below:

UNIT MACHINE ACTIVE SUB
jenkins@1.service b40a8da6.../172.17.8.101 activating start-pre

The status of the units is still activating. It will take some time (depending on you network speed) as the
fleet is downloading the Jenkins Docker image from the Docker hub.

Run the fleetctl list-units command again and now you can see the Jenkins Server is started and active.

UNIT MACHINE ACTIVE SUB
jenkins@1.service b40a8da6.../172.17.8.101 active running

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Elements of Continuous Delivery

14

Jenkins service is now running in a highly available mode. Try killing the machines where the Jenkins
service is running. CoreOS Cluster will immediately bring up Jenkins on any one of the remaining CoreOS
machines.

Highly available Jenkins Master using CoreOS, Docker, and GlusterFS (storage) is the topic of discussion
in Chapter 3.

Pacemaker
Pacemaker is an open source cluster resource manager. Along with Corosync, it can offer an open
source high availability (HA) cluster. Pacemaker can detect system as well as service failures by utilizing
the messaging capabilities provided by Corosync. Following are some of the key features provided by
Pacemaker.

•	 Detection and recovering from node and service-level failures.

•	 Anything that can be scripted can be clustered.

•	 Uses STONITH for data integrity.

•	 Can support large and small clusters.

•	 Can support any variant of redundancy configuration.

Figure 1-13 shows an Active/Passive HA setup for Jenkins. Pacemaker and Corosync run on all nodes
of the cluster. Jenkins, Virtual IP, and Storage (DRBD) run as a service on the active node. These services are
monitored continuously by Corosync.

Figure 1-13.  Pacemaker cluster for Jenkins HA

http://dx.doi.org/10.1007/978-1-4842-2913-2_3

Chapter 1 ■ Elements of Continuous Delivery

15

In the event of failure, let’s say the active node goes offline, all running services on the active node are
moved to the passive node. Since the storage is in sync there is hardly anything lost, except the Jenkins Jobs
that were running during the failover (Figure 1-14).

Figure 1-14.  Pacemaker cluster for Jenkins HA with failover scenario

Once you bring the offline node back online, the storage syncs again. Highly available Jenkins Master
using Pacemaker, Corosync, and DRBD (storage) is the topic of discussion in Chapter 2.

Scaling Jenkins Master
Scaling Jenkins involves two different things, scaling Jenkins Master and scaling Jenkins Slaves. We already
saw scaling Jenkins Slave in the previous section using Docker and Kubernetes. Let us see the possibilities of
scaling the Jenkins Master.

Why Do We Need to Scale the Jenkins Master?
As more and more projects switch to continuous integration and continuous delivery models, the
requirements on the Jenkins server increase. And at some point, a single Jenkins Master may not be
sufficient to serve a growing number of projects.

The same question can be put another way: “When and how do we know we need to scale Jenkins
Master?” Assuming that we perform all builds on the Jenkins Slaves and nothing on the Jenkins Master, we
are left with the following things that may eat up hardware resources on the Jenkins server.

http://dx.doi.org/10.1007/978-1-4842-2913-2_2

Chapter 1 ■ Elements of Continuous Delivery

16

Out of Memory Issues While Reading Huge Logs
Some of the pipeline stages in Jenkins could produce a massive amount of logs. Accessing them sometimes
might lead to slowness. This slowness can quickly lead to out of memory issues (OOM) if a larger set of
people start accessing logs all at the same time.

Growing Number of Users Accessing Jenkins
The number of users accessing Jenkins can affect the CPU usage. As the projects grow, so does the number
of users accessing Jenkins. The purpose of accessing the Jenkins server are many: it can be logs, dashboard,
pipeline progress, etc.

Growing Number of Logs, and Pipeline Metadata
As the number of projects on Jenkins grow, so does the Jenkins pipeline count. Each Jenkins pipeline has a
workspace on the Jenkins Master, where you will find the pipeline metadata, log, etc.

Benchmark Your Jenkins Master
It’s possible to monitor Jenkins performance using an external tool like Elasticsearch or using a Jenkins
plugin (monitoring) itself. If the reports do not look good, then you might need to scale.

All the above reasons can make scaling Jenkins inevitable. Here are the two directions in which Jenkins
can scale.

•	 Vertical scaling.

•	 Horizontal scaling.

Vertical Scaling
Vertical scaling is the easiest. It simply requires you to upgrade the hardware. The advantage of using this
approach is the following.

A Single Jenkins Master to Maintain
Some of the Jenkins maintenance activities include the following:

•	 Installing and updating plugins.

•	 Archiving or deleting old build data.

•	 Managing users and permissions.

•	 Upgrading Jenkins.

•	 Configuring Jenkins.

The list is not comprehensive. However, a single Jenkins master means you need to worry only about
a single machine. Adding to that, with careful configuration most of the above tasks can be automated.
Nevertheless, following is one disadvantage of having a single Jenkins Master.

Chapter 1 ■ Elements of Continuous Delivery

17

Greater Risk
Having a single Jenkins master is pleasant when it comes to maintenance. However, any kind of failure may
halt your day-to-day business. Even with proper backup, it would be a difficult task to bring a beefy Jenkins
Master up again.

One way to look at this problem is to make Jenkins highly available. However, there is still a problem.
A heavy Jenkins master, for obvious reasons, will have a large number of pipelines running at any given
point of time. In an event of failure, even with an HA solution in place, all the running Jobs will be lost to the
heavens.

To make matters worse, imagine a situation wherein the Jenkins HA itself fails to bring up Jenkins
Master on the secondary machine: remember Murphy’s law. Therefore, there is a greater risk of having
everything inside a single Jenkins master.

Horizontal Scaling
Horizontal scaling requires using multiple Jenkins masters. Each Jenkins master serves a group of projects.
Following are some of the advantages of having multiple Jenkins Masters.

Better Management Using Segregation
You can segregate projects based on their requirements and characteristics. Example: all projects that are
windows based (say .NET or C++) will have a similar set of plugins, build tool configurations, etc. Hence,
keeping all the Microsoft-based projects on a particular Jenkins Master might help in managing the projects
better.

Better Reliability
In a multiple Jenkins Master setup, if any one of the Jenkins Master fails, the others still run. And if we make
each of the Jenkins Masters highly available, then the probability of a complete business standstill becomes
minute since the probability of all the Jenkins Master HA setups failing at once is very minimal.

Maintenance Encumbrance
With multiple Jenkins Master setups, the maintenance tasks also multiply. However, most of the
maintenance tasks can be automated to reduce the maintenance encumbrance.

Parallel Testing
The benefits of distributed and scalable Jenkins Slaves are not just limited to software builds, but can also be
taken forward to the testing arena. Faster and parallel testing is an integral part of the continuous delivery.

What Is Parallel Testing?
Parallel testing can be defined as the process of running multiple test cases on a distributed testing
infrastructure. This distributed testing infrastructure can be a set of virtual machines or Docker containers.

Some of the key advantages of parallel testing are as follows.

Chapter 1 ■ Elements of Continuous Delivery

18

Broader Compatibility
Let’s say you have a web application that you would like to test on multiple browsers like Firefox, Chrome,
Opera, etc. You can do this in parallel in the following way.

In the Jenkinsfile you define parallel stages for each running test case on a particular node (Docker
container). In the following pipeline code, you can see three stages (‘acceptance test chrome’, ‘acceptance
test opera’, and ‘acceptance test firefox’) defined to run in parallel. Each one of the stages has its own node
(‘docker-chrome’, ‘docker-opera’, ‘docker-firefox’).

/* CI starts */
node('docker-ci-agent'){

 stage('build'){
 // some build step
 }

 stage('integration testing'){
 // some integration steps
 }

}
/* CI ends */

/* Testing starts */
parallel stage('acceptance test chrome'){

 node('docker-chrome'){
 // steps to perform acceptance test on chrome
 }

},
 stage('acceptance test Opera'){

 node('docker-opera'){
 //steps to perform acceptance test on opera
 }

}

 stage('acceptance test firefox'){

 node('docker-firefox'){
 //steps to perform acceptance test on firefox
 }

}
/* Testing ends */

Along with the Jenkinsfile, you also create Dockerfiles for each type of testing. These Dockerfiles are
then used by the Jenkins pipeline to create Docker containers (Jenkins nodes) to perform the testing.
Figure 1-15 illustrates testing an application in parallel on multiple browsers using Jenkins and Docker.

Chapter 1 ■ Elements of Continuous Delivery

19

Reduce Testing Time
Using intelligent scripts or plugins, you can divide your test cases into batches and execute them in parallel
on a set of testing machines. The testing machines could be just virtual machines or Docker containers.
Executing tests in parallel can drastically reduce the testing time.

For example, you are running 1000 concurrent tests on a single testing machine, and it takes you
24 hours. You can divide your test cases into 4 groups of 250 test cases each, and execute each group on
an individual testing machine. This will reduce your testing time from 24 hours to 6 hours, theoretically.
Figure 1-16 illustrates dividing and running the test cases in parallel across similar testing machines.

Figure 1-15.  Parallel testing using Jenkins and Docker

Chapter 1 ■ Elements of Continuous Delivery

20

Figure 1-16.  Parallel testing using Jenkins and Docker

Chapter 1 ■ Elements of Continuous Delivery

21

Summary
In the current chapter, we discussed the four key elements that are important to achieve continuous
delivery: fungible build/test environment, pipeline as code, scalable build/test environment, and parallel
testing. We also learned about the tools involved in achieving it.

Along with this, we discussed the importance of using a branching strategy, the process of making
Jenkins highly available, and the importance of scaling Jenkins horizontally. All in all, the current chapter
forms a theoretical base for the upcoming chapters.

In the next chapter, we will learn to create a highly available Jenkins Master using Pacemaker, Corosync,
and DRBD.

23© Nikhil Pathania 2017
N. Pathania, Pro Continuous Delivery, DOI 10.1007/978-1-4842-2913-2_2

CHAPTER 2

HA Jenkins Setup Using
Pacemaker, Corosync, and DRBD

In the following chapter, we will build a highly available (HA) Jenkins Server using Pacemaker, Corosync,
and DRBD. We will begin the chapter by discussing a HA design along with a failover scenario. Next, we will
build and start a HA setup for Jenkins using Pacemaker, Corosync and DRBD. At the end of the chapter, we
will test our HA setup by simulating a failover scenario.

Designing a High Availability Setup for Jenkins
Failures could occur at the hardware level (machine shutdown/reboot/freeze), application server level
(application server failure), or at the service level (the service fails to start or hangs). High Availability (HA)
ensures that a service or a group of services is available continuously without any interruption. Every HA
system comes with a failover mechanism. This failover mechanism ensures that the controls of the primary
system are transferred to a secondary system (replica of the primary system) in case there are any failures
observed on the primary system. To detect failures, every HA setup has a feature to check the health of the
hardware and the applications that are being served.

Figure 2-1 illustrates a typical HA setup (Active/Passive). This is a two-node HA setup with one of the
nodes taking up the primary role and the other acting as a secondary (backup). A user accesses the service
through a fixed virtual IP. If the primary node goes down for some reason or the service on the primary node
fails, the secondary node is immediately made active (along with the services), and the static virtual IP is
shifted to the secondary node.

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

24

Since the users access the HA services using a static virtual IP, all they notice is a small glitch while the
switching takes place.

HA Setup for Jenkins
Figure 2-2 illustrates how our HA setup for Jenkins should look. We have two Ubuntu machines, node1 and
node2 respectively. Each machine is running Pacemaker, Corosync, and DRBD. Both these nodes are also
running Jenkins inside Apache Tomcat Server.

Figure 2-1.  A typical Active/Passive HA setup

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

25

Whether it’s a build or a configuration change, everything that happens on the Jenkins Server is stored
inside the Jenkins home directory. Thus, making the data inside the Jenkins home directory redundant is of
the uttermost importance. We are using DRBD for that purpose, and therefore there is an extra disk (sdb) on
each node. These extra disks have two filesystems drbd1 and drbd2 running on partitions /dev/sdb1 and
/dev/sdb2 respectively. These discs are in sync using DRBD.

The Jenkins Server is accessible to the outside world using a Floating IP.

Figure 2-2.  Jenkins HA setup

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

26

Failover Scenario
Let us understand how our HA setup should react to a failure. Figure 2-3 depicts a failover scenario in
which the node1 machine that is running our Jenkins Server fails or gets disconnected. In this situation the
Pacemaker/Corosync should detect the node failure and automatically start the Jenkins Server along with
the Floating IP on the secondary node, which is node2.

Figure 2-3.  Failover scenario

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

27

Creating a HA Cluster for Jenkins
In the following section we will realize the HA setup design discussed in Figure 2-2. We are going to use
Vagrant along with Oracle Virtual-Box to create the two nodes (Ubuntu 16.04 machines). Once these nodes
(node1 and node2) are ready, we will install Apache Tomcat Server and Jenkins on them. After this we will
install and configure the cluster software Pacemaker and Corosync.

Once the setup is ready, we will create the cluster resources for Floating IP and Tomcat. To make
the Jenkins Server data and the Tomcat Server data persistent, we will install and configure DRBD.
Consecutively we will also create cluster resources for the DRBD device and the filesystems.

■■ Note  While writing this chapter, I have chosen a machine with Ubuntu 16.04 that will host our two nodes
HA setup. Nevertheless, you can also choose to use Windows 7/8/10 without any issues.

For simplicity I am using Vagrant along with Oracle VirtualBox to create the two nodes for our HA setup.
However, in reality you may choose to create these two nodes on two bare metal machines or on a cloud
platform such as AWS.

Installing Vagrant
Make sure you perform the following steps as a root user or with an account having root privileges
(sudo access).

	 1.	 Open up a terminal and type the following commands to download Vagrant.
Or you can also download the latest vagrant package from the vagrant website
(Figure 2-4): https://www.vagrantup.com/downloads.html

wget https://releases.hashicorp.com/vagrant/1.8.5/vagrant_1.8.5_x86_64.deb

https://www.vagrantup.com/downloads.html

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

28

■■ Note U se the latest version of Vagrant and VirtualBox. Using an older version of Vagrant with a newer
version of VirtualBox or vice versa may result in issues while creating the virtual machines (node1 and node2).

	 2.	 When the download completes, you should see a .deb file in the download folder.

	 3.	 Change to the location where you have downloaded the Vagrant package and
execute the following commands to install Vagrant. You may be prompted to
provide a password.

sudo dpkg -i vagrant_1.8.5_x86_64.deb

sudo apt-get install -f

	 4.	 Once the installation is complete, check the installed version of vagrant by
executing the following command.

vagrant --version

Figure 2-4.  Vagrant download webpage

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

29

Installing VirtualBox
Vagrant needs Oracle VirtualBox to create virtual machines. However, it’s not limited to just Oracle
VirtualBox, you can also use VMware and AWS.

■■ Note  To run Vagrant with either VMware or AWS, visit the following webpage: https://www.vagrantup.
com/docs/getting-started/providers.html

Follow the below steps to install Oracle VirtualBox on your machine.

	 1.	 Add the following line to your /etc/apt/sources.list file.

deb http://download.virtualbox.org/virtualbox/debian xenial contrib

■■ Note A ccording to your Ubuntu distribution, replace ‘xenial’ by ‘vivid’, ‘utopic’, ‘trusty’, ‘raring’, ‘quantal’,
‘precise’, ‘lucid’, ‘jessie’, ‘wheezy’, or ‘squeeze’.

	 2.	 Download and register the keys by executing the following commands in
sequence. The output of these commands is depicted in Figure 2-6.

wget -q https://www.virtualbox.org/download/oracle_vbox_2016.asc -O- |
sudo apt-key add -

wget -q https://www.virtualbox.org/download/oracle_vbox.asc -O- |
sudo apt-key add -

Figure 2-5.  Check the vagrant version

Figure 2-6.  Download and register the VirtualBox keys

	 5.	 You should see the vagrant version as shown in Figure 2-5.

https://www.vagrantup.com/docs/getting-started/providers.html
https://www.vagrantup.com/docs/getting-started/providers.html

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

30

	 3.	 Update your apt-get package index using the following command.

sudo apt-get update

	 4.	 To install VirtualBox, execute the following commands.

sudo apt-get install virtualbox-5.1

	 5.	 Execute the following command to check the VirtualBox version. The output of
the command is depicted in Figure 2-7.

VBoxManage --version

■■ Note  Ubuntu/Debian users might want to install the dkms package to ensure that the VirtualBox host
kernel modules (vboxdrv, vboxnetflt, and vboxnetadp) are properly updated if the Linux kernel version changes
during the next apt-get upgrade. For Debian it is available in Lenny backports and in the normal repository for
Squeeze and later. The dkms package can be installed through the Synaptic Package manager or through the
following command:

sudo apt-get install dkms

Creating Virtual Machines
Creating the virtual machines using Vagrant is easy. We will use a simple Vagrantfile to create two Ubuntu
nodes.

	 1.	 Create a directory named vagrant-ubuntu under your /home directory and get
inside it.

mkdir vagrant-ubuntu
cd vagrant-ubuntu

	 2.	 Download the official vagrant box image for Ubuntu (ubuntu/trusty64) using the
following command. This will take some time to finish.

sudo vagrant box add ubuntu/trusty64

	 3.	 To create a Vagrantfile do.

sudo nano Vagrantfile

Figure 2-7.  Check VirtualBox version

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

31

	 4.	 Paste the following code inside the Vagrantfile.

-*- mode: ruby -*-
vi: set ft=ruby :

Vagrant.configure(2) do |config|
 config.vm.box = "ubuntu/trusty64"

 config.vm.define :node1 do |node1_config|
 node1_config.vm.host_name = "node1"
 node1_config.vm.network "private_network", ip:"172.17.8.104"
 node1_config.vm.provider :virtualbox do |vb|
 vb.customize ["modifyvm", :id, "--memory", "1024"]
 vb.customize ["modifyvm", :id, "--cpus", "1"]
 end
 end

 config.vm.define :node2 do |node2_config|
 node2_config.vm.host_name = "node2"
 node2_config.vm.network "private_network", ip:"172.17.8.105"
 node2_config.vm.provider :virtualbox do |vb|
 vb.customize ["modifyvm", :id, "--memory", "1024"]
 vb.customize ["modifyvm", :id, "--cpus", "1"]
 end
 end

end

	 5.	 I have named the two nodes as node1 and node2 with IP address 172.17.8.104
and 172.17.8.105 respectively. However, you are free to choose the IP address.
Similarly you are free to choose the node names, number of CPUs, and the
memory.

	 6.	 Type Ctrl+x and then Y to save and exit the file.

Starting the Virtual Machines
Starting the virtual machines is simple.

	 1.	 Move to the ubuntu-vagrant directory and run the vagrant up command to
start the virtual machines.

cd ubuntu-vagrant

vagrant up

	 2.	 The vagrant up command should execute without any errors.

	 3.	 To check the status of the virtual machines, execute the command vagrant
status. The output of this command is shown in Figure 2-8.

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

32

	 4.	 To login to any one of the virtual machines (let say node1) use the vagrant ssh
command as shown in Figure 2-9.

vagrant ssh node1 -- -A

	 5.	 To know the IP address of node1, execute the ip route command. Notice the
highlighted IP address in Figure 2-10 that’s the IP of our node1 machine.

Figure 2-10.  Get the IP address of node1

Figure 2-8.  List the running virtual machines

Figure 2-9.  Log in to node1

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

33

	 6.	 Open another terminal and login to node2 using the vagrant ssh command.

vagrant ssh node2 -- -A

	 7.	 To know the IP address of node2, execute the ip route command. Notice the
highlighted IP address in Figure 2-11. That’s the IP of our node2 machine.

Configuring Communication Between the node1 and node2
We are now done creating our HA node machines. Let us configure them to talk with each other.

	 1.	 Execute the ping command to check if node1 and node2 can ping each other.
Figure 2-12 shows a ping test from node1 to node2.

	 2.	 Repeat the above step by pinging node1 from node2.

	 3.	 Now check if the machines (node1 and node2) can communicate using
their hostnames. If you have a DNS server, add additional entries for the two
machines. Otherwise, you’ll need to add the machine’s hostname to /etc/hosts
on both nodes. Figure 2-13, depicts the content of my /etc/hosts file on node1.

Figure 2-11.  Get the IP address of node2

Figure 2-12.  Ping test

Figure 2-13.  List the content of /etc/hosts file on node1

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

34

	 3.	 Open the /etc/hosts file and add the following entries to it.

172.17.8.104 node1 node1
172.17.8.105 node2 node2

	 4.	 Finally the /etc/hosts file on node1 should look like Figure 2-14.

	 5.	 Similarly, modify the /etc/hosts file on node2 by adding the same lines mentioned
in step 3. Finally, the /etc/hosts file on node2 should look as shown in Figure 2-15.

	 6.	 Now check if node1 and node2 are able to communicate using their hostnames.
Figure 2-16 is a ping test from node1 to node2.

Figure 2-15.  Content of /etc/hosts file on node2 after updating

Figure 2-16.  Ping test using hostnames

Figure 2-14.  Content of /etc/hosts file on node1 after updating

	 7.	 Repeat the above step by pinging node1 from node2.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

35

Configuring ssh Key
SSH is a convenient and secure way to copy files and perform commands remotely. We will create a key
without a password (using the -N option).

	 1.	 On node1, create a new key using the following command. The output of the
command is depicted in Figure 2-17.

ssh-keygen -t dsa -f ~/.ssh/id_dsa -N ""

	 2.	 Copy the key to the authorized keys folder using the following command.

cp ~/.ssh/id_dsa.pub ~/.ssh/authorized_keys

	 3.	 Install the key on the other node using the following command. The output of the
command is depicted in Figure 2-18.

scp -r ~/.ssh node2:

Figure 2-17.  Generate ssh key

Figure 2-18.  Install key on node2 from node1 using scp command

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

36

	 4.	 Test that you can now run commands remotely on node2 from node1, without
being prompted. As shown in Figure 2-19.

Configuring Time Zone
For our HA setup to work properly It’s important that both nodes are under the same time zone.

	 1.	 On both nodes (node1 and node2), use the following command to open a time
zone selector.

sudo dpkg-reconfigure tzdata

	 2.	 You will be presented with a list of options to choose from. Follow the directions
that appear on the screen. For example, I have chosen Asia/Kolkata, as shown in
Figure 2-20.

	 3.	 Then install the ntp package using the following command. ntp is used to
synchronize clocks over a network.

sudo apt-get -y install ntp

Configuring the Firewall
Corosync uses UDP transport between ports 5404 and 5406. If you are running a firewall, ensure that
communication on those ports is allowed between the servers. Execute the following commands on both the
nodes (node1 and node2).

sudo iptables -A INPUT -i eth1 -p udp -m multiport --dports 5404,5405,5406 -m conntrack
--ctstate NEW,ESTABLISHED -j ACCEPT

sudo iptables -A OUTPUT -o eth1 -p udp -m multiport --sports 5404,5405,5406 -m conntrack
--ctstate ESTABLISHED -j ACCEPT

Figure 2-19.  Run commands on node2 from node1 using ssh

Figure 2-20.  Set the time zone

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

37

Installing Apache Tomcat Server
In this section we will install Tomcat 8 on both the nodes (node1 and node2). Before you begin, make sure
you are logged in as a root user or as a non-root user with sudo privileges.

■■ Note  Perform the steps mentioned in the following sections on both the nodes (node1 and node2).

Installing Java
Tomcat requires Java to be installed on the server.

	 1.	 Update your apt-get package index using the following command.

sudo apt-get update

	 2.	 Then install the Java Development Kit (JDK) package using the following
command.

sudo apt-get install default-jdk

Creating a Tomcat User
For security purposes, Tomcat should be run as an unprivileged user. We will create a new user and group
that will run the Tomcat service.

	 1.	 First, create a new tomcat group using the following command.

sudo groupadd tomcat

	 2.	 Now, create a new tomcat user using the following command.

sudo useradd -s /bin/false -g tomcat -d /opt/tomcat tomcat

■■ Note  -s /bin/false is used so that nobody can log into the account. -d /opt/tomcat is used as this will
be the location where we will install Tomcat.

Installing Apache Tomcat Server
	 1.	 Find the latest version of Tomcat 8 from the apache tomcat website: https://

tomcat.apache.org/ and get the link address of “tar.gz” as shown in Figure 2-21.

https://tomcat.apache.org/
https://tomcat.apache.org/

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

38

	 2.	 Change to the /tmp directory on your server. This is a good place to download
temporary items.

cd /tmp

	 3.	 Use wget to download the link that you copied from the Tomcat website.

wget http://redrockdigimark.com/apachemirror/tomcat/tomcat-8/v8.5.5/
bin/apache-tomcat-8.5.5.tar.gz

	 4.	 We will install Tomcat inside the /opt/tomcat directory. Create the directory,
and then extract the archive to it with these commands.

sudo mkdir /opt/tomcat

sudo tar xzvf apache-tomcat-8*tar.gz -C /opt/tomcat --strip-components=1

■■ Note I have used Apache Tomcat 8.5.5. However, you can use any later stable version available.

For the purpose of installing Jenkins, Apache Tomcat Server 5.0 or greater is more than sufficient.

Figure 2-21.  Get the tar.gz link address

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

39

Updating Permissions
The tomcat user that we set up needs to have access to the Tomcat installation.

	 1.	 Change to the directory where we unpacked the Tomcat installation.

cd /opt/tomcat

	 2.	 Give the tomcat group ownership over the entire installation directory.

sudo chgrp -R tomcat /opt/tomcat

	 3.	 Next, give the tomcat group read access to the conf directory and all of its
contents, and execute access to the directory itself.

sudo chmod -R g+r conf

sudo chmod g+x conf

	 4.	 Make the tomcat user the owner of the webapps, work, temp, and logs
directories.

sudo chown -R tomcat webapps/ work/ temp/ logs/

Adjusting the Firewall and Test the Tomcat Server
Before we start Tomcat, we need to adjust the firewall to allow our requests to get to the service. Tomcat uses
port 8080 to accept requests.

	 1.	 Allow traffic to that port by typing the following command.

sudo ufw allow 8080

	 2.	 Now run the startup.sh script to start Tomcat. It’s present inside /opt/tomcat/
bin directory.

cd /opt/tomcat/bin

./startup.sh

	 3.	 You can now access the default Tomcat dashboard on both the nodes
by using the address: http://172.17.8.104:8080 for node1 and
http://172.17.8.105:8080 for node2.

	 4.	 You will be able to see the default Tomcat dashboard on both the nodes.
However, if you click the links for the Manager App, you will be denied access.

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

40

Configuring Tomcat Web Management Interface
In order to use the manager web app that comes with Tomcat, we must add a login to our Tomcat server.

	 1.	 First shut down Tomcat if it’s running, using the shutdown.sh script present
inside the /opt/tomcat/bin directory.

cd /opt/tomcat/bin

./shutdown.sh

	 2.	 Open the tomcat-users.xml file for editing.

sudo nano /opt/tomcat/conf/tomcat-users.xml

	 3.	 After opening the file, delete everything between <tomcat-users> </tomcat-
users>.

	 4.	 Now, add a user who can access the manager-gui and admin-gui (web apps that
come with Tomcat). You can do so by defining a user as shown below.

<tomcat-users . . .>
 �<user username="admin" password="password" roles="manager-

gui,admin-gui"/>
</tomcat-users>

	 5.	 Type Ctrl+x and then Y to save and exit the file.

By default, newer versions of Tomcat restrict access to the Manager and Host
Manager apps to connections coming from outside the Tomcat Server. Since we
are accessing the Tomcat dashboard page from a remote machine (a machine
that is other than the Tomcat Server), you will probably want to remove or alter
this restriction. To change the IP address restrictions on these, open the context.
xml files one by one.

	 6.	 For the Manager app. Do the following:

sudo nano /opt/tomcat/webapps/manager/META-INF/context.xml

	 7.	 For the Host Manager app., do the following:

sudo nano /opt/tomcat/webapps/host-manager/META-INF/context.xml

	 8.	 Inside these files, comment (disable) the IP address restriction to allow
connections from anywhere.

<Context antiResourceLocking="false" privileged="true" >
 <!--<Valve className="org.apache.catalina.valves.RemoteAddrValve"
 allow="127\.\d+\.\d+\.\d+|::1|0:0:0:0:0:0:0:1" />-->
</Context>

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

41

	 9.	 Alternatively, if you would like to allow access only to the connections coming
from a specific IP address or set of IP addresses then you can add your IP address
to the list. Shown below is an example where the Tomcat dashboard is allowed to
be accessed from the 172.17.8.101 IP address.

<Context antiResourceLocking="false" privileged="true" >
 <Valve className="org.apache.catalina.valves.RemoteAddrValve"
 allow="172.17.8.101" />
</Context>

	 10.	 Type Ctrl+x and then Y to save and exit the file.

	 11.	 Execute the startup.sh script to start Tomcat.

cd /opt/tomcat/bin

./startup.sh

	 12.	 Access the web management interface again in a web browser using the URL:
http://172.17.8.104:8080 for node1 and http://172.17.8.105:8080 for
node2.

Installing Jenkins as a Service on Apache Tomcat Server
Installing Jenkins as a service on Apache Tomcat Server is simple. You can choose to use Jenkins along with
other services already present on the Apache Tomcat Server or you can use the Apache server solely for
Jenkins.

■■ Note  Perform the steps mentioned in the following section on both the nodes (node1 and node2).

	 1.	 Go to the primary node (node1) and move to the /tmp directory.

cd /tmp

	 2.	 Use the wget command to download the jenkins.war file.

sudo wget http://mirrors.jenkins-ci.org/war-stable/latest/jenkins.war

■■ Note  Following are the links to download Jenkins:

Latest LTS Release: http://mirrors.jenkins-ci.org/war-stable/latest/jenkins.war

Latest Weekly Release: http://mirrors.jenkins-ci.org/war/latest/jenkins.war

http://mirrors.jenkins-ci.org/war-stable/latest/jenkins.war
http://mirrors.jenkins-ci.org/war/latest/jenkins.war

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

42

	 3.	 Or you can also download jenkins.war from the Jenkins website, as shown in
Figure 2-22.

	 4.	 By clicking on the Download Jenkins button you will be presented with an
option to download the LTS Release and the Weekly Release.

	 5.	 Choose the LTS Release by clicking on the 2.19.1.war link. As shown in Figure 2-23,
do not click on the drop-down menu. Clicking on the drop-down button will
provide you with the stand-alone package for various Operating Systems.

Figure 2-22.  Jenkins download page

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

43

Installing Jenkins Along with Other Services on Apache Tomcat Server
(Not Recommended)
Organizations can follow the current approach if they do not wish to have an individual server for Jenkins
Master alone. But, what if they want to host it along with other services that are already running on their
Apache Tomcat Servers?

	 1.	 Simply move the downloaded jenkins.war file from the /tmp folder to the
webapps folder, which is present inside the installation directory of your Apache
Tomcat Server. In our case it’s /opt/tomcat/webapps.

sudo cp /tmp/jenkins.war /opt/tomcat/webapps/

	 2.	 You will notice that a folder jenkins automatically gets created, the moment you
move the jenkins.war package to the webapps folder (assuming that the Tomcat
Server is running). See Figure 2-24.

Figure 2-23.  Download the latest LTS release

Figure 2-24.  List the content of webapps directory

	 3.	 And that’s all you need to do. In this way one can access Jenkins running on
node1 using the URL http://172.17.8.104:8080/jenkins.

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

44

Installing Jenkins Alone on Apache Tomcat Server (Recommended)
On the other hand, if you chose to have Apache Tomcat Server solely for using Jenkins, follow the below
steps:

	 1.	 Rename the downloaded jenkins.war package to ROOT.war using the move
command.

move /tmp/jenkins.war /tmp/ROOT.war

	 2.	 Next, delete the ROOT directory inside the webapps folder using the rm -r
command.

sudo rm -r /opt/tomcat/webapps/ROOT

	 3.	 Now move the ROOT.war (renamed) package to the webapps folder using the
move command.

sudo move /tmp/ROOT.war /opt/tomcat/webapps/

	 4.	 In this way, one can access Jenkins running on node1 using the URL
http://172.17.8.104:8080/ without any additional path. Apparently the
Apache Server is now a Jenkins Server.

■■ Note  It’s always recommended to have a dedicated Web Server solely for Jenkins.

Deleting the content inside the webapps folder (leaving behind the ROOT directory and ROOT.war), and then
moving the jenkins.war file to the webapps folder, is also sufficient to make Apache Tomcat Server solely
for Jenkins use. The step of renaming jenkins.war to ROOT.war and then moving it to webapps folder is only
necessary, if you want to make http://localhost:8080/ as the standard URL for Jenkins.

Setting Up the Jenkins Home Path
Before we start using Jenkins, there is one important thing to configure, the JENKINS_HOME path. This is
the location where all of the Jenkins configurations, Logs, and Builds are stored. Everything that you create
and configure on the Jenkins dashboard is stored here.

In our case by default the JENKINS_HOME is set to /root/.jenkins/. We need to make it something
more accessible, something like /opt/jenkins/.

	 1.	 Make sure to stop the Apache Tomcat Server.

	 2.	 Open the /opt/tomcat/conf/context.xml file for editing.

sudo nano /opt/tomcat/conf/context.xml

	 3.	 Add the following line between <Context></Context>.

<Environment name="JENKINS_HOME" value="/opt/jenkins" type="java.lang.String"/>

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

45

	 4.	 Type Ctrl+x and then Y to save and exit the file.

	 5.	 Now start the Apache Tomcat Server.

	 6.	 You will now be able to access Jenkins running on node1 using the
following address, https://172.17.8.104:8080/jenkins or
https://172.17.8.104:8080/ depending on your configuration. Figure 2-25 and
Figure 2-26, show the Jenkins startup page on node1 and node2 respectively.

	 7.	 Now, bring down the Apache Tomcat Server on both the nodes (node1 and node2).

Figure 2-26.  Jenkins running on node2

Figure 2-25.  Jenkins running on node1

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

46

Installing the Cluster Software
	 1.	 On both the nodes (node1 and node2), install Corosync and Pacemaker using

the apt-get command.

sudo apt-get install pacemaker

■■ Note  Corosync is installed as a dependency of the Pacemaker package.

