
Pro HTML5
Games

Learn to Build your Own Games
using HTML5 and JavaScript
—
Second Edition
—
Aditya Ravi Shankar

www.allitebooks.com

http://www.allitebooks.org

Pro HTML5 Games
Learn to Build your Own Games using

HTML5 and JavaScript

Second Edition

Aditya Ravi Shankar

www.allitebooks.com

http://www.allitebooks.org

Pro HTML5 Games: Learn to Build your Own Games using HTML5 and JavaScript

Aditya Ravi Shankar				
Bangalore, India			

ISBN-13 (pbk): 978-1-4842-2909-5 			 ISBN-13 (electronic): 978-1-4842-2910-1
DOI 10.1007/978-1-4842-2910-1

Library of Congress Control Number: 2017956216

Copyright © 2017 by Aditya Ravi Shankar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Technical Reviewer: Gaurav Mishra
Coordinating Editor: Nancy Chen
Copy Editor: Bill McManus
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484229095. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484229095
mailto:rights@apress.com
http://www.allitebooks.org

Contents at a Glance

About the Author�� xiii

About the Technical Reviewer��xv

■■Chapter 1: HTML5 and JavaScript Essentials��� 1

■■Chapter 2: Creating a Basic Game World�� 21

■■Chapter 3: Physics Engine Basics�� 47

■■Chapter 4: Integrating the Physics Engine��� 73

■■Chapter 5: Creating a Mobile Game�� 115

■■Chapter 6: Creating the RTS Game World��� 137

■■Chapter 7: Adding Entities to Our World��� 167

■■Chapter 8: Intelligent Unit Movement��� 211

■■Chapter 9: Adding More Game Elements�� 243

■■Chapter 10: Adding Weapons and Combat��� 283

■■Chapter 11: Wrapping Up the Single-Player Campaign�������������������������������������� 319

■■Chapter 12: Multiplayer with WebSockets��� 353

■■Chapter 13: Multiplayer Gameplay��� 381

■■Chapter 14: Essential Game Developer Toolkit��� 409

Index�� 421

iii

www.allitebooks.com

http://www.allitebooks.org

Contents

About the Author�� xiii

About the Technical Reviewer��xv

■■Chapter 1: HTML5 and JavaScript Essentials��� 1

A Basic HTML5 Page��� 1

The canvas Element�� 2

Drawing Rectangles�� 4

Drawing Complex Paths�� 5

Drawing Text�� 7

Customizing Drawing Styles (Colors and Textures)��� 8

Drawing Images��� 9

Transforming and Rotating�� 11

The audio Element��� 12

The image Element��� 15

Image Loading��� 16

Sprite Sheets��� 17

Animation: Timer and Game Loops�� 18

requestAnimationFrame�� 19

Summary��� 20

■■Chapter 2: Creating a Basic Game World�� 21

Basic HTML Layout�� 21

Creating the Splash Screen and Main Menu��� 22

Level Selection�� 27

Loading Images��� 30

v

www.allitebooks.com

http://www.allitebooks.org

﻿■ Contents

vi

Loading Levels�� 34

Animating the Game�� 35

Handling Mouse Input��� 39

Defining Our Game States��� 41

Summary��� 45

■■Chapter 3: Physics Engine Basics�� 47

Box2D Fundamentals�� 47

Setting Up Box2D��� 48

Defining the World��� 49

Adding Our First Body: The Floor��� 50

Drawing the World: Setting Up Debug Drawing��� 52

Animating the World�� 53

Adding More Box2D Elements��� 55

Creating a Rectangular Body��� 55

Creating a Circular Body�� 58

Creating a Polygon-Shaped Body�� 59

Creating Complex Bodies with Multiple Shapes�� 61

Connecting Bodies with Joints�� 63

Tracking Collisions and Damage��� 66

Contact Listeners��� 67

Drawing Our Own Characters�� 69

Summary��� 72

■■Chapter 4: Integrating the Physics Engine��� 73

Defining Entities�� 73

Adding Box2D�� 76

Creating Entities�� 78

Adding Entities to Levels��� 80

Setting Up Box2D Debug Drawing��� 82

www.allitebooks.com

http://www.allitebooks.org

﻿■ Contents

vii

Drawing the Entities�� 85

Animating the Box2D World��� 87

Loading the Hero��� 89

Firing the Hero��� 92

Ending the Level�� 96

Collision Damage��� 99

Drawing the Slingshot Band�� 102

Changing Levels�� 104

Adding Sound�� 105

Adding Break and Bounce Sounds�� 107

Adding Background Music��� 110

Summary��� 113

■■Chapter 5: Creating a Mobile Game�� 115

Challenges in Developing for Mobile Devices��� 115

Making the Game Responsive��� 116

Automatic Scaling and Resizing�� 117

Handling Different Aspect Ratios��� 121

Fixing Mouse and Touch Event Handling��� 123

Loading the Game on a Mobile Device�� 125

Fixing Audio Problems on Mobile Browsers�� 127

The Web Audio API��� 127

Integrating Web Audio��� 130

Adding Some Finishing Touches�� 132

Preventing Accidental Scrolling��� 132

Allowing Full Screen�� 132

Using Hybrid Mobile Application Frameworks��� 133

Optimizing Game Assets for Mobile�� 134

Summary��� 135

vii

www.allitebooks.com

http://www.allitebooks.org

﻿■ Contents

viii

■■Chapter 6: Creating the RTS Game World��� 137

Basic HTML Layout�� 137

Creating the Splash Screen and Main Menu��� 138

Creating Our First Level��� 146

Loading the Mission Briefing Screen�� 148

Implementing the Game Interface��� 153

Implementing Map Panning�� 161

Summary��� 165

■■Chapter 7: Adding Entities to Our World��� 167

Defining Entities�� 167

Defining Our First Entity: The Main Base��� 168

Adding Entities to the Level��� 172

Drawing the Entities�� 176

Adding the Starport��� 180

Adding the Harvester�� 183

Adding the Ground Turret�� 185

Adding the Vehicles��� 188

Adding the Aircraft�� 192

Adding the Terrain��� 196

Selecting Game Entities�� 199

Highlighting Selected Entities��� 205

Summary��� 209

■■Chapter 8: Intelligent Unit Movement��� 211

Commanding Units�� 211

Sending and Receiving Commands��� 213

Processing Orders��� 215

Implementing Aircraft Movement�� 216

www.allitebooks.com

http://www.allitebooks.org

﻿■ Contents

ix

Pathfinding�� 221

Defining Our Pathfinding Grid�� 221

Implementing Vehicle Movement�� 226

Collision Detection and Steering��� 230

Deploying the Harvester�� 236

Smoother Unit Movement�� 238

Summary��� 241

■■Chapter 9: Adding More Game Elements�� 243

Implementing the Basic Economy��� 243

Setting the Starting Money�� 243

Implementing the Sidebar��� 245

Generating Money��� 247

Purchasing Buildings and Units��� 248

Adding Sidebar Buttons��� 249

Enabling and Disabling Sidebar Buttons��� 252

Constructing Vehicles and Aircraft at the Starport�� 255

Constructing Buildings at the Base��� 264

Ending a Level��� 272

Implementing the Message Dialog Box��� 272

Implementing Triggers��� 277

Summary��� 282

■■Chapter 10: Adding Weapons and Combat��� 283

Implementing the Combat System�� 283

Adding Bullets��� 283

Combat-Based Orders for Turrets�� 291

Combat-Based Orders for Aircraft��� 296

Combat-Based Orders for Vehicles�� 300

Building Intelligent Enemy�� 306

www.allitebooks.com

http://www.allitebooks.org

﻿■ Contents

x

Adding a Fog of War�� 309

Defining the Fog Object��� 309

Drawing the Fog�� 311

Adding Finishing Touches�� 315

Summary��� 317

■■Chapter 11: Wrapping Up the Single-Player Campaign�������������������������������������� 319

Adding Sound�� 319

Setting Up Sounds��� 319

Acknowledging Commands��� 321

Messages�� 324

Combat�� 324

Supporting Mobile Devices��� 325

Enabling Touch Support��� 326

Enabling WebAudio Support�� 329

Building the Single-Player Campaign�� 330

The Rescue�� 331

Assault��� 337

Under Siege��� 343

Summary��� 352

■■Chapter 12: Multiplayer with WebSockets��� 353

Using the WebSocket API with Node.js�� 353

WebSockets on the Browser�� 353

Creating an HTTP Server in Node.js��� 356

Creating a WebSocket Server�� 358

Building the Multiplayer Game Lobby�� 361

Defining the Multiplayer Lobby Screen�� 361

Populating the Games List��� 363

Joining and Leaving a Game Room��� 369

www.allitebooks.com

http://www.allitebooks.org

﻿■ Contents

xi

Starting the Multiplayer Game�� 374

Defining the Multiplayer Level��� 374

Loading the Multiplayer Level��� 376

Summary��� 380

■■Chapter 13: Multiplayer Gameplay��� 381

The Lock-Step Networking Model��� 381

Measuring Network Latency�� 382

Sending Commands�� 387

Ending the Multiplayer Game�� 392

Ending the Game When a Player Is Defeated�� 392

Ending the Game When a Player Is Disconnected��� 396

Ending the Game When a Connection Is Lost�� 398

Implementing Player Chat��� 400

Summary��� 406

■■Chapter 14: Essential Game Developer Toolkit��� 409

Customizing Your Code Editor��� 410

Syntax Highlighting and Code Completion�� 410

Custom Extensions�� 412

Git Integration�� 415

Integrated Debugging�� 416

Writing Modular Code�� 417

Automating Your Development Workflow�� 417

Essential Tools for a Streamlined Workflow��� 418

Summary��� 420

Index�� 421

About the Author

Aditya Ravi Shankar started programming in 1993 when he was first
introduced to the world of computers. With no access to the Internet
or online tutorials at the time, he wrote his first game in GW-BASIC by
painstakingly retyping code from a book he found at the local library.

After graduating from the Indian Institute of Technology - Madras
in 2001, Aditya spent nearly a decade working as a software consultant,
developing trading and analytics systems for investment banks and
large Fortune 100 companies, before eventually leaving his corporate life
behind so he could focus on doing what he loved.

A self-confessed technology geek, Aditya has spent the time since
then working on his own projects and experimenting, with every new
language and technology that he could, including of course HTML5.
During this time, he became well known for re-creating several classic
games in HTML5, including the real-time strategy game Command and
Conquer and the tactical game Commandos: Behind Enemy Lines. He
has also worked as a consultant to develop a large variety of HTML5

games, including endless runner games, racing games, base-defense games, arcade games, puzzle games,
educational games, and different types of multiplayer games.

Apart from programming, Aditya is passionate about billiards, salsa dancing, and personal
development. He maintains a personal website (http://www.adityaravishankar.com) where he writes
articles on game programming, personal development, and billiards.

xiii

http://www.adityaravishankar.com/

About the Technical Reviewer

Gaurav Mishra is an expert in user interface development and UX design with more than 10 years of
experience. He provides workshops and training in UI development, UX design, and Drupal. Gaurav
has played a key role in the success of many organizations and likes to build products and services from
scratch. Gaurav lives in New Delhi, India, and likes to spend his leisure time with his baby Yuvika and
wife Neeti. He likes all genres of music, from Indian classical to club music. Gaurav can be reached at
mr.gauravmishr@gmail.com and also tweets at @gauravmishr.

xv

mr.gauravmishr@gmail.com

1© Aditya Ravi Shankar 2017
A. R. Shankar, Pro HTML5 Games, DOI 10.1007/978-1-4842-2910-1_1

CHAPTER 1

HTML5 and JavaScript Essentials

HTML5, the latest version of the HTML standard, provides us with many new features for improved
interactivity and media support. These new features (such as canvas, audio, and video) have made it
possible to make fairly rich and interactive applications for the browser without requiring third-party plug-
ins such as Flash.

Even though the HTML5 standard continues to grow and improve as a “living standard,” all the
elements that we need for building some very amazing games are already supported by all modern browsers
(Google Chrome, Mozilla Firefox, Internet Explorer 9+, Microsoft Edge, Safari, and Opera).

Over the past half-decade (since I wrote the first edition of this book), HTML5 support has become a
standard across all modern browsers, both desktop and mobile. This means we now can make games in
HTML5 that can be easily extended to work on both mobile and desktop across a wide variety of operating
systems.

All you need to get started on developing your games in HTML5 are a good text editor to write your
code (I currently use Visual Studio Code on both Mac and PC—https://code.visualstudio.com/) and
a modern, HTML5-compatible browser (I primarily use Google Chrome). Once you have installed your
preferred text editor and HTML5-compatible browser, you are ready to create your first HTML5 page.

A Basic HTML5 Page
The structure of an HTML5 document is very similar to the structure in previous versions, except that
HTML5 has a much simpler DOCTYPE tag at the beginning of the document. This simpler DOCTYPE tag
lets the browser know that it needs to use the latest standards when interpreting the document.

Listing 1-1 provides a skeleton for a very basic HTML5 file that we will be using as a starting point for the
rest of this chapter. Executing this code involves saving it as an HTML file and then opening the file in a web
browser. If you do everything correctly, the browser should pop up the message “Hello World!”

Listing 1-1.  Basic HTML5 File Skeleton

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-type" content="text/html; charset=utf-8">
 <title>Sample HTML5 File</title>
 <script type="text/javascript">
 // This function will be called once the page loads completely
 function pageLoaded(){
 alert("Hello World!");
 }

https://code.visualstudio.com/

Chapter 1 ■ HTML5 and JavaScript Essentials

2

 </script>
 </head>
 <body onload="pageLoaded();">

 </body>
</html>

■■ Note  We use the body’s onload event to call our pageLoaded() function so that we can be sure that
our page has completely loaded before we start working with it. This will become important when we start
manipulating elements like images and audio. Trying to access these elements before the browser has finished
loading them will cause JavaScript errors or other unexpected behavior.

Before we start developing games, we need to go over some of the basic building blocks that we will be
using to create our games. The most important ones that we need are

•	 The canvas element, to render shapes and images

•	 The audio element, to add sounds and background music

•	 The image element, to load our game artwork and display it on the canvas

•	 The browser timer functions, and game loops to handle animation

The canvas Element
The most important element for use in our games is the new canvas element. As per the HTML5 standard
specification, “The canvas element provides scripts with a resolution-dependent bitmap canvas, which
can be used for rendering graphs, game graphics, art, or other visual images on the fly.” You can find the
complete specification at https://html.spec.whatwg.org/multipage/scripting.html#the-canvas-
element.

The canvas allows us to draw primitive shapes like lines, circles, and rectangles, as well as images and
text, and has been optimized for fast drawing. Browsers have started enabling GPU-accelerated rendering of
2D canvas content, so that canvas-based games and animations run fast.

Using the canvas element is fairly simple. Place the <canvas> tag inside the body of the HTML5 file we
created earlier, as shown in Listing 1-2.

Listing 1-2.  Creating a Canvas Element

<body onload="pageLoaded();">
 <canvas width="640" height="480" id="testcanvas" style="border: 1px solid black;">
 Your browser does not support HTML5 Canvas. Please shift to a newer browser.
 </canvas>
</body>

The code in Listing 1-2 creates a canvas that is 640 pixels wide and 480 pixels high. By itself, the canvas
shows up as a blank area (with a black border that we specified in the style). We can now start drawing inside
this rectangle using JavaScript.

https://html.spec.whatwg.org/multipage/scripting.html#the-canvas-element
https://html.spec.whatwg.org/multipage/scripting.html#the-canvas-element

Chapter 1 ■ HTML5 and JavaScript Essentials

3

■■ Note  Browsers that do not support canvas will ignore the <canvas> tag and render anything inside
the <canvas> tag. You can use this feature to show users on older browsers alternative fallback content or a
message directing them to a more modern browser.

We draw on the canvas using what is known as its primary rendering context. We can access this context
with the getContext() method of the canvas object. The getContext() method takes one parameter: the
type of context that we need. We will be using the 2d context for our games.

Listing 1-3 shows how we can access the canvas and its context once the page has loaded by modifying
the pageLoaded() method.

Listing 1-3.  Accessing the Canvas Context

<script type="text/javascript">
 function pageLoaded(){

 // Get a handle to the canvas object
 var canvas = document.getElementById("testcanvas");

 // Get the 2d context for this canvas
 var context = canvas.getContext("2d");

 // Our drawing code here...
 }
</script>

■■ Note  All browsers support the 2d context that we need for 2D graphics. Most browsers also implement
other contexts with names such as webgl or experimental-webgl for 3D graphics.

This code doesn’t seem to do anything yet. However, we now have access to a 2d context object. This
context object provides us with a large number of methods that we can use to draw our game elements on
the screen. This includes methods for the following:

•	 Drawing rectangles

•	 Drawing complex paths (lines, arcs, and so forth)

•	 Drawing text

•	 Customizing drawing styles (colors, alpha, textures, and so forth)

•	 Drawing images

•	 Transforming and rotating

We will look at each of these methods in more detail in the following sections.

Chapter 1 ■ HTML5 and JavaScript Essentials

4

Drawing Rectangles
Before you can start drawing on the canvas, you need to understand how to reference coordinates on it. The
canvas uses a coordinate system with the origin (0, 0) at the top-left corner of the canvas, x increasing toward
the right, and y increasing downward, as illustrated in Figure 1-1.

We can draw a rectangle on the canvas using the context’s rectangle methods:

•	 fillRect(x, y, width, height): Draws a filled rectangle

•	 strokeRect(x, y, width, height): Draws a rectangular outline

•	 clearRect(x, y, width, height): Clears the specified rectangular area and makes
it fully transparent

Listing 1-4.  Drawing Rectangles Inside the Canvas

// FILLED RECTANGLES
// Draw a solid square with width and height of 100 pixels at (200,10)
context.fillRect(200, 10, 100, 100);
// Draw a solid square with width of 90 pixels and height of 30 pixels at (50,70)
context.fillRect(50, 70, 90, 30);

// STROKED RECTANGLES
// Draw a rectangular outline with width and height of 50 pixels at (110, 10)
context.strokeRect(110, 10, 50, 50);
// Draw a rectangular outline with width and height of 50 pixels at (30, 10)
context.strokeRect(30, 10, 50, 50);

// CLEARING RECTANGLES
// Clear a rectangle with width of 30 pixels and height of 20 pixels at (210, 20)
context.clearRect(210, 20, 30, 20);
// Clear a rectangle with width of 30 pixels and height of 20 pixels at (260, 20)
context.clearRect(260, 20, 30, 20);

Figure 1-1.  Coordinate system for canvas

Chapter 1 ■ HTML5 and JavaScript Essentials

5

The code in Listing 1-4 will draw multiple rectangles on the top-left corner of the canvas, as shown in
Figure 1-2. Add the code to the bottom of the pageLoaded() method, save the file, and refresh the browser to
see the result of these changes.

Drawing Complex Paths
The context has several methods that allow us to draw complex shapes when simple boxes aren’t enough:

•	 beginPath(): Starts recording a new shape

•	 closePath(): Closes the path by drawing a line from the current drawing point to the
starting point

•	 fill(), stroke(): Fills or draws an outline of the recorded shape

•	 moveTo(x, y): Moves the drawing point to x, y

•	 lineTo(x, y): Draws a line from the current drawing point to x, y

•	 arc(x, y, radius, startAngle, endAngle, anticlockwise): Draws an arc at x, y
with specified radius

Using these methods, drawing a complex path involves the following steps:

	 1.	 Use beginPath() to start recording the new shape.

	 2.	 Use moveTo(), lineTo(), and arc() to create the shape.

	 3.	 Optionally, close the shape using closePath().

	 4.	 Use either stroke() or fill() to draw an outline or filled shape. Using fill()
automatically closes any open paths.

Figure 1-2.  Drawing rectangles inside the canvas

Chapter 1 ■ HTML5 and JavaScript Essentials

6

Listing 1-5 will create the triangles, arcs, and shapes shown in Figure 1-3.

Listing 1-5.  Drawing Complex Shapes Inside the Canvas

// DRAWING COMPLEX SHAPES
// Draw a filled triangle
context.beginPath();
context.moveTo(10, 120); // Start drawing at 10, 120
context.lineTo(10, 180);
context.lineTo(110, 150);
context.fill(); // Close the shape and fill it out

// Draw a stroked triangle
context.beginPath();
context.moveTo(140, 160); // Start drawing at 140, 160
context.lineTo(140, 220);
context.lineTo(40, 190);
context.closePath();
context.stroke();

// Draw a more complex set of lines
context.beginPath();
context.moveTo(160, 160); // Start drawing at 160, 160
context.lineTo(170, 220);
context.lineTo(240, 210);
context.lineTo(260, 170);
context.lineTo(190, 140);
context.closePath();
context.stroke();

// DRAWING ARCS & CIRCLES
// Draw a semicircle
context.beginPath();
// Draw an arc at (400, 50) with radius 40 from 0 to 180 degrees, anticlockwise
// PI radians = 180 degrees
context.arc(100, 300, 40, 0, Math.PI, true);
context.stroke();

// Draw a full circle
context.beginPath();
// Draw an arc at (500, 50) with radius 30 from 0 to 360 degrees, anticlockwise
// 2*PI radians = 360 degrees
context.arc(100, 300, 30, 0, 2 * Math.PI, true);
context.fill();

// Draw a three-quarter arc
context.beginPath();
// Draw an arc at (400, 100) with radius 25 from 0 to 270 degrees, clockwise
// (3/2*PI radians = 270 degrees)
context.arc(200, 300, 25, 0, 3 / 2 * Math.PI, false);
context.stroke();

Chapter 1 ■ HTML5 and JavaScript Essentials

7

Drawing Text
The context also provides us with two methods for drawing text on the canvas:

•	 strokeText(text, x, y): Draws an outline of the text at (x, y)

•	 fillText(text, x, y): Fills out the text at (x, y)

Unlike text inside other HTML elements, text inside canvas does not have CSS layout options such
as wrapping, padding, and margins. However, the text output can be modified by setting the context font,
stroke, and fill style properties, as shown in Listing 1-6.

Listing 1-6.  Drawing Text Inside the Canvas

// DRAWING TEXT
context.fillText("This is some text...", 330, 40);

// Modify the font
context.font = "10pt Arial";
context.fillText("This is in 10pt Arial...", 330, 60);

// Draw stroked text
context.font = "16pt Arial";
context.strokeText("This is stroked in 16pt Arial...", 330, 80);

Figure 1-3.  Drawing complex shapes inside the canvas

Chapter 1 ■ HTML5 and JavaScript Essentials

8

The code in Listing 1-6 will draw the text shown in Figure 1-4.

When setting the font property, you can use any valid CSS font property. As you can see from the
previous example, while you may not have the same degree of flexibility in formatting that HTML and CSS
provide, you can still do a lot with the canvas text methods. Of course, this would look a lot better if we could
add some color.

Customizing Drawing Styles (Colors and Textures)
So far, everything we have drawn has been in black, but only because the canvas default drawing color is
black. We have other options. We can style and customize the lines, shapes, and text on a canvas. We can
draw using different colors, line styles, transparencies, and even fill textures inside the shapes.

If we want to apply colors to a shape, there are two important properties we can use:

•	 fillStyle: Sets the default color for all future fill operations

•	 strokeStyle: Sets the default color for all future stroke operations

Both properties can take valid CSS colors as values. This includes rgb() and rgba() values as well as
color constant values. For example, context.fillStyle = "red"; will define the fill color as red for all future
fill operations (fillRect, fillText, and fill).

In addition, the context object’s createTexture() method creates a texture from an image, which can
also be used as a fill style. Before we can use an image, we need to load the image into the browser. For now,
we will just add an tag after the <canvas> tag in our HTML file:

The code in Listing 1-7 will draw colored and textured rectangles, as shown in Figure 1-5.

Listing 1-7.  Drawing with Colors and Textures

// FILL STYLES AND COLORS
// Set fill color to red
context.fillStyle = "red";
// Draw a red filled rectangle
context.fillRect(310, 160, 100, 50);

// Set stroke color to green
context.strokeStyle = "green";
// Draw a green stroked rectangle
context.strokeRect(310, 240, 100, 50);

Figure 1-4.  Drawing text inside the canvas

Chapter 1 ■ HTML5 and JavaScript Essentials

9

// Set fill color to yellow using rgb()
context.fillStyle = "rgb(255, 255, 0)";
// Draw a yellow filled rectangle
context.fillRect(420, 160, 100, 50);

// Set fill color to green with an alpha of 0.6
context.fillStyle = "rgba(0, 255, 0, 0.6)";
// Draw a semi-transparent green filled rectangle
context.fillRect(450, 180, 100, 50);

// TEXTURES
// Get a handle to the Image object
var fireImage = document.getElementById("fire");
var pattern = context.createPattern(fireImage, "repeat");

// Set fill style to newly created pattern
context.fillStyle = pattern;
// Draw a pattern filled rectangle
context.fillRect(420, 240, 130, 50);

In addition to these methods, the canvas also provides several methods to use color gradients, shadows,
and patterns while drawing. I encourage you to take the time to explore the canvas and context API more
thoroughly when you get the chance.

Drawing Images
Although we can achieve quite a lot using just the drawing methods we have covered so far, we still need
to explore how to use images. Learning how to draw images will enable you to draw game backgrounds,
character sprites, and effects like explosions that can make your games come alive.

Figure 1-5.  Drawing with colors and textures

Chapter 1 ■ HTML5 and JavaScript Essentials

10

We can draw images and sprites on the canvas using the drawImage() method. The context provides us
with three different versions of this method:

•	 drawImage(image, x, y): Draws the image on the canvas at (x, y)

•	 drawImage(image, x, y, width, height): Scales the image to the specified width
and height and then draws it at (x, y)

•	 drawImage(image, sourceX, sourceY, sourceWidth, sourceHeight, x, y,
width, height): Clips a rectangle from the image at (sourceX, sourceY) with
dimensions (sourceWidth, sourceHeight), scales it to the specified width and height,
and draws it on the canvas at (x, y)

Before we start drawing images, we need to load another image into the browser. We will add one more
 tag after the <canvas> tag in our HTML file:

Once the image has been loaded, we can draw it using the code shown in Listing 1-8.

Listing 1-8.  Drawing Images

// DRAWING IMAGES
// Get a handle to the Image object
var image = document.getElementById("spaceship");

// Draw the image at (0, 350)
context.drawImage(image, 0, 350);

// Scale the image to half the original size
context.drawImage(image, 0, 400, 100, 25);

// Draw part of the image
context.drawImage(image, 0, 0, 60, 50, 0, 420, 60, 50);

The code in Listing 1-8 will draw the images shown in Figure 1-6. The last example in Listing 1-8, where
we draw only a part of the image, will become especially useful when we start using sprite sheets to combine
our game assets and store multiple sprites in a single large image.

Chapter 1 ■ HTML5 and JavaScript Essentials

11

Transforming and Rotating
The context object has several methods for transforming the coordinate system used for drawing elements.
These methods are

•	 translate(x, y): Moves the canvas and its origin to a different point (x, y)

•	 rotate(angle): Rotates the canvas clockwise around the current origin by angle
(radians)

•	 scale(x, y): Scales the objects drawn by a multiple of x and y along the respective
axes

A common use of these methods is to rotate objects or sprites when drawing them. We can do this by

•	 Translating the canvas origin to the location of the object

•	 Rotating the canvas by the desired angle

•	 Drawing the object

•	 Restoring the canvas back to its original state

Let’s look at rotating objects before drawing them, as shown in Listing 1-9.

Listing 1-9.  Rotating Objects Before Drawing Them

// ROTATION AND TRANSLATION
//Translate origin to location of object
context.translate(250, 370);
//Rotate about the new origin by 60 degrees
context.rotate(Math.PI / 3);
context.drawImage(image, 0, 0, 60, 50, -30, -25, 60, 50);
//Restore to original state by rotating and translating back
context.rotate(-Math.PI / 3);
context.translate(-240, -370);

Figure 1-6.  Drawing images

Chapter 1 ■ HTML5 and JavaScript Essentials

12

//Translate origin to location of object
context.translate(300, 370);
//Rotate about the new origin
context.rotate(3 * Math.PI / 4);
context.drawImage(image, 0, 0, 60, 50, -30, -25, 60, 50);
//Restore to original state by rotating and translating back
context.rotate(-3 * Math.PI / 4);
context.translate(-300, -370);

The code in Listing 1-9 will draw the two rotated ship images shown in Figure 1-7.

■■ Note  Apart from rotating and translating back, you can also restore the canvas state by first using the
save() method before starting the transformations and then calling the restore() method at the end of the
transformations.

With this last example, we have covered all the essentials of the canvas that we will need to build our
games. There is still a lot of the API that we have not covered here. You can read more about the canvas API
at https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API.

The audio Element
Using the HTML5 audio element is the new standard way to embed an audio file into a web page. Until this
element came along, most pages played audio files using embedded plug-ins (such as Flash).

The audio element can be created in HTML using the <audio> tag or in JavaScript using the Audio
object. An example is shown in Listing 1-10.

Listing 1-10.  The HTML5 <audio> Tag

<audio src="music.mp3" controls="controls">
 Your browser does not support HTML5 Audio. Please shift to a newer browser.
</audio>

Figure 1-7.  Rotating images

https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API

Chapter 1 ■ HTML5 and JavaScript Essentials

13

■■ Note  Browsers that do not support audio will ignore the <audio> tag and render anything inside the
<audio> tag. You can use this feature to show users on older browsers alternative fallback content or a
message directing them to a more modern browser.

The controls attribute included in Listing 1-10 makes the browser display a simple browser-specific
interface for playing the audio file (such as a play/pause button and volume controls).

The audio element has several other attributes, such as the following:

•	 preload: Specifies whether or not the audio should be preloaded

•	 autoplay: Specifies whether or not to start playing the audio as soon as the object
has loaded

•	 loop: Specifies whether to keep replaying the audio once it has finished

There are currently three popular file formats supported by browsers: MP3 (MPEG Audio Layer 3),
WAV (Waveform Audio), and OGG (Ogg Vorbis). One thing to watch out for is that not all browsers support
all audio formats. Firefox, for example, does not play MP3 files directly because of patent and licensing
issues (and has to rely on operating system support), though it does play OGG and WAV files directly. Safari,
on the other hand, supports MP3 but does not support OGG. Table 1-1 shows the formats supported by the
latest version of popular browsers.

The way to work around this limitation is to provide the browser with alternative formats to play. The
audio element allows multiple source elements within the <audio> tag, and the browser automatically uses
the first recognized format (see Listing 1-11).

Listing 1-11.  The <audio> Tag with Multiple Sources

<audio controls="controls">
 <source src="music.ogg" type="audio/ogg" />
 <source src="music.mp3" type="audio/mpeg" />
 Your browser does not support HTML5 Audio. Please shift to a newer browser.
</audio>

Table 1-1.  Audio Formats Supported by Current Browsers

Browser MP3 WAV OGG

Internet Explorer Yes No No

Edge Yes Yes No

Firefox Using OS support Yes Yes

Chrome Yes Yes Yes

Safari Yes Yes No

Opera Yes Yes Yes

Chapter 1 ■ HTML5 and JavaScript Essentials

14

Audio can also be loaded dynamically by using the Audio object in JavaScript. The Audio object allows
us to load, play, and pause sound files as needed, which is what will be used for games (see Listing 1-12).

Listing 1-12.  Dynamically Loading an Audio File

<script>
 //Create a new Audio object
 var sound = new Audio();

 // Select the source of the sound
 sound.src = "music.ogg";
 // This will only work on browsers that support OGG

 // Play the sound
 // sound.play();
</script>

Unlike with the <audio> HTML tag, where we could easily specify multiple formats, when using
JavaScript we need a way to detect the formats supported by the browser so we can load the appropriate
format. The Audio object provides us with a method called canPlayType() that returns values of "", "maybe",
or "probably" to indicate support for a specific codec. We can use this to create a simple check and load the
appropriate audio format, as shown in Listing 1-13.

Listing 1-13.  Testing for Audio Support

<script>
 var audio = document.createElement("audio");
 var mp3Support, oggSupport;

 if (audio.canPlayType) {
 // Currently canPlayType() returns: "", "maybe", or "probably"
 mp3Support = "" !== audio.canPlayType("audio/mpeg");
 oggSupport = "" !== audio.canPlayType("audio/ogg; codecs=\"vorbis\"");
 } else {
 // The audio tag is not supported
 mp3Support = false;
 oggSupport = false;
 }

 // Check for ogg, then mp3, and finally set soundFileExtn to undefined
 var soundFileExtn = oggSupport ? ".ogg" : mp3Support ? ".mp3" : undefined;

 if (soundFileExtn) {
 var sound = new Audio();
 // Load sound file with the detected extension

 sound.src = "music" + soundFileExtn;
 sound.play();
 }
</script>

Chapter 1 ■ HTML5 and JavaScript Essentials

15

Listing 1-13 uses canPlayType() to set a soundFileExtn property, which we can then use to load future
audio files. We will use this idea when we build audio into our games in later chapters.

The Audio object triggers several different events to help us know when the sound has been loaded and
is ready for playing. The loadedmetadata event is fired when the initial audio file metadata has been loaded
by the browser. The canplay event is fired once enough of the audio file has been downloaded
to start playing, and the canplaythrough event is fired when the browser can play the entire audio file
without needing to pause and buffer the file. We can use the canplaythrough event to keep track of when
the sound file has been loaded sufficiently for our purposes. Listing 1-14 shows an example of how the
canplaythrough event can be used to play a sound once it has been loaded.

Listing 1-14.  Waiting for an Audio File to Load

<script>
 // Play the sound after waiting for it to load
 if (soundFileExtn) {
 var sound = new Audio();

 sound.addEventListener("canplaythrough", function() {
 sound.play();
 });

 // Load sound file with the detected extension
 sound.src = "music" + soundFileExtn;
 }
</script>

Now that we have looked at how to check for supported audio formats, dynamically load audio, and
detect when an audio file has loaded, we can combine these concepts to design an audio preloader that will
dynamically load all the game audio resources before starting the game. We will look at this idea in more
detail in the next few chapters when we build an asset loader for our games.

The image Element
The image element allows us to display images inside an HTML file. The simplest way to do this is by using
the <image> tag and specifying an src attribute, as shown earlier and again here in Listing 1-15.

Listing 1-15.  The <image> Tag

You can also load an image dynamically using JavaScript by instantiating a new Image object and setting
its src property, as shown in Listing 1-16.

Listing 1-16.  Dynamically Loading an Image

var image = new Image();
image.src = "spaceship.png";

You can use either of these methods to get an image for drawing on a canvas.

Chapter 1 ■ HTML5 and JavaScript Essentials

16

Image Loading
Games are usually designed to wait for all the images to load completely before they start so as to avoid
errors due to partly loaded images. While the images are being loaded, programmers commonly display a
progress bar or status indicator that shows the percentage of images loaded.

The Image object provides us with an onload event that gets fired as soon as the browser finishes
loading the image file. Using this event, we can keep track of when the image has loaded, as shown in the
example in Listing 1-17.

Listing 1-17.  Waiting for an Image to Load

image.onload = function() {
 alert("Image finished loading");
};

Using the onload event, we can create a simple image loader that tracks images loaded so far
(see Listing 1-18).

Listing 1-18.  Simple Image Loader

var imageLoader = {
 loaded: true,
 loadedImages: 0,
 totalImages: 0,
 load: function(url) {
 this.totalImages++;
 this.loaded = false;
 var image = new Image();
 image.src = url;
 image.onload = function() {
 imageLoader.loadedImages++;
 if (imageLoader.loadedImages === imageLoader.totalImages) {
 imageLoader.loaded = true;
 }
 image.onload = undefined;
 }
 return image;
 }
}

In this code, we create an imageLoader object with a load() method. This load() method takes an
image URL, and increases the totalImages counter each time it is called. It then dynamically creates
an Image object and sets the object’s src property. Finally, it uses the object’s onload event handler to
increment the loadedImages counter, and once the counter reaches totalImages, it sets the loaded variable
back to true.

This image loader can be invoked to load a large number of images (say in a loop). We can check to see
if all the images are loaded by using imageLoader.loaded, and we can draw a percentage/progress bar by
using loadedImages/totalImages.

Don’t worry about actually using this loader yet. This is just a partial code snippet to help illustrate the
basic idea for an image loader. We will be building a more complete version of an asset loader for our games
in the coming chapters.

Chapter 1 ■ HTML5 and JavaScript Essentials

17

Sprite Sheets
Another concern when your game has a lot of images is how to optimize the way the server loads these
images. Games can require anything from tens to hundreds of images. Even a simple real-time strategy (RTS)
game will need images for different units, buildings, maps, backgrounds, and effects. In the case of units and
buildings, you might need multiple versions of images to represent different directions and states, and in the
case of animations, you might need an image for each frame of the animation.

In one of my earlier RTS game projects, I used individual images for each animation frame and state
for every unit and building, ending up with over 1,000 images. Since most browsers make only a few
simultaneous requests at a time, downloading all these images took a lot of time, with an overload of HTTP
requests on the server. While this wasn’t a problem when I was testing the code locally, it was a bit of a pain
when the code went onto the server. Players ended up waiting 5 to 10 minutes (sometimes longer) for the
game to load before they could actually start playing. All the concurrent requests also caused considerable
load on my web server.

Luckily for us, there is a simple way to fix this problem of too many images and HTTP requests, and this
is where sprite sheets come in. Sprite sheets store all the sprites (images) for a game entity in a single large
image file. When displaying the images, we calculate the offset of the sprite we want to show and use the
ability of the drawImage() method to draw only a part of an image. The spaceship.png image we have been
using in this chapter is an example of a sprite sheet since it contains multiple spaceship sprites within the
same file.

Looking at the code fragments in Listings 1-19 and 1-20, you can see examples of drawing an image
loaded individually versus drawing an image loaded in a sprite sheet.

Listing 1-19.  Drawing an Image Loaded Individually

// First: (Load individual images and store in a big array)

// Three arguments: the element, and destination (x, y) coordinates
var image = imageArray[imageNumber];
context.drawImage(image, x, y);

Listing 1-20.  Drawing an Image Loaded in a Sprite Sheet

// First: (Load single sprite sheet image)

// Nine arguments: the element, source (x, y) coordinates,
// source width and height (for cropping),
// destination (x, y) coordinates, and
// destination width and height (resize)

context.drawImage (this.spriteImage, this.imageWidth*(imageNumber), 0, this.imageWidth,
this.imageHeight, x, y, this.imageWidth, this.imageHeight);

In the first example, we store each individual sprite as a separate Image object in an array, and then
draw a specific sprite by accessing the Image object. This method would require as many Image objects as
sprites, and just as many HTTP requests to the server to fetch each image.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ HTML5 and JavaScript Essentials

18

In the second example, we load a single large sprite sheet where all the sprites are placed side by side.
Drawing the sprite involves calculating the x and y offset of the sprite within the image and then drawing
just the appropriate portion of the image. This method involves only a single HTTP request and only a single
Image object per sprite sheet, along with a little more complexity in computing the sprite location within the
image. In terms of utilization of network resources, this is significantly better.

The following are some of the advantages of using a sprite sheet, which make using sprite sheets for any
kind of complex game a no-brainer:

•	 Fewer HTTP requests: A unit that has 80 images (and so 80 requests) will now be
downloaded in a single HTTP request.

•	 Better compression: Storing the images in a single file means that the header
information doesn’t repeat for each file and the single combined file is significantly
smaller than all the individual files.

•	 Faster load times: With significantly lower HTTP requests and file sizes, the
bandwidth usage and load times for the game drop as well, which means users won’t
have to wait for as long a time for the game to load.

Animation: Timer and Game Loops
The last thing you need to understand before you get started with actually building games is animation.
Animating is just a matter of drawing an object, erasing it, and drawing it again at a new position, fast
enough that the human eye only sees it as smooth movement.

The most common way to handle animation is by keeping a drawing function that gets called several
times a second. Within this function, we iterate through all the game entities and draw them one by one.

Simpler games typically handle both animating or moving the entities and drawing them within the
same drawing function. However, some games have a separate control/animation function that updates
movement of the entities within the game, while the drawing function handles only the actual drawing of the
entities on the screen. The animation function, since it is independent of the drawing function, can be called
less often than the drawing function. Listing 1-21 contains skeleton code illustrating a typical animation and
drawing routine.

Listing 1-21.  Typical Animation and Drawing Loop

function animationLoop(){
 // Iterate through all the items in the game
 //And move them
}

function drawingLoop(){
 //1. Clear the canvas
 //2. Iterate through all the items
 //3. And draw each item
}

Assuming we built a working drawingLoop() method for our game, we need to figure out a way to call
drawingLoop() repeatedly at regular intervals. The simplest way of achieving this is to use the two timer
methods setInterval() and setTimeout(). setInterval(functionName, timeInterval) tells the browser
to keep calling a given function repeatedly at fixed time intervals until the clearInterval() function is
called. When we need to stop animating (when the game is paused, or has ended), we use clearInterval().
Listing 1-22 shows an example of how this would work.

Chapter 1 ■ HTML5 and JavaScript Essentials

19

Listing 1-22.  Calling Drawing Loop with setInterval()

// Call drawingLoop() every 20 milliseconds
var gameLoop = setInterval(drawingLoop, 20);
// Stop calling drawingLoop() and clear the gameLoop variable
clearInterval(gameLoop);

setTimeout(functionName, timeInterval) tells the browser to call a given function one single time
after a given time interval, as shown in the example in Listing 1-23.

Listing 1-23.  Calling Drawing Loop with setTimeout()

function drawingLoop(){
 // 1. Call the drawingLoop() method once after 20 milliseconds
 var gameLoop = setTimeout(drawingLoop,20);

 // 2. Clear the canvas

 // 3. Iterate through all the items

 // 4. And draw them
}

Unlike with setInterval(), when using setTimeout() we need to make a new call each time since
setTimeout() only calls the drawingLoop() method once. When we need to stop animating (when the game
is paused, or has ended), we can use clearTimeout():

// Stop calling drawingLoop() and clear the gameLoop variable
clearTimeout(gameLoop);

Now, don’t get too worried if some of this seems a little confusing or abstract at this point. This chapter
is only meant to be a quick crash course, and I just want you to get a general overview of how this works. We
will be looking at detailed working examples of all of these functions when we start building our games in
later chapters, at which point everything should start making a lot more sense.

requestAnimationFrame
While using setInterval() or setTimeout() as a way to animate frames does work, browser vendors have
come up with a new API specifically for handling animation. Some of the advantages of using this API
instead of setInterval() are that the browser can do the following:

•	 Optimize the animation code into a single reflow-and-repaint cycle, resulting in
smoother animation

•	 Pause the animation when the tab is not visible, leading to less CPU and GPU usage

•	 Automatically cap the frame rate on machines that do not support higher frame
rates, or increase the frame rate on machines that are capable of processing them

Around the time that I was writing the first edition of this book, browser vendors had their own
proprietary names for the methods in the API (such as Microsoft’s msrequestAnimationFrame() method and
Mozilla’s mozRequestAnimationFrame() method). Since then, however, all browsers have standardized this
API implementation and you can now use requestAnimationFrame() and cancelAnimationFrame() across
all browsers that support HTML5.

Chapter 1 ■ HTML5 and JavaScript Essentials

20

■■ Note  Now that we have no guarantee of frame rate (the browser decides the speed at which it will call our
drawing loop), we need to ensure that animated objects move at the same speed on the screen independent of
the actual frame rate. We do this either by animating objects in a separate setTimeout() or setInterval()
loop, or by calculating the time since the previous drawing cycle and using it to interpolate the location of the
object being animated.

The requestAnimationFrame() method can be called from within the drawingLoop() method similar to
setTimeout(), as shown in Listing 1-24.

Listing 1-24.  Calling Drawing Loop with requestAnimationFrame()

function drawingLoop(nowTime){
 // 1. Call the drawingLoop() method whenever the browser is ready to draw again
 var gameLoop = requestAnimationFrame(drawingLoop);

 // 2. Clear the canvas

 // 3. Iterate through all the items

 // 4. Optionally use nowTime and the last nowTime to interpolate frames

 // 5. And draw the items
}

When we need to stop animating (when the game is paused, or has ended), we can use
cancelAnimationFrame():

// Stop calling drawingLoop() and clear the gameLoop variable
cancelAnimationFrame(gameLoop);

This section has covered the primary ways to add animation to your games. We will be looking at actual
implementations of these animation loops in the coming chapters.

Summary
In this chapter, we looked at the basic elements of HTML5 that are needed for building games. We covered
how to use the canvas element to draw shapes, write text, and manipulate images. We examined how to use
the audio element to load and play sounds across different browsers. We also briefly covered the basics of
animation, preloading objects and using sprite sheets.

The topics we covered here are just a starting point and not exhaustive by any means. This chapter was
meant to be a quick crash course or refresher on HTML5 and a handy reference for easily looking up syntax
or code examples whenever needed. As I mentioned earlier, we will be going into these topics in more detail,
along with complete implementations, as we build our games in the coming chapters.

If you had trouble keeping up and would like a more detailed explanation of the basics of JavaScript and
HTML5, I would recommend reading introductory books on JavaScript and HTML5, such as JavaScript for
Absolute Beginners by Terry McNavage and The Essential Guide to HTML5 by Jeanine Meyer.

Now that we have the basics out of the way, let’s get started building our first game.

21© Aditya Ravi Shankar 2017
A. R. Shankar, Pro HTML5 Games, DOI 10.1007/978-1-4842-2910-1_2

CHAPTER 2

Creating a Basic Game World

The arrival of smartphones and handheld devices that support gaming has created a renewed interest in
simple puzzle and physics-based games that can be played for short periods of time. Most of these games
have a simple concept, small levels, and are easy to learn. One of the most popular and famous games in
this genre is Angry Birds (by Rovio Entertainment), a puzzle/strategy game where players use a slingshot to
shoot birds at enemy pigs. Despite a fairly simple premise, the game has been downloaded and installed on
over two billion devices around the world. The game uses a physics engine to realistically model the slinging,
collisions, and breaking of objects inside its game world.

Over the next four chapters, we are going to build our own physics-based puzzle game with complete
playable levels. Our game, Froot Wars, will have fruits as protagonists, junk food as the enemy, and some
breakable structures within the level.

We will be implementing all the essential components you will need in your own games—splash
screens, loading screens and preloaders, menu screens, parallax scrolling, sound, realistic physics with the
Box2D physics engine, and a scoreboard. Once you have this basic framework, you should be able to reuse
these ideas in your own puzzle games.

So let’s get started.

Basic HTML Layout
The first thing we need to do is to create the basic game layout. This will consist of several layers:

•	 Splash screen: Shown when the game page is loaded

•	 Game start screen: A menu that allows the player to start the game or modify settings

•	 Loading/progress screen: Shown whenever the game is loading assets (such as
images and sound files)

•	 Game canvas: The actual game layer

•	 Scoreboard: An overlay above the game canvas to show a few buttons and the score

•	 Ending screen: A screen displayed at the end of each level

Each of these layers will be either a div element or a canvas element that we will display or hide as
needed. The code will be laid out with separate folders for images and JavaScript code.

Chapter 2 ■ Creating a Basic Game World

22

Creating the Splash Screen and Main Menu
We start with a skeleton HTML file, similar to the first chapter, and add the markup for our containers, as
shown in Listing 2-1.

Listing 2-1.  Basic Skeleton (index.html) with the Layers Added

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-type" content="text/html; charset=utf-8">
 <title>Froot Wars</title>
 <script src="js/game.js" type="text/javascript"></script>
 <link rel="stylesheet" href="styles.css" type="text/css" media="screen">
 </head>

 <body>
 <div id="wrapper">
 <div id="gamecontainer">

 <canvas id="gamecanvas" width="640" height="480" class="gamelayer">
 </canvas>

 <div id="scorescreen" class="gamelayer">

 Score: 0
 </div>

 <div id="gamestartscreen" class="gamelayer">

 </div>

 <div id="levelselectscreen" class="gamelayer">
 </div>

 <div id="loadingscreen" class="gamelayer">
 <div id="loadingmessage"></div>
 </div>

 <div id="endingscreen" class="gamelayer">
 <div>
 <p id="endingmessage">The Level Is Over Message</p>
 �<p id="playcurrentlevel" class="endingoption"><img src="images/

icons/prev.png" alt="Replay">Replay Current Level</p>

Chapter 2 ■ Creating a Basic Game World

23

 �<p id="playnextlevel" class="endingoption"><img src="images/icons/
next.png" alt="Next">Play Next Level</p>

 �<p id="returntolevelscreen" class="endingoption"><img src="images/
icons/return.png" alt="Return">Return to Level Screen</p>

 </div>
 </div>

 </div>
 </div>
 </body>
</html>

As you can see, we defined a main gamecontainer div element that contains each of the game
layers: gamestartscreen, levelselectscreen, loadingscreen, scorescreen, endingscreen, and finally
gamecanvas. All of these are placed inside a wrapper div, which we can later use for positioning and resizing
the game around the page as needed.

We also link to two external files: game.js for JavaScript and styles.css for CSS. Keeping the JavaScript
and CSS as separate files makes the code easier to maintain. In larger projects, it is common to break out
the CSS and JavaScript into multiple files, and very large projects often use a dependency loading system
to automatically load all the distinct JavaScript files. For this game, single files for JavaScript and CSS will
suffice.

We will start by creating the styles.css file and adding styles for the game container and the starting
menu screen, as shown in Listing 2-2.

Listing 2-2.  CSS Styles for the Container and Start Screen (styles.css)

body {
 background: #000900;

 /* Prevent the ugly blue highlighting from accidental selection of text */
 user-select: none;
}

#wrapper {
 position: absolute;
}

#gamecontainer {

 /* Set game container width, height, and background */
 width: 640px;
 height: 480px;
 background: url("images/splashscreen.png");
}

.gamelayer {
 width: 100%;
 height: 100%;
 position: absolute;
 display: none;
}

Chapter 2 ■ Creating a Basic Game World

24

/* Game Starting Menu Screen */

#gamestartscreen {
 padding-top: 250px;
 text-align: center;
}

#gamestartscreen img {
 margin: 10px;
 cursor: pointer;
}

We have done the following in this CSS style sheet so far:

•	 Set the default page background color to almost black with a slight tinge of green and
disabled highlighting of text or elements by dragging the mouse.

•	 Defined our game container with a size of 640px by 480px.

•	 Made sure all game layers are positioned using absolute positioning (they are placed
on top of each other) so that we can show/hide and superimpose layers as needed.
Each of these layers has the same size as the parent game container and is hidden by
default.

•	 Set our game splash screen image as the main container background so it is the first
thing a player sees when the page loads.

•	 Added some styling for our game start screen (the starting menu), which has options
such as starting a new game and changing game settings.

■■ Note  All the images and source code are available from this book’s product page on the Apress website
(www.apress.com/9781484229095) by clicking the Download Source Code button. If you would like to follow
along, you can copy all the asset files into a fresh folder and build the game on your own.

If we open in a browser the HTML file we have created so far, we see the game splash screen, as shown
in Figure 2-1.

http://www.apress.com/9781484229095

Chapter 2 ■ Creating a Basic Game World

25

We need to add some JavaScript code to start showing the main menu, the loading screen, and the
game. We will keep all our game-related JavaScript code in a single file (js/game.js).

We start by defining a game object that will contain most of our game code. The first thing we need is an
init() function that will be called after the browser loads the HTML document.

Listing 2-3.  A Basic game Object (js/game.js)

var game = {
 // Start initializing objects, preloading assets and display start screen
 init: function() {
 //Get handler for game canvas and context
 game.canvas = document.getElementById("gamecanvas");
 game.context = game.canvas.getContext("2d");

 // Hide all game layers and display the start screen
 game.hideScreens();
 game.showScreen("gamestartscreen");
 },

 //
 hideScreens: function() {
 var screens = document.getElementsByClassName("gamelayer");

Figure 2-1.  The game splash screen

Chapter 2 ■ Creating a Basic Game World

26

 // Iterate through all the game layers and set their display to none
 for (let i = screens.length - 1; i >= 0; i--) {
 var screen = screens[i];

 screen.style.display = "none";
 }
 },

 hideScreen: function(id) {
 var screen = document.getElementById(id);

 screen.style.display = "none";
 },

 showScreen: function(id) {
 var screen = document.getElementById(id);

 screen.style.display = "block";
 },
};

The code in Listing 2-3 defines a JavaScript object called game with an init() function. This init()
function first saves references to the game canvas and context so we can refer to them more easily using
game.context and game.canvas. After that it hides all game layers and shows the game start screen using
the hideScreens() and showScreen() methods. Next, we have three helper methods, hideScreens(),
hideScreen(), and showScreen(), which modify the display CSS attribute to help us show or hide the
menu screens that we created.

Trying to manipulate image and div elements before confirming that the page has loaded completely
will result in unpredictable behavior (including JavaScript errors). We can safely call this game.init()
method after the window has loaded by adding a small snippet of JavaScript code at the bottom of game.js
(shown in Listing 2-4).

Listing 2-4.  Calling game.init() Method Safely Using the load Event

// Initialize game once page has fully loaded
window.addEventListener("load", function() {
 game.init();
});

When we open our HTML code in the browser, the browser initially displays the splash screen and then
displays the game start screen on top of the splash screen, as shown in Figure 2-2.

Chapter 2 ■ Creating a Basic Game World

27

Level Selection
So far we have waited for the game HTML file to load completely and then displayed a main menu with
two options, Play and Settings. When the user clicks the Play button, ideally we would like to display a level
selection screen that shows a list of available levels.

Before we can do this, we need to create an object for handling levels. This object will contain both the
level data and some simple functions for handling level initialization. We will create this levels object inside
game.js and place it after the game object, as shown in Listing 2-5.

Listing 2-5.  Simple levels Object with Level Data and Functions

 var levels = {
 // Level data
 data: [{ // First level
 foreground: "desert-foreground",
 background: "clouds-background",
 entities: []
 }, { // Second level
 foreground: "desert-foreground",
 background: "clouds-background",
 entities: []
 }],

Figure 2-2.  The game start screen and menu options

Chapter 2 ■ Creating a Basic Game World

28

 // Initialize level selection screen
 init: function() {
 var levelSelectScreen = document.getElementById("levelselectscreen");

 // An event handler to call
 var buttonClickHandler = function() {
 game.hideScreen("levelselectscreen");

 // Level label values are 1, 2. Levels are 0, 1
 levels.load(this.value - 1);
 };

 for (let i = 0; i < levels.data.length; i++) {
 var button = document.createElement("input");

 button.type = "button";
 button.value = (i + 1); // Level labels are 1, 2
 button.addEventListener("click", buttonClickHandler);

 levelSelectScreen.appendChild(button);
 }

 },

 // Load all data and images for a specific level
 load: function(number) {
 }
};

The levels object has a data array that contains information about each of the levels. For now, the
only level information we store is a background image and foreground image. However, we will be adding
information about the hero characters, the villains, and the destructible entities within each level. This will
allow us to add new levels very quickly by just adding new items to the array.

The next thing the levels object contains is an init() function that goes through the level data and
dynamically generates buttons for each of the levels. Each of the buttons is assigned a click event handler,
which calls the load() method and then hides the level selection screen. Note that we use a level index
starting from 0 internally since JavaScript arrays are zero-based, but when we display the level numbers to
the player on the level selection screen, we start the numbering from 1.

Finally, the levels object has a placeholder load() method, which is currently empty.
We will call levels.init() from inside the game.init() method to generate the level selection screen

buttons when the game is first initialized. The game.init() method now looks as shown in Listing 2-6.

Listing 2-6.  Initializing Levels from game.init()

init: function() {
 //Get handler for game canvas and context
 game.canvas = document.getElementById("gamecanvas");
 game.context = game.canvas.getContext("2d");

Chapter 2 ■ Creating a Basic Game World

29

 // Initialize objects
 levels.init();

 // Hide all game layers and display the start screen
 game.hideScreens();
 game.showScreen("gamestartscreen");
},

We also need to add some CSS styling for the buttons inside styles.css, as shown in Listing 2-7.

Listing 2-7.  CSS Styles for the Level Selection Screen

/* Level Selection Screen */

#levelselectscreen {
 padding-top: 150px;
 padding-left: 50px;
}

#levelselectscreen input {
 margin: 20px;
 cursor: pointer;

 background: url("images/icons/level.png") no-repeat;
 color: yellow;
 font-size: 20px;

 width: 64px;
 height: 64px;

 border: 0;

 /* Remove the default blue border when an input is selected */
 outline: 0;
}

This fairly simple CSS code adds some padding, margins, and styling to the buttons. It also sets a default
background image for the buttons.

The next thing we need to do is create, inside the game object, a simple game.showLevelScreen()
method that hides the main menu screen and displays the level selection screen, as shown in Listing 2-8.

Listing 2-8.  showLevelScreen() Method Inside the game Object

showLevelScreen: function() {
 game.hideScreens();
 game.showScreen("levelselectscreen");
},

Chapter 2 ■ Creating a Basic Game World

30

This method first hides all the other game layers and then shows the levelselectscreen layer.
The last thing we need to do is call the game.showLevelScreen() method when the user clicks the Play

button. We do this by calling the method from the play image’s onclick event in our HTML file:

<img src="images/icons/play.png" alt="Play Game"
 onclick="game.showLevelScreen()">

Now, when we start the game and click the Play button, the browser hides the main menu, and shows
the level selection screen with buttons for each of the levels, as shown in Figure 2-3.

Right now, we only have a couple of levels showing. However, as we add more levels, the code will
automatically detect the levels and add the right number of buttons (formatted properly, thanks to the CSS).
When the user clicks these buttons, the browser will hide the level selection screen and then call the
levels.load() method that we have yet to implement.

Loading Images
Before we implement the levels themselves, we need to put in place the image loader and the loading
screen. This will allow us to programmatically load the images for a level and start the game once all the
assets have finished loading.

Figure 2-3.  The level selection screen

Chapter 2 ■ Creating a Basic Game World

31

We are going to design a simple loading screen that contains an animated GIF with a progress bar image
and some text above it showing the number of images loaded so far. First, we need to add the CSS in Listing 2-9
to styles.css.

Listing 2-9.  CSS for the Loading Screen

/* Loading Screen */

#loadingscreen {
 background: rgba(100, 100, 100, 0.5);
}

#loadingmessage {
 margin-top: 400px;
 text-align: center;
 height: 48px;
 color: white;
 background: url("images/loader.gif") no-repeat center;
 font: 12px Arial;
}

This CSS adds a dim gray color over the game background to let the user know that the game is
currently processing something and is not ready to receive any user input. It also displays a loading message
in white text. Finally, it places a progress bar image, which is an animated GIF file, in the background.

The next step is to create a JavaScript asset loader based on the code from Chapter 1. The loader will do
the work of actually loading the assets and then updating the loadingscreen div element. We will define a
loader object inside game.js, as shown in Listing 2-10.

Listing 2-10.  The Image/Sound Asset Loader

var loader = {
 loaded: true,
 loadedCount: 0, // Assets that have been loaded so far
 totalCount: 0, // Total number of assets that need loading

 init: function() {
 // Check for sound support
 var mp3Support, oggSupport;
 var audio = document.createElement("audio");

 if (audio.canPlayType) {
 // Currently canPlayType() returns: "", "maybe" or "probably"
 mp3Support = "" !== audio.canPlayType("audio/mpeg");
 oggSupport = "" !== audio.canPlayType("audio/ogg; codecs=\"vorbis\"");
 } else {
 // The audio tag is not supported
 mp3Support = false;
 oggSupport = false;
 }

 // Check for ogg, then mp3, and finally set soundFileExtn to undefined
 loader.soundFileExtn = oggSupport ? ".ogg" : mp3Support ? ".mp3" : undefined;
 },

http://dx.doi.org/10.1007/978-1-4842-2910-1_1

Chapter 2 ■ Creating a Basic Game World

32

 loadImage: function(url) {
 this.loaded = false;
 this.totalCount++;

 game.showScreen("loadingscreen");

 var image = new Image();

 image.addEventListener("load", loader.itemLoaded, false);
 image.src = url;

 return image;
 },

 soundFileExtn: ".ogg",

 loadSound: function(url) {
 this.loaded = false;
 this.totalCount++;

 game.showScreen("loadingscreen");

 var audio = new Audio();

 audio.addEventListener("canplaythrough", loader.itemLoaded, false);
 audio.src = url + loader.soundFileExtn;

 return audio;
 },

 itemLoaded: function(ev) {
 �// Stop listening for event type (load or canplaythrough) for this item

now that it has been loaded
 ev.target.removeEventListener(ev.type, loader.itemLoaded, false);

 loader.loadedCount++;

 �document.getElementById("loadingmessage").innerHTML = "Loaded " + loader.loadedCount
+ " of " + loader.totalCount;

 if (loader.loadedCount === loader.totalCount) {
 // Loader has loaded completely..
 // Reset and clear the loader
 loader.loaded = true;
 loader.loadedCount = 0;
 loader.totalCount = 0;

 // Hide the loading screen
 game.hideScreen("loadingscreen");

Chapter 2 ■ Creating a Basic Game World

33

 // and call the loader.onload method if it exists
 if (loader.onload) {
 loader.onload();
 loader.onload = undefined;
 }
 }
 }
};

The asset loader in Listing 2-10 has the same elements we discussed in Chapter 1, but it is built in a
more modular way. It has the following components:

•	 An init() method that detects the supported audio file format and saves it.

•	 Two methods for loading images and audio files: loadImage() and loadSound().
Both methods increment the totalCount variable and show the loading screen when
invoked. The methods then dynamically create the asset, set the src attribute, and
set the appropriate event listener (load for images and canplaythrough for audio) to
call itemLoaded() once the asset is loaded.

•	 An itemLoaded() method that is invoked each time an asset finishes loading. This
method updates the loaded count and the loading message. Once all the assets are
loaded, the loading screen is hidden and an optional loader.onload() method is
called (if defined). This lets us assign a callback function to be called once the images
are loaded.

■■ Note  Using a callback method makes it easy for us to wait while the images are loading and start the
game once all the images have loaded.

Before the loader can be used, we need to call the loader.init() method from inside game.init()
so that the loader is initialized when the game is getting initialized. The game.init() method now looks as
shown in Listing 2-11.

Listing 2-11.  Initializing the Loader from game.init()

init: function() {
 //Get handler for game canvas and context
 game.canvas = document.getElementById("gamecanvas");
 game.context = game.canvas.getContext("2d");

 // Initialize objects
 levels.init();
 loader.init();

 // Hide all game layers and display the start screen
 game.hideScreens();
 game.showScreen("gamestartscreen");
},

http://dx.doi.org/10.1007/978-1-4842-2910-1_1

Chapter 2 ■ Creating a Basic Game World

34

We will use the loader by calling one of the two load methods, loadImage() or loadSound(). When
either of these load methods is called, the browser will display the loading screen shown in Figure 2-4 until
all the images and sounds are loaded.

■■ Note  You can optionally have different images for each of these screens by setting a different background
property style for each div element.

Loading Levels
Now that we have an image loader in place, we can work on getting the levels loaded. For now, let’s start with
loading the game background, foreground, and slingshot images by defining a load() method inside the
levels object, as shown in Listing 2-12.

Listing 2-12.  Basic Skeleton for the load() Method Inside the levels Object

 // Load all data and images for a specific level
load: function(number) {

 // Declare a new currentLevel object
 game.currentLevel = { number: number };
 game.score = 0;

 document.getElementById("score").innerHTML = "Score: " + game.score;
 var level = levels.data[number];

Figure 2-4.  The loading screen

Chapter 2 ■ Creating a Basic Game World

35

 // Load the background, foreground, and slingshot images
 �game.currentLevel.backgroundImage = loader.loadImage("images/backgrounds/" + level.

background + ".png");
 �game.currentLevel.foregroundImage = loader.loadImage("images/backgrounds/" + level.

foreground + ".png");
 game.slingshotImage = loader.loadImage("images/slingshot.png");
 game.slingshotFrontImage = loader.loadImage("images/slingshot-front.png");

 // Call game.start() once the assets have loaded
 loader.onload = game.start;
}

The load() function creates a currentLevel object to store the loaded level data. So far we have only
loaded a few images for the background, the foreground, and the front and back of the slingshot. We will
eventually also use this method to load the heroes, villains, and blocks needed to build the game.

One last thing to note is that we call the game.start() method once the images are loaded by setting an
onload callback. This start() method is where the actual game will be drawn.

Animating the Game
As discussed in Chapter 1, to animate our game, we will call our drawing and animation code multiple times
a second using requestAnimationFrame.

We use the game.start() method to set up the animation loop, and then we draw the level inside the
game.animate() method. The code is shown in Listing 2-13.

Listing 2-13.  The start() and animate() Functions Inside the game Object

// Store current game state - intro, wait-for-firing, firing, fired, load-next-hero,
success, failure
mode: "intro",

// X & Y coordinates of the slingshot
slingshotX: 140,
slingshotY: 280,

// X & Y coordinate of point where band is attached to slingshot
slingshotBandX: 140 + 55,
slingshotBandY: 280 + 23,

// Flag to check if the game has ended
ended: false,

// The game score
score: 0,

// X axis offset for panning the screen from left to right
offsetLeft: 0,

start: function() {
 game.hideScreens();

http://dx.doi.org/10.1007/978-1-4842-2910-1_1

Chapter 2 ■ Creating a Basic Game World

36

 // Display the game canvas and score
 game.showScreen("gamecanvas");
 game.showScreen("scorescreen");

 game.mode = "intro";
 game.currentHero = undefined;

 game.offsetLeft = 0;
 game.ended = false;

 game.animationFrame = window.requestAnimationFrame(game.animate, game.canvas);

},

handleGameLogic: function() {
 // Temporary placeholder code. Keep panning the game towards the right
 game.offsetLeft++;
},

animate: function() {

 // Handle panning, game states, and control flow
 game.handleGameLogic();

 // Draw the background with parallax scrolling
 �// First draw the background image, offset by a fraction of the offsetLeft distance (1/4)
 // The bigger the fraction, the closer the background appears to be
 �game.context.drawImage(game.currentLevel.backgroundImage, game.offsetLeft / 4, 0, game.

canvas.width, game.canvas.height, 0, 0, game.canvas.width, game.canvas.height);
 // Then draw the foreground image, offset by the entire offsetLeft distance
 �game.context.drawImage(game.currentLevel.foregroundImage, game.offsetLeft, 0, game.

canvas.width, game.canvas.height, 0, 0, game.canvas.width, game.canvas.height);

 // Draw the base of the slingshot, offset by the entire offsetLeft distance
 �game.context.drawImage(game.slingshotImage, game.slingshotX - game.offsetLeft, game.

slingshotY);

 // Draw the front of the slingshot, offset by the entire offsetLeft distance
 �game.context.drawImage(game.slingshotFrontImage, game.slingshotX - game.offsetLeft,

game.slingshotY);

 if (!game.ended) {
 game.animationFrame = window.requestAnimationFrame(game.animate, game.canvas);
 }
},

Chapter 2 ■ Creating a Basic Game World

37

The preceding code consists primarily of two methods, game.start() and game.animate(). The
start() method does the following:

•	 Initializes a few variables that we need in the game: offsetLeft and mode.
offsetLeft will be used for panning the game view around the entire level, and mode
will be used to store the current state of the game (intro, wait for firing, firing, fired).

