Pro Continuous
Delivery

With Jenkins 2.0

Nikhil Pathania

Apress’

ww.allitebooks.cor

http://www.allitebooks.org

Pro Continuous Delivery

Nikhil Pathania

ApPress’

[vww allitebooks.cond

http://www.allitebooks.org

Pro Continuous Delivery

Nikhil Pathania
Bangalore, Karnataka
India

ISBN-13 (pbk): 978-1-4842-2912-5 ISBN-13 (electronic): 978-1-4842-2913-2
DOI110.1007/978-1-4842-2913-2

Library of Congress Control Number: 2017946339
Copyright © 2017 by Nikhil Pathania

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Nikhil Karkal

Technical Reviewer: Sanjay Kurra

Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,
Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham,
Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Prachi Mehta

Copy Editor: Karen Jameson

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Illustrations: Nikhil Pathania

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www. springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
WwWW.apress.com/source-code/978-1-4842-2912-5. Readers can also access source code at SpringerLink in
the Supplementary Material section for each chapter.

Printed on acid-free paper

[vww allitebooks.cond

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/978-1-4842-2912-5
http://www.allitebooks.org

Dedicated to the open source community

vww allitebooks.conl

http://www.allitebooks.org

Contents at a Glance

About the AUthOrccvcsniemis s ————————————_ XV
About the Technical REVIEWETccusesssmmsssmssmssmmsssmsssssssssssssssssssssssssssssnsssnsssnsnes Xvii
AcknOowIedgmENtS......cccuerrmssssssssnnsnsnmssssssssssssssssssssssssssssssnnssssssssssssnnnnnnnssssssssssnnnnnns Xix
INtroductioncccuvemnmmim s ——————————_——— XXi
Chapter 1: Elements of Continuous Deliverycccccccmmnsemmmmmnsssssnmmsssssssssssssssnnnans 1
Chapter 2: HA Jenkins Setup Using Pacemaker, Corosync, and DRBD 23
Chapter 3: HA Jenkins Setup Using Core0S, Docker, and GlusterFS.............cccuue. 77
Chapter 4: Setting Up Jenkins on Docker and Cloud..........ccccusseemnmnssssnnnsnsssnnnns 115
Chapter 5: Pipeline as a Code........ccciusummmmmmsssnsnmmssssssnmsssssssnsssssssssssssssnnnsssssnnnnss 145
Chapter 6: Using Containers for Distributed Builds..........cccenssemmnrnsssnnnnnnsssnnnns 187
Chapter 7: Pre-tested Commits Using Jenkins........cccusermsssesmsssnsssssnssssssnssssnnssss 223
Chapter 8: Continuous Delivery Using Jenkins Pipeline........cccccemmsssnnnnsnsssnnnnss 237
INA@X.ciiieiirrie s ———————————_——————_—_ 285
v

[vww allitebooks.cond

http://www.allitebooks.org

Contents

AboUt the AULNOKccoieeeeiiireeeriireese e nns s nns s e s nnn s annnn s s nnnnnansnnnnnnns XV

About the Technical REVIEWETcourmrremmmmmssssssssmmssssssssssssssssssssssssssssssssssssnssnsssssss XV

AcknOowIedgmENtS......cccuerrmssssssssnnsnsnmssssssssssssssssssssssssssssssnnssssssssssssnnnnnnnssssssssssnnnnnns Xix
INtroduction ..o ——————————————————_—_ XXi
Chapter 1: Elements of Continuous Deliveryccoummmmmmsssmsssmsssssssssssssssasssansas 1
What IS ContinuOUS DElIVEIY?..........ccevieeeerierese e se s sns s sn s 1
Branching Strategy.........ccvvrviirirsrsrrir s 1
Using Separate Branch for Every Feature/Bug-FiX ... 1
Using the GIitfIoW WOIKFIOWcccouomreeeeece e 2
ContinUoUuS INtEQratioNccccevererere e 4
L0101 IO T o 4
Reproducible Build ENVIFONMENLEScceevererererieresrereseresessessssessssessssessssessessssessesssssssssessssessssessssssaes 7

A Highly Available Cl MASEENcccvcereerereerere e rereres e ree e raesessesesaesessesassesaesesaesessesesaesassesassessenesssnenaes 10
Scaling Jenking MASTEccccceriierniern e ns s sn s ne s 15
Why Do We Need to Scale the Jenking Master?..........covrinenninnssesssnssesesssse s sesessssssessssnns 15
VErtICAl SCAIING.....cuceereriiceririr e e et e e e p s 16
HOHZONTAI SCAIING......cccoviueeieririeeririre e e et e e e e e b e b s 17
Parallel TESHINGccvcevceriirririr s s sn e n e nan 17
What IS Parallel TESTING?......cccouiueeeeeece s 17
Broader COMPALIDIlILYccorurueeeerereercriree e 18
ReduCe TESHING TIME.......c.coeeeeeeeere et nenn s 19
1111 1P S 21
vii

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Chapter 2: HA Jenkins Setup Using Pacemaker, Corosync, and DRBD 23

Designing a High Availability Setup for JEnkins.........cccecvreeniernnnennscnssessessssesesesenns 23
HA SEtUP TOr JENKINScveeeeieececere e s s sa e s s e s e sa e s e e e e e e e saesa e seesaesnennen 24
FaIlOVEr SCENAMIO......cciiiiiisiii i 26

Creating a HA Cluster for JENKINSccccreeereresesessesesssssssssssessssssssssssssssssssssssssssssses 27
INSEAIlING VAGFANT.......ccooeieececcr e enp s 27
INSEAIlING VIFTUAIBOX......cciveceererieecresie e e e s e nnn s 29
Creating Virtual MaCKINES..........cccecrerreeerereees s ne s 30
Starting the Virtual MaChiNeScoceeereerrinecscree e 31
Configuring Communication Between the node1 and NOUE2cccovrevererenesenerenenesesess e 33
CONFIGUIING SSN KBY.....eveecirirecccr st enp s 35
Configuring TIME ZONE.......ccorurueerererreereresseeesesssssesesssss e e ss s s e s ss s e sssa s e sssssssessssesssssssessssssssssenes 36
Configuring the FIFEWAILoeeceeeeeeecee et 36
Installing Apache TOMCAL SEIVENcoouireercrrrcer s 37
Installing Jenkins as a Service on Apache TOMCAt SEIVETcccoveecrerererererssseseses s 4
Installing the CIUSTEr SOFIWAIEceceeerereeeerre s s 46
CONFIGUIING COTOSYINCv.veeccerreeeressseesesssssesesss e e e ss e se s se s ss e s s sa e e s s sa e e e s se e e e nsass e e nsnnnas 46
Starting and Configuring PACEMAKET...........cceurreerererrnecririse e sessasnns 51
Create a Floating IP RESOUICE AQENLccceceerrereeerneese e nss s 53
Creating @ Tomcat RESOUICE AQENT.........ccoueeeerirerecreree e rn s 54
Ensuring ClusterlP and Apache Tomcat Run on the Same Node..........cccccvvvrerrienncennccne s 55
Ensuring ClusterIP Starts Before Apache TOMCALccccerrencrernsnenesseseseses s sesessssenes 56
Replicating Jenkins Home Directory USing DRBDccccovriienirnencnerssesesessseseses e sesessssenes 56
Creating a Cluster Resource for the DRBD DEVICE..........cccceererencrererresereresseesesesssesesesssssesesssssssssssssens 65
Creating a Cluster Resource for the FileSyStemS............cccerreicnirnenenersesesesesssese e sessssenes 66
Checking the Apache TOMCAt SEIVEN ..o s 69

SIMUIAting @ FAIIOVE........cce e sa e e 69

SUMMEAIY ...t e a e e s R e e R e eae e s Re e e e nnenrnneas 75

viii

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Chapter 3: HA Jenkins Setup Using Core0S, Docker, and GlusterFS............ccc0ee. 77

Designing a High Availability Setup for Jenkins.........cccecvreenvrnnnsesnscnssessesss e 77
HA SEtUP TOr JENKINScveieerecececere e s sa e s a e s a e s a e b e e e e e e e e e e e e sa e e e saesaennen 78
FaIlOVEr SCENAMIOScuciiiiisiisisissi s 79

Creating a HA Cluster for JENKINScccoieeerereseneseesessessssssssessssssssssssssssssssssssssssssses 82
INSEAIlING VAGIANT.......ccooeeeeceecccr e e p s 83
INSEAIlING VIFTUAIBOX......cveveceerereeeeresie e e e ne s 84
Creating the Core0S HOSt MACRINES..........cooeeerirerercrrrinecserir s 85
Creating UNit FIlEScovieeceeereecrire et ne s 89

Starting the CIUSTENccveeeeeeee e e e 92
Starting the GIUSTEIFS SEIVEIScocccveerere sttt v s s ra s rae e ae e s e e s e sae e saesesaesessesassenaenesaenenans 92
Configuring the GIUSTEIFS SEIVELSccvecereerertre s s e e s e se s sae e ae e saesasaesas e saesesaenesassanaens 95
StArting JENKINS SEIVETvecereeeercreeertesererererasersesessesesaesessesas e saesesassesssssssesassessssesasssssesassensenessenssaes 97
Configuring Jenkins MaSTEr. ... s 99

Simulating @ FAIIOVET ..o ene e 106
FaIlOVEr SCENAMIO T ... s 107
FaIlOVEr SCENAMIO 2......cciiiiiiiiiiiis s 110

1111 11 SRS 113

Chapter 4: Setting Up Jenkins on Docker and Cloud.........ccccuusemnnsnsssssnnssssssnnns 115

Running Jenkins Inside a Docker CONtaiNer..........c.ccocrverversersessenses s ses s s e sesnnns 115
InStalling DOCKETr 0N UDUNTU ...ttt se s sss s e snenns 118
Creating @ Jenking CONTAINETcoveeeerernieserisrnese s ss s nas s snes 120

Installing Jenkins on UDUNTU........coueoirerercscrererr s saesae e sa s saesae e 124
Install the Latest Stable Version of Jenkins.........c.cvssssn: 124
Install the Latest Version of JENKINS.........c.coussssssssssssssssssssssens 124

Installing Jenkins on Fedora/Red Hat LinuX...........ccccorverenniennneniesnsese e sessesessens 125
Installing the Latest Stable Version of JENKInS..........cccovevniernnnnnnessssse s e sssenns 125
Installing the Latest Version of JENKINS..........cecreeienniennicnsscne e sessessssesssnesns 125

ix

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Installing Jenking on Cloud (AWS)........coouieennmrnnmneressessesssse s ssesesssssssssssssssens 125
Types of Jenking Master-SIave SETUPS.........ccccvreererereseserirr e 126
Type of Cluster for JENKINS SIAVES.........ccoieererreercriree st 126
Finding the Best Instance Type for Your Jenking Masterccoevverrenniernncnnnsenne s sesesessesssenns 127
L LT 14 To TR T 10 o O 128
Creating @ SECUNLY GIOUP.....cccuiueiererireereresssesess e sas et sas e s sa s se bbb st s e e e sasne e e e 128
Creating an EC2 INSTANCE 0N AWScooevererererer e rese s rsesessesesse e ssesassesaesesasssssssassesassesasnenes 133
Connecting 10 the AWS INSTANCE.........ccceveriererrere et rre e sse e sa s sae e as e s e s e sas e saesees 139
Connecting to Your AWS Instance from WIiNQOWScceceverrererrereneresesesesessssersssessssessssessesassessenenes 139
Connecting to Your AWS Instance from Linux Machinegccccccvevrerrererseresseree s sersesessereeenns 142
Install the Latest Stable Version of JEnkins.........c.csss: 143

E3 1111 P2 7 143

Chapter 5: Pipeline as a Code........ccccunummmmmmsssnnnmmssssnsnmsssssssnmsssssssnsssssssnnsssssnnnnns 145

g €T (=T [0 | 145
Creating a Personal Access TOKEN in GItHUDcccccernecnnnscscrssese e eeens 146
Generating an SSH KEY PAr ... 149
Configuring the GItHUD PIUGIN ..o 155
Creating WebhoOoKS iN GItHUD ...t 156
Configure Java, Git, and MAVENccocreirriererire s e n s s 158
Install the Pipeline Maven Integration PIUGIN ... 160

Using the Jenkins Pipeling Project.........cooeeeececc s sns s snnnnns 161
Creating a Pipeline Project in JENKINS........ccccccoevrennenncsners e ses s ssssessssens 161
Testing the Jenkins Pipelineg ProjECL.........co e 168

Using Jenkins Multibranch Pipeling Project...........coveeeeececessss s ses s sessennnns 171
Create Credentials for GitHUD ACCOUNL ... 17
Creating a Multibranch Pipeline PrOjECtcccovreenrscccrers e 172
USING @ JENKINSTIIEcveeeeceesccer e 176
Creating a New Branch on the GitHUD RepO0c.cceeeierecceerecee e 178

A Better Way of Managing GitHub WebhooKS............cccccvveenieiennienssnsesessesse e 179
USiNG the GItHUD SEIVICESccvvieeeeerrircecrirrse e se s s ss s sss e sassssnnnnes 179
Automatically Manage WebhooKsS from JENKINS........c.ccueeeerrrrnesenesssesesessssssssessssssssessssssssesssssssssssssnns 182

E3 1111 1P 7SS 185

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Chapter 6: Using Containers for Distributed Builds...........cccenssnennnnnsssnnnssssssnnens 187

Distributed Builds USing DOCKETcceernerrersersessesses s s sessessessesssssessnssessnssssssssssnnnns 187
Enabling Docker REMOTE AP ..o s e n e 187
Installing the DOCKEr PIUQIN.........ccoiierrecr s n e s sn s sns e sne s 189
Configuring the DOCKEr PIUGIN..........cciiiierrcre e sn e s sn e sns e s s 190
Creating a Docker Image for Creating Docker Containers (Jenkins Slave).........cccccoveevevenesencsnnenns 191
Adding Credentials Inside Jenkins to Access the Docker Containerccocecvevveencesnccnnscsnesenne, 194
Update the Docker Settings Inside JENKINS..........ccccieenennicnnncnesene s e s e ssssesns 194
Create @ JENKINS PIPEIINEccevererererire s sae e sa e sa e saesa e sa e sa e sa e e sa e e sa s sn e sa e sa e naenae s 196

Distributed Builds Using KUDErnetes.........c.ccocvvrverrersrsesss s ses s sennns 199
Setting Up @ KUDErnetes CIUSTEN.........coc et 200
Installing the Kubernetes Plugin for JENKINS..........cccovrrecenrniesencnseeesesssse e sesssseens 210
Creating Credentials for KUDErnetes CIUSTENccccceereenerereescrns e 211
Configuring the KUDernetes PlUGiN...........cooeoecrirnercnnnccseses s sssnns 212
Creating @ JEnKins PIPEIINEccceerureeeeririnecsiss s nnnns 216

E3 1111 P2 7S 221

Chapter 7: Pre-tested Commits Using Jenkins.........ccovuussmmnmmssssnsnmsssssnsnssssssnnnns 223

Pre-tested COMMILS ... 223
Pre-tested Commits Using Jenkins and Git..........ccccoveeeriereriererreresereseresereressessssessesessssessesessersssenes 223
Creating a Jenkins Pipeline to Perform Pre-tested COMMItSccoeeveverrerercererere e 225
Creating Feature Branch on GithUubccoueererrerrc ettt se e sa e e ns 232
SIMUIALING @ FAIUIE.........cceeeeereeerererer vt s s s rre s rae e s e sesaeras e sae e s aesesae e saesae e saenesaenenaeanaens 234

SUMMEATY ...ttt a s e ae e b e ae e e a e e e n e e ae e e nne e nnens 236

Chapter 8: Continuous Delivery Using Jenkins Pipeline........cccocccennnssnnnsnssssnnnns 237

Setting Up the Artifactory SEIVErceciecnirrrrerr e 237
Installing and Configuring Artifactory ... s 238
Creating a Repository in Artifactory.........ccccvrercinccecscs e s 240
Adding Artifactory Credentials Inside JENKINS..........cceeieenernncrssne s sese e ssssessesesnes 243
Installing Artifactory PIUGIN ..o e e 244
Configuring Artifactory PIUGIN...........cc e 244

xi

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Setting Up the SoNarQube SErVer ... 245
Installing and Configuring SONArQUDEcceeeeireeeerrccrr e 245
Creating @ Project in SONArQUDE...........ccceceurreierererinesesisereese s sss e s sssnnns 248
Installing the Build Breaker Plugin fOr SONA...........cccovieeererneieseneseescsesssse s sessssssens 249
Creating a Quality Gate in SONArQUDEeceeeieeeeerc e 251
Installing the SONArQUDE PIUGIN ... 252
Configuring SONArQUDE PIUGIN........coieeeerereecresieee s se s ss s e nssnnnns 253
Analyzing with SonarQube Scanner for MaveNc.occccvrrescnerne e sesens 254

Creating a Docker Image for Integration TeSting........cccocvvrrrrrrnnsnnses s 254
Create @ USEr JENKINS. ... 255
INSTAII SSH SEIVEN ..o —— 256
Install Java and Set the JAVA_HOME Pathcccourrnnnninnnssssssssssssssssssssssssssssens 256
Install Git, Maven, and Nano Text EAItOr ... ssssssssssssssssssssssssssssssssssssssesns 257
Configure the Maven Installation to Work with SonarQubEccccceerreverrerrrere e 257
Save the Changes Made t0 the DOCKEr IMAJE........cvcevrrvereererererererereserae e se e sessesassessesessesessesanaens 258
Adding Docker Image Credentials INSide JENKINSccccverrererrererererereressersssessesessessssessssessesessesesaes 259
Update the Docker Settings INSide JENKINS.........ccoeevereriereriererreree e sersesesesesersesessesessesessesassessenenes 260

Creating Docker Image for Performance Testing.........cccceeeeerenenessssessessesesseesessennnnns 261
Creating @ USEr JBNKINS........ccouieoieereieecrisise s se s se s ss s se s e 261
INSTAIl SSH SEIVEN ... 262
Install Java and Set the JAVA_HOME pathc.coeviierenecer et ee s 262
Install APACNE TOMCAL.........coceverererer e sa e e e sa e s a e sa e e e sae s a e e e saesa e sa e naenn e s 262
INSTAll APACNE JMBIET ... sa e e e e s a e s a e sa e s a e a e e e sa e a e nn e na e nn e s 263
Saving the Changes Made t0 the DOCKEr IMAQE..........cccocrerrrrererreneririse e 263
Adding Docker Image Credentials Inside JEnKinsccoovernrrernnnennesnessese e sesesessessssessssesnes 264
Update the Docker Settings INSide JENKINS..........c.ocoeerrcicieneneesreecre e 265

Creating a Performance Test USing JMeterccocervrenniensnnnnsnsseseseseses s 266
Install Java and Set the JAVA_HOME Pathccccvvevivennrr s ses s sesssssesssssssssssessssssssssssenes 266
INSEAIl APACHE JMELET ...ttt s e ne e e e 267
STAMTING JMETET ... e s e e n e e s 267
Creating @ Performance TEST CASE.........cccrurrrnerererrrenesirenseese s se s e e s s s e sssssssssnnns 267

xii

CONTENTS

Creating Jenking CD PIPElINec.ccveerrrerenmsieresisesisse s s se s sss e s sssse s 271
Creating PIPEliNg SCHIPL.......ccovuieeeerreeere e nas 271
Creating Pipeling in JENKINScccovuieererireescsessese e ss s sss s e ssssssssesasssssssnens 281
Jenkins Continuous Delivery Pipeling in ACHON...........cccoereeercrnnsscrsne e 282

E3 1111 P2 7 283

INA@X . iiiiissnnnnnnnnnnnssssssssnnnnnnnnnnesssssssnnnnnnnnnesssssssssnnnnnnnnsssssssssnnnnnnnnnssssssssnnnnnnnnnnsssssnnn 285

xiii

About the Author

Nikhil Pathania is the author of Learning Continuous Integration with Jenkins. He is currently practicing
DevOps at SIEMENS Gamesa Renewable Energy Brande, Denmark. He started his career in software
configuration management as an SCM engineer and later moved on to learn various other tools and
technologies in the field of automation and DevOps. During his career, Nikhil has architected and
implemented Continuous Integration and Continuous Delivery solutions across diverse IT projects. He
enjoys finding new and better ways to automate and improve manual processes. In his spare time, Nikhil
likes to read, write, and meditate. He is an avid climber, and now hikes and cycles.

XV

About the Technical Reviewer

Sanjay Kurra is a passionate DevOps Consultant with a specialty in Continuous Delivery and DevOps.

His love for automation and operations since 2008 has allowed him to implement and lead teams to achieve
zero touch deployment using various DevOps tools in a wide range of assignments in industries such as
investment banking and finance, accounting, retail, and healthcare.

xvii

Acknowledgments

First and foremost, I would like to thank my beautiful wife Karishma, for encouraging me to write another
book on Jenkins. I would also like to thank Nikhil Karkal for bringing me this wonderful opportunity to write
a second book on Jenkins. And I give great thanks to Sanjay Kurra, who provided me with valuable feedback
throughout the writing process. Most importantly, a special thanks to the following people who worked hard
to make this book the best possible experience for the readers: Prachi Mehta and Laura Berendson, and the
entire Apress publishing team. And finally, a great thanks to the Jenkins, Docker, Kubernetes, CoreOS, and
GitHub communities for creating such wonderful software.

Xix

Introduction

As more and more software projects are moving toward continuous integration (CI) and continuous delivery
(CD), the amount of overhead present on the CI/CD tool continues to increase proportionately, in a way
that there are more pipelines to maintain, more users and permissions to manage, and more projects to
configure. There is also a proportionate increase in demand for the number of build and test agents along
with their maintenance.

The idea behind this book is to answer the demands discussed above using the new features introduced
in Jenkins, as well as utilizing the advantages provided by some of the key container technologies and
lightweight OS present in the market.

The current book Pro Continuous Delivery with Jenkins 2.0, serves as a step-by-step guide to set up
an advanced continuous delivery system using all the new features in Jenkins 2.0 such as pipeline as a
code and multibranch pipeline. It also demonstrates how tools such as Docker and Kubernetes can be
leveraged to create on-demand build/test machines that are fungible and scalable. The book is 13% theory
and 87% practical. The first chapter of the book starts with explaining the elements of continuous delivery.
The following chapters, thereafter, demonstrate the implementation of the concepts discussed in the first
chapter.

What This Book Covers

Chapter 1, “Elements of Continuous Delivery.” A short talk on Continuous Delivery and its elements,
which are the following: importance of branching strategy, manageable and reproducible pipelines,
scalable build/test infrastructure, fungible build/test environment, and more. All the forthcoming chapters
(Chapters 2-8) are the practical implementation of the concepts discussed in this chapter.

Chapter 2, “HA Jenkins Setup Using Pacemaker, Corosync, and DRBD.” A step-by-step guide to
implement a highly available setup for Jenkins using Pacemaker, Corosync, and DRBD.

Chapter 3, “HA Jenkins Setup Using CoreOS, Docker, and GlusterFS.” A step-by-step guide to implement
a highly available setup for Jenkins using CoreOS, Docker and GlusterFS.

Chapter 4, “Setting Up Jenkins on Docker and Cloud.” A step-by-step guide to install Jenkins on various
platforms such as Linux (Fedora, Ubuntu), Docker, and Cloud (AWS).

Chapter 5, “Pipeline As a Code.” The chapter is all about the Jenkins pipeline, Jenkins multibranch
pipeline, Jenkinsfile, and Jenkins improved integration with GitHub. All this using a practical example that
involves creating a CI (build-test) pipeline for a Maven project.

Chapter 6, “Using Containers for Distributed Builds.” A step-by-step guide to creating a scalable build
farm using Docker alone and using Kubernetes.

Chapter 7, “Pre-Tested Commits Using Jenkins.” A short note on Pre-tested commits (Gated Check-in)
along with a step-by-step guide to achieve it using the distributed nature of Git and the “Merge before build
feature” of Jenkins.

xxi

http://dx.doi.org/10.1007/978-1-4842-2913-2_1
http://dx.doi.org/10.1007/978-1-4842-2913-2_2
http://dx.doi.org/10.1007/978-1-4842-2913-2_8
http://dx.doi.org/10.1007/978-1-4842-2913-2_2
http://dx.doi.org/10.1007/978-1-4842-2913-2_3
http://dx.doi.org/10.1007/978-1-4842-2913-2_4
http://dx.doi.org/10.1007/978-1-4842-2913-2_5
http://dx.doi.org/10.1007/978-1-4842-2913-2_6
http://dx.doi.org/10.1007/978-1-4842-2913-2_7

INTRODUCTION

Chapter 8, “Continuous Delivery Using Jenkins Pipeline.” A step-by-step guide to creating a continuous
delivery pipeline using Jenkins pipeline Job along with the required DevOps tool chain. All this using a
practical example that involves creating a CD pipeline for a Maven project.

What You Need for This Book

To follow the examples mentioned in the book, it's recommended that you have the following system
specifications and OS.
Operating System:

Windows 7/8/10
Ubuntu 16.XX.X (LTS)
Hardware requirements:

A machine with a minimum 8 GB of Memory and a Multi-Core Processor.

Who This Book Is For

The book is written keeping in mind readers that are already familiar with Jenkins and the concepts of
continuous integration and continuous delivery.

You already have experience in implementing continuous integration and continuous delivery using
Jenkins freestyle Jobs and now wish to use the new Pipeline as Code feature introduced in Jenkins 2.0.

Your source code is on a Git-like version control system (Git, GitHub, etc.) and you wish to leverage the
advantages of a multibranch pipeline in Jenkins.

Your infrastructure is on a Unix-like platform and you wish to create a scalable, distributed build/test
farm using Docker or Kubernetes.

You are in need of a highly available system for your Jenkins Server using open source tools and
technologies.

What is not covered in the book

The book does not cover Jenkins administrative tasks, such as user management, Jenkins backup, plugin
management, views management, and other exotic plugins that make Jenkins better.

There is a vast ocean of tools that work in conjunction with Jenkins to achieve continuous integration
and continuous delivery for various types of software projects. Therefore it’s impossible to cover every
case. Hence, the concepts and examples discussed in the book must be treated as a template and must be
modified and twisted to suit your purpose.

xxii

http://dx.doi.org/10.1007/978-1-4842-2913-2_8

CHAPTER 1

Elements of Continuous Delivery W,

What Is Continuous Delivery?

Continuous Delivery (CD) is the practice of delivering quality software more frequently. CD practices can
include more or less the following entities:

e Agood branching strategy.

¢ A working Continuous Integration (CI) process.
e Distributed builds.

e Automated testing.

e Distributed or parallel testing.

e Automated and quick environment provisioning.

e Automated code promotion.

Branching Strategy

Using a single master branch for all your development might seem the best option for CI. However, having a
multibranch-based workflow is more fruitful than doing everything on a single branch. Following are some
of the different ways of using multiple branches.

Using Separate Branch for Every Feature/Bug-Fix

A feature branch enables you to isolate your development as per features, allowing you to play with the
source code without the risk of breaking the master branch. Every feature and every bug-fix can have its own
branch. Figure 1-1 portrays the usage of feature branches.

© Nikhil Pathania 2017 1
N. Pathania, Pro Continuous Delivery, DOI 10.1007/978-1-4842-2913-2_1

CHAPTER 1 © ELEMENTS OF CONTINUOUS DELIVERY

Feature-2 O /_‘\ //_‘\ '/_‘\

/ / \/

O D ok
Qi) @)

T4

_/

Feature-1 O ;
i o% s
O @)

e O O O
Q.0 ©f.0)
°|Stanc Code Ana:ysus) °|Stallc Code Analysus)
°|Integrauon Testing) °|Integrat=on Testing)

°|Acceptance Testing) |Acceptanne Testing)

°|F‘erfnrmance Testing) |F'erformance Tesung)

Figure 1-1. Using feature branches

In the following workflow, developers work and push their changes to the Feature branches. A CI tool
(say, Jenkins), is configured to build and unit test each and every push on the feature branches. Only the
changes that pass the build and unit tests are allowed to be merged with the Master branch. In Chapter 5,
you will see how the Jenkins “Multibranch pipeline” job is used to run continuous integration on every
feature branch.

Using the Gitflow Workflow

Gitflow is another way of managing your code using multiple branches. In the following method, the master
branch is kept clean and contains only the releasable: ready to ship code. All the development happens on
the feature branches with the Develop/Development branch serving as a common place to integrate all the
features. Figure 1-2 is a moderate version of the Gitflow.

http://dx.doi.org/10.1007/978-1-4842-2913-2_5

CHAPTER 1 © ELEMENTS OF CONTINUOUS DELIVERY

T T
_/ ./
D e

Feature-zo Q
OF)
Qi) @)
M
_/
o)

Qi) @)

Feature-1 O

Develop O O O
Q.9 Q.9

°iStauc Code Analysis) °|Stauc Code Ana[ws)

Oilntegrallon Testing) ellntegrallon Testing)

ol:\cceplanceTesnng) |AcceptanceTesnng :l

OiPeﬁormance Tesﬁng) |Peﬁormance Tesu'ng)
Master O O O
4 4
Release 0.9 Release 0.10

Figure 1-2. Using Gitflow workflow (moderate version)

Figure 1-3 illustrates the full version of Gitflow. We have a Master branch that contains only the
production-ready code. The Feature branches are where all of the development takes place. The
Development/Develop branch (also known as Integration branch) is where the code gets integrated and
tested for quality. In addition to that, we have Release branches that are pulled out from the development
branch as and when there is a stable release. All bug-fixes related to a release happen on the release branch.
There is also a Hotfix branch that is pulled out of the master branch as and when there is a need for a hotfix.

CHAPTER 1 © ELEMENTS OF CONTINUOUS DELIVERY

Release 1.00 Release 1.1.0 Release 1.1.1 Release 1.2.0
e O—O—O—O O—0

O—O

| Release 1.2.0 Oﬁ

Feature-1
D)

° Unit Testing

e O— OO0
Qi Qi)

@)|stavc Coge analysis) @[static Code analysis)
@|integration Testing) €[int=gration Tesing)

QlAcceplance Testing) |Accep1ancr—z Testing)

e)
N S

olPerfor.'nance Tesmg) [Per.‘orrnance Tesung)

Figure 1-3. Using Gitflow workflow

Continuous Integration

One of the fundamental components of continuous delivery is continuous integration. And it’s important
that you have a robust, working continuous integration model in place. Following are some of the
parameters that define a robust CI.

e Codable CI pipelines.
e Reproducible build environments.

¢ Ahighly available CI master.

Codable CI Pipeline

A CI pipeline is a set of sequential or parallel jobs (sometimes a combination of both). These jobs are
designed to perform a set of tasks and are traditionally configured using a GUI interface. However, as the
number of Jobs grows it becomes increasingly difficult for anyone to maintain them. Especially in cases
where a Job is a modified copy of another Job, It becomes crucial to maintain consistency.

Nevertheless, tools like Jenkins and Gitlab (to name a few) have come up with the concept of pipeline
as a code. The idea is to have your CI pipeline written as a code and saved inside a file. The code can be
either in the form of Groovy script (Groovy DSL) or as a Declarative Pipeline Syntax. In Jenkins, the file that
stores the pipeline script is referred to as Jenkinsfile.

A Jenkinsfile or pipeline script gives you the following abilities:

e Jenkinsfile can be a version control along with your source code.
¢ Jenkinsfile is easily shareable.
e Developers can themselves define what a Jenkinsfile should do.

¢ You can have different Jenkinsfile for different branches.

CHAPTER 1 © ELEMENTS OF CONTINUOUS DELIVERY

Following is an example of a Jenkinsfile:

node('master"'){
stage('build"){
sh 'mvn clean install’;
}

stage('static code analysis'){
sh 'mvn verify sonar:sonar';
}

How to Use Jenkinsfile?

Figure 1-4 illustrates the Jenkinsfile usage. As you can see from the figure, the Jenkinsfile is stored along with
the source code inside a version control system. Whenever there is a code commit on the version control
system, the following steps take place:

1. A Source control webhook (commit) is sent to Jenkins.
2. The Jenkins pipeline Job is triggered on receiving the webhook condition.

3. The Jenkins pipeline Job downloads the latest source code as well as the
Jenkinsfile from the version control system.

4. Jenkins reads the Jenkinsfile and executes the pipeline steps accordingly.

®
B

|
Source Code Jenkinsfile

Pipeline 02

. Build Integration Testing Acceptance Testing

Performance Testing

Pipeline 01

. Build Integration Testing Acceptance Testing

Performance Testing

Figure 1-4. Using Jenkinsfile

CHAPTER 1 © ELEMENTS OF CONTINUOUS DELIVERY

How to Write Pipeline Steps Inside a Jenkinsfile?

Using the Jenkins Groovy DSL (Domain Specific Language) or using the Jenkins Declarative pipeline Syntax,
all of the continuous integration and continuous delivery pipeline steps can be written inside a Jenkinsfile.

To start writing a pipeline, visit the following page https://jenkins.io/doc/pipeline/steps/. Here
you will find the code for most of the pipeline steps. Nevertheless, you can also make use of the Jenkins
pipeline syntax utility available right inside Jenkins.

The Pipeline Syntax link is available inside a Jenkins Pipeline Job. Try creating a new Jenkins pipeline
and scroll down to the Pipeline section. Under the Pipeline section, you will find a link named Pipeline
Syntax, as shown in Figure 1-5.

Pipeline
Definition Pipeline script :I
Script (7]
3
Use Groovy Sandbox ﬁ
Pipeline Syntax

Figure 1-5. Pipeline Syntax link

Accessing the link will take you to a new page wherein you can create code out of a GUI configuration.
Figure 1-6 illustrates an example wherein we convert a build step of type shell with some build commands,
into a pipeline script.

Steps
s <t
Sampie Step sh: Shell Script :|

hell t
Shell Script | 01 clean instal

®

Advanced...

Generate Pipeline Script

sh 'mvn clean install'

Figure 1-6. Generating pipeline code using Pipeline Syntax utility

In Figure 1-6, under the Steps section, you can see a field named Sample Step. In the following
example, I have chosen a step named sh: Shell Script from the available options. The moment you choose
a step, all parameters related to it get displayed. Then you fill the parameters like I have added: a maven
command under the Shell Script field.

Clicking on the Generate Pipeline Script button will convert your GUI configuration (Jenkins build step
with a maven command) into a script (Figure 1-6).

More about writing a Jenkinsfile for CI/CD is discussed in detail in Chapter 5 and Chapter 8.

https://jenkins.io/doc/pipeline/steps/
http://dx.doi.org/10.1007/978-1-4842-2913-2_5
http://dx.doi.org/10.1007/978-1-4842-2913-2_8

CHAPTER 1 © ELEMENTS OF CONTINUOUS DELIVERY

Reproducible Build Environments

Traditionally, Jenkins build agents are either individual hardware machines or virtual machines maintained
using VMware vsphere or other similar tools. In either case, setting up the build machines requires both time
and effort. From the infrastructure perspective, the tasks include procuring hardware, networking, licenses,
etc. And from the configuration management perspective, the tasks include installing and configuring the
OS and other software.

Nevertheless, most of the tasks pertaining to the infrastructure can be reduced by moving to a cloud-
based solution, for example: AWS, DigitalOcean, etc. And, most of the work pertaining to the configuration
management can be reduced by using tools such as Chef, Puppet, etc.

However, all these measures do not stop things from going wrong. As the famous Murphy’s law states,
Anything that can go wrong, will go wrong. Therefore the point is, “what do we do if things go wrong?”

What Do We Do if the Build Agent Fails?

If the build agents are bare metal machines, then it may take a while to figure out what went wrong. Usually,
in an organization, hardware machines are maintained by the IT department that has SLAs to provide a
resolution. Examples are, Tierl machines: 3~4 hours; Tier2 machines: 1~2 days, etc.

If the build agents are virtual machines, then it's more or less the same time as discussed above.

The only advantage is that there is no need to fetch a new piece of hardware if required. The chances of

a machine going down on a cloud are less. Nevertheless, they are still likely to occur. And if they do, the
situation becomes the same as it were with the bare metal machines. Even the configuration management
tools like Chef and Puppet take some time to configure a new machine.

This is where the container technology comes to the rescue. Tools like Docker enable us to describe a
machine as a code that can be saved inside a file (Dockerfile). Dockerfile is a set of instructions that define
what a machine should look like, what applications it should have, how they should be configured, etc. Using
Dockerfile, we can quickly bring up a lightweight machine with all the necessary software preinstalled.

While Jenkinsfile defines a pipeline as a code, Dockerfile defines infrastructure as a code. And it has the
same advantages as that of Jenkinsfile:

e Dockerfile can be a version control along with your source code.
e Dockerfile is easily shareable.
e Developers can themselves define what a Dockerfile should do.

¢ You can have different Dockerfiles for different types of builds.

How Dockerfile Works?

Following is an example of a Dockerfile:

TR
Dockerfile for Maven build container images

Based on Ubuntu

HHEHHEH P

Set the base image to Ubuntu
FROM ubuntu

Author / Maintainer
Nikhil Pathania

SHE B S

CHAPTER 1 © ELEMENTS OF CONTINUOUS DELIVERY

Update the repository sources list
RUN apt-get update

Install Maven
RUN apt-get install maven

Install Java
RUN apt-get install default-jre

To create a Docker image using Dockerfile, we need to build it using the Docker build command:
docker build -t <docker image name> <path to your docker file>
Example:
Docker build -t maven-build-image .
Sending build context to Docker daemon 45.04 kB
...snip...
Removing intermediate container cb53c9do9fff
Successfully built c2c31529076d
To check the newly created Docker image, use the following Docker command:

docker images

The outcome should be something similar to this:

REPOSITORY TAG IMAGE ID CREATED SIZE
maven-build-image latest c2c3152907b5 10 minutes ago 376 MB
hello-world latest 91c95931e552 5 weeks ago 910 B

To run a container using the above Docker image, issue the following command:
docker run -it maven-build-image /bin/bash

To see all the running containers, open up a new terminal on your Docker host machine and use the
following command:

docker ps

How to Use a Dockerfile with Jenkins?
The idea is to have Dockerfile for each environment. Examples:
e Dockerfile for build & Unit test.
e Dockerfile for build & Integration test.
e Dockerfile for Acceptance testing.
e Dockerfile for Performance testing.

e Dockerfile for end-to-end testing.

CHAPTER 1 © ELEMENTS OF CONTINUOUS DELIVERY

All these files can be kept under a version control system along with your source code. Whenever there
is a code commit on the version control system. the following steps take place:

1. A Version control webhook (commit) is sent to Jenkins.
2. The Jenkins pipeline Job gets triggered on receiving the webhook.

3. The Jenkins pipeline Job downloads the latest source code as well as the
Jenkinsfile and the set of Dockerfiles from the version control system.

>

Jenkins reads the Jenkinsfile and executes the pipeline steps accordingly.

5. The first step inside the Jenkinsfile is to build all the required Docker images
using the Dockerfiles.

6. With the required Docker images built, Jenkins can now perform various pipeline
steps on the respective Docker containers that are spawned using the Docker
images.

Figure 1-7 illustrates how Dockerfile can be used along with Jenkins.
2 B BB

I
Source Code Jenkinsfile Dockerfiles

é Container - Buildintegration Testing Container - Acceptance Testing

F'melme[]i xlllnll xl.lllll

I 1 I 1
Build Integration Testing Acceptance Testing

IIIII
Container - Performance Testing

Performance Testing

Figure 1-7. Using Dockerfile with Jenkins

Kubernetes

In the previous section, we saw how Jenkins along with Docker makes spawning build agents a piece of
cake. Surely Jenkins works brilliantly with Docker. However, with Kubernetes it goes even further, that is, by
making the build farm (Docker host) scalable. In simple terms, Kubernetes can be thought of as a cluster of
Docker hosts that are scalable. It’s a tool to manage containers across a cluster of Docker hosts.

CHAPTER 1 © ELEMENTS OF CONTINUOUS DELIVERY

How to Use Kubernetes with Jenkins?

Figure 1-8 illustrates how Kubernetes can be used along with Jenkins. The working of it is pretty much

the same as discussed in Figure 1-7. The only difference is that we have more than one Docker host. The
responsibility of running and maintaining containers across multiple Docker hosts is with the Kubernetes
manager. Jenkins is connected with Kubernetes using a plugin.

®
2 2 BB

[
Source Code Jenkinsfile Dockerfiles

Kubernetes Manager

host 1 host 2
al. 5 ol o
Container - Buildntegration Testing \/ Container - Acceptance Testing
Pipeline 01
. as lll ia
- ...-...--.................-...-...-.......l.. R L L L L L L L T
: i Integration Testing Acceptance Testing

N\

Figure 1-8. Using Jenkins with Kubernetes

In Chapter 6 we will learn in detail about distributed builds using Kubernetes and Jenkins.

A Highly Available CI Master

Tools like Docker help in making the build environment (Jenkins build agents) highly available and fungible.
But, what about the CI master? What if the Jenkins Master fails to start? There should be some mechanism to
make it available somewhere else with the same address, and without the users noticing anything.

Right now Jenkins does not provide anything for High availability. Nevertheless, using technologies like
CoreOS, Pacemaker, and Kubernetes we can make Jenkins Service highly available.

Let’s have a look at these technologies.

10

http://dx.doi.org/10.1007/978-1-4842-2913-2_6

CHAPTER 1 © ELEMENTS OF CONTINUOUS DELIVERY

Core0S

CoreOS is a Linux-based OS. It is a minimal operating system that supports popular container systems
like Docker and Kubernetes. The operating system is designed to work in clusters. Figure 1-9 shows the
constituents of CoreOS.

CoreOS

Figure 1-9. CoreOS constituents

Docker

Docker is a container platform. Containers contain everything that are required to run an application in

an isolated workspace. Unlike VMs, containers do not contain a full operating system; instead, it only has
libraries and settings required to make the software work. This makes a container efficient, lightweight, and
self-contained.

Etcd

Etcd is a distributed key/value store. In simple terms, etcd is a utility that enables a group of machines that
form a cluster to communicate with each other. Etcd serves as a pillar of any distributed system. Kubernetes,
CoreOS, and Fleet all rely on etcd (Figure 1-10).

etcd

Figure 1-10. CoreOS cluster using etcd

11

CHAPTER 1 © ELEMENTS OF CONTINUOUS DELIVERY

Fleet

Fleet is a utility to manage a cluster. It can be considered as an extension of systemd that functions at the
cluster level. Fleet is used to schedule systemd units across multiple nodes in a cluster.

Figure 1-11 shows an HA Jenkins Master setup using CoreOS cluster. Unit files are used to define
services that are to be monitored and made highly available.

User

Figure 1-11. CoreOS cluster for Jenkins HA

In the case of a failure, the services are moved to the remaining online nodes of the cluster. Figure 1-12
shows a failover scenario.

User

Figure 1-12. CoreOS cluster for Jenkins HA with a failover scenario

Unit Files

A unit file defines how and when a service should start, what must be done if the service becomes offline,
what should start before the service starts, and what should happen after the service is stopped.

12

CHAPTER 1 © ELEMENTS OF CONTINUOUS DELIVERY

Shown below is a sample unit file to start a Jenkins Master inside a Docker container.

[Unit]
Description=Jenkins Master Server

After=docker.service
Requires=docker.service

[Service]

TimeoutStartSec=0
ExecStartPre=-/usr/bin/docker kill jenkins%i
ExecStartPre=-/usr/bin/docker rm jenkins%i

ExecStart=/usr/bin/docker run --privileged --name jenkins%i -p 8080:8080
jenkinsci/jenkins:1ts

ExecStop=/usr/bin/docker stop jenkins¥%i

[X-Fleet]
Conflicts=jenkins@*.service

The section [Unit] defines the Unit file. The section [Service] is where you define ExecStartPre,
ExecStart, and the ExecPost steps. The section [X-Fleet] defines a few special properties about how a
service should run. Using some of the X-Fleet options, you can make instances of the service to run on each
CoreOS machine.

The above code can be saved inside a file jenkins.service, assuming a CoreOS cluster with three nodes
(172.17.8.101, 172.17.8.102, 172.17.8.103). To bring up the service on any one of the nodes give the following
fleetctl command:

fleetctl start jenkins@1.service
You will get an output as shown below:

Unit jenkins@1.service inactive
Unit jenkins@1.service launched on b40a8da6.../172.17.8.101

To check the status of the units that we just started do,
fleetctl list-units
And you should see something as shown below:

UNIT MACHINE ACTIVE SUB
jenkins@1.service b40a8da6.../172.17.8.101 activating start-pre

The status of the units is still activating. It will take some time (depending on you network speed) as the
fleet is downloading the Jenkins Docker image from the Docker hub.

Run the fleetctl list-units command again and now you can see the Jenkins Server is started and active.
UNIT MACHINE ACTIVE SUB
jenkins@1.service b40a8da6.../172.17.8.101 active running

13

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 © ELEMENTS OF CONTINUOUS DELIVERY

Jenkins service is now running in a highly available mode. Try killing the machines where the Jenkins
service is running. CoreOS Cluster will immediately bring up Jenkins on any one of the remaining CoreOS
machines.

Highly available Jenkins Master using CoreOS, Docker, and GlusterFS (storage) is the topic of discussion
in Chapter 3.

Pacemaker

Pacemaker is an open source cluster resource manager. Along with Corosync, it can offer an open
source high availability (HA) cluster. Pacemaker can detect system as well as service failures by utilizing
the messaging capabilities provided by Corosync. Following are some of the key features provided by
Pacemaker.

e Detection and recovering from node and service-level failures.
e Anything that can be scripted can be clustered.

e Uses STONITH for data integrity.

e Can support large and small clusters.

e Cansupport any variant of redundancy configuration.

Figure 1-13 shows an Active/Passive HA setup for Jenkins. Pacemaker and Corosync run on all nodes
of the cluster. Jenkins, Virtual IP, and Storage (DRBD) run as a service on the active node. These services are
monitored continuously by Corosync.

User

Active node Passive node

..

. B ey

Figure 1-13. Pacemaker cluster for Jenkins HA
14

http://dx.doi.org/10.1007/978-1-4842-2913-2_3

CHAPTER 1 © ELEMENTS OF CONTINUOUS DELIVERY

In the event of failure, let’s say the active node goes offline, all running services on the active node are
moved to the passive node. Since the storage is in sync there is hardly anything lost, except the Jenkins Jobs
that were running during the failover (Figure 1-14).

User

___________________ . P R ——

virtual IP |

;

Active node

.......................................

Pacemaker

Corosync

Figure 1-14. Pacemaker cluster for Jenkins HA with failover scenario

Once you bring the offline node back online, the storage syncs again. Highly available Jenkins Master
using Pacemaker, Corosync, and DRBD (storage) is the topic of discussion in Chapter 2.

Scaling Jenkins Master

Scaling Jenkins involves two different things, scaling Jenkins Master and scaling Jenkins Slaves. We already
saw scaling Jenkins Slave in the previous section using Docker and Kubernetes. Let us see the possibilities of
scaling the Jenkins Master.

Why Do We Need to Scale the Jenkins Master?

As more and more projects switch to continuous integration and continuous delivery models, the
requirements on the Jenkins server increase. And at some point, a single Jenkins Master may not be
sufficient to serve a growing number of projects.

The same question can be put another way: “When and how do we know we need to scale Jenkins
Master?” Assuming that we perform all builds on the Jenkins Slaves and nothing on the Jenkins Master, we
are left with the following things that may eat up hardware resources on the Jenkins server.

15

http://dx.doi.org/10.1007/978-1-4842-2913-2_2

CHAPTER 1 © ELEMENTS OF CONTINUOUS DELIVERY

Out of Memory Issues While Reading Huge Logs

Some of the pipeline stages in Jenkins could produce a massive amount of logs. Accessing them sometimes
might lead to slowness. This slowness can quickly lead to out of memory issues (OOM) if a larger set of
people start accessing logs all at the same time.

Growing Number of Users Accessing Jenkins

The number of users accessing Jenkins can affect the CPU usage. As the projects grow, so does the number
of users accessing Jenkins. The purpose of accessing the Jenkins server are many: it can be logs, dashboard,
pipeline progress, etc.

Growing Number of Logs, and Pipeline Metadata

As the number of projects on Jenkins grow, so does the Jenkins pipeline count. Each Jenkins pipeline has a
workspace on the Jenkins Master, where you will find the pipeline metadata, log, etc.

Benchmark Your Jenkins Master

It's possible to monitor Jenkins performance using an external tool like Elasticsearch or using a Jenkins
plugin (monitoring) itself. If the reports do not look good, then you might need to scale.

All the above reasons can make scaling Jenkins inevitable. Here are the two directions in which Jenkins
can scale.

e Vertical scaling.

e Horizontal scaling.

Vertical Scaling

Vertical scaling is the easiest. It simply requires you to upgrade the hardware. The advantage of using this
approach is the following.

A Single Jenkins Master to Maintain
Some of the Jenkins maintenance activities include the following:
e Installing and updating plugins.
e Archiving or deleting old build data.
e Managing users and permissions.
e Upgrading Jenkins.
e Configuring Jenkins.

The list is not comprehensive. However, a single Jenkins master means you need to worry only about
a single machine. Adding to that, with careful configuration most of the above tasks can be automated.
Nevertheless, following is one disadvantage of having a single Jenkins Master.

16

CHAPTER 1 © ELEMENTS OF CONTINUOUS DELIVERY

Greater Risk

Having a single Jenkins master is pleasant when it comes to maintenance. However, any kind of failure may
halt your day-to-day business. Even with proper backup, it would be a difficult task to bring a beefy Jenkins
Master up again.

One way to look at this problem is to make Jenkins highly available. However, there is still a problem.
A heavy Jenkins master, for obvious reasons, will have a large number of pipelines running at any given
point of time. In an event of failure, even with an HA solution in place, all the running Jobs will be lost to the
heavens.

To make matters worse, imagine a situation wherein the Jenkins HA itself fails to bring up Jenkins
Master on the secondary machine: remember Murphy’s law. Therefore, there is a greater risk of having
everything inside a single Jenkins master.

Horizontal Scaling

Horizontal scaling requires using multiple Jenkins masters. Each Jenkins master serves a group of projects.
Following are some of the advantages of having multiple Jenkins Masters.

Better Management Using Segregation

You can segregate projects based on their requirements and characteristics. Example: all projects that are
windows based (say .NET or C++) will have a similar set of plugins, build tool configurations, etc. Hence,
keeping all the Microsoft-based projects on a particular Jenkins Master might help in managing the projects
better.

Better Reliability

In a multiple Jenkins Master setup, if any one of the Jenkins Master fails, the others still run. And if we make
each of the Jenkins Masters highly available, then the probability of a complete business standstill becomes
minute since the probability of all the Jenkins Master HA setups failing at once is very minimal.

Maintenance Encumbrance

With multiple Jenkins Master setups, the maintenance tasks also multiply. However, most of the
maintenance tasks can be automated to reduce the maintenance encumbrance.

Parallel Testing

The benefits of distributed and scalable Jenkins Slaves are not just limited to software builds, but can also be
taken forward to the testing arena. Faster and parallel testing is an integral part of the continuous delivery.

What Is Parallel Testing?

Parallel testing can be defined as the process of running multiple test cases on a distributed testing
infrastructure. This distributed testing infrastructure can be a set of virtual machines or Docker containers.
Some of the key advantages of parallel testing are as follows.

17

CHAPTER 1 © ELEMENTS OF CONTINUOUS DELIVERY

Broader Compatibility

Let’s say you have a web application that you would like to test on multiple browsers like Firefox, Chrome,
Opera, etc. You can do this in parallel in the following way.

In the Jenkinsfile you define parallel stages for each running test case on a particular node (Docker
container). In the following pipeline code, you can see three stages (‘acceptance test chrome, ‘acceptance
test opera’, and ‘acceptance test firefox’) defined to run in parallel. Each one of the stages has its own node
(‘docker-chrome’, ‘docker-opera; ‘docker-firefox’).

/* CI starts */
node('docker-ci-agent'){

stage('build"'){
// some build step
}

stage('integration testing'){
// some integration steps

}

}
/* CI ends */

/* Testing starts */
parallel stage('acceptance test chrome'){

node(' docker-chrome'){
// steps to perform acceptance test on chrome

}
1

stage('acceptance test Opera'){

node('docker-opera'){
//steps to perform acceptance test on opera

}

stage('acceptance test firefox'){
node('docker-firefox'){
//steps to perform acceptance test on firefox
}
/* Testing ends */
Along with the Jenkinsfile, you also create Dockerfiles for each type of testing. These Dockerfiles are

then used by the Jenkins pipeline to create Docker containers (Jenkins nodes) to perform the testing.
Figure 1-15 illustrates testing an application in parallel on multiple browsers using Jenkins and Docker.

18

CHAPTER 1 © ELEMENTS OF CONTINUOUS DELIVERY

SourmCode Janlunsme Docltarliles

é Container - Buildintegration Testing

P:pellne 01 il l]l i
I 1
Build Integration Testing Acceptance Testing

Container - Chrome/Ubuntu .

}.

' Acceptance Testing

: Container - Opera/Ubuntu

:

Acceptance Testing '

Container - Firefox/Ubuntu '

w

: Acceptance Testing

Figure 1-15. Parallel testing using Jenkins and Docker

Reduce Testing Time

Using intelligent scripts or plugins, you can divide your test cases into batches and execute them in parallel
on a set of testing machines. The testing machines could be just virtual machines or Docker containers.
Executing tests in parallel can drastically reduce the testing time.

For example, you are running 1000 concurrent tests on a single testing machine, and it takes you
24 hours. You can divide your test cases into 4 groups of 250 test cases each, and execute each group on
an individual testing machine. This will reduce your testing time from 24 hours to 6 hours, theoretically.
Figure 1-16 illustrates dividing and running the test cases in parallel across similar testing machines.

19

CHAPTER 1 © ELEMENTS OF CONTINUOUS DELIVERY

g

B BEE

Source Code Jenkinsfle Dockerfiles
Container - Build
Pipeline 01 1Ll
+ ——
Build
100%

@_

Figure 1-16. Parallel testing using Jenkins and Docker

20

Integration Testing

seeesssa,

1

Container - Integration Testing

L

Integration Testing
(test case 1-250)

Container - Integration Testing

.

Integration Testing
(test case 250-500)

100%

Container - Integration Testing

.

Integration Testing
(test case 500-750)

.
]
"
"
"
"
.
"
.
"
.
"
"
"
"
"
.
"
.
"
"
.
"
.
"
"
"
"
"
"
.
.
"
"
"
.
"
.
.
"
.
"
.
"
"
.
"
"
"
.
"
"
.
"
"
.
"
"
"
.
"
"
"
"
"
"
.
"
"
.
"
.
"
"
.
"
.
"
"
"
"
.

.

Container - Integration Testing

.

Integration Testing
(test case 750-1000)

CHAPTER 1 © ELEMENTS OF CONTINUOUS DELIVERY

Summary

In the current chapter, we discussed the four key elements that are important to achieve continuous
delivery: fungible build/test environment, pipeline as code, scalable build/test environment, and parallel
testing. We also learned about the tools involved in achieving it.

Along with this, we discussed the importance of using a branching strategy, the process of making
Jenkins highly available, and the importance of scaling Jenkins horizontally. All in all, the current chapter
forms a theoretical base for the upcoming chapters.

In the next chapter, we will learn to create a highly available Jenkins Master using Pacemaker, Corosync,
and DRBD.

21

CHAPTER 2

HA Jenkins Setup Using
Pacemaker, Corosync, and DRBD/

In the following chapter, we will build a highly available (HA) Jenkins Server using Pacemaker, Corosync,
and DRBD. We will begin the chapter by discussing a HA design along with a failover scenario. Next, we will
build and start a HA setup for Jenkins using Pacemaker, Corosync and DRBD. At the end of the chapter, we
will test our HA setup by simulating a failover scenario.

Designing a High Availability Setup for Jenkins

Failures could occur at the hardware level (machine shutdown/reboot/freeze), application server level
(application server failure), or at the service level (the service fails to start or hangs). High Availability (HA)
ensures that a service or a group of services is available continuously without any interruption. Every HA
system comes with a failover mechanism. This failover mechanism ensures that the controls of the primary
system are transferred to a secondary system (replica of the primary system) in case there are any failures
observed on the primary system. To detect failures, every HA setup has a feature to check the health of the
hardware and the applications that are being served.

Figure 2-1 illustrates a typical HA setup (Active/Passive). This is a two-node HA setup with one of the
nodes taking up the primary role and the other acting as a secondary (backup). A user accesses the service
through a fixed virtual IP. If the primary node goes down for some reason or the service on the primary node
fails, the secondary node is immediately made active (along with the services), and the static virtual IP is
shifted to the secondary node.

© Nikhil Pathania 2017 23
N. Pathania, Pro Continuous Delivery, DOI 10.1007/978-1-4842-2913-2_2

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

User/Client

: o Vitual P

i Application Server ! | Application Server

: ——sync vl

; Storage i Storage i
Passive Node Active Node

Figure 2-1. A typical Active/Passive HA setup

Since the users access the HA services using a static virtual IP, all they notice is a small glitch while the
switching takes place.

HA Setup for Jenkins

Figure 2-2 illustrates how our HA setup for Jenkins should look. We have two Ubuntu machines, nodel and
node2 respectively. Each machine is running Pacemaker, Corosync, and DRBD. Both these nodes are also
running Jenkins inside Apache Tomcat Server.

24

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

Node 1 Node 2

-Running
Filesystem

Running e, % Offline
Service Couanau :Service
!Running Server

Figure 2-2. Jenkins HA setup

Whether it’s a build or a configuration change, everything that happens on the Jenkins Server is stored
inside the Jenkins home directory. Thus, making the data inside the Jenkins home directory redundant is of
the uttermost importance. We are using DRBD for that purpose, and therefore there is an extra disk (sdb) on
each node. These extra disks have two filesystems drbd1 and drbd2 running on partitions /dev/sdbl and
/dev/sdb2 respectively. These discs are in sync using DRBD.