Perform the steps mentioned in the following section on both the nodes (node1 and node2).

Configuring Corosync
Corosync and Pacemaker are now installed but they need to be configured. Corosync must be configured so
that our servers can behave as a cluster.

■■ Note  Perform the steps mentioned in the following section on both the nodes (node1 and node2), except
for the “Creating Cluster Authorization Key” subsection, which is performed only on node1.

Creating Cluster Authorization Key
In order to allow the nodes (node1 and node2) to join a cluster, Corosync requires that each node possesses
an identical cluster authorization key.

	 1.	 On node1, install the haveged package. This software package allows us to easily
increase the amount of entropy on our server, which is required by the corosync-
keygen script.

sudo apt-get install haveged

	 2.	 On node1, run the corosync-keygen script. This will generate a 128-byte cluster
authorization key, and write it to /etc/corosync/authkey. As shown in Figure 2-27.

sudo corosync-keygen

Figure 2-27.  Generate 128-byte cluster authorization key

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

47

	 3.	 Now that we no longer need the haveged package, let’s remove it from the node1.

sudo apt-get remove --purge haveged

sudo apt-get clean

	 4.	 From node1, copy the authkey to node2 using the following command.

sudo scp /etc/corosync/authkey vagrant@node2:/tmp

	 5.	 Now ssh to node2 from node1, and execute the following command.

sudo mv /tmp/authkey /etc/corosync

sudo chown root: /etc/corosync/authkey

sudo chmod 400 /etc/corosync/authkey

	 6.	 Now both the nodes should have an identical authorization key in the /etc/
corosync/authkey file.

Configuring Corosync Cluster
In order to get our desired cluster up and running, we must set these up.

	 1.	 On both the nodes (node1 and node2), open the corosync.conf file for editing.

sudo nano /etc/corosync/corosync.conf

	 2.	 Replace the contents of corosync.conf with the following code. Make sure to
change the highlighted code accordingly.

Please read the openais.conf.5 manual page
totem {
 version: 2
 cluster_name: HA cluster for Jenkins
 transport: udpu

 # How long before declaring a token lost (ms)
 token: 3000

 # How many token retransmits before forming a new configuration
 token_retransmits_before_loss_const: 10

 # How long to wait for join messages in the membership protocol (ms)
 join: 60

 �# How long to wait for consensus to be achieved before starting
a new round of membership configuration (ms)

 consensus: 3600

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

48

 # Turn off the virtual synchrony filter
 vsftype: none

 �# Number of messages that may be sent by one processor on
receipt of the token

 max_messages: 20

 # Limit generated nodeids to 31-bits (positive signed integers)
 clear_node_high_bit: yes

 # Disable encryption
 secauth: off

 # How many threads to use for encryption/decryption
 threads: 0

 # Optionally assign a fixed node id (integer)
 # nodeid: 1234

 �# This specifies the mode of redundant ring, which may be none,
active, or passive.

 rrp_mode: none

 interface {
 �# The following values need to be set based on your

environment
 ringnumber: 0
 bindnetaddr: 172.17.8.104
 mcastaddr: 226.94.1.1
 mcastport: 5405
 }
}

amf {
 mode: disabled
}

quorum {
 # Quorum for the Pacemaker Cluster Resource Manager
 provider: corosync_votequorum
 expected_votes: 1
}

aisexec {
 user: root
 group: root
}

nodelist {
 node {
 ring0_addr: 172.17.8.104

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

49

 name: primary
 nodeid: 1
 }
 node {
 ring0_addr: 172.17.8.105
 name: secondary
 nodeid: 2
 }
}

logging {
 fileline: off
 to_stderr: yes
 to_logfile: yes
 logfile: /var/log/corosync/corosync.log
 to_syslog: yes
 syslog_facility: daemon
 debug: off
 timestamp: on
 logger_subsys {
 subsys: AMF
 debug: off
 tags: enter|leave|trace1|trace2|trace3|trace4|trace6
 }
}

	 3.	 The totem section defines how the cluster members should communicate
with each other. In our setup, the important settings include transport:
udpu (specifies unicast mode) and bindnetaddr: 172.17.8.104 for node1
and bindnetaddr: 172.17.8.105 for node2 (specifies which network address
Corosync should bind to).

	 4.	 The quorum section defines that this is a two-node cluster, so only a single node
is required for quorum (expected_votes: 1). This setting will allow our two-node
cluster to elect a coordinator (DC), which is the node that controls the cluster at
any given time.

	 5.	 The nodelist section defines the nodes in the cluster, and how each node can be
reached. Here, we configure both our primary and secondary nodes, and specify
that they can be reached via their respective private IP addresses.

	 6.	 The logging section defines that the Corosync logs should be written to /var/log/
corosync/corosync.log. You can change this to any location (directory) of your
choice.

	 7.	 Type Ctrl+x and then Y to save and exit the file.

	 8.	 On both the nodes (node1 and node2), create the pcmk file in the Corosync
service directory.

sudo nano /etc/corosync/service.d/pcmk

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

50

	 9.	 Then add the Pacemaker service to the file, as shown below.

service {
 name: pacemaker
 ver: 1
}

	 10.	 Type Ctrl+x and then Y to save and exit the file.

	 11.	 By default, the Corosync service is disabled. On both the nodes (node1 and
node2), enable the Corosync service by editing the /etc/default/corosync file.

sudo nano /etc/default/corosync

	 12.	 Inside the file, change the value of START to yes. Note this is case sensitive.

START=yes

	 13.	 Type Ctrl+x and then Y to save and exit the file.

	 14.	 Now we can start the Corosync service. On both the nodes, start Corosync using the
following command. You should get an output similiar to the one shown in Figure 2-28.

sudo service corosync start

	 15.	 Once Corosync is running on both the nodes, they should be clustered together.
We can verify this by running the following command. The response should be
something similiar to Figure 2-29.

sudo corosync-cmapctl | grep members

	 16.	 If you do not see the members listed, use the following command to restart
Corosync.

sudo service corosync restart

Figure 2-28.  Start the Corosync service

Figure 2-29.  Verify the Corosync cluster members

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

51

Starting and Configuring Pacemaker
Pacemaker is now ready to be started. The Pacemaker service requires Corosync to be running, and it’s
disabled by default.

	 1.	 On both the nodes, enable Pacemaker to start on system boot using the following
commands.

sudo update-rc.d pacemaker defaults 20 01

	 2.	 We have set Pacemaker’s start priority to 20. It is important to specify a start
priority that is higher than Corosync (which is 19 by default), so that Pacemaker
starts after Corosync.

	 3.	 Start Pacemaker using the following command as depicted in Figure 2-30.

sudo service pacemaker start

	 4.	 To check the Pacemaker version execute the following command as depicted
in Figure 2-31.

pacemakerd --version

	 5.	 To interact with Pacemaker, we will use the crm utility. Check the cluster status using
the following command. See the output of the command as depicted in Figure 2-32.

sudo crm status

Figure 2-30.  Start the Pacemaker service

Figure 2-31.  Get the pacemaker version

Figure 2-32.  crm status

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

52

■■ Note T o get more information on the crm commands, visit the following link: http://crmsh.nongnu.org/
crm.8.html

All crm commands can be run from either node, as it automatically synchronizes all cluster-related changes
across all member nodes.

In the above output notice the Current DC (Designated Coordinator) value. It
should be set to either primary (1) or secondary (2). There are 2 Nodes and 0
Resources at the moment. Both the nodes are online.

	 6.	 You can also use the crm_mon utility to get real-time updates of the status of
each node, and where each resource is running.

sudo crm_mon

	 7.	 The output of this command looks identical to the output of crm status except it
runs continuously.

	 8.	 If you want to quit, press Ctrl-C.

Configuring Cluster Properties
	 1.	 For a two-node cluster we do not need STONITH enabled. Execute the following

command to disable STONITH.

sudo crm configure property stonith-enabled=false

■■ Note STONITH is used to remove faulty nodes—because we are setting up a two-node cluster we don’t
need it.

	 2.	 We would also like to disable quorum-related messages in the logs. To do that,
execute the following command. Again, this setting only applies to 2-node
clusters.

sudo crm configure property no-quorum-policy=ignore

	 3.	 To verify your Pacemaker configuration, run the following command.

sudo crm configure show

http://crmsh.nongnu.org/crm.8.html
http://crmsh.nongnu.org/crm.8.html

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

53

Figure 2-33, depicts all of your active Pacemaker settings. Currently, this will only include two nodes,
and the STONITH and quorum properties you just set.

Create a Floating IP Resource Agent
Pacemaker and Corosync are running and configured; now we need to add resources for it to manage.
Resources are services that the cluster is responsible for making highly available. In Pacemaker, adding
a resource requires the use of a resource agent. The resource agent acts as an interface to the service that
will be managed. Pacemaker ships with several resource agents for common services, and allows custom
resource agents to be added.

■■ Note  To get the list of available resource agents visit the link: http://www.linux-ha.org/wiki/
Resource_Agents

In our setup, we want to make sure that the service provided by our Tomcat Server, primary and
secondary, is highly available in an active/passive setup, which means that we need a way to ensure that our
Floating IP is always pointing to a server that is available.

Our first resource will be a unique IP address that the cluster can bring up on either node (node1 and
node2). Regardless of where any cluster service(s) are running, end users need a consistent address to
contact them. We will choose 172.17.8.200 as the floating address, and naming it as ClusterIP and tell the
cluster to check whether it is running every 30 seconds.

	 1.	 To do so execute the following command.

sudo crm configure primitive ClusterIP ocf:heartbeat:IPaddr2 params
ip=172.17.8.200 cidr_netmask=32 op monitor interval=30s

■■ Note  ocf:heartbeat:IPaddr2 is the resource agent for ClusterIP

	 2.	 Check the status of your cluster using the crm status command, and you should
see that the ClusterIP resource is started on one of your nodes. As shown in
Figure 2-34.

Figure 2-33.  Cluster configuration

http://www.linux-ha.org/wiki/Resource_Agents
http://www.linux-ha.org/wiki/Resource_Agents

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

54

Creating a Tomcat Resource Agent
Similarly we need to create a Tomcat resource agent that will start, stop, and monitor our Apache Tomcat
Server (Jenkins service).

	 1.	 Get the java home path using the following command as depicted in Figure 2-35:

sudo update-java-alternatives -l

	 2.	 Make sure tomcat is not running.

	 3.	 Execute the following command to create a tomcat resource.

sudo crm configure primitive ApacheTomcat ocf:heartbeat:tomcat params
java_home="/usr/lib/jvm/java-1.7.0-openjdk-amd64/jre" catalina_home=
"/opt/tomcat" op start timeout=60s op stop timeout=120s op status
timeout=60s interval=30s op monitor timeout=30s interval=10s

■■ Note  “java_home” should be set to the path where java is installed. “catalina_home” is the installation
directory of Tomcat. The op (operations) values are extremely important; failing to set then can result in failures.

ocf:heartbeat:tomcat is the resource agent for ApacheTomcat.

	 4.	 Check the status of your cluster using the crm status command. You should see
that the ApacheTomcat resource is started on one of your nodes, as shown in
Figure 2-36.

Figure 2-34.  ClusterIP resource running on one of the nodes

Figure 2-35.  Get the java home path

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

55

■■ Note  Notice that the ApacheTomcat resource isn’t running on the same node as our ClusterIP resource.

Ensuring ClusterIP and Apache Tomcat Run on the Same Node
Now, we need to tell the cluster to run Apache Tomcat on the host that ClusterIP is running on. To do this,
we will use a colocation constraint. The important part of the colocation constraint is indicated by using a
score of INFINITY. The INFINITY score means that if ClusterIP is not active anywhere, ApacheTomcat will
not be permitted to run.

	 1.	 To create a colocation constraint for ApacheTomcat and ClusterIP, execute the
following command.

sudo crm configure colocation ApacheTomcat-with-ClusterIP INFINITY:
ApacheTomcat ClusterIP

	 2.	 Check the status of your cluster using the crm status command. You should see
that the ApacheTomcat resource is now running on the primary node (node1).
See Figure 2-37.

Figure 2-37.  Apache Tomcat running along with ClusterIP on the primary node

Figure 2-36.  ApacheTomcat resource running on one of the nodes

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

56

Ensuring ClusterIP Starts Before Apache Tomcat
We need to make sure ClusterIP ad Apache Tomcat not only runs on the same node, but ClusterIP starts
before Apache Tomcat. A colocation constraint only ensures that the resources run together, but not the
order in which they start and stop.

To achieve order, we will use ordering constraint. By default, all order constraints are mandatory, which
means that the recovery of ClusterIP will also trigger the recovery of Apache Tomcat.

	 1.	 To create an ordering constraint. Execute the following command.

sudo crm configure order ApacheTomcat-after-ClusterIP mandatory:
ClusterIP ApacheTomcat

Replicating Jenkins Home Directory Using DRBD
In the event of primary node failure, the Jenkins Server running on node1 will be started on the secondary
node (node2). When this happens we would also like to make sure that the Jenkins Sever on node2 gets
access to the same configuration and data (Jenkins home directory content) that was created and used by
Jenkins Server running on node1. To do this we can either choose to use a NAS (Network-Attached-Storage)
or we can choose a reliable and cost-effective solution DRBD.

Install the DRBD Packages
	 1.	 Execute the following command to install DRBD. Do this on both the nodes.

sudo apt install drbd8-utils

Preparing Partitions
The first step in setting up DRBD is to prepare the partitions to be used as DRBD devices. We are assuming
that we have an additional disk (sdb) on both the nodes (node1 and node2) that are of same sizes. We will
create two partition tables (sdb1 and sdb2) of 20 GB each for the DRBD devices (drbd1 and drbd2).

	 1.	 Using the command below, list the disks that you have. Figure 2-38 depicts the
additional disk (sdb) on node1.

sudo lsblk

	 2.	 To create the first primary partition, execute the following command.

sudo fdisk /dev/sdb

Figure 2-38.  List the disks

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

57

	 3.	 You will get the following output. With a prompt Command (m for help): asking
for an input.

Device contains neither a valid DOS partition table, nor Sun, SGI or
OSF disklabel
Building a new DOS disklabel with disk identifier 0x4527506d.
Changes will remain in memory only, until you decide to write them.
After that, of course, the previous content won't be recoverable.
Warning: invalid flag 0x0000 of partition table 4 will be corrected by
w(rite)
Command (m for help):

■■ Note  Following are the valid inputs (case insensitive) that can be given as a value for Command (m for help):

p print the partition table

n create a new partition

d delete a partition

q quit without saving changes

w write the new partition table and exit

	 4.	 Type “P” to list the current partition table. The output will be empty as shown
in Figure 2-39.

	 5.	 Next, select “N” (to create a new partition), then P (to choose a primary
partition), then 1 (this is our first primary partition), then press Enter to select
the default value for the First sector, and lastly enter then +20480M for Last sector
and press Enter, as shown in Figure 2-40.

Figure 2-39.  List the existing partition table on /dev/sdb

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

58

	 6.	 Select “P” to list the partition tables. From the Figure 2-41, you can see the
recently created primary partition /dev/sdb1.

	 7.	 Again, select “N” (to create a new partition), then P (to choose a primary
partition), then 2 (this is our second primary partition), then press Enter to select
the default value for the First sector, and lastly press Enter to select the default
value for the Last sector, as shown in Figure 2-42.

	 8.	 Lastly press “W” to save the configuration. See Figure 2-43.

Figure 2-40.  Create a new primary partition

Figure 2-41.  List the partition table on /dev/sdb

Figure 2-42.  Create a new primary partition

Figure 2-43.  Save the partition settings done on /dev/sdb

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

59

	 9.	 Select “P” to list the partition tables. From Figure 2-44, you can see the recently
created primary partition /dev/sdb1 and /dev/sdb2.

	 10.	 Now again list the disks that you have using the lsblk command. You can see the
two new partition sdb1 and sdb2, as shown in Figure 2-45.

sudo lsblk

	 11.	 Repeat all the above steps on node2 as well. Use the same name and size for the
partition.

Configuring DRBD
Simply run the following commands on both the nodes (node1 and node2).

	 1.	 Create a file data.res under /etc/drbd.d/ directory.

sudo nano /etc/drbd.d/data.res

	 2.	 Add the code below to the new file.

resource data {
 protocol C;
 volume 0 {
 device /dev/drbd1;
 disk /dev/sdb1;
 meta-disk internal;
 }

Figure 2-44.  List the partition table on /dev/sdb

Figure 2-45.  List the disks and partitions on node1

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

60

 volume 1 {
 device /dev/drbd2;
 disk /dev/sdb2;
 meta-disk internal;
 }
 syncer {
 verify-alg sha1;
 }
 net {
 allow-two-primaries;
 }
 on node1 {
 address 172.17.8.104:7789;
 }
 on node2 {
 address 172.17.8.105:7789;
 }
}

	 3.	 We will configure DRBD to use port 7789, so allow that port from each host to the other.

sudo ufw allow 7789

Initializing DRBD
Now that we have configured DRBD, let us try to run it. In the following section we will create a local
metadata for the DRBD resource and ensure that the DRBD kernel module is loaded. Then we will bring up
the DRBD resource.

	 1.	 Perform the following steps on primary node (node1). You should see a similiar
output, as shown in Figure 2-46.

sudo drbdadm create-md data

	 2.	 Next, execute the following commands in order.

sudo apt-get install linux-image-extra-virtual

sudo depmod -a

sudo modprobe drbd

Figure 2-46.  Create metadata for the DRBD resource

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

61

	 3.	 Now, execute the following command to start the DRBD resource.

sudo drbdadm up data

	 4.	 We can confirm DRBD’s status on this node (node1) using the following
command.

cat /proc/drbd

In Figure 2-47, you can see ds: Inconsistent/Inconsistent. This is because we
have not yet initialized the data.

And because we have not yet initialized DRBD on the second node, the partner
node’s status is marked as Unknown.

	 5.	 Now, repeat step 1, 2, and 3 on node2.

	 6.	 After executing the steps successfully on node2, give the following command on
node1 to check the sync status.

cat /proc/drbd

From Figure 2-48, we can see that the state has changed to cs:Connected, which
means the two DRBD nodes are communicating. We can also see that both the
nodes are in Secondary role with Inconsistent data.

	 7.	 To make the data consistent, we need to tell DRBD about the node that should be
having the correct data. To do so, execute the following command to make node1
as the primary node with correct data.

sudo drbdadm primary --force data

Figure 2-48.  Sync status

Figure 2-47.  Sync status

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

62

	 8.	 If we check the status immediately, we’ll see something like this.

cat /proc/drbd

In Figure 2-49, we can see that that the node (node1) has the Primary role and
the partner node has the Secondary role. Also the data on node1 is up to date
and the partner node’s data is still Inconsistent with a progress bar showing how
far along the partner node is in sync.

	 9.	 Executing the following command, and after a while, you’ll see something as
shown in Figure 2-50.

cat /proc/drbd

Both sets of data are now up to date, and we can proceed to creating and
populating a file system for our Apache Tomcat and Jenkins.

Populating the DRBD Disk
On the node with the primary role (node1), create two file systems on the DRBD device /dev/drbd1 and
/dev/drbd2 respectively.

■■ Note  Perform the activities of this subsection only on the primary node (node1).

Figure 2-50.  Sync status

Figure 2-49.  Sync status

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

63

	 1.	 Execute the following command to create a file system on /dev/drbd1. As shown in
Figure 2-51.

sudo mkfs.ext3 /dev/drbd1

	 2.	 Similarly, execute the following command to create a filesystem on /dev/drbd2.

sudo mkfs.ext3 /dev/drbd2

	 3.	 To list the filesystem that we recently created, execute the lsblk command.
From the Figure 2-52, we can see the list of filesystems.

sudo lsblk

Figure 2-51.  Create filesystem on /dev/drbd1

Figure 2-52.  List the filesystem

■■ Note I n this example, we created an ext3 filesystem with no special options. In a production environment,
you should choose a filesystem type and options that are suitable for your application.

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

64

	 4.	 Mount the newly created filesystems and populate it with the contents of
/opt/tomcat/webapps and /opt/jenkins.

	 5.	 To do so, execute the following command to mount the /dev/drbd1 filesystem to
/mnt first.

mount /dev/drbd1 /mnt

	 6.	 Move to the /mnt directory and copy the contents of the webapps folder to it
using the following commands.

cd /mnt

sudo cp -R /opt/tomcat/webapps/. /mnt

	 7.	 After copying the files, list the content of the /mnt directory, as shown in Figure 2-53.

	 8.	 Now unmount the /dev/drbd1 filesystem.

sudo umount /dev/drbd1

	 9.	 Similarly, execute the following command to mount the /dev/drbd2 filesystem
to /mnt.

sudo mount /dev/drbd2 /mnt

	 10.	 Move to the /mnt directory and copy the contents of /opt/jenkins folder to it
using the following commands.

cd /mnt

sudo cp -R /opt/jenkins/. /mnt

	 11.	 After copying the files, list the content of the /mnt directory, as shown in
Figure 2-54.

Figure 2-53.  List the contents of /mnt directory

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

65

	 12.	 Now unmount the /dev/drbd2 filesystem.

sudo umount /dev/drbd2

Creating a Cluster Resource for the DRBD Device
Now just like ClusterIP and ApacheTomcat, we will create a cluster resource for the DRBD device, and an
additional clone resource to allow the resource to run on both nodes at the same time.

	 1.	 To do so, execute the following commands in sequence.

sudo crm configure primitive Data ocf:linbit:drbd params
drbd_resource=data op monitor interval=60s

sudo crm configure ms DataClone WebappsData params master-max=1
master-node-max=1 clone-max=2 clone-node-max=1 notify=true

	 2.	 Let’s see the new configuration by executing the crm status command.

sudo crm status

From Figure 2-55, we can see that the DataClone (our DRBD device) is running as master (DRBD’s
primary role) on node1 and as a slave (DRBD’s secondary role) on node2.

Figure 2-54.  List the contents of /mnt directory

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

66

Creating a Cluster Resource for the Filesystems
Now that we have a working DRBD device, let us mount its filesystems.

	 1.	 To create a cluster resource for the filesystem “/dev/drbd1”, execute the
following command.

sudo crm configure primitive WebappsFS Filesystem params device=
"/dev/drbd1" directory="/opt/tomcat/webapps" fstype="ext3" op start
timeout=60s op stop timeout=60s op notify timeout=60s op monitor
timeout=40s interval=20s

	 2.	 Let’s see the new configuration by executing the crm status command.
Figure 2-56 depicts out new configuration.

sudo crm status

Figure 2-55.  crm status

Figure 2-56.  crm status

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

67

	 3.	 Similarly, create a cluster resource for the filesystem “/dev/drbd2,” and execute
the following command.

sudo crm configure primitive JenkinsHomeFS Filesystem params device=
"/dev/drbd2" directory="/opt/jenkins" fstype="ext3" op start timeout=60s
op stop timeout=60s op notify timeout=60s op monitor timeout=40s
interval=20s

	 4.	 Let’s see the new configuration by executing the crm status command.
See Figure 2-57.

sudo crm status

	 5.	 We will group the two filesystems. To do so, execute the following command:

sudo crm configure group FileSystem WebappsFS JenkinsHomeFS

	 6.	 Let’s see the new configuration by executing the crm status command. From
Figure 2-58, you can see the two Filesystems WebappsFS and JenkinsHomeFS are
grouped together as FileSystem.

sudo crm status

Figure 2-57.  crm status

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

68

	 7.	 We would like to run the Filesystems (WebappsFS and JenkinsHomeFS) on
the same node where the DataClone (Master) is running. To do so, execute the
following colocation constraint command.

sudo crm configure colocation FileSystem-with-DataClone INFINITY:
FileSystem DataClone:Master

	 8.	 Also, we would like to create an order in which the resources FileSystem
(WebappsFS and JenkinsHomeFS) and DataClone start and stop. The Data
resource should start first then it should be promoted as Master and then the
resource FileSystem (WebappsFS and JenkinsHomeFS) should start. To do so,
execute the following colocation constraint command.

sudo crm configure order FileSystem-after-DataClone mandatory:
DataClone:promote FileSystem:start

	 9.	 We also need to tell the cluster that ApacheTomcat needs to run on the same
node as the FileSystem (WebappsFS and JenkinsHomeFS) and that it must be
active before ApacheTomcat can start. To do so, execute the following colocation
constraint command in sequence.

sudo crm configure colocation ApacheTomcat-with-FileSystem INFINITY:
ApacheTomcat FileSystem

sudo crm configure order ApacheTomcat-after-FileSystem mandatory:
FileSystem ApacheTomcat

Figure 2-58.  crm status

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

69

Checking the Apache Tomcat Server
As per our configuration so far, Apache Tomcat Server should be running on node1. We should be able to
access it on http://172.17.8.200:8080/jenkins.

	 1.	 Access the Apache Tomcat Server dashboard and from the dashboard click
on the Manager App button to access the Tomcat Web Application Manager
page. You might need to log in using the user “admin,” which we created in the
previous section.

	 2.	 Once you are on the Tomcat Web Application Manager page, scroll down to
Server Information section. And you will see that we are currently accessing
Apache Tomcat Server of node1. See Figure 2-59.

	 3.	 From the active node (node1), give the following command to see the mount
points.

df -h

From the Figure 2-60, you can see the drbd1 filesystem is mounted on /opt/tomcat/webapps and the
drbd2 Filesystem is mounted on /opt/jenkins.

Simulating a Failover
Now let us see if our HA setup for Jenkins using Pacemaker, Corosync, and DRBD works. We will access
Jenkins running on the active node (node1) and do some basic setup that one usually does when using
Jenkins for the first time. Then we will bring down node1 and check if all changes are intact as Jenkins comes
up on node2.

	 1.	 Access the Jenkins Server using http://172.17.8.200:8080/jenkins/.
As shown in Figure 2-61.

Figure 2-59.  Server Information from Tomcat Web Application Manager page

Figure 2-60.  List the mount points

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

70

	 2.	 We know that the Jenkins Server that we are right now accessing is running
inside the Apache Tomcat Server, which is running on node1. Therefore, on
node1 execute the following command. This will print out the content of the file
initialAdminPassword. As shown in Figure 2-62.

sudo cat /opt/jenkins/secrets/initialAdminPassword

	 3.	 Copy the key and paste it inside the Administrator password field.

	 4.	 On the next screen you will be asked to choose either to go with the
recommended plugins or to install the plugins of your own choice. Choose
anything you like.

	 5.	 I have chosen to go with the suggested plugins. As depicted in Figure 2-63.

Figure 2-61.  Access the Jenkins Server using the ClusterIP

Figure 2-62.  Get the Initial Admin Password key

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

71

	 6.	 From Figure 2-64, you can see that the setup is installing all the required plugins
suggested by the Jenkins community.

Figure 2-63.  Choose suggested plugins

Figure 2-64.  Plugin installation in progress

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

72

	 7.	 Once the plugins are installed, you will be asked to create an admin account, as
shown in Figure 2-65.

	 8.	 Once the admin account is created, the setup completes and Jenkins is ready for
use as shown in Figure 2-66.

Figure 2-65.  Creating the first admin user

Figure 2-66.  Finishing the Jenkins setup

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

73

	 9.	 By clicking on the Start using Jenkins button, you will be taken to the Jenkins
Dashboard, as shown in Figure 2-67.

	 10.	 On the primary node (node1), execute the following command to check if there
is a directory named jenkins_admin under /opt/jenkins/users. As shown in
Figure 2-68.

	 11.	 Next, to simulate a failover, we will make the primary node (node1) on standby.
Nodes that are in standby state continue to run Corosync and Pacemaker but
are not allowed to run resources. Any resource found active on the standby
node will be moved elsewhere. This feature is useful while performing system
administration tasks.

	 12.	 Put the active node (node1) into standby mode using the following command,
and observe the cluster move all the resources to the other node (node2). The
node’s status will change to indicate that it can no longer host resources.

sudo crm node standby primary

	 13.	 Execute the crm status command to check the cluster status. You can see in a
while that everything that was running on node1 (primary node) is moved to
node2 (secondary node). See Figure 2-69.

Figure 2-67.  The Jenkins Dashboard

Figure 2-68.  List the newly created admin user inside the Jenkins home directory

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

74

	 14.	 Now, let us check if our data inside the Jenkins home directory (/opt/jenkins) is
intact. To do so, access the Jenkins URL: https://172.17.8.200:8080/jenkins,
as shown in Figure 2-70. You will be asked to log in.

Figure 2-69.  crm status

Figure 2-70.  Jenkins login page

Chapter 2 ■ HA Jenkins Setup Using Pacemaker, Corosync, and DRBD

75

	 15.	 Log in using the user that you created in the previous section.

	 16.	 If you are able to login using the same credentials, as shown in Figure 2-71,
it means the data is intact.

Summary
In the current chapter we learned to create a highly available (HA) setup for Jenkins using Pacemaker,
Corosync, and DRBD. This was a classic approach to create a HA solution for Jenkins. In the next chapter we
will take a modern approach to create a HA setup for Jenkins using CoreOS, Docker, and GlusterFS.

Figure 2-71.  The Jenkins Dashboard

77© Nikhil Pathania 2017
N. Pathania, Pro Continuous Delivery, DOI 10.1007/978-1-4842-2913-2_3

CHAPTER 3

HA Jenkins Setup Using CoreOS,
Docker, and GlusterFS

Highly available (Active/Passive) setup using Pacemaker, Corosync, and DRBD discussed in the previous
chapter is a stable and proven solution. Nevertheless, in this chapter we are going to try something new and
exclusive; we are going to build a highly available (HA) Jenkins Server using CoreOS, Docker, and GlusterFS.
For the first time you'll see how the clustering feature of CoreOS is utilized to achieve a HA setup for Jenkins.
We will start the chapter by discussing a HA design along with a few failover scenarios. This will give you
clarity on how to proceed, and what to expect out of our HA setup. Next, you will learn to create and start a
HA setup for Jenkins. Lastly, we will test our HA setup by simulating a few failover scenarios.

Designing a High Availability Setup for Jenkins
Failure could occur at the hardware level (machine shutdown/reboot/freeze), Application Server level
(Application Server failure/reboot), or at the service level (the service itself fails to start). High Availability
ensures that a service or a group of services is available continuously without any interruption. Every
HA system comes with a Failover mechanism. This mechanism ensures that the controls of the primary
system are transferred to a secondary system (replica of the primary system) if there are any failures on the
primary system. To detect failures, every HA setup has a feature to check the health of the hardware and the
applications that are being served. Figure 3-1 is a typical HA setup (Active/Passive).

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

78

HA Setup for Jenkins
Figure 3-2 depicts how our HA setup for Jenkins will look. There are three CoreOS machines Host1, Host2,
and Host3. Each CoreOS machine is running a GlusterFS Server(marked as G) inside a container. All the
GlusterFS Servers are in sync, and each GlusterFS Server is aware of the other. There is also a Jenkins
Server(marked as J) running inside a container on one of the Hosts.

The Jenkins Server is in communication with one of the GlusterFS Servers that is running on the same
Host. This communication is possible, since the docker image that we are using to run the Jenkins Server
also contains a GlusterFS client. The GlusterFS client is aware of all the three GlusterFS servers.

Whether it’s a build or a configuration change, everything that happens on the Jenkins Server is stored
inside the jenkins_home directory, thus making the data inside the jenkins_home redundant is of utter
most importance. This is the reason why we are using Jenkins in collaboration with GlusterFS.

The Jenkins Server is accessible to the outside world using a virtual IP (Figure 3-2).

Figure 3-1.  A typical Active/Passive HA setup

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

79

Failover Scenarios
Let us understand how our HA setup should react to failures of various types. Shown in Figure 3-3 is a
failover scenario in which the GlusterFS Server that is running on Host2 fails or is disconnected. In this
situation the Jenkins Server, or shall we say the GlusterFS client, running on the Jenkins Server should
automatically connect to any one of the remaining GlusterFS Servers running on Host1 or Host3.

Figure 3-2.  Jenkins HA setup

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

80

Shown in Figure 3-4 is another failover scenario wherein the CoreOS Host2 that is running the Jenkins
Server and one of the GlusterFS servers fails or gets disconnected.

Figure 3-3.  Failover senario 1

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

81

In such a situation the Jenkins Server should automatically start on any of the remaining CoreOS hosts,
and it should connect with the GlusterFS server on that host. The failed GlusterFS Server need not start
anywhere else as there are already other GlusterFS Servers running on the remaining CoreOS hosts.

The following scenario in Figure 3-5 is not that important. However, it is also a failure.

Figure 3-4.  Failover senario 2

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

82

Creating a HA Cluster for Jenkins
In the following section we will realize the HA setup design discussed in the previous section; see Figure 3-2.
Jenkins HA setup. We are going to use Vagrant along with Oracle VirtualBox to create the three CoreOS
hosts. Once the CoreOS hosts (Host 1, Host 2, and Host 3) are ready, we will create unit files for Jenkins
and GlusterFS respectively. The unit files for Jenkins, when executed, will start the Jenkins Server inside a
docker container on one of the CoreOS host. Similarly, the unit file for GlusterFS, when executed, will start
GlusterFS Servers inside a docker container on all the CoreOS hosts. These systemd units (Jenkins Server
and GlusterFS Servers) will be managed using fleet.

■■ Note  While writing this chapter, I have chosen a machine with Ubuntu 16.04 OS. You can perform the
setup mentioned in the chapter on Windows 7/8/10 without any issues.

For simplicity I am using Vagrant along with Oracle VirtualBox to create the three CoreOS host machines.
However, in reality you may choose to create the three CoreOS hosts on three bare metal machines or using a
cloud platform like AWS.

Figure 3-5.  Failover senario 3

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

83

Installing Vagrant
To install Vagrant on Ubuntu, follow the steps below. Make sure you perform these steps as a root or with an
account having root privileges (sudo access).