•	 Hides all other layers and displays the canvas layer and the score layer, which is a
narrow bar on the top of the screen that contains the game score and a few game
interface control elements.

•	 Sets the game animation interval to call the animate() function by using window.
requestAnimationFrame.

The bigger method, animate(), will do all the animation and drawing within our game. The method
starts with calling a temporary placeholder handleGameLogic() method, which we will use to handle
panning as well as the game control flow using game modes. We will be implementing these later. For now,
it contains a single line of code to keep increasing the offsetLeft property, which should pan the game
screen toward the right.

We then draw the background and foreground images. For both the images, we first crop a canvas-sized
portion of the image that is offset appropriately along the x-axis using the offsetLeft variable, and then
draw it onto the canvas. One thing to note is that the background image and foreground image are moved
at different speeds relative to the left offset: the background image is moved only one-fourth of the distance
that the foreground image is moved. This difference in movement speed of the two layers will give us the
illusion that the clouds are further away once we start panning around the level.

After the backgrounds, we draw the slingshot in the foreground, subtracting offsetLeft from its x-axis
position so that the slingshot appears to stay in the same place while the game pans to the right.

Finally, we check if the game.ended flag has been set and, if not, use requestAnimationFrame to call
animate() again. We can use the game.ended flag later to decide when to stop the animation loop.

■■ Note  Parallax scrolling is a technique used to create an illusion of depth by moving background images
slower than foreground images. This technique exploits the fact that objects at a distance always appear to
move slower than objects that are close by.

Before we can try out the code, we need to add a little more CSS styling inside styles.css to implement
our score screen panel, as shown in Listing 2-14.

Listing 2-14.  CSS for Score Screen Panel

/* Score Screen */

#scorescreen {
 height: 60px;
 font: 32px "Comic Sans MS";
 text-shadow: 0 0 2px black;
 color: white;
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ Creating a Basic Game World

38

#scorescreen img {
 opacity: 0.6;
 top: 5%;
 left: 5%;
 position: relative;
 padding: 8px;
 cursor: pointer;
}

#score {
 position: absolute;
 top: 5%;
 right: 5%;
}

The scorescreen layer, unlike the other layers in our game, is just a narrow band at the very top of our
game. Along with the usual positioning and styling, we set the opacity for the interface buttons to make
them translucent. This ensures that the interface buttons (for toggling music and restarting the level) do not
distract from the rest of the game.

When we run this code and try to start a level, we should see a basic level with the interface buttons and
the score displayed at the top of the screen, as shown in Figure 2-5.

Figure 2-5.  A basic level with the score

Chapter 2 ■ Creating a Basic Game World

39

Our crude implementation of panning currently causes the screen to slowly pan toward the right until
the image is no longer visible. Don’t worry, we will be working on a better implementation soon.

As you can see, the clouds in the background move slower than the foreground because we move the
background layer at a different speed, making it seem like the clouds are much farther than the mountains.
We could potentially add more layers and move them at different speeds to build more of an effect. For
example, the foreground with the cactus, the mountains, and the clouds in the background could form three
distinct layers, moving at three different speeds. However, the two layers that we have right now are sufficient
to illustrate the parallax effect fairly well.

Now that we have a basic level in place, we will add the ability to handle mouse input and implement
panning around the level with game states.

Handling Mouse Input
JavaScript has several events that we can use to capture mouse input: mousedown, mouseup, and mousemove.
To keep things simple we will create a separate mouse object inside game.js to handle all the mouse events,
as shown in Listing 2-15.

Listing 2-15.  Handling Mouse Events

var mouse = {
 x: 0,
 y: 0,
 down: false,
 dragging: false,

 init: function() {
 var canvas = document.getElementById("gamecanvas");

 canvas.addEventListener("mousemove",
 mouse.mousemovehandler, false);
 canvas.addEventListener("mousedown",
 mouse.mousedownhandler, false);
 canvas.addEventListener("mouseup",
 mouse.mouseuphandler, false);
 canvas.addEventListener("mouseout",
 mouse.mouseuphandler, false);
 },

 mousemovehandler: function(ev) {
 var offset = game.canvas.getBoundingClientRect();

 mouse.x = ev.clientX - offset.left;
 mouse.y = ev.clientY - offset.top;

 if (mouse.down) {
 mouse.dragging = true;
 }

 ev.preventDefault();
 },

Chapter 2 ■ Creating a Basic Game World

40

 mousedownhandler: function(ev) {
 mouse.down = true;

 ev.preventDefault();
 },

 mouseuphandler: function(ev) {
 mouse.down = false;
 mouse.dragging = false;

 ev.preventDefault();
 }
};

This mouse object has an init() method that sets event handlers for when the mouse is moved, when a
mouse button is pressed or released, and when the mouse leaves the canvas area. The following are the three
handler methods that we use:

•	 mousemovehandler(): Uses the canvas’s getBoundingClientRect() method and the
event object’s clientX and clientY properties to calculate the x and y coordinates of
the mouse relative to the top-left corner of the canvas and stores them. It also checks
whether the mouse button is pressed down while the mouse is being moved and, if
so, sets the dragging variable to true.

•	 mousedownhandler(): Sets the down variable to true.

•	 mouseuphandler(): Sets the down and dragging variables to false. If the mouse
leaves the canvas area, we call this same method.

All three methods additionally contain an extra line to prevent the default browser behavior for the
mouse event.

Now that we have these methods in place, we can add code to interact with the game elements as
needed. We also have access to the mouse.x, mouse.y, mouse.dragging, and mouse.down properties from
anywhere within the game. As with all the previous init() methods, we call this method from game.init(),
so it now looks as shown in Listing 2-16.

Listing 2-16.  Initializing the Mouse from game.init()

init: function() {
 // Get handler for game canvas and context
 game.canvas = document.getElementById("gamecanvas");
 game.context = game.canvas.getContext("2d");

 // Initialize objects
 levels.init();
 loader.init();
 mouse.init();

 // Hide all game layers and display the start screen
 game.hideScreens();
 game.showScreen("gamestartscreen");
},

With this bit of functionality in place, let’s now implement some basic game states and panning.

Chapter 2 ■ Creating a Basic Game World

41

Defining Our Game States
Remember the game.mode variable that we briefly looked at earlier when we were creating game.start()?
Well, this is where it comes into the picture. We will be storing the current state of our game in this variable.
Some of the modes or states that we expect our game to go through are as follows:

•	 intro: The level has just loaded and the game will pan around the level once to show
the player everything in the level.

•	 load-next-hero: The game checks whether there is another hero to load onto the
slingshot and, if so, loads the hero. If we run out of heroes or all the villains have
been destroyed, the level ends.

•	 wait-for-firing: The game pans back to the slingshot area and waits for the user
to fire the “hero.” At this point, we are waiting for the user to click the hero. The user
may also optionally drag the canvas screen with the mouse to pan around the level.

•	 firing: This happens after the user clicks the hero but before the user releases the
mouse button. At this point, we are waiting for the user to drag the mouse around to
decide the angle and height at which to fire the hero.

•	 fired: This happens after the user releases the mouse button. At this point, we
launch the hero and let the physics engine handle everything while the user just
watches. The game will pan so that the user can follow the path of the hero as far as
possible.

We may implement more states as needed. One thing to note about these different states is that only
one of them is possible at a time, and there are clear conditions for transitioning from one state to another,
and what is possible during each state. This construct is popularly known as a finite state machine in
computer science. We will be using these states to create some simple conditions for our panning code.

First we will build a panTo() method that will pan the screen to any specific location on the game, as
shown in Listing 2-17. All of this code goes inside the game object after the start() method.

Listing 2-17.  Implementing a panTo() Function

// Maximum panning speed per frame in pixels
maxSpeed: 3,

// Pan the screen so it centers at newCenter
// (or at least as close as possible)
panTo: function(newCenter) {

 // Minimum and Maximum panning offset
 var minOffset = 0;
 var maxOffset = game.currentLevel.backgroundImage.width - game.canvas.width;

 // The current center of the screen is half the screen width from the left offset
 var currentCenter = game.offsetLeft + game.canvas.width / 2;

Chapter 2 ■ Creating a Basic Game World

42

 �// If the distance between new center and current center is > 0 and we have not panned
to the min and max offset limits, keep panning

 �if (Math.abs(newCenter - currentCenter) > 0 && game.offsetLeft <= maxOffset && game.
offsetLeft >= minOffset) {

 // We will travel half the distance from the newCenter to currentCenter in each tick
 // This will allow easing
 var deltaX = (newCenter - currentCenter) / 2;

 �// However if deltaX is really high, the screen will pan too fast, so if it is
greater than maxSpeed

 if (Math.abs(deltaX) > game.maxSpeed) {
 // Limit deltaX to game.maxSpeed (and keep the sign of deltaX)
 deltaX = game.maxSpeed * Math.sign(deltaX);
 }

 // And if we have almost reached the goal, just get to the ending in this turn
 if (Math.abs(deltaX) <= 1) {
 deltaX = (newCenter - currentCenter);
 }

 // Finally add the adjusted deltaX to offsetX so we move the screen by deltaX
 game.offsetLeft += deltaX;

 // And make sure we don't cross the minimum or maximum limits
 if (game.offsetLeft <= minOffset) {
 game.offsetLeft = minOffset;

 �// Let calling function know that we have panned as close as possible to the
newCenter

 return true;
 } else if (game.offsetLeft >= maxOffset) {
 game.offsetLeft = maxOffset;

 �// Let calling function know that we have panned as close as possible to the
newCenter

 return true;
 }

 } else {
 �// Let calling function know that we have panned as close as possible to the

newCenter
 return true;
 }
},

The panTo() method slowly pans the screen to a given x coordinate (newCenter) and returns true either
when the screen center reaches the coordinate or when the screen has panned to the extreme left or right.

The speed of panning varies based on the distance of the current center from newCenter, so the panning
slows down as the screen pans closer to its destination. The code caps the panning speed using maxSpeed so
that the panning never becomes too fast.

Each time panTo() is called, the screen center is shifted toward newCenter while there is still space to pan.

Chapter 2 ■ Creating a Basic Game World

43

Eventually, once the screen either reaches its destination or reaches as close as possible (when
offset reaches either minOffset or maxOffset), the method returns true. The maxOffset is calculated by
comparing the width of the background image with that of the canvas, so the game will never pan past the
end of the background image.

Now that we have an effective way to pan the screen, we will use it to implement panning within the
handleGameLogic() method, as shown in Listing 2-18.

Listing 2-18.  Implementing Panning in handleGameLogic()

handleGameLogic: function() {
 if (game.mode === "intro") {
 if (game.panTo(700)) {
 game.mode = "load-next-hero";
 }
 }

 if (game.mode === "wait-for-firing") {
 if (mouse.dragging) {
 game.panTo(mouse.x + game.offsetLeft);
 } else {
 game.panTo(game.slingshotX);
 }
 }

 if (game.mode === "load-next-hero") {
 // First count the heroes and villains and populate their respective arrays
 // Check if any villains are alive, if not, end the level (success)
 // Check if there are any more heroes left to load, if not end the level (failure)
 // Load the hero and set mode to wait-for-firing
 game.mode = "wait-for-firing";
 }

 if (game.mode === "firing") {
 // If the mouse button is down, allow the hero to be dragged around and aimed
 // If not, fire the hero into the air
 }

 if (game.mode === "fired") {
 // Pan to the location of the current hero as he flies
 // Wait till the hero stops moving or is out of bounds
 }

 if (game.mode === "level-success" || game.mode === "level-failure") {
 // First pan all the way back to the left
 // Then show the game as ended and show the ending screen
 }

},

Chapter 2 ■ Creating a Basic Game World

44

We have now improved the handleGameLogic() method so it implements several of the game states we
described earlier.

When the game is in the default intro mode, we pan the screen all the way to the right and, once there,
switch the mode to load-next-hero. We haven’t implemented the load-next-hero, firing, fired, level-
success, or level-failure states yet. For now, the code just flips the load-next-hero mode on to wait-
for-firing, which pans the screen back to the slingshot.

If we run the code we have so far, we will see that as the level starts, the screen pans toward the right
until we reach the right extreme and panTo() returns true (see Figure 2-6). The game mode then changes
from intro to wait-for-firing and the screen slowly pans back to the starting position and waits for user
input.

We can also use the mouse to interact with the level, by clicking and holding the mouse on the right side
of the screen to make the screen pan right and then releasing the mouse button to pan back to the left.

Figure 2-6.  The final result: panning around the level

Chapter 2 ■ Creating a Basic Game World

45

Summary
In this chapter we set out to develop the basic framework for our game.

We started by defining and implementing a splash screen and game menu. We then created a simple
level system and an asset loader to dynamically load the images used by each level. We set up the game
canvas and animation loop and implemented parallax scrolling to give the illusion of depth. We used game
states to simplify our game flow and move around our level in an interesting way. Finally, we captured and
used mouse events to let the player pan around the level.

At this point we have a basic game world that we can interact with, so we are ready to add the various
game entities and game physics.

In the next chapter we will take a break from this game code to briefly explore the basics of the Box2D
physics engine and see how it can be used to model typical game physics. We will also look at how to
animate characters using data from the physics engine.

Once we have done this, in Chapter 4, we will integrate the Box2D engine with our existing game
framework so that the game entities move realistically within our game world, after which we can actually
start playing the game.

http://dx.doi.org/10.1007/978-1-4842-2910-1_4

47© Aditya Ravi Shankar 2017
A. R. Shankar, Pro HTML5 Games, DOI 10.1007/978-1-4842-2910-1_3

CHAPTER 3

Physics Engine Basics

A physics engine is a program that provides an approximate simulation of a game world by creating
a mathematical model for all the object interactions and collisions within the game. It accounts for
gravity, elasticity, friction, and conservation of momentum between colliding objects so that the objects
move in a believable way. For our game, we are going to be using an existing and very popular physics
engine called Box2D.

The Box2D engine is a free, open source physics engine that was originally written in C++ by Erin Catto.
It has been used in a lot of popular physics-based games, including Crayon Physics Deluxe, Rolando, and
Angry Birds. The engine has since been ported to several other languages, including Java, ActionScript, C#,
and JavaScript. We will be using a JavaScript port of Box2D known as Box2dWeb. You can find the latest
source code and documentation for Box2dWeb at https://github.com/hecht-software/box2dweb.

Before we start integrating the engine into our own game, let’s go over some of the basic components of
Box2D for creating and simulating worlds.

Box2D Fundamentals
Box2D uses a few basic objects to define and simulate the game world. The most important of these objects
are as follows:

•	 World: The main Box2D object that contains all the world objects and simulates the
game physics.

•	 Body: A rigid body that may consist of one or more shapes attached to the body
via fixtures.

•	 Shape: A two-dimensional shape such as a circle or a polygon, which are the
fundamental shapes used within Box2D.

•	 Fixture: Used to attach a shape to a body for collision detection. Fixtures hold
additional, non-geometric data such as friction, collision, and filters.

•	 Joint: Used to constrain two bodies together in different ways. For example, a
revolute joint constrains two bodies to share a common point while they are free to
rotate about the point.

When using Box2D in our game, we first need to define the game world. We then add bodies and their
corresponding shapes using fixtures. Once this is done, we step through the world and let Box2D move the
bodies around. Finally, we draw the bodies after each step. Most of the heavy lifting is done by the Box2D
world object.

Now let’s look at these steps in more detail as we use Box2D to create a simple world.

https://github.com/hecht-software/box2dweb

Chapter 3 ■ Physics Engine Basics

48

Setting Up Box2D
We will start with a simple HTML file just like in the previous chapters (box2d-demo.html). The first thing we
need to do is include a reference to the Box2dWeb library (Box2d.min.js) in the head section of the HTML
file (see Listing 3-1).

Listing 3-1.  Basic HTML5 File for Box2D (box2d-demo.html)

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-type" content="text/html; charset=utf-8">
 <title>Box2d Demo</title>
 <script src="Box2d.min.js" type="text/javascript"></script>
 <script src="box2d-demo.js" type="text/javascript"></script>
 </head>
 <body onload="init();">
 <canvas id="canvas" width="640" height="480" style="border: 1px solid black;">
 Your browser does not support HTML5 Canvas
 </canvas>
 </body>
</html>

As you see in Listing 3-1, the box2d.html file consists of only a single canvas element that we will be
drawing on. We refer to two JavaScript files: the Box2dWeb library file and a second file that we will use to
store all our JavaScript code (box2d-demo.js). Once the HTML file has loaded completely, it will call an
init() function that we will use to initialize the Box2D world and start animating.

Referencing the Box2dWeb JavaScript file gives us access to the Box2D object in our JavaScript code.
This object contains all the objects that we will need, including the world (Box2D.Dynamics.b2World) and
the body (Box2D.Dynamics.b2Body).

It is convenient to define the commonly used objects as variables to save us some typing effort when we
reference them. The first thing we will do in our JavaScript file (box2d-demo.js) is to declare these variables
(see Listing 3-2).

Listing 3-2.  Defining Commonly Used Objects as Variables

// Declare all the commonly used objects as variables for convenience
var b2Vec2 = Box2D.Common.Math.b2Vec2;
var b2BodyDef = Box2D.Dynamics.b2BodyDef;
var b2Body = Box2D.Dynamics.b2Body;
var b2FixtureDef = Box2D.Dynamics.b2FixtureDef;
var b2World = Box2D.Dynamics.b2World;
var b2PolygonShape = Box2D.Collision.Shapes.b2PolygonShape;
var b2CircleShape = Box2D.Collision.Shapes.b2CircleShape;
var b2DebugDraw = Box2D.Dynamics.b2DebugDraw;
var b2RevoluteJointDef = Box2D.Dynamics.Joints.b2RevoluteJointDef;

Once we define these variables as shortcuts, we can access the Box2D.Dynamics.b2World object by
using the b2World variable. Now, let’s start defining our world.

Chapter 3 ■ Physics Engine Basics

49

Defining the World
The Box2D.Dynamics.b2World object is the heart of Box2D. It contains methods for adding and removing
objects, methods for simulating physics in incremental steps, and even an option for drawing the world on
a canvas. Before we can start using Box2D, we need to create the b2World object. We do this in an init()
function that we create inside our JavaScript file (box2d-demo.js), as shown in Listing 3-3.

Listing 3-3.  Creating the b2World Object

var world;

//30 pixels on our canvas correspond to 1 meter in the box2d world
var scale = 30;

function init() {
 // Setup the box2d World that will do most of the physics calculation
 var gravity = new b2Vec2(0, 9.8); // Declare gravity as 9.8 m/s^2 downwards
 // Allow objects that are at rest to fall asleep and be excluded from calculations
 var allowSleep = true;

 world = new b2World(gravity, allowSleep);
}

The init() function starts by defining b2World and passing the following two parameters to its
constructor:

•	 gravity: Defined as a vector using a b2Vec2 object, which takes two parameters, the
x and y components. We set the world’s gravity to be 9.8 meters per square second
in the downward direction. The ability to set a custom gravity lets us simulate
environments with different gravity fields, such as the moon or fantasy worlds with
very low or very high gravity. We can also set gravity to 0 and use only the collision
detection features of Box2D for games in which we don’t need gravity (space-based
games or top-down view games like racing games).

•	 allowSleep: Used by b2World to decide whether or not to include objects that are
at rest during its simulation calculations. Allowing objects that are at rest to be
excluded from calculations reduces the number of unnecessary calculations and
thus helps improve performance. Even if an object is asleep, it will wake up if a
moving body collides with it.

One other thing that we do within our code is define a scale variable that we will use to convert
between Box2D units (meters) and our game units (pixels).

■■ Note  Box2D uses the metric system for all its calculations. It works best with objects that are between 0.1
meter and 10 meters large. Since we use pixels when drawing on our canvas, we will need to convert between
pixels and meters. A commonly used scale is 30 pixels to 1 meter.

Now that we have a basic world, we need to start adding bodies to it. The first body we will create is a
static floor at the bottom of our world.

Chapter 3 ■ Physics Engine Basics

50

Adding Our First Body: The Floor
Creating a body in Box2D involves the following steps:

	 1.	 Declare a body definition in a b2BodyDef object. The b2BodyDef object contains
details such as the position of the body (x and y coordinates) and the type of body
(static or dynamic). Static bodies are not affected by gravity and collisions with
other bodies and remain static, while dynamic bodies are affected by interactions
with external forces and will fall, bounce, roll, and behave like typical objects in
the real world.

	 2.	 Pass the body definition object to the createBody() method of the world and get
back a body object.

	 3.	 Declare a fixture definition in a b2FixtureDef object. This is used to attach a
shape to the body. A fixture definition also contains additional information such
as density, friction coefficient, and the coefficient of restitution for the attached
shape.

	 4.	 Set the shape of the fixture definition. The two types of shapes that are used in
Box2D are polygons (b2PolygonShape) and circles (b2CircleShape). Pass the
fixture definition to the createFixture() method of the body object and attach
the shape to the body.

Now that we know these basic steps, we will create our first body inside the world: the floor. We will do
this by creating a createFloor() method right below the init() function we created earlier. This is shown
in Listing 3-4.

Listing 3-4.  Creating the Floor

function createFloor() {
 // A body definition holds all the data needed to construct a rigid body
 var bodyDef = new b2BodyDef;

 bodyDef.type = b2Body.b2_staticBody;
 bodyDef.position.x = 640 / 2 / scale;
 bodyDef.position.y = 450 / scale;

 // A fixture is used to attach a shape to a body for collision detection
 // A fixture definition is used to create a fixture
 var fixtureDef = new b2FixtureDef;

 fixtureDef.density = 1.0;
 fixtureDef.friction = 0.5;
 fixtureDef.restitution = 0.2;

 fixtureDef.shape = new b2PolygonShape;
 fixtureDef.shape.SetAsBox(320 / scale, 10 / scale); // 640 pixels wide and 20 pixels tall

 var body = world.CreateBody(bodyDef);
 var fixture = body.CreateFixture(fixtureDef);
}

Chapter 3 ■ Physics Engine Basics

51

The first thing we do is define a bodyDef object. We set its type to be static (b2Body.b2_staticBody)
since we want our floor to stay in the same place and not be affected by gravity or collisions with other
bodies. We then set the position of the body near the bottom of our canvas (x = 320 pixels, y = 450 pixels) and
use the scale variable to convert the pixels to meters for Box2D.

■■ Note  Unlike the canvas, where the position of rectangles is based on the top-left corner, the Box2D body
position is based on the origin of the object. In the case of boxes created using SetAsBox(), this origin is at the
center of the box.

The next thing we do is define the fixture definition (fixtureDef). The fixture definition contains values
like the density, the frictional coefficient, and the coefficient of restitution of its attached shape. The density
is used to calculate the weight of the body, the frictional coefficient is used to make sure the body slides
realistically, and the restitution is used to make the body bounce.

■■ Note  The higher the coefficient of restitution, the more “bouncy” the object becomes. Values close to
0 mean that the body will not bounce and will lose most of its momentum in a collision (called an inelastic
collision). Values close to 1 mean that the body retains most of its momentum and will bounce back as fast as it
came (called an elastic collision).

We then set the shape for the fixture as a b2PolygonShape object. The b2PolygonShape object has a
helper method called SetAsBox() that sets the polygon as a box which is centered on the origin of the parent
body. The SetAsBox() method takes the half-width and half-height (the extents) of the box as parameters.
Again, we use the scale variable to define a box that is 640 pixels wide and 20 pixels high.

Finally, we create the body by passing bodyDef to world.CreateBody() and create the fixture by passing
the fixtureDef to body.CreateFixture().

One other thing we need to do is call this newly created method from inside the init() function we
declared earlier so that this body is created when the init() function is called, as shown in Listing 3-5.

Listing 3-5.  Calling createFloor() from init()

function init() {
 // Setup the box2d World that will do most of the physics calculation
 var gravity = new b2Vec2(0, 9.8); // Declare gravity as 9.8 m/s^2 downwards

 // Allow objects that are at rest to fall asleep and be excluded from calculations
 var allowSleep = true;

 world = new b2World(gravity, allowSleep);

 createFloor();
 }

Now that we have added our first body to the world, we need to learn how to draw the world so that we
can see what we have created so far.

Chapter 3 ■ Physics Engine Basics

52

Drawing the World: Setting Up Debug Drawing
Box2D is primarily meant to be an engine that handles physics calculations, while we are expected to handle
drawing all the objects in the world ourselves. However, the Box2D world object provides us with a simple
DrawDebugData() method that we can use to draw the world on a given canvas for debugging and testing
purposes.

The DrawDebugData() method draws a very simple representation of the bodies inside the world and is
best used for helping us visualize the world while we are creating it.

Before we can use DrawDebugData(), we need to set up debug drawing by defining a b2DebugDraw()
object and passing it to the world.SetDebugDraw() method. We do this in a setupDebugDraw() method that
we will place below the createFloor() method inside box2d-demo.js (see Listing 3-6).

Listing 3-6.  Setting Up Debug Drawing

var context;

function setupDebugDraw() {
 context = document.getElementById("canvas").getContext("2d");

 var debugDraw = new b2DebugDraw();

 // Use this canvas context for drawing the debugging screen
 debugDraw.SetSprite(context);
 // Set the scale
 debugDraw.SetDrawScale(scale);
 // Fill boxes with an alpha transparency of 0.3
 debugDraw.SetFillAlpha(0.3);
 // Draw lines with a thickness of 1
 debugDraw.SetLineThickness(1.0);
 // Display all shapes and joints
 debugDraw.SetFlags(b2DebugDraw.e_shapeBit | b2DebugDraw.e_jointBit);

 // Start using debug draw in our world
 world.SetDebugDraw(debugDraw);
}

We first define a handle to the canvas context using the getContext() method that you have previously
seen.

We then create a new b2DebugDraw object and set a few attributes using its Set methods:

•	 SetSprite(): Used to provide a canvas context for the drawing.

•	 SetDrawScale(): Used to set the scale to convert between Box2D units and pixels.

•	 SetFillAlpha() and SetLineThickness(): Used to set drawing styles.

•	 SetFlags(): Used to choose which Box2D entities to draw. We have selected flags
for drawing all shapes and joints, and we use logical OR operators to combine the
two flags. Some of the other entities we can ask Box2D to draw are the center of mass
(e_centerOfMassBit) and axis-aligned bounding boxes (e_aabbBit).

Chapter 3 ■ Physics Engine Basics

53

Finally, we pass the debugDraw object to the world.SetDebugDraw() method. After creating the
function, we need to call it from inside the init() function as shown in Listing 3-7.

Listing 3-7.  Calling setupDebugDraw() from init()

var allowSleep = true;

world = new b2World(gravity, allowSleep);

createFloor();

setupDebugDraw();

Now that debug drawing is set up, we can use the world.DrawDebugData() method to draw the current
state of our Box2D world onto the canvas.

Animating the World
Animating a world using Box2D involves the following steps that we repeat within an animation loop:

	 1.	 Tell Box2D to run the simulation for a small time step (typically 1/60th of a
second). We do this by using the world.Step() function.

	 2.	 Draw all the objects in their new positions using either world.DrawDebugData()
or our own drawing functions.

	 3.	 Clear any forces that we have applied using world.ClearForces().

We can implement these steps in our own animate() function that we create inside box2d-demo.js after
init(), shown in Listing 3-8.

Listing 3-8.  Setting Up a Box2D Animation Loop

var timeStep = 1 / 60;

//As per the Box2d manual, the suggested iteration count for Box2D is 8 for velocity and 3
for position
var velocityIterations = 8;
var positionIterations = 3;

function animate() {
 world.Step(timeStep, velocityIterations, positionIterations);
 world.ClearForces();

 world.DrawDebugData();

 setTimeout(animate, timeStep);
}

We first call world.Step() and pass it three parameters: time step, velocity iterations, and position
iterations.

Chapter 3 ■ Physics Engine Basics

54

Box2D uses a computational algorithm called an integrator. Integrators simulate the physics equations
at discrete points of time. The time step is the amount of time we want Box2D to simulate. We set this to a
value of 1/60th of a second.

In addition to the integrator, Box2D also uses a larger bit of code called a constraint solver. The
constraint solver solves all the constraints in the simulation, one at a time. To get a good solution, we need
to iterate over all constraints a number of times. There are two phases in the constraint solver: a velocity
phase and a position phase. Each phase has a separate iteration count, and we set these two values to 8 and
3, respectively.

■■ Note  Generally, physics engines for games work well with a time step at least as fast as 60Hz or 1/60
second. As per Erin Catto’s original C++ Box2D v2.2.0 User Manual (available at http://box2d.org/manual.
pdf), it is preferable to keep the time step constant and not vary it with frame rate, as a variable time step
produces variable results, which makes it difficult to debug.

Also as per the Box2d C++ manual, the suggested iteration count for Box2D is 8 for velocity and 3 for position.
You can tune these numbers to your liking, but keep in mind that this has a trade-off between speed and
accuracy. Using a lower iteration count increases performance but reduces accuracy. Likewise, using a higher
iteration count decreases performance but improves the quality of your simulation.

After stepping through the simulation, we call world.ClearForces() to clear any forces that are applied
to the bodies. We then call world.DrawDebugData() to draw the world on the canvas.

Finally, we use setTimeout() to call our animation loop again after the timeout for the next time step.
We use setTimeout() for now because it is simpler for us to use the Box2d.Step() function with a constant
frame rate. In the next chapter, we will look at how to use requestAnimationFrame() and a variable frame
rate when integrating Box2D with our game.

Now that the animation loop is complete, we can see the world we have created so far by calling
animate() from the init() function to start the animation loop, as shown in Listing 3-9.

Listing 3-9.  Calling animate() from the init() Function

world = new b2World(gravity, allowSleep);

createFloor();

setupDebugDraw();

// Start the Box2D animation loop
animate();

When we open box2d.html in the browser, we should see our world with the floor drawn, as shown in
Figure 3-1.

http://box2d.org/manual.pdf
http://box2d.org/manual.pdf

Chapter 3 ■ Physics Engine Basics

55

This doesn’t look like much yet. The floor is a static body that just stays floating at the bottom of the
canvas. However, now that we have set up everything to create our basic world and display it on the screen,
we can start adding some more Box2D elements to our world.

Adding More Box2D Elements
Box2D allows us to add different types of elements to our world, including the following:

•	 Simple bodies that are rectangular, circular, or polygon shaped

•	 Complex bodies that combine multiple shapes

•	 Joints such as revolute joints that connect multiple bodies

•	 Contact listeners that allow us to handle collision events

We will now look at each of these elements in turn in more detail.

Creating a Rectangular Body
We can create a rectangular body just like we created our floor—by defining a b2PolygonShape and using its
SetAsBox() method. We will do this within a new method called createRectangularBody() that we will add
to box2d-demo.js (see Listing 3-10).

Figure 3-1.  Our first Box2D body: the floor

Chapter 3 ■ Physics Engine Basics

56

Listing 3-10.  Creating a Rectangular Body

function createRectangularBody() {
 var bodyDef = new b2BodyDef;

 bodyDef.type = b2Body.b2_dynamicBody;
 bodyDef.position.x = 40 / scale;
 bodyDef.position.y = 100 / scale;

 var fixtureDef = new b2FixtureDef;

 fixtureDef.density = 1.0;
 fixtureDef.friction = 0.5;
 fixtureDef.restitution = 0.3;

 fixtureDef.shape = new b2PolygonShape;
 fixtureDef.shape.SetAsBox(30 / scale, 50 / scale);

 var body = world.CreateBody(bodyDef);
 var fixture = body.CreateFixture(fixtureDef);
}

We create a body definition and place it near the top of the canvas at x = 40 pixels and y = 100 pixels. The
one difference this time is that we define the body type as dynamic (b2Body.b2_dynamicBody). This means
that the body will be affected by gravity and collisions. We then define the fixture with a polygon shape that is
set as a box that is 60 pixels wide and 100 pixels tall. Again, note that we specify half-values, 30 and 50, in the
SetAsBox() method. Finally, we add the body to our world.

We will need to add a call to createRectangularBody() inside the init() function so that it is called
when the page loads. The init() function will now look like Listing 3-11.

Listing 3-11.  Calling createRectangularBody() from init()

function init() {
 // Setup the box2d World that will do most of the physics calculation
 var gravity = new b2Vec2(0, 9.8); // Declare gravity as 9.8 m/s^2 downwards

 // Allow objects that are at rest to fall asleep and be excluded from calculations
 var allowSleep = true;

 world = new b2World(gravity, allowSleep);

 createFloor();

 // Create some bodies with simple shapes
 createRectangularBody();

 setupDebugDraw();

 // Start the Box2D animation loop
 animate();
}

Chapter 3 ■ Physics Engine Basics

57

When we run the code in the browser, we should see the new body that we just created, as shown in
Figure 3-2.

Since this body is dynamic, it will fall downward because of gravity until it hits the floor, and then
it will bounce off the floor. The body rises to a lower height after each bounce until it finally settles
down on the floor. If we want, we can change the coefficient of restitution to decide how bouncy
the object is.

■■ Note  Once the body comes to rest, Box2D changes the color of the body and makes it darker. This
is how Box2D tells us that the object is considered asleep. Box2D will wake up a body if another body
collides with it.

Figure 3-2.  Our first dynamic body: a bouncing rectangle

Chapter 3 ■ Physics Engine Basics

58

Creating a Circular Body
The next body we will create is a simple circular body. We can define a circular shape by setting the shape
property to a b2CircleShape object. We will do this within a new method called createCircularBody() that
we will add to box2d-demo.js, as shown in Listing 3-12.

Listing 3-12.  Creating a Circular Shape

function createCircularBody() {
 var bodyDef = new b2BodyDef;

 bodyDef.type = b2Body.b2_dynamicBody;
 bodyDef.position.x = 130 / scale;
 bodyDef.position.y = 100 / scale;

 var fixtureDef = new b2FixtureDef;

 fixtureDef.density = 1.0;
 fixtureDef.friction = 0.5;
 fixtureDef.restitution = 0.7;

 fixtureDef.shape = new b2CircleShape(30 / scale);

 var body = world.CreateBody(bodyDef);
 var fixture = body.CreateFixture(fixtureDef);
}

The b2CircleShape constructor takes one parameter, the radius of the circle. The rest of the code,
defining a body, defining the fixture, and creating the body, remains very similar to the code for the
rectangular body.

One change we have made is to increase the restitution value to 0.7, which is much higher than the
value we used for our previous rectangular body. We need to call createCircularBody() from inside the
init() function, right after createRectangularBody() as shown in Listing 3-13.

Listing 3-13.  Calling createCircularBody() from init()

// Create some bodies with simple shapes
createRectangularBody();
createCircularBody();

Once we do this and run the code, we should see the new circular body that we just created (as shown
in Figure 3-3).

Chapter 3 ■ Physics Engine Basics

59

You will notice that the circular body bounces much higher than the rectangular one, and takes a longer
time to come to rest. This is because of the larger coefficient of restitution. If you set this value to 1, the ball
will bounce back to the same height and never stop bouncing. If you choose a value greater than 1, the ball
will go higher after each bounce, and eventually fly outside the screen.

Typically, a higher coefficient of restitution and lower gravity gives the game a spacey, sci-fi feel, while
going in the opposite direction makes the game feel more realistic and grounded.

When creating your own game, you should play around with these values and tweak them until they feel
right for your game.

Creating a Polygon-Shaped Body
The last simple shape we will create is the polygon. Box2D allows us to create any polygon we want by
defining the coordinates of each of the points. The only restriction is that polygons need to be convex
polygons (that is, no internal angle can be more than 180 degrees).

To create a polygon, we first need to create an array of b2Vec2 objects with the coordinates of each of its
points, and then we need to pass the array to the shape.SetAsArray() method. We will do this within a new
method called createSimplePolygonBody() that we will add to box2d-demo.js (see Listing 3-14).

Figure 3-3.  A bouncier circular body

Chapter 3 ■ Physics Engine Basics

60

Listing 3-14.  Defining a Polygon Shape with Points

function createSimplePolygonBody() {
 var bodyDef = new b2BodyDef;

 bodyDef.type = b2Body.b2_dynamicBody;
 bodyDef.position.x = 230 / scale;
 bodyDef.position.y = 50 / scale;

 var fixtureDef = new b2FixtureDef;

 fixtureDef.density = 1.0;
 fixtureDef.friction = 0.5;
 fixtureDef.restitution = 0.6;

 fixtureDef.shape = new b2PolygonShape;
 // Create an array of b2Vec2 points in clockwise direction
 var points = [
 new b2Vec2(0, 0),
 new b2Vec2(40 / scale, 50 / scale),
 new b2Vec2(50 / scale, 100 / scale),
 new b2Vec2(-50 / scale, 100 / scale),
 new b2Vec2(-40 / scale, 50 / scale),

];

 // Use SetAsArray() to define the shape using the points array
 fixtureDef.shape.SetAsArray(points, points.length);

 var body = world.CreateBody(bodyDef);

 var fixture = body.CreateFixture(fixtureDef);
}

We defined a points array that contains the coordinates for each of the polygon points inside b2Vec2
objects. The following are a few things to note:

•	 All the coordinates are relative to the body origin. The first point (0,0) starts at the
origin of the body and will be placed at the body position (230,50).

•	 We do not need to close out the polygon. Box2D will take care of this for us.

•	 All points must be defined in a clockwise direction.

■■ Tip  If we define the coordinates in the counter-clockwise direction, Box2D will not be able to handle
collisions correctly. If you find objects passing through each other, check to see whether you have defined
points in the clockwise direction.

We then call the SetAsArray() method and pass it two parameters: the points array and the number of
points. The rest of the code remains the same as it was for the previous shapes we covered.

Chapter 3 ■ Physics Engine Basics

61

Now we need to call createSimplePolygonBody() from the init() function as shown in Listing 3-15.

Listing 3-15.  Calling createSimplePolygonBody() from init()

// Create some bodies with simple shapes
createRectangularBody();
createCircularBody();
createSimplePolygonBody();

If we run this code, we should see our new polygon-shaped body (see Figure 3-4).

We now have created three simple bodies, with different shapes and properties. These simple shapes
are usually enough to model a wide array of objects within our games (fruits, tires, crates, and so forth).
Sometimes, however, these shapes are not enough. There are times when we need to create more complex
objects that combine more than one shape.

Creating Complex Bodies with Multiple Shapes
So far we have been creating simple bodies with a single shape. However, as previously mentioned, Box2D
lets us create bodies that contain multiple shapes.

To create a complex shape, all we need to do is attach multiple fixtures (each with its own shape) to the same
body. Let’s try to combine two of the shapes we just covered into a single body: a circle and a polygon. We will do
this within a new method called createComplexBody() that we will add to box2d-demo.js (see Listing 3-16).

Figure 3-4.  A polygon-shaped body

Chapter 3 ■ Physics Engine Basics

62

Listing 3-16.  Creating a Body with Two Shapes

function createComplexBody() {
 var bodyDef = new b2BodyDef;

 bodyDef.type = b2Body.b2_dynamicBody;
 bodyDef.position.x = 350 / scale;
 bodyDef.position.y = 50 / scale;
 var body = world.CreateBody(bodyDef);

 // Create first fixture and attach a circular shape to the body
 var fixtureDef = new b2FixtureDef;

 fixtureDef.density = 1.0;
 fixtureDef.friction = 0.5;
 fixtureDef.restitution = 0.7;
 fixtureDef.shape = new b2CircleShape(40 / scale);
 body.CreateFixture(fixtureDef);

 // Create second fixture and attach a polygon shape to the body.
 fixtureDef.shape = new b2PolygonShape;
 var points = [
 new b2Vec2(0, 0),
 new b2Vec2(40 / scale, 50 / scale),
 new b2Vec2(50 / scale, 100 / scale),
 new b2Vec2(-50 / scale, 100 / scale),
 new b2Vec2(-40 / scale, 50 / scale),
];

 fixtureDef.shape.SetAsArray(points, points.length);
 body.CreateFixture(fixtureDef);
}

We first create a body, and then two different fixtures—the first for a circular shape and the second for
a polygon shape. We then attach both these fixtures to the body using the CreateFixture() method. Box2D
will automatically take care of creating a single rigid body that includes both these shapes.

One thing you might have noticed is that we reused the fixtureDef object for creating both the shape
fixtures, and only changed its shape property. Reusing the object saves us the effort of setting properties like
density and restitution again.

Now that we have created createComplexBody(), we need to call it from inside the init() function as
shown in Listing 3-17.

Listing 3-17.  Calling createComplexBody() from init()

// Create some bodies with simple shapes
createRectangularBody();
createCircularBody();
createSimplePolygonBody();

// Create a body combining two shapes
createComplexBody();

Chapter 3 ■ Physics Engine Basics

63

When we run this code, we should see our new complex body, as shown in Figure 3-5.

You will notice that the two shapes behave as one single unit. This is because Box2D treats these
multiple shapes as a single rigid body. This ability to combine shapes allows us to emulate all kinds of object
with complex shapes, such as trees and tables. It also allows us to get around the limitations on creating
concave polygon shapes, since any concave polygon can be broken into multiple convex polygons.

Connecting Bodies with Joints
Now that we’ve explored how to make different types of bodies in Box2D, we will take a brief look at creating
joints.

Joints are used to constrain bodies to the world or to each other. Box2D supports many different types of
joints, including pulley, gear, distance, revolute, and weld joints.

Some of these joints restrict motion (for example, the distance joint and the weld joint), while others
allow for interesting types of movement (for example, the pulley joint and the revolute joint). Some joints
even provide motors that can be used to drive the joint at a specified speed. We will take a look at one of the
simpler joints that Box2D offers: the revolute joint.

The revolute joint forces two bodies to share a common anchor point, often called a hinge point. What
this means is that the bodies are attached to each other at this point, and can rotate about that point.

Figure 3-5.  A complex body with two shapes

Chapter 3 ■ Physics Engine Basics

64

We can create a revolute joint by defining a b2RevoluteJointDef object and then passing it to the
world.CreateJoint() method. This is illustrated in the createRevoluteJoint() method that we add to
box2d-demo.js (see Listing 3-18).

Listing 3-18.  Creating a Revolute Joint

function createRevoluteJoint() {
 // Define the first body
 var bodyDef1 = new b2BodyDef;

 bodyDef1.type = b2Body.b2_dynamicBody;
 bodyDef1.position.x = 480 / scale;
 bodyDef1.position.y = 50 / scale;
 var body1 = world.CreateBody(bodyDef1);

 // Create first fixture and attach a rectangular shape to the body
 var fixtureDef1 = new b2FixtureDef;

 fixtureDef1.density = 1.0;
 fixtureDef1.friction = 0.5;
 fixtureDef1.restitution = 0.5;
 fixtureDef1.shape = new b2PolygonShape;
 fixtureDef1.shape.SetAsBox(50 / scale, 10 / scale);

 body1.CreateFixture(fixtureDef1);

 // Define the second body
 var bodyDef2 = new b2BodyDef;

 bodyDef2.type = b2Body.b2_dynamicBody;
 bodyDef2.position.x = 470 / scale;
 bodyDef2.position.y = 50 / scale;
 var body2 = world.CreateBody(bodyDef2);

 // Create second fixture and attach a polygon shape to the body
 var fixtureDef2 = new b2FixtureDef;

 fixtureDef2.density = 1.0;
 fixtureDef2.friction = 0.5;
 fixtureDef2.restitution = 0.5;
 fixtureDef2.shape = new b2PolygonShape;
 var points = [
 new b2Vec2(0, 0),
 new b2Vec2(40 / scale, 50 / scale),
 new b2Vec2(50 / scale, 100 / scale),
 new b2Vec2(-50 / scale, 100 / scale),
 new b2Vec2(-40 / scale, 50 / scale),
];

 fixtureDef2.shape.SetAsArray(points, points.length);
 body2.CreateFixture(fixtureDef2);

Chapter 3 ■ Physics Engine Basics

65

 // Create a joint between body1 and body2
 var jointDef = new b2RevoluteJointDef;
 var jointCenter = new b2Vec2(470 / scale, 50 / scale);

 jointDef.Initialize(body1, body2, jointCenter);
 world.CreateJoint(jointDef);
}

In this code we first define two bodies, a rectangle (body1) and a polygon (body2), that are positioned on
top of each other, and then add them to the world.

We then create a b2RevolutionJointDef object and initialize it by passing three parameters to the
Initialize() method: the two bodies (body1 and body2), and the joint center, which is the point around
which the joints rotate.

Note that the joint center is specified in Box2D world coordinates (the same coordinate system used
to specify the location for the two bodies). Also note that the joint center is placed at a point that is located
within both the bodies.

Finally, we call world.CreateJoint() to add the joint to the world.
We need to call createRevoluteJoint() from our init() function, as shown in Listing 3-19.

Listing 3-19.  Calling createRevoluteJoint() from init()

// Create a body combining two shapes
createComplexBody();

// Join two bodies using a revolute joint
createRevoluteJoint();

When we run our code, we should see our revolute joint in action. You can see this in Figure 3-6.

Figure 3-6.  A revolute joint in action

Chapter 3 ■ Physics Engine Basics

66

As you can see, the rectangular body rotates about its anchor point, almost like a windmill blade. This is
very different from the complex body we created earlier, where the shapes acted like a single body.

Each of the joints in Box2D can be combined in different ways to create interesting motions and
effects, such as pulleys, ragdolls, and pendulums. You can read more about these other types of joints in the
Box2D reference API, which you can find at www.box2dflash.org/docs/2.1a/reference/. Note that this
documentation is for the Flash version of Box2D that our JavaScript version is based on. We can still refer to
the method signatures and documentation in this Flash version when developing for the JavaScript version
because the JavaScript version of Box2D was developed by directly converting the Flash version, and the
method signatures remain the same across the two.

Tracking Collisions and Damage
One thing that you may have noticed in the previous few examples is that some of the bodies were colliding
against each other and bouncing back and forth. It would be nice to be able to keep track of these collisions
and the amount of impact they cause, and simulate a body getting damaged.

Before we can track the damage to an object, we need to be able to associate a life or health with it.
Box2D provides us with methods that allow us to set custom properties for bodies, fixtures, or joints. We
can assign any JavaScript object as a custom property for a body by calling its SetUserData() method, and
retrieve the property later by calling its GetUserData() method.

Let’s create another body that will have its own health unlike any of the previous bodies. We will do this
inside a method called createSpecialBody() that we will add to box2d-demo.js (see Listing 3-20).

Listing 3-20.  Creating a Special Body with Its Own Properties

var specialBody;

function createSpecialBody() {
 var bodyDef = new b2BodyDef;

 bodyDef.type = b2Body.b2_dynamicBody;
 bodyDef.position.x = 450 / scale;
 bodyDef.position.y = 0 / scale;

 specialBody = world.CreateBody(bodyDef);
 specialBody.SetUserData({ name: "special", life: 250 });

 // Create a fixture to attach a circular shape to the body
 var fixtureDef = new b2FixtureDef;

 fixtureDef.density = 1.0;
 fixtureDef.friction = 0.5;
 fixtureDef.restitution = 0.5;

 fixtureDef.shape = new b2CircleShape(30 / scale);

 var fixture = specialBody.CreateFixture(fixtureDef);
}

The code for creating this body is similar to the code for the circular body that we looked at earlier.
The only difference is that once we create the body, we call its SetUserData() method and pass it an object
parameter with two custom properties, name and life.

We can add as many properties as we like to this object. Also, note that we saved a reference to the body
in a variable called specialBody that we defined outside the function. This way, we can refer to this body
even outside of the createSpecialBody() function.

http://www.box2dflash.org/docs/2.1a/reference/

Chapter 3 ■ Physics Engine Basics

67

If we call createSpecialBody() from the init() function, we won’t see anything exceptional—just
another bouncing circle. We still want to be able to track collisions happening to this body. This is where
contact listeners come in.

Contact Listeners
Box2D provides us with objects called contact listeners that let us define event handlers for several contact-
related events. To do this, we must first define a b2ContactListener object and override one or more of the
events we want to monitor. The b2ContactListener has four events we can use based on what we need:

•	 BeginContact(): Called when two fixtures begin to touch.

•	 EndContact(): Called when two fixtures cease to touch.

•	 PostSolve(): Lets us inspect a contact after the solver is finished. This is useful for
inspecting impulses.

•	 PreSolve(): Lets us inspect a contact before it goes to the solver.

Once we override the methods that we need, we need to pass the contact listener to the world.
SetContactListener() method. Since we want to track the damage a collision causes, we will listen to the
PostSolve() event, which provides us with the impulse transferred during a collision (see Listing 3-21).

Listing 3-21.  Implementing a Contact Listener

function listenForContact() {
 var listener = new Box2D.Dynamics.b2ContactListener;

 listener.PostSolve = function(contact, impulse) {
 var body1 = contact.GetFixtureA().GetBody();
 var body2 = contact.GetFixtureB().GetBody();

 // If either of the bodies is the special body, reduce its life
 if (body1 == specialBody || body2 == specialBody) {
 var impulseAlongNormal = impulse.normalImpulses[0];

 specialBody.GetUserData().life -= impulseAlongNormal;
 �console.log("The special body was in a collision with impulse", impulseAlongNormal,

"and its life has now become ", specialBody.GetUserData().life);
 }
 };
 world.SetContactListener(listener);
}

As you can see, we create a b2ContactListener object and override its PostSolve() method with our
own handler. The PostSolve() method provides us with two parameters: contact, which contains details
of the fixtures that were involved in the collision, and impulse, which contains the normal and tangential
impulse during the collision.

Within PostSolve(), we first extract the two bodies involved in the collision and check to see if our
special body is one of them. If it is, we extract the impulse along the normal between the two bodies, and
subtract life points from the body. We also log this event to the console so we can track each collision.

Obviously, this is a rather simplistic way of handling object damage, but it does what we need it to
do. The greater the impulse in a collision, and the higher the number of collisions, the faster the body
loses health.

Chapter 3 ■ Physics Engine Basics

68

■■ Note  The PostSolve() method is called for every collision that takes place in the Box2D world, no matter
how small. It is even called when an object is rolling on another. Be aware that this method will be called a lot.

Next we call both createSimpleBody() and listenForContact() from init() as shown in Listing 3-22.

Listing 3-22.  Calling createSpecialBody() and listenForContact() from init()

// Join two bodies using a revolute joint
createRevoluteJoint();

// Create a body with special user data
createSpecialBody();

// Create contact listeners and track events
listenForContact();

If we run our code now, we should see the circle bouncing about, with a message in the browser console
after each collision telling us how much the body’s health has dropped, as shown in Figure 3-7.

Figure 3-7.  Watching collisions with contact listeners

Chapter 3 ■ Physics Engine Basics

69

It is nice to be able to track the life of our special body, but it would be nicer if we could do something
when it runs out of life.

Now that we have access to specialBody and the life property, we can check after every iteration
to see if the body life has reached 0 and, if so, remove it from the world using the world.DestroyBody()
method. The easiest place to do this check is in the animate() method. The animate() function will now
look like Listing 3-23.

Listing 3-23.  Destroying the Body

function animate() {
 world.Step(timeStep, velocityIterations, positionIterations);
 world.ClearForces();

 world.DrawDebugData();

 // Kill Special Body if Dead
 if (specialBody && specialBody.GetUserData().life <= 0) {
 world.DestroyBody(specialBody);
 specialBody = undefined;
 console.log("The special body was destroyed");
 }

 setTimeout(animate, timeStep);
}

Once we finish calling world.Step() and drawing the world, we check to see whether specialBody is
still defined and whether its life has reached 0. Once its life reaches 0, we remove the body from the world
using DestroyBody() and then set specialBody to undefined.

This time when we run the code, the special body bounces around with its life dropping until it finally
disappears. A message appears in the console telling us that the body was destroyed.

■■ Note  We can track all the bodies and elements in a game using a similar principle by iterating through an
array of objects. The point where we destroy a body is the perfect place for us to add explosion sounds or visual
effects in a game and maybe update the score.

Drawing Our Own Characters
We have played with a lot of Box2D features so far. However, we have only been drawing using the default
DrawDebugData() method. While this method is fine when testing code, we can’t really write an amazing
game looking like this. We need to know how to draw our own characters using all the drawing methods we
covered in the first chapter.

Every b2Body object has two methods, GetPosition() and GetAngle(), that provide us with the
coordinates and rotation of the body inside the Box2D world. Using the scale variable we defined in this
chapter and the canvas translate() and rotate() methods we explored in Chapter 1, we can draw our
characters or sprites on the canvas at the location that Box2D calculates for us.

To illustrate this, we can draw the special body that we have been playing with so far inside a
drawSpecialBody() method that we will add to box2d-demo.js (see Listing 3-24).

http://dx.doi.org/10.1007/978-1-4842-2910-1_1

Chapter 3 ■ Physics Engine Basics

70

Listing 3-24.  Drawing Our Own Character

function drawSpecialBody() {
 // Get body position and angle
 var position = specialBody.GetPosition();
 var angle = specialBody.GetAngle();

 // Translate and rotate axis to body position and angle
 context.translate(position.x * scale, position.y * scale);
 context.rotate(angle);

 // Draw a filled circular face
 context.fillStyle = "rgb(200, 150, 250)";
 context.beginPath();
 context.arc(0, 0, 30, 0, 2 * Math.PI, false);
 context.fill();

 // Draw two rectangular eyes
 context.fillStyle = "rgb(255, 255, 255)";
 context.fillRect(-15, -15, 10, 5);
 context.fillRect(5, -15, 10, 5);

 // Draw an upward or downward arc for a smile depending on life
 context.strokeStyle = "rgb(255, 255, 255)";
 context.beginPath();
 if (specialBody.GetUserData().life > 100) {
 context.arc(0, 0, 10, Math.PI, 2 * Math.PI, true);
 } else {
 context.arc(0, 10, 10, Math.PI, 2 * Math.PI, false);
 }
 context.stroke();

 // Translate and rotate axis back to original position and angle
 context.rotate(-angle);
 context.translate(-position.x * scale, -position.y * scale);
}

We start by translating the canvas to the body’s position and rotating the canvas to the body’s angle. This
is very similar to the code we looked at in Chapter 1.

We then draw a filled circle for the face, two rectangular eyes, and a smile using an arc. Just for fun,
when the body life goes below 100, we change the smile to a sad face.

Finally, we undo the rotation and translation.
Before we can see this method in action, we will need to call it from inside animate(). The finished

animate() method will now look like Listing 3-25.

Listing 3-25.  The Finished animate() Method

function animate() {
 world.Step(timeStep, velocityIterations, positionIterations);
 world.ClearForces();

 world.DrawDebugData();

http://dx.doi.org/10.1007/978-1-4842-2910-1_1

Chapter 3 ■ Physics Engine Basics

71

 // Custom Drawing
 if (specialBody) {
 drawSpecialBody();
 }

 // Kill Special Body if Dead
 if (specialBody && specialBody.GetUserData().life <= 0) {
 world.DestroyBody(specialBody);
 specialBody = undefined;
 console.log("The special body was destroyed");
 }

 setTimeout(animate, timeStep);
}

What we have done here is check whether specialBody is still defined and call drawSpecialBody() if it
is. Once the body dies, specialBody will become undefined and we will stop trying to draw it. You will notice
that we draw after DrawDebugData() has completed, so we end up drawing on top of the debug drawing.

When we run this finished code, we see our new version of specialBody with a smiley face that
becomes sad after a while before finally disappearing (see Figure 3-8).

Figure 3-8.  Drawing our own character

Chapter 3 ■ Physics Engine Basics

72

We have just animated our own character using the Box2D engine. This may not seem like much,
but we now have all the building blocks that we need to build games using Box2D.

When you create your own game, you won’t just be playing with boxes and circles. You will still use
simple shapes that are similar in appearance to your game elements so that they seem to move realistically.
However, you will be drawing all the characters yourself instead of using debug drawing, which means you
can now use all of the methods that you learned about in Chapter 1, including drawings sprites, to create any
desired effect for your characters.

Summary
In this chapter we took a crash course on the Box2D engine. We created a world in Box2D and drew different
kinds of bodies within it. We made simple circular and rectangular shapes, polygons, and complex bodies
that combined multiple shapes, and we used joints to combine shapes.

We animated the world realistically by letting Box2D handle the physics computations and drawing the
world using DrawDebugData(). We used contact listeners to track collisions and slowly damage and destroy
objects within the world. Finally, we drew our own character that was moved by Box2D.

We covered most of the elements of Box2D that we will be using in our game. If you would like to dive
deeper into the Box2D API, you can look at the API reference available at www.box2dflash.org/docs/.
You can also read the Box2D guide available at the same site.

In the next chapter, we will combine everything that we have learned so far to integrate Box2D into our
game. We will create a framework to handle creation of our game entities inside Box2D. We will then use
images and sprites to draw our characters over the parallax scrolling backgrounds that we built in Chapter 2.
After that, we will spend some time polishing up our game by adding sound effects, and then wire everything
together to create a finished, physics-based puzzle game.

http://dx.doi.org/10.1007/978-1-4842-2910-1_1
http://www.box2dflash.org/docs/
http://dx.doi.org/10.1007/978-1-4842-2910-1_2

73© Aditya Ravi Shankar 2017
A. R. Shankar, Pro HTML5 Games, DOI 10.1007/978-1-4842-2910-1_4

CHAPTER 4

Integrating the Physics Engine

In Chapter 2, we developed the basic framework for our game, Froot Wars, and in Chapter 3, we looked at
how to simulate a game world in Box2D. Now it is time to put together all the pieces to complete our game.

In this chapter, we will continue where we left off at the end of Chapter 2. We will add entities to our
levels, use Box2D to simulate these entities, and then animate these entities within the game. We will use
these entities to create a couple of working levels, and we will add mouse interactivity so that we can play
the game. Once we have a working game, we will add sounds, background music, and a few other finishing
touches to wrap up our game.

Now let’s get started. We will be using the code from Chapter 2 as our starting point.

Defining Entities
So far, our game levels contain data for the background and foreground images and an empty array for
entities. This entities array will eventually contain all the entities within our game: the heroes, the villains,
the ground, and the blocks used to create the environment. We will then use this array to ask Box2D to create
the corresponding Box2D shapes.

Typical entities will look like the examples shown in Listing 4-1.

Listing 4-1.  Typical Entities

{ type: "ground", name: "dirt", x: 500, y: 440, width: 1000, height: 20, isStatic: true },
{ type: "block", name: "wood", x: 500, y: 375, angle: 90, width: 100, height: 25 },
{ type: "hero", name: "orange", x: 90, y: 410 },
{ type: "villain", name: "burger", x: 500, y: 200, calories: 590 },

The type property can contain values like "hero", "villain", "ground", and "block". We will use this
property to decide how to handle an entity during creation and drawing operations.

The x, y, and angle properties are used to set the starting position and orientation of the entities.
The entity can also contain specific properties for its type, such as calories, which is the number of

points scored when destroying a villain.
The name property tells us which sprite to use to draw the entity. All the images that we will use for the

entities are stored in the images/entities folder.
The name property will also be used to refer to entity definitions. These definitions will include fixture

data such as density and restitution, health data for destructible objects, and, in the case of heroes and
villains, even details on the shape. Typical entity definitions will look like the examples shown in Listing 4-2.

http://dx.doi.org/10.1007/978-1-4842-2910-1_2
http://dx.doi.org/10.1007/978-1-4842-2910-1_3
http://dx.doi.org/10.1007/978-1-4842-2910-1_2
http://dx.doi.org/10.1007/978-1-4842-2910-1_2

Chapter 4 ■ Integrating the Physics Engine

74

Listing 4-2.  Typical Entity Definitions

"wood": {
 fullHealth: 500,
 density: 0.7,
 friction: 0.4,
 restitution: 0.4,
},
"dirt": {
 density: 3.0,
 friction: 1.5,
 restitution: 0.2,
},
"burger": {
 shape: "circle",
 fullHealth: 40,
 radius: 25,
 density: 1,
 friction: 0.5,
 restitution: 0.4,
},

All the entity definitions contain the density, friction, and restitution necessary to model the game in
Box2D. In the case of game characters, we store additional data for the shape and dimensions. Also note that
the definitions contain a fullHealth property whenever we need a character or material to be destructible.

Now that we have decided how we will be storing the entities, we also need a way to create them. We
will start by creating an entities object in game.js that will handle all entity-related operations in our game.
This object will contain all the entity definitions as well as the methods for creating and drawing entities
(see Listing 4-3).

Listing 4-3.  The entities Object with Definitions for Entities

var entities = {
 definitions: {
 "glass": {
 fullHealth: 100,
 density: 2.4,
 friction: 0.4,
 restitution: 0.15
 },
 "wood": {
 fullHealth: 500,
 density: 0.7,
 friction: 0.4,
 restitution: 0.4
 },
 "dirt": {
 density: 3.0,
 friction: 1.5,
 restitution: 0.2
 },

Chapter 4 ■ Integrating the Physics Engine

75

 "burger": {
 shape: "circle",
 fullHealth: 40,
 radius: 25,
 density: 1,
 friction: 0.5,
 restitution: 0.4
 },
 "sodacan": {
 shape: "rectangle",
 fullHealth: 80,
 width: 40,
 height: 60,
 density: 1,
 friction: 0.5,
 restitution: 0.7
 },
 "fries": {
 shape: "rectangle",
 fullHealth: 50,
 width: 40,
 height: 50,
 density: 1,
 friction: 0.5,
 restitution: 0.6
 },
 "apple": {
 shape: "circle",
 radius: 25,
 density: 1.5,
 friction: 0.5,
 restitution: 0.4
 },
 "orange": {
 shape: "circle",
 radius: 25,
 density: 1.5,
 friction: 0.5,
 restitution: 0.4
 },
 "strawberry": {
 shape: "circle",
 radius: 15,
 density: 2.0,
 friction: 0.5,
 restitution: 0.4
 }
 },

Chapter 4 ■ Integrating the Physics Engine

76

 // Take the entity, create a Box2D body, and add it to the world
 create: function(entity) {

 },

 // Take the entity, its position, and its angle and draw it on the game canvas
 draw: function(entity, position, angle) {

 }

};

The entities object contains an array with definitions for all the material types (glass, wood, and dirt)
and definitions for all the heroes and villains that we will have in the game (orange, apple, and burger).

The values for some of these properties (such as size, restitution, and fullHealth) were decided
based on feel, by constantly tweaking them in an effort to make the game as much fun as possible. The
correct values for these properties will vary with each game you make.

We also have placeholders for the create() and draw() functions that we need to implement. However,
before we can implement these, we need to add Box2D to our code.

Adding Box2D
The first thing we need to do is add a reference to Box2d.min.js in the <head> section of index.html before
the reference to game.js. The <head> section of the file will now look like Listing 4-4.

Listing 4-4.  Adding Box2D to the index.html <head> Section

 <head>
 <meta http-equiv="Content-type" content="text/html; charset=utf-8">
 <title>Froot Wars</title>
 <script src="js/Box2d.min.js" type="text/javascript"></script>
 <script src="js/game.js" type="text/javascript" charset="utf-8"></script>
 <link rel="stylesheet" href="styles.css" type="text/css" media="screen">
</head>

One other thing that we will do is add references for all the commonly used Box2D objects to the
beginning of game.js (see Listing 4-5).

Listing 4-5.  Adding References to Commonly Used Box2D Objects

// Declare all the commonly used Box2D objects as variables for convenience
var b2Vec2 = Box2D.Common.Math.b2Vec2;
var b2BodyDef = Box2D.Dynamics.b2BodyDef;
var b2Body = Box2D.Dynamics.b2Body;
var b2FixtureDef = Box2D.Dynamics.b2FixtureDef;
var b2World = Box2D.Dynamics.b2World;
var b2PolygonShape = Box2D.Collision.Shapes.b2PolygonShape;
var b2CircleShape = Box2D.Collision.Shapes.b2CircleShape;
var b2DebugDraw = Box2D.Dynamics.b2DebugDraw;
var b2ContactListener = Box2D.Dynamics.b2ContactListener;

Chapter 4 ■ Integrating the Physics Engine

77

Now that we have the references set up, we can start using Box2D from within our game code. We will
be creating a separate box2d object inside game.js to store all our Box2D-related methods (see Listing 4-6).

Listing 4-6.  Creating a box2d Object

var box2d = {
 scale: 30,

 init: function() {
 // Set up the Box2D world that will do most of the physics calculation
 var gravity = new b2Vec2(0, 9.8); // Declare gravity as 9.8 m/s^2 downward
 �var allowSleep = true; // Allow objects that are at rest to fall asleep and be

excluded from calculations

 box2d.world = new b2World(gravity, allowSleep);
 },

 createRectangle: function(entity, definition) {
 var bodyDef = new b2BodyDef();

 if (entity.isStatic) {
 bodyDef.type = b2Body.b2_staticBody;
 } else {
 bodyDef.type = b2Body.b2_dynamicBody;
 }

 bodyDef.position.x = entity.x / box2d.scale;
 bodyDef.position.y = entity.y / box2d.scale;
 if (entity.angle) {
 bodyDef.angle = Math.PI * entity.angle / 180;
 }

 var fixtureDef = new b2FixtureDef();

 fixtureDef.density = definition.density;
 fixtureDef.friction = definition.friction;
 fixtureDef.restitution = definition.restitution;

 fixtureDef.shape = new b2PolygonShape();
 �fixtureDef.shape.SetAsBox(entity.width / 2 / box2d.scale, entity.height / 2 /

box2d.scale);

 var body = box2d.world.CreateBody(bodyDef);

 body.SetUserData(entity);
 body.CreateFixture(fixtureDef);

 return body;
 },

Chapter 4 ■ Integrating the Physics Engine

78

 createCircle: function(entity, definition) {
 var bodyDef = new b2BodyDef();

 if (entity.isStatic) {
 bodyDef.type = b2Body.b2_staticBody;
 } else {
 bodyDef.type = b2Body.b2_dynamicBody;
 }

 bodyDef.position.x = entity.x / box2d.scale;
 bodyDef.position.y = entity.y / box2d.scale;

 if (entity.angle) {
 bodyDef.angle = Math.PI * entity.angle / 180;
 }
 var fixtureDef = new b2FixtureDef();

 fixtureDef.density = definition.density;
 fixtureDef.friction = definition.friction;
 fixtureDef.restitution = definition.restitution;

 fixtureDef.shape = new b2CircleShape(entity.radius / box2d.scale);

 var body = box2d.world.CreateBody(bodyDef);

 body.SetUserData(entity);
 body.CreateFixture(fixtureDef);

 return body;
 },

};

The box2d object contains an init() method where we initialize a new b2World object, just like we did
in Chapter 3.