The Jenkins Server is accessible to the outside world using a Floating IP.

25

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

Failover Scenario

Let us understand how our HA setup should react to a failure. Figure 2-3 depicts a failover scenario in
which the nodel machine that is running our Jenkins Server fails or gets disconnected. In this situation the
Pacemaker/Corosync should detect the node failure and automatically start the Jenkins Server along with
the Floating IP on the secondary node, which is node2.

Node 1 Node 2

' DRBD

| farbdz;-

g Tomcat :

-Running
Filesystem

Running - % Offline
Service S 1Service
I---.
!Running Server i_.1Offline Server
==

Figure 2-3. Failover scenario

26

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

Creating a HA Cluster for Jenkins

In the following section we will realize the HA setup design discussed in Figure 2-2. We are going to use
Vagrant along with Oracle Virtual-Box to create the two nodes (Ubuntu 16.04 machines). Once these nodes
(nodel and node2) are ready, we will install Apache Tomcat Server and Jenkins on them. After this we will
install and configure the cluster software Pacemaker and Corosync.

Once the setup is ready, we will create the cluster resources for Floating IP and Tomcat. To make
the Jenkins Server data and the Tomcat Server data persistent, we will install and configure DRBD.
Consecutively we will also create cluster resources for the DRBD device and the filesystems.

Note While writing this chapter, | have chosen a machine with Ubuntu 16.04 that will host our two nodes
HA setup. Nevertheless, you can also choose to use Windows 7/8/10 without any issues.

For simplicity | am using Vagrant along with Oracle VirtualBox to create the two nodes for our HA setup.
However, in reality you may choose to create these two nodes on two bare metal machines or on a cloud
platform such as AWS.

Installing Vagrant

Make sure you perform the following steps as a root user or with an account having root privileges
(sudo access).

1. Open up a terminal and type the following commands to download Vagrant.
Or you can also download the latest vagrant package from the vagrant website
(Figure 2-4): https://www.vagrantup.com/downloads.html

wget https://releases.hashicorp.com/vagrant/1.8.5/vagrant_1.8.5 x86_64.deb

27

https://www.vagrantup.com/downloads.html

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

Download - Vagrant by HashiCorp - Mozilla Firefox

W Download-Vagran... * Y&y

€ P Oat www.vagrantup.com C || Se wiaE » | =
My WINDOWS
. 7 Universal (32 and 64-bit)

') DEBIAN
Q) 64-bit | 32-bit

S, CENTOS

Y 32-bit| 64-bit

Figure 2-4. Vagrant download webpage

Note Use the latest version of Vagrant and VirtualBox. Using an older version of Vagrant with a newer
version of VirtualBox or vice versa may result in issues while creating the virtual machines (node1 and node2).

2. When the download completes, you should see a .deb file in the download folder.
3. Change to the location where you have downloaded the Vagrant package and
execute the following commands to install Vagrant. You may be prompted to
provide a password.
sudo dpkg -i vagrant 1.8.5 x86_64.deb
sudo apt-get install -f

4. Once the installation is complete, check the installed version of vagrant by
executing the following command.

vagrant --version

28

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD
5. You should see the vagrant version as shown in Figure 2-5.

nikhil@devo1i:~/pDownloads$ vagrant --version
vagrant 1.8.5
nikhil@deve1:~/Downloadss [}

Figure 2-5. Check the vagrant version

Installing VirtualBox

Vagrant needs Oracle VirtualBox to create virtual machines. However, it’s not limited to just Oracle
VirtualBox, you can also use VMware and AWS.

Note To run Vagrant with either VMware or AWS, visit the following webpage: https://www.vagrantup.
com/docs/getting-started/providers.html

Follow the below steps to install Oracle VirtualBox on your machine.

1. Add the following line to your /etc/apt/sources.list file.

deb http://download.virtualbox.org/virtualbox/debian xenial contrib

Note According to your Ubuntu distribution, replace ‘xenial’ by ‘vivid’, ‘utopic’, ‘trusty’, ‘raring’, ‘quantal’,
‘precise’, ‘lucid’, ‘jessie’, ‘wheezy’, or ‘squeeze’.

2. Download and register the keys by executing the following commands in
sequence. The output of these commands is depicted in Figure 2-6.

wget -q https://www.virtualbox.org/download/oracle vbox 2016.asc -0- |
sudo apt-key add -

wget -q https://www.virtualbox.org/download/oracle vbox.asc -0- |
sudo apt-key add -

nikhil@deve1:~5 sudo wget -q https://www.virtualbox.org/download/oracle_vbox_261
6.asc -0- | sudo apt-key add -

0K

nikhil@devo1:~S sudo wget -q https://www.virtualbox.org/download/oracle_vbox.asc
-0- | sudo apt-key add -

OK

nikhilgdeve1i:~s [J

Figure 2-6. Download and register the VirtualBox keys

29

https://www.vagrantup.com/docs/getting-started/providers.html
https://www.vagrantup.com/docs/getting-started/providers.html

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

3. Update your apt-get package index using the following command.
sudo apt-get update

4. To install VirtualBox, execute the following commands.
sudo apt-get install virtualbox-5.1

5. Execute the following command to check the VirtualBox version. The output of
the command is depicted in Figure 2-7.

VBoxManage --version

nikhil@devo1:~5 VBoxManage --version
5.1.6r110634
nikhil@devo1:~S [j

Figure 2-7. Check VirtualBox version

Note Ubuntu/Debian users might want to install the dkms package to ensure that the VirtualBox host
kernel modules (vboxdrv, vboxnetflt, and vboxnetadp) are properly updated if the Linux kernel version changes
during the next apt-get upgrade. For Debian it is available in Lenny backports and in the normal repository for
Squeeze and later. The dkms package can be installed through the Synaptic Package manager or through the
following command:

sudo apt-get install dkms

Creating Virtual Machines

Creating the virtual machines using Vagrant is easy. We will use a simple Vagrantfile to create two Ubuntu
nodes.

1. Create a directory named vagrant-ubuntu under your /home directory and get
inside it.

mkdir vagrant-ubuntu
cd vagrant-ubuntu

2. Download the official vagrant box image for Ubuntu (ubuntu/trusty64) using the
following command. This will take some time to finish.

sudo vagrant box add ubuntu/trusty64
3. To create a Vagrantfile do.

sudo nano Vagrantfile

30

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

4. Paste the following code inside the Vagrantfile.

-*- mode: ruby -*-
vi: set ft=ruby :

Vagrant.configure(2) do |config|
config.vm.box = "ubuntu/trusty64"

config.vm.define :nodei do |nodel_config|
node1l_config.vm.host_name = "node1"
nodel_config.vm.network "private network", ip:"172.17.8.104"
nodel config.vm.provider :virtualbox do |vb]|
vb.customize ["modifyvm", :id, "--memory", "1024"]
vb.customize ["modifyvm", :id, "--cpus", "1"]
end
end

config.vm.define :node2 do |node2 config|
node2_config.vm.host_name = "node2"
node2_config.vm.network "private network", ip:"172.17.8.105"
node2_config.vm.provider :virtualbox do |vb|
vb.customize ["modifyvm", :id, "--memory", "1024"]
vb.customize ["modifyvm", :id, "--cpus", "1"]
end
end

end

5. Thave named the two nodes as nodel and node2 with IP address 172.17.8.104
and 172.17.8.105 respectively. However, you are free to choose the IP address.
Similarly you are free to choose the node names, number of CPUs, and the
memory.

6. Type Ctrl+x and then Y to save and exit the file.

Starting the Virtual Machines
Starting the virtual machines is simple.

1. Move to the ubuntu-vagrant directory and run the vagrant up command to
start the virtual machines.

cd ubuntu-vagrant
vagrant up

2. Thevagrant up command should execute without any errors.

3. To check the status of the virtual machines, execute the command vagrant
status. The output of this command is shown in Figure 2-8.

31

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

nikhil@devol:~/ubuntu-vagrant$ vagrant status
Current machine states:

node1l running (virtualbox)
node2 running (virtualbox)

This environment represents multiple VMs. The VMs are all listed
above with their current state. For more information about a specific

VM, run ‘vagrant status NAME .
nikhil@devei:~/ubuntu-vagrants fj

Figure 2-8. List the running virtual machines

4. Tologin to any one of the virtual machines (let say nodel) use the vagrant ssh
command as shown in Figure 2-9.

vagrant ssh nodei -- -A

nikhil@devol:~/ubuntu-vagrant$ vagrant ssh nodel -- -A
HWelcome to Ubuntu 14.04.5 LTS (GNU/Linux 3.13.0-96-generic x86_64)

* Documentation: https://help.ubuntu.com/

System information as of Mon Oct 3 15:80:36 UTC 2016

System load: ©.82 Processes: 78

Usage of f: 3.5% of 39.34GB Users logged in: 0

Memory usage: 12% IP address for ethe: 10.0.2.15
Swap usage: 0% IP address for eth1: 172.17.8.104

Graph this data and manage this system at:
https://landscape.canonical.com/

Get cloud support with Ubuntu Advantage Cloud Guest:
http://www.ubuntu.com/business/services/cloud

0 packages can be updated.
0 updates are security updates.

New release '16.04.1 LTS' available.
Run 'do-release-upgrade’' to upgrade to it.

Last login: Mon Oct 3 15:00:36 2016 from 10.6.2.2
vagrant@nodel:~$

Figure 2-9. Log in to nodel

5. To know the IP address of nodel, execute the ip route command. Notice the
highlighted IP address in Figure 2-10 that’s the IP of our nodel machine.

vagrant@nodel:~$ ip route

default via 10.6.2.2 dev ethe

10.0.2.0/24 dev ethe proto kernel scope link src 10.0.2.15
172.17.8.0/24 dev ethl proto kernel scope link src [E
vagrant@node1:~$ [J

Figure 2-10. Get the IP address of nodel

32

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

6. Open another terminal and login to node2 using the vagrant ssh command.
vagrant ssh node2 -- -A

7. To know the IP address of node2, execute the ip route command. Notice the
highlighted IP address in Figure 2-11. That’s the IP of our node2 machine.

vagrant@node2:~$ ip route

default via 10.0.2.2 dev ethe

10.0.2.0/24 dev ethe proto kernel scope link src 16.6.2.15
172.17.8.0/24 dev ethl proto kernel scope link src [PV GE
vagrant@node2:~$ [I

Figure 2-11. Get the IP address of node2

Configuring Communication Between the nodel and node2
We are now done creating our HA node machines. Let us configure them to talk with each other.

1. Execute the ping command to check if nodel and node2 can ping each other.
Figure 2-12 shows a ping test from nodel to node2.

vagrant@nodel:~$ ping -c 3 172.17.8.105

PING 172.17.8.105 (172.17.8.105) 56(84) bytes of data.

64 bytes from 172.17.8.105: icmp_seq=1 ttl=64 time=0.645 ms
64 bytes from 172.17.8.105: icmp_seq=2 ttl=64 time=0.675 ms
64 bytes from 172.17.8.105: icmp_seq=3 ttl=64 time=6.534 ms

--- 172.17.8.165 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2002ms
rtt min/avg/max/mdev = 0.534/0.618/0.675/0.060 ms
vagrant@nodel:~$

Figure 2-12. Ping test

2. Repeat the above step by pinging nodel from node2.

3. Now check if the machines (nodel and node2) can communicate using
their hostnames. If you have a DNS server, add additional entries for the two
machines. Otherwise, you'll need to add the machine’s hostname to /etc/hosts
on both nodes. Figure 2-13, depicts the content of my /etc/hosts file on nodel.

vagrant@nodel:~5 cat fetc/hosts
127.0.0.1 nodel nodel
127.0.0.1 localhost

::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet

ffee::0 ip6-mcastprefix

ffe2::1 ip6-allnodes

ffe2::2 ip6-allrouters

ffe2::3 ip6-allhosts
vagrant@node1:~$]

Figure 2-13. List the content of /etc/hosts file on nodel

33

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

3. Open the /etc/hosts file and add the following entries to it.

172.17.8.104 nodel nodel
172.17.8.105 node2 node2

4. Finally the /etc/hosts file on nodel should look like Figure 2-14.

vagrant@nodel:~S cat fetc/hosts
127.0.0.1 nodel nodel
172.17.8.104 nodel nodel
172.17.8.165 node?2 node2
127.0.0.1 localhost

::1 ip6-localhost ip6-loopback
fedd::0 ip6-localnet

ffoe::8 ip6-mcastprefix
ffo2::1 ip6-allnodes

ffe2::2 ip6-allrouters
ffe2::3 ip6-allhosts
vagrant@node1:~$ [}

Figure 2-14. Content of /etc/hosts file on nodel after updating

5. Similarly, modify the /etc/hosts file on node2 by adding the same lines mentioned
in step 3. Finally, the /etc/hosts file on node2 should look as shown in Figure 2-15.

vagrant@node2:~5 sudo cat Jetc/hosts
127.6.6.1 node2 node2
172.17.8.104 nodel
172.17.8.185 node2
127.0.0.1 localhost

::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet

ffoo::0 ip6-mcastprefix
ffe2::1 ip6-allnodes

ffe2::2 ip6-allrouters

ffez2::3 ip6-allhosts
vagrant@node2:~$ [

Figure 2-15. Content of /etc/hosts file on node2 after updating

6. Now checkifnodel and node2 are able to communicate using their hostnames.
Figure 2-16 is a ping test from nodel to node2.

vagrant@nodel:~$ ping -c 3 node2

PING node2 (172.17.8.105) 56(84) bytes of data.

64 bytes from node2 (172.17.8.105): icmp_seq=1 ttl=64 time=0.779 ms
64 bytes from node2 (172.17.8.105): icmp_seq=2 ttl=64 time=0.662 ms
64 bytes from node2 (172.17.8.105): icmp_seq=3 ttl=64 time=0.666 ms

--- node2 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2001ms
rtt min/avg/max/mdev = 0.662/0.702/0.779/0.058 ms
vagrant@node1:~$ ||

Figure 2-16. Ping test using hostnames

7. Repeat the above step by pinging nodel from node2.

34

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

Configuring ssh Key

SSH is a convenient and secure way to copy files and perform commands remotely. We will create a key
without a password (using the -N option).

1. Onnodel, create a new key using the following command. The output of the
command is depicted in Figure 2-17.

ssh-keygen -t dsa -f ~/.ssh/id_dsa -N ""

vagrant@nodel:~$ ssh-keygen -t dsa -f ~/.ssh/id_dsa -N ""
Generating public/private dsa key pair.

Your identification has been saved in /home/vagrant/.ssh/id_dsa.
Your public key has been saved in fhome/vagrant/.ssh/id_dsa.pub.
The key fingerprint is:
5c:33:4e:7f:ae:b6:77:cd:a4:b7:a1:a7:f6:3f:2c:84 vagrant@nodel
The key's randomart image is:

+--[DSA 1024]----+

m
+

vagrant@node1:~$ [

Figure 2-17. Generate ssh key

2. Copy the key to the authorized keys folder using the following command.
cp ~/.ssh/id_dsa.pub ~/.ssh/authorized keys

3. Install the key on the other node using the following command. The output of the
command is depicted in Figure 2-18.

scp -r ~/.ssh node2:

vagrant@nodel:~$ scp -r ~/.ssh node2:

The authenticity of host 'node2 (172.17.8.165)' can't be established.
ECDSA key fingerprint is 10:bb:c8:f8:22:e9:ea:71:d0:b0:b5:1b:30:f7:c0:62.
Are you sure you want to continue connecting (yes/no)? yes

HWarning: Permanently added 'node2' (ECDSA) to the list of known hosts.
vagrant@node2's password:

id_dsa 100% 668 0.7KB/s 00:00
known_hosts 100% 444 0.4KBfs 00:00
id_dsa.pub 100% 603 0.6KB/s ©00:00
authorized_keys 100% 603 0.6KBfs 00:00

vagrant@node1:~$ i

Figure 2-18. Install key on node2 from nodel using scp command

35

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

4. Test that you can now run commands remotely on node2 from nodel, without
being prompted. As shown in Figure 2-19.

vagrant@nodel:~$ ssh node2 -- hostname
node2
vagrant@node1:~S i

Figure 2-19. Run commands on node2 from nodel using ssh

Configuring Time Zone
For our HA setup to work properly It’s important that both nodes are under the same time zone.
1. Onboth nodes (nodel and node2), use the following command to open a time
zone selector.

sudo dpkg-reconfigure tzdata

2. You will be presented with a list of options to choose from. Follow the directions
that appear on the screen. For example, I have chosen Asia/Kolkata, as shown in
Figure 2-20.

vagrant@nodel:~$ sudo dpkg-reconfigure tzdata

Current default time zone: 'Asia/Kolkata'

Local time is now: Mon Oct 3 23:13:44 IST 2016.
Universal Time is now: Mon Oct 3 17:43:44 UTC 2016.

vagrant@node1:~$ i

Figure 2-20. Set the time zone

3. Then install the ntp package using the following command. ntp is used to
synchronize clocks over a network.

sudo apt-get -y install ntp

Configuring the Firewall

Corosync uses UDP transport between ports 5404 and 5406. If you are running a firewall, ensure that
communication on those ports is allowed between the servers. Execute the following commands on both the
nodes (nodel and node2).

sudo iptables -A INPUT -i eth1l -p udp -m multiport --dports 5404,5405,5406 -m conntrack
--ctstate NEW,ESTABLISHED -j ACCEPT

sudo iptables -A OUTPUT -o ethl -p udp -m multiport --sports 5404,5405,5406 -m conntrack
--ctstate ESTABLISHED -j ACCEPT

36

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

Installing Apache Tomcat Server

In this section we will install Tomcat 8 on both the nodes (nodel and node2). Before you begin, make sure
you are logged in as a root user or as a non-root user with sudo privileges.

Note Perform the steps mentioned in the following sections on both the nodes (node1 and node?2).

Installing Java
Tomcat requires Java to be installed on the server.

1. Update your apt-get package index using the following command.
sudo apt-get update

2. Then install the Java Development Kit (JDK) package using the following
command.

sudo apt-get install default-jdk

Creating a Tomcat User

For security purposes, Tomcat should be run as an unprivileged user. We will create a new user and group
that will run the Tomcat service.

1. First, create a new tomcat group using the following command.
sudo groupadd tomcat
2. Now, create a new tomcat user using the following command.

sudo useradd -s /bin/false -g tomcat -d /opt/tomcat tomcat

Note -s /bin/false is used so that nobody can log into the account. -d /opt/tomcat is used as this will
be the location where we will install Tomcat.

Installing Apache Tomcat Server

1. Find the latest version of Tomcat 8 from the apache tomcat website: https://
tomcat.apache.org/ and get the link address of “tar.gz” as shown in Figure 2-21.

37

https://tomcat.apache.org/
https://tomcat.apache.org/

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

8.5.6

Please see the README file for packaging information. It explains what every distribution contains.

Binary Distributions

e Core:
© zip (pgp. mds, shal)
o anrﬂn.-‘ e L CREAE R Y
o 32 Open link in new tab
°o 64 Open link in new window
o 3—'1 Open link n incognito window 5 ﬁ}
* Full docu
© fal Savelink as..
* Deployes Copy link address
° zig
o fat Inspect
* Extras:

© |MX Remote jar (pgp. mds, shal)

o Web services jar (pgp, mds, sha1l)
¢ Embedded:

° tar.gz (pgp. mds, shal)

° Zip (pgp. md5, shal)

Figure 2-21. Get the tar.gz link address

2. Change to the /tmp directory on your server. This is a good place to download
temporary items.

cd /tmp
3. Usewget to download the link that you copied from the Tomcat website.

wget http://redrockdigimark.com/apachemirror/tomcat/tomcat-8/v8.5.5/
bin/apache-tomcat-8.5.5.tar.gz

4. We will install Tomcat inside the /opt/tomcat directory. Create the directory,
and then extract the archive to it with these commands.

sudo mkdir /opt/tomcat

sudo tar xzvf apache-tomcat-8*tar.gz -C /opt/tomcat --strip-components=1

Note | have used Apache Tomcat 8.5.5. However, you can use any later stable version available.

For the purpose of installing Jenkins, Apache Tomcat Server 5.0 or greater is more than sufficient.

38

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

Updating Permissions
The tomcat user that we set up needs to have access to the Tomcat installation.

1. Change to the directory where we unpacked the Tomcat installation.
cd /opt/tomcat

2. Give the tomcat group ownership over the entire installation directory.
sudo chgrp -R tomcat /opt/tomcat

3. Next, give the tomcat group read access to the conf directory and all of its
contents, and execute access to the directory itself.

sudo chmod -R g+r conf
sudo chmod g+x conf

4, Make the tomcat user the owner of the webapps, work, temp, and logs
directories.

sudo chown -R tomcat webapps/ work/ temp/ logs/

Adjusting the Firewall and Test the Tomcat Server

Before we start Tomcat, we need to adjust the firewall to allow our requests to get to the service. Tomcat uses
port 8080 to accept requests.

1. Allow traffic to that port by typing the following command.
sudo ufw allow 8080

2. Now run the startup.sh script to start Tomcat. It’s present inside /opt/tomcat/
bin directory.

cd /opt/tomcat/bin
./startup.sh
3. You can now access the default Tomcat dashboard on both the nodes

by using the address: http://172.17.8.104:8080 for nodel and
http://172.17.8.105:8080 for node2.

4. You will be able to see the default Tomcat dashboard on both the nodes.
However, if you click the links for the Manager App, you will be denied access.

39

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

Configuring Tomcat Web Management Interface
In order to use the manager web app that comes with Tomcat, we must add a login to our Tomcat server.
1. First shut down Tomcat if it's running, using the shutdown.sh script present
inside the /opt/tomcat/bin directory.
cd /opt/tomcat/bin
./shutdown.sh
2. Open the tomcat-users.xml file for editing.
sudo nano /opt/tomcat/conf/tomcat-users.xml
3. After opening the file, delete everything between <tomcat-users> </tomcat-
users>.
4. Now, add a user who can access the manager-gui and admin-gui (web apps that

come with Tomcat). You can do so by defining a user as shown below.

<tomcat-users . . .>
<user username="admin" password="password" roles="manager-
gui,admin-gui"/>

</tomcat-users>

5. Type Ctrl+x and then Y to save and exit the file.

By default, newer versions of Tomcat restrict access to the Manager and Host
Manager apps to connections coming from outside the Tomcat Server. Since we
are accessing the Tomcat dashboard page from a remote machine (a machine
that is other than the Tomcat Server), you will probably want to remove or alter
this restriction. To change the IP address restrictions on these, open the context.
xml files one by one.

6. For the Manager app. Do the following:
sudo nano /opt/tomcat/webapps/manager/META-INF/context.xml
7. For the Host Manager app., do the following:
sudo nano /opt/tomcat/webapps/host-manager/META-INF/context.xml

8. Inside these files, comment (disable) the IP address restriction to allow
connections from anywhere.

<Context antiResourcelocking="false" privileged="true" >
<!--<Valve className="org.apache.catalina.valves.RemoteAddrValve"
allow="127\.\d+\.\d+\.\d+|::1|0:0:0:0:0:0:0:1" />-->
</Context>

40

10.
11.

12

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

Alternatively, if you would like to allow access only to the connections coming
from a specific IP address or set of IP addresses then you can add your IP address
to the list. Shown below is an example where the Tomcat dashboard is allowed to
be accessed from the 172.17.8.101 IP address.

<Context antiResourcelocking="false" privileged="true" >
<Valve className="org.apache.catalina.valves.RemoteAddrValve"
allow="172.17.8.101" />
</Context>

Type Ctrl+x and then Y to save and exit the file.

Execute the startup.sh script to start Tomcat.

cd /opt/tomcat/bin

./startup.sh

Access the web management interface again in a web browser using the URL:

http://172.17.8.104:8080 for nodel and http://172.17.8.105:8080 for
node2.

Installing Jenkins as a Service on Apache Tomcat Server

Installing Jenkins as a service on Apache Tomcat Server is simple. You can choose to use Jenkins along with
other services already present on the Apache Tomcat Server or you can use the Apache server solely for

Jenkins.
Note Perform the steps mentioned in the following section on both the nodes (node1 and node2).
1. Go to the primary node (nodel) and move to the /tmp directory.
cd /tmp
2. Usethewget command to download the jenkins.war file.

sudo wget http://mirrors.jenkins-ci.org/war-stable/latest/jenkins.war

Note Following are the links to download Jenkins:

Latest LTS Release: http://mirrors.jenkins-ci.org/war-stable/latest/jenkins.war

Latest Weekly Release: http://mirrors. jenkins-ci.org/war/latest/jenkins.war

41

http://mirrors.jenkins-ci.org/war-stable/latest/jenkins.war
http://mirrors.jenkins-ci.org/war/latest/jenkins.war

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

3. Oryou can also download jenkins.war from the Jenkins website, as shown in
Figure 2-22.
- 0O x
Q Jenkins x
- C | @ https//jenkins.io/index.html 4 /. .

Jenkins

Downloads -

Jenkins

Build great things at any scale

The leading open source automation server, Jenkins provides
hundreds of plugins to support building, deploying and

: g automaling any project.

Download Jenkins

Get 2.19.1 LTS .war or the latest 2.25 weekly release

Figure 2-22. Jenkins download page

42

By clicking on the Download Jenkins button you will be presented with an
option to download the LTS Release and the Weekly Release.

Choose the LTS Release by clicking on the 2.19.1.war link. As shown in Figure 2-23,
do not click on the drop-down menu. Clicking on the drop-down button will
provide you with the stand-alone package for various Operating Systems.

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

LTS Release Weekly Release

LTS (Long-Term Support) releases are A new release is produced weekly to deliver
chosen every 12 weeks from the stream of bug fixes and features to users and plugin
regular releases as the stable release for developers.

that time period.

82191 war -~ 8225 war ~

Changelog | Upgrade Guide | Past Changelog | Past Releases
Releases

Download Jenkins

Get 2.19.1 LTS .war or the latest 2.25 weekly release

Figure 2-23. Download the latest LTS release

Installing Jenkins Along with Other Services on Apache Tomcat Server
(Not Recommended)

Organizations can follow the current approach if they do not wish to have an individual server for Jenkins
Master alone. But, what if they want to host it along with other services that are already running on their
Apache Tomcat Servers?

1. Simply move the downloaded jenkins.war file from the /tmp folder to the
webapps folder, which is present inside the installation directory of your Apache
Tomcat Server. In our case it’s /opt/tomcat/webapps.

sudo cp /tmp/jenkins.war /opt/tomcat/webapps/

2. You will notice that a folder jenkins automatically gets created, the moment you
move the jenkins.war package to the webapps folder (assuming that the Tomcat
Server is running). See Figure 2-24.

vagrant@node1:~$ sudo ls -1lrt /opt/tomcat/webapps/
total 68144

drwxr-x--- 3 root root 4096 Oct 6 ©0:47 ROOT
drwxr-x--- 14 root root 4096 Oct 6 00:47 docs
drwxr-x--- 6 root root 4096 Oct 6 ©0:47 examples
drwxr-x--- 5 root root 4096 Oct 6 00:47 host-manager
drwxr-x--- 5 root root 4096 Oct 6 00:47 manager
-rW-r--r-- 1 root root 69754811 Oct 6 23:42 jenkins.war
drwxr-x--- 10 root root 4096 Oct 6 23:57 jenkins

vagrant@node1:~$ J
Figure 2-24. List the content of webapps directory

3. And that’s all you need to do. In this way one can access Jenkins running on
nodel using the URL http://172.17.8.104:8080/jenkins.

43

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

Installing Jenkins Alone on Apache Tomcat Server (Recommended)

On the other hand, if you chose to have Apache Tomcat Server solely for using Jenkins, follow the below
steps:

1. Rename the downloaded jenkins.war package to ROOT.war using the move
command.

move /tmp/jenkins.war /tmp/ROOT.war

2. Next, delete the ROOT directory inside the webapps folder using the rm -r
command.

sudo rm -r /opt/tomcat/webapps/ROOT

3. Now move the ROOT.war (renamed) package to the webapps folder using the
move command.

sudo move /tmp/ROOT.war /opt/tomcat/webapps/
4. In this way, one can access Jenkins running on nodel using the URL

http://172.17.8.104:8080/ without any additional path. Apparently the
Apache Server is now a Jenkins Server.

Note It's always recommended to have a dedicated Web Server solely for Jenkins.

Deleting the content inside the webapps folder (leaving behind the ROOT directory and ROOT.war), and then
moving the jenkins.war file to the webapps folder, is also sufficient to make Apache Tomcat Server solely
for Jenkins use. The step of renaming jenkins.war to ROOT.war and then moving it to webapps folder is only
necessary, if you want to make http://localhost:8080/ as the standard URL for Jenkins.

Setting Up the Jenkins Home Path

Before we start using Jenkins, there is one important thing to configure, the JENKINS_HOME path. This is
the location where all of the Jenkins configurations, Logs, and Builds are stored. Everything that you create
and configure on the Jenkins dashboard is stored here.

In our case by default the JENKINS_HOME is set to /root/.jenkins/. We need to make it something
more accessible, something like /opt/jenkins/.

1. Make sure to stop the Apache Tomcat Server.

2. Open the /opt/tomcat/conf/context.xml file for editing.
sudo nano /opt/tomcat/conf/context.xml
3. Add the following line between <Context></Context>.

<Environment name="JENKINS_HOME" value="/opt/jenkins" type="java.lang.String"/>

44

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

4. Type Ctrl+x and then Y to save and exit the file.

5. Now start the Apache Tomcat Server.

6. Youwill now be able to access Jenkins running on nodel using the
following address, https://172.17.8.104:8080/jenkins or
https://172.17.8.104:8080/ depending on your configuration. Figure 2-25 and
Figure 2-26, show the Jenkins startup page on nodel and node2 respectively.

Getting Started

Figure 2-25. Jenkins running on nodel

Getting Started

Unlock Jenkins

p by the administ

Figure 2-26. Jenkins running on node2

7. Now, bring down the Apache Tomcat Server on both the nodes (nodel and node2).

45

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

Installing the Cluster Software

1. Onboth the nodes (nodel and node2), install Corosync and Pacemaker using
the apt-get command.

sudo apt-get install pacemaker

Note Corosync is installed as a dependency of the Pacemaker package.

Perform the steps mentioned in the following section on both the nodes (node1 and node2).

Configuring Corosync

Corosync and Pacemaker are now installed but they need to be configured. Corosync must be configured so
that our servers can behave as a cluster.

Note Perform the steps mentioned in the following section on both the nodes (node1 and node?2), except
for the “Creating Cluster Authorization Key” subsection, which is performed only on nodel.

Creating Cluster Authorization Key

In order to allow the nodes (nodel and node2) to join a cluster, Corosync requires that each node possesses
an identical cluster authorization key.

1. Onnodel, install the haveged package. This software package allows us to easily
increase the amount of entropy on our server, which is required by the corosync-
keygen script.

sudo apt-get install haveged

2. Onnodel, run the corosync-keygen script. This will generate a 128-byte cluster
authorization key, and write it to /etc/corosync/authkey. As shown in Figure 2-27.

sudo corosync-keygen

vagrant@nodel:~5 sudo corosync-keygen

Corosync Cluster Engine Authentication key generator.
Gathering 1024 bits for key from /dev/random.

Press keys on your keyboard to generate entropy.

Press keys on your keyboard to generate entropy (bits = 632).
Press keys on your keyboard to generate entropy (bits = 920).
Press keys on your keyboard to generate entropy (bits = 1000).

Writing corosync key to /etc/corosync/authkey.
vagrant@node1:~$ i

Figure 2-27. Generate 128-byte cluster authorization key

46

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

Now that we no longer need the haveged package, let’s remove it from the nodel.
sudo apt-get remove --purge haveged

sudo apt-get clean

From nodel, copy the authkey to node2 using the following command.

sudo scp /etc/corosync/authkey vagrant@node2:/tmp

Now ssh to node2 from nodel, and execute the following command.

sudo mv /tmp/authkey /etc/corosync

sudo chown root: /etc/corosync/authkey

sudo chmod 400 /etc/corosync/authkey

Now both the nodes should have an identical authorization key in the /etc/
corosync/authkey file.

Configuring Corosync Cluster

In order to get our desired cluster up and running, we must set these up.

1.

On both the nodes (nodel and node2), open the corosync.conf file for editing.
sudo nano /etc/corosync/corosync.conf

Replace the contents of corosync.conf with the following code. Make sure to
change the highlighted code accordingly.

Please read the openais.conf.5 manual page

totem {
version: 2
cluster_name: HA cluster for Jenkins
transport: udpu

How long before declaring a token lost (ms)
token: 3000

How many token retransmits before forming a new configuration
token_retransmits_before loss_const: 10

How long to wait for join messages in the membership protocol (ms)
join: 60

How long to wait for consensus to be achieved before starting

a new round of membership configuration (ms)
consensus: 3600

47

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

Turn off the virtual synchrony filter
vsftype: none

Number of messages that may be sent by one processor on
receipt of the token
max_messages: 20

Limit generated nodeids to 31-bits (positive signed integers)
clear_node_high bit: yes

Disable encryption
secauth: off

How many threads to use for encryption/decryption
threads: 0

Optionally assign a fixed node id (integer)
nodeid: 1234

This specifies the mode of redundant ring, which may be none,
active, or passive.
rrp_mode: none

interface {
The following values need to be set based on your
environment
ringnumber: 0
bindnetaddr: 172.17.8.104
mcastaddr: 226.94.1.1
mcastport: 5405

amf {

}

mode: disabled

quorum {
Quorum for the Pacemaker Cluster Resource Manager
provider: corosync_votequorum
expected votes: 1

}

aisexec {
user: root
group: root

}

nodelist {
node {
ringo_addr: 172.17.8.104

48

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

name: primary
nodeid: 1

}

node {
ringo_addr: 172.17.8.105
name: secondary
nodeid: 2

}

}

logging {
fileline: off
to_stderr: yes
to logfile: yes
logfile: /var/log/corosync/corosync.log
to_syslog: yes
syslog facility: daemon
debug: off
timestamp: on
logger subsys {
subsys: AMF
debug: off
tags: enter|leave|tracel|trace2|trace3|trace4|trace6

}

The totem section defines how the cluster members should communicate
with each other. In our setup, the important settings include transport:
udpu (specifies unicast mode) and bindnetaddr: 172.17.8.104 for nodel
and bindnetaddr: 172.17.8.105 for node2 (specifies which network address
Corosync should bind to).

The quorum section defines that this is a two-node cluster, so only a single node
is required for quorum (expected_votes: 1). This setting will allow our two-node

cluster to elect a coordinator (DC), which is the node that controls the cluster at

any given time.

The nodelist section defines the nodes in the cluster, and how each node can be
reached. Here, we configure both our primary and secondary nodes, and specify
that they can be reached via their respective private IP addresses.

The logging section defines that the Corosync logs should be written to /var/log/
corosync/corosync.log. You can change this to any location (directory) of your
choice.

Type Ctrl+x and then Y to save and exit the file.

On both the nodes (nodel and node2), create the pcmk file in the Corosync
service directory.

sudo nano /etc/corosync/service.d/pcmk

49

CHAPTER 2

10.
11.

12.

13.
14.

HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

Then add the Pacemaker service to the file, as shown below.

service {
name: pacemaker
ver: 1

}

Type Ctrl+x and then Y to save and exit the file.

By default, the Corosync service is disabled. On both the nodes (nodel and
node2), enable the Corosync service by editing the /etc/default/corosync file.

sudo nano /etc/default/corosync
Inside the file, change the value of START to yes. Note this is case sensitive.
START=yes

Type Ctrl+x and then Y to save and exit the file.

Now we can start the Corosync service. On both the nodes, start Corosync using the
following command. You should get an output similiar to the one shown in Figure 2-28.

sudo service corosync start

vagrant@nodel:~$ sudo service corosync start
* Starting corosync daemon corosync [OK]
vagrant@nodel:~$

Figure 2-28. Start the Corosync service

15.

Once Corosync is running on both the nodes, they should be clustered together.
We can verify this by running the following command. The response should be
something similiar to Figure 2-29.

sudo corosync-cmapctl | grep members

vagrant@nodel:~$ sudo corosync cnapctl | grep members

runtime. totem.pg.mrp.srp.me .1.config_version (u64) =
runtime.totem.pg.mrp.srp.men -=---:..1.'i.p (str) = r(0) ip(172. 1? 8.104)
runtime.totem.pg.mrp.srp.me s.1.join_count (u32) =
runtime.totem.pg.mrp.srp.members.1.status (str) = joined
runtime.totem.pg.mrp.srp.menbers.2.config_version (u64) =
runtime.totem.pg.mrp.srp.members.2.ip (str) = r(0) ip(172.17.8.105)
runtime.totem.pg.mrp.srp.members.2.join_count (u32) = 1
runtime.totem.pg.mrp.srp. s.2.status (str) = joined
vagrant@node1:~$ [J

Figure 2-29. Verify the Corosync cluster members

16.

50

Corosync.

If you do not see the members listed, use the following command to restart

sudo service corosync restart

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

Starting and Configuring Pacemaker

Pacemaker is now ready to be started. The Pacemaker service requires Corosync to be running, and it’s
disabled by default.

1. Onboth the nodes, enable Pacemaker to start on system boot using the following
commands.

sudo update-rc.d pacemaker defaults 20 01

2. We have set Pacemaker’s start priority to 20. It is important to specify a start
priority that is higher than Corosync (which is 19 by default), so that Pacemaker
starts after Corosync.

3. Start Pacemaker using the following command as depicted in Figure 2-30.

sudo service pacemaker start

vagrant@nodel:~$ sudo service pacemaker start
Starting Pacemaker Cluster Manager: [OK]
vagrant@node1:~$ [

Figure 2-30. Start the Pacemaker service

4. To check the Pacemaker version execute the following command as depicted
in Figure 2-31.

pacemakerd --version

vagrant@nodel:~$ pacemakerd --version
Pacemaker 1.1.10

Written by Andrew Beekhof
vagrant@node1:~$ i

Figure 2-31. Get the pacemaker version

5. To interact with Pacemaker, we will use the crm utility. Check the cluster status using
the following command. See the output of the command as depicted in Figure 2-32.

sudo crm status

vagrant@nodel:~5 sudo crm status

Last updated: Tue Oct 4 00:45:17 2016

Last change: Tue Oct 4 80:43:44 2016 via crmd on secondary
Stack: corosync

Current DC: secondary (2) - partition with quorum

Version: 1.1.10-42f2063

2 Nodes configured

6 Resources configured

Online: [primary secondary]
vagrant@nodel:~$

Figure 2-32. crm status

51

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

Note To get more information on the crm commands, visit the following link: http://crmsh.nongnu.org/
cxm.8.html

All crm commands can be run from either node, as it automatically synchronizes all cluster-related changes
across all member nodes.

In the above output notice the Current DC (Designated Coordinator) value. It
should be set to either primary (1) or secondary (2). There are 2 Nodes and 0
Resources at the moment. Both the nodes are online.

6. You can also use the crm_mon utility to get real-time updates of the status of
each node, and where each resource is running.

sudo crm_mon

7. The output of this command looks identical to the output of crm status except it
runs continuously.

8. Ifyouwant to quit, press Ctrl-C.

Configuring Cluster Properties

1. For atwo-node cluster we do not need STONITH enabled. Execute the following
command to disable STONITH.

sudo crm configure property stonith-enabled=false

Note STONITH is used to remove faulty nodes—because we are setting up a two-node cluster we don’t
need it.

2. Wewould also like to disable quorum-related messages in the logs. To do that,
execute the following command. Again, this setting only applies to 2-node
clusters.
sudo crm configure property no-quorum-policy=ignore

3. To verify your Pacemaker configuration, run the following command.

sudo crm configure show

52

http://crmsh.nongnu.org/crm.8.html
http://crmsh.nongnu.org/crm.8.html

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

Figure 2-33, depicts all of your active Pacemaker settings. Currently, this will only include two nodes,
and the STONITH and quorum properties you just set.

vagrant@nodel:~5 sudo crm configure show

node $id="1" primary

node $id="2" secondary

property $id="cib-bootstrap-options"” \
P " "y

<5 o

vagrant@node1:~$ [

Figure 2-33. Cluster configuration

Create a Floating IP Resource Agent

Pacemaker and Corosync are running and configured; now we need to add resources for it to manage.
Resources are services that the cluster is responsible for making highly available. In Pacemaker, adding
aresource requires the use of a resource agent. The resource agent acts as an interface to the service that
will be managed. Pacemaker ships with several resource agents for common services, and allows custom
resource agents to be added.

Note To get the list of available resource agents visit the link: http://www.linux-ha.org/wiki/
Resource_Agents

In our setup, we want to make sure that the service provided by our Tomcat Server, primary and
secondary, is highly available in an active/passive setup, which means that we need a way to ensure that our
Floating IP is always pointing to a server that is available.

Our first resource will be a unique IP address that the cluster can bring up on either node (nodel and
node2). Regardless of where any cluster service(s) are running, end users need a consistent address to
contact them. We will choose 172.17.8.200 as the floating address, and naming it as ClusterIP and tell the
cluster to check whether it is running every 30 seconds.

1. To do so execute the following command.

sudo crm configure primitive ClusterIP ocf:heartbeat:IPaddr2 params
ip=172.17.8.200 cidr_netmask=32 op monitor interval=30s

Note ocf:heartbeat:IPaddr2 is the resource agent for ClusterlP

2. Check the status of your cluster using the crm status command, and you should
see that the ClusterIP resource is started on one of your nodes. As shown in
Figure 2-34.

53

http://www.linux-ha.org/wiki/Resource_Agents
http://www.linux-ha.org/wiki/Resource_Agents

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

vagrant@nodel:~5$ sudo crm status

Last updated: Tue Oct 4 23:44:24 2016

Last change: Tue Oct 4 23:44:15 2016 via cibadmin on primary
Stack: corosync

Current DC: primary (1) - partition with quorum

Version: 1.1.10-42f2063

2 Nodes configured

1 Resources configured

Online: [primary secondary]

ClusterIP (ocf::heartbeat:IPaddr2): Started primary
vagrant@node1:~$ I

Figure 2-34. ClusterIP resource running on one of the nodes

Creating a Tomcat Resource Agent

Similarly we need to create a Tomcat resource agent that will start, stop, and monitor our Apache Tomcat
Server (Jenkins service).

1. Getthe java home path using the following command as depicted in Figure 2-35:

sudo update-java-alternatives -1

vagrant@nodel:~$ sudo update-java-alternatives -1
java-1.7.0-openjdk-amd64 1671 Jusr/lib/jvm/java-1.7.0-openjdk-amd64
vagrant@node1:~$ [J

Figure 2-35. Get the java home path

2. Make sure tomcat is not running.

3. Execute the following command to create a tomcat resource.

sudo crm configure primitive ApacheTomcat ocf:heartbeat:tomcat params
java_home="/usx/1ib/jvm/java-1.7.0-openjdk-amd64/jre" catalina_home=
"/opt/tomcat" op start timeout=60s op stop timeout=120s op status
timeout=60s interval=30s op monitor timeout=30s interval=10s

Note “java_home” should be set to the path where java is installed. “catalina_home” is the installation
directory of Tomcat. The op (operations) values are extremely important; failing to set then can result in failures.

ocf:heartbeat:tomcat is the resource agent for ApacheTomcat.

4. Check the status of your cluster using the crm status command. You should see
that the ApacheTomcat resource is started on one of your nodes, as shown in
Figure 2-36.

54

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

vagrant@nodel:~$ sudo crm status

Last updated: Tue Oct 4 23:47:50 2016

Last change: Tue Oct 4 23:47:41 2016 via cibadmin on primary
Stack: corosync

Current DC: primary (1) - partition with quorum

Version: 1.1.10-42f2063

2 Nodes configured

2 Resources configured

Online: [primary secondary]
ClusterIP (ocf::heartbeat:IPaddr2): Started primary

ApacheTomcat (ocf::heartbeat:tomcat): Started secondary
vagrant@node1:~$ Jj

Figure 2-36. ApacheTomcat resource running on one of the nodes

Note Notice that the ApacheTomcat resource isn’t running on the same node as our ClusterIP resource.

Ensuring ClusterIP and Apache Tomcat Run on the Same Node

Now, we need to tell the cluster to run Apache Tomcat on the host that ClusterIP is running on. To do this,
we will use a colocation constraint. The important part of the colocation constraint is indicated by using a
score of INFINITY. The INFINITY score means that if ClusterIP is not active anywhere, ApacheTomcat will
not be permitted to run.

1. To create a colocation constraint for ApacheTomcat and ClusterIP, execute the
following command.

sudo crm configure colocation ApacheTomcat-with-ClusterIP INFINITY:
ApacheTomcat ClusterIP

2. Check the status of your cluster using the cxrm status command. You should see
that the ApacheTomcat resource is now running on the primary node (nodel).
See Figure 2-37.

vagrant@nodel:~$ sudo crm status

Last updated: Tue Oct 4 23:58:18 2016

Last change: Tue Oct 4 23:50:56 2016 via cibadmin on primary
Stack: corosync

Current DC: primary (1) - partition with quorum

Version: 1.1.10-42f2063

2 Nodes configured

2 Resources configured

Online: [primary secondary]
ClusterIP (ocf::heartbeat:IPaddr2): Started primary

ApacheTomcat (ocf::heartbeat:tomcat): Started primary
vagrant@node1:~$ i

Figure 2-37. Apache Tomcat running along with ClusterIP on the primary node

55

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

Ensuring ClusterIP Starts Before Apache Tomcat

We need to make sure ClusterIP ad Apache Tomcat not only runs on the same node, but ClusterIP starts
before Apache Tomcat. A colocation constraint only ensures that the resources run together, but not the
order in which they start and stop.

To achieve order, we will use ordering constraint. By default, all order constraints are mandatory, which
means that the recovery of ClusterIP will also trigger the recovery of Apache Tomcat.

1. To create an ordering constraint. Execute the following command.

sudo crm configure order ApacheTomcat-after-ClusterIP mandatory:
ClusterIP ApacheTomcat

Replicating Jenkins Home Directory Using DRBD

In the event of primary node failure, the Jenkins Server running on nodel will be started on the secondary
node (node2). When this happens we would also like to make sure that the Jenkins Sever on node2 gets
access to the same configuration and data (Jenkins home directory content) that was created and used by
Jenkins Server running on nodel. To do this we can either choose to use a NAS (Network-Attached-Storage)
or we can choose a reliable and cost-effective solution DRBD.

Install the DRBD Packages

1. Execute the following command to install DRBD. Do this on both the nodes.

sudo apt install drbd8-utils

Preparing Partitions

The first step in setting up DRBD is to prepare the partitions to be used as DRBD devices. We are assuming
that we have an additional disk (sdb) on both the nodes (nodel and node2) that are of same sizes. We will
create two partition tables (sdb1 and sdb2) of 20 GB each for the DRBD devices (drbd1 and drbd2).

1. Using the command below, list the disks that you have. Figure 2-38 depicts the
additional disk (sdb) on nodel.

sudo 1sblk

vagrant@nodel:~$ sudo lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 ® 406G 0 disk

Lsda1 8:1 © 40G O part /

sdb 8:16 ® 406G 0 disk
vagrant@nodel:~$

Figure 2-38. List the disks

2. To create the first primary partition, execute the following command.

sudo fdisk /dev/sdb

56

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

3. You will get the following output. With a prompt Command (m for help): asking
for an input.

Device contains neither a valid DOS partition table, nor Sun, SGI or
OSF disklabel

Building a new DOS disklabel with disk identifier 0x4527506d.

Changes will remain in memory only, until you decide to write them.
After that, of course, the previous content won't be recoverable.
Warning: invalid flag 0x0000 of partition table 4 will be corrected by
w(rite)

Command (m for help):

Note Following are the valid inputs (case insensitive) that can be given as a value for Command (m for help):
p print the partition table

n create a new partition

d delete a partition

q quit without saving changes

w write the new partition table and exit

4. Type “P” to list the current partition table. The output will be empty as shown
in Figure 2-39.

Command (m for help): P

Disk /dev/sdb: 42.9 GB, 42949672960 bytes

255 heads, 63 sectors/track, 5221 cylinders, total 83886080 sectors
Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I1/0 size (minimum/optimal): 512 bytes [/ 512 bytes

Disk identifier: ®x12e7dc3d

Device Boot Start End Blocks Id sSystem

Figure 2-39. List the existing partition table on /dev/sdb

5. Next, select “N” (to create a new partition), then P (to choose a primary
partition), then 1 (this is our first primary partition), then press Enter to select
the default value for the First sector, and lastly enter then +20480M for Last sector
and press Enter, as shown in Figure 2-40.

57

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

Command (m for help): N
Partition type:
p primary (@ primary, ® extended, 4 free)
e extended
Select (default p): P
Partition number (1-4, default 1): 1
First sector (2048-838860879, default 2048):
Using default value 2048
Last sector, +sectors or +size{K,M,G} (2048-83886079, default 83886079): +20480M

Figure 2-40. Create a new primary partition

6. Select “P” to list the partition tables. From the Figure 2-41, you can see the
recently created primary partition /dev/sdbl.

Command (m for help): P

Disk /dev/sdb: 42.9 GB, 42949672960 bytes

255 heads, 63 sectors/track, 5221 cylinders, total 83886880 sectors
Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 8x12e7dc3d

Device Boot Start End Blocks Id System
/dev/sdb1 2048 41945087 20971520 83 Linux

Figure 2-41. List the partition table on /dev/sdb

7. Again, select “N” (to create a new partition), then P (to choose a primary
partition), then 2 (this is our second primary partition), then press Enter to select
the default value for the First sector, and lastly press Enter to select the default
value for the Last sector, as shown in Figure 2-42.

Command (m for help): n
Partition type:
p primary (1 primary, 8 extended, 3 free)
e extended
Select (default p): p
Partition number (1-4, default 2): 2
First sector (41945088-83886079, default 41945088):
Using default value 41945088
Last sector, +sectors or +size{K,M,G} (41945088-83886079, default B3886079):
Using default value 83886079

Figure 2-42. Create a new primary partition

8. Lastly press “W” to save the configuration. See Figure 2-43.

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
syncing disks.

Figure 2-43. Save the partition settings done on /dev/sdb

58

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

9. Select “P” to list the partition tables. From Figure 2-44, you can see the recently
created primary partition /dev/sdbl and /dev/sdb2.

Command (m for help): p

Disk /dev/sdb: 42.9 GB, 42949672960 bytes

255 heads, 63 sectors/track, 5221 cylinders, total 83886680 sectors
Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 6x12e7dc3d

Device Boot Start End Blocks Id System
Jdev/sdb1 2048 41945087 20971520 83 Linux
Jdev/sdb2 41945088 83886079 20970496 83 Linux

Figure 2-44. List the partition table on /dev/sdb

10. Now again list the disks that you have using the Isblk command. You can see the
two new partition sdb1 and sdb2, as shown in Figure 2-45.

sudo 1sblk

vagrant@nodel:~$ sudo lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 8 486G 0 disk
Lsda1 8:1 © 406G 0 part /
sdb 8:16 © 460G 0 disk
tsdbl 8:17 © 26G 0 part
sdb2 8:18 @ 286G 6 part

vagrant@node1:~$ |

Figure 2-45. List the disks and partitions on nodel

11. Repeat all the above steps on node2 as well. Use the same name and size for the
partition.

Configuring DRBD

Simply run the following commands on both the nodes (nodel and node2).

1. Create a file data.res under /etc/drbd.d/ directory.
sudo nano /etc/drbd.d/data.res
2. Add the code below to the new file.

resource data {

protocol C;

volume 0 {
device /dev/drbd1;
disk /dev/sdbi;
meta-disk internal;

}

59

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

volume 1 {
device /dev/drbd2;
disk /dev/sdb2;
meta-disk internal;
}
syncer {
verify-alg shai;

net {

allow-two-primaries;

}

on nodel {

address 172.17.8.104:7789;
}

on node2 {
address 172.17.8.105:7789;

}
}

3. We will configure DRBD to use port 7789, so allow that port from each host to the other.

sudo ufw allow 7789

Initializing DRBD

Now that we have configured DRBD, let us try to run it. In the following section we will create a local
metadata for the DRBD resource and ensure that the DRBD kernel module is loaded. Then we will bring up
the DRBD resource.

1. Perform the following steps on primary node (nodel). You should see a similiar
output, as shown in Figure 2-46.

sudo drbdadm create-md data

vagrant@nodel:~$ sudo drbdadm create-md data
Writing meta data...

initializing activity log

NOT initializing bitmap

New drbd meta data block successfully created.
Writing meta data...

initializing activity log

NOT initializing bitmap

New drbd meta data block successfully created.

Figure 2-46. Create metadata for the DRBD resource

2. Next, execute the following commands in order.
sudo apt-get install linux-image-extra-virtual
sudo depmod -a

sudo modprobe drbd

60

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

3. Now, execute the following command to start the DRBD resource.
sudo drbdadm up data

4. We can confirm DRBD’s status on this node (nodel) using the following
command.

cat /proc/drbd

In Figure 2-47, you can see ds: Inconsistent/Inconsistent. This is because we
have not yet initialized the data.

And because we have not yet initialized DRBD on the second node, the partner
node’s status is marked as Unknown.

vagrant@nodel:~$ cat /proc/drbd
version: 8.4.3 (api:1/proto:86-101)
srcversion: 6551AD2C98F533733BESS8C

1: cs:WFConnection ro:Secondary/Unknown ds:Inconsistent/Inconsistent C r-----
ns:® nr:® dw:® dr:0 al:® bm:® lo:0 pe:0 ua:0 ap:® ep:1 wo:T 00s5:20970844
2: cs:WFConnection ro:Secondary/Unknown ds:Inconsistent/Inconsistent C r-----
ns:@ nr:0 dw:® dr:® al:0 bm:© lo:0 pe:0 ua:® ap:® ep:1 wo:f 005:20969820
vagrant@node1:~$ [

Figure 2-47. Sync status

5. Now, repeat step 1, 2, and 3 on node2.

6. After executing the steps successfully on node2, give the following command on
nodel to check the sync status.

cat /proc/drbd

From Figure 2-48, we can see that the state has changed to cs:Connected, which
means the two DRBD nodes are communicating. We can also see that both the
nodes are in Secondary role with Inconsistent data.

vagrant@nodel:~$ cat /proc/drbd
version: 8.4.3 (api:1/proto:86-101)
srcversion: 6551AD2C98F533733BESS8C

1: cs:Connected ro:Secondary/Secondary ds:Inconsistent/Inconsistent C r-----

ns:® nr:® dw:0 dr:0 al:e bm:0 lo:0 pe:® ua:0 ap:0 ep:1 wo:f 005:20970844

2: cs:Connected ro:Secondary/Secondary ds:Inconsistent/Inconsistent C r-----

ns:® nr:0 dw:® dr:® al:® bm:0® lo:0 pe:® ua:® ap:0 ep:1 wo:f 00s5:20969820
vagrant@node1:~$ i

Figure 2-48. Sync status

7. To make the data consistent, we need to tell DRBD about the node that should be
having the correct data. To do so, execute the following command to make nodel
as the primary node with correct data.

sudo drbdadm primary --force data

61

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

8. Ifwe check the status immediately, we'll see something like this.
cat /proc/drbd

In Figure 2-49, we can see that that the node (nodel) has the Primary role and
the partner node has the Secondary role. Also the data on nodel is up to date
and the partner node’s data is still Inconsistent with a progress bar showing how
far along the partner node is in sync.

vagrant@nodel:~5 cat /proc/drbd
version: 8.4.3 (api:1/proto:86-101)
srcversion: 6551AD2C98F533733BES58C

1: cs:SyncSource ro:Primary/Secondary ds:UpToDate/Inconsistent C r-----
ns:50176 nr:0 dw:0 dr:50904 al:® bm:3 10:0 pe:@ ua:0 ap:0 ep:1 wo:f 005:2092
0668
e A e O O OO A S] sync'ed: ©.3% (20428/20476)Mfinish: 0:20:45 spe
ed: 16,724 (16,724) K/sec
2: cs:SyncSource ro:Primary/Secondary ds:UpToDate/Inconsistent C r-----
ns:7168 nr:@ dw:@ dr:7896 al:® bm:® lo:® pe:® ua:0 ap:0 ep:1 wo:f 005:209626
52
[2 i e suaan s] sync'ed: ©.1% (20468/20476)Mfinish: 2:25:34 spe
ed: 2,388 (2,388) K/sec
vagrant@nodel:-~5%

Figure 2-49. Sync status

9. Executing the following command, and after a while, you'll see something as
shown in Figure 2-50.

cat /proc/drbd

vagrant@nodel:~$ cat /proc/drbd
version: 8.4.3 (api:1/proto:86-101)
srcversion: 6551AD2C98F533733BES58C

1: cs:Connected ro:Primary/Secondary ds:UpToDate/UpToDate C r-----
Ns:20970844 nr:0 dw:0 dr:20971572 al:0 bm:1280 10:0 pe:® ua:0 ap:0 ep:1 wo:f
005:0
2: cs:Connected ro:Primary/Secondary ds:UpToDate/UpToDate C r-----
Ns:20969820 nr:0 dw:0® dr:20970548 al:® bm:1280 10:0 pe:® ua:® ap:0 ep:1 wo:f
005:0
vagrant@node1:~$ [}

Figure 2-50. Sync status

Both sets of data are now up to date, and we can proceed to creating and
populating a file system for our Apache Tomcat and Jenkins.

Populating the DRBD Disk

On the node with the primary role (nodel), create two file systems on the DRBD device /dev/drbd1 and
/dev/drbd2 respectively.

Note Perform the activities of this subsection only on the primary node (node1).