	 1.	 Open up a terminal and type the following commands to download Vagrant.

wget https://releases.hashicorp.com/vagrant/1.8.5/vagrant_1.8.5_x86_64.deb

(or)

You can also download the latest Vagrant package from the Vagrant website (Figure 3-6):
https://www.vagrantup.com/downloads.html

■■ Note U se the latest version of Vagrant and VirtualBox available. Using an older version of Vagrant with a
newer version of VirtualBox or vice versa may result in issues while creating Vms.

	 2.	 After the download is complete you should see a .deb file.

Figure 3-6.  Vagrant download webpage

https://www.vagrantup.com/downloads.html

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

84

	 3.	 Execute the following commands to install Vagrant using the downloaded
package file. You may be prompted to provide a password.

sudo dpkg -i vagrant_1.8.5_x86_64.deb

sudo apt-get install -f

	 4.	 Once the installation is complete, check the installed version of Vagrant by
executing the following command.

vagrant --version

	 5.	 You should see the Vagrant version as shown in Figure 3-7.

Installing VirtualBox
Vagrant needs Oracle VirtualBox to create virtual machines. However, it's not limited to just Oracle
VirtualBox; you can use VMware and AWS too.

■■ Note  To run Vagrant with either VMware or AWS visit the following webpage: https://www.vagrantup.
com/docs/getting-started/providers.html

Follow the steps below to install Oracle VirtualBox on your machine.

	 1.	 Add the following line to your sources.list file present inside the directory
/etc/apt:

deb http://download.virtualbox.org/virtualbox/debian xenial contrib

■■ Note A ccording to your Ubuntu distribution, replace 'xenial' by 'vivid', 'utopic', 'trusty', 'raring', 'quantal',
'precise', 'lucid', 'jessie', 'wheezy', or 'squeeze'.

	 2.	 Download and register the keys. The output of these commands should be
similiar to as shown in Figure 3-8.

wget -q https://www.virtualbox.org/download/oracle_vbox_2016.asc -O- |
sudo apt-key add -

wget -q https://www.virtualbox.org/download/oracle_vbox.asc -O- | sudo
apt-key add -

Figure 3-7.  Checking Vagrant version

https://www.vagrantup.com/docs/getting-started/providers.html
https://www.vagrantup.com/docs/getting-started/providers.html

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

85

	 3.	 To install VirtualBox, execute the following commands.

sudo apt-get update

sudo apt-get install virtualbox-5.1

	 4.	 Execute the following command to see the installed VirtualBox version, as
shown in Figure 3-9.

VBoxManage --version

■■ Note  Ubuntu/Debian users might want to install the dkms package to ensure that the VirtualBox host
kernel modules (vboxdrv, vboxnetflt, and vboxnetadp) are properly updated if the Linux kernel version changes
during the next apt-get upgrade. For Debian it is available in Lenny backports and in the normal repository for
Squeeze and later. The dkms package can be installed through the Synaptic Package manager or through the
following command:

sudo apt-get install dkms

Creating the CoreOS Host Machines
In order to create the CoreOS hosts using Vagrant we need to download the Vagrantfile for CoreOS. A
Vagrantfile is a manuscript that describes how to build a virtual machine. Follow the steps below to
download the Vagrantfile for CoreOS.

	 1.	 Make sure GIT is installed on your machine. If not, then install GIT using the
following commands.

sudo apt-get update

sudo apt-get install git

Figure 3-8.  Download and register the VirtualBox keys

Figure 3-9.  Check VirtualBox version

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

86

	 2.	 Execute the following command to clone the coreos-vagrant repository from
GitHub.

git clone https://github.com/coreos/coreos-vagrant.git

	 3.	 Go to the directory coreos-vagrant and list the files inside it. See Figure 3-10.

cd coreos-vagrant

ls -lrt

The files Vagrantfile, user-data.sample, and config.rb.sample need some modifications.

	 4.	 Rename the file config.rb.sample to config.rb and open it for editing.

	 5.	 Search for the variable $num_instances and change its value from 1 to 3, as
shown below.

Size of the CoreOS cluster created by Vagrant
$num_instances=3

	 6.	 Search for the variable $update_channel, uncomment it, and change its value
from alpha to stable, as shown below.

Official CoreOS channel from which updates should be downloaded
$update_channel='stable'

	 7.	 Search for the variable $expose_docker_tcp and uncomment it, as shown below.

$expose_docker_tcp=2375

	 8.	 Save and exit the file config.rb.

	 9.	 Now, rename the file user-data.sample to user-data and open it for editing.

	 10.	 Search for the variable discovery: and uncomment it.

discovery: https://discovery.etcd.io/<token>

Figure 3-10.  List the files inside the coreos-vagrant folder

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

87

	 11.	 Provide the address https://discovery.etcd.io/new?size=3 in your web
browser and copy the response, as shown in Figure 3-11.

Figure 3-12.  List the running VMs

Figure 3-11.  Discovery token

	 12.	 Substitute the token value in place of <token>, as shown below.

https://discovery.etcd.io/7b2ba3d5c89938b886d2fa4d2ddda8de

	 13.	 Save and exit the file user-data.

Starting the Virtual Machines
Starting the VMs is simple.

	 1.	 Move to the coreos-vagrant directory and run the vagrant command to start the VMs.

cd coreos-vagrant
vagrant up

	 2.	 The vagrant up command should execute without any errors.

	 3.	 To check the status of the VMs, execute the command vagrant status. The output
of the vagrant status command is shown in Figure 3-12.

https://discovery.etcd.io/new?size=3
https://discovery.etcd.io/7b2ba3d5c89938b886d2fa4d2ddda8de

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

88

	 4.	 To log in to any one of the VMs use the Vagrant ssh command as shown in
Figure 3-13.

vagrant ssh core-01 -- -A

Figure 3-16.  List the units

Figure 3-13.  Log in to CoreOS host

Figure 3-14.  List the IP address of the new CoreOS host

Figure 3-15.  List the machines using the fleetctl command

Figure 3-17.  Print the docker version

	 5.	 To know the IP address of our new VM, execute the ip route command. Notice
the highlighted IP in Figure 3-14. That’s the IP of our new core-01 host.

	 6.	 All the three CoreOS host machines are part of a cluster and are aware of each
other. This can be confirmed by executing the following fleetctl command. See
Figure 3-15.

fleetctl list-machines

	 7.	 To list the running units execute the fleetctl list-units command, as shown in
Figure 3-16. Right now there are no units running on any of the coreos VMs, so
the list is empty.

	 8.	 To see the docker version, execute the command docker –version, as shown in
Figure 3-17.

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

89

	 9.	 To list the network interfaces, execute the ifconfig command. Note the IP address
from the Figure 3-18.

Creating Unit Files
Unit files describe how to run and monitor a service and lots more. The service can be a script, a simple
command, or a docker container.

Creating Unit Files for Jenkins Server
For the Jenkins Server we will create two unit files named, jenkins_a@.service and jenkins_b@.service.
The first unit file will be used to run the Jenkins Server inside a docker container. The second unit will be
used to make a configuration on the docker container created by the first unit file.

	 1.	 Log in to the core-01 host using the command vagrant ssh command.

vagrant ssh core-01 -- -A

Figure 3-18.  List the network interfaces

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

90

	 2.	 The CoreOS is a lightweight Linux OS with minimalistic features. Hence, we have
to manage with the VI editor. To create a file, execute the following command.

vi jenkins_a@.service

	 3.	 Press the Insert button and then paste the following code inside the file.

[Unit]
Description=Jenkins Master Server with GlusterFS client

After=docker.service
Requires=docker.service

Before=jenkins_b@%i.service
Wants=jenkins_b@%i.service

[Service]
TimeoutStartSec=0
ExecStartPre=-/usr/bin/docker kill jenkins%i
ExecStartPre=-/usr/bin/docker rm jenkins%i
ExecStartPre=/usr/bin/docker pull nikhilpathania/jenkins_glusterfs_client
ExecStartPre=/usr/bin/sudo /usr/bin/ip addr add 172.17.8.200/24 dev eth1

ExecStart=/usr/bin/docker run --privileged --name jenkins%i -p 8080:8080
nikhilpathania/jenkins_glusterfs_client

ExecStop=/usr/bin/docker stop jenkins%i
ExecStopPost=/usr/bin/sudo /usr/bin/ip addr del 172.17.8.200/24 dev eth1

[X-Fleet]
Conflicts=jenkins_a@*.service

	 4.	 Click Ctl+x then type :wq! to save and exit the file.

	 5.	 Now create the jenkins_b@.service file using the vi command.

vi jenkins_a@.service

	 6.	 Press the Insert button and then paste the below code inside the file.

[Unit]
Description=Mount /var/jenkins_home to /volume1

After=docker.service
Requires=docker.service

After=jenkins_a@%i.service
Requires=jenkins_a@%i.service
BindsTo=jenkins_a@1.service

[Service]
TimeoutStartSec=0

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

91

ExecStart=/usr/bin/docker exec -u root jenkins%i /bin/bash -c 'cp
-R /var/jenkins_home /var/jenkins_home_backup && mount.glusterfs
172.17.8.101:/volume1 /var/jenkins_home && if ["$(ls -A /var/jenkins_
home)"]; then echo "jenkins_home directory is in sync with GlusterFS
Server"; else cp -R /var/jenkins_home_backup/. /var/jenkins_home; fi &&
chown -R jenkins:jenkins /var/jenkins_home'

RestartSec=30
Restart=on-failure

[X-Fleet]
MachineOf=jenkins_a@%i.service

	 7.	 Click Ctl+x then type :wq! to save and exit the file.

Creating Unit Files for GlusterFS Server
For the GlusterFS Servers we will create a single files glusterfs_a@.service. The unit file will be used to run
the GlusterFS Server inside a docker container on all the three CoreOS hosts.

	 1.	 Log in to the core-01 host using the command vagrant ssh command.

vagrant ssh core-01 -- -A

	 2.	 To create a file, execute the following command.

vi glusterfs_a@.service

	 3.	 Press the Insert button and then paste the code below inside the file.

 [Unit]
Description=Glusterfs Server

After=docker.service
Requires=docker.service

Before=glusterfs_b@%i.service
Wants=glusterfs_b@%i.service

[Service]
TimeoutStartSec=0
ExecStartPre=-/usr/bin/docker kill glusterfs%i
ExecStartPre=-/usr/bin/docker rm glusterfs%i
ExecStartPre=/bin/bash -c 'if [[$(docker images --format
"{{.Repository}}" gluster/gluster-centos:latest)]]; then echo
"image gluster/gluster-centos:latest already exists"; else /usr/bin/
docker pull gluster/gluster-centos:latest; fi'

ExecStart=/usr/bin/docker run --privileged --name glusterfs%i
--net=host -p 22:22 gluster/gluster-centos:latest

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

92

ExecStop=/usr/bin/docker stop glusterfs%i
ExecStopPost=-/usr/bin/docker rmi gluster/gluster-centos:last
ExecStopPost=/bin/bash -c '/usr/bin/docker tag gluster/gluster-
centos:latest gluster/gluster-centos:last && /usr/bin/docker rmi
gluster/gluster-centos:latest && /usr/bin/docker commit glusterfs%i
gluster/gluster-centos:latest'

[X-Fleet]
Conflicts=glusterfs_a@*.service

	 4.	 Click Ctl+x then type :wq! to save and exit the file.

	 5.	 List all the files that we have created using the ls command, as shown in Figure 3-19.

Starting the Cluster
We are ready with our unit files. We will be using fleetctl commands to start our GlusterFS Server and
Jenkins units. First we will start the GlusterFS Server on each of the CoreOS hosts. And then we will do a little
configuration on one of the GlusterFS server. Then once all the GlusterFS servers are up and configured, we
will start our Jenkins Server.

Starting the GlusterFS Servers
We are done creating the unit files for Jenkins as well as GlusterFS. Now let us start the GlusterFS service on
each of the cluster nodes.

	 1.	 To start the GlusterFS servers, execute the following command, as shown in
Figure 3-20.

fleetctl start glusterfs_a@{1,2,3}.service

	 2.	 To check the status of the units that we just started do,

fleetctl list-units

Figure 3-19.  List the unit files

Figure 3-20.  Starting the GlusterFS Servers

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

93

	 3.	 From Figure 3-21, we can see that the status of all three units is still activating.
It will take some time (depending on you network speed) as fleet is downloading
the GlusterFS docker image from the docker hub.

	 4.	 To know what’s happening behind the scene, execute the following command.
You should get an output similar to the one shown in Figure 3-22.

fleetctl status glusterfs_a@2.service

Figure 3-22.  Fleetctl status command

Figure 3-21.  List the Units

	 5.	 You can also use the following command to get a live status about the unit.

fleetctl journal -f glusterfs_a@2.service

	 6.	 Or you can use the following command to list the last 50 lines from the log file
that will give you some idea about the unit.

fleetctl journal –lines 50 glusterfs_a@2.service

	 7.	 Run the fleetctl list-units command again and now you can see all the GlusterFS
Servers that have been started and are active. As shown in Figure 3-23.

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

94

	 8.	 Run the fleectl status glusterfs_a@2.service command again. And you should
see something as shown in Figure 3-24.

	 9.	 Give the following command to see the list of containers running on the
core-01 host. From Figure 3-25, you can see a docker image named
gluster/gluster-ce ntos:latest.

docker ps

Exercise:
Log in to the remaining CoreOs hosts and execute the above commands and check the output.

Figure 3-23.  List the Units

Figure 3-24.  Fleetctl status command

Figure 3-25.  List the docker containers

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

95

Configuring the GlusterFS Servers
Our GlusterFS service is up and running. We will now manually configure one among the three GlusterFS
services.

	 1.	 Log in to the core-01 host using the command vagrant ssh command.

vagrant ssh core-01 -- -A

	 2.	 We will now access the GlusterFS Server named glusterfs2, which is running on
core-01 using the docker exec command. You will be logged in as a root user on
the glusterfs2 Server, as shown in Figure 3-26.

docker exec -it glusterfs2 /bin/bash

	 3.	 To probe the other GlusterFS Servers that are running on core-02 and core-03,
we will use the gluster peer probe command.

	 4.	 First probe the GlusterFS server running on core-02.

gluster peer probe 172.17.8.102

	 5.	 This should return the following.

peer probe: success.

	 6.	 Similarly probe the GlusterFS server running on core-03.

gluster peer probe 172.17.8.103

	 7.	 Try probing the GlusterFS Server that you are currently inside.

gluster peer probe 172.17.8.101

	 8.	 It should return the following.

peer probe: success. Probe on localhost not needed

	 9.	 To get the status of peer probe, execute the command gluster peer status, as
shown in Figure 3-27.

Figure 3-26.  Access the GlusterFS Server container

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

96

	 10.	 We will now create a volume that will be replicated across the GlusterFS Servers.
To do so, execute the following command.

gluster volume create volume1 replica 3 transport tcp 172.17.8.101:/gluster
172.17.8.102:/gluster 172.17.8.103:/gluster force

	 11.	 You should see a similar output,

volume create: volume1: success: please start the volume to access data

	 12.	 To start the volume, do the following:

gluster volume start volume1

	 13.	 This should give an output,

volume start: volume1: success

	 14.	 To see the volume status, execute the following command. You should see an
output similar to the one shown in Figure 3-28.

gluster volume info

Figure 3-27.  Gluster peer status

Figure 3-28.  Gluster volume info

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

97

	 15.	 You can also give the following command. Figure 3-29 shows a different view of
the volume status.

gluster volume status

	 16.	 Type exit to come out of the container.

Starting Jenkins Server
GlusterFS services are now running on all of the three nodes. Let us now start the Jenkins service using the
unit file that we created earlier.

	 1.	 To start the Jenkins units, execute the following command. You should get the
launch status on the unit as shown in Figure 3-30.

fleetctl start jenkins_a@1.service

Figure 3-29.  Gluster volume status

Figure 3-30.  Starting the Jenkins Server

Figure 3-31.  List the units

	 2.	 We can give the command fleetctl list-units to check the status of our units, as
shown in Figure 3-31.

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

98

	 3.	 Open a new terminal and log in to the host where Jenkins is about to start, in our
case it’s core-02. See Figure 3-32.

vagrant ssh core-02 -- -A

	 4.	 Check the status of Jenkins unit by executing the following command. You
should see a similar output as shown in Figure 3-33.

fleetctl status jenkins_a@1.service

	 5.	 Or you can also try,

fleetctl journal –lines 50 jenkins_a@1.service

(Or)

fleetctl journal -f jenkins_a@1.service

	 6.	 Keep checking the status of the units using the fleetctl list-units command unit
until you see the Jenkins unit active and running, as shown in Figure 3-34.

Figure 3-32.  Log in to CoreOS host running the Jenkins Server

Figure 3-33.  Fleetctl status command

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

99

	 7.	 Once the Jenkins unit is up and running, check the detailed status by running the
following command, as shown in Figure 3-35.

fleetctl status jenkins_a@1.service

Figure 3-34.  List the units

Figure 3-35.  Fleetctl status command

Figure 3-36.  Starting the jenkins configuration unit file

	 8.	 Type :q to exit.

Configuring Jenkins Master
Our Jenkins service is up and running. Now we need to run the second unit file jenkins_b@1.service. This
unit file will configure the Jenkins service (jenkins_a@1.service).

	 1.	 To run jenkins_b@1.service, execute the following command, as shown in
Figure 3-36.

fleetctl start jenkins_b@1.service

	 2.	 This should not take much time to execute. Check the status by running fleetctl
list-units command. You should see something as shown in Figure 3-37.

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

100

	 3.	 Lastly, you should see something similar to the one shown in Figure 3-38.

	 4.	 We can check the status of the jenkins_b@1.service by giving the following
command.

fleetctl status jenkins_b@1.service

	 5.	 Quickly open a new terminal and log in to core-02 host by using the vagrant ssh
command.

vagrant ssh core-02 -- -A

	 6.	 Execute the following command to check the running containers, as shown in
Figure 3-39.

docker ps --format "{{.Names}}"

	 7.	 You can see the jenkins1 container is running on core-02. Let us go inside the
running container and have a look. From the core-02 machine execute the
following command as shown in Figure 3-40.

docker exec -it -u root jenkins1 /bin/bash

Figure 3-37.  List the units

Figure 3-38.  List the units

Figure 3-39.  List the running containers

Figure 3-40.  Access the Jenkins Server container

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

101

	 8.	 Once inside the container execute the following commands to list the files inside
the jenkins_home directory, as shown in Figure 3-41.

cd /var/jenkins_home

ls -lrt

	 9.	 Execute the command df -h to check if the mount was a success, as highlighted
in Figure 3-42.

	 10.	 Our Jenkins is up and running. Let us access it in using the following address
http://172.17.8.200:8080/. See Figure 3-43.

Figure 3-41.  List the files inside the jenkins_home directory

Figure 3-42.  Check the mount status

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

102

	 11.	 To get the password from the file /var/jenkins_home/secrets/
initialAdminPassword, execute the following command from the CoreOS host
where the Jenkins Server container is running.

docker exec -u root jenkins1 /bin/bash -c 'cat /var/jenkins_home/secrets/
initialAdminPassword'

	 12.	 Doing this will fetch the password present inside the file initialAdminPassword.
See Figure 3-44.

	 13.	 After you provide the password, the next screen will ask you to select and install
plugins, as shown in Figure 3-45.

Figure 3-43.  Jenkins initial login page

Figure 3-44.  Fetch the initialAdminPassword

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

103

	 14.	 Choose any one of the options. I have chosen to install the plugins suggested
by the Jenkins community. The next screen in Figure 3-46 will show you the
progress of installation.

Figure 3-45.  Install plugins

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

104

	 15.	 Once all the plugins are installed, the next screen will ask you to create an
account, see Figure 3-47. You can either choose to create one or you can proceed
using the existing default admin account. I am trying to create one admin
account as shown below. Once done, click on Save and Finish button, or click on
the Continue as admin button if you have chosen to continue without creating a
new account.

Figure 3-46.  Jenkins plugins getting installed

Figure 3-47.  Creating the first admin account

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

105

	 16.	 Once done, Jenkins is ready for use. Click on the Start using Jenkins button, as
shown in Figure 3-48.

	 17.	 Figure 3-49 shows a Jenkins dashboard.

Figure 3-48.  Jenkins installation complete

Figure 3-49.  Jenkins dashboard

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

106

Simulating a Failover
We now have three machine core-01, core-02, and core-03. The status of our services is as shown below:

Jenkins is running on core-02
Glusterfs2 is running on core-01
Glusterfs1 is running on core-02
Glusterfs3 is running on core-03

In the previous steps we created an admin user in Jenkins and installed a few basic Jenkins plugins
while setting up Jenkins. All these changes will be stored inside the jenkins_home directory. Let us first see
if these changes have been reflected across our glusterfs cluster of servers.

	 1.	 To do this, open three terminals and log in to each CoreOS hosts using the
vagrant ssh command.

	 2.	 First we will see what’s there inside our /var/jenkins_home/users directory.
Execute the following command, as shown in Figure 3-50.

docker exec -it jenkins1 /bin/bash -c 'cd /var/jenkins_home/users && ls -lrt'

Figure 3-50.  List the Jenkins users

Figure 3-51.  Jenkins users reflecting on the gluster volume

Figure 3-52.  Jenkins users reflecting on the gluster volume

	 3.	 Now on the same machine execute the command below, as shown in
Figure 3-51.

docker exec -it glusterfs1 /bin/bash -c 'cd /gluster/users && ls -lrt'

	 4.	 Switch to the terminal where you have logged in on core-01 machine. Execute
the following command, as shown in Figure 3-52.

docker exec -it glusterfs2 /bin/bash -c 'cd /gluster/users && ls -lrt'

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

107

	 5.	 Switch to the terminal where you have logged in on core-03 machine. Execute
the following command, as shown in Figure 3-53.

docker exec -it glusterfs3 /bin/bash -c 'cd /gluster/users && ls -lrt'

Failover Scenario 1
GlusterFS service (glusterfs1) running on core-02 stops and Jenkins connects to another GlusterFS service
running on some another node, keeping everything intact.

	 1.	 To do this, stop the glusterfs1 service on core-02 using fleetctl command as
shown in Figure 3-54.

fleetctl stop glusterfs_a@1.service

	 2.	 To check the glusterfs1 service status, run the fleetctl list-units command
as shown in Figure 3-55.

Figure 3-53.  Jenkins users reflecting on the gluster volume

Figure 3-54.  Stop the glusterfs1 unit

Figure 3-55.  List the units

Figure 3-56.  List the running containers

	 3.	 Execute the following command to see if the container related to glusterfs1
service is still running, as shown in Figure 3-56.

docker ps -a –format='{{.Names}} {{.Status}}' or you simply give docker ps -a

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

108

	 4.	 We can also check about glusterfs1 service from other glusterfs servers. Open a
terminal and log in to core-01 using the vagrant ssh command.

	 5.	 Open the glusterfs2 container in an interactive mode using the below command.

docker exec -it glusterfs2 /bin/bash

	 6.	 Once inside the container, execute the following command, as shown in Figure 3-57.

glusterfs volume status

	 7.	 To check the gluster peer status execute the following command, as shown in
Figure 3-58.

gluster peer status

	 8.	 Open Jenkins master server and you can see it’s still up. However, the user
session has expired. And you are taken to the login page.

	 9.	 Log in using the admin account that we created in the previous section, as shown
in Figure 3-59.

Figure 3-57.  Gluster volume status

Figure 3-58.  Gluster peer status

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

109

	 10.	 If you are able to login successfully, you will see the Jenkins Dashboard as shown
in Figure 3-60. This proves that the user account that we created in the previous
section is still intact.

Figure 3-59.  Jenkins login screen

Figure 3-60.  Jenkins dashboard

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

110

	 11.	 Now start the glusterfs1 container on core-02 again using the fleetctl start
command as shown below.

fleetctl start glusterfs_a@1.service

	 12.	 Execute the fleetctl list-units command to see the glusterfs1 unit status, as shown
in Figure 3-61.

	 13.	 Lets us now see if glusterfs1 is again connected to gluster cluster. To do this,
log in to core-02 and execute the below command to enter inside the glusterfs2
container.

docker exec -it glusterfs2 /bin/bash

	 14.	 From inside the glusterfs2 container execute the gluster command to get the peer
status, as shown in Figure 3-62.

gluster peer status

Failover Scenario 2
The core-02 machine (containing Jenkins and glusterfs2) shuts down. And Jenkins is moved to some
other host.

	 1.	 To stop (shut down) the core-02 host completely execute the following
command, as shown in Figure 3-63.

vagrant halt core-02

Figure 3-61.  List the units

Figure 3-62.  Gluster peer status

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

111

	 2.	 Log in to core-01 host and run the fleectl command to list the machines, as
shown in Figure 3-64.

fleetctl list-machines

	 3.	 Execute the fleetctl list-units command and you will see Jenkins is being started
on core-01. Initially it might take time as the docker is downloading the Jenkins
server image. See Figure 3-65.

Figure 3-63.  Shut down core-02 machine

Figure 3-65.  List the units

Figure 3-64.  List the machines using the fleetctl command

Figure 3-66.  List the units

	 4.	 Keep executing the fleetctl list-units command until you see that the Jenkins
unit is active and running, as shown in Figure 3-66.

	 5.	 Now once everything is up, access the Jenkins master server.

	 6.	 You will see the login screen, log in using the admin user that we created earlier.

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

112

	 7.	 This time click on Select plugins to install option.

	 8.	 On the next screen you will see a list of plugins. The ones that are already
installed are ticked. See Figure 3-67. This again confirms that our data inside the
JENKINS_HOME directory is intact.

	 9.	 Choose nothing, by selecting the option none. And click on the Install button, as
shown in Figure 3-68.

Figure 3-68.  Jenkins plugins getting installed

Figure 3-67.  Install plugins

Chapter 3 ■ HA Jenkins Setup Using CoreOS, Docker, and GlusterFS

113

Summary
In the current chapter we saw how the clustering feature of CoreOS can be used to create a highly available
(HA) solution for Jenkins. We also saw the importance of GlusterFS in replicating the JENKINS_HOME data
across the cluster nodes.

In the next chapter we will learn to set up Jenkins Master on Docker and Cloud solutions such as AWS.

115© Nikhil Pathania 2017
N. Pathania, Pro Continuous Delivery, DOI 10.1007/978-1-4842-2913-2_4

CHAPTER 4

Setting Up Jenkins on Docker
and Cloud

In the previous chapters we learned two different techniques of creating a highly available (HA) setup for
Jenkins using various open source tools. These so-called methods of setting up Jenkins are progressive and
intuitive in their approach, yet they are completely new. Keeping that in mind, in the current chapter we take
the opportunity to explore some of the mainstream ways of setting up a Jenkins master. These are the following:

	 1.	 Jenkins on cloud (AWS).

	 2.	 Jenkins on Docker.

The underlying infrastructure of a Jenkins master can decide how scalable you can make your
continuous Integration (CI) or continuous delivery (CD) solution.

Running Jenkins Inside a Docker Container
Jenkins can very well run inside a Docker container. It makes things even better when persistent volumes are
used. When using persistent volumes, the data under the jenkins_home directory is stored inside a folder
on the Docker host (data volumes), or it can also be mapped to a data container (data volume containers).
In this way the container and the data (jenkins_home) become two separate but dependent entities. If the
Docker container running Jenkins ceases to exist, a new Docker container can be immediately spawned and
connected to the data volumes.

We can also use Docker to host Jenkins Slaves running as containers. Figure 4-1 depicts Jenkins Slaves
running as containers on a Docker Host/Server. The Jenkins master may or may not be on Docker. The Docker
Host/Server is in contact with the Jenkins master using a Plugin. In the following setup, Jenkins can spawn on
demand Jenkins Slaves on the Docker Host/Server. We will learn about this setup with detail in Chapter 6.

Figure 4-1.  Jenkins Master-slave setup on Docker using Docker Plugin

http://dx.doi.org/10.1007/978-1-4842-2913-2_6

Chapter 4 ■ Setting Up Jenkins on Docker and Cloud

116

A single Jenkins master may not be sufficient to handle a growing number of projects, in such cases
the projects can be divided among multiple Jenkins masters, with each Jenkins master having its own set of
Jenkins Slaves running on a Docker Host/Server, as shown in Figure 4-2.

However, using multiple Docker Servers can increase the maintenance overhead. Also, from Figure 4-2,
you can see that there is a one-to-one connection between the Jenkins masters and the Docker Servers. This
means if any of the Docker servers fails, a Jenkins master will completely lose all these build agents (Jenkins
slaves). Also some Jenkins masters may overload their Docker Servers running build agents, while others at
times may not build anything at all, keeping their Docker server idle.

Kubernetes seems to be a better solution to all the above issues. Figure 4-3 shows a Jenkins Master-Slave
setup using Kubernetes. In the following setup, Kubernetes is responsible for managing multiple instances
of Docker Hosts. Jenkins may or may not be running on Kubernetes. Both the Jenkins master and the
Kubernetes cluster communicate using the Kubernetes Plugin. Jenkins can create on demand Jenkins Slaves
on the Kubernetes cluster. We will learn about this setup with detail in Chapter 6.

Figure 4-2.  Multiple Jenkins Master-slave setups on Docker using Docker Plugin

http://dx.doi.org/10.1007/978-1-4842-2913-2_6

Chapter 4 ■ Setting Up Jenkins on Docker and Cloud

117

In the current section we will try to run Jenkins master inside a container on a Docker Host/Server.
For this exercise you need a Docker server. Installing Docker is simple. You can go through the following

section, “Installing Docker on Ubuntu,” to see the installation. For the other OS you can refer to the Notes.

Figure 4-3.  Multiple Jenkins Master-slave setups on Docker using Kubernetes Plugin

Chapter 4 ■ Setting Up Jenkins on Docker and Cloud

118

■■ Note  To install Docker on windows, see Get Started with Docker for Windows (https://docs.docker.
com/docker-for-windows/).

To install Docker on Linux (Red Hat), see Get Docker for Red Hat Enterprise Linux (https://docs.docker.com/
engine/installation/linux/rhel/).

To install Docker on Linux (Fedora), see Get Docker for Fedora (https://docs.docker.com/engine/
installation/linux/fedora/).

Skip this section if you already have a Docker server running.

Installing Docker on Ubuntu
To install Docker, you need any one of the following Ubuntu OS (64-bit). Make sure curl is also installed.

•	 Yakkety 16.10

•	 Xenial 16.04

•	 Trusty 14.04

Setting Up the Repository
Follow these steps to set up a repository:

	 1.	 Execute the following command to let apt use a repository:

sudo apt-get install apt-transport-https ca-certificates

	 2.	 Add Docker’s official GPG key:

curl -fsSL https://yum.dockerproject.org/gpg | sudo apt-key add -

	 3.	 Verify that the key ID is exactly
58118E89F3A912897C070ADBF76221572C52609D, using the following
command.

apt-key fingerprint 58118E89F3A912897C070ADBF76221572C52609D

a.	 You should get an output as shown below.

pub 4096R/2C52609D 2015-07-14
 �Key fingerprint = 5811 8E89 F3A9 1289 7C07 0ADB F762 2157

2C52 609D
uid �Docker Release Tool (releasedocker)

docker@docker.com

https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/engine/installation/linux/rhel/
https://docs.docker.com/engine/installation/linux/rhel/
https://docs.docker.com/engine/installation/linux/fedora/
https://docs.docker.com/engine/installation/linux/fedora/

Chapter 4 ■ Setting Up Jenkins on Docker and Cloud

119

	 4.	 Use the following command to set up the stable repository to download Docker.

sudo add-apt-repository "deb https://apt.dockerproject.org/repo/
ubuntu-$(lsb_release -cs) main"

■■ Note  It’s recommended to always use the stable version of repository.

Installing Docker
After setting up the repository, do the following steps to install Docker:

	 1.	 Update the apt package index using the following command:

sudo apt-get update

	 2.	 To install the latest version of Docker, do this:

sudo apt-get -y install docker-engine

	 3.	 However, if you wish to install a specific version of Docker, do this:

a.	 list the available versions, using the following command:

apt-cache madison docker-engine

b.	 The output should be something similar to as shown below:

docker-engine | 1.16.0-0~trusty | https://apt.dockerproject.org/
repo ubuntu-trusty/main amd64 Packages
docker-engine | 1.13.3-0~trusty | https://apt.dockerproject.org/
repo ubuntu-trusty/main amd64 Packages
.
.
.

■■ Note T he output of the above command depends on the type of repository configured in the previous
section (“Setting Up the Repository”).

	 4.	 Next, execute the following command to install the specific version of Docker.

sudo apt-get -y install docker-engine=<VERSION_STRING>

■■ Note E xample: sudo apt-get -y install docker-engine=1.16.0-0~trusty

Chapter 4 ■ Setting Up Jenkins on Docker and Cloud

120

	 5.	 The Docker service starts automatically. To verify if Docker is installed and
running, do the following:

sudo docker run hello-world

	 6.	 If the above command runs without any errors, and you see a hello-world
message, it means Docker is installed and running.

Install from a Package
For some reason, if you are unable to install Docker using the above repository method, you can download
the .deb package.

	 1.	 Download the .deb package of your choice from https://apt.dockerproject.
org/repo/pool/main/d/docker-engine/

	 2.	 To install the downloaded package do this:

sudo dpkg -i /<path to package>/<docker package>.deb

	 3.	 Verify your Docker installation by running the following command:

sudo docker run hello-world

	 4.	 You should see something as shown below:

Hello from Docker!
This message shows that your installation appears to be working correctly.

Creating a Jenkins Container
The steps demonstrated in the following section are performed on an Ubuntu machine running Docker
server. Hereafter it is called as the Docker host. Running Jenkins inside a container is pretty straightforward.

	 1.	 Once you have Docker installed, run the following command to start a Docker
container running Jenkins.

docker run -d -name <container instance name> -p 8080:8080
-p 50000:50000 jenkins

■■ Note T he above container runs a copy of the latest stable Jenkins LTS release. The Jenkins home directory
inside the Docker container is /var/jenkins_home.