The object also contains two helper methods, createRectangle() and createCircle(). Both methods
accept two parameters, the entity and definition objects that we described earlier. The entity object
contains details about the entity we want to create, such as its position, angle, and whether or not the entity
is static. The definition object contains details about the fixture, such as restitution and density.

Using these parameters, the methods create Box2D bodies and fixtures and add them to the Box2D world.
Finally, both the methods also attach the entity object to the body using the SetUserData() method.

This enables us to retrieve any of the entity-related data for a Box2D body using its GetUserData() method.
One thing to note is that both these methods convert the position and size using box2d.scale and

convert the angle from degrees to radians before they can be used by Box2D.

Creating Entities
Now that we have Box2D set up, we will implement the entities.create() method inside the entities
object that we defined earlier. This method will take an entity object as a parameter and add it to the world
(see Listing 4-7).

http://dx.doi.org/10.1007/978-1-4842-2910-1_3

Chapter 4 ■ Integrating the Physics Engine

79

Listing 4-7.  Defining the entities.create() Method

// Take the entity, create a Box2D body, and add it to the world
create: function(entity) {
 var definition = entities.definitions[entity.name];

 if (!definition) {
 console.log("Undefined entity name", entity.name);

 return;
 }

 switch(entity.type) {
 case "block": // simple rectangles
 entity.health = definition.fullHealth;
 entity.fullHealth = definition.fullHealth;
 entity.shape = "rectangle";
 entity.sprite = loader.loadImage("images/entities/" + entity.name + ".png");

 box2d.createRectangle(entity, definition);
 break;
 case "ground": // simple rectangles
 // No need for health. These are indestructible
 entity.shape = "rectangle";
 // No need for sprites. These won't be drawn at all
 box2d.createRectangle(entity, definition);
 break;
 case "hero": // simple circles
 case "villain": // can be circles or rectangles
 entity.health = definition.fullHealth;
 entity.fullHealth = definition.fullHealth;
 entity.sprite = loader.loadImage("images/entities/" + entity.name + ".png");
 entity.shape = definition.shape;
 if (definition.shape === "circle") {
 entity.radius = definition.radius;
 box2d.createCircle(entity, definition);
 } else if (definition.shape === "rectangle") {
 entity.width = definition.width;
 entity.height = definition.height;
 box2d.createRectangle(entity, definition);
 }
 break;
 default:
 console.log("Undefined entity type", entity.type);
 break;
 }
},

Chapter 4 ■ Integrating the Physics Engine

80

In this method, we use the entity type to decide how to handle the entity object and its properties:

•	 Block: For block entities, we set the entity health and fullHealth properties based
on the entity definition, and set the shape property to "rectangle". We then load the
sprite, and call the box2d.createRectangle() method.

•	 Ground: For ground entities, we set the entity object’s shape property to
"rectangle" and call the box2d.createRectangle() method. We do not load a
sprite because we will be using the ground from the level foreground image and
won’t be drawing the ground separately.

•	 Hero and villain: For hero and villain entities, we set the entity health,
fullHealth, and shape properties based on the entity definition. We then set either
the radius or the height and width properties based on the shape of the entity.
Finally, we call either box2d.createRectangle() or box2d.createCircle() based
on the shape.

Now that we have a way to create entities, let’s add some entities to our levels.

Adding Entities to Levels
The first thing we will do is add a few entities inside our levels.data array, as shown in Listing 4-8.

Listing 4-8.  Adding Entities to the levels.data Array

// Level data
data: [{ // First level
 foreground: "desert-foreground",
 background: "clouds-background",
 entities: [
 // The ground
 �{ type: "ground", name: "dirt", x: 500, y: 440, width: 1000, height: 20,

isStatic: true },
 // The slingshot wooden frame
 �{ type: "ground", name: "wood", x: 190, y: 390, width: 30, height: 80,

isStatic: true },

 { type: "block", name: "wood", x: 500, y: 380, angle: 90, width: 100, height: 25 },
 { type: "block", name: "glass", x: 500, y: 280, angle: 90, width: 100, height: 25 },
 { type: "villain", name: "burger", x: 500, y: 205, calories: 590 },

 { type: "block", name: "wood", x: 800, y: 380, angle: 90, width: 100, height: 25 },
 { type: "block", name: "glass", x: 800, y: 280, angle: 90, width: 100, height: 25 },
 { type: "villain", name: "fries", x: 800, y: 205, calories: 420 },

 { type: "hero", name: "orange", x: 80, y: 405 },
 { type: "hero", name: "apple", x: 140, y: 405 }
]
}, { // Second level
 foreground: "desert-foreground",
 background: "clouds-background",

Chapter 4 ■ Integrating the Physics Engine

81

 entities: [
 // The ground
 �{ type: "ground", name: "dirt", x: 500, y: 440, width: 1000, height: 20,

isStatic: true },
 // The slingshot wooden frame
 �{ type: "ground", name: "wood", x: 190, y: 390, width: 30, height: 80,

isStatic: true },

 { type: "block", name: "wood", x: 850, y: 380, angle: 90, width: 100, height: 25 },
 { type: "block", name: "wood", x: 700, y: 380, angle: 90, width: 100, height: 25 },
 { type: "block", name: "wood", x: 550, y: 380, angle: 90, width: 100, height: 25 },
 { type: "block", name: "glass", x: 625, y: 316, width: 150, height: 25 },
 { type: "block", name: "glass", x: 775, y: 316, width: 150, height: 25 },

 { type: "block", name: "glass", x: 625, y: 252, angle: 90, width: 100, height: 25 },
 { type: "block", name: "glass", x: 775, y: 252, angle: 90, width: 100, height: 25 },
 { type: "block", name: "wood", x: 700, y: 190, width: 150, height: 25 },

 { type: "villain", name: "burger", x: 700, y: 152, calories: 590 },
 { type: "villain", name: "fries", x: 625, y: 405, calories: 420 },
 { type: "villain", name: "sodacan", x: 775, y: 400, calories: 150 },

 { type: "hero", name: "strawberry", x: 30, y: 415 },
 { type: "hero", name: "orange", x: 80, y: 405 },
 { type: "hero", name: "apple", x: 140, y: 405 }
]
}],

The first level contains two ground entities—one for the floor and the other for the slingshot. These
entities are meant to be static objects that are not drawn by us.

The level also contains four rectangular block entities (glass and wood). These are destructible
elements that we have positioned using their angle, x, and y properties.

Finally, the level contains two hero entities (orange and apple) and two villain entities (burger and
fries). Note that the villain entities have an extra property called calories, which we will be using to
increase the player score whenever a villain has been destroyed.

The second level has a similar design, except with a few more entities.
Now that we have defined entities for each level, we need to load these entities when we load the level.

To do this, we will modify the load() method of the levels object (see Listing 4-9).

Listing 4-9.  Modifying levels.load() to Load the Entities

// Load all data and images for a specific level
load: function(number) {

 // Initialize Box2D world whenever a level is loaded
 box2d.init();

 // Declare a new currentLevel object
 game.currentLevel = { number: number, hero: [] };
 game.score = 0;

Chapter 4 ■ Integrating the Physics Engine

82

 document.getElementById("score").innerHTML = "Score: " + game.score;
 var level = levels.data[number];

 // Load the background, foreground, and slingshot images
 �game.currentLevel.backgroundImage = loader.loadImage("images/backgrounds/" +

level.background + ".png");
 �game.currentLevel.foregroundImage = loader.loadImage("images/backgrounds/" +

level.foreground + ".png");
 game.slingshotImage = loader.loadImage("images/slingshot.png");
 game.slingshotFrontImage = loader.loadImage("images/slingshot-front.png");

 // Load all the entities
 for (let i = level.entities.length - 1; i >= 0; i--) {
 var entity = level.entities[i];

 entities.create(entity);
 }

 // Call game.start() once the assets have loaded
 loader.onload = game.start;
}

The first change we have made is the addition of a call to box2d.init() at the very beginning of the
method. This will create a new Box2D world for the level so that we can start adding our entities to it.

The other change is the addition of a for loop where we iterate through all the entities for a level and
call entities.create() for each entity. Now when we load a level, Box2D will get initialized and all the
entities will get loaded into the Box2D world.

We still can’t see the bodies we have added. Let’s use the Box2D debug drawing method introduced in
Chapter 3 to see what we created.

Setting Up Box2D Debug Drawing
Our game doesn’t strictly need debug drawing since we will be handling drawing the game world and
entities ourselves. We will use debug drawing only temporarily, to help us design and test our levels. We can
remove all traces of debug drawing once the game is complete. We will organize our debug drawing code so
that it can easily be activated or deactivated within the code.

The first thing we will do is create a box2d.setupDebugDraw() method inside the box2d object for setting
up debug drawing when we are initializing Box2D. We will then call this method from the box2d.init()
method as shown in Listing 4-10.

Listing 4-10.  Setting Up Debug Drawing

init: function() {
 // Set up the Box2D world that will do most of the physics calculation
 var gravity = new b2Vec2(0, 9.8); // Declare gravity as 9.8 m/s^2 downward
 �var allowSleep = true; // Allow objects that are at rest to fall asleep and be excluded

from calculations

http://dx.doi.org/10.1007/978-1-4842-2910-1_3

Chapter 4 ■ Integrating the Physics Engine

83

 box2d.world = new b2World(gravity, allowSleep);

 // Activate debug drawing. Comment the line below to disable it.
 this.setupDebugDraw();

},

debugCanvas: undefined,
setupDebugDraw: function() {
 // Dynamically create a canvas for the debug drawing
 if (!box2d.debugCanvas) {
 var canvas = document.createElement("canvas");

 canvas.width = 1024;
 canvas.height = 480;
 document.body.appendChild(canvas);
 canvas.style.top = "480px";
 canvas.style.position = "absolute";
 canvas.style.background = "white";
 box2d.debugCanvas = canvas;
 }

 // Set up debug draw
 var debugContext = box2d.debugCanvas.getContext("2d");
 var debugDraw = new b2DebugDraw();

 debugDraw.SetSprite(debugContext);
 debugDraw.SetDrawScale(box2d.scale);
 debugDraw.SetFillAlpha(0.3);
 debugDraw.SetLineThickness(1.0);
 debugDraw.SetFlags(b2DebugDraw.e_shapeBit | b2DebugDraw.e_jointBit);
 box2d.world.SetDebugDraw(debugDraw);
},

Within the method, we first use document.createElement() to create a new canvas object and append
it to the document body. The canvas is sized to fit the entire level, and styled to be positioned below our
game area, with a white background.

We then use the newly created debugCanvas property to set up the Box2D debug draw just like we did in
Chapter 3.

Finally, we add a line in box2d.init() to call box2d.setupDebugDraw(). The advantage of doing
everything in a single method like this is that we can remove all traces of debug draw just by commenting out
this single line in box2d.init().

Before we can see the results of debug draw, we need to call the world object’s DrawDebugData() method.
We will do this in a new method called drawAllBodies() inside the game object, as shown in Listing 4-11.
We will call this method from the animate() method of the game object.

http://dx.doi.org/10.1007/978-1-4842-2910-1_3

Chapter 4 ■ Integrating the Physics Engine

84

Listing 4-11.  Modifying animate() and Creating drawAllBodies()

animate: function() {

 // Handle panning, game states, and control flow
 game.handleGameLogic();

 // Draw the background with parallax scrolling
 // First draw the background image, offset by a fraction of the offsetLeft distance (1/4)
 // The bigger the fraction, the closer the background appears to be
 �game.context.drawImage(game.currentLevel.backgroundImage, game.offsetLeft / 4, 0,

game.canvas.width, game.canvas.height, 0, 0, game.canvas.width, game.canvas.height);
 // Then draw the foreground image, offset by the entire offsetLeft distance
 �game.context.drawImage(game.currentLevel.foregroundImage, game.offsetLeft, 0,

game.canvas.width, game.canvas.height, 0, 0, game.canvas.width, game.canvas.height);

 // Draw the base of the slingshot, offset by the entire offsetLeft distance
 �game.context.drawImage(game.slingshotImage, game.slingshotX - game.offsetLeft,

game.slingshotY);

 // Draw all the bodies
 game.drawAllBodies();

 // Draw the front of the slingshot, offset by the entire offsetLeft distance
 �game.context.drawImage(game.slingshotFrontImage, game.slingshotX - game.offsetLeft,

game.slingshotY);

 if (!game.ended) {
 game.animationFrame = window.requestAnimationFrame(game.animate, game.canvas);
 }
},

drawAllBodies: function() {
 // Draw debug data if a debug canvas has been set up
 if (box2d.debugCanvas) {
 box2d.world.DrawDebugData();
 }
 // TODO: Iterate through all the bodies and draw them on the game canvas
},

For now, we have created a simple drawAllBodies() method that calls box2d.world.DrawDebugData()
if the box2d.debugCanvas is present. We will eventually need to add code to iterate through all the bodies in
the Box2D world and draw them on the game canvas.

We then call this new method from inside the game object’s animate() method. One thing to note is that
we draw the bodies after drawing the slingshot background but before drawing the slingshot foreground
image. This way, the front of the slingshot is drawn on top of all the game entities.

If we run our code now and load the first level, we should see the debug canvas with all the entities, as
shown in Figure 4-1.

Chapter 4 ■ Integrating the Physics Engine

85

The debug canvas view shows us all the game entities as circles and rectangles. We can also see the
ground and slingshot blocks in a different color. We can use this view to quickly test our levels and make sure
that all the entities are positioned correctly. Now that we can see that everything in the level looks alright, it’s
time to actually draw all the entities onto our game canvas.

Drawing the Entities
To draw an entity, we will define a method called draw() inside the entities object. This object will take the
entity, its position, and its angle as parameters and draw it on the game canvas (see Listing 4-12).

Listing 4-12.  The entities.draw() Method

// Take the entity, its position, and its angle and draw it on the game canvas
draw: function(entity, position, angle) {

 �game.context.translate(position.x * box2d.scale - game.offsetLeft, position.y *
box2d.scale);

 game.context.rotate(angle);
 var padding = 1;

 switch (entity.type) {
 case "block":
 �game.context.drawImage(entity.sprite, 0, 0, entity.sprite.width,

entity.sprite.height,
 �-entity.width / 2 - padding, -entity.height / 2 - padding,

entity.width + 2 * padding, entity.height + 2 * padding);
 break;
 case "villain":
 case "hero":
 if (entity.shape === "circle") {
 �game.context.drawImage(entity.sprite, 0, 0, entity.sprite.width,

entity.sprite.height,
 �-entity.radius - padding, -entity.radius - padding,

entity.radius * 2 + 2 * padding, entity.radius * 2 + 2 * padding);
 } else if (entity.shape === "rectangle") {
 �game.context.drawImage(entity.sprite, 0, 0, entity.sprite.width,

entity.sprite.height,

Figure 4-1.  First level drawn on the debug canvas

Chapter 4 ■ Integrating the Physics Engine

86

 �-entity.width / 2 - padding, -entity.height / 2 - padding,
entity.width + 2 * padding, entity.height + 2 * padding);

 }
 break;
 case "ground":
 // Do nothing... We draw objects like the ground & slingshot separately
 break;
 }

 game.context.rotate(-angle);
 �game.context.translate(-position.x * box2d.scale + game.offsetLeft, -position.y *

box2d.scale);
}

This method first translates and rotates the context to the position and angle of the entity. It then draws
the object on the canvas based on the entity type and shape. Finally, it rotates and translates the context
back to the original position.

One thing to note is that when using drawImage() the code stretches the image and makes it slightly
larger than the original sprite by a padding size of one pixel in each direction. This is so that small gaps
between Box2D objects get covered up.

■■ Note  Box2D creates a “skin” around all polygons. The skin is used in stacking scenarios to keep
polygons slightly separated. This allows continuous collision to work against the core polygon. When drawing
Box2D objects, we need to compensate for this extra skin by drawing bodies slightly larger than their actual
dimensions; otherwise, stacked objects will have unexplained gaps between them.

Now that we have defined an entities.draw() method, we need to call this method for every entity
in our game world. We can iterate through every body in the game world by using the world object’s
GetBodyList() method. We will now modify the game object’s drawAllBodies() method to do this, as shown
in Listing 4-13.

Listing 4-13.  Iterating Through All the Bodies and Drawing Them

drawAllBodies: function() {
 // Draw debug data if a debug canvas has been set up
 if (box2d.debugCanvas) {
 box2d.world.DrawDebugData();
 }

 // Iterate through all the bodies and draw them on the game canvas
 for (let body = box2d.world.GetBodyList(); body; body = body.GetNext()) {
 var entity = body.GetUserData();

 if (entity) {
 entities.draw(entity, body.GetPosition(), body.GetAngle());
 }
 }

},

Chapter 4 ■ Integrating the Physics Engine

87

The for loop initializes body using world.GetBodyList(), which returns the first body in the world.
The body object’s GetNext() method returns the next body in the list until it reaches the end of the list and body
becomes undefined, at which point we exit the for loop. Within the loop, we check to see if the body has an
attached entity; if it does, we call entities.draw(), passing it the body’s entity object, position, and angle.

If we run our game and load the first level now, we should see all the entities drawn on the canvas, as
shown in Figure 4-2.

Once the level loads, the game pans to the right so that we can see the bad guys clearly, and then it
pans back to the slingshot. We can see all the entities drawn properly at the same locations as on the debug
canvas. The extra pixel we added in our draw() method ensures that all the stacked objects are positioned
tightly next to each other. Note that the canvas preserves image transparencies when drawing images, which
is why we can see the background through the glass block.

Now that we have drawn all the elements in the Box2D world, we need to animate the Box2D world.

Animating the Box2D World
As in the previous chapter, we can animate the Box2D world by calling the world object’s Step() method
and passing it the time step interval as a parameter. However, this is where things get a little tricky.

As per the Box2D manual recommendation, ideally, we should use a fixed time step for best results
because variable time steps are hard to debug. Also as per the manual, Box2D works best with a time step of
around 1/60th of a second, and you should use a time step no larger than 1/30th of a second. If the time step
becomes very large, Box2D starts having problems with collisions, and bodies start passing through each other.

Figure 4-2.  Drawing the game entities on the canvas

Chapter 4 ■ Integrating the Physics Engine

88

The requestAnimationFrame API can vary the frequency at which it calls the animate() method across
browsers and machines. One way to get around this is to measure the time elapsed since the last call to
animate() and pass this difference as a time step to Box2D.

However, if we switch tabs on the browser and then return to the game tab, the browser will call the
animate() method less often, and this time step may become much larger than the upper limit of 1/30th of
a second. To avoid problems due to a large time step, we will need to actively cap the time step if it becomes
larger than 1/30th of a second.

Armed with this information, we will first define a step() method inside the box2d object. This method
will take a time interval as a parameter and call the world object’s Step() method (see Listing 4-14).

Listing 4-14.  The box2d.step() Method

step: function(timeStep) {
 // As per Box2D docs, if the timeStep is larger than 1 / 30,
 // Box2D can start having problems with collision detection
 // So cap timeStep at 1 / 30

 if (timeStep > 1 / 30) {
 timeStep = 1 / 30;
 }

 // velocity iterations = 8
 // position iterations = 3

 box2d.world.Step(timeStep, 8, 3);
}

The step() method takes a time step in seconds and passes it to the world.Step() method. If timeStep
is too large, we cap it at 1/30th of a second. We use the Box2D manual recommended values of 8 and 3 for
velocity and position iterations. We will call this method from the game.animate() method after calculating
the time step, as shown in Listing 4-15.

Listing 4-15.  Calling box2d.step() from game.animate()

animate: function() {
 // Animate the characters
 var currentTime = new Date().getTime();

 if (game.lastUpdateTime) {
 var timeStep = (currentTime - game.lastUpdateTime) / 1000;

 box2d.step(timeStep);

 }

 game.lastUpdateTime = currentTime;

 // Handle panning, game states, and control flow
 game.handleGameLogic();

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ Integrating the Physics Engine

89

The first time animate() is called, game.lastUpdateTime will be undefined, so we will not calculate
timeStep or call box2d.step(). However, in every subsequent animation cycle, we calculate the time
that has passed since the last cycle and pass it to the box2d.step() method as timeStep. We then save the
current time into the game.lastUpdateTime variable for the next animation cycle.

Loading the Hero
Now that the animation and engine are in place, it’s time to implement some more game states
(a.k.a. game modes). The first state that we will implement is the load-next-hero state. When in this state,
the game needs to count the number of heroes and villains left in the game, check how many are left, and act
accordingly as follows:

•	 If all the villains are gone, the game switches to the state level-success.

•	 If all the heroes are gone, the game switches to the state level-failure.

•	 If there are still heroes remaining, the game places the first hero on top of the
slingshot and then switches to the state wait-for-firing.

We will do this by creating a method called game.countHeroesAndVillains() and modifying the
game.handleGameLogic() method, as shown in Listing 4-16.

Listing 4-16.  Handling the load-next-hero State

// Go through the heroes and villains still present in the Box2d world and store their
Box2D bodies
heroes: undefined,
villains: undefined,
countHeroesAndVillains: function() {
 game.heroes = [];
 game.villains = [];
 for (let body = box2d.world.GetBodyList(); body; body = body.GetNext()) {
 var entity = body.GetUserData();

 if (entity) {
 if (entity.type === "hero") {
 game.heroes.push(body);
 } else if (entity.type === "villain") {
 game.villains.push(body);
 }
 }
 }
},

handleGameLogic: function() {
 if (game.mode === "intro") {
 if (game.panTo(700)) {
 game.mode = "load-next-hero";
 }
 }

Chapter 4 ■ Integrating the Physics Engine

90

 if (game.mode === "wait-for-firing") {
 if (mouse.dragging) {
 game.panTo(mouse.x + game.offsetLeft);
 } else {
 game.panTo(game.slingshotX);
 }
 }

 if (game.mode === "load-next-hero") {

 // First count the heroes and villains and populate their respective arrays
 game.countHeroesAndVillains();

 // Check if any villains are alive, if not, end the level (success)
 if (game.villains.length === 0) {
 game.mode = "level-success";

 return;
 }

 // Check if there are any more heroes left to load, if not end the level (failure)
 if (game.heroes.length === 0) {
 game.mode = "level-failure";

 return;
 }

 // Load the hero and set mode to wait-for-firing
 if (!game.currentHero) {
 // Select the last hero in the heroes array
 game.currentHero = game.heroes[game.heroes.length - 1];

 // Starting position for loading the hero
 var heroStartX = 180;
 var heroStartY = 180;

 // And position it in mid-air, slightly above the slingshot
 �game.currentHero.SetPosition({ x: heroStartX / box2d.scale, y: heroStartY /

box2d.scale });
 game.currentHero.SetLinearVelocity({ x: 0, y: 0 });
 game.currentHero.SetAngularVelocity(0);

 �// And since the hero had been sitting on the ground and is "asleep" in Box2D,
"wake" it

 game.currentHero.SetAwake(true);
 } else {
 // Wait for hero to stop bouncing on top of the slingshot and fall asleep
 // and then switch to wait-for-firing
 game.panTo(game.slingshotX);

Chapter 4 ■ Integrating the Physics Engine

91

 if (!game.currentHero.IsAwake()) {
 game.mode = "wait-for-firing";
 }
 }
 }

 if (game.mode === "firing") {
 // If the mouse button is down, allow the hero to be dragged around and aimed
 // If not, fire the hero into the air
 }

 if (game.mode === "fired") {
 // Pan to the location of the current hero as it flies
 // Wait till the hero stops moving or is out of bounds
 }

 if (game.mode === "level-success" || game.mode === "level-failure") {
 // First pan all the way back to the left
 // Then show the game has ended and show the ending screen
 }
},

The countHeroesAndVillains() method iterates through all the bodies in the world and stores the
heroes in the game.heroes array and the villains in the game.villains array.

Inside the handleGameLogic() method, when game.mode is load-next-hero, we first call
countHeroesandVillains(). We then check to see if the villain or hero count is 0 and, if so, set game.mode to
level-success or level-failure, respectively. If not, we save the last hero in the game.heroes array into the
game.currentHero variable and set hero’s position to a point in the air above the slingshot. We set its angular
and linear velocity to 0. We also wake up the body in case it is asleep.

As soon as the body is woken up, it will be affected by gravity and start falling toward the slingshot.
When the body drops on to the slingshot, it will bounce until it finally comes to rest and falls asleep again.
We wait for this to occur, and once the body goes back to sleep we set game.mode to wait-for-firing.

If we run the game and start the first level, we will see the first hero bounce on the slingshot and come
to rest, as shown in Figure 4-3.

Chapter 4 ■ Integrating the Physics Engine

92

Now that we have the hero ready to be fired, we need to handle firing the hero from the slingshot.

Firing the Hero
We will implement firing the hero using three states:

•	 wait-for-firing: The game pans over the slingshot and waits for the mouse to be
clicked and dragged while the pointer is above the hero. When this happens, it shifts
to the firing state.

•	 firing: The game moves the hero with the mouse until the mouse button is released.
When this happens, it pushes the hero with an impulse based on its distance from
the slingshot and shifts to the fired state.

•	 fired: The game pans to follow the hero until it either comes to rest or goes outside
the level bounds. The game then removes the hero from the game world and goes
back to the load-next-hero state.

Before we can do that, we will need a way to detect when the user is attempting to move or fire the hero.
To do so, we will first implement a method called mouseOnCurrentHero() inside the game object to test if the
mouse pointer is positioned on the current hero (see Listing 4-17).

Figure 4-3.  First hero loaded on slingshot and waiting to be fired

Chapter 4 ■ Integrating the Physics Engine

93

Listing 4-17.  The game.mouseOnCurrentHero() Method

mouseOnCurrentHero: function() {
 if (!game.currentHero) {
 return false;
 }

 var position = game.currentHero.GetPosition();

 // Distance between center of the hero and the mouse cursor
 var distanceSquared = Math.pow(position.x * box2d.scale - mouse.x - game.offsetLeft, 2) +
 Math.pow(position.y * box2d.scale - mouse.y, 2);

 // Radius of the hero
 var radiusSquared = Math.pow(game.currentHero.GetUserData().radius, 2);

 // If the distance of mouse from the center is less than the radius, mouse is on the hero
 return (distanceSquared <= radiusSquared);
},

This method calculates the distance between the current hero center and the mouse location and
compares it with the radius of the current hero to check if the mouse is positioned over the hero. If the
distance is less than the radius, the mouse pointer is positioned on the hero.

We can get away with using this simple check since all our heroes are circular. If you want to implement
heroes with different shapes, you might need a more complex method where you compare the mouse
location with the bounds of the hero character.

We compare the squares of the values instead of calculating the square roots to save us an unnecessary
calculation since comparing the squares will give us the same result.

Now that we have this method in place, we can implement the three states inside the
handleGameLogic() method, as shown in Listing 4-18.

Listing 4-18.  Handling the Firing States Inside the handleGameLogic() Method

if (game.mode === "wait-for-firing") {
 if (mouse.dragging) {
 if (game.mouseOnCurrentHero()) {
 game.mode = "firing";
 } else {
 game.panTo(mouse.x + game.offsetLeft);
 }
 } else {
 game.panTo(game.slingshotX);
 }
}

if (game.mode === "firing") {

 if (mouse.down) {
 game.panTo(game.slingshotX);

Chapter 4 ■ Integrating the Physics Engine

94

 // Limit dragging to maxDragDistance
 �var distance = Math.pow(Math.pow(mouse.x - game.slingshotBandX + game.offsetLeft, 2) +

Math.pow(mouse.y - game.slingshotBandY, 2), 0.5);
 var angle = Math.atan2(mouse.y - game.slingshotBandY, mouse.x - game.slingshotBandX);

 var minDragDistance = 10;
 var maxDragDistance = 120;
 var maxAngle = Math.PI * 145 / 180;

 if (angle > 0 && angle < maxAngle) {
 angle = maxAngle;
 }
 if (angle < 0 && angle > -maxAngle) {
 angle = -maxAngle;
 }
 // If hero has been dragged too far, limit movement
 if (distance > maxDragDistance) {
 distance = maxDragDistance;
 }

 // If the hero has been dragged in the wrong direction, limit movement
 if ((mouse.x + game.offsetLeft > game.slingshotBandX)) {
 distance = minDragDistance;
 angle = Math.PI;
 }

 // Position the hero based on the distance and angle calculated earlier
 �game.currentHero.SetPosition({ x: (game.slingshotBandX + distance * Math.cos(angle) +

game.offsetLeft) / box2d.scale,
 y: (game.slingshotBandY + distance * Math.sin(angle)) / box2d.scale });

 } else {
 game.mode = "fired";
 var impulseScaleFactor = 0.8;
 var heroPosition = game.currentHero.GetPosition();
 var heroPositionX = heroPosition.x * box2d.scale;
 var heroPositionY = heroPosition.y * box2d.scale;

 var impulse = new b2Vec2((game.slingshotBandX - heroPositionX) * impulseScaleFactor,
 (game.slingshotBandY - heroPositionY) * impulseScaleFactor);

 // Apply an impulse to the hero to fire it towards the target
 game.currentHero.ApplyImpulse(impulse, game.currentHero.GetWorldCenter());

 // Make sure the hero can't keep rolling indefinitely
 game.currentHero.SetAngularDamping(2);
 }
}

Chapter 4 ■ Integrating the Physics Engine

95

if (game.mode === "fired") {
 // Pan to the location of the current hero as it flies
 var heroX = game.currentHero.GetPosition().x * box2d.scale;

 game.panTo(heroX);

 // Wait till the hero stops moving or is out of bounds
 �if (!game.currentHero.IsAwake() || heroX < 0 || heroX > game.currentLevel.

foregroundImage.width) {
 // then remove the hero from the box2d world
 box2d.world.DestroyBody(game.currentHero);
 // clear the current hero
 game.currentHero = undefined;
 // and load next hero
 game.mode = "load-next-hero";
 }
}

The first state that we handle is wait-for-firing. When the state is wait-for-firing, if the mouse
is being dragged and the mouse pointer is positioned on the hero, we change the state to firing; if the
mouse pointer is not positioned on the hero, we pan the screen toward the cursor. If the mouse is not being
dragged, we pan back toward the slingshot.

For the second state, firing, while the mouse button is down, we allow the player to move the hero
around and set the position of the hero based on the current mouse position. We first calculate the distance
and angle of the mouse from the top of the slingshot, and then, to prevent dragging the hero too far or to very
large angles, we limit the angle and distance using minDragDistance, maxDragDistance, and maxAngle.

When the mouse button is released, we set the state to fired and apply an impulse to the hero using
the b2Body object’s ApplyImpulse() method. This method takes the impulse as a parameter in the form of a
b2Vec2 object. We set the x and y values of the impulse vector as a multiple of the x and y distance of the hero
from the top of the slingshot. The impulse scaling factor is a number that I came up with by experimenting
with different values to find one that worked well for the game. We also set an angular damping on the hero
that will cause it to slow down and come to a stop instead of rolling indefinitely.

Finally, when the state is fired, we pan the screen toward the hero and wait for the hero to either come
to rest or fall outside of the game bounds. If it does either, we remove the hero from the world using the
DestroyBody() method and change the state back to load-next-hero.

This cycle of states from load-next-hero to wait-for-firing to firing to fired will continue until we
run out of either villains or heroes and move to the success or failure state.

If we run the code we have so far and load a level, we should be able to fire the hero at the blocks and
knock them down, as shown in Figure 4-4.

Chapter 4 ■ Integrating the Physics Engine

96

You will see that the game pans smoothly to follow the hero flying through the level. Once the hero
either stops rolling or goes outside the bounds of the level, it is removed from the game and the next hero is
loaded onto the slingshot. At this point, once all the heroes are gone, the game just stops and waits instead of
ending the level. So, the next thing that we need to do is implement ending the level.

Ending the Level
Once a level ends, we will stop the game animation loop and display a level ending screen. This screen will
give the user options to replay the current level, proceed to the next level, or return to the level selection
screen.

The first thing we need to do is add the CSS for the endingscreen div element into styles.css, as
shown in Listing 4-19.

Listing 4-19.  CSS for the endingscreen div Element

/* Ending Screen */

#endingscreen {
 text-align: center;
 background: rgba(1, 1, 1, 0.3);
}

Figure 4-4.  Firing the hero at the blocks and knocking them over

Chapter 4 ■ Integrating the Physics Engine

97

#endingscreen div {

 /* Center the popup div within the screen */
 position: absolute;
 left: 50%;
 top: 50%;
 transform: translate(-50%, -50%);
 transform-origin: center center;

 height: 250px;
 width: 330px;

 border: 1px solid gray;
 border-radius: 25px;
 background: rgba(1, 1, 1, 0.3);

 padding: 10px 30px 40px 50px;

 text-align: left;
}

.endingoption {
 font: 20px "Comic Sans MS";
 text-shadow: 0 0 2px black;
 color: white;
}

#endingscreen p img {
 top: 10px;
 position: relative;
 cursor: pointer;

 padding-right: 20px;
}

#endingmessage {
 font: 25px "Comic Sans MS";
 text-shadow: 0 0 2px black;
 color: yellow;
 text-align: center;
}

The CSS creates a dark background overlay above the game screen, centers the ending screen options,
and then adds some general styling to the text.

Now that the ending screen is ready, we will implement a method called showEndingScreen() inside
the game object to display the endingscreen div element (see Listing 4-20).

Chapter 4 ■ Integrating the Physics Engine

98

Listing 4-20.  The game.showEndingScreen() Method

showEndingScreen: function() {
 var playNextLevel = document.getElementById("playnextlevel");
 var endingMessage = document.getElementById("endingmessage");

 if (game.mode === "level-success") {
 if (game.currentLevel.number < levels.data.length - 1) {
 endingMessage.innerHTML = "Level Complete. Well Done!!!";
 // More levels available. Show the play next level button
 playNextLevel.style.display = "block";
 } else {
 endingMessage.innerHTML = "All Levels Complete. Well Done!!!";
 // No more levels. Hide the play next level button
 playNextLevel.style.display = "none";
 }
 } else if (game.mode === "level-failure") {
 endingMessage.innerHTML = "Failed. Play Again?";
 // Failed level. Hide the play next level button
 playNextLevel.style.display = "none";
 }

 game.showScreen("endingscreen");
},

The showEndingScreen() method shows different ending messages based on the value of game.mode.
The option to play the next level is shown if the player was successful and the current level was not the final
level of the game. If the player was unsuccessful or the current level was the final level, the option is hidden.

We will now handle level-success and level-failure within the handleGameLogic() method of the
game object as shown in Listing 4-21.

Listing 4-21.  Implementing the Level Ending States in handleGameLogic()

if (game.mode === "level-success" || game.mode === "level-failure") {
 // First pan all the way back to the left
 if (game.panTo(0)) {
 // Then show the game has ended and show the ending screen
 game.ended = true;
 game.showEndingScreen();
 }
}

When game.mode is either level-success or level-failure, the game first pans back to the left, sets the
game.ended property to true, then finally displays the ending screen shown in Figure 4-5.

Chapter 4 ■ Integrating the Physics Engine

99

Note that clicking the buttons won’t do anything since we have not yet implemented any event handlers
for the buttons.

Also, since we haven’t implemented collision damage, the villains cannot die and we can never win the
game. Therefore, the next thing we will implement is collision damage so we can destroy the bad guys and
win the game.

Collision Damage
The first thing we need to do is track collisions by using a contact listener and overriding its PostSolve()
method, just like we did in Chapter 3. We will create this listener in a handleCollisions() method that
we will call immediately after creating the world in the init() method of the box2d object, as shown in
Listing 4-22.

Listing 4-22.  Handling Collisions Using a Contact Listener

init: function() {
 // Set up the Box2D world that will do most of the physics calculation
 var gravity = new b2Vec2(0, 9.8); // Declare gravity as 9.8 m/s^2 downward
 �var allowSleep = true; // Allow objects that are at rest to fall asleep and be excluded

from calculations

Figure 4-5.  The level ending screen

http://dx.doi.org/10.1007/978-1-4842-2910-1_3

Chapter 4 ■ Integrating the Physics Engine

100

 box2d.world = new b2World(gravity, allowSleep);

 // Activate debug drawing. Comment the line below to disable it.
 // this.setupDebugDraw();

 this.handleCollisions();
},

handleCollisions: function() {
 var listener = new b2ContactListener();

 listener.PostSolve = function(contact, impulse) {
 var body1 = contact.GetFixtureA().GetBody();
 var body2 = contact.GetFixtureB().GetBody();
 var entity1 = body1.GetUserData();
 var entity2 = body2.GetUserData();

 var impulseAlongNormal = Math.abs(impulse.normalImpulses[0]);

 // This listener is called a little too often. Filter out very tiny impulses.
 // After trying different values, 5 seems to work well as a threshold
 if (impulseAlongNormal > 5) {
 // If objects have a health, reduce health by the impulse value
 if (entity1.health) {
 entity1.health -= impulseAlongNormal;
 }

 if (entity2.health) {
 entity2.health -= impulseAlongNormal;
 }
 }
 };

 box2d.world.SetContactListener(listener);
},

Inside the handleCollisions() method, we declare a b2ContactListener, define its PostSolve()
handler, and set the contact listener for the world, just as we did in Chapter 3.

Within the PostSolve() method, if either of the bodies involved in the collision has a health property,
we reduce the health by the value of the impulse along the normal. Since the PostSolve() method is called for
every little collision, we ignore any collision where impulseAlongNormal is less than a threshold value of 5.

The next thing we will do is add some code to check if a body’s health property is less than zero or if the
body has gone outside the level bounds. If either is true, we will remove the body from the world. We will do
this by creating a method called removeDeadBodies() inside the game object as shown in Listing 4-23.

Listing 4-23.  Removing Dead Bodies from the World

removeDeadBodies: function() {

 // Iterate through all the bodies
 for (let body = box2d.world.GetBodyList(); body; body = body.GetNext()) {
 var entity = body.GetUserData();

http://dx.doi.org/10.1007/978-1-4842-2910-1_3

Chapter 4 ■ Integrating the Physics Engine

101

 if (entity) {
 var entityX = body.GetPosition().x * box2d.scale;

 // If the entity goes out of bounds or its health goes below 0
 if (entityX < 0 || entityX > game.currentLevel.foregroundImage.width ||
 (entity.health !== undefined && entity.health <= 0)) {

 // Remove the entity from the box2d world
 box2d.world.DestroyBody(body);

 // Update the score if a villain is killed
 if (entity.type === "villain") {
 game.score += entity.calories;
 document.getElementById("score").innerHTML = "Score: " + game.score;
 }
 }
 }
 }
},

We iterate through all the bodies, just like we did when we were drawing them, and retrieve their entity
data. If the code finds that the entity has gone outside the level bounds or the entity has lost all its health, we
use the world object’s DestroyBody() method to remove the body. Additionally, if the entity is a villain, we
add the entity’s calorie value to the game score and update the score on the screen.

We will call this method from the animate() method right after the call to game.handleGameLogic() as
shown in Listing 4-24.

Listing 4-24.  Calling removeDeadBodies() from animate()

// Handle panning, game states, and control flow
game.handleGameLogic();

// Remove any bodies that died during this animation cycle
game.removeDeadBodies();

// Draw the background with parallax scrolling
// First draw the background image, offset by a fraction of the offsetLeft distance (1/4)
// The bigger the fraction, the closer the background appears to be

If we run the game now, the villains should get destroyed and the score should increase, as shown in
Figure 4-6.

Chapter 4 ■ Integrating the Physics Engine

102

Now that we have a working level, let’s add a few finishing touches. The first thing we will do is draw a
slingshot band when the hero is being fired.

Drawing the Slingshot Band
The slingshot band is going to be a thick brown line from the end of the slingshot to the extreme
end of the hero. We will draw the band only when the game is in firing mode. We will do this in a
drawSlingshotBand() method inside the game object, as shown in Listing 4-25.

Listing 4-25.  Drawing the Slingshot Band

drawSlingshotBand: function() {
 game.context.strokeStyle = "rgb(68,31,11)"; // Dark brown color
 game.context.lineWidth = 7; // Draw a thick line

 �// Use angle hero has been dragged and radius to calculate coordinates of edge of hero
wrt. hero center

 var radius = game.currentHero.GetUserData().radius + 1; // 1px extra padding
 var heroX = game.currentHero.GetPosition().x * box2d.scale;
 var heroY = game.currentHero.GetPosition().y * box2d.scale;
 var angle = Math.atan2(game.slingshotBandY - heroY, game.slingshotBandX - heroX);

Figure 4-6.  The score increases after a bad guy gets destroyed

Chapter 4 ■ Integrating the Physics Engine

103

 // This is the X, Y position of the point where the band touches the hero
 var heroFarEdgeX = heroX - radius * Math.cos(angle);
 var heroFarEdgeY = heroY - radius * Math.sin(angle);

 game.context.beginPath();
 // Start line from top of slingshot (the back side)
 game.context.moveTo(game.slingshotBandX - game.offsetLeft, game.slingshotBandY);

 // Draw line to center of hero
 game.context.lineTo(heroX - game.offsetLeft, heroY);
 game.context.stroke();

 // Draw the hero on the back band
 �entities.draw(game.currentHero.GetUserData(), game.currentHero.GetPosition(),

game.currentHero.GetAngle());

 game.context.beginPath();
 // Move to edge of hero farthest from slingshot top
 game.context.moveTo(heroFarEdgeX - game.offsetLeft, heroFarEdgeY);

 // Draw line back to top of slingshot (the front side)
 game.context.lineTo(game.slingshotBandX - game.offsetLeft - 40, game.slingshotBandY + 15);
 game.context.stroke();
},

We start by setting the drawing color to a dark brown using the strokeStyle property. We next set
the line drawing width to 7 pixels using the lineWidth property. We then draw a band from the back of
the slingshot to the hero, draw the hero on top of the band, and, finally, draw a band from the front of the
slingshot to the edge of the hero furthest from the slingshot.

We will call this method from the game.animate() method right after we draw all the other bodies, as
shown in Listing 4-26.

Listing 4-26.  Calling the drawSlingshotBand() Method from animate()

// Draw the base of the slingshot, offset by the entire offsetLeft distance
game.context.drawImage(game.slingshotImage, game.slingshotX - game.offsetLeft,
game.slingshotY);

// Draw all the bodies
game.drawAllBodies();

// Draw the band when we are firing a hero
if (game.mode === "firing") {
 game.drawSlingshotBand();
}

// Draw the front of the slingshot, offset by the entire offsetLeft distance
game.context.drawImage(game.slingshotFrontImage, game.slingshotX - game.offsetLeft,
game.slingshotY);

Chapter 4 ■ Integrating the Physics Engine

104

When we run this code, we should see a brown band around the hero, as shown in Figure 4-7.

This isn’t a complete solution. The band might look a little unnatural at certain extreme angles. You
might consider improving this method by superimposing some extra images on top of the band to cover up
these edge effects. For now, this simple implementation will suffice.

Now that we have the artwork for the level wrapped up, let’s implement the buttons for changing and
restarting levels.

Changing Levels
We have already implemented one way to traverse levels, using the level selection screen. Now we will
implement the buttons for restarting a level and proceeding to the next level.

We start by implementing the restartLevel() and startNextLevel() methods inside the game object,
as shown in Listing 4-27.

Listing 4-27.  Implementing restartLevel() and startNextLevel()

restartLevel: function() {
 window.cancelAnimationFrame(game.animationFrame);
 game.lastUpdateTime = undefined;
 levels.load(game.currentLevel.number);
},

Figure 4-7.  Drawing the slingshot band

Chapter 4 ■ Integrating the Physics Engine

105

startNextLevel: function() {
 window.cancelAnimationFrame(game.animationFrame);
 game.lastUpdateTime = undefined;
 levels.load(game.currentLevel.number + 1);
},

The methods are fairly simple. Both of them cancel any existing animationFrame loops, reset the
game.lastUpdateTime variable, and finally call the levels.load() method with the appropriate level number.

We also need to call these level selection methods from the onclick event of the corresponding images
in the scorescreen and endingscreen layers, as shown in Listing 4-28.

Listing 4-28.  Setting the onclick Events for Changing Levels

<div id="scorescreen" class="gamelayer">

 Score: 0
</div>

<div id="endingscreen" class="gamelayer">
 <div>
 <p id="endingmessage">The Level Is Over Message</p>
 �<p id="playcurrentlevel" class="endingoption" onclick="game.restartLevel()">

Replay Current Level</p>
 �<p id="playnextlevel" class="endingoption" onclick="game.startNextLevel()">

Play Next Level</p>
 �<p id="returntolevelscreen" class="endingoption" onclick="game.

showLevelScreen()">Return to Level
Screen</p>

 </div>
</div>

If we run the game, we should now be able to restart a level, proceed to the next level, or return to the
level screen using the provided buttons.

We now have a working game with complete levels. We also have a simple way to build new levels.
However, there is still one last element missing: sound.

Adding Sound
Adding sound makes a game much more immersive since it provides the player with an additional source of
sensory stimulation and feedback, which makes the game feel a little more real.

We will start by adding a few sound effects for when the slingshot is released, for when a hero or villain
bounces, and for when one of the blocks gets destroyed. We will also add some background music, along
with the capability to turn it off if we want.

The sounds files for each of these effects are available in the audio folder (in both MP3 and OGG format).
We will start by loading these sound files in a loadSounds() method in the game object, which we will

then call from the init() method, as shown in Listing 4-29.

Chapter 4 ■ Integrating the Physics Engine

106

Listing 4-29.  Loading Sound and Background Music

init: function() {
 //Get handler for game canvas and context
 game.canvas = document.getElementById("gamecanvas");
 game.context = game.canvas.getContext("2d");

 // Initialize objects
 levels.init();
 loader.init();
 mouse.init();

 // Load All Sound Effects and Background Music
 game.loadSounds(function() {
 // Hide all game layers and display the start screen
 game.hideScreens();
 game.showScreen("gamestartscreen");
 });

},

loadSounds: function(onload) {
 game.backgroundMusic = loader.loadSound("audio/gurdonark-kindergarten");

 game.slingshotReleasedSound = loader.loadSound("audio/released");
 game.bounceSound = loader.loadSound("audio/bounce");
 game.breakSound = {
 "glass": loader.loadSound("audio/glassbreak"),
 "wood": loader.loadSound("audio/woodbreak")
 };

 loader.onload = onload;
},

The loadSounds() method loads the different sound files using the loader.loadSound() method
and saves them for later reference. We store the break sounds in an associative array so that we can easily
add sounds for more entities and reference them by name. The background music is an excellent Creative
Commons–licensed tune called “Kindergarten” by Gurdonark. After initiating the loading of the sound files,
we set the onload property of the loader.

Within the init() method, we first call loadSounds() and pass an onload function within which we
display the game start screen. This way, the game will display a loading screen until the audio has loaded
completely, and then finally display the game menu.

■■ Tip  You can find some amazing free music for your own games at the ccMixter website, located at
http://ccmixter.org.

http://ccmixter.org

Chapter 4 ■ Integrating the Physics Engine

107

Adding Break and Bounce Sounds
Now that we have loaded these sounds, we need to associate these sound effects with the entities and play
them at the right time. We will modify the entities.create() method and set the break and bounce sounds
in the entity definitions, as shown in Listing 4-30.

Listing 4-30.  Assigning Sounds to Entities During Creation

create: function(entity) {
 var definition = entities.definitions[entity.name];

 if (!definition) {
 console.log("Undefined entity name", entity.name);

 return;
 }

 switch(entity.type) {
 case "block": // simple rectangles
 entity.health = definition.fullHealth;
 entity.fullHealth = definition.fullHealth;
 entity.shape = "rectangle";
 entity.sprite = loader.loadImage("images/entities/" + entity.name + ".png");

 entity.breakSound = game.breakSound[entity.name];

 box2d.createRectangle(entity, definition);
 break;
 case "ground": // simple rectangles
 // No need for health. These are indestructible
 entity.shape = "rectangle";
 // No need for sprites. These won't be drawn at all
 box2d.createRectangle(entity, definition);
 break;
 case "hero": // simple circles
 case "villain": // can be circles or rectangles
 entity.health = definition.fullHealth;
 entity.fullHealth = definition.fullHealth;
 entity.sprite = loader.loadImage("images/entities/" + entity.name + ".png");
 entity.shape = definition.shape;

 entity.bounceSound = game.bounceSound;

 if (definition.shape === "circle") {
 entity.radius = definition.radius;
 box2d.createCircle(entity, definition);
 } else if (definition.shape === "rectangle") {
 entity.width = definition.width;
 entity.height = definition.height;
 box2d.createRectangle(entity, definition);
 }
 break;

Chapter 4 ■ Integrating the Physics Engine

108

 default:
 console.log("Undefined entity type", entity.type);
 break;
 }
},

The only change in the code is that we set a breakSound attribute for block entities and a bounceSound
attribute for hero and villain entities. The advantage of attaching sounds to entities during creation like
this is that every entity can have its own custom “break” sound and “bounce” sound if needed.

Now, all we need to do is play the sounds when the events actually occur. First, we play the bounce
sound whenever we detect a collision, inside the handleCollisions method we defined earlier, as shown in
Listing 4-31.

Listing 4-31.  Playing the Bounce Sound During a Collision

handleCollisions: function() {
 var listener = new b2ContactListener();

 listener.PostSolve = function(contact, impulse) {
 var body1 = contact.GetFixtureA().GetBody();
 var body2 = contact.GetFixtureB().GetBody();
 var entity1 = body1.GetUserData();
 var entity2 = body2.GetUserData();

 var impulseAlongNormal = Math.abs(impulse.normalImpulses[0]);

 // This listener is called a little too often. Filter out very tiny impulses.
 // After trying different values, 5 seems to work well as a threshold
 if (impulseAlongNormal > 5) {
 // If objects have a health, reduce health by the impulse value
 if (entity1.health) {
 entity1.health -= impulseAlongNormal;
 }

 if (entity2.health) {
 entity2.health -= impulseAlongNormal;
 }

 // If entities have a bounce sound, play the sound
 if (entity1.bounceSound) {
 entity1.bounceSound.play();
 }

 if (entity2.bounceSound) {
 entity2.bounceSound.play();
 }

 }
 };
 box2d.world.SetContactListener(listener);
},

Chapter 4 ■ Integrating the Physics Engine

109

During a collision, we check if the entity has a bounceSound property defined and, if so, we play the
sound. If we define bounce sounds for any entity, this code will automatically play it whenever the entity is
in a significant collision.

Next, we play the break sound any time an object gets destroyed, inside the removeDeadBodies()
method of the game object (see Listing 4-32).

Listing 4-32.  Playing the Break Sound when an Object Is Destroyed

removeDeadBodies: function() {

 // Iterate through all the bodies
 for (let body = box2d.world.GetBodyList(); body; body = body.GetNext()) {
 var entity = body.GetUserData();

 if (entity) {
 var entityX = body.GetPosition().x * box2d.scale;

 // If the entity goes out of bounds or its health goes below 0
 if (entityX < 0 || entityX > game.currentLevel.foregroundImage.width ||
 (entity.health !== undefined && entity.health <= 0)) {

 // Remove the entity from the box2d world
 box2d.world.DestroyBody(body);

 // Update the score if a villain is killed
 if (entity.type === "villain") {
 game.score += entity.calories;
 document.getElementById("score").innerHTML = "Score: " + game.score;
 }

 // If entity has a break sound, play the sound
 if (entity.breakSound) {
 entity.breakSound.play();
 }
 }
 }
 }
},

Again, we check to see if the entity being destroyed has a breakSound property and, if so, we play the
sound. So far we have defined break sounds for the glass and wood blocks, but we can easily extend the code
to add sounds for the other entities.

Finally, we play the slingshotReleasedSound when game.mode changes from firing to fired inside the
handleGameLogic() method (see Listing 4-33).

Listing 4-33.  Playing the Slingshot Released Sound when the Hero Is Fired

} else {
 game.mode = "fired";
 var impulseScaleFactor = 0.8;
 var heroPosition = game.currentHero.GetPosition();
 var heroPositionX = heroPosition.x * box2d.scale;
 var heroPositionY = heroPosition.y * box2d.scale;

Chapter 4 ■ Integrating the Physics Engine

110

 var impulse = new b2Vec2((game.slingshotBandX - heroPositionX) * impulseScaleFactor,
 (game.slingshotBandY - heroPositionY) * impulseScaleFactor);

 // Apply an impulse to the hero to fire it towards the target
 game.currentHero.ApplyImpulse(impulse, game.currentHero.GetWorldCenter());

 // Make sure the hero can't keep rolling indefinitely
 game.currentHero.SetAngularDamping(2);

 // Play the slingshot released sound
 game.slingshotReleasedSound.play();
}

Now when you run the game, you should hear sound effects when the hero is fired, when it bumps
against something, or when the blocks get destroyed. The last thing we will be adding is the background
music.

Adding Background Music
We have already loaded the background music file along with the other sound files in the game.loadSounds()
method. Now we need to create a few methods for starting, stopping, and toggling the background music.
We will add these methods to the game object, as shown in Listing 4-34.

Listing 4-34.  Methods for Controlling Background Music

startBackgroundMusic: function() {
 game.backgroundMusic.play();
 game.setBackgroundMusicButton();
},

stopBackgroundMusic: function() {
 game.backgroundMusic.pause();
 // Go to the beginning of the song
 game.backgroundMusic.currentTime = 0;

 game.setBackgroundMusicButton();
},

toggleBackgroundMusic: function() {
 if (game.backgroundMusic.paused) {
 game.backgroundMusic.play();
 } else {
 game.backgroundMusic.pause();
 }

 game.setBackgroundMusicButton();
},

Chapter 4 ■ Integrating the Physics Engine

111

setBackgroundMusicButton: function() {
 var toggleImage = document.getElementById("togglemusic");

 if (game.backgroundMusic.paused) {
 toggleImage.src = "images/icons/nosound.png";
 } else {
 toggleImage.src = "images/icons/sound.png";
 }
},

The startBackgroundMusic() method first calls the backgroundMusic object's play() method and
then calls setBackgroundMusicButton() to set the toggle music button image appropriately.

The stopBackgroundMusic() method calls the backgroundMusic object’s pause() method and
sets the audio back to the beginning of the song by setting its currentTime property to 0. It then calls
setBackgroundMusicButton() to change the music button image.

Finally, the toggleBackgroundMusic() method checks to see whether or not the music is currently
paused, calls either the pause() or play() method, and then sets the toggle image appropriately.

The setBackgroundMusicButton() method simply sets the src property of the background music
image based on whether or not the background music is currently playing.

Now that we have these methods in place, we need to call them. We will call the
startBackgroundMusic() method when the game starts from inside the game.start() method, as shown in
Listing 4-35.

Listing 4-35.  Starting the Background Music

start: function() {
 game.hideScreens();

 // Display the game canvas and score
 game.showScreen("gamecanvas");
 game.showScreen("scorescreen");

 game.mode = "intro";
 game.currentHero = undefined;

 game.offsetLeft = 0;
 game.ended = false;

 game.animationFrame = window.requestAnimationFrame(game.animate, game.canvas);

 // Play the background music when the game starts
 game.startBackgroundMusic();
},

Next, we will call the stopBackgroundMusic() method whenever the level ends by adding it to the
showEndingScreen() method, as shown in Listing 4-36.

Listing 4-36.  Stopping the Background Music

showEndingScreen: function() {
 var playNextLevel = document.getElementById("playnextlevel");
 var endingMessage = document.getElementById("endingmessage");

Chapter 4 ■ Integrating the Physics Engine

112

 if (game.mode === "level-success") {
 if (game.currentLevel.number < levels.data.length - 1) {
 endingMessage.innerHTML = "Level Complete. Well Done!!!";
 // More levels available. Show the play next level button
 playNextLevel.style.display = "block";
 } else {
 endingMessage.innerHTML = "All Levels Complete. Well Done!!!";
 // No more levels. Hide the play next level button
 playNextLevel.style.display = "none";
 }
 } else if (game.mode === "level-failure") {
 endingMessage.innerHTML = "Failed. Play Again?";
 // Failed level. Hide the play next level button
 playNextLevel.style.display = "none";
 }

 game.showScreen("endingscreen");

 // Stop the background music when the game ends
 game.stopBackgroundMusic();
},

Finally, we will call the toggleBackgroundMusic() method from the onclick event of the toggle music
button inside the scorescreen layer, as shown in Listing 4-37.

Listing 4-37.  Toggling the Background Music

<div id="scorescreen" class="gamelayer">
 �<img id="togglemusic" src="images/icons/sound.png" alt="Toggle Music"

onclick="game.toggleBackgroundMusic()">

 Score: 0
</div>

Now if we run the game, the background music starts playing as soon as the level starts. When we click
the toggle button, the music pauses and the button changes to the no-sound icon, as shown in Figure 4-8.

Chapter 4 ■ Integrating the Physics Engine

113

Figure 4-8.  The finished game with the background music switched off

With this last change, we now have a complete, working game. We can select a level from the level
selection screen, and play the game by slinging across the hero fruits to attack the evil junk food, while
listening to sound effects and background music.

Of course, there is still a lot of room for us to expand the functionality of this game. Some of the obvious
next steps would be to add animations for different entities, add more levels, tweak the game physics
parameters, and add more heroes and villains with different characteristics.

However, the game has all the essential elements that people have come to expect from a good HTML5
game. You can use the code in this game as a starting point for any of your own physics engine–based games
and take it wherever you would like.

Take some time to enjoy the game and come up with your own ideas for levels.

Summary
Over the past three chapters, we created our first physics engine–based HTML5 game. We started in Chapter 2
by creating a basic game framework with menus, a level system, and an asset loader and setting up game
animation. We then covered the basics of Box2D in Chapter 3. Finally, in this chapter we integrated Box2D into
our existing game framework and wrapped up our game by adding menu options, sounds effects, and music.

One limitation of this game we have created is that it will work only on desktop browsers, and not on
mobile devices such as smartphones and tablets. However, now that HTML5 is fully supported by most mobile
devices, it is possible to make this game work even on mobile devices with just a little additional work.

In the next chapter, we will look at some of the differences and challenges in building mobile device
games using HTML5, as well as ways to handle them. We will then apply this knowledge to modify our
existing game so it works on mobile devices as well.

http://dx.doi.org/10.1007/978-1-4842-2910-1_2
http://dx.doi.org/10.1007/978-1-4842-2910-1_3

115© Aditya Ravi Shankar 2017
A. R. Shankar, Pro HTML5 Games, DOI 10.1007/978-1-4842-2910-1_5

CHAPTER 5

Creating a Mobile Game

Over the last few years, the use of mobile devices and their mobile browsers has steadily increased, to
the point where several popular sites have started reporting that the number of mobile device users
visiting them exceeds the number of visits from desktop users. While we may not have necessarily
reached a tipping point where mobile device usage has surpassed desktop usage everywhere, we have
definitely reached a point where mobile device users comprise a significant market share and can no
longer be ignored.

During this same time period, mobile browsers have been steadily improving their support for the
HTML5 API, so essential HTML5 features can now be expected to work on most mobile devices without
needing significant hacks or workarounds. What this means for us as game developers is that we can now
start building HTML5 games that also work on mobile devices, something that wasn’t easily possible a few
years ago.

In this chapter we will look at the differences between the mobile device environment and the desktop
environment and some of the considerations necessary when making games for mobile devices. We will
then continue with our game Froot Wars, using the code from Chapter 4 as a starting point, and modify it to
run on mobile devices.

So let’s get started.

Challenges in Developing for Mobile Devices
Even though the HTML5 API and JavaScript features remain almost the same on mobile devices, developing
for mobile devices is not without its challenges. Some of these challenges come from the fact that, compared
to desktops, mobile devices have a smaller form factor with limited screen real estate, typically slower
Internet access, different input methods and APIs, and significantly less computing power and memory at
their disposal.

This necessitates being extremely careful about not wasting resources while working within the
limitations of these devices. The most important considerations when developing for mobile devices are as
follows:

•	 Size and form factor: The smaller form factor, limited screen space, and different
device aspect ratios in various mobile devices mean games need to be designed to
be responsive and to intelligently fit the available screen space. We no longer can
assume the availability of space, and we need to adjust our game based on what
space is actually available on the device. The ability to change screen orientation
from portrait to landscape on mobile devices also means that our games need to be
able to adjust to changes in the size of the content area dynamically.

http://dx.doi.org/10.1007/978-1-4842-2910-1_4

Chapter 5 ■ Creating a Mobile Game

116

•	 Different input events: Our game so far was designed to work with the mouse.
However, mobile devices typically do not have access to a mouse and instead use
touch-based gestures to emulate the mouse. While the emulation is sufficient for
simpler uses such as clicking buttons, we need finer control when working with
dragging and swiping within the game, which requires understanding and using the
Touch API.

•	 Browser limitations for audio: In an attempt to improve the user experience and
limit unnecessary bandwidth or resource usage, some mobile browsers such as
Safari add additional safeguards such as not preloading audio and preventing audio
from playing without user interaction. While this doesn’t matter as much in typical
HTML5 pages, it can significantly degrade the experience in an HTML5 game, and
we need to find ways to make audio work smoothly.

•	 Limited Internet bandwidth: Typical mobile devices may be connecting to our game
via slower EDGE, 2G, or 3G networks, so resources can take a long time to load. We
need to ensure that the game takes this into consideration, by reducing the size of
the resources to the best of our ability and then using a preloader to wait until the
resources have loaded completely.

While there might be a few more small problems that pop up, taking care of these big issues while
developing our games for mobile devices should be sufficient for a fairly decent mobile gameplay
experience. Now that we know what the challenges are, we will start tackling them one at a time, starting
with making the game responsive.

Making the Game Responsive
Before we start working on making the game responsive, let’s take a look at the problem more closely.
Luckily for us, most desktop browsers now allow us an easy way to emulate mobile devices, including
different mobile aspect ratios and touch events, so we can do our initial development on the desktop before
we actually test the game on mobile devices.

This emulation feature is called “Device Mode” on Chrome, and “Responsive Device Mode” on Firefox
and Safari. The simplest way to activate this feature on any of these browsers is to open the developer
console and click the button with the mobile phone–shaped icon. You can read detailed instructions for this
at https://developer.mozilla.org/en-US/docs/Tools/Responsive_Design_Mode for Firefox, https://
developers.google.com/web/tools/chrome-devtools/device-mode/ for Chrome, and https://support.
apple.com/kb/PH26266 for Safari.

■■ Note  While emulation will give you a close approximation of how your game will look on a mobile device,
it cannot replicate exact mobile device conditions and thus is not a substitute for an actual mobile device.
Testing your games on actual mobile devices is essential for making sure that your games work as intended.

If you open in your desktop browser the game we have developed to this point, you should be able to go
to the developer console and activate mobile emulation as shown in Figure 5-1.

https://developer.mozilla.org/en-US/docs/Tools/Responsive_Design_Mode
https://developers.google.com/web/tools/chrome-devtools/device-mode/
https://developers.google.com/web/tools/chrome-devtools/device-mode/
https://support.apple.com/kb/PH26266
https://support.apple.com/kb/PH26266

Chapter 5 ■ Creating a Mobile Game

117

This feature allows you to choose the device resolution of several popular mobile devices, including
the iPhone and Nexus lines of phones. It also allows you to select the device orientation and easily switch
between landscape and portrait mode at the click of a button. For now, let’s just pick any one of the devices
and set the orientation to landscape so we can see what our game looks like.

The first thing you will notice, as evident in Figure 5-1, is that the lack of proper responsive behavior is
causing the game to be cropped at the bottom and aligned to the left with black space on the right. So, the
first thing we need to add is automatic scaling and positioning.

Automatic Scaling and Resizing
In an effort to adjust desktop or non-mobile content for mobile devices, mobile browsers often attempt to
automatically scale content in different ways. Since we will be handling scaling at our end, the first thing we
need to do is let the browser know not to allow zooming and scaling of its own and try to use all available space.
We will do this by adding a simple viewport meta tag to the head section of index.html as shown in Listing 5-1.

Listing 5-1.  Preventing Automatic Scaling in the Browser

<head>
 <meta http-equiv="Content-type" content="text/html; charset=utf-8">
 �<meta name="viewport" content="user-scalable=no, initial-scale=1, maximum-scale=1,

minimum-scale=1, width=device-width">
 <title>Froot Wars</title>
 <script src="js/Box2d.min.js" type="text/javascript"></script>
 <script src="js/game.js" type="text/javascript"></script>
 <link rel="stylesheet" href="styles.css" type="text/css" media="screen">
</head>

Figure 5-1.  Previewing the game in Responsive Device Mode

Chapter 5 ■ Creating a Mobile Game

118

The newly added viewport meta tag first tells the browser not to allow the user to change the scale by
using pinching gestures, since this would affect the game experience. It also tells the browser not try to scale
and fit content and forces the scale to stay at its original value of 1. Finally, it tells the browser to use the
entire available width of the device.

If you refresh the code in the browser, you should see that the browser no longer tries to scale or adjust
the content, as shown in Figure 5-2.

Since the game is no longer scaled down, the dimensions of 640px by 480px are too large for the device,
and the game is now cropped on the right side as well as the bottom. Now that we know the browser won’t
be scaling or modifying our content in unexpected ways, we can write our own code to make the game scale
and fit the available space.

The first thing we will do is add some additional styles for the body, wrapper, and gamecontainer div
elements in styles.css as shown in Listing 5-2.

Listing 5-2.  Additional Styles for body, wrapper, and gamecontainer

body {
 background: #000900;

 /* Prevent the ugly blue highlighting from accidental selection of text */
 user-select: none;

 /* Disable long touch hold select */
 -webkit-touch-callout: none !important;

 overflow: hidden;
}

Figure 5-2.  The game with automatic and user scaling disabled

Chapter 5 ■ Creating a Mobile Game

119

#wrapper {
 position: absolute;

 /* Wrapper covers entire window height and width */
 top: 0;
 bottom: 0;
 left: 0;
 right: 0;
}

#gamecontainer {

 /* Set game container width, height, and background */
 width: 640px;
 height: 480px;
 background: url("images/splashscreen.png");

 /* Center the game container relative to outer wrapper */
 position: absolute;
 left: 50%;
 top: 50%;
 transform: translate(-50%, -50%);
 transform-origin: center center;
}

In this newly added CSS code, we ensure that the wrapper div covers the entire available window area,
and that the gamecontainer div is centered within it. We also set the overflow style of the body element to
hidden to prevent unnecessary scroll bars from showing up and prevent the context menu from showing up
when the user touches the screen for a long time.

The game should now be centered on the device; however, the content is still too large for the screen
and needs to be resized. To handle the resizing, we will create a new resize() method inside the game object
as shown in Listing 5-3.