62

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

1. Execute the following command to create a file system on /dev/drbd1. As shown in
Figure 2-51.

sudo mkfs.ext3 /dev/drbdi

vagrant@nodel:~$ sudo mkfs.ext3 /dev/drbdi

mke2fs 1.42.9 (4-Feb-2014)

Filesystem label=

05 type: Linux

Block size=4096 (log=2)

Fragment size=4096 (log=2)

Stride=@ blocks, Stripe width=6 blocks

2621440 inodes, 10485175 blocks

524258 blocks (5.00%) reserved for the super user

First data block=0

Maximum filesystem blocks=4294967296

320 block groups

32768 blocks per group, 32768 fragments per group

8192 inodes per group

Superblock backups stored on blocks:
32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208,
4096000, 7962624

Allocating group tables: done

Writing inode tables: done

Creating journal (32768 blocks): done

HWriting superblocks and filesystem accounting information: done

vagrant@node1:~$ [

Figure 2-51. Create filesystem on /dev/drbd1

2. Similarly, execute the following command to create a filesystem on /dev/drbd2.
sudo mkfs.ext3 /dev/drbd2

3. Tolist the filesystem that we recently created, execute the 1sblk command.
From the Figure 2-52, we can see the list of filesystems.

sudo 1sblk

vagrant@node1:~$ sudo lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 ® 460G 0 disk
Lsda1 8:1 ® 460G O part /
sdb 8:16 © 406G 0 disk
tsdln 8:17 © 20G O part
sdb2 8:18 © 20G O part
drbd1 147:1 ® 206 0 disk
drbd2 147:2 0 e disk

vagrant@node1:~$ I

Figure 2-52. List the filesystem

Note In this example, we created an ext3 filesystem with no special options. In a production environment,
you should choose a filesystem type and options that are suitable for your application.

63

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

Mount the newly created filesystems and populate it with the contents of
/opt/tomcat/webapps and /opt/jenkins.

To do so, execute the following command to mount the /dev/drbd] filesystem to
/mnt first.

mount /dev/drbd1 /mnt

Move to the /mnt directory and copy the contents of the webapps folder to it
using the following commands.

cd /mnt
sudo cp -R /opt/tomcat/webapps/. /mnt

After copying the files, list the content of the /mnt directory, as shown in Figure 2-53.

vagrant@nodel: /mnt$ 1s -lrt
total 68216

drwxr-x--
drwxr-x--
drwxr-x--
~fW-T--r-
drwxr-x-
drwxr-x--
drwxr-x- -

5 root root 4696 Oct 7 15:85 manager

6 root root 4096 Oct 7 15:05 examples
14 root root 4096 Oct 7 15:05 docs

1 root root 69754611 Oct 7 15:85 jen :
10 root root 4096 Oct 7 15:05 jenkins

5 root root 4696 Oct 7 15:85 host-manager
3 root root 4096 Oct 7 15:05 ROOT

Figure 2-53. List the contents of /mnt directory

10.

11.

64

Now unmount the /dev/drbd] filesystem.
sudo umount /dev/drbd1

Similarly, execute the following command to mount the /dev/drbd2 filesystem
to /mnt.

sudo mount /dev/drbd2 /mnt

Move to the /mnt directory and copy the contents of /opt/jenkins folder to it
using the following commands.

cd /mnt
sudo cp -R /opt/jenkins/. /mnt

After copying the files, list the content of the /mnt directory, as shown in
Figure 2-54.

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

vagrant@nodel: /mnt$ 1s -1lrt

total 6@

drwxr-x--- 3 root root 4096 Oct 7 15:10 users

drwxr-x--- 2 root root 4096 Oct 7 15:10 userContent

drwx------ 4 root root 4096 Oct 7 15:10 secrets

“IW-F==---- 1 root root ® Oct 7 15:10 secret.key.not-so-secret
“fW-F===== 1 root root 129 Oct 7 15:10 queue.xml.bak

drwxr-x--- 2 root root 4096 Oct 7 15:10 nodes

“fW-F=-==-~~ 1 root root 967 Oct 7 15:10 nodeMonitors.xml

drwxr-x--- 3 root root 4096 Oct 7 15:10 logs

drwxr-x--- 2 root root 4096 Oct 7 15:18 jobs

“TW-F==---- 1 root root 6 Oct 7 15:10 jenkins.install.UpgradeWizard.state
“rW-=--=-==~ 1 root root 1712 Oct 7 15:10 identity.key.enc

“FW-F===== 1 root root 159 Oct 7 15:10 hudson.model.UpdateCenter.xml
“IW=F===== 1 root root 1592 Oct 7 15:10 config.xml

drwxr-x--- 2 root root 4096 Oct 7 15:18 updates

B B 1 root root 64 Oct 7 15:10 secret.key

drwxr-x--- 2 root root 4096 Oct 7 15:10 plugins

Figure 2-54. List the contents of /mnt directory

12. Now unmount the /dev/drbd2 filesystem.

sudo umount /dev/drbd2

Creating a Cluster Resource for the DRBD Device

Now just like ClusterIP and ApacheTomcat, we will create a cluster resource for the DRBD device, and an
additional clone resource to allow the resource to run on both nodes at the same time.

1. To do so, execute the following commands in sequence.

sudo crm configure primitive Data ocf:linbit:drbd params
drbd_resource=data op monitor interval=60s

sudo crm configure ms DataClone WebappsData params master-max=1
master-node-max=1 clone-max=2 clone-node-max=1 notify=true

2. Let'’s see the new configuration by executing the cxrm status command.
sudo crm status

From Figure 2-55, we can see that the DataClone (our DRBD device) is running as master (DRBD’s
primary role) on nodel and as a slave (DRBD’s secondary role) on node2.

65

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

vagrant@nodel:/$ sudo crm status

Last updated: Fri Oct 7 15:16:45 2016

Last change: Fri Oct 7 15:16:38 2016 via cibadmin on primary
Stack: corosync

Current DC: primary (1) - partition with quorum

Version: 1.1.10-42f2863

2 Nodes configured

4 Resources configured

Online: [primary secondary]

ClusterIP (ocf::heartbeat:IPaddr2): Started primary
ApacheTomcat (ocf::heartbeat:tomcat): Started primary
Master/Slave Set: DataClone [Data]

Masters: [primary]

Slaves: [secondary]

Figure 2-55. crm status

Creating a Cluster Resource for the Filesystems
Now that we have a working DRBD device, let us mount its filesystems.

1. To create a cluster resource for the filesystem “/dev/drbdl”, execute the
following command.

sudo crm configure primitive WebappsFS Filesystem params device=
"/dev/drbd1" directory="/opt/tomcat/webapps" fstype="ext3" op start
timeout=60s op stop timeout=60s op notify timeout=60s op monitor
timeout=40s interval=20s

2. Let’s see the new configuration by executing the crm status command.
Figure 2-56 depicts out new configuration.

sudo crm status

vagrant@nodel:/$ sudo crm status

Last updated: Fri Oct 7 15:21:36 2016

Last change: Fri Oct 7 15:21:30 2016 via cibadmin on primary
Stack: corosync

Current DC: primary (1) - partition with quorum

Version: 1.1.10-42f2063

2 Nodes configured

5 Resources configured

online: [primary secondary]

ClusterIP (ocf::heartbeat:IPaddr2): Started primary
ApacheTomcat (ocf::heartbeat:tomcat): Started primary
Master/Slave Set: DataClone [Data]

Masters: [primary]

Slaves: [secondary]
HWebappsFs (ocf::heartbeat:Filesystem): Started primary

Figure 2-56. crm status

66

3. Similarly, create a cluster resource for the filesystem “/dev/drbd2,” and execute

the following command.

sudo crm configure primitive JenkinsHomeFS Filesystem params device=
"/dev/drbd2" directory="/opt/jenkins" fstype="ext3" op start timeout=60s
op stop timeout=60s op notify timeout=60s op monitor timeout=40s

interval=20s

4. Let’s see the new configuration by executing the crm status command.

See Figure 2-57.

sudo crm status

vagrant@nodel:/$ sudo crm status
Last updated: Fri Oct 7 15:23:32 2016

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

Last change: Fri Oct 7 15:22:54 2016 via cibadmin on primary

Stack: corosync

Current DC: primary (1) - partition with quorum

Version: 1.1.10-42f2063
2 Nodes configured
6 Resources configured

Online: [primary secondary]

ClusterIP (ocf::heartbeat:IPaddr2):
ApacheTomcat (ocf::heartbeat:tomcat):
Master/Slave Set: DataClone [Data]
Masters: [primary]
Slaves: [secondary]

HWebappsFs (ocf::heartbeat:Filesystenm):
JenkinsHomeFS (ocf::heartbeat:Filesystem):

Figure 2-57. crm status

5. We will group the two filesystems. To do so, execute the following command:
sudo crm configure group FileSystem WebappsFS JenkinsHomeFS

6. Let’s see the new configuration by executing the crm status command. From
Figure 2-58, you can see the two Filesystems WebappsFS and JenkinsHomeFS are

grouped together as FileSystem.

sudo crm status

Started primary
Started primary

Started primary
Started primary

67

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

vagrant@nodel: /5 sudo crm status

Last updated: Fri Oct 7 15:26:49 2016

Last change: Fri Oct 7 15:26:22 2016 via cibadmin on primary
Stack: corosync

Current DC: primary (1) - partition with quorum

Version: 1.1.10-42f2063

2 Nodes configured

6 Resources configured

online: [primary secondary]

ClusterlIP (ocf::heartbeat:IPaddr2): Started primary
ApacheTomcat (ocf::heartbeat:tomcat): Started primary
Master/Slave Set: DataClone [Data]
Masters: [primary]
Slaves: [secondary]
Resource Group: FileSystem
WebappsFS (ocf::heartbeat:Filesystem): Started primary
JenkinsHomeFs (ocf::heartbeat:Filesystem): Started primary

Figure 2-58. crm status

7. We would like to run the Filesystems (WebappsFS and JenkinsHomeFS) on
the same node where the DataClone (Master) is running. To do so, execute the
following colocation constraint command.

sudo crm configure colocation FileSystem-with-DataClone INFINITY:
FileSystem DataClone:Master

8. Also, we would like to create an order in which the resources FileSystem
(WebappsFS and JenkinsHomeFS) and DataClone start and stop. The Data
resource should start first then it should be promoted as Master and then the
resource FileSystem (WebappsFS and JenkinsHomeFS) should start. To do so,
execute the following colocation constraint command.

sudo crm configure order FileSystem-after-DataClone mandatory:
DataClone:promote FileSystem:start

9. We also need to tell the cluster that ApacheTomcat needs to run on the same
node as the FileSystem (WebappsFS and JenkinsHomeFS) and that it must be
active before ApacheTomcat can start. To do so, execute the following colocation
constraint command in sequence.

sudo crm configure colocation ApacheTomcat-with-FileSystem INFINITY:
ApacheTomcat FileSystem

sudo crm configure order ApacheTomcat-after-FileSystem mandatory:
FileSystem ApacheTomcat

68

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

Checking the Apache Tomcat Server

As per our configuration so far, Apache Tomcat Server should be running on nodel. We should be able to
accessiton http://172.17.8.200:8080/jenkins.

1. Access the Apache Tomcat Server dashboard and from the dashboard click
on the Manager App button to access the Tomcat Web Application Manager
page. You might need to log in using the user “admin,” which we created in the
previous section.

2. Once you are on the Tomcat Web Application Manager page, scroll down to
Server Information section. And you will see that we are currently accessing
Apache Tomcat Server of nodel. See Figure 2-59.

|Server information
| Temcat Versan | IVH Varsion VM Vandor 05 Name OF Versan 05 Architecturs Hostname 1P Address
Apache TorEa 5 5 170111801 Oracie Comornon | [213,00 ganenc amans nesal 1tant

Figure 2-59. Server Information from Tomcat Web Application Manager page

3. From the active node (nodel), give the following command to see the mount
points.

df -h

From the Figure 2-60, you can see the drbd1 filesystem is mounted on /opt/tomcat/webapps and the
drbd2 Filesystem is mounted on /opt/jenkins.

vagrant@nodel: /5 df -h

Filesystem Size Used Avail Use¥% Mounted on

udev 484M 12K 484M 1% /dev

tmpfs 166M 404K 99M 1% /run

/dev/sdal 40G 2.4G 36G 7% /

none 4.0K ® 4.0k 0% /sys/fs/cgroup

none 5.6M 8.0K 5.6M 1% /run/lock

none 497M 53M 445M 11% frun/shm

none 100M 6 10eM 0% /runfuser
J/dev/drbd1 206 199M 199G 2% fopt/tomcat/webapps
/dev/drbd2 260G 46M 19G 1% Jopt/jenkins

vagrant@node1:/$ [

Figure 2-60. List the mount points

Simulating a Failover

Now let us see if our HA setup for Jenkins using Pacemaker, Corosync, and DRBD works. We will access
Jenkins running on the active node (nodel) and do some basic setup that one usually does when using
Jenkins for the first time. Then we will bring down nodel and check if all changes are intact as Jenkins comes
up on node2.

1. Access the Jenkins Server using http://172.17.8.200:8080/jenkins/.
As shown in Figure 2-61.

69

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

Getting Started

Unlock Jenkins

wrille:

Adrrami password

Figure 2-61. Access the Jenkins Server using the ClusterIP

2. We know that the Jenkins Server that we are right now accessing is running
inside the Apache Tomcat Server, which is running on nodel. Therefore, on
nodel execute the following command. This will print out the content of the file
initialAdminPassword. As shown in Figure 2-62.

sudo cat /opt/jenkins/secrets/initialAdminPassword

vagrant@nodel: /S sudo cat /opt/jenkins/secrets/initialAdminPassword
d3772195eed24b55af4d0e625b551a40
vagrant@node1:/S i

Figure 2-62. Get the Initial Admin Password key

3. Copy the key and paste it inside the Administrator password field.

4. On the next screen you will be asked to choose either to go with the
recommended plugins or to install the plugins of your own choice. Choose
anything you like.

5. Thave chosen to go with the suggested plugins. As depicted in Figure 2-63.

70

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

G sepwizard frenkl, . =

* 172118200 > e T8 9 4+ & =

Getting Started

Customize Jenkins

Plugins extend .lenking with additional features to suppart many different needs

| Install suggested Select plugins to
plugins install
Install plugins the Jenkins Select and install plugins
community finds most most suitable for your needs
useful

Figure 2-63. Choose suggested plugins

6. From Figure 2-64, you can see that the setup is installing all the required plugins
suggested by the Jenkins community.

* 172178200 » || 8 9 4 &8 =

Getting Started
T T T R R Y

o Fakdens Phagn ' CWASP Markep Formarter bl irmet phegn
P

o Timessamper o Wokspace Ceang o A Pugn
Pugn

3 Fiostes G4t Ompanitzasion Fostne Stage Vew
Foutar P Plge
S8 Bt v v

gy Pragn
o LOAPPugn i Detosion Flugn. o Maler Phgn

VT2AT8D

Figure 2-64. Plugin installation in progress

71

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

7. Once the plugins are installed, you will be asked to create an admin account, as
shown in Figure 2-65.

Getting Started

Create First Admin User

i jocin_amin
[po—
B .
ol rarras o parania

Eoman aress upororgaveaton cor|

17217, 8200800 enkins 3

Figure 2-65. Creating the first admin user

8. Once the admin account is created, the setup completes and Jenkins is ready for
use as shown in Figure 2-66.

Getting Started

Jenkins is ready!

Your Jenking setup is complete.

17217, 8200800 enkins 3

Figure 2-66. Finishing the Jenkins setup

72

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

9. Byclicking on the Start using Jenkins button, you will be taken to the Jenkins
Dashboard, as shown in Figure 2-67.

IS oesvona ook G

€ 172.17.8.200: k 4 B 9 4+ & O =
@Jenkins i @ niknil pathania | log out

= Mew ltem Facd description

& Peopie Welcome to Jenkins!

- Build History

Please create new jobs to get started

. Manage Jenkins
‘. My Views

4. Credentials

Bulld Gueue -

Mo bullds In the queue

Bulid Executor Status =

Page generated: Sep 23, 2016 3:18:43 PM UTC

REST AP

Figure 2-67. The Jenkins Dashboard

10. On the primary node (nodel), execute the following command to check if there
is a directory named jenkins_admin under /opt/jenkins/users. As shown in
Figure 2-68.

vagrant@nodel: /S sudo ls -lrt fopt/jenkins/users/

total 4
drwxr-x--- 2 root root 4696 Oct 7 16:11 jenkins_admin
vagrant@nodel:/$

Figure 2-68. List the newly created admin user inside the Jenkins home directory

11. Next, to simulate a failover, we will make the primary node (nodel) on standby.
Nodes that are in standby state continue to run Corosync and Pacemaker but
are not allowed to run resources. Any resource found active on the standby
node will be moved elsewhere. This feature is useful while performing system
administration tasks.

12. Put the active node (nodel) into standby mode using the following command,
and observe the cluster move all the resources to the other node (node2). The
node’s status will change to indicate that it can no longer host resources.

sudo crm node standby primary
13. Execute the crm status command to check the cluster status. You can see in a
while that everything that was running on nodel (primary node) is moved to

node2 (secondary node). See Figure 2-69.

73

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD

vagrant@node2:~5 sudo crm status

Last updated: Thu Oct 13 21:46:30 2016

Last change: Thu Oct 13 21:42:28 2016 via crm_attribute on primary
Stack: corosync

Current DC: primary (1) - partition with quorum

Version: 1.1.10-42f2063

2 Nodes configured

6 Resources configured

Node primary (1): standby
Online: [secondary]

ClusterIP (ocf::heartbeat:IPaddr2): Started secondary
Master/Slave Set: DataClone [Data]

Masters: [secondary]

Stopped: [primary]
Resource Group: FileSystem

WebappsFS (ocf::heartbeat:Filesystem): Started secondary

JenkinsHomeFS (ocf::heartbeat:Filesystem): Started secondary
ApacheTomcat (ocf::heartbeat:tomcat): Started secondary
vagrant@node2:~$ JJ

Figure 2-69. crm status

14. Now, let us check if our data inside the Jenkins home directory (/opt/jenkins) is
intact. To do so, access the Jenkins URL: https://172.17.8.200:8080/jenkins,
as shown in Figure 2-70. You will be asked to log in.

Figure 2-70. Jenkins login page

74

CHAPTER 2 © HA JENKINS SETUP USING PACEMAKER, COROSYNC, AND DRBD
15.
16.

Log in using the user that you created in the previous section.

If you are able to login using the same credentials, as shown in Figure 2-71,
it means the data is intact.

L 172.17.8.200.

*TB 9 4+ A0 =
® Jenkins

@ nikhil pathania | log out

= Mew ltem aracd descrption
& People Welcome to Jenkins!

" Build History

Piease create new jobs o get started

. Manage Jenkins
&. My Views

4. Credentials

Bulld Queus

No bulids In the queue

Build Executor Status

1 lde

2 Ide

Page generated: Sep 23, 2016 3:18:43 PM UTC

RESTAPI

Figure 2-71. The Jenkins Dashboard

Summary

In the current chapter we learned to create a highly available (HA) setup for Jenkins using Pacemaker,
Corosync, and DRBD. This was a classic approach to create a HA solution for Jenkins. In the next chapter we
will take a modern approach to create a HA setup for Jenkins using CoreOS, Docker, and GlusterFS.

75

CHAPTER 3

HA Jenkins Setup Using CoreOS,
Docker, and GlusterFS

Highly available (Active/Passive) setup using Pacemaker, Corosync, and DRBD discussed in the previous
chapter is a stable and proven solution. Nevertheless, in this chapter we are going to try something new and
exclusive; we are going to build a highly available (HA) Jenkins Server using CoreOS, Docker, and GlusterFS.
For the first time you'll see how the clustering feature of CoreOS is utilized to achieve a HA setup for Jenkins.
We will start the chapter by discussing a HA design along with a few failover scenarios. This will give you
clarity on how to proceed, and what to expect out of our HA setup. Next, you will learn to create and start a
HA setup for Jenkins. Lastly, we will test our HA setup by simulating a few failover scenarios.

Designing a High Availability Setup for Jenkins

Failure could occur at the hardware level (machine shutdown/reboot/freeze), Application Server level
(Application Server failure/reboot), or at the service level (the service itself fails to start). High Availability
ensures that a service or a group of services is available continuously without any interruption. Every

HA system comes with a Failover mechanism. This mechanism ensures that the controls of the primary
system are transferred to a secondary system (replica of the primary system) if there are any failures on the
primary system. To detect failures, every HA setup has a feature to check the health of the hardware and the
applications that are being served. Figure 3-1 is a typical HA setup (Active/Passive).

© Nikhil Pathania 2017 77
N. Pathania, Pro Continuous Delivery, DOI 10.1007/978-1-4842-2913-2_3

CHAPTER 3 © HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

User/Client

; P Virtual IP

\ Application Server + Application Server

L —Sync

E\ Storage i i Storage 5
Passive Node Active Node

Figure 3-1. A typical Active/Passive HA setup

HA Setup for Jenkins

Figure 3-2 depicts how our HA setup for Jenkins will look. There are three CoreOS machines Host1, Host2,
and Host3. Each CoreOS machine is running a GlusterFS Server(marked as G) inside a container. All the
GlusterFS Servers are in sync, and each GlusterFS Server is aware of the other. There is also a Jenkins
Server(marked as J) running inside a container on one of the Hosts.

The Jenkins Server is in communication with one of the GlusterFS Servers that is running on the same
Host. This communication is possible, since the docker image that we are using to run the Jenkins Server
also contains a GlusterFS client. The GlusterFS client is aware of all the three GlusterFS servers.

Whether it’s a build or a configuration change, everything that happens on the Jenkins Server is stored
inside the jenkins_home directory, thus making the data inside the jenkins_home redundant is of utter
most importance. This is the reason why we are using Jenkins in collaboration with GlusterFS.

The Jenkins Server is accessible to the outside world using a virtual IP (Figure 3-2).

78

CHAPTER 3 © HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

Host 1 Host2 Host3

.

- Running docker container
ERunning coreos server

Figure 3-2. Jenkins HA setup

Failover Scenarios

Let us understand how our HA setup should react to failures of various types. Shown in Figure 3-3 is a
failover scenario in which the GlusterFS Server that is running on Host2 fails or is disconnected. In this
situation the Jenkins Server, or shall we say the GlusterFS client, running on the Jenkins Server should
automatically connect to any one of the remaining GlusterFS Servers running on Host1 or Host3.

79

CHAPTER 3 * HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

Host 1 Host2 Host3

- Running docker container : i Offline docker container

ERunning coreos server

Figure 3-3. Failover senario 1

Shown in Figure 3-4 is another failover scenario wherein the CoreOS Host2 that is running the Jenkins
Server and one of the GlusterFS servers fails or gets disconnected.

80

CHAPTER 3 © HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

i % I

- Running docker container i Offline docker container
ERunning coreos server IZOmine coreos server

Figure 3-4. Failover senario 2

In such a situation the Jenkins Server should automatically start on any of the remaining CoreOS hosts,
and it should connect with the GlusterFS server on that host. The failed GlusterFS Server need not start
anywhere else as there are already other GlusterFS Servers running on the remaining CoreOS hosts.

The following scenario in Figure 3-5 is not that important. However, it is also a failure.

81

CHAPTER 3 * HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

- Running docker container i Offline docker container

Offline coreos server

ERunnlng coreos server |

—
-

Figure 3-5. Failover senario 3

Creating a HA Cluster for Jenkins

In the following section we will realize the HA setup design discussed in the previous section; see Figure 3-2.
Jenkins HA setup. We are going to use Vagrant along with Oracle VirtualBox to create the three CoreOS
hosts. Once the CoreOS hosts (Host 1, Host 2, and Host 3) are ready, we will create unit files for Jenkins
and GlusterFS respectively. The unit files for Jenkins, when executed, will start the Jenkins Server inside a
docker container on one of the CoreOS host. Similarly, the unit file for GlusterFS, when executed, will start
GlusterFS Servers inside a docker container on all the CoreOS hosts. These systemd units (Jenkins Server
and GlusterFS Servers) will be managed using fleet.

Note While writing this chapter, | have chosen a machine with Ubuntu 16.04 0S. You can perform the
setup mentioned in the chapter on Windows 7/8/10 without any issues.

For simplicity | am using Vagrant along with Oracle VirtualBox to create the three CoreOS host machines.
However, in reality you may choose to create the three Core0S hosts on three bare metal machines or using a
cloud platform like AWS.

82

CHAPTER 3 © HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

Installing Vagrant

To install Vagrant on Ubuntu, follow the steps below. Make sure you perform these steps as a root or with an
account having root privileges (sudo access).

1. Open up a terminal and type the following commands to download Vagrant.
wget https://releases.hashicorp.com/vagrant/1.8.5/vagrant_1.8.5 x86_64.deb
(or)

You can also download the latest Vagrant package from the Vagrant website (Figure 3-6):
https://www.vagrantup.com/downloads.html

Download - Vagrant by HashiCorp - Mozilla Firefox

W Download -Vagran...

€ 9 a www.vagrantup.com/dow ¢ | Q s WA »|=
.. WINDOWS
. Universal (32 and 64-bit)

") DEBIAN
\L) 64-bit | 32-bit

s, CENTOS

L —
| 32-bit | 64-bit

Figure 3-6. Vagrant download webpage

Note Use the latest version of Vagrant and VirtualBox available. Using an older version of Vagrant with a
newer version of VirtualBox or vice versa may result in issues while creating Vms.

2. After the download is complete you should see a .deb file.

83

https://www.vagrantup.com/downloads.html

CHAPTER 3 © HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

3. Execute the following commands to install Vagrant using the downloaded
package file. You may be prompted to provide a password.

sudo dpkg -i vagrant_ 1.8.5 x86_64.deb
sudo apt-get install -f

4. Once the installation is complete, check the installed version of Vagrant by
executing the following command.

vagrant --version

5. Youshould see the Vagrant version as shown in Figure 3-7.

nikhil@devo1i:~/Downloads$ vagrant --version
Vagrant 1.8.5
nikhil@deve1:~/Downloadss$]

Figure 3-7. Checking Vagrant version

Installing VirtualBox

Vagrant needs Oracle VirtualBox to create virtual machines. However, it's not limited to just Oracle
VirtualBox; you can use VMware and AWS too.

Note To run Vagrant with either VMware or AWS visit the following webpage: https: //www.vagrantup.
com/docs/getting-started/providers.html

Follow the steps below to install Oracle VirtualBox on your machine.

1. Add the following line to your sources.list file present inside the directory
/etc/apt:

deb http://download.virtualbox.org/virtualbox/debian xenial contrib

Note According to your Ubuntu distribution, replace 'xenial' by 'vivid', 'utopic’, ‘trusty', 'raring’, 'quantal’,
'precise’, 'lucid', 'jessie’, 'wheezy', or 'squeeze’.

2. Download and register the keys. The output of these commands should be
similiar to as shown in Figure 3-8.

wget -q https://www.virtualbox.org/download/oracle vbox 2016.asc -0- |
sudo apt-key add -

wget -q https://www.virtualbox.org/download/oracle_vbox.asc -0- | sudo
apt-key add -

84

https://www.vagrantup.com/docs/getting-started/providers.html
https://www.vagrantup.com/docs/getting-started/providers.html

CHAPTER 3 © HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

nikhil@devo1:~5 sudo wget -q https://www.virtualbox.org/download/oracle_vbox_201
6.asc -0- | sudo apt-key add -

oK

nikhil@devei:~$ sudo wget -gq https://www.virtualbox.org/download/oracle_vbox.asc
-0- | sudo apt-key add -

oK

nikhilgdeve1i:~5 [J

Figure 3-8. Download and register the VirtualBox keys

3. To install VirtualBox, execute the following commands.
sudo apt-get update
sudo apt-get install virtualbox-5.1

4. Execute the following command to see the installed VirtualBox version, as
shown in Figure 3-9.

VBoxManage --version

nikhil@devoi:~5 VBoxManage --version
5.1.6r110634
nikhil@devoi:~$ [J

Figure 3-9. Check VirtualBox version

Note Ubuntu/Debian users might want to install the dkms package to ensure that the VirtualBox host
kernel modules (vboxdrv, vboxnetflt, and vboxnetadp) are properly updated if the Linux kernel version changes
during the next apt-get upgrade. For Debian it is available in Lenny backports and in the normal repository for
Squeeze and later. The dkms package can be installed through the Synaptic Package manager or through the
following command:

sudo apt-get install dkms

Creating the CoreOS Host Machines

In order to create the CoreOS hosts using Vagrant we need to download the Vagrantfile for CoreOS. A
Vagrantfile is a manuscript that describes how to build a virtual machine. Follow the steps below to
download the Vagrantfile for CoreOS.

1. Make sure GIT is installed on your machine. If not, then install GIT using the
following commands.

sudo apt-get update

sudo apt-get install git

85

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 3 © HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

Execute the following command to clone the coreos-vagrant repository from
GitHub.

git clone https://github.com/coreos/coreos-vagrant.git
Go to the directory coreos-vagrant and list the files inside it. See Figure 3-10.
cd coreos-vagrant

1s -1rt

nikhil@devol:~/coreos-vagrants 1s -1rt

total 52

-rw-rw-r-- 1 nikhil nikhil 4900 Sep 19 19:38 Vagrantfile
-rw-rw-r-- 1 nikhil nikhil 1349 Sep 19 19:38 user-data.sample
-rw-rw-r-- 1 nikhil nikhil 4150 Sep 19 19:38 README.md
-rw-rw-r-- 1 nikhil nikhil 126 Sep 19 19:38 NOTICE
-rw-rw-r-- 1 nikhil nikhil 104 Sep 19 19:38 MAINTAINERS
-rw-rw-r-- 1 nikhil nikhil 11325 Sep 19 19:38 LICENSE
-rw-rw-r-- 1 nikhil nikhil 1422 Sep 19 19:38 DCO

-rw-rw-r-- 1 nikhil nikhil 2448 Sep 19 19:38 CONTRIBUTING.md
-rw-rw-r-- 1 nikhil nikhil 3378 Sep 19 19:38 config.rb.sample
nikhil@deve1:~/coreos-vagrant$ fj

Figure 3-10. List the files inside the coreos-vagrant folder

The files Vagrantfile, user-data.sample, and config.rb.sample need some modifications.

4,
5.

86

Rename the file config.rb.sample to config.rb and open it for editing.

Search for the variable $num_instances and change its value from 1 to 3, as
shown below.

Size of the CoreOS cluster created by Vagrant
$num_instances=3

Search for the variable $update_channel, uncomment it, and change its value
from alpha to stable, as shown below.

Official CoreOS channel from which updates should be downloaded
$update_channel="stable'

Search for the variable $expose_docker_tcp and uncomment it, as shown below.
$expose_docker_tcp=2375

Save and exit the file config.rb.
Now, rename the file user-data.sample to user-data and open it for editing.

Search for the variable discovery: and uncomment it.

discovery: https://discovery.etcd.io/<token>

CHAPTER 3 © HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

11. Provide the address https://discovery.etcd.io/new?size=3 in your web
browser and copy the response, as shown in Figure 3-11.

€ ©Oa sery.eted.io/newsiz | Q T B » =

https://discovery.etcd.10/7b2ba3d5c89938b886d2fadd2dddadde

Figure 3-11. Discovery token
12. Substitute the token value in place of <token>, as shown below.
https://discovery.etcd.io/7b2ba3d5c89938b886d2fasd2dddadde

13. Save and exit the file user-data.

Starting the Virtual Machines

Starting the VMs is simple.

1. Move to the coreos-vagrant directory and run the vagrant command to start the VMs.

cd coreos-vagrant
vagrant up
2. The vagrant up command should execute without any errors.

3. To check the status of the VMs, execute the command vagrant status. The output
of the vagrant status command is shown in Figure 3-12.

nikhil@devol:~/coreos-vagrant$ vagrant status
Current machine states:

core-01 running (virtualbox)
core-02 running (virtualbox)
core-03 running (virtualbox)

This environment represents multiple VMs. The VMs are all listed
above with their current state. For more information about a specific
VM, run ‘vagrant status NAME .

nikhil@devei:~/coreos-vagrants [J

Figure 3-12. List the running VMs
87

https://discovery.etcd.io/new?size=3
https://discovery.etcd.io/7b2ba3d5c89938b886d2fa4d2ddda8de

CHAPTER 3 © HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

4. Tologin to any one of the VMs use the Vagrant ssh command as shown in

Figure 3-13.
vagrant ssh core-01 -- -A
nikhil@devol:~/coreos-vagrant$ vagrant ssh core-01 -- -A

Core0s stable (1122.2.0)
Last login: Mon Sep 19 15:13:36 2016 from 10.8.2.2
core@core-01 ~ 5 i

Figure 3-13. Log in to CoreOS host

5. To know the IP address of our new VM, execute the ip route command. Notice
the highlighted IP in Figure 3-14. That’s the IP of our new core-01 host.

core@core-01 ~ $ ip route

default via 10.0.2.2 dev ethe proto dhcp src 10.6.2.15 metric 1024
10.0.2.0/24 dev ethe proto kernel scope link src 10.0.2.15
10.0.2.2 dev eth® proto dhcp scope link src 10.0.2.15 metric 1024
10.1.0.0/16 dev flannel® proto kernel scope link src 10.1.58.0
172.17.8.0/24 dev ethl proto kernel scope link src [NFISEIETSGH!
core@core-01 ~ 5]

Figure 3-14. List the IP address of the new CoreOS host

6. All the three CoreOS host machines are part of a cluster and are aware of each
other. This can be confirmed by executing the following fleetctl command. See
Figure 3-15.

fleetctl list-machines

core@core-01 ~ § fleetctl list-machines

MACHINE IP METADATA
0e8187f9... 172.17.8.1602 -
35c4295e... 172.17.8.101 =
baeasdasg... 172.17.8.103 -

core@core-01 ~ $]

Figure 3-15. List the machines using the fleetctl command

7. To list the running units execute the fleetctl list-units command, as shown in
Figure 3-16. Right now there are no units running on any of the coreos VMs, so
the list is empty.

core@core-01 ~ 5§ fleetctl list-units
UNIT MACHINE ACTIVE SUB
core@core-01 ~ §

Figure 3-16. List the units

8. To see the docker version, execute the command docker -version, as shown in
Figure 3-17.

core@core-01 ~ $ docker --version
Docker version 1.10.3, build 1f8f545
core@core-01 ~ §

Figure 3-17. Print the docker version
88

CHAPTER 3 © HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

9. To list the network interfaces, execute the ifconfig command. Note the IP address
from the Figure 3-18.

core@core-01 ~ 5 ifconfig

dockerd: flags=4099<UP,BROADCAST,MULTICAST> mtu 1580
inet 10.1.58.1 netmask 255.255.255.6 broadcast 6.6.6.0
ether ©2:42:15:53:dd:10 txqueuelen © (Ethernet)
RX packets @ bytes 0 (0.0 B)
RX errors @ dropped & overruns @ frame @
TX packets 8@ bytes 6 (8.8 B)
TX errors © dropped © overruns 8 carrier 8 collisions @

ethd: flags=4163<UP,BROADCAST ,RUNNING,MULTICAST> mtu 1508
inet 10.0.2.15 netmask 255.255.255.6 broadcast 10.8.2.255
inet6s fe80::200:27ff:fec2:3b90 prefixlen 64 scopeild Ox20<link>
ether 88:00:27:c2:3b:90 txqueuelen 1088 (Ethernet)
RX packets 14220 bytes 9816603 (9.3 MiB)
RX errors © dropped & overruns @ frame @
TX packets 7415 bytes 504095 (492.2 KiB)
TX errors @ dropped ® overruns ® carrier ® collisions @

ethl: flags=4163<UP,BROADCAST ,RUNNING,MULTICAST> mtu 1500

inet

netmask 255.255.255.8 broadcast 172.17.8.255

inet6 fe80::a00:27ff:feea:ad43e prefixlen 64 scopeid Ox20<link>
ether 08:00:27:ea:a4:3e txqueuelen 1000 (Ethernet)

RX packets 527595 bytes 52481389 (49.9 MiB)

RX errors © dropped ® overruns @ frame @

TX packets 528945 bytes 52523689 (56.8 MiB)

TX errors © dropped © overruns © carrier ® collisions @

flannel®: flags=4305<UP,POINTOPOINT,RUNNING,NOARP,MULTICAST> mtu 1472
inet 10.1.58.8 netmask 255.255.8.8 destination 18.1.58.8
inet6 feB80::6e6e:b2c2:1e62:3e11 prefixlen 64 scopeid Ox20<link>
unspec 60-060-60-00-00-00-00-00-00-00-00-00-00-00-00-00 txqueuelen 500 (UNSPEC)
RX packets @ bytes 8 (8.8 B)
RX errors & dropped ® overruns @ frame @
TX packets 4 bytes 216 (216.8 B)
TX errors @ dropped @ overruns 8 carrier 8 collisions @

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536

inet 127.0.0.1 netmask 255.0.0.0

ineté :: prefixlen 128 scopeid ©x1@<host>
loop txqueuelen 1
RX packets 109723 bytes 23599444 (22.5 MiB)

RX errors © dropped © overruns @ frame @

TX packets 109723 bytes 23599444 (22.5 MiB)

TX errors & dropped © overruns 8 carrier 8 collisions @

core@core-01 ~ § I

(Local Loopback)

Figure 3-18. List the network interfaces

Creating Unit Files

Unit files describe how to run and monitor a service and lots more. The service can be a script, a simple
command, or a docker container.

Creating Unit Files for Jenkins Server

For the Jenkins Server we will create two unit files named, jenkins_a@.service and jenkins_b@.service.
The first unit file will be used to run the Jenkins Server inside a docker container. The second unit will be
used to make a configuration on the docker container created by the first unit file.

1. Login to the core-01 host using the command vagrant ssh command.

vagrant ssh core-01 -- -A

89

CHAPTER 3 © HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

90

The CoreOS is a lightweight Linux OS with minimalistic features. Hence, we have
to manage with the VI editor. To create a file, execute the following command.

vi jenkins_a@.service
Press the Insert button and then paste the following code inside the file.

[Unit]
Description=Jenkins Master Server with GlusterFS client

After=docker.service
Requires=docker.service

Before=jenkins_b@%i.service
Wants=jenkins_b@%i.service

[Service]

TimeoutStartSec=0

ExecStartPre=-/usr/bin/docker kill jenkins%i
ExecStartPre=-/usr/bin/docker rm jenkins%i

ExecStartPre=/usr/bin/docker pull nikhilpathania/jenkins glusterfs client
ExecStartPre=/usr/bin/sudo /usr/bin/ip addr add 172.17.8.200/24 dev ethl

ExecStart=/usr/bin/docker run --privileged --name jenkins%i -p 8080:8080
nikhilpathania/jenkins_glusterfs client

ExecStop=/usr/bin/docker stop jenkins%i
ExecStopPost=/usr/bin/sudo /usr/bin/ip addr del 172.17.8.200/24 dev eth1

[X-Fleet]
Conflicts=jenkins_a@*.service

Click Ctl+x then type :wq! to save and exit the file.

Now create the jenkins_b@. service file using the vi command.
vi jenkins_a@.service
Press the Insert button and then paste the below code inside the file.

[Unit]
Description=Mount /var/jenkins_home to /volumel

After=docker.service
Requires=docker.service

After=jenkins_a@%i.service
Requires=jenkins_a@%i.service
BindsTo=jenkins_a@1.service

[Service]
TimeoutStartSec=0

CHAPTER 3 © HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

ExecStart=/usr/bin/docker exec -u root jenkins%i /bin/bash -c 'cp

-R /var/jenkins_home /var/jenkins_home_backup && mount.glusterfs
172.17.8.101:/volumel /var/jenkins_home &% if ["$(1s -A /var/jenkins_
home)"]; then echo "jenkins_home directory is in sync with GlusterFS
Server"; else cp -R /var/jenkins_home_backup/. /var/jenkins_home; fi &&
chown -R jenkins:jenkins /var/jenkins_home'

RestartSec=30
Restart=on-failure

[X-Fleet]
MachineOf=jenkins a@%i.service

Click Ctl+x then type :wq! to save and exit the file.

Creating Unit Files for GlusterFS Server

For the GlusterFS Servers we will create a single files glusterfs_a@. service. The unit file will be used to run
the GlusterFS Server inside a docker container on all the three CoreOS hosts.

1.

Log in to the core-01 host using the command vagrant ssh command.
vagrant ssh core-01 -- -A

To create a file, execute the following command.

vi glusterfs_a@.service

Press the Insert button and then paste the code below inside the file.

[Unit]
Description=Glusterfs Server

After=docker.service
Requires=docker.service

Before=glusterfs_b@%i.service
Wants=glusterfs b@%i.service

[Service]

TimeoutStartSec=0

ExecStartPre=-/usr/bin/docker kill glusterfs%i
ExecStartPre=-/usr/bin/docker rm glusterfsii

ExecStartPre=/bin/bash -c 'if [[$(docker images --format
"{{.Repository}}" gluster/gluster-centos:latest)]]; then echo
"image gluster/gluster-centos:latest already exists"; else /usr/bin/
docker pull gluster/gluster-centos:latest; fi'

ExecStart=/usr/bin/docker run --privileged --name glusterfs%i
--net=host -p 22:22 gluster/gluster-centos:latest

91

CHAPTER 3 © HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

ExecStop=/usr/bin/docker stop glusterfs¥ki
ExecStopPost=-/usr/bin/docker rmi gluster/gluster-centos:last
ExecStopPost=/bin/bash -c '/usr/bin/docker tag gluster/gluster-
centos:latest gluster/gluster-centos:last &% /usr/bin/docker rmi
gluster/gluster-centos:latest &% /usr/bin/docker commit glusterfs¥%i
gluster/gluster-centos:latest’

[X-Fleet]
Conflicts=glusterfs_a@*.service

4. Click Ctl+x then type :wq! to save and exit the file.

5. Listall the files that we have created using the Is command, as shown in Figure 3-19.

coref@core-01 ~ § 1s -1rt

total 24

-rw-r--r--. 1 core core 699 Sep 20 13:36 jenkins_a@.service
-fW-r--r--. 1 core core 680 Sep 20 13:37 jenkins_b@.service
-rW-r--r--, 1 core core 962 Sep 21 17:14 glusterfs_a@.service
core@core-01 ~ $ [I

Figure 3-19. List the unit files

Starting the Cluster

We are ready with our unit files. We will be using fleetctl commands to start our GlusterFS Server and
Jenkins units. First we will start the GlusterFS Server on each of the CoreOS hosts. And then we will do a little
configuration on one of the GlusterFS server. Then once all the GlusterFS servers are up and configured, we
will start our Jenkins Server.

Starting the GlusterFS Servers

We are done creating the unit files for Jenkins as well as GlusterFS. Now let us start the GlusterFS service on
each of the cluster nodes.

1. To start the GlusterFS servers, execute the following command, as shown in
Figure 3-20.

fleetctl start glusterfs_a@{1,2,3}.service

core@core-01 ~ § fleetctl start glusterfs_a@{1,2,3}.service
Unit glusterfs_a@l.service inactive

Unit glusterfs_a@2.service inactive

Unit glusterfs_a@3.service inactive

Unit glusterfs_a@3.service launched on b40a8da9.../172.17.8.103
Unit glusterfs_a@2.service launched on 35c4295e.../172.17.8.101
Unit glusterfs_a@l.service launched on 0e8187f9.../172.17.8.102
core@core-01 ~ § l

Figure 3-20. Starting the GlusterFS Servers

2. To check the status of the units that we just started do,

fleetctl list-units
92

CHAPTER 3 © HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

3. From Figure 3-21, we can see that the status of all three units is still activating.
It will take some time (depending on you network speed) as fleet is downloading
the GlusterFS docker image from the docker hub.

core@core-01 ~ $ fleetctl list-units

UNIT MACHINE ACTIVE suB

glusterfs_a@l.service 0eB8187f9.../172.17.8.1082 activating start-pre
glusterfs_a@2.service 35c4295e.../172.17.8.101 activating start-pre
glusterfs_a@3.service b46as8da9.../172.17.8.163 activating start-pre

core@core-01 ~ §

Figure 3-21. List the Units

4. To know what’s happening behind the scene, execute the following command.
You should get an output similar to the one shown in Figure 3-22.

fleetctl status glusterfs a@2.service

®glusterfs_a@2.service - Glusterfs Server
Loaded: loaded (/run/fleet/units/glusterfs_a@2.service; linked-runtime; vendor preset: disabled)
Active: activating (start-pre) since Wed 2016-09-21 18:16:05 UTC; émin agn
Process: 4489 ExecStartPre=/usr/bin/docker rm glusterfsxi xit
Process: 4482 ExecStartPre=fusr/bin/docker kill glusterfs¥i de=e
Main PID: 2773 (code=exited, status=137); : 4497 (bash)

Tasks: 6
CGroup: {Ezsten slice/system-glusterfs_a.slice/glusterfs_a@2.service
ontrol

I:-NQT /binfbash -c if [[S(docker images --format "{{.Repository}}" gluster/gluster-c
4503 fusr/bin/docker pull gluster/gluster-centos:latest

Sep core-01 bash[4497]: 1b781115d2eb: Waiting

Sep core-01 bash[4497]: @ec@8d1764ed: Waiting

Sep core-01 bash[4497]: eid611ab84e9: Waiting

sep core-01 bash[4497]: beaeB58c2fc8: Waiting

Sep core-01 bash[4497]: bb5dadeé6286b: Waiting

sep core-01 bash[4497]: 9bd8ccde3fel: Waiting

Sep core-01 bash[4497]: 7d25ca733a91: Waiting

sep core-01 bash[4497]: 9576315e68a8: Waiting

Sep core-01 bash[4497]: 1076f819c26d: Verifying Checksum
Sep core-81 bash[4497]: 1876f819c26d: Download complete

Figure 3-22. Fleetctl status command

5. You can also use the following command to get a live status about the unit.

fleetctl journal -f glusterfs_a@2.service

6. Oryou can use the following command to list the last 50 lines from the log file
that will give you some idea about the unit.

fleetctl journal -lines 50 glusterfs_a@2.service

7. Run the fleetctl list-units command again and now you can see all the GlusterFS
Servers that have been started and are active. As shown in Figure 3-23.

93

CHAPTER 3 * HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

core@core-01 ~ 5§ fleetctl list-units

UNIT MACHINE ACTIVE SUB

glusterfs_a@l.service 0e8187f9.../172.17.8.102 active running
glusterfs_a@2.service 35c4295e.../172.17.8.101 active running
glusterfs_a@3.service b40a8da9.../172.17.8.103 active running

core@core-01 ~ $]

Figure 3-23. List the Units

8. Run the fleectl status glusterfs_a@2.service command again. And you should
see something as shown in Figure 3-24.

core@core-01 ~ § fleetctl status glusterfs_a@2.service
@®glusterfs_a@2.service - Glusterfs Server
Loaded: loaded (/run/fleet/units/glusterfs_a@2.service; linked-runtime; vendo
Active: active (running) since Wed 2016-09-21 18:51:35 UTC; 3min 15s ago
Process: 4497 ExecStartPre=/binfbash -c if [[$(docker images --format "{{.Rep
Process: 4489 ExecStartPre=/usr/bin/docker rm glusterfs¥i (code=exited, status
Process: 4482 ExecStartPre=fusr/binfdocker kill glusterfs%i (code=exited, stat
Main PID: 4780 (docker)
Tasks: 5
CGroup: {iysten.sllcefsysten-glusterfs_a.sltce{glusterfs_aez.servlce
4780 fusr/bin/docker run --privileged --name glusterfs2 --net=host

Sep 21 18:51:31 core-01 bash[4497]: bb5dad06286b: Pull complete

Sep 21 18:51:33 core-01 bash[4497]: 9bd8ccdO30el: Pull complete

Sep 21 18:51:33 core-01 bash[4497]: 9bd8ccd®3Bel: Pull complete

Sep 21 18:51:33 core-01 bash[4497]: 7d25ca733a91: Pull complete

Sep 21 18:51:34 core-01 bash[4497]: 7d25ca733a91: Pull complete

Sep 21 18:51:34 core-01 bash[4497]: 9576315e08a8: Pull complete

Sep 21 18:51:35 core-01 bash[4497]: 9576315e08a8: Pull complete

Sep 21 18:51:35 core-01 bash[4497]: Digest: sha256:dfbfe9e563f5832711a1323e123b9
Sep 21 18:51:35 core-01 bash[4497]: Status: Downloaded newer image for gluster/g
Sep 21 18:51:35 core-01 systemd[1]: Started Glusterfs Server.

Figure 3-24. Fleetctl status command

9. Give the following command to see the list of containers running on the
core-01 host. From Figure 3-25, you can see a docker image named
gluster/gluster-ce ntos:latest.

docker ps

coregcore-01 ~ § docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS MNAMES
b962e9811ae4 gluster/gluster-centos:latest °jfusr/sbin/init® 7 minutes ago Up 7 minutes glusterfs2
coregcore-01 - 5 I

Figure 3-25. List the docker containers

Exercise:
Log in to the remaining CoreOs hosts and execute the above commands and check the output.

94

CHAPTER 3 © HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

Configuring the GlusterFS Servers

Our GlusterFS service is up and running. We will now manually configure one among the three GlusterFS
services.

1. Login to the core-01 host using the command vagrant ssh command.
vagrant ssh core-01 -- -A

2. We will now access the GlusterFS Server named glusterfs2, which is running on
core-01 using the docker exec command. You will be logged in as a root user on

the glusterfs2 Server, as shown in Figure 3-26.

docker exec -it glusterfs2 /bin/bash

core@core-081 ~ § docker exec -it glusterfs2 /bin/bash
[root@core-01 /]# fi

Figure 3-26. Access the GlusterFS Server container

3. To probe the other GlusterFS Servers that are running on core-02 and core-03,
we will use the gluster peer probe command.

4. First probe the GlusterFS server running on core-02.
gluster peer probe 172.17.8.102

5. This should return the following.
peer probe: success.

6. Similarly probe the GlusterFS server running on core-03.
gluster peer probe 172.17.8.103

7. Try probing the GlusterFS Server that you are currently inside.
gluster peer probe 172.17.8.101

8. Itshould return the following.
peer probe: success. Probe on localhost not needed

9. To get the status of peer probe, execute the command gluster peer status, as
shown in Figure 3-27.

95

CHAPTER 3 © HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

[root@core-01 /]# gluster peer status
Number of Peers: 2

Hostname: 172.17.8.102
Uuid: alaS@5ae-d49d-4f55-8018-953454ffF5323
State: Peer in Cluster (Connected)

Hostname: 172.17.8.103

Uuid: 15f32a94-b45d-4d5e-b236-54b3d845e302
State: Peer in Cluster (Connected)
[root@core-01 /1% |}

Figure 3-27. Gluster peer status

10. We will now create a volume that will be replicated across the GlusterFS Servers.

To do so, execute the following command.

gluster volume create volumel replica 3 transport tcp 172.17.8.101:/gluster

172.17.8.102:/gluster 172.17.8.103:/gluster force

11. You should see a similar output,

volume create: volumel: success: please start the volume to access data

12. To start the volume, do the following:
gluster volume start volumel

13. This should give an output,
volume start: volumel: success

14. To see the volume status, execute the following command. You should see an
output similar to the one shown in Figure 3-28.

gluster volume info

[root@core-81 /f]# gluster volume info

Volume Name: volumel

Type: Replicate

Volume ID: de3f4939-eS5cf-4e2a-8bd8-9dd9dffdcBce
Status: Started

Number of Bricks: 1 x 3 = 3
Transport-type: tcp

Bricks:

Brick1: 172.17.8.101:/gluster
Brick2: 172.17.8.102:/gluster
Brick3: 172.17.8.103:/gluster
Options Reconfigured:
transport.address-family: inet
performance.readdir-ahead: on
nfs.disable: on

[root@core-01 /]# |}

Figure 3-28. Gluster volume info

96

CHAPTER 3 " HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

15. You can also give the following command. Figure 3-29 shows a different view of
the volume status.

gluster volume status

[root@core-81 /]# gluster volume status
Status of volume: volumel

Gluster process TCP Port RDMA Port Online Pid
Brick 172.17.8.101:/gluster 49152 0 Y 369
Brick 172.17.8.102: /gluster 49152 0 Y 229
Brick 172.17.8.103:/gluster 49152 e | 221
Self-heal Daemon on localhost N/A N/A Y 389
Self-heal Daemon on 172.17.8.103 N/A N/A Y 241
Self-heal Daemon on 172.17.8.162 NJA N/A Y 251

Task Status of Volume volumel

There are no active volume tasks

[root@core-01 /1% |}

Figure 3-29. Gluster volume status

16. Type exit to come out of the container.

Starting Jenkins Server

GlusterFS services are now running on all of the three nodes. Let us now start the Jenkins service using the
unit file that we created earlier.

1. To start the Jenkins units, execute the following command. You should get the
launch status on the unit as shown in Figure 3-30.

fleetctl start jenkins_a@1.service

core@core-01 ~ § fleetctl start jenkins_a@l.service

Unit jenkins_a@l.service inactive

Unit jenkins_a@l.service launched on 0e8187f9.../172.17.8.102
core@core-01 ~ §

Figure 3-30. Starting the Jenkins Server

2. We can give the command fleetctl list-units to check the status of our units, as
shown in Figure 3-31.

coreficore-81 ~ § fleetctl list-units

UNIT MACHINE ACTIVE sus
glusterfs_a@l.service 0e8187f9.../172.17.8.1082 active running
glusterfs_a@2.service 35c4295e.../172.17.8.101 active running
glusterfs_a@3.service b40ag8da9.../172.17.8.103 active running
jenkins_a@1.service Be8187f9.../172.17.8.102 activating start-pre

core@core-01 ~ §
Figure 3-31. List the units

97

CHAPTER 3 © HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

3. Open a new terminal and log in to the host where Jenkins is about to start, in our
case it’s core-02. See Figure 3-32.

vagrant ssh core-02 -- -A

nikhil@devol:~/coreos-vagrant$ vagrant ssh core-02 -- -A
Core0S stable (1122.2.8)

Last login: Thu Sep 22 16:12:47 2016 from 10.0.2.2
core@core-02 ~ $]

Figure 3-32. Log in to CoreOS host running the Jenkins Server

4. Check the status of Jenkins unit by executing the following command. You
should see a similar output as shown in Figure 3-33.

fleetctl status jenkins_a@1.service

core@core-02 ~ § fleetctl status jenkins_a@l.service

® jenkins_a@l.service - Jenkins Master Server with GlusterFS client
Loaded: loaded (/run/fleet/units/jenkins_a@l.service; linked-runtime; vendor
Active: activating (start-pre) since Thu 2016-69-22 16:08:57 UTC; 5min ago

Process: 2286 ExecStartPre=/usr/bin/docker rm jenkins%i (code=exited, status=1
Process: 2279 ExecStartPre=fusr/bin/docker kill jenkins¥i (code=exited, status
Control: 2293 (docker)

Tasks: 4

CGroup: [system.slice/system-jenkins_a.slice/jenkins_a@l.service

Lcontrol
L2293 fusr/bin/docker pull nikhilpathania/jenkins_glusterfs_client

:52 core-02
:52 core-02
:52 core-02
:52 core-02
:53 core-02
:53 core-02
:53 core-02
:53 core-02
:57 core-02
:57 core-02
1 (END)

docker[2293]:
docker[2293]:
docker[2293]:
docker[2293]:
docker[2293]:
docker[2293]:
docker[2293]:
docker[2293]:
docker[2293]:

docker[2293]:

Figure 3-33. Fleetctl status command

5.

Or you can also try,

fleetctl journal -lines

(Or)

8b357fc28db9:
8b357fc28db9:
1a614fcbdbib:
1a614fcb4bib:
6dbsbsfe26fe:
6dbobsfez26fe:
1fcd29499236:
1fcd29499236:
2af63ead7fda:
2af63ead7fda:

Pull complete
Pull complete
Pull complete
Pull complete
Verifying Checksum
Download complete
Pull complete
Pull complete
Verifying Checksum
Download complete

50 jenkins_a@1.service

fleetctl journal -f jenkins_a@1.service

6. Keep checking the status of the units using the fleetctl list-units command unit
until you see the Jenkins unit active and running, as shown in Figure 3-34.

98

core@core
UNIT

glusterfs_

glusterfs

glusterfs_

jenkins_a
core@core

CHAPTER 3 © HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

-02 ~ § fleetctl list-units
MACHINE ACTIVE 5SuB
a@l.service 0e8187f9.../172.17.8.102 active running
_a@2.service 35c4295e.../172.17.8.101 active running
a@3.service b40ag8da9.../172.17.8.103 active running
@1.servtie 0e8187f9.../172.17.8.102 active running
-82 ~ §

Figure 3-34. List the units

7.