The above approach is not recommended as the data (plugins, jobs, configurations, etc.) inside the jenkins_
home directory will cease to exist the moment you delete the container.

For the latest weekly releases, use the Docker image "jenkinsci/jenkins" instead of "Jenkins."

https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/

Chapter 4 ■ Setting Up Jenkins on Docker and Cloud

121

	 2.	 We won’t be using the above command to run a Jenkins container. Instead, we
will create a Jenkins container with its jenkins_home directory mapped to one of
the directories on the Docker host.

	 3.	 To do this, create a directory named jenkins_home_directory on your Docker
host using the following commands. As shown in Figure 4-4.

mkdir jenkins_home_directory

chmod 777 jenkins_home_directory

	 4.	 Now initiate a Jenkins container using the following command. See Figure 4-5.

sudo docker run -d –name <container instance name> -p 8080:8080 -p
50000:50000 -v /<path on Docker host>/jenkins_home_directory:/var/
jenkins_home jenkins

	 5.	 From the Figure 4-5, we can see a Jenkins container getting created. The data
inside the jenkins_home directory is in sync with the directory jenkins_home_
directory on the Docker host. It’s a good way of backing up Jenkins data.

	 6.	 List the contents of jenkins_home_directory directory on the Docker host using
the following commands.

cd /<path on docker host>/jenkins_home_directory/

ls -lrt

	 7.	 From the Figure 4-6, you can see the content of jenkins_home directory is listing
inside the jenkins_home_directory on the Docker host.

Figure 4-4.  Creating a directory on your docker host

Figure 4-5.  Docker command to run a jenkins container with a persistent volume

Chapter 4 ■ Setting Up Jenkins on Docker and Cloud

122

	 8.	 Execute the following command to work interactively with our new Jenkins
container. This will expose the bash utility inside the Jenkins container.

sudo docker exec -it <container instance name> /bin/bash

■■ Note T o login as root use the “-u root” parameter in the above command.

Example: sudo docker exec -it -u root <container instance name> /bin/bash

	 9.	 Once inside the container run the ip route command to know the IP address of
the container, as shown in Figure 4-7.

ip route

	 10.	 Now that we know the IP address of our container running Jenkins, we can
access Jenkins using the URL http:<IP address of the container>:8080, as
shown in Figure 4-8.

Figure 4-6.  Content of the jenkins_home_directory on docker host

Figure 4-7.  The ip route command

Chapter 4 ■ Setting Up Jenkins on Docker and Cloud

123

	 11.	 To get the password from the file /var/jenkins_home/secrets/
initialAdminPassword, execute the following command:

docker exec -u root <container instance name> /bin/bash -c 'cat
/var/jenkins_home/secrets/initialAdminPassword'

	 12.	 This will print the password present inside the file initialAdminPassword.

	 13.	 Similarly one can also get the password from the jenkins_home_directory on the
Docker host.

cat /<path on the Docker host>/jenkins_home_directory/secrets/
initialAdminPassword

■■ Note  Any changes inside the directory jenkins_home_directory on the Docker host will reflect inside the
jenkins_home directory inside the container.

Figure 4-8.  Jenkins login page

Chapter 4 ■ Setting Up Jenkins on Docker and Cloud

124

Installing Jenkins on Ubuntu
Installing Jenkins on Ubuntu is quite simple. Make sure Java is installed on the machine.

Install the Latest Stable Version of Jenkins
	 1.	 First add the key to your system by executing the following command:

sudo wget -q -O - https://pkg.jenkins.io/debian-stable/jenkins.io.key
| sudo apt-key add -

	 2.	 Now, add the repo http://pkg.jenkins.io/debian-stablebinary/ into the
sources.list file, which is located at /etc/apt, using the following command:

sudo sh -c 'echo deb http://pkg.jenkins.io/debian-stable binary/ >
/etc/apt/sources.list.d/jenkins.list'

	 3.	 Update the package index:

sudo apt-get update

	 4.	 Lastly, install Jenkins using the following simple command:

sudo apt-get install jenkins -y

Install the Latest Version of Jenkins
	 1.	 First add the key to your system by executing the following command:

sudo wget -q -O - https://pkg.jenkins.io/debian/jenkins.io.key |
sudo apt-key add -

	 2.	 Now, add the repo http://pkg.jenkins.io/debianbinary/ into the sources.list
file, which is located at /etc/apt, using the following command:

sudo sh -c 'echo deb http://pkg.jenkins.io/debian binary/ >
/etc/apt/sources.list.d/jenkins.list'

	 3.	 Update the package index:

sudo apt-get update

	 4.	 Lastly, install Jenkins using the following simple command:

sudo apt-get install jenkins -y

Once the Jenkins installation is successful, it will automatically run as a daemon service. By default
Jenkins runs on the port 8080. To access Jenkins, open the URL http://<server IP address>:8080.

http://pkg.jenkins.io/debian-stablebinary/
http://pkg.jenkins.io/debianbinary/

Chapter 4 ■ Setting Up Jenkins on Docker and Cloud

125

Installing Jenkins on Fedora/Red Hat Linux
The Jenkins installation process on Red Hat Linux and Fedora is the same. To do these, open a terminal.
Make sure Java is installed on the machine.

Installing the Latest Stable Version of Jenkins
	 1.	 If you prefer to install a stable version of Jenkins then issue the below-mentioned

commands in sequence.

sudo wget -O /etc/yum.repos.d/jenkins.repo https://pkg.jenkins.io/
redhat-stable/jenkins.repo

sudo rpm --import https://pkg.jenkins.io/redhat-stable/jenkins.io.key

sudo yum install Jenkins

Installing the Latest Version of Jenkins
	 1.	 To install the latest version of Jenkins, issue the following command in sequence.

sudo wget -O /etc/yum.repos.d/jenkins.repo https://pkg.jenkins.io/
redhat/jenkins.repo

sudo rpm --import https://pkg.jenkins.io/redhat/jenkins.io.key

sudo yum install Jenkins

If for some reason you are unable to access Jenkins, check the firewall setting. This is because by default
the firewall will block the ports. To enable them, execute the below commands. You might need admin
privileges.

firewall-cmd --zone=public --add-port=8080/tcp –permanent

firewall-cmd --zone=public --add-service=http –permanent

firewall-cmd –-reload

Once the Jenkins installation is successful, it will automatically run as a daemon service. By default
Jenkins runs on the port 8080. To access Jenkins, open the URL http://<server IP address>:8080.

Installing Jenkins on Cloud (AWS)
Running Jenkins on a cloud platform (like AWS) requires setting up an instance of some capacity (CPU,
memory, storage, and network) and choosing a right OS (AMI).

There are various types of instance available on AWS. Finding the best one for your Jenkins master
mainly depends on how you plan to set up your Jenkins master-slave architecture. Given the tools and
features in AWS, the Jenkins master-slave architecture would fall into one of the categories, as shown below:

Chapter 4 ■ Setting Up Jenkins on Docker and Cloud

126

Types of Jenkins Master-Slave Setups
Shown here is a very simple Jenkins master-slave setup. There is one Jenkins master running on an EC2
instance (M4.large) and the Jenkins slave instances are auto-spawned based on the build requirement. The
advantage of using this strategy is that you need to maintain only one Jenkins master (maintenance includes
updating Jenkins, updating plugins, managing logs, managing Jenkins master configuration, etc.). But as the
number of projects grows beyond the capacity that a AWS instance can handle, you might need to rethink on
the strategy.

Type of Cluster for Jenkins Slaves
We can configure Jenkins slaves on normal EC2 instances. These instances can be scaled horizontally
depending on the number of builds that are running on a given Jenkins master. The EC2 instances can be
auto-spawned using the Amazon EC2 Plugin for Jenkins (Figure 4-9).

Instead of using normal EC2 instances, we can go for the Docker way of doing builds. Amazon ECS
provides a way to create a cluster of Docker containers for running builds, testing, etc. These Docker
containers can be auto-spawned from Jenkins master using the Amazon EC2 Container Service Plugin for
Jenkins. It gives the best of both worlds (Docker + Cloud) (see Figure 4-10).

Jenkins can also auto-spawn a fleet of EC2 spot instances using the Amazon EC2 Fleet Plugin (Figure 4-11).
Read more about the AWS Spot instances on https://aws.amazon.com/ec2/spot/.

Figure 4-9.  Scalable Jenkins Slave cluster using EC2 Instances

Figure 4-10.  Scalable Jenkins Slave cluster using ECS Instances

https://aws.amazon.com/ec2/spot/

Chapter 4 ■ Setting Up Jenkins on Docker and Cloud

127

Finding the Best Instance Type for Your Jenkins Master
There is no right answer for this question. The only best way to find out is to benchmark your Jenkins master-
slave setup discussed above. Only then we can know the right instance type for our Jenkins master and our
Jenkins slaves. Nevertheless, depending on the characteristics of Jenkins master and the Jenkins slaves we
can narrow down to what an instance should be like.

Assume that we perform all out builds on Jenkins slaves and nothing on the Jenkins master. Then, we
can safely say that the Jenkins slaves should have a good amount of storage and decent amount of CPU.

The Jenkins master will mostly have frequent users visiting its dashboard; therefore we need an instance
that has good network bandwidth and good CPU performance, keeping in mind the number of HTTP
requests.

■■ Note  To learn more about AWS instance types, see https://aws.amazon.com/ec2/instance-types/.

Following is a benchmark example of Jenkins Master (from the AWS):

This is a benchmark of five different instance types: the T2.large, the M3.medium, and the M4.large, M4.XL, and
M4.2XL. Each benchmark simulated traffic from 100 concurrent users loading multiple pages inside the Jenkins
dashboard for a sustained period of 10 minutes.

Overall, we found the M4.large to be the best value for the performance. The average CPU utilization during
load testing did not exceed 3%, with an average response time of 220 milliseconds. As expected, the XL and
2XL sizes performed well but at a lower cost per hour; therefore, the M4.large remains the best choice for our
needs. The M3.medium, while a good choice for many applications, did not perform as well as the M4.large,
and had an average CPU utilization of over 80% for the duration of the testing.

The T2.large performed well during the first few minutes of testing. However, because T2 instances offer
burstable performance, 15 sustained an amount of high traffic from 100 users’ depleted available CPU credits,
and performance significantly decreased. Further testing with fewer users (i.e., 10 users) saw improved results.
Thus, if you have a relatively small team and do not expect frequent or high-volume usage from your Jenkins
master, the T2 family may be a good option for you.

In the following section we will launch a virtual application server using Amazon EC2 to host Jenkins
master. You will need an AWS account. The exercise demonstrated in the current sections uses an EC2
instance from the AWS Free Tier limits.

Figure 4-11.  Scalable Jenkins Slave cluster using Spot Instances

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/
https://aws.amazon.com/free/

Chapter 4 ■ Setting Up Jenkins on Docker and Cloud

128

Selecting a Region
Follow these steps:

	 1.	 Log in to your AWS account.

	 2.	 In the navigation bar, verify that the appropriate region is selected, as shown in
Figure 4-12. I have chosen the one nearest to my location.

Creating a Security Group
Using security groups, you define and control access to your AWS instance. It acts more like a firewall. You
can create multiple security groups in AWS. And an AWS instance can be mapped to more than one security
group.

	 1.	 Open the Amazon EC2 console from the navigation bar, by clicking on the
Services ➤ EC2 (Compute), as shown in Figure 4-13.

Figure 4-12.  Selecting region

Chapter 4 ■ Setting Up Jenkins on Docker and Cloud

129

■■ Note  you can also open the EC2 console by accessing the following link: https://console.aws.amazon.
com/ec2/.

	 2.	 On the left-hand side navigation bar, under NETWORK & SECURITY click on
Security Groups, and then click on the Create Security Group button to create a
new security group, as shown in Figure 4-14.

Figure 4-13.  Locating EC2 console

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

Chapter 4 ■ Setting Up Jenkins on Docker and Cloud

130

	 3.	 Enter a name in the Security group name field and add some description under
the Description field. Choose the default value for the VPC field. As shown in
Figure 4-15.

Figure 4-14.  Creating Security Group

Figure 4-15.  Configuring Security Group

Chapter 4 ■ Setting Up Jenkins on Docker and Cloud

131

	 4.	 Click the Inbound tab and then click on Add Rule. Choose Type as SSH. As shown
in Figure 4-16.

	 5.	 Under Source you have three options to choose from (Custom, Anywhere, and
My IP).

a.	 Select Custom and in the text box enter the public IP address range. Choose
this option if you want to provide access to a range of IP address (a group of
team members in your organization).

b.	 Select Anywhere, and enter 0.0.0.0 if you want to give access to an SSH request
coming from any IP address (not recommended), as shown in Figure 4-17.

c.	 Select My IP, and AWS will automatically detect your IP. However, only the
following IP will get SSH access to the AWS instance. As shown in Figure 4-18.

	 6.	 Next, click Add Rule, and then choose HTTP as Type. Under Source you have
the same three options. Under Source, choose Custom, and give a range of IP
addresses. You might want to give access to the Jenkins dashboard only to your
team or your organization. As shown in Figure 4-19.

Figure 4-16.  Adding rule for SSH - Custom

Figure 4-18.  Adding rule for SSH - My IP

Figure 4-17.  Adding rule for SSH - Anywhere

Chapter 4 ■ Setting Up Jenkins on Docker and Cloud

132

	 7.	 Next, click Add Rule again, and then choose Custom TCP Rule as Type. Under
Port Range enter 8080. Under Source, choose Custom, and give a range of IP
addresses. You might want to give access to the Jenkins dashboard only to your
team or your organization. As shown in Figure 4-20.

	 8.	 Next, click on the Create button.

Figure 4-19.  Adding rule for HTTP

Figure 4-20.  Adding rule for TCP

Chapter 4 ■ Setting Up Jenkins on Docker and Cloud

133

Creating an EC2 Instance on AWS
	 1.	 On the left-hand navigation bar, under INSTANCES choose Instances, and then

click Launch Instance. As shown in Figure 4-21.

	 2.	 On the Choose an Amazon Machine Image (AMI) page, select the AMI of your
choice. In the following demonstration I have chosen an Amazon Linux AMI
with HVM. As shown in Figure 4-22.

Figure 4-21.  Creating an instance

Figure 4-22.  Choosing an AMI

Chapter 4 ■ Setting Up Jenkins on Docker and Cloud

134

	 3.	 On the Choose an Instance Type page, select the type of instance that you would
like for your Jenkins master. In the following demonstration I have chosen an
instance of type t2.micro. As shown in Figure 4-23.

	 4.	 Click Next.

	 5.	 On the Configure Instance Details page, configure the settings exactly as shown
in Figure 4-24.

Figure 4-23.  Choosing an Instance type

Chapter 4 ■ Setting Up Jenkins on Docker and Cloud

135

	 6.	 Click Next: Add Storage.

	 7.	 On the Add Storage page, choose the storage size under the field Size (GiB).
You can also add additional volumes by selecting Add New Volume. As shown in
Figure 4-25.

Figure 4-24.  Configure Instance details

Chapter 4 ■ Setting Up Jenkins on Docker and Cloud

136

	 8.	 Click on Next: Add Tags.

	 9.	 On the Add Tags page, you can define a key/value pair. Leave it blank, as shown
in Figure 4-26.

	 10.	 Click on Next: Configure Security Group.

	 11.	 On the Configure Security Group, choose the Select an existing security group
option. And from the resultant list, select the security group that we created in
the previous section, as shown in Figure 4-27. Your values should look different
from mine.

Figure 4-25.  Configure Storage

Figure 4-26.  Configure Tags

Chapter 4 ■ Setting Up Jenkins on Docker and Cloud

137

	 12.	 Next, click on Review and Launch.

	 13.	 On the Review Instance Launch page, review all your configurations. If you are
satisfied, click on Launch.

	 14.	 You will be prompted to choose an existing key pair or create a new key pair.
Since I have none, I choose to create a new key pair, as shown in Figure 4-28.
This key pair will be used to SSH to the AWS instance.

Figure 4-27.  Configure Security Group

Chapter 4 ■ Setting Up Jenkins on Docker and Cloud

138

	 15.	 Give the newly created key pair a name, using the Key pair name section. Next
download the key pair by clicking on the Download Key Pair button. See Figure 4-28.

	 16.	 Next, click Launch Instances. As you do, you will be presented with a Launch
Status page. Click on the View Instance button.

	 17.	 Alternatively, you can view your instance from the left-hand navigation bar, by
clicking Instances. Initially, the status of your instance will be in pending state
and later it will change to running. As shown in Figure 4-29.

Figure 4-28.  Create a new key pair

Figure 4-29.  Instance state

	 18.	 Once it’s running, you instance is ready for use.

Chapter 4 ■ Setting Up Jenkins on Docker and Cloud

139

Connecting to the AWS Instance
To connect to your instance you need the Public DNS or the Public IP of the instance. You will find these
details on the Instance page, under the Description tab. See Figure 4-30.

You will also need your key pair to connect to your instance using SSH.

Connecting to Your AWS Instance from Windows
Make sure you have PuTTY and PuTTYgen applications available on your machine. Follow the steps to
connect to your instance using PuTTY.

	 1.	 The key pair file is a .pem file. PuTTY does not support the private key format
(.pem). Hence, we will use PuTTYgen, to convert (.pem) keys to the required
PuTTY format (.ppk).

	 2.	 Open PuTTYgen application. Follow Figure 4-31.

a.	 From the menu, load the .pem file by clicking on File ➤ Load private key.

b.	 Make sure you select the Type of key to generate: as SSH-2 RSA.

c.	 Do not set any passphrase.

d.	 Click on the Save private key button to download the .ppk file.

Figure 4-30.  Instance Details

Chapter 4 ■ Setting Up Jenkins on Docker and Cloud

140

	 3.	 Now open the PuTTY application again. Follow Figure 4-32 and Figure 4-33.

a.	 In the Category pane, go to Connection ➤ SSH ➤ Auth. Under
Authentication parameters section click on the Browse button to select
the .ppk file that we generated in the previous step.

Figure 4-31.  Converting .pem file to .ppk file

Chapter 4 ■ Setting Up Jenkins on Docker and Cloud

141

b.	 In Host Name (or IP address) field, enter <username>@<Public DNS>.

c.	 Make sure to select the Port value as 22.

Figure 4-32.  Selecting the .ppk file

Chapter 4 ■ Setting Up Jenkins on Docker and Cloud

142

d.	 Click Open to access the AWS instance.

Connecting to Your AWS Instance from Linux Machine
Make sure you have the .pem file available with you on the machine from which you wish to access your
AWS instance.

	 1.	 Run the following command to connect to your AWS instance, as shown in
Figure 4-34.

ssh -i /path/my-key-pair.pem <username>@<Public DNS>

Figure 4-33.  Adding the hostname and port

Chapter 4 ■ Setting Up Jenkins on Docker and Cloud

143

Install the Latest Stable Version of Jenkins
Installing Jenkins from here is the same as installing Jenkins on any Ubuntu machine.

	 1.	 First add the key to your system by executing the following command:

sudo wget -q -O - https://pkg.jenkins.io/debian-stable/jenkins.io.key
| sudo apt-key add -

	 2.	 Now, add the repo http://pkg.jenkins.io/debian-stablebinary/ into the
sources.list file that is located at /etc/apt, using the following command:

sudo sh -c 'echo deb http://pkg.jenkins.io/debian-stable binary/ >
/etc/apt/sources.list.d/jenkins.list'

	 3.	 Update the package index:

sudo apt-get update

	 4.	 Lastly, install Jenkins using the following simple command:

sudo apt-get install jenkins -y

	 5.	 4. You can now access Jenkins using the following URL http://< Public
DNS>:8080/. Or using http://< Public IP>:8080/

Summary
In the current chapter we learned to install Jenkins Master on Docker, Cloud, and Bare Metal machines with
Unix-like OS. Jenkins installation on Windows was skipped due to its shear simplicity.

In the next chapter we will learn in detail about the pipeline as code using Jenkins pipeline Job and
Jenkins multibranch support using the multibranch pipeline Job.

Figure 4-34.  Connecting to aws instance using ssh

http://pkg.jenkins.io/debian-stablebinary/

145© Nikhil Pathania 2017
N. Pathania, Pro Continuous Delivery, DOI 10.1007/978-1-4842-2913-2_5

CHAPTER 5

Pipeline as a Code

Tired of creating and configuring Pipelines for your continuous integration (CI) and continuous delivery
(CD) solution? Pipeline as a Code is the answer. The concept of Pipeline as a Code using Jenkinsfile or
pipeline script is one of the newly introduced features in Jenkins (2.0). The current chapter is all about these
new features in Jenkins, which are the following:

•	 Declarative Pipeline Syntax to model CI and CD pipelines, as a code.

•	 Support for multibranch Git and GitHub projects - to auto-spawn self-managed
pipelines.

•	 Support for GitHub to automatically manage webhooks and more.

•	 Stage view - to make the pipeline progress and logs more intuitive.

In the current chapter, we will learn to use these new features with the help of a GitHub Maven project.
To follow the example, you will need a GitHub account (public or private), and a Jenkins master (2.0)
running on either Docker, AWS, or on a Linux/Windows machine.

Prerequisite
Before we create a pipeline inside Jenkins, we need to make sure that we have the following GitHub and
Jenkins configurations ready:

	 1.	 A personal access token in GitHub.

	 2.	 An SSH key pair from the Jenkins master.

	 3.	 GitHub plugin for Jenkins, with the necessary configurations.

	 4.	 Maven, Git, and Java applications configured on Jenkins master.

	 5.	 Pipeline Maven Integration Plugin for Jenkins.

Let’s see them one by one.

Chapter 5 ■ Pipeline as a Code

146

Creating a Personal Access Token in GitHub
A personal access token is just like a username and password. However, the difference lies in the fact that
you can create as many personal access tokens as you want, each with a different set of permissions.

	 1.	 Sign In to your GitHub account.

	 2.	 Go to your GitHub account settings, as shown in Figure 5-1.

Figure 5-1.  GitHub account settings

Figure 5-2.  Generate new token

	 4.	 On the following page (Figure 5-3), do this:

a.	 Add a name in the Token description field.

b.	 Under Select Scopes field, pick admin:org_hook and admin:repo_hook.

c.	 Click on the Generate token button to finish.

	 3.	 Navigate to Developer settings ➤ Personal access tokens. On the Personal
access tokens page click on Generate new token button (Figure 5-2).

Chapter 5 ■ Pipeline as a Code

147

Figure 5-3.  Select scope

Figure 5-4.  Copy the new personal access token

	 5.	 You can see the new token under the Personal access tokens page (Figure 5-4).
Save a copy of it by clicking on the small copy icon. We will need it later in the
upcoming section.

Chapter 5 ■ Pipeline as a Code

148

Figure 5-5.  Add personal access token in Jenkins

Adding the Personal Access Token in Jenkins
Now we need to add the newly created personal access token in Jenkins so that the Jenkins GitHub plugin
can communicate with GitHub.

	 1.	 From the Jenkins Dashboard, click Credentials ➤ System ➤ Global credentials
(unrestricted).

	 2.	 Click on Add Credentials link present on the left-hand side menu (Figure 5-5), to
create a new credential.

Figure 5-6.  Create a secret text credential

	 3.	 On the following page (Figure 5-6), do the following:

a.	 Select Secret text as the value for Kind.

b.	 Choose Scope as Global (Jenkins, nodes, items, all child items, etc).

c.	 In the Secret field, paste the personal access token that we copied earlier.

d.	 In the ID field enter a meaningful ID.

e.	 Add some description in the Description field.

f.	 Click on the OK button when done.

Chapter 5 ■ Pipeline as a Code

149

	 4.	 You can see your newly created Secret text credential, which contains the GitHub
personal access token, as shown in Figure 5-7.

Figure 5-7.  A new Secret text credential

Generating an SSH Key Pair
Jenkins pipeline needs an SSH key to clone the GitHub repository in order to build the code. The SSH
key pair has to come from the Jenkins master server, since the underlying OS for Jenkins master can be a
Windows or a Linux machine. We need to know the process to generate SSH key pairs on both of these OS.

Generate an SSH Key Pair on Ubuntu
Follow the below steps to generate an ssh key pair:

	 1.	 Open a Terminal and execute the following command, substituting in your email
address (Figure 5-8).

ssh-keygen -t rsa -b 4096 -C "your e-mail id"

a.	 You will be prompted to “Enter a file in which to save the key.” Press Enter, to
accept the default file location.

■■ Note  Make sure you do not have any existing key pair files with the default name. If so, choose a new
name for the SSH key pair that we are creating.

b.	 At the next prompt, type a secure passphrase. You can choose not to enter
any passphrase if you want.

Chapter 5 ■ Pipeline as a Code

150

Figure 5-8.  Creating an SSH key pair

Figure 5-9.  Starting the ssh-agent

Figure 5-10.  Adding the SSH private key to the ssh-agent

	 2.	 This creates a new SSH key pair.

Adding your SSH private key to the ssh-agent

Adding the SSH private key to the ssh-agent makes it unnecessary for you to remember and enter your
passphrase every time you use your key. You can skip this step if you haven’t created a passphrase for your
SSH key pair.

	 1.	 Start the ssh-agent if it’s not already running using the below command.
From the Figure 5-9, you can see a pid number.

eval "$(ssh-agent -s)"

	 2.	 The SSH private key file is id_rsa. Add your SSH private key to the ssh-agent
using the following command. You will be prompted to add your passphrase, as
shown in Figure 5-10.

ssh-add ~/.ssh/id_rsa

Chapter 5 ■ Pipeline as a Code

151

Generate SSH Key Pair on Windows
Follow the below steps to generate an ssh key pair:

	 1.	 Open PuTTYgen.

a.	 Under Parameters ➤ Type of key to generate: choose SSH-2 RSA.

b.	 Next, click on the Generate button and hover your mouse over the blank
space under the key section, as shown in (Figure 5-11).

Figure 5-11.  Generating SSH key pair using puttygen

c.	 Once the key gets generated, add a passphrase in the Key passphrase field.
Confirm the same by reentering the passphrase in the Confirm passphrase
field (Figure 5-12). Creating a passphrase is, however, not mandatory.

d.	 Download the public key and the private key by clicking on the Save public
key and Save private key button (Figure 5-12).

Chapter 5 ■ Pipeline as a Code

152

Copy the SSH Public Key to GitHub
Follow the below steps to copy the ssh public key to Github:

	 1.	 Log in to your GitHub account.

	 2.	 Navigate to Settings ➤ Personal Settings ➤ SSH and GPG keys.

	 3.	 On the SSH keys section click on the New SSH key button (Figure 5-13).

Figure 5-12.  Saving the public and private key

Figure 5-13.  Adding the public SSH key on Github

Chapter 5 ■ Pipeline as a Code

153

	 4.	 On the following page (Figure 5-14), do the following:

a.	 Add a name in the Title field.

b.	 Paste your public key inside the Key field. (Be careful while entering the key.)

c.	 Click on the Add SSH key button. You will be prompted to enter your
GitHub account password.

Figure 5-14.  Entering the SSH public key

	 5.	 A new SSH key appears under SSH keys section, as shown in Figure 5-15.

Figure 5-15.  The new SSH key on GitHub

Copy the SSH Private Key to Jenkins
Follow the below steps to copy the ssh private key pair to Jenkins:

	 1.	 From the Jenkins Dashboard, navigate to Jenkins ➤ Credentials ➤ System ➤
Global credentials (unrestricted).

	 2.	 Click on the Add Credentials link on the left-hand side menu, to create a new
credential (Figure 5-16).

a.	 Choose Kind as SSH Username with private key.

b.	 Add a username under the Username field. (This can be left blank.)

Chapter 5 ■ Pipeline as a Code

154

c.	 Under Private key field choose the Enter directly option and paste the
private key in the text box. (Carefully paste the SSH private key.)

d.	 Enter the passphrase under the Passphrase field if you created one.

e.	 Add an ID under the ID field, and some description under the Description
field.

f.	 Once done, click on the Save button.

Figure 5-16.  Adding SSH private key in Jenkins

Chapter 5 ■ Pipeline as a Code

155

Configuring the GitHub Plugin
In order for Jenkins to communicate with GitHub account, we need to configure the GitHub plugin inside
Jenkins.

	 1.	 From the Jenkins Dashboard, navigate to Manage Jenkins ➤ Configure System.

	 2.	 On the Configure System page scroll down until you see the GitHub section
(Figure 5-18).

a.	 Click on the Add GitHub Server button and choose GitHub Server.

b.	 Choose the GitHub token (in our case it’s github-jenkins-token) for the
Credentials field.

c.	 Leave the Manage hooks un-checked. (We will see this option later in the
chapter.)

d.	 You can test the connection between GitHub and Jenkins by clicking on the
Test connection button.

e.	 Leave the rest of the fields as they are. (We will see these options later in the
chapter.)

	 3.	 The newly created SSH credentials are listed, as shown in Figure 5-17.

Figure 5-17.  List of credentials

Chapter 5 ■ Pipeline as a Code

156

Creating Webhooks in GitHub
In the following section we will learn to create webhooks in GitHub to automatically trigger a CI pipeline in
Jenkins whenever there is a change on the version control system.

	 1.	 Log in to your GitHub account.

	 2.	 Open the GitHub repo that you would like to work on. Click on the Settings (tab).

a.	 On the left-hand side menu, click on Webhooks (Figure 5-19).

b.	 On the following page, click on Add webhook button to create a new
webhook.

Figure 5-18.  Github plugin configuration in Jenkins

Figure 5-19.  Create a new webhook in GitHub

Chapter 5 ■ Pipeline as a Code

157

	 3.	 Configure the new webhook as shown in Figure 5-20:

a.	 Under the Payload URL add your Jenkins URL followed by github-
webhook/.

b.	 Choose the Content type as application/json.

c.	 For the Which events would you like to trigger this webhook? field, select
Send me everything.

d.	 Once done click on Add webhook button.

Figure 5-20.  Configure webhook

Chapter 5 ■ Pipeline as a Code

158

Configure Java, Git, and Maven
To build our project we need Java JDK, Maven, and Git. Follow the below steps to configure Java, Git, and
Maven:

	 1.	 From the Jenkins Dashboard navigate to Manage Jenkins ➤ Global Tool
Configuration.

	 2.	 On the Global Tool Configure page, go to the JDK section and click on Add JDK
button (Figure 5-22).

a.	 Under the Name field add a name.

b.	 Choose Install automatically.

c.	 Click on the Add Installer button and choose Install from java.sun.com
option.

d.	 Select the appropriate version for the Version field. And agree on the
License Agreement.

	 4.	 You can see the newly created webhook, as shown in Figure 5-21.

Figure 5-21.  Newly created webhook

Figure 5-22.  Configuring Java

Chapter 5 ■ Pipeline as a Code

159

■■ Note  You must have an Oracle account to use this method of installing Java. Enter your Oracle account
details by clicking on the “Please enter your username/password” link.

	 3.	 Next, scroll down to the Git section (Figure 5-23).

a.	 Add a name under the Name field.

b.	 Under the Path to Git executable add git. (This assumes that you have
installed Git on your Jenkins master.)

c.	 Leave the Install automatically option un-checked.

Figure 5-23.  Configuring Git

■■ Note I f you are using Git as the version control tool, make sure it is installed on the Jenkins master.

	 4.	 Next, scroll down to the Maven section (Figure 5-24).

a.	 Click on Add Maven button.

b.	 Add a name under the Name field.

c.	 Choose the Install automatically option.

d.	 Click on Add Installer button and choose Install from Apache.

e.	 Choose the appropriate version for the Version field.

Chapter 5 ■ Pipeline as a Code

160

Install the Pipeline Maven Integration Plugin
Follow the below step to configure the pipeline maven integration plugin for Jenkins. The following plugin
will allow us to use the Maven configuration inside out pipeline code.

	 1.	 From the Jenkins Dashboard click on Manage Jenkins ➤ Plugin Manager ➤
Available (tab).

	 2.	 Type Pipeline Maven Integration Plugin inside the Filter field to search the
respective plugin, as shown in Figure 5-25.

Figure 5-24.  Configuring Maven

Figure 5-25.  Installing pipeline Maven integration plugin

Chapter 5 ■ Pipeline as a Code

161

Using the Jenkins Pipeline Project
Let us create a Jenkins pipeline. In the example below I am using Jenkins 2.32.1, which is a stable release for
Ubuntu. Our pipeline will download the code from GitHub repository and perform a build and unit test on it
using Maven commands. Our pipeline will have two stages: first will be the scm stage, and the second will be
the build stage.

Creating a Pipeline Project in Jenkins
Follow the steps to create a pipeline job inside Jenkins:

	 1.	 From the Jenkins Dashboard, click on the New Item link from the left-hand side
menu.

	 2.	 On the following page (Figure 5-26), do the following:

a.	 Name your pipeline by entering a name in the Enter an item name field.

b.	 Choose Jenkins project type as Pipeline from the options.

c.	 Click on the OK button.

Chapter 5 ■ Pipeline as a Code

162

	 3.	 On the pipeline configuration page, scroll down to the Build Triggers section.
And choose the option GitHub hook trigger for GITScm polling, as shown in
Figure 5-27.

Figure 5-26.  Creating a pipeline job

Chapter 5 ■ Pipeline as a Code

163

	 4.	 Next, Scroll down to the Pipeline section and choose Pipeline script under the
Definition field (Figure 5-28).

Figure 5-27.  Choosing a build trigger

Figure 5-28.  Pipeline script

	 5.	 Let’s explore the Pipeline Syntax option. To do so, click on the Pipeline Syntax
link which is right below the Script box.

The Pipeline Syntax Option in Jenkins
The Pipeline syntax utility is a very useful tool in Jenkins to convert Jenkins UI configurations to code. Let’s
see it in action.