Listing 5-3.  Adding a resize() Method to the game Object

scale: 1,
resize: function() {

 var maxWidth = window.innerWidth;
 var maxHeight = window.innerHeight;

 var scale = Math.min(maxWidth / 640, maxHeight / 480);

 var gameContainer = document.getElementById("gamecontainer");

 gameContainer.style.transform = "translate(-50%, -50%) " + "scale(" + scale + ")";

 game.scale = scale;
},

Within the resize() method, we first get the maximum available width and height using the
innerWidth and innerHeight properties of the window object.

Chapter 5 ■ Creating a Mobile Game

120

We then calculate the maximum amount we can scale up the game without having one of the
dimensions become larger than the window size. To do this, we calculate the maximum that the game can
be scaled along each axis and pick the lower of the two using Math.min().

For example, if a device has dimensions of 1280px by 720px while our content is 640px by 480px, we could
potentially scale the x-axis by 2 but the y-axis only by 1.5. Since scaling by anything more than 1.5 would cause the
content to become too large along the y-axis, we pick the lower of the two values (1.5) as the scale to use.

Finally, we set the game container scale to this new scale value using a CSS transform attribute and
save this value in game.scale.

Now that we have our resize() method, we need to call it when the game is first loaded and any time
the browser is resized, as shown in Listing 5-4.

Listing 5-4.  Calling the resize() Method on Loading and Resizing

// Initialize game once page has fully loaded
window.addEventListener("load", function() {
 game.resize();
 game.init();
});

window.addEventListener("resize", function() {
 game.resize();
});

We first modify the load event listener to call game.resize() as soon as the window has loaded, after
which we continue to initialize the game. We also listen for the resize event and call game.resize()
whenever the window is resized. This way, the game should automatically resize when it first loads, and
adjust anytime the window is resized or the device is rotated.

If you now run this code, you should see the game perfectly centered and scaled as shown in Figure 5-3.

Figure 5-3.  Centered and scaled with the resize() method

Chapter 5 ■ Creating a Mobile Game

121

If you change the device orientation, the game should automatically adjust and fit into the new
dimensions.

Even though the game is scaled reasonably well, you will notice that there is a considerable amount of
black unused space on the sides. Most modern mobile devices tend to use wider aspect ratios, so we need a
way to take this into account while still working well with devices that do not have a wide screen.

Handling Different Aspect Ratios
The problem we have in trying to make our game work for different aspect ratios is that our game is
currently designed for a fixed 4:3 aspect ratio and our canvas and background image are sized to be
exactly 640px by 480px.

We will start by modifying our CSS to use a wider version of the background image (1024px by 480px) as
shown in Listing 5-5.

Listing 5-5.  Using a Wider Background Image

#gamecontainer {

 /* Set game container width, height, and background */
 width: 640px;
 height: 480px;

 /* Use a wider splash screen and center it within the container */
 background: url("images/splashscreenwide.png");
 background-position: center;
 background-repeat: no-repeat;

 /* Center the game container relative to outer wrapper */
 position: absolute;
 left: 50%;
 top: 50%;
 transform: translate(-50%, -50%);
 transform-origin: center center;
}

We first change the background image to the wider version (splashscreenwide.png), and then ensure
that it is centered and not repeated. This by itself won’t make any apparent change to the game since the
container is still sized at 640px by 480px.

Next we will modify the game.resize() method to also try to increase the aspect ratio where possible,
as shown in Listing 5-6.

Listing 5-6.  Changing the Aspect Ratio Inside game.resize()

resize: function() {

 var maxWidth = window.innerWidth;
 var maxHeight = window.innerHeight;

 var scale = Math.min(maxWidth / 640, maxHeight / 480);

 var gameContainer = document.getElementById("gamecontainer");

 gameContainer.style.transform = "translate(-50%, -50%) " + "scale(" + scale + ")";

Chapter 5 ■ Creating a Mobile Game

122

 // Find the maximum width we can set based on the current scale
 // and clamp the value between 640 and 1024
 var width = Math.max(640, Math.min(1024, maxWidth / scale));

 // Apply this new width to game container and game canvas
 gameContainer.style.width = width + "px";

 var gameCanvas = document.getElementById("gamecanvas");

 gameCanvas.width = width;

 game.scale = scale;
},

In this newly added code, we first calculate the maximum width that we can set based on the newly
computed scale. Since our artwork and level backgrounds have a width of 1024px, we also make sure that
this new game width can never be greater than 1024px or less than the original 640px. We then set the
container and canvas to this newly computed width.

If you run the code after these changes, you will find that the game automatically widens to try and use
up the extra space on the sides as shown in Figure 5-4.

You can use the device drop-down to switch to other devices with different aspect ratios, and the game
automatically adjusts as much as possible to try and minimize any unused space.

Figure 5-4.  Adjusting the aspect ratio with the resize() method

Chapter 5 ■ Creating a Mobile Game

123

If you click Play and start the game, you will see that the game canvas has also expanded to account
for this wider space. Additionally, since our panning code takes canvas and level widths into account, even
panning should automatically work with this new width.

We now have a responsive game that adjusts to different screen sizes and aspect ratios.
However, while the game looks fine visually, you will not be able to play it properly. We still need to

make adjustments to the mouse object to handle touch events and adjust for the new game scale.

Fixing Mouse and Touch Event Handling
We need to resolve two problems in our input handling before the game can work properly:

•	 Our code to compute mouse.x and mouse.y does not adjust for the fact that the game
is now scaled up by game.scale. This has a reasonably simple fix. We just need to
scale down the computed x and y coordinates back by game.scale.

•	 Mobile devices that do not actually have a mouse do not generate all mouse events.
They primarily generate touch events, and attempt to approximate mouse events
where possible. This approximation works reasonably with events such as click,
which is why our game buttons, which rely on the click event, continue to function.
However, the browser will not generate a mousemove event and instead will generate
only a touchmove event.

We will modify the mouse object to handle both sets of events (mouse and touch) and adjust for game
scaling as shown in Listing 5-7.

Listing 5-7.  Handling Touch Events and Scaling in the mouse Object

var mouse = {
 x: 0,
 y: 0,
 down: false,
 dragging: false,

 init: function() {
 var canvas = document.getElementById("gamecanvas");

 canvas.addEventListener("mousemove", mouse.mousemovehandler, false);
 canvas.addEventListener("mousedown", mouse.mousedownhandler, false);
 canvas.addEventListener("mouseup", mouse.mouseuphandler, false);
 canvas.addEventListener("mouseout", mouse.mouseuphandler, false);

 // Handle touchmove separately
 canvas.addEventListener("touchmove", mouse.touchmovehandler, false);

 // Reuse mouse handlers for touchstart, touchend, touchcancel
 canvas.addEventListener("touchstart", mouse.mousedownhandler, false);
 canvas.addEventListener("touchend", mouse.mouseuphandler, false);
 canvas.addEventListener("touchcancel", mouse.mouseuphandler, false);
 },

Chapter 5 ■ Creating a Mobile Game

124

 mousemovehandler: function(ev) {
 var offset = game.canvas.getBoundingClientRect();

 mouse.x = (ev.clientX - offset.left) / game.scale;
 mouse.y = (ev.clientY - offset.top) / game.scale;

 if (mouse.down) {
 mouse.dragging = true;
 }

 ev.preventDefault();
 },

 touchmovehandler: function(ev) {
 var touch = ev.targetTouches[0];
 var offset = game.canvas.getBoundingClientRect();

 mouse.x = (touch.clientX - offset.left) / game.scale;
 mouse.y = (touch.clientY - offset.top) / game.scale;

 if (mouse.down) {
 mouse.dragging = true;
 }

 ev.preventDefault();
 },

 mousedownhandler: function(ev) {
 mouse.down = true;

 ev.preventDefault();
 },

 mouseuphandler: function(ev) {
 mouse.down = false;
 mouse.dragging = false;

 ev.preventDefault();
 }
};

We first modify the init() method to assign handlers for all the touch events: touchmove, touchstart,
touchend, and touchcancel. We assign a new method called touchmovehandler() for the touchmove event,
but reuse the mousedown() and mouseuphandler() methods for the remaining events. This is because
touchmovehandler() will need to be slightly different from mousemovehandler(), and we cannot reuse the
same method.

Next we modify the mousemovehandler() method to adjust for game.scale when calculating the x and y
position.

Finally, we define the touchmovehander() method, which uses the event’s targetTouches array to get
the details of the first touch. We then use the touch object’s clientX and clientY properties to calculate
mouse.x and mouse.y like we did in the mousemovehandler() method.

Chapter 5 ■ Creating a Mobile Game

125

One thing to keep in mind is that the Touch API is designed to be able to handle multiple simultaneous
touches. We can access details of every one of these touches on the canvas using the targetTouches array,
as well as uniquely identify each of them using the identifier property. You can read more about the Touch
event API at https://developer.mozilla.org/en/docs/Web/API/Touch_events.

Our touch handling code assumes that the player will be using only one finger at a time, and uses
only the first touch in the targetTouches array to emulate mouse-like behavior. This will result in slightly
unexpected behavior if the user decides to use multiple touches simultaneously.

It is possible to develop a more robust solution that will ignore any additional touches apart from the
first by using the identifier property within each touch object to uniquely identify the first touch. However,
our simple implementation should suffice for now.

Another thing to note is that the call to preventDefault() at the bottom of all our handlers prevents
the browser’s typical behavior of firing the equivalent mouse events when a touch event is fired to emulate a
mouse. Using preventDefault() will ensure that the browser does not call our event handlers twice—once
as a touch event and then again as an emulated mouse event.

If you run the game on the device emulator, you should now be able to play the game normally.
You should also be able to play the game on a normal browser without emulation and see that the game
dynamically scales to fit the entire window as far as possible.

Now that the game works fairly well on our device emulator, it is time to load the game on an actual
mobile device and see how it fares.

Loading the Game on a Mobile Device
The simplest way to load a game on a mobile device is to host the game on a web server and then access the
URL from the mobile browser.

Numerous popular web servers are available for every operating system. However, to keep things
simple, we will use the Node.js http-server package, which is a simple and bare-bones server that is ideal
for quick development and testing work.

If you already have a web server on your machine and are comfortable with setting it up to serve the
game code, you can probably skip the steps in this section.

The first thing you will need to do is install Node.js and its package manager, npm. You will find the
necessary instructions for installing the latest version at https://docs.npmjs.com/getting-started/
installing-node. The reason I recommend installing and using Node.js is that we will need Node.js in later
chapters anyway, to build a JavaScript-based multiplayer game server.

Once you have installed Node.js and npm, it’s time to install http-server. You can install http-server
from the command line on your terminal using the command

npm install -g http-server

You can read more about http-server and its many configuration options and features at https://www.
npmjs.com/package/http-server. Once you have http-server installed on your machine, you should be able
to serve the game just by switching to the folder that contains index.html and using the command

http-server

As soon as the server starts, it should show you a status message letting you know the URLS by which
you can access the game:

Starting up http-server, serving ./
Available on:
 http://192.168.0.100:8080
 http://127.0.0.1:8080

https://developer.mozilla.org/en/docs/Web/API/Touch_events
https://docs.npmjs.com/getting-started/installing-node
https://docs.npmjs.com/getting-started/installing-node
https://www.npmjs.com/package/http-server
https://www.npmjs.com/package/http-server

Chapter 5 ■ Creating a Mobile Game

126

Note that the actual URLs displayed by http-server will vary depending on your network setup.
Once the server has started, as long as your mobile device is on the same wireless network, you should
be able to access the game on the mobile browser using one of the URLs provided. This server, while
fairly simple, has several useful configuration options such as the ability to disable caching and to run
on different ports. I’d encourage you to review the documentation and take a look at these options when
you get a chance.

■■ Note  The URLs that http-server provides include the loopback IP address (127.0.0.1), which is only
accessible from the machine where the server is running. To access the server from a different device,
you need to use one of the non-loopback URLs, which should be accessible as long as your devices are
on the same network. If you have trouble accessing the server, also make sure that your firewall isn’t
interfering.

Now that we can load the game on a mobile device, you will find that it seems to function as intended
on Android devices. However, it does not even load properly on iOS devices and gets stuck on the loading
screen, as shown in Figure 5-5.

Unfortunately, this occurs because of an optimization that the Safari browser for mobile devices makes,
wherein it does not load audio files until they need to be played to prevent unnecessary bandwidth usage.
An unfortunate side effect of this is that the canplaythrough event does not fire for the audio objects that we
try to preload, resulting in the game just hanging at the loading stage.

This is just one of many problems that we will face with audio on mobile devices. So the next thing we
will focus on is fixing these audio problems.

Figure 5-5.  Stuck at loading screen on an actual iOS device

Chapter 5 ■ Creating a Mobile Game

127

Fixing Audio Problems on Mobile Browsers
In addition to the problem with preloading audio files in the Safari mobile browser, just discussed, there
are several other limitations on mobile browsers. These include not being able to play multiple audio files
simultaneously and some devices not allowing audio to play unless the sound has been triggered by a
user interaction. Luckily for us, there is a simple way to work around most of these issues: the HTML5 Web
Audio API.

The Web Audio API
The Web Audio API is an incredibly powerful and versatile system for controlling audio in the browser. It
allows us to combine multiple audio sources, apply filters, and add all sorts of dynamics effects.

The Web Audio API uses an audio context and is designed to allow modular routing using a system
of nodes and connections. You typical connect different nodes, starting with a source node (such as an
Oscillator node or BufferSource node), which can be connected to different effect nodes (such as a Gain
node), which are then finally connected to the destination node (AudioContext.destination). You can
connect multiple sources either directly or via effect nodes to the destination node, allowing for dynamically
creating multiple channels of sound.

You can play a simple sound using Web Audio with an Oscillator node as shown in Listing 5-8.

Listing 5-8.  Using Web Audio with an OscillatorNode

<!DOCTYPE html>
<html>
 <head>
 <title>Webaudio Example 1</title>
 </head>
 <body>
 <script>
 // Some browsers support AudioContext, while others support webkitAudioContext
 var context = new (window.AudioContext || window.webkitAudioContext)();

 // An oscillator source node just plays a sound at a specific frequency
 var oscillatorNode = context.createOscillator();

 // Connect the oscillator directly to the destination
 oscillatorNode.connect(context.destination);

 // Start the oscillator now (at the current time)
 oscillatorNode.start(context.currentTime);

 // And stop it two seconds after the current time
 oscillatorNode.stop(context.currentTime + 2);
 </script>
 </body>
</html>

We start by first defining a new audio context using either AudioContext or webkitAudioContext,
depending on which one is available to us on the browser. We then use the context.createOscillator()
method to create an oscillator object, which we connect directly to the destination. Anything connected to
this destination can be heard by us.

Chapter 5 ■ Creating a Mobile Game

128

Next we tell the oscillator when to start and stop with respect to the context current time. In our
case the start time is the current moment and the stop time is two seconds after this start time. If you
run this code in your browser, you should hear a loud, high-pitched sound that lasts for exactly two
seconds.

Now if we want to control the volume of the Oscillator node (or any other node), we can pass it
through a Gain node as shown in Listing 5-9.

Listing 5-9.  Passing Audio Through a Gain Node

<!DOCTYPE html>
<html>
 <head>
 <title>Webaudio Example 2</title>
 </head>
 <body>
 <script>
 // Initialize the audio context
 var context = new (window.AudioContext || window.webkitAudioContext)();

 // An oscillator source node just plays a sound at a specific frequency
 var oscillatorNode = context.createOscillator();

 // A gain node controls the volume
 var gainNode = context.createGain();

 // Set the volume to 1/5th of the original volume
 gainNode.gain.value = 0.2;

 // Connect the oscillator to the gain node
 oscillatorNode.connect(gainNode);

 // Connect the gain node to the destination
 gainNode.connect(context.destination);

 // Start the oscillator now (at the current time)
 oscillatorNode.start(context.currentTime);

 // And stop it two seconds after the current time
 oscillatorNode.stop(context.currentTime + 2);
 </script>
 </body>
</html>

This time we connect the oscillator node to a gain node, set the gain value to a fraction of the original,
and then connect it to the destination.

If you run this code, you should hear the same sound as before but at a much lower volume. This is how
you typically chain nodes using the Web Audio API, to apply different kinds of effects to your sounds.

You can also use a BufferSource node to load audio files and play them. However, you will first need to
load the audio file yourself using XMLHttpRequest as shown in Listing 5-10.

Chapter 5 ■ Creating a Mobile Game

129

Listing 5-10.  Playing Audio Files Using a BufferSource Node

<!DOCTYPE html>
<html>
 <head>
 <title>Webaudio Example 3</title>
 </head>
 <body>
 <script>
 // Initialize the audio context
 var context = new (window.AudioContext || window.webkitAudioContext)();

 // Load the audio file using an XMLHttpRequest
 var request = new XMLHttpRequest();
 request.open("GET", "audio/bounce.ogg", true);
 request.responseType = "arraybuffer";

 // Wait for the request to load the audio file
 request.onload = function() {
 // Once the audio file has loaded, decode it
 var undecodedAudio = request.response;
 context.decodeAudioData(undecodedAudio, function (decodedAudioBuffer) {
 // Once the audio has been decoded create a buffer source
 var bufferSourceNode = context.createBufferSource();

 // Tell the buffer source node to use the decoded audio buffer
 bufferSourceNode.buffer = decodedAudioBuffer;

 // Connect the buffer source node to the destination
 bufferSourceNode.connect(context.destination);

 // Start playing the buffer source node now
 bufferSourceNode.start(context.currentTime);
 });
 };

 // Finally initiate the request
 request.send();

 </script>
 </body>
</html>

This time, we create an XMLHTTPRequest object that loads our audio file as an array buffer. Once
the audio is loaded by the request, we use context.decodeAudio() to convert the audio data into an
audio buffer that can be used by a BufferSource node. After the audio has been decoded, we create a
BufferSource node, assign it the buffer, and then connect it to the destination and play it like any other
source node.

An important thing to note is that because of a security restriction on the XMLHTTPRequest object, it
cannot access local files by using the file:// protocol, and trying to do so will result in an error message.
You have to be running this code on the web server for XMLHTTPRequest to work properly.

Chapter 5 ■ Creating a Mobile Game

130

If you load this code via the web server URL, you should hear the audio file being played once the file
loads. Depending on your browser, you might need to use the MP3 file instead of the OGG file.

Now that you understand how the Web Audio API works, it’s time to integrate it into our game.

Integrating Web Audio
As you can imagine, modifying our game code to use Web Audio will take considerable effort and rewriting.
We will need to modify the loader to use XMLHTTPRequest, decode the buffers, and store them after loading.
We will also need to cache these requests so that the browser doesn’t fire multiple requests in case a file
is loaded multiple times. Each time we want to play an audio, we will need to load the appropriate buffer,
create a BufferSource node, and play it. Pausing or stopping music will also need additional code.

Luckily for us, we have a much simpler way to migrate our code to use Web Audio. We are going to use
a library called wAudio.js that I created exactly for this purpose. wAudio.js is a drop-in replacement for the
HTML5 Audio object, which transparently uses the Web Audio API behind the scenes.

By including this library in our code, we can use wAudio() everywhere that we used Audio() before, and
the game should work just like before, while using the methods of the Web Audio API.

To load wAudio.js, we need to first include the script in the head section of index.html as shown in
Listing 5-11.

Listing 5-11.  Loading wAudio.js in the head Section of index.html

<head>
 <meta http-equiv="Content-type" content="text/html; charset=utf-8">
 �<meta name="viewport" content="user-scalable=no, initial-scale=1, maximum-scale=1,

minimum-scale=1, width=device-width">
 <title>Froot Wars</title>
 <script src="js/Box2d.min.js" type="text/javascript"></script>
 <script src="js/wAudio.js" type="text/javascript"></script>
 <script src="js/game.js" type="text/javascript"></script>
 <link rel="stylesheet" href="styles.css" type="text/css" media="screen">
</head>

Note that we need to load wAudio.js before we load our game. This will automatically create a wAudio
object as long as the browser supports Web Audio. Now we need to modify the loadSound() method of the
loader object to use wAudio if it is available, as shown in Listing 5-12.

Listing 5-12.  Modifying loadSound() to Use wAudio.js

loadSound: function(url) {
 this.loaded = false;
 this.totalCount++;

 game.showScreen("loadingscreen");

 var audio = new (window.wAudio || Audio)();

 audio.addEventListener("canplaythrough", loader.itemLoaded, false);
 audio.src = url + loader.soundFileExtn;

 return audio;
},

Chapter 5 ■ Creating a Mobile Game

131

As you can see, we made a very simple change to either use wAudio or fall back to using Audio in case
wAudio is not present.

If you load the game on your mobile device now, you will notice that the game no longer gets stuck at
the loading screen, and you can start the game without any problems even on iOS devices.

However, for some reason the game still doesn’t play any sound on Safari. You will also find that if you
try to mute and unmute the audio using the toggle music button in our game, the sound will miraculously
start playing.

This odd behavior occurs because of another restriction in Safari, which is that audio playback needs to
be initiated by a user input event. Once the first sound has been initiated by a user-generated event (such as
a click or tap), audio starts playing normally.

The interesting thing about this restriction is that this first sound doesn’t even need to be audible;
we can play a sound through a gain filter set to a gain value of 0, and audio will still be restored. Since
initializing audio like this is such a common requirement, the wAudio.js library includes a method called
playMutedAudio(), which behind the scenes uses an oscillator node to play a short sound without any
volume. To use this method, we will first create a playGame() method inside the game object as shown in
Listing 5-13.

Listing 5-13.  The playGame() Method Inside the game Object

// Called when the Play button is clicked
playGame: function() {

 // Initialize audio for mobile Safari
 if (window.wAudio) {
 window.wAudio.playMutedSound();
 }

 game.showLevelScreen();
},

The playGame() method is fairly simple. It first checks for the existence of wAudio and then calls
wAudio.playMutedSound(). It then calls game.showLevelScreen() to display the level screen.

Next, we will call this method when the Play button in the start screen is clicked by modifying index.
html as shown in Listing 5-14.

Listing 5-14.  Calling playGame() when the Play Button Is Clicked

<div id="gamestartscreen" class="gamelayer">

</div>

Now when we start the game and click Play, wAudio will play the muted sound so that Safari’s
requirement for playing audio is satisfied. If we now run the game, the audio should work perfectly, even on
iOS devices.

Thanks to the wAudio.js library, our migration to Web Audio was quick and painless. The latest
version of the wAudio.js library will always be available at its GitHub URL-https://github.com/
adityaravishankar/wAudio.js. This code is shared under an MIT license, so you can feel free to use it in
any of your projects. If you prefer, you can also reuse just portions of the code that you find useful.

One thing to remember about this library is that the XMLHTTPRequest restriction on accessing file://
URLs also applies to wAudio, since wAudio uses XMLHTTPRequest behind the scenes. If we want to use
wAudio in our game, we will need to access our game via a web server.

https://github.com/adityaravishankar/wAudio.js
https://github.com/adityaravishankar/wAudio.js

Chapter 5 ■ Creating a Mobile Game

132

Now that our game works on mobile devices with audio, we will add a few finishing touches to our game
so it feels less like a web page and more like a native application.

Adding Some Finishing Touches
There are still a few things that we can do to make the game look and feel better. These include preventing
accidental scrolling include preventing accidental scrolling and removing the address bar by allowing web-
app mode.

Preventing Accidental Scrolling
You might have already noticed that even though our game has been scaled to exactly match the window
size, it is possible to accidentally scroll up or down by dragging your finger on the screen. Since we have no
need to scroll within our game, we can disable this default behavior by listening to the document object’s
touchmove event as shown in Listing 5-15.

Listing 5-15.  Disabling the Default Mobile Scroll

// Initialize game once page has fully loaded
window.addEventListener("load", function() {
 game.resize();
 game.init();
});

window.addEventListener("resize", function() {
 game.resize();
});

document.addEventListener("touchmove", function(ev) {
 ev.preventDefault();
});

All we do is add a listener for the touchmove event and it, call the event’s preventDefault() method
to prevent the browser’s scroll behavior. If you play the game now, it will no longer scroll and the game area
should stay in place.

The next problem we will need to tackle is the presence of the address bar at the top of the browser
window, so the game can be played full screen like a native app.

Allowing Full Screen
Mobile browsers in general do not allow hiding the address bar at the top of the browser. Even desktop
browsers that allow a full screen mode explicitly ask the user for permission before switching to full screen
and hiding the address bar. This is largely due to security concerns to prevent malicious sites from rendering
a fake address bar and spoofing other sites to try and trick the user into revealing sensitive information.

While there are a few scroll based hacks that sometimes work at temporarily hiding the navigation bar,
these are somewhat unreliable and not recommended.

However, both Android and iOS devices now support meta tags that allow us to specify that a particular
page is a web app designed to work in full screen mode. We can enable this by adding new meta tags into the
head section of index.html as shown in Listing 5-16.

Chapter 5 ■ Creating a Mobile Game

133

Listing 5-16.  Adding meta Tags for Web App Mode

<head>
 <meta http-equiv="Content-type" content="text/html; charset=utf-8">
 �<meta name="viewport" content="user-scalable=no, initial-scale=1, maximum-scale=1,

minimum-scale=1, width=device-width">
 <meta name="apple-mobile-web-app-capable" content="yes">
 <meta name="mobile-web-app-capable" content="yes">
 <title>Froot Wars</title>
 <script src="js/Box2d.min.js" type="text/javascript"></script>
 <script src="js/wAudio.js" type="text/javascript"></script>
 <script src="js/game.js" type="text/javascript"></script>
 <link rel="stylesheet" href="styles.css" type="text/css" media="screen">
</head>

We add two new meta tags, one for iOS and another for Android, to let the browsers know that our game
is web app capable.

Now this won’t directly affect the browser experience. You need to open the game in the browser and
use the option to save the web page to your home screen. Once you do this, you will find an icon for the
game on your mobile device home screen, which you can click to start the game just like you would a typical
mobile phone app.

When you start the game from the home screen, it should now run in full screen mode without the
annoying address and status bars.

Now this isn’t a perfect solution. Unless the player actually saves the game on their home screen, they
will not have the ideal experience that we want to have.

An alternative that you might consider, so that you can distribute your HTML5 game as a native
application via the mobile application stores, is using hybrid mobile application frameworks such as Apache
Cordova.

Using Hybrid Mobile Application Frameworks
Apache Cordova is an open source mobile application framework, released by Adobe Systems. It enables
software programmers to build applications for mobile devices using HTML, CSS, and JavaScript instead of
relying on platform-specific APIs like those in Android, iOS, or Windows Phone.

In addition to wrapping the HTML code into a native application, Cordova also provides access to
native device features in JavaScript via a system of plug-ins, allowing programmers to use device features
such as the accelerometer and camera. The resulting applications are considered hybrid, meaning that they
are neither truly native mobile applications nor purely Web based. You can read more about Cordova at
https://cordova.apache.org.

Installing Cordova is as simple as running a single npm command:

npm install -g cordova

Cordova lets you develop applications for multiple devices in a single build process. You can create a
Cordova project and set it up using the following command:

cordova create frootwars

Once you run this command, Cordova will create a folder with some automatically generated content.
One of these folders is the www folder, which contains a sample web application, with the typical index.html,
JavaScript, and CSS files. You can use this template as a starting point to create a Cordova web application.

https://cordova.apache.org/

Chapter 5 ■ Creating a Mobile Game

134

Now that you have a template, you can add support for the device platforms you want to build the game
for using the following commands:

cd frootwars

cordova platform add android
cordova platform add ios
cordova platform add browser

Cordova provides a platform called browser to allow you to test your application deployment in the
browser. It also allows you to build native applications for iOS, Android, Windows, Blackberry, and several
other platforms.

You can test the sample application on the browser platform just by running the following command:

cordova run browser

This should open the sample application inside a browser window. The HTML code for this application
is the same code you saw within the www folder. To convert your game to work for Cordova, you will need
to place your code into the www folder and modify it to use some of the recommended tags and Cordova
commands in the sample application.

You can continue testing your changes by running the browser platform. However, before you can
actually build the application for the other platforms, you will need to set up your development environment
for each platform. This might mean installing XCode (https://developer.apple.com/xcode/) for iOS
devices, Android Studio (https://developer.android.com/studio/) for Android devices, or Visual Studio
(https://www.visualstudio.com/) for Windows devices.

You can also install plug-ins for any device feature that you would like to access for your game, such
as in-app purchases to monetize your game, accelerometer and vibration to allow better interactivity, or
geolocation and camera to build the next Pokémon Go killer.

Unfortunately, teaching you to use all these features to build a game with Cordova is beyond the scope
of this chapter, since this subject matter could fill an entire book on its own.

Once you are comfortable with building web games in HTML5 and are ready to venture into the world
of hybrid applications, I would recommend that you read the Cordova documentation (https://cordova.
apache.org/docs/en/latest/) and explore further on your own.

Before we wrap up this chapter on mobile development, I’d like to cover one more thing: optimizing
your game assets for better performance on mobile devices.

Optimizing Game Assets for Mobile
When working on games for mobile devices, it is important to keep in mind the fact that mobile device users
might be accessing you game via a slow Internet connection. Anything we can do to make the game-loading
experience as painless as possible, by reducing the bandwidth usage or the loading and waiting time, will
make a significant difference to the user experience.

While there are many things that we can do to optimize the game experience on slow connections, the
most important things that we can do are

•	 Loading screens with progress updates: A loading screen lets players know that
the game is doing something in the background and gives them a way to track the
progress so they have a general idea of how long they will need to wait. If you make
players wait for a long period of time without letting them know what is happening
or how much longer they need to wait, they are likely to get frustrated and impatient.
In extreme cases users might just close the browser without even trying your game
because it took too long to load. Our game already implements a game loader with a
progress bar, which automatically shows up any time assets are being downloaded.

https://developer.apple.com/xcode/
https://developer.android.com/studio/
https://www.visualstudio.com/
https://cordova.apache.org/docs/en/latest/
https://cordova.apache.org/docs/en/latest/

Chapter 5 ■ Creating a Mobile Game

135

•	 Lazy loading of assets: If your game has 50 levels, but the player is only about to play
the first level, there is no point in making the player wait while the data for all 50
levels has been loaded. It makes sense to load the game data “lazily,” as and when it
is needed. Our game already intelligently manages this by loading common assets up
front and then loading level-specific assets only when a level is started. This way the
player never has to wait too long for something to happen.

•	 Reducing size of images: We briefly discussed using techniques like sprite sheets,
which reduce network load by minimizing server calls and reducing the total
amount of data transferred. In addition, you should ensure that the resolution and
size of your game images are not unnecessarily large, and should ideally be as close
to the actual resolution that your game needs. Finally, you should add processes like
PNG optimization and compression into your workflow and build processes so that
all assets are automatically compressed in your final game. We will look into ways of
doing this in later chapters.

•	 Reducing size of audio: Most of us are used to using high-quality audio with multiple
channels and high bitrates when we listen to music or watch movies. However,
mobile games don’t necessarily need so much audio detail. Using programs like
Audacity (www.audacityteam.org/), you can convert your game audio to mono
instead of stereo, and reduce the bitrate of the audio with almost no perceptible
difference in quality on the phone. As an example, the code folder contains a low-
bitrate version of the background music used in this game. Making these small
changes reduced the size of the OGG file from nearly 4 megabytes to 1 megabyte,
which can be a phenomenal difference for someone using a slow 2G connection and
paying for each megabyte.

•	 Compressing the code: Code minifiers such as html-minifier and node-minify take
your development code and convert it to an extremely compressed version with
shorter variable names and all comments and unnecessary spaces removed. For
HTML, it is even possible to compress linked asset files and place them inline. While
this version of the code is very hard for humans to read, it is significantly smaller
than the original and can be downloaded by the browser much faster. Again, this
is something you should ideally build into your workflow and build process so it is
automated. We will look at ways of doing this in later chapters.

Now these are some of the most important ways that you can improve the experience for mobile device
users. While it might not always be feasible to do all of these in every game, every little bit you can do will
make the experience much better for the players trying your game.

Summary
In this chapter we looked at the challenges involved in building games for mobile devices. We saw how a
desktop game can easily be converted into a mobile device game, by converting the game we created in the
previous chapters.

We started by making the game responsive so it automatically scales to fit devices with different sizes
and aspect ratios. We then modified the game input handling to use the Touch API. We also used the
wAudio.js library to integrate the Web Audio API for better sound support on mobile devices. We then made
the game behave like an app by disabling default scroll and adding web app tags. Finally, we explored the
idea of using hybrid application frameworks and looked at ways to optimize game data for a better mobile
experience.

http://www.audacityteam.org/

Chapter 5 ■ Creating a Mobile Game

136

At this point, you should have a strong understanding of the complexity and the typical steps involved
when building a professional mobile device game. When you start developing your own games, even if they
are not physics games, you should be able to use this game that we have built as a decent starting template,
since it covers all the essentials that you will need—menus, asset loaders, level selection, canvas animation,
sound and music, mouse and touch input, and support for mobile devices.

Now with this solid foundation, we are ready to take on a much bigger challenge. In the next few
chapters we will be building a complete real-time strategy game with a single-player campaign as well as
multiplayer mode. So let’s keep going.

137© Aditya Ravi Shankar 2017
A. R. Shankar, Pro HTML5 Games, DOI 10.1007/978-1-4842-2910-1_6

CHAPTER 6

Creating the RTS Game World

Real-time strategy (RTS) games combine fast-paced tactical combat, resource management, and economy
building within a defined game world.

A typical RTS game consists of a map of a world with different units, buildings, and terrain, as well as
an interface to control and manipulate these elements. The player uses the interface to handle tasks such as
gathering resources, constructing buildings, and creating an army, and then manages the army to achieve a
set of goals defined for each level.

Although these games have an extensive history, the RTS genre was largely popularized by the
games released by Westwood Studios and Blizzard Entertainment in the 1990s. Westwood’s Dune II and
Command & Conquer series are considered classics that helped define the genre. With its engaging story
line and addictive multiplayer mode, Blizzard’s StarCraft went on to elevate RTS gaming to an e-sport with
professional competitive tournaments held around the world.

HTML5 now makes it possible to bring this genre to the browser in a way that wasn’t possible earlier. In
fact, one of my better-known game programming–related achievements a few years ago was single-handedly
re-creating the original Command & Conquer entirely in HTML5. While generating a lot of buzz on the Web,
this project proved beyond a doubt that HTML5 was now ready for the next generation of games.

Over the next few chapters, we will use what you learned in previous chapters and build upon it to
create our own RTS game. We will define a game world with buildings, units, and an overarching story
line to create an engaging single-player campaign. We will then use HTML5 WebSockets to add real-time
multiplayer support to our game.

Most of the artwork for this game has been provided by Daniel Cook (www.lostgarden.com), who
originally designed this art for an unreleased RTS title called Hard Vacuum. We will be reusing the artwork
that he has graciously shared but will create our own game concept. Our game, Last Colony, will be about a
small band of survivors on a planet that has just been attacked. We will explore the story and gameplay in
more detail over the next few chapters.

While developing this game, we will keep the code as generic and customizable as possible so that you
can later reuse this code to build your own ideas. If you would like to follow along with the book, you can
find all the necessary starting assets, including the images and the audio, inside the assets folder of this
chapter’s code.

So, let’s get started.

Basic HTML Layout
Like the previous game we developed, Froot Wars, our RTS game will consist of several layers. The following
are the first few layers that we will define:

•	 Splash screen and main menu: Shown when the game loads and allows the player to
select campaign or multiplayer mode

•	 Loading screen: Shown whenever the game is loading assets

http://www.lostgarden.com/

Chapter 6 ■ Creating the RTS Game World

138

•	 Mission screen: Shown before a mission starts, with instructions for the mission

•	 Game interface screen: The main game screen that includes the map area and a
dashboard for controlling the game

We will define more screens as needed in later chapters. We will be organizing all of the artwork inside
an images folder. Unlike the previous game, we will break the JavaScript code into several files (such as
buildings.js, vehicles.js, levels.js, and common.js) inside the js folder so as to make the code easier
to maintain.

Creating the Splash Screen and Main Menu
We will start by creating an HTML file and adding the markup for our containers, as shown in Listing 6-1.

Listing 6-1.  Basic HTML Skeleton with Layers Added (index.html)

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-type" content="text/html; charset=utf-8">

 �<meta name="viewport" content="user-scalable=no, initial-scale=1, maximum-scale=1,
minimum-scale=1, width=device-width">

 <title>Last Colony</title>

 <script src="js/common.js" type="text/javascript"></script>
 <script src="js/game.js" type="text/javascript"></script>
 <script src="js/mouse.js" type="text/javascript"></script>
 <script src="js/singleplayer.js" type="text/javascript"></script>
 <script src="js/levels.js" type="text/javascript"></script>

 <link rel="stylesheet" href="styles.css" type="text/css">
 </head>
 <body>
 <div id="wrapper">
 <div id="gamecontainer">
 <div id="gamestartscreen" class="gamelayer">
 LAST
COLONY
 Campaign
 Multiplayer
 </div>

 <div id="loadingscreen" class="gamelayer">
 <div id="loadingmessage"></div>
 </div>
 </div>
 </div>
 </body>
</html>

Chapter 6 ■ Creating the RTS Game World

139

The code first refers to the external JavaScript and CSS files we will be using. We will be creating and
implementing all these JavaScript files over the course of this game. Within a main wrapper div, we also
define a gamecontainer div that contains our first two game layers: gamestartscreen and loadingscreen.

The next thing we will do is define the initial style for the game container inside styles.css, as shown
in Listing 6-2.

Listing 6-2.  Initial Style Sheet (styles.css) for Game Container and Layer

body {
 background: #090009;

 /* Disable scroll bars */
 overflow: hidden;

 /* Disable long touch hold select on mobile browsers */
 -webkit-touch-callout: none !important;
}

#wrapper {
 position: absolute;

 /* Wrapper covers entire window height and width */
 top: 0;
 bottom: 0;
 left: 0;
 right: 0;

 /* Prevent the ugly blue highlighting from accidental selection of text */
 user-select: none;
}

#gamecontainer {
 /* Start with a default width that we can change later */
 width: 640px;
 height: 480px;

 /* Use a wider splash screen and center it within the container */
 background: url("images/screens/splashscreen.png");
 background-position: center;
 background-repeat: no-repeat;

 /* Center the game container relative to outer wrapper */
 position: absolute;
 left: 50%;
 top: 50%;
 transform: translate(-50%, -50%);
 transform-origin: center center;
}

Chapter 6 ■ Creating the RTS Game World

140

.gamelayer {
 width: 100%;
 height: 100%;
 position: absolute;
 display: none;
}

In this code, we first start with setting the body background color and disabling the scrollbar and long
press context menus for mobile devices.

Next, we center the game container within the wrapper div and assign a background splash screen.
We use a wide splash screen image so our game can dynamically adjust to different aspect ratios later, just
like we did in our previous game, Froot Wars. For now, however, we assign the container an initial size of
640px by 480px.

Finally, we set the gamelayer class to position all the game layers on top of each other, assign them the
same dimensions as the container, and hide them by default.

When we load index.html in the browser, we should now see our new splash screen, as shown in
Figure 6-1.

Now that the splash screen is in place, we can implement the main menu screen and the game loading
screen.

We will start by setting up the asset loader using the exact same code as we did in our previous game.
We will place this code inside a separate file called common.js, as shown in Listing 6-3.

Figure 6-1.  The initial game splash screen

Chapter 6 ■ Creating the RTS Game World

141

Listing 6-3.  Setting Up the Asset Loader (common.js)

var loader = {
 loaded: true,
 loadedCount: 0, // Assets that have been loaded so far
 totalCount: 0, // Total number of assets that need loading

 init: function() {
 // Check for sound support
 var mp3Support, oggSupport;
 var audio = document.createElement("audio");

 if (audio.canPlayType) {
 // Currently canPlayType() returns: "", "maybe", or "probably"
 mp3Support = "" !== audio.canPlayType("audio/mpeg");
 oggSupport = "" !== audio.canPlayType("audio/ogg; codecs=\"vorbis\"");
 } else {
 // The audio tag is not supported
 mp3Support = false;
 oggSupport = false;
 }

 // Check for ogg, then mp3, and finally set soundFileExtn to undefined
 loader.soundFileExtn = oggSupport ? ".ogg" : mp3Support ? ".mp3" : undefined;
 },

 loadImage: function(url) {
 this.loaded = false;
 this.totalCount++;

 game.showScreen("loadingscreen");

 var image = new Image();

 image.addEventListener("load", loader.itemLoaded, false);
 image.src = url;

 return image;
 },

 soundFileExtn: ".ogg",

 loadSound: function(url) {
 this.loaded = false;
 this.totalCount++;

 game.showScreen("loadingscreen");

 var audio = new Audio();

Chapter 6 ■ Creating the RTS Game World

142

 audio.addEventListener("canplaythrough", loader.itemLoaded, false);
 audio.src = url + loader.soundFileExtn;

 return audio;
 },

 itemLoaded: function(ev) {
 �// Stop listening for event type (load or canplaythrough) for this item now that it

has been loaded
 ev.target.removeEventListener(ev.type, loader.itemLoaded, false);

 loader.loadedCount++;

 �document.getElementById("loadingmessage").innerHTML = "Loaded " + loader.loadedCount +
" of " + loader.totalCount;

 if (loader.loadedCount === loader.totalCount) {
 // Loader has loaded completely
 // Reset and clear the loader
 loader.loaded = true;
 loader.loadedCount = 0;
 loader.totalCount = 0;

 // Hide the loading screen
 game.hideScreen("loadingscreen");

 //and call the loader.onload method if it exists
 if (loader.onload) {
 loader.onload();
 loader.onload = undefined;
 }
 }
 }
};

Next, we will define our game object inside game.js, as shown in Listing 6-4.

Listing 6-4.  Defining the game Object (game.js)

var game = {

 // Start initializing objects, preloading assets, and display start screen
 init: function() {
 // Initialize game objects
 loader.init();

 // Display the main game menu
 game.hideScreens();
 game.showScreen("gamestartscreen");
 },

Chapter 6 ■ Creating the RTS Game World

143

 hideScreens: function() {
 var screens = document.getElementsByClassName("gamelayer");

 // Iterate through all the game layers and set their display to none
 for (let i = screens.length - 1; i >= 0; i--) {
 let screen = screens[i];

 screen.style.display = "none";
 }
 },

 hideScreen: function(id) {
 var screen = document.getElementById(id);

 screen.style.display = "none";
 },

 showScreen: function(id) {
 var screen = document.getElementById(id);

 screen.style.display = "block";
 },

 scale: 1,
 resize: function() {

 var maxWidth = window.innerWidth;
 var maxHeight = window.innerHeight;

 var scale = Math.min(maxWidth / 640, maxHeight / 480);

 var gameContainer = document.getElementById("gamecontainer");

 gameContainer.style.transform = "translate(-50%, -50%) " + "scale(" + scale + ")";

 game.scale = scale;

 // What is the maximum width we can set based on the current scale
 // Clamp the value between 640 and 1024
 var width = Math.max(640, Math.min(1024, maxWidth / scale));

 // Apply this new width to game container and game canvas
 gameContainer.style.width = width + "px";
 },
};

/* Set up initial window event listeners */

// Initialize and resize the game once page has fully loaded
window.addEventListener("load", function() {
 game.resize();
 game.init();
}, false);

Chapter 6 ■ Creating the RTS Game World

144

// Resize the game any time the window is resized
window.addEventListener("resize", function() {
 game.resize();
});

In this code, we create a game object with an init() method that first initializes our asset loader and
then uses the hideScreens() and showScreen() methods to display the game start screen.

We also define a resize() method just like we did in our previous game. The method calculates the
scale and maximum possible width for our game and sets the gamecontainer style accordingly.

Finally, we add event listeners to the window object to call these methods. We call game.resize() and
game.init() once the window has loaded completely. We also call game.resize() whenever the window is
resized.

Next, we need to append the CSS for the game starting screen and loading screen in styles.css, as
shown in Listing 6-5.

Listing 6-5.  Style for the Game Starting Screen and Loading Screen (styles.css)

/* Game Starting Menu Screen */

.game-title {
 position: absolute;

 top: 5%;
 right: 5%;
 text-align: right;
 width: 100%;

 font-family: "Courier New", Courier, monospace;
 font-size: 90px;
 line-height: 80px;

 color: white;
 text-shadow: -2px 0 purple, 0 2px purple, 2px 0 purple, 0 -2px purple;
}

.game-option {
 position: relative;
 top: 65%;
 left: 10%;
 display: block;

 font-family: "Courier New", Courier, monospace;
 font-size: 48px;
 color: white;
 text-shadow: -2px 0 purple, 0 2px purple, 2px 0 purple, 0 -2px purple;

 cursor: pointer;
}

Chapter 6 ■ Creating the RTS Game World

145

.game-option:hover {
 color: yellow;
}

/* Loading Screen */

#loadingscreen {
 background: rgba(100, 100, 100, 0.7);
}

#loadingmessage {
 position: relative;
 top: 400px;
 text-align: center;

 height: 48px;
 color: white;
 background: url("images/loader.gif") no-repeat center;
 font: 12px Arial;
}

When we open the game in the browser, we should see the starting screen with the main menu, as
shown in Figure 6-2.

You will notice that the game automatically scales and widens to fit the available screen area. The extra
hidden portion of the splash screen image also automatically becomes visible as necessary.

Figure 6-2.  The starting screen with the main menu

Chapter 6 ■ Creating the RTS Game World

146

The menu currently offers options for Campaign, which is our story-based single-player mode, and
Multiplayer, which is our player-versus-player mode. You may have noticed in Listing 6-1 that the onclick
handlers for these two options call the singleplayer.start() and multiplayer.start() methods,
respectively. Right now, clicking the Campaign option won’t do anything since we haven’t yet implemented
the singleplayer.start() method to start the single-player levels.

Before we can do so, however, we need to create our first single-player level.

Creating Our First Level
There are many viable approaches to defining maps or levels for our game.

One approach is to store all the information about the map terrain as metadata and then assemble
all the necessary images for the terrain on the browser at runtime to draw the map. This approach, while
slightly cumbersome, allows the use of sprite sheets for the map terrain, reducing the size of the map.

Another approach, which is slightly simpler, is to store the basic map as a large image with the terrain drawn
out using our own level-designing tool. We then need to store only the location of the map image along with
metadata such as game entities and mission objectives. This is the approach that we will be using for our game.

Map images can be designed very quickly by using general-purpose tile map–editing software such
as Tiled (www.mapeditor.org). Tiled is an excellent free tool that is available for several operating systems
including Windows, Mac, and Linux. Once you start the application, you can load the sprite sheet for the
terrain as a tile set and then use it to draw the map as if you were using a painting application (see Figure 6-3).

Figure 6-3.  Drawing a map using Tiled

Note that we can use Tiled’s layer feature to design the level in two layers. All the game terrain and
obstructions are stored in a separate Obstruction layer. When the level JSON file is generated, we can use the
metadata to identify areas of the map that are impassable or obstructed.

Once you draw the map, you can export it to several different file formats such as PNG images or JSON
metadata.

http://www.mapeditor.org/

Chapter 6 ■ Creating the RTS Game World

147

You won’t need to use this tool to follow along with the book since the maps we need for our game have
already been generated. However, if you are considering developing your own game, I strongly recommend
exploring Tiled’s features.

All the files that you need, the exported level images, the JSON metadata, the master sprite sheet, and
the Tiled project file are inside the level folder of this chapter’s code. The exported images include a debug
version of the map with all the grid lines between tiles drawn in.

The level folder also contains a convert-levels.js file, which is a Node.js script that takes the
exported level.json file and creates a level-obstructed-terrain.json file for use within our game.

■■ Note  The Tiled editor’s JSON format contains references to the sprite sheet and offsets for all the tiles it
uses. This means you can also use the JSON files to create maps that are assembled at runtime (instead of the
preassembled ones we are creating).

Once we have our first map image designed, we will need to create the basic metadata describing the level.
We will do this inside levels.js, as shown in Listing 6-6.

Listing 6-6.  Defining the Basic Level Metadata (levels.js)

/* Details of the maps used by the levels */
var maps = {
 "plains": {
 "mapImage": "plains-debug.png",

 /* Terrain Data - Auto Generated By level/convert-levels.js */
 "mapGridWidth": 60,
 "mapGridHeight": 40,
 �"mapObstructedTerrain": [[0, 0], [1, 0], [2, 0], [26, 0], [27, 0], /* Extremely huge

array snipped for brevity */ [58, 39], [59, 39]],
 }
};

/* The actual levels played in the game */
var levels = {
 "singleplayer": [
 {
 "name": "Introduction",
 �"briefing": "In this level you will learn how to pan across the map.\n\nDon't

worry! We will be implementing more features soon.",

 /* Map Details */
 "mapName": "plains",
 "startX": 4,
 "startY": 4,
 }
],

 "multiplayer": [

]
};

Chapter 6 ■ Creating the RTS Game World

148

We first define a maps object that contains details of the one map we have generated, named “plains.”
This includes the map image, and some terrain data that has been generated by convert-levels.js—the
width and height of the map, as well as an extremely huge mapObstructedTerrain array, which contains the
x and y coordinates of every grid square in the map that is impassable or obstructed.

I have snipped the array in Listing 6-6 because there is absolutely no point in showing you the entire
array with several hundred numbers in it. You will find the complete mapObstructedTerrain array inside
the level-obstructed-terrain.json file, as well as the finished game code. When you make your own
maps using Tiled, you can use the convert-level.js script to generate the data for them.

The map image is broken down into a grid of squares 20 pixels wide by 20 pixels high (based on the
size of the tiles we are using). For now, we are using a “debug” version of the map that has the grid drawn
on top of the map. This will make it easier for us to position elements inside the level while we are building
the game.

Next, we create a levels object that will contain all the levels within our game, with arrays for single-
player and multiplayer.

The singleplayer array currently contains details for only one level. This array will eventually contain
all our single-player campaign levels in chronological order. When the single-player campaign is started,
the singleplayer object will load the first level in this array and then proceed down the list as the player
completes each level.

The details that we store for the level include the level name and a mission briefing that we will display
before we start the level.

We then refer to the plains map that we have defined earlier. By using this system of separating maps
and levels, we can have multiple levels share the same map as needed, depending on the game’s story line.

The starting map coordinates (startX and startY) let us decide where to position the screen on the
map when we start the level using the grid coordinates.

Now that we have a simple map defined, we will set up the singleplayer object to display the mission
briefing screen.

Loading the Mission Briefing Screen
The first thing we will do is add the HTML code for the mission briefing screen into the gamecontainer div
within our HTML file. The gamecontainer div will now look like Listing 6-7.

Listing 6-7.  Adding the Mission Briefing Screen (index.html)

<div id="gamecontainer">
 <div id="gamestartscreen" class="gamelayer">
 LAST
COLONY
 Campaign
 Multiplayer
 </div>

 <div id="missionbriefingscreen" class="gamelayer">

 �<img src="images/screens/interface-right-briefing.png" class="right-panel"

draggable="false">
 <input type="button" id="entermission" onclick = "singleplayer.play();">
 <input type="button" id="exitmission" onclick = "singleplayer.exit();">
 <div id="missionbriefing"></div>
 </div>

Chapter 6 ■ Creating the RTS Game World

149

 <div id="loadingscreen" class="gamelayer">
 <div id="loadingmessage"></div>
 </div>
</div>

The missionscreen div contains two buttons; they are for entering the mission screen and exiting the
mission screen. It also contains a missionbriefing div that we will use to display the briefing message.
Additionally it contains two images for the left and right side of the interface background area. We set the
draggable attribute of these images to false to prevent them from being dragged around if the player
accidentally clicks one of them.

Now that we have the HTML markup in place, we need to add the CSS styles for the mission screen into
styles.css, as shown in Listing 6-8.

Listing 6-8.  CSS Style for Mission Screen

/* Mission Briefing Screen */

#missionbriefingscreen {
 background: url("images/screens/interface-middle.png");
}

input[type="button"] {
 border-width: 0;
 outline: none;

 background-color: transparent;
 background-repeat: no-repeat;
 background-image: url("images/buttons.png");

 cursor: pointer;
}

.left-panel {
 left: 0;
 top: 0;
 position: absolute;
}

.right-panel {
 right: 0;
 top: 0;
 position: absolute;
}

#entermission {
 height: 52px;
 width: 188px;

 position: absolute;
 top: 82px;
 left: 3px;

 background-position: -4px -4px;
}

Chapter 6 ■ Creating the RTS Game World

150

#entermission:disabled, #entermission:active {
 background-position: -196px -4px;
}

#exitmission {
 height: 52px;
 width: 72px;

 position: absolute;
 top: 82px;
 right: 164px;

 background-position: -4px -64px;
}

#exitmission:disabled, #exitmission:active {
 background-position: -84px -64px;
}

#missionbriefing {

 position: absolute;

 top: 170px;
 left: 40px;
 right: 220px;
 height: 270px;

 text-align: justify;

 color: rgb(130, 150, 162);
 text-shadow: -1px 1px black;

 font-size: 16px;
 font-family: "Courier New", Courier, monospace;
}

We define a new background for the mission briefing screen that fits into the center, behind the left and
right images defined in the HTML. This center background automatically repeats itself to fit all available
space. This way, the briefing screen can automatically adjust for different aspect ratios by keeping the left
and right side of the interface the same size and expanding the center area as needed to adjust for different
aspect ratios.

We then position the button and div elements to fit on top of the background. We keep different
images for the enabled and disabled states of the buttons but store all of these sprites in a single sprite-sheet
image file (buttons.png). Note that we specify left and right positions so that the buttons and briefing area
automatically position and scale appropriately when the game container width changes.

Now that the mission briefing layer is in place, we will implement the singleplayer object inside
singleplayer.js, as shown in Listing 6-9.

Chapter 6 ■ Creating the RTS Game World

151

Listing 6-9.  Implementing the Basic singleplayer Object (singleplayer.js)

var singleplayer = {

 // Begin single-player campaign
 start: function() {
 // Hide the starting menu screen
 game.hideScreens();

 // Begin with the first level
 singleplayer.currentLevel = 0;

 // Start initializing the level
 singleplayer.initLevel();
 },

 currentLevel: 0,
 initLevel: function() {
 game.type = "singleplayer";
 game.team = "blue";

 // Don't allow player to enter mission until all assets for the level are loaded
 var enterMissionButton = document.getElementById("entermission");

 enterMissionButton.disabled = true;

 // Load all the items for the level
 var level = levels.singleplayer[singleplayer.currentLevel];

 game.loadLevelData(level);

 // Enable the Enter Mission button once all assets are loaded
 loader.onload = function() {
 enterMissionButton.disabled = false;
 };

 // Update the mission briefing text and show briefing screen
 this.showMissionBriefing(level.briefing);
 },

 showMissionBriefing: function(briefing) {
 var missionBriefingText = document.getElementById("missionbriefing");

 // Replace \n in briefing text with two
 to create next paragraph
 missionBriefingText.innerHTML = briefing.replace(/\n/g, "

");

 // Display the mission briefing screen
 game.showScreen("missionbriefingscreen");
 },

Chapter 6 ■ Creating the RTS Game World

152

 exit: function() {
 // Display the main game menu
 game.hideScreens();
 game.showScreen("gamestartscreen");
 },

};

We define a singleplayer object with four methods: start(), initLevel(), showMissionBriefing(),
and exit().

The start() method first hides all game layers and sets singleplayer.currentLevel to 0, which refers
to the first level in the maps.singleplayer array that we defined earlier. Finally, it calls the singleplayer.
initLevel() method that we will call every time we want to load a level.

The initLevel() method first sets the game.type and game.team variables to singleplayer and
blue, respectively. We will use these values later once the game starts running. It then temporarily disables
the Enter Mission button on the screen and starts loading the level assets. Once the assets are loaded,
the Enter Mission button is enabled so that the player can click it and enter the game. Finally, it calls the
showMissionBriefing() method, which puts the level briefing inside the missionbriefing div and
displays the missionbriefingscreen div.

The exit() method hides all the game layers and takes us back to the main menu.

■■ Note  We replace carriage returns with
 tags so that they show up in the HTML. This way, we can
easily break out the mission briefing into multiple paragraphs if we want.

Next we will define the loadLevelData() method inside the game object as shown in Listing 6-10.

Listing 6-10.  Loading the Level (game.js)

loadLevelData: function(level) {
 game.currentLevel = level;
 game.currentMap = maps[level.mapName];

 // Load all the assets for the level starting with the map image
 game.currentMapImage = loader.loadImage("images/maps/" + maps[level.mapName].mapImage);
},

For now, we just store the level and map objects and load the current level’s map image. This method
will eventually load all the assets for a given level.

When we load the game in the browser and click the Campaign option, we should see the mission
briefing screen for the first level, as shown in Figure 6-4.

Chapter 6 ■ Creating the RTS Game World

153

The advantage of displaying the briefing screen while loading the assets in the background is that
players can spend their time reading the mission briefing while waiting for all the assets to load. You will
notice that the screen automatically adjusts to different aspect ratios and screen sizes by expanding the
center region while keeping the left and right sides the same.

Clicking the Exit button should take us back to the main menu. Once the level data has loaded
completely, the enter mission button will get enabled. We still can’t enter the mission until we implement
the actual game interface and the game animation and drawing loops, which is what we will be doing next.

Implementing the Game Interface
The first thing we will do is add the HTML markup for the game interface screen into the gamecontainer div
in our HTML file. The gamecontainer div will now look like Listing 6-11.

Listing 6-11.  Adding the Game Interface Layer (index.html)

<div id="gamecontainer">
 <div id="gamestartscreen" class="gamelayer">
 LAST
COLONY
 Campaign
 Multiplayer
 </div>

 <div id="missionbriefingscreen" class="gamelayer">

 �<img src="images/screens/interface-right-briefing.png" class="right-panel"

draggable="false">
 <input type="button" id="entermission" onclick = "singleplayer.play();">
 <input type="button" id="exitmission" onclick = "singleplayer.exit();">
 <div id="missionbriefing"></div>
 </div>

Figure 6-4.  The mission briefing screen for our first level

Chapter 6 ■ Creating the RTS Game World

154

 <div id="gameinterfacescreen" class="gamelayer">

 �<img src="images/screens/interface-right-game.png" class="right-panel"

draggable="false">
 <div id="gamemessages"></div>
 <div id="callerpicture"></div>
 <div id="cash"></div>
 <div id="sidebarbuttons">
 </div>
 <canvas id="gamebackgroundcanvas"></canvas>
 <canvas id="gameforegroundcanvas"></canvas>
 </div>

 <div id="loadingscreen" class="gamelayer">
 <div id="loadingmessage"></div>
 </div>
</div>

Our game interface layer consists of several different areas within it:

•	 Game area: This is where the player can see the map and interact with the buildings,
units, and other entities within the game. This is implemented using two canvas
elements: gamebackgroundcanvas for the map and gameforegroundcanvas for the
entities inside the level (such as buildings and units).

•	 Game messages: This is where the player can see system notifications or story-driven
messages.

•	 Caller picture: This is where the player will see profile pictures of the person sending
story-driven messages.

•	 Cash: This is where players will see their cash reserves.

•	 Sidebar buttons: This is where players will see buttons they can use for creating units
and buildings within the game.

We also use left and right background images just as we did in the mission briefing screen.
Now that the HTML is in place, we will add the CSS for the game interface screen to styles.css, as

shown in Listing 6-12.

Listing 6-12.  CSS for the Game Interface Screen

/* Game Interface Screen */

#gameinterfacescreen {
 background: url("images/screens/interface-middle.png");
}

#gameinterfacescreen #gamemessages {
 position: absolute;
 padding: 5px;

 top: 4px;
 left: 5px;

Chapter 6 ■ Creating the RTS Game World

155

 right: 168px;
 height: 60px;

 color: rgb(130, 150, 162);

 overflow: hidden;
 font-size: 13px;
 font-family: "Courier New", Courier, monospace;
}

#gamemessages span {
 color: white;
}

#callerpicture {
 position: absolute;

 right: 20px;
 top: 155px;
 width: 114px;
 height: 72px;

 overflow: hidden;
}

#cash {
 width: 120px;
 height: 22px;
 position: absolute;
 right: 20px;
 top: 241px;

 color: rgb(130, 150, 162);
 overflow: hidden;
 font-size: 14px;
 font-family: "Courier New", Courier, monospace;
 text-align: right;
}

#gameinterfacescreen canvas {
 position: absolute;
 top: 79px;
 left: 0;
}

We start by defining a background for the center of the gameinterfacescreen div, just as we did for the
gamebriefingscreen div, and then position the various other elements at the appropriate locations within
the interface area. Both game canvas elements are positioned at the same location, with foregroundcanvas
on top of backgroundcanvas.

Next we will modify the init() method of the game object to initialize the canvas elements when the
game is initialized, as shown in Listing 6-13.

Chapter 6 ■ Creating the RTS Game World

156

Listing 6-13.  Initializing the Canvas Elements (game.js)

// Start initializing objects, preloading assets, and display start screen
init: function() {
 // Initialize objects
 loader.init();

 // Initialize and store contexts for both the canvases
 game.initCanvases();

 // Display the main game menu
 game.hideScreens();
 game.showScreen("gamestartscreen");
},

canvasWidth: 480,
canvasHeight: 400,

initCanvases: function() {
 game.backgroundCanvas = document.getElementById("gamebackgroundcanvas");
 game.backgroundContext = game.backgroundCanvas.getContext("2d");

 game.foregroundCanvas = document.getElementById("gameforegroundcanvas");
 game.foregroundContext = game.foregroundCanvas.getContext("2d");

 game.foregroundCanvas.width = game.canvasWidth;
 game.backgroundCanvas.width = game.canvasWidth;

 game.foregroundCanvas.height = game.canvasHeight;
 game.backgroundCanvas.height = game.canvasHeight;
},

We add a call to the initCanvases() method, which stores the canvas and context objects and sets
their initial width and height.

We also need to handle resizing the canvas elements whenever the window size changes. We will do this
by modifying the game.resize() method as shown in Listing 6-14.

Listing 6-14.  Resizing the Canvas Elements (game.js)

resize: function() {

 var maxWidth = window.innerWidth;
 var maxHeight = window.innerHeight;

 var scale = Math.min(maxWidth / 640, maxHeight / 480);

 var gameContainer = document.getElementById("gamecontainer");

 gameContainer.style.transform = "translate(-50%, -50%) " + "scale(" + scale + ")";

 game.scale = scale;

Chapter 6 ■ Creating the RTS Game World

157

 // What is the maximum width we can set based on the current scale
 // Clamp the value between 640 and 1024
 var width = Math.max(640, Math.min(1024, maxWidth / scale));

 // Apply this new width to game container and game canvas
 gameContainer.style.width = width + "px";

 // Subtract 160px for the sidebar
 var canvasWidth = width - 160;

 // Set a flag in case the canvas was resized
 if (game.canvasWidth !== canvasWidth) {
 game.canvasWidth = canvasWidth;
 game.canvasResized = true;
 }

},

We calculate the new width for the canvas based on the container width that we calculated earlier. If the
value has changed, we also set a canvasResized flag to true. We will use this flag inside our drawing loop to
decide whether we need to redraw parts of the game.

Now we will implement animation and drawing loops, as well as a game.start() method in our game,
as shown in Listing 6-15.

Listing 6-15.  Adding Animation and Drawing Loops and Starting the Game(game.js)

start: function() {
 // Display the game interface
 game.hideScreens();
 game.showScreen("gameinterfacescreen");

 game.running = true;
 game.refreshBackground = true;
 game.canvasResized = true;

 game.drawingLoop();
},

// A control loop that runs at a fixed period of time
animationTimeout: 100, // 100 milliseconds or 10 times a second

animationLoop: function() {
},

// The map is broken into square tiles of this size (20 pixels x 20 pixels)
gridSize: 20,
// X & Y panning offsets for the map
offsetX: 0,
offsetY: 0,

Chapter 6 ■ Creating the RTS Game World

158

drawingLoop: function() {
 // Draw the background whenever necessary
 game.drawBackground();

 // Call the drawing loop for the next frame using request animation frame
 if (game.running) {
 requestAnimationFrame(game.drawingLoop);
 }
},

drawBackground: function() {
 // Since drawing the background map is a fairly large operation,
 // we only redraw the background if it changes (due to panning or resizing)
 if (game.refreshBackground || game.canvasResized) {
 if (game.canvasResized) {
 game.backgroundCanvas.width = game.canvasWidth;
 game.foregroundCanvas.width = game.canvasWidth;

 // Ensure the resizing doesn't cause the map to pan out of bounds
 if (game.offsetX + game.canvasWidth > game.currentMapImage.width) {
 game.offsetX = game.currentMapImage.width - game.canvasWidth;
 }

 if (game.offsetY + game.canvasHeight > game.currentMapImage.height) {
 game.offsetY = game.currentMapImage.height - game.canvasHeight;
 }

 game.canvasResized = false;
 }

 �game.backgroundContext.drawImage(game.currentMapImage, game.offsetX, game.offsetY,
game.canvasWidth, game.canvasHeight, 0, 0, game.canvasWidth, game.canvasHeight);

 game.refreshBackground = false;
 }
},

We define a start() method that hides other layers and displays the game interface screen. It then
sets the game.running, game.backgroundChanged, and game.canvasResized variables to true for later use.
Finally, we call the drawingLoop() method for the first time.

We also define two different methods called animationLoop() and drawingLoop(). The animationLoop()
method will handle all control-related and animation-related logic and needs to be run at a fixed interval
(defined in animationTimeout). An animation timeout of 100 milliseconds is usually sufficient for a fairly
smooth game. For now the animationLoop() method is empty. The drawingLoop() method handles the
actual drawing of all the game elements onto the two game canvas objects. The method is called using
requestAnimationFrame() and will run as many times a second as the browser allows.

We start by calling the game.drawBackground() method, which will draw the map on the background
canvas whenever necessary.

We then call the drawingLoop() method again using requestAnimationFrame() if the game is still
running. This way, once the drawingLoop() method has been called once, it will keep running and drawing
the game until game.running becomes false.

Chapter 6 ■ Creating the RTS Game World

159

In the drawBackground() method, the first thing that we do is check the canvasResized and
refreshBackground flags to determine whether the background needs to be redrawn.

If the canvas was resized, we also check and adjust the panning offsets to ensure that the screen doesn’t
pan outside the map bounds. We then draw the map image (stored in currentMapImage when the map was
loaded) using the panning offsets (offsetX, offsetY) and the canvas dimensions.

Finally, we reset both the flags to false. We use this optimization so that we don’t need to redraw the
entire background after each refresh, and only do so when something has actually changed.

The reason we break out the code into two different timer loops is because the animation code will
contain logic such as pathfinding, processing commands, and changing the animation states of sprites,
which will not need to be executed as often as the drawing code.

The animation code will also control the actual movement of units. By keeping this code independent
of the drawing code, we ensure that units will move the same amount after each animation cycle. This will
become very important when we handle multiplayer mode and need the game state to be synchronized
across different machines. If we aren’t careful, slight calculation differences between browsers and machines
can cause unexpected results such as a bullet hitting an enemy unit in one browser but missing the enemy in
the other browser.