@ jenkins_ai
Loaded:
Active:

Process:
Process:
Process:
Process:
Main PID:
Tasks:
CGroup:

Sep 22 16:2
Sep 22 16:2
Sep 22 16:2
Sep 22 16:2
Sep 22 16:2
Sep 22 16:2
Sep 22 16:2
Sep 22 16:2
Sep 22 16:2
Sep 22 16:2

Once the Jenkins unit is up and running, check the detailed status by running the
following command, as shown in Figure 3-35.

fleetctl status jenkins_a@1.service

@1.service - Jenkins Master Server with GlusterFS client

loaded (/run/fleet/units/jenkins_a@l.service; linked-runtime; vendor preset: disabled)

active (running) since Thu 2016-89-22 16:20:23 UTC; 4min 1s ago

2565 ExecStartPre=/usr/binfsudo fusr/bin/ip addr add 172.17.8.200/24 dev ethl (code=exited, status=0/SUCCESS)
2293 ExecStartPre=jusr/bin/docker pull ntkhtlpathantafjenktns_glusterfs cltent (ccde-extted status=0/SUCCESS)
2286 ExecStartPre=/usr/binfdocker rm jenkins%i (c ;

2279 ExecStartPre=/usr/binfdocker kill jenkinsxi
2589 (docker)

5

[system.slice/system- jenkins_a.slice/jenkins_ag@l.service

2589 fusr/binfdocker run --privileged --name jenkinsl -p BO80:8886 -p 50000:50000 nikhilpathania/jenkins_glu

1:85 core-82 docker[2589]: Sep 22, 2016 4:21:04 PM hudson.model.DownloadServiceSDownloadable load
1:05 core-82 docker[2589]: INFO: Obtained the updated data file for hudson.tasks.Maven.MavenInstaller
1:85 core-82 docker[2589]: Sep 22, 2616 4:21:05 PM hudson.model.UpdateSite updateData

1:05 core-02 docker[2589]: INFO: Obtained the latest update center data file for UpdateSource default
1:05 core-82 docker[2589]: Sep 22, 2016 4:21:05 PM hudson.WebAppMain$3 run

1:05 core-02 docker[2589]: INFO: Jenkins is fully up and running

1:08 core-02 docker[2589]: Sep 22, 2016 4:21:08 PM hudson.model.DownloadServiceSDownloadable load
1:08 core-02 docker[2589]: INFO: Obtained the updated data file for hudson.tools.JDKInstaller

1:08 core-02 docker[2589]: Sep 22, 2016 4:21:08 PM hudson.model.AsyncPeriodicHorkS1l run

1:88 core-82 docker[2589]: INFO: Finished Download metadata. 20,732 ms

Figure 3-35. Fleetctl status command

8.

Type :q to exit.

Configuring Jenkins Master

Our Jenkins service is up and running. Now we need to run the second unit file jenkins_b@1.service. This

core@core
Unit jenk
Unit jenk
coref@core

unit file will configure the Jenkins service (jenkins_a@1.service).

1. Torunjenkins_b@]l.service, execute the following command, as shown in

Figure 3-36.

fleetctl start jenkins_b@1.service

-01 ~ § fleetctl start jenkins_b@l.service
ins_b@l.service inactive

ins_b@l.service launched on 0e8187f9.../172.17.8.102
-01 ~ §

Figure 3-36. Starting the jenkins configuration unit file

2.

This should not take much time to execute. Check the status by running fleetctl
list-units command. You should see something as shown in Figure 3-37.

99

CHAPTER 3 © HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

core@core-01 ~ § fleetctl list-units

UNIT MACHINE ACTIVE SuB

glusterfs_a@l.service 0e8187f9.../172.17.8.102 active running
glusterfs_a@2.service 35c4295e.../172.17.8.101 active running
glusterfs_a@3.service b406agdag...f172.17.8.103 active running
jenkins_a@1.service 0e8187f9.../172.17.8.102 active running
jenkins_b@l.service 0e8187f9.../172.17.8.102 active running

core@core-01 ~ § I
Figure 3-37. List the units

3. Lastly, you should see something similar to the one shown in Figure 3-38.

core@core-01 ~ 5§ fleetctl list-units

UNIT MACHINE ACTIVE Sue
glusterfs_a@l.service ©0e8187f9.../172.17.8.102 active running
glusterfs_a@2.service 35c4295e.../172.17.8.101 active running
glusterfs_a@3.service b46a8das.../172.17.8.163 active running
jenkins_a@l.service 0e8187f9.../172.17.8.102 active running
jenkins_b@1.service Be8187f9.../172.17.8.102 inactive dead

core@core-01 ~ §]

Figure 3-38. List the units

4. We can check the status of the jenkins_b@]1.service by giving the following
command.

fleetctl status jenkins_b@1i.service

5. Quickly open a new terminal and log in to core-02 host by using the vagrant ssh
command.

vagrant ssh core-02 -- -A

6. Execute the following command to check the running containers, as shown in
Figure 3-39.

docker ps --format "{{.Names}}"

core@core-02 ~ $ docker ps --format "{{.Names}}"
jenkins1

glusterfsi1

core@core-02 ~ $ [}

Figure 3-39. List the running containers

7. You can see the jenkins] container is running on core-02. Let us go inside the
running container and have a look. From the core-02 machine execute the
following command as shown in Figure 3-40.

docker exec -it -u root jenkins1i /bin/bash

core@core-82 ~ $ docker exec -it -u root jenkinsi /bin/bash
root@cdi6b6e6anes: /# i

Figure 3-40. Access the Jenkins Server container

100

CHAPTER 3 © HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

8. Once inside the container execute the following commands to list the files inside
the jenkins_home directory, as shown in Figure 3-41.

cd /var/jenkins_home

1s -1rt

root@cd16b6e6ades: /var/jenkins_home# 1s -1rt
total 47

drwxr-xr-x. 3 jenkins jenkins 4096 Sep 22 17:25 users
drwxr-xr-x. 2 jenkins jenkins 4096 Sep 22 17:25 userContent
drwxr-xr-x. 2 jenkins jenkins 4096 Sep 22 17:25 updates
drwx------ 4 jenkins jenkins 40896 Sep 22 17:25 secrets
-rWw-r--r--. 1 jenkins jenkins 8 Sep 22 17:25 secret.key.not-so-secret
-rWw-r--r--. 1 jenkins jenkins 64 Sep 22 17:25 secret.key
drwxr-xr-x. 2 jenkins jenkins 4096 Sep 22 17:25 plugins
drwxr-xr-x. 2 jenkins jenkins 4896 Sep 22 17:25 nodes
-rw-r--r--. 1 jenkins jenkins 9867 Sep 22 17:25 nodeMonitors.xml
drwxr-xr-x. 3 jenkins jenkins 4096 Sep 22 17:25 logs
drwxr-xr-x. 2 jenkins jenkins 4096 Sep 22 17:25 jobs
-rw-r--r--. 1 jenkins jenkins 4 Sep 22 17:25 jenkins.install.UpgradeWizard.state
drwxr-xr-x. 2 jenkins jenkins 4696 Sep 22 17:25 init.groovy.d
-TW-=--=--=-~ . 1 jenkins jenkins 1712 Sep 22 17:25 identity.key.enc
-rw-r--r--. 1 jenkins jenkins 159 Sep 22 17:25 hudson.model.UpdateCenter.xml
-rw-r--r--. 1 jenkins jenkins 102 Sep 22 17:25 copy_reference_file.log
1

-FW-F--r--. jenkins jenkins 1592 Sep 22 17:25 config.xml
drwxr-xr-x. 10 jenkins jenkins 4096 Sep 22 17:25 war
root@cd16b6e6ades: /var/jenkins_home# []

Figure 3-41. List the files inside the jenkins_home directory

9. Execute the command df -h to check if the mount was a success, as highlighted
in Figure 3-42.

root@cdi16b6e6aded: /# df -h

Filesystem Size Used Avail Use¥% Mounted on
overlay 166 2.3G 13G 16% /
tmpfs 499M 4994 0% /dev
tmpfs 499M 499M 0% /sys/fs/cgroup

2 . >: /volumel 16G G [var/jenkins home
Jdev/sda9 16G 13G 16% fetc/hosts
shm 64M 64M 0% /dev/shm

root@cdi6b6esaces: /# i

Figure 3-42. Check the mount status

10. Our Jenkins is up and running. Let us access it in using the following address
http://172.17.8.200:8080/. See Figure 3-43.

101

CHAPTER 3 * HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

€ (0 172.17.8.200:8080 v2From ¢ | |Q search

Getting Started

Unlock Jenkins

To ensure Jenkins is securely set up by the

(not sure where to find it?) and this file on the server:
/var/jenkins_home/secrets/initialAdminPassword

Please copy the password from either location and
paste it below.

Administrator password

administrator, a password has been written to the log

Figure 3-43. Jenkins initial login page

11. To get the password from the file /var/jenkins_home/secrets/

initialAdminPassword, execute the following command from the CoreOS host

where the Jenkins Server container is running.

docker exec -u root jenkinsi /bin/bash -c 'cat /var/jenkins_home/secrets/

initialAdminPassword'

12. Doing this will fetch the password present inside the file initialAdminPassword.

See Figure 3-44.

corefcore-02 ~ § docker exec -u root jenkinsi fbin/bash -c 'cat fvar/jenkins_home/secrets/initialAadmninPassword"

be341dc5363147fT7af489c2fB4286dae
coregeore-02 ~ 5 i

Figure 3-44. Fetch the initial AdminPassword

13. After you provide the password, the next screen will ask you to select and install

plugins, as shown in Figure 3-45.

102

CHAPTER 3 © HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

€ £ O 172.17.8.200:8080 @ || @Psearch % B »

Getting Started

Customize Jenkins

Plugins extend Jenkins with additional features to support
many different needs.

Install Select plugins

suggested to install

plugins

Install plugins the Select and install

Jenkins community plugins most

finds most useful. suitable for your
needs.

Jenkins 2.21

Figure 3-45. Install plugins

14. Choose any one of the options. I have chosen to install the plugins suggested
by the Jenkins community. The next screen in Figure 3-46 will show you the
progress of installation.

103

CHAPTER 3 © HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

Getting Started

Getting Started

Sty Pl

o LOAP Pgn

ATLATAI00RDRYE

Figure 3-46. Jenkins plugins getting installed

15. Once all the plugins are installed, the next screen will ask you to create an
account, see Figure 3-47. You can either choose to create one or you can proceed
using the existing default admin account. I am trying to create one admin
account as shown below. Once done, click on Save and Finish button, or click on
the Continue as admin button if you have chosen to continue without creating a
new account.

Getting Started

Create First Admin User

Unamams

[

Contem patwerd e

AT2ATEI00RDEYE

Figure 3-47. Creating the first admin account

104

CHAPTER 3 © HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

16. Once done, Jenkins is ready for use. Click on the Start using Jenkins button, as
shown in Figure 3-48.

Getting Started

Jenkins is ready!
Your Jenkins setup is complete.

FT21T.8. 3008080/ 8

Figure 3-48. Jenkins installation complete

17. Figure 3-49 shows a Jenkins dashboard.

Voo -
€ 172.17.8.200 e |2 B 9 +F & 2 =

@ Jenkins - @ niknil pathania | log out

Jeniin

End

= New Item #add descriplion

& Peopie Welcome to Jenkins!

= Build History

Please create new jobs to get started

- Manage Jenkins

& My Views

4. Credentials

Bulld Gueue -

No budlds In the queue
Build Executor Status =

1 Ide

2 lde

Page generated: Sep 23, 2016 31843 PMUTC RESTAPI Jenk

Figure 3-49. Jenkins dashboard

105

CHAPTER 3 © HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

Simulating a Failover

We now have three machine core-01, core-02, and core-03. The status of our services is as shown below:

Jenkins is running on core-02
Glusterfs2 is running on core-01
Glusterfsi is running on core-02
Glusterfs3 is running on core-03

In the previous steps we created an admin user in Jenkins and installed a few basic Jenkins plugins
while setting up Jenkins. All these changes will be stored inside the jenkins_home directory. Let us first see
if these changes have been reflected across our glusterfs cluster of servers.

1. To do this, open three terminals and log in to each CoreOS hosts using the
vagrant ssh command.

2. First we will see what'’s there inside our /var/jenkins_home/users directory.
Execute the following command, as shown in Figure 3-50.

docker exec -it jenkinsi /bin/bash -c 'cd /var/jenkins_home/users && 1ls -lrt'

core@core-02 ~ § docker exec -it jenkinsi /bin/bash -c 'cd fvar/jenkins_homefusers && 1ls -lrt’'
total 4

drwxr-xr-x. 2 jenkins jenkins 40696 Sep 23 17:06 jenkins_admin

core@core-82 ~ 5 I

Figure 3-50. List the Jenkins users

3. Now on the same machine execute the command below, as shown in
Figure 3-51.

docker exec -it glusterfsi /bin/bash -c 'cd /gluster/users 8& 1ls -1rt'

core@core-02 ~ docker exec -it glusterfsi /bin/bash -c 'cd /gluster/users && ls -lrt'
total 8

drwxr-xr-x. 2 1060 1608 4096 Sep 23 17:06 jenkins_admin

core@core-02 ~ §

Figure 3-51. Jenkins users reflecting on the gluster volume

4. Switch to the terminal where you have logged in on core-01 machine. Execute
the following command, as shown in Figure 3-52.

docker exec -it glusterfs2 /bin/bash -c 'cd /gluster/users & 1s -lrt'

core@core-01 ~ $ docker exec -it glusterfs2 /bin/bash -c 'cd /gluster/users && ls -lrt'
total 8

drwxr-xr-x. 2 1000 1000 4096 Sep 23 17:86 jenkins_admin

core@core-01 ~ $

Figure 3-52. Jenkins users reflecting on the gluster volume

106

CHAPTER 3 © HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

5. Switch to the terminal where you have logged in on core-03 machine. Execute
the following command, as shown in Figure 3-53.

docker exec -it glusterfs3 /bin/bash -c 'cd /gluster/users & 1ls -lrt'

coref@core-03 ~ 5 docker exec -it glusterfs3 /bin/bash -c 'cd /gluster/users && ls -lrt'

total 8
drwxr-xr-x. 2 1880 1000 4896 Sep 23 17:06 jenkins_admin
core@core-03 ~ §

Figure 3-53. Jenkins users reflecting on the gluster volume

Failover Scenario 1

GlusterFS service (glusterfs1) running on core-02 stops and Jenkins connects to another GlusterFS service
running on some another node, keeping everything intact.

1. To do this, stop the glusterfs1 service on core-02 using fleetctl command as
shown in Figure 3-54.

fleetctl stop glusterfs a@1.service

core@core-02 ~ $ fleetctl stop glusterfs_a@l.service
Unit glusterfs_a@l.service loaded on 0e8187f9.../172.17.8.102
core@core-02 ~ 5

Figure 3-54. Stop the glusterfs1 unit

2. To check the glusterfs1 service status, run the fleetctl 1ist-units command
as shown in Figure 3-55.

core@core-02 ~ 5§ fleetctl list-units
UNIT MACHINE ACTIVE SUB

glusterfs a@l.service 0e8187f9.../ 7.8.

glusterfs_a@2.service 35c4295e.../172.17.8.101 active running
glusterfs_a@3.service b46ag8dag.../172.17.8.103 active running
jenkins_a@l.service 0e8187f9.../172.17.8.102 active running
jenkins_b@1l.service 0e8187f9.../172.17.8.102 inactive dead

core@core-02 ~ 5 i
Figure 3-55. List the units

3. Execute the following command to see if the container related to glusterfs1
service is still running, as shown in Figure 3-56.

docker ps -a -format='{{.Names}} {{.Status}}' or you simply give docker ps -a

core@core-02 ~ 5 docker ps -a --format='{{.Names}} {{.Status}}'
glusterfsl Exited (137) 7 minutes ago

jenkins1 Up 2 hours
core@core-02 ~ $]

Figure 3-56. List the running containers

107

CHAPTER 3 © HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

4. We can also check about glusterfs1 service from other glusterfs servers. Open a
terminal and log in to core-01 using the vagrant ssh command.

5. Open the glusterfs2 container in an interactive mode using the below command.
docker exec -it glusterfs2 /bin/bash
6. Once inside the container, execute the following command, as shown in Figure 3-57.

glusterfs volume status

core@core-01 ~ § docker exec -it glusterfs2 /bin/bash
[root@core-81 /]# gluster volume status
Status of wvolume: volumel

Gluster process TCP Port RDMA Port Online Pid
Brick 172.17.8.101:/gluster 49152 e Y 255
Brick 172.17.8.103:/gluster 49152 0 Y 199
Self-heal Daemon on localhost N/A N/A Y 275
Self-heal Daemon on 172.17.8.1603 NJA N/A Y 215

Task Status of Volume volumel

There are no active volume tasks

[root@core-01 /]# fi

Figure 3-57. Gluster volume status

7. To check the gluster peer status execute the following command, as shown in
Figure 3-58.

gluster peer status

[root@core-01 /]# gluster peer status
Number of Peers: 2

Hostname: 172.17.8.102
Uuid: 51c98bfa-4elc-4531-adcl-2ac7de865646
State: Peer in Cluster (Disconnected)

Hostname: 172.17.8.103
Uuid: 695fb9e1-e939-4eb5-bfo1-3e419029f32d

State: Peer in Cluster (Connected)
[root@core-01 /]#

Figure 3-58. Gluster peer status

8. Open Jenkins master server and you can see it’s still up. However, the user
session has expired. And you are taken to the login page.

9. Login using the admin account that we created in the previous section, as shown
in Figure 3-59.

108

CHAPTER 3 © HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

W2 senvins G
€ (0 172.17.8.200 e llQ > |is=
‘é Jenkills Iog in

Jenkins

User. jenkins_admin

Password: I
Remember me on this computer

Jenkins ver. 2.21

Page generaled: Sep 23, 2016 6:40:30 PMUTC REST API

Figure 3-59. Jenkins login screen
If you are able to login successfully, you will see the Jenkins Dashboard as shown

10.
in Figure 3-60. This proves that the user account that we created in the previous

section is still intact.
Vo - O
€ 172.17.8.200 > | |2 B 9 3+ A @ =
@Jenkins i @ niknil pathania | log out
Fracd descrigtion

Welcome to Jenkins!

Please create new jobs to get started

= MNew ltem

& People

- Build History

- Manage Jenkins

&. My Views

4. Credentials

Bulld Gueue

No bullds In the queue

Build Executor Status

1 ide

2 Ide
Page ga

Figure 3-60. Jenkins dashboard

109

CHAPTER 3 © HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

11. Now start the glusterfs1 container on core-02 again using the fleetctl start
command as shown below.

fleetctl start glusterfs a@1.service

12. Execute the fleetctl list-units command to see the glusterfs1 unit status, as shown
in Figure 3-61.

core@core-01 ~ § fleetctl list-units
UNIT MACHINE ACTIVE SuB

glusterfs_a@l.service 0e8187f9.../172.17.8.162 active running
glusterfs_a@2.service 35c4295e.../172.17.8.101 active running
glusterfs_a@3.service b40agdag.../172.17.8.103 active running
jenkins_a@l.service 0e8187f9.../172.17.8.1682 active running
jenkins_b@l.service 0e8187f9.../172.17.8.102 inactive dead

core@core-01 ~ §

Figure 3-61. List the units

13. Lets us now see if glusterfsl is again connected to gluster cluster. To do this,
log in to core-02 and execute the below command to enter inside the glusterfs2
container.

docker exec -it glusterfs2 /bin/bash

14. From inside the glusterfs2 container execute the gluster command to get the peer
status, as shown in Figure 3-62.

gluster peer status

[root@core-01 /]# gluster peer status
Number of Peers: 2

Hostname: 172.17.8.102

Uuid: 51c90bfa-4elc-4531-adcl-2ac7de865646
State: Peer in Cluster (Connected)
Hostname: 172.17.8.103

Uuid: 695fb9e1-e939-4eb5-bfo1-3e419029f32d

State: Peer in Cluster (Connected)
[root@core-81 []#

Figure 3-62. Gluster peer status

Failover Scenario 2

The core-02 machine (containing Jenkins and glusterfs2) shuts down. And Jenkins is moved to some
other host.

1. To stop (shut down) the core-02 host completely execute the following
command, as shown in Figure 3-63.

vagrant halt core-02

110

CHAPTER 3 © HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

nikhil@devo1i:~/coreos-vagrant$ vagrant halt core-02
==»> core-02: Attempting graceful shutdown of VM...
nikhil@deve1:~/coreos-vagrant$ fj

Figure 3-63. Shut down core-02 machine

2. Loginto core-01 host and run the fleectl command to list the machines, as
shown in Figure 3-64.

fleetctl list-machines

core@core-01 ~ § fleetctl list-machines

MACHINE IP METADATA

35c4295e. .. 172.17.8.101 -

b4avasdas... 172.17.8.103 =

core@core-01 ~ $] |

Figure 3-64. List the machines using the fleetctl command

3. Execute the fleetctl list-units command and you will see Jenkins is being started
on core-01. Initially it might take time as the docker is downloading the Jenkins
server image. See Figure 3-65.

coreficore-81 ~ § fleetctl list-units

UNIT MACHINE ACTIVE sus
glusterfs_a@2.service 35c4295e.../172.17.8.161 active running
glusterfs_a@3.service b40asdag.../172.17.8.103 active running
jenkins_a@1.service 35c4295e.../172.17.8.101 activating start-pre
jenkins_b@1.service 35c4295e.../172.17.8.101 inactive dead

core@core-01 ~ $]
Figure 3-65. List the units

4. Keep executing the fleetctl list-units command until you see that the Jenkins
unit is active and running, as shown in Figure 3-66.

core@core-01 ~ 5§ fleetctl list-units

UNIT MACHINE ACTIVE suB
glusterfs_a@2.service 35c4295e.../172.17.8.161 active running
glusterfs_a@3.service b40a8da9.../172.17.8.103 active running
jenkins_a@1.service 35c4295e.../172.17.8.101 active running
jenkins_b@1l.service 35c4295e.../172.17.8.101 inactive dead

core@core-81 ~ §

Figure 3-66. List the units

5. Now once everything is up, access the Jenkins master server.

6. You will see the login screen, log in using the admin user that we created earlier.

111

CHAPTER 3 * HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

7. This time click on Select plugins to install option.

8. On the next screen you will see a list of plugins. The ones that are already
installed are ticked. See Figure 3-67. This again confirms that our data inside the
JENKINS_HOME directory is intact.

Getting Started

Customize Jenkins

Pluging extend Jenking with additional features to support many different needs

Install suggested Select plugins to

plugins install

Install plugins the Jenkins Select and install plugins
community finds most most suitable for your needs.
usefu!

Figure 3-67. Install plugins

9. Choose nothing, by selecting the option none. And click on the Install button, as
shown in Figure 3-68.

« Plugr Mansge |
Organization and Administration (2/3)
Db d Virw & "
Thet iy Comtrbasies & fetw view ITpheTaeatateon that Drovides 3 doshbnoaed / poas- W view (o pous Jenkin nstascs

[Fesrs Piugn &

Wtfie o ard Pubdntin

[GONALP Markg Formater Pl =

Build Features (4/10)

Figure 3-68. Jenkins plugins getting installed

112

CHAPTER 3 © HA JENKINS SETUP USING COREOS, DOCKER, AND GLUSTERFS

Summary

In the current chapter we saw how the clustering feature of CoreOS can be used to create a highly available
(HA) solution for Jenkins. We also saw the importance of GlusterFS in replicating the JENKINS_HOME data
across the cluster nodes.

In the next chapter we will learn to set up Jenkins Master on Docker and Cloud solutions such as AWS.

113

CHAPTER 4

Setting Up Jenkins on Docker
and Cloud

In the previous chapters we learned two different techniques of creating a highly available (HA) setup for
Jenkins using various open source tools. These so-called methods of setting up Jenkins are progressive and
intuitive in their approach, yet they are completely new. Keeping that in mind, in the current chapter we take
the opportunity to explore some of the mainstream ways of setting up a Jenkins master. These are the following:

1. Jenkins on cloud (AWS).
2. Jenkins on Docker.

The underlying infrastructure of a Jenkins master can decide how scalable you can make your
continuous Integration (CI) or continuous delivery (CD) solution.

Running Jenkins Inside a Docker Container

Jenkins can very well run inside a Docker container. It makes things even better when persistent volumes are
used. When using persistent volumes, the data under the jenkins_home directory is stored inside a folder
on the Docker host (data volumes), or it can also be mapped to a data container (data volume containers).
In this way the container and the data (jenkins_home) become two separate but dependent entities. If the
Docker container running Jenkins ceases to exist, a new Docker container can be immediately spawned and
connected to the data volumes.

We can also use Docker to host Jenkins Slaves running as containers. Figure 4-1 depicts Jenkins Slaves
running as containers on a Docker Host/Server. The Jenkins master may or may not be on Docker. The Docker
Host/Server is in contact with the Jenkins master using a Plugin. In the following setup, Jenkins can spawn on
demand Jenkins Slaves on the Docker Host/Server. We will learn about this setup with detail in Chapter 6.

Docker Plugin

Jenkins Master

Figure 4-1. Jenkins Master-slave setup on Docker using Docker Plugin

© Nikhil Pathania 2017 115
N. Pathania, Pro Continuous Delivery, DOI 10.1007/978-1-4842-2913-2_4

http://dx.doi.org/10.1007/978-1-4842-2913-2_6

CHAPTER 4 '~ SETTING UP JENKINS ON DOCKER AND CLOUD

A single Jenkins master may not be sufficient to handle a growing number of projects, in such cases
the projects can be divided among multiple Jenkins masters, with each Jenkins master having its own set of
Jenkins Slaves running on a Docker Host/Server, as shown in Figure 4-2.

»

Docker Plugin

Jenkins Master

Jenkins Master

N

Docker Plugin

»

Docker Plugin

Jenkins Master

Figure 4-2. Multiple Jenkins Master-slave setups on Docker using Docker Plugin

However, using multiple Docker Servers can increase the maintenance overhead. Also, from Figure 4-2,
you can see that there is a one-to-one connection between the Jenkins masters and the Docker Servers. This
means if any of the Docker servers fails, a Jenkins master will completely lose all these build agents (Jenkins
slaves). Also some Jenkins masters may overload their Docker Servers running build agents, while others at
times may not build anything at all, keeping their Docker server idle.

Kubernetes seems to be a better solution to all the above issues. Figure 4-3 shows a Jenkins Master-Slave
setup using Kubernetes. In the following setup, Kubernetes is responsible for managing multiple instances
of Docker Hosts. Jenkins may or may not be running on Kubernetes. Both the Jenkins master and the
Kubernetes cluster communicate using the Kubernetes Plugin. Jenkins can create on demand Jenkins Slaves
on the Kubernetes cluster. We will learn about this setup with detail in Chapter 6.

116

http://dx.doi.org/10.1007/978-1-4842-2913-2_6

CHAPTER 4 * SETTING UP JENKINS ON DOCKER AND CLOUD

Docker Server
Kubernetes Plugin

[}
1
[
1]
1
[
[
i
e
—t
[
[
[
1]
[
[
[
[
]

.

Jenkins Master

Kubernetes Plugm

5

Jenkins Master Kubernetes Manager

Kubernetes Plugln

Jenkins Master

Figure 4-3. Multiple Jenkins Master-slave setups on Docker using Kubernetes Plugin

In the current section we will try to run Jenkins master inside a container on a Docker Host/Server.
For this exercise you need a Docker server. Installing Docker is simple. You can go through the following
section, “Installing Docker on Ubuntu,” to see the installation. For the other OS you can refer to the Notes.

117

CHAPTER 4 © SETTING UP JENKINS ON DOCKER AND CLOUD

Note To install Docker on windows, see Get Started with Docker for Windows (https://docs.docker.
com/docker-for-windows/).

To install Docker on Linux (Red Hat), see Get Docker for Red Hat Enterprise Linux (https://docs.docker.com/
engine/installation/1linux/rhel/).

To install Docker on Linux (Fedora), see Get Docker for Fedora (https://docs.docker.com/engine/
installation/linux/fedora/).

Skip this section if you already have a Docker server running.

Installing Docker on Ubuntu

To install Docker, you need any one of the following Ubuntu OS (64-bit). Make sure curl is also installed.
e Yakkety 16.10
e Xenial 16.04

e Trusty 14.04

Setting Up the Repository
Follow these steps to set up a repository:
1. Execute the following command to let apt use a repository:
sudo apt-get install apt-transport-https ca-certificates
2. AddDocker’s official GPG key:
curl -fsSL https://yum.dockerproject.org/gpg | sudo apt-key add -
3. Verify that the key ID is exactly
58118E89F3A912897C070ADBF76221572C52609D, using the following
command.
apt-key fingerprint 58118E89F3A912897C070ADBF76221572C52609D
a. Youshould get an output as shown below.
pub 4096R/2C52609D 2015-07-14
Key fingerprint = 5811 8E89 F3A9 1289 7C07 OADB F762 2157
2C52 609D

uid Docker Release Tool (releasedocker)
docker@docker.com

118

https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/engine/installation/linux/rhel/
https://docs.docker.com/engine/installation/linux/rhel/
https://docs.docker.com/engine/installation/linux/fedora/
https://docs.docker.com/engine/installation/linux/fedora/

CHAPTER 4 * SETTING UP JENKINS ON DOCKER AND CLOUD

4. Use the following command to set up the stable repository to download Docker.

sudo add-apt-repository "deb https://apt.dockerproject.org/repo/
ubuntu-$(1sb_release -cs) main"

Note Ii's recommended to always use the stable version of repository.

Installing Docker
After setting up the repository, do the following steps to install Docker:

1. Update the apt package index using the following command:
sudo apt-get update

2. Toinstall the latest version of Docker, do this:
sudo apt-get -y install docker-engine

3. However, if you wish to install a specific version of Docker, do this:
a. list the available versions, using the following command:
apt-cache madison docker-engine
b. The output should be something similar to as shown below:
docker-engine | 1.16.0-0~trusty | https://apt.dockerproject.org/
repo ubuntu-trusty/main amd64 Packages

docker-engine | 1.13.3-0~trusty | https://apt.dockerproject.org/
repo ubuntu-trusty/main amd64 Packages

Note The output of the above command depends on the type of repository configured in the previous
section (“Setting Up the Repository”).

4. Next, execute the following command to install the specific version of Docker.

sudo apt-get -y install docker-engine=<VERSION_ STRING>

Note Example: sudo apt-get -y install docker-engine=1.16.0-0~trusty

119

CHAPTER 4 © SETTING UP JENKINS ON DOCKER AND CLOUD

5. The Docker service starts automatically. To verify if Docker is installed and
running, do the following:

sudo docker run hello-world

6. Ifthe above command runs without any errors, and you see a hello-world
message, it means Docker is installed and running.

Install from a Package

For some reason, if you are unable to install Docker using the above repository method, you can download
the .deb package.

1. Download the .deb package of your choice from https://apt.dockerproject.
org/repo/pool/main/d/docker-engine/

2. To install the downloaded package do this:
sudo dpkg -i /<path to package>/<docker package>.deb

3. Verify your Docker installation by running the following command:
sudo docker run hello-world

4. You should see something as shown below:

Hello from Docker!
This message shows that your installation appears to be working correctly.

Creating a Jenkins Container

The steps demonstrated in the following section are performed on an Ubuntu machine running Docker
server. Hereafter it is called as the Docker host. Running Jenkins inside a container is pretty straightforward.

1. Once you have Docker installed, run the following command to start a Docker
container running Jenkins.

docker run -d -name <container instance name> -p 8080:8080
-p 50000:50000 jenkins

Note The above container runs a copy of the latest stable Jenkins LTS release. The Jenkins home directory
inside the Docker container is /var/jenkins_home.

The above approach is not recommended as the data (plugins, jobs, configurations, etc.) inside the jenkins_
home directory will cease to exist the moment you delete the container.

For the latest weekly releases, use the Docker image "jenkinsci/jenkins" instead of "Jenkins."

120

https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/

CHAPTER 4 * SETTING UP JENKINS ON DOCKER AND CLOUD

2. We won't be using the above command to run a Jenkins container. Instead, we
will create a Jenkins container with its jenkins_home directory mapped to one of
the directories on the Docker host.

3. Todo this, create a directory named jenkins_home_directory on your Docker
host using the following commands. As shown in Figure 4-4.

mkdir jenkins_home_directory

chmod 777 jenkins_home_directory

nikhil@devo1:~5 1s -1rt

total 84

“IW-r--r-- nikhil nikhil 8986 Aug 24 17:31 examples.desktop
drwxr-xr-x nikhil nikhil 4096 Aug 24 17:53 Desktop
drwxr-xr-x nikhil nikhil 40696 Aug 24 17:53 Videos

drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x

nikhil nikhil 4096 Aug 24 17:53 Templates

nikhil nikhil 4096 Aug 24 17:53 Public

nikhil nikhil 4696 Aug 24 17:53 Documents

nikhil nikhil 4096 Sep 19 17:58 Music

nikhil nikhil 4696 Jan 23 23:42 Downloads

drwxr-xr-x nikhil nikhil 4096 Jan 23 23:55 Pictures

drwxrwxrwx nikhil nikhil 4696 Jan 24 21:46
nikhiladeve1:~s

MNMNWNNRNNRNRNES

Figure 4-4. Creating a directory on your docker host

4. Now initiate a Jenkins container using the following command. See Figure 4-5.

sudo docker run -d -name <container instance name> -p 8080:8080 -p
50000:50000 -v /<path on Docker host>/jenkins_home_directory:/var/
jenkins_home jenkins

nikhil@devei:~$ sudo docker run -d --name jenktns master -p 8680:8080 -p 50000:5
0000 -v /home/nikhil/jenkins home directory:/var/jenkins home jenkins

acb2009b72fbd97bd96c24e8539125126983dd18f Eblogtee-l'acmb\.rpt 6962¢C
nikhil@devei:~5

Figure 4-5. Docker command to run a jenkins container with a persistent volume

5. From the Figure 4-5, we can see a Jenkins container getting created. The data
inside the jenkins_home directory is in sync with the directory jenkins_home_
directory on the Docker host. It’s a good way of backing up Jenkins data.

6. List the contents of jenkins_home_directory directory on the Docker host using
the following commands.

cd /<path on docker host>/jenkins_home_directory/
1s -1rt

7. From the Figure 4-6, you can see the content of jenkins_home directory is listing
inside the jenkins_home_directory on the Docker host.

121

CHAPTER 4 '~ SETTING UP JENKINS ON DOCKER AND CLOUD

nikhil@devo1:~/jenkins_home_directory$ ls -1lrt

total 68

drwxr-xr-x 2 nikhil nikhil 46096 Jan 24 21:51 init.groovy.d

-rw-r--r-- 1 nikhil nikhil 102 Jan 24 21:51 copy_reference_file.log
drwxr-xr-x 10 nikhil nikhil 4096 Jan 24 21:51 war

-rw-r--r-- 1 nikhil nikhil ® Jan 24 21:51 secret.key.not-so-secret
-rw-r--r-- 1 nikhil nikhil 64 Jan 24 21:51 secret.key

drwxr-xr-x 2 nikhil nikhil 4096 Jan 24 21:51 plugins

drwxr-xr-x 2 nikhil nikhil 4096 Jan 24 21:51 jobs

drwxr-xr-x 2 nikhil nikhil 4096 Jan 24 21:51 nodes

-rw-r--r-- 1 nikhil nikhil 159 Jan 24 21:51 hudson.model.UpdateCenter.xml
rW======- 1 nikhil nikhil 1712 Jan 24 21:51 identity.key.enc

drwxr-xr-x 2 nikhil nikhil 46096 Jan 24 21:51 userContent

-rw-r--r-- 1 nikhil nikhil 907 Jan 24 21:51 nodeMonitors.xml

drwxr-xr-x 3 nikhil nikhil 4696 Jan 24 21:51 logs

-rw-r--r-- 1 nikhil nikhil 6 Jan 24 21:51 jenkins.install.UpgradeWizard.state
drwxr-xr-x 3 nikhil nikhil 4096 Jan 24 21:51 users

drwx------ 4 nikhil nikhil 4096 Jan 24 21:51 secrets

-rw-r--r-- 1 nikhil nikhil 1592 Jan 24 21:51 config.xml

drwxr-xr-x 2 nikhil nikhil 4696 Jan 24 21:51 updates
nikhil@devei:~/jenkins_home_directorys$ [}

Figure 4-6. Content of the jenkins_home_directory on docker host

8. Execute the following command to work interactively with our new Jenkins
container. This will expose the bash utility inside the Jenkins container.

sudo docker exec -it <container instance name> /bin/bash

Note To login as root use the “-u root” parameter in the above command.

Example: sudo docker exec -it -u root <container instance name> /bin/bash

9. Once inside the container run the ip route command to know the IP address of
the container, as shown in Figure 4-7.

ip route
jenkins@acb2083b72fb: /S ip route
default via dev ethe
172.18.0.0/16 dev ethe proto kernel scope link src 172.18.0.2

jenkins@acb2009b72fb: /S

Figure 4-7. The ip route command

10. Now that we know the IP address of our container running Jenkins, we can
access Jenkins using the URL http:<IP address of the container>:8080, as
shown in Figure 4-8.

122

CHAPTER 4 * SETTING UP JENKINS ON DOCKER AND CLOUD

0 Jenkins [Jenkins] x

€ 172.18.0.1:8080/login?from=%2F| v &|lq T B8 + A =

| Getting Started
|

Unlock Jenkins

To ensure Jenkins is securely set up by the administrator, a password has been
written to the log (not sure where to find it?) and this file on the server

/var/jenkins_home/secrets/initialAdminPassword

Please copy the password from either location and paste it below.

Administrator password

Figure 4-8. Jenkins login page

11. To get the password from the file /var/jenkins_home/secrets/
initialAdminPassword, execute the following command:

docker exec -u root <container instance name> /bin/bash -c 'cat
/var/jenkins_home/secrets/initialAdminPassword’

12. This will print the password present inside the file initialAdminPassword.

13. Similarly one can also get the password from the jenkins_home_directory on the
Docker host.

cat /<path on the Docker host>/jenkins_home_directory/secrets/
initialAdminPassword

Note Any changes inside the directory jenkins_home_directory on the Docker host will reflect inside the
jenkins_home directory inside the container.

123

CHAPTER 4 © SETTING UP JENKINS ON DOCKER AND CLOUD

Installing Jenkins on Ubuntu

Installing Jenkins on Ubuntu is quite simple. Make sure Java is installed on the machine.

Install the Latest Stable Version of Jenkins

1. First add the key to your system by executing the following command:

sudo wget -q -0 - https://pkg.jenkins.io/debian-stable/jenkins.io.key
| sudo apt-key add -

2. Now, add the repo http://pkg.jenkins.io/debian-stablebinary/ into the
sources.list file, which is located at /etc/apt, using the following command:

sudo sh -c 'echo deb http://pkg.jenkins.io/debian-stable binary/ >
/etc/apt/sources.list.d/jenkins.list'

3. Update the package index:
sudo apt-get update
4. Lastly, install Jenkins using the following simple command:

sudo apt-get install jenkins -y

Install the Latest Version of Jenkins

1. First add the key to your system by executing the following command:

sudo wget -q -0 - https://pkg.jenkins.io/debian/jenkins.io.key |
sudo apt-key add -

2. Now, add the repo http://pkg.jenkins.io/debianbinary/ into the sources.list
file, which is located at /etc/apt, using the following command:

sudo sh -c 'echo deb http://pkg.jenkins.io/debian binary/ >
/etc/apt/sources.list.d/jenkins.list'

3. Update the package index:
sudo apt-get update

4. Lastly, install Jenkins using the following simple command:
sudo apt-get install jenkins -y

Once the Jenkins installation is successful, it will automatically run as a daemon service. By default
Jenkins runs on the port 8080. To access Jenkins, open the URL http://<sexrver IP addressy:8080.

124

http://pkg.jenkins.io/debian-stablebinary/
http://pkg.jenkins.io/debianbinary/

CHAPTER 4 * SETTING UP JENKINS ON DOCKER AND CLOUD

Installing Jenkins on Fedora/Red Hat Linux

The Jenkins installation process on Red Hat Linux and Fedora is the same. To do these, open a terminal.
Make sure Java is installed on the machine.

Installing the Latest Stable Version of Jenkins

1. Ifyou prefer to install a stable version of Jenkins then issue the below-mentioned
commands in sequence.

sudo wget -0 /etc/yum.repos.d/jenkins.repo https://pkg.jenkins.io/
redhat-stable/jenkins.repo

sudo rpm --import https://pkg.jenkins.io/redhat-stable/jenkins.io.key

sudo yum install Jenkins

Installing the Latest Version of Jenkins

1. Toinstall the latest version of Jenkins, issue the following command in sequence.

sudo wget -0 /etc/yum.repos.d/jenkins.repo https://pkg.jenkins.io/
redhat/jenkins.repo

sudo rpm --import https://pkg.jenkins.io/redhat/jenkins.io.key
sudo yum install Jenkins
If for some reason you are unable to access Jenkins, check the firewall setting. This is because by default
the firewall will block the ports. To enable them, execute the below commands. You might need admin
privileges.
firewall-cmd --zone=public --add-port=8080/tcp -permanent
firewall-cmd --zone=public --add-service=http -permanent

firewall-cmd --reload

Once the Jenkins installation is successful, it will automatically run as a daemon service. By default
Jenkins runs on the port 8080. To access Jenkins, open the URL http://<server IP addresss:8080.

Installing Jenkins on Cloud (AWS)

Running Jenkins on a cloud platform (like AWS) requires setting up an instance of some capacity (CPU,
memory, storage, and network) and choosing a right OS (AMI).

There are various types of instance available on AWS. Finding the best one for your Jenkins master
mainly depends on how you plan to set up your Jenkins master-slave architecture. Given the tools and
features in AWS, the Jenkins master-slave architecture would fall into one of the categories, as shown below:

125

CHAPTER 4 © SETTING UP JENKINS ON DOCKER AND CLOUD

Types of Jenkins Master-Slave Setups

Shown here is a very simple Jenkins master-slave setup. There is one Jenkins master running on an EC2
instance (M4.large) and the Jenkins slave instances are auto-spawned based on the build requirement. The
advantage of using this strategy is that you need to maintain only one Jenkins master (maintenance includes
updating Jenkins, updating plugins, managing logs, managing Jenkins master configuration, etc.). But as the
number of projects grows beyond the capacity that a AWS instance can handle, you might need to rethink on
the strategy.

Type of Cluster for Jenkins Slaves

We can configure Jenkins slaves on normal EC2 instances. These instances can be scaled horizontally
depending on the number of builds that are running on a given Jenkins master. The EC2 instances can be
auto-spawned using the Amazon EC2 Plugin for Jenkins (Figure 4-9).

Amazon EC2 Plugin

» [

Jenkins Slaves
(EC2 Instances)

—

Jenkins Master
(EC2 Instance)

Figure 4-9. Scalable Jenkins Slave cluster using EC2 Instances

Instead of using normal EC2 instances, we can go for the Docker way of doing builds. Amazon ECS
provides a way to create a cluster of Docker containers for running builds, testing, etc. These Docker
containers can be auto-spawned from Jenkins master using the Amazon EC2 Container Service Plugin for
Jenkins. It gives the best of both worlds (Docker + Cloud) (see Figure 4-10).

Amazon EC2 Container Service Plugin

» |£

\—J
Jenkins Master Jenkins Slaves
(EC2 Instance) (Amazon ECS cluster}

Figure 4-10. Scalable Jenkins Slave cluster using ECS Instances

Jenkins can also auto-spawn a fleet of EC2 spot instances using the Amazon EC2 Fleet Plugin (Figure 4-11).
Read more about the AWS Spot instances on https://aws.amazon.com/ec2/spot/.

126

https://aws.amazon.com/ec2/spot/

CHAPTER 4 * SETTING UP JENKINS ON DOCKER AND CLOUD

Amazon EC2 Fleet Plugin

»

G —
Jenkins Master Jenkins Slaves
(EC2 Instance) (EC2 Spotinstances)

Figure 4-11. Scalable Jenkins Slave cluster using Spot Instances

Finding the Best Instance Type for Your Jenkins Master

There is no right answer for this question. The only best way to find out is to benchmark your Jenkins master-
slave setup discussed above. Only then we can know the right instance type for our Jenkins master and our
Jenkins slaves. Nevertheless, depending on the characteristics of Jenkins master and the Jenkins slaves we
can narrow down to what an instance should be like.

Assume that we perform all out builds on Jenkins slaves and nothing on the Jenkins master. Then, we
can safely say that the Jenkins slaves should have a good amount of storage and decent amount of CPU.

The Jenkins master will mostly have frequent users visiting its dashboard; therefore we need an instance
that has good network bandwidth and good CPU performance, keeping in mind the number of HTTP
requests.

Note To learn more about AWS instance types, see https://aws.amazon.com/ec2/instance-types/.
Following is a benchmark example of Jenkins Master (from the AWS):

This is a benchmark of five different instance types: the T2.large, the M3.medium, and the M4.large, M4.XL, and
M4.2XL. Each benchmark simulated traffic from 100 concurrent users loading multiple pages inside the Jenkins
dashboard for a sustained period of 10 minutes.

Overall, we found the M4.large to be the best value for the performance. The average CPU utilization during
load testing did not exceed 3%, with an average response time of 220 milliseconds. As expected, the XL and
2XL sizes performed well but at a lower cost per hour; therefore, the M4.large remains the best choice for our
needs. The M3.medium, while a good choice for many applications, did not perform as well as the M4.large,
and had an average CPU utilization of over 80% for the duration of the testing.

The T2.large performed well during the first few minutes of testing. However, because T2 instances offer
burstable performance, 15 sustained an amount of high traffic from 100 users’ depleted available CPU credits,
and performance significantly decreased. Further testing with fewer users (i.e., 10 users) saw improved results.
Thus, if you have a relatively small team and do not expect frequent or high-volume usage from your Jenkins
master, the T2 family may be a good option for you.

In the following section we will launch a virtual application server using Amazon EC2 to host Jenkins
master. You will need an AWS account. The exercise demonstrated in the current sections uses an EC2
instance from the AWS Free Tier limits.

127

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/
https://aws.amazon.com/free/

CHAPTER 4 © SETTING UP JENKINS ON DOCKER AND CLOUD

Selecting a Region
Follow these steps:
1. Login to your AWS account.

2. Inthe navigation bar, verify that the appropriate region is selected, as shown in
Figure 4-12. 1 have chosen the one nearest to my location.

ﬂ Nikhil v Mumbai 4 Support v

Ac US East (N. Virginia) c
Suf US East (Ohio)
VE US West (N. California)
Del US West (Oregon)
VE Canada (Central)
Re¢ EU (Ireland)

EU (Frankfurt)

Ad
EU (London)
Gel . .
Asia Pacific (Singapore)
Dot
Asia Pacific (Sydney)
All'l
Asia Pacific (Seoul)
For
Pric Asia Pacific (Tokyo)
Cot Asia Pacific (Mumbai)
South America (Sao Paulo)
AV

Figure 4-12. Selecting region

Creating a Security Group

Using security groups, you define and control access to your AWS instance. It acts more like a firewall. You
can create multiple security groups in AWS. And an AWS instance can be mapped to more than one security

group.

1. Open the Amazon EC2 console from the navigation bar, by clicking on the
Services » EC2 (Compute), as shown in Figure 4-13.

128

Resource Groups ¥~ %

CHAPTER 4 * SETTING UP JENKINS ON DOCKER AND CLOUD

@ Compuge
ecz €10

EC2 Container Service

»

Lightsail

Elastic Beanstalk

Lambda
Batch

Q Storage
s3
EFS
Glacier

Storage Gateway

Figure 4-13. Locating EC2 console

[)
2= Developer Tools

CodeCommit
CodeBuild
CodeDeploy
CodePipeline

Management Tools
CloudWatch
CloudFormation
CloudTrail

Config

OpsWorks

Service Catalog
Trusted Advisor

Note you can also open the EC2 console by accessing the following link: https://console.aws.amazon.

com/ec2/.

2. On the left-hand side navigation bar, under NETWORK & SECURITY click on
Security Groups, and then click on the Create Security Group button to create a

new security group, as shown in Figure 4-14.

129

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

CHAPTER 4 '~ SETTING UP JENKINS ON DOCKER AND CLOUD

Resource Groups v %

Tags Create Security Group JCT={GTER
]

Reports
Limits Q
=l INSTA Name - GroupID + GroupName -~ VPCID ~ Description
Instances
50-6355fcDa default vpc-dlb463b8 default VPC security group

Spot Requests
Reserved Instances
Dedicated Hosts

AMIs
Bundle Tasks

Volumes
Snapshots

| security Groups
Elastic IPs
Placement Groups

Figure 4-14. Creating Security Group

3. Enter a name in the Security group name field and add some description under
the Description field. Choose the default value for the VPC field. As shown in
Figure 4-15.

Create Security Group b 4
Securily group name (| Jenkins Master
Description (i Security group of Jenkins Master
vPe (i vpe-d1b463b8 (default) v

Security group rules:

Inbound Outbound

Type (i Protocol (i Port Range (i Source (i

Add Rule

anon) m

Figure 4-15. Configuring Security Group

130

CHAPTER 4 * SETTING UP JENKINS ON DOCKER AND CLOUD

4. Click the Inbound tab and then click on Add Rule. Choose Type as SSH. As shown
in Figure 4-16.

Create Security Group

x
Security group name (| Jenkins Master
Description (} Security group of Jenkins Master
VPC i vpc-d1b463ba (default) ~
Security group rules

Inbound Outbound
Type (i Protocol (i Port Range i Source i
SSH v | TCP 22 Custom v [}

Add Rule

Figure 4-16. Adding rule for SSH - Custom

5. Under Source you have three options to choose from (Custom, Anywhere, and

My IP).

a. Select Custom and in the text box enter the public IP address range. Choose
this option if you want to provide access to a range of IP address (a group of
team members in your organization).

b. Select Anywhere, and enter 0.0.0.0 if you want to give access to an SSH request
coming from any IP address (not recommended), as shown in Figure 4-17.

SSH v | TCP 22

Anywhere v | 0.0.0.0/0

Figure 4-17. Adding rule for SSH - Anywhere

c. Select My IP, and AWS will automatically detect your IP. However, only the
following IP will get SSH access to the AWS instance. As shown in Figure 4-18.

w
0
- o
<

TCP 22 My IP b 80.199.15.42/32

Figure 4-18. Adding rule for SSH - My IP
6. Next, click Add Rule, and then choose HTTP as Type. Under Source you have

the same three options. Under Source, choose Custom, and give a range of IP

addresses. You might want to give access to the Jenkins dashboard only to your
team or your organization. As shown in Figure 4-19.

131

CHAPTER 4 ' SETTING UP JENKINS ON DOCKER AND CLOUD

Create Security Group X
Security group name (i Jenkins Master
Description (| Security group of Jenkins Master
VPC (i vpc-d1b4a63b8 (defaul) v

Security group rules:

Inbound Outhound

Type (i Protocol (i Port Range i Source (i

S5H v || TCP 22 Custom Por [
HTTP v || TCP 80 Custom v i
Add Rule

cancel [RELH

Figure 4-19. Adding rule for HTTP

7. Next, click Add Rule again, and then choose Custom TCP Rule as Type. Under
Port Range enter 8080. Under Source, choose Custom, and give a range of IP
addresses. You might want to give access to the Jenkins dashboard only to your
team or your organization. As shown in Figure 4-20.

Create Security Group X
Security group name (| Jenkins Master
Description (i Security group of Jenkins Master
VPC (i vpc-d1b463bE (default) v

Security group rules:

Inbound Outbound

Type (i Protocol (i Port Range (i Source (i

S5H v | TCP 22 Custom v i
HTTP v || TCP 80 Custom v Y L}
Custom TCP Rule v || TCP 8080 Custom v 2, IF i
Add Rule

Figure 4-20. Adding rule for TCP

8. Next, click on the Create button.

132

CHAPTER 4 * SETTING UP JENKINS ON DOCKER AND CLOUD

Creating an EC2 Instance on AWS

1. Onthe left-hand navigation bar, under INSTANCES choose Instances, and then
click Launch Instance. As shown in Figure 4-21.

|‘| Services v Resource Groups v *

EC2 Dashboard 1 Launch Instance Actions v

Events 1

Tags Q

Reports

Uik ® nName - Instance ID - Instance Type - Availability Zone - Instanc
| Instances

Spot Requests
Reserved Instances
Dedicated Hosts

Figure 4-21. Creating an instance

2. Onthe Choose an Amazon Machine Image (AMI) page, select the AMI of your
choice. In the following demonstration I have chosen an Amazon Linux AMI
with HVM. As shown in Figure 4-22.

ltl Services v Resource Groups ~ LA Nikhil ~

1. Choose AMI 2. Choose Instance Type 3. Con

stance 4. Add Storage 5. Add Tag

Step 1: Choose an Amazon Machine Image (AMI) R

An AMI is a template that contains the software configuration (operating system, application server, and applications) =
required to launch your instance. You can select an AMI provided by AWS, our user community, or the AWS Marketplace;
or you can select one of your own AMIS

Quick Start 1to 29 of 29 AMIs

My AMIs Amazon Linux AMI 2016.09.1 (HVM), m

Amazon Linux S SD Volume Type - ami-fodaac6

JAarketol 64-bit
AWS Markelplace The Amazon Linux AMI is an EBS-backed

AWS-supported image. The default image

Community AMIs : :
Y includes AWS command line tools, Python

Ruby, Ped, and Java. The repositories include
#iFree tier only (i Docker, PHP, MySQL, PostgreSQL, and other
packages

Root device type: ebs Virtuakzation type: hvm

[Red Hat Enterprise Linux 7.2 (HVM), m

Red Hat SSD Volume Type - ami-cdbdd7a2

64-bit
Red Hat Enterprise Linux version 7.2 (HVM)
EBS General Purpose (S5D) Volume Type

Root device type: ebs Virtuakzation type: hvm

Figure 4-22. Choosing an AMI

133

CHAPTER 4 '~ SETTING UP JENKINS ON DOCKER AND CLOUD

3. On the Choose an Instance Type page, select the type of instance that you would
like for your Jenkins master. In the following demonstration I have chosen an
instance of type t2.micro. As shown in Figure 4-23.

(T | Services v Resource Groups v *

1. Choose AMI 2. Choose Instance Type 3. Configure Instance 4. Add Storage 5. Add Tags 6. Configure Security Group
Step 2: Choose an Instance Type
Amazon EC2 provides a wide selection of instance types optimized to fit different use cases. Instances are virtual servers that can
give you the flexibility to choose the appropriate mix of resources for your applications. Learn more about instance types and how

Filterby: All instance types ~ Current generation ~ ShowlHide Columns

Currently selected: t2.micro (Variable ECUs, 1 vCPUs, 2.5 GHz, Intel Xeon Family, 1 Gi& memory, EBS only)

Family - Type - vCPUs (i - Memory (GIB) - 1
General purpose 12.nano 1 05
e General purpose 12.micro 1 1
General purpose 2.small 1 2
General purpose 2. medium 2 4

Figure 4-23. Choosing an Instance type
4. Click Next.

5. On the Configure Instance Details page, configure the settings exactly as shown
in Figure 4-24.

134

CHAPTER 4 * SETTING UP JENKINS ON DOCKER AND CLOUD

Resource Groups v %

1. Choose AMI 2. Choose Instance Type 3. Configure Instance 4. Add Storage 5. Add Tags 6. Configure Security Group

Step 3: Configure Instance Details

Configure the instance to suit vour requirements. You can launch multiple instances from the same AMI, request Spot instances
to take advantage of the lower pricing, assign an access management role to the instance, and more

Number of instances (i 1 Launch into Auto Scaling Group (j
Purchasing option (i Request Spot instances
Network (i vpc-d1b463be (defaul) v | C create newvpc
Subnet (j subnet-dS0cdcbe | Default in ap-south-1a ~ Create new subnet

4091 IP Addresses available

Auto-assign Public IP (] Use subnet setting (Enable) N
IAM role (j None v | C create new IAM role
Shutdown behavior (i Stop ~
Enable termination protecti i Protect against accidental termination
Monitoring (i Enable Cloudwatch detailed monitoring

Additional charges apply.

Tenancy (i Shared - Run a shared hardware instance b d

Additional charges will apply for dedicated tenancy.

Cancel Previous Review and Launch Next: Add Storage

Figure 4-24. Configure Instance details

6. Click Next: Add Storage.

7. Onthe Add Storage page, choose the storage size under the field Size (GiB).
You can also add additional volumes by selecting Add New Volume. As shown in
Figure 4-25.

135

CHAPTER 4 '~ SETTING UP JENKINS ON DOCKER AND CLOUD

T Services ¥ Resource Groups ~ % L Nikhil ~

1. Choose AM 2. Choose Instance Type 3. Configure Instance 4. Add Storage 5. Add Tags 6. Configure Secunty Group

Step 4: Add Storage

Your instance will be launched with the following storage device settings. You can attach additional EBS volumes and instance
store volumes to your instance, or edit the settings of the root volume. You can also attach additional EBS volumes after
launching an instance, but not instance store volumes. Learn more about storage options in Amazon EC2

Size Delete on
Volume Device ; - Throughput e
Type (i : Snapshot (i {G}B} Volume Type (i IOPS (i (MBIs) (i Temn:tlon
1 L}
snap-
Root idevixvda 8 General Purpose ¢ v 100/ 3000 MN/A i
Obb2ffa23dc7alcd0

Add New Volume

Cancel Previous m Next: Add Tags

Figure 4-25. Configure Storage

8. Click on Next: Add Tags.

9. Onthe Add Tags page, you can define a key/value pair. Leave it blank, as shown
in Figure 4-26.

Services ~ Resource Groups v % L Nikhil v Mur

1. Choose AMI 2. Choose Instance Type 3. Configure Instance 4. Add Storage 5. Add Tags 6. Configure Security Group

Step 5: Add Tags
A tag consists of a case-sensitive key-value pair. For example, you could define a tag with key = Name and value = Webserver.
Learn more about tagging your Amazon EC2 resources

Key 127 maximurr Value 2

Name (%]

Add another tag Jp to 50 tags maxi

Figure 4-26. Configure Tags

10. Click on Next: Configure Security Group.

11. On the Configure Security Group, choose the Select an existing security group
option. And from the resultant list, select the security group that we created in
the previous section, as shown in Figure 4-27. Your values should look different
from mine.