	 1.	 The Pipeline Syntax utility will open in a new tab.

	 2.	 On the following page, go to the Steps section.

a.	 For the Sample Step field, you will find a huge list of options.

b.	 Choose checkout: General SCM option from the list. When you do so, the
page refreshes with a new set of configurable items (Figure 5-30).

c.	 Choose Git for the SCM field.

d.	 Under Repositories ➤ Repository URL, add the GitHub repository’s SSH
link. You can find the SSH link for your repo on the GitHub repository page,
as shown in Figure 5-29.

Chapter 5 ■ Pipeline as a Code

164

e.	 Under Credentials field, add the SSH credentials that we created in the
previous sections (Figure 5-30).

f.	 Leave all the other options as it is.

g.	 Click on the Generate Pipeline Script button.

h.	 Copy and save the code. (We will need it later.)

Figure 5-30.  Generating code for SCM

Figure 5-29.  Fetching the GitHub SSH URL

Chapter 5 ■ Pipeline as a Code

165

	 3.	 Now, choose node: Allocate node from the list of options available under
Sample Step. As you will see the page refreshes with the new set of configurable
items (Figure 5-31).

a.	 Add master under the Label field.

b.	 Click on the Generate Pipeline Script button.

c.	 Copy and save the code. (We will need it later.)

Figure 5-31.  Generating code for node

Figure 5-32.  Generating code for stage scm

	 4.	 Now, choose stage: Stage from the list of available options under Sample Step
(Figure 5-32).

a.	 Add scm under the Stage Name field.

b.	 Click on the Generate Pipeline Script button.

c.	 Copy and save the code. (We will need it later.).

Chapter 5 ■ Pipeline as a Code

166

	 5.	 Create code for another stage named build, as shown in Figure 5-33. Copy the
generated code.

Figure 5-33.  Generating code for stage build

Figure 5-34.  Generating code for withMaven

	 6.	 Now, choose withMaven: Provide Maven environment from the list of available
options under Sample Step (Figure 5-34).

a.	 Choose Default Maven under the Maven field.

b.	 Choose Default Java under the JDK field.

c.	 Leave the rest of the fields as they are.

d.	 Click on the Generate Pipeline Script button.

e.	 Copy and save the code. (We will need it later.)

Chapter 5 ■ Pipeline as a Code

167

■■ Note T o make withMaven: Provide Maven environment option available, in the Sample Step field we
installed the Pipeline Maven Integration Plugin for Jenkins.

	 7.	 Now, choose sh: Shell Script from the list of available options under
Sample Step (Figure 5-35).

a.	 Inside the Shell Script field type the following code:

mvn clean install

b.	 Click on the Generate Pipeline Script button.

c.	 Copy and save the code. (we will need it later).

Figure 5-35.  Generating code for shell script

	 8.	 The combined code that we have generated so far is as shown below:

node('master') {

stage('scm') {
 checkout([$class: 'GitSCM', branches: [[name: '*/master']],
doGenerateSubmoduleConfigurations: false, extensions: [], submoduleCfg: [],
userRemoteConfigs: [[credentialsId: 'github-jenkins-ssh-key', url:
'git@github.com:pro-continuous-delivery/hello-world-example.git']]])
}
stage('build') {
 withMaven(jdk: 'Default Java', maven: 'Default Maven') {
 sh 'mvn clean install'
}
}
}

	 9.	 Switch to the Jenkins Pipeline configuration page. And paste the above code
under the Script field, as shown in Figure 5-36.

Chapter 5 ■ Pipeline as a Code

168

Testing the Jenkins Pipeline Project
Let us now make some change on the GitHub code and see the pipeline in action.

Make Some Changes in GitHub
Follow the steps below to create some change on GitHub:

	 1.	 Log in to the GitHub account and try to make some change on the code. Or if you
have cloned the GitHub repository then try to commit some change and push it
to your GitHub repository.

	 2.	 In the following example, I am making some changes to the .pom file; I am doing
this straight from the GitHub. See Figure 5-37.

Figure 5-37.  Make some change on GitHub

Figure 5-36.  Pipeline script

	 3.	 As it can be seen below from Figure 5-38, I am committing the change to the
master branch.

Chapter 5 ■ Pipeline as a Code

169

Jenkins Pipeline Project in Action
The moment you commit or push a change on the GitHub repository, the Jenkins pipeline gets triggered.

	 1.	 To see this in action, from the Jenkins Dashboard quickly click on the pipeline
project (in our example its hello-world-pipeline).

	 2.	 On the pipeline page you can see the Stage View, as shown in Figure 5-39.

Figure 5-38.  Committing changes on GitHub

Figure 5-39.  Pipeline in progress

Chapter 5 ■ Pipeline as a Code

170

	 3.	 Try moving your mouse over any of the stages. You can see a link to the logs,
which is specific to the respective stage, as shown in Figure 5-40.

Figure 5-40.  In-progress logs

Figure 5-41.  Stage logs

	 4.	 Clicking on the logs will open a small window with the running logs inside it.
Figure 5-41 shows a preview of what some of the running logs look like.

	 5.	 From the pipeline page, click on the GitHub Hook Log to check the GitHub Push
details (Figure 5-42).

Chapter 5 ■ Pipeline as a Code

171

Using Jenkins Multibranch Pipeline Project
The Jenkins multibranch pipeline needs a Jenkinsfile for sure. All the pipeline steps and stages are
configured (written) inside the Jenkinsfile. This Jenkinsfile is stored with the source code on your Version
Control System (Git, GitHub, etc).

The Jenkins multibranch project configuration contains only the information about the GitHub or Git
repository and nothing else. This multibranch pipeline is again dependent on webhooks.

Create Credentials for GitHub Account
We need to add the GitHub account credentials inside Jenkins, as the multibranch pipeline does not accept
the SSH key pair authentication.

	 1.	 From the Jenkins dashboard click on Credentials ➤ System ➤ Global
credentials (unrestricted).

	 2.	 Click on the Add Credentials link from the left-hand side menu.

	 3.	 On the following page (Figure 5-43), do the following:

a.	 Choose Username and Password under the Kind field.

b.	 Add your GitHub account username under the Username field.

c.	 Add your GitHub account password under Password field.

d.	 Add some ID and description in the ID and Description fields respectively.

e.	 Once done, click on the OK button.

Figure 5-42.  Github push details

Chapter 5 ■ Pipeline as a Code

172

Creating a Multibranch Pipeline Project
Follow the steps below to create a multibranch pipeline job in Jenkins:

	 1.	 From Jenkins Dashboard click New Item.

a.	 Add a name to your new pipeline under the Enter an item name field
(Figure 5-44).

b.	 Choose Multibranch Pipeline from the project-type options and click the
OK button.

Figure 5-43.  Github account credentials in Jenkins

Chapter 5 ■ Pipeline as a Code

173

Figure 5-44.  Creating a multibranch pipeline job

Chapter 5 ■ Pipeline as a Code

174

	 2.	 On the Job configuration page, scroll down until you see the Branch Sources
section (Figure 5-45).

a.	 Click on the Add source button and choose GitHub.

b.	 Under the Owner field, add your GitHub account name.

c.	 Under Scan credentials add the recently created GitHub account
credentials in Jenkins.

d.	 The Repository field will be automatically populated with the list of all the
repositories that you have under your GitHub account. Choose the one that
you want Jenkins to work on.

e.	 Leave the rest of the options as is.

Figure 5-47.  Choose the appearance

Figure 5-45.  Configuring Github repo

Figure 5-46.  Choose to build from Jenkinsfile

	 3.	 Scroll down until you see Build Configuration section (Figure 5-46). Choose the
Mode as by Jenkinsfile.

	 4.	 Scroll down to the Appearance section (Figure 5-47). You can choose to have
your GitHub repo avatar on your pipeline page.

Chapter 5 ■ Pipeline as a Code

175

Figure 5-48.  Branch Indexing Log

	 5.	 Click on the Save button to save you configuration.

	 6.	 The moment you create a multibranch pipeline. Jenkins will immediately fetch
the branch details from GitHub and generate a report, as shown in Figure 5-48.

	 7.	 To access the Branch Indexing Log, click on the Branch Indexing link from the
Jenkins multibranch pipeline page.

	 8.	 From the logs it is clear that the Jenkins multibranch pipeline identified a master
branch on the GitHub repo with no Jenkinsfile on it. And hence, it declared the
GitHub repository; or to be more specific, the GitHub branch as unsuitable.

	 9.	 So let’s add a Jenkinsfile to our GitHub repository.

Chapter 5 ■ Pipeline as a Code

176

Using a Jenkinsfile
Follow the steps below to use the Jenkinsfile:

	 1.	 Take the build script from our previous pipeline project. Shown below is the code
from the pipeline project.

node('master') {
stage('scm') {
 checkout([$class: 'GitSCM', branches: [[name: '*/master']],
doGenerateSubmoduleConfigurations: false, extensions: [], submoduleCfg: [],
userRemoteConfigs: [[credentialsId: 'github-jenkins-ssh-key', url:
'git@github.com:pro-continuous-delivery/hello-world-example.git']]])
}
stage('build') {
 withMaven(jdk: 'Default Java', maven: 'Default Maven') {
 sh 'mvn clean install'
}
}
}

	 2.	 From the above code delete the following section (scm stage).

stage('scm') {
 checkout([$class: 'GitSCM', branches: [[name: '*/master']],
doGenerateSubmoduleConfigurations: false, extensions: [], submoduleCfg: [],
userRemoteConfigs: [[credentialsId: 'github-jenkins-ssh-key', url:
'git@github.com:pro-continuous-delivery/hello-world-example.git']]])
}

	 3.	 And in its place, add the following command:

checkout scm

	 4.	 The resultant code should look as shown below.

node('master') {
checkout scm
stage('build') {
 withMaven(jdk: 'Default Java', maven: 'Default Maven') {
 sh 'mvn clean install'
}
}
}

	 5.	 Open a text editor and paste the above content in it and save it as Jenkinsfile.

	 6.	 Add this new Jenkinsfile to the cloned repository on your local machine and do
a commit + push operation (if you have created a clone of the GitHub repository
on your local machine).

	 7.	 Or add it directly to your GitHub repo, as shown in Figure 5-49.

Chapter 5 ■ Pipeline as a Code

177

Figure 5-50.  Committing the changes on GitHub

Figure 5-51.  Pipeline for the master branch

	 8.	 Commit the new Jenkinsfile by adding some comments on the master branch,
as shown in Figure 5-50.

Figure 5-49.  Adding Jenkinsfile to GitHub repository

	 9.	 The moment you do so, the multibranch pipeline gets triggered on the Jenkins
master. To see this click on our multibranch Jenkins pipeline from the Jenkins
Dashboard.

	 10.	 As shown in Figure 5-51, you can see a new pipeline, named master, gets created
inside the multibranch pipeline project.

Chapter 5 ■ Pipeline as a Code

178

Creating a New Branch on the GitHub Repo
When you create a new branch on the GitHub repo, Jenkins multibranch pipeline will automatically detect it
and create a pipeline for it based on the Jenkinsfile. To see this in action, let’s create a new branch on Github.

	 1.	 As you can see, I am creating a new branch named feature-branch-1 from the
master branch (Figure 5-52).

Figure 5-53.  Pipeline for the feature-branch-1 branch

Figure 5-52.  Creating a new branch on Github repo

■■ Note S ince we have created a branch named feature-branch-1 from the master branch. The Jenkinsfile at
this point is the same as the one on the master branch. Nevertheless, we can change it and have a different set
of steps and tasks inside it.

	 2.	 The moment I do so, GitHub notifies Jenkins and the multibranch pipeline project
gets triggered. To see this, go to Jenkins Dashboard and click on the multibranch
pipeline project. You will see two pipelines inside it. One is for master branch and
the other one is for feature-branch-1, as shown in Figure 5-53.

Chapter 5 ■ Pipeline as a Code

179

Figure 5-54.  Branch Indexing Log

	 3.	 From the multibranch pipeline project page, click on Branch Indexing link.
And you will see that Jenkins now has the details about both the branches on the
GitHub repo, as shown in Figure 5-54.

A Better Way of Managing GitHub Webhooks
All this time we were using the manual way of creating webhooks on GitHub. However, in the current
section, we will discuss some other, better ways to configure webhooks.

	 1.	 Using the GitHub services (manual)

	 2.	 Using GitHub Plugin in Jenkins (Automatic)

Using the GitHub Services
GitHub has some built-in integration support (services) for popular tools like Jenkins. Using these pre-built
services for Jenkins, such as the Jenkins (Git plugin) and the Jenkins (GitHub plugin), you can automatically
trigger the Jenkins CI pipeline whenever there is a push on the version control system.

	 1.	 Log in to your GitHub account.

	 2.	 Open your Repository home page and click on the Settings (tab).

	 3.	 On the left-hand side menu, click Webhooks and delete any existing webhooks
that we have configured so far.

Chapter 5 ■ Pipeline as a Code

180

	 4.	 Next, on the left-hand side menu, click Integrations & services.

a.	 On the following page, under Services section, click on the Add services
button.

b.	 Search for Jenkins (GitHub plugin) by typing the same, as shown in
Figure 5-55.

Figure 5-55.  Adding the Jenkins (GitHub plugin) service

	 5.	 On the resultant page (Figure 5-56), do the following,

a.	 Add the Jenkins webhook URL under the Jenkins hook url field, as shown
below.

b.	 Click on the Add Service button.

Chapter 5 ■ Pipeline as a Code

181

Figure 5-57.  New GitHub service

	 6.	 The service gets added as shown in Figure 5-57.

Figure 5-56.  Configuring GitHub service

	 7.	 Try making some commits on the GitHub repo and see if the new GitHub service
works.

Chapter 5 ■ Pipeline as a Code

182

Automatically Manage Webhooks from Jenkins
We can make Jenkins create personal token and webhooks automatically on GitHub, all using the GitHub
account details:

	 1.	 To do this, delete all the webhooks and Services and the personal token from
GitHub.

	 2.	 Also, delete the GitHub token key created in the Jenkins credentials page.

	 3.	 Go to Manage Jenkins ➤ Configure System.

a.	 Scroll down to the GitHub section (Figure 5-58).

b.	 Select the Manage hooks check box.

Figure 5-58.  Configuring GitHub plugin 1

c.	 Click on the Advanced… button, the one after Add GitHub Server button
(Figure 5-58).

d.	 Under Additional actions click on Manage additional GitHub actions
button and choose Convert login and password to token (Figure 5-59).

http://172.17.8.106:8080/manage
http://172.17.8.106:8080/configure

Chapter 5 ■ Pipeline as a Code

183

e.	 You will be presented with some more options (Figure 5-60). Do the
following:

f.	 Under GitHub API URL field, add the GitHub URL of your organization, if
it’s a public repo then leave the field with the default option as shown below.

g.	 Choose From credentials option, and under Credentials field, add the
GitHub account credentials that we created in the previous sections.

h.	 Next, press on the Create token credentials button. This action will create a
personal access token on your GitHub account.

i.	 Under Credentials choose the GitHub account credentials that we created
in Jenkins.

Figure 5-60.  Configuring GitHub plugin 3

Figure 5-59.  Configuring GitHub plugin 2

j.	 Click on the Test connection button to test the connectivity between
Jenkins and GitHub (Figure 5-61).

k.	 Click on the Re-register hooks for all jobs button. This will create all the
necessary webhooks on GitHub for both the Jenkins pipelines that we have
created so far (Figure 5-61).

Chapter 5 ■ Pipeline as a Code

184

	 4.	 Let’s log in to GitHub and check the automatically created webhooks and
personal access token.

	 5.	 Navigate to Settings (GitHub account) ➤ Developer settings ➤ Personal
access tokens.

	 6.	 You can see a new personal access token, as shown in Figure 5-62.

Figure 5-61.  Configuring GitHub plugin 4

Figure 5-62.  Auto-generated personal access token

	 7.	 Navigate to Settings (repository) ➤ Developer settings ➤ Personal access
tokens.

	 8.	 You can see a new webhook, as shown in Figure 5-63.

Chapter 5 ■ Pipeline as a Code

185

Figure 5-63.  Auto-generated webhooks

Figure 5-64.  List of credentials

	 9.	 From the Jenkins Dashboard, navigate to Jenkins ➤ Credentials ➤ System ➤
Global credentials (unrestricted).

	 10.	 You can see the auto-generated personal access token has been added to Jenkins
Credentials, as shown in Figure 5-64.

Summary
In the current chapter we learned to create a simple CI pipeline using the pipeline script (pipeline as a
code) with just two stages (scm and build). We also learned to use the Jenkins multibranch pipeline and the
Jenkinsfile. Along with these, we also learned to configure webhooks in GitHub and create credentials in
Jenkins.

The purpose of this chapter was to introduce its readers to the Jenkins pipeline Job, multibranch
pipeline Job, and Jenkinsfile using a simple example. Nevertheless, we will learn more about Jenkins
pipeline steps/syntax in the coming chapters.

In the next chapter we will learn to set up a distributed build farm using Docker and Kubernetes. We
will also create simple pipelines to test out builds on these build farms. Along with these, pretested commits
using Jenkins and GitHub is also a topic of discussion in Chapter 6.

http://dx.doi.org/10.1007/978-1-4842-2913-2_6

187© Nikhil Pathania 2017
N. Pathania, Pro Continuous Delivery, DOI 10.1007/978-1-4842-2913-2_6

CHAPTER 6

Using Containers for Distributed
Builds

In the current chapter we will learn to use Docker with Jenkins to provision on-demand Jenkins Slaves. Next,
we will learn to use Kubernetes with Jenkins to provision on-demand Jenkins Slaves running across multiple
Docker hosts, thus, creating a scalable build farm for running builds.

Distributed Builds Using Docker
In this section we will learn to use Docker containers as Jenkins Slave (build agents), to run our CI pipelines.
These Docker containers (build agents) will be created when the CI pipeline runs; the build will be
performed inside the container, and once the build is complete the Docker container will be destroyed.

To achieve this we need a Jenkins Master (could be running on any platform: Docker, Windows, Linux,
Cloud, etc.). We also need a Docker Server. To set up a Docker server, see the Installing Docker on Ubuntu
section from Chapter 4.

Make sure that your Jenkins Master can talk to GitHub using the Github Plugin. See the section
Automatically Manage Webhooks from Jenkins from Chapter 5.

We might also need Java, Git, and Maven configured on your Jenkins Master. See section Configure
Java, Git, and Maven from Chapter 5.

Enabling Docker Remote API
Jenkins (though the Docker Plugin) will use the Docker remote API to communicate with a Docker server.
Docker remote API allows external applications to communicate with the Docker server using REST API’s.
Docker remote API can also be used to get information about all the running containers inside the Docker
server.

To enable Docker remote API, we need to modify the Docker’s configuration file. Depending on your
OS version and the way you have installed Docker on your machine, you might need to choose the right
configuration file to modify. Shown below are two methods that work on Ubuntu.

http://dx.doi.org/10.1007/978-1-4842-2913-2_4
http://dx.doi.org/10.1007/978-1-4842-2913-2_5
http://dx.doi.org/10.1007/978-1-4842-2913-2_5

Chapter 6 ■ Using Containers for Distributed Builds

188

Modifying the docker.conf file
Follow these steps to modify the docker.conf file. These configurations are important to allow Jenkins to
communicate with the Docker Host.

	 1.	 Log in to your Docker server, make sure you have sudo privileges.

	 2.	 Execute the following command to edit the file docker.conf.

sudo nano /etc/init/docker.conf

	 3.	 Inside the docker.conf file, go to the line containing DOCKER_OPTS=.

■■ Note  You will find DOCKER_OPTS= variable at two places inside the docker.conf file. First is in the
pre-start script section and next is in the post-start script section. Use the DOCKER_OPTS= under the
pre-start script section.

	 4.	 Set the value of DOCKER_OPTS to,

DOCKER_OPTS='-H tcp://0.0.0.0:4243 -H unix:///var/run/docker.sock'

	 5.	 The above setting will bind the Docker server to the Unix socket as well on TCP
port 4243. “0.0.0.0” makes the Docker engine accept connections from anywhere.

■■ Note I f you want your Docker server to accept connections from only your Jenkins server, then replace
“0.0.0.0” with your Jenkins Server IP.

	 6.	 Restart the Docker server using the following command,

sudo service docker restart

	 7.	 To check if the configuration has worked, do the following,

curl -X GET http://<Docker server IP>:4243/images/json

■■ Note  The above command will list all the images present on your Docker server, if any.

Modifying the docker.service File
Follow the steps below to modify the docker.service file.

	 1.	 Execute the following command to edit the file docker.service.

sudo nano /lib/systemd/system/docker.service

Chapter 6 ■ Using Containers for Distributed Builds

189

	 2.	 Inside the docker.service file, go to the line containing ExecStart=.

	 3.	 Set the value of ExecStart= as shown below.

ExecStart=/usr/bin/docker daemon -H fd:// -H tcp://0.0.0.0:4243

	 4.	 The above setting will bind the Docker server to the Unix socket as well on TCP
port 4243. “0.0.0.0” makes the Docker engine accept connections from anywhere.

■■ Note I f you want your Docker server to accept connections from only your Jenkins server. Then replace
“0.0.0.0” with your Jenkins Server IP.

	 5.	 Execute the following command to make the Docker daemon notice the
modified configuration.

systemctl daemon-reload

	 6.	 Restart the Docker server using the following command,

sudo service docker restart

	 7.	 To check if the configuration has worked, do the following,

curl -X GET http://<Docker server IP>:4243/images/json

■■ Note  The above command will list all the images present on your Docker server, if any.

Installing the Docker Plugin
To create Docker containers (build agents) on the fly, we need to install the Docker Plugin for Jenkins. To do
this, follow these steps:

	 1.	 From the Jenkins Dashboard, click on Manage Jenkins ➤ Manage Plugins
➤ Available (tab). You will be taken to the Jenkins Manage Plugins page.

	 2.	 Enter “Docker Plugin” in the Filter filed, as shown in Figure 6-1.

Figure 6-1.  Installing the Docker Plugin

Chapter 6 ■ Using Containers for Distributed Builds

190

	 3.	 Select the Docker Plugin from the list and click on the Install without restart
button.

	 4.	 Restart Jenkins if needed.

Configuring the Docker Plugin
Now that we have our Docker Plugin installed, let us configure it.

	 1.	 From the Jenkins Dashboard, click Manage Jenkins ➤ Configure System.

	 2.	 Once on the Configure System page, scroll down all the way to the Cloud section
(Figure 6-2).

a.	 Click on the Add a new cloud button and choose Docker from the available
options.

b.	 On the resultant page, you will find a good number of settings to configure.

c.	 Give your Docker server a name using the Name field.

d.	 Add your Docker server URL under the Docker URL field.

e.	 Click on the Test Connection button to check if Jenkins can communicate
with Docker server.

f.	 At the end of the page, click on Apply and Save button. We will come back
here later to make further configurations.

Figure 6-2.  Configuring the Docker Plugin to talk to Docker server

Chapter 6 ■ Using Containers for Distributed Builds

191

Creating a Docker Image for Creating Docker Containers
(Jenkins Slave)
Enabling the Docker remote API made the communication between Jenkins and the Docker server possible.
Now we need a Docker image on the Docker server. This Docker Image will be used by Jenkins to create
Docker containers (Jenkins Slaves) on the fly. To do this, follow the steps below:

	 1.	 Log in to your Docker server. Give the following command to check the available
Docker images.

sudo docker images

	 2.	 From the image below you see I have two docker images (ubuntu & hello-world)
already on my Docker server.

	 3.	 If your Docker server is a freshly backed machine, then you will see no images at
this point.

	 4.	 We will build a Docker Image for our use from the ubuntu Docker Image. To do
so, download the Docker Image for ubuntu using the following command.

docker pull ubuntu

■■ Note  You can find more Docker Images for various OS on https://hub.docker.com/

	 5.	 One the pull gets completed, give the sudo docker images command again. And
now you should see a Docker Image for Ubuntu as shown in Figure 6-3.

	 6.	 We will now upgrade our ubuntu Docker Image with all the necessary
application that we need to run our build, which are as follows:

a.	 Java JDK (Latest)

b.	 Git

c.	 Maven

d.	 A user account to log in into the Docker Container

e.	 sshd (to accept ssh connection)

	 7.	 Execute the following command to run a Docker container using the Ubuntu
Docker Image. This will create a container, and open up its bash shell.

sudo docker run -i -t ubuntu /bin/bash

Figure 6-3.  List the Docker Images

https://hub.docker.com/

Chapter 6 ■ Using Containers for Distributed Builds

192

	 8.	 Now, install all the required application as you would do on any normal Ubuntu
machine. Let’s begin with creating a user jenkins.

a.	 Execute the following command and follow the user creation steps, as
shown in Figure 6-4.

adduser jenkins

b.	 check the new user using the switch user command:

su jenkins

	 9.	 Switch back to the root user by typing exit.

	 10.	 Next, we will install the SSH server. Execute the following command in sequence.

apt-get update
apt-get install openssh-server
mkdir /var/run/sshd

	 11.	 Next, we will install Git using the following command:

apt-get install git

	 12.	 Install Java JDK using the following command. (You can skip installing Java JDK if
you have already configured Java inside Jenkins. See section Configure Java, Git,
and Maven from Chapter 5.)

apt-get install openjdk-8-jdk

	 13.	 Install Maven using the following command. (You can skip installing Maven if
you have already configured Maven inside Jenkins. See section Configure Java,
Git, and Maven from Chapter 5.)

apt-get install maven

Figure 6-4.  Creating a user

http://dx.doi.org/10.1007/978-1-4842-2913-2_5
http://dx.doi.org/10.1007/978-1-4842-2913-2_5

Chapter 6 ■ Using Containers for Distributed Builds

193

	 14.	 Next, exit the container by typing exit.

	 15.	 We need to save (commit) all the changes that we did to our Docker container.

a.	 Get the CONTAINER ID of the container that we worked on recently by
listing all the inactive containers, as shown in Figure 6-5.

sudo docker ps -a

b.	 Note the CONTAINER ID, and execute the following command to commit
the changes that we made to our container.

sudo docker commit <CONTAINER ID> <new name for the container>

c.	 I have named my container as maven-build-slave-0.1 as shown in Figure 6-6:

d.	 Once you have committed the changes, a new Docker Image gets created.

e.	 Execute the following Docker command to list images.

sudo docker images

f.	 You can see, our new Docker Image with the name maven-build-slave-0.1
(Figure 6-7). We will now configure our Jenkins server to use the following
Docker image to create Jenkins Slaves (build agents).

Figure 6-5.  List inactive containers

Figure 6-6.  Docker commit command

Figure 6-7.  List the Docker Images

Chapter 6 ■ Using Containers for Distributed Builds

194

Adding Credentials Inside Jenkins to Access the Docker Container
Follow the below steps to add credentials inside Jenkins to allow it to talk to Docker.

	 1.	 From the Jenkins Dashboard, navigate to Credentials ➤ System ➤ Global
credentials (unrestricted).

	 2.	 Click on the Add Credentials link on the left-hand side menu, to create a new
credential (Figure 6-8).

a.	 Choose Kind as Username and Password.

b.	 Leave the Scope field to its default value.

c.	 Add a username for your Docker Image (jenkins as per our example) under
the Username field.

d.	 Under the Password field add the password.

e.	 Add an ID under the ID field, and some description under the Description
field.

f.	 Once done click on the OK button.

Update the Docker Settings Inside Jenkins
Follow the steps below to update the Docker settings.

	 1.	 From the Jenkins Dashboard, click on Manage Jenkins ➤ Configure System.

	 2.	 Scroll all the way down to Cloud section (Figure 6-9).

Figure 6-8.  Create credentials inside Jenkins

Chapter 6 ■ Using Containers for Distributed Builds

195

	 3.	 Under the Cloud section, click on the Add Docker Template button and choose
Docker Template.

a.	 You will be presented with a lot of settings to configure. However, to keep
this demonstration simple, let us stick to the important settings.

b.	 Under the Docker Image field enter the name of the Docker Image that we
created earlier. In my case it is maven-build-slave-0.1.

c.	 Under the Labels field add a label. The Docker container will be recognized
using this label by your Jenkins pipeline. I have added a label docker.

Figure 6-9.  Configuring the Docker Plugin settings

Chapter 6 ■ Using Containers for Distributed Builds

196

d.	 Launch Method should be Docker SSH computer launcher.

e.	 Under the Credentials field choose the credentials that we created to access
the Docker container.

f.	 Leave the rest of the other options to their default values.

g.	 Once done, click on Apply and then Save.

Create a Jenkins Pipeline
With the entire configuration in place, we are all set to run our Jenkins CI pipeline on a Docker container.
Follow the steps below to create and test a Jenkins pipeline:

	 1.	 From the Jenkins Dashboard, click on the New Item.

a.	 Choose Jenkins Job type as Pipeline.

b.	 Under the Enter an item name field, add a name for your new Jenkins
pipeline.

c.	 Click on the OK button to proceed with configuring our new Jenkins
pipeline.

	 2.	 Once on the Jenkins pipeline configuration page, scroll down to the Build
Triggers section and check the GitHub hook trigger for GITScm polling option.

	 3.	 Scroll down further to the Pipeline section.

	 4.	 Under the Definition option you can either choose Pipeline script or Pipeline
script from SCM.

Using the Pipeline Script
Follow these steps to create a pipeline script.

	 1.	 If you choose the Pipeline script, then paste the following code under the Script
field.

node(docker) {

stage('scm') {
 checkout([$class: 'GitSCM', branches: [[name: '*/master']],
doGenerateSubmoduleConfigurations: false, extensions: [], submoduleCfg:
[], userRemoteConfigs: [[credentialsId: 'github-jenkins-ssh-key', url:
'git@github.com:pro-continuous-delivery/hello-world-example.git']]])
}
stage('build') {
 withMaven(jdk: 'Default Java', maven: 'Default Maven') {
 sh 'mvn clean install'
}
}
}

Chapter 6 ■ Using Containers for Distributed Builds

197

■■ Note T he above code is the same that we used in Chapter 5, under the section The Pipeline Syntax
Option in Jenkins. The only difference is in the node name. In the former code it was master, and here it’s
docker.

In the above code, change the value of the credentialsId: and url accordingly.

	 2.	 Go straight to Triggering a Build section.

Using the Pipeline Script from SCM
If you choose Pipeline script from SCM (Figure 6-10), Then do the following,

	 1.	 Choose Git as an option for the SCM field.

a.	 Under the Repository URL add your GitHub repo URL.

b.	 Under the Credentials field choose the credentials for GitHub (it can be the
GitHub username and password or SSH key pair to access GitHub account,
stored inside Jenkins as credentials).

c.	 Click on the Save button to save the configuration.

Figure 6-10.  Configuring SCM settings inside Jenkins pipeline

http://dx.doi.org/10.1007/978-1-4842-2913-2_5

Chapter 6 ■ Using Containers for Distributed Builds

198

	 2.	 From the Jenkins Dashboard, click on Manage Jenkins ➤ Configure System.

	 3.	 Scroll all the way to GitHub section and click on the Re-register hooks for all
jobs button. This will create all the necessary webhooks on GitHub for our new
Jenkins pipelines.

	 4.	 Make sure to change the code inside the Jenkinsfile present inside the GitHub
repository. Replace it with the following:

node(docker) {
checkout scm
stage('build') {
 withMaven(jdk: 'Default Java', maven: 'Default Maven') {
 sh 'mvn clean install'
}
}
}

■■ Note  The above code is the same that we used in Chapter 5, under the section Using a Jenkins. The only
difference is in the node name. In the former code it was master, and here it’s docker.

Triggering a Build
Follow these steps to trigger a build inside Jenkins.

	 1.	 Trigger the build by clicking on the Build Now button from the Jenkins
pipeline page.

	 2.	 While the Jenkins pipeline is still running, quickly access the following link:
http://<Jenkins server IP>:8080/computer/ from your browser.

	 3.	 You will see that a Node gets listed (docker container) and after some time it
disappears (depending on the time it takes to build the code).

	 4.	 Access the link http://<Jenkins server IP>:8080/docker-plugin/, and you
should see something as shown in Figure 6-11. Following is the list of Docker
servers that are configured inside Jenkins; in our example it’s only one.

a.	 Click on the available Docker server that we have.

b.	 On the resultant page, you will see the details of all the running Docker
containers and Docker Images, as shown in Figure 6-12.

Figure 6-11.  List of Docker Servers

http://dx.doi.org/10.1007/978-1-4842-2913-2_5

Chapter 6 ■ Using Containers for Distributed Builds

199

	 5.	 From the Jenkins pipeline page, click on Console Output. You will see the build
logs as shown in Figure 6-13. As it can been seen from the logs, the build ran
inside a Docker container.

Distributed Builds Using Kubernetes
Kubernetes is an open source tool that can manage containers (including Docker containers). It runs as a
cluster of host machines (multiple manager nodes and worker nodes). Kubernetes can run and schedule
application containers on its cluster. It can also scale, replicate, and load balance containers.

Figure 6-12.  List of Docker Containers and Images from Jenkins

Figure 6-13.  Jenkins pipeline build logs

Chapter 6 ■ Using Containers for Distributed Builds

200

Kubernetes is much like CoreOS Container Linux, which we used in Chapter 3 to create a HA Jenkins
setup. The same can be achieved using Kubernetes. However, in the current chapter we will use Kubernetes
to create on-demand Jenkins Slaves that run as Docker containers.

To achieve this we will first create a Kubernetes cluster. Then we will configure Jenkins to talk to
Kubernetes clusters using Kubernetes Plugin. Lastly we will create a Jenkins pipeline that will run a build on
a Docker container running somewhere on the Kubernetes Cluster.

Setting Up a Kubernetes Cluster
There are various platforms on which we can set up Kubernetes. It can be Cloud, On-Premises VMs, and
even Bare Metal. To keep this demonstration simple, I have chosen to set up Kubernetes on Vagrant. To
Jenkins it does not matter where and how our Kubernetes Cluster runs.

Prerequisites
I am performing this exercise on a machine with Ubuntu 16.04. I have the following tools installed on my
machine:

Vagrant (latest)
VirtualBox (latest)
Git

On steps for installing Vagrant and VirtualBox, see section Installing Vagrant and Installing
VirtualBox from Chapter 3.