Now that we have these loops in place, we will finally implement the singleplayer.play() method
inside singleplayer.js, as shown in Listing 6-16.

Listing 6-16.  The singleplayer.play() Method (singleplayer.js)

play: function() {
 // Run the animation loop once
 game.animationLoop();

 // Start the animation loop interval
 game.animationInterval = setInterval(game.animationLoop, game.animationTimeout);

 game.start();
},

This method is fairly simple. It calls the game.animationLoop() method for the first time and then uses
the setInterval() method to call the method every 100 milliseconds (as set in game.animationTimeout).
Finally, it calls the game.start() method that we defined earlier. The game.animationLoop() method is
currently empty, but we will start using it when we add entities to our game in the next chapter.

If we run the game code we have so far, we should be able to click the Enter Mission button at the
mission briefing screen and then see the game interface screen with the map loaded, as shown in Figure 6-5.

Chapter 6 ■ Creating the RTS Game World

160

You can even resize the browser window and see that the game automatically shows more of the map as
the window gets wider.

One thing you might notice is that the game starts off at the top-left corner of the map. To use the initial
map offset settings that we provided in levels.js, we will need to load the offset values when we start the
level. We will do this by modifying the initLevel() method in singleplayer.js, as shown in Listing 6-17.

Listing 6-17.  Setting the Map Offset Inside initLevel() (singleplayer.js)

initLevel: function() {
 game.type = "singleplayer";
 game.team = "blue";

 // Don't allow player to enter mission until all assets for the level are loaded
 var enterMissionButton = document.getElementById("entermission");

 enterMissionButton.disabled = true;

 // Load all the items for the level
 var level = levels.singleplayer[singleplayer.currentLevel];

 game.loadLevelData(level);

 // Set player starting location
 game.offsetX = level.startX * game.gridSize;
 game.offsetY = level.startY * game.gridSize;

 // Enable the Enter Mission button once all assets are loaded
 loader.onload = function() {
 enterMissionButton.disabled = false;
 };

Figure 6-5.  The game interface screen with the first map loaded

Chapter 6 ■ Creating the RTS Game World

161

 // Update the mission briefing text and show briefing screen
 this.showMissionBriefing(level.briefing);
},

We added just two new lines to set game.offsetX and game.offsetY based on level.startX and
level.startY. This time when we load the map, it loads at the offset we defined in the map.

Now that we have finished loading the map, we will implement panning around the map using the mouse.

Implementing Map Panning
The first thing we will do is set up mouse input by creating a mouse object inside mouse.js (see Listing 6-18).

Listing 6-18.  Setting Up the mouse Object

var mouse = {
 init: function() {
 // Listen for mouse events on the game foreground canvas
 let canvas = document.getElementById("gameforegroundcanvas");

 canvas.addEventListener("mousemove", mouse.mousemovehandler, false);

 canvas.addEventListener("mouseenter", mouse.mouseenterhandler, false);
 canvas.addEventListener("mouseout", mouse.mouseouthandler, false);

 mouse.canvas = canvas;
 },

 // x,y coordinates of mouse relative to top-left corner of canvas
 x: 0,
 y: 0,

 // x,y coordinates of mouse relative to top-left corner of game map
 gameX: 0,
 gameY: 0,

 // game grid x,y coordinates of mouse
 gridX: 0,
 gridY: 0,

 calculateGameCoordinates: function() {
 mouse.gameX = mouse.x + game.offsetX ;
 mouse.gameY = mouse.y + game.offsetY;

 mouse.gridX = Math.floor((mouse.gameX) / game.gridSize);
 mouse.gridY = Math.floor((mouse.gameY) / game.gridSize);
 },

Chapter 6 ■ Creating the RTS Game World

162

 setCoordinates: function(clientX, clientY) {
 let offset = mouse.canvas.getBoundingClientRect();

 mouse.x = (clientX - offset.left) / game.scale;
 mouse.y = (clientY - offset.top) / game.scale;

 mouse.calculateGameCoordinates();
 },

 // Is the mouse inside the canvas region
 insideCanvas: false,

 mousemovehandler: function(ev) {
 mouse.insideCanvas = true;
 mouse.setCoordinates(ev.clientX, ev.clientY);
 },

 mouseenterhandler: function() {
 mouse.insideCanvas = true;
 },

 mouseouthandler: function() {
 mouse.insideCanvas = false;
 },
};

We start by defining an init() method that assigns event listeners on the foreground canvas for a
few mouse events: mousemove, mouseenter, and mouseout. We also save a reference to the canvas in
mouse.canvas.

Next, we define variables to store the mouse coordinates relative to the canvas (x,y), relative to the
map (gameX,gameY), and in terms of the map grid (gridX,gridY). We also define several variables to
store the mouse state (buttonPressed, dragSelect, and insideCanvas). We also define a method called
calculateGameCoordinates() that converts the mouse x and y coordinates to game coordinates.

Next, we define a helper method called setCoordinates(), which is called whenever the mouse is
moved. We use the mouse event clientX and clientY properties, which are coordinates relative to the top of
the window, and convert them to be relative to the game canvas, while adjusting for the game scale. We then
call calculateGameCoordinates() so that the game-related coordinates are updated as well.

Finally, we define the actual event handler methods: mousemovehandler, mouseenterhandler, and
mouseouthandler.

Whenever the mouse is moved, we set the insideCanvas flag to true since we know the mouse is
somewhere inside the canvas. We then call setCoordinates() to update the stored mouse coordinates.

When the mouse enters the canvas, we set the insideCanvas flag to true, and when the mouse leaves
the canvas, we set this flag to false. This way we can always know whether the mouse is inside or outside
our game canvas area using mouse.insideCanvas, and can handle it as needed.

Now that we have set up our mouse object, we will modify our game object inside game.js to use the
mouse. The first thing we need to do is call the mouse.init() method from inside the game.init() method.
The updated game.init() method will look like Listing 6-19.

Chapter 6 ■ Creating the RTS Game World

163

Listing 6-19.  Calling mouse.init() from Inside game.init() (game.js)

init: function() {
 // Initialize objects
 loader.init();
 mouse.init();

 // Initialize and store contexts for both the canvases
 game.initCanvases();

 // Display the main game menu
 game.hideScreens();
 game.showScreen("gamestartscreen");
},

Next we will define a handlePanning() method inside the game object, as shown in Listing 6-20.

Listing 6-20.  Defining the handlePanning() Method (game.js)

// Distance from edge of canvas at which panning starts
panningThreshold: 80,
// The maximum distance to pan in a single drawing loop
maximumPanDistance: 10,

handlePanning: function() {

 // Do not pan if mouse leaves the canvas
 if (!mouse.insideCanvas) {
 return;
 }

 if (mouse.x <= game.panningThreshold) {
 // Mouse is at the left edge of the game area. Pan to the left.
 let panDistance = game.offsetX;

 if (panDistance > 0) {
 game.offsetX -= Math.min(panDistance, game.maximumPanDistance);
 game.refreshBackground = true;
 }
 } else if (mouse.x >= game.canvasWidth - game.panningThreshold) {
 // Mouse is at the right edge of the game area. Pan to the right.
 let panDistance = game.currentMapImage.width - game.canvasWidth - game.offsetX;

 if (panDistance > 0) {
 game.offsetX += Math.min(panDistance, game.maximumPanDistance);
 game.refreshBackground = true;
 }
 }

Chapter 6 ■ Creating the RTS Game World

164

 if (mouse.y <= game.panningThreshold) {
 // Mouse is at the top edge of the game area. Pan upwards.
 let panDistance = game.offsetY;

 if (panDistance > 0) {
 game.offsetY -= Math.min(panDistance, game.maximumPanDistance);
 game.refreshBackground = true;
 }
 } else if (mouse.y >= game.canvasHeight - game.panningThreshold) {
 // Mouse is at the bottom edge of the game area. Pan downwards.
 let panDistance = game.currentMapImage.height - game.offsetY - game.canvasHeight;

 if (panDistance > 0) {
 game.offsetY += Math.min(panDistance, game.maximumPanDistance);
 game.refreshBackground = true;
 }
 }

 if (game.refreshBackground) {
 // Update mouse game coordinates based on new game offsetX and offsetY
 mouse.calculateGameCoordinates();
 }
},

We start by defining two new variables, panningThreshold and maximumPanDistance, that store how
close to the canvas edge the mouse cursor needs to be for panning to occur and how fast the panning can be.

The handlePanning() method itself checks to see whether the mouse is inside the canvas, near any of
the edges of the canvas, and that there is still some map left to pan. If all the conditions are met, we adjust
the offsets in the appropriate direction by the panning distance, and set the refreshBackground flag to true.
This will let the drawBackground() method know that the background needs to be redrawn.

Finally, if the map was panned, we also refresh the mouse game coordinates since they will change any
time the map pans.

The last change that we will make to the game object is calling the handlePanning() method from inside
game.drawingLoop(). The final drawingLoop() method will look like Listing 6-21.

Listing 6-21.  Calling game.handlePanning()(game.js)

drawingLoop: function() {
 // Pan the map if the cursor is near the edge of the canvas
 game.handlePanning();

 // Draw the background whenever necessary
 game.drawBackground();

 // Call the drawing loop for the next frame using request animation frame
 if (game.running) {
 requestAnimationFrame(game.drawingLoop);
 }
},

At this point, if we run the game, we should be able to pan around the map by moving the mouse near
the edges of the canvas so that we can explore the entire map, as shown in Figure 6-6.

Chapter 6 ■ Creating the RTS Game World

165

Summary
In this chapter, we set out to develop the basic framework for our RTS game.

Just like in Chapter 2, we implemented a splash screen and a starting menu. We also used ideas from
Chapter 5 to make the game responsive and automatically adjust to different window sizes and aspect ratios.

We looked at creating a map using the Tiled editor and exporting it as an image. We then created our
first level by combining the map image with some basic level metadata.

We implemented a singleplayer object that loads map data and displays a mission briefing screen.
We then created the game interface screen and set up the animation and drawing loops for the game so we
could load and see the initial map on the canvas. Finally, we captured and used mouse events to let the user
pan around the level.

While we have a lot of the essential elements of our game world in place, we are still missing the actual
entities to interact with, such as buildings and vehicles.

In the next chapter, we will start adding these different entities to our level. We will draw them on the
screen using sprite sheets and animation states. We will then set up a framework for selecting these entities
so we can interact with them.

Figure 6-6.  Panning around the map

http://dx.doi.org/10.1007/978-1-4842-2910-1_2
http://dx.doi.org/10.1007/978-1-4842-2910-1_5

167© Aditya Ravi Shankar 2017
A. R. Shankar, Pro HTML5 Games, DOI 10.1007/978-1-4842-2910-1_7

CHAPTER 7

Adding Entities to Our World

In the previous chapter, we put together the basic framework for our RTS game. We loaded a level and
panned around using the mouse.

In this chapter, we will build upon that by adding entities to our game world. We will build a general
framework that will allow us to easily add entities such as buildings and units to a level. Finally, we will add
the ability for the player to select these entities using the mouse.

Let’s get started. We will use the code from Chapter 6 as our starting point.

Defining Entities
These are the game entities we will be adding to our game:

•	 Buildings: Our game will have four types of buildings.

•	 Base: Primary structure used to construct other buildings

•	 Starport: Used to teleport in both ground vehicles and aircraft

•	 Harvester: Used to extract resources from oil fields

•	 Ground turret: Defensive structure used to guard against ground vehicles

•	 Vehicles: Our game will have four types of vehicles.

•	 Transport: An unarmed vehicle used to transport supplies and people

•	 Harvester: A mobile unit that deploys into the harvester building at an oil field

•	 Scout tank: A light, fast-moving tank used for scouting

•	 Heavy tank: A slower tank with heavier armor and weaponry

•	 Aircraft: Our game will have two types of aircraft.

•	 Chopper: A slow-moving craft that can attack both land and air

•	 Wraith: A fast-moving jet aircraft that can attack only in the air

•	 Terrain: Apart from the terrain already integrated in our map, we will define two
additional types of terrain.

•	 Oil field: Source of mineral resources that can be extracted for cash by deploying
a harvester

•	 Rocks: Interesting rock formations

http://dx.doi.org/10.1007/978-1-4842-2910-1_6

Chapter 7 ■ Adding Entities to Our World

168

We will store our entity types in separate JavaScript files to make the code easier to maintain. The first
thing we will do is add references to the new JavaScript files inside the head section of our HTML file as
shown in Listing 7-1.

Listing 7-1.  Adding References to Entities (index.html)

<script src="js/buildings.js" type="text/javascript"></script>
<script src="js/vehicles.js" type="text/javascript"></script>
<script src="js/aircraft.js" type="text/javascript"></script>
<script src="js/terrain.js" type="text/javascript"></script>

With this code in place, we are now ready to start defining our first set of entities, the buildings, starting
with the main base.

Defining Our First Entity: The Main Base
The first building we will define is the main base. Unlike other buildings in the game that can be constructed
by the player, the main base will always be preconstructed before the level starts. The base allows the player
to teleport in other buildings as long as the player has sufficient resources.

The base will consist of a single sprite sheet image that contains different animation states for the base
(see Figure 7-1).

As you can see, the sheet consists of two different rows of frames for the blue and green teams.
The sprites in this case consist of a default animation (four frames), a damaged base (one frame), and finally
an animation for when the base is constructing a building (three frames). We will be using similar sprite
sheets and a common loading and drawing mechanism for all the entities within our game.

The first thing we will do is define a buildings object inside buildings.js, as shown in Listing 7-2.

Listing 7-2.  Defining the buildings Object(buildings.js)

var buildings = {
 list: {
 "base": {
 name: "base",
 // Properties for drawing the object

Figure 7-1.  Sprite sheet for the base

Chapter 7 ■ Adding Entities to Our World

169

 // Dimensions of the individual sprite
 pixelWidth: 60,
 pixelHeight: 60,

 // Dimensions of the base area
 baseWidth: 40,
 baseHeight: 40,

 // Offset of the base area from the top-left corner of the sprite
 pixelOffsetX: 0,
 pixelOffsetY: 20,

 // Grid squares necessary for constructing the building
 buildableGrid: [
 [1, 1],
 [1, 1]
],

 // Grid squares that are passable or obstructed for pathfinding
 passableGrid: [
 [1, 1],
 [1, 1]
],

 // How far the building can "see" through fog of war
 sight: 3,

 // Maximum possible life
 hitPoints: 500,

 cost: 5000,

 spriteImages: [
 { name: "healthy", count: 4 },
 { name: "damaged", count: 1 },
 { name: "constructing", count: 3 }
],
 },
 },

 defaults: {
 type: "buildings",
 },

 load: loadItem,
 add: addItem,

};

Chapter 7 ■ Adding Entities to Our World

170

The buildings object uses a specific design pattern that we will be following for all our game entities.
First, we store the definition for all the different types of buildings inside a list array. Each of these

definition objects contain properties specific to the type of building. These include properties for drawing
the object (such as pixelWidth), properties for pathfinding (passableGrid), general properties such as
hitPoints and cost, and finally the list of sprite images with names and sprite counts for each animation. So
far, we have defined only our base entity inside the list array.

Next, we store properties and methods common to all the buildings inside the defaults object. This
will include properties such as type as well as methods such as processActions() and drawSprite(), which
we will be defining later.

Note that we can always override these default methods, by defining a method with the same name in
the entity definition within the list array.

Finally, we have the methods load() and add(), which are necessary for the creation of our entities.
The load() method will load the sprite sheet and definitions for a given entity, while the add() method

will create a new instance of a given entity to be added to the game. We currently point these toward
methods called loadItem() and addItem() that we have not yet defined.

Now that we have a basic building definition in place, we will define the loadItem() and addItem()
methods inside common.js so that they can be used by all the entities (see Listing 7-3).

Listing 7-3.  Defining the loadItem() and addItem() Methods (common.js)

// The default load() method used by all our game entities
function loadItem(name) {
 var item = this.list[name];

 // If the item sprite array has already been loaded, then no need to do it again
 if (item.spriteArray) {
 return;
 }

 item.spriteSheet = loader.loadImage("images/" + this.defaults.type + "/" + name + ".png");
 item.spriteArray = [];
 item.spriteCount = 0;

 item.spriteImages.forEach(function(spriteImage) {

 let constructImageCount = spriteImage.count;
 let constructDirectionCount = spriteImage.directions;

 if (constructDirectionCount) {
 �// If the spriteImage has directions defined, store sprites for each direction

in spriteArray
 for (let i = 0; i < constructDirectionCount; i++) {
 let constructImageName = spriteImage.name + "-" + i;

 item.spriteArray[constructImageName] = {
 name: constructImageName,
 count: constructImageCount,
 offset: item.spriteCount
 };
 item.spriteCount += constructImageCount;
 }
 } else {

Chapter 7 ■ Adding Entities to Our World

171

 �// If the spriteImage has no directions, store just the name and image count in
spriteArray

 let constructImageName = spriteImage.name;

 item.spriteArray[constructImageName] = {
 name: constructImageName,
 count: constructImageCount,
 offset: item.spriteCount
 };

 item.spriteCount += constructImageCount;
 }
 });
}

// Polyfill for a few browsers that still do not support Object.assign
if (typeof Object.assign !== "function") {
 Object.assign = function(target, varArgs) { // .length of function is 2
 "use strict";
 if (target === null) { // TypeError if undefined or null
 throw new TypeError("Cannot convert undefined or null to object");
 }

 var to = Object(target);

 for (var index = 1; index < arguments.length; index++) {
 var nextSource = arguments[index];

 if (nextSource != null) { // Skip over if undefined or null
 for (var nextKey in nextSource) {
 // Avoid bugs when hasOwnProperty is shadowed
 if (Object.prototype.hasOwnProperty.call(nextSource, nextKey)) {
 to[nextKey] = nextSource[nextKey];
 }
 }
 }
 }

 return to;
 };
}

// The default add() method used by all our game entities
function addItem(details) {
 var name = details.name;

 // Initialize the item with any default properties the item should have
 var item = Object.assign({}, baseItem);

 // Assign the item all the default properties for its category type
 Object.assign(item, this.defaults);

Chapter 7 ■ Adding Entities to Our World

172

 // Assign item properties based on the item name
 Object.assign(item, this.list[name]);

 // By default, set the item's life to its maximum hit points
 item.life = item.hitPoints;

 // Override item defaults based on details
 Object.assign(item, details);

 return item;
}

// Default properties that every item should have
var baseItem = {
 animationIndex: 0,
 direction: 0,

 selected: false,
 selectable: true,

 orders: { type: "stand" },
 action: "stand",
};

The loadItem() method uses the image loader to load the sprite sheet image into the spriteSheet
property. It then goes through the spriteImages definition and creates a spriteArray object that stores the
starting offsets for each of the sprite animations.

You will notice that the code checks for the existence of count and directions properties when creating
the array. This allows us to define multidirectional sprites, which we will need for drawing entities like
turrets and vehicles.

The addItem() method starts with a copy of the baseItem object and then, using Object.assign(), first
applies the defaults for the entity type (for example, buildings), extends it with properties for the specific
entity name (for example, base), sets the life for the item, and finally applies any additional properties
passed into the details parameter. Currently, baseItem contains only a few properties like animationIndex
and direction.

This interesting way of creating objects gives us our own implementation of multiple inheritance,
allowing us to define and override properties at four different levels: baseItem properties, item type
properties, item-specific properties, and additional details passed as parameters to the method (such as the
item position and team color).

In addition to these two functions, we define a polyfill for older browsers that might not support
Object.assign(). This code will be ignored in newer browsers that already support Object.assign() for
cloning an object with all its properties.

Now that we have defined our first entity, we need a simple way of adding entities to a level.

Adding Entities to the Level
The first thing we will do is modify our level definition to include a list of entity types required to be loaded
and a list of items to add to the level before it starts. We will modify the first level that we created in levels.js,
as shown in Listing 7-4.

Chapter 7 ■ Adding Entities to Our World

173

Listing 7-4.  Loading and Adding Entities Inside the Level (levels.js)

var levels = {
 "singleplayer": [
 {
 "name": "Introduction",
 �"briefing": "In this level you will learn how to pan across the map.\nDon't

worry! We will be implementing more features soon.",

 /* Map Details */
 "mapName": "plains",

 /* Starting location for player */
 "startX": 4,
 "startY": 4,

 /* Entities to be loaded */
 "requirements": {
 "buildings": ["base"],
 "vehicles": [],
 "aircraft": [],
 "terrain": []
 },

 /* Entities to be added */
 "items": [
 { "type": "buildings", "name": "base", "x": 11, "y": 14, "team": "blue" },
 { "type": "buildings", "name": "base", "x": 12, "y": 16, "team": "green" },
 �{ "type": "buildings", "name": "base", "x": 15, "y": 15, "team": "green",

"life": 50 },
]
 }
],

 "multiplayer": [

]
};

We have added two new sections to the first single-player level: requirements and items.
The requirements property contains the buildings, vehicles, aircraft, and terrain to preload for this

level. For now, we load only buildings of type base.
The items array contains details of the entities we want to add to the level. The details we provide

include the item type and name, the x and y grid coordinates, and the color of the team. These are the bare-
minimum properties that we need in order to uniquely define an entity.

We have added three base buildings with random positions and teams. The last building in the items
array also contains an additional property: life. Because of the way we defined the addItem() method
earlier, this life property will override the default value of life for the base. This way, we will also have an
example of a damaged building.

Next we will modify the loadLevelData() method in game.js to load and add these entities when the
game starts (see Listing 7-5).

Chapter 7 ■ Adding Entities to Our World

174

Listing 7-5.  Loading and Adding Entities Inside loadLevelData()(game.js)

loadLevelData: function(level) {
 game.currentLevel = level;
 game.currentMap = maps[level.mapName];

 // Load all the assets for the level starting with the map image
 game.currentMapImage = loader.loadImage("images/maps/" + maps[level.mapName].mapImage);

 // Initialize all the arrays for the game
 game.resetArrays();

 // Load all the assets for every entity defined in the level requirements array
 for (let type in level.requirements) {
 let requirementArray = level.requirements[type];

 requirementArray.forEach(function(name) {
 if (window[type] && typeof window[type].load === "function") {
 window[type].load(name);
 } else {
 console.log("Could not load type :", type);
 }
 });
 }

 // Add all the items defined in the level items array to the game
 level.items.forEach(function(itemDetails) {
 game.add(itemDetails);
 });
},

We do three things in the newly added code. We first initialize the game arrays by calling a
game.resetArrays() method.

We then iterate through the requirements object and call the appropriate load() method for each
entity. The load() methods in turn will call the asset loader to asynchronously load all the images for the
entity in the background and enable the entermission button once all the images have been loaded.

Finally, we iterate through the items array and pass the item details to a game.add() method.
Next we will add resetArrays(), add(), and remove() methods to the game object inside game.js

(see Listing 7-6).

Listing 7-6.  Adding resetArrays(), add(), and remove() (game.js)

resetArrays: function() {
 // Count items added in game, to assign them a unique id
 game.counter = 0;

 // Track all the items currently in the game
 game.items = [];
 game.buildings = [];
 game.vehicles = [];
 game.aircraft = [];
 game.terrain = [];

Chapter 7 ■ Adding Entities to Our World

175

 // Track items that have been selected by the player
 game.selectedItems = [];
},

add: function(itemDetails) {
 // Set a unique id for the item
 if (!itemDetails.uid) {
 itemDetails.uid = ++game.counter;
 }

 var item = window[itemDetails.type].add(itemDetails);

 // Add the item to the items array
 game.items.push(item);

 // Add the item to the type-specific array
 game[item.type].push(item);

 return item;
},

remove: function(item) {
 // Unselect item if it is selected
 item.selected = false;
 for (let i = game.selectedItems.length - 1; i >= 0; i--) {
 if (game.selectedItems[i].uid === item.uid) {
 game.selectedItems.splice(i, 1);
 break;
 }
 }

 // Remove item from the items array
 for (let i = game.items.length - 1; i >= 0; i--) {
 if (game.items[i].uid === item.uid) {
 game.items.splice(i, 1);
 break;
 }
 }

 // Remove items from the type-specific array
 for (let i = game[item.type].length - 1; i >= 0; i--) {
 if (game[item.type][i].uid === item.uid) {
 game[item.type].splice(i, 1);
 break;
 }
 }
},

The resetArrays() method merely initializes all the game-specific arrays and the game items counter.
The add() method generates a unique identifier (UID) for an item using the counter in case the item

doesn’t already have one, invokes the appropriate entity’s add() method, and finally saves the item in the
appropriate game arrays. For the base building, this method would first call buildings.add() and then add
the new building to the game.items and game.buildings arrays.

Chapter 7 ■ Adding Entities to Our World

176

The remove() method removes a specified item from the selectedItems, items, and entity-specific
arrays. This way, any time an item is removed from the game (for example, when it is destroyed) it is
automatically removed from the selection and the items array.

Now that we have set up the code for both defining the entity and adding entities to the level, we are
ready to start drawing them on the screen.

Drawing the Entities
To draw the entities, we need to implement the animate() and draw() methods inside the entity object and
then call these methods from the game animationLoop() and drawingLoop() methods.

We start by implementing the default animate() and draw() methods for all items inside the baseItem
object in common.js. The baseItem object will now look like Listing 7-7.

Listing 7-7.  Implementing the Default draw() and animate() Methods (common.js)

// Default properties that every item should have
var baseItem = {
 animationIndex: 0,
 direction: 0,

 selected: false,
 selectable: true,

 orders: { type: "stand" },
 action: "stand",

 // Default method for animating an item
 animate: function() {

 // Check the health of the item
 if (this.life > this.hitPoints * 0.4) {
 // Consider item healthy if it has more than 40% life
 this.lifeCode = "healthy";
 } else if (this.life > 0) {
 // Consider item damaged if it has less than 40% life
 this.lifeCode = "damaged";
 } else {
 // Remove item from the game if it has died (life is 0 or negative)
 this.lifeCode = "dead";
 game.remove(this);

 return;
 }

 // Process the current action
 this.processActions();
 },

 // Default method for drawing an item
 draw: function() {

Chapter 7 ■ Adding Entities to Our World

177

 // Compute pixel coordinates on canvas for drawing item
 this.drawingX = (this.x * game.gridSize) - game.offsetX - this.pixelOffsetX;
 this.drawingY = (this.y * game.gridSize) - game.offsetY - this.pixelOffsetY;

 this.drawSprite();
 },};

In the animate() method, we first set the lifeCode property of the item based on its health and
hitPoints. If an item’s health drops below zero, we set lifeCode to dead and remove it from the game.
We then invoke the item’s processAction() method.

In the draw() method, we first compute the coordinates on the canvas where we need to draw the item
by converting the grid x and y coordinates and save them in the drawingX and drawingY properties. We then
invoke the item’s drawSprite() method.

Next we will implement processAction() and drawSprite() for buildings inside the defaults section
of the buildings object, as shown in Listing 7-8.

Listing 7-8.  Implementing processAction() and drawSprite() Methods (building.js)

defaults: {
 type: "buildings",

 processActions: function() {
 switch (this.action) {
 case "stand":
 this.imageList = this.spriteArray[this.lifeCode];
 this.imageOffset = this.imageList.offset + this.animationIndex;
 this.animationIndex++;

 if (this.animationIndex >= this.imageList.count) {
 this.animationIndex = 0;
 }

 break;

 case "construct":
 this.imageList = this.spriteArray["constructing"];
 this.imageOffset = this.imageList.offset + this.animationIndex;
 this.animationIndex++;

 // Once constructing is complete go back to standing
 if (this.animationIndex >= this.imageList.count) {
 this.animationIndex = 0;
 this.action = "stand";
 }

 break;
 }
 },

 // Default function for drawing a building
 drawSprite: function() {
 let x = this.drawingX;
 let y = this.drawingY;

Chapter 7 ■ Adding Entities to Our World

178

 // All sprite sheets will have blue in the first row and green in the second row
 let colorIndex = (this.team === "blue") ? 0 : 1;
 let colorOffset = colorIndex * this.pixelHeight;

 // Draw the sprite at x, y
 �game.foregroundContext.drawImage(this.spriteSheet, this.imageOffset * this.

pixelWidth, colorOffset, this.pixelWidth, this.pixelHeight, x, y, this.pixelWidth,
this.pixelHeight);

 }
},

The processAction() method updates the imageList and animationIndex based on the item’s action
property. For now, we implement only the stand and construct actions.

For the stand action, we choose either the healthy or damaged sprite animation and increment the
animationIndex property. In case the animationIndex exceeds the number of frames in the sprite, we roll
the value back to zero. This way, the animation rotates through every frame in the sprite in a repeated loop.

For the construct action, we display the constructing sprites and roll over into the stand action once
it has completed.

The drawSprite() method is relatively simpler. We first calculate the image offset for the image color
row (based on team). We then use the foreground context’s drawImage() method to draw the appropriate
part of the sprite sheet image on the foreground canvas at the drawing coordinates we computed earlier.

Now that the draw() and animate() methods are in place, we need to call them from the game object.
We will modify the game.animationLoop() and game.drawingLoop() methods inside game.js, as shown in
Listing 7-9.

Listing 7-9.  Calling draw() and animate() from the Game Loops (game.js)

animationLoop: function() {
 // Animate each of the elements within the game
 game.items.forEach(function(item) {
 item.animate();
 });

 // Sort game items into a sortedItems array based on their x,y coordinates
game.sortedItems = Object.assign([], game.items);
 game.sortedItems.sort(function(a, b) {
 return a.y - b.y + ((a.y === b.y) ? (b.x - a.x) : 0);
 });
},

// The map is broken into square tiles of this size (20 pixels x 20 pixels)
gridSize: 20,
// X & Y panning offsets for the map
offsetX: 0,
offsetY: 0,

drawingLoop: function() {
 // Pan the map if the cursor is near the edge of the canvas
 game.handlePanning();

Chapter 7 ■ Adding Entities to Our World

179

 // Draw the background whenever necessary
 game.drawBackground();

 // Clear the foreground canvas
 game.foregroundContext.clearRect(0, 0, game.canvasWidth, game.canvasHeight);

 // Start drawing the foreground elements
 game.sortedItems.forEach(function(item) {
 item.draw();
 });

 // Call the drawing loop for the next frame using request animation frame
 if (game.running) {
 requestAnimationFrame(game.drawingLoop);
 }
},

Within the animationLoop() method, we first iterate through all the game items and call their
animate() methods. We then create a game.sortedItems array, which contains all the items sorted by y
values and then x values after adjusting for pixelOffset. This way, items that have a lower y value are earlier
in the array.

The new code inside the drawingLoop() method merely iterates through the sortedItems array and
calls the draw() method of each item. We use the sortedItems array so that items are drawn in order from
back to front based on their y coordinates. This is a simple implementation of depth sorting, which ensures
that items closer to the player obscure items behind them, thus giving the illusion of depth.

With this last change, we are now ready to see our first game entity drawn on the screen. If we open the
game in the browser and load the first level, we should see the three base buildings we defined in the map
drawn next to each other (see Figure 7-2).

Figure 7-2.  The three base buildings

Chapter 7 ■ Adding Entities to Our World

180

As you can see, the first blue team base is shown with a flashing blue light using the “healthy”
animation.

The second green team base is drawn on top of the first one and partially obscures it. This is a result of
our depth-sorting step and lets the player clearly see that the second base is in front of the first one.

Finally, the third base with a lower value of life looks damaged. This is because we automatically use the
“damaged” animation whenever the life of the building is less than 40 percent of its maximum hit points. If
you recall, we specified this lower life value in the item details inside levels.js.

Now that we have the framework for showing buildings within the game, let’s add the remaining
buildings, starting with the starport.

Adding the Starport
The starport is used to purchase both land and air units. The starport sprite sheet has a few interesting
animations that the base did not have: a teleporting animation sequence that we will use when the
building is first created, and an opening and closing animation sequence that we will use when we
transport in new units.

The first thing we will do is add the starport definition to the buildings list just below the base definition
inside buildings.js (see Listing 7-10).

Listing 7-10.  Definition for Starport (buildings.js)

"starport": {
 name: "starport",
 pixelWidth: 40,
 pixelHeight: 60,
 baseWidth: 40,
 baseHeight: 55,
 pixelOffsetX: 1,
 pixelOffsetY: 5,
 buildableGrid: [
 [1, 1],
 [1, 1],
 [1, 1]
],
 passableGrid: [
 [1, 1],
 [0, 0],
 [0, 0]
],
 sight: 3,
 cost: 2000,
 canConstruct: true,
 hitPoints: 300,
 spriteImages: [
 { name: "teleport", count: 9 },
 { name: "closing", count: 18 },
 { name: "healthy", count: 4 },
 { name: "damaged", count: 1 }
],
},

Chapter 7 ■ Adding Entities to Our World

181

The starport definition is very similar to the base definition, apart from the additional sprite images,
teleport and closing.

Next, we will need to account for animating the opening, closing, and teleporting animation states. We
will do this by modifying the existing cases as well as adding a few more cases inside the processActions()
method for the buildings inside buildings.js, as shown in Listing 7-11.

Listing 7-11.  Handling Teleporting, Opening, and Closing

case "teleport":
 this.imageList = this.spriteArray["teleport"];
 this.imageOffset = this.imageList.offset + this.animationIndex;
 this.animationIndex++;

 // Once teleporting is complete, move to stand mode
 if (this.animationIndex >= this.imageList.count) {
 this.animationIndex = 0;
 this.action = "stand";
 }

 break;

case "close":
 this.imageList = this.spriteArray["closing"];
 this.imageOffset = this.imageList.offset + this.animationIndex;
 this.animationIndex++;

 // Once closing is complete, go back to standing
 if (this.animationIndex >= this.imageList.count) {
 this.animationIndex = 0;
 this.action = "stand";
 }

 break;

case "open":
 this.imageList = this.spriteArray["closing"];
 // Opening is just the closing sprites running backward
 this.imageOffset = this.imageList.offset + this.imageList.count - this.animationIndex;
 this.animationIndex++;

 // Once opening is complete, go back to close
 if (this.animationIndex >= this.imageList.count) {
 this.animationIndex = 0;
 this.action = "close";
 }

 break;

Like the construct animation state, the teleport, close, and open animation states do not keep
repeating once they end. The teleport animation rolls over into the stand animation state. The open
animation (which is merely the close animation state running backward) rolls over into the close
animation state, which then rolls over into the stand animation state.

Chapter 7 ■ Adding Entities to Our World

182

This way, we can initialize the starport with a teleport or open animation state, knowing that it will
eventually move back to the stand animation state once the current animation completes.

Now, we can add a few starports to the level by modifying the requirements and items inside levels.js,
as shown in Listing 7-12.

Listing 7-12.  Adding Starports to the Level

/* Entities to be loaded */
"requirements": {
 "buildings": ["base", "starport"],
 "vehicles": [],
 "aircraft": [],
 "terrain": []
},

/* Entities to be added */
"items": [
 { "type": "buildings", "name": "base", "x": 11, "y": 14, "team": "blue" },
 { "type": "buildings", "name": "base", "x": 12, "y": 16, "team": "green" },
 { "type": "buildings", "name": "base", "x": 15, "y": 15, "team": "green", "life": 50 },

 { "type": "buildings", "name": "starport", "x": 18, "y": 14, "team": "blue" },
 �{ "type": "buildings", "name": "starport", "x": 18, "y": 10, "team": "blue", "action":

"teleport" },
 �{ "type": "buildings", "name": "starport", "x": 18, "y": 6, "team": "green", "action":

"open" },
]

When we open the game in the browser and start the level, we should see three new starport buildings,
as shown in Figure 7-3.

Figure 7-3.  The three starport buildings

Chapter 7 ■ Adding Entities to Our World

183

The first green team starport opens and then closes. The second blue team starport first glows and
comes into existence and then switches to stand mode, while the last blue team starport merely waits in
stand mode.

Now that the starport has been added, the next building we will look at is the harvester.

Adding the Harvester
The harvester is a unique entity in the sense that it is both a building and a vehicle. Unlike the other
buildings in the game, the harvester is created by deploying a harvester vehicle at an oil field, where it turns
into the building (see Figure 7-4).

The first thing we will do is add the harvester definition to the buildings list just below the starport
definition inside buildings.js (see Listing 7-13).

Listing 7-13.  Definition for Harvester Building (buildings.js)

"harvester": {
 name: "harvester",
 pixelWidth: 40,
 pixelHeight: 60,
 baseWidth: 40,
 baseHeight: 20,
 pixelOffsetX: -2,
 pixelOffsetY: 40,
 buildableGrid: [
 [1, 1]
],
 passableGrid: [
 [1, 1]
],
 sight: 3,
 cost: 5000,
 hitPoints: 300,
 spriteImages: [
 { name: "deploy", count: 17 },
 { name: "healthy", count: 3 },
 { name: "damaged", count: 1 }
],
},

Figure 7-4.  Harvester deploying into building form

Chapter 7 ■ Adding Entities to Our World

184

Next, we will need to account for the deploying animation state. We will do this by adding the deploy
case to the processActions() method inside buildings.js, as shown in Listing 7-14.

Listing 7-14.  Handling the deploy Animation State (buildings.js)

case "deploy":
 this.imageList = this.spriteArray["deploy"];
 this.imageOffset = this.imageList.offset + this.animationIndex;
 this.animationIndex++;

 // Once deploying is complete, go to stand
 if (this.animationIndex >= this.imageList.count) {
 this.animationIndex = 0;
 this.action = "stand";
 }

 break;

The deploy state, like the teleport state we defined earlier, automatically rolls into the stand animation
state once it completes.

Now, we can add the harvester to the level by modifying the requirements and items inside levels.js,
as shown in Listing 7-15.

Listing 7-15.  Adding the Harvester to the Level

/* Entities to be loaded */
"requirements": {
 "buildings": ["base", "starport", "harvester"],
 "vehicles": [],
 "aircraft": [],
 "terrain": []
},

/* Entities to be added */
"items": [
 { "type": "buildings", "name": "base", "x": 11, "y": 14, "team": "blue" },
 { "type": "buildings", "name": "base", "x": 12, "y": 16, "team": "green" },
 { "type": "buildings", "name": "base", "x": 15, "y": 15, "team": "green", "life": 50 },

 { "type": "buildings", "name": "starport", "x": 18, "y": 14, "team": "blue" },
 �{ "type": "buildings", "name": "starport", "x": 18, "y": 10, "team": "blue",

"action": "teleport" },
 �{ "type": "buildings", "name": "starport", "x": 18, "y": 6, "team": "green",

"action": "open" },

 { "type": "buildings", "name": "harvester", "x": 20, "y": 10, "team": "blue" },
 �{ "type": "buildings", "name": "harvester", "x": 22, "y": 12, "team": "green",

"action": "deploy" },
]

When we open the game in the browser and start the level, we should see two new harvester buildings,
as shown in Figure 7-5.

Chapter 7 ■ Adding Entities to Our World

185

The blue harvester is in the default stand mode, while the green harvester, which is in deploy mode,
transforms into a building and then switches to stand mode.

Now that the harvester has been added, the last building we will look at is the ground turret.

Adding the Ground Turret
The ground turret is a defensive structure that attacks only ground-based threats.

It is the only building that uses direction-based sprites so, unlike with the other buildings, we need to
take the turret’s direction into account during animation and drawing.

The direction property can take values ranging from 0 to 7 increasing in the clockwise direction, with 0
pointing toward the north and 7 pointing in the northwest direction, as shown in Figure 7-6.

The first thing we will do is add the ground turret definition to the buildings list just below the harvester
definition inside buildings.js (see Listing 7-16).

Figure 7-6.  Direction sprites for the ground turret ranging from 0 to 7

Figure 7-5.  The two harvester buildings

Chapter 7 ■ Adding Entities to Our World

186

Listing 7-16.  Definition for Ground Turret (buildings.js)

"ground-turret": {
 name: "ground-turret",
 canAttack: true,
 canAttackLand: true,
 canAttackAir: false,
 weaponType: "cannon-ball",
 action: "stand",
 direction: 0, // Face upward (0) by default
 directions: 8, // Total of 8 turret directions allowed (0-7)
 orders: { type: "guard" },
 pixelWidth: 38,
 pixelHeight: 32,
 baseWidth: 20,
 baseHeight: 18,
 cost: 1500,
 canConstruct: true,
 pixelOffsetX: 9,
 pixelOffsetY: 12,
 buildableGrid: [
 [1]
],
 passableGrid: [
 [1]
],
 sight: 5,
 hitPoints: 200,
 spriteImages: [
 { name: "teleport", count: 9 },
 { name: "healthy", count: 1, directions: 8 },
 { name: "damaged", count: 1 }
],
}

The gun turret has a few additional properties that indicate whether it can be used to attack the enemy,
the direction the turret is pointing, and the type of weapon it uses. We will use these properties later when
we implement combat in our game.

The healthy sprites have an additional directions property that is used by the itemLoad() method to
generate sprites for each direction.

Next, we will modify the stand case in the processActions() method to handle directions, as shown in
Listing 7-17.

Listing 7-17.  Handling Directions in the stand Animation State (buildings.js)

case "stand":
 if (this.name === "ground-turret" && this.lifeCode === "healthy") {
 // For a healthy turret, use direction to choose image list
 let direction = Math.round(this.direction) % this.directions;

 this.imageList = this.spriteArray[this.lifeCode + "-" + direction];
 } else {

Chapter 7 ■ Adding Entities to Our World

187

 // In all other cases, use lifeCode
 this.imageList = this.spriteArray[this.lifeCode];
 }

 this.imageOffset = this.imageList.offset + this.animationIndex;
 this.animationIndex++;

 if (this.animationIndex >= this.imageList.count) {
 this.animationIndex = 0;
 }

 break;

We modify the code to use the turret direction to pick the appropriate image list if it is healthy. We
round the value of direction and ensure that it lies between 0 and 7 so that we can use fractional direction
values if we need, but the sprite will still be picked correctly. If the turret is damaged, it does not have
directions, so we fall back to the default behavior of using lifeCode to pick the image list.

Now, we can add the turret to the level by modifying the requirements and items inside levels.js, as
shown in Listing 7-18.

Listing 7-18.  Adding the Ground Turret to the Level

/* Entities to be loaded */
"requirements": {
 "buildings": ["base", "starport", "harvester", "ground-turret"],
 "vehicles": [],
 "aircraft": [],
 "terrain": []
},

/* Entities to be added */
"items": [
 { "type": "buildings", "name": "base", "x": 11, "y": 14, "team": "blue" },
 { "type": "buildings", "name": "base", "x": 12, "y": 16, "team": "green" },
 { "type": "buildings", "name": "base", "x": 15, "y": 15, "team": "green", "life": 50 },

 { "type": "buildings", "name": "starport", "x": 18, "y": 14, "team": "blue" },
 �{ "type": "buildings", "name": "starport", "x": 18, "y": 10, "team": "blue",

"action": "teleport" },
 �{ "type": "buildings", "name": "starport", "x": 18, "y": 6, "team": "green",

"action": "open" },

 { "type": "buildings", "name": "harvester", "x": 20, "y": 10, "team": "blue" },
 �{ "type": "buildings", "name": "harvester", "x": 22, "y": 12, "team": "green",

"action": "deploy" },

 �{ "type": "buildings", "name": "ground-turret", "x": 14, "y": 9, "team":
"blue", "direction": 3 },

 �{ "type": "buildings", "name": "ground-turret", "x": 14, "y": 12, "team":
"green", "direction": 1 },

 �{ "type": "buildings", "name": "ground-turret", "x": 16, "y": 10, "team":
"blue", "action": "teleport" },

]

Chapter 7 ■ Adding Entities to Our World

188

We specify a starting direction property for the first two turrets and set the action property to
teleport for the third. When we open the game in the browser and start the level, we should see three new
turrets, as shown in Figure 7-7.

The first two turrets are in stand mode and face two different directions, while the third one teleports in
facing the default direction and switches to stand mode after teleporting in.

At this point, we have implemented all the buildings that we need. Now it’s time to start adding a few
vehicles to our game.

Adding the Vehicles
All the vehicles in our game, including the transport, will have a simple sprite sheet with the vehicle pointing
in eight directions similar to the ground turret, as shown in Figure 7-8.

Figure 7-7.  The three ground turret buildings

Figure 7-8.  The transport sprite sheet

Chapter 7 ■ Adding Entities to Our World

189

We will set up the code for our vehicles by defining a new vehicles object inside vehicles.js, as
shown in Listing 7-19.

Listing 7-19.  Defining the vehicles Object (vehicles.js)

var vehicles = {
 list: {
 "transport": {
 name: "transport",
 pixelWidth: 31,
 pixelHeight: 30,
 pixelOffsetX: 15,
 pixelOffsetY: 15,
 radius: 15,
 speed: 15,
 sight: 3,
 cost: 400,
 hitPoints: 100,
 turnSpeed: 3,
 spriteImages: [
 { name: "stand", count: 1, directions: 8 }
],
 },
 "harvester": {
 name: "harvester",
 pixelWidth: 21,
 pixelHeight: 20,
 pixelOffsetX: 10,
 pixelOffsetY: 10,
 radius: 10,
 speed: 10,
 sight: 3,
 cost: 1600,
 canConstruct: true,
 hitPoints: 50,
 turnSpeed: 3,
 spriteImages: [
 { name: "stand", count: 1, directions: 8 }
],
 },
 "scout-tank": {
 name: "scout-tank",
 canAttack: true,
 canAttackLand: true,
 canAttackAir: false,
 weaponType: "bullet",
 pixelWidth: 21,
 pixelHeight: 21,
 pixelOffsetX: 10,
 pixelOffsetY: 10,
 radius: 11,
 speed: 20,

Chapter 7 ■ Adding Entities to Our World

190

 sight: 4,
 cost: 500,
 canConstruct: true,
 hitPoints: 50,
 turnSpeed: 5,
 spriteImages: [
 { name: "stand", count: 1, directions: 8 }
],
 },
 "heavy-tank": {
 name: "heavy-tank",
 canAttack: true,
 canAttackLand: true,
 canAttackAir: false,
 weaponType: "cannon-ball",
 pixelWidth: 30,
 pixelHeight: 30,
 pixelOffsetX: 15,
 pixelOffsetY: 15,
 radius: 13,
 speed: 15,
 sight: 5,
 cost: 1200,
 canConstruct: true,
 hitPoints: 50,
 turnSpeed: 4,
 spriteImages: [
 { name: "stand", count: 1, directions: 8 }
],
 }
 },

 defaults: {
 type: "vehicles",
 directions: 8,
 canMove: true,

 processActions: function() {
 let direction = Math.round(this.direction) % this.directions;

 switch (this.action) {
 case "stand":

 this.imageList = this.spriteArray["stand-" + direction];
 this.imageOffset = this.imageList.offset + this.animationIndex;
 this.animationIndex++;

 if (this.animationIndex >= this.imageList.count) {
 this.animationIndex = 0;
 }

Chapter 7 ■ Adding Entities to Our World

191

 break;
 }
 },

 // Default function for drawing a vehicle
 drawSprite: function() {
 let x = this.drawingX;
 let y = this.drawingY;

 let colorIndex = (this.team === "blue") ? 0 : 1;
 let colorOffset = colorIndex * this.pixelHeight;

 �game.foregroundContext.drawImage(this.spriteSheet, this.imageOffset * this.
pixelWidth, colorOffset, this.pixelWidth, this.pixelHeight, x, y, this.
pixelWidth, this.pixelHeight);

 },
 },

 load: loadItem,
 add: addItem,
};

The structure of our vehicles object is very similar to the buildings object. We have a list property
where we define the four vehicle types: the transport, the harvester, the scout tank, and the heavy tank.

All of the vehicle sprites also have a directions property. The default stand animation implementation
inside processActions() uses the vehicle’s direction to select the sprite to draw, just like we did for the
ground turret. We use animationIndex to handle multiple images within a sprite so that we can add vehicles
with animation if needed.

The vehicles also have properties such as speed, sight, and cost. The transport and harvester do
not have any weapons, while the two tanks have weapon-based properties (canAttack, canAttackLand,
weaponType) similar to the ground turret building we defined earlier. We will use all of these properties in
later chapters to implement movement and combat.

Now, we can add these vehicles to the levels by first modifying the requirements property inside
levels.js, as shown in Listing 7-20.

Listing 7-20.  Adding the Vehicles to the Level Requirements (levels.js)

/* Entities to be loaded */
"requirements": {
 "buildings": ["base", "starport", "harvester", "ground-turret"],
 "vehicles": ["transport", "harvester", "scout-tank", "heavy-tank"],
 "aircraft": [],
 "terrain": []
},

Next, we will add a few new vehicles to the items section of the level as shown in Listing 7-21.

Listing 7-21.  Adding the Vehicles to the Level Items (levels.js)

{ "type": "vehicles", "name": "transport", "x": 26, "y": 10, "team": "blue", "direction": 2 },
{ "type": "vehicles", "name": "harvester", "x": 26, "y": 12, "team": "blue", "direction": 3 },
{ "type": "vehicles", "name": "scout-tank", "x": 26, "y": 14, "team": "blue", "direction": 4 },
{ "type": "vehicles", "name": "heavy-tank", "x": 26, "y": 16, "team": "blue", "direction": 5 },

Chapter 7 ■ Adding Entities to Our World

192

{ "type": "vehicles", "name": "transport", "x": 28, "y": 10, "team": "green", "direction": 7 },
{ "type": "vehicles", "name": "harvester", "x": 28, "y": 12, "team": "green", "direction": 6 },
{ "type": "vehicles", "name": "scout-tank", "x": 28, "y": 14, "team": "green", "direction": 1 },
{ "type": "vehicles", "name": "heavy-tank", "x": 28, "y": 16, "team": "green", "direction": 0 },

When we open the game in the browser and start the level, we should see the vehicles, as shown in
Figure 7-9.

The vehicles point in different directions based on the properties we set when adding them to the items
list. With the vehicles implemented, it is time to add the aircraft to our game.

Adding the Aircraft
The aircraft in our game have a sprite sheet similar to vehicles except for one difference: shadows. An aircraft
sprite sheet has a third row with shadows in it. Also, the chopper sprite sheet has multiple images for each
direction, as shown in Figure 7-10.

Figure 7-9.  Adding vehicles to the level

Figure 7-10.  The chopper sprite sheet with shadows

Chapter 7 ■ Adding Entities to Our World

193

We will set up the code for our aircraft by defining a new aircraft object inside aircraft.js, as shown
in Listing 7-22.

Listing 7-22.  Defining the aircraft Object (aircraft.js)

var aircraft = {
 list: {
 "chopper": {
 name: "chopper",
 cost: 900,
 canConstruct: true,
 pixelWidth: 40,
 pixelHeight: 40,
 pixelOffsetX: 20,
 pixelOffsetY: 20,
 weaponType: "heatseeker",
 radius: 18,
 sight: 6,
 canAttack: true,
 canAttackLand: true,
 canAttackAir: true,
 hitPoints: 50,
 speed: 25,
 turnSpeed: 4,
 pixelShadowHeight: 40,
 spriteImages: [
 { name: "stand", count: 4, directions: 8 }
],
 },
 "wraith": {
 name: "wraith",
 cost: 600,
 canConstruct: true,
 pixelWidth: 30,
 pixelHeight: 30,
 canAttack: true,
 canAttackLand: false,
 canAttackAir: true,
 weaponType: "fireball",
 pixelOffsetX: 15,
 pixelOffsetY: 15,
 radius: 15,
 sight: 8,
 speed: 40,
 turnSpeed: 4,
 hitPoints: 50,
 pixelShadowHeight: 40,
 spriteImages: [
 { name: "stand", count: 1, directions: 8 }
],
 }
 },

Chapter 7 ■ Adding Entities to Our World

194

 defaults: {
 type: "aircraft",
 directions: 8,
 canMove: true,

 processActions: function() {
 let direction = Math.round(this.direction) % this.directions;

 switch (this.action) {
 case "stand":

 this.imageList = this.spriteArray["stand-" + direction];
 this.imageOffset = this.imageList.offset + this.animationIndex;
 this.animationIndex++;

 if (this.animationIndex >= this.imageList.count) {
 this.animationIndex = 0;
 }

 break;

 }
 },

 drawSprite: function() {
 let x = this.drawingX;
 let y = this.drawingY;

 let colorIndex = (this.team === "blue") ? 0 : 1;
 let colorOffset = colorIndex * this.pixelHeight;
 // The aircraft shadow is on the third row of the sprite sheet
 let shadowOffset = this.pixelHeight * 2;

 // Draw the aircraft pixelShadowHeight pixels above its position
 �game.foregroundContext.drawImage(this.spriteSheet, this.imageOffset * this.

pixelWidth, colorOffset, this.pixelWidth, this.pixelHeight, x, y - this.
pixelShadowHeight, this.pixelWidth, this.pixelHeight);

 // Draw the shadow at aircraft position
 �game.foregroundContext.drawImage(this.spriteSheet, this.imageOffset * this.

pixelWidth, shadowOffset, this.pixelWidth, this.pixelHeight, x, y, this.
pixelWidth, this.pixelHeight);

 },
 },

 load: loadItem,
 add: addItem,
};

Chapter 7 ■ Adding Entities to Our World

195

The structure of our aircraft object is similar to the vehicles object. We have a list property where
we define the two aircraft types: the chopper and the wraith.

All of the aircraft sprites have the directions property. The default stand animation implementation
inside processActions() uses the aircraft’s direction to select the sprite to draw. In the case of the chopper,
we also use animationIndex to handle multiple images for each direction.

The one big difference is in the way the drawSprite() method is implemented. We draw a shadow
at the location of the aircraft and draw the actual aircraft pixelShadowHeight pixels above the location of
the aircraft. This way, the aircraft looks like it is floating above the ground and the shadow is on the ground
below it.

Now, we can add these aircraft to the map by first modifying the requirements inside levels.js, as
shown in Listing 7-23.

Listing 7-23.  Adding the Aircraft to the Level Requirements (levels.js)

/* Entities to be loaded */
"requirements": {
 "buildings": ["base", "starport", "harvester", "ground-turret"],
 "vehicles": ["transport", "harvester", "scout-tank", "heavy-tank"],
 "aircraft": ["chopper", "wraith"],
 "terrain": []
},

Next, we will add a few aircraft to the items section of the level as shown in Listing 7-24.

Listing 7-24.  Adding the Aircraft to the Level Items (levels.js)

{ "type": "aircraft", "name": "chopper", "x": 20, "y": 22, "team": "blue", "direction": 2 },
{ "type": "aircraft", "name": "wraith", "x": 23, "y": 22, "team": "green", "direction": 3 },

When we open the game in the browser and start the level, we should see the aircraft hovering above
the ground, as shown in Figure 7-11.

Figure 7-11.  The aircraft floating above the ground

Chapter 7 ■ Adding Entities to Our World

196

The shadows help create the illusion that the aircraft are floating above the ground while also serving to
mark their exact position on the ground. The chopper blades and their shadow on the ground seem to rotate
because of the animation that we use to draw the chopper.

With the aircraft implemented, we will now add the terrain to our game.

Adding the Terrain
With the exception of the oil field, the terrain entities in our game are static bodies intended only for
cosmetic use. The oil field is a special entity above which the harvester vehicle can deploy into the harvester
building. The oil field sprite sheet includes two versions of the oil field: a default version and a “hint” version
that shows a blurry harvester placed above the oil field as a hint for the player.

We will set up the code for our terrain by defining a new terrain object inside terrain.js, as shown in
Listing 7-25.

Listing 7-25.  Defining the terrain Object (terrain.js)

var terrain = {
 list: {
 "oilfield": {
 name: "oilfield",
 pixelWidth: 40,
 pixelHeight: 60,
 baseWidth: 40,
 baseHeight: 20,
 pixelOffsetX: 0,
 pixelOffsetY: 40,
 buildableGrid: [
 [1, 1]
],
 passableGrid: [
 [0, 0]
],
 spriteImages: [
 { name: "hint", count: 1 },
 { name: "stand", count: 1 }
],
 },
 "bigrocks": {
 name: "bigrocks",
 pixelWidth: 40,
 pixelHeight: 70,
 baseWidth: 40,
 baseHeight: 40,
 pixelOffsetX: 0,
 pixelOffsetY: 30,
 buildableGrid: [
 [1, 1],
 [0, 1]
],

Chapter 7 ■ Adding Entities to Our World

197

 passableGrid: [
 [1, 1],
 [0, 1]
],
 spriteImages: [
 { name: "stand", count: 1 }
],
 },
 "smallrocks": {
 name: "smallrocks",
 pixelWidth: 20,
 pixelHeight: 35,
 baseWidth: 20,
 baseHeight: 20,
 pixelOffsetX: 0,
 pixelOffsetY: 15,
 buildableGrid: [
 [1]
],
 passableGrid: [
 [1]
],
 spriteImages: [
 { name: "stand", count: 1 }
],
 },
 },

 defaults: {
 type: "terrain",
 selectable: false,

 animate: function() {
 // No need to do a health check for terrain. Just call processActions
 this.processActions();
 },

 processActions: function() {
 �// Since there is no animation or special handling, just set imageList based on

action
 this.imageList = this.spriteArray[this.action];
 this.imageOffset = this.imageList.offset;
 },

 drawSprite: function() {
 let x = this.drawingX;
 let y = this.drawingY;

 var colorOffset = 0; // No team based colors for terrain

Chapter 7 ■ Adding Entities to Our World

198

 �game.foregroundContext.drawImage(this.spriteSheet, this.imageOffset * this.
pixelWidth, colorOffset, this.pixelWidth, this.pixelHeight, x, y, this.
pixelWidth, this.pixelHeight);

 }
 },

 load: loadItem,
 add: addItem,
};

The structure of our terrain object is similar to the buildings object. We have a list property
where we define the terrain types: the oil field, the big rocks, and the small rocks. However, we override
the animate() method to remove the health check that is typical for other items. We implement a simpler
processActions() method since our terrain does not use animations or directions. We also implement a
simpler drawSprite() method that does not use team-based colors.

Now, we can add the terrain to the level by first modifying the requirements inside levels.js, as shown
in Listing 7-26.

Listing 7-26.  Adding the Terrain to the Level Requirements (levels.js)

/* Entities to be loaded */
"requirements": {
 "buildings": ["base", "starport", "harvester", "ground-turret"],
 "vehicles": ["transport", "harvester", "scout-tank", "heavy-tank"],
 "aircraft": ["chopper", "wraith"],
 "terrain": ["oilfield", "bigrocks", "smallrocks"]
},

Next, we will add some terrain to the items section of the level as shown in Listing 7-27.

Listing 7-27.  Adding the Terrain to the Level Items (levels.js)

{ "type": "terrain", "name": "oilfield", "x": 5, "y": 7 },
{ "type": "terrain", "name": "oilfield", "x": 8, "y": 7, "action": "hint" },

{ "type": "terrain", "name": "bigrocks", "x": 5, "y": 3 },
{ "type": "terrain", "name": "smallrocks", "x": 8, "y": 3 },

We add two oil fields, one of which has the action property set to hint. When we open the game in the
browser and start the level, we should see the rocks and the oil fields, as shown in Figure 7-12.

Chapter 7 ■ Adding Entities to Our World

199

The oil field on the right with the hint has a subtle glowing image of a harvester to let the player know
that a harvester can be deployed there. This hint version of the oil field can be used in the earlier levels of the
game to introduce the player to the idea of harvesting from oil fields.

With this, we have implemented all the important entities in the game. Of course, at this point all we can
do is scroll around the map and look at these entities. The next thing we will work on is adding the ability to
interact with them by selecting them.

Selecting Game Entities
We will allow players to select entities either by clicking them or by dragging a selection box across them.

We will start by enabling click selection, by adding two new methods to the mouse object inside mouse.js,
as shown in Listing 7-28.

Listing 7-28.  Enabling Selection by Clicking (mouse.js)

// Called whenever player completes a left-click on the game canvas
leftClick: function(shiftPressed) {
 let clickedItem = mouse.itemUnderMouse();

 if (clickedItem) {
 �// Pressing Shift adds to existing selection. If Shift is not pressed, clear

existing selection
 if (!shiftPressed) {
 game.clearSelection();
 }

 game.selectItem(clickedItem, shiftPressed);
 }
},

Figure 7-12.  Adding the rocks and the oil fields

Chapter 7 ■ Adding Entities to Our World

200

// Return the first item detected under the mouse
itemUnderMouse: function() {
 for (let i = game.items.length - 1; i >= 0; i--) {
 let item = game.items[i];

 // Dead items will not be detected
 if (item.lifeCode === "dead") {
 continue;
 }

 let x = item.x * game.gridSize;
 let y = item.y * game.gridSize;

 if (item.type === "buildings" || item.type === "terrain") {
 �// If mouse coordinates are within rectangular area of building or terrain
 �if (x <= mouse.gameX && x >= (mouse.gameX - item.baseWidth) && y <= mouse.gameY

&& y >= (mouse.gameY - item.baseHeight)) {
 return item;
 }
 } else if (item.type === "aircraft") {
 �// If mouse coordinates are within radius of aircraft (adjusted for

pixelShadowHeight)
 �if (Math.pow(x - mouse.gameX, 2) + Math.pow(y - mouse.gameY - item.

pixelShadowHeight, 2) < Math.pow(item.radius, 2)) {
 return item;
 }
 } else if (item.type === "vehicles") {
 // If mouse coordinates are within radius of item
 �if (Math.pow(x - mouse.gameX, 2) + Math.pow(y - mouse.gameY, 2) < Math.pow

(item.radius, 2)) {
 return item;
 }
 }
 }
},

The mouse.leftClick() method first checks whether there is an item under the mouse during the click
using the itemUnderMouse() method. If an item is under the mouse, we call the game.selectItem() method.
The game.clearSelection() method is called before selecting the new item unless the Shift key is pressed
during the click. This way, users can select multiple items by holding down the Shift key while selecting, or
clear the previous selection and select a new item by clicking it without the Shift key.

The itemUnderMouse() method iterates through all the items in the list and returns the first item that is
under the mouse gameX and gameY coordinates using different criteria for different item types:

•	 In the case of buildings and terrain, we check whether the base of the item is under
the mouse. This way, the player can click the base of a building to select it but won’t
have problems selecting vehicles behind the building.

•	 In the case of vehicles, we check whether the mouse is within a radius from the
vehicle center.

•	 In the case of aircraft, we check whether the mouse is within a radius from the
aircraft center and not the shadow by using the pixelShadowHeight property to
adjust the y coordinate.

Chapter 7 ■ Adding Entities to Our World

201

Next, we will track when the left mouse button has been pressed by creating a mousedown event handler
(see Listing 7-29).

Listing 7-29.  Implementing the mousedown Event Handler (mouse.js)

// Is the left mouse button currently pressed
buttonPressed: false,

mousedownhandler: function(ev) {
 mouse.insideCanvas = true;
 mouse.setCoordinates(ev.clientX, ev.clientY);

 if (ev.button === 0) { // Left mouse button was pressed
 mouse.buttonPressed = true;

 mouse.dragX = mouse.gameX;
 mouse.dragY = mouse.gameY;
 }
},

Inside the mousedownhandler() method, we set the insideCanvas flag to true and update the
coordinates just as we do in the mousemovehandler() method. We then check whether the left button was
pressed using the event’s button property, and if so, we update the buttonPressed property and save the
current mouse coordinates for later use.

Next, we will update the mousemovehandler() method to track when dragging has started (see Listing 7-30).

Listing 7-30.  Track Drag Selection in the mousemove Event Handler (mouse.js)

mousemovehandler: function(ev) {
 mouse.insideCanvas = true;

 mouse.setCoordinates(ev.clientX, ev.clientY);
 mouse.checkIfDragging();
},

// Is the player dragging and selecting with the left mouse button pressed
dragSelect: false,

// If the mouse is dragged more than this, assume the player is trying to select something
dragSelectThreshold: 5,

checkIfDragging: function() {
 if (mouse.buttonPressed) {
 // If the mouse has been dragged more than threshold, treat it as a drag
 �if ((Math.abs(mouse.dragX - mouse.gameX) > mouse.dragSelectThreshold && Math.

abs(mouse.dragY - mouse.gameY) > mouse.dragSelectThreshold)) {
 mouse.dragSelect = true;
 }
 } else {
 mouse.dragSelect = false;
 }
},

Chapter 7 ■ Adding Entities to Our World

202

Inside the mousemovehandler() method we add an additional call to the checkIfDragging() method.
The checkIfDragging() method sets the dragSelect property to true if the mouse has been moved by more
than dragSelectThreshold pixels from the point where the mouse button was first pressed, along both x and
y coordinates. This little threshold check ensures that every click and mouse interaction is not treated as a
drag selection attempt. If the mouse button is not pressed, dragSelect is set to false.

Next, we will track when the left mouse button has been released by creating a mouseup event handler
(see Listing 7-31).

Listing 7-31.  Implementing the mouseup Event Handler (mouse.js)

mouseuphandler: function(ev) {
 mouse.setCoordinates(ev.clientX, ev.clientY);

 let shiftPressed = ev.shiftKey;

 if (ev.button === 0) { // Left mouse button was released
 if (mouse.dragSelect) {
 �// If currently drag-selecting, attempt to select items with the selection

rectangle
 mouse.finishDragSelection(shiftPressed);
 } else {
 // If not dragging, treat this as a normal click once the mouse is released
 mouse.leftClick(shiftPressed);
 }

 mouse.buttonPressed = false;
 }
},

finishDragSelection: function(shiftPressed) {
 if (!shiftPressed) {
 // If shift key is not pressed, clear any previously selected items
 game.clearSelection();
 }

 // Calculate the bounds of the selection rectangle
 let x1 = Math.min(mouse.gameX, mouse.dragX);
 let y1 = Math.min(mouse.gameY, mouse.dragY);
 let x2 = Math.max(mouse.gameX, mouse.dragX);
 let y2 = Math.max(mouse.gameY, mouse.dragY);

 game.items.forEach(function(item) {
 �// Unselectable items, dead items, opponent team items, and buildings are not

drag-selectable
 �if (!item.selectable || item.lifeCode === "dead" || item.team !== game.team || item.

type === "buildings") {
 return;
 }

Chapter 7 ■ Adding Entities to Our World

203

 let x = item.x * game.gridSize;
 let y = item.y * game.gridSize;

 if (x1 <= x && x2 >= x) {
 if ((item.type === "vehicles" && y1 <= y && y2 >= y)
 // In case of aircraft, adjust for pixelShadowHeight
 �|| (item.type === "aircraft" && (y1 <= y - item.pixelShadowHeight) &&

(y2 >= y - item.pixelShadowHeight))) {

 game.selectItem(item, shiftPressed);
 }
 }
 });

 mouse.dragSelect = false;
},

If the left mouse button is released, we check whether the mouse was being dragged. If there was no
dragging happening, we treat the event as a normal left-click and call the leftClick() method that we
defined earlier.