136

CHAPTER 4 * SETTING UP JENKINS ON DOCKER AND CLOUD

* [\ nNikhil~ Mumb

T Services v Resource Groups ~

1. Choose AMI 2. Choose Instance Type 3. Configure Instance 4. Add Storage 5. Add Tags 6. Configure Security Group

Step 6: Configure Security Group

A security group is a set of firewall rules that control the traffic for your instance. On this page, you can add rules to allow specific
traffic to reach your instance. For example, if you want to set up a web server and allow Internet traffic to reach your instance
add rules that allow unrestricted access to the HTTP and HTTPS ports. You can create a new security group or select from an
existing one below. Learn more about Amazon EC2 security groups

Assign a security group: 'Create a new security group

® Select an existing security group

Security Group ID Name Description Actions
5g-6355fc0a default default VPC security group Copy to new
@ sg-6593e30c Jenkins Master Security group of Jenkins Master Copy to new
Inbound rules for 5g-6593e30¢ (Selected security groups: sg-6593e30¢) _ B ==
Type (i Protocol (i Port Range (i Source (i
HTTP TCP &80 0.0.0.0/0
Custom TCP Rule TCP 8080 0.0.0.0/0
SSH TCP 22 0.0.0.0/0

Cancel Previous Review and Launch

Figure 4-27. Configure Security Group

12. Next, click on Review and Launch.

13. On the Review Instance Launch page, review all your configurations. If you are
satisfied, click on Launch.

14. You will be prompted to choose an existing key pair or create a new key pair.
Since I have none, I choose to create a new key pair, as shown in Figure 4-28.
This key pair will be used to SSH to the AWS instance.

137

CHAPTER 4 '~ SETTING UP JENKINS ON DOCKER AND CLOUD

Select an existing key pair or create a new key pair X

A key pair consists of a public key that AWS stores, and a private key file that you store. Together,
they allow you to connect to your instance securely. For Windows AMIs, the private key file is required
to obtain the password used to log into your instance. For Linux AMIs, the private key file allows you to
securely SSH into your instance.

Note: The selected key pair will be added to the set of keys authorized for this instance. Learn more
about removing existing key pairs from a public AMI.
Create a new key pair v
Key pair name
key pair for jenkins master

Download Key Pair

Q You have to download the private key file (*.pem file) before you can continue.
Store it in a secure and accessible location. You will not be able to download the
file again after it's created.

Cancel [EETLHHELEEL

Figure 4-28. Create a new key pair

15. Give the newly created key pair a name, using the Key pair name section. Next
download the key pair by clicking on the Download Key Pair button. See Figure 4-28.

16. Next, click Launch Instances. As you do, you will be presented with a Launch
Status page. Click on the View Instance button.

17. Alternatively, you can view your instance from the left-hand navigation bar, by
clicking Instances. Initially, the status of your instance will be in pending state
and later it will change to running. As shown in Figure 4-29.

E‘ﬁ Services ~ Resource Groups ~ * al Nikhil + Mumbai ~ Se
e Destiooant - Launch Instance JIICTTTT SN LT ERE e

Events * o @ O
Tags Q y T [2) 1to10f1

Reports

Limits B Name » Instance ID + Instance Type ~ Availability Zone ~ Instance State -
INSTAN] i-099cf9691dbabcaaa 12 micro ap-south-1a @ running
Instances

Spot Requests

Reserved Instances

Dedicated Hosts

Figure 4-29. Instance state

18. Once it’s running, you instance is ready for use.

138

CHAPTER 4 * SETTING UP JENKINS ON DOCKER AND CLOUD

Connecting to the AWS Instance

To connect to your instance you need the Public DNS or the Public IP of the instance. You will find these
details on the Instance page, under the Description tab. See Figure 4-30.

I"l Services v Resource Groups ~ * A Nikhil + Mumbai~ S
Connect Actions v
e — o ¢ @
Q (2] 1to10f1
B Name = Instance ID Cl | Type - ilability Zone ~ | State - Status Checks -~ Alarm
[] -099cf%691dbabcaaa 12.micro ap-south-1a & mnunning @ 272 checks.. None
’
Instance: | i-099¢f9691dba6eaaa Public DNS: ec2-35-154-126-84.ap-south-1.compute.amazonaws.com _=N=
Description Status Checks Monitoring Tags
Instance ID i-099ci9%691dbaGcaaa m Public DNS (IPv4) ec2-35-154-126-84.ap-
%

south.

1.compute amazonaws. com

Instance stale running g_'_‘f'} IPvd Public IP 35.154.126.84
Instance type t2.micro IPv6 IPs
Elastic IPs Private DNS ip-172-31-26-122 ap-

south-1.compute intemal

Figure 4-30. Instance Details

You will also need your key pair to connect to your instance using SSH.

Connecting to Your AWS Instance from Windows

Make sure you have PuTTY and PuTTYgen applications available on your machine. Follow the steps to
connect to your instance using PuTTY.

1. The key pair file is a .pem file. PuTTY does not support the private key format
(.pem). Hence, we will use PuTTYgen, to convert (.pem) keys to the required
PuTTY format (.ppk).

2. Open PuTTYgen application. Follow Figure 4-31.
a. From the menu, load the .pem file by clicking on File » Load private key.
b. Make sure you select the Type of key to generate: as SSH-2 RSA.
c. Do notset any passphrase.

d. Click on the Save private key button to download the .ppk file.

139

CHAPTER 4 '~ SETTING UP JENKINS ON DOCKER AND CLOUD

fE? PuTTY Key Generator X
File Key Conyersions Help

Key
Public key for pasting into OpenSSH authorized _keys file:

ssh1sa AAAAB3NzaC Tyc2EAAAADAQABAAABAQD X+KGt3Fybe bl/dtSMbdOWH A
+V3mg4INpABLP5U34MRJ Tx6SILULHLWCperQVei YWSx0Fw
+Hmeo*rﬂseoTnsdww/qudanwrcrzLE!-bMEWoTegvﬁVeLWYSPUme
+QVTkGY4SIcPDATQkJh4dRb Pt 2%z 22FpcUzRuCpMiGyz ZFxFvCd:
#RD&bﬂnDrJaotﬁY1ungGEl-laYmMB1M5cqquM\'ﬁbR2511LGKc1|Tqu>97anE v

Key fingerprint: |ssh+sa 2048 31:67:13:15:cd:ad:4c:05:34:36:9c:8c b82d: 9542 |
Key comment: |'l1'|pof!ed-opensshkey]
|
|

Key passphrase: |
Corfim passphrase: |
Actions

IS e
Load an existing private key file Load
Save the generated key | Savepubickey | Savepivatekey |

Parameters

Type of key to generate:
() SSH-1 (RSA) (®) SSH-2RSA () SSH-2DSA

Number of bits in a generated key: |2048 I

Figure 4-31. Converting .pem file to .ppk file

3. Now open the PuTTY application again. Follow Figure 4-32 and Figure 4-33.

a. Inthe Category pane, go to Connection » SSH » Auth. Under
Authentication parameters section click on the Browse button to select
the .ppk file that we generated in the previous step.

140

#R PuTTY Configuration

CHAPTER 4 * SETTING UP JENKINS ON DOCKER AND CLOUD

X

[[] Bypass authentication entirely (SSH-2 only)

[] Display pre-authentication banner (SSH-2 only)

Authentication methods

[] Attempt authentication using Pageant

[Attempt TIS or CryptoCard auth (SSH-1)
[Attempt "keyboardinteractive™ auth (SSH-2)

Authentication parameters
[[] Allow agent forwarding

[[] Allow attempted changes of usemame in SSH-2

Private key file for authentication:

|C:\Users\nikhi\Desktop\sdasda ppk

| [Bowes-]

Figure 4-32. Selecting the .ppk file

b. In Host Name (or IP address) field, enter <username>@<Public DNS>.

c. Make sure to select the Port value as 22.

141

CHAPTER 4 '~ SETTING UP JENKINS ON DOCKER AND CLOUD

#R PUTTY Configuration X
Category:
(=~ Session Al Basic options for your PuTTY session
Lo Loggng Specify the destination you want to connect to
°': "|': ": = Host Name (or IP address) Port
. Bell]84.m-soLIhA1,currpue.mzonaws.oorn| |22]
Features Connection type:
= Window ORaw OTelnet ORlogn @SSH (O Seral
E“I 5 Load, save or delete a stored session
Transiation Saved Sessions
Selection | l
- [Dcfak Settngs |y
=) Connection WinSCP temporary session
Data Sa
ve
Proxy
Telnet Delete
= SSH
- Kex Close window on exit:
[~ Cipher QOAways (ONever (@ Only on clean exit
& Ath v
< >
Bbout Cancel

Figure 4-33. Adding the hostname and port

d. Click Open to access the AWS instance.

Connecting to Your AWS Instance from Linux Machine

Make sure you have the .pem file available with you on the machine from which you wish to access your
AWS instance.

1. Run the following command to connect to your AWS instance, as shown in
Figure 4-34.

ssh -i /path/my-key-pair.pem <username>@<Public DNS>

142

CHAPTER 4 * SETTING UP JENKINS ON DOCKER AND CLOUD

nikhil@devo1:~5 ssh -i fhome/nikhil/Downloads/keypairforjenkinsmaster.pem ubuntu
@ec2-35-154-118-225.ap-south-1.compute.amazonaws.com

Helcome to Ubuntu 16.04.1 LTS (GNU/Linux 4.4.0-53-generic x86_64)

* Documentation: https://help.ubuntu.com

* Management: https://landscape.canonical.com

* Support: https://ubuntu.com/advantage

Get cloud support with Ubuntu Advantage Cloud Guest:
http://www.ubuntu.com/business/services/cloud

0 packages can be updated.
® updates are security updates.

Last login: Mon Jan 23 22:40:19 2017 from 86.199.15.42
To run a command as administrator (user "root”), use "sudo <command>".
See "man sudo_root" for details.

ubuntu@ip-172-31-26-122:~5 |j

Figure 4-34. Connecting to aws instance using ssh

Install the Latest Stable Version of Jenkins
Installing Jenkins from here is the same as installing Jenkins on any Ubuntu machine.

1. First add the key to your system by executing the following command:

sudo wget -q -0 - https://pkg.jenkins.io/debian-stable/jenkins.io.key
| sudo apt-key add -

2. Now, add the repo http://pkg.jenkins.io/debian-stablebinary/ into the
sources.list file that is located at /etc/apt, using the following command:

sudo sh -c 'echo deb http://pkg.jenkins.io/debian-stable binary/ >
/etc/apt/sources.list.d/jenkins.list'

3. Update the package index:
sudo apt-get update

4. Lastly, install Jenkins using the following simple command:
sudo apt-get install jenkins -y

5. 4. You can now access Jenkins using the following URL http://< Public
DNS»:8080/. Or using http://< Public IP>:8080/

Summary

In the current chapter we learned to install Jenkins Master on Docker, Cloud, and Bare Metal machines with
Unix-like OS. Jenkins installation on Windows was skipped due to its shear simplicity.

In the next chapter we will learn in detail about the pipeline as code using Jenkins pipeline Job and
Jenkins multibranch support using the multibranch pipeline Job.

143

http://pkg.jenkins.io/debian-stablebinary/

CHAPTER 5

Pipeline as a Code

Tired of creating and configuring Pipelines for your continuous integration (CI) and continuous delivery
(CD) solution? Pipeline as a Code is the answer. The concept of Pipeline as a Code using Jenkinsfile or
pipeline script is one of the newly introduced features in Jenkins (2.0). The current chapter is all about these
new features in Jenkins, which are the following:

e Declarative Pipeline Syntax to model CI and CD pipelines, as a code.

e Support for multibranch Git and GitHub projects - to auto-spawn self-managed
pipelines.

e Support for GitHub to automatically manage webhooks and more.
e Stage view - to make the pipeline progress and logs more intuitive.

In the current chapter, we will learn to use these new features with the help of a GitHub Maven project.
To follow the example, you will need a GitHub account (public or private), and a Jenkins master (2.0)
running on either Docker, AWS, or on a Linux/Windows machine.

Prerequisite

Before we create a pipeline inside Jenkins, we need to make sure that we have the following GitHub and
Jenkins configurations ready:

1. Apersonal access token in GitHub.
An SSH key pair from the Jenkins master.
GitHub plugin for Jenkins, with the necessary configurations.

Maven, Git, and Java applications configured on Jenkins master.

g~ LN

Pipeline Maven Integration Plugin for Jenkins.

Let’s see them one by one.

© Nikhil Pathania 2017 145
N. Pathania, Pro Continuous Delivery, DOI 10.1007/978-1-4842-2913-2_5

CHAPTER 5 ' PIPELINE AS A CODE

Creating a Personal Access Token in GitHub

A personal access token is just like a username and password. However, the difference lies in the fact that
you can create as many personal access tokens as you want, each with a different set of permissions.

1. Sign In to your GitHub account.

2. Go to your GitHub account settings, as shown in Figure 5-1.

O This repository Pull requests Issues Gist +- | Q-

ontinuous-delivery / hello-world-example Gwch> o |4 i
¥ pro-continuous-del...

<> Code Issues 0 Pull requests o Projecis o Wik Pulse Graphs Setting Your profile
Your stars

maven hello world! example to test jenkins 2.0 features Explore

Integrations

@ 2 commit U 1 brand Drslenses 11 1 contribut
Help

master = New pull request Croatenewiile Uploadfes Find Seltings

Sign out
) pro-continuous-delivery commitied on GitHub 5o e

Figure 5-1. GitHub account settings

3. Navigate to Developer settings » Personal access tokens. On the Personal
access tokens page click on Generate new token button (Figure 5-2).

Davelopas ssitings Personal access tokens Generats new token

Need an AP token for scripls or testing? Ger xss token for quick access lo the GitHub API.

(@ Personal access tokens function like ordinary OAuth access tokens. They can be used instead of a password for
Personal access tokens Git over HTTPS, or can be used to authenticate to the AP over Basic Authenticatior

Figure 5-2. Generate new token

4. On the following page (Figure 5-3), do this:
a. Add aname in the Token description field.
b. Under Select Scopes field, pick admin:org_hook and admin:repo_hook.

c. Click on the Generate token button to finish.

146

CHAPTER 5 ' PIPELINE AS A CODE

New personal access token

Personal access tokens function like ordinary OAuth access tokens. They can be used instead of a password for Git
over HTTPS, or can be used to authenticate to the APl over Basic Authentication.

Token description

github-jenkins-token|

What's this token for?

Select scopes
Scopes define the access for personal tokens. Read more about OAuth scopes.

(@] repo Full control of private repositories
O repoistatus Access commit status
@] repo_deployment Access deployment status
O public_repo Access public repositories
O admin:org Full control of orgs and teams
@] writezorg Read and write org and team membership
O read:org Read org and team membership
™ admin:public_key Full control of user public keys
O write:public_key Wirite user public keys
O read:public_key Read user public keys
admin:repo_hook Full control of repository hooks
write:repo_hook ‘Write repository hooks
read:repo_hook Read repository hooks
admin:org_hook Fuill control of organization hooks

Generate token Cancel

Figure 5-3. Select scope

5. You can see the new token under the Personal access tokens page (Figure 5-4).
Save a copy of it by clicking on the small copy icon. We will need it later in the
upcoming section.

Personal access tokens Genorate newtoken Revoke all
Tokens you have generated that can be used to access the GitHub API.

Make sure to copy your new personal access token now. You won't be able to see it again!

« 9f5678673c12a5ef1f946d32576330592d516148 [f2 Edit Delete

@ Personal access tokens function like ordinary OAuth access tokens. They can be used instead of a password for
Git over HTTPS, or can be used o authenticate to the APl over Basic Authentication.

Figure 5-4. Copy the new personal access token

147

CHAPTER 5 ' PIPELINE AS A CODE

Adding the Personal Access Token in Jenkins

Now we need to add the newly created personal access token in Jenkins so that the Jenkins GitHub plugin
can communicate with GitHub.

1. From the Jenkins Dashboard, click Credentials » System » Global credentials
(unrestricted).

2. Click on Add Credentials link present on the left-hand side menu (Figure 5-5), to
create a new credential.

€ 172.17.8.106 e || TBe O ¥ A =

@ J cnkins ‘ @ nikhil pathania | log out

n ontlals System

Back to credential domains

@= Add Credentials -{i= Global credentials (unrestricted)
Credentials that should be avallable Irrespective of domain specification to requirements matching.

NHame Kind Description

This credential domain is emply. How about adding some credentials?

Figure 5-5. Add personal access token in Jenkins

3. On the following page (Figure 5-6), do the following:
a. Select Secret text as the value for Kind.
b. Choose Scope as Global (Jenkins, nodes, items, all child items, etc).
c. Inthe Secret field, paste the personal access token that we copied earlier.
d. InthelID field enter a meaningful ID.
e. Add some description in the Description field.

f. Click on the OK button when done.

€ 172.17.8.106 e ||c® w8 O 3 & =
.
@ Jenk]n.s i @ niknil pathania | leg out
Jonkins Credentials System Glotal credentials (unn
Back to credential domains Kind [ot :I
@= Add Credentials
e Global (Jenking, nodes, llems, all child tems, elc) -j 7]
Secret
o github-jenkins-token 1
Descriplion ot jenkins-token 2

Figure 5-6. Create a secret text credential

148

CHAPTER 5 ' PIPELINE AS A CODE

4. You can see your newly created Secret text credential, which contains the GitHub
personal access token, as shown in Figure 5-7.

€ % (0 1721781086 c || T8 9 3 & =
@ Jenkins L @ niknil pathania | log out
Jenkins Credentials Systlem Global credentials (unrestricled|

Back to credential domains

@= Add Credentials L: 7 Global credentials (unrestricted)

Credentials that should be available Irespective of domain specification lo requirements matching
Name Kind Description
= github-jenkins-foken Secrel text github-jenkins-token 7

fcon: SML

Figure 5-7. A new Secret text credential

Generating an SSH Key Pair

Jenkins pipeline needs an SSH key to clone the GitHub repository in order to build the code. The SSH
key pair has to come from the Jenkins master server, since the underlying OS for Jenkins master can be a
Windows or a Linux machine. We need to know the process to generate SSH key pairs on both of these OS.

Generate an SSH Key Pair on Ubuntu

Follow the below steps to generate an ssh key pair:

1. Open a Terminal and execute the following command, substituting in your email
address (Figure 5-8).

ssh-keygen -t rsa -b 4096 -C "your e-mail id"

a. Youwill be prompted to “Enter a file in which to save the key.” Press Enter, to
accept the default file location.

Note Make sure you do not have any existing key pair files with the default name. If so, choose a new
name for the SSH key pair that we are creating.

b. Atthe next prompt, type a secure passphrase. You can choose not to enter
any passphrase if you want.

149

CHAPTER 5 ' PIPELINE AS A CODE

vagrant@node3:~$ ssh-keygen -t rsa -b 4096 -C "nikhilpathania@gmail.com"
Generating public/private rsa key pair.

Enter file in which to save the key (/home/vagrant/.ssh/id rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/vagrant/.ssh/id_rsa.

Your public key has been saved in /[home/vagrant/.ssh/id_rsa.pub.

The key fingerprint is:

08:d2:28:01:20:d7:91:6c:b7:23:61:77:d3:28:c2:1b nikhilpathania@gmail.com
The key's randomart image is:

+--[RSA 4896]----+

|= .0.0 |
lo. o= . |
|..0.0. + |
| oE.o.=.. |
Jou * +..5 |
| o. |
| o |
| |
| |
Frmmmmmmmmmm e +

vagrant@node3:~$ [J

Figure 5-8. Creating an SSH key pair

2. This creates a new SSH key pair.

Adding your SSH private key to the ssh-agent

Adding the SSH private key to the ssh-agent makes it unnecessary for you to remember and enter your
passphrase every time you use your key. You can skip this step if you haven’t created a passphrase for your
SSH key pair.

1. Start the ssh-agent if it’s not already running using the below command.
From the Figure 5-9, you can see a pid number.

eval "$(ssh-agent -s)"

vagrant@node3:~$ eval "$(ssh-agent -s)"
Agent pid 1882
vagrant@node3:~$ fi

Figure 5-9. Starting the ssh-agent

2. The SSH private key file is id_rsa. Add your SSH private key to the ssh-agent
using the following command. You will be prompted to add your passphrase, as
shown in Figure 5-10.

ssh-add ~/.ssh/id_rsa

vagrant@node3:~$ ssh-add ~/.ssh/id_rsa

Enter passphrase for [home/vagrant/.ssh/id_rsa:

Identity added: /home/vagrant/.ssh/id_rsa (/home/vagrant/.ssh/id _rsa)
vagrant@node3:~$ [

Figure 5-10. Adding the SSH private key to the ssh-agent

150

CHAPTER 5 ' PIPELINE AS A CODE

Generate SSH Key Pair on Windows

Follow the below steps to generate an ssh key pair:
1. OpenPuTTYgen.
a. Under Parameters » Type of key to generate: choose SSH-2 RSA.

b. Next, click on the Generate button and hover your mouse over the blank
space under the key section, as shown in (Figure 5-11).

P PuTTY Key Generator X
File Key Conyersions Help

Key
Please generate some randomness by moving the mouse over the blank area.

Actions

Generate a public/private key pair Gererate
Load an existing private key file Load
Save the generated key Save public key Save private key

Parameters
Typt_a of key to generate:

1 (RSA SSH-2 RSA SSH-2 DSA

Number of bts in a generated key: 2048

Figure 5-11. Generating SSH key pair using puttygen

c. Once the key gets generated, add a passphrase in the Key passphrase field.
Confirm the same by reentering the passphrase in the Confirm passphrase
field (Figure 5-12). Creating a passphrase is, however, not mandatory.

d. Download the public key and the private key by clicking on the Save public
key and Save private key button (Figure 5-12).

151

CHAPTER 5 ' PIPELINE AS A CODE

y PuTTY Key Generator b4
File Key Conversions Help

Key
Public key for pasting into OpenSSH authorized_keys file:

ssh+sa A
AAAAB3NzaC lyc2EAAAABJQAAAQEAXWW TkHXEMRWME3zUPDCBEdnalUb SDZ4Vi

+3ne+V
+0eqddgx48Cn UOxWjLdLSnXOdxsmzqKezRuxS9CsalQaKnolntjZy LAwldOai ScQ Zkiki
R50d3%zPYhwiclUfF v

Key fingerprint: [ash-rsa 2048 8e:39:9c:ae ba:abb4:50:28:bd:10:95bd .d7:67:ze]
Key comment: Isakey-20170129 |
|
|

Key passphrase: |noooo|-lo
Confirm passphrase: I--.-u-.u-l

Actions

Generate a public/private key pair Generate

Load an existing private key file Load

Save the generated key Save public key Save private key

Parameters

Type of key to generate:
(O SSH-1(RSA) (® SSH-2 RSA (O SSH-2 DSA

Number of bits in a generated key:

Figure 5-12. Saving the public and private key

Copy the SSH Public Key to GitHub

Follow the below steps to copy the ssh public key to Github:
1. Login to your GitHub account.
2. Navigate to Settings » Personal Settings » SSH and GPG keys.
3. Onthe SSH keys section click on the New SSH key button (Figure 5-13).

Personal settings SSH keys m

Profile
There are no SSH keys with access to your account.
Account

& 10 ganaraling SSH keys of roubleshoot comman SSH Problems.

Emails
PP
Notifications GPG keys New GPG key
Billing
There are no GPG keys with access to your account.
SSH and GPG keys Leam how to generate a GPG key and add it 1o your account

Figure 5-13. Adding the public SSH key on Github

152

CHAPTER 5

4. On the following page (Figure 5-14), do the following:

a. Add aname in the Title field.

PIPELINE AS A CODE

b. Paste your public key inside the Key field. (Be careful while entering the key.)

c. Click on the Add SSH key button. You will be prompted to enter your
GitHub account password.

Personal seftings SSH keys

There are no SSH keys with access to your account.

Title

github-jenkins-ssh-key

Key

SSH and GPG keys UCLNSaBw3BI5xpad5P41hiVEZBIb/7TBEvHT de150 I
IhkhAUMuy XyMgXF dieQRUUTMISESQmkO09SpAMbAITbEcDPGOvveurcDeoBNHAZ S6BTF KioSyc3cU2B
pmM+Js0KoKEIDe2GJhKEdEEVBOVL « 2KL CAaLMOpib 1vOiBEW 1t 1 opxssnF&o8KELknEpPTdOwulSnglg
'0zalDg6uHJp2dNT zlzW24 AOMAULD| 1 dONIxNICoXWOZBXa

3+WELy3lyHjOgVyMSUvg CRH+9dMRXgiGxUkouy2VFUAYSGWVKU IWRmTvhE ZEGuSbZvXWRExruKnkiB

v

Repositories PZZG4VQeS3eErI95 TMSvsB26y09dt DAh+mexQHEDhgzDVrigWIQ+59egV3YZ4KBVEWO 509
ROtPrUBIRSIEVHPIAIOBRHLoFbESWh3{AnGEvn U WV ESRZpzONZEDCITHFSIIXSKANGZKT J1 3t6kp

B

Figure 5-14. Entering the SSH public key

5. Anew SSH key appears under SSH keys section, as shown in Figure 5-15.

Personal settings SSH keys

This is a list of SSH keys associated with your account. Remove any keys that you do not recognize.
") github-jenkins-ssh-key

Fingerprint: 68:02:48:01:20:d7:91:6c:b7:2a:61:77:d3:28:¢2:1b Delato

Added on 26 Jan 201

| SSH and GPG keys

Figure 5-15. The new SSH key on GitHub

Copy the SSH Private Key to Jenkins
Follow the below steps to copy the ssh private key pair to Jenkins:

1. From the Jenkins Dashboard, navigate to Jenkins » Credentials » System »
Global credentials (unrestricted).

2. Click on the Add Credentials link on the left-hand side menu, to create a new
credential (Figure 5-16).

a. Choose Kind as SSH Username with private key.

b. Add ausername under the Username field. (This can be left blank.)

153

CHAPTER 5 ' PIPELINE AS A CODE

c. Under Private key field choose the Enter directly option and paste the
private key in the text box. (Carefully paste the SSH private key.)

d. Enter the passphrase under the Passphrase field if you created one.

e. Addan ID under the ID field, and some description under the Description
field.

f. Once done, click on the Save button.

€ 172.17.8.106 » | c® a8 9 3 A4 =
4 B L3 =
@ Jcnklnb J @ nikhil pathania | log out
Jonkin ' System ¢ . stricted
Back to credential domains KInd | (S Usemame with privale key ‘I
@= Add Credentials)
Scope Global (Jerkins, nodes, items, all child ems, etc jt}.—
Usemame jenicins

Private Key
" v 0 Enter directly

. { . BEGIN RSA PRIVATE KEY-—

Proc-T 4 ENCRYPTED
DEK-Info: AES-128-CBC ETFEBESEABEEBDFOBSSI20C445733144

AukXIITEZx! AJkhsK 1 ESkaID0
Yis XutUr/'umdiolm2vSO386u

Inx3nly 2BNFUNBMNJroX TP hogVz VOcgemi
HKDWWTIcA 1ah Tox Khs 20WnTSviRKG2 15

From a file on Jenkins master

From th

he Jenking master ~/.ssh

Passphrase

% github-jeniins-ssh-key ®

Description

Figure 5-16. Adding SSH private key in Jenkins

58 Key 10 connect jenkins with github L2

154

CHAPTER 5 ' PIPELINE AS A CODE

3. The newly created SSH credentials are listed, as shown in Figure 5-17.

& # 172.17.8.106 o | |P B 9 ¥ & =

$ Jenk

Jenkins Crege

ns A @ niknil pathania | log out

a System

Back to credential domains

@= Add Credentials

:f Global credentials (unrestricted)

Credentials that should be avallable irmespective of domain specification to requirements matching
Name Kind Description
@= github-jenkins-token Secret text github-jenking-token p
jenkins_admin (ssh key to connect jenkins with SSH Usemame with private s5h Key to connect jenkins with
github) hey github ¢
lcon: S ML

Figure 5-17. List of credentials

Configuring the GitHub Plugin

In order for Jenkins to communicate with GitHub account, we need to configure the GitHub plugin inside

Jenkins.

1. From the Jenkins Dashboard, navigate to Manage Jenkins » Configure System.

2. Onthe Configure System page scroll down until you see the GitHub section
(Figure 5-18).

a.

b.

Click on the Add GitHub Server button and choose GitHub Server.

Choose the GitHub token (in our case it’s github-jenkins-token) for the
Credentials field.

Leave the Manage hooks un-checked. (We will see this option later in the
chapter.)

You can test the connection between GitHub and Jenkins by clicking on the
Test connection button.

Leave the rest of the fields as they are. (We will see these options later in the
chapter.)

155

CHAPTER 5 ' PIPELINE AS A CODE

GitHub

GitHub Servers

GitHub Server (2]
API URL https://apl.github.com ®
tial e
Credentials github-jenkins-token :J o Add ~ ®
Credentials veritied for Test connection
user PfD-COﬂtInUDLIS'
delivery, rate limit: 4997 (2]
Manage hooks @
Advanced...

Add GlitHub Server ~

Re-register hooks for all jobs

Override Hook URL

Specity another hook url for GitHub configuration ©
Shared secret e j Al @
Additional actions Manage additional GitHub act = @

Figure 5-18. Github plugin configuration in Jenkins

Creating Webhooks in GitHub

In the following section we will learn to create webhooks in GitHub to automatically trigger a CI pipeline in
Jenkins whenever there is a change on the version control system.

1. Login to your GitHub account.
2. Open the GitHub repo that you would like to work on. Click on the Settings (tab).
a. On the left-hand side menu, click on Webhooks (Figure 5-19).

b. On the following page, click on Add webhook button to create a new

webhook.
pro-continuous-delivery / hello-world-example ©Wakch> 0 Kstar 0 YFork 0
Code Issues 0 Pull requests o Projects 0 Wiki Pulse Graphs £ Settings
Optians Webhooks e

Collaborators
Webhooks allow external services to be nofified when certain evenis happen within your repository. When the
Branches specified events happen, we'll send a POST request to each of the URLs you provide. Learn more in our

Webhooks Guide.

Figure 5-19. Create a new webhook in GitHub

156

CHAPTER 5 ' PIPELINE AS A CODE

3. Configure the new webhook as shown in Figure 5-20:

a. Under the Payload URL add your Jenkins URL followed by github-
webhook/.

b. Choose the Content type as application/json.

c. For the Which events would you like to trigger this webhook? field, select
Send me everything.

d. Once done click on Add webhook button.

Webhooks / Add webhook
We'll send a POST request to the URL below with details of any subscribed events. You can also specify which

data format you'd like to receive (JSON, x-www-form-urlencoded, efc). More information can be found in our
developer documentation.

Payload URL *

hittp//172.17.8.106:8080/github-webhook/

Content type

“*

application/json

Secret

Which events would you like to trigger this webhook?
Just the push event.
© Send me everything.

Let me select individual events.

Aciive
We will deliver event details when this hook is triggered

Figure 5-20. Configure webhook

157

CHAPTER 5 ' PIPELINE AS A CODE

4. You can see the newly created webhook, as shown in Figure 5-21.

Webhooks Add webhook

Webhooks allow external services to be notified when certain events happen within your repository. When the
specified events happen, we'll send a POST request to each of the URLs you provide. Learn more in our
Webhooks Guide.

v hitp://172.17.8.106:8080/github-webhook Edit Delele
Figure 5-21. Newly created webhook

Configure Java, Git, and Maven

To build our project we need Java JDK, Maven, and Git. Follow the below steps to configure Java, Git, and
Maven:

1. From the Jenkins Dashboard navigate to Manage Jenkins » Global Tool
Configuration.

2. On the Global Tool Configure page, go to the JDK section and click on Add JDK
button (Figure 5-22).

a. Under the Name field add a name.
b. Choose Install automatically.

c. Click on the Add Installer button and choose Install from java.sun.com
option.

d. Select the appropriate version for the Version field. And agree on the

License Agreement.
JOK
JOK instaliations JOK
Name porault Java
Install automatically @:

Install from java.sun.com

Version | ava SE Development Kit 8u121 =

| agree to the Java SE Development Kit License Agreement
@ Installing JDK requires Oracle account. Please enter your username./password

Delete Installer

Add instalier ~

Delete JOK

Add JDK

List of JOK installations on this system

Figure 5-22. Configuring Java

158

CHAPTER 5 ' PIPELINE AS A CODE

Note You must have an Oracle account to use this method of installing Java. Enter your Oracle account
details by clicking on the “Please enter your username/password” link.

3. Next, scroll down to the Git section (Figure 5-23).
a. Add aname under the Name field.

b. Under the Path to Git executable add git. (This assumes that you have
installed Git on your Jenkins master.)

c. Leave the Install automatically option un-checked.

Git

Gt Installations
Git
Mame Default Git

Path to Git executable qit -,t:i“

Install automatically @

AddGit ~

Figure 5-23. Configuring Git

Note If you are using Git as the version control tool, make sure it is installed on the Jenkins master.

4. Next, scroll down to the Maven section (Figure 5-24).
a. Click on Add Maven button.
b. Addaname under the Name field.
c. Choose the Install automatically option.
d. Click on Add Installer button and choose Install from Apache.

e. Choose the appropriate version for the Version field.

159

CHAPTER 5 ' PIPELINE AS A CODE

Maven
Maven instaliations Maven
Name Default Maven
Install automatically @

Install from Apache
Version 339 v

Add installer

Delete Maven

Delete Instalier

Add Maven

List of Maven installations on this system

Figure 5-24. Configuring Maven

Install the Pipeline Maven Integration Plugin

Follow the below step to configure the pipeline maven integration plugin for Jenkins. The following plugin
will allow us to use the Maven configuration inside out pipeline code.

1. From the Jenkins Dashboard click on Manage Jenkins » Plugin Manager »
Available (tab).

2. Type Pipeline Maven Integration Plugin inside the Filter field to search the
respective plugin, as shown in Figure 5-25.

€ @ 172.17.8.106 Y v o |[® wB 9 ¥+ a =

a@ ,Ienkins @ niknil pathania log out

Jenkins Plugin Manager

Back to Dashboard

™ Manage Jenkins

Filter: | “\ Pipeline Maven Integration Pl

Avallable

Install | Name Version
Pipeline Maven Integration Plugin

v ven Integration with Pipeline Plugin by

Install without restart Download now and install after restart
Update information obtained: 1 hr 1 min ago

Figure 5-25. Installing pipeline Maven integration plugin

160

CHAPTER 5 ' PIPELINE AS A CODE

Using the Jenkins Pipeline Project

Let us create a Jenkins pipeline. In the example below I am using Jenkins 2.32.1, which is a stable release for
Ubuntu. Our pipeline will download the code from GitHub repository and perform a build and unit test on it
using Maven commands. Our pipeline will have two stages: first will be the scm stage, and the second will be
the build stage.

Creating a Pipeline Project in Jenkins
Follow the steps to create a pipeline job inside Jenkins:

1. From the Jenkins Dashboard, click on the New Item link from the left-hand side
menu.

2. On the following page (Figure 5-26), do the following:
a. Name your pipeline by entering a name in the Enter an item name field.
b. Choose Jenkins project type as Pipeline from the options.

c. Click on the OK button.

161

CHAPTER 5 ' PIPELINE AS A CODE

Enter an item name

: hello-world-pipeline

~ Required field

Freestyle project
é This is the central feature of Jenkins. Jenkins will bulld your project, combining any SCM with any build
system, and this can be even used for something other than software build.

(fermerly known as workllows) and/or organizing complex activities that do not easily fit in free-style job

;. Pipeline
\i Orchestrates long-running activities that can span muiltiple bulld slaves. Sultable for building pipelines
type.

External Job
\ 2_ | This type of job allows you to record the execution of a process run outside Jenkins, even on a remote
e machine. This is designed so that you can use Jenkins as a dashboard of your existing automation
system.

Multi-configuration project

Suitable for projects that need a large number of different configurations, such as testing on multiple
environments, platform-specific builds, etc.

Folder

ﬁ' Creates a container that stores nested items in it. Useful for grouping things together. Unlike view, which
Is just a filter, a folder creates a separate namespace, so you can have multiple things of the same name
as long as they are in different folders.

GitHub Organization
Scans a GitHub organization (or user account) for all repositories matching some defined markers.

Multibranch Pipeline
Creates a set of Pipeline projects according to detected branches in one SCM repository.

3

Figure 5-26. Creating a pipeline job

3. On the pipeline configuration page, scroll down to the Build Triggers section.
And choose the option GitHub hook trigger for GITScm polling, as shown in
Figure 5-27.

162

CHAPTER 5 ' PIPELINE AS A CODE

Build Triggers
Build after other projects are built ®

Bulld periodically (2

2 GitHub hook trigger for GITScm polling 2]

Figure 5-27. Choosing a build trigger

4. Next, Scroll down to the Pipeline section and choose Pipeline script under the
Definition field (Figure 5-28).

Pipeline
Definition Pipeline script :i
®

Script -

3

Use Groovy Sandbox (2]

Plpeline Syntax

Figure 5-28. Pipeline script

5. Let’s explore the Pipeline Syntax option. To do so, click on the Pipeline Syntax
link which is right below the Script box.

The Pipeline Syntax Option in Jenkins

The Pipeline syntax utility is a very useful tool in Jenkins to convert Jenkins Ul configurations to code. Let’s
see it in action.

1. The Pipeline Syntax utility will open in a new tab.
2. On the following page, go to the Steps section.
a. For the Sample Step field, you will find a huge list of options.

b. Choose checkout: General SCM option from the list. When you do so, the
page refreshes with a new set of configurable items (Figure 5-30).

c. Choose Git for the SCM field.

d. Under Repositories » Repository URL, add the GitHub repository’s SSH
link. You can find the SSH link for your repo on the GitHub repository page,
as shown in Figure 5-29.

163

CHAPTER 5 ' PIPELINE AS A CODE

pull request Createnewfile Uploadfiles Findfile [Iel-p T S0t E8

ery committed on GitHub Update pom.xml Clone with SSH & Use HTTPS

z Use an SSH key and passphrase from account.
added hello world! source code

. git@github.com:pro-continuous-delivery/t | [
nitial commit l
e com Download ZIP

nitial commit aady ago

Update pom.xml 2 hours ago
Figure 5-29. Fetching the GitHub SSH URL
e. Under Credentials field, add the SSH credentials that we created in the
previous sections (Figure 5-30).
f. Leave all the other options as it is.

g. Click on the Generate Pipeline Script button.

h. Copy and save the code. (We will need it later.)

Sleps
Sample SI18P | ockout: General SCM j
SCM| o :I
sitories
Fiwp Repository URL s aqithub. com:pro-cor livery/helio-worid-example.git @
Credentials jenkins (ssh key to connect |enkins with github) j
o Add v ®
Advanced...
Add Repository
Branches to bulld Branch Specifier (blank forany) ., 7]
Add Branch Delete Branch
Repository browser |, o0 :I ®

Additional Behaviours A o

Include in polling?

Include in changelog?

Generate Pipeline Script

checkout([$class: 'GItSCM, branches: [[name: “/master]], doGer -onfig ns: lalse, ex []. submoduleClg:
[1. userRemoteConfigs: [[credentialsia: ‘github-jenkins-ssh-key’, ur: ‘git@github.com:pro-continuous-delivery/hello-world-example.git]]])

Figure 5-30. Generating code for SCM

164

CHAPTER 5 ' PIPELINE AS A CODE

3. Now, choose node: Allocate node from the list of options available under

Sample Step. As you will see the page refreshes with the new set of configurable
items (Figure 5-31).

a. Add master under the Label field.
b. Click on the Generate Pipeline Script button.
c. Copy and save the code. (We will need it later.)

Steps

Sample Step node: Allocate node

.
Label master ®

Label master is serviced by 1 node

Generale Pipeline Script

node(master) {
/ some block

Figure 5-31. Generating code for node
4. Now, choose stage: Stage from the list of available options under Sample Step
(Figure 5-32).
a. Addscm under the Stage Name field.
b. Click on the Generate Pipeline Script button.
c. Copy and save the code. (We will need it later.).

Steps

s 5
Sample Step stage: Stage

==

Stage Name

Generale Pipeline Script

stage('scm’) {
some block

1
!

Figure 5-32. Generating code for stage scm

165

CHAPTER 5 ' PIPELINE AS A CODE

5. Create code for another stage named build, as shown in Figure 5-33. Copy the
generated code.

Steps

Sample Step stage: Stage

. N

Stage Name ...

Generate Pipeline Script

stage{build) {
/i some block

}
!

Figure 5-33. Generating code for stage build

6. Now, choose withMaven: Provide Maven environment from the list of available
options under Sample Step (Figure 5-34).

a. Choose Default Maven under the Maven field.
b. Choose Default Java under the JDK field.

c. Leave the rest of the fields as they are.

d. Click on the Generate Pipeline Script button.

e. Copy and save the code. (We will need it later.)

Sleps

Sample Step withMaven: Provide Maven environment j
&_7;.

Maven
Default Maven (2]
JOK Default Java j @.
Mavon Setlings Conig — Use system default settings or file path — _-! ©
Maven Settings File Path @
g
Global Maven Settings Conflg | _ ;56 gystem default settings or file path — :I ®
Global Maven Settings File Path ®
Maven JVM Opts i’
g
Maven Local Repository PN
)

withMaven(jok: Default Java', maven: Default Maven’) {
// some block
)

Figure 5-34. Generating code for withMaven

166

CHAPTER 5 ' PIPELINE AS A CODE

Note To make withMaven: Provide Maven environment option available, in the Sample Step field we
installed the Pipeline Maven Integration Plugin for Jenkins.

7. Now, choose sh: Shell Script from the list of available options under
Sample Step (Figure 5-35).

a. Inside the Shell Script field type the following code:
mvn clean install

b. Click on the Generate Pipeline Script button.

c. Copy and save the code. (we will need it later).

Steps

s st
ST Slep sh: Shell Script j

Shell Script
ell Scrip mvn clean install

7]

Advanced...

Generate Pipeline Script

sh ‘mvn clean install'

Figure 5-35. Generating code for shell script

8. The combined code that we have generated so far is as shown below:
node('master"') {

stage('scm') {

checkout([$class: 'GitSCM', branches: [[name: '*/master']],
doGenerateSubmoduleConfigurations: false, extensions: [], submoduleCfg: [],
userRemoteConfigs: [[credentialsId: 'github-jenkins-ssh-key', url:
'git@github.com:pro-continuous-delivery/hello-world-example.git']]])

stage('build') {
withMaven(jdk: 'Default Java', maven: 'Default Maven') {
sh 'mvn clean install’

}

}

}

9. Switch to the Jenkins Pipeline configuration page. And paste the above code
under the Script field, as shown in Figure 5-36.

167

CHAPTER 5 ' PIPELINE AS A CODE

Pipeline
Definition Pipeline script :l

Scrip o (7]
3 b e name dage
6 n—
8
9

Use Groovy Sandbox L 2]
Pipeline Syntax

Figure 5-36. Pipeline script

Testing the Jenkins Pipeline Project

Let us now make some change on the GitHub code and see the pipeline in action.

Make Some Changes in GitHub
Follow the steps below to create some change on GitHub:

1. Login to the GitHub account and try to make some change on the code. Or if you
have cloned the GitHub repository then try to commit some change and push it
to your GitHub repository.

2. Inthe following example, I am making some changes to the .pom file; I am doing
this straight from the GitHub. See Figure 5-37.

O ! Pull requests lssues Gist +- O~
pro-continuous-delivery / hello-world-example © Watch= 0 *Star 0 VFork 0
<> Code ssues 0 Pull requests o Projects o Wik Fulse Graphs

hello-world-example /| pom.xml o
¢ Edit file @ Preview changes Tabs =] = Mo wrap -]

<Paml version="1.8" encoding="UTF-8°7>
.org/POM/4.8.68" xmlns:xs
‘maven.apache.org/POM/4. 9

xmlng="http://mav
»si:schemalocation=
4.0.8
pro.continuous. delivery

hellowor 1d-exasple

Tar
8.1.8

Figure 5-37. Make some change on GitHub

3. Asitcan be seen below from Figure 5-38, I am committing the change to the
master branch.

168

CHAPTER 5 ' PIPELINE AS A CODE

o Commit changes

some dummy change to trigger jenkins pipeling|

© < Commit directly to the ter branch.

i1 Create a new branch for this commit and start a pull request. Learn more about pull requests

I;.. changes e

Figure 5-38. Committing changes on GitHub

Jenkins Pipeline Project in Action
The moment you commit or push a change on the GitHub repository, the Jenkins pipeline gets triggered.

1. To see this in action, from the Jenkins Dashboard quickly click on the pipeline
project (in our example its hello-world-pipeline).

2. On the pipeline page you can see the Stage View, as shown in Figure 5-39.

€) 172.17.8.106

Back to Dashboard . . » .
i Pipeline hello-world-pipeline
. Status
"= Changes
{2) Build Now — Recent Changes
[

® Delete Pipeline

e i 5
« ¢ Configure s‘age View
b Move
. Full Stage View e el
© Pipeline Syntax 3s 11s
[T] GitHub Hook Log
"dan27
Bulld History trend = 16:36
- - W W N Y
Jan 27,2017 3:36 PM i
e “ Permalinks

) BSS for all £} RSS for failures

Figure 5-39. Pipeline in progress

169

CHAPTER 5 ' PIPELINE AS A CODE

3. Try moving your mouse over any of the stages. You can see a link to the logs,
which is specific to the respective stage, as shown in Figure 5-40.

Stage View
In Progress
sCcm
:
Jan 27
16:56

Figure 5-40. In-progress logs

4. Clicking on the logs will open a small window with the running logs inside it.
Figure 5-41 shows a preview of what some of the running logs look like.

Stage Logs (build) ®

® Shell Script (self time 22s)

8.3 KB/sec) I
[INFO] Downloaded: https://repo.maven.apache.org/maven2/org/apache/maven/maven-aether-provide
r/3.8/maven-aether-provider-3.8.jar (56 KB at 31.3 KB/sec)

[INFO] Downloading: https://repo.maven.apache.org/mavenz/org/sonatype/aether/aether-apis/i.7/a
ether-api-i1.7.jar

[INFO] Downloading: https://repo.maven.apache.org/maven2/org/sonatype/aether/aether-util/1.7/
aether-util-1.7.jar

[INFO] Downloaded: https://repo.maven.apache.org/maven2/org/sonatype/sisu/sisu-guices2.1.7/si
su-guice-2.1.7-noaop.jar (461 KB at 287.0 KB/sec)

[INFO] Downloading: https://repo.maven.apache.org/maven2/org/codehaus/plexus/plexus-interpola
tion/1.14/plexus-interpolation-1.14.jar

[INFO] Downloaded: https://repo.maven.apache.org/maven2/org/sonatype/aether/aether-impl/1.7/a
ether-impl-1.7.jar (104 KB at 59.3 KB/sec)

[INFO] Downloading: https://repo.maven.apache.org/maven2/org/codehaus/plexus/plexus-classworl
ds/2.2.3/plexus-classworlds-2.2.3.jar

[INFO] Downloaded: https://repo.maven.apache.org/maven2/org/apache/maven/maven-model-builder/
3.8/maven-model-builder-3.6.jar (145 KB at 82.4 KB/sec)

[INFO] Downloading: https://repo.maven.apache.org/maven2/org/sonatype/plexus/plexus-sec-dispa
tcher/1.3/plexus-sec-dispatcher-1.3. jar

Figure 5-41. Stage logs

5. From the pipeline page, click on the GitHub Hook Log to check the GitHub Push
details (Figure 5-42).

170

CHAPTER 5 ' PIPELINE AS A CODE

Last GitHub Push

Started on Jan 27, 2017 3:56:02 PM
Using strategy: Default
[poll] Last Built Revision: Revision 0f01070858b217e58340f10397d9d476adflaed6s (refs/remotes/origin/master)
using GIT_SSH to set credentials ssh key to connect jenkins with github
> git ls-remote -h git@github.com:pro-continuous-delivery/hello-world-example.git # timeout=10
Found 1 remote heads on git@github.com:pro-continuous-delivery/hello-world-example.git
[poll] Latest remote head revision on refs/heads/master is: 67a27f64360081a383b46abcc2270fdd35265986

Done. Took 2.9 sec

Changes found

Figure 5-42. Github push details

Using Jenkins Multibranch Pipeline Project

The Jenkins multibranch pipeline needs a Jenkinsfile for sure. All the pipeline steps and stages are
configured (written) inside the Jenkinsfile. This Jenkinsfile is stored with the source code on your Version
Control System (Git, GitHub, etc).

The Jenkins multibranch project configuration contains only the information about the GitHub or Git
repository and nothing else. This multibranch pipeline is again dependent on webhooks.

Create Credentials for GitHub Account

We need to add the GitHub account credentials inside Jenkins, as the multibranch pipeline does not accept
the SSH key pair authentication.

1. From the Jenkins dashboard click on Credentials » System » Global
credentials (unrestricted).

2. Click on the Add Credentials link from the left-hand side menu.

3. On the following page (Figure 5-43), do the following:

a.

b.

Choose Username and Password under the Kind field.

Add your GitHub account username under the Username field.

Add your GitHub account password under Password field.

Add some ID and description in the ID and Description fields respectively.

Once done, click on the OK button.

171

CHAPTER 5 ' PIPELINE AS A CODE

& 172.17.8.106 @ ||® w B8 + | =

@Jenkins : @ nikhil pathania | log out

Jenkins Credentials

f§ Back to credential domains

@= Add Credentials

i Usemame with password j
Scops Global (Jenkins, nodes, items, all child items, etc) j ®
Usemame .y nilpathania@gmail. com L2

Password EECE TR i

L2

18] t
github-accountcredentials ®
Descrplion ginub-account-credentials @

Figure 5-43. Github account credentials in Jenkins

Creating a Multibranch Pipeline Project
Follow the steps below to create a multibranch pipeline job in Jenkins:
1. From Jenkins Dashboard click New Item.

a. Add aname to your new pipeline under the Enter an item name field
(Figure 5-44).

b. Choose Multibranch Pipeline from the project-type options and click the
OK button.

172

CHAPTER 5

Enter an item name

‘ hello-world-multibranch-pipeline

= Required fieid
4 Freestyle project
' This Is the central of Jenkins will build your project, combining any SCM with any build
system, and this can be even used for something other than software build.
. Pipeline
H / Orchestrates long-running activities that can span multiple build slaves. Suitable for building pipelines
" (tormerly known as workflows) and/or organizing complex activities that do not easily fit in free-style job
type.
-+ External Job
\ g This type of job allows you to record the execution of a process run outside Jenkins, even on a remote
" machine. This is designed so that you can use Jenkins as a dashboard of your existing automation
system.
. Multi-configuration project
'-.[m,_-: Suitable for projects that need a large number of different configurations, such as g on multiple
= environments, platform-specific builds, etc.
... Folder
'-.-' Creates a container that stores nested items In it. Useful for grouping things together. Unlike view, which

is just a filter, a folder creates a separate namespace, so you can have multiple things of the same name
as long as they are in different folders.

. GitHub Organization
Scans a GitHub organization (or user account) for all repositories matching some defined markers.

Multibranch Pipeline
| Creates a set of Pipeline projects according to detected branches in one SCM repository.

if you want to create a new item from other existing, you can [\se this option:

L
£ LY (
f@: Copy from | Type to autocomplete

3

Figure 5-44. Creating a multibranch pipeline job

PIPELINE AS A CODE

173

CHAPTER 5 ' PIPELINE AS A CODE

2. On the Job configuration page, scroll down until you see the Branch Sources
section (Figure 5-45).

a. Click on the Add source button and choose GitHub.
b. Under the Owner field, add your GitHub account name.

c. Under Scan credentials add the recently created GitHub account
credentials in Jenkins.

d. The Repository field will be automatically populated with the list of all the
repositories that you have under your GitHub account. Choose the one that
you want Jenkins to work on.

e. Leave the rest of the options as is.

Branch Sources

GitHub
Owrar pro-continuous-delivery (7]
Scan credentials .y hipathania@gmail.com/****** (github-account-credentials) j ©
Repository helio-world-example j
Advanced...
Property strategy

All branches get the same properties

| I

Add property ~

Addsource -
Figure 5-45. Configuring Github repo

3. Scroll down until you see Build Configuration section (Figure 5-46). Choose the
Mode as by Jenkinsfile.

Bulld Configuration

hode by Jenkinsfile :I

Figure 5-46. Choose to build from Jenkinsfile

4. Scroll down to the Appearance section (Figure 5-47). You can choose to have
your GitHub repo avatar on your pipeline page.

Appearance

Icon GitHub Repository Icon :I [7]
Figure 5-47. Choose the appearance

174

CHAPTER 5

5. Click on the Save button to save you configuration.

6. The moment you create a multibranch pipeline. Jenkins will immediately fetch
the branch details from GitHub and generate a report, as shown in Figure 5-48.

. Progress:——————
Branch Indexing Log .

Started

Connecting to https://api.github.com using nikhilpathania@gmail.com/****** (github-account-

credentials)
Looking up pro-continuous-delivery/hello-world-example

Getting remote pull requests...
8 pull requests were processed E}
Getting remote branches...

Checking branch master
Started
Connecting to https://api.github.com using nikhilpathania@gmail.com/****** (github-account-
credentials)
Looking up pro-continuous-delivery/hello-world-example

Getting remote pull requests...
0 pull requests were processed
Getting remote branches...
Checking branch master
‘Jenkinsfile’ does not exist in this branch
Does not meet criteria
@ branches were processed

Done examining pro-continuous-delivery/hello-world-example

Finished: SUCCESS

Figure 5-48. Branch Indexing Log

7. To access the Branch Indexing Log, click on the Branch Indexing link from the
Jenkins multibranch pipeline page.

8. From thelogs itis clear that the Jenkins multibranch pipeline identified a master

branch on the GitHub repo with no Jenkinsfile on it. And hence, it declared the
GitHub repository; or to be more specific, the GitHub branch as unsuitable.

9. Solet’s add a Jenkinsfile to our GitHub repository.

PIPELINE AS A CODE

175

CHAPTER 5 ' PIPELINE AS A CODE

Using a Jenkinsfile
Follow the steps below to use the Jenkinsfile:
1. Take the build script from our previous pipeline project. Shown below is the code

from the pipeline project.

node('master') {
stage('sem') {
checkout([$class: 'GitSCM', branches: [[name: '*/master']],

doGenerateSubmoduleConfigurations: false, extensions: [], submoduleCfg:

userRemoteConfigs: [[credentialsId: 'github-jenkins-ssh-key', url:
'git@github.com:pro-continuous-delivery/hello-world-example.git']]])

}

stage('build') {
withMaven(jdk: 'Default Java', maven: 'Default Maven') {
sh "mvn clean install'

}
}
}
2. From the above code delete the following section (scm stage).

stage('scm') {
checkout([$class: 'GitSCM', branches: [[name: '*/master']],

doGenerateSubmoduleConfigurations: false, extensions: [], submoduleCfg:

userRemoteConfigs: [[credentialsId: 'github-jenkins-ssh-key', url:
'git@github.com:pro-continuous-delivery/hello-world-example.git']]])

3. Andinits place, add the following command:
checkout scm
4. The resultant code should look as shown below.

node('master') {

checkout scm

stage('build') {
withMaven(jdk: 'Default Java', maven: 'Default Maven') {
sh 'mvn clean install’

}
}
}

5. Open atext editor and paste the above content in it and save it as Jenkinsfile.

6. Add this new Jenkinsfile to the cloned repository on your local machine and do
a commit + push operation (if you have created a clone of the GitHub repository
on your local machine).

7. Oradd it directly to your GitHub repo, as shown in Figure 5-49.

176

CHAPTER 5
o e reaaaty Pull roquests Issues Gist +- @-
pro-continuous-delivery / hello-world-example @ Watch~ 0 #Star 0 VFork 0
<> Code ssues 0 Pull requests o Projects @ Wiki Pulse Graphs Seftings
hello-world-example / Jenkinstile of cance
<3 Edit new file © Preview Spaces L] 2 & No wrap]

node(‘master') {

checkout scm

stage('build’) {
withMaven(jdk: 'Default Java', maven: ‘Default Maven') {
sh ‘mwn clean install®

Figure 5-49. Adding Jenkinsfile to GitHub repository

8. Commit the new Jenkinsfile by adding some comments on the master branch,
as shown in Figure 5-50.

o Commit new file

added a jenkins file

© < Commit directly to the master branch

i1 Create a new branch for this commit and start a pull request. Learn more

Cancel

Figure 5-50. Committing the changes on GitHub

9. The moment you do so, the multibranch pipeline gets triggered on the Jenkins
master. To see this click on our multibranch Jenkins pipeline from the Jenkins
Dashboard.

10. Asshown in Figure 5-51, you can see a new pipeline, named master, gets created
inside the multibranch pipeline project.

hello-world-multibranch-pipeline

Eadd description

All +
S w Name | Last Success Last Fallure Last Duration
¥ A master 3 min 25 sec - #6 NA 14 sec @
lcon: SML

Legend [JRSS foral [RSS for failures [) RSS for just latest builds

Figure 5-51. Pipeline for the master branch

PIPELINE AS A CODE

177

CHAPTER 5 ' PIPELINE AS A CODE

Creating a New Branch on the GitHub Repo

When you create a new branch on the GitHub repo, Jenkins multibranch pipeline will automatically detect it
and create a pipeline for it based on the Jenkinsfile. To see this in action, let’s create a new branch on Github.

1. Asyou can see, I am creating a new branch named feature-branch-1 from the
master branch (Figure 5-52).
O This reposiiory Pull requests Issues Gist + O~

pro-continuous-delivery / hello-world-example ©Wakch> 0 HStar 0 ¥Fork 0

<> Code Issues 0 Pull requesis o Projects o Wiki Pulse Graphs Settings
maven hellc world! example to test jenkins 2.0 features Edit
® 16 commits ¥ 1 branct 0 releases i1 1 contributor I Apache-2.0

Branch: master = New pull request Creato new file Uploadfllos Find file

Switch branchaslags

feature-branch- 1

Branches Tags

¥ Create branch: feature-branch-1 dal
from ‘master z

Figure 5-52. Creating a new branch on Github repo

Note Since we have created a branch named feature-branch-1 from the master branch. The Jenkinsfile at

this point is the same as the one on the master branch. Nevertheless, we can change it and have a different set
of steps and tasks inside it.