Installing Kubectl
Kubectl is used to communicate with the Kubernetes cluster (using Kubernetes API) in order to manage it.
Installing it is simple.

	 1.	 Fetch the linux kubectl binary using the following command:

curl -O https://storage.googleapis.com/kubernetes-release/release/
v1.5.2/bin/linux/amd64/kubectl

	 2.	 Make sure the binary is executable:

chmod +x kubectl

	 3.	 Move it into your PATH using the following command; in this way we will be able
to execute the kubectl command from any location:

mv kubectl /usr/local/bin/kubectl

http://dx.doi.org/10.1007/978-1-4842-2913-2_3
http://dx.doi.org/10.1007/978-1-4842-2913-2_3

Chapter 6 ■ Using Containers for Distributed Builds

201

Clone the coreos-kubernetes Repository
Follow the below steps to clone the coreos-kubernetes repository.

	 1.	 Execute the following command to clone the coreos-kubernetes repository from
GitHub.

git clone https://github.com/coreos/coreos-kubernetes.git

	 2.	 Go to the following directory and list the files inside it, as shown in Figure 6-14.

cd coreos-kubernetes/multi-node/vagrant
ls -lrt

a.	 The Vagrantfile containers instruction for creating a Kubernetes cluster
using VirtualBox.

b.	 By default the Vagrantfile will create a Kubernetes cluster containing one
master node, one worker node, and one etcd node. However, you may
choose to create a Kubernetes cluster with your own specifications. To do
that we need the config.rb.sample file (rename config.rb.sample to config.rb
before using it).

Starting the Kubernetes Cluster
We will modify the config.rb.sample a bit to create 1 master node, 2 worker nodes, and 1 etcd node.

	 1.	 Rename the config.rb.sample file to config.rb file using the mv command:

mv config.rb.sample config.rb

	 2.	 Open the file config.rb for editing, using either nano or vi editor:

nano config.rb

	 3.	 Modify the content of your config.rb to look exactly as shown below. As you can
see, I have chosen to create two worker nodes.

$update_channel="alpha"

Figure 6-14.  List of files and utilities

Chapter 6 ■ Using Containers for Distributed Builds

202

$controller_count=1
$controller_vm_memory=1024

$worker_count=2
$worker_vm_memory=2048

$etcd_count=1
$etcd_vm_memory=512

	 4.	 Run the following vagrant command to start the Kubernetes cluster. It will take a
while for Vagrant to provision the machines, depending on your network speed.

vagrant up

	 5.	 Once the vagrant has provisioned all the cluster nodes, list the status of the
Kubernetes cluster nodes (this is the state of the vagrant nodes, and note the
Kubernetes cluster). See Figure 6-15.

vagrant status

a.	 We can see Vagrant has created four virtual machines (e1, c1, w1, and w2).

b.	 e1 is the etcd node, c1 is the Kubernetes manager node, and w1 and w2 are
worker nodes.

	 6.	 Open the file kubeconfig using your favorite editor. You will find the following
three sections, as shown in Figure 6-16.

clusters
context
users

Figure 6-15.  List of vagrant virtual machines

Chapter 6 ■ Using Containers for Distributed Builds

203

a.	 clusters

clusters:
- cluster:
 certificate-authority: ssl/ca.pem
 server: https://172.17.4.101:443
 name: vagrant-multi-cluster

The clusters: section contains fully qualified URLs (https://172.17.4.101:443) of the Kubernetes
cluster, as well as the cluster’s certificate authority. A cluster has a name (vagrant-multi-cluster), which is
used internally within the cluster.

b.	 contexts

contexts:
- context:
 cluster: vagrant-multi-cluster
 namespace: default
 user: vagrant-multi-admin
 name: vagrant-multi

The context: section defines a named cluster, user, and namespace that are used to send requests to the
specified cluster using the provided authentication info and namespace. Each of the three is optional; it is
valid to specify a context with only one of cluster, user, namespace, or to specify none. Unspecified values, or
named values that don’t have corresponding entries in the loaded kubeconfig (e.g., if the context specified a
pink-user for the above kubeconfig file), will be replaced with the default.

c.	 current-context:

current-context: federal-context

The current-context: section is the nickname or ‘key’ for the cluster,user,namespace tuple that kubectl
will use by default when loading config from this file.

Figure 6-16.  kubeconfig file

Chapter 6 ■ Using Containers for Distributed Builds

204

d.	 users:

users:
- name: vagrant-multi-admin
 user:
 client-certificate: ssl/admin.pem
 client-key: ssl/admin-key.pem
current-context: vagrant-multi

The users: section defines client credentials for authenticating to a Kubernetes cluster. A user has
a name (nickname) that acts as its key within the list of user entries after kubeconfig is loaded/merged.
Available credentials are client-certificate, client-key, token, and username/password.

	 7.	 To load the cluster configuration from the kubeconfig file, execute the following
command:

export KUBECONFIG="${KUBECONFIG}:$(pwd)/kubeconfig"
kubectl config use-context vagrant-multi

	 8.	 You will get a response:

Switched to context "vagrant-multi."

	 9.	 Give the following command to check the status of the cluster. The Kubernetes
application will download all the necessary applications on the cluster nodes;
therefore it may take a while for it to get ready. See the response as shown in
Figure 6-17.

kubectl get nodes

	 10.	 After a while, you should see the following screen, as shown in Figure 6-18.

a.	 From the above figure we can see the status of our master as well as two
worker nodes.

b.	 172.17.4.101 is the master node with a STATUS:
Ready, SechedulingDisabled. This means, the master node is reserved only
to provision and manage containers on the worker nodes. There won’t be
any container running on the master node.

Figure 6-17.  Kubernetes cluster coming up

Figure 6-18.  Kubernetes cluster up and running

Chapter 6 ■ Using Containers for Distributed Builds

205

	 11.	 To check the configuration that our Kubernetes cluster is running, execute the
following command. This will display the current kubeconfig settings, as shown
in Figure 6-19.

kubectl config view

	 12.	 We can also fetch the key cluster information using the cluster-info command:

kubectl cluster-info

	 13.	 From the output (Figure 6-20) we can note the Kubernetes dashboard link.
However we won't be able to access the link from our client machine.

The Kubernetes Dashboard
The Kubernetes dashboard is a webpage where we can get information about the whole cluster. For
example: Information about the running Pods, Services, Worker nodes, System metrics, etc.

	 1.	 To make the dashboard available on the client machine, execute the following
command. This will make the Kubernetes dashboard available on localhost port
9090. See Figure 6-21.

Kubectl proxy --port=9090

Figure 6-19.  Configuration in use

Figure 6-20.  kubectl cluster-info

Chapter 6 ■ Using Containers for Distributed Builds

206

	 2.	 To access the dashboard, enter the following link in your browser.

http://localhost:9090/api/v1/proxy/namespaces/kube-system/services/
kube-dns

	 3.	 The Kubernetes dashboard looks as shown in Figure 6-22.

	 4.	 From the left-hand side menu, click on the Namespaces. You can see the following
two namespaces: default and kube-system. As shown in Figure 6-23, all of the
Kubernetes cluster-related pods run under the kube-system namespace. All the
Jenkins Slave pods that we are going to create will be running under the default
namespaces. You can click on any of the namespaces to see more details about it.

Figure 6-21.  kubectl proxy command

Figure 6-22.  Kubernetes dashboard

Figure 6-23.  List of namespaces

Chapter 6 ■ Using Containers for Distributed Builds

207

	 5.	 From the left-hand side menu, click on Nodes (Figure 6-24). You can see all the
three nodes (1 master and 2 worker nodes). Click on any one of them to see more
details about the respective node.

	 6.	 I have clicked on worker node1 (172.17.4.201). As shown in Figure 6-25, we can
see the CPU usage and the Memory usage, along with a few details about the
respective node.

	 7.	 Scrolling further down, you can see hardware resource allocated to the node.
There is also a section regarding the condition of memory, disk, etc., as shown in
Figure 6-26:

Figure 6-24.  List of nodes

Figure 6-25.  Node metrics - CPU and Memory usage

Chapter 6 ■ Using Containers for Distributed Builds

208

	 8.	 From the left-hand side menu, click on Pods. As you can see we have no nodes
running under the default namespace (Figure 6-27). But, this is the place where
you will find all the running nodes along with their statistics.

	 9.	 From the left-hand side menu, click on Secrets. As shown in Figure 6-28, we can
see a default secret token. We will need this later to establish communication
between Jenkins and the Kubernetes cluster. Click on the token.

Figure 6-26.  Node metrics - Resources, Conditions, and Pods

Figure 6-27.  Empty Pods section

Chapter 6 ■ Using Containers for Distributed Builds

209

	 10.	 On the resultant page you will find some details about the secret token, as shown
in Figure 6-29.

	 11.	 Under the Data section, click on the token (eye logo) to un-hide the token value.
The token value will be displayed as shown in Figure 6-30.

Figure 6-28.  Default Token

Figure 6-29.  Default Token - details

Chapter 6 ■ Using Containers for Distributed Builds

210

	 12.	 Copy the token value and keep it safe. We will need it later in the upcoming
section.

Installing the Kubernetes Plugin for Jenkins
To make Jenkins talk with Kubernetes we need the Kubernetes plugin for Jenkins.

	 1.	 From the Jenkins Dashboard, click on the Manage Jenkins ➤ Plugin Manager
➤ Available (tab).

a.	 Search for kubernetes using the Filter field (Figure 6-31).

b.	 Once listed, choose the kubernetes plugin and click on Install without
Restart button.

c.	 After the installation, restart Jenkins if needed.

Figure 6-30.  Un-hide the token

Chapter 6 ■ Using Containers for Distributed Builds

211

Creating Credentials for Kubernetes Cluster
We need to add credentials for the Kubernetes cluster inside Jenkins to authenticate the connection between
Jenkins and Kubernetes.

	 1.	 From the Jenkins dashboard, click on Credentials ➤ System ➤ Global
credentials (unrestricted) (Figure 6-32).

Figure 6-31.  Kubernetes Plugin

Figure 6-32.  Kubernetes credentials inside Jenkins

Chapter 6 ■ Using Containers for Distributed Builds

212

	 2.	 On the resultant page, click on Add Credentials.

a.	 Under the Kind field choose OpenShift OAuth token.

b.	 Under the Token field paste the token key that we copied earlier from the
Kubernetes dashboard.

c.	 Add an ID and some description under the ID and Description field
respectively.

d.	 Click on OK Button once done.

Configuring the Kubernetes Plugin
Let us now configure the Kubernetes cluster settings inside Jenkins.

	 1.	 From the Jenkins Dashboard, click Manage Jenkins ➤ Configure System.

	 2.	 Once on the Configure System page, scroll down all the way to the Cloud section
(Figure 6-33).

a.	 Click on the Add a new cloud button and choose Kubernetes from the
available options.

b.	 You will be presented with a lot of options to configure (Figure 6-34).
However, to keep this section simple we will stick to the basic options.

c.	 Add a name for your new cloud under the Name field.

d.	 Add the Kubernetes cluster URL under the Kubernetes URL field. In our
case it’s https://172.17.4.101:443/.

e.	 Make sure to check the Disable https certificate check option. Otherwise
you need to put the Kubernetes server certificate under the Kubernetes
server certificate key field.

f.	 Under the Kubernetes Namespace field add default.

g.	 Choose the appropriate credentials under the Credentials field from the
drop-down menu.

Figure 6-33.  Adding the Kubernetes cloud

Chapter 6 ■ Using Containers for Distributed Builds

213

	 3.	 Make sure to add an appropriate value under the Container Cleanup Timeout
field. I choose to add a value of 30 min (Figure 6-35). The Container Cleanup
Timeout defines how long to keep a Kubernetes container listed inside Jenkins.

	 4.	 Under the Images section, click on the Add Pod Template button and choose
Kubernetes Pod Template, as shown in Figure 6-36.

	 5.	 You will be presented will a lot more options (Figure 6-37).

a.	 Add a name for your Kubernetes Pod Template using the Name field.

Figure 6-34.  Configuring basic Kubernetes settings

Figure 6-35.  Container Cleanup Timeout

Figure 6-36.  Adding a Kubernetes Pod Template

Chapter 6 ■ Using Containers for Distributed Builds

214

■■ Note A dd a name without spaces for your Kubernetes Pod Template.

b.	 Add a label under the Labels field. This label will be used by our Jenkins
pipeline to connect to the Jenkins Slave (docker container) running on
Kubernetes cluster.

c.	 Leave the rest of the fields to their default values.

d.	 Under the Containers field click on the Add Container button and choose
Container Template (Figure 6-38).

e.	 You will again be presented with a lot more options to configure your
Docker image. See Figure 6-39.

Figure 6-37.  Configuring the Pod Template

Figure 6-38.  Adding a Container Template

Chapter 6 ■ Using Containers for Distributed Builds

215

f.	 Add a name for your Container Template using the Name field.

■■ Note A dd a name without spaces for your Container Template.

g.	 Add jenkinsci/jnlp-slave under the Docker Image field. This is a Docker
Image for Jenkins available on Docker Hub.

h.	 Leave the rest of the fields to their default values.

	 6.	 Click on the Apply and Save button at the end of the page.

Configure Global Security
Follow these steps to make modifications to the TCP port settings inside Jenkins. These settings are
important to allow Jenkins to spawn containers on the Kubernetes cluster.

	 1.	 From the Jenkins dashboard, click on Manage Jenkins ➤ Configure global
security.

	 2.	 On the Configure Global Security page (Figure 6-40), make sure that the TCP port
for JNLP agents is set to Random.

Figure 6-39.  Configuring the Container Template

Chapter 6 ■ Using Containers for Distributed Builds

216

	 3.	 Click on the Agent protocols… button and choose all the protocols. As shown in
Figure 6-41.

Creating a Jenkins Pipeline
With the entire configuration in place, we are all set to run our Jenkins CI pipeline on a Kubernetes cluster.
Follow the steps below to create and test a Jenkins pipeline:

	 1.	 From the Jenkins Dashboard, click on the New Item.

a.	 Choose Jenkins Job type as Pipeline (Figure 6-42).

b.	 Under the Enter an item name field, add a name for your new Jenkins
pipeline.

c.	 Click on the OK button to proceed to configure our new Jenkins pipeline.

Figure 6-41.  Configuring Agent protocols

Figure 6-40.  Configure TCP port for JNLP agents

Chapter 6 ■ Using Containers for Distributed Builds

217

	 2.	 Once on the Jenkins pipeline configuration page, scroll down to the Build
Triggers section and check the GitHub hook trigger for GITScm polling option.

	 3.	 Scroll down further to the Pipeline section.

	 4.	 Under the Definition option you can choose Pipeline script from SCM.

a.	 Choose Git as an option for the SCM field.

b.	 Under the Repository URL add your GitHub repo URL.

c.	 Under the Credentials field choose the credentials for GitHub (it can be the
GitHub username and password or SSH key pair to access GitHub account,
stored inside Jenkins as credentials).

d.	 Click on the Save button to save the configuration.

	 5.	 From the Jenkins Dashboard, click on Manage Jenkins ➤ Configure System.

	 6.	 Scroll all the way to GitHub section and click on the Re-register hooks for all
jobs button. This will create all the necessary webhooks on GitHub for our new
Jenkins pipelines.

Figure 6-42.  Configuring the Jenkins Pipeline

Chapter 6 ■ Using Containers for Distributed Builds

218

	 7.	 Make sure to change the code inside the Jenkinsfile present inside the GitHub
repository. Replace it with the following:

node('kubernetes') {
checkout scm
stage('build') {
 withMaven(maven: 'Default Maven') {
 /* .. some comment .. */
 sh 'mvn clean install'
}
}
}

■■ Note I t’s the same code that we have used earlier in the current chapter. The only difference is in the node
name. In the former code it is docker, and here it’s kubernetes. Also I have removed the jdk: 'Default Java'
from line 4. This is because the Docker Image jenkinsci/jnlp-slave already has the container Java installed.

	 8.	 As you can see (Figure 6-43), I am modifying the Jenkinsfile on DockerHub.

	 9.	 And I commit the change by adding a comment. See Figure 6-44.

Figure 6-44.  Commit changes

Figure 6-43.  Modifying the Jenkinsfile

Chapter 6 ■ Using Containers for Distributed Builds

219

Running the Jenkins Pipeline
The moment you commit the changes, Jenkins pipeline gets triggered. As shown in Figure 6-45, it takes a
while for Jenkins to create and configure the Jenkins Slave on Kubernetes (using the Docker Image jenkinsci/
jnlp-slave).

Quickly move to the Kubernetes Dashboard and check the Pods section. In a while you should see a pod
getting created, as shown in Figure 6-46.

Once the Pod is completely ready the status will change to Running, as shown in Figure 6-47.

Figure 6-45.  Jenkins Pipeline in action

Figure 6-46.  Pod for Jenkins Slave being created.

Figure 6-47.  Pod for Jenkins Slave in running state

Chapter 6 ■ Using Containers for Distributed Builds

220

Come back to your Jenkins dashboard and go to Manage Jenkins ➤ Manage Nodes. You should see the
Kubernetes pod listed as a Jenkins Slave (Figure 6-48).

Check your Jenkins pipeline. It should have been completed successfully by now. In the Console Output
of your Jenkins pipeline you should see the Kubernetes pod name on which the build ran, as shown in
Figure 6-49.

Soon after the Jenkins pipeline gets completed, the Kubernetes Jenkins Slave disappears from the list of
available nodes (Figure 6-50).

Figure 6-49.  Jenkins Logs stating Kubernetes pod

Figure 6-50.  Kubernetes pod disappears from the node list

Figure 6-48.  Kubernetes pod listed inside Jenkins

Chapter 6 ■ Using Containers for Distributed Builds

221

Summary
In the current chapter we learned to use Docker as well as Kubernetes along with Jenkins to run builds on
dynamically provisioned build agents (Docker container).

In the next chapter we will learn about Pre-tested commits using Jenkins and GitHub.

223© Nikhil Pathania 2017
N. Pathania, Pro Continuous Delivery, DOI 10.1007/978-1-4842-2913-2_7

CHAPTER 7

Pre-tested Commits Using Jenkins

In the current chapter we will learn about pre-tested commits and the means to achieve them using Jenkins.
We will do this by leveraging the Distributed nature of Git and Merge before build feature of Jenkins.

Pre-tested Commits
Continuous Integration requires developers to publish each and every change (commit) to the Integration/
Master branch. All these changes (on the Integration/Master branch) are built, tested, and analyzed for
quality, and only after this we know if a change is good or bad. Pre-tested commits (Gated Check-in), on the
other hand, ensures that not all, but only those changes that are good, should be allowed on the Integration/
Master branch. Pre-tested commits (Gated check-in) ensure that only good changes are published to the
Integration/Master branch by performing a check (build, test, analyze) on them.

Both Continuous Integration (CI) and Pre-tested commits (Gated Check-in) have their own advantages.
Pre-tested commits are good if you have a large number of developers with average development skills, as
it prevents bad code getting into the Integration/Master branch. But, at the same time it also increases the
time it takes for a change to be made available to everyone.

CI makes sure that each and every change is made available to everyone as soon as possible. It is also
suitable in cases where the build time is less (less than an hour). If a build, test, and analyze cycle takes more
than an hour, Gated Check-in is more suitable.

Tools such as Microsoft TFS have a feature to perform Gated Check-in. However, in the current chapter
we will learn to leverage the Distributed nature of Git and Merge before build feature of Jenkins to achieve
Pre-tested commits (Gated Check-in).

Pre-tested Commits Using Jenkins and Git
Let us understand how Gated Check-in works. We will start by making the following assumptions:

•	 We will assume a role of a developer.

•	 The version control system in use is Git or GitHub.

•	 On the version control system we have Integration/Master branch and a Feature-1
branch.

•	 We are using Jenkins as our CI server, which will also perform pre-tested commits.

•	 Only Jenkins is allowed to push changes on the Integration/Master branch (remote
repository).

Chapter 7 ■ Pre-tested Commits Using Jenkins

224

Stage 1: Developer Clones the Remote Repository
In stage 1, the developer clones the GitHub repository on his local machine, as shown in Figure 7-1.

Stage 2: Developer Works on His Local Copy of the Code
In stage 2 the developer does the following steps (Figure 7-2).

	 a.	 Developer makes some changes on the Feature-1 (local repository) branch and
commits the change.

	 b.	 Developer then performs a build and unit test on his local machine.

	 c.	 If the build passes, developer pushes his changes to the Feature-1 branch on the
remote repository.

	 d.	 Meanwhile, the master branch (remote repository) has also changed.

Stage 3: Jenkins Performs a Pre-test on the Code
The following steps take place in stage 3 (Figure 7-3).

	 a.	 As soon as Jenkins identifies a change on Feature-1 branch (remote repository),
the pipeline to pre-test commit is initiated.

Figure 7-1.  Stage 1

Figure 7-2.  Stage 2

Chapter 7 ■ Pre-tested Commits Using Jenkins

225

	 b.	 First, Jenkins clones the remote repository.

	 c.	 Next, Jenkins performs a merge from Feature-1 branch (local repository) to the
Master branch (local repository).

	 d.	 If the merge is successful, Jenkins performs a build on the Master branch (local
repository).

	 e.	 If the build and unit test are successful, Jenkins pushes the code to the Master
branch on the remote repository.

Creating a Jenkins Pipeline to Perform Pre-tested Commits
Now let us create a Jenkins pipeline to achieve the scenario discussed in the previous section.

	 1.	 From the Jenkins Dashboard, click on the New Item.

a.	 Choose Jenkins Job type as Pipeline (Figure 7-4).

b.	 Under the Enter an item name field, add a name for your new Jenkins
pipeline.

c.	 Click on the OK button to proceed with configuring our new Jenkins
pipeline.

Figure 7-3.  Stage 3

Chapter 7 ■ Pre-tested Commits Using Jenkins

226

	 2.	 Once on the Jenkins pipeline configuration page, scroll down to the Build
Triggers section and check the GitHub hook trigger for GITScm polling option.

	 3.	 Scroll down further to the Pipeline section.

	 4.	 Under the Definition option you can choose Pipeline script.

	 5.	 Click on the Pipeline Syntax link.

	 6.	 On the resultant page (Figure 7-5), choose node: Allocate node under the
Sample Step field.

a.	 Add master under the Label field.

b.	 Click on the Generate Pipeline Script button.

c.	 Copy and save the code. (We will need it later.)

	 7.	 Next, choose stage: Stage option from the Sample Step field (Figure 7-6).

a.	 Under the Stage Name field add scm.

b.	 Click on the Generate Pipeline Script button.

c.	 Copy and save the code. (We will need it later.)

Figure 7-5.  Pipeline code for allocating node

Figure 7-4.  Jenkins pipeline script

Chapter 7 ■ Pre-tested Commits Using Jenkins

227

	 8.	 Create code for another stage named build and push. Copy the generated code.
(We will need it later.)

	 9.	 Next, choose checkout: General SCM option from the Sample Step field
(Figure 7-7). When you do so, the page refreshes with a new set of configurable
items.

a.	 Choose Git for the SCM field.

b.	 Under Repositories ➤ Repository URL, add the GitHub repository’s
(http link).

Figure 7-6.  Pipeline code for creating stage

Figure 7-7.  Generating code for SCM

Chapter 7 ■ Pre-tested Commits Using Jenkins

228

c.	 Under Credentials field, choose the GitHub token.

d.	 Under Branches to build ➤ Branch Specifier (blank for ‘any’) field, add
the following line:

:origin/feature-\d{1}

e.	 Leave all the other options as they are.

f.	 Under Additional Behaviours click on the Add button, and choose
Merge before build option (Figure 7-8).

g.	 Add origin under the Name of repository field (Figure 7-9).

Figure 7-8.  Using the Merge before build option

Chapter 7 ■ Pre-tested Commits Using Jenkins

229

h.	 Add master under the Branch to merge to field.

i.	 Leave the rest of the options to their default values.

j.	 Click on the Generate Pipeline Script button (Figure 7-10).

k.	 Copy and save the code. (We will need it later.)

■■ Note R emove the following line of code from the generated pipeline code: mergeStrategy: <object of
type org.jenkinsci.plugins.gitclient.MergeCommand.Strategy>

	 10.	 Next, choose withMaven: Provide Maven environment option from the Sample
Step field. When you do so, the page refreshes with a new set of configurable
items (Figure 7-11).

a.	 choose Default Maven under the Maven field.

b.	 Choose Default JDK under the JDK field.

c.	 Click on the Generate Pipeline Script button.

d.	 Copy and save the code. (We will need it later.)

Figure 7-9.  Configuring the Merge before build settings

Figure 7-10.  Generated code for SCM

Chapter 7 ■ Pre-tested Commits Using Jenkins

230

	 11.	 Add the following line of code under the withMaven code block:

add sh ('mvn clean install')

	 12.	 Next, choose withCredentials: Bind credentials to variables option from
the Sample Step field. When you do so, the page refreshes with a new set of
configurable items (Figure 7-12).

a.	 Click on the add button and choose Binfings Secret text from the options.

b.	 add github-token under the Variable field.

c.	 choose the GitHub token under the Credentials field.

d.	 Click on the Generate Pipeline Script button.

e.	 Copy and save the code. (We will need it later.)

Figure 7-11.  Generated code for Maven

Chapter 7 ■ Pre-tested Commits Using Jenkins

231

	 13.	 Add the following line of code under the push stage code block:

sh("git tag -a ${BUILD_NUMBER} -m 'Jenkins'")
sh("git push https://${credentials}@github.com/pro-continuous-delivery/
hello-world-example.git HEAD:master --tags")

	 14.	 Finally the complete combined code should look as shown below:

node('master'){

stage('scm'){
checkout changelog: true, poll: true, scm: [$class: 'GitSCM', branches:
[[name: ':origin/feature-\\d{1}']], doGenerateSubmoduleConfigurations:
false, extensions: [[$class: 'PreBuildMerge', options:
[fastForwardMode: 'FF', mergeRemote: 'origin', mergeTarget:
'master']]], submoduleCfg: [], userRemoteConfigs: [[credentialsId:
'github-account', url: 'https://github.com/pro-continuous-delivery/
hello-world-example.git']]]
}

stage('build'){
 withMaven(jdk: 'Default Java', maven: 'Default Maven') {
 sh ('mvn clean install')
}
}

Figure 7-12.  Generated code for withCredentials

Chapter 7 ■ Pre-tested Commits Using Jenkins

232

stage('push'){
 �withCredentials([string(credentialsId: '9d4d09c5-3fc8-46ec-97ff-

84d3974f3504', variable: 'credentials')]) {
 sh("git tag -a ${BUILD_NUMBER} -m 'Jenkins'")
 sh("git push https://${credentials}@github.com/pro-continuous-
delivery/hello-world-example.git HEAD:master --tags")
}
}

}

	 15.	 On the pipeline configuration page, add the above code inside the Script field
(Figure 7-13).

	 16.	 Save the configuration by clicking on the Save button at the end of the page.

Creating Feature Branch on Github
We will create a feature branch to make some changes on our code. The changes made on the feature branch
will be tested by Jenkins. If the tests are successful, then Jenkins will merge the changes made on feature
branch to the master branch.

	 1.	 Log in to your GitHub account, and under your repository create a new branch
named feature-1 as shown in Figure 7-14:

Figure 7-13.  Adding the code to the script field

Chapter 7 ■ Pre-tested Commits Using Jenkins

233

	 2.	 Switch to the feature-1 branch and modify your Message.java file. I have modified
the return message from Hello World! To Hi, How are you? (line number 5), as
shown in Figure 7-15.

	 3.	 Modify the MessageTest.java file to make sure our test passes. I have modified the
containersString from Hello to Hi, (line number 14), as shown in Figure 7-16.

	 4.	 Commit both the files to trigger a build in Jenkins.

Figure 7-14.  Creating a feature branch

Figure 7-15.  Modifying the Message.java file

Figure 7-16.  Modifying the MessageTest.java file

Chapter 7 ■ Pre-tested Commits Using Jenkins

234

	 5.	 Move to the Jenkins dashboard and click on the Jenkins pipeline, In our case
its pre_test_commits_using_Jenkins. As shown in Figure 7-17, you can see the
pipeline is a success, and the code has been pushed successfully to the remote
master branch after a successful build.

	 6.	 Log in to your GitHub account and under your respective repository check the
commit history of your master branch, as shown in Figure 7-18. You can see the
two files that we modified on the feature-1 branch have been successfully pushed
to the master branch.

Simulating a Failure
We will deliberately fail the build by modifying our unit test code in order to check if Jenkins pushes the code
change to the Master branch on the remote repository.

	 1.	 Modify the MessageTest.java file so that our unit test fails. I am modifying the
code, as shown in Figure 7-19.

Figure 7-17.  Jenkins pipeline stage view

Figure 7-18.  Commit history on the master branch

Chapter 7 ■ Pre-tested Commits Using Jenkins

235

	 2.	 The moment you commit the file on GitHub, a build is triggered in Jenkins.

	 3.	 Move to the Jenkins dashboard to check the pipeline status. You should see
something as shown in Figure 7-20.

	 4.	 Also check the Console Output for the Jenkins pipeline. And you will see that the
build failed due to a failed unit test, as shown in Figure 7-21.

Figure 7-19.  Modifying the MessageTest.java file

Figure 7-20.  Jenkins pipeline stage view

Chapter 7 ■ Pre-tested Commits Using Jenkins

236

	 5.	 Move to the GitHub. Under your repository page (while you are on the master
branch), you will see that there is a new change on the Feature-1 branch that is
not yet merged to the master (Figure 7-22).

Summary
This was a small chapter on pre-tested commits using GitHub and Jenkins. In the next chapter we will
extend our pipeline code a bit further to achieve continuous delivery.

Figure 7-21.  Jenkins pipeline Console Output logs

Figure 7-22.  New commit on the feature-1 branch which is not yet on master

237© Nikhil Pathania 2017
N. Pathania, Pro Continuous Delivery, DOI 10.1007/978-1-4842-2913-2_8

CHAPTER 8

Continuous Delivery Using
Jenkins Pipeline

In the current chapter we will learn to implement continuous delivery using Jenkins along with the relevant
DevOps tool chain needed for it. We will begin the chapter by installing and configuring Artifactory and
SonarQube. Next, we will create Docker images for our Integration and Performance test environments. To
keep things short, we will see only two types of testing in the current chapter; however, in the real world, you
can have multiple Docker images to describe all the testing environments that you would use. The current
chapter will demonstrate continuous delivery using the tools described in Table 8-1. Nevertheless, you may
have an alternative choice of tools.

Table 8-1.  Continuous Delivery tool chain

Tools Used Purpose Alternative Tools

Jenkins Main orchestrator for the Continuous Delivery Teamcity, Atlassian Bamboo,
ThoughtWorks Go…(may or may not
have the option of pipeline as a code)

Artifactory The binary repository to store build artifacts Sonatype Nexus…

SonarQube To perform Static Code Analysis Squale, Kalistick, MetrixWare, Cast…

Apache Jmeter To perform performance testing LoadRunner, Testing Anywhere…

Junit To perform unit testing and Integration testing The list is huge depending on the
project code…

Maven To build Java project Ant, MSBuild (.net, c#, c++)…

GitHub Version Control repository Git, Bitbucket, SVN, Mercurial…

Docker To provision on-demand Jenkins Slaves Kubernetes, Amazon EC2…

Setting Up the Artifactory Server
In the following section we will learn the following:

•	 Installing an Artifactory Server on Ubuntu

•	 Creating a generic repository inside Artifactory

•	 Creating user credentials inside Jenkins to access Artifactory

•	 Installing and configuring the Artifactory plugin for Jenkins

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

238

Installing and Configuring Artifactory
In the following section we will set up Artifactory on Ubuntu 16.04.

Install Java and Set the JAVA_HOME Path
Follow the steps below to install Java.

	 1.	 Update the package index:

sudo apt-get update

	 2.	 Next, install Java. The following command will install the Java Runtime
Environment (JRE).

sudo apt-get install default-jre

	 3.	 To set the JAVA_HOME environment variable, first get the Java installation
location. Do this by executing the following command. You should see a
response as shown in Figure 8-1.

update-java-alternatives -l

Figure 8-1.  List of available Java installations

	 4.	 Copy the resultant path and update the JAVA_HOME variable inside the file /etc/
environment file, as shown below:

JAVA_HOME="/usr/lib/jvm/java-1.8.0-openjdk-amd64"

Downloading the Artifactory Package
Follow the steps below to download the Artifactory package.

	 1.	 Download the latest version of Artifactory installation package from the link:
https://www.jfrog.com/open-source/

	 2.	 Unzip the archive package into your home directory ($HOME).

unzip Jfrog-artifactory-oss-5.1.0.zip -d $HOME/

	 3.	 Move to the extracted folder and list its content.

cd $HOME/artifactory-oss-5.1.0

ls -lrt

https://www.jfrog.com/open-source/

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

239

■■ Note  bin/ folder contains all the scripts to install and start Artifactory. logs/ folder contains the
Artifactory logs.

Starting the Artifactory Server
Follow the steps below to start the Artifactory server.