If, however, the mouse was being dragged before the button was released, we call the
finishDragSelection() method where we iterate through every game item and check whether it lies within
the bounds of the dragged rectangle. We then call game.selectItem() to select any items that are within the
rectangle.

Most importantly, we only allow drag selection for our own vehicles and aircraft and not for enemy
entities or our own buildings. This is because drag selection is typically used to select groups of units to
move them or attack with them quickly, and selecting enemy units or our own buildings does not really help
the player.

We will also need to modify the mouse.init() method to listen for the mousedown and mouseup events
and call the appropriate event handlers, as shown in Listing 7-32.

Listing 7-32.  Adding Event Listeners in the init() Method (mouse.js)

init: function() {
 // Listen for mouse events on the game foreground canvas
 let canvas = document.getElementById("gameforegroundcanvas");

 canvas.addEventListener("mousemove", mouse.mousemovehandler, false);

 canvas.addEventListener("mouseenter", mouse.mouseenterhandler, false);
 canvas.addEventListener("mouseout", mouse.mouseouthandler, false);

 canvas.addEventListener("mousedown", mouse.mousedownhandler, false);
 canvas.addEventListener("mouseup", mouse.mouseuphandler, false);

 mouse.canvas = canvas;
},

Next, we will implement a mouse.draw() method that will draw a rectangle to mark the selection area
when we are drag-selecting, as shown in Listing 7-33.

Chapter 7 ■ Adding Entities to Our World

204

Listing 7-33.  Drawing the Drag Selection Area (mouse.js)

draw: function() {
 // If the player is dragging and selecting, draw a white box to mark the selection area
 if (this.dragSelect) {
 let x = Math.min(this.gameX, this.dragX);
 let y = Math.min(this.gameY, this.dragY);

 let width = Math.abs(this.gameX - this.dragX);
 let height = Math.abs(this.gameY - this.dragY);

 game.foregroundContext.strokeStyle = "white";
 �game.foregroundContext.strokeRect(x - game.offsetX, y - game.offsetY, width,

height);
 }
},

We will also need to modify the game.animationLoop() method to call mouse.draw() as shown in
Listing 7-34.

Listing 7-34.  Calling mouse.draw() from game.animationLoop (game.js)

drawingLoop: function() {
 // Pan the map if the cursor is near the edge of the canvas
 game.handlePanning();

 // Draw the background whenever necessary
 game.drawBackground();

 // Clear the foreground canvas
 game.foregroundContext.clearRect(0, 0, game.canvasWidth, game.canvasHeight);

 // Start drawing the foreground elements
 game.sortedItems.forEach(function(item) {
 item.draw();
 });

 // Draw the mouse
 mouse.draw();

 // Call the drawing loop for the next frame using request animation frame
 if (game.running) {
 requestAnimationFrame(game.drawingLoop);
 }
},

Finally, we will add two selection-related methods to the game object, as shown in Listing 7-35.

Listing 7-35.  Adding Selection-Related Methods to game Object (game.js)

clearSelection: function() {
 while (game.selectedItems.length > 0) {
 game.selectedItems.pop().selected = false;
 }
},

Chapter 7 ■ Adding Entities to Our World

205

selectItem: function(item, shiftPressed) {
 // Pressing shift and clicking on a selected item will deselect it
 if (shiftPressed && item.selected) {
 // Deselect item
 item.selected = false;

 for (let i = game.selectedItems.length - 1; i >= 0; i--) {
 if (game.selectedItems[i].uid === item.uid) {
 game.selectedItems.splice(i, 1);
 break;
 }
 }

 return;
 }

 if (item.selectable && !item.selected) {
 item.selected = true;
 game.selectedItems.push(item);
 }
},

The clearSelection() method iterates through the game.selectedItems array, clears the selected flag
from each item, and removes the item from the array.

The selectItem() method either adds a selectable item to the selectedItems array or removes it from
the array depending on whether the Shift key is pressed. This way, players can unselect a selected item by
clicking it with the Shift key pressed.

At this point, we have all the code we need to select items inside the game. However, we still need a way
to highlight selected items so we can identify them visually. This is what we will implement next.

Highlighting Selected Entities
When the player selects an item, we will detect it using the item’s selected property and draw an enclosing
selection boundary around the item. We will also add an indicator to show us how much life the item has.

We will do this by defining two default methods, drawSelection() and drawLifeBar(), for each of the
entities and modify the draw() method to call them.

We will start by modifying the draw() method inside the baseItem object in common.js to draw selected
items as shown in Listing 7-36.

Listing 7-36.  Modifying draw() to Draw Selected Items (common.js)

// Default method for drawing an item
draw: function() {
 // Compute pixel coordinates on canvas for drawing item
 this.drawingX = (this.x * game.gridSize) - game.offsetX - this.pixelOffsetX;
 this.drawingY = (this.y * game.gridSize) - game.offsetY - this.pixelOffsetY;

 if (this.selected) {
 this.drawSelection();
 this.drawLifeBar();
 }

Chapter 7 ■ Adding Entities to Our World

206

 this.drawSprite();
},

/* Selection related properties */
selectionBorderColor: "rgba(255,255,0,0.5)",
selectionFillColor: "rgba(255,215,0,0.2)",
lifeBarBorderColor: "rgba(0,0,0,0.8)",
lifeBarHealthyFillColor: "rgba(0,255,0,0.5)",
lifeBarDamagedFillColor: "rgba(255,0,0,0.5)",

lifeBarHeight: 5,

Within the draw() method, we check if the item is selected, and if so, call its drawSelection() and
drawLifeBar() methods. We also add a few selection and life bar–related properties to baseItem.

Next, we will implement these methods in the buildings object (see Listing 7-37).

Listing 7-37.  Implementing drawSelection() and drawLifeBar() for Buildings (buildings.js)

drawLifeBar: function() {
 let x = this.drawingX + this.pixelOffsetX;
 let y = this.drawingY - 2 * this.lifeBarHeight;

 �game.foregroundContext.fillStyle = (this.lifeCode === "healthy") ? this.lifeBarHealthy
FillColor : this.lifeBarDamagedFillColor;

 �game.foregroundContext.fillRect(x, y, this.baseWidth * this.life / this.hitPoints, this.
lifeBarHeight);

 game.foregroundContext.strokeStyle = this.lifeBarBorderColor;
 game.foregroundContext.lineWidth = 1;

 game.foregroundContext.strokeRect(x, y, this.baseWidth, this.lifeBarHeight);
},

drawSelection: function() {
 let x = this.drawingX + this.pixelOffsetX;
 let y = this.drawingY + this.pixelOffsetY;

 game.foregroundContext.strokeStyle = this.selectionBorderColor;
 game.foregroundContext.lineWidth = 1;
 game.foregroundContext.fillStyle = this.selectionFillColor;

 // Draw a filled rectangle around the building
 game.foregroundContext.fillRect(x - 1, y - 1, this.baseWidth + 2, this.baseHeight + 2);
 game.foregroundContext.strokeRect(x - 1, y - 1, this.baseWidth + 2, this.baseHeight + 2);
},

The drawLifeBar() method merely draws a bar slightly above the building with a green or red color
depending on the life of the building. The length of the bar is proportional to the life of the building. The
drawSelection() method draws a yellow rectangle around the base of the building.

Chapter 7 ■ Adding Entities to Our World

207

Next, we will implement these methods for the vehicles object (see Listing 7-38).

Listing 7-38.  Implementing drawSelection() and drawLifeBar() for Vehicles (vehicles.js)

drawLifeBar: function() {
 let x = this.drawingX;
 let y = this.drawingY - 2 * this.lifeBarHeight;

 �game.foregroundContext.fillStyle = (this.lifeCode === "healthy") ? this.lifeBarHealthy
FillColor : this.lifeBarDamagedFillColor;

 �game.foregroundContext.fillRect(x, y, this.pixelWidth * this.life / this.hitPoints,
this.lifeBarHeight);

 game.foregroundContext.strokeStyle = this.lifeBarBorderColor;
 game.foregroundContext.lineWidth = 1;

 game.foregroundContext.strokeRect(x, y, this.pixelWidth, this.lifeBarHeight);
},

drawSelection: function() {
 let x = this.drawingX + this.pixelOffsetX;
 let y = this.drawingY + this.pixelOffsetY;

 game.foregroundContext.strokeStyle = this.selectionBorderColor;
 game.foregroundContext.lineWidth = 1;

 // Draw a filled circle around the vehicle
 game.foregroundContext.beginPath();
 game.foregroundContext.arc(x, y, this.radius, 0, Math.PI * 2, false);
 game.foregroundContext.fillStyle = this.selectionFillColor;
 game.foregroundContext.fill();
 game.foregroundContext.stroke();
},

This time, the drawSelection() method draws a yellow, lightly filled circle under the selected vehicle.
Like before, the drawLifeBar() method draws a life bar above the vehicle.

Lastly, we will implement these methods for the aircraft object (see Listing 7-39).

Listing 7-39.  Implementing drawSelection() and drawLifeBar() for Aircraft (aircraft.js)

drawLifeBar: function() {
 let x = this.drawingX;
 let y = this.drawingY - 2 * this.lifeBarHeight - this.pixelShadowHeight;

 �game.foregroundContext.fillStyle = (this.lifeCode === "healthy") ? this.lifeBarHealthy
FillColor : this.lifeBarDamagedFillColor;

 �game.foregroundContext.fillRect(x, y, this.pixelWidth * this.life / this.hitPoints,
this.lifeBarHeight);

 game.foregroundContext.strokeStyle = this.lifeBarBorderColor;
 game.foregroundContext.lineWidth = 1;
 game.foregroundContext.strokeRect(x, y, this.pixelWidth, this.lifeBarHeight);
},

Chapter 7 ■ Adding Entities to Our World

208

drawSelection: function() {
 let x = this.drawingX + this.pixelOffsetX;
 let y = this.drawingY + this.pixelOffsetY - this.pixelShadowHeight;

 game.foregroundContext.strokeStyle = this.selectionBorderColor;
 game.foregroundContext.fillStyle = this.selectionFillColor;
 game.foregroundContext.lineWidth = 2;

 // Draw a filled circle around the aircraft
 game.foregroundContext.beginPath();
 game.foregroundContext.arc(x, y, this.radius, 0, Math.PI * 2, false);
 game.foregroundContext.stroke();
 game.foregroundContext.fill();

 // Draw a circle around the aircraft shadow
 game.foregroundContext.beginPath();
 game.foregroundContext.arc(x, y + this.pixelShadowHeight, 4, 0, Math.PI * 2, false);
 game.foregroundContext.stroke();

 // Join the center of the two circles with a line
 game.foregroundContext.beginPath();
 game.foregroundContext.moveTo(x, y);
 game.foregroundContext.lineTo(x, y + this.pixelShadowHeight);
 game.foregroundContext.stroke();
}

This time, the drawLifeBar() method adjusts for the shadow height when drawing the life bar. The
drawSelection() method draws a yellow circle around the aircraft, a straight line from the aircraft to the
shadow, and finally a small circle at the center of the shadow.

With this last change, we have implemented drawing selections for all the entities. We don’t need to
implement selections for terrain entities since they cannot be selected within the game.

If we run the game in our browser, we should now be able to select items by either clicking them or dragging
the mouse over multiple units. These selected items should then show up highlighted, as shown in Figure 7-13.

Figure 7-13.  Selected items show up highlighted

Chapter 7 ■ Adding Entities to Our World

209

Notice that the life bar above the damaged building clearly shows us how badly damaged it is. You
can add or subtract items from the selection by clicking them with the Shift key pressed. We have now
completely implemented entity selection in our game.

Summary
We covered a lot of ground in this chapter. Starting with an empty level from the previous chapter, we
developed a general framework for animating and drawing items within the game by implementing draw()
and animate() methods for these entities.

We handled depth sorting before drawing the items so that items closer to the screen obscured items
that were farther away. Using this framework, we then added buildings, vehicles, aircraft, and terrain to
our game.

Finally, we implemented the ability to select these entities using the mouse and highlight these selected
entities.

In the next chapter, we will implement sending commands to these entities starting with the most
important one: movement. We will also look at using pathfinding and steering algorithms so that units
navigate intelligently around buildings and other obstacles.

So, let’s keep going.

211© Aditya Ravi Shankar 2017
A. R. Shankar, Pro HTML5 Games, DOI 10.1007/978-1-4842-2910-1_8

CHAPTER 8

Intelligent Unit Movement

In the previous chapter, we built a framework for animating and drawing entities within our game and then
added different types of buildings, vehicles, aircraft, and terrain to it. Finally, we added the ability to select
these entities.

In this chapter, we will add a framework to give selected units commands and to get the entities
to follow orders. We will then implement the most basic of these orders: unit movement by using a
combination of pathfinding and steering algorithms to move our units intelligently.

Now let’s get started. We will use the code from Chapter 7 as a starting point.

Commanding Units
We will command units using a convention that has now become standard within most modern RTS games.
We will select units using left-clicks and command them by using right-clicks.

Right-clicking a navigable spot on the map will command selected units to move to the spot. Right-
clicking an enemy unit or building will command all selected units that can attack to attack the enemy.
Right-clicking a friendly unit will tell all selected units to follow it around and protect it. And finally,
right-clicking an oil field with a harvester vehicle selected will tell the harvester to move to the oil field and
deploy on it.

The first thing we need to do is modify the mouse object to handle right-click events, as shown in
Listing 8-1.

Listing 8-1.  Handle Commands on Right-Click (mouse.js)

mouserightclickhandler: function(ev) {
 mouse.rightClick(ev, true);

 // Prevent the browser from showing the context menu
 ev.preventDefault(true);
},

// Called whenever player completes a right-click on the game canvas
rightClick: function() {
 let clickedItem = mouse.itemUnderMouse();

 // Handle actions like attacking and movement of selected units
 if (clickedItem) { // Player right-clicked on something
 if (clickedItem.type !== "terrain") {
 if (clickedItem.team !== game.team) { // Player right-clicked on an enemy item
 let uids = [];

http://dx.doi.org/10.1007/978-1-4842-2910-1_7

Chapter 8 ■ Intelligent Unit Movement

212

 // Identify selected units from player's team that can attack
 game.selectedItems.forEach(function(item) {
 if (item.team === game.team && item.canAttack) {
 uids.push(item.uid);
 }
 }, this);

 // Command units to attack the clicked item
 if (uids.length > 0) {
 game.sendCommand(uids, { type: "attack", toUid: clickedItem.uid });
 }
 } else { // Player right-clicked a friendly item
 let uids = [];

 // Identify selected units from player's team that can move
 game.selectedItems.forEach(function(item) {
 if (item.team === game.team && item.canAttack && item.canMove) {
 uids.push(item.uid);
 }
 }, this);

 // Command units to guard the clicked item
 if (uids.length > 0) {
 game.sendCommand(uids, { type: "guard", toUid: clickedItem.uid });
 }

 }
 } else if (clickedItem.name === "oilfield") { // Player right-clicked on an oilfield
 let uids = [];

 // Identify the first selected harvester (since only one can deploy at a time)
 for (let i = game.selectedItems.length - 1; i >= 0; i--) {
 let item = game.selectedItems[i];

 �if (item.team === game.team && item.type === "vehicles" && item.name ===
"harvester") {

 uids.push(item.uid);
 break;
 }
 }

 // Command it to deploy on the oil field
 if (uids.length > 0) {
 game.sendCommand(uids, { type: "deploy", toUid: clickedItem.uid });
 }
 }
 } else { // Player right-clicked the ground
 let uids = [];

 // Identify selected units from player's team that can move
 game.selectedItems.forEach(function(item) {

Chapter 8 ■ Intelligent Unit Movement

213

 if (item.team === game.team && item.canMove) {
 uids.push(item.uid);
 }
 }, this);

 // Command units to move to the clicked location
 if (uids.length > 0) {
 �game.sendCommand(uids, { type: "move", to: { x: mouse.gameX / game.gridSize,

y: mouse.gameY / game.gridSize } });
 }
 }
},

We start by defining a mouserightclickhandler() method, which calls the rightClick() method and
prevents the default browser behavior of showing a context menu on a right-click.

Inside the rightClick() method, when the player right-clicks inside the game map, we first check to
see whether the mouse is above an object.

If the player has not clicked an object, we call the game.sendCommand() method to send a move order to
all friendly vehicles and aircraft that are selected.

If the player has clicked an object, we similarly send either an attack, guard, or deploy command to the
appropriate units. We also pass the UID of the clicked item as a parameter called toUid within the order.

We also need to modify the init() method to add an event listener for the contextmenu event as shown
in Listing 8-2.

Listing 8-2.  Listening for the contextmenu Event (mouse.js)

init: function() {
 // Listen for mouse events on the game foreground canvas
 let canvas = document.getElementById("gameforegroundcanvas");

 canvas.addEventListener("mousemove", mouse.mousemovehandler, false);

 canvas.addEventListener("mouseenter", mouse.mouseenterhandler, false);
 canvas.addEventListener("mouseout", mouse.mouseouthandler, false);

 canvas.addEventListener("mousedown", mouse.mousedownhandler, false);
 canvas.addEventListener("mouseup", mouse.mouseuphandler, false);

 canvas.addEventListener("contextmenu", mouse.mouserightclickhandler, false);

 mouse.canvas = canvas;
},

With the right-click logic in place, we now have to implement methods for sending and receiving game
commands.

Sending and Receiving Commands
We could have implemented sending commands by modifying the orders property of selected items inside
the rightClick() method that we modified earlier. However, we are going to use a slightly more complex
implementation.

Chapter 8 ■ Intelligent Unit Movement

214

Any clicking action that generates a command will call the game.sendCommand() method. The
sendCommand() method will pass the call to either the singleplayer or multiplayer object. These objects
will then send the command details back to the game.processCommand() method. Within the game.
processCommand() method, we will update the orders for all the appropriate objects. We will start by adding
these methods to the game object inside game.js, as shown in Listing 8-3.

Listing 8-3.  Implementing sendCommand() and processCommand() (game.js)

// Send command to either singleplayer or multiplayer object
sendCommand: function(uids, details) {
 if (game.type === "singleplayer") {
 singleplayer.sendCommand(uids, details);
 } else {
 multiplayer.sendCommand(uids, details);
 }
},

getItemByUid: function(uid) {
 for (let i = game.items.length - 1; i >= 0; i--) {
 if (game.items[i].uid === uid) {
 return game.items[i];
 }
 }
},

// Receive command from singleplayer or multiplayer object and send it to units
processCommand: function(uids, details) {
 // In case the target "to" object is in terms of uid, fetch the target object
 var toObject;

 if (details.toUid) {
 toObject = game.getItemByUid(details.toUid);
 if (!toObject || toObject.lifeCode === "dead") {
 // The to object no longer exists. Invalid command
 return;
 }
 }

 uids.forEach(function(uid) {
 let item = game.getItemByUid(uid);

 // If uid is for a valid item, set the order for the item
 if (item) {
 item.orders = Object.assign({}, details);
 if (toObject) {
 item.orders.to = toObject;
 }
 }
 });
},

Chapter 8 ■ Intelligent Unit Movement

215

The sendCommand() method passes the call to either the singleplayer or multiplayer object’s
sendCommand() method based on the game type. Using this layer of abstraction allows us to use the same
method for both single-player and multiplayer while handling the commands differently.

While the single-player version of sendCommand() will just call processCommand() back immediately, the
multiplayer version will send the command to the server, which will then forward the command to all the
players at the same time.

We also implement the getItemByUid() method that looks up item UIDs and returns entity objects.
We pass UIDs instead of actual game objects to the sendCommand() method to reduce the size of the sent

data, which will become necessary for the multiplayer version of the game. A typical item object contains
a lot of details for animating and drawing the object such as methods, sprite sheet images, and all the item
properties. While needed for drawing the item, transmitting this extra data to the server and getting it back
is a waste of bandwidth and quite unnecessary, especially since the entire object can be replaced by a single
integer (the UID), which can be used to look up the object with the getItemByUid() method.

The processCommand() method first looks up any toUid property and gets the resulting item. If no
item with the UID exists, it assumes the command is invalid and ignores the command. The method then
looks up each of the items passed in the uids array and sets their orders object to a copy of the order details
provided in the parameters.

The next thing we will do is implement the singleplayer object’s sendCommand() method inside
singleplayer.js, as shown in Listing 8-4.

Listing 8-4.  Implementing the Single-Player sendCommand() Method (singleplayer.js)

sendCommand: function(uids, details) {
 game.processCommand(uids, details);
},

As you can see, the implementation of sendCommand() is fairly simple. We merely forward the call to
game.processCommand().

Now that we have set up a mechanism for commanding units and setting their orders, we need to set up
a way for the units to process these orders and execute them.

Processing Orders
Our implementation for processing orders will be fairly simple. We will implement a method called
processOrders() for every entity that needs it and call the processOrders() method for all game items from
inside the game animation loop.

We will start by modifying the game object’s animationLoop() method inside game.js, as shown in
Listing 8-5.

Listing 8-5.  Calling processOrders() from Inside the Animation Loop (game.js)

animationLoop: function() {
 // Process orders for any item that handles orders
 game.items.forEach(function(item) {
 if (item.processOrders) {
 item.processOrders();
 }
 });

 // Animate each of the elements within the game
 game.items.forEach(function(item) {
 item.animate();
 });

Chapter 8 ■ Intelligent Unit Movement

216

 // Sort game items into a sortedItems array based on their x,y coordinates
 game.sortedItems = Object.assign([], game.items);

 game.sortedItems.forEach(function(item) {
 item.sortY = item.y + item.pixelOffsetY;
 item.sortX = item.x + item.pixelOffsetX;
 });

 game.sortedItems.sort(function(a, b) {
 // Compare item centers
 return a.sortY - b.sortY + ((a.sortY === b.sortY) ? (b.sortX - a.sortX) : 0);
 });
},

The new code iterates through every game item and calls the item’s processOrders() method if it exists.
Now, we can implement the processOrders() method for the game entities one by one and watch as these
entities start obeying our commands.

Let’s start by implementing movement for aircraft.

Implementing Aircraft Movement
Unlike moving land vehicles, moving aircraft is fairly simple since aircraft are not affected by terrain, buildings,
or other vehicles. When an aircraft is given a move order, it will just turn toward the destination and then move
forward in a straight line. Once the aircraft nears its destination, it will go back to its stand state.

We will implement this as a default processOrders() method for aircraft inside aircraft.js, as shown
in Listing 8-6.

Listing 8-6.  Movement in the Aircraft Object’s Default processOrders() Method (aircraft.js)

processOrders: function() {
 this.lastMovementX = 0;
 this.lastMovementY = 0;

 if (this.orders.to) {
 �var distanceFromDestination = Math.pow(Math.pow(this.orders.to.x - this.x, 2) +

Math.pow(this.orders.to.y - this.y, 2), 0.5);
 var radius = this.radius / game.gridSize;
 }

 switch (this.orders.type) {
 case "move":
 �// Move toward destination until distance from destination is less than aircraft

radius
 if (distanceFromDestination < radius) {
 this.orders = { type: "stand" };
 } else {
 this.moveTo(this.orders.to, distanceFromDestination);
 }

 break;
 }
},

Chapter 8 ■ Intelligent Unit Movement

217

We start by initializing the movementX and movementY variables for later use. We then check the order
type inside a case statement.

In case the order type is move, we call the moveTo() method until the aircraft’s distance from the
destination (stored in the to parameter) is less than the aircraft’s radius. Once the aircraft has reached its
destination, we change the order back to stand.

Right now, we have implemented only one order. Any time the aircraft gets an order it doesn’t know
how to handle, it will continue floating at its current location. We will be implementing more orders as we
go along.

The next thing we will do is implement a default moveTo() method that will be used by both the aircraft
(see Listing 8-7).

Listing 8-7.  The Aircraft Object’s Default moveTo() Method (aircraft.js)

// How slow should unit move while turning
speedAdjustmentWhileTurningFactor: 0.4,

moveTo: function(destination, distanceFromDestination) {
 // Find out where we need to turn to get to destination
 let newDirection = this.findAngle(destination);

 // Turn toward new direction if necessary
 this.turnTo(newDirection);

 // Calculate maximum distance that aircraft can move per animation cycle
 �let maximumMovement = this.speed * this.speedAdjustmentFactor * (this.turning ? this.

speedAdjustmentWhileTurningFactor : 1);
 let movement = Math.min(maximumMovement, distanceFromDestination);

 // Calculate x and y components of the movement
 let angleRadians = -(this.direction / this.directions) * 2 * Math.PI;

 this.lastMovementX = -(movement * Math.sin(angleRadians));
 this.lastMovementY = -(movement * Math.cos(angleRadians));

 this.x = this.x + this.lastMovementX;
 this.y = this.y + this.lastMovementY;
},

We first use a findAngle() method to determine the direction toward the destination, and then call the
turnTo() method to turn toward the destination if necessary. Next, we calculate the maximum amount that
the aircraft can move.

Note that we adjust the speed when the aircraft is turning by using the speedAdjustmentWhile
TurningFactor variable. Setting this value to 0 would mean the aircraft would turn in place before moving,
while keeping it closer to 1 would mean the aircraft would turn over a huge turning radius.

We then calculate the x and y components of the movement and add it to the aircraft’s x and y
coordinates, saving these values in lastMovementX and lastMovementY.

Next we will add some common movement- and turning-related code to baseItem in common.js, as
shown in Listing 8-8.

Chapter 8 ■ Intelligent Unit Movement

218

Listing 8-8.  Movement- and Turning-Related Code in baseItem (common.js)

/* Movement-related properties */
speedAdjustmentFactor: 1 / 64,
turnSpeedAdjustmentFactor: 1 / 8,

// Finds the angle toward a destination in terms of a direction (0 <= angle < directions)
findAngle: function (destination) {
 var dy = destination.y - this.y;
 var dx = destination.x - this.x;

 // Convert Arctan to value between (0 - directions)
 var angle = this.directions / 2 - (Math.atan2(dx, dy) * this.directions / (2 * Math.PI));

 angle = (angle + this.directions) % this.directions;

 return angle;
},

// Return the smallest difference (between -directions/2 and +directions/2) toward
newDirection
angleDiff: function(newDirection) {
 let currentDirection = this.direction;
 let directions = this.directions;

 // Make both directions between -directions/2 and +directions/2
 if (currentDirection >= directions / 2) {
 currentDirection -= directions;
 }

 if (newDirection >= directions / 2) {
 newDirection -= directions;
 }

 var difference = newDirection - currentDirection;

 // Ensure difference is also between -directions/2 and +directions/2
 if (difference < -directions / 2) {
 difference += directions;
 }

 if (difference > directions / 2) {
 difference -= directions;
 }

 return difference;
},

turnTo: function(newDirection) {
 // Calculate difference between new direction and current direction
 let difference = this.angleDiff(newDirection);

Chapter 8 ■ Intelligent Unit Movement

219

 // Calculate maximum amount that aircraft can turn per animation cycle
 let turnAmount = this.turnSpeed * this.turnSpeedAdjustmentFactor;

 if (Math.abs(difference) > turnAmount) {
 // Change direction by turn amount
 this.direction += turnAmount * Math.abs(difference) / difference;

 // Ensure direction doesn't go below 0 or above this.directions
 this.direction = (this.direction + this.directions) % this.directions;

 this.turning = true;
 } else {
 this.direction = newDirection;
 this.turning = false;
 }
},

We start by defining two movement-related properties, speedAdjustmentFactor and
turnSpeedAdjustmentFactor. These two factors are used to convert an entity’s speed and turnSpeed values
into in-game units for movement and turning.

We then define two methods, findAngle() and angleDiff(), which are used by our moveTo() and
turnTo() methods. The findAngle() method computes the angle toward a destination in terms of our
in-game direction, which will be a value between 0 and 8.

The angleDiff() method returns the smallest angle that the item needs to turn to point toward a new
direction. It returns a value ranging from -4 to 4, with the sign indicating direction, so if the aircraft needs to
turn anti-clockwise by 1, it will return a value of -1.

Finally we implement the turnTo() method, which uses angleDiff() to compute how much the unit
needs to turn, and modifies the unit’s direction property appropriately. We also set the turning property to
true if the unit is still turning.

We are now ready to start moving our aircraft within the game, but before we do that, let’s simplify our
level by removing all the unnecessary items from the map. The new singleplayer section inside levels.js
will look like Listing 8-9.

Listing 8-9.  Removing Unnecessary Items from the Level (levels.js)

"singleplayer": [
 {
 "name": "Movement",
 �"briefing": "In this level you will start commanding units and moving them around

the map.",

 /* Map Details */
 "mapName": "plains",

 /* Starting location for player */
 "startX": 0,
 "startY": 0,

 /* Entities to be loaded */
 "requirements": {
 "buildings": ["base", "starport", "harvester", "ground-turret"],
 "vehicles": ["transport", "harvester", "scout-tank", "heavy-tank"],
 "aircraft": ["chopper", "wraith"],
 "terrain": ["oilfield", "bigrocks", "smallrocks"]
 },

Chapter 8 ■ Intelligent Unit Movement

220

 /* Entities to be added */
 "items": [
 { "type": "buildings", "name": "base", "x": 11, "y": 14, "team": "blue" },
 { "type": "buildings", "name": "starport", "x": 18, "y": 14, "team": "blue" },
 { "type": "buildings", "name": "harvester", "x": 20, "y": 10, "team": "blue" },
 �{ "type": "buildings", "name": "ground-turret", "x": 24, "y": 7, "team": "blue",

"direction": 3 },

 �{ "type": "vehicles", "name": "transport", "x": 24, "y": 10, "team": "blue",
"direction": 2 },

 �{ "type": "vehicles", "name": "harvester", "x": 16, "y": 12, "team": "blue",
"direction": 3 },

 �{ "type": "vehicles", "name": "scout-tank", "x": 24, "y": 14, "team": "blue",
"direction": 4 },

 �{ "type": "vehicles", "name": "heavy-tank", "x": 24, "y": 16, "team": "blue",
"direction": 5 },

 �{ "type": "aircraft", "name": "chopper", "x": 7, "y": 9, "team": "blue",
"direction": 2 },

 �{ "type": "aircraft", "name": "wraith", "x": 11, "y": 9, "team": "blue",
"direction": 3 },

 { "type": "terrain", "name": "oilfield", "x": 3, "y": 5, "action": "hint" },
 { "type": "terrain", "name": "bigrocks", "x": 19, "y": 6 },
 { "type": "terrain", "name": "smallrocks", "x": 8, "y": 3 }
]
 }
],

When you run the game in the browser, you should be able to select the two aircraft and move them
around on the new map shown in Figure 8-1.

Figure 8-1.  Moving aircraft around the new map

Chapter 8 ■ Intelligent Unit Movement

221

When you select an aircraft and right-click the map somewhere, the aircraft should turn and move
toward the destination. You will notice that the wraith aircraft moves faster than the chopper because we
specified a higher value for speed in the wraith entity’s properties.

You may also notice that right-clicking a building or a friendly unit doesn’t do anything. This is because
right-clicking a friendly item generates the guard order, which we have not yet implemented.

Implementing movement for our aircraft was fairly simple because we took the creative liberty of
assuming that aircraft could avoid buildings, vehicles, and other aircraft by virtue of adjusting their height.

However, when it comes to vehicles, we can no longer do that. We need to worry about finding the
shortest path between a vehicle and its destination while driving around obstacles such as buildings and
terrain. This is where pathfinding comes in.

Pathfinding
Pathfinding, or pathing, is the process of finding the shortest path between two points. Typically it involves
the use of various algorithms to traverse a graph of nodes starting at one vertex and exploring adjacent nodes
until the destination node is reached.

Two of the most commonly used algorithms for graph-based pathfinding are Dijkstra’s algorithm and
its variant called the A* (pronounced “A star”) algorithm.

A* uses an additional distance heuristic that helps it find paths faster than Dijkstra. Because of its
performance and accuracy, it is widely used in games. You can read more about the algorithm at http://
en.wikipedia.org/wiki/A*. We will also be using A* for the vehicle pathing in our game.

We will use an excellent MIT-licensed JavaScript implementation of A* by Andrea Giammarchi. The
code has been optimized for JavaScript, and its performance even on large graphs is fairly good. This library
has been used in game projects such as Mozilla’s BrowserQuest demo (http://browserquest.mozilla.
org/). You can read about the library at http://webreflection.blogspot.com/2006/10/javascript-path-
finder-with-star.html. We will add a reference to the A* implementation (stored in astar.js) to the head
section of index.html, as shown in Listing 8-10.

Listing 8-10.  Adding Reference to the A* Implementation (index.html)

<!-- A* Implementation by Andrea Giammarchi -->
<script src="js/astar.js" type="text/javascript"></script>

The implementation, while fairly complex, is relatively easy to use. The code gives us access to an
Astar() method that accepts four parameters: the map graph to use, the starting coordinates, the ending
coordinates, and optionally a name for the heuristic to use.

The method returns either an array with all the intermediate steps of the shortest path or an empty
array in case there is no possible path.

Now that we have our A* algorithm in place, we need to provide it with a graph or grid for pathfinding.

Defining Our Pathfinding Grid
We have already broken our map into a grid of squares with the dimensions 20 pixels by 20 pixels.
We will store the pathfinding grid as a two-dimensional array with values of 0 and 1 for passable and
impassable squares, respectively. We have already defined a list of all the impassable squares in the
mapObstructedTerrain array of our map. This array contains the x and y coordinates for every grid inside
our map that is impassable. This includes areas with trees, mountains, water, craters, and lava.

We will use this array to create a terrain grid by defining a createTerrainGrid() method inside the
game object as shown in Listing 8-11.

http://en.wikipedia.org/wiki/A
http://en.wikipedia.org/wiki/A
http://browserquest.mozilla.org/
http://browserquest.mozilla.org/
http://webreflection.blogspot.com/2006/10/javascript-path-finder-with-star.html
http://webreflection.blogspot.com/2006/10/javascript-path-finder-with-star.html

Chapter 8 ■ Intelligent Unit Movement

222

Listing 8-11.  Creating the Terrain Grid (game.js)

// Create a grid that stores all obstructed tiles as 1 and unobstructed as 0
createTerrainGrid: function() {

 let map = game.currentMap;

 // Initialize Terrain Grid to 2d array of zeroes
 game.currentMapTerrainGrid = new Array(map.gridMapHeight);

 var row = new Array(map.gridMapWidth);

 for (let x = 0; x < map.mapGridWidth; x++) {
 row[x] = 0;
 }

 for (let y = 0; y < map.mapGridHeight; y++) {
 game.currentMapTerrainGrid[y] = row.slice(0);
 }

 �// Take all the obstructed terrain coordinates and mark them on the terrain grid as
unpassable

 map.mapObstructedTerrain.forEach(function(obstruction) {
 game.currentMapTerrainGrid[obstruction[1]][obstruction[0]] = 1;
 }, this);

 // Reset the passable grid
 game.currentMapPassableGrid = undefined;

},

We initialize an array called currentMapTerrainGrid inside the game object and set it to the dimensions
of our map using mapGridWidth and mapGridHeight, with all of its cells set to 0. We then set all the
obstructed tiles to 1 and leave the unobstructed tiles as 0. Finally, we reset a currentMapPassableGrid
property, which we will be using later.

We will generate the terrain grid when the level starts by calling it from within the singleplayer object’s
initLevel() method (see Listing 8-12).

Listing 8-12.  Creating the Terrain Grid When Starting Level (singleplayer.js)

initLevel: function() {
 game.type = "singleplayer";
 game.team = "blue";

 // Don't allow player to enter mission until all assets for the level are loaded
 var enterMissionButton = document.getElementById("entermission");

 enterMissionButton.disabled = true;

 // Load all the items for the level
 var level = levels.singleplayer[singleplayer.currentLevel];

 game.loadLevelData(level);

Chapter 8 ■ Intelligent Unit Movement

223

 // Set player starting location
 game.offsetX = level.startX * game.gridSize;
 game.offsetY = level.startY * game.gridSize;

 game.createTerrainGrid();

 // Enable the Enter Mission button once all assets are loaded
 loader.onload = function() {
 enterMissionButton.disabled = false;
 };

 // Update the mission briefing text and show briefing screen
 this.showMissionBriefing(level.briefing);
},

If we were to highlight the obstructed squares in currentMapTerrainGrid on our map, it would look like
Figure 8-2.

While currentMapTerrainGrid marks out all the obstacles in the map terrain, it still does not include
the buildings and terrain entities on the map.

We will keep another array inside the game object called currentMapPassableGrid that will combine the
building and terrain entities and the currentMapTerrainGrid array we defined earlier. This array will need
to be re-created every time buildings or terrain get added to or removed from the game. We will do this in a
rebuildPassableGrid() method within the game object (see Listing 8-13).

Figure 8-2.  Obstructed grid squares defined in currentMapTerrainGrid

Chapter 8 ■ Intelligent Unit Movement

224

Listing 8-13.  Creating the Passable Grid (game.js)

// Make a copy of a 2-dimensional array
makeArrayCopy: function(originalArray) {
 var length = originalArray.length;
 var copy = new Array(length);

 for (let i = 0; i < length; i++) {
 copy[i] = originalArray[i].slice(0);
 }

 return copy;
},

rebuildPassableGrid: function() {

 // Initialize Passable Grid with the value of Terrain Grid
 game.currentMapPassableGrid = game.makeArrayCopy(game.currentMapTerrainGrid);

 // Also mark all building and terrain as unpassable items
 for (let i = game.items.length - 1; i >= 0; i--) {
 var item = game.items[i];

 if (item.type === "buildings" || item.type === "terrain") {
 for (let y = item.passableGrid.length - 1; y >= 0; y--) {
 for (let x = item.passableGrid[y].length - 1; x >= 0; x--) {
 if (item.passableGrid[y][x]) {
 game.currentMapPassableGrid[item.y + y][item.x + x] = 1;
 }
 }
 }
 }
 }
},

We first copy the currentMapTerrainGrid array into currentMapPassableGrid using a
makeArrayCopy() method. We then iterate through all the game items and use the passableGrid property,
which we defined for all buildings and terrain, to mark out grid squares that are not passable. If we were
to highlight the obstructed squares in our map based on currentMapPassableGrid, it would look like
Figure 8-3.

Chapter 8 ■ Intelligent Unit Movement

225

Because of the way we define passableGrid for each building, it is possible to allow portions of
buildings to be passable (for example, the lower portion of the starport).

We will need to ensure that game.currentMapPassableGrid is reset anytime a building is added or
removed from the game. We do this by adding an extra condition inside the add() and remove() methods of
the game object, as shown in Listing 8-14.

Listing 8-14.  Clearing currentMapPassableGrid Inside add() and remove() (game.js)

add: function(itemDetails) {
 // Set a unique id for the item
 if (!itemDetails.uid) {
 itemDetails.uid = ++game.counter;
 }

 var item = window[itemDetails.type].add(itemDetails);

 // Add the item to the items array
 game.items.push(item);

 // Add the item to the type-specific array
 game[item.type].push(item);

 // Reset currentMapPassableGrid whenever the map changes
 if (item.type === "buildings" || item.type === "terrain") {
 game.currentMapPassableGrid = undefined;
 }

 return item;
},

Figure 8-3.  Obstructed grid squares defined in currentMapPassableGrid

Chapter 8 ■ Intelligent Unit Movement

226

remove: function(item) {
 // Unselect item if it is selected
 item.selected = false;
 for (let i = game.selectedItems.length - 1; i >= 0; i--) {
 if (game.selectedItems[i].uid === item.uid) {
 game.selectedItems.splice(i, 1);
 break;
 }
 }

 // Remove item from the items array
 for (let i = game.items.length - 1; i >= 0; i--) {
 if (game.items[i].uid === item.uid) {
 game.items.splice(i, 1);
 break;
 }
 }

 // Remove items from the type-specific array
 for (let i = game[item.type].length - 1; i >= 0; i--) {
 if (game[item.type][i].uid === item.uid) {
 game[item.type].splice(i, 1);
 break;
 }
 }

 // Reset currentMapPassableGrid whenever the map changes
 if (item.type === "buildings" || item.type === "terrain") {
 game.currentMapPassableGrid = undefined;
 }
},

Within both methods, we check whether the item being added or removed is a building or terrain type
and, if so, reset the currentMapPassableGrid variable.

Now that we have defined the movement grid for our A* algorithm, we are ready to implement vehicle
movement.

Implementing Vehicle Movement
We will start by adding a default processOrders() method for the vehicles object inside vehicles.js, as
shown in Listing 8-15.

Listing 8-15.  The Default processOrders() Method for Vehicles (vehicles.js)

processOrders: function() {
 this.lastMovementX = 0;
 this.lastMovementY = 0;

 if (this.orders.to) {
 �var distanceFromDestination = Math.pow(Math.pow(this.orders.to.x - this.x, 2) +

Math.pow(this.orders.to.y - this.y, 2), 0.5);

Chapter 8 ■ Intelligent Unit Movement

227

 var radius = this.radius / game.gridSize;
 }

 switch (this.orders.type) {
 case "move":
 �// Move toward destination until distance from destination is less than vehicle

radius
 if (distanceFromDestination < radius) {
 this.orders = { type: "stand" };
 } else {
 let moving = this.moveTo(this.orders.to, distanceFromDestination);

 // Pathfinding couldn't find a path so stop
 if (!moving) {
 this.orders = { type: "stand" };
 break;
 }
 }

 break;
 }

The method is fairly similar to the processOrders() method that we defined for aircraft. The one subtle
difference is that we check whether the moveTo() method returns a value of true indicating it is able to move
toward the destination and reset the order to stand in case it does not. We do this because it is possible for
the pathfinding algorithm to not find a valid path, and moveTo() will return a value indicating this.

Next, we will implement the default moveTo() method for vehicles, as shown in Listing 8-16.

Listing 8-16.  The Default moveTo() Method for Vehicles (vehicles.js)

// How slow should unit move while turning
speedAdjustmentWhileTurningFactor: 0.5,

moveTo: function(destination, distanceFromDestination) {

 let start = [Math.floor(this.x), Math.floor(this.y)];
 let end = [Math.floor(destination.x), Math.floor(destination.y)];

 // Direction that we will need to turn to reach destination
 let newDirection;

 �let vehicleOutsideMapBounds = (start[1] < 0 || start[1] > game.currentMap.mapGridHeight
- 1 || start[0] < 0 || start[0] > game.currentMap.mapGridWidth);

 let vehicleReachedDestinationTile = (start[0] === end[0] && start[1] === end[1]);

 // Rebuild the passable grid if needed
 if (!game.currentMapPassableGrid) {
 game.rebuildPassableGrid();
 }

 if (vehicleOutsideMapBounds || vehicleReachedDestinationTile) {
 // Don't use A*. Just turn toward destination.
 newDirection = this.findAngle(destination);

Chapter 8 ■ Intelligent Unit Movement

228

 this.orders.path = [[this.x, this.y], [destination.x, destination.y]];
 } else {
 // Use A* to try and find a path to the destination
 let grid;

 if (destination.type === "buildings" || destination.type === "terrain") {
 �// In case of buildings or terrain, modify the grid slightly so algorithm can

find a path
 // First copy the passable grid
 grid = game.makeArrayCopy(game.currentMapPassableGrid);
 // Then modify the destination to be "passable"
 grid[Math.floor(destination.y)][Math.floor(destination.x)] = 0;
 } else {
 // In all other cases just use the passable grid
 grid = game.currentMapPassableGrid;
 }

 this.orders.path = AStar(grid, start, end, "Euclidean");

 if (this.orders.path.length > 1) {
 // The next step is the center of the next path item
 �let nextStep = { x: this.orders.path[1][0] + 0.5, y:

this.orders.path[1][1] + 0.5 };

 newDirection = this.findAngle(nextStep);
 } else {
 // Let the calling function know that there is no path
 return false;
 }
 }

 // Turn toward new direction if necessary
 this.turnTo(newDirection);

 // Calculate maximum distance that vehicle can move per animation cycle
 �let maximumMovement = this.speed * this.speedAdjustmentFactor * (this.turning ?

this.speedAdjustmentWhileTurningFactor : 1);
 let movement = Math.min(maximumMovement, distanceFromDestination);

 // Calculate x and y components of the movement
 let angleRadians = -(this.direction / this.directions) * 2 * Math.PI;

 this.lastMovementX = -(movement * Math.sin(angleRadians));
 this.lastMovementY = -(movement * Math.cos(angleRadians));

 this.x = this.x + this.lastMovementX;
 this.y = this.y + this.lastMovementY;

 // Let the calling function know that we were able to move
 return true;
},

Chapter 8 ■ Intelligent Unit Movement

229

We start by defining the start and end values for our path by truncating the vehicle location
and destination. We then check whether game.currentMapPassableGrid is defined and call game.
rebuildPassableGrid() if it is not.

Next, we check whether the unit has reached the destination tile, or is outside the game bounds, in
which case we ignore pathfinding and just set the new direction using findAngle(). We do this because the
AStar() method would fail if we passed it starting coordinates that were outside the grid, and would have
nothing to do if the start and end values were the same.

If we do need pathfinding, we first check whether the destination is a building or terrain. If so, we copy
the game.currentMapPassableGrid into a grid variable and define the destination grid square as passable.
This hack lets the A* algorithm find a path to a building even though the destination is impassable.

The next step is calculating the path and new direction. If the vehicle is within the map bounds, we call
the AStar() method while passing it values of start, end, and the grid. We specify a heuristic method of
Euclidean, which allows diagonal movement and seems to work well for our game.

If the AStar() method returns a path with at least two elements, we calculate newDirection by finding
the angle from the vehicle to the middle of the next grid. If the path does not contain at least two elements,
we assume this is because AStar() could not find a path and return false to indicate that there was no
movement.

After calculating the direction to move in, we use the turnTo() method to turn toward newDirection,
and then, just like we did with aircraft, we move along the current vehicle direction and save the distance
travelled in the movementX and movementY variables. Finally, we pass back a value of true to indicate that the
vehicle was able to move.

If you run the game now, you should be able to select vehicles and move them around the map by
right-clicking a spot on the map. The vehicles will move along a path that avoids all the terrain and building
obstacles. Figure 8-4 illustrates typical paths returned by the pathfinding algorithm.

One thing that you will notice is that while the vehicles avoid unpassable terrain, they still drive over
other vehicles.

Figure 8-4.  Typical movement paths using pathfinding algorithm

Chapter 8 ■ Intelligent Unit Movement

230

A simple way to fix this is to just mark all squares occupied by any vehicle as unpassable. However, this
simplistic approach can end up blocking very large portions of the map since vehicles often move across
multiple grid squares. A significant disadvantage of this method is that if we try to move a bunch of vehicles
through a narrow passage, the first vehicle will block the passage, causing the pathfinding for the vehicles
behind to try to find a longer alternate route or, worse, assume there is no possible path and give up.

A better alternative is to implement a steering step that checks for collisions with other objects and
modifies the vehicle’s direction while still trying to maintain the original path as far as possible.

Collision Detection and Steering
Steering, like pathfinding, is a fairly vast AI subject. The idea of applying steering behavior in games has
been around for a long time, but it was popularized by the work of Craig Reynolds in the mid to late 1980s.
His paper “Steering Behaviors for Autonomous Characters” and his Java demos are still considered the basic
starting point for developing steering mechanisms in games. You can read more about his research and look
at demos of various steering mechanisms at http://www.red3d.com/cwr/steer/.

We will use a fairly simple implementation for our game. We will first check whether moving a vehicle
along its present direction will result in collisions with any object.

If there are colliding objects, we will create repulsive forces from any colliding objects to our vehicle and
a mild attractive force toward the next grid square in the pathfinding path. We will then combine all of these
forces as vectors to see which direction the vehicle will need to move to get away from the collisions. We will
steer the vehicle toward this direction until the vehicle is no longer colliding with any object, at which point
the vehicle will return to the basic pathfinding mode.

We will also distinguish between hard and soft collisions based on the distance from colliding objects.
A vehicle that is about to have a soft collision may still move while turning; however, a vehicle about to have
a hard collision will not move forward at all and will only turn away from the collisions.

We will start by implementing two methods for handling collisions inside the default section of the
vehicle object inside vehicles.js, as shown in Listing 8-17.

Listing 8-17.  Methods for Handling Collisions (vehicles.js)

// Make a list of collisions that the vehicle will have if it goes along present path
checkForCollisions: function(grid) {
 // Calculate new position on present path at maximum speed
 let movement = this.speed * this.speedAdjustmentFactor;
 let angleRadians = -(this.direction / this.directions) * 2 * Math.PI;
 let newX = this.x - (movement * Math.sin(angleRadians));
 let newY = this.y - (movement * Math.cos(angleRadians));

 this.colliding = false;
 this.hardCollision = false;

 // List of objects that will collide after next movement step
 let collisionObjects = [];

 // Test for collision with grid up to 3 squares away from this vehicle
 let x1 = Math.max(0, Math.floor(newX) - 3);
 let x2 = Math.min(game.currentMap.mapGridWidth - 1, Math.floor(newX) + 3);
 let y1 = Math.max(0, Math.floor(newY) - 3);
 let y2 = Math.min(game.currentMap.mapGridHeight - 1, Math.floor(newY) + 3);

http://www.red3d.com/cwr/steer/

Chapter 8 ■ Intelligent Unit Movement

231

 let gridHardCollisionThreshold = Math.pow(this.radius * 0.9 / game.gridSize, 2);
 let gridSoftCollisionThreshold = Math.pow(this.radius * 1.1 / game.gridSize, 2);

 for (let j = x1; j <= x2;j++) {
 for (let i = y1; i <= y2 ;i++) {
 if (grid[i][j] === 1) { // Grid square is obstructed

 let distanceSquared = Math.pow(j + 0.5 - newX, 2) + Math.pow(i + 0.5 - newY, 2);

 if (distanceSquared < gridHardCollisionThreshold) {
 �// Distance of obstructed grid from vehicle is less than hard collision

threshold
 �collisionObjects.push({ collisionType: "hard", with: { type: "wall", x:

j + 0.5, y: i + 0.5 } });

 this.colliding = true;
 this.hardCollision = true;

 } else if (distanceSquared < gridSoftCollisionThreshold) {
 �// Distance of obstructed grid from vehicle is less than soft collision

threshold
 �collisionObjects.push({ collisionType: "soft", with: { type: "wall", x:

j + 0.5, y: i + 0.5 } });

 this.colliding = true;
 }
 }
 }
 }

 for (let i = game.vehicles.length - 1; i >= 0; i--) {
 let vehicle = game.vehicles[i];

 // Test vehicles that are less than 3 squares away for collisions
 �if (vehicle !== this && Math.abs(vehicle.x - this.x) < 3 && Math.abs

(vehicle.y - this.y) < 3) {
 �if (Math.pow(vehicle.x - newX, 2) + Math.pow(vehicle.y - newY, 2) < Math.

pow((this.radius + vehicle.radius) / game.gridSize, 2)) {
 �// Distance between vehicles is less than hard collision threshold

(sum of vehicle radii)
 collisionObjects.push({ collisionType: "hard", with: vehicle });

 this.colliding = true;
 this.hardCollision = true;

 �} else if (Math.pow(vehicle.x - newX, 2) + Math.pow(vehicle.y - newY, 2)
< Math.pow((this.radius * 1.5 + vehicle.radius) / game.gridSize, 2)) {

 �// Distance between vehicles is less than soft collision threshold
(1.5 times vehicle radius + colliding vehicle radius)

 collisionObjects.push({ collisionType: "soft", with: vehicle });

Chapter 8 ■ Intelligent Unit Movement

232

 this.colliding = true;
 }
 }
 }

 return collisionObjects;
},

// Find a direction that steers away from the collision objects
steerAwayFromCollisions: function(collisionObjects) {
 // Create a force vector object that adds up repulsion from all colliding objects
 let forceVector = { x: 0, y: 0 };

 // By default, the next step has a mild attraction force
 �collisionObjects.push({ collisionType: "attraction", with: { x: this.orders.path[1][0] +

0.5, y: this.orders.path[1][1] + 0.5 } });

 for (let i = collisionObjects.length - 1; i >= 0; i--) {
 let collObject = collisionObjects[i];
 let objectAngle = this.findAngle(collObject.with);
 let objectAngleRadians = -(objectAngle / this.directions) * 2 * Math.PI;
 let forceMagnitude;

 switch (collObject.collisionType) {
 case "hard":
 forceMagnitude = 2;
 break;
 case "soft":
 forceMagnitude = 1;
 break;
 case "attraction":
 forceMagnitude = -0.25;
 break;
 }

 forceVector.x += (forceMagnitude * Math.sin(objectAngleRadians));
 forceVector.y += (forceMagnitude * Math.cos(objectAngleRadians));
 }

 // Find a new direction based on the force vector
 �let newDirection = this.directions / 2 - (Math.atan2(forceVector.x, forceVector.y) *

this.directions / (2 * Math.PI));

 newDirection = (newDirection + this.directions) % this.directions;

 return newDirection;
},

The first method, checkForCollisions(), makes a list of objects that the vehicle will collide with. We
first calculate the new position of the vehicle if it moves along its current direction. We then check whether
there are any impassable grid squares nearby that might collide with the vehicle in this new position by

Chapter 8 ■ Intelligent Unit Movement

233

comparing the distances between their centers with certain threshold values based on the vehicle radius.
We mark collisions as “hard” if they are colliding or “soft” if they are almost ready to collide. All collisions are
then added to the collisionObjects array.

We then repeat this process with the vehicles array by testing all vehicles that are close by for possible
collisions using the sum of their radii as a threshold distance.

The second method, steerAwayFromCollisions(), iterates through a list of collision objects and
defines a repulsive force for each with a magnitude of either 1 or 2 based on whether the collision is “soft”
or “hard.” We also define an attractive force toward the next pathfinding grid square. Finally, we add up
all these forces into a forceVector object, use it to calculate the direction that would take the vehicle the
farthest away from all the forces, and assign it to the newDirection variable, which we then return.

Now that we have these methods in place, we will modify the default moveTo() method we defined
earlier to handle collisions (see Listing 8-18).

Listing 8-18.  Handling Collisions Inside the default moveTo() Method (vehicles.js)

moveTo: function(destination, distanceFromDestination) {

 let start = [Math.floor(this.x), Math.floor(this.y)];
 let end = [Math.floor(destination.x), Math.floor(destination.y)];

 // Direction that we will need to turn to reach destination
 let newDirection;

 �let vehicleOutsideMapBounds = (start[1] < 0 || start[1] > game.currentMap.map
GridHeight - 1 || start[0] < 0 || start[0] > game.currentMap.mapGridWidth);

 let vehicleReachedDestinationTile = (start[0] === end[0] && start[1] === end[1]);

 // Rebuild the passable grid if needed
 if (!game.currentMapPassableGrid) {
 game.rebuildPassableGrid();
 }

 if (vehicleOutsideMapBounds || vehicleReachedDestinationTile) {
 // Don't use A*. Just turn toward destination.
 newDirection = this.findAngle(destination);

 this.orders.path = [[this.x, this.y], [destination.x, destination.y]];
 } else {
 // Use A* to try and find a path to the destination
 let grid;

 if (destination.type === "buildings" || destination.type === "terrain") {
 �// In case of buildings or terrain, modify the grid slightly so algorithm can

find a path
 // First copy the passable grid
 grid = game.makeArrayCopy(game.currentMapPassableGrid);
 // Then modify the destination to be "passable"
 grid[Math.floor(destination.y)][Math.floor(destination.x)] = 0;
 } else {
 // In all other cases just use the passable grid
 grid = game.currentMapPassableGrid;
 }

Chapter 8 ■ Intelligent Unit Movement

234

 this.orders.path = AStar(grid, start, end, "Euclidean");

 if (this.orders.path.length > 1) {
 // The next step is the center of the next path item
 �let nextStep = { x: this.orders.path[1][0] + 0.5, y:

this.orders.path[1][1] + 0.5 };

 newDirection = this.findAngle(nextStep);
 } else {
 // Let the calling function know that there is no path
 return false;
 }
 }

 // Collision handling and steering
 let collisionObjects = this.checkForCollisions(game.currentMapPassableGrid);

 // Moving along the present path will cause a collision
 if (this.colliding) {
 newDirection = this.steerAwayFromCollisions(collisionObjects);
 }

 // Turn toward new direction if necessary
 this.turnTo(newDirection);

 // Calculate maximum distance that vehicle can move per animation cycle
 �let maximumMovement = this.speed * this.speedAdjustmentFactor * (this.turning ? this.

speedAdjustmentWhileTurningFactor : 1);
 let movement = Math.min(maximumMovement, distanceFromDestination);

 // Don't move if we are in a hard collision
 if (this.hardCollision) {
 movement = 0;
 }

 // Calculate x and y components of the movement
 let angleRadians = -(this.direction / this.directions) * 2 * Math.PI;

 this.lastMovementX = -(movement * Math.sin(angleRadians));
 this.lastMovementY = -(movement * Math.cos(angleRadians));

 this.x = this.x + this.lastMovementX;
 this.y = this.y + this.lastMovementY;

 // Let the calling function know that we were able to move
 return true;
},

After the initial pathfinding step, we call the checkCollisionObjects() method and get a list of objects
that the vehicle will collide with. If the vehicle is colliding, we then use the steerAwayFromCollisions()
method to find a new direction to move toward.

Chapter 8 ■ Intelligent Unit Movement

235

What this means is as long as there are no colliding objects, the vehicle will head toward the next grid
square defined in its path. The moment the vehicle senses a collision, its primary motivation will be to avoid
the collision by taking evasive action. Once the collision threat has been averted, the vehicle will return to its
original path-following behavior.

We also add an extra check to prevent the vehicle from moving forward if movement will result in a hard
collision. As a result, the vehicle will stop completely rather than actually collide with another object.

If you run the game now and try to move a vehicle, you will find that it steers around other vehicles to
avoid colliding with them.

One problem that you might notice is that if you try to move multiple vehicles to the same spot, the first
one stops at the correct location, while the others keep circling around trying in vain to reach the occupied
spot. We will need to fix this by adding some intelligence to the way a vehicle handles trying to move to a
blocked spot.

The ideal behavior would be to stop at a little distance from the destination if the destination is
blocked and to stop even farther away if the vehicle has been colliding for a long time without reaching its
destination.

We will implement this by modifying the default processOrders() method, as shown in Listing 8-19.

Listing 8-19.  Modifying processOrders() to Handle Stopping (vehicles.js)

processOrders: function() {
 this.lastMovementX = 0;
 this.lastMovementY = 0;

 if (this.orders.to) {
 �var distanceFromDestination = Math.pow(Math.pow(this.orders.to.x - this.x, 2) +

Math.pow(this.orders.to.y - this.y, 2), 0.5);
 var radius = this.radius / game.gridSize;
 }

 switch (this.orders.type) {
 case "move":
 �// Move toward destination until distance from destination is less than vehicle

radius
 if (distanceFromDestination < radius) {
 // Stop when within on vehicle radius of destination
 this.orders = { type: "stand" };
 } else if (this.colliding && distanceFromDestination < 3 * radius) {
 // Stop when within 3 radius of the destination if colliding with something
 this.orders = { type: "stand" };
 break;
 } else {
 if (this.colliding && distanceFromDestination < 5 * radius) {
 // Count collisions within 5 radius distance of goal
 if (!this.orders.collisionCount) {
 this.orders.collisionCount = 1;
 } else {
 this.orders.collisionCount ++;
 }

 // Stop if more than 30 collisions occur
 if (this.orders.collisionCount > 30) {
 this.orders = { type: "stand" };

Chapter 8 ■ Intelligent Unit Movement

236

 break;
 }
 }

 let moving = this.moveTo(this.orders.to, distanceFromDestination);

 // Pathfinding couldn't find a path so stop
 if (!moving) {
 this.orders = { type: "stand" };
 break;
 }
 }

 break;
 }
},

We first try to stop at the destination if the vehicle is within 1 radius of the destination. We also stop
if the vehicle is colliding and within a 3-radius distance of the destination. Finally, we stop if the vehicle
has been colliding more than 30 times while being within a 5-radius distance of the destination. This last
condition handles situations where the vehicle has been bumping around a crowded area for a while
without finding a way to reach its destination.

If you run the game now and try to move multiple vehicles together, you will see that they intelligently
stop near their destination even in crowded areas.

At this point, we have a reasonably good pathfinding and steering solution for intelligent unit
movement. This system can be developed further to improve performance and add other intelligent
behavior such as queuing, flocking, and leader following, depending on your game requirements. You
should definitely research this topic further as you implement unit movement within your own games,
starting with the work by Craig Reynolds (www.red3d.com/cwr/steer/).

Now that we have vehicle movement working, let’s take the time to implement one more movement-
related order: deploying the harvester.

Deploying the Harvester
We designed the harvester as a deployable vehicle that opens up into a harvester building when deployed on
an oil field. We already set up the code to pass the deploy order to a harvester when the player right-clicks
an oil field. Now we will implement the deploy case within the vehicle object’s processOrders() method
inside vehicles.js, as shown in Listing 8-20.

Listing 8-20.  Implementation of the deploy Case Inside processOrders() (vehicles.js)

case "deploy":
 // If oil field has been used already, then cancel order
 if (this.orders.to.lifeCode === "dead") {
 this.orders = { type: "stand" };

 return;
 }

http://www.red3d.com/cwr/steer/

Chapter 8 ■ Intelligent Unit Movement

237

 if (distanceFromDestination < radius + 1) {
 �// After reaching within 1 square of oil field, turn harvester to point toward left

(direction 6)
 this.turnTo(6);

 if (!this.turning) {
 // If oil field has been used already, then cancel order
 if (this.orders.to.lifeCode === "dead") {
 this.orders = { type: "stand" };

 return;
 }

 �// Once it is pointing to the left, remove the harvester and oil field and
deploy a harvester building

 game.remove(this.orders.to);
 this.orders.to.lifeCode = "dead";

 game.remove(this);
 this.lifeCode = "dead";

 �game.add({ type: "buildings", name: "harvester", x: this.orders.to.x, y: this.
orders.to.y, action: "deploy", team: this.team });

 }
 } else {
 let moving = this.moveTo(this.orders.to, distanceFromDestination);

 // Pathfinding couldn't find a path so stop
 if (!moving) {
 this.orders = { type: "stand" };
 }
 }

 break;

We start by using the moveTo() method to move the harvester to the oil field. Once the harvester reaches
the oil field, we use the turnTo() method and turn the harvester toward the left (direction 6). Finally, we
remove the harvester vehicle and oil field items from the game and add a harvester building at the oil field’s
location with the action set to deploy. While moving toward the oil field and just before deploying, we check
whether the oil field has already been used, and if so, cancel the order and go back to stand mode.

If we run our game, select the harvester vehicle, and then right-click the oil field, we should see the
harvester move to the oil field and deploy into a building, as shown in Figure 8-5.

Chapter 8 ■ Intelligent Unit Movement

238

The harvester moves to the oil field, turns into position, and then seems to expand into a harvester
building. As you can see, with the movement framework in place, handling different orders is very easy.

Before we wrap up unit movement, we will address one last thing. You may have noticed that the unit
movement, especially for fast units such as the wraith, seems a little choppy. We will try to smoothen this
unit movement.

Smoother Unit Movement
Our game animation loop currently runs at a steady 10 frames per second. Even though our drawing loop
runs faster (typically 30 to 60 frames per second), it has no new information to draw during these extra loops,
so effectively it too draws at 10 frames per second. This results in the choppy-looking movement that we see.

One simple way to make the animation look much smoother is to interpolate the vehicle movement
between animation frames. We can calculate the time since the last animation loop and use it to create
an interpolation factor that is used to position the units during intermediate drawing loops. This little
adjustment will make the units seem to move at a much higher frame rate, even though they are actually
being moved only at 10 frames per second.

We will start by modifying the game object’s animationLoop() method to save the last animation time
and the drawingLoop() method to calculate an interpolation factor based on the current drawing time and
the last animation time. The final version of animationLoop() and drawingLoop() will look like Listing 8-21.

Listing 8-21.  Calculating a Movement Interpolation Factor (game.js)

animationLoop: function() {
 // Process orders for any item that handles orders
 game.items.forEach(function(item) {
 if (item.processOrders) {
 item.processOrders();
 }
 });

Figure 8-5.  Harvester vehicle deploying into a harvester building

Chapter 8 ■ Intelligent Unit Movement

239

 // Animate each of the elements within the game
 game.items.forEach(function(item) {
 item.animate();
 });

 // Sort game items into a sortedItems array based on their x,y coordinates
 game.sortedItems = Object.assign([], game.items);
 game.sortedItems.sort(function(a, b) {
 return a.y - b.y + ((a.y === b.y) ? (b.x - a.x) : 0);
 });

 // Save the time that the last animation loop completed
 game.lastAnimationTime = Date.now();
},

drawingLoop: function() {
 // Pan the map if the cursor is near the edge of the canvas
 game.handlePanning();

 �// Check the time since the game was animated and calculate a linear interpolation
factor (-1 to 0)

 game.lastDrawTime = Date.now();
 if (game.lastAnimationTime) {
 �game.drawingInterpolationFactor = (game.lastDrawTime - game.lastAnimationTime)

/ game.animationTimeout - 1;

 // No point interpolating beyond the next animation loop...
 if (game.drawingInterpolationFactor > 0) {
 game.drawingInterpolationFactor = 0;
 }
 } else {
 game.drawingInterpolationFactor = -1;
 }

 // Draw the background whenever necessary
 game.drawBackground();

 // Clear the foreground canvas
 game.foregroundContext.clearRect(0, 0, game.canvasWidth, game.canvasHeight);

 // Start drawing the foreground elements
 game.sortedItems.forEach(function(item) {
 item.draw();
 });

 // Draw the mouse
 mouse.draw();

 // Call the drawing loop for the next frame using request animation frame
 if (game.running) {
 requestAnimationFrame(game.drawingLoop);
 }
},

Chapter 8 ■ Intelligent Unit Movement

240

We save the current time into game.lastAnimationTime at the end of the animationLoop() method.
We then use this variable and the current time to calculate the game.drawingInterpolationFactor variable
that is a number between -1 and 0. A value of -1 indicates that we draw the unit at its previous location,
while a value of 0 means that we draw the unit at its present location. Any value between -1 and 0 means that
we draw the unit at an intermediate location between the two points. We cap the value at 0 to prevent any
extrapolation from happening (i.e., drawing the unit beyond the point that it has been animated).

Now that we have calculated the interpolation factor, we will use it along with the unit lastMovementX
and lastMovementY values to position the element while drawing. First, we will modify the default draw()
method for the baseItem object inside common.js, as shown in Listing 8-22.