The moment I do so, GitHub notifies Jenkins and the multibranch pipeline project
gets triggered. To see this, go to Jenkins Dashboard and click on the multibranch
pipeline project. You will see two pipelines inside it. One is for master branch and
the other one is for feature-branch-1, as shown in Figure 5-53.

hello-world-multibranch-pipeline

_g&'lﬂd daescription

All +
s w Name | Last Success Last Fallure Last Duration
0 feature-branch-1 5 min 55 sec - #1 NA 31 sec @
¥ master 5 min 54 sec - #1 NA 30 sec @
lcon: SML

Legend [RSS forall [E) RSS forfallures [} ASS for just latest builds

Figure 5-53. Pipeline for the feature-branch-1 branch

178

CHAPTER 5 ' PIPELINE AS A CODE

3. From the multibranch pipeline project page, click on Branch Indexing link.
And you will see that Jenkins now has the details about both the branches on the
GitHub repo, as shown in Figure 5-54.

g Branch Indexing Log

Started by timer

Connecting to https://api.github.com using nikhilpathania@gmail.com/****** (github-account-
credentials)

Looking up pro-continuous-delivery/hello-world-example

Getting remote pull requests...
0 pull requests were processed
Getting remote branches...

Checking branch feature-branch-1
‘Jenkinsfile’ exists in this branch
Met criteria
No changes detected in feature-branch-1 (still at 69f5d39d79494789b261e8b5028c986a62bf86dc)
Checking branch master
‘Jenkinsfile’ exists in this branch
Met criteria
No changes detected in master (still at 1429f94f16a981c2779692416fa75cef345aaadf)
2 branches were processed

Done examining pro-continuous-delivery/hello-world-example

Finished: SUCCESS

Figure 5-54. Branch Indexing Log

A Better Way of Managing GitHub Webhooks

All this time we were using the manual way of creating webhooks on GitHub. However, in the current
section, we will discuss some other, better ways to configure webhooks.

1. Using the GitHub services (manual)

2. Using GitHub Plugin in Jenkins (Automatic)

Using the GitHub Services

GitHub has some built-in integration support (services) for popular tools like Jenkins. Using these pre-built
services for Jenkins, such as the Jenkins (Git plugin) and the Jenkins (GitHub plugin), you can automatically
trigger the Jenkins CI pipeline whenever there is a push on the version control system.

1. Login to your GitHub account.
2. Open your Repository home page and click on the Settings (tab).

3. On the left-hand side menu, click Webhooks and delete any existing webhooks
that we have configured so far.

179

CHAPTER 5 ' PIPELINE AS A CODE

4. Next, on the left-hand side menu, click Integrations & services.

a. On the following page, under Services section, click on the Add services
button.

b. Search for Jenkins (GitHub plugin) by typing the same, as shown in
Figure 5-55.

c:, This repository Pull requests lssues Glst +- -
pro-continuous-delivery / hello-world-example ©Watch~ 0 KkStr 0 YFok 0
Code Issues 0 Pull requests © Projecis o Wiki Pulse Graphs £ Settings
Options Installed integrations Browse drectory

Collaborators
Integrations augment and extend your workflows on GitHub with commercial, open source, and homegrown tools.

Branches Browse our directory to discover and install some of our favorites or build your owr
Webl coks .
Services Addservice
Integrations & services
Avallable Services
Deploy keys Services are pre-built integrations that perform certain actions when
jenking|

Jenkins (Gt plugin)

Figure 5-55. Adding the Jenkins (GitHub plugin) service

5. On the resultant page (Figure 5-56), do the following,

a. Add the Jenkins webhook URL under the Jenkins hook url field, as shown
below.

b. Click on the Add Service button.

180

CHAPTER 5

pro-continuous-delivery / hello-world-example ©Watch= 0 &sStar 0 YFok 0
¢ Code Issues 0 Pull requests @ I Projects o Wiki i~ Pulse Graphs £} Seftings
Options Services | Add Jenkins (GitHub plugin)

Callaborators
Jenkins is a popular continuous integration Senver.

Branches

Using the Jenkins GitHub Plugin you can automatically trigger build jobs when
Webhoaoks pushes ane made to GitHub.
Integrations & services

Install Notes

Deploy keys
1. “Jenkins Hook U™ s the URL of your Jenkins server's webhook endpoinl. For
example: hrtp://ci.jenkins

i.org/github-webhook/

For more information see hitps /iwiki, erkins-|.ong/display/ JENKINS /GitHub-+plugin

Jenkins hook url

hitp://172.17.8.106:8080/github-webhook/

Active
We will run this service when an event is riggered

Figure 5-56. Configuring GitHub service

6. The service gets added as shown in Figure 5-57.

o This repository Pull requests Issucs Gist + Q-
pro-continuous-delivery / hello-world-example OWatch~ 0 &Star 0 YFork 0
Code Issues o ‘| Pull requests o I Projects 0 Wiki 4 Pulse Graphs ¥ Settings
Options Installed integrations)

Ceollaborators
Integrations augment and extend your workflows on GitHub with commercial, open source, and homegrown tools.

Branches Browse our directory to discover and install some of our favorites or build your cwn.
Webhooks :
Services Add service =
Integrations & services
Deploy keys Services are pre-built integrations that perform certain actions when events occur on GitHub.
® Jenkins (GRHub plugin) Edit Delate

Figure 5-57. New GitHub service

PIPELINE AS A CODE

7. Try making some commits on the GitHub repo and see if the new GitHub service

works.

181

CHAPTER 5 ' PIPELINE AS A CODE

Automatically Manage Webhooks from Jenkins

We can make Jenkins create personal token and webhooks automatically on GitHub, all using the GitHub
account details:

1. To do this, delete all the webhooks and Services and the personal token from
GitHub.

2. Also, delete the GitHub token key created in the Jenkins credentials page.
3. Goto Manage Jenkins » Configure System.

a. Scroll down to the GitHub section (Figure 5-58).

b. Select the Manage hooks check box.

GitHub

GitHub Servers
GitHub Server L 2]

API URL hitps://apl.github.com (7]

Credentials s j A ®
Test connection
Manage hooks ©
Advanced...
Add GitHub Server -

._/ Advanced...
Figure 5-58. Configuring GitHub plugin 1

c. Click on the Advanced... button, the one after Add GitHub Server button
(Figure 5-58).

d. Under Additional actions click on Manage additional GitHub actions
button and choose Convert login and password to token (Figure 5-59).

182

http://172.17.8.106:8080/manage
http://172.17.8.106:8080/configure

CHAPTER 5 ' PIPELINE AS A CODE

Re-register hooks for all jobs

Override Hook URL . ®
Specify another hook url for GitHub configuration ©

Shared secret - none - :1 o= Add ~ [2]
itional act 7
Additional actions Manage additional GitHub actions v (2}
| Convertlogin and password fo]
G S (I CHORIORT IERNEL AN, PSR 20 JORRaTe |

Add
Figure 5-59. Configuring GitHub plugin 2

e. You will be presented with some more options (Figure 5-60). Do the
following:

f. Under GitHub API URL field, add the GitHub URL of your organization, if
it's a public repo then leave the field with the default option as shown below.

g. Choose From credentials option, and under Credentials field, add the
GitHub account credentials that we created in the previous sections.

h. Next, press on the Create token credentials button. This action will create a
personal access token on your GitHub account.

i. Under Credentials choose the GitHub account credentials that we created
in Jenkins.

Shaved secret —=m j >-Add L2

Acditional actions
Convert login and password 1o foken (1]
GitHub API URL T
it/ apd g, o

© From crodornioss

Crodertias rixhilpathaniag@gmall com****** (gittub-account credentials) ~| e= Add =
" 2 22 - &
Created credentials with id coca2d74-ddel 432c-bI82-1d43a9052730 jcan
use It for GitHub Server Config)

Croate loken credentials

From login and passwoed
Manags sdditional GitHub sctions. =
Figure 5-60. Configuring GitHub plugin 3

j. Click on the Test connection button to test the connectivity between
Jenkins and GitHub (Figure 5-61).

k. Click on the Re-register hooks for all jobs button. This will create all the
necessary webhooks on GitHub for both the Jenkins pipelines that we have
created so far (Figure 5-61).

183

CHAPTER 5 ' PIPELINE AS A CODE

GitHub Server ﬂ
API URL hittps://apl github. com (2]
Credenilals GitHub (hitps=/apl.github.com) auto g token for nikhilp .com :J
(2]
o= Add -
Cragentials verified for user pro-continuous-delivery, rate limit: 4765 Tost connection [7]
Manage hooks (7]
Advanced...

Add GitHub Server -

Called re-register hooks for 3 items Re-regisler hooks for all jobs
Override Hook URL
Specity another hook urd for GitHub configuration ©
Shared secret GitHub (https2//apl.github.com) auto token credentials for nixhilpathaniaggmail.com :I o= Add ¥ 2]

Additional actions Manage additional GRHUD actions i

Figure 5-61. Configuring GitHub plugin 4
4. Let'slogin to GitHub and check the automatically created webhooks and

personal access token.

5. Navigate to Settings (GitHub account) » Developer settings » Personal
access tokens.

6. You can see a new personal access token, as shown in Figure 5-62.

O Pull requests Issues Gist +- ©-
Duvelopar settings Personal access tokens Generate new loken Revoke all
OAuth applications

Tokens you have generated that can be used to access the GitHub APL

Integrations

Jenkins GitHub Plugin loken (hitpc//172.17.8.906:8080,) Last used wit e 12 vy Edit Delele
Personal access tokens >

Figure 5-62. Auto-generated personal access token

7. Navigate to Settings (repository) » Developer settings » Personal access
tokens.

8. You can see a new webhook, as shown in Figure 5-63.

184

CHAPTER 5 ' PIPELINE AS A CODE

O oot Pull requests lssues Gist athdil - B

pro-continuous-delivery / hello-world-example ©watch~ 0 HhsSar 0 YFork 0
sues 0 Pull requests 0 Projects 0 Wiki Pulse Graphs £ Settings

Webhooks bt

Webhooks allow external services to be nolified when cerlain evenls happen within your repository. When the

Webhooks
Edit Delote

Figure 5-63. Auto-generated webhooks

9. From the Jenkins Dashboard, navigate to Jenkins » Credentials » System >
Global credentials (unrestricted).

10. You can see the auto-generated personal access token has been added to Jenkins
Credentials, as shown in Figure 5-64.

.Q Credentials

o Name

Figure 5-64. List of credentials

Summary

In the current chapter we learned to create a simple CI pipeline using the pipeline script (pipeline as a
code) with just two stages (scm and build). We also learned to use the Jenkins multibranch pipeline and the
Jenkinsfile. Along with these, we also learned to configure webhooks in GitHub and create credentials in
Jenkins.

The purpose of this chapter was to introduce its readers to the Jenkins pipeline Job, multibranch
pipeline Job, and Jenkinsfile using a simple example. Nevertheless, we will learn more about Jenkins
pipeline steps/syntax in the coming chapters.

In the next chapter we will learn to set up a distributed build farm using Docker and Kubernetes. We
will also create simple pipelines to test out builds on these build farms. Along with these, pretested commits
using Jenkins and GitHub is also a topic of discussion in Chapter 6.

185

http://dx.doi.org/10.1007/978-1-4842-2913-2_6

CHAPTER 6

Using Containers for Distributed
Builds

In the current chapter we will learn to use Docker with Jenkins to provision on-demand Jenkins Slaves. Next,
we will learn to use Kubernetes with Jenkins to provision on-demand Jenkins Slaves running across multiple
Docker hosts, thus, creating a scalable build farm for running builds.

Distributed Builds Using Docker

In this section we will learn to use Docker containers as Jenkins Slave (build agents), to run our CI pipelines.
These Docker containers (build agents) will be created when the CI pipeline runs; the build will be
performed inside the container, and once the build is complete the Docker container will be destroyed.

To achieve this we need a Jenkins Master (could be running on any platform: Docker, Windows, Linux,
Cloud, etc.). We also need a Docker Server. To set up a Docker server, see the Installing Docker on Ubuntu
section from Chapter 4.

Make sure that your Jenkins Master can talk to GitHub using the Github Plugin. See the section
Automatically Manage Webhooks from Jenkins from Chapter 5.

We might also need Java, Git, and Maven configured on your Jenkins Master. See section Configure
Java, Git, and Maven from Chapter 5.

Enabling Docker Remote API

Jenkins (though the Docker Plugin) will use the Docker remote API to communicate with a Docker server.
Docker remote API allows external applications to communicate with the Docker server using REST API’s.
Docker remote API can also be used to get information about all the running containers inside the Docker
server.

To enable Docker remote API, we need to modify the Docker’s configuration file. Depending on your
OS version and the way you have installed Docker on your machine, you might need to choose the right
configuration file to modify. Shown below are two methods that work on Ubuntu.

© Nikhil Pathania 2017 187
N. Pathania, Pro Continuous Delivery, DOI 10.1007/978-1-4842-2913-2_6

http://dx.doi.org/10.1007/978-1-4842-2913-2_4
http://dx.doi.org/10.1007/978-1-4842-2913-2_5
http://dx.doi.org/10.1007/978-1-4842-2913-2_5

CHAPTER 6 * USING CONTAINERS FOR DISTRIBUTED BUILDS

Modifying the docker.conf file

Follow these steps to modify the docker.conf file. These configurations are important to allow Jenkins to
communicate with the Docker Host.

1. Login to your Docker server, make sure you have sudo privileges.

2. Execute the following command to edit the file docker.conf.
sudo nano /etc/init/docker.conf

3. Inside the docker.conf file, go to the line containing DOCKER_OPTS=.

Note You will find DOCKER_OPTS= variable at two places inside the docker.conf file. First is in the
pre-start script section and next is in the post-start script section. Use the DOCKER_OPTS= under the
pre-start script section.

4. Set the value of DOCKER_OPTS to,
DOCKER_OPTS="-H tcp://0.0.0.0:4243 -H unix:///var/run/docker.sock'

5. The above setting will bind the Docker server to the Unix socket as well on TCP
port 4243. “0.0.0.0” makes the Docker engine accept connections from anywhere.

Note If you want your Docker server to accept connections from only your Jenkins server, then replace
“0.0.0.0” with your Jenkins Server IP.

6. Restart the Docker server using the following command,
sudo service docker restart
7. To check if the configuration has worked, do the following,

curl -X GET http://<Docker server IP>:4243/images/json

Note The above command will list all the images present on your Docker server, if any.

Modifying the docker.service File

Follow the steps below to modify the docker.service file.

1. Execute the following command to edit the file docker.service.

sudo nano /1ib/systemd/system/docker.service

188

CHAPTER 6 * USING CONTAINERS FOR DISTRIBUTED BUILDS

2. Inside the docker.service file, go to the line containing ExecStart=.
3. Set the value of ExecStart= as shown below.

ExecStart=/usr/bin/docker daemon -H fd:// -H tcp://0.0.0.0:4243

4. The above setting will bind the Docker server to the Unix socket as well on TCP
port 4243. “0.0.0.0” makes the Docker engine accept connections from anywhere.

Note If you want your Docker server to accept connections from only your Jenkins server. Then replace
“0.0.0.0” with your Jenkins Server IP.

5. Execute the following command to make the Docker daemon notice the
modified configuration.

systemctl daemon-reload

6. Restart the Docker server using the following command,
sudo service docker restart

7. To check if the configuration has worked, do the following,

curl -X GET http://<Docker server IP>:4243/images/json

Note The above command will list all the images present on your Docker server, if any.

Installing the Docker Plugin

To create Docker containers (build agents) on the fly, we need to install the Docker Plugin for Jenkins. To do
this, follow these steps:

1. From the Jenkins Dashboard, click on Manage Jenkins » Manage Plugins
» Available (tab). You will be taken to the Jenkins Manage Plugins page.

2. Enter “Docker Plugin” in the Filter filed, as shown in Figure 6-1.

Fintor: | 9, Docser Plugen
Avallable

install Mamao Wersion

01,031

Figure 6-1. Installing the Docker Plugin

189

CHAPTER 6 * USING CONTAINERS FOR DISTRIBUTED BUILDS

3. Select the Docker Plugin from the list and click on the Install without restart
button.

4. Restart Jenkins if needed.

Configuring the Docker Plugin
Now that we have our Docker Plugin installed, let us configure it.
1. From the Jenkins Dashboard, click Manage Jenkins » Configure System.

2. Once on the Configure System page, scroll down all the way to the Cloud section
(Figure 6-2).

a. Click on the Add a new cloud button and choose Docker from the available
options.

b. On the resultant page, you will find a good number of settings to configure.
c. Give your Docker server a name using the Name field.
d. Addyour Docker server URL under the Docker URL field.

e. Click on the Test Connection button to check if Jenkins can communicate
with Docker server.

f. Atthe end of the page, click on Apply and Save button. We will come back
here later to make further configurations.

Cloud
Docker

Name Default Docker Host ﬁ:
Docker URL tepi/172.17.8.107:4243 L]
Docker API Version ©
Credentials e j o= Add ~

Cannection Timeout (7]
Read Timeout 0 (7]

Version = 1.13.1, API Version = 1.26 Tes! Connection

Contalner Cap 100 : ﬁ

Images Add Docker Template ~

List of Images to be launched as slaves

Figure 6-2. Configuring the Docker Plugin to talk to Docker server

190

CHAPTER 6 * USING CONTAINERS FOR DISTRIBUTED BUILDS

Creating a Docker Image for Creating Docker Containers
(Jenkins Slave)

Enabling the Docker remote API made the communication between Jenkins and the Docker server possible.
Now we need a Docker image on the Docker server. This Docker Image will be used by Jenkins to create
Docker containers (Jenkins Slaves) on the fly. To do this, follow the steps below:

1. Login to your Docker server. Give the following command to check the available
Docker images.

sudo docker images

2. From the image below you see I have two docker images (ubuntu & hello-world)
already on my Docker server.

ubuntu@noded:~5 sudo docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
ubuntu latest f49eec89601e 3 weeks ago 129 MB
hello-world latest 48b5124b2768 4 weeks ago 1.84 kB

ubuntu@noded:~5

Figure 6-3. List the Docker Images

3. Ifyour Docker server is a freshly backed machine, then you will see no images at
this point.

4. We will build a Docker Image for our use from the ubuntu Docker Image. To do
so, download the Docker Image for ubuntu using the following command.

docker pull ubuntu

Note You can find more Docker Images for various 0S on https://hub.docker.com/

5. One the pull gets completed, give the sudo docker images command again. And
now you should see a Docker Image for Ubuntu as shown in Figure 6-3.

6. We will now upgrade our ubuntu Docker Image with all the necessary
application that we need to run our build, which are as follows:

a. JavaJDK (Latest)

b. Git

c. Maven

d. Auser account to log in into the Docker Container
e. sshd (to accept ssh connection)

7. Execute the following command to run a Docker container using the Ubuntu
Docker Image. This will create a container, and open up its bash shell.

sudo docker run -i -t ubuntu /bin/bash

191

https://hub.docker.com/

CHAPTER 6 * USING CONTAINERS FOR DISTRIBUTED BUILDS

8. Now, install all the required application as you would do on any normal Ubuntu
machine. Let’s begin with creating a user jenkins.

a. Execute the following command and follow the user creation steps, as
shown in Figure 6-4.

adduser jenkins

ubuntu@noded:~5 sudo docker run -1 -t ubuntu /bin/bash
root@81asdi12fé6c4a: /# adduser jenkins
Adding user °jenkins' ...
Adding new group "jenkins' (10€0) ...
Adding new user “jenkins' (1000) with group " jenkins' ...
Creating home directory °/home/jenkins' ...
Copying files from " Jetc/skel' ...
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
Changing the user information for jenkins
Enter the new value, or press ENTER for the default
Full Name []: Nikhil Pathania
Room Number []: 268
Work Phone []:
Home Phone []:
other []:
Is the information correct? [Y/n] y
root@slasdi2féc4a: /#

Figure 6-4. Creating a user

b. check the new user using the switch user command:
su jenkins

9. Switch back to the root user by typing exit.

10. Next, we will install the SSH server. Execute the following command in sequence.
apt-get update
apt-get install openssh-server
mkdir /var/run/sshd

11. Next, we will install Git using the following command:
apt-get install git

12. Install Java JDK using the following command. (You can skip installing Java JDK if
you have already configured Java inside Jenkins. See section Configure Java, Git,
and Maven from Chapter 5.)
apt-get install openjdk-8-jdk

13. Install Maven using the following command. (You can skip installing Maven if
you have already configured Maven inside Jenkins. See section Configure Java,

Git, and Maven from Chapter 5.)

apt-get install maven

192

http://dx.doi.org/10.1007/978-1-4842-2913-2_5
http://dx.doi.org/10.1007/978-1-4842-2913-2_5

CHAPTER 6 * USING CONTAINERS FOR DISTRIBUTED BUILDS

14. Next, exit the container by typing exit.
15. We need to save (commit) all the changes that we did to our Docker container.

a. Getthe CONTAINERID of the container that we worked on recently by
listing all the inactive containers, as shown in Figure 6-5.

sudo docker ps -a

ubuntu@node4:~5 sudo docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
81asd12f6c4a ubuntu "/binfbash™ About an hour ago Exited (8) 2 minutes ago mystifying_fermat
ubuntu@nodes:~5 [2z

Figure 6-5. List inactive containers

b. Note the CONTAINER ID, and execute the following command to commit
the changes that we made to our container.

sudo docker commit <CONTAINER ID> <new name for the container>

c. Ihave named my container as maven-build-slave-0.1 as shown in Figure 6-6:

ubuntu@node4:~S sudo docker commit 81a5d12f6c4a maven-build-slave-0.1
sha256:317fb6ec990f235fc2f2f42beab6f73e44fbabd2debba®479858386c569a7c7d

ubuntu@nodea:~$ |j

Figure 6-6. Docker commit command

d. Once you have committed the changes, a new Docker Image gets created.

e. Execute the following Docker command to list images.

sudo docker images

f. You can see, our new Docker Image with the name maven-build-slave-0.1
(Figure 6-7). We will now configure our Jenkins server to use the following
Docker image to create Jenkins Slaves (build agents).

ubuntu@node4:~5 sudo docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
maven-build-slave-0.1 latest 317fb6ec9osof About a minute ago 298 MB
ubuntu latest f49eecs89601e 3 weeks ago 129 MB
hello-world latest 48b5124b2768 4 weeks ago 1.84 kB

ubuntu@noded:~S I

Figure 6-7. List the Docker Images

193

CHAPTER 6 * USING CONTAINERS FOR DISTRIBUTED BUILDS

Adding Credentials Inside Jenkins to Access the Docker Container

Follow the below steps to add credentials inside Jenkins to allow it to talk to Docker.

1. From the Jenkins Dashboard, navigate to Credentials » System » Global
credentials (unrestricted).

2. Click on the Add Credentials link on the left-hand side menu, to create a new
credential (Figure 6-8).

a. Choose Kind as Username and Password.
b. Leave the Scope field to its default value.

c. Add ausername for your Docker Image (jenkins as per our example) under
the Username field.

d. Under the Password field add the password.

e. Addan ID under the ID field, and some description under the Description
field.

f. Once done click on the OK button.

%Jenkins -4 @ niknil Pathanla | log out

Jenkins Credentials Syslem Global credentials (unrestricted)

} Back to credential domains Kind Usemame with password

I -

@= Add Credentials

Scope Gilobal (Jenkins, nodes, items, all child items, etc) :! (7]
Usemame jenkins .'t;i,'
Password ‘.3
1D docker-container-id (2
Description .o santials for docker contalner (Jenkins slave) (7

Figure 6-8. Create credentials inside Jenkins

Update the Docker Settings Inside Jenkins

Follow the steps below to update the Docker settings.
1. From the Jenkins Dashboard, click on Manage Jenkins » Configure System.
2. Scroll all the way down to Cloud section (Figure 6-9).

194

Cloud

Docker
MName

Docker URL

Docker AP Version

Credentials

Connection Timeout

Read Timeout

Container Cap

Images

List of Images to be launched as siaves

Default Docker Host

tepf172.17.8.107:4243

- none - :l o Add ¥

0

0

10

Docker Template
Docker Image

Instance Capacily

Aemote Flling System Aoot

Labels

Usage

Launch method

Remote FS Root Mapping

Remove volumes

Pull strategy

Add Docker Template

-

CHAPTER 6 * USING CONTAINERS FOR DISTRIBUTED BUILDS

7]
7]
Test Conneclion
5@
maven-build-slave-0.1 (7]
Contalner settings...

1)
home/jenkins (7]
docker (2}
Oniy build jobs with label expressions matching this node j (1]

"~ Experimental Options...

Docker SSH computer launcher

il
CRedunide |enkins/****** (cradentials for docker container (jenkins slave)) j =Add ~ &
Advanced..
var/libjenkins ®
ﬁ.

Pull once and update latest

Figure 6-9. Configuring the Docker Plugin settings

1o

Delote cloud

3. Under the Cloud section, click on the Add Docker Template button and choose

Docker Template.

a.

You will be presented with a lot of settings to configure. However, to keep
this demonstration simple, let us stick to the important settings.

Under the Docker Image field enter the name of the Docker Image that we
created earlier. In my case it is maven-build-slave-0.1.

Under the Labels field add a label. The Docker container will be recognized
using this label by your Jenkins pipeline. I have added a label docker.

195

CHAPTER 6 * USING CONTAINERS FOR DISTRIBUTED BUILDS

d. Launch Method should be Docker SSH computer launcher.

e. Under the Credentials field choose the credentials that we created to access
the Docker container.

f. Leave the rest of the other options to their default values.

g. Once done, click on Apply and then Save.

Create a Jenkins Pipeline

With the entire configuration in place, we are all set to run our Jenkins CI pipeline on a Docker container.
Follow the steps below to create and test a Jenkins pipeline:

1. From the Jenkins Dashboard, click on the New Item.
a. Choose Jenkins Job type as Pipeline.

b. Under the Enter an item name field, add a name for your new Jenkins
pipeline.
c. Click on the OK button to proceed with configuring our new Jenkins
pipeline.
2. Once on the Jenkins pipeline configuration page, scroll down to the Build
Triggers section and check the GitHub hook trigger for GITScm polling option.

3. Scroll down further to the Pipeline section.

4. Under the Definition option you can either choose Pipeline script or Pipeline
script from SCM.

Using the Pipeline Script
Follow these steps to create a pipeline script.

1. Ifyou choose the Pipeline script, then paste the following code under the Script
field.

node(docker) {

stage('sem') {

checkout([$class: 'GitSCM', branches: [[name: '*/master']],
doGenerateSubmoduleConfigurations: false, extensions: [], submoduleCfg:
[1, userRemoteConfigs: [[credentialsId: 'github-jenkins-ssh-key', url:
'git@github.com:pro-continuous-delivery/hello-world-example.git']]])

stage('build") {
withMaven(jdk: 'Default Java', maven: 'Default Maven') {
sh 'mvn clean install’

e

196

CHAPTER 6 * USING CONTAINERS FOR DISTRIBUTED BUILDS

Note The above code is the same that we used in Chapter 5, under the section The Pipeline Syntax
Option in Jenkins. The only difference is in the node name. In the former code it was master, and here it's
docker.

In the above code, change the value of the credentialsld: and url accordingly.

2. Go straight to Triggering a Build section.

Using the Pipeline Script from SCM

If you choose Pipeline script from SCM (Figure 6-10), Then do the following,

Pipeline
Definition ~ Pipeline scriot from SCM :I
SCM Git j L2
Repositories
Repository URL hitpsJ//github.com/pro-conlinuous-delivery/hello-world-example. gil ®
Credentials nikhilpathania@amail.com/****** :[
o= Addr
Advanced...
Add Repository
Branches to build n s,
[.2]
Branch Specifier (blank for "any’) = */master &
Add Branch
Repository browser {Auto) j
Additional Behaviours Add ~
Script Path | Jenkinsfile L2

Figure 6-10. Configuring SCM settings inside Jenkins pipeline

1. Choose Git as an option for the SCM field.
a. Under the Repository URL add your GitHub repo URL.

b. Under the Credentials field choose the credentials for GitHub (it can be the
GitHub username and password or SSH key pair to access GitHub account,
stored inside Jenkins as credentials).

c. Click on the Save button to save the configuration.

197

http://dx.doi.org/10.1007/978-1-4842-2913-2_5

CHAPTER 6 * USING CONTAINERS FOR DISTRIBUTED BUILDS

2. From the Jenkins Dashboard, click on Manage Jenkins » Configure System.

3. Scroll all the way to GitHub section and click on the Re-register hooks for all
jobs button. This will create all the necessary webhooks on GitHub for our new
Jenkins pipelines.

4. Make sure to change the code inside the Jenkinsfile present inside the GitHub
repository. Replace it with the following:

node(docker) {

checkout scm

stage('build") {
withMaven(jdk: 'Default Java', maven: 'Default Maven') {
sh "mvn clean install’

e

Note The above code is the same that we used in Chapter 5, under the section Using a Jenkins. The only
difference is in the node name. In the former code it was master, and here it’s docker.

Triggering a Build
Follow these steps to trigger a build inside Jenkins.

1. Trigger the build by clicking on the Build Now button from the Jenkins
pipeline page.

2. While the Jenkins pipeline is still running, quickly access the following link:

http://<Jenkins server IP>:8080/computer/ from your browser.

3. Youwill see that a Node gets listed (docker container) and after some time it
disappears (depending on the time it takes to build the code).

4. Access thelink http://<Jenkins server IP»:8080/docker-plugin/, and you
should see something as shown in Figure 6-11. Following is the list of Docker
servers that are configured inside Jenkins; in our example it’s only one.

g Jellkills @ Nikhll Pathanla log out

Jenkins Docker

& BacktoDashboard Docker Servers

Name Active Hosts

Default Docker Host (0)
Figure 6-11. List of Docker Servers

a. Click on the available Docker server that we have.

b. On the resultant page, you will see the details of all the running Docker
containers and Docker Images, as shown in Figure 6-12.

198

http://dx.doi.org/10.1007/978-1-4842-2913-2_5

CHAPTER 6 * USING CONTAINERS FOR DISTRIBUTED BUILDS

Jenkins Docker
4 Back to Dashboard

Docker Server
Running Containers

Container Id Image Command Created Status Ports
Images
Tag Image Id Created Virtual Size

[5I1:1256:31?ID64’.‘C9901‘2351C2f2fd2beab6!?SMFNDO2OODDHO4?98583860569:|TCTU lTue Jan 31 13:07:07 UTC 2017 I 298256710
5ha256:149eec89601e8484026a8ed97be00! 14dD753399251ad 1 TDA40976cHCbIDESa Tue Jan 31 13:46:00 UTC 2017 | 129491393
5ha256:4805124b2768d2091 7edcbb40435044a97967015485e812545546cbad5c 10233 | Tue Jan 31 13:56:01 UTC 201?' 1840

|

Figure 6-12. List of Docker Containers and Images from Jenkins

5. From the Jenkins pipeline page, click on Console Output. You will see the build
logs as shown in Figure 6-13. As it can been seen from the logs, the build ran
inside a Docker container.

() Console Output

started by user Nikhil Pathania

Cloning the remote Git repository

Cloning repositery hitps://github. com/pro-continyoys-delivery/hello-world-example. git

> git init /var/lib/jenkins/workspace/pipeline_to_build_inside_docker_ceontainer@script # timeout=10

Fetching upstream changes from https://github.com/pro-continuous-delivery/hello-world-example.git

> git --version # timeout=16

using GIT_ASKPASS to set credentials

> git fetch --tags --progress hitps://github,com/pro-continuoys-delivery/hello-world-example. git
+refs/heads/*:refs/remotes/origin/*

> git config remote.origin.url https://github.com/pro-continuous-delivery/hello-world-example.git # timeout=18

> git config --add remote.origin.fetch +refs/heads/*:refs/remotes/origin/* # timeout=10

> git config remote.origin.url hitps://githyb.com/pro-continuous-delivery/hello-world-example.git # timeout=16

Fetching upstream changes from hitps://github,com/pro-continuoyus-delivery/hello-world-example, git

using GIT_ASKPASS to set credentials

» git fetch --tags --progress https://github.com/pro-continuous-delivery/hello-world-example.git
+refs/heads/*:refs/remotes/origin/~

> git rev-parse refs/remotes/origin/master”{commit} # timeout=18

> git rev-parse refs/remotes/origin/origin/master~{commit} # timeout=10

Checking out Revision 62c546b3ee23ddad91cad2f458eabab32d824bab (refs/remotes/origin/master)

> git config core.sparsecheckout # timeout=16

> git checkout -f 62c540b3ee23ddad91cad2f458eabab32d824bab

First time build. Skipping changelog.

build inside docker container]

Cloning the remote Git repository

Figure 6-13. Jenkins pipeline build logs

Distributed Builds Using Kubernetes

Kubernetes is an open source tool that can manage containers (including Docker containers). It runs as a
cluster of host machines (multiple manager nodes and worker nodes). Kubernetes can run and schedule
application containers on its cluster. It can also scale, replicate, and load balance containers.

199

CHAPTER 6 * USING CONTAINERS FOR DISTRIBUTED BUILDS

Kubernetes is much like CoreOS Container Linux, which we used in Chapter 3 to create a HA Jenkins
setup. The same can be achieved using Kubernetes. However, in the current chapter we will use Kubernetes
to create on-demand Jenkins Slaves that run as Docker containers.

To achieve this we will first create a Kubernetes cluster. Then we will configure Jenkins to talk to
Kubernetes clusters using Kubernetes Plugin. Lastly we will create a Jenkins pipeline that will run a build on
a Docker container running somewhere on the Kubernetes Cluster.

Setting Up a Kubernetes Cluster

There are various platforms on which we can set up Kubernetes. It can be Cloud, On-Premises VMs, and
even Bare Metal. To keep this demonstration simple, I have chosen to set up Kubernetes on Vagrant. To
Jenkins it does not matter where and how our Kubernetes Cluster runs.

Prerequisites

I am performing this exercise on a machine with Ubuntu 16.04. I have the following tools installed on my
machine:

Vagrant (latest)
VirtualBox (latest)
Git

On steps for installing Vagrant and VirtualBox, see section Installing Vagrant and Installing
VirtualBox from Chapter 3.

Installing Kubectl

Kubectl is used to communicate with the Kubernetes cluster (using Kubernetes API) in order to manage it.
Installing it is simple.

1. Fetch the linux kubectl binary using the following command:

curl -0 https://storage.googleapis.com/kubernetes-release/release/
v1.5.2/bin/1linux/amd64/kubectl

2. Make sure the binary is executable:
chmod +x kubectl

3. Move it into your PATH using the following command; in this way we will be able
to execute the kubectl command from any location:

mv kubectl /usr/local/bin/kubectl

200

http://dx.doi.org/10.1007/978-1-4842-2913-2_3
http://dx.doi.org/10.1007/978-1-4842-2913-2_3

CHAPTER 6 * USING CONTAINERS FOR DISTRIBUTED BUILDS

Clone the coreos-kubernetes Repository
Follow the below steps to clone the coreos-kubernetes repository.

1. Execute the following command to clone the coreos-kubernetes repository from
GitHub.

git clone https://github.com/coreos/coreos-kubernetes.git
2. Goto the following directory and list the files inside it, as shown in Figure 6-14.

cd coreos-kubernetes/multi-node/vagrant
1s -1rt

nikhil@devel:~/coreos-kubernetes/multi-node/vagrant$ 1s -lrt
total 49208

-rw-rw-r-- 1 nikhil nikhil 286 Feb 20 20:30 README.md

-rw-rw-r-- 1 nikhil nikhil 404 Feb 20 20:30 etcd-cloud-config.yaml
-rwxrwxr-x 1 nikhil nikhil 297 Feb 20 20:30 conformance-test.sh
-rwxrwxr-x 1 nikhil nikhil 50358448 Feb 20 20:30 kubectl

-rw-rw-r-- 1 nikhil nikhil 6904 Feb 20 23:46 Vagrantfile

-rw-rw-r-- 1 nikhil nikhil 430 Feb 21 00:12 kubeconfig

-rw-rw-r-- 1 nikhil nikhil 147 Feb 21 01:11 config.rb.sample
nikhil@deve1:~/coreos-kubernetes/multi-node/vagrants [J

Figure 6-14. List of files and utilities

a. The Vagrantfile containers instruction for creating a Kubernetes cluster
using VirtualBox.

b. By default the Vagrantfile will create a Kubernetes cluster containing one
master node, one worker node, and one etcd node. However, you may
choose to create a Kubernetes cluster with your own specifications. To do
that we need the config.rb.sample file (rename config.rb.sample to config.rb
before using it).

Starting the Kubernetes Cluster
We will modify the config.rb.sample a bit to create 1 master node, 2 worker nodes, and 1 etcd node.

1. Rename the config.rb.sample file to config.rb file using the mv command:
mv config.rb.sample config.rb

2. Open the file config.rb for editing, using either nano or vi editor:
nano config.rb

3. Modify the content of your config.rb to look exactly as shown below. As you can
see, I have chosen to create two worker nodes.

$update_channel="alpha"

201

CHAPTER 6 * USING CONTAINERS FOR DISTRIBUTED BUILDS

$controller count=1
$controller vm memory=1024

$worker_count=2
$worker_vm_memory=2048

$etcd count=1
$etcd_vm_memory=512

Run the following vagrant command to start the Kubernetes cluster. It will take a
while for Vagrant to provision the machines, depending on your network speed.

vagrant up
Once the vagrant has provisioned all the cluster nodes, list the status of the
Kubernetes cluster nodes (this is the state of the vagrant nodes, and note the

Kubernetes cluster). See Figure 6-15.

vagrant status

nikhil@devol:~/coreos-kubernetes/multi-node/vagrant$ vagrant status
Current machine states:

el
cl
wl
w2

running (virtualbox)
running (virtualbox)
running (virtualbox)
running (virtualbox)

This environment represents multiple VMs. The VMs are all listed
above with their current state. For more information about a specific
VM, run ‘vagrant status NAME".

nikhil@deve1:~/coreos-kubernetes/multi-node/vagrants [j

Figure 6-15. List of vagrant virtual machines

202

a. We can see Vagrant has created four virtual machines (el, c1, w1, and w2).

b. elisthe etcd node, cl is the Kubernetes manager node, and wl and w2 are
worker nodes.

Open the file kubeconfig using your favorite editor. You will find the following
three sections, as shown in Figure 6-16.

clusters
context
users

CHAPTER 6 * USING CONTAINERS FOR DISTRIBUTED BUILDS

apiversion: vifj
kind: Config
clusters:
- cluster:
certificate-authority: ssl/ca.pem
server: https://172.17.4.101:443
name: vagrant-multi-cluster
contexts:
- context:
cluster: vagrant-multi-cluster
namespace: default
user: vagrant-multi-admin
name: vagrant-multi
users:
- name: vagrant-multi-admin
user:
client-certificate: ssl/admin.pem
client-key: ssl/admin-key.pem
current-context: vagrant-multi

Figure 6-16. kubeconfig file
a. clusters

clusters:
- cluster:
certificate-authority: ssl/ca.pem
server: https://172.17.4.101:443
name: vagrant-multi-cluster

The clusters: section contains fully qualified URLs (https://172.17.4.101:443) of the Kubernetes
cluster, as well as the cluster’s certificate authority. A cluster has a name (vagrant-multi-cluster), which is
used internally within the cluster.

b. contexts

contexts:
- context:
cluster: vagrant-multi-cluster
namespace: default
user: vagrant-multi-admin
name: vagrant-multi

The context: section defines a named cluster, user, and namespace that are used to send requests to the
specified cluster using the provided authentication info and namespace. Each of the three is optional; it is
valid to specify a context with only one of cluster, user, namespace, or to specify none. Unspecified values, or
named values that don’t have corresponding entries in the loaded kubeconfig (e.g., if the context specified a
pink-user for the above kubeconfig file), will be replaced with the default.

c. current-context:
current-context: federal-context

The current-context: section is the nickname or ‘key’ for the cluster,user,namespace tuple that kubectl
will use by default when loading config from this file.

203

CHAPTER 6 * USING CONTAINERS FOR DISTRIBUTED BUILDS

d. users:

users:
- name: vagrant-multi-admin
user:
client-certificate: ssl/admin.pem
client-key: ssl/admin-key.pem
current-context: vagrant-multi

The users: section defines client credentials for authenticating to a Kubernetes cluster. A user has
aname (nickname) that acts as its key within the list of user entries after kubeconfig is loaded/merged.
Available credentials are client-certificate, client-key, token, and username/password.

7. Toload the cluster configuration from the kubeconfig file, execute the following
command:

export KUBECONFIG="${KUBECONFIG}:$(pwd)/kubeconfig"
kubectl config use-context vagrant-multi

8. Youwill get aresponse:
Switched to context "vagrant-multi."

9. Give the following command to check the status of the cluster. The Kubernetes
application will download all the necessary applications on the cluster nodes;
therefore it may take a while for it to get ready. See the response as shown in
Figure 6-17.

kubectl get nodes

nikhil@devo1:~/coreos-kubernetes/multi-node/vagrant$ kubectl get nodes

The connection to the server 172.17.4.101:443 was refused - did you specify the
right host or port?

nikhil@deve1:~/coreos-kubernetes/multi-node/vagrants [J

Figure 6-17. Kubernetes cluster coming up
10. After a while, you should see the following screen, as shown in Figure 6-18.

nikhil@devei:~/coreos-kubernetes/multi-node/vagrant$ kubectl get nodes

NAME STATUS AGE
172.17.4.101 Ready,SchedulingDisabled 18m
172.17.4.201 Ready 16m
172.17.4.202 Ready 10m

nikhil@deve1:~/coreos-kubernetes/multi-node/vagrantsS [j
Figure 6-18. Kubernetes cluster up and running
a. From the above figure we can see the status of our master as well as two

worker nodes.

b. 172.17.4.101 is the master node with a STATUS:
Ready, SechedulingDisabled. This means, the master node is reserved only
to provision and manage containers on the worker nodes. There won’t be
any container running on the master node.

204

CHAPTER 6 * USING CONTAINERS FOR DISTRIBUTED BUILDS

11. To check the configuration that our Kubernetes cluster is running, execute the
following command. This will display the current kubeconfig settings, as shown
in Figure 6-19.

kubectl config view

nikhil@devel:~/coreos-kubernetes/multi-node/vagrant$ kubectl config view
apiVersion: vi
clusters:
- cluster:
certificate-authority: ssl/ca.pem
server: https://172.17.4.101:443
name: vagrant-multi-cluster
contexts:
- context:
cluster: vagrant-multi-cluster
namespace: default
user: vagrant-multi-admin
name: vagrant-multi
current-context: vagrant-multi
kind: Config
preferences: {}
users:
- name: vagrant-multi-admin
user:
client-certificate: ssl/admin.pem
client-key: ssl/admin-key.pem
nikhil@devo1:~/coreos-kubernetes/multi-node/vagrant$ [j

Figure 6-19. Configuration in use
12. We can also fetch the key cluster information using the cluster-info command:

kubectl cluster-info

13. From the output (Figure 6-20) we can note the Kubernetes dashboard link.
However we won't be able to access the link from our client machine.

nlkhtledevai ~Jcoreos- kubernetes{nultl nudr;vagrants kubectl cluster-info

is running at https://172.17 101:443
is running at https:/f172.17. 4 101: -43.f|p\,w;.fp oxy/namespaces/kube-system/services/heapster
is runn\ng at https:/f172.17.4.101:443fapl/v1/proxy/namespaces/kube-systen/services/kube-dns

i Ls running at https://172.17.4.101: 1H.n’dpt.-'v1.-’aru.-<5,,.n1'mfp1 es/kube-system/services/
kuhrrnvte-ﬁ dashboard
To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'.
nikhilgdevo1:~/coreos-kubernetes/multi-node/vagrants I

Figure 6-20. kubectl cluster-info

The Kubernetes Dashbhoard

The Kubernetes dashboard is a webpage where we can get information about the whole cluster. For
example: Information about the running Pods, Services, Worker nodes, System metrics, etc.

1. To make the dashboard available on the client machine, execute the following
command. This will make the Kubernetes dashboard available on localhost port
9090. See Figure 6-21.

Kubectl proxy --port=9090

205

CHAPTER 6~ USING CONTAINERS FOR DISTRIBUTED BUILDS

'nlkht'l.@devai:——icoreos—kubernetesfﬁultt-node[\ragrants kubectl proxy --port=9690
Starting to serve on 127.6.6.1:909

Figure 6-21. kubectl proxy command

2. To access the dashboard, enter the following link in your browser.

http://localhost:9090/api/vi/proxy/namespaces/kube-system/sexvices/
kube-dns

3. The Kubernetes dashboard looks as shown in Figure 6-22.

= kubernetes Workloads + CREATE
Admin
There is nothing to display here
Namespaces
Nodes Y deploy a containerized app. t take the Dashbo

ard Tour &
Persistent Volumes
Namespace

default ~

Workloads

Deployments

Replica Sets
Replication Controllers
Daemon Sets

Stateful Sets

Figure 6-22. Kubernetes dashboard

4. From the left-hand side menu, click on the Namespaces. You can see the following
two namespaces: default and kube-system. As shown in Figure 6-23, all of the
Kubernetes cluster-related pods run under the kube-system namespace. All the
Jenkins Slave pods that we are going to create will be running under the default
namespaces. You can click on any of the namespaces to see more details about it.

= kubernetes Admin > Namespaces + CREATE
Admin
Namespaces
Namespaces
Nodes Name Labels Status Age
Persistent Volumes @ defaut - Active 2 hours
& kube-system = Active 2 hours
Namespace

Figure 6-23. List of namespaces

206

CHAPTER 6 * USING CONTAINERS FOR DISTRIBUTED BUILDS

5. From the left-hand side menu, click on Nodes (Figure 6-24). You can see all the
three nodes (1 master and 2 worker nodes). Click on any one of them to see more
details about the respective node.

kubernetes
Admin
Nodes
MNamespaces
Nodes Name Labels Ready Age
. beta kubernetes.io/arch: amdéd
Persistent Volumes
° 172.17.40 beta kubernetes.io/os: linux True 16 minutes
Mamespace kubernetes.io/hostname: 172.17.4.101
default ~ beta. kubernetes.ic/arch; amdé4
@ 17217420 beta. kubernetes.io/os: linux True 16 minutes
Workloads kubernetes.io/hostname: 172.17.4.201
Deployments beta kubernetes.io/arch: amd64
Replica Sets o 172.17.4.202 beta.kubernetes.io/os: linux True 16 minutes
Replication Controllers kubernetes.io/hostname: 172.17.4.202

Figure 6-24. List of nodes

6. Ihave clicked on worker nodel (172.17.4.201). As shown in Figure 6-25, we can
see the CPU usage and the Memory usage, along with a few details about the
respective node.

CPU usage Memory usage @

8495, 15704

0440 . l‘ﬂﬁ'_——'_’//—.—
£ oa3m glﬂ!ﬁ
g' 0220 F s
< 0110 M|

IQSU st 1%y %5 0% s E,:“ ns st sy nss nse s
Time Time:

Details
Name: 17217.4.201 System Info

Io/os: inux

72174200

Labelsc beta kubernetesic/arch amdéd betal

volames. ‘controler: ged-attach-detach: true
Creation time: 2017-02-22118:48
Extemal ID: 172.17.4.201

Unschedulable: false

Machine ID: b07a1B0a2¢8547179568926193245284
System UUID: E40E3IES-E6DG-4950-967D-2A76F 63532E3
Boot 1D: 10BEcala-9353-8bod-8676-1137a5082309

[Kernel Version: 4.9 9-coreos

05 Image: Container Linux by Core0S 1325.0.0 (Ladybug)
Container Runtime Version: dockers/1.13.1

Kubelet Version: v1.5 3tcorecs.0

Kubse-Proxy Version: v1 5 Jscoreos.]

Operating system: linux

Aschitecture: amad6d

Figure 6-25. Node metrics - CPU and Memory usage

7. Scrolling further down, you can see hardware resource allocated to the node.

There is also a section regarding the condition of memory, disk, etc., as shown in

Figure 6-26:

CHAPTER 6~ USING CONTAINERS FOR DISTRIBUTED BUILDS

Allocated resources

CPU limits (cores) b Memary requests (bytes) Memaory limits (bytes)
0121 1200 0an 1000 60Mi/1.934Gi 3.03 S0Mi/1.9346Gi
Conditions
T'_r:](- Status Last hearibeat time Last transition time Reason Message
OutOfDisk False 2 7 minutes KubeletHasSuf ficient Disk kubelet has sufficient disk space available
MemoryPressure False - 2 hours KubeletHasSufficientMemory kubelet has sufficient memory available
DiskPressure False - 2 hours KubeletHasNoDiskPressure kubelet has no disk pressure
Ready True - 7 minutes KubeletReady kubelet is posting ready status
Pods

Name Status Restarts Age CPU (cares) Memary (bytes)

@ kube-dns-autoscaler-2715466192vkend Running 1 2 hours 0 I 2 430 M = 1
@ kube-proxy-172.17.4.201 Running 1 2hours 0.4 [53160 M = i
@ kubemetes-dashboard-3543765157-2w2wl Running 2 2hours N & O A 17.055 Mi = 3

Figure 6-26. Node metrics - Resources, Conditions, and Pods

8. From the left-hand side menu, click on Pods. As you can see we have no nodes
running under the default namespace (Figure 6-27). But, this is the place where
you will find all the running nodes along with their statistics.

= kubernetes + CREATE

Workloads

Decloyments There is nothing to display here

Replica Sets
deploy a containerized app 1ot T take the Dashbo
Replication Controllers ard Tour ¢2 t

Daemon Sets

Stateful Sets
Jobs

Pods

Figure 6-27. Empty Pods section

9. From the left-hand side menu, click on Secrets. As shown in Figure 6-28, we can
see a default secret token. We will need this later to establish communication
between Jenkins and the Kubernetes cluster. Click on the token.

208

CHAPTER 6 * USING CONTAINERS FOR DISTRIBUTED BUILDS

= kubernetes Config > Secrets + CREATE
Storage

Persistent Volume Claims Secrets
Config Name Age

. default-token-2468w 17 minutes

Config Maps

Figure 6-28. Default Token

10. On the resultant page you will find some details about the secret token, as shown
in Figure 6-29.

= kubernetes Config > S : > de.. # EDIT i DELETE + CREATE
Replica Sets
Replication Controllers Details
Daemon Sets
Saferuces Name: default-token-z468w
Namespace: default
Jobs .
o Annotations: kub io/service-account.name: default
5
kubernetes.io/service-account.uid: 77 a0dc11-f92f-11e6-84eb-...
Services and discovery Creation time: 2017-02-22T18:48
Services
Ingresses
Data
Storage
Persistent Volume Claims @ ca.crt: 1090 bytes
Config @ namespace: 7 bytes
Secrets @ token: 846 bytes
Config Maps

Show secret content

Figure 6-29. Default Token - details

11. Under the Data section, click on the token (eye logo) to un-hide the token value.
The token value will be displayed as shown in Figure 6-30.

209

CHAPTER 6~ USING CONTAINERS FOR DISTRIBUTED BUILDS

= kubernetes > > de.. " EDIT i DELETE + CREATE
Workloads Data

Deployments

Replica Sets G ca.crt: 1090 bytes

Replication Controllers @ namespace: 7 bytes

Daemon Sets
Q token: eyJhbGeci0ilSUZIINIISINRSCCI6GIKPXVCI9. eylpe3Mioilr
Stateful Sets dwIlemS1d6VzL3NLcnZpY2VhY2NvdwSeT iwia3vizXuzxRlc
Jobs y5pby9zZX]2aWN1YWhjb3VudCIuYWllc3BhY2Ui0iIkZWZhdw
x0Iiwia3viZXJuZXRlcySpby9zZ XI2aWNLYWNjb3VudC9zZwN
Pods YZXQubmFtZ5I6IMR1ZmF 1bHQtdGIrZwate] Q20HCiLCIrdwll
cm51dGVzLmlvL3NLenZpY2VhY2NvdwWSOL3N LenZpY2UtYwNjb
Services and discovery 3VudCSuYWILT joiZGVmYXVsdCIs Imt 1YmVybmVeZXMuaWsvc2
) Vydml j ZWFjY291bnQvc2VydmljZS1hY2NvdWw5SeLnVpZCI6Ijc
Services 3YTBRYZFmLWY SMmY tMTF LNIO4NGVILTA4MDAYNZU4YTQLYSIS
enEoses InN1YiI6INNS c3R1bTpzZXI2aWN LYWN]b3VudDpkZwZhdwxe0
mRLZmF1bHQifQ.g- tMOS2RW61poJwFD qTY -
Storage rzgeiaespna_cmx'rzzw'rsasmk
18rq39NZKBG7 2UKp20bc08Z2CTpZ_aBOWWLF _ovweiRuvbjhg
Persistent Volume Claims SclweM3c6Rbe seI6gZtNYaHSIxXCxul6bnDESEVMQQAX rhinR
DACGj axIQ@BALTxciR_8BpQTZwWLCwhU7etQedxAS0OMEGBYW
Config wOAQMVVDic9CEICARAF1 jWrBpqPYa959Z-
1IVCFLFT _XAc1lx2qx-
Secrets nNgH4 I fVMi6kVYZIpEXQFxbKgk j cCV7t5vNETaEPXVHEM3HMp
Config Maps JOA9VWEQIx951V5 jDegeSl FilmilpKWFiiM dQ

Figure 6-30. Un-hide the token

12. Copy the token value and keep it safe. We will need it later in the upcoming
section.

Installing the Kubernetes Plugin for Jenkins
To make Jenkins talk with Kubernetes we need the Kubernetes plugin for Jenkins.

1. From the Jenkins Dashboard, click on the Manage Jenkins » Plugin Manager
» Available (tab).

a. Search for kubernetes using the Filter field (Figure 6-31).

b. Once listed, choose the kubernetes plugin and click on Install without
Restart button.

c. After the installation, restart Jenkins if needed.

210

CHAPTER 6 * USING CONTAINERS FOR DISTRIBUTED BUILDS

Jenkins Plugin Manager
Filter: | “ kubemetes
Avallable
Install | Name Verslon
ElasticBox Jenkins Kubemetes CI'CD Plug-in
1.2
OpenShitt Pipeline Jenk
Allows users r 1.0.42
server. Source Code (note)This
Kubemetes plugin
0.11
Tr [) 1 s nbsp; Kubemetes &nbsg
Kubemetes :: Pipeline :: Aggregator 1.3
Kubemetes :: Pipeline :: DevOps Steps 1.3
Kubemetes :: Pipeline :: Kubemetes Steps 1.3

Figure 6-31. Kubernetes Plugin

Creating Credentials for Kubernetes Cluster

We need to add credentials for the Kubernetes cluster inside Jenkins to authenticate the connection between
Jenkins and Kubernetes.

1. From the Jenkins dashboard, click on Credentials » System » Global
credentials (unrestricted) (Figure 6-32).

Jenkins Credentials System Global cregentials (unrestricted)

4 Back to credential domains

@ Add Credentials

KInd - oenshift OAuth token j
Scope Global (Jenkins, nodes, items, all child items, etc) j ©
Token
D

kubemetes-credentials

D

Figure 6-32. Kubernetes credentials inside Jenkins

Wl kuberm

211

CHAPTER 6 * USING CONTAINERS FOR DISTRIBUTED BUILDS

2. On the resultant page, click on Add Credentials.
a. Under the Kind field choose OpenShift OAuth token.

b. Under the Token field paste the token key that we copied earlier from the
Kubernetes dashboard.

c. AddanID and some description under the ID and Description field
respectively.

d. Click on OK Button once done.

Configuring the Kubernetes Plugin

Let us now configure the Kubernetes cluster settings inside Jenkins.

1. From the Jenkins Dashboard, click Manage Jenkins » Configure System.

2. Once on the Configure System page, scroll down all the way to the Cloud section
(Figure 6-33).

Add a new cloud v

Docker

i

Kubernetes

Figure 6-33. Adding the Kubernetes cloud

212

a. Click on the Add a new cloud button and choose Kubernetes from the
available options.

b. You will be presented with a lot of options to configure (Figure 6-34).
However, to keep this section simple we will stick to the basic options.

c. Add aname for your new cloud under the Name field.

d. Add the Kubernetes cluster URL under the Kubernetes URL field. In our
caseit’s https://172.17.4.101:443/.

e. Make sure to check the Disable https certificate check option. Otherwise
you need to put the Kubernetes server certificate under the Kubernetes
server certificate key field.

f. Under the Kubernetes Namespace field add default.

g. Choose the appropriate credentials under the Credentials field from the
drop-down menu.

CHAPTER 6 * USING CONTAINERS FOR DISTRIBUTED BUILDS

Kubernetes
. Default Kubemetes Cloud '.’{"‘:
Kubemetes URL hitps:/172.17.4.101:443 @
Kubemetes server cerificate key
@
Disable https cetificate check i
Kubemetes Namespace delault

Credentlals kubemetes-credentials (kubemetes-credentials) :| o= Add ~

Connection successful Test Connection
Jenkins URL http://172.17.8.106:8080/ @
Jenkins tunnel (7

Connection Timeout

o

ha

Read Timeout

]
-
-

Container Cap 10 @:

Figure 6-34. Configuring basic Kubernetes settings

3. Make sure to add an appropriate value under the Container Cleanup Timeout
field. I choose to add a value of 30 min (Figure 6-35). The Container Cleanup
Timeout defines how long to keep a Kubernetes container listed inside Jenkins.

Container Cleanup Timeout 20 ®

Figure 6-35. Container Cleanup Timeout

4. Under the Images section, click on the Add Pod Template button and choose
Kubernetes Pod Template, as shown in Figure 6-36.

Images Add Pod Template

| Kubemetes Pod Template |

Figure 6-36. Adding a Kubernetes Pod Template

5. You will be presented will a lot more options (Figure 6-37).

a. Add aname for your Kubernetes Pod Template using the Name field.