	 1.	 Move to the $HOME/artifactory-oss-5.1.0/bin/ folder and run the
installService.sh script.

sudo ./installService.sh

	 2.	 Executing the above command will give the following output.

Installing artifactory as a Unix service that will run as user artifactory
Installing artifactory with home /home/ubuntu/artifactory-oss-5.1.0
Creating user artifactory...creating... DONE

Checking configuration link and files in /etc/opt/jfrog/artifactory...
Moving configuration dir /home/ubuntu/artifactory-oss-5.1.0/etc /home/ubuntu/
artifactory-oss-5.1.0/etc.original...creating the link and updating dir... DONE
Creating environment file /etc/opt/jfrog/artifactory/default...creating... DONE
** INFO: Please edit the files in /etc/opt/jfrog/artifactory to set the correct
environment
Especially /etc/opt/jfrog/artifactory/default that defines ARTIFACTORY_HOME,
JAVA_HOME and JAVA_OPTIONS

Initializing artifactory service with update-rc.d... DONE

Setting file permissions... DONE

************ SUCCESS ****************
Installation of Artifactory completed

Please check /etc/opt/jfrog/artifactory, /home/ubuntu/artifactory-oss-5.1.0/
tomcat and /home/ubuntu/artifactory-oss-5.1.0 folders
Please check /etc/init.d/artifactory startup script

	 3.	 Start the Artifactory service using any of the following commands (Figure 8-2):

sudo service artifactory start

(or)

sudo /etc/init.d/artifactory start

(or)

sudo systemctl start artifactory

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

240

	 4.	 You can check Artifactory installation by executing any of the following
command:

service artifactory check

(or)

/etc/init.d/artifactory check

(or)

sudo ./artifactoryctl check

Figure 8-2.  Artifactory running status

	 5.	 Access the Artifactory dashboard using the following link:

http://<Server IP Address>:8081/artifactory

	 6.	 The default login credentials to the Artifactory server are:

username: admin
password: password

Reset the Default Credentials
Follow the steps below to reset Artifactory credentials.

	 1.	 From the Artifactory dashboard, click on Welcome, admin ➤ Edit Profile.

	 2.	 Enter your current password in the Current Password field and press the
Unlock button.

	 3.	 On the resultant page, under Personal Settings add your e-mail ID and new
credentials.

	 4.	 Once done, click on the Save button.

Creating a Repository in Artifactory
In the following section we will create a genetic repository inside Artifactory. The repository will be used to
store the build artifacts.

	 1.	 From the Artifactory dashboard, on the left-hand side menu, click on
Admin ➤ Repositories ➤ Local, as shown in Figure 8-3.

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

241

	 2.	 The resultant page will show you all the available local repositories currently
available, as shown in Figure 8-4.

Figure 8-3.  Creating a Local repository in Artifactory

Figure 8-4.  List of all the Local Repositories

	 3.	 Click on the New button at the top-right corner to create a new local repository
(Figure 8-4).

	 4.	 You will be presented with a pop-up window with a list of various types
of repositories to choose from. As shown below, choose the Generic type
(Figure 8-5).

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

242

	 5.	 Give your repository a name by adding a value under the Repository Key* field,
as shown in Figure 8-6.

Figure 8-5.  Option to choose various types of repositories.

Figure 8-6.  Naming our new local repository

	 6.	 Once done, click on the Save & Finish button.

	 7.	 Now we have our new local repository, as shown in Figure 8-7.

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

243

Adding Artifactory Credentials Inside Jenkins
Follow the steps below to create credentials inside Jenkins to talk to Artifactory.

	 1.	 From the the Jenkins dashboard click on Credentials ➤ System ➤ Global
credentials (unrestricted).

	 2.	 Click on the Add Credentials link on the left-hand side menu, to create a new
credential (Figure 8-8).

a.	 Choose Kind as Username and Password.

b.	 Leave the Scope field to its default value.

c.	 Add the Artifactory username under the Username field.

d.	 Under the Password field add the password.

e.	 Add an ID under the ID field, and some description under
the Description field.

f.	 Once done click on the OK button.

Figure 8-7.  Our newly created local repository

Figure 8-8.  Adding artifactory credentials inside Jenkins

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

244

Installing Artifactory Plugin
Follow the step below to install the Artifactory Plugin for Jenkins.

	 1.	 From the Jenkins Dashboard, click on Manage Jenkins ➤ Manage Plugins
➤ Available (tab). You will be taken to the Jenkins Manage Plugins page.

	 2.	 Enter “Artifactory” in the Filter field, as shown in Figure 8-9.

Figure 8-9.  Installing the Artifactory plugin

	 3.	 Select the Artifactory Plugin from the list and click on Install without restart
button.

	 4.	 Restart Jenkins if needed.

Configuring Artifactory Plugin
Now that we have our Artifactory Plugin installed, let us configure it.

	 1.	 From the Jenkins Dashboard, click Manage Jenkins ➤ Configure System.

	 2.	 Once on the Configure System page, scroll down all the way to the
Artifactory section.

	 3.	 Under the Artifactory section, click on the Add button.

a.	 You will be presented with the following settings to configure,
as shown below.

b.	 Name your Artifactory server a name using the Server ID field.

c.	 Enter the Artifactory server URL under the URL field.

d.	 Add Artifactory credentials under the Default Deployer Credentials,
as shown in Figure 8-10.

e.	 Click on the Test Connection button to test the Jenkins connection
with Artifactory.

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

245

	 4.	 Once done, click on the Save button at the end of the page to save the settings.

Setting Up the SonarQube Server
In the following section we will learn the following:

	 a.	 Installing a SonarQube Server on Ubuntu

	 b.	 Creating a project inside SonarQube

	 c.	 Installing and configuring the SonarQube Plugin for Jenkins

Installing and Configuring SonarQube
In the following section we will set up SonarQube on Ubuntu 16.04. Make sure you have latest version of Java
installed with JAVA_HOME path set.

Install Java and Set the JAVA_HOME Path
Follow the steps below to install Java.

	 1.	 Update the package index:

sudo apt-get update

Figure 8-10.  Configuring the Artifactory plugin

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

246

	 2.	 Next, install Java. The following command will install the Java Runtime
Environment (JRE).

sudo apt-get install default-jre

	 3.	 To set the JAVA_HOME environment variable, first get the Java installation
location. Do this by executing the following command. You will get a response
as shown in Figure 8-11.

update-java-alternatives -l

Figure 8-11.  List of available Java installations

	 4.	 Copy the resultant path and update the JAVA_HOME variable inside the file /etc/
environment file, as shown below:

JAVA_HOME="/usr/lib/jvm/java-1.8.0-openjdk-amd64"

Downloading the SonarQube Package
Follow the steps below to download the SonarQube package.

	 1.	 Download the latest version of SonarQube installation package using the link:
https://www.sonarqube.org/downloads/

	 2.	 Unzip the archive package into you home directory ($HOME).

unzip sonarqube-5.6.6.zip -d $HOME/

	 3.	 cd to the extracted folder and list its content.

cd $HOME/sonarqube-5.6.6

■■ Note  bin/ folder contains all the scripts to install and start SonarQube. logs/ folder contains the
SonarQube logs.

Starting the SonarQube Server
Follow the steps below to start the SonarQube Server.

	 1.	 Move to the $HOME/sonarqube-5.6.6/bin/linux-x86-64/. (In our current
example we are starting SonarQube on a 64-bit Linux OS.)

cd $HOME/sonarqube-5.6.6//bin/linux-x86-64/

https://www.sonarqube.org/downloads/

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

247

	 2.	 Run the sonar.sh script to start SonarQube, as shown below.

./sonar.sh start

	 3.	 Access the SonarQube dashboard using the following link:

http://<Server IP Address>:9000

	 4.	 The default login credentials to the SonarQube server are:

username: admin
password: admin

Reset the Default Credentials and Generate a Token
Follow the steps below to reset the credentials and generate a token.

	 1.	 From the dashboard, click on Administrator ➤ My Account ➤ Security (tab).

	 2.	 On the resultant page, under the Change password section, do the following:

a.	 Add your old password (admin) under the field Old Password.

b.	 Add a new password under the New Password field.

c.	 Reconfirm your new password by adding it again in the field
Confirm Password.

d.	 Once done, click on the Change Password button.

	 3.	 On the same page there is an option to generate token. Jenkins can use this token
to access SonarQube. Do the following steps to generate a new token.

a.	 Look for the Tokens section on the Security Page (Figure 8-12).

b.	 Under the Tokens section, add a name for your new token using the
Generate Tokens field and click on the Generate Button.

c.	 A new token will get generated as shown below.

d.	 Save this token as we will need it later.

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

248

Creating a Project in SonarQube
In the following section we will create a project inside SonarQube. The project will be used to display the
static code analysis for our example project.

	 1.	 From the SonarQube dashboard click on Administration ➤ Projects
➤ Management.

	 2.	 On the resultant page click on Create Project button.

	 3.	 On the resultant pop-up window, do the following (Figure 8-13):

a.	 Add a name under the Name field.

b.	 Add a key under the Key field.

c.	 Click on the Create button.

Figure 8-12.  Creating a token inside SonarQube

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

249

	 4.	 You can see your newly created project on the Project Management page, as
shown in Figure 8-14.

Figure 8-13.  Creating a project inside SonarQube

Figure 8-14.  Newly created project inside SonarQube

Installing the Build Breaker Plugin for Sonar
The build breaker plugin is a SonarQube Plugin. This plugin allows the Continuous Integration system
(Jenkins) to forcefully fail a Jenkins Build if a “Quality Gate” condition is not satisfied.

To install the build breaker plugin, login to the SonarQube server and follow the steps as mentioned
below:

	 1.	 Before downloading the plugin, first refer the compatibility table. This will help
us in downloading the right plugin version. The compatability table is available
on the following link: https://github.com/SonarQubeCommunity/sonar-build-
breaker

	 2.	 Download the build breaker plugin from the following link: https://github.
com/SonarQubeCommunity/sonar-build-breaker/releases

https://github.com/SonarQubeCommunity/sonar-build-breaker
https://github.com/SonarQubeCommunity/sonar-build-breaker
https://github.com/SonarQubeCommunity/sonar-build-breaker/releases
https://github.com/SonarQubeCommunity/sonar-build-breaker/releases

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

250

	 3.	 Move to the tmp location and download the build breaker plugin using the
following command:

cd /tmp

wget https://github.com/SonarQubeCommunity/sonar-build-breaker/releases/
download/2.1/sonar-build-breaker-plugin-2.1.jar

	 4.	 Place the downloaded sonar-build-breaker-plugin-2.1.jar file inside the
location C:\Program Files\sonarqube-5.6.6\extensions\plugins.

cp sonar-build-breaker-plugin-2.1.jar /home/ubuntu/sonarqube-5.6.6/
extensions/plugins/

	 5.	 Restart SonarQube.

cd $HOME/sonarqube-5.6.6/bin/linux-x86-64

./sonar.sh restart

	 6.	 After a successful restart, go to the SonarQube dashboard and log in as admin.

	 7.	 Click on the Administration link from the menu options.

	 8.	 On the Administration page you will find the Build Breaker option under the
CATEGEORY sidebar as shown in Figure 8-15, do nothing.

Figure 8-15.  Build Breaker plugin settings inside SonarQube

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

251

Creating a Quality Gate in SonarQube
In the following section we will create a Quality Gate inside SonarQube. If any build crosses the threshold set
by the Quality Gate, in that case the build breaker plugin will fail the build.

	 1.	 From the SonarQube Dasboard, click on Quality Gates link from the
top menu bar.

	 2.	 On the resultant page, click on the Create button.

	 3.	 You will get a pop-up window as shown in Figure 8-16. Add a name for your
Quality Gate under the Name field, and click on the Create Button.

Figure 8-16.  Creating a new Quality Gate

Figure 8-17.  Our new Quality Gate

	 4.	 You will see your new Quality Gate listed under the Quality Gates, as shown in
Figure 8-17.

	 5.	 Let us now add a condition to our Quality Gate by choosing one from the
Add Condition menu.

	 6.	 Shown below is a condition named Major Issues. If it’s greater than 1 but
less than 3, it’s a warning. And if it’s greater than 3, it’s an error. This is just an
example. You can configure any number of conditions you like, as shown in
Figure 8-18.

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

252

	 7.	 Now let’s make our newly created Quality Gate as the default Quality Gate. We
do so by clicking on the Set as Default option at the top-right corner, as shown in
Figure 8-19.

Figure 8-18.  Configuring the Quality Gate

Figure 8-19.  Making our new Quality Gate as the default

Figure 8-20.  Our new Quality Gate is now set to default

	 8.	 As you can see from Figure 8-20, our newly created Quality Gate is set as Default.

Installing the SonarQube Plugin
Follow the steps below to install the SonarQube plugin for Jenkins.

	 1.	 From the Jenkins Dashboard, click on Manage Jenkins ➤ Manage Plugins
➤ Available (tab). You will be taken to the Jenkins Manage Plugins page.

	 2.	 Enter “SonarQube Plugin” in the Filter field, as shown in Figure 8-21.

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

253

	 3.	 Select the Artifactory Plugin from the list and click on Install without restart
button.

	 4.	 Restart Jenkins if needed.

Configuring SonarQube Plugin
Now that we have our SonarQube Plugin installed, let us configure it.

	 1.	 From the Jenkins Dashboard, click Manage Jenkins ➤ Configure System.

	 2.	 Once on the Configure System page, scroll down all the way to the SonarQube
servers section.

	 3.	 Under the SonarQube servers section, click on the Add SonarQube button.

a.	 You will be presented with the following settings to configure, as shown in
Figure 8-22.

b.	 Name your SonarQube server a name using the Name field.

c.	 Enter the SonarQube server URL under the Server URL field.

d.	 Add Artifactory credentials under the Default Deployer Credentials, as
shown below.

e.	 Add the token that we created inside SonarQube under the Server
authentication token field.

f.	 Click on the Test Connection button to test the Jenkins connection with
Artifactory.

Figure 8-21.  Installing the SonarQube Plugin

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

254

Figure 8-22.  Configuring the SonarQube Plugin

	 4.	 Once done, click on the Save button at the end of the page to save the settings.

Analyzing with SonarQube Scanner for Maven
Ideally we need SonarQube Scanner to perform static code analysis on a project. However, we will use the
SonarQube Scanner utility for Maven instead, as the example source code that we are using in the current
chapter is a Maven project.

To do so, add the following code to your pom file:

<properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <sonar.language>java</sonar.language>
</properties>

Creating a Docker Image for Integration Testing
In the following section we will create a Docker image that will serve as our Integration Testing Environment.
This Docker Image will be used by Jenkins to create Docker containers (Jenkins Slaves) on the fly. To do this
follow the steps below:

	 1.	 Log in to your Docker server. Give the following command to check the available
Docker images.

sudo docker images

	 2.	 If you are following the example discussed in the previous chapter, then you will
see the following Docker images, as shown in Figure 8-23.

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

255

	 3.	 If your Docker server is a freshly backed machine, then you will see no images at
this point.

	 4.	 We will build a Docker Image for our use from the ubuntu Docker Image. To do
so, download the Docker Image for ubuntu using the following command. But if
you already have it, then skip this step.

docker pull ubuntu

■■ Note Y ou can find more Docker Images for various OS on https://hub.docker.com/

	 5.	 One the pull gets completed, give the sudo docker images command again. And
now you should see a Docker Image for Ubuntu as shown in Figure 8-23.

	 6.	 We will now upgrade our ubuntu Docker Image with all the necessary
applications that we need to run our build, Static Code Analysis, and Integration
Testing. The applications are mentioned as follows:

a.	 Java JDK (Latest)

b.	 Git

c.	 Maven

d.	 A user account to log into the Docker Container

e.	 sshd (to accept ssh connection)

	 7.	 Execute the following command to run a docker container using the ubuntu
Docker Image. This will create a container, and will open up a bash shell.

sudo docker run -i -t ubuntu /bin/bash

	 8.	 Now, install all the required applications as you would on any normal Ubuntu
machine.

Create a User Jenkins
Let’s begin with creating a user jenkins.

	 1.	 Execute the following command and follow the user creation steps, as shown in
Figure 8-24.

adduser jenkins

Figure 8-23.  List the Docker Images.

https://hub.docker.com/

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

256

	 2.	 Check the new user using the switch user command:

su jenkins

	 3.	 Switch back to the root user by typing exit.

Install SSH Server
To install the SSH server, execute the following command in sequence:

apt-get update

apt-get install openssh-server

mkdir /var/run/sshd

Install Java and Set the JAVA_HOME Path
Follow the below steps to install Java.

	 1.	 Update the package index:

sudo apt-get update

	 2.	 Next, install Java. The following command will install the Java Runtime
Environment (JRE).

sudo apt-get install default-jre

Figure 8-24.  Creating a user

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

257

Install Git, Maven, and Nano Text Editor
Follow the step below to install Git, Maven, and a text editor.

	 1.	 Install Git using the following command:

apt-get install git

	 2.	 Install Maven using the following command:

apt-get install maven

	 3.	 Install the nano package if required using the following apt-get command:

apt-get install nano

Configure the Maven Installation to Work with SonarQube
In the following section we will configure the Maven installation to allow it to work with SonarQube.

	 1.	 Edit the settings.xml file, located in $MAVEN_HOME/conf or ~/.m2, to set the
plugin prefix and optionally the SonarQube server URL.

cd ~/.m2

(or)

cd /usr/share/maven/

	 2.	 Open the settings.xml file using the nano editor.

nano settings.xml

	 3.	 Inside the settings.xml file, navigate to the <PluginGroup></PluginGroup>
section and add the following lines.

<pluginGroups>
 <pluginGroup>org.sonarsource.scanner.maven</pluginGroup>
 </pluginGroups>

	 4.	 Next, inside the same settings.xml file, navigate to the <profiles></profiles>
section and add the following lines.

<profiles>
 <profile>
 <id>sonar</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <properties>
 <!-- Optional URL to server. Default value is http://localhost:9000 -->

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

258

 <sonar.host.url>
 http://<sonarqube server ip>:9000
 </sonar.host.url>
 </properties>
 </profile>
</profiles>

Save the Changes Made to the Docker Image
Follow the steps below to save all the changes that we made to the Cocker image.

	 1.	 Exit the container by typing exit.

	 2.	 We need to save (commit) all the changes that we made inside the Docker
container.

a.	 Get the CONTAINER ID of the container that we worked on recently by
listing all the inactive containers, as shown in Figure 8-25.

sudo docker ps -a

Figure 8-25.  List inactive containers

Figure 8-26.  Docker commit command

b.	 Note the CONTAINER ID. And execute the following command to commit
the changes that we made to our container.

sudo docker commit <CONTAINER ID> <new name for the container>

c.	 I have named my container as integration-test-agent-0.1 as shown in
Figure 8-26:

d.	 Once you have commited the changes, a new Docker Image gets created.

e.	 Execute the following Docker command to list images, as shown in
Figure 8-27.

sudo docker images

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

259

f.	 You can see our new Docker Image with the name integration-test-
agent-0.1. We will now configure our Jenkins server to use the following
Docker image to create Jenkins Slaves (build agents).

Adding Docker Image Credentials Inside Jenkins
Follow the below steps to create credentials inside Jenkins to allow it to talk to Docker.

	 1.	 From the Jenkins Dashboard, navigate to Credentials ➤ System ➤ Global
credentials (unrestricted).

	 2.	 Click on the Add Credentials link on the left-hand side menu to create a new
credential (Figure 8-28).

a.	 Choose Kind as Username and Password.

b.	 Leave the Scope field to its default value.

c.	 Add a username for your Docker Image (jenkins as per our example)
under the Username field.

d.	 Under the Password field add the password.

e.	 Add an ID under the ID field, and some description under the
Description field.

f.	 Once done click on the OK button.

Figure 8-27.  List the Docker Images

Figure 8-28.  Add credentials for the Docker Image

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

260

Update the Docker Settings Inside Jenkins
Follow the steps below to update the Docker settings inside Jenkins.

	 1.	 From the Jenkins Dashboard, click on Manage Jenkins ➤ Configure System.

	 2.	 Scroll all the way down to Cloud section.

	 3.	 Under the Cloud section, click on the Add Docker Template button and choose
Docker Template.

a.	 You will be presented with a lot of settings to configure. However,
to keep this demonstration simple, let us stick to the important settings
(Figure 8-29).

b.	 Under the Docker Image field enter the name of the Docker Image that we
created earlier. In my case it is integration-test-agent-0.1.

c.	 Under the Labels field add a label. The Docker container will be recognized
using this label by your Jenkins pipeline. I have added a label docker_it.

d.	 Launch Method should be Docker SSH computer launcher.

e.	 Under the Credentials field choose the credentials that we created to access
the Docker container.

f.	 Leave the rest of the other options to their default values.

g.	 Once done, click on Apply and then Save.

Figure 8-29.  Creating a Docker Template for Integration testing

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

261

Figure 8-30.  List the Docker Images.

Creating Docker Image for Performance Testing
	 1.	 Log in to your Docker server. Give the following command to check the available

Docker images.

sudo docker images

	 2.	 You should see something as shown in Figure 8-30.

	 3.	 We will build a new Docker image for running our PT using the ubuntu Docker
Image.

	 4.	 We will now upgrade our ubuntu Docker Image with all the necessary
applications that we need to run our build, which are as follows:

a.	 Java JDK (Latest)

b.	 Apache Tomcat (8.5)

c.	 Apache Jmeter

d.	 A user account to log into the Docker Container

e.	 sshd (to accept ssh connection)

f.	 curl

	 5.	 Execute the following command to run a docker container using the ubuntu
Docker Image. This will create a container, and open up its bash shell.

sudo docker run -i -t ubuntu /bin/bash

	 6.	 Now, install all the required application as you would do on any normal
Ubuntu machine. Let’s begin with creating a user jenkins.

Creating a User Jenkins
Follow the steps below to create a user inside named Jenkins.

	 1.	 Execute the following command and follow the user creation steps,
as shown in Figure 8-31.

adduser jenkins

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

262

	 2.	 Check the new user using the switch user command:

su jenkins

	 3.	 Switch back to the root user by typing exit.

Install SSH Server
Next, we will install the SSH server. Execute the following command in sequence.

apt-get update

apt-get install openssh-server

mkdir /var/run/sshd

Install Java and Set the JAVA_HOME path
Follow the steps below to install Java.

	 1.	 Update the package index:

sudo apt-get update

	 2.	 Next, install Java. The following command will install the Java Runtime
Environment (JRE).

sudo apt-get install default-jre

Install Apache Tomcat
Follow the steps below to install Apache Tomcat.

	 1.	 The best way to install Tomcat 8.5 is to download the latest binary release, then
configure it manually.

Figure 8-31.  Creating a user

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

263

	 2.	 Move to the tmp/ directory and download the Apache Tomcat 8.5 using the
following commands:

cd /tmp

wget http://mirrors.dotsrc.org/apache/tomcat/tomcat-8/v8.5.11/bin/apache-
tomcat-8.5.11.tar.gz

	 3.	 We will install Tomcat inside the $HOME directory. To do so, create a directory
tomcat inside $HOME.

mkdir $HOME/tomcat

	 4.	 Then extract the archive to it:

tar xzvf apache-tomcat-8*tar.gz -C $HOME/tomcat --strip-components=1

Install Apache JMeter
Apache JMeter is a good tool to perform Performance Testing. It’s free and open source. It can run in both
GUI and command-line mode, which makes it a suitable candidate for automating Performance Testing.

	 1.	 Move to the tmp/ directory.

cd /tmp

	 2.	 Download the apache-jmeter-3.1.tgz or whichever is the latest stable version
from http://jmeter.apache.org/download_jmeter.cgi

wget http://ftp.download-by.net/apache//jmeter/binaries/apache-jmeter-3.1.tgz

	 3.	 We will install Jmeter inside the opt/jmeter/ directory. To do so create a jmeter
directory inside opt/.

mkdir /opt/jmeter

	 4.	 Then extract the archive to it:

tar xzvf apache-jmeter-3*.tgz -C /opt/jmeter --strip-components=1

Saving the Changes Made to the Docker Image
Follow the steps below to save all the changes that we made to the Docker image.

	 1.	 Exit the container by typing exit.

	 2.	 We need to save (commit) all the changes that we made to our Docker container.

a.	 Get the CONTAINER ID of the container that we worked on recently by
listing all the inactive containers, as shown in Figure 8-32.

sudo docker ps -a

http://jmeter.apache.org/download_jmeter.cgi

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

264

b.	 Note the CONTAINER ID. And execute the following command to commit
the changes that we made to our container.

sudo docker commit <CONTAINER ID> <new name for the container>

c.	 I have named my container as performance-test-agent-0.1 as shown in
Figure 8-33:

Figure 8-33.  Docker commit command

Figure 8-34.  List the Docker Images.

Figure 8-32.  List inactive containers.

d.	 Once you have commited the changes, a new Docker Image gets created.

e.	 Execute the following Docker command to list images, as shown in Figure 8-34.

sudo docker images

f.	 You can see our new Docker Image with the name performance-test-
agent-0.1. We will now configure our Jenkins server to use the following
Docker image to create Jenkins Slaves (build agents).

Adding Docker Image Credentials Inside Jenkins
Follow the steps below to create credentials inside Jenkins to allow it to talk to Docker.

	 1.	 From the Jenkins Dashboard, navigate to Credentials ➤ System ➤ Global
credentials (unrestricted).

	 2.	 Click on the Add Credentials link on the left-hand side menu to create a new
credential (Figure 8-35).

a.	 Choose Kind as Username and Password.

b.	 Leave the Scope field to its default value.

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

265

c.	 Add a username for your Docker Image (jenkins as per our example)
under the Username field.

d.	 Under the Password field add the password.

e.	 Add an ID under the ID field, and some description under the
Description field.

f.	 Once done, click on the OK button.

Figure 8-35.  Create credentials inside Jenkins

Update the Docker Settings Inside Jenkins
Follow the steps below to update the Docker settings inside Jenkins.

	 1.	 From the Jenkins Dashboard, click on Manage Jenkins ➤ Configure System.

	 2.	 Scroll all the way down to Cloud section.

	 3.	 Under the Cloud section, click on the Add Docker Template button and choose
Docker Template.

a.	 You will be presented with a lot of settings to configure (Figure 8-36).
However, to keep this demonstration simple, let us stick to the important
settings.

b.	 Under the Docker Image field, enter the name of the Docker Image that we
created earlier. In my case it is performance-test-agent-0.1.

c.	 Under the Labels field add a label. The Docker container will be recognized
using this label by your Jenkins pipeline. I have added a label docker_pt.

d.	 Launch Method should be Docker SSH computer launcher.

e.	 Under the Credentials field choose the credentials that we created to access
the Docker container.

f.	 Leave the rest of the other options to their default values.

g.	 Once done, click on Apply and then Save.

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

266

Creating a Performance Test Using Jmeter
In the following section we will learn to create a simple performance test using the tool Jmeter.

Install Java and Set the JAVA_HOME Path
Follow the steps below to install Java.

	 1.	 Update the package index:

sudo apt-get update

	 2.	 Next, install Java. The following command will install the Java Runtime
Environment (JRE).

sudo apt-get install default-jre

	 3.	 To set the JAVA_HOME environment variable, first get the Java installation
location. Do this by executing the following command.

sudo update-alternatives --config java

<image showing the output of the above command>

	 4.	 Copy the resultant path and update the JAVA_HOME variable inside the
file /etc/environment.

<image showing the /etc/environment file>

Figure 8-36.  Creating a Docker Template for Integration testing

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

267

Install Apache JMeter
Follow the steps below to install apache JMeter.

	 1.	 Move to the tmp/ directory.

cd /tmp

	 2.	 Download the apache-jmeter-3.1.tgz or whichever is the latest stable version
from http://jmeter.apache.org/download_jmeter.cgi

wget http://ftp.download-by.net/apache//jmeter/binaries/apache-jmeter-3.1.tgz

	 3.	 We will install Jmeter inside the opt/jmeter/ directory. To do so, create a jmeter
directory inside opt/.

mkdir /opt/jmeter

	 4.	 Then extract the archive to it:

tar xzvf apache-jmeter-3*.tgz -C /opt/jmeter --strip-components=1

Starting Jmeter
Follow the steps below to start Jmeter.

	 1.	 To start Jmeter, move to the Jmeter installation directory and run the jmeter.sh
script using the following command:

cd /opt/jmeter/bin

./jmeter.sh

	 2.	 You will see the Jmeter GUI utility open up in a new Window.

Creating a Performance Test Case
By default you will see an example test plan. We will create a new test plan by modifying the existing
template.

	 1.	 Rename the test plan to Hello World Test Plan as shown in Figure 8-37.

Figure 8-37.  Creating a test plan

http://jmeter.apache.org/download_jmeter.cgi

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

268

	 2.	 Save it inside the examples folder by clicking on the save button from the menu
items or by clicking Ctrl+S, as shown in Figure 8-38.

Figure 8-38.  Saving the test plan

Figure 8-39.  Creating a thread group

Creating a Thread Group
Follow the steps below to create a thread group.

	 1.	 Add a thread group. To do so, right-click on the Hello World Test Plan and select
Add ➤ Threads (Users) ➤ Thread Group (Figure 8-39).

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

269

	 2.	 In the resultant page. Give your thread group a name. And fill in the option as
follows (Figure 8-40).

a.	 Select Continue for the option Action to be taken after a Sampler error.

b.	 Add Number of Threads (users) = 1

c.	 Add Ramp-Up Period (in seconds) = 1

d.	 Add Loop Count =1

Figure 8-40.  Configuring a thread group

Creating a Sampler
Follow the steps below to create a Sampler.

	 1.	 To do so, right-click on the Hello_World_Test_Plan and select Add ➤ Sampler
➤ Http Request (Figure 8-41).

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

270

Figure 8-42.  Configuring a sampler

Figure 8-41.  Adding a Sampler

	 2.	 Name the HTTP Request appropriately. And fill in the options as follows
(Figure 8-42).

a.	 Add Server Name or IP = <ip address of your Testing Server machine ➤

b.	 Add Port Number = 8080

c.	 Add Path = /payslip-0.0.1/

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

271

Adding a Listener
Follow the steps below to add a listener.

	 1.	 To do so, right-click on the Hello_World_Test_Plan and select Add ➤ Listener
➤ View Results Tree (Figure 8-43).

Figure 8-43.  Adding a Listener

	 2.	 Do nothing. Leave all fields as they are.

	 3.	 Save the whole configuration by clicking on the save button in the menu items or
by clicking Ctrl+S.

	 4.	 Copy the .jmx file from /opt/jmeter/bin/examples.

	 5.	 Under your Maven project create a folder named pt inside the src directory. And
add the .jmx file inside it.

	 6.	 Upload the code to github.

Creating Jenkins CD Pipeline
We have all the required tools and the Docker images ready. In the following section we will create a pipeline
in Jenkins that will describe our continuous delivery process.

Creating Pipeline Script
Lets us build our pipeline code for Continuous Delivery step-by-step:

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

272

Pipeline Code for Spawning a Docker Container for the Integration Testing
First, let us create a pipeline code that will create a Cocker container (Jenkins Slave) using the Docker image
for Integration testing integration-test-agent-0.1.

node('docker_it') {
}

docker_it Label for integration-test-agent-0.1 Docker Template.

We would like to perform the following tasks on the node docker_it.

	 a.	 perform build

	 b.	 perform static code analysis

	 c.	 perform Integration testing

	 d.	 publish artifacts to Artifactory

All the tasks above are various stages of our continous delivery pipeline. Let’s write pipeline code for
each one of them.

Pipeline Code to Download the Latest Source Code from GitHub
We want our Jenkins pipeline to download the latest change pushed to the master branch of our GitHub
repository. Following is the code for it:

checkout([$class: 'GitSCM', branches: [[name: '*/master']],
doGenerateSubmoduleConfigurations: false, extensions: [], submoduleCfg: [],
userRemoteConfigs: [[credentialsId: 'github-account',
url: 'https://github.com/pro-continuous-delivery/hello-world-greeting.git']]])

credentialsId: The credentials saved inside Jenkins to access GitHub.

url: https or ssh link of your GitHub repository.

name: GitHub repository branch to build.

Wrap the step above inside a stage called Poll.

stage('Poll') {
 checkout([$class: 'GitSCM', branches: [[name: '*/master']],
doGenerateSubmoduleConfigurations: false, extensions: [], submoduleCfg: [],
userRemoteConfigs: [[credentialsId: 'github-account', url: 'https://github.com/pro-
continuous-delivery/hello-world-greeting.git']]])
}

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

273

Pipeline Code to Perform a Build
The example project that we are using in the current chapter is a Maven project. Therefore the pipeline code
for the build is a simple shell script that runs the mvn clean command:

sh 'mvn clean verify -DskipITs=true';

-DskipITs=true Option to skip Integration test and perform only the build.

Wrap the step above inside a stage called Build.

stage('Build'){
 sh 'mvn clean verify -DskipITs=true';
}

Pipeline Code to Perform Static Code Analysis
The pipeline code to perform static code analysis is a simple shell script that will run the Maven command,
as shown below. This is made possible using the SonarQube Scanner utility for Maven. Remember the
configuration that we did in the sections Analyzing with SonarQube Scanner for Maven and Configure the
Maven Installation to Work with SonarQube.

sh 'mvn clean verify sonar:sonar';

Wrap the step above inside a stage called Static Code Analysis.

stage('Static Code Analysis'){
 sh 'mvn clean verify sonar:sonar';
}

Pipeline Code to Perform Integration Testing
The pipeline code to perform Integration testing is a shell script that will run the Maven command, as
shown below:

sh 'mvn clean verify -Dsurefire.skip=true';

-Dsurefire.skip=true Option to skip Unit testing and perform only the Integration testing.

Wrap the step above inside a stage called Integration Test.

stage ('Integration Test'){
 sh 'mvn clean verify -Dsurefire.skip=true';
}

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

274

Pipeline Code to Publish Build Artifacts to Artifactory
To upload the build artifacts to Artifactory we will use the File Specs. The File Specs code looks as shown below:

"files": [
 {
 "pattern": "[Mandatory]",
 "target": "[Mandatory]",
 "props": "[Optional]",
 "recursive": "[Optional, Default: 'true']",
 "flat" : "[Optional, Default: 'true']",
 "regexp": "[Optional, Default: 'false']"
 }
]

pattern [Mandatory]

Specifies the local file system path to artifacts that should be uploaded to Artifactory. You
can specify multiple artifacts by using wildcards or a regular expression as designated by the
regexp property.

If you use a regexp, you need to escape any reserved characters (such as “ . ”, “?”, etc.) used in
the expression using a backslash “\”.