Listing 8-22.  Interpolating Movement While Drawing (common.js)

// Default method for drawing an item
draw: function() {
 // Compute pixel coordinates on canvas for drawing item
 this.drawingX = (this.x * game.gridSize) - game.offsetX - this.pixelOffsetX;
 this.drawingY = (this.y * game.gridSize) - game.offsetY - this.pixelOffsetY;

 // Adjust based on interpolation factor
 if (this.canMove) {
 �this.drawingX += this.lastMovementX * game.drawingInterpolationFactor * game.

gridSize;
 �this.drawingY += this.lastMovementY * game.drawingInterpolationFactor * game.

gridSize;
 }

 if (this.selected) {
 this.drawSelection();
 this.drawLifeBar();
 }

 this.drawSprite();
},

The only change that we made is adding the extrapolation-related term to the x and y coordinate
calculations if the item has a canMove flag, which we have set only for vehicles and aircraft. If we run the
game and move the units around, the movement should now be visibly smoother than before.

Note that while the movement itself is now smooth, you might notice that turning still seems somewhat
jerky. This is due to the fact that we use a limited number of sprites with only 8 directions. When making
your own games, generating sprites with more directions (16 or 32) should make turning look significantly
smoother.

With this last change, we can now consider unit movement wrapped up.

Chapter 8 ■ Intelligent Unit Movement

241

Summary
In this chapter, we implemented intelligent unit movement for our game.

We started by developing a framework to give selected units commands and for the entities to then
follow orders.

We implemented the move order for aircraft by moving them straight toward their destination and
for vehicles by using a combination of A* for pathfinding and repulsive forces for steering. We then
implemented the deploy order for harvesters using the movement code we developed.

Finally, we smoothened the unit movement by integrating an interpolation step within our drawing code.
In the next chapter, we will implement more of our game rules: creating and placing buildings,

teleporting vehicles and aircraft from the starport, and harvesting for money. So, let’s keep going.

243© Aditya Ravi Shankar 2017
A. R. Shankar, Pro HTML5 Games, DOI 10.1007/978-1-4842-2910-1_9

CHAPTER 9

Adding More Game Elements

In the previous chapter, we developed a framework for unit movement that combines pathfinding and
steering. We used this framework to implement move and deploy orders for the vehicles. Finally, we made
our unit movement look smoother by interpolating the movement steps during intermediate drawing cycles.

We now have a game where the player can select units and command them to move around the map.
In this chapter, we will build upon this code by adding some more game elements. We will start by

implementing an economy where the player can earn money by harvesting and then spend the money on
creating buildings and units.

We will then build a framework to create scripted events within a game level, which we can use to
control the game story line. We will also add the ability to display messages and notifications to the user.
We will then use these elements to handle the completion of a mission within a level.

Let’s get started. We will use the code from Chapter 8 as a starting point.

Implementing the Basic Economy
Our game will have a fairly simple economic system. Players will start each mission with an initial amount of
money. They can then earn more by deploying a harvester at an oil field. Players will be able to see their cash
balance in the sidebar. Once players have sufficient money, they can use it to purchase buildings and units
using the sidebar functionality.

The first thing we will do is modify the game to provide money to the player when the level starts.

Setting the Starting Money
We will start by removing some of the extra items in the items array and specifying the starting cash for both
players in the first map inside levels.js, as shown in Listing 9-1.

Listing 9-1.  Setting the Starting Cash Amount for the Level (levels.js)

/* Entities to be added */
"items": [
 { "type": "buildings", "name": "base", "x": 11, "y": 14, "team": "blue" },
 { "type": "buildings", "name": "starport", "x": 18, "y": 14, "team": "blue" },

 �{ "type": "vehicles", "name": "harvester", "x": 16, "y": 12, "team": "blue",
"direction": 3, "uid": -1 },

 { "type": "terrain", "name": "oilfield", "x": 3, "y": 5, "action": "hint" },

http://dx.doi.org/10.1007/978-1-4842-2910-1_8

Chapter 9 ■ Adding More Game Elements

244

 { "type": "terrain", "name": "bigrocks", "x": 19, "y": 6 },
 { "type": "terrain", "name": "smallrocks", "x": 8, "y": 3 }
],

/* Economy Related*/
"cash": {
 "blue": 5000,
 "green": 1000
},

We removed all the unnecessary items from the items list. We also added a cash object that sets the
starting cash for the blue team to 5000 and for the green team to 1000.

You may have noticed that we have specified a UID for the harvester vehicle. We will use this later in the
chapter when we handle triggers and scripted events.

■■ Note  We use negative values when we specify UIDs for an item so we can be sure that the UIDs will never
clash with autogenerated UIDs, which are always positive.

Next, we will need to load these cash values inside the game object’s loadLevelData() method, as
shown in Listing 9-2.

Listing 9-2.  Loading Cash Amount When Loading Level (game.js)

loadLevelData: function(level) {
 game.currentLevel = level;
 game.currentMap = maps[level.mapName];

 // Load all the assets for the level starting with the map image
 game.currentMapImage = loader.loadImage("images/maps/" + maps[level.mapName].mapImage);

 // Initialize all the arrays for the game
 game.resetArrays();

 // Load all the assets for every entity defined in the level requirements array
 for (let type in level.requirements) {
 let requirementArray = level.requirements[type];

 requirementArray.forEach(function(name) {
 if (window[type] && typeof window[type].load === "function") {
 window[type].load(name);
 } else {
 console.log("Could not load type :", type);
 }
 });
 }

 // Add all the items defined in the level items array to the game
 level.items.forEach(function(itemDetails) {
 game.add(itemDetails);
 });

Chapter 9 ■ Adding More Game Elements

245

 // Load starting cash for the level
 game.cash = Object.assign({}, level.cash);
},

We make a copy of the level.cash object using the Object.assign() method. This is so that changes to
game.cash do not affect the level data.

At this point, the game should load the starting cash amount for both players when the level is loaded.
However, before we can see the cash value, we need to implement the sidebar.

Implementing the Sidebar
We will implement the sidebar functionality by defining a few methods within a sidebar object inside
sidebar.js, as shown in Listing 9-3.

Listing 9-3.  Creating the sidebar Object (sidebar.js)

var sidebar = {

 init: function() {
 this.cash = document.getElementById("cash");
 },

 animate: function() {
 // Display the current cash balance value
 this.updateCash(game.cash[game.team]);
 },

 // Cache the value to avoid unnecessary DOM updates
 _cash: undefined,
 updateCash: function(cash) {
 // Only update the DOM value if it is different from cached value
 if (this._cash !== cash) {
 this._cash = cash;
 // Display the cash amount with commas
 this.cash.innerHTML = cash.toLocaleString();
 }
 },
};

The init() method saves a reference to the cash div element. The animate() method calls
updateCash() with the player’s cash value. The updateCash() method updates the cash div if the value has
changed.

We will call the sidebar.animate() method from within the game object’s animationLoop() method, as
shown in Listing 9-4.

Listing 9-4.  Calling sidebar.animate() from game.animationLoop() (game.js)

animationLoop: function() {

 // Animate the sidebar
 sidebar.animate();

Chapter 9 ■ Adding More Game Elements

246

 // Process orders for any item that handles orders
 game.items.forEach(function(item) {
 if (item.processOrders) {
 item.processOrders();
 }
 });

 // Animate each of the elements within the game
 game.items.forEach(function(item) {
 item.animate();
 });

 // Sort game items into a sortedItems array based on their x,y coordinates
 game.sortedItems = Object.assign([], game.items);
 game.sortedItems.sort(function(a, b) {
 return a.y - b.y + ((a.y === b.y) ? (b.x - a.x) : 0);
 });

 // Save the time that the last animation loop completed
 game.lastAnimationTime = Date.now();
},

Next, we will call the sidebar.init() method from inside the game.init() method when the game is
initialized, as shown in Listing 9-5.

Listing 9-5.  Initializing the Sidebar from Inside game.init() (game.js)

// Start initializing objects, preloading assets, and display start screen
init: function() {
 // Initialize objects
 loader.init();
 mouse.init();
 sidebar.init();

 // Initialize and store contexts for both the canvases
 game.initCanvases();

 // Display the main game menu
 game.hideScreens();
 game.showScreen("gamestartscreen");
},

Finally, we will add a reference to sidebar.js inside the head section of index.html, as shown in
Listing 9-6.

Listing 9-6.  Adding a Reference to sidebar.js (index.html)

<script src="js/sidebar.js" type="text/javascript"></script>

If we run the code so far, we should see the player’s cash balance in the sidebar area, as shown in
Figure 9-1.

Chapter 9 ■ Adding More Game Elements

247

Now that we have a basic sidebar with a cash balance, we will implement a way for the player to
generate more money by harvesting.

Generating Money
We already implemented the ability to deploy a harvester in the previous chapter. To start earning money
when harvesting, we will modify the deploy animation state and implement a new harvest animation state
in the default processActions() method inside buildings.js, as shown in Listing 9-7.

Listing 9-7.  Implementing harvest State Inside processActions() (buildings.js)

case "deploy":
 this.imageList = this.spriteArray["deploy"];
 this.imageOffset = this.imageList.offset + this.animationIndex;
 this.animationIndex++;

 // Once deploying is complete, go to harvest
 if (this.animationIndex >= this.imageList.count) {
 this.animationIndex = 0;
 this.action = "harvest";
 }

 break;

case "harvest":
 this.imageList = this.spriteArray[this.lifeCode];
 this.imageOffset = this.imageList.offset + this.animationIndex;
 this.animationIndex++;

Figure 9-1.  Cash balance shown on sidebar

Chapter 9 ■ Adding More Game Elements

248

 if (this.animationIndex >= this.imageList.count) {
 this.animationIndex = 0;
 if (this.lifeCode === "healthy") {
 // Harvesters mine 2 credits of cash per animation cycle
 game.cash[this.team] += 2;
 }
 }

 break;

The harvest case is similar to the stand case. However, every time the animation runs through one
complete cycle, we add two credits to the player’s cash balance. We do this only if the harvester building is
not damaged.

We also modify the deploy state to roll over into the harvest state instead of the stand state. This way,
once the harvester is deployed, it will automatically start earning money.

If we start the game and deploy the harvester into the oil field, we should see the cash balance slowly
increasing, as shown in Figure 9-2.

We now have a basic game economy set up. We are ready to implement the purchase of buildings and units.

Purchasing Buildings and Units
In our game, the base building is used to construct buildings, and the starport is used to construct vehicles
and aircraft. Players will purchase items by selecting the building they want to construct from and then
clicking the appropriate purchase button on the sidebar.

We will start by adding these purchase buttons to our sidebar.

Figure 9-2.  Deployed harvester slowly earning money

Chapter 9 ■ Adding More Game Elements

249

Adding Sidebar Buttons
We will first add the HTML markup for the buttons to the gameinterfacescreen div inside index.html, as
shown in Listing 9-8.

Listing 9-8.  Adding the Sidebar Purchase Buttons (index.html)

<div id="gameinterfacescreen" class="gamelayer">

 <div id="gamemessages"></div>
 <div id="callerpicture"></div>
 <div id="cash"></div>
 <div id="sidebarbuttons">
 <input type="button" id="starport" title = "Starport">
 <input type="button" id="ground-turret" title = "Turret">
 <input type="button" id="harvester" title = "Harvester">
 <input type="button" id="scout-tank" title = "Scout Tank">
 <input type="button" id="heavy-tank" title = "Heavy Tank">
 <input type="button" id="chopper" title = "Copter">
 <input type="button" id="wraith" title = "Wraith">
 </div>
 <canvas id="gamebackgroundcanvas"></canvas>
 <canvas id="gameforegroundcanvas"></canvas>
</div>

Next we will add the appropriate CSS styles for these buttons to styles.css, as shown in Listing 9-9.

Listing 9-9.  CSS Styles for Sidebar Buttons (styles.css)

/* Sidebar Buttons */

#sidebarbuttons {
 position: absolute;

 right: 12px;
 top: 265px;

 width: 130px;
 height: 214px;

 padding: 0;
 margin: 0;

 overflow: hidden;
}

Chapter 9 ■ Adding More Game Elements

250

#sidebarbuttons input[type="button"] {
 width: 64px;
 height: 54px;
 padding: 0;
 margin: 0;
 background-color: transparent;
 position: absolute;
}

/* Starport Button */

#starport {

 background-position: -4px -247px;
}

#starport:active, #starport:disabled {
 background-position: -208px -247px;
}

/* Turret Button */

#ground-turret {
 right: 0;
 /*background-position: -140px -247px;*/
 background-position: -74px -247px;
}

#ground-turret:active, #ground-turret:disabled {
 /*background-position: -344px -247px;*/
 background-position: -278px -247px;
}

/* Scout Tank */

#scout-tank {
 top: 107px;
 background-position: -4px -306px;
}

#scout-tank:active, #scout-tank:disabled {
 background-position: -208px -306px;
}

/* Heavy Tank */

#heavy-tank {
 right: 0;
 top: 107px;
 background-position: -74px -306px;
}

Chapter 9 ■ Adding More Game Elements

251

#heavy-tank:active, #heavy-tank:disabled {
 background-position: -278px -306px;
}

/* Harvester */

#harvester {
 top: 55px;
 background-position: -140px -364px;
}

#harvester:active, #harvester:disabled {
 background-position: -344px -364px;
}

/* Chopper */

#chopper {
 top: 159px;
 background-position: -4px -364px;
}

#chopper:active, #chopper:disabled {
 background-position: -208px -364px;
}

/* Wraith */

#wraith {
 background-position: -74px -364px;
 top: 159px;
 right: 0;
}

#wraith:active, #wraith:disabled {
 background-position: -278px -364px;
}

The HTML markup adds the buttons to the sidebar, while the CSS styles define images for these buttons
using the buttons.png file.

If we run the game in the browser, we should see the purchase buttons in the sidebar, as shown in
Figure 9-3.

Chapter 9 ■ Adding More Game Elements

252

At this point, all of the buttons look enabled and active; however, clicking the buttons does not do
anything. The buttons need to be enabled or disabled depending on whether the player is allowed to
construct the items.

Enabling and Disabling Sidebar Buttons
The next thing we will do is to ensure that sidebar buttons are enabled only if the item has been added to
the level, the appropriate building for constructing the item is selected, and the player has enough money to
construct the item. We will do this by adding two new methods to the sidebar object as shown in
Listing 9-10.

Listing 9-10.  Enabling and Disabling Sidebar Buttons (sidebar.js)

constructables: undefined,
initRequirementsForLevel: function() {
 this.constructables = {};
 let constructableTypes = ["buildings", "vehicles", "aircraft"];

 constructableTypes.forEach(function(type) {
 for (let name in window[type].list) {
 let details = window[type].list[name];
 let isInRequirements = game.currentLevel.requirements[type].indexOf(name) > -1;

 if (details.canConstruct) {
 sidebar.constructables[name] = {
 name: name,
 type: type,
 permitted: isInRequirements,

Figure 9-3.  Purchase buttons in the sidebar

Chapter 9 ■ Adding More Game Elements

253

 cost: details.cost,
 constructedIn: (type === "buildings") ? "base" : "starport"
 };
 }
 }
 });
},

enableSidebarButtons: function() {
 let cashBalance = game.cash[game.team];

 // Check if player has a base or starport selected
 let baseSelected = false;
 let starportSelected = false;

 game.selectedItems.forEach(function(item) {
 if (item.team === game.team && item.lifeCode === "healthy" && item.action === "stand") {
 if (item.name === "base") {
 baseSelected = true;
 } else if (item.name === "starport") {
 starportSelected = true;
 }
 }
 });

 for (let name in this.constructables) {
 let item = this.constructables[name];
 let button = document.getElementById(name);

 // Does player have sufficient money to buy item
 let sufficientMoney = cashBalance >= item.cost;
 // Does the player have the appropriate building selected?
 let correctBuilding = (baseSelected && item.constructedIn === "base")
 || (starportSelected && item.constructedIn === "starport");

 button.disabled = !(item.permitted && sufficientMoney && correctBuilding);

 }
}

The first method, initRequirementsForLevel(), iterates through the list array of the buildings,
vehicles, and aircraft objects. For each item in the list, it checks whether the item’s canConstruct flag is
true, and if so, adds some item details into the constructables object, including whether the item has been
added to the level requirements.

Within the enableSidebarButton() method, we first check whether a valid base or starport has been
selected. A valid base or starport belongs to the player, is healthy, and is currently in stand mode, which
means it is not currently constructing anything else.

We enable the button for a building if the base has been selected, the building type has been loaded
in the level requirements, and the player has enough cash to buy the building. We do the same thing for
vehicles and aircraft if a valid starport has been selected.

Chapter 9 ■ Adding More Game Elements

254

We will call the initRequirementsForLevel() method when the level is loaded in the game.loadLevel
Data() method, as shown in Listing 9-11.

Listing 9-11.  Calling initLevelRequirements() During Level Load (game.js)

loadLevelData: function(level) {
 game.currentLevel = level;
 game.currentMap = maps[level.mapName];

 // Load all the assets for the level starting with the map image
 game.currentMapImage = loader.loadImage("images/maps/" + maps[level.mapName].mapImage);

 // Initialize all the arrays for the game
 game.resetArrays();

 // Load all the assets for every entity defined in the level requirements array
 for (let type in level.requirements) {
 let requirementArray = level.requirements[type];

 requirementArray.forEach(function(name) {
 if (window[type] && typeof window[type].load === "function") {
 window[type].load(name);
 } else {
 console.log("Could not load type :", type);
 }
 });
 }

 // Add all the items defined in the level items array to the game
 level.items.forEach(function(itemDetails) {
 game.add(itemDetails);
 });

 // Load starting cash for the level
 game.cash = Object.assign({}, level.cash);

 sidebar.initRequirementsForLevel();

},

We will call the enableSidebarButtons() method from the sidebar.animate() method, as shown in
Listing 9-12.

Listing 9-12.  Calling enableSidebarButtons() from animate() (sidebar.js)

animate: function() {
 // Display the current cash balance value
 this.updateCash(game.cash[game.team]);

 // Enable buttons if player has sufficient cash and has the correct building selected
 this.enableSidebarButtons();
},

Chapter 9 ■ Adding More Game Elements

255

If we run the game now, the sidebar buttons will get enabled once we select a base or starport, as shown
in Figure 9-4.

As you can see in the figure, the building buttons have been enabled while the vehicle and aircraft
buttons are disabled because the base has been selected. We can similarly activate the vehicle and aircraft
construction buttons by selecting the starport.

Now it’s time to implement constructing vehicles and aircraft at the starport.

Constructing Vehicles and Aircraft at the Starport
The first thing we will do is modify the sidebar object’s init() method to handle the click event for the
buttons, as shown in Listing 9-13.

Listing 9-13.  Setting click Event for Sidebar Buttons (sidebar.js)

init: function() {
 this.cash = document.getElementById("cash");

 let buttons = document.getElementById("sidebarbuttons").getElementsByTagName("input");

 Array.prototype.forEach.call(buttons, function(button) {
 button.addEventListener("click", function() {
 // The input button id is the name of the object that needs to be constructed
 let name = this.id;
 let details = sidebar.constructables[name];

 if (details.type === "buildings") {
 sidebar.constructBuilding(details);

Figure 9-4.  Sidebar building construction buttons enabled by selecting base

Chapter 9 ■ Adding More Game Elements

256

 } else {
 sidebar.constructInStarport(details);
 }
 });
 });
},

In the newly added code, we iterate through all the buttons in the sidebar, and assign each button the
same click handler. Within the click handler, we look up the details for the item using the button’s id and call
either the constructBuilding() method or constructInStarport() method depending on whether the
item is a building or unit.

Next, we will define the constructInStarport() method as shown in Listing 9-14.

Listing 9-14.  Defining the constructInStarport() Method (sidebar.js)

constructInStarport: function(details) {

 // Search for a selected starport which can construct the unit
 let starport;

 for (let i = game.selectedItems.length - 1; i >= 0; i--) {
 let item = game.selectedItems[i];

 if (item.name === "starport" && item.team === game.team
 && item.lifeCode === "healthy" && item.action === "stand") {

 starport = item;
 break;
 }
 }

 // If an eligible starport is found, tell it to make the unit
 if (starport) {
 game.sendCommand([starport.uid], { type: "construct-unit", details: details });
 }
},

Within the method, we get the first eligible starport among the selected items. We then use the
game.sendCommand() method to send the starport a construct-unit command with details of the unit to
construct.

Next, we will create a processOrder() method for the starport building that implements the
construct-unit order. We will add this method inside the starport definition, as shown in Listing 9-15.

Listing 9-15.  Implementing processOrder() for the Starport (buildings.js)

"starport": {
 name: "starport",
 pixelWidth: 40,
 pixelHeight: 60,
 baseWidth: 40,
 baseHeight: 55,

Chapter 9 ■ Adding More Game Elements

257

 pixelOffsetX: 1,
 pixelOffsetY: 5,
 buildableGrid: [
 [1, 1],
 [1, 1],
 [1, 1]
],
 passableGrid: [
 [1, 1],
 [0, 0],
 [0, 0]
],
 sight: 3,
 cost: 2000,
 canConstruct: true,
 hitPoints: 300,
 spriteImages: [
 { name: "teleport", count: 9 },
 { name: "closing", count: 18 },
 { name: "healthy", count: 4 },
 { name: "damaged", count: 1 }
],

 isUnitOnTop: function() {
 let unitOnTop = false;

 for (let i = game.items.length - 1; i >= 0; i--) {
 let item = game.items[i];

 if (item.type === "vehicles" || item.type === "aircraft") {
 �if (item.x > this.x && item.x < this.x + 2 && item.y > this.y && item.y

< this.y + 3) {
 unitOnTop = true;
 break;
 }
 }
 }

 return unitOnTop;
 },

 processOrders: function() {
 switch (this.orders.type) {
 case "construct-unit":
 if (this.lifeCode !== "healthy") {
 // If the building isn't healthy, ignore the order
 this.orders = { type: "stand" };
 break;
 }

Chapter 9 ■ Adding More Game Elements

258

 var unitOnTop = this.isUnitOnTop();
 �var cost = window[this.orders.details.type].list[this.orders.details.name].cost;
 var cash = game.cash[this.team];

 if (unitOnTop) {
 // Check whether there is a unit standing on top of the building
 if (this.team === game.team) {
 �game.showMessage("system", "Warning! Cannot teleport unit while

landing bay is occupied.");
 }

 } else if (cash < cost) {
 // Check whether player has insufficient cash
 if (this.team === game.team) {
 �game.showMessage("system", "Warning! Insufficient Funds. Need " +

cost + " credits.");
 }
 } else {
 this.action = "open";
 this.animationIndex = 0;

 let itemDetails = Object.assign({}, this.orders.details);

 // Position new unit above center of starport
 itemDetails.x = this.x + 0.5 * this.pixelWidth / game.gridSize;
 itemDetails.y = this.y + 0.5 * this.pixelHeight / game.gridSize;

 // Subtract the cost from player cash
 game.cash[this.team] -= cost;

 // Set unit to be teleported in once it is constructed
 itemDetails.action = "teleport";
 itemDetails.team = this.team;
 this.constructUnit = itemDetails;
 }

 this.orders = { type: "stand" };
 break;
 }
 }
},

We start by checking whether the starport is healthy, and if not, we clear the order. Next we check if any
unit is already positioned above the starport, and if so, we use the game.showMessage() method to notify the
player that a unit cannot be teleported while the landing bay is occupied. Next we check whether we have
sufficient funds and, if not, notify the user.

Note that when showing messages using game.showMessage(), we confirm that the game.team is the
same as the building’s team. This ensures that a message is only shown to the building owner, which will be
important to us when we implement multiplayer. If we do not add this check, every player in the game would
be shown the message.

Chapter 9 ■ Adding More Game Elements

259

Finally, we implement the actual purchase of the unit. We first set the animation action of the building
to open. We then set the position, action, and team properties for the item. We save the details of the new
unit in the constructUnit variable and finally subtract the cost of the item from the player’s cash balance.

You may have noticed that we set a teleport action for the newly constructed unit. We will need to
implement this for both vehicles and aircraft.

Next we will modify the open animation state inside the buildings object’s processActions() method
to add the unit to the game, as shown in Listing 9-16.

Listing 9-16.  Adding the Unit Once the Starport Opens (buildings.js)

case "open":
 this.imageList = this.spriteArray["closing"];
 // Opening is just the closing sprites running backwards
 this.imageOffset = this.imageList.offset + this.imageList.count - this.animationIndex;
 this.animationIndex++;

 // Once opening is complete, go back to close
 if (this.animationIndex >= this.imageList.count) {
 this.animationIndex = 0;
 this.action = "close";

 // If constructUnit has been set, add the new unit to the game
 if (this.constructUnit) {
 game.add(this.constructUnit);
 this.constructUnit = undefined;
 }
 }

 break;

Once the open animation is complete, we check whether the constructUnit property has been set, and
if it has, we add the unit to the game before unsetting the variable.

Next we will implement a showMessage() method inside the game object, as shown in Listing 9-17.

Listing 9-17.  The game Object’s showMessage() Method

// Profile pictures for game characters
characters: {
 "system": {
 "name": "System Control",
 "image": "system.png"
 },
},

showMessage: function(from, message) {
 let callerpicture = document.getElementById("callerpicture");
 let gamemessages = document.getElementById("gamemessages");

 // If the message is from a defined game character, show profile picture
 let character = game.characters[from];

 if (character) {

Chapter 9 ■ Adding More Game Elements

260

 // Use the character's defined name
 from = character.name;

 if (character.image) {
 // Display the character image in the caller picture area
 callerpicture.innerHTML = "";

 // Remove the caller picture after six seconds
 setTimeout(function() {
 callerpicture.innerHTML = "";
 }, 6000);
 }
 }

 // Append message to messages pane and scroll to the bottom

 let messageHTML = "" + from + ": " + message + "
";

 gamemessages.innerHTML += messageHTML;
 gamemessages.scrollTop = gamemessages.scrollHeight;

},

We first define a characters object that contains the name and the image for the system character.
Within the showMessage() method, we check whether we have a character image for the from parameter
and, if so, display the image for six seconds. Next, we append the message to the gamemessages div and
scroll to the bottom of the div.

Whenever the showMessage() method is called, it will display the message in the messages window and
the picture in the sidebar, as shown in Figure 9-5.

Figure 9-5.  Displaying a system warning using showMessage()

Chapter 9 ■ Adding More Game Elements

261

We can use this mechanism to show the player dialogue from various game characters as we move the
game story line forward. This will allow the single-player campaign to be more plot-driven and make the
game much more engaging.

Finally, we will modify the vehicles and aircraft objects to implement the new teleport action.
We will start by adding a case for the teleport action right below the stand action inside the vehicles

object’s processActions() method, as shown in Listing 9-18.

Listing 9-18.  Adding a Case for the Teleport Action Inside processActions() (vehicles.js)

case "teleport":

 this.imageList = this.spriteArray["stand-" + direction];
 this.imageOffset = this.imageList.offset + this.animationIndex;
 this.animationIndex++;

 if (this.animationIndex >= this.imageList.count) {
 this.animationIndex = 0;
 }

 // Initialize the brightness variable when unit is first teleported
 if (this.brightness === undefined) {
 this.brightness = 0.6;
 }

 this.brightness -= 0.05;

 // Once brightness gets to zero, clear brightness and just stand normally
 if (this.brightness <= 0) {
 this.brightness = undefined;
 this.action = "stand";
 }

 break;

We first set the imageOffset and the animationIndex just like we did for the default stand action. We
then set a brightness variable to 0.6 and gradually reduce it to 0, at which point we switch the action state
back to stand.

Next we will add a case for the teleport action right below the stand action inside the aircraft
object’s processActions() method, as shown in Listing 9-19.

Listing 9-19.  Adding a Case for the Teleport Action Inside processActions() (aircraft.js)

case "teleport":

 this.imageList = this.spriteArray["stand-" + direction];
 this.imageOffset = this.imageList.offset + this.animationIndex;
 this.animationIndex++;

 if (this.animationIndex >= this.imageList.count) {
 this.animationIndex = 0;
 }

Chapter 9 ■ Adding More Game Elements

262

 // Initialize the brightness variable when unit is first teleported
 if (this.brightness === undefined) {
 this.brightness = 0.6;
 }

 this.brightness -= 0.05;

 // Once brightness gets to zero, clear brightness and just stand normally
 if (this.brightness <= 0) {
 this.brightness = undefined;
 this.action = "stand";
 }

 break;

Similar to what we did for vehicles, we set a brightness property, gradually drop it down to 0, and
then set the action state to stand.

Finally, we will modify the baseItem object’s default draw() method to use the brightness property, as
shown in Listing 9-20.

Listing 9-20.  Modifying the draw() Method to Handle Teleport Brightness (common.js)

// Default method for drawing an item
draw: function() {
 // Compute pixel coordinates on canvas for drawing item
 this.drawingX = (this.x * game.gridSize) - game.offsetX - this.pixelOffsetX;
 this.drawingY = (this.y * game.gridSize) - game.offsetY - this.pixelOffsetY;

 // Adjust based on interpolation factor
 if (this.canMove) {
 �this.drawingX += this.lastMovementX * game.drawingInterpolationFactor *

game.gridSize;
 �this.drawingY += this.lastMovementY * game.drawingInterpolationFactor *

game.gridSize;
 }

 if (this.selected) {
 this.drawSelection();
 this.drawLifeBar();
 }

 this.drawSprite();

 // Draw a glow around unit while teleporting in
 if (this.brightness) {
 let x = this.drawingX + this.pixelOffsetX;
 �let y = this.drawingY + this.pixelOffsetY - (this.pixelShadowHeight ?

this.pixelShadowHeight : 0);

Chapter 9 ■ Adding More Game Elements

263

 game.foregroundContext.beginPath();
 game.foregroundContext.arc(x, y, this.radius, 0, Math.PI * 2, false);
 game.foregroundContext.fillStyle = "rgba(255,255,255," + this.brightness + ")";
 game.foregroundContext.fill();
 }
},

Within the newly added code, we check whether the unit has a brightness property set, and if so, we
draw a filled white circle on top of the unit with a fill alpha value based on the brightness. The position of the
circle is automatically offset by pixelShadowHeight for aircraft. Since the brightness property’s value drops
from 0.6 to 0, the circle will gradually shift from being bright white to completely transparent.

If you run the game in the browser, you should now be able to select the starport and construct a vehicle
or aircraft, as shown in Figure 9-6.

The aircraft teleports right above the starport, inside a white glowing circle. You will notice that the
sidebar buttons get disabled while the aircraft is being teleported in. Also, the cash balance decreases by the
cost of the aircraft. When the player can no longer afford a unit, its button will automatically get disabled.
Trying to construct a unit while the starport has another unit hovering over it will result in the system
warning shown in Figure 9-5.

Now that we have implemented constructing vehicles and aircraft, it’s time to implement constructing
buildings at the base.

Figure 9-6.  Aircraft teleporting in at the starport

Chapter 9 ■ Adding More Game Elements

264

Constructing Buildings at the Base
We will start by implementing the sidebar object’s constructBuilding() method, as shown in Listing 9-21.

Listing 9-21.  Implementing the constructBuilding() Method (sidebar.js)

constructBuilding: function(details) {
 sidebar.deployBuilding = details;
},

Within the method, we set the sidebar.deployBuilding property to the details of the building to be
constructed.

Next, we will modify the sidebar animate() method to handle deploying a building, as shown in
Listing 9-22.

Listing 9-22.  Modifying animate() to Handle Building Deployment (sidebar.js)

animate: function() {
 // Display the current cash balance value
 this.updateCash(game.cash[game.team]);

 // Enable buttons if player has sufficient cash and has the correct building selected
 this.enableSidebarButtons();

 // If sidebar is in deployBuilding mode, check whether building can be placed
 if (this.deployBuilding) {
 this.checkBuildingPlacement();
 }
},

If the deployBuilding variable has been set, we call a checkBuildingPlacement() method, which
we will use to verify that a building can be placed at the current mouse location. Next we will add the
checkBuildingPlacement() method to the sidebar object, as shown in Listing 9-23.

Listing 9-23.  Adding the checkBuildingPlacement() Method (sidebar.js)

checkBuildingPlacement: function() {

 let name = sidebar.deployBuilding.name;
 let details = buildings.list[name];

 // Create a buildable grid to identify where building can be placed
 game.rebuildBuildableGrid();

 // Use buildableGrid to identify whether we can place the building
 let canDeployBuilding = true;
 let placementGrid = game.makeArrayCopy(details.buildableGrid);

 for (let y = placementGrid.length - 1; y >= 0; y--) {
 for (let x = placementGrid[y].length - 1; x >= 0; x--) {

Chapter 9 ■ Adding More Game Elements

265

 // If a tile needs to be buildable for the building
 if (placementGrid[y][x] === 1) {
 // Check whether the tile is inside the map and buildable
 if (mouse.gridY + y >= game.currentMap.mapGridHeight
 || mouse.gridX + x >= game.currentMap.mapGridWidth
 || game.currentMapBuildableGrid[mouse.gridY + y][mouse.gridX + x]) {
 // Otherwise mark tile as unbuildable
 canDeployBuilding = false;
 placementGrid[y][x] = 2;
 }
 }
 }
 }

 sidebar.placementGrid = placementGrid;
 sidebar.canDeployBuilding = canDeployBuilding;

},

Within the method, we first call the game.rebuildBuildableGrid() method to create the game.
currentMapBuildableGrid array.

Next, we set the sidebar.placementGrid variable using the buildableGrid property of the building
being deployed. We then iterate through the placement grid to check whether it is possible to deploy
the building at the current mouse location. If any of the squares on which the building will be placed
are outside the map bounds or marked as unbuildable in the currentMapBuildableGrid array, we mark
the corresponding square on the placementGrid array as unbuildable (with a value of 2) and set the
canDeployBuilding flag to false.

Next we will implement the rebuildBuildableGrid() method inside the game object, as shown in
Listing 9-24.

Listing 9-24.  Creating the buildableGrid in the rebuildBuildableGrid() Method (game.js)

rebuildBuildableGrid: function() {
 game.currentMapBuildableGrid = game.makeArrayCopy(game.currentMapTerrainGrid);

 game.items.forEach(function(item) {

 if (item.type === "buildings" || item.type === "terrain") {
 // Mark all squares that the building uses as unbuildable
 for (let y = item.buildableGrid.length - 1; y >= 0; y--) {
 for (let x = item.buildableGrid[y].length - 1; x >= 0; x--) {
 if (item.buildableGrid[y][x]) {
 game.currentMapBuildableGrid[item.y + y][item.x + x] = 1;
 }
 }
 }
 } else if (item.type === "vehicles") {
 // Mark all squares under or near the vehicle as unbuildable
 let radius = item.radius / game.gridSize;
 let x1 = Math.max(Math.floor(item.x - radius), 0);
 let x2 = Math.min(Math.floor(item.x + radius), game.currentMap.mapGridWidth - 1);

Chapter 9 ■ Adding More Game Elements

266

 let y1 = Math.max(Math.floor(item.y - radius), 0);
 let y2 = Math.min(Math.floor(item.y + radius), game.currentMap.mapGridHeight - 1);

 for (let x = x1; x <= x2; x++) {
 for (let y = y1; y <= y2; y++) {
 game.currentMapBuildableGrid[y][x] = 1;
 }
 }
 }

 });
},

Similar to the currentMapPassableGrid array, the currentMapBuildableGrid array represents every
square on the current map where it is possible for the player to build something. We will exclude any square
on the map that has obstructed terrain, has been already built upon, or currently has vehicles on it.

We start by initializing the currentMapBuildableGrid array to the currentMapTerrainGrid array. We
then mark out all squares under a building or terrain entity as unbuildable, just as we did when creating the
passable array. Finally, we mark all grid squares next to a vehicle as unbuildable.

Next we will modify the draw() method of the mouse object to mark the grid location where the building
will be deployed, as shown in Listing 9-25.

Listing 9-25.  Drawing the Building Deploy Grid Under the Mouse Cursor (mouse.js)

buildableColor: "rgba(0,0,255,0.3)",
unbuildableColor: "rgba(255,0,0,0.3)",
draw: function() {
 // If the player is dragging and selecting, draw a white box to mark the selection area
 if (this.dragSelect) {
 let x = Math.min(this.gameX, this.dragX);
 let y = Math.min(this.gameY, this.dragY);

 let width = Math.abs(this.gameX - this.dragX);
 let height = Math.abs(this.gameY - this.dragY);

 game.foregroundContext.strokeStyle = "white";
 game.foregroundContext.strokeRect(x - game.offsetX, y - game.offsetY, width, height);
 }

 if (mouse.insideCanvas && sidebar.deployBuilding && sidebar.placementGrid) {
 let x = (this.gridX * game.gridSize) - game.offsetX;
 let y = (this.gridY * game.gridSize) - game.offsetY;

 for (let i = sidebar.placementGrid.length - 1; i >= 0; i--) {
 for (let j = sidebar.placementGrid[i].length - 1; j >= 0; j--) {
 let tile = sidebar.placementGrid[i][j];

 if (tile) {
 �game.foregroundContext.fillStyle = (tile === 1) ? this.buildableColor :

this.unbuildableColor;
 �game.foregroundContext.fillRect(x + j * game.gridSize, y + i *

game.gridSize, game.gridSize, game.gridSize);

Chapter 9 ■ Adding More Game Elements

267

 }
 }
 }
 }
},

We first check whether the deployBuilding and placementGrid variables have been set. We then iterate
through all the squares of the placement grid, and draw either blue or red squares depending on whether we
can place the building at that grid location or not. Based on our current convention, a value of 0 indicates the
tile isn’t needed to construct the building, a value of 1 means it is necessary and available and will be colored
blue, and a value of 2 means it is necessary but currently unbuildable and will be colored red.

Finally, we will modify the checkIfDragging() method of the mouse object to ensure that drag selection
isn’t possible while a building is being deployed, as shown in Listing 9-26.

Listing 9-26.  Disabling Drag Selection While Deploying a Building (mouse.js)

checkIfDragging: function() {
 if (mouse.buttonPressed && !sidebar.deployBuilding) {
 // If the mouse has been dragged more than threshold treat it as a drag
 �if ((Math.abs(mouse.dragX - mouse.gameX) > mouse.dragSelectThreshold &&

Math.abs(mouse.dragY - mouse.gameY) > mouse.dragSelectThreshold)) {
 mouse.dragSelect = true;
 }
 } else {
 mouse.dragSelect = false;
 }
},

If you run the game now, select the main base, and try to create a building, you should see the building
deploy grid at the mouse location, as shown in Figure 9-7.

Figure 9-7.  Building deploy grid with red marking unbuildable squares

Chapter 9 ■ Adding More Game Elements

268

Notice how the game tiles are either blue or red based on whether or not the building can be placed on
them. Any time even one of the squares on the placement grid is red, the sidebar.canDeployBuilding flag
will also be set to false, letting us know that we cannot place a building at the current mouse location.

Now that we can initiate building deploy mode, we will implement placing the building by left-clicking
the mouse or canceling the mode by right-clicking the mouse. We will start by modifying the leftClick()
and rightClick() methods of the mouse object, as shown in Listing 9-27.

Listing 9-27.  Completing or Canceling deploy Mode Based on Click Type (mouse.js)

// Called whenever player completes a left-click on the game canvas
leftClick: function(shiftPressed) {
 if (sidebar.deployBuilding) {
 if (sidebar.canDeployBuilding) {
 sidebar.finishDeployingBuilding();
 } else {
 game.showMessage("system", "Warning! Cannot deploy building here.");
 }

 return;
 }

 let clickedItem = mouse.itemUnderMouse();

 if (clickedItem) {
 �// Pressing Shift adds to existing selection. If shift is not pressed,

clear existing selection
 if (!shiftPressed) {
 game.clearSelection();
 }

 game.selectItem(clickedItem, shiftPressed);
 }
},

// Called whenever player completes a right-click on the game canvas
rightClick: function() {
 // If the game is in deployBuilding mode, right-clicking will cancel deployBuilding mode
 if (sidebar.deployBuilding) {
 sidebar.cancelDeployingBuilding();

 return;
 }

 let clickedItem = mouse.itemUnderMouse();

 // Handle actions like attacking and movement of selected units
 if (clickedItem) { // Player right-clicked on something
 if (clickedItem.type !== "terrain") {
 if (clickedItem.team !== game.team) { // Player right-clicked on an enemy item
 let uids = [];

Chapter 9 ■ Adding More Game Elements

269

 // Identify selected units from player's team that can attack
 game.selectedItems.forEach(function(item) {
 if (item.team === game.team && item.canAttack) {
 uids.push(item.uid);
 }
 }, this);

 // Command units to attack the clicked item
 if (uids.length > 0) {
 game.sendCommand(uids, { type: "attack", toUid: clickedItem.uid });
 }
 } else { // Player right-clicked on a friendly item
 let uids = [];

 // Identify selected units from player's team that can move
 game.selectedItems.forEach(function(item) {
 if (item.team === game.team && item.canAttack && item.canMove) {
 uids.push(item.uid);
 }
 }, this);

 // Command units to guard the clicked item
 if (uids.length > 0) {
 game.sendCommand(uids, { type: "guard", toUid: clickedItem.uid });
 }

 }
 } else if (clickedItem.name === "oilfield") { // Player right-clicked on an oilfield
 let uids = [];

 // Identify the first selected harvester (since only one can deploy at a time)
 for (let i = game.selectedItems.length - 1; i >= 0; i--) {
 let item = game.selectedItems[i];

 �if (item.team === game.team && item.type === "vehicles" && item.name ===
"harvester") {

 uids.push(item.uid);
 break;
 }
 }

 // Command it to deploy on the oil field
 if (uids.length > 0) {
 game.sendCommand(uids, { type: "deploy", toUid: clickedItem.uid });
 }
 }
 } else { // Player right-clicked on the ground
 let uids = [];

 // Identify selected units from player's team that can move
 game.selectedItems.forEach(function(item) {

Chapter 9 ■ Adding More Game Elements

270

 if (item.team === game.team && item.canMove) {
 uids.push(item.uid);
 }
 }, this);

 // Command units to move to the clicked location
 if (uids.length > 0) {
 �game.sendCommand(uids, { type: "move", to: { x: mouse.gameX / game.gridSize,

y: mouse.gameY / game.gridSize } });
 }
 }
},

If the player left-clicks when in deploy mode, we check the canDeployBuilding variable and call
sidebar.finishDeployingBuilding() if we can deploy the building, and we show a warning message using
game.showMessage() if we cannot.

If the player right-clicks when in deploy mode, we call the sidebar.cancelDeployingBuilding() method.
Next we will implement these two new methods, finishDeployingBuilding() and

cancelDeployingBuilding(), inside the sidebar object, as shown in Listing 9-28.

Listing 9-28.  finishDeployingBuilding() and cancelDeployingBuilding() (sidebar.js)

cancelDeployingBuilding: function() {
 sidebar.deployBuilding = undefined;
 sidebar.placementGrid = undefined;
 sidebar.canDeployBuilding = false;
},

finishDeployingBuilding: function() {
 // Search for a selected base which can construct the unit
 let base;

 for (let i = game.selectedItems.length - 1; i >= 0; i--) {
 let item = game.selectedItems[i];

 if (item.name === "base" && item.team === game.team
 && item.lifeCode === "healthy" && item.action === "stand") {

 base = item;
 break;
 }
 }

 // If an eligible base is found, tell it to make the unit
 if (base) {
 let name = sidebar.deployBuilding.name;
 let details = {
 name: name,
 type: "buildings",
 x: mouse.gridX,
 y: mouse.gridY
 };

Chapter 9 ■ Adding More Game Elements

271

 game.sendCommand([base.uid], { type: "construct-building", details: details });
 }

 // Clear deploy building variables
 sidebar.cancelDeployingBuilding();

},

The cancelDeployingBuilding() method merely clears out all the building deployment–related
variables. The finishDeployingBuilding() method selects the first available base and then uses the
game.sendCommand() method to send it the construct-building order. This is very similar to how the
constructInStarport() method sends a command to a starport.

Next, we will create a processOrder() method for the base building that implements the construct-
building order. We will add this method inside the base definition, as shown in Listing 9-29.

Listing 9-29.  Implementing processOrder() Inside the Base Definition (buildings.js)

processOrders: function() {
 switch (this.orders.type) {
 case "construct-building":
 this.action = "construct";
 this.animationIndex = 0;

 // Teleport in building and subtract the cost from player cash
 var itemDetails = this.orders.details;

 itemDetails.team = this.team;
 itemDetails.action = "teleport";

 var item = game.add(itemDetails);

 game.cash[this.team] -= item.cost;

 this.orders = { type: "stand" };

 break;
 }
}

We first set the base entity’s action state to construct. Next, we add the building to the game with an
action state of teleport. Finally, we subtract the cost of the building from the cash balance and set the base
entity’s orders property back to stand.

If you run the game now and try to deploy the building by left-clicking at a valid location on the map,
the building should get teleported in at that location, as shown in Figure 9-8.

Chapter 9 ■ Adding More Game Elements

272

You will notice that the cash balance decreases by the cost of the building. When the player can no
longer afford a building, its button will automatically get disabled. Also, if you try to deploy the building at an
invalid location, you will see a system warning message telling you that the building cannot be deployed at
that location.

We can now construct both units and buildings in our game. The last thing we will implement in this
chapter is ending levels based on triggered events.

Ending a Level
Whenever players complete the objectives for a level successfully, we will show them a message box
notifying them and then load the next level. If a player fails a mission, we will give the player the option of
replaying the current level or leaving the single-player campaign.

We will check for the success and failure criteria by implementing a system of triggered events within
our game. We will use this same event system to script story-based events in later chapters.

The first thing we will do is implement a message dialog box.

Implementing the Message Dialog Box
The message box will be a modal dialog box with either only an Okay button or both Okay and Cancel
buttons.

We will start by adding the HTML markup for the message box screen to the game container inside
index.html, as shown in Listing 9-30.

Listing 9-30.  Adding HTML Markup for Message Box (index.html)

<div id="gamecontainer">
 <div id="gamestartscreen" class="gamelayer">
 LAST
COLONY

Figure 9-8.  Deployed building gets teleported in

Chapter 9 ■ Adding More Game Elements

273

 Campaign
 Multiplayer
 </div>

 <div id="missionbriefingscreen" class="gamelayer">

 <�img src="images/screens/interface-right-briefing.png" class="right-panel"

draggable="false">
 <input type="button" id="entermission" onclick = "singleplayer.play();">
 <input type="button" id="exitmission" onclick = "singleplayer.exit();">
 <div id="missionbriefing"></div>
 </div>

 <div id="gameinterfacescreen" class="gamelayer">

 <�img src="images/screens/interface-right-game.png" class="right-panel"

draggable="false">
 <div id="gamemessages"></div>
 <div id="callerpicture"></div>
 <div id="cash"></div>
 <div id="sidebarbuttons">
 <input type="button" id="starport" title = "Starport">
 <input type="button" id="ground-turret" title = "Turret">
 <input type="button" id="harvester" title = "Harvester">
 <input type="button" id="scout-tank" title = "Scout Tank">
 <input type="button" id="heavy-tank" title = "Heavy Tank">
 <input type="button" id="chopper" title = "Copter">
 <input type="button" id="wraith" title = "Wraith">
 </div>
 <canvas id="gamebackgroundcanvas"></canvas>
 <canvas id="gameforegroundcanvas"></canvas>
 </div>

 <div id="messageboxscreen" class="gamelayer">
 <div id="messagebox">

 <input type="button" id="messageboxok" onclick="game.messageBoxOK();">
 <input type="button" id="messageboxcancel" onclick="game.messageBoxCancel();">
 </div>
 </div>

 <div id="loadingscreen" class="gamelayer">
 <div id="loadingmessage"></div>
 </div>
</div>

Chapter 9 ■ Adding More Game Elements

274

Next, we will add the styles for the message box to styles.css, as shown in Listing 9-31.

Listing 9-31.  Styles for Message Box (styles.css)

/* Message Box Screen */

#messageboxscreen {
 background: rgba(0, 0, 0, 0.7);
 z-index: 10;
}

#messagebox {

 /* Center the message box within screen */
 position: absolute;
 left: 50%;
 top: 50%;
 transform: translate(-50%, -50%);
 transform-origin: center center;

 width: 296px;
 height: 178px;

 background: url("images/screens/messagebox.png") no-repeat center;
 color: rgb(130, 150, 162);
 overflow: hidden;

 font-size: 13px;
 font-family: "Courier New", Courier, monospace;
}

#messagebox span {
 position: absolute;

 top: 30px;
 left: 50px;
 width: 200px;
 height: 100px;
}

#messageboxok {
 position: absolute;

 top: 128px;
 left: 11px;
 width: 74px;
 height: 26px;

 background-position: -4px -122px;
}

Chapter 9 ■ Adding More Game Elements

275

#messageboxok:active, #messageboxok:disabled {
 background-position: -82px -122px;
}

#messageboxcancel {
 position: absolute;

 left: 197px;
 top: 130px;
 width: 73px;
 height: 24px;

 background-position: -4px -154px;
}

#messageboxcancel:active, #messageboxcancel:disabled {
 background-position: -82px -154px;
}

Finally, we will add some methods for implementing the message box to the game object, as shown in
Listing 9-32.

Listing 9-32.  Adding Message Box Methods to the game Object (game.js)

/* Message Box related code*/

messageBoxOkCallback: undefined,
messageBoxCancelCallback: undefined,
showMessageBox: function(message, onOK, onCancel) {
 // Set message box text
 let messageBoxText = document.getElementById("messageboxtext");

 messageBoxText.innerHTML = message.replace(/\n/g, "

");

 // Set message box onOK handler
 if (typeof onOK === "function") {
 game.messageBoxOkCallback = onOK;
 } else {
 game.messageBoxOkCallback = undefined;
 }

 // Set onCancel handler if defined and show Cancel button
 let cancelButton = document.getElementById("messageboxcancel");

 if (typeof onCancel === "function") {
 game.messageBoxCancelCallback = onCancel;
 // Show the Cancel button
 cancelButton.style.display = "";
 } else {
 game.messageBoxCancelCallback = undefined;
 // Hide the Cancel button
 cancelButton.style.display = "none";
 }

Chapter 9 ■ Adding More Game Elements

276

 // Display the message box and wait for user to click a button
 game.showScreen("messageboxscreen");
},

messageBoxOK: function() {
 game.hideScreen("messageboxscreen");
 if (typeof game.messageBoxOkCallback === "function") {
 game.messageBoxOkCallback();
 }
},

messageBoxCancel: function() {
 game.hideScreen("messageboxscreen");
 if (typeof game.messageBoxCancelCallback === "function") {
 game.messageBoxCancelCallback();
 }
},

The showMessageBox() method first sets the message inside the messageboxtext element. Next
it saves the onOK and onCancel callback method parameters into the messageBoxOkCallback and
messageBoxCancelCallback variables. It shows or hides the Cancel button based on whether a cancel
callback method parameter was passed. Finally, it shows the messageboxscreen layer.

The messageBoxOK() and messageBoxCancel() methods hide the messageboxscreen layer and then call
their respective callback methods if they have been set.

When the showMessageBox() method is called without specifying any callback methods, it will display
the message box on a darkened screen with only an Okay button, as shown in Figure 9-9.

Figure 9-9.  A sample message shown in the message box

Now that the code for the message box is in place, we will implement our game triggers.

Chapter 9 ■ Adding More Game Elements

277

Implementing Triggers
Our game will use two types of triggers:

•	 Timed triggers will execute an action after a specified time. They may also keep
repeating at regular intervals.

•	 Conditional triggers will execute an action when a specified condition comes true.

We will start by adding a triggers array within our level inside the levels object, as shown in
Listing 9-33.

Listing 9-33.  Adding Triggers into the Level (levels.js)

/* Conditional and Timed Trigger Events */
"triggers": [
 /* Timed Events*/
 {
 "type": "timed",
 "time": 1000,
 "action": function() {
 �game.showMessage("system", "You have 20 seconds left.\nGet the harvester near

the oil field.");
 }
 },
 {
 "type": "timed",
 "time": 21000,
 "action": function() {
 singleplayer.endLevel(false);
 }
 },
 /* Conditional Event */
 {
 "type": "conditional",
 "condition": function() {
 let transport = game.getItemByUid(-1);

 // True if transport has reached top-left quadrant near oil field
 return (transport.x < 7 && transport.y < 7);
 },
 "action": function() {
 singleplayer.endLevel(true);
 }
 }
],

All the triggers have a type property and an action method. We have defined three triggers within the
array.

The first trigger is a timed trigger with a time set to 1 second (or 1000 milliseconds). In its action
parameter, we call game.showMessage() and tell the player that he has 20 seconds to move the harvester
near the oil field.

The second trigger, which is timed for 20 seconds later, calls the singleplayer.endLevel() method
with a parameter of false, indicating the mission failed.

Chapter 9 ■ Adding More Game Elements

278

The final trigger is a conditional trigger. The condition method returns true when the transport
is within the top-left quadrant of the map with x and y coordinates less than 7. When this condition is
triggered, the action method calls the singleplayer.endLevel() method with a parameter of true
indicating the mission was successfully completed.

Next we will implement the endLevel() method inside the singleplayer object, as shown in
Listing 9-34.

Listing 9-34.  Implementing the singleplayer endLevel() Method (singleplayer.js)

endLevel: function(success) {
 clearInterval(game.animationInterval);
 game.end();

 if (success) {
 let moreLevels = (singleplayer.currentLevel < levels.singleplayer.length - 1);

 if (moreLevels) {
 game.showMessageBox("Mission Accomplished.", function() {
 game.hideScreens();
 // Start the next level
 singleplayer.currentLevel++;
 singleplayer.initLevel();
 });
 } else {
 �game.showMessageBox("Mission Accomplished.\nThis was the last mission in the

campaign.\nThank You for playing.", function() {
 game.hideScreens();
 // Return to the main menu
 game.showScreen("gamestartscreen");
 });
 }
 } else {
 game.showMessageBox("Mission Failed.\nTry again?", function() {
 game.hideScreens();
 // Restart the current level
 singleplayer.initLevel();
 }, function() {
 game.hideScreens();
 // Return to the main menu
 game.showScreen("gamestartscreen");
 });
 }
}

We first clear the game.animationInterval timer that calls the game.animationLoop() method. Next we
call the game.end() method.

If the level was completed successfully, we check whether there are more levels in the map. If so, we
notify the player that the mission was successful in a message box and then start the next level when the
player clicks the Okay button. If there are no more levels, we notify the player but go back to the game
starting menu when the player clicks Okay.

If the level was not completed successfully, we ask the player if he wants to try again. If the player clicks
Okay, we restart the current level. If instead the player clicks Cancel, we return to the game starting menu.

Chapter 9 ■ Adding More Game Elements

279

Next, we will add a few trigger-related methods to the game object, as shown in Listing 9-35.

Listing 9-35.  Adding Trigger-Related Methods to the game Object (game.js)

/* Methods for handling triggered events within the game */

initTrigger: function(trigger) {
 if (trigger.type === "timed") {
 trigger.timeout = setTimeout(function() {
 game.runTrigger(trigger);
 }, trigger.time);
 } else if (trigger.type === "conditional") {
 trigger.interval = setInterval(function() {
 game.runTrigger(trigger);
 }, 1000);
 }
},

runTrigger: function(trigger) {
 if (trigger.type === "timed") {
 // Reinitialize the trigger based on repeat settings
 if (trigger.repeat) {
 game.initTrigger(trigger);
 }
 // Call the trigger action
 trigger.action(trigger);
 } else if (trigger.type === "conditional") {
 //Check if the condition has been satisfied
 if (trigger.condition()) {
 // Clear the trigger
 game.clearTrigger(trigger);
 // Call the trigger action
 trigger.action(trigger);
 }
 }
},

clearTrigger: function(trigger) {
 if (trigger.timeout !== undefined) {
 clearTimeout(trigger.timeout);
 trigger.timeout = undefined;
 }

 if (trigger.interval !== undefined) {
 clearInterval(trigger.interval);
 trigger.interval = undefined;
 }
},

end: function() {
 // Clear any game triggers
 if (game.currentLevel.triggers) {

Chapter 9 ■ Adding More Game Elements

280

 for (var i = game.currentLevel.triggers.length - 1; i >= 0; i--) {
 game.clearTrigger(game.currentLevel.triggers[i]);
 }
 }

 game.running = false;
},

The first method we implement is initTrigger(), which takes a trigger as a parameter, and then
attempts to initialize it. We check whether the trigger is timed or conditional. For timed triggers, we call the
runTrigger() method after the timeout specified in the time parameter. For conditional triggers, we call the
runTrigger() method every second. In both cases we save the timeout or interval within the trigger object
so we can access it later.

In the runTrigger() method, we check whether the trigger is timed or conditional. For timed triggers
with the repeat parameter specified, we call initTrigger() again. We then execute the trigger action.
For conditional triggers, we check whether the condition is true. If so, we clear the trigger using the
clearTrigger() method and then execute the action.

The clearTrigger() method just clears the timeout or interval for the trigger.
Finally, the end() method clears all the triggers for a level and sets the game.running variable to false.
The last change we will make is to the game object’s start() method, as shown in Listing 9-36.

Listing 9-36.  Initializing the Triggers Inside the start() Method (game.js)

 start: function() {
 // Display the game interface
 game.hideScreens();
 game.showScreen("gameinterfacescreen");

 game.running = true;
 game.refreshBackground = true;
 game.canvasResized = true;

 game.drawingLoop();

 // Clear the game messages area
 let gamemessages = document.getElementById("gamemessages");

 gamemessages.innerHTML = "";

 // Initialize all game triggers
 game.currentLevel.triggers.forEach(function(trigger) {
 game.initTrigger(trigger);
 });
},

In the newly added code, we first clear the gamemessages container when we start the level. This will
ensure messages from earlier attempts at the level are cleared when we restart a level.

Next we iterate through the current level’s triggers array and call initTrigger() for each trigger. With
this final change, everything that we need to use our triggered events is in place.

If we run the game now, we should get a message asking us to take the harvester near the oil field within
20 seconds. If we do not do so in time, we will see a message box indicating that the mission failed, as shown
in Figure 9-10.

Chapter 9 ■ Adding More Game Elements

281

If we click the Okay button, the level will restart, and we will be returned to the mission briefing screen.
If we click the Cancel button instead, we will be taken back to the main menu.

If we move the harvester toward the oil field and reach there before the 20 seconds are up, we will see a
message box indicating that the mission was accomplished, as shown in Figure 9-11.

Since this is the only mission in our campaign, we will see the campaign ending message box. When we
click Okay, we will be taken back to the main menu.

Figure 9-10.  Message shown when the mission fails

Figure 9-11.  Message shown when the mission is accomplished

Chapter 9 ■ Adding More Game Elements

282

Summary
We accomplished a lot in this chapter. We started by creating a basic economy where we could earn cash by
harvesting. We then implemented the ability to purchase units at the starport and buildings at the base using
the buttons on the sidebar.

We developed a messaging system and a message dialog box to communicate with the player. We then
built a system for trigger-based actions that handled both timed and conditional triggers. Finally, we used
these triggers to create a simple mission objective and criteria for succeeding or failing the mission. Even
though it is a fairly simple mission, we now have the infrastructure in place to build much more complex
levels.

In the next chapter, we will handle another important component of our game: combat. We will
implement different attack-based order states for both units and turrets. We will use a combination of
triggers and order states to make the units behave intelligently during combat. Finally, we will look at
implementing a fog of war so that units cannot see or attack unexplored territory.

283© Aditya Ravi Shankar 2017
A. R. Shankar, Pro HTML5 Games, DOI 10.1007/978-1-4842-2910-1_10

CHAPTER 10

Adding Weapons and Combat

Over the past few chapters, we built the basic framework for our game; added entities such as vehicles,
aircraft, and buildings; implemented unit movement; and created a simple economy using the sidebar. We
now have a game where we can start the level, earn money, purchase buildings and units, and move these
units around to achieve simple goals.

In this chapter, we will implement weapons for vehicles, aircraft, and turrets. We will add the ability to
process combat-based orders such as attacking, guarding, patrolling, and hunting to allow the units to fight
in an intelligent way. Finally, we will implement a fog of war that limits visibility on the map, allowing for
interesting strategies such as sneak attacks and ambushes.

Let’s get started. We will use the code from Chapter 9 as a starting point.

Implementing the Combat System
Our game will have a fairly simple combat system. All units and turrets will have their own weapon and bullet
type defined. When attacking an enemy, units will first get within range, turn toward the target, and then fire a
bullet at them. Once the unit fires a bullet, it will wait until its weapon has reloaded before it fires again.

The bullet itself will be a separate game entity with its own animation logic. When fired, the bullet will
fly toward its target and explode once it reaches its destination.

The first thing we will do is add bullets to our game.

Adding Bullets
We will start by defining a new bullets object inside bullets.js, as shown in Listing 10-11.

Listing 10-1.  Defining the bullets Object (bullets.js)

var bullets = {
 list: {
 "fireball": {
 name: "fireball",
 speed: 60,
 reloadTime: 30,
 range: 8,
 damage: 10,
 spriteImages: [
 { name: "fly", count: 1, directions: 8 },
 { name: "explode", count: 7 }
],
 },

http://dx.doi.org/10.1007/978-1-4842-2910-1_9

Chapter 10 ■ Adding Weapons and Combat

284

 "heatseeker": {
 name: "heatseeker",
 reloadTime: 40,
 speed: 25,
 range: 9,
 damage: 20,
 turnSpeed: 2,
 spriteImages: [
 { name: "fly", count: 1, directions: 8 },
 { name: "explode", count: 7 }
],
 },
 "cannon-ball": {
 name: "cannon-ball",
 reloadTime: 40,
 speed: 25,
 damage: 10,
 range: 6,
 spriteImages: [
 { name: "fly", count: 1, directions: 8 },
 { name: "explode", count: 7 }
],
 },
 "bullet": {
 name: "bullet",
 damage: 5,
 speed: 50,
 range: 5,
 reloadTime: 20,
 spriteImages: [
 { name: "fly", count: 1, directions: 8 },
 { name: "explode", count: 3 }
],
 }
 },

 defaults: {
 type: "bullets",
 canMove: true,

 distanceTravelled: 0,
 directions: 8,

 pixelWidth: 10,
 pixelHeight: 11,
 pixelOffsetX: 5,
 pixelOffsetY: 5,

 radius: 6,

Chapter 10 ■ Adding Weapons and Combat

285

 action: "fly",
 selected: false,
 selectable: false,

 orders: { type: "fire" },

 // How slow should bullet move while turning
 speedAdjustmentWhileTurningFactor: 1,

 moveTo: function(destination) {
 // Weapons like the heatseeker can turn slowly toward target while moving
 if (this.turnSpeed) {
 // Find out where we need to turn to get to destination
 var newDirection = this.findAngleForFiring(destination);

 // Turn toward new direction if necessary
 this.turnTo(newDirection);
 }

 // Calculate maximum distance that bullet can move per animation cycle
 let maximumMovement = this.speed * this.speedAdjustmentFactor;
 let movement = maximumMovement;

 // Calculate x and y components of the movement
 let angleRadians = -(this.direction / this.directions) * 2 * Math.PI;

 this.lastMovementX = -(movement * Math.sin(angleRadians));
 this.lastMovementY = -(movement * Math.cos(angleRadians));

 this.x = this.x + this.lastMovementX;
 this.y = this.y + this.lastMovementY;

 // Track distance travelled by bullet
 this.distanceTravelled += movement;
 },

 reachedTarget: function() {
 var item = this.target;

 if (item.type === "buildings") {
 �return (item.x <= this.x && item.x >= this.x - item.baseWidth / game.gridSize

&& item.y <= this.y && item.y >= this.y - item.baseHeight / game.gridSize);
 } else if (item.type === "aircraft") {
 �return (Math.pow(item.x - this.x, 2) + Math.pow(item.y - (this.y + item.

pixelShadowHeight / game.gridSize), 2) < Math.pow((item.radius) / game.
gridSize, 2));

 } else {
 �return (Math.pow(item.x - this.x, 2) + Math.pow(item.y - this.y, 2) < Math.

pow((item.radius) / game.gridSize, 2));
 }
 },

Chapter 10 ■ Adding Weapons and Combat

286

 processOrders: function() {
 this.lastMovementX = 0;
 this.lastMovementY = 0;
 switch (this.orders.type) {
 case "fire":
 // Move toward destination and stop when close by or if travelled past range
 var reachedTarget = false;

 if (this.distanceTravelled > this.range
 || (reachedTarget = this.reachedTarget())) {
 if (reachedTarget) {
 // Bullet damages target and then explodes
 this.target.life -= this.damage;

 this.orders = { type: "explode" };
 this.action = "explode";
 this.animationIndex = 0;
 } else {
 // Bullet fizzles out without hitting target
 game.remove(this);
 }
 } else {
 this.moveTo(this.target);
 }
 break;
 }
 },

 animate: function() {
 // No need to do a health check for terrain. Just call processActions
 this.processActions();
 },

 processActions: function() {
 let direction = Math.round(this.direction) % this.directions;

 switch (this.action) {
 case "fly":
 this.imageList = this.spriteArray["fly-" + direction];
 this.imageOffset = this.imageList.offset;
 break;

 case "explode":
 this.imageList = this.spriteArray["explode"];
 this.imageOffset = this.imageList.offset + this.animationIndex;
 this.animationIndex++;

 if (this.animationIndex >= this.imageList.count) {
 // Bullet explodes completely and then disappears
 game.remove(this);
 }

Chapter 10 ■ Adding Weapons and Combat

287

 break;
 }
 },

 drawSprite: function() {
 let x = this.drawingX;
 let y = this.drawingY;

 let colorOffset = 0; // No team-based colors for bullets

 �game.foregroundContext.drawImage(this.spriteSheet, this.imageOffset * this.
pixelWidth, colorOffset, this.pixelWidth, this.pixelHeight, x, y, this.
pixelWidth, this.pixelHeight);

 },
 },

 load: loadItem,
 add: addItem,
};

The bullets object follows the same pattern as all the other game entities. We start by defining a list of
four bullet types: fireball, heatseeker, cannon-ball, and bullet. Each of the bullets has a common set of
properties:

•	 speed: The speed at which the bullet travels

•	 reloadTime: The number of animation cycles after firing before the bullet can be
fired again

•	 damage: The amount of damage to the target when the bullet explodes

•	 range: The maximum range that a bullet will fly before it loses momentum

The bullets also have two animation sequences defined: fly and explode. The fly state has eight
directions similar to vehicles and aircraft. The explode state has only one direction but has multiple frames.

We then define a default moveTo() method, which is similar to the aircraft moveTo() method. Within
this method we first check whether the bullet can turn and, if so, gently turn the bullet toward its destination
using the findAngleForFiring() method to calculate the angle toward the center of the target. Next, we
move the bullet forward along its current direction and update the bullet’s distanceTravelled property.