213

CHAPTER 6~ USING CONTAINERS FOR DISTRIBUTED BUILDS

Note Add a name without spaces for your Kubernetes Pod Template.

b. Add alabel under the Labels field. This label will be used by our Jenkins
pipeline to connect to the Jenkins Slave (docker container) running on
Kubernetes cluster.

c. Leave the rest of the fields to their default values.

Images
Kubernetes Pod Template
Name detault-pod-template
Labels Kubernetes
The name of the pod tempiate to inherit from @
Contalners AddContalner
List of container in the skave pod
EnvVars Add Environment Variable ~
List ol enviionment vasiables 10 et in all container of the pod
Volumes

Add Volume ~

List of volumes to mount in slave pod
Max number of instances 10
Time in minutes to retain slave when idle
Annotations
Add Annotation ~ [7}
List of annotations 1o set in slave pod

Advanced...

Delete Template

Figure 6-37. Configuring the Pod Template

d. Under the Containers field click on the Add Container button and choose
Container Template (Figure 6-38).

Containers Add Container

| Container Template
Figure 6-38. Adding a Container Template

e. You will again be presented with a lot more options to configure your
Docker image. See Figure 6-39.

214

CHAPTER 6 * USING CONTAINERS FOR DISTRIBUTED BUILDS

Images
Kubernetes Pod Templale
Name default-pod-template
Labeis kubemetes
The name of the pod template to inhert from &
Containers

Contalner Template

Name Jenkins-slave-template

Docker image jenkinscljnip-slave [7]
Always pull image

Working directory home jenking f}'.
Command to run slave agent birvsh < -i:};.
Arguments to pass to the command cat (7]
Allocate pseudo-TTY

Emyam Add Environmant Variable ~

Figure 6-39. Configuring the Container Template

f. Add a name for your Container Template using the Name field.

Note Add a name without spaces for your Container Template.

g. Add jenkinsci/jnlp-slave under the Docker Image field. This is a Docker
Image for Jenkins available on Docker Hub.

h. Leave the rest of the fields to their default values.

6. Click on the Apply and Save button at the end of the page.

Configure Global Security

Follow these steps to make modifications to the TCP port settings inside Jenkins. These settings are
important to allow Jenkins to spawn containers on the Kubernetes cluster.

1. From the Jenkins dashboard, click on Manage Jenkins » Configure global
security.

2. On the Configure Global Security page (Figure 6-40), make sure that the TCP port
for JNLP agents is set to Random.

215

CHAPTER 6 * USING CONTAINERS FOR DISTRIBUTED BUILDS

‘) Configure Global Security

Enable security @

TP port for JNLP agents: () pyeed - © Randgom) pisavle @®

Agent protocols...

Figure 6-40. Configure TCP port for INLP agents

3. Click on the Agent protocols... button and choose all the protocols. As shown in
Figure 6-41.

‘) Configure Global Security

Enable security @

TCP port for JNLP agents Fixed (-] Random Disable i};

Agent protocols
gerep Jenkins CLI Protocol/1
Accepts connections from CLI cients

Jenkins CLI Protocaol’2
Exiends the version 1 protocel by adding transport encrypticn

Java Web Start Agent Profocol/1

Ascepts connections from remote clents 5o that they can be usad as additional buid agents

Java Web Start Agent Protocol'2

Exiends the version 1 peotocol by adding a perchent cookae, 50 that we can detect a reconnection from the agent and take approprate action

Java Web Stan Agent Protocol'3

Extends the version 2 protocol by adding basic encryption but reguires a thread per chent

Java Web Start Agent Prolocol/d
A TLS secured connection between the master and the agent perdomed by TLS upgeade of the socket.

Figure 6-41. Configuring Agent protocols

Creating a Jenkins Pipeline

With the entire configuration in place, we are all set to run our Jenkins CI pipeline on a Kubernetes cluster.
Follow the steps below to create and test a Jenkins pipeline:

1. From the Jenkins Dashboard, click on the New Item.
Choose Jenkins Job type as Pipeline (Figure 6-42).

b. Under the Enter an item name field, add a name for your new Jenkins
pipeline.

c. Click on the OK button to proceed to configure our new Jenkins pipeline.

216

CHAPTER 6 * USING CONTAINERS FOR DISTRIBUTED BUILDS

Pipeline

Definition = Pipeline script from SCM

@

) Ll

SCM Git
Repositories ()]
Repository URL hitps://github.com/pro-continuous-delivery hello-worl ©
Credentials nikhilpathania@gmail.com/****** j o= Addr
Name @'i
Refspac “
Add Reposilory
Branches to build n
Branch Specifier (blank for ‘any’) */master o
b Add Branch
Repository browser {Auto) :I ®
Additional Behaviours Add -

®

Script Path Jenkinsfile

Pipsline Synlax

Figure 6-42. Configuring the Jenkins Pipeline

2. Once on the Jenkins pipeline configuration page, scroll down to the Build
Triggers section and check the GitHub hook trigger for GITScm polling option.

3. Scroll down further to the Pipeline section.

4. Under the Definition option you can choose Pipeline script from SCM.
a. Choose Git as an option for the SCM field.
b. Under the Repository URL add your GitHub repo URL.

c. Under the Credentials field choose the credentials for GitHub (it can be the
GitHub username and password or SSH key pair to access GitHub account,
stored inside Jenkins as credentials).

d. Click on the Save button to save the configuration.
5. From the Jenkins Dashboard, click on Manage Jenkins » Configure System.

6. Scroll all the way to GitHub section and click on the Re-register hooks for all
jobs button. This will create all the necessary webhooks on GitHub for our new
Jenkins pipelines.

217

CHAPTER 6 * USING CONTAINERS FOR DISTRIBUTED BUILDS

7. Make sure to change the code inside the Jenkinsfile present inside the GitHub
repository. Replace it with the following:

node('kubernetes') {
checkout scm
stage('build") {
withMaven(maven: 'Default Maven') {
/* .. some comment .. */
sh 'mvn clean install’

— e

Note It's the same code that we have used earlier in the current chapter. The only difference is in the node
name. In the former code it is docker, and here it's kubernetes. Also | have removed the jdk: 'Default Java'
from line 4. This is because the Docker Image jenkinsci/jnlp-slave already has the container Java installed.

8. Asyou can see (Figure 6-43), I am modifying the Jenkinsfile on DockerHub.

s

hello-world-example / Jenkinsfile

<> Edit file @ Preview changes Spaces & 4 s No wrap]
{ "Kubernetes') {

{‘build’y {
C (maven: ‘Default Maven') {

=vn clean install’

Figure 6-43. Modifying the Jenkinsfile

9. AndIcommit the change by adding a comment. See Figure 6-44.

Commit changes

updated the Jenkinsfile

[« B:d Commit directly to the master branch.

i1 Create a new branch for this commit and start a pull request. Learn more about pull request

Figure 6-44. Commit changes

218

CHAPTER 6 © USING CONTAINERS FOR DISTRIBUTED BUILDS
Running the Jenkins Pipeline

The moment you commit the changes, Jenkins pipeline gets triggered. As shown in Figure 6-45, it takes a
while for Jenkins to create and configure the Jenkins Slave on Kubernetes (using the Docker Image jenkinsci/
jnlp-slave).

Build Queue

No builds in the queue.

Build Executor Status

& master
1 Idle
2 ldle

= default-pod-template-642351dcci3

1 part of pipeline_to_build_inside
kubemetes #9

| v _av aa

Figure 6-45. Jenkins Pipeline in action

Quickly move to the Kubernetes Dashboard and check the Pods section. In a while you should see a pod
getting created, as shown in Figure 6-46.

Pods

Name Status Restarts Age CPU (cores)

Memory (bytes)
@ pod-579f7e7cebe Waiting: ContainerCreating 0

17 seconds - . 3160M =

Figure 6-46. Pod for Jenkins Slave being created.

Once the Pod is completely ready the status will change to Running, as shown in Figure 6-47.

Workloads > Pods

+ CREATE

Pods

Name Status Restarts Age CPU (cores) Memory (bytes)
0 default-pod-template-642351dcc13 Running 0 31 seconds

Figure 6-47. Pod for Jenkins Slave in running state

219

CHAPTER 6~ USING CONTAINERS FOR DISTRIBUTED BUILDS

Come back to your Jenkins dashboard and go to Manage Jenkins » Manage Nodes. You should see the
Kubernetes pod listed as a Jenkins Slave (Figure 6-48).

S MName | Architecture Clock Diflerence Free Disk Space Free Swap Space Free Temp Space Response Time

g; delaull-pod-termplale-642351dcc 13 Linux (amdBd) In sync 11.24 GB °o B 11.24 GB 2632ms ﬁ

% master Linux {amdé4) In sync 77T GB °ﬂ B 7.37 GB Oms ﬁ
Data oblalned 1.8 soc 1.7 sec 1.6 sec 1.3 s0c 1.6 sec 1.6 sec

Figure 6-48. Kubernetes pod listed inside Jenkins

Check your Jenkins pipeline. It should have been completed successfully by now. In the Console Output
of your Jenkins pipeline you should see the Kubernetes pod name on which the build ran, as shown in
Figure 6-49.

0 Console Output

Started by user Nikhil Pathania
> git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
> git config remote.origin.url https://github.com/pro-continuous-delivery/hello-world-example.git # timeout=18
Fetching upstream changes from hitps://github. com/pro-continuous-delivery/hello-world-example.git
> git --version # timeout=10
using GIT_ASKPASS to set credentials
> git fetch --tags --progress h
:refs/remotes/origin/~
> git rev-parse refs/remotes/origin/master~{commit} # timeout=18
> git rev-parse refs/remotes/origin/origin/master*{commit} # timeout=10
Checking out Revision 177c¢71c873cc72e243936b77371834718b862bch (refs/remotes/origin/master)
> git config core.sparsecheckout # timeout=16
= git checkout -f 177c71c873cc72e243936b7737f834718b862bch
First time build. Skipping changelog.

+refs/heads/*

[Still waiting to schedule taskl
aiting for next available executol

Figure 6-49. Jenkins Logs stating Kubernetes pod

Soon after the Jenkins pipeline gets completed, the Kubernetes Jenkins Slave disappears from the list of
available nodes (Figure 6-50).

s Name | Clock Free Disk Space Free Swap Space Free Temp Space Response Time
g: master Linux (amd64) In syne 737 GB °03 7.37 GB Oms g’
Data obtained 6 min 21 sec 6 min 21 sec & min 21 sec 6 min 20 sec 6 min 21 sec 6min 21 sec

Refresh slalus

Figure 6-50. Kubernetes pod disappears from the node list

220

CHAPTER 6 * USING CONTAINERS FOR DISTRIBUTED BUILDS

Summary

In the current chapter we learned to use Docker as well as Kubernetes along with Jenkins to run builds on
dynamically provisioned build agents (Docker container).
In the next chapter we will learn about Pre-tested commits using Jenkins and GitHub.

221

CHAPTER 7

Pre-tested Commits Using Jenkins/

In the current chapter we will learn about pre-tested commits and the means to achieve them using Jenkins.
We will do this by leveraging the Distributed nature of Git and Merge before build feature of Jenkins.

Pre-tested Commits

Continuous Integration requires developers to publish each and every change (commit) to the Integration/
Master branch. All these changes (on the Integration/Master branch) are built, tested, and analyzed for
quality, and only after this we know if a change is good or bad. Pre-tested commits (Gated Check-in), on the
other hand, ensures that not all, but only those changes that are good, should be allowed on the Integration/
Master branch. Pre-tested commits (Gated check-in) ensure that only good changes are published to the
Integration/Master branch by performing a check (build, test, analyze) on them.

Both Continuous Integration (CI) and Pre-tested commits (Gated Check-in) have their own advantages.
Pre-tested commits are good if you have a large number of developers with average development skills, as
it prevents bad code getting into the Integration/Master branch. But, at the same time it also increases the
time it takes for a change to be made available to everyone.

CI makes sure that each and every change is made available to everyone as soon as possible. It is also
suitable in cases where the build time is less (less than an hour). If a build, test, and analyze cycle takes more
than an hour, Gated Check-in is more suitable.

Tools such as Microsoft TFS have a feature to perform Gated Check-in. However, in the current chapter
we will learn to leverage the Distributed nature of Git and Merge before build feature of Jenkins to achieve
Pre-tested commits (Gated Check-in).

Pre-tested Commits Using Jenkins and Git

Let us understand how Gated Check-in works. We will start by making the following assumptions:
e We will assume a role of a developer.
e Theversion control system in use is Git or GitHub.

e On the version control system we have Integration/Master branch and a Feature-1
branch.

e We are using Jenkins as our CI server, which will also perform pre-tested commits.

e OnlyJenkins is allowed to push changes on the Integration/Master branch (remote
repository).

© Nikhil Pathania 2017 223
N. Pathania, Pro Continuous Delivery, DOI 10.1007/978-1-4842-2913-2_7

CHAPTER 7 * PRE-TESTED COMMITS USING JENKINS

Stage 1: Developer Clones the Remote Repository

In stage 1, the developer clones the GitHub repository on his local machine, as shown in Figure 7-1.

Developer's Local Repo Remote repo

Master Master

Feature-1 @ Feature-1

gitclone

Figure 7-1. Stage 1

Stage 2: Developer Works on His Local Copy of the Code
In stage 2 the developer does the following steps (Figure 7-2).

a. Developer makes some changes on the Feature-1 (local repository) branch and
commits the change.

b. Developer then performs a build and unit test on his local machine.

c. Ifthe build passes, developer pushes his changes to the Feature-1 branch on the
remote repository.

d. Meanwhile, the master branch (remote repository) has also changed.

Developer's Local Repo Remote repo

Master Master

Feature-1 Feature-1

{():}code commit prmmmmm e
]
@bunld & unittest :
]
@push to remote (Feature-1) -co—__1 i

Figure 7-2. Stage?2

Stage 3: Jenkins Performs a Pre-test on the Code
The following steps take place in stage 3 (Figure 7-3).

a. Assoon as Jenkins identifies a change on Feature-1 branch (remote repository),
the pipeline to pre-test commit is initiated.

224

CHAPTER 7 © PRE-TESTED COMMITS USING JENKINS

b. First, Jenkins clones the remote repository.

c. Next, Jenkins performs a merge from Feature-1 branch (local repository) to the
Master branch (local repository).

d. Ifthe merge is successful, Jenkins performs a build on the Master branch (local
repository).

e. Ifthe build and unit test are successful, Jenkins pushes the code to the Master
branch on the remote repository.

Jenkin's Local Repo Remote repo

Master Master

{c

git clone

----- {é}merge gmmm e
:
@build & unit test i
]
H
@push to remote (Master) -

Feature-1 Feature-1

Figure 7-3. Stage 3

Creating a Jenkins Pipeline to Perform Pre-tested Commits
Now let us create a Jenkins pipeline to achieve the scenario discussed in the previous section.
1. From the Jenkins Dashboard, click on the New Item.
a. Choose Jenkins Job type as Pipeline (Figure 7-4).

b. Under the Enter an item name field, add a name for your new Jenkins
pipeline.

c. Click on the OK button to proceed with configuring our new Jenkins
pipeline.

225

CHAPTER 7 * PRE-TESTED COMMITS USING JENKINS

Pipeline
Detinition Plpeline script j

Serpt try sampie Pipeine... 4 L2

Use Groovy Sandbox [2]

Pipeline Syntax
Figure 7-4. Jenkins pipeline script
2. Once on the Jenkins pipeline configuration page, scroll down to the Build
Triggers section and check the GitHub hook trigger for GITScm polling option.
Scroll down further to the Pipeline section.
Under the Definition option you can choose Pipeline script.

Click on the Pipeline Syntax link.

o g &~

On the resultant page (Figure 7-5), choose node: Allocate node under the
Sample Step field.

a. Add master under the Label field.
b. Click on the Generate Pipeline Script button.

c. Copy and save the code. (We will need it later.)

Steps

Sample Step . 4e: Allocate node j

Labe master

®

Label master is serviced by 1 node

node('master’) {
// some block
}

Figure 7-5. Pipeline code for allocating node

7. Next, choose stage: Stage option from the Sample Step field (Figure 7-6).
a. Under the Stage Name field add scm.
b. Click on the Generate Pipeline Script button.

c. Copy and save the code. (We will need it later.)

226

CHAPTER 7 © PRE-TESTED COMMITS USING JENKINS

Steps
Sample Step stage: Stage :I
Stage Name sem
Generale Pipeline Script
stage('scm’) { B
// some block

}

Figure 7-6. Pipeline code for creating stage

8. Create code for another stage named build and push. Copy the generated code.
(We will need it later.)

9. Next, choose checkout: General SCM option from the Sample Step field
(Figure 7-7). When you do so, the page refreshes with a new set of configurable

items.
Steps
Sample Step | eckout: General SCM j
seM | gy j -

Repositories Repository URL ' gnut, comipro-continuous-delivery/hello-world-example.git | @)
Credentials nikhilpathania@gmail,com/****** j o= Add ¥
Name ® e
Relspec 4

Add Repository
Branches to bulld Branch Specifier (blank for ‘any) |01 reatyre-\dy) (7]
Add Branch Delete Branch
Repository browser (Auto) j ©
Additional Behaviours |, _

Figure 7-7. Generating code for SCM

a. Choose Git for the SCM field.

b. Under Repositories » Repository URL, add the GitHub repository’s
(http link).

227

CHAPTER 7 © PRE-TESTED COMMITS USING JENKINS

c. Under Credentials field, choose the GitHub token.

d. Under Branches to build » Branch Specifier (blank for ‘any’) field, add
the following line:

rorigin/feature-\d{1}

e. Leave all the other options as they are.

f. Under Additional Behaviours click on the Add button, and choose
Merge before build option (Figure 7-8).

Additional Behaviours Add -

-
edibUidie Wdyeivy aydinist d Speiie uidign

Check out to a sub-directory

Check out to specific local branch

Clean after checkout

Clean before checkout

Create a tag for every build

Custom SCM name

Custom user name/e-mail address
Don'ttrigger a build on commit notifications
Force polling using workspace

Merge before build

Polling ignores commits from certain users
Polling ignores commits in certain paths
Polling ignores commits with certain messages
Prune stale remote-tracking branches
Sparse Checkout paths

Strategy for choosing what to build

Use commit author in changelog

Wipe out repositorv & force clone

Figure 7-8. Using the Merge before build option

g. Add origin under the Name of repository field (Figure 7-9).

228

CHAPTER 7 © PRE-TESTED COMMITS USING JENKINS

e
epository browser (Auto) :I ®
Additional Behaviours
Merge before build (2)
Name of repository | . gin)
Branch to mergeto| ..)
Merge strategy ot)
Fast-forward mode | j ®

Figure 7-9. Configuring the Merge before build settings

h. Add master under the Branch to merge to field.
i. Leave the rest of the options to their default values.

j. Click on the Generate Pipeline Script button (Figure 7-10).

Generate Pipeline Script

checkout changelog: true, poll: true, scm: [$class: 'GitSCM", branches: [[name: “origin/feature-\d{1}]].
doGenerateSubmoduleConfigurations: false, extensions: [[$class: ‘PreBuildMerge’, options: [fastForwardMode: 'FF', mergeRemote:
‘origin’, mergeStrategy: <object of type org. jenkinsci.plugins. gitclient. MergeCommand. Strategy>, mergeTarget: ‘masterT]]]
submoduleClg: [], userRemoteConfigs: [[credentialsid: ‘github-account’, url: hitps./github.com/pro-continuous-delivery/hello-worid-
example.git]]]

Figure 7-10. Generated code for SCM

k. Copy and save the code. (We will need it later.)

Note Remove the following line of code from the generated pipeline code: mergeStrategy: <object of
type org.jenkinsci.plugins.gitclient. MergeCommand.Strategy>

10. Next, choose withMaven: Provide Maven environment option from the Sample
Step field. When you do so, the page refreshes with a new set of configurable
items (Figure 7-11).

a. choose Default Maven under the Maven field.
b. Choose Default JDK under the JDK field.
c. Click on the Generate Pipeline Script button.

d. Copy and save the code. (We will need it later.)

229

CHAPTER 7 © PRE-TESTED COMMITS USING JENKINS

Sleps

Sample Siep. withMaven: Provide Maven environment j
Maven Default Maven j @:.

L Default Java j i

Maven Seltings Confly - Use system default settings or file path -— j @‘

Maven Settings File Path ©

4

Global Maven Settings: Conlig -- Use system default settings or file path --- j lfjJ

Global Maven Settings File Path ®

'

Maven JVM Opts ®©

Maven Local Repository ®

withMaven(jdk: ‘Default Java', maven: ‘Default Maven’) {
/ some block
}

Figure 7-11. Generated code for Maven

11. Add the following line of code under the withMaven code block:
add sh ('mvn clean install')

12. Next, choose withCredentials: Bind credentials to variables option from
the Sample Step field. When you do so, the page refreshes with a new set of
configurable items (Figure 7-12).

a. Click on the add button and choose Binfings Secret text from the options.
b. add github-token under the Variable field.

c. choose the GitHub token under the Credentials field.

d. Click on the Generate Pipeline Script button.

e. Copy and save the code. (We will need it later.)

230

CHAPTER 7 © PRE-TESTED COMMITS USING JENKINS

Steps
Semple Step withCredentials: Bind credentials to variables j
Bindings
Secret text (7]
Mexlabie github-token (7]
Credentials

GitHub (https://apl.github.com) auto generated token credentials for nikhilpathania@gmail.com j

o= Add v

Add ~

withCredentials{[string(credentialsid: ‘9a4d05¢c5-3c8-46ec-971{-B4d397413504", variable: ‘github-token’)]) {
some block

Figure 7-12. Generated code for withCredentials

13. Add the following line of code under the push stage code block:

sh("git tag -a ${BUILD NUMBER} -m 'Jenkins'")
sh("git push https://${credentials}@github.com/pro-continuous-delivery/
hello-world-example.git HEAD:master --tags")

14. Finally the complete combined code should look as shown below:
node('master"'){

stage('scm'){

checkout changelog: true, poll: true, scm: [$class: 'GitSCM', branches:
[[name: ':origin/feature-\\d{1}']], doGenerateSubmoduleConfigurations:
false, extensions: [[$class: 'PreBuildMerge', options:
[fastForwardMode: 'FF', mergeRemote: 'origin', mergeTarget:
‘master']]], submoduleCfg: [], userRemoteConfigs: [[credentialsId:
'github-account', url: "https://github.com/pro-continuous-delivery/
hello-world-example.git']]]

}

stage('build"){
withMaven(jdk: 'Default Java', maven: 'Default Maven') {
sh ('mvn clean install')

231

CHAPTER 7 * PRE-TESTED COMMITS USING JENKINS

stage('push'){
withCredentials([string(credentialsId: '9d4do9c5-3fc8-46ec-97ff-
84d397413504', variable: 'credentials')]) {
sh("git tag -a ${BUILD_NUMBER} -m 'Jenkins'")
sh("git push https://${credentials}@github.com/pro-continuous-
delivery/hello-world-example.git HEAD:master --tags")
}
}

}

15. On the pipeline configuration page, add the above code inside the Script field
(Figure 7-13).

Pipeline
Definition Pipeline script j
Script \ T ﬁ
3.
4 poli: c che aolene
18
12 red Ll
13
16
Use Groovy Sandbox L
Pipeline Syntax

Figure 7-13. Adding the code to the script field

16. Save the configuration by clicking on the Save button at the end of the page.

Creating Feature Branch on Github

We will create a feature branch to make some changes on our code. The changes made on the feature branch
will be tested by Jenkins. If the tests are successful, then Jenkins will merge the changes made on feature
branch to the master branch.

1. Login to your GitHub account, and under your repository create a new branch
named feature-1 as shown in Figure 7-14:

232

CHAPTER 7 © PRE-TESTED COMMITS USING JENKINS

Branch: master = Now pull request Crealo newfile Uploadfiles Find file

Switch branchestags

feature-1

Branches Tags

¥ Create branch: feature-1 woditied the fie
from ‘master’ =

Figure 7-14. Creating a feature branch

2. Switch to the feature-1 branch and modify your Message.java file. I have modified
the return message from Hello World! To Hi, How are you? (line number 5), as
shown in Figure 7-15.

hello-world-example / src / main / java / hello /| Message.java B orcancel

<> Edit file @ Preview changes Tabs E 8 $ No wrap &
package hello;
public class Message {
public String sayHellof) {

return "Hi, How are you?®;

}

Figure 7-15. Modifying the Message.java file

3. Modify the MessageTest.java file to make sure our test passes. I have modified the
containersString from Hello to Hi, (line number 14), as shown in Figure 7-16.

hello-world-example / src/ test / java / hello /' MessageTestjava B orcance

<> Edit file © Preview changes Tabs & 8 & Mo wrap $
package hello;

import static
import static

import org.

it class MessageTest {

private ¥ = féw (W H
@Test
public woid pes ellof) {
AssertThat (me ge. sayello(), tainsString(®AL,*));
}

}

Figure 7-16. Modifying the MessageTest.java file

4. Commit both the files to trigger a build in Jenkins.

233

CHAPTER 7 * PRE-TESTED COMMITS USING JENKINS

5. Move to the Jenkins dashboard and click on the Jenkins pipeline, In our case
its pre_test_commits_using Jenkins. As shown in Figure 7-17, you can see the
pipeline is a success, and the code has been pushed successfully to the remote
master branch after a successful build.

pre_test_commits_using_Jenkins - Stage View

scm bulild push
2s 9s 2s
i 2s 9s 2s

19:24

Figure 7-17. Jenkins pipeline stage view

6. Login to your GitHub account and under your respective repository check the
commit history of your master branch, as shown in Figure 7-18. You can see the
two files that we modified on the feature-1 branch have been successfully pushed
to the master branch.

pro-continuous-delivery / hello-world-example ©watch~ 0 ksStar 0 YFork 0
< Code Issues 0 Pull requests 0 rojects 0
master ~
° Update MessageTest. java £ fbb7doa o
pro-continuous-delivery i GitHub
° Update Message.java 2 a058274 €
pro-continuous ory 1 GitHub i

Figure 7-18. Commit history on the master branch

Simulating a Failure

We will deliberately fail the build by modifying our unit test code in order to check if Jenkins pushes the code
change to the Master branch on the remote repository.

1. Modify the MessageTest.java file so that our unit test fails. I am modifying the
code, as shown in Figure 7-19.

234

hello-world-example / src /test/ java [hello/ MessageTestjava &=

<> Edit file & Preview changes
package hello;

import static
{ import static org.junit.A

import
public class MessageTest {
private ¥ e = Nt M +();
QTest
public void sessag ello(} {
\ssertThat e ("Helld, *));
}

}

Figure 7-19. Modifying the MessageTest.java file

or cancel

Tabs

CHAPTER 7 © PRE-TESTED COMMITS USING JENKINS

L] H Nowrap =

2. The moment you commit the file on GitHub, a build is triggered in Jenkins.

3. Move to the Jenkins dashboard to check the pipeline status. You should see

something as shown in Figure 7-20.

pre_test_commits_using_Jenkins - Stage View

build

9s

push

768ms

scm
1s
Feb 25 1 S
19:26
=
Feb 25 2S
19:24

Figure 7-20. Jenkins pipeline stage view

9s

9s

892ms

failed|

2s

4. Also check the Console Output for the Jenkins pipeline. And you will see that the
build failed due to a failed unit test, as shown in Figure 7-21.

235

CHAPTER 7 * PRE-TESTED COMMITS USING JENKINS

Running hello.MessageTest
Tests run: 1, Failures: 1, Errors: ©, Skipped: 0, Time elapsed: 0.212 sec <<< FAILURE!
messageSaysHello(hello.MessageTest) Time elapsed: 0.049 sec <<< FAILURE!
java.lang.AssertionError:
Expected: a string containing "Helle,"

but: was "Hi,How are you?"

Figure 7-21. Jenkins pipeline Console Output logs

5. Move to the GitHub. Under your repository page (while you are on the master
branch), you will see that there is a new change on the Feature-1 branch that is
not yet merged to the master (Figure 7-22).

© 40 commits U 2 branches 17 releases 41 1 contributor f: Apache-2.0
ch: master = Neow pull request Create new file Upload fles Find file
o, delivery itted on GitHub Update M mmit fbbTd9a 28 minutes ago
i src
gitignore

Figure 7-22. New commit on the feature-1 branch which is not yet on master

Summary

This was a small chapter on pre-tested commits using GitHub and Jenkins. In the next chapter we will
extend our pipeline code a bit further to achieve continuous delivery.

236

CHAPTER 8

Continuous Delivery Using
Jenkins Pipeline

In the current chapter we will learn to implement continuous delivery using Jenkins along with the relevant
DevOps tool chain needed for it. We will begin the chapter by installing and configuring Artifactory and
SonarQube. Next, we will create Docker images for our Integration and Performance test environments. To
keep things short, we will see only two types of testing in the current chapter; however, in the real world, you
can have multiple Docker images to describe all the testing environments that you would use. The current
chapter will demonstrate continuous delivery using the tools described in Table 8-1. Nevertheless, you may
have an alternative choice of tools.

Table 8-1. Continuous Delivery tool chain

Tools Used Purpose Alternative Tools

Jenkins Main orchestrator for the Continuous Delivery =~ Teamcity, Atlassian Bamboo,
ThoughtWorks Go...(may or may not
have the option of pipeline as a code)

Artifactory The binary repository to store build artifacts Sonatype Nexus...

SonarQube To perform Static Code Analysis Squale, Kalistick, MetrixWare, Cast...

Apache Jmeter To perform performance testing LoadRunner, Testing Anywhere...

Junit To perform unit testing and Integration testing ~ The list is huge depending on the
project code...

Maven To build Java project Ant, MSBuild (.net, c#, c++)...

GitHub Version Control repository Git, Bitbucket, SVN, Mercurial...

Docker To provision on-demand Jenkins Slaves Kubernetes, Amazon EC2...

Setting Up the Artifactory Server

In the following section we will learn the following:
¢ Installing an Artifactory Server on Ubuntu
e Creating a generic repository inside Artifactory
e Creating user credentials inside Jenkins to access Artifactory

¢ Installing and configuring the Artifactory plugin for Jenkins

© Nikhil Pathania 2017 237
N. Pathania, Pro Continuous Delivery, DOI 10.1007/978-1-4842-2913-2_8

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

Installing and Configuring Artifactory

In the following section we will set up Artifactory on Ubuntu 16.04.

Install Java and Set the JAVA__HOME Path

Follow the steps below to install Java.

1. Update the package index:
sudo apt-get update

2. Next, install Java. The following command will install the Java Runtime
Environment (JRE).

sudo apt-get install default-jre
3. To set the JAVA_HOME environment variable, first get the Java installation
location. Do this by executing the following command. You should see a

response as shown in Figure 8-1.

update-java-alternatives -1

root@d7c8b33b8ed9: /tmp# update-java-alternatives -1
java-1.8.0-openjdk-amd64 1681 fusr/lib/jvmfjava-1.8.0-openjdk-amd64
root@e7c8b33bgeds: /tmp# [

Figure 8-1. List of available Java installations

4. Copy the resultant path and update the JAVA_HOME variable inside the file /etc/
environment file, as shown below:

JAVA_HOME="/usr/1ib/jvm/java-1.8.0-openjdk-amd64"

Downloading the Artifactory Package
Follow the steps below to download the Artifactory package.

1. Download the latest version of Artifactory installation package from the link:
https://www.jfrog.com/open-source/

2. Unzip the archive package into your home directory ($HOME).
unzip Jfrog-artifactory-oss-5.1.0.zip -d $HOME/

3. Move to the extracted folder and list its content.
cd $HOME/artifactory-oss-5.1.0

1s -1rt

238

https://www.jfrog.com/open-source/

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

Note hin/ folder contains all the scripts to install and start Artifactory. logs/ folder contains the
Artifactory logs.

Starting the Artifactory Server

Follow the steps below to start the Artifactory server.

1.

Move to the SHOME/artifactory-oss-5.1.0/bin/ folder and run the
installService.sh script.

sudo ./installService.sh
Executing the above command will give the following output.

Installing artifactory as a Unix service that will run as user artifactory
Installing artifactory with home /home/ubuntu/artifactory-oss-5.1.0
Creating user artifactory...creating... DONE

Checking configuration link and files in /etc/opt/jfrog/artifactory...

Moving configuration dir /home/ubuntu/artifactory-oss-5.1.0/etc /home/ubuntu/
artifactory-oss-5.1.0/etc.original...creating the link and updating dir... DONE
Creating environment file /etc/opt/jfrog/artifactory/default...creating... DONE
** INFO: Please edit the files in /etc/opt/jfrog/artifactory to set the correct
environment

Especially /etc/opt/jfrog/artifactory/default that defines ARTIFACTORY_HOME,
JAVA_HOME and JAVA OPTIONS

Initializing artifactory service with update-rc.d... DONE

Setting file permissions... DONE

RRRkkkkkkkk GUCCESS Hkkkkkkkbokokkkkk
Installation of Artifactory completed

Please check /etc/opt/jfrog/artifactory, /home/ubuntu/artifactory-oss-5.1.0/
tomcat and /home/ubuntu/artifactory-oss-5.1.0 folders

Please check /etc/init.d/artifactory startup script

Start the Artifactory service using any of the following commands (Figure 8-2):

sudo service artifactory start

(or)

sudo /etc/init.d/artifactory start

(or)

sudo systemctl start artifactory

239

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

4. You can check Artifactory installation by executing any of the following
command:

service artifactory check
(or)

/etc/init.d/artifactory check
(or)

sudo ./artifactoryctl check

ubuntu@node5:~/artifactory-oss-5.1.0/binS sudo ./fartifactoryctl check
Artifactory is running, on pid=17436

ubuntu@node5:~/artifactory-oss-5.1.0/bin$

Figure 8-2. Artifactory running status

5. Access the Artifactory dashboard using the following link:
http://<Server IP Address>:8081/artifactory
6. The defaultlogin credentials to the Artifactory server are:

username: admin
password: password

Reset the Default Credentials
Follow the steps below to reset Artifactory credentials.
1. From the Artifactory dashboard, click on Welcome, admin » Edit Profile.

2. Enter your current password in the Current Password field and press the
Unlock button.

3. On the resultant page, under Personal Settings add your e-mail ID and new
credentials.

4. Once done, click on the Save button.

Creating a Repository in Artifactory

In the following section we will create a genetic repository inside Artifactory. The repository will be used to
store the build artifacts.

1. From the Artifactory dashboard, on the left-hand side menu, click on
Admin » Repositories » Local, as shown in Figure 8-3.

240

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

€ OFEE 172178108

Figure 8-3. Creating a Local repository in Artifactory

2. Theresultant page will show you all the available local repositories currently
available, as shown in Figure 8-4.

';‘ Artifactory

€ © Pl & 172.17.8.108:8081/artifactory/wel ¢ || searct wvBa O 3 @ =

O lFrogAm'factory Welcome, admin ~ Help

Local Repositories

P New
1 Repository
Page 1 of 1
Repository Key Type Recalcul... Replicati...
: example-repo-local B Generic

Figure 8-4. List of all the Local Repositories
3. Click on the New button at the top-right corner to create a new local repository
(Figure 8-4).

4. You will be presented with a pop-up window with a list of various types
of repositories to choose from. As shown below, choose the Generic type
(Figure 8-5).

241

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

Select Package Type

= A >
(!I f'vy,- o8 ph

Mmaven
Gradie

€ o S|
F, rpm

Generic

Figure 8-5. Option to choose various types of repositories.

5. Give your repository a name by adding a value under the Repository Key* field,

as shown in Figure 8-6.

Q JFrog Artifactory

Welcome, admin -

New Local Repository

Basic Advanced Replications *

B

Generic

helloworld-greeting-project

General

simple-default -

Figure 8-6. Naming our new local repository

6. Once done, click on the Save & Finish button.

7. Now we have our new local repository, as shown in Figure 8-7.

242

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

€ OFEE 172.17.81088081 @ | |9, search wEeE O 3+ 4@ =

Q jFrogArtifactory 2 Welcome, admin ~

Local Repositories

@ New

2 Repositories

Page of 1
Repository Key Type Recalculat... Replicatio...
_: example-repo-local B Generic
helloworld-greeting-project B Generic

Figure 8-7. Our newly created local repository

Adding Artifactory Credentials Inside Jenkins
Follow the steps below to create credentials inside Jenkins to talk to Artifactory.

1. From the the Jenkins dashboard click on Credentials » System » Global
credentials (unrestricted).

2. Click on the Add Credentials link on the left-hand side menu, to create a new
credential (Figure 8-8).

a. Choose Kind as Username and Password.

b. Leave the Scope field to its default value.

c. Add the Artifactory username under the Username field.
d. Under the Password field add the password.

e. AddanID under the ID field, and some description under
the Description field.

f. Once done click on the OK button.

Jenkins Credentials System Gilobal credentials (unrestricted)
4 Back to credential domains Kind | ;oo oo e e j
@ Add Credentials s
i Global (Jenkins, nodes, items, all child items, etc) :I@
Usemame
admin 7]
Password ®
[+ e
artitactory-account (7]

Description

Figure 8-8. Adding artifactory credentials inside Jenkins

to access Y server

®

243

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

Installing Artifactory Plugin
Follow the step below to install the Artifactory Plugin for Jenkins.

1. From the Jenkins Dashboard, click on Manage Jenkins » Manage Plugins
» Available (tab). You will be taken to the Jenkins Manage Plugins page.

2. Enter “Artifactory” in the Filter field, as shown in Figure 8-9.

Filter: | \ Artifactory

Available

Install | Name Version

Artifactory Plugin
; 292

Install without restart Download nd install after restart

Figure 8-9. Installing the Artifactory plugin

3. Select the Artifactory Plugin from the list and click on Install without restart
button.

4. Restart Jenkins if needed.

Configuring Artifactory Plugin
Now that we have our Artifactory Plugin installed, let us configure it.
1. From the Jenkins Dashboard, click Manage Jenkins » Configure System.

2. Once on the Configure System page, scroll down all the way to the
Artifactory section.

3. Under the Artifactory section, click on the Add button.

a. Youwill be presented with the following settings to configure,
as shown below.

b. Name your Artifactory server a name using the Server ID field.
c. Enter the Artifactory server URL under the URL field.

d. Add Artifactory credentials under the Default Deployer Credentials,
as shown in Figure 8-10.

e. Click on the Test Connection button to test the Jenkins connection
with Artifactory.

244

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

Artifactory
Enable Push to Bintray ©
Use the Credentials Plugin @
Artifaclory servers Artifactory
ServerID porauit Artifactory Server @
URL hitp2//172.17.8.108:8081/artifactory 2]
Default Deployer Credentials

Usemame admin)
Password | ... ®

Advanced...

Found Artifactory 5.1.0 Test Connection

Use Different Resolver Credentials

Add

List of Artitactory servers that projects will want to deploy artifacts and build info 1o

Figure 8-10. Configuring the Artifactory plugin

4. Once done, click on the Save button at the end of the page to save the settings.

Setting Up the SonarQube Server

In the following section we will learn the following:
a. Installing a SonarQube Server on Ubuntu
b. Creating a project inside SonarQube

c. Installing and configuring the SonarQube Plugin for Jenkins

Installing and Configuring SonarQube

In the following section we will set up SonarQube on Ubuntu 16.04. Make sure you have latest version of Java
installed with JAVA_HOME path set.

Install Java and Set the JAVA_ HOME Path

Follow the steps below to install Java.

1. Update the package index:

sudo apt-get update

245

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

2. Next, install Java. The following command will install the Java Runtime
Environment (JRE).

sudo apt-get install default-jre
3. To setthe JAVA_HOME environment variable, first get the Java installation
location. Do this by executing the following command. You will get a response

as shown in Figure 8-11.

update-java-alternatives -1

root@e7c8b33bged9: /tmp# update-java-alternatives -1
java-1.8.0-openjdk-amd64 1081 fusrflib/jvmfjava-1.8.0-openjdk-amd64
root@e7c8b33bseds: /tmp# |}

Figure 8-11. List of available Java installations

4. Copy the resultant path and update the JAVA_HOME variable inside the file /etc/
environment file, as shown below:

JAVA_HOME="/usr/1ib/jvm/java-1.8.0-openjdk-amd64"

Downloading the SonarQube Package
Follow the steps below to download the SonarQube package.

1. Download the latest version of SonarQube installation package using the link:
https://www.sonarqube.org/downloads/

2. Unzip the archive package into you home directory (SHOME).
unzip sonarqube-5.6.6.zip -d $HOME/
3. cdto the extracted folder and list its content.

cd $HOME/sonarqube-5.6.6

Note bin/ folder contains all the scripts to install and start SonarQube. logs/ folder contains the
SonarQube logs.

Starting the SonarQube Server

Follow the steps below to start the SonarQube Server.

1. Move to the $HOME/sonarqube-5.6.6/bin/linux-x86-64/. (In our current
example we are starting SonarQube on a 64-bit Linux OS.)

cd $HOME/sonarqube-5.6.6//bin/1linux-x86-64/

246

https://www.sonarqube.org/downloads/

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

2. Run the sonar.sh script to start SonarQube, as shown below.
./sonar.sh start

3. Access the SonarQube dashboard using the following link:
http://<Server IP Address>:9000

4. The default login credentials to the SonarQube server are:

username: admin
password: admin

Reset the Default Credentials and Generate a Token
Follow the steps below to reset the credentials and generate a token.
1. From the dashboard, click on Administrator » My Account » Security (tab).
2. On the resultant page, under the Change password section, do the following:
a. Add your old password (admin) under the field Old Password.
b. Add anew password under the New Password field.

c. Reconfirm your new password by adding it again in the field
Confirm Password.

d. Once done, click on the Change Password button.

3. On the same page there is an option to generate token. Jenkins can use this token
to access SonarQube. Do the following steps to generate a new token.

a. Look for the Tokens section on the Security Page (Figure 8-12).

b. Under the Tokens section, add a name for your new token using the
Generate Tokens field and click on the Generate Button.

c. Anew token will get generated as shown below.

d. Save this token as we will need it later.

247

CHAPTER 8~ CONTINUOUS DELIVERY USING JENKINS PIPELINE
Issues Notifications Security

Tokens

If you want to enforce security by not providing credentials of a real SonarQube user
to run your code scan or to invoke web services, you can provide a User Token as a
replacement of the user login. This will increase the security of your installation by
not letting your analysis user's password going through your network.

NAME CREATED
jenkins-sonarqube-token March 6, 2017

Generate Tokens

Generate

New token "jenkins-sonarqube-token” has been created. Make sure you copy it
now, you won't be able to see it again!

Figure 8-12. Creating a token inside SonarQube

Creating a Project in SonarQube

In the following section we will create a project inside SonarQube. The project will be used to display the
static code analysis for our example project.

1. From the SonarQube dashboard click on Administration » Projects
» Management.

2. On the resultant page click on Create Project button.

3. On the resultant pop-up window, do the following (Figure 8-13):
a. Add aname under the Name field.
b. Add akey under the Key field.

c. Click on the Create button.

248

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

' SonarQube

€ @ 17217.8.109 wBe v

Create Project
Name*® | helloword-greeting-project
Branch

Key* helloworid-greeting-project

| Create | Cancel

Figure 8-13. Creating a project inside SonarQube

4. You can see your newly created project on the Project Management page, as
shown in Figure 8-14.

sonarqube

Administration
Configuration = Securily + Projecls ~ System =
Projects Management [create Project

Usa this page lo delete multiple projects al once, or lo provision projects If you would like to configure them before the first analysis.
Note that once a project is provisioned, you have access to perform all project configurations on it

T
0 n Provisioned | Ghosts | Q

O £ nelloworid-greeting-project helloworid-greeting-project

Figure 8-14. Newly created project inside SonarQube

Installing the Build Breaker Plugin for Sonar

The build breaker plugin is a SonarQube Plugin. This plugin allows the Continuous Integration system
(Jenkins) to forcefully fail a Jenkins Build if a “Quality Gate” condition is not satisfied.

To install the build breaker plugin, login to the SonarQube server and follow the steps as mentioned
below:

1. Before downloading the plugin, first refer the compatibility table. This will help
us in downloading the right plugin version. The compatability table is available
on the following link: https://github.com/SonarQubeCommunity/sonar-build-
breaker

2. Download the build breaker plugin from the following link: https://github.
com/SonarQubeCommunity/sonar-build-breaker/releases

249

https://github.com/SonarQubeCommunity/sonar-build-breaker
https://github.com/SonarQubeCommunity/sonar-build-breaker
https://github.com/SonarQubeCommunity/sonar-build-breaker/releases
https://github.com/SonarQubeCommunity/sonar-build-breaker/releases

CHAPTER 8

sonarqube

CONTINUOUS DELIVERY USING JENKINS PIPELINE

Move to the tmp location and download the build breaker plugin using the
following command:

cd /tmp

wget https://github.com/SonarQubeCommunity/sonar-build-breaker/releases/
download/2.1/sonar-build-breaker-plugin-2.1.jar

Place the downloaded sonar-build-breaker-plugin-2.1.jar file inside the
location C:\Program Files\sonarqube-5.6.6\extensions\plugins.

cp sonar-build-breaker-plugin-2.1.jar /home/ubuntu/sonarqube-5.6.6/
extensions/plugins/

Restart SonarQube.
cd $HOME/sonarqube-5.6.6/bin/linux-x86-64
./sonar.sh restart

After a successful restart, go to the SonarQube dashboard and log in as admin.
Click on the Administration link from the menu options.

On the Administration page you will find the Build Breaker option under the
CATEGEORY sidebar as shown in Figure 8-15, do nothing.

Administration

Configuration

General Seftings
Ec seftings for

Y
\nalysis Scope
Build Breaker

this SonarCube Instance

Build Breaker

AP query interval (ms)

API query max atempts

Figure 8-15. Build Breaker plugin settings inside SonarQube

250

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

Creating a Quality Gate in SonarQube

In the following section we will create a Quality Gate inside SonarQube. If any build crosses the threshold set
by the Quality Gate, in that case the build breaker plugin will fail the build.

1. From the SonarQube Dasboard, click on Quality Gates link from the
top menu bar.

2. On the resultant page, click on the Create button.

3. Youwill get a pop-up window as shown in Figure 8-16. Add a name for your
Quality Gate under the Name field, and click on the Create Button.

€ ® 172.17.8.109

Create Quality Gate

Name * | helloworid-greeting-project-gate

Figure 8-16. Creating a new Quality Gate

4. You will see your new Quality Gate listed under the Quality Gates, as shown in
Figure 8-17.

Cuality Gates Creatz | helloworkd-greeting-project-gate Rename | Copy | SelasDefaut
Conditions
SonarCube way | Detau: |

Only project measures are checked against thresholds. Sub-projects, direclones and files are ignored. More
helioworid-greeting-project-gate
No Conditions

Figure 8-17. Our new Quality Gate

5. Letusnow add a condition to our Quality Gate by choosing one from the
Add Condition menu.

6. Shown below is a condition named Major Issues. If it’s greater than 1 but
less than 3, it’s a warning. And if it’s greater than 3, it’s an error. This is just an
example. You can configure any number of conditions you like, as shown in
Figure 8-18.

251

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

Quality Gates

helloworid-greeting-project-gate | Rename l Copy l Satas Da

Conditions

SonarCube way | Dodaeat |
helioword-greeting-project-gate

Onily project measures ane chacked against threshoids. Sub-projects. directores and files are ignored. Moro
METRIC OVER LEAK PERIOD OPERATOR WARNMNG ERROR

Major Issues 0O

Figure 8-18. Configuring the Quality Gate

7. Now let’s make our newly created Quality Gate as the default Quality Gate. We

do so by clicking on the Set as Default option at the top-right corner, as shown in
Figure 8-19.

helloworld-greeting-project-gate Rename | GCopy Deiate

Condiions

Quality Gates

SonarCube way Ema
helloworic-greeting-project-gate

Only project measures are checked against thresholds. Sub-projects, directornies and fies are ignored. Mare
METRIC OVER LEAK PERIOD OPERATOR WARNIMNG ERROR

Major Issues o s greater thar - 1
Figure 8-19. Making our new Quality Gate as the default

8. Asyou can see from Figure 8-20, our newly created Quality Gate is set as Default.

Quality Gates Create | helloworid-gresting-project-gate Roname | m Delete

Conditions
SonarQube way

Only project measures are checked against threshoids. Sub-projects, directories and flles are ignored. More
helloword-greeting-project-gate | Dedauit |

METRIC OVER LEAK PERIOD OPERATOR WARNING ERROR

Major Issues o ie greater han - 1 a Delate J

Figure 8-20. Our new Quality Gate is now set to default

Installing the SonarQube Plugin
Follow the steps below to install the SonarQube plugin for Jenkins.

1. From the Jenkins Dashboard, click on Manage Jenkins » Manage Plugins
» Available (tab). You will be taken to the Jenkins Manage Plugins page.

2. Enter “SonarQube Plugin” in the Filter field, as shown in Figure 8-21.

252

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

Fulrer:l v SonarQube Plugin

Available
Install | Name Version
SonarQube Plugin

This plugir w easy integration of SonarQube™, the oper rce platform for Cor 5 25

Install without restart Download now and Install after restart

Figure 8-21. Installing the SonarQube Plugin

3. Select the Artifactory Plugin from the list and click on Install without restart
button.

4. Restart Jenkins if needed.

Configuring SonarQube Plugin
Now that we have our SonarQube Plugin installed, let us configure it.
1. From the Jenkins Dashboard, click Manage Jenkins » Configure System.

2. Once on the Configure System page, scroll down all the way to the SonarQube
servers section.

3. Under the SonarQube servers section, click on the Add SonarQube button.

a. Youwill be presented with the following settings to configure, as shown in
Figure 8-22.

b. Name your SonarQube server a name using the Name field.
c. Enter the SonarQube server URL under the Server URL field.

d. Add Artifactory credentials under the Default Deployer Credentials, as
shown below.

e. Add the token that we created inside SonarQube under the Server
authentication token field.

f. Click on the Test Connection button to test the Jenkins connection with
Artifactory.

253

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

SonarQube servers

Environment variables
Enable injection of SonarCube server configuration as bulld environment variables

necked, job admi s @ nent vastables in the buid
s nstall -
SonarQube Installations MName
Server URL
Server version 4
5.3 or higher j
Configuration fiekds cepend on the SonasCube server version
Server authentication token
SonarOube authentication loken. Mandatory when ancnymous scoess is disabled
SonarQube account login
Sons court used 19 perdom analyss. Mancaton whan anonymous acoess i deabled, No BAger used sncs
SonarCul
SonarQube account password
Q‘ Sona unt used 1o perdomm analysis. Mandatory when anonymous access is disabled. No bager used since
Advanced...
Delete SonarCube
Add SonarQubs
List of SonarOube in

Help make Jenking boller by sending anonymous usage stalistics and crash reports 1o the Jenking project.

Figure 8-22. Configuring the SonarQube Plugin
4. Once done, click on the Save button at the end of the page to save the settings.

Analyzing with SonarQube Scanner for Maven

Ideally we need SonarQube Scanner to perform static code analysis on a project. However, we will use the
SonarQube Scanner utility for Maven instead, as the example source code that we are using in the current
chapter is a Maven project.

To do so, add the following code to your pom file:

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<sonar.language>java</sonar.language>

</properties>

Creating a Docker Image for Integration Testing

In the following section we will create a Docker image that will serve as our Integration Testing Environment.
This Docker Image will be used by Jenkins to create Docker containers (Jenkins Slaves) on the fly. To do this
follow the steps below:

1. Login to your Docker server. Give the following command to check the available
Docker images.

sudo docker images

2. Ifyou are following the example discussed in the previous chapter, then you will
see the following Docker images, as shown in Figure 8-23.

254

ubuntu@noded:~5 sudo docker images
TA

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

REPOSITORY IMAGE ID CREATED SIZE

maven-build-slave-6.1 latest 317fb6ecogef 2 weeks ago 298 MB
ubuntu latest f49eecg9cole 6 weeks ago 129 MB
hello-world latest 48b5124b2768 7 weeks ago 1.84 kB

ubuntu@noded:~$ [

Figure 8-23. List the Docker Images.

If your Docker server is a freshly backed machine, then you will see no images at
this point.

We will build a Docker Image for our use from the ubuntu Docker Image. To do
so, download the Docker Image for ubuntu using the following command. But if
you already have it, then skip this step.

docker pull ubuntu

Note You can find more Docker Images for various 0S on https://hub.docker.com/

One the pull gets completed, give the sudo docker images command again. And
now you should see a Docker Image for Ubuntu as shown in Figure 8-23.

We will now upgrade our ubuntu Docker Image with all the necessary
applications that we need to run our build, Static Code Analysis, and Integration
Testing. The applications are mentioned as follows:

a. JavaJDK (Latest)

b. Git

c. Maven

d. Auser account to log into the Docker Container
e. sshd (to accept ssh connection)

Execute the following command to run a docker container using the ubuntu
Docker Image. This will create a container, and will open up a bash shell.

sudo docker run -i -t ubuntu /bin/bash

Now, install all the required applications as you would on any normal Ubuntu
machine.

Create a User Jenkins

Let’s begin with creating a user jenkins.

1.

Execute the following command and follow the user creation steps, as shown in
Figure 8-24.

adduser jenkins

255

https://hub.docker.com/

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

root@d7c8b33bsed9: /# adduser jenkins
Adding user " jenkins'
Adding new group " jenkins' (10€0) ...
Adding new user “jenkins' (1000) with group jenkins' ...
Creating home directory " /home/jenkins' ...
Copying files from °/etc/skel’
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
Changing the user information for jenkins
Enter the new value, or press ENTER for the default
Full Name []: Nikhil Pathania
Room Number []: 208
Work Phone []:
Home Phone []:
Other []:
Is the information correct? [Y/n] y
root@e7c8b33bgeds: /# ||

Figure 8-24. Creating a user

2. Check the new user using the switch user command:
su jenkins

3. Switch back to the root user by typing exit.

Install SSH Server

To install the SSH server, execute the following command in sequence:
apt-get update
apt-get install openssh-server

mkdir /var/run/sshd

Install Java and Set the JAVA_ HOME Path

Follow the below steps to install Java.

1. Update the package index:
sudo apt-get update

2. Next, install Java. The following command will install the Java Runtime
Environment (JRE).

sudo apt-get install default-jre

256

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

Install Git, Maven, and Nano Text Editor

Follow the step below to install Git, Maven, and a text editor.

1.

Install Git using the following command:

apt-get install git

Install Maven using the following command:

apt-get install maven

Install the nano package if required using the following apt-get command:

apt-get install nano

Configure the Maven Installation to Work with SonarQube

In the following section we will configure the Maven installation to allow it to work with SonarQube.

1.

Edit the settings.xml file, located in SMAVEN_HOME/conf or ~/.m2, to set the
plugin prefix and optionally the SonarQube server URL.

cd ~/.m2

(or)

cd /usr/share/maven/

Open the settings.xml file using the nano editor.
nano settings.xml

Inside the settings.xml file, navigate to the <PluginGroup></PluginGroup>
section and add the following lines.

<pluginGroups>
<pluginGroup>org.sonarsource.scanner.maven</pluginGroup>
</pluginGroups>

Next, inside the same settings.xml file, navigate to the <profiles></profiles>
section and add the following lines.

<profiles>
<profile>
<id>sonar</id>
<activation>
<activeByDefault>true</activeByDefault>
</activation>
<properties>

<!-- Optional UWRL to server. Default value is http://localhost:9000 -->

257

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

<sonar.host.url>
http://<sonarqube server ip>:9000
</sonar.host.url>
</properties>
</profile>
</profiles>

Save the Changes Made to the Docker Image
Follow the steps below to save all the changes that we made to the Cocker image.
1. Exit the container by typing exit.

2. Weneed to save (commit) all the changes that we made inside the Docker
container.

a. Getthe CONTAINERID of the container that we worked on recently by
listing all the inactive containers, as shown in Figure 8-25.

sudo docker ps -a

ubuntu@noded:~5 sudo docker ps -a

IMAGE COMMAND CREATED STATUS PORTS NAMES
b ubuntu " /bin/bash" 17 minutes ago Exited (1) 7 seconds ago amazing_shaw
7 ubuntu "fbinfbash” 23 hours ago Exited (08) 23 hours ago wonderful_allen
81a5d12f6cda ubuntu "fbin/bash” 2 weeks ago Exited (0) 2 weeks ago mystifying_fermat

ubuntu@noded:~5f]
Figure 8-25. List inactive containers
b. Note the CONTAINER ID. And execute the following command to commit
the changes that we made to our container.
sudo docker commit <CONTAINER ID> <new name for the container>

c. I'have named my container as integration-test-agent-0.1 as shown in
Figure 8-26:

ubuntu@noded:~$ sudo docker commit 9e96f9b335bb integration-test-agent-0.1
sha256:465ed4ab3eff915dbadbdd3685752391e056280aff83105365d42c10adaas553e
ubuntu@noded:~$ Jj

Figure 8-26. Docker commit command

d. Once you have commited the changes, a new Docker Image gets created.

e. Execute the following Docker command to list images, as shown in
Figure 8-27.

sudo docker images

258

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

ubuntu@node4:~5 sudo docker images
REPOSITORY TAG IMAGE ID CREATED SIZE

integration-test-agent-8.1 latest 465ed4ableff 57 seconds ago 652 MB
maven-build-slave-68.1 latest 317fb6ecsgnf 2 weeks ago 298 MB
ubuntu latest f49eec89601e 6 weeks ago 129 MB
hello-world latest 48b5124b2768 7 weeks ago 1.84 kB

ubuntu@nodea:~5 I

Figure 8-27. List the Docker Images

f. You can see our new Docker Image with the name integration-test-
agent-0.1. We will now configure our Jenkins server to use the following
Docker image to create Jenkins Slaves (build agents).

Adding Docker Image Credentials Inside Jenkins
Follow the below steps to create credentials inside Jenkins to allow it to talk to Docker.