Version 2.9.0 of the Jenkins Artifactory plugin and version 2.3.1 of the TeamCity Artifactory
plugin the pattern format has been simplified and uses the same file separator “/” for all
operating systems, including Windows.

target [Mandatory]

Specifies the target path in Artifactory in the following format: [repository_name]/[repository_path]

If the pattern ends with a slash, for example, “repo-name/a/b/”, then “b” is assumed to be
a folder in Artifactory and the files are uploaded into it. In the case of “repo-name/a/b”, the
uploaded file is renamed to “b” in Artifactory.

For flexibility in specifying the upload path, you can include placeholders in the form of {1},
{2}, {3}…that are replaced by corresponding tokens in the source path that are enclosed in
parentheses. For more details, please refer to Using Placeholders.

props [Optional]

List of “key=value” pairs separated by a semi-colon (;) to be attached as properties to the
uploaded properties. If any key can take several values, then each value is separated by a
comma (,). For example, “key1=value1;key2=value21,value22;key3=value3”.

flat [Default: true]

If true, artifacts are uploaded to the exact target path specified and their hierarchy in
the source file system is ignored. If false, artifacts are uploaded to the target path while
maintaining their file system hierarchy.

recursive [Default: true]

If true, artifacts are also collected from sub-directories of the source directory for upload. If
false, only artifacts specifically in the source directory are uploaded.

regexp [Default: false]

If true, the command will interpret the pattern property, which describes the local file-
system path of artifacts to upload, as a regular expression. If false, the command will
interpret the pattern property as a wild-card expression.

https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

275

Following is the File Specs code that we will use in our pipeline:

def server = Artifactory.server 'Default Artifactory Server'
def uploadSpec = """{
 "files": [
 {
 "pattern": "target/hello-0.0.1.war",
 "target": "helloworld-greeting-project/${BUILD_NUMBER}/",
 "props": "Integration-Tested=Yes;Performance-Tested=No"
 }
]
}"""
server.upload(uploadSpec)

def server = Artifactory.server‘Default
Artifactory Server’

The following line tells Jenkins to use the existing Artifactory
Server configured in Jenkins. In our example its Default
Artifactory Server.

Default Artifactory Server This is the name of the Artifactory Server configured inside
Jenkins.

“pattern”: “target/hello-0.0.1.war”, The following line of code will look like a file named hello-
0.0.1.war inside the directory target, which is again inside the
Jenkins workspace directory.

“target”: “helloworld-greeting-
project/${BUILD_NUMBER}/”,

The following line of code will try to upload the build
artifacts to the Artifactory repository named helloworld-
greeting-project. It will place the artifact inside a folder
named after the build number inside the Artifactory
repository.

${BUILD_NUMBER} The Jenkins environment variable for the build number.

“props”: “Integration-
Tested=Yes;Performance-Tested=No”

The following code creates two key/value pairs and assigns
them to the uploaded code. These key/value pairs can be
used as labels for code promotion in Artifactory.

Integration-Tested=Yes

Performance-Tested=No

Wrap the step above inside a stage called Publish to Artifactory.

stage ('Publish to Artifactory'){
 def server = Artifactory.server 'Default Artifactory Server'
 def uploadSpec = """{
 "files": [
 {
 "pattern": "target/hello-0.0.1.war",
 "target": "helloworld-greeting-project/${BUILD_NUMBER}/",
 "props": "Integration-Tested=Yes;Performance-Tested=No"
 }
]
}"""
server.upload(uploadSpec)
}

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

276

Pipeline Code to Stash the Build Artifacts
Jenkins pipeline has a feature to pass build artifacts across nodes using a feature called stash. In the
following step we will stash a few build artifacts that we wish to pass to the node docker_pt wherein we will
perform our performance test.

stash includes: 'target/hello-0.0.1.war,src/pt/Hello_World_Test_Plan.jmx', name: 'binary'

name: Name for the stash

includes: Comma separated files to include

Combined Code for Node docker_it
Following is the complete combined code that will run inside the node docker_it.

node('docker_it') {
stage('Poll') {
 checkout([$class: 'GitSCM', branches: [[name: '*/master']],
doGenerateSubmoduleConfigurations: false, extensions: [], submoduleCfg: [],
userRemoteConfigs: [[credentialsId: 'github-account', url: 'https://github.com/
pro-continuous-delivery/hello-world-greeting.git']]])
}
stage('Build'){
 sh 'mvn clean verify -DskipITs=true';
}
stage('Static Code Analysis'){
 sh 'mvn clean verify sonar:sonar';
}
stage ('Integration test'){
 sh 'mvn clean verify -Dsurefire.skip=true';
}
stage ('Publish to Artifactory'){
 def server = Artifactory.server 'Default Artifactory Server'
 def uploadSpec = """{
 "files": [
 {
 "pattern": "target/hello-0.0.1.war",
 "target": "helloworld-greeting-project/${BUILD_NUMBER}/",
 "props": "Integration-Tested=Yes;Performance-Tested=No"
 }
]
}"""
server.upload(uploadSpec)
}
 stash includes: 'target/hello-0.0.1.war,src/pt/Hello_World_Test_Plan.jmx', name: 'binary'
}

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

277

Pipeline Code for Spawning a Docker Container for the Performance Testing
First, let us create a pipeline code that will create a docker container (Jenkins Slave) using the Docker image
for performance testing performance-test-agent-0.1.

node('docker_pt') {
}

docker_pt Label for performance-test-agent-0.1 Docker Template.

We would like to perform the following tasks on the node docker_pt.

	 a.	 Start tomcat.

	 b.	 Deploy the build artifacts to tomcat.

	 c.	 Perform performance testing.

	 d.	 Promote the build artifacts inside Artifactory.

All the tasks above are various stages of our continous delivery pipeline. Let write pipeline code for each
one of them.

Pipeline Code to Start Apache Tomcat
The pipeline code to start Apache Tomcat on the performance testing agent is a simple shell script that will
run the ./startup.sh script present inside the Tomcat installation directory.

sh '''cd /home/jenkins/tomcat/bin
./startup.sh''';

Wrap the above step inside a stage called Start Tomcat.

stage ('Start Tomcat'){
 sh '''cd /home/jenkins/tomcat/bin
 ./startup.sh''';
}

Pipeline Code to Deploy Build Artifacts to the Tomcat’s Webapps Directory
The pipeline code to deploy build artifacts happens in two steps. First, we will unstash the binary package
that we stashed from the previous node docker_it. Then we deploy the unstashed files into the webapps
folder inside the Tomcat installation directory. Following is the code:

unstash 'binary'

sh 'cp target/hello-0.0.1.war /home/jenkins/tomcat/webapps/';

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

278

Wrap the step above inside a stage called Deploy to Testing Env.

stage ('Deploy to Testing Env'){
 unstash 'binary'
 sh 'cp target/hello-0.0.1.war /home/jenkins/tomcat/webapps/';
}

Pipeline Code to Execute Performance Testing
The pipeline code to execute the performance testing is a simple shell script that invokes the jmeter.sh script
and passes the .jmx file to it. The test result is stored inside a .jtl file that is then archived. Following is the
code:

sh '''cd /opt/jmeter/bin/
./jmeter.sh -n -t /home/jenkins/workspace/helloworld-greeting-cd/src/pt/Hello_World_Test_
Plan.jmx -l /home/jenkins/workspace/helloworld-greeting-cd/test_report.jtl''';

step([$class: 'ArtifactArchiver', artifacts: '**/*.jtl'])

./jmeter.sh -n -t <path to the .jmx file> -l <path to
save the .jtl file>

Following is the jmeter command to execute the
performance test plan (.jmx files) amd generate a test
result (.jtl files).

step([$class: ‘ArtifactArchiver’, artifacts: ‘**/*.jtl’]) The following line of code will archive all files with
the .jtl extention.

Wrap the step above inside a stage called Performance Testing.

stage ('Performance Testing'){
 sh '''cd /opt/jmeter/bin/
 �./jmeter.sh -n -t /home/jenkins/workspace/helloworld-greeting-cd/src/pt/Hello_World_

Test_Plan.jmx -l /home/jenkins/workspace/helloworld-greeting-cd/test_report.jtl''';
 step([$class: 'ArtifactArchiver', artifacts: '**/*.jtl'])

}

Pipeline Code to Promote Build Artifacts in Artifactory
The way we are going to promote build artifacts in Artifactory is using the properties (key/value pair)
feature. All builds that have passed Performance testing will be applied a tag Performance-Tested=Yes.
Following is the code:

withCredentials([usernameColonPassword(credentialsId: 'artifactory-account', variable:
'credentials')]) {
sh 'curl -u${credentials} -X PUT "http://172.17.8.108:8081/artifactory/api/storage/
helloworld-greeting-project/${BUILD_NUMBER}/hello-0.0.1.war?properties=Performance-
Tested=Yes"';
}

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

279

withCredentials([usernameColonPassw
ord(credentialsId: ‘artifactory-account’,
variable:‘credentials’)]) {

}

We are using the withCredentials Plugin inside Jenkins
to pass Artifactory credentials to the curl command.

curl -u<username>:password -X PUT “<artifactory
server URL>/api/storage/<artifactory repository
name>?properties=key-value”

Following is the curl command to update the property
(key/value pair) on the build artifact present inside
Artifactory. The curl command makes use of the REST
API features of Artifactory.

Wrap the step above inside a stage called Promote build in Artifactory.

stage ('Promote build in Artifactory'){
 �withCredentials([usernameColonPassword(credentialsId: 'artifactory-account', variable:

'credentials')]) {
 �sh 'curl -u${credentials} -X PUT "http://172.17.8.108:8081/artifactory/api/storage/

helloworld-greeting-project/${BUILD_NUMBER}/hello-0.0.1.war?properties=Performance-
Tested=Yes"';

}
}

Combined Code for Node docker_pt
Following is the complete combined code that will run inside the node docker_pt.

node('docker_pt') {
stage ('Start Tomcat'){
 sh '''cd /home/jenkins/tomcat/bin
 ./startup.sh''';
}
stage ('Deploy to Testing Env'){
 unstash 'binary'
 sh 'cp target/hello-0.0.1.war /home/jenkins/tomcat/webapps/';
}
stage ('Performance Testing'){
 sh '''cd /opt/jmeter/bin/
 �./jmeter.sh -n -t /home/jenkins/workspace/helloworld-greeting-cd/src/pt/Hello_World_

Test_Plan.jmx -l /home/jenkins/workspace/helloworld-greeting-cd/test_report.jtl''';
 step([$class: 'ArtifactArchiver', artifacts: '**/*.jtl'])
}
 stage ('Promote build in Artifactory'){
 �withCredentials([usernameColonPassword(credentialsId: 'artifactory-account', variable:

'credentials')]) {
 �sh 'curl -u${credentials} -X PUT "http://172.17.8.108:8081/artifactory/api/storage/

helloworld-greeting-project/${BUILD_NUMBER}/hello-0.0.1.war?properties=Performance-
Tested=Yes"';

}
}
}

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

280

Complete Pipeline Script
Combining the pipeline code that runs inside docker_it and docker_pt, we get the following code:

node('docker_it') {
stage('Poll') {
 �checkout([$class: 'GitSCM', branches: [[name: '*/master']], doGenerateSubmoduleConfigurations:

false, extensions: [], submoduleCfg: [], userRemoteConfigs: [[credentialsId: 'github-account',
url: 'https://github.com/pro-continuous-delivery/hello-world-greeting.git']]])

}
stage('Build'){
 sh 'mvn clean verify -DskipITs=true';
}
stage('Static Code Analysis'){
 sh 'mvn clean verify sonar:sonar';
}
stage ('Integration Test'){
 sh 'mvn clean verify -Dsurefire.skip=true';
}
stage ('Publish to Artifactory'){
 def server = Artifactory.server 'Default Artifactory Server'
 def uploadSpec = """{
 "files": [
 {
 "pattern": "target/hello-0.0.1.war",
 "target": "helloworld-greeting-project/${BUILD_NUMBER}/",
 "props": "Integration-Tested=Yes;Performance-Tested=No"
 }
]
}"""
server.upload(uploadSpec)
}
 stash includes: 'target/hello-0.0.1.war,src/pt/Hello_World_Test_Plan.jmx', name: 'binary'
}
node('docker_pt') {
stage ('Start Tomcat'){
 sh '''cd /home/jenkins/tomcat/bin
 ./startup.sh''';
}
stage ('Deploy to Testing Env'){
 unstash 'binary'
 sh 'cp target/hello-0.0.1.war /home/jenkins/tomcat/webapps/';
}
stage ('Performance Testing'){
 sh '''cd /opt/jmeter/bin/
 �./jmeter.sh -n -t /home/jenkins/workspace/helloworld-greeting-cd/src/pt/Hello_World_

Test_Plan.jmx -l /home/jenkins/workspace/helloworld-greeting-cd/test_report.jtl''';
 step([$class: 'ArtifactArchiver', artifacts: '**/*.jtl'])
}

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

281

 stage ('Promote build in Artifactory'){
 �withCredentials([usernameColonPassword(credentialsId: 'artifactory-account', variable:

'credentials')]) {
 �sh 'curl -u${credentials} -X PUT "http://172.17.8.108:8081/artifactory/api/storage/

helloworld-greeting-project/${BUILD_NUMBER}/hello-0.0.1.war?properties=Performance-
Tested=Yes"';

}
}
}

Creating Pipeline in Jenkins
Follow the steps below to create a new pipeline in Jenkins.

	 1.	 From the Jenkins Dashboard, click on the New Item.

a.	 Choose Jenkins Job type as Pipeline.

b.	 Under the Enter an item name field, add a name for your
new Jenkins pipeline.

c.	 Click on the OK button to proceed with configuring our
new Jenkins pipeline.

	 2.	 Once on the Jenkins pipeline configuration page, scroll down to the Build
Triggers section and check the GitHub hook trigger for GITScm polling option.

	 3.	 Scroll down further to the Pipeline section.

	 4.	 Under the Definition option, choose Pipeline script (Figure 8-44).

Figure 8-44.  Jenkins pipeline script

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

282

	 5.	 Paste the pipeline code created in the previous section under the Script field.

	 6.	 Click on the save button at the end of the page.

Jenkins Continuous Delivery Pipeline in Action
Make some changes on your GitHub code or just trigger the Jenkins pipeline from the Jenkins dashboard.

To see the pipeline in action, from the Jenkins dashboard click on the Jenkins pipeline Job ➤ Full
Stage View. You should see something similar, as shown in Figure 8-45.

Figure 8-45.  Jenkins cd pipeline in action

Figure 8-46.  Build artifact being promoted inside artifactory

Log in to the Artifactory server to see if the code has been uploaded and promoted using the properties
(Figure 8-46).

Chapter 8 ■ Continuous Delivery Using Jenkins Pipeline

283

Log in to the SonarQube server to see if there is any Static Code Analysis that happened on the code
(Figure 8-47).

Figure 8-47.  Static Code analysis on the Maven project

From Figure 8-48, you can see that the total number of Major issues is 13, which is greater than 1 but
less than 20. Hence, its considered as a warning.

Figure 8-48.  Static Code analysis report on the project

Summary
In the current chapter we learned to set up the DevOps tool chain required for continuous delivery. We
also created a few more Docker images for our testing enviroments. And finally, we created and tested out
Jenkins continuous delivery pipeline.

285© Nikhil Pathania 2017
N. Pathania, Pro Continuous Delivery, DOI 10.1007/978-1-4842-2913-2

�       � A
Amazon Machine Image (AMI) page, 133
Apache JMeter, 263, 267
Apache Tomcat Server, 262

ClusterIP, 55–56
download Jenkins, 42–43
firewall, 39
installation, 37–38
Java, 37
JENKINS_HOME, 44–45
resource agent, 54
updating permissions, 39
user and group, 37
webapps directory, 43
web management interface, 40–41

Artifactory Server
configuration, 244
creation, repository, 240, 242
download, 238
installation, 244
install Java and JAVA_HOME path, 238
Jenkins, 243
reset default credentials, 240
steps, 239

�       � B
Branching strategy

feature/bug-fix, 1–2
Gitflow workflow, 2–4

�       � C
CD pipeline

build, 273
build artifacts to Artifactory, 274–276
code to execute performance testing, 278
code to start Apache Tomcat, 277
complete pipeline script, 280–281
docker container, 277
GitHub, 272

integration testing, 272–273
Jenkins, 281–283
node docker_it, 276
node docker_pt, 279
perform static code analysis, 273
promote build artifacts in Artifactory, 278
Tomcat’s Webapps Directory, 277

Cloud (AWS), Jenkins, 125
cluster for slaves, 126
connect to instance, 139
connect to instance from windows, 139–143
EC2 instance on, 133–138
instance type for Jenkins master, 127
latest stable version, 143
master-slave setup, 126
security group creation, 128–132
select region, 128

Cluster software, 46
Configure Global Security

Jenkins Pipeline
create, 216–218
run, 219–220

JNLP agents, 216
Continuous Integration (CI)

codable CI pipeline (see Pipeline)
CoreOS, 11–12, 14
Pacemaker, 14–15

Corosync
cluster authorization key, 46–47
configuration, 47–50

�       � D, E
Docker

adding credentials, 194
configuration, 190
docker.conf file, 188
docker.service file, 188
enable remote API, 187
image creation, 191–193
installation, 189
Jenkins master, 187

Index

■ INDEX

286

Jenkins pipeline, 196
Jenkins slave, 187
pipeline script from SCM, 196–197
trigger, 198–199
update, 194, 196

Docker container, Jenkins, 115–118
creating container, 120–123
install Docker, 119–120
install from package, 120
install on Ubuntu, 118
setting up repository, 118–119

Docker host, 120
Docker image

commit command, 258
create credentials inside Jenkins, 259
create user Jenkins, 255–256
Git, Maven, and nano text editor, 257
install Java, 256
list inactive containers, 258
performance test

Apache JMeter, 263
Apache Tomcat, 262
create credentials inside Jenkins, 264–265
create user Jenkins, 261–262
install Java, 262
saving, 263–264
settings inside Jenkins, 265–266
SSH server, 262

settings inside Jenkins, 260
SonarQube, 257
SSH server, 256
sudo docker images, 255
ubuntu, 255

DRBD
cluster resource, 65–68
configuration, 59–60
initialization, 60–62
partitions, 56–59
populating, 62–64

�       � F
Failover mechanism

admin user, 72
crm status, 74
login, 74
suggested plugins, 70

Fedora/Red Hat Linux, 125

�       � G
GitHub, 223–224, 232–234, 272

changes in, 168–169
credentials for account, 171–172

personal access token, 146–149
SSH key pair, 149

plugin, 155–156
SSH public key to, 152–153
webhooks, 156–157

managing, 179–185
GitHub repo, 178–179
GlusterFS Servers, 78, 91–92

configuration, 95, 97
docker containers, 94
fleetctl status command, 93–94
list units, 93

�       � H, I
High Availability (HA) for Jenkins

active/passive, 23–24
cluster software, 46
Corosync configuration (see Corosync)
DRBD (see DRBD)
failover scenario, 26
firewall, 36
floating IP resource agent, 53–54
node machines, 33–34
Pacemaker configuration (see Pacemaker)
ssh key, 35
time zone, 36
Tomcat Server (see Apache Tomcat Server)
Vagrant, 27–28
VirtualBox, 29–30
virtual machines, 30–32

�       � J
Jenkins, 243

active/passive HA setup, 78
on cloud (AWS), 125

cluster for slaves, 126
connecting to instance, 139
connecting to instance from

windows, 139–143
EC2 instance on, 133–138
instance type for Jenkins master, 127
latest stable version, 143
master-slave setup, 126
security group, creating, 128–132
selecting region, 128

configuration unit file, 99
core-02 machine, 111
CoreOS host, 85–86, 98
create first admin user, 104
dashboard, 105, 109
Docker container, 115–118

creating container, 120–123
install, 119–120

Docker (cont.)

■ INDEX

287

install from package, 120
install on Ubuntu, 118
setting up repository, 118–119

failover scenario, 79–82
on Fedora/Red Hat Linux, 125

latest stable version, 125
latest version, 125

fetch initialAdminPassword, 102
fleetctl command, 98–99, 111
GlusterFS Servers, 78
glusterfs1 unit, 107
gluster peer status, 108, 110
gluster volume, 106–108
HA setup, 78–79
installation, 112
installation complete process, 105
Install plugins, 103, 112
install Vagrant, 83–84
jenkins_home directory, 101, 106
list units, 97, 107, 110–111
login page, 102
login screen, 109
mount status, 101
Oracle VirtualBox, 84–85
personal access token, 148–149

SSH key pair, 149
pipeline project

in action, 169–170
multibranch, 171–172, 174–179

running containers, 100, 107
server container, 100
tools, 237
on Ubuntu, 124

latest stable version, 124
latest version, 124

units, 100
VMs, 87–89

Jenkinsfile, 176–177
Jenkins master

horizontal scaling, 17
logs and pipeline metadata, 16
out of memory issues, 16
users access, 16
vertical scaling, 16

Jenkins, SSH private key, 153–155
GitHub plugin, 155–156
GitHub webhooks, 156–157
Java, Git, and Maven, 158–160
pipeline Maven integration plugin, 160
pipeline project, 161

create, 161–163
test, 168

pipeline syntax option, 163–168
Jmeter

apache, 267

creation, 267
Java, 266
listener, 271
sampler, 269–270
steps, 267
thread group, 268–269

�       � K, L
Kubernetes, 116–117

cluster up and running, 204
config.rb.sample, 201
configuration, 212–215
context, 203
coreos-kubernetes repository, 201
creating credentials, 211
current-context, 203
dashboard, 206
default token, 209
empty pods section, 208
installation, 210
installing Kubectl, 200
kubeconfig file, 203
kubectl cluster-info, 205
kubectl proxy command, 206
list of namespaces, 206
list of nodes, 207
node metrics, 207–208
prerequisites, 200
un-hide token, 209–210
users, 204
vagrant virtual machines, 202

�       � M, N
Maven, 254

�       � O
Oracle VirtualBox, 82, 84–85

�       � P, Q, R
Pacemaker

cluster property, 52–53
configuration, 51

Parallel testing
broader compatibility, 18–19
definition, 17
time, 19–20

Pipeline
build agents, 7
Dockerfile, 7–9
Jenkinsfile, 5–6
Kubernetes, 9–10

■ INDEX

288

Pipeline as code
GitHub, changes in, 168–169
GitHub, SSH public key, 152–153
GitHub webhooks, managing, 179–185
Jenkins

multibranch pipeline project, 171–172,
174–179

pipeline project in action, 169–170
prerequisite, 145

personal access token in
GitHub, 146–147

personal access token in
Jenkins, 148–149

SSH key pair on Ubuntu, 149–150
SSH private key to ssh-agent, 150

SSH key pair on Windows, 151–152
SSH private key to Jenkins, 153–155

GitHub plugin, 155–156
GitHub webhooks, 156–157
Java, Git, and Maven, 158–160
Maven integration plugin, 160
Maven project, 161–163
project, 168
syntax option, 163–168

Pre-tested commits using Jenkins
failure, simulation, 234–236
Git/GitHub, 223–224
Github, 232–234
pipeline

allocating node, 226
Maven, 230
Merge before build, 228–229
SCM, 227, 229
stage, 227
withCredentials, 231–232

PuTTY application, 140
PuTTYgen application, 139

�       � S, T
SonarQube server

configuration, 253–254
creation, 248–249
default credentials and generate, 247
downloading package, 246
installation, 249–250, 252–253
Java installations, 246
Maven, 254
Quality Gate, 251–252

�       � U
Ubuntu

Jenkins on, 124
latest stable version, 124
latest version, 124

SSH key pair, 149–150
SSH private key to ssh-agent, 150

Unit files
GlusterFS Server, 91–92
Jenkins Server, 89–90

�       � V
Vagrant, 82
Virtual machines, 87–88

�       � W, X, Y, Z
Windows, SSH key pair on, 151–152

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	
Introduction
	Chapter 1: Elements of Continuous Delivery
	What Is Continuous Delivery?
	Branching Strategy
	Using Separate Branch for Every Feature/Bug-Fix
	Using the Gitflow Workflow

	Continuous Integration
	Codable CI Pipeline
	How to Use Jenkinsfile?
	How to Write Pipeline Steps Inside a Jenkinsfile?

	Reproducible Build Environments
	What Do We Do if the Build Agent Fails?
	How Dockerfile Works?
	How to Use a Dockerfile with Jenkins?
	Kubernetes
	How to Use Kubernetes with Jenkins?

	A Highly Available CI Master
	CoreOS
	Docker
	Etcd
	Fleet
	Unit Files

	Pacemaker

	Scaling Jenkins Master
	Why Do We Need to Scale the Jenkins Master?
	Out of Memory Issues While Reading Huge Logs
	Growing Number of Users Accessing Jenkins
	Growing Number of Logs, and Pipeline Metadata
	Benchmark Your Jenkins Master

	Vertical Scaling
	A Single Jenkins Master to Maintain
	Greater Risk

	Horizontal Scaling
	Better Management Using Segregation
	Better Reliability
	Maintenance Encumbrance

	Parallel Testing
	What Is Parallel Testing?
	Broader Compatibility
	Reduce Testing Time

	Summary

	Chapter 2: HA Jenkins Setup Using Pacemaker, Corosync, and DRBD
	Designing a High Availability Setup for Jenkins
	HA Setup for Jenkins
	Failover Scenario

	Creating a HA Cluster for Jenkins
	Installing Vagrant
	Installing VirtualBox
	Creating Virtual Machines
	Starting the Virtual Machines
	Configuring Communication Between the node1 and node2
	Configuring ssh Key
	Configuring Time Zone
	Configuring the Firewall
	Installing Apache Tomcat Server
	Installing Java
	Creating a Tomcat User
	Installing Apache Tomcat Server
	Updating Permissions
	Adjusting the Firewall and Test the Tomcat Server
	Configuring Tomcat Web Management Interface

	Installing Jenkins as a Service on Apache Tomcat Server
	Installing Jenkins Along with Other Services on Apache Tomcat Server (Not Recommended)
	Installing Jenkins Alone on Apache Tomcat Server (Recommended)
	Setting Up the Jenkins Home Path

	Installing the Cluster Software
	Configuring Corosync
	Creating Cluster Authorization Key
	Configuring Corosync Cluster

	Starting and Configuring Pacemaker
	Configuring Cluster Properties

	Create a Floating IP Resource Agent
	Creating a Tomcat Resource Agent
	Ensuring ClusterIP and Apache Tomcat Run on the Same Node
	Ensuring ClusterIP Starts Before Apache Tomcat
	Replicating Jenkins Home Directory Using DRBD
	Install the DRBD Packages
	Preparing Partitions
	Configuring DRBD
	Initializing DRBD
	Populating the DRBD Disk

	Creating a Cluster Resource for the DRBD Device
	Creating a Cluster Resource for the Filesystems
	Checking the Apache Tomcat Server

	Simulating a Failover
	Summary

	Chapter 3: HA Jenkins Setup Using CoreOS, Docker, and GlusterFS
	Designing a High Availability Setup for Jenkins
	HA Setup for Jenkins
	Failover Scenarios

	Creating a HA Cluster for Jenkins
	Installing Vagrant
	Installing VirtualBox
	Creating the CoreOS Host Machines
	Starting the Virtual Machines

	Creating Unit Files
	Creating Unit Files for Jenkins Server
	Creating Unit Files for GlusterFS Server

	Starting the Cluster
	Starting the GlusterFS Servers
	Configuring the GlusterFS Servers
	Starting Jenkins Server
	Configuring Jenkins Master

	Simulating a Failover
	Failover Scenario 1
	Failover Scenario 2

	Summary

	Chapter 4: Setting Up Jenkins on Docker and Cloud
	Running Jenkins Inside a Docker Container
	Installing Docker on Ubuntu
	Setting Up the Repository
	Installing Docker
	Install from a Package

	Creating a Jenkins Container

	Installing Jenkins on Ubuntu
	Install the Latest Stable Version of Jenkins
	Install the Latest Version of Jenkins

	Installing Jenkins on Fedora/Red Hat Linux
	Installing the Latest Stable Version of Jenkins
	Installing the Latest Version of Jenkins

	Installing Jenkins on Cloud (AWS)
	Types of Jenkins Master-Slave Setups
	Type of Cluster for Jenkins Slaves
	Finding the Best Instance Type for Your Jenkins Master
	Selecting a Region
	Creating a Security Group
	Creating an EC2 Instance on AWS
	Connecting to the AWS Instance
	Connecting to Your AWS Instance from Windows
	Connecting to Your AWS Instance from Linux Machine
	Install the Latest Stable Version of Jenkins

	Summary

	Chapter 5: Pipeline as a Code
	Prerequisite
	Creating a Personal Access Token in GitHub
	Adding the Personal Access Token in Jenkins

	Generating an SSH Key Pair
	Generate an SSH Key Pair on Ubuntu
	Adding your SSH private key to the ssh-agent

	Generate SSH Key Pair on Windows
	Copy the SSH Public Key to GitHub
	Copy the SSH Private Key to Jenkins

	Configuring the GitHub Plugin
	Creating Webhooks in GitHub
	Configure Java, Git, and Maven
	Install the Pipeline Maven Integration Plugin

	Using the Jenkins Pipeline Project
	Creating a Pipeline Project in Jenkins
	The Pipeline Syntax Option in Jenkins

	Testing the Jenkins Pipeline Project
	Make Some Changes in GitHub
	Jenkins Pipeline Project in Action

	Using Jenkins Multibranch Pipeline Project
	Create Credentials for GitHub Account
	Creating a Multibranch Pipeline Project
	Using a Jenkinsfile
	Creating a New Branch on the GitHub Repo

	A Better Way of Managing GitHub Webhooks
	Using the GitHub Services
	Automatically Manage Webhooks from Jenkins

	Summary

	Chapter 6: Using Containers for Distributed Builds
	Distributed Builds Using Docker
	Enabling Docker Remote API
	Modifying the docker.conf file
	Modifying the docker.service File

	Installing the Docker Plugin
	Configuring the Docker Plugin
	Creating a Docker Image for Creating Docker Containers (Jenkins Slave)
	Adding Credentials Inside Jenkins to Access the Docker Container
	Update the Docker Settings Inside Jenkins
	Create a Jenkins Pipeline
	Using the Pipeline Script
	Using the Pipeline Script from SCM
	Triggering a Build

	Distributed Builds Using Kubernetes
	Setting Up a Kubernetes Cluster
	Prerequisites
	Installing Kubectl
	Clone the coreos-kubernetes Repository
	Starting the Kubernetes Cluster
	The Kubernetes Dashboard

	Installing the Kubernetes Plugin for Jenkins
	Creating Credentials for Kubernetes Cluster
	Configuring the Kubernetes Plugin
	Configure Global Security

	Creating a Jenkins Pipeline
	Running the Jenkins Pipeline

	Summary

	Chapter 7: Pre-tested Commits Using Jenkins
	Pre-tested Commits
	Pre-tested Commits Using Jenkins and Git
	Stage 1: Developer Clones the Remote Repository
	Stage 2: Developer Works on His Local Copy of the Code
	Stage 3: Jenkins Performs a Pre-test on the Code

	Creating a Jenkins Pipeline to Perform Pre-tested Commits
	Creating Feature Branch on Github
	Simulating a Failure

	Summary

	Chapter 8: Continuous Delivery Using Jenkins Pipeline
	Setting Up the Artifactory Server
	Installing and Configuring Artifactory
	Install Java and Set the JAVA_HOME Path
	Downloading the Artifactory Package
	Starting the Artifactory Server
	Reset the Default Credentials

	Creating a Repository in Artifactory
	Adding Artifactory Credentials Inside Jenkins
	Installing Artifactory Plugin
	Configuring Artifactory Plugin

	Setting Up the SonarQube Server
	Installing and Configuring SonarQube
	Install Java and Set the JAVA_HOME Path
	Downloading the SonarQube Package
	Starting the SonarQube Server
	Reset the Default Credentials and Generate a Token

	Creating a Project in SonarQube
	Installing the Build Breaker Plugin for Sonar
	Creating a Quality Gate in SonarQube
	Installing the SonarQube Plugin
	Configuring SonarQube Plugin
	Analyzing with SonarQube Scanner for Maven

	Creating a Docker Image for Integration Testing
	Create a User Jenkins
	Install SSH Server
	Install Java and Set the JAVA_HOME Path
	Install Git, Maven, and Nano Text Editor
	Configure the Maven Installation to Work with SonarQube
	Save the Changes Made to the Docker Image
	Adding Docker Image Credentials Inside Jenkins
	Update the Docker Settings Inside Jenkins

	Creating Docker Image for Performance Testing
	Creating a User Jenkins
	Install SSH Server
	Install Java and Set the JAVA_HOME path
	Install Apache Tomcat
	Install Apache JMeter
	Saving the Changes Made to the Docker Image
	Adding Docker Image Credentials Inside Jenkins
	Update the Docker Settings Inside Jenkins

	Creating a Performance Test Using Jmeter
	Install Java and Set the JAVA_HOME Path
	Install Apache JMeter
	Starting Jmeter
	Creating a Performance Test Case
	Creating a Thread Group
	Creating a Sampler
	Adding a Listener

	Creating Jenkins CD Pipeline
	Creating Pipeline Script
	Pipeline Code for Spawning a Docker Container for the Integration Testing
	Pipeline Code to Download the Latest Source Code from GitHub
	Pipeline Code to Perform a Build
	Pipeline Code to Perform Static Code Analysis
	Pipeline Code to Perform Integration Testing
	Pipeline Code to Publish Build Artifacts to Artifactory
	Pipeline Code to Stash the Build Artifacts
	Combined Code for Node docker_it
	Pipeline Code for Spawning a Docker Container for the Performance Testing
	Pipeline Code to Start Apache Tomcat
	Pipeline Code to Deploy Build Artifacts to the Tomcat’s Webapps Directory
	Pipeline Code to Execute Performance Testing
	Pipeline Code to Promote Build Artifacts in Artifactory
	Combined Code for Node docker_pt
	Complete Pipeline Script

	Creating Pipeline in Jenkins
	Jenkins Continuous Delivery Pipeline in Action

	Summary

	Index