1. From the Jenkins Dashboard, navigate to Credentials » System » Global
credentials (unrestricted).

2. Click on the Add Credentials link on the left-hand side menu to create a new
credential (Figure 8-28).

a. Choose Kind as Username and Password.
b. Leave the Scope field to its default value.

c. Add ausername for your Docker Image (jenkins as per our example)
under the Username field.

d. Under the Password field add the password.

e. Add an ID under the ID field, and some description under the
Description field.

f. Once done click on the OK button.

Jenkins Credentials System Global credentials (unrestricted
Back o credential domains Kind | .o o password ﬂ
@= Add Credentials &
o Global (Jenkins, nodes, items, all child items, etc) j.j‘):
Usemame o @
Password | ... &
ID BTN t -
dockercontainer-id-it @):
Descriplion credentials for docker container (jenkins slave for integration test) .ﬁ;:

Figure 8-28. Add credentials for the Docker Image

259

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

Update the Docker Settings Inside Jenkins

Follow the steps below to update the Docker settings inside Jenkins.
1. From the Jenkins Dashboard, click on Manage Jenkins » Configure System.
2. Scroll all the way down to Cloud section.

3. Under the Cloud section, click on the Add Docker Template button and choose
Docker Template.

a. Youwill be presented with a lot of settings to configure. However,
to keep this demonstration simple, let us stick to the important settings
(Figure 8-29).

b. Under the Docker Image field enter the name of the Docker Image that we
created earlier. In my case it is integration-test-agent-0.1.

c. Under the Labels field add a label. The Docker container will be recognized
using this label by your Jenkins pipeline. I have added a label docker _it.

d. Launch Method should be Docker SSH computer launcher.

e. Under the Credentials field choose the credentials that we created to access
the Docker container.

f. Leave the rest of the other options to their default values.

g. Once done, click on Apply and then Save.

Docker Template

Docier image integration-test-agent-0.1 @

Container settings...

Instance Capacity

1 L
Remole Filing System Root | o 0o &
Labels docker_it L2
Usage Only bulid jobs with label expressions matching this node j L2

Experimental Options....

RSN —" Docker SSH computer launcher j &

Crecantisks [enkings=s=+* (credentials for docker container (jenkins slave for integration test)) j o= Add ~ ®

Advanced...
Remote FS Root Mapping | . Jonkins a
Remove volumes @
Pull stralegy Pull once and update latest -i]

Delele Docker Template

Figure 8-29. Creating a Docker Template for Integration testing

260

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

Creating Docker Image for Performance Testing

1. Login to your Docker server. Give the following command to check the available
Docker images.

sudo docker images

2. Youshould see something as shown in Figure 8-30.

ubuntu@noded:~$ sudo docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

integration-test-agent-6.1 latest 465ed4ab3eff 57 seconds ago 652 MB
maven-build-slave-08.1 latest 317fb6ecosef 2 weeks ago 298 MB
ubuntu latest f49eecB8960le 6 weeks ago 129 MB
hello-world latest 48b5124b2768 7 weeks ago 1.84 kB

ubuntu@noded:~$ I

Figure 8-30. List the Docker Images.

3. We will build a new Docker image for running our PT using the ubuntu Docker
Image.

4. We will now upgrade our ubuntu Docker Image with all the necessary
applications that we need to run our build, which are as follows:

a. Java]JDK (Latest)

b. Apache Tomcat (8.5)

c. Apache Jmeter

d. Auser account to log into the Docker Container
e. sshd (to accept ssh connection)

f. curl

5. Execute the following command to run a docker container using the ubuntu
Docker Image. This will create a container, and open up its bash shell.

sudo docker run -i -t ubuntu /bin/bash
6. Now, install all the required application as you would do on any normal

Ubuntu machine. Let’s begin with creating a user jenkins.

Creating a User Jenkins
Follow the steps below to create a user inside named Jenkins.

1. Execute the following command and follow the user creation steps,
as shown in Figure 8-31.

adduser jenkins

261

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

root@9e96fob33sbb: /# adduser jenkins
Adding user “jenkins' ...
Adding new group "jenkins' (18@8) ...
Adding new user “jenkins' (1000) with group “jenkins' ...
Creating home directory " /fhome/jenkins' ...
Copying files from " /fetc/skel' ...
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
changing the user information for jenkins
Enter the new value, or press ENTER for the default
Full Name []: Nikhil Pathania
Room Number []: 208
Work Phone []:
Home Phone []:
Other []
Is the information correct? [Y¥/n] v
root@9e96fob33sbb: /#

Figure 8-31. Creating a user

2. Check the new user using the switch user command:
su jenkins

3. Switch back to the root user by typing exit.

Install SSH Server

Next, we will install the SSH server. Execute the following command in sequence.
apt-get update
apt-get install openssh-server

mkdir /var/run/sshd

Install Java and Set the JAVA_HOME path

Follow the steps below to install Java.

1. Update the package index:
sudo apt-get update

2. Next, install Java. The following command will install the Java Runtime
Environment (JRE).

sudo apt-get install default-jre

Install Apache Tomcat
Follow the steps below to install Apache Tomcat.

1. The best way to install Tomcat 8.5 is to download the latest binary release, then
configure it manually.

262

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

2. Move to the tmp/ directory and download the Apache Tomcat 8.5 using the
following commands:

cd /tmp

wget http://mirrors.dotsrc.org/apache/tomcat/tomcat-8/v8.5.11/bin/apache-
tomcat-8.5.11.tar.gz

3. We will install Tomcat inside the $HOME directory. To do so, create a directory
tomcat inside SHOME.

mkdir $HOME/tomcat
4. Then extract the archive to it:

tar xzvf apache-tomcat-8*tar.gz -C $HOME/tomcat --strip-components=1

Install Apache JMeter

Apache JMeter is a good tool to perform Performance Testing. It’s free and open source. It can run in both
GUI and command-line mode, which makes it a suitable candidate for automating Performance Testing.

1. Move to the tmp/ directory.
cd /tmp

2. Download the apache-jmeter-3.1.tgz or whichever is the latest stable version
from http://jmeter.apache.org/download_jmeter.cgi

wget http://ftp.download-by.net/apache//jmeter/binaries/apache-jmeter-3.1.tgz

3. We will install Jmeter inside the opt/jmeter/ directory. To do so create a jmeter
directory inside opt/.

mkdir /opt/jmeter
4. Then extract the archive to it:

tar xzvf apache-jmeter-3*.tgz -C /opt/jmeter --strip-components=1

Saving the Changes Made to the Docker Image
Follow the steps below to save all the changes that we made to the Docker image.
1. Exit the container by typing exit.
2. We need to save (commit) all the changes that we made to our Docker container.
a. Getthe CONTAINER ID of the container that we worked on recently by

listing all the inactive containers, as shown in Figure 8-32.

sudo docker ps -a

263

http://jmeter.apache.org/download_jmeter.cgi

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

ubuntu@noded:~5 sudo docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

ubuntu "/binfbash™ 38 minutes ago Exited (8) About a minute ago wonderful_allen
81a5d12f6cda ubuntu "/binfbash” 2 weeks ago Exited (8) 2 weeks ago mystifying_fermat
ubuntu@noded:~5 [I

Figure 8-32. List inactive containers.

b. Note the CONTAINER ID. And execute the following command to commit
the changes that we made to our container.

sudo docker commit <CONTAINER ID> <new name for the container>

c. Ihave named my container as performance-test-agent-0.1 as shown in
Figure 8-33:

ubuntu@node4:~$ sudo docker commit f8bl4az252e77 performance-test-agent-0.1
sha256:5218edfb90a9d3391393e5b11a2188f6fe8e1f85fd7e92a12d9bac558cc33edl
ubuntu@nodea:~$

Figure 8-33. Docker commit command

d. Once you have commited the changes, a new Docker Image gets created.

e. Execute the following Docker command to list images, as shown in Figure 8-34.

sudo docker images

ubuntu@node4:~$ sudo docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
integration-test-agent-6.1 latest 465ed4ab3eff 57 seconds ago 652 MB
performance-test-agent-0.1 latest 5218edfbo0ag 23 hours ago 726 MB
maven-build-slave-0.1 latest 317fb6ec99ef 2 weeks ago 298 MB
ubuntu latest f49eecs9s0le 6 weeks ago 129 MB
hello-world latest 48b5124b2768 7 weeks ago 1.84 kB

ubuntu@nodea:~$ [
Figure 8-34. List the Docker Images.

f. You can see our new Docker Image with the name performance-test-
agent-0.1. We will now configure our Jenkins server to use the following
Docker image to create Jenkins Slaves (build agents).

Adding Docker Image Credentials Inside Jenkins
Follow the steps below to create credentials inside Jenkins to allow it to talk to Docker.

1. From the Jenkins Dashboard, navigate to Credentials » System » Global
credentials (unrestricted).

2. Click on the Add Credentials link on the left-hand side menu to create a new
credential (Figure 8-35).

a. Choose Kind as Username and Password.

b. Leave the Scope field to its default value.

264

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

c. Add a username for your Docker Image (jenkins as per our example)
under the Username field.

d. Under the Password field add the password.

e. Add an ID under the ID field, and some description under the
Description field.

f. Once done, click on the OK button.

Jenkins Credentials System Global credentials (unrestricted

Back to credential domains Kind

Usemame with password 1
@= Add Credentials &

kel Global (Jenkins, nodes, items, all child items, etc) j-\ir_)_.'

Usemame . ine @

P yrd 5

ASSWON @

[} g r-container-id-ot =

docker-contalner-id-pt (7))

Description credentials for docker container (jenking slave performance lest) h‘

Figure 8-35. Create credentials inside Jenkins

Update the Docker Settings Inside Jenkins

Follow the steps below to update the Docker settings inside Jenkins.
1. From the Jenkins Dashboard, click on Manage Jenkins » Configure System.
2. Scroll all the way down to Cloud section.

3. Under the Cloud section, click on the Add Docker Template button and choose
Docker Template.

a. You will be presented with a lot of settings to configure (Figure 8-36).
However, to keep this demonstration simple, let us stick to the important
settings.

b. Under the Docker Image field, enter the name of the Docker Image that we
created earlier. In my case it is performance-test-agent-0.1.

c. Under the Labels field add a label. The Docker container will be recognized
using this label by your Jenkins pipeline. I have added a label docker_pt.

d. Launch Method should be Docker SSH computer launcher.

e. Under the Credentials field choose the credentials that we created to access
the Docker container.

f. Leave the rest of the other options to their default values.

g. Once done, click on Apply and then Save.

265

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

Docker Template

Dadkas image performance-test-agent-0.1 (7

Conlainer settings...

Instance Capacity i &

Remote Filing System Root

home jenkns @
Labwels docker_pt &
Usage Only bulld jobs with label expressions matching this node j 12}

> Experimental Options...

S ———— Docker SSH computer kauncher :| &

Credentials \orking/eees [credentials for docker container (jenkins slave for performance test)) j o Add * ®

Advanced...
Remote FS Rool MapPIng | aritvjeniing L2}
Remove volumes @
Pull strslegy Pull once and update latest .i -‘.}:

Delele Docker Template

Figure 8-36. Creating a Docker Template for Integration testing

Creating a Performance Test Using Jmeter

In the following section we will learn to create a simple performance test using the tool Jmeter.

Install Java and Set the JAVA_ HOME Path

Follow the steps below to install Java.

1. Update the package index:
sudo apt-get update

2. Next, install Java. The following command will install the Java Runtime
Environment (JRE).

sudo apt-get install default-jre

3. To set the JAVA_HOME environment variable, first get the Java installation
location. Do this by executing the following command.

sudo update-alternatives --config java
<image showing the output of the above command>

4. Copy the resultant path and update the JAVA_HOME variable inside the
file /etc/environment.

<image showing the /etc/environment file>

266

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

Install Apache JMeter

Follow the steps below to install apache JMeter.

1. Move to the tmp/ directory.
cd /tmp

2. Download the apache-jmeter-3.1.tgz or whichever is the latest stable version
from http://jmeter.apache.org/download_jmeter.cgi

wget http://ftp.download-by.net/apache//jmeter/binaries/apache-jmeter-3.1.tgz

3. We will install Jmeter inside the opt/jmeter/ directory. To do so, create a jmeter
directory inside opt/.

mkdir /opt/jmeter
4. Then extract the archive to it:

tar xzvf apache-jmeter-3*.tgz -C /opt/jmeter --strip-components=1

Starting Jmeter
Follow the steps below to start Jmeter.

1. To start Jmeter, move to the Jmeter installation directory and run the jmeter.sh
script using the following command:

cd /opt/jmeter/bin
./jmeter.sh

2. You will see the Jmeter GUI utility open up in a new Window.

Creating a Performance Test Case

By default you will see an example test plan. We will create a new test plan by modifying the existing
template.

1. Rename the test plan to Hello World Test Plan as shown in Figure 8-37.

Eile Edit Search Run Options Help

¢ a *HJd4d L\ B|E|[#]=]|5 PP % o
Hello_World_Test_Plan
g] WorkBench Test Rlan

Name; [Hello_World_Test_Plan
Comments:

Figure 8-37. Creating a test plan

267

http://jmeter.apache.org/download_jmeter.cgi

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

2. Saveitinside the examples folder by clicking on the save button from the menu
items or by clicking Ctrl+S, as shown in Figure 8-38.

Save In: ‘[j examples “'l @ E

Hisp

[y csvsample.jmx

[y csvsample_actions.csv

[y csvsample_user.csv

D PerformanceTestPlanMemoryThread.jmx

File Name: |Hello_World Test_Plan.jmy |
Files of Type: |All Files N v

| Save 1] Cancel |

Figure 8-38. Saving the test plan

Creating a Thread Group

Follow the steps below to create a thread group.

1. Add athread group. To do so, right-click on the Hello World Test Plan and select
Add » Threads (Users) » Thread Group (Figure 8-39).

File Edit Search Run Options Help

Hea ?d|4 DB |+ =] [>]® % |
= Hello_World Test Plan | | o, o, _] _
& worigench | Add » Threads (Users) »| Thread Group ran
Paste v Test Fragment » setUp Thread Group t
Reset Gui Config Element » tearDown Thread Group |
undo Timer : iiahles
= Pre Processors b |
Redo I
Post Processors b | Value
AED Assertions |
Merge Listener » I

Save Selection As...

Save Node As Image cula
Save Screen As Image culshift-a
Enable

Disable

Toggle CrhT

_Felb

Figure 8-39. Creating a thread group

268

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

2.
follows (Figure 8-40).

In the resultant page. Give your thread group a name. And fill in the option as

a. Select Continue for the option Action to be taken after a Sampler error.

b. Add Number of Threads (users) = 1

c. Add Ramp-Up Period (in seconds) = 1
d. AddLoop Count =1

File Edit Search Run Options Help

@ a°Hi KD = >k <

¢ & Hello_World_Test_Plan
O Thread Group|
R werkBench

Thread Group

Name: |user visiting the hello world page
Comments:
Action to be taken after a Sampler error

®& Continue (0 Start Next Thread Loop (' Stop Thread [Stop Test

Thread Properties
Number of Threads (users): |1

Ramp-Up Period (in seconds): 1

Loop Count: [| Forever 1

Delay Thread creation until needed
Scheduler

Figure 8-40. Configuring a thread group

Creating a Sampler
Follow the steps below to create a Sampler.

1.
>» Http Request (Figure 8-41).

Stop Test Now

To do so, right-click on the Hello_World_Test_Plan and select Add » Sampler

269

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

File Edit Search Run Options Help

Tlela °Hu

BIDD0OC

(%] %]|

? Hello_world_Test_Flan !
€ <@ user visiting the hello world page | - Thread Group
B workgench %@ﬁ Logic Controller »

Start Config Element »

Start no pauses Timer »

Validate Pre Processors M theaad) €tan Tact
it = T " Access Log Sampler
Copy e Post Pfocessors ¥ AJP/1.3 Sampler

paste v Assertions ¥ BeanShell Sampler
Duplicate coirsrc | Listener » Debl:g Samfler

Reset Gui EIRReq

Remaove Delete

: I needed Java Request

Hnce JDBC Request

Redo IMS Point-to-Point
Open... JMS Publisher

Merge JMS Subscriber
isave.selection As.t J | JsR223 Sampler

Save Node As Image ctlc | JUnit Request

Save Screen As Image cthshic | LDAP Extended Request
Enable | LDAP Request

Disable Mail Reader Sampler
Toggle T 0S Process Sampler
Help SMTP Sampler

SOAPXML-RPC Request
: TCP Sampler
: Test Action

Figure 8-41. Adding a Sampler

2. Name the HTTP Request appropriately. And fill in the options as follows
(Figure 8-42).

a. Add Server Name or IP = <ip address of your Testing Server machine >
b. Add Port Number = 8080
c. AddPath = /payslip-0.0.1/

File Edit Search Run Options Help

Clela/caw = «gca)[+[-]<][r[n]@ o %] o«

[2 Hello_world_Test_Plan
: o us_er \risiﬁng tHe hello warld page HTTP Iﬁ'equeSt
~#* HTTP Request Name; [HTTP Request
N WorkBench Comments:
Web Server .
Server Name or IP: [I_o_c_al_h_qgt_—iport Number: 8080

HTTP Request

Implementation: I:E Protocol [httpl: | | Method: E

Path: /hello.0.0.1]

[[] Redrect dy [v] Foll 2 [¥] Use Kaspalive [] Use multipartiform-data for PO:

Figure 8-42. Configuring a sampler

270

Adding a Listener

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

Follow the steps below to add a listener.

1. To do so, right-click on the Hello_World_Test_Plan and select Add » Listener
» View Results Tree (Figure 8-43).

File Edit Search Run Options Help

8 a °Hd4 Nl =% »» % "
? a Hello_World_Test_Plan
¢ 4O user visiting the hello world page| - Thread Group
Add ¥ Logic Controller » # hello world page
B Werl e art | Config Element » |
Start no pauses Timer » ifter a Sampler error
Validate Pre Processors } @ continue Start Next Thread Loop Stop Threa
Cut Sampler b
Post Processors b |
it Assertion ¥ [users): |1
Paste i_._s_s?__..g = __I-["-' ers: | i
Duplicate ;_Lls!:en_er y :ggrega:e :r.awr‘t
i ggregate Repo
Reset Gui 2
poRconnt For| Assertion Results
Remove
I Delay Thread crq Backend Listener
u i I
. J H schedul BeanShell Listener
nacs | Sl Comparison Assertion Visualizer |
Open... icheduler Configur Generate Summary Results
ahe uration (seconds) Graph Results

Save Selection As...

Save Node As Image

Enable
Disable
Toggle

Help

Figure 8-43. Adding a Listener

Save Screen As Image Culsshifto

JSR223 Listener

Mailer Visualizer
Response Time Graph
nd Time Save Responses to a file
Simple Data Writer
Summary Report

View Results in Table

| View Results Tree

tartup delay (secq
tart Time

2. Do nothing. Leave all fields as they are.

3. Save the whole configuration by clicking on the save button in the menu items or

by clicking Ctrl+S.

4. Copy the .jmx file from /opt/jmeter/bin/examples.

5. Under your Maven project create a folder named pt inside the src directory. And
add the .jmx file inside it.

6. Upload the code to github.

Creating Jenkins CD Pipeline

We have all the required tools and the Docker images ready. In the following section we will create a pipeline
in Jenkins that will describe our continuous delivery process.

Creating Pipeline Script

Lets us build our pipeline code for Continuous Delivery step-by-step:

271

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

Pipeline Code for Spawning a Docker Container for the Integration Testing

First, let us create a pipeline code that will create a Cocker container (Jenkins Slave) using the Docker image
for Integration testing integration-test-agent-0.1.

node('docker it') {
}

docker_it Label for integration-test-agent-0.1 Docker Template.

We would like to perform the following tasks on the node docker _it.
a. perform build
b. perform static code analysis
c. perform Integration testing
d. publish artifacts to Artifactory

All the tasks above are various stages of our continous delivery pipeline. Let’s write pipeline code for
each one of them.

Pipeline Code to Download the Latest Source Code from GitHub

We want our Jenkins pipeline to download the latest change pushed to the master branch of our GitHub
repository. Following is the code for it:

checkout([$class: 'GitSCM', branches: [[name: '*/master']],
doGenerateSubmoduleConfigurations: false, extensions: [], submoduleCfg: [],
userRemoteConfigs: [[credentialsId: 'github-account’,

url: 'https://github.com/pro-continuous-delivery/hello-world-greeting.git']]])

credentialsId: The credentials saved inside Jenkins to access GitHub.
url: https or ssh link of your GitHub repository.
name: GitHub repository branch to build.

Wrap the step above inside a stage called Poll.

stage('Poll’) {

checkout([$class: 'GitSCM', branches: [[name: '*/master']],
doGenerateSubmoduleConfigurations: false, extensions: [], submoduleCfg: [],
userRemoteConfigs: [[credentialsId: 'github-account', url: "https://github.com/pro-
continuous-delivery/hello-world-greeting.git']]])

}

272

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

Pipeline Code to Perform a Build

The example project that we are using in the current chapter is a Maven project. Therefore the pipeline code
for the build is a simple shell script that runs the mvn clean command:

sh 'mvn clean verify -DskipITs=true';

-DskipITs=true Option to skip Integration test and perform only the build.

Wrap the step above inside a stage called Build.

stage('Build’){
sh 'mvn clean verify -DskipITs=true';
}

Pipeline Code to Perform Static Code Analysis

The pipeline code to perform static code analysis is a simple shell script that will run the Maven command,
as shown below. This is made possible using the SonarQube Scanner utility for Maven. Remember the
configuration that we did in the sections Analyzing with SonarQube Scanner for Maven and Configure the
Maven Installation to Work with SonarQube.

sh 'mvn clean verify sonar:sonar';

Wrap the step above inside a stage called Static Code Analysis.

stage('Static Code Analysis'){
sh 'mvn clean verify sonar:sonar';
}

Pipeline Code to Perform Integration Testing

The pipeline code to perform Integration testing is a shell script that will run the Maven command, as
shown below:

sh 'mvn clean verify -Dsurefire.skip=true';

-Dsurefire.skip=true Option to skip Unit testing and perform only the Integration testing.

Wrap the step above inside a stage called Integration Test.

stage ('Integration Test'){
sh 'mvn clean verify -Dsurefire.skip=true';
}

273

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

Pipeline Code to Publish Build Artifacts to Artifactory

To upload the build artifacts to Artifactory we will use the File Specs. The File Specs code looks as shown below:

"files": [
{

"pattern": "[Mandatory]",
"target": "[Mandatory]",
"props": "[Optional]",
"recursive": "[Optional, Default: 'true']",
"flat" : "[Optional, Default: 'true']",
"regexp": "[Optional, Default: 'false']

pattern [Mandatory]
Specifies the local file system path to artifacts that should be uploaded to Artifactory. You
can specify multiple artifacts by using wildcards or a regular expression as designated by the
regexp property.
If you use a regexp, you need to escape any reserved characters (such as “.’, “? etc.) used in
the expression using a backslash “\".
Version 2.9.0 of the Jenkins Artifactory plugin and version 2.3.1 of the TeamCity Artifactory
plugin the pattern format has been simplified and uses the same file separator “/” for all
operating systems, including Windows.

target [Mandatory]
Specifies the target path in Artifactory in the following format: [repository_name]/[repository_path]
If the pattern ends with a slash, for example, “repo-name/a/b/’; then “b” is assumed to be
a folder in Artifactory and the files are uploaded into it. In the case of “repo-name/a/b’, the
uploaded file is renamed to “b” in Artifactory.
For flexibility in specifying the upload path, you can include placeholders in the form of {1},
{2}, {3}...that are replaced by corresponding tokens in the source path that are enclosed in
parentheses. For more details, please refer to Using Placeholders.

props [Optional]
List of “key=value” pairs separated by a semi-colon (;) to be attached as properties to the

uploaded properties. If any key can take several values, then each value is separated by a
comma (,). For example, “keyl=valuel;key2=value21,value22;key3=value3”.

flat [Default: true]

If true, artifacts are uploaded to the exact target path specified and their hierarchy in
the source file system is ignored. If false, artifacts are uploaded to the target path while
maintaining their file system hierarchy.

recursive [Default: true]

If true, artifacts are also collected from sub-directories of the source directory for upload. If
false, only artifacts specifically in the source directory are uploaded.

regexp [Default: false]

If true, the command will interpret the pattern property, which describes the local file-
system path of artifacts to upload, as a regular expression. If false, the command will
interpret the pattern property as a wild-card expression.

274

https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

Following is the File Specs code that we will use in our pipeline:

def server = Artifactory.server 'Default Artifactory Server'
def uploadSpec = """{
"files": [
{
"pattern": "target/hello-0.0.1.war",
"target": "helloworld-greeting-project/${BUILD_NUMBER}/",
"props": "Integration-Tested=Yes;Performance-Tested=No"

]
}ll nn

server.upload(uploadSpec)

def server = Artifactory.server'Default The following line tells Jenkins to use the existing Artifactory

Artifactory Server’ Server configured in Jenkins. In our example its Default
Artifactory Server.

Default Artifactory Server This is the name of the Artifactory Server configured inside
Jenkins.

“pattern”: “target/hello-0.0.1.war’, The following line of code will look like a file named hello-

0.0.1.war inside the directory target, which is again inside the
Jenkins workspace directory.

“target”: “helloworld-greeting- The following line of code will try to upload the build

project/${BUILD_NUMBER}/’ artifacts to the Artifactory repository named helloworld-
greeting-project. It will place the artifact inside a folder
named after the build number inside the Artifactory

repository.
${BUILD_NUMBER} The Jenkins environment variable for the build number.
“props”: “Integration- The following code creates two key/value pairs and assigns
Tested=Yes;Performance-Tested=No” them to the uploaded code. These key/value pairs can be

used as labels for code promotion in Artifactory.
Integration-Tested=Yes

Performance-Tested=No

Wrap the step above inside a stage called Publish to Artifactory.

stage ('Publish to Artifactory'){

def server = Artifactory.server 'Default Artifactory Server'

def uploadSpec = """{

"files": [

{
"pattern": "target/hello-0.0.1.war",
"target": "helloworld-greeting-project/${BUILD_NUMBER}/",
"props": "Integration-Tested=Yes;Performance-Tested=No"

}
]
yron
server.upload(uploadSpec)
}

275

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

Pipeline Code to Stash the Build Artifacts

Jenkins pipeline has a feature to pass build artifacts across nodes using a feature called stash. In the
following step we will stash a few build artifacts that we wish to pass to the node docker_pt wherein we will

perform our performance test.

stash includes: 'target/hello-0.0.1.war,src/pt/Hello World Test Plan.jmx', name: 'binary'

name: Name for the stash

includes: Comma separated files to include

Combined Code for Node docker _it

Following is the complete combined code that will run inside the node docker _it.

node('docker it') {
stage('Poll") {

checkout([$class: 'GitSCM', branches: [[name: '*/master']],
doGenerateSubmoduleConfigurations: false, extensions: [], submoduleCfg: [],
userRemoteConfigs: [[credentialsId: 'github-account', url: 'https://github.com/
pro-continuous-delivery/hello-world-greeting.git']]])

}
stage('Build"'){

sh 'mvn clean verify -DskipITs=true';
}

stage('Static Code Analysis'){
sh 'mvn clean verify sonar:sonar';
}

stage ('Integration test'){
sh 'mvn clean verify -Dsurefire.skip=true';
}

stage ('Publish to Artifactory'){
def server = Artifactory.server 'Default Artifactory Server'
def uploadSpec = """{
"files": [
{
"pattern": "target/hello-0.0.1.war",
"target": "helloworld-greeting-project/${BUILD_NUMBER}/",
"props": "Integration-Tested=Yes;Performance-Tested=No"

}
]
}ll nn
server.upload(uploadSpec)
}
stash includes: 'target/hello-0.0.1.war,src/pt/Hello World Test Plan.jmx', name:
}

276

"binary’

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

Pipeline Code for Spawning a Docker Container for the Performance Testing

First, let us create a pipeline code that will create a docker container (Jenkins Slave) using the Docker image
for performance testing performance-test-agent-0.1.

node('docker pt') {
}

docker_pt Label for performance-test-agent-0.1 Docker Template.

We would like to perform the following tasks on the node docker_pt.
a. Start tomcat.
b. Deploy the build artifacts to tomcat.
¢. Perform performance testing.
d. Promote the build artifacts inside Artifactory.

All the tasks above are various stages of our continous delivery pipeline. Let write pipeline code for each
one of them.

Pipeline Code to Start Apache Tomcat

The pipeline code to start Apache Tomcat on the performance testing agent is a simple shell script that will
run the ./startup.sh script present inside the Tomcat installation directory.

sh '''cd /home/jenkins/tomcat/bin
./startup.sh''’;

Wrap the above step inside a stage called Start Tomcat.
stage ('Start Tomcat'){

sh '''cd /home/jenkins/tomcat/bin
./startup.sh''’;

Pipeline Code to Deploy Build Artifacts to the Tomcat’s Webapps Directory

The pipeline code to deploy build artifacts happens in two steps. First, we will unstash the binary package
that we stashed from the previous node docker_it. Then we deploy the unstashed files into the webapps
folder inside the Tomcat installation directory. Following is the code:

unstash 'binary'

sh 'cp target/hello-0.0.1.war /home/jenkins/tomcat/webapps/';

277

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

Wrap the step above inside a stage called Deploy to Testing Env.

stage ('Deploy to Testing Env'){
unstash 'binary'
sh 'cp target/hello-0.0.1.war /home/jenkins/tomcat/webapps/";

Pipeline Code to Execute Performance Testing

The pipeline code to execute the performance testing is a simple shell script that invokes the jmeter.sh script
and passes the .jmx file to it. The test result is stored inside a .jtl file that is then archived. Following is the
code:

sh '"'cd /opt/jmeter/bin/
./jmeter.sh -n -t /home/jenkins/workspace/helloworld-greeting-cd/src/pt/Hello World Test_
Plan.jmx -1 /home/jenkins/workspace/helloworld-greeting-cd/test_report.jtl''';

step([$class: 'ArtifactArchiver', artifacts: "**/*.jt1'])

./jmeter.sh -n -t <path to the .jmx file> -1 <path to Following is the jmeter command to execute the
save the .jtl file> performance test plan (.jmx files) amd generate a test
result (.jtl files).

step([$class: ‘ArtifactArchiver, artifacts: “**/*.jtl']) The following line of code will archive all files with
the .jtl extention.

Wrap the step above inside a stage called Performance Testing.

stage ('Performance Testing'){
sh '"'cd /opt/jmeter/bin/
./jmeter.sh -n -t /home/jenkins/workspace/helloworld-greeting-cd/src/pt/Hello World_
Test_Plan.jmx -1 /home/jenkins/workspace/helloworld-greeting-cd/test_report.jtl''';
step([$class: 'ArtifactArchiver', artifacts: '**/*.jt1'])

Pipeline Code to Promote Build Artifacts in Artifactory

The way we are going to promote build artifacts in Artifactory is using the properties (key/value pair)
feature. All builds that have passed Performance testing will be applied a tag Performance-Tested=Yes.
Following is the code:

withCredentials([usernameColonPassword(credentialsId: 'artifactory-account', variable:
'credentials’)]) {

sh 'curl -u${credentials} -X PUT "http://172.17.8.108:8081/artifactory/api/storage/
helloworld-greeting-project/${BUILD_NUMBER}/hello-0.0.1.war?properties=Performance-
Tested=Yes"';

}

278

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

withCredentials([usernameColonPassw We are using the withCredentials Plugin inside Jenkins
ord(credentialsld: ‘artifactory-account, to pass Artifactory credentials to the curl command.
variable:‘credentials’)]) {

}

curl -u<usernames>:password -X PUT “<artifactory Following is the curl command to update the property
server URL>/api/storage/<artifactory repository (key/value pair) on the build artifact present inside
name>?properties=key-value” Artifactory. The curl command makes use of the REST

API features of Artifactory.

Wrap the step above inside a stage called Promote build in Artifactory.

stage ('Promote build in Artifactory'){
withCredentials([usernameColonPassword(credentialsId: 'artifactory-account', variable:
‘credentials')]) {
sh 'curl -u${credentials} -X PUT "http://172.17.8.108:8081/artifactory/api/storage/
helloworld-greeting-project/${BUILD_NUMBER}/hello-0.0.1.war?properties=Performance-
Tested=Yes""';

Combined Code for Node docker_pt

Following is the complete combined code that will run inside the node docker_pt.

node('docker pt') {
stage ('Start Tomcat'){
sh '''cd /home/jenkins/tomcat/bin
./startup.sh''’;
}
stage ('Deploy to Testing Env'){
unstash 'binary'
sh 'cp target/hello-0.0.1.war /home/jenkins/tomcat/webapps/"';
}
stage ('Performance Testing'){
sh '"'cd /opt/jmeter/bin/
./jmeter.sh -n -t /home/jenkins/workspace/helloworld-greeting-cd/src/pt/Hello_World_
Test_Plan.jmx -1 /home/jenkins/workspace/helloworld-greeting-cd/test_report.jtl''';
step([$class: 'ArtifactArchiver', artifacts: '**/*.jt1'])

}
stage ('Promote build in Artifactory'){

withCredentials([usernameColonPassword(credentialsId: 'artifactory-account', variable:
‘credentials')]) {
sh 'curl -u${credentials} -X PUT "http://172.17.8.108:8081/artifactory/api/storage/
helloworld-greeting-project/${BUILD_NUMBER}/hello-0.0.1.war?properties=Performance-
Tested=Yes""';

}

}

}

279

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

Complete Pipeline Script

Combining the pipeline code that runs inside docker_it and docker_pt, we get the following code:

node('docker it') {

stage('Poll") {
checkout([$class: 'GitSCM', branches: [[name: '*/master']], doGenerateSubmoduleConfigurations:
false, extensions: [], submoduleCfg: [], userRemoteConfigs: [[credentialsId: 'github-account',
url: 'https://github.com/pro-continuous-delivery/hello-world-greeting.git']]])

}

stage('Build"'){

sh 'mvn clean verify -DskipITs=true';
}

stage('Static Code Analysis'){
sh 'mvn clean verify sonar:sonar';
}

stage ('Integration Test'){
sh 'mvn clean verify -Dsurefire.skip=true';
}

stage ('Publish to Artifactory'){
def server = Artifactory.server 'Default Artifactory Server'
def uploadSpec = """{
"files": [
{
"pattern": "target/hello-0.0.1.war",
"target": "helloworld-greeting-project/${BUILD_NUMBER}/",
"props": "Integration-Tested=Yes;Performance-Tested=No"

}
]
}ll nn
server.upload(uploadSpec)
}

stash includes: 'target/hello-0.0.1.war,src/pt/Hello World Test Plan.jmx', name: 'binary’

node('docker pt') {
stage ('Start Tomcat'){
sh '''cd /home/jenkins/tomcat/bin
./startup.sh''’;
}
stage ('Deploy to Testing Env'){
unstash 'binary'
sh 'cp target/hello-0.0.1.war /home/jenkins/tomcat/webapps/";
}
stage ('Performance Testing'){
sh ""'cd /opt/jmeter/bin/
./jmeter.sh -n -t /home/jenkins/workspace/helloworld-greeting-cd/src/pt/Hello World_
Test_Plan.jmx -1 /home/jenkins/workspace/helloworld-greeting-cd/test_report.jtl''';
step([$class: 'ArtifactArchiver', artifacts: "**/*.jt1'])

280

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

stage ('Promote build in Artifactory'){
withCredentials([usernameColonPassword(credentialsId: 'artifactory-account', variable:
"credentials')]) {
sh 'curl -u${credentials} -X PUT "http://172.17.8.108:8081/artifactory/api/storage/
helloworld-greeting-project/${BUILD_NUMBER}/hello-0.0.1.war?properties=Performance-
Tested=Yes""';

e o

Creating Pipeline in Jenkins
Follow the steps below to create a new pipeline in Jenkins.
1. From the Jenkins Dashboard, click on the New Item.
a. Choose Jenkins Job type as Pipeline.

b. Under the Enter an item name field, add a name for your
new Jenkins pipeline.

c. Click on the OK button to proceed with configuring our
new Jenkins pipeline.

2. Once on the Jenkins pipeline configuration page, scroll down to the Build
Triggers section and check the GitHub hook trigger for GITScm polling option.

3. Scroll down further to the Pipeline section.

4. Under the Definition option, choose Pipeline script (Figure 8-44).

Pipeline

Definition Pipaling scriot j

Seript =7 R " o try sample Pipeline... =

Q Use Groovy Sandbox

Pipeline Syntax

Figure 8-44. Jenkins pipeline script

281

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

5. Paste the pipeline code created in the previous section under the Script field.

6. Click on the save button at the end of the page.

Jenkins Continuous Delivery Pipeline in Action

Make some changes on your GitHub code or just trigger the Jenkins pipeline from the Jenkins dashboard.
To see the pipeline in action, from the Jenkins dashboard click on the Jenkins pipeline Job » Full
Stage View. You should see something similar, as shown in Figure 8-45.

helloworld-greeting-cd - Stage View

Deploy

Slatic Promole
Poll Bulld Code "“'::;“"" :::'"::“ 73"'" . “:I ":""I'I""“ bulld In
Analysis gt b E“:“ e Artifactory
55 375 43 115 4 3 914ms s 400ms
@
o 9 55 37s 43s 11s 4s 3s 914ms 8s 400ms

20na4

Figure 8-45. Jenkins cd pipeline in action

Log in to the Artifactory server to see if the code has been uploaded and promoted using the properties
(Figure 8-46).

O JFrog Artifactory

Artifact Repository Browser
Tree Simple v & hello-0.0.1.war

Genera Effective Permissio

5 Properties

P & hello-0.0.1.war Page 1 of1
Property Value(s)
Performance-Tested Yes

bulld.timestamp

bulld.name
bulld.number 28

Integration-Tested Yes

Figure 8-46. Build artifact being promoted inside artifactory

282

CHAPTER 8 © CONTINUOUS DELIVERY USING JENKINS PIPELINE

Log in to the SonarQube server to see if there is any Static Code Analysis that happened on the code
(Figure 8-47).

PROJECTS

QG NAME = VERSION LOC BUGS VULNERABILITIES CODESMELLS LASTANALYSIS

(5 Hello Maven Webapp 0.0.1 42 0 0 13 19:45

Figure 8-47. Static Code analysis on the Maven project

From Figure 8-48, you can see that the total number of Major issues is 13, which is greater than 1 but
less than 20. Hence, its considered as a warning.

7 (& Hello Maven Webapp

Issues Measures Code Dashboards v Administration v

Quality Gate

Major Issues
> 1

e k P s i i
Bugs & Vulnerabilities Lea en(:)ffir:.c‘e prew?.us version

0@ ik 0 0

Bugs Vulnerabllities New Bugs Vulnerabilities

Code Smells

138 2h 0 0

Code Smells Debt A New Debt
Smells

Figure 8-48. Static Code analysis report on the project

Summary

In the current chapter we learned to set up the DevOps tool chain required for continuous delivery. We
also created a few more Docker images for our testing enviroments. And finally, we created and tested out
Jenkins continuous delivery pipeline.

283

Index

A

Amazon Machine Image (AMI) page, 133
Apache JMeter, 263, 267
Apache Tomcat Server, 262

ClusterIP, 55-56

download Jenkins, 42-43

firewall, 39

installation, 37-38

Java, 37

JENKINS_HOME, 44-45

resource agent, 54

updating permissions, 39

user and group, 37

webapps directory, 43

web management interface, 40-41
Artifactory Server

configuration, 244

creation, repository, 240, 242

download, 238

installation, 244

install Java and JAVA_HOME path, 238

Jenkins, 243

reset default credentials, 240

steps, 239

B

Branching strategy
feature/bug-fix, 1-2
Gitflow workflow, 2-4

C

CD pipeline
build, 273
build artifacts to Artifactory, 274-276
code to execute performance testing, 278
code to start Apache Tomcat, 277
complete pipeline script, 280-281
docker container, 277
GitHub, 272

© Nikhil Pathania 2017

integration testing, 272-273
Jenkins, 281-283
node docker_it, 276
node docker_pt, 279
perform static code analysis, 273
promote build artifacts in Artifactory, 278
Tomcat’s Webapps Directory, 277
Cloud (AWS), Jenkins, 125
cluster for slaves, 126
connect to instance, 139
connect to instance from windows, 139-143
EC2 instance on, 133-138
instance type for Jenkins master, 127
latest stable version, 143
master-slave setup, 126
security group creation, 128-132
select region, 128
Cluster software, 46
Configure Global Security
Jenkins Pipeline
create, 216-218
run, 219-220
JNLP agents, 216
Continuous Integration (CI)
codable CI pipeline (see Pipeline)
CoreOS, 11-12, 14
Pacemaker, 14-15
Corosync
cluster authorization key, 46-47
configuration, 47-50

D, E

Docker
adding credentials, 194
configuration, 190
docker.conf file, 188
docker.service file, 188
enable remote API, 187
image creation, 191-193
installation, 189
Jenkins master, 187

N. Pathania, Pro Continuous Delivery, DOI 10.1007/978-1-4842-2913-2

INDEX

Docker (cont.)
Jenkins pipeline, 196
Jenkins slave, 187
pipeline script from SCM, 196-197
trigger, 198-199
update, 194, 196
Docker container, Jenkins, 115-118
creating container, 120-123
install Docker, 119-120
install from package, 120
install on Ubuntu, 118
setting up repository, 118-119
Docker host, 120
Docker image
commit command, 258
create credentials inside Jenkins, 259
create user Jenkins, 255-256
Git, Maven, and nano text editor, 257
install Java, 256
list inactive containers, 258
performance test
Apache JMeter, 263
Apache Tomcat, 262
create credentials inside Jenkins, 264-265
create user Jenkins, 261-262
install Java, 262
saving, 263-264
settings inside Jenkins, 265-266
SSH server, 262
settings inside Jenkins, 260
SonarQube, 257
SSH server, 256
sudo docker images, 255
ubuntu, 255
DRBD
cluster resource, 65-68
configuration, 59-60
initialization, 60-62
partitions, 56-59
populating, 62-64

F

Failover mechanism
admin user, 72
crm status, 74
login, 74
suggested plugins, 70
Fedora/Red Hat Linux, 125

G

GitHub, 223-224, 232-234, 272
changes in, 168-169
credentials for account, 171-172

286

personal access token, 146-149
SSH key pair, 149
plugin, 155-156
SSH public key to, 152-153
webhooks, 156-157
managing, 179-185
GitHub repo, 178-179
GlusterFS Servers, 78, 91-92
configuration, 95, 97
docker containers, 94
fleetctl status command, 93-94
list units, 93

H, I
High Availability (HA) for Jenkins
active/passive, 23-24
cluster software, 46
Corosync configuration (see Corosync)
DRBD (see DRBD)
failover scenario, 26
firewall, 36
floating IP resource agent, 53-54
node machines, 33-34
Pacemaker configuration (see Pacemaker)
ssh key, 35
time zone, 36
Tomcat Server (see Apache Tomcat Server)
Vagrant, 27-28
VirtualBox, 29-30
virtual machines, 30-32

J

Jenkins, 243

active/passive HA setup, 78

on cloud (AWS), 125
cluster for slaves, 126
connecting to instance, 139
connecting to instance from

windows, 139-143

EC2 instance on, 133-138
instance type for Jenkins master, 127
latest stable version, 143
master-slave setup, 126
security group, creating, 128-132
selecting region, 128

configuration unit file, 99

core-02 machine, 111

CoreOS host, 85-86, 98

create first admin user, 104

dashboard, 105, 109

Docker container, 115-118
creating container, 120-123
install, 119-120

install from package, 120
install on Ubuntu, 118
setting up repository, 118-119
failover scenario, 79-82
on Fedora/Red Hat Linux, 125
latest stable version, 125
latest version, 125
fetch initialAdminPassword, 102
fleetctl command, 98-99, 111
GlusterFS Servers, 78
glusterfs1 unit, 107
gluster peer status, 108, 110
gluster volume, 106-108
HA setup, 78-79
installation, 112
installation complete process, 105
Install plugins, 103, 112
install Vagrant, 83-84
jenkins_home directory, 101, 106
list units, 97, 107, 110-111
login page, 102
login screen, 109
mount status, 101
Oracle VirtualBox, 84-85
personal access token, 148-149
SSH key pair, 149
pipeline project
in action, 169-170
multibranch, 171-172, 174-179
running containers, 100, 107
server container, 100
tools, 237
on Ubuntu, 124
latest stable version, 124
latest version, 124
units, 100
VMs, 87-89
Jenkinsfile, 176-177
Jenkins master
horizontal scaling, 17
logs and pipeline metadata, 16
out of memory issues, 16
users access, 16
vertical scaling, 16
Jenkins, SSH private key, 153-155
GitHub plugin, 155-156
GitHub webhooks, 156-157
Java, Git, and Maven, 158-160
pipeline Maven integration plugin, 160
pipeline project, 161
create, 161-163
test, 168
pipeline syntax option, 163-168
Jmeter
apache, 267

INDEX

creation, 267

Java, 266

listener, 271

sampler, 269-270
steps, 267

thread group, 268-269

K, L

Kubernetes, 116-117
cluster up and running, 204
config.rb.sample, 201
configuration, 212-215
context, 203
coreos-kubernetes repository, 201
creating credentials, 211
current-context, 203
dashboard, 206
default token, 209
empty pods section, 208
installation, 210
installing Kubectl, 200
kubeconfig file, 203
kubectl cluster-info, 205
kubectl proxy command, 206
list of namespaces, 206
list of nodes, 207
node metrics, 207-208
prerequisites, 200
un-hide token, 209-210
users, 204
vagrant virtual machines, 202

M, N

Maven, 254

(0

Oracle VirtualBox, 82, 84-85

P QR

Pacemaker
cluster property, 52-53
configuration, 51
Parallel testing
broader compatibility, 18-19
definition, 17
time, 19-20
Pipeline
build agents, 7
Dockerfile, 7-9
Jenkinsfile, 5-6
Kubernetes, 9-10

287

INDEX

Pipeline as code
GitHub, changes in, 168-169
GitHub, SSH public key, 152-153
GitHub webhooks, managing, 179-185
Jenkins

multibranch pipeline project, 171-172,

174-179
pipeline project in action, 169-170
prerequisite, 145
personal access token in
GitHub, 146-147
personal access token in
Jenkins, 148-149
SSH key pair on Ubuntu, 149-150
SSH private key to ssh-agent, 150
SSH key pair on Windows, 151-152
SSH private key to Jenkins, 153-155
GitHub plugin, 155-156
GitHub webhooks, 156-157
Java, Git, and Maven, 158-160
Maven integration plugin, 160
Maven project, 161-163
project, 168
syntax option, 163-168
Pre-tested commits using Jenkins
failure, simulation, 234-236
Git/GitHub, 223-224
Github, 232-234
pipeline
allocating node, 226
Maven, 230
Merge before build, 228-229
SCM, 227, 229
stage, 227
withCredentials, 231-232

288

PuTTY application, 140
PuTTYgen application, 139

S, T
SonarQube server
configuration, 253-254
creation, 248-249
default credentials and generate, 247
downloading package, 246
installation, 249-250, 252-253
Java installations, 246
Maven, 254
Quality Gate, 251-252

U

Ubuntu
Jenkins on, 124
latest stable version, 124
latest version, 124
SSH key pair, 149-150
SSH private key to ssh-agent, 150
Unit files
GlusterFS Server, 91-92
Jenkins Server, 89-90

Vv

Vagrant, 82
Virtual machines, 87-88

W, X,Y,Z

Windows, SSH key pair on, 151-152

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	
Introduction
	Chapter 1: Elements of Continuous Delivery
	What Is Continuous Delivery?
	Branching Strategy
	Using Separate Branch for Every Feature/Bug-Fix
	Using the Gitflow Workflow

	Continuous Integration
	Codable CI Pipeline
	How to Use Jenkinsfile?
	How to Write Pipeline Steps Inside a Jenkinsfile?

	Reproducible Build Environments
	What Do We Do if the Build Agent Fails?
	How Dockerfile Works?
	How to Use a Dockerfile with Jenkins?
	Kubernetes
	How to Use Kubernetes with Jenkins?

	A Highly Available CI Master
	CoreOS
	Docker
	Etcd
	Fleet
	Unit Files

	Pacemaker

	Scaling Jenkins Master
	Why Do We Need to Scale the Jenkins Master?
	Out of Memory Issues While Reading Huge Logs
	Growing Number of Users Accessing Jenkins
	Growing Number of Logs, and Pipeline Metadata
	Benchmark Your Jenkins Master

	Vertical Scaling
	A Single Jenkins Master to Maintain
	Greater Risk

	Horizontal Scaling
	Better Management Using Segregation
	Better Reliability
	Maintenance Encumbrance

	Parallel Testing
	What Is Parallel Testing?
	Broader Compatibility
	Reduce Testing Time

	Summary

	Chapter 2: HA Jenkins Setup Using Pacemaker, Corosync, and DRBD
	Designing a High Availability Setup for Jenkins
	HA Setup for Jenkins
	Failover Scenario

	Creating a HA Cluster for Jenkins
	Installing Vagrant
	Installing VirtualBox
	Creating Virtual Machines
	Starting the Virtual Machines
	Configuring Communication Between the node1 and node2
	Configuring ssh Key
	Configuring Time Zone
	Configuring the Firewall
	Installing Apache Tomcat Server
	Installing Java
	Creating a Tomcat User
	Installing Apache Tomcat Server
	Updating Permissions
	Adjusting the Firewall and Test the Tomcat Server
	Configuring Tomcat Web Management Interface

	Installing Jenkins as a Service on Apache Tomcat Server
	Installing Jenkins Along with Other Services on Apache Tomcat Server (Not Recommended)
	Installing Jenkins Alone on Apache Tomcat Server (Recommended)
	Setting Up the Jenkins Home Path

	Installing the Cluster Software
	Configuring Corosync
	Creating Cluster Authorization Key
	Configuring Corosync Cluster

	Starting and Configuring Pacemaker
	Configuring Cluster Properties

	Create a Floating IP Resource Agent
	Creating a Tomcat Resource Agent
	Ensuring ClusterIP and Apache Tomcat Run on the Same Node
	Ensuring ClusterIP Starts Before Apache Tomcat
	Replicating Jenkins Home Directory Using DRBD
	Install the DRBD Packages
	Preparing Partitions
	Configuring DRBD
	Initializing DRBD
	Populating the DRBD Disk

	Creating a Cluster Resource for the DRBD Device
	Creating a Cluster Resource for the Filesystems
	Checking the Apache Tomcat Server

	Simulating a Failover
	Summary

	Chapter 3: HA Jenkins Setup Using CoreOS, Docker, and GlusterFS
	Designing a High Availability Setup for Jenkins
	HA Setup for Jenkins
	Failover Scenarios

	Creating a HA Cluster for Jenkins
	Installing Vagrant
	Installing VirtualBox
	Creating the CoreOS Host Machines
	Starting the Virtual Machines

	Creating Unit Files
	Creating Unit Files for Jenkins Server
	Creating Unit Files for GlusterFS Server

	Starting the Cluster
	Starting the GlusterFS Servers
	Configuring the GlusterFS Servers
	Starting Jenkins Server
	Configuring Jenkins Master

	Simulating a Failover
	Failover Scenario 1
	Failover Scenario 2

	Summary

	Chapter 4: Setting Up Jenkins on Docker and Cloud
	Running Jenkins Inside a Docker Container
	Installing Docker on Ubuntu
	Setting Up the Repository
	Installing Docker
	Install from a Package

	Creating a Jenkins Container

	Installing Jenkins on Ubuntu
	Install the Latest Stable Version of Jenkins
	Install the Latest Version of Jenkins

	Installing Jenkins on Fedora/Red Hat Linux
	Installing the Latest Stable Version of Jenkins
	Installing the Latest Version of Jenkins

	Installing Jenkins on Cloud (AWS)
	Types of Jenkins Master-Slave Setups
	Type of Cluster for Jenkins Slaves
	Finding the Best Instance Type for Your Jenkins Master
	Selecting a Region
	Creating a Security Group
	Creating an EC2 Instance on AWS
	Connecting to the AWS Instance
	Connecting to Your AWS Instance from Windows
	Connecting to Your AWS Instance from Linux Machine
	Install the Latest Stable Version of Jenkins

	Summary

	Chapter 5: Pipeline as a Code
	Prerequisite
	Creating a Personal Access Token in GitHub
	Adding the Personal Access Token in Jenkins

	Generating an SSH Key Pair
	Generate an SSH Key Pair on Ubuntu
	Adding your SSH private key to the ssh-agent

	Generate SSH Key Pair on Windows
	Copy the SSH Public Key to GitHub
	Copy the SSH Private Key to Jenkins

	Configuring the GitHub Plugin
	Creating Webhooks in GitHub
	Configure Java, Git, and Maven
	Install the Pipeline Maven Integration Plugin

	Using the Jenkins Pipeline Project
	Creating a Pipeline Project in Jenkins
	The Pipeline Syntax Option in Jenkins

	Testing the Jenkins Pipeline Project
	Make Some Changes in GitHub
	Jenkins Pipeline Project in Action

	Using Jenkins Multibranch Pipeline Project
	Create Credentials for GitHub Account
	Creating a Multibranch Pipeline Project
	Using a Jenkinsfile
	Creating a New Branch on the GitHub Repo

	A Better Way of Managing GitHub Webhooks
	Using the GitHub Services
	Automatically Manage Webhooks from Jenkins

	Summary

	Chapter 6: Using Containers for Distributed Builds
	Distributed Builds Using Docker
	Enabling Docker Remote API
	Modifying the docker.conf file
	Modifying the docker.service File

	Installing the Docker Plugin
	Configuring the Docker Plugin
	Creating a Docker Image for Creating Docker Containers (Jenkins Slave)
	Adding Credentials Inside Jenkins to Access the Docker Container
	Update the Docker Settings Inside Jenkins
	Create a Jenkins Pipeline
	Using the Pipeline Script
	Using the Pipeline Script from SCM
	Triggering a Build

	Distributed Builds Using Kubernetes
	Setting Up a Kubernetes Cluster
	Prerequisites
	Installing Kubectl
	Clone the coreos-kubernetes Repository
	Starting the Kubernetes Cluster
	The Kubernetes Dashboard

	Installing the Kubernetes Plugin for Jenkins
	Creating Credentials for Kubernetes Cluster
	Configuring the Kubernetes Plugin
	Configure Global Security

	Creating a Jenkins Pipeline
	Running the Jenkins Pipeline

	Summary

	Chapter 7: Pre-tested Commits Using Jenkins
	Pre-tested Commits
	Pre-tested Commits Using Jenkins and Git
	Stage 1: Developer Clones the Remote Repository
	Stage 2: Developer Works on His Local Copy of the Code
	Stage 3: Jenkins Performs a Pre-test on the Code

	Creating a Jenkins Pipeline to Perform Pre-tested Commits
	Creating Feature Branch on Github
	Simulating a Failure

	Summary

	Chapter 8: Continuous Delivery Using Jenkins Pipeline
	Setting Up the Artifactory Server
	Installing and Configuring Artifactory
	Install Java and Set the JAVA_HOME Path
	Downloading the Artifactory Package
	Starting the Artifactory Server
	Reset the Default Credentials

	Creating a Repository in Artifactory
	Adding Artifactory Credentials Inside Jenkins
	Installing Artifactory Plugin
	Configuring Artifactory Plugin

	Setting Up the SonarQube Server
	Installing and Configuring SonarQube
	Install Java and Set the JAVA_HOME Path
	Downloading the SonarQube Package
	Starting the SonarQube Server
	Reset the Default Credentials and Generate a Token

	Creating a Project in SonarQube
	Installing the Build Breaker Plugin for Sonar
	Creating a Quality Gate in SonarQube
	Installing the SonarQube Plugin
	Configuring SonarQube Plugin
	Analyzing with SonarQube Scanner for Maven

	Creating a Docker Image for Integration Testing
	Create a User Jenkins
	Install SSH Server
	Install Java and Set the JAVA_HOME Path
	Install Git, Maven, and Nano Text Editor
	Configure the Maven Installation to Work with SonarQube
	Save the Changes Made to the Docker Image
	Adding Docker Image Credentials Inside Jenkins
	Update the Docker Settings Inside Jenkins

	Creating Docker Image for Performance Testing
	Creating a User Jenkins
	Install SSH Server
	Install Java and Set the JAVA_HOME path
	Install Apache Tomcat
	Install Apache JMeter
	Saving the Changes Made to the Docker Image
	Adding Docker Image Credentials Inside Jenkins
	Update the Docker Settings Inside Jenkins

	Creating a Performance Test Using Jmeter
	Install Java and Set the JAVA_HOME Path
	Install Apache JMeter
	Starting Jmeter
	Creating a Performance Test Case
	Creating a Thread Group
	Creating a Sampler
	Adding a Listener

	Creating Jenkins CD Pipeline
	Creating Pipeline Script
	Pipeline Code for Spawning a Docker Container for the Integration Testing
	Pipeline Code to Download the Latest Source Code from GitHub
	Pipeline Code to Perform a Build
	Pipeline Code to Perform Static Code Analysis
	Pipeline Code to Perform Integration Testing
	Pipeline Code to Publish Build Artifacts to Artifactory
	Pipeline Code to Stash the Build Artifacts
	Combined Code for Node docker_it
	Pipeline Code for Spawning a Docker Container for the Performance Testing
	Pipeline Code to Start Apache Tomcat
	Pipeline Code to Deploy Build Artifacts to the Tomcat’s Webapps Directory
	Pipeline Code to Execute Performance Testing
	Pipeline Code to Promote Build Artifacts in Artifactory
	Combined Code for Node docker_pt
	Complete Pipeline Script

	Creating Pipeline in Jenkins
	Jenkins Continuous Delivery Pipeline in Action

	Summary

	Index