Next we define a reachedTarget() method that checks whether the bullet has reached its target. We
check whether the bullet’s coordinates are inside the base area for buildings and within the item radius for
vehicles and aircraft. If so, we return a value of true.

Within the processOrders() method, we implement the fire order. We check whether the bullet has
either reached its target or traveled beyond its range. If not, we continue to move the bullet toward the target.

If the bullet travels beyond its range without hitting the target, we remove it from the game. If the bullet
reaches its target, we first set the bullet’s order and animation state to explode and reduce the life of its target
by the damage amount.

Since bullets do not require a health check, we use a simpler animate() method that just forwards the
call to processActions(), just as we did for the terrain object. Within the processActions() method, we
remove the bullet once the explode animation sequence completes.

Now that we have defined the bullets object, we will add a reference to bullets.js inside the head
section of index.html, as shown in Listing 10-2.

Chapter 10 ■ Adding Weapons and Combat

288

Listing 10-2.  Adding a Reference to the bullets Object (index.html)

<script src="js/bullets.js" type="text/javascript"></script>

We will also add the findAngleForFiring() method to the defaultItem object inside common.js, as
shown in Listing 10-3.

Listing 10-3.  Defining the findAngleForFiring() Method (common.js)

// Finds the angle from center of source to a target in terms of a direction
(0 <= angle < directions)
findAngleForFiring: function(target) {
 var dy = target.y - this.y;
 var dx = target.x - this.x;

 // Adjust dx and dy to point toward center of target
 if (target.type === "buildings") {
 dy += target.baseWidth / 2 / game.gridSize;
 dx += target.baseHeight / 2 / game.gridSize;
 } else if (target.type === "aircraft") {
 dy -= target.pixelShadowHeight / game.gridSize;
 }

 // Adjust dx and dy to start from center of source
 if (this.type === "buildings") {
 dy -= this.baseWidth / 2 / game.gridSize;
 dx -= this.baseHeight / 2 / game.gridSize;
 } else if (this.type === "aircraft") {
 dy += this.pixelShadowHeight / game.gridSize;
 }

 // Convert arctan to value between (0 - directions)
 var angle = this.directions / 2 - (Math.atan2(dx, dy) * this.directions / (2 * Math.PI));

 angle = (angle + this.directions) % this.directions;

 return angle;
}

The findAngleForFiring() method is similar to the findAngle() method except we adjust the values
of the dy and dx variables to point to the center of the source and target. For buildings, we adjust dx and dy
using the baseWidth and baseHeight properties, and for aircraft we adjust dy by the pixelShadowHeight
property. This way, bullets can be aimed at the center of the target.

We will also modify the loadItem() method inside common.js to load the bullet for an item when the
item loads, as shown in Listing 10-4.

Chapter 10 ■ Adding Weapons and Combat

289

Listing 10-4.  Loading the Bullets When Loading the Item (common.js)

// The default load() method used by all our game entities
function loadItem(name) {
 var item = this.list[name];

 // If the item sprite array has already been loaded then no need to do it again
 if (item.spriteArray) {
 return;
 }

 item.spriteSheet = loader.loadImage("images/" + this.defaults.type + "/" + name + ".png");
 item.spriteArray = [];
 item.spriteCount = 0;

 item.spriteImages.forEach(function(spriteImage) {

 let constructImageCount = spriteImage.count;
 let constructDirectionCount = spriteImage.directions;

 if (constructDirectionCount) {
 �// If the spriteImage has directions defined, store sprites for each direction

in spriteArray
 for (let i = 0; i < constructDirectionCount; i++) {
 let constructImageName = spriteImage.name + "-" + i;

 item.spriteArray[constructImageName] = {
 name: constructImageName,
 count: constructImageCount,
 offset: item.spriteCount
 };
 item.spriteCount += constructImageCount;
 }
 } else {
 �// If the spriteImage has no directions, store just the name and image count in

spriteArray
 let constructImageName = spriteImage.name;

 item.spriteArray[constructImageName] = {
 name: constructImageName,
 count: constructImageCount,
 offset: item.spriteCount
 };

 item.spriteCount += constructImageCount;
 }
 });

 // Load the weapon if item has one
 if (item.weaponType) {
 bullets.load(item.weaponType);
 }
}

Chapter 10 ■ Adding Weapons and Combat

290

When loading an item, we check whether it has a weaponType property defined and, if so, load the
bullet for the weapon using the bullets.load() method. All entities that are capable of attacking will have a
weaponType property.

The next change we will make is to modify the game object’s drawingLoop() method to draw exploding
bullets on top of all other items in the game. The updated drawingLoop() method will look like Listing 10-5.

Listing 10-5.  Modifying drawingLoop() to Draw Bullets Above Other Items (game.js)

drawingLoop: function() {
 // Pan the map if the cursor is near the edge of the canvas
 game.handlePanning();

 �// Check the time since the game was animated and calculate a linear interpolation
factor (-1 to 0)

 game.lastDrawTime = Date.now();
 if (game.lastAnimationTime) {
 �game.drawingInterpolationFactor = (game.lastDrawTime - game.lastAnimationTime) /

game.animationTimeout - 1;

 // No point interpolating beyond the next animation loop...
 if (game.drawingInterpolationFactor > 0) {
 game.drawingInterpolationFactor = 0;
 }
 } else {
 game.drawingInterpolationFactor = -1;
 }

 // Draw the background whenever necessary
 game.drawBackground();

 // Clear the foreground canvas
 game.foregroundContext.clearRect(0, 0, game.canvasWidth, game.canvasHeight);

 // Start drawing the foreground elements
 game.sortedItems.forEach(function(item) {
 item.draw();
 });

 // Draw exploding bullets on top of everything else
 game.bullets.forEach(function(bullet) {
 if (bullet.action === "explode") {
 bullet.draw();
 }
 });

 // Draw the mouse
 mouse.draw();

 // Call the drawing loop for the next frame using request animation frame
 if (game.running) {
 requestAnimationFrame(game.drawingLoop);
 }
},

Chapter 10 ■ Adding Weapons and Combat

291

When drawing the items, we first draw all the items including the bullets. We then iterate through all the
bullets and draw the bullets that have an action of explode. This way, explosions will be drawn on top of all
other items, and will always be clearly visible in the game.

Finally, we will modify the game object’s resetArrays() method to also reset the game.bullets[] array,
as shown in Listing 10-6.

Listing 10-6.  Resetting the bullets Array Inside resetArrays() (game.js)

resetArrays: function() {
 // Count items added in game, to assign them a unique id
 game.counter = 0;

 // Track all the items currently in the game
 game.items = [];
 game.buildings = [];
 game.vehicles = [];
 game.aircraft = [];
 game.terrain = [];

 // Track items that have been selected by the player
 game.selectedItems = [];

 game.bullets = [];
},

Now that we have implemented the bullets object, it’s time to implement combat-based orders for the
turrets, vehicles, and aircraft.

Combat-Based Orders for Turrets
Ground turrets can fire cannonballs at any ground-based threat. When in guard or attack mode, they will
search for a valid target that is in sight, aim the turret toward the target, and fire bullets until the target is
either destroyed or out of range.

We will start by implementing the processOrders() method for the ground-turret object inside
buildings.js, as shown in Listing 10-7.

Listing 10-7.  Modifying ground-turret Object to Implement Attack (buildings.js)

turnSpeed: 1,
processOrders: function() {
 if (this.reloadTimeLeft) {
 this.reloadTimeLeft--;
 }

 // Damaged turret cannot do anything
 if (this.lifeCode !== "healthy") {
 return;
 }

 var targets;

Chapter 10 ■ Adding Weapons and Combat

292

 switch (this.orders.type) {
 case "guard":
 targets = this.findTargetsInSight();

 if (targets.length > 0) {
 this.orders = { type: "attack", to: targets[0] };
 }

 break;

 case "attack":
 // If the current target is no longer valid, go back to guarding
 if (!this.isValidTarget(this.orders.to) || !this.isTargetInSight(this.orders.to)) {
 this.orders = { type: "guard" };
 break;
 }

 var targetDirection = this.findAngleForFiring(this.orders.to);

 // Turn toward target direction if necessary
 this.turnTo(targetDirection);

 // Check if turret has finished turning
 if (!this.turning) {
 // Check if weapon has finished reloading
 if (!this.reloadTimeLeft) {

 // Calculate the starting position of the bullet
 let angleRadians = -(targetDirection / this.directions) * 2 * Math.PI ;
 let bulletX = this.x + 0.5 - (1 * Math.sin(angleRadians));
 let bulletY = this.y + 0.5 - (1 * Math.cos(angleRadians));

 // Fire the bullet
 �game.add({ name: this.weaponType, type: "bullets", x: bulletX, y:

bulletY, direction: targetDirection, target: this.orders.to });

 // Set the weapon reloading cooldown
 this.reloadTimeLeft = bullets.list[this.weaponType].reloadTime;
 }
 }

 break;
 }
}

Within the processOrders() method, we decrease the value of the reloadTimeLeft property if the
property is defined and is greater than 0. If the turret lifeCode is not healthy (it is damaged or dead), we do
nothing and exit.

Next, we define the behavior for both the guard and attack orders. In guard mode, we use the
findTargetsInSight() method to find any visible targets and, if we find any, attack the first one in the list.

Chapter 10 ■ Adding Weapons and Combat

293

In attack mode, if the current target of the turret is undefined, dead, or out of sight, we go back to
guard mode.

If the turret does have a valid target, we turn the turret toward the target. Once the turret is facing the
target and reloadTimeLeft is 0, we fire a bullet by adding it to the game using the game.add() method and
reset the turret’s reloadTimeLeft property to the bullet’s reload time.

Next, we will implement the combat-related methods, isValidTarget() and findTargetsInSight(),
inside the defaultItem object in common.js, as shown in Listing 10-8.

Listing 10-8.  Implementing isValidTarget() and findTargetsInSight() (common.js)

isValidTarget: function(item) {
 // Cannot target units that are dead or from the same team
 if (!item || item.lifeCode === "dead" || item.team === this.team) {
 return false;
 }

 if (item.type === "buildings" || item.type === "vehicles") {
 return this.canAttackLand;
 } else if (item.type === "aircraft") {
 return this.canAttackAir;
 }

},

isTargetInSight: function(item, sightBonus = 0) {
 return Math.pow(item.x - this.x, 2) + Math.pow(item.y - this.y, 2)
 < Math.pow(this.sight + sightBonus, 2);
},

findTargetsInSight: function(sightBonus = 0) {
 var targets = [];

 game.items.forEach(function(item) {
 if (this.isValidTarget(item) && this.isTargetInSight(item, sightBonus)) {
 targets.push(item);
 }
 }, this);

 // Sort targets based on distance from attacker
 var attacker = this;

 targets.sort(function(a, b) {
 �return (Math.pow(a.x - attacker.x, 2) + Math.pow(a.y - attacker.y, 2)) -

(Math.pow(b.x - attacker.x, 2) + Math.pow(b.y - attacker.y, 2));
 });

 return targets;
}

The isValidTarget() method returns true if the target item is alive, from the opposite team, and it can
be attacked by the attacking item.

Chapter 10 ■ Adding Weapons and Combat

294

The findTargetsInSight() method checks all the items in the game.items() array to see whether
they are valid targets and within sight range, and if so, adds them to the targets array. It then sorts the
targets array by distance of each target from the attacker. The method also accepts an optional sightBonus
parameter, which allows us to find targets beyond the range of the item. By default, this parameter is set to 0.

The isTargetInSight() method checks whether an item is within the item’s sight range, after applying
the sightBonus to it.

Before we see the results of our code, we will update our level, as shown in Listing 10-9.

Listing 10-9.  Updating the Level for Combat (levels.js)

{
 "name": "Combat",
 "briefing": "In this level you will start using weapons for combat.",

 /* Map Details */
 "mapName": "plains",

 /* Starting location for player */
 "startX": 0,
 "startY": 10,

 /* Entities to be loaded */
 "requirements": {
 "buildings": ["base", "starport", "harvester", "ground-turret"],
 "vehicles": ["transport", "harvester", "scout-tank", "heavy-tank"],
 "aircraft": ["chopper", "wraith"],
 "terrain": ["oilfield", "bigrocks", "smallrocks"]
 },

 /* Entities to be added */
 "items": [
 { "type": "buildings", "name": "base", "x": 11, "y": 14, "team": "blue" },
 { "type": "buildings", "name": "starport", "x": 18, "y": 14, "team": "blue" },

 �{ "type": "vehicles", "name": "harvester", "x": 16, "y": 12, "team": "blue",
"direction": 3 },

 { "type": "terrain", "name": "oilfield", "x": 3, "y": 5, "action": "hint" },

 { "type": "terrain", "name": "bigrocks", "x": 19, "y": 6 },
 { "type": "terrain", "name": "smallrocks", "x": 8, "y": 3 },

 �{ "type": "vehicles", "name": "scout-tank", "x": 26, "y": 14, "team": "blue",
"direction": 4 },

 �{ "type": "vehicles", "name": "heavy-tank", "x": 26, "y": 16, "team": "blue",
"direction": 5 },

 { "type": "aircraft", "name": "chopper", "x": 20, "y": 12, "team": "blue", "direction": 2 },
 �{ "type": "aircraft", "name": "wraith", "x": 23, "y": 12, "team": "blue",

"direction": 3 },

 { "type": "buildings", "name": "ground-turret", "x": 15, "y": 23, "team": "green" },
 { "type": "buildings", "name": "ground-turret", "x": 20, "y": 23, "team": "green" },

Chapter 10 ■ Adding Weapons and Combat

295

 �{ "type": "vehicles", "name": "scout-tank", "x": 16, "y": 26, "team": "green",
"direction": 4 },

 { "type": "vehicles", "name": "heavy-tank", "x": 18, "y": 26, "team": "green", "direction": 6 },
 { "type": "aircraft", "name": "chopper", "x": 20, "y": 27, "team": "green", "direction": 2 },
 { "type": "aircraft", "name": "wraith", "x": 22, "y": 28, "team": "green", "direction": 3 },

 { "type": "buildings", "name": "base", "x": 19, "y": 28, "team": "green" },
 �{ "type": "buildings", "name": "starport", "x": 15, "y": 28, "team": "green", "uid":

-1 },
],

 cash: {
 blue: 5000,
 green: 5000
 },

 /* Conditional and Timed Trigger Events */
 "triggers": [
],
}

We removed the triggers that we defined in the previous chapter so the level doesn’t end after 30
seconds. We also added a few enemy items for us to fight with. Now, if we run the game in the browser
and move a vehicle close to the enemy turrets, the turrets should start attacking the vehicle, as shown in
Figure 10-1.

Figure 10-1.  Turret firing at a vehicle within range

Chapter 10 ■ Adding Weapons and Combat

296

The bullets explode when they hit the vehicle and decrease the vehicle’s life. Once the vehicle loses all
its life, it disappears from the game. The turret stops shooting at a target if the target goes out of range, and
moves on to the next target.

Next, we will implement combat-based orders for aircraft.

Combat-Based Orders for Aircraft
We will define several basic combat-based order states for aircraft:

•	 attack: Move within range of a target and shoot at it.

•	 stand: Stay in one place and attack any enemy that comes close.

•	 guard: Follow a friendly unit and shoot at any enemy that comes close.

•	 hunt: Actively seek out enemies anywhere on the map and attack them.

•	 patrol: Move between two points and shoot at any enemy that comes within range.

•	 sentry: Stay in one place and attack enemies slightly more aggressively than in
stand mode.

We will implement these states by modifying the default processOrders() method inside the aircraft
object, as shown in Listing 10-10.

Listing 10-10.  Implementing Combat Orders for Aircraft (aircraft.js)

processOrders: function() {
 this.lastMovementX = 0;
 this.lastMovementY = 0;

 if (this.orders.to) {
 �var distanceFromDestination = Math.pow(Math.pow(this.orders.to.x - this.x, 2) +

Math.pow(this.orders.to.y - this.y, 2), 0.5);
 var radius = this.radius / game.gridSize;
 }

 if (this.reloadTimeLeft) {
 this.reloadTimeLeft--;
 }

 var targets;

 switch (this.orders.type) {
 case "move":
 �// Move toward destination until distance from destination is less than aircraft

radius
 if (distanceFromDestination < radius) {
 this.orders = { type: "stand" };
 } else {
 this.moveTo(this.orders.to, distanceFromDestination);
 }

 break;

Chapter 10 ■ Adding Weapons and Combat

297

 case "stand":
 // Look for targets that are within sight range
 targets = this.findTargetsInSight();

 if (targets.length > 0) {
 this.orders = { type: "attack", to: targets[0] };
 }

 break;

 case "sentry":
 // Look for targets up to 2 squares beyond sight range
 targets = this.findTargetsInSight(2);

 if (targets.length > 0) {
 this.orders = { type: "attack", to: targets[0], previousOrder: this.orders };
 }

 break;

 case "hunt":
 // Look for targets anywhere on the map
 targets = this.findTargetsInSight(100);

 if (targets.length > 0) {
 this.orders = { type: "attack", to: targets[0], previousOrder: this.orders };
 }

 break;

 case "attack":
 // If the target is no longer valid, cancel the current order
 if (!this.isValidTarget(this.orders.to)) {
 this.cancelCurrentOrder();
 break;
 }

 // Check if aircraft is within sight range of target
 if (this.isTargetInSight(this.orders.to)) {
 // Turn toward target and then start attacking when within range of the target
 var targetDirection = this.findAngleForFiring(this.orders.to);

 // Turn toward target direction if necessary
 this.turnTo(targetDirection);

 // Check if aircraft has finished turning
 if (!this.turning) {
 // If reloading has completed, fire bullet
 if (!this.reloadTimeLeft) {
 this.reloadTimeLeft = bullets.list[this.weaponType].reloadTime;
 var angleRadians = -(targetDirection / this.directions) * 2 * Math.PI ;

Chapter 10 ■ Adding Weapons and Combat

298

 �var bulletX = this.x - (this.radius * Math.sin(angleRadians) / game.
gridSize);

 �var bulletY = this.y - (this.radius * Math.cos(angleRadians) / game.
gridSize) - this.pixelShadowHeight / game.gridSize;

 �game.add({ name: this.weaponType, type: "bullets", x: bulletX, y:
bulletY, direction: targetDirection, target: this.orders.to });

 }
 }

 } else {
 // Move toward the target
 this.moveTo(this.orders.to, distanceFromDestination);
 }

 break;

 case "patrol":
 targets = this.findTargetsInSight(1);

 if (targets.length > 0) {
 // Attack the target, but save the patrol order as previousOrder
 this.orders = { type: "attack", to: targets[0], previousOrder: this.orders };
 break;
 }

 // Move toward destination until it is inside of sight range
 if (distanceFromDestination < this.sight) {
 // Swap to and from locations
 var to = this.orders.to;

 this.orders.to = this.orders.from;
 this.orders.from = to;

 } else {
 // Move toward the next destination
 this.moveTo(this.orders.to, distanceFromDestination);
 }

 break;

 case "guard":
 // If the item being guarded is dead, cancel the current order
 if (this.orders.to.lifeCode === "dead") {
 this.cancelCurrentOrder();
 break;
 }

 // If the target is inside of sight range
 if (distanceFromDestination < this.sight) {
 // Find any enemies near

Chapter 10 ■ Adding Weapons and Combat

299

 targets = this.findTargetsInSight(1);
 if (targets.length > 0) {
 // Attack the nearest target, but save the guard order as previousOrder
 this.orders = { type: "attack", to: targets[0], previousOrder: this.orders };
 break;
 }
 } else {
 // Move toward the target
 this.moveTo(this.orders.to, distanceFromDestination);
 }

 break;
 }
},

Within the processOrders() method, we decrease the value of the reloadTimeLeft property just like
we did for turrets. We then define cases for each of the new combat-based order states.

If the order type is stand, we use findTargetsInSight() to check whether any target is nearby and, if so,
attack the nearest one. We do the same thing when the order type is sentry, except we pass a range increment
parameter of 2 so that the aircraft attacks units even when they are slightly beyond its typical range.

The hunt case is very similar except the range increment parameter is 100, which should ideally cover
the entire map. This means the aircraft will attack any enemy unit or building on the map starting with the
nearest one.

For the attack case, we first check whether the target is still alive. If not, we cancel the order using the
cancelCurrentOrder() method.

Next we check whether the target is within range, and if not, we move closer to the target. We then point
the aircraft toward the target, wait until the reloadTimeLeft variable is 0, and then shoot a bullet at the
target, just as we did with turrets.

The patrol case is a combination of the move and sentry cases. We move the aircraft to the location
defined in the to property and, once it reaches near the location, turn around and move toward the from
location. In case a target comes within range, we set the order to attack with the previousOrder property set
to the current order. This way, if the aircraft sees an enemy while patrolling, it will first attack the enemy and
then go back to patrolling once the enemy has been destroyed.

Finally, in the case of guard mode, we move the aircraft within sight of the unit the aircraft is guarding
and attack any enemy that comes close.

Whenever we initiate a new attack order, we save the current order in the previousOrder variable so
that it can be restored once the attack has been completed, using the cancelCurrentOrder() method.

Next, we will implement the cancelCurrentOrder() method in the baseItem object in common.js as
shown in Listing 10-11.

Listing 10-11.  Implementing cancelCurrentOrder() in baseItem (common.js)

// Get back to the previous order if any, otherwise just stand
cancelCurrentOrder: function() {
 if (this.orders.previousOrder) {
 this.orders = this.orders.previousOrder;
 } else {
 this.orders = { type: "stand" };
 }
},

Chapter 10 ■ Adding Weapons and Combat

300

Within the method, we set the unit’s orders to the saved previousOrder property if it has been set;
otherwise, we go back to the default stand mode.

If you run the code we have so far, you should be able to see the different aircraft attacking each other, as
shown in Figure 10-2.

Figure 10-2.  Aircraft attacking each other

You can command an aircraft to attack an enemy or guard a friend by right-clicking after selecting the
aircraft. The chopper can attack both land and air units, while the wraith can attack only air units.

We will typically use the sentry, hunt, and patrol orders to give the computer AI a slight advantage and
make the game more challenging for the player. The player will not have access to these orders.

■■ Tip  We can easily implement patrol for the player by modifying the rightClick method to send a patrol
command if a modifier key (such as Ctrl or Shift) is pressed when the player right-clicks the ground.

Next, we will implement combat-based orders for vehicles.

Combat-Based Orders for Vehicles
The combat-based order states for vehicles will be very similar to the order states for aircraft:

•	 attack: Move within range of a target and shoot at it.

•	 stand: Stay in one place and attack any enemy that comes close.

•	 guard: Follow a friendly unit and shoot at any enemy that comes close.

•	 hunt: Actively seek out enemies anywhere on the map and attack them.

Chapter 10 ■ Adding Weapons and Combat

301

•	 patrol: Move between two points and shoot at any enemy that comes within range.

•	 sentry: Stay in one place and attack enemies slightly more aggressively than in
stand mode.

We will implement these states by modifying the default processOrders() method inside the vehicles
object, as shown in Listing 10-12.

Listing 10-12.  Implementing Combat Orders for Vehicles (vehicles.js)

processOrders: function() {
 this.lastMovementX = 0;
 this.lastMovementY = 0;

 if (this.orders.to) {
 �var distanceFromDestination = Math.pow(Math.pow(this.orders.to.x - this.x, 2) +

Math.pow(this.orders.to.y - this.y, 2), 0.5);
 var radius = this.radius / game.gridSize;
 }

 if (this.reloadTimeLeft) {
 this.reloadTimeLeft--;
 }

 var targets;

 switch (this.orders.type) {
 case "move":
 �// Move toward destination until distance from destination is less than vehicle

radius
 if (distanceFromDestination < radius) {
 // Stop when within on vehicle radius of destination
 this.orders = { type: "stand" };
 } else if (this.colliding && distanceFromDestination < 3 * radius) {
 // Stop when within 3 radius of the destination if colliding with something
 this.orders = { type: "stand" };
 break;
 } else {
 if (this.colliding && distanceFromDestination < 5 * radius) {
 // Count collisions within 5 radius distance of goal
 if (!this.orders.collisionCount) {
 this.orders.collisionCount = 1;
 } else {
 this.orders.collisionCount ++;
 }

 // Stop if more than 30 collisions occur
 if (this.orders.collisionCount > 30) {
 this.orders = { type: "stand" };
 break;
 }
 }

Chapter 10 ■ Adding Weapons and Combat

302

 let moving = this.moveTo(this.orders.to, distanceFromDestination);

 // Pathfinding couldn't find a path so stop
 if (!moving) {
 this.orders = { type: "stand" };
 break;
 }
 }

 break;

 case "deploy":
 // If oil field has been used already, then cancel order
 if (this.orders.to.lifeCode === "dead") {
 this.orders = { type: "stand" };

 return;
 }

 if (distanceFromDestination < radius + 1) {
 �// After reaching within 1 square of oil field, turn harvester to point

toward left (direction 6)
 this.turnTo(6);

 if (!this.turning) {
 // If oil field has been used already, then cancel order
 if (this.orders.to.lifeCode === "dead") {
 this.orders = { type: "stand" };

 return;
 }

 �// Once it is pointing to the left, remove the harvester and oil field
and deploy a harvester building

 game.remove(this.orders.to);
 this.orders.to.lifeCode = "dead";

 game.remove(this);
 this.lifeCode = "dead";

 �game.add({ type: "buildings", name: "harvester", x: this.orders.to.x, y:
this.orders.to.y, action: "deploy", team: this.team });

 }
 } else {
 let moving = this.moveTo(this.orders.to, distanceFromDestination);

 // Pathfinding couldn't find a path so stop
 if (!moving) {
 this.orders = { type: "stand" };
 }
 }

Chapter 10 ■ Adding Weapons and Combat

303

 break;

 case "stand":
 // Look for targets that are within sight range
 targets = this.findTargetsInSight();

 if (targets.length > 0) {
 this.orders = { type: "attack", to: targets[0] };
 }

 break;

 case "sentry":
 // Look for targets up to 2 squares beyond sight range
 targets = this.findTargetsInSight(2);

 if (targets.length > 0) {
 this.orders = { type: "attack", to: targets[0], previousOrder: this.orders };
 }

 break;

 case "hunt":
 // Look for targets anywhere on the map
 targets = this.findTargetsInSight(100);

 if (targets.length > 0) {
 this.orders = { type: "attack", to: targets[0], previousOrder: this.orders };
 }

 break;

 case "attack":
 // If the target is no longer valid, cancel the current order
 if (!this.isValidTarget(this.orders.to)) {
 this.cancelCurrentOrder();
 break;
 }

 // Check if vehicle is within sight range of target
 if (this.isTargetInSight(this.orders.to)) {
 // Turn toward target and then start attacking when within range of the target
 var targetDirection = this.findAngleForFiring(this.orders.to);

 // Turn toward target direction if necessary
 this.turnTo(targetDirection);

 // Check if vehicle has finished turning
 if (!this.turning) {
 // If reloading has completed, fire bullet

Chapter 10 ■ Adding Weapons and Combat

304

 if (!this.reloadTimeLeft) {
 this.reloadTimeLeft = bullets.list[this.weaponType].reloadTime;
 var angleRadians = -(targetDirection / this.directions) * 2 * Math.PI ;
 �var bulletX = this.x - (this.radius * Math.sin(angleRadians) / game.

gridSize);
 �var bulletY = this.y - (this.radius * Math.cos(angleRadians) / game.

gridSize);

 �game.add({ name: this.weaponType, type: "bullets", x: bulletX, y:
bulletY, direction: targetDirection, target: this.orders.to });

 }
 }

 } else {
 // Move toward the target
 this.moveTo(this.orders.to, distanceFromDestination);
 }

 break;

 case "patrol":
 targets = this.findTargetsInSight(1);

 if (targets.length > 0) {
 // Attack the target, but save the patrol order as previousOrder
 this.orders = { type: "attack", to: targets[0], previousOrder: this.orders };
 break;
 }

 // Move toward destination until it is inside of sight range
 if (distanceFromDestination < this.sight) {
 // Swap to and from locations
 var to = this.orders.to;

 this.orders.to = this.orders.from;
 this.orders.from = to;

 } else {
 // Move toward the next destination
 this.moveTo(this.orders.to, distanceFromDestination);
 }

 break;

 case "guard":
 // If the item being guarded is dead, cancel the current order
 if (this.orders.to.lifeCode === "dead") {
 this.cancelCurrentOrder();
 break;
 }

Chapter 10 ■ Adding Weapons and Combat

305

 // If the target is inside of sight range
 if (distanceFromDestination < this.sight) {
 // Find any enemies near
 targets = this.findTargetsInSight(1);
 if (targets.length > 0) {
 // Attack the nearest target, but save the guard order as previousOrder
 this.orders = { type: "attack", to: targets[0], previousOrder: this.orders };
 break;
 }
 } else {
 // Move toward the target
 this.moveTo(this.orders.to, distanceFromDestination);
 }

 break;
 }
},

The implementation of the states is almost the same as for aircraft. If we run the game now, we should
be able to attack with the vehicles, as shown in Figure 10-3.

We can now attack with vehicles, aircraft, or turrets.
You may have noticed that while the opposing team’s units attack when you come close, they are still

very easily defeated. Now that the combat system is in place, we will explore ways to make the enemy more
intelligent and the game more challenging.

Figure 10-3.  Attacking with the vehicles

Chapter 10 ■ Adding Weapons and Combat

306

Building Intelligent Enemy
The primary goal in building an intelligent enemy AI is to make sure that the person playing the game finds
it reasonably challenging and has a fun experience completing the level. An important thing to realize about
RTS games, especially the single-player campaign, is that the enemy AI doesn’t need to be a grandmaster-
level chess player. The fact is, we can provide the player with a very compelling experience using only a
combination of combat order states and conditional scripted events.

Typically, the “intelligent” way to behave for the AI will vary with each level.
In a simple level where there are no production facilities and only ground units, the only possible

behavior is to drive up to the enemy units and attack them. A combination of patrol and sentry orders is
usually more than enough to achieve this. We could also make the level interesting by attacking the player at
a specific time or when a certain event occurs (for example, when the player arrives at a certain location or
constructs a particular building).

In a more complex level, we might make the enemy challenging by constructing and sending in waves
of enemies at specific intervals using timed triggers and the hunt order.

We can see some of these ideas at work by adding a few more items and triggers to the level, as shown in
Listing 10-13.

Listing 10-13.  Adding Triggers and Items to Make the Level Challenging (levels.js)

/* Entities to be added */
"items": [
 { "type": "buildings", "name": "base", "x": 11, "y": 14, "team": "blue" },
 { "type": "buildings", "name": "starport", "x": 18, "y": 14, "team": "blue" },

   { "type": "vehicles", "name": "harvester", "x": 16, "y": 12, "team": "blue", "direction": 3 },
 { "type": "terrain", "name": "oilfield", "x": 3, "y": 5, "action": "hint" },

 { "type": "terrain", "name": "bigrocks", "x": 19, "y": 6 },
 { "type": "terrain", "name": "smallrocks", "x": 8, "y": 3 },

 { "type": "vehicles", "name": "scout-tank", "x": 26, "y": 14, "team": "blue", "direction": 4 },
 { "type": "vehicles", "name": "heavy-tank", "x": 26, "y": 16, "team": "blue", "direction": 5 },
 { "type": "aircraft", "name": "chopper", "x": 20, "y": 12, "team": "blue", "direction": 2 },
 { "type": "aircraft", "name": "wraith", "x": 23, "y": 12, "team": "blue", "direction": 3 },

 { "type": "buildings", "name": "ground-turret", "x": 15, "y": 23, "team": "green" },
 { "type": "buildings", "name": "ground-turret", "x": 20, "y": 23, "team": "green" },

 �{ "type": "vehicles", "name": "scout-tank", "x": 16, "y": 26, "team": "green",
"direction": 4, "orders": { "type": "sentry" } },

 �{ "type": "vehicles", "name": "heavy-tank", "x": 18, "y": 26, "team": "green",
"direction": 6, "orders": { "type": "sentry" } },

 �{ "type": "aircraft", "name": "chopper", "x": 20, "y": 27, "team": "green", "direction": 2,
"orders": { "type": "hunt" } },

 �{ "type": "aircraft", "name": "wraith", "x": 22, "y": 28, "team": "green", "direction": 3,
"orders": { "type": "hunt" } },

 { "type": "buildings", "name": "base", "x": 19, "y": 28, "team": "green" },
 { "type": "buildings", "name": "starport", "x": 15, "y": 28, "team": "green", "uid": -1 },
],

Chapter 10 ■ Adding Weapons and Combat

307

/* Economy Related*/
"cash": {
 "blue": 5000,
 "green": 5000
},

/* Conditional and Timed Trigger Events */
"triggers": [
 /* Timed Events*/
 {
 "type": "timed",
 "time": 1000,
 "action": function() {
 �game.sendCommand([-1], { type: "construct-unit", details: { type: "aircraft",

name: "wraith", orders: { "type": "patrol", "from": { "x": 22, "y": 30 }, "to":
{ "x": 15, "y": 21 } } } });

 }
 },
 {
 "type": "timed",
 "time": 5000,
 "action": function() {
 �game.sendCommand([-1], { type: "construct-unit", details: { type: "aircraft",

name: "chopper", orders: { "type": "patrol", "from": { "x": 15, "y": 30 }, "to":
{ "x": 22, "y": 21 } } } });

 }
 },
 {
 "type": "timed",
 "time": 10000,
 "action": function() {
 �game.sendCommand([-1], { type: "construct-unit", details: { type: "vehicles",

name: "heavy-tank", orders: { "type": "patrol", "from": { "x": 15, "y": 30 },
"to": { "x": 22, "y": 21 } } } });

 }
 },
 {
 "type": "timed",
 "time": 15000,
 "action": function() {
 �game.sendCommand([-1], { type: "construct-unit", details: { type: "vehicles",

name: "scout-tank", orders: { "type": "patrol", "from": { "x": 22, "y": 30 },
"to": { "x": 15, "y": 21 } } } });

 }
 },
 {
 "type": "timed",
 "time": 60000,
 "action": function() {
 game.showMessage("AI", "Now every enemy unit is going to attack you in a wave.");
 var units = [];

Chapter 10 ■ Adding Weapons and Combat

308

 for (var i = 0; i < game.items.length; i++) {
 var item = game.items[i];

 �if (item.team === "green" && (item.type === "vehicles" || item.type ===
"aircraft")) {

 units.push(item.uid);
 }
 }
 game.sendCommand(units, { type: "hunt" });
 }
 },
],

The first thing we do is order an enemy chopper and a wraith to hunt as soon as the game starts. Next,
we assign a UID of -1 to the enemy starport and set a few timed triggers to build different types of patrolling
units every few seconds.

Finally, after 60 seconds, we command all enemy units to hunt and notify the player using the
showMessage() method.

If we run the code now, we can expect the AI to defend itself fairly well and attack very aggressively at
the end of 60 seconds, as shown in Figure 10-4.

Figure 10-4.  Computer AI aggressively attacking player

Obviously, this is a fairly contrived example. No one will want to play a game where they get attacked
this brutally within the first minute of playing. However, as this example illustrates, we can make the game as
easy or as challenging as we need just by adjusting these triggers and orders.

Chapter 10 ■ Adding Weapons and Combat

309

■■ Tip  You can implement separate sets of triggers and starting items depending on a difficulty setting so that
the player can play easy or challenging versions of the same campaign based on the setting selected.

Now that we have implemented the combat system and explored ways to make the game AI
challenging, the last thing we will look at in this chapter is adding a fog of war.

Adding a Fog of War
The fog of war is typically a dark, colored shroud that covers all unexplored terrain within the map. As player
units move around the map, the fog is cleared anywhere that the unit can see.

This introduces elements of exploration and intrigue to the game. The ability to hide under the fog
allows the use of strategies such as hidden bases, ambushes, and sneak attacks.

Some RTS games permanently remove the fog once an area is explored, while others clear the fog only
in areas within sight of a player unit and bring back the fog once the unit leaves the area. For our game, we
will be using the second implementation.

Defining the Fog Object
We will start by defining a new fog object inside fog.js, as shown in Listing 10-14.

Listing 10-14.  Implementing the fog Object (fog.js)

var fog = {
 grid: [],
 canvas: document.createElement("canvas"),
 initLevel: function() {
 // Set fog canvas to the size of the map
 this.canvas.width = game.currentMap.mapGridWidth * game.gridSize;
 this.canvas.height = game.currentMap.mapGridHeight * game.gridSize;

 this.context = this.canvas.getContext("2d");

 // Set the fog grid for the player to 2d array with all values set to 1
 this.defaultFogGrid = [];

 let row = new Array(game.currentMap.gridMapWidth);

 for (let x = 0; x < game.currentMap.mapGridWidth; x++) {
 row[x] = 1;
 }

 for (let y = 0; y < game.currentMap.mapGridHeight; y++) {
 this.defaultFogGrid[y] = row.slice(0);
 }
 },

 isPointOverFog: function(x, y) {
 // If the point is outside the map bounds consider it fogged

Chapter 10 ■ Adding Weapons and Combat

310

 �if (y < 0 || y / game.gridSize >= game.currentMap.mapGridHeight || x < 0 || x /
game.gridSize >= game.currentMap.mapGridWidth) {

 return true;
 }

 // If not, return value based on the player's fog grid
 �return this.grid[game.team][Math.floor(y / game.gridSize)][Math.floor(x / game.

gridSize)] === 1;
 },

 animate: function() {
 // Fill fog with semi solid black color over the map
 this.context.drawImage(game.currentMapImage, 0, 0);
 this.context.fillStyle = "rgba(0,0,0,0.8)";
 this.context.fillRect(0, 0, this.canvas.width, this.canvas.height);

 // Initialize the players fog grid
 this.grid[game.team] = game.makeArrayCopy(this.defaultFogGrid);

 // Clear all areas of the fog where a player item has vision
 fog.context.globalCompositeOperation = "destination-out";
 game.items.forEach(function(item) {
 var team = game.team;

 if (item.team === team && !item.keepFogged) {
 var x = Math.floor(item.x);
 var y = Math.floor(item.y);
 var x0 = Math.max(0, x - item.sight + 1);
 var y0 = Math.max(0, y - item.sight + 1);
 �var x1 = Math.min(game.currentMap.mapGridWidth - 1, x + item.sight - 1 +

(item.type === "buildings" ? item.baseWidth / game.gridSize : 0));
 �var y1 = Math.min(game.currentMap.mapGridHeight - 1, y + item.sight - 1 +

(item.type === "buildings" ? item.baseHeight / game.gridSize : 0));

 for (var j = x0; j <= x1; j++) {
 for (var k = y0; k <= y1; k++) {
 if ((j > x0 && j < x1) || (k > y0 && k < y1)) {
 if (this.grid[team][k][j]) {
 this.context.fillStyle = "rgba(100,0,0,0.9)";
 this.context.beginPath();
 �this.context.arc(j * game.gridSize + 12, k * game.gridSize +

12, 16, 0, 2 * Math.PI, false);
 this.context.fill();
 this.context.fillStyle = "rgba(100,0,0,0.7)";
 this.context.beginPath();
 �this.context.arc(j * game.gridSize + 12, k * game.gridSize +

12, 18, 0, 2 * Math.PI, false);
 this.context.fill();

Chapter 10 ■ Adding Weapons and Combat

311

 this.context.fillStyle = "rgba(100,0,0,0.5)";
 this.context.beginPath();
 �this.context.arc(j * game.gridSize + 12, k * game.gridSize +

12, 24, 0, 2 * Math.PI, false);
 this.context.fill();

 }
 this.grid[team][k][j] = 0;
 }
 }
 }
 }
 }, this);
 fog.context.globalCompositeOperation = "source-over";
 },

 draw: function() {
 �game.foregroundContext.drawImage(this.canvas, game.offsetX, game.offsetY,

game.canvasWidth, game.canvasHeight, 0, 0, game.canvasWidth, game.canvasHeight);
 }
};

We start by defining a canvas inside the fog object. The initLevel() method resizes the canvas object
to the size of the current map and defines a defaultFogGrid array that has the same dimensions as the map
with all its elements set to 1.

The isPointOverFog() method returns true if a given x and y coordinate is either outside the map
bounds or lies within a fogged cell.

Within the animate() method, we first initialize the fog canvas to the map background with a semi-
transparent black layer over it. This way, fogged areas of the map show up as darkened background terrain.

We then iterate through each of the items in the game and clear the fog array and the fog canvas around
the player’s items based on their sight property. We do not clear the fog for items that are the opposing
player’s or that have a keepFogged attribute set to true.

Finally, the draw() method draws the fog canvas onto the game.foregroundContext context using the
same offsets that we used when drawing the map onto the game.backgroundContext context.

Drawing the Fog
Now that we have defined the fog object, we will start by adding a reference to fog.js inside the head
section of index.html, as shown in Listing 10-15.

Listing 10-15.  Adding a Reference to the fog Object (index.html)

<script src="js/fog.js" type="text/javascript"></script>

Next, we need to initialize the fog once the level is loaded. We will do this by calling the
fog.initLevel() method inside the singleplayer object’s initLevel() method, as shown in Listing 10-16.

Chapter 10 ■ Adding Weapons and Combat

312

Listing 10-16.  Initializing the fog Object for the Level (singleplayer.js)

initLevel: function() {
 game.type = "singleplayer";
 game.team = "blue";

 // Don't allow player to enter mission until all assets for the level are loaded
 var enterMissionButton = document.getElementById("entermission");

 enterMissionButton.disabled = true;

 // Load all the items for the level
 var level = levels.singleplayer[singleplayer.currentLevel];

 game.loadLevelData(level);

 fog.initLevel();

 // Set player starting location
 game.offsetX = level.startX * game.gridSize;
 game.offsetY = level.startY * game.gridSize;

 game.createTerrainGrid();

 // Enable the Enter Mission button once all assets are loaded
 loader.onload = function() {
 enterMissionButton.disabled = false;
 };

 // Update the mission briefing text and show briefing screen
 this.showMissionBriefing(level.briefing);
},

Next we need to modify the game object’s animationLoop() and drawingLoop() methods to call
fog.animate() and fog.draw() respectively, as shown in Listing 10-17.

Listing 10-17.  Calling fog.animate() and fog.draw() (game.js)

animationLoop: function() {

 // Animate the sidebar
 sidebar.animate();

 // Process orders for any item that handles orders
 game.items.forEach(function(item) {
 if (item.processOrders) {
 item.processOrders();
 }
 });

Chapter 10 ■ Adding Weapons and Combat

313

 // Animate each of the elements within the game
 game.items.forEach(function(item) {
 item.animate();
 });

 // Sort game items into a sortedItems array based on their x,y coordinates
 game.sortedItems = Object.assign([], game.items);
 game.sortedItems.sort(function(a, b) {
 return a.y - b.y + ((a.y === b.y) ? (b.x - a.x) : 0);
 });

 fog.animate();

 // Save the time that the last animation loop completed
 game.lastAnimationTime = Date.now();
},

// The map is broken into square tiles of this size (20 pixels x 20 pixels)
gridSize: 20,
// X & Y panning offsets for the map
offsetX: 0,
offsetY: 0,

drawingLoop: function() {
 // Pan the map if the cursor is near the edge of the canvas
 game.handlePanning();

 �// Check the time since the game was animated and calculate a linear interpolation
factor (-1 to 0)

 game.lastDrawTime = Date.now();
 if (game.lastAnimationTime) {
 �game.drawingInterpolationFactor = (game.lastDrawTime - game.lastAnimationTime) /

game.animationTimeout - 1;

 // No point interpolating beyond the next animation loop...
 if (game.drawingInterpolationFactor > 0) {
 game.drawingInterpolationFactor = 0;
 }
 } else {
 game.drawingInterpolationFactor = -1;
 }

 // Draw the background whenever necessary
 game.drawBackground();

 // Clear the foreground canvas
 game.foregroundContext.clearRect(0, 0, game.canvasWidth, game.canvasHeight);

 // Start drawing the foreground elements
 game.sortedItems.forEach(function(item) {
 item.draw();
 });

Chapter 10 ■ Adding Weapons and Combat

314

 // Draw exploding bullets on top of everything else
 game.bullets.forEach(function(bullet) {
 if (bullet.action === "explode") {
 bullet.draw();
 }
 });

 fog.draw();

 // Draw the mouse
 mouse.draw();

 // Call the drawing loop for the next frame using request animation frame
 if (game.running) {
 requestAnimationFrame(game.drawingLoop);
 }
},

If we run the code now, we should see the entire map shrouded in a fog of war, as shown in Figure 10-5.

Figure 10-5.  Map shrouded in fog of war

You will see that the fog is uncovered around friendly units and buildings. Also, the fogged area shows
the original terrain but does not show any units under it.

The fog effectively hides all enemy movement, allowing them to show up seemingly out of nowhere.
The same enemy attack feels much scarier when we have no idea about the size or the location of the
opposing army.

Before we wrap up the chapter, we will add a few finishing touches to the fog of war.

Chapter 10 ■ Adding Weapons and Combat

315

Adding Finishing Touches
The first change we will make is to prevent the deploying of buildings on fogged areas by making fogged
areas unbuildable. We will modify the sidebar object’s checkBuildingPlacement() method, as shown in
Listing 10-18.

Listing 10-18.  Making Fogged Areas Unbuildable (sidebar.js)

checkBuildingPlacement: function() {

 let name = sidebar.deployBuilding.name;
 let details = buildings.list[name];

 // Create a buildable grid to identify where building can be placed
 game.rebuildBuildableGrid();

 // Use buildableGrid to identify whether we can place the building
 let canDeployBuilding = true;
 let placementGrid = game.makeArrayCopy(details.buildableGrid);

 for (let y = placementGrid.length - 1; y >= 0; y--) {
 for (let x = placementGrid[y].length - 1; x >= 0; x--) {

 // If a tile needs to be buildable for the building
 if (placementGrid[y][x] === 1) {
 // Check whether the tile is inside the map and buildable
 if (mouse.gridY + y >= game.currentMap.mapGridHeight
 || mouse.gridX + x >= game.currentMap.mapGridWidth
 || fog.grid[game.team][mouse.gridY + y][mouse.gridX + x]
 || game.currentMapBuildableGrid[mouse.gridY + y][mouse.gridX + x]) {
 // Otherwise mark tile as unbuildable
 canDeployBuilding = false;
 placementGrid[y][x] = 2;
 }
 }
 }
 }

 sidebar.placementGrid = placementGrid;
 sidebar.canDeployBuilding = canDeployBuilding;

},

We add an extra condition for testing the fog grid when creating the placementGrid array so that a
fogged grid square is no longer buildable. If we run the game and try to build on a fogged area, we should
see a warning, as shown in Figure 10-6.

Chapter 10 ■ Adding Weapons and Combat

316

As you can see, the building deploy grid turns red on fogged areas to indicate that the player cannot
build there. If you still try to click a fogged area, you will get a system warning.

Next, we will make sure that the player cannot select or detect a building or unit that is under the fog.
We do this by modifying the mouse object’s itemUnderMouse() method, as shown in Listing 10-19.

Listing 10-19.  Hiding Objects Under the Fog (mouse.js)

// Return the first item detected under the mouse.
itemUnderMouse: function() {
 // If the mouse is over fog, don't detect any items
 if (fog.isPointOverFog(mouse.gameX, mouse.gameY)) {
 return;
 }

 for (let i = game.items.length - 1; i >= 0; i--) {
 let item = game.items[i];

 // Dead items will not be detected
 if (item.lifeCode === "dead") {
 continue;
 }

 let x = item.x * game.gridSize;
 let y = item.y * game.gridSize;

 if (item.type === "buildings" || item.type === "terrain") {
 // If mouse coordinates are within rectangular area of building or terrain
 �if (x <= mouse.gameX && x >= (mouse.gameX - item.baseWidth) && y <= mouse.gameY

&& y >= (mouse.gameY - item.baseHeight)) {
 return item;
 }

Figure 10-6.  Cannot deploy buildings on fogged areas

Chapter 10 ■ Adding Weapons and Combat

317

 } else if (item.type === "aircraft") {
 �// If mouse coordinates are within radius of aircraft (adjusted for

pixelShadowHeight)
 �if (Math.pow(x - mouse.gameX, 2) + Math.pow(y - mouse.gameY - item.

pixelShadowHeight, 2) < Math.pow(item.radius, 2)) {
 return item;
 }
 } else if (item.type === "vehicles") {
 // If mouse coordinates are within radius of item
 �if (Math.pow(x - mouse.gameX, 2) + Math.pow(y - mouse.gameY, 2) < Math.pow(item.

radius, 2)) {
 return item;
 }
 }
 }
},

We return nothing if the point under the mouse is fogged. This way, enemy units under the fog are
undetectable and cannot be clicked by the player.

With this last change, we now have a completely working fog of war in our game.

Summary
In this chapter, we implemented a combat system for our game. We started by defining a bullets object
with different types of bullets. We then added several combat-based order states to our turrets, aircraft, and
vehicles. We used these orders along with the triggers system we defined in the previous chapter to create a
fairly challenging enemy. Finally, we implemented a fog of war.

Our game now has most of the essential elements of an RTS. In the next chapter, we will polish our game
framework by adding sound and mobile support. We will then use this framework to build a few interesting
levels and wrap up our single-player campaign.

319© Aditya Ravi Shankar 2017
A. R. Shankar, Pro HTML5 Games, DOI 10.1007/978-1-4842-2910-1_11

CHAPTER 11

Wrapping Up the Single-Player
Campaign

Our game framework now has almost everything we need to build a very nice single-player campaign: a
level system, various units and buildings, intelligent movement using pathfinding, an economy, and finally
combat.

Now it’s time to add the finishing touches and wrap up our single-player campaign. We will first add
sound effects such as explosions and voices to our game. We will then build several levels by combining and
using the various elements that we developed over the past few chapters. You will see how these building
blocks fall into place to create a complete game.

Let’s get started. We will continue where we left off at the end of Chapter 10.

Adding Sound
RTS games have a lot more happening at the same time than games in other genres such as the physics game
we developed in the first few chapters. If we are not careful, there is a possibility of overwhelming a player
with so much audio input that it becomes a distraction and takes away from their immersion. For our game,
we will focus on sounds that will make the player aware of essential events within the game.

•	 Acknowledging commands: Any time the player selects a unit and gives it a
command, we will have the unit acknowledge that it received the command.

•	 Messages: Whenever the player receives either a system warning or a story
line–driven notification, we will alert the player with a sound.

•	 Combat: We will add sounds during combat so that players instantly know that they
are under attack somewhere on the map.

Setting Up Sounds
We will start by creating a sounds object inside sounds.js, as shown in Listing 11-1.

Listing 11-1.  Creating a sounds Object (sounds.js)

var sounds = {
 list: {
 "bullet": ["bullet1", "bullet2"],
 "heatseeker": ["heatseeker1", "heatseeker2"],

http://dx.doi.org/10.1007/978-1-4842-2910-1_10

Chapter 11 ■ Wrapping Up the Single-Player Campaign

320

 "fireball": ["laser1", "laser2"],
 "cannon-ball": ["cannon1", "cannon2"],
 "message-received": ["message"],
 "acknowledge-attacking": ["engaging"],
 "acknowledge-moving": ["yup", "roger1", "roger2"],
 },

 loaded: {},
 init: function() {
 // Iterate through the sound names in the list, and load audio files for each
 for (let soundName in this.list) {
 let sound = {
 // Store a counter to keep track of which sound is played next
 counter: 0
 };

 sound.audioObjects = [];
 this.list[soundName].forEach(function(fileName) {
 sound.audioObjects.push(loader.loadSound("audio/" + fileName));
 }, this);

 this.loaded [soundName] = sound;
 }
 },

 play: function(soundName) {
 let sound = sounds.loaded[soundName];

 if (sound) {
 // Play audio for sound name based on counter location
 let audioObject = sound.audioObjects[sound.counter];

 audioObject.play();

 // Move to the next audio next time
 sound.counter++;
 if (sound.counter >= sound.audioObjects.length) {
 sound.counter = 0;
 }
 }
 }
};

Within the sound object, we start by declaring a list, which maps a sound name to one or more sound
files. For example, the bullet sound maps to two files: bullet1 and bullet2. You will notice that we don’t
specify the file extension (.ogg or .mp3). We let the loader object handle selecting the appropriate audio file
extension for the browser.

Next we declare an init() method that iterates through the list of sounds, uses the loader.loadSound()
method to load each audio file, and then creates an audioObjects array for each sound name. We then add
this sound object to the loaded object.

Chapter 11 ■ Wrapping Up the Single-Player Campaign

321

Finally, we declare a play() method that looks up the appropriate sound object from the loaded array
and then plays the audio object using its play() method. You will notice that we use a counter for each
sound object to ensure that we iterate through the sounds for a given sound name so that a different sound is
played each time play() is called. This allows us to play different versions of sounds for an event instead of
hearing the same monotonous sound each time.

Next, we will add a reference to sounds.js inside the head section of index.html, as shown in Listing 11-2.

Listing 11-2.  Referring to sounds.js (index.html)

<script src="js/sounds.js" type="text/javascript"></script>

Finally, we will load all these sounds when the game is initialized by calling the init() method from
inside the game object’s init() method, as shown in Listing 11-3.

Listing 11-3.  Initializing the sounds Object Inside the game.init() Method (game.js)

// Start initializing objects, preloading assets and display start screen
init: function() {
 // Initialize objects
 loader.init();
 mouse.init();
 sidebar.init();
 sounds.init();

 // Initialize and store contexts for both the canvases
 game.initCanvases();

 // Display the main game menu
 game.hideScreens();
 game.showScreen("gamestartscreen");
},

Now that the sounds object is in place, we can start adding sounds for each event, starting with
acknowledging commands.

Acknowledging Commands
We allow the player to give units several types of commands: attack, move, deploy, and guard. Any time a
unit is sent an attack command, we will play the acknowledge-attacking sound. When the unit is sent any
other command such as move or guard, we will play the acknowledge-moving sound.

We will do this by calling sounds.play() from inside the rightClick() method of the mouse object, as
shown in Listing 11-4.

Listing 11-4.  Acknowledging Commands Inside the rightClick() Method (mouse.js)

// Called whenever player completes a right-click on the game canvas
rightClick: function() {
 // If the game is in deployBuilding mode, right-clicking will cancel deployBuilding mode
 if (sidebar.deployBuilding) {
 sidebar.cancelDeployingBuilding();

 return;
 }

Chapter 11 ■ Wrapping Up the Single-Player Campaign

322

 let clickedItem = mouse.itemUnderMouse();

 // Handle actions like attacking and movement of selected units
 if (clickedItem) { // Player right-clicked on something
 if (clickedItem.type !== "terrain") {
 if (clickedItem.team !== game.team) { // Player right-clicked on an enemy item
 let uids = [];

 // Identify selected units from player's team that can attack
 game.selectedItems.forEach(function(item) {
 if (item.team === game.team && item.canAttack) {
 uids.push(item.uid);
 }
 }, this);

 // Command units to attack the clicked item
 if (uids.length > 0) {
 game.sendCommand(uids, { type: "attack", toUid: clickedItem.uid });

 sounds.play("acknowledge-attacking");
 }

 } else { // Player right-clicked on a friendly item
 let uids = [];

 // Identify selected units from player's team that can move
 game.selectedItems.forEach(function(item) {
 if (item.team === game.team && item.canAttack && item.canMove) {
 uids.push(item.uid);
 }
 }, this);

 // Command units to guard the clicked item
 if (uids.length > 0) {
 game.sendCommand(uids, { type: "guard", toUid: clickedItem.uid });

 sounds.play("acknowledge-moving");
 }

 }
 } else if (clickedItem.name === "oilfield") { // Player right-clicked on an oilfield
 let uids = [];

 // Identify the first selected harvester (since only one can deploy at a time)
 for (let i = game.selectedItems.length - 1; i >= 0; i--) {
 let item = game.selectedItems[i];

 �if (item.team === game.team && item.type === "vehicles" && item.name ===
"harvester") {

 uids.push(item.uid);
 break;
 }
 }

Chapter 11 ■ Wrapping Up the Single-Player Campaign

323

 // Command it to deploy on the oil field
 if (uids.length > 0) {
 game.sendCommand(uids, { type: "deploy", toUid: clickedItem.uid });

 sounds.play("acknowledge-moving");
 }
 }
 } else { // Player right-clicked on the ground
 let uids = [];

 // Identify selected units from player's team that can move
 game.selectedItems.forEach(function(item) {
 if (item.team === game.team && item.canMove) {
 uids.push(item.uid);
 }
 }, this);

 // Command units to move to the clicked location
 if (uids.length > 0) {
 �game.sendCommand(uids, { type: "move", to: { x: mouse.gameX / game.gridSize,

y: mouse.gameY / game.gridSize } });

 sounds.play("acknowledge-moving");
 }
 }
},

We call the sounds.play() method with the appropriate sound name whenever we send a game
command.

One interesting thing to point out is that we play the sound when the command is sent out, not when
it is received and processed. While this makes very little difference during the single-player campaign, it
becomes important during multiplayer.

Usually, network latency and other issues can cause a lag of up to a few hundred milliseconds between
the sending of a command and it actually being received by all the players. By playing the sound as soon as
the mouse is clicked, we give the player the illusion that the command has been executed immediately and
make the effect of lag less noticeable.

■■ Note  In an attempt to hide game lag, some games use animation sequences in addition to sounds to
indicate to the player that the unit is processing the command even before the server has acknowledged the
command. Games such as first-person shooters often attempt to predict the unit movement and start moving
the unit before receiving the server acknowledgment. RTS games typically do not need client-side prediction
techniques.

If you open and run the game now, you should hear the units acknowledge the command before they
start moving or attacking. Next, let’s add the message sound.

Chapter 11 ■ Wrapping Up the Single-Player Campaign

324

Messages
We will play a short beeping sound to notify players whenever they are shown a message. We will do this
by playing the message-received sound from inside the game object’s showMessage() method, as shown in
Listing 11-5.

Listing 11-5.  Message Notification Sound Inside the showMessage() Method (game.js)

showMessage: function(from, message) {

 sounds.play("message-received");

 let callerpicture = document.getElementById("callerpicture");
 let gamemessages = document.getElementById("gamemessages");

 // If the message is from a defined game character, show profile picture
 let character = game.characters[from];

 if (character) {

 // Use the character's defined name
 from = character.name;

 if (character.image) {
 // Display the character image in the caller picture area
 callerpicture.innerHTML = "";

 // Remove the caller picture after six seconds
 setTimeout(function() {
 callerpicture.innerHTML = "";
 }, 6000);
 }
 }

 // Append message to messages pane and scroll to the bottom

 let messageHTML = "" + from + ": " + message + "
";

 gamemessages.innerHTML += messageHTML;
 gamemessages.scrollTop = gamemessages.scrollHeight;

},

If you play the game now, you should hear beeping whenever a new message is displayed.
The last set of sounds we will implement is for combat.

Combat
You may have noticed that we declared four different sound types within our sounds list: bullet,
heatseeker, cannon-ball, and fireball. These four sounds correspond to the four bullet types that we
declared in the previous chapter. Any time we fire a bullet, we will play the sound for the appropriate bullet.

Chapter 11 ■ Wrapping Up the Single-Player Campaign

325

We can easily do this by modifying the add() method inside game.js to play the appropriate sound
whenever a bullet is added, as shown in Listing 11-6.

Listing 11-6.  Playing Sound When a Bullet Is Added (game.js)

add: function(itemDetails) {
 // Set a unique id for the item
 if (!itemDetails.uid) {
 itemDetails.uid = ++game.counter;
 }

 var item = window[itemDetails.type].add(itemDetails);

 // Add the item to the items array
 game.items.push(item);

 // Add the item to the type-specific array
 game[item.type].push(item);

 // Reset currentMapPassableGrid whenever the map changes
 if (item.type === "buildings" || item.type === "terrain") {
 game.currentMapPassableGrid = undefined;
 }

 // Play bullet firing sound when a bullet is created
 if (item.type === "bullets") {
 sounds.play(item.name);
 }

 return item;
},

If you play the game now, you should hear the distinct sounds of the different weapons as they are
being fired.

We could keep adding more sounds to our game if we wanted, such as explosions, construction noises,
conversation, and even background music. The process would remain the same. However, the sounds we
have implemented so far are sufficient for now.

Now that we have sound in our game, let’s take a look at adding support for mobile and touch devices.

Supporting Mobile Devices
We have already designed our game to be responsive and work with different resolutions and aspect ratios.
This means that if we were to open the game on any mobile device, the game would automatically scale and
fit correctly. So to support mobile devices, we will need to enable touch support, add mobile meta tags, and
enable web audio, just like we did in Chapter 5.

http://dx.doi.org/10.1007/978-1-4842-2910-1_5

Chapter 11 ■ Wrapping Up the Single-Player Campaign

326

Enabling Touch Support
The first thing we will do is add event listeners for the touch events inside the mouse.init() method as shown
in Listing 11-7.

Listing 11-7.  Listening for Touch Events (mouse.js)

init: function() {
 // Listen for mouse events on the game foreground canvas
 let canvas = document.getElementById("gameforegroundcanvas");

 canvas.addEventListener("mousemove", mouse.mousemovehandler, false);

 canvas.addEventListener("mouseenter", mouse.mouseenterhandler, false);
 canvas.addEventListener("mouseout", mouse.mouseouthandler, false);

 canvas.addEventListener("mousedown", mouse.mousedownhandler, false);
 canvas.addEventListener("mouseup", mouse.mouseuphandler, false);

 canvas.addEventListener("contextmenu", mouse.mouserightclickhandler, false);

 canvas.addEventListener("touchstart", mouse.touchstarthandler, { passive: false });
 canvas.addEventListener("touchend", mouse.touchendhandler, { passive: false });
 canvas.addEventListener("touchmove", mouse.touchmovehandler, { passive: false });

 mouse.canvas = canvas;
},

We listen for all three touch events, touchstart, touchend, and touchmove, and assign handler methods
for each. We set an additional passive property to false, which lets the browser know that we might be
preventing the default behavior of these events from inside the handlers.

Next, we need to implement the actual handlers. We will start by implementing the touchstarthandler()
and touchmovehandler() methods to enable drag selection using mobile as shown in Listing 11-8.

Listing 11-8.  The touchstarthandler() and touchmovehandler() Methods (mouse.js)

touchstarthandler: function(ev) {
 mouse.insideCanvas = true;
 let touch = event.targetTouches[0];

 mouse.setCoordinates(touch.clientX, touch.clientY);

 mouse.buttonPressed = true;

 mouse.dragX = mouse.gameX;
 mouse.dragY = mouse.gameY;

 ev.preventDefault();
},

Chapter 11 ■ Wrapping Up the Single-Player Campaign

327

touchmovehandler: function(ev) {
 mouse.insideCanvas = true;

 let touch = ev.targetTouches[0];

 mouse.setCoordinates(touch.clientX, touch.clientY);
 mouse.checkIfDragging();

 ev.preventDefault();
},

The touchstarthandler() method is very similar to the mousedownhandler() method. We set the
insideCanvas and buttonPressed properties to true, set the mouse coordinates using setCoordinates(),
and save the mouse position in dragX and dragY. The only significant difference is that we do not distinguish
between left-clicks and right-clicks, and we use the first touch in the event’s targetTouches array to get
clientX and clientY for determining the touch coordinates.

The touchmovehandler() method also sets the insideCanvas attribute to true, calls setCoordinates(),
and finally calls the checkIfDragging() method, which will set the dragSelect attribute to true if the touch
is moved by more than dragSelectThreshold pixels.

If you try to run the game now with touch device emulation, you will find that you can initiate drag
selection, but still cannot end it. You also cannot give any of the units any instructions. For this, we still need
to implement the touchendhandler() method.

Unlike our previous game, Froot Wars, which only used left-click, this game uses both left-click and
right-click. We need a way to emulate right-click on touch devices. While some devices emulate right-click
using a long touch hold, this does not lend itself well to fast RTS gameplay. Instead, we will use a double-tap
to act as a right-click. To do this, we will keep track of when the touch is ended, and wait for a second tap for
a short time period. If the second tap does not come, we will treat it as a left-click. If however a second tap
does come, we will treat it as a right-click. The touchendhandler() method will look like Listing 11-9.

Listing 11-9.  The touchendhandler() Method (mouse.js)

doubleTapTimeoutThreshold: 300,
doubleTapTimeout: undefined,

touchendhandler: function(ev) {

 // While a typical touch device isn't likely to have a keyboard, leave this just in case
 let shiftPressed = ev.shiftKey;

 if (mouse.dragSelect) {
 // If currently drag-selecting, attempt to select items with the selection rectangle
 mouse.finishDragSelection(shiftPressed);

 } else {
 // If not dragging, wait for threshold before treating it as a left-click
 if (!mouse.doubleTapTimeout) {
 mouse.doubleTapTimeout = setTimeout(function() {
 mouse.doubleTapTimeout = undefined;
 mouse.leftClick();

 }, mouse.doubleTapTimeoutThreshold);
 } else {

Chapter 11 ■ Wrapping Up the Single-Player Campaign

328

 �// If a second tap occurs before timeout, treat it as a double-tap
(our approximation of a right-click)

 clearTimeout(mouse.doubleTapTimeout);
 mouse.doubleTapTimeout = undefined;
 mouse.rightClick();
 }

 }

 mouse.buttonPressed = false;

 // When a touch event ends, act as if the mouse has left the canvas
 mouse.insideCanvas = false;

 ev.preventDefault();
},

We start by defining a doubleTapTimeoutThreshold property, which is the number of milliseconds that
we will wait before assuming that a tap is a left-click.

Inside the touchendhandler() method, we first check if the touch was part of a drag selection, and if so
assume that the player just wants to finish selecting and call the finishDragSelection() method.

If there is no drag selection happening, and we are not waiting for a double-tap, we set a
doubleTapTimeout timeout for 300 milliseconds, at the end of which we call the leftClick() method. If a
touch ends while we are waiting for the double-tap, we clear doubleTapTimeout and call the rightClick()
method instead.

If you run the game on a mobile device, or in your browser with mobile emulation on, you will see that
you can use touch to play the game. Unit selection with dragging or tapping will work as expected, as will
commanding with double-tap. Because of the way we implemented panning, you can even pan around the
map by just touching the edges of the map. The sidebar buttons should work because of the mobile device
click emulation, which will convert tap events to click events. Our game now supports touch events.

Finally, we will add two meta tags to mark the game as mobile web-app capable in the head section of
index.html, as shown in Listing 11-10.

Listing 11-10.  Adding meta Tags for Mobile (index.html)

<meta http-equiv="Content-type" content="text/html; charset=utf-8">

<meta name="viewport" content="user-scalable=no, initial-scale=1, maximum-scale=1,
minimum-scale=1, width=device-width">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="mobile-web-app-capable" content="yes">

The two newly added tags allow the game to be saved on the home screen as full-screen applications
on most mobile devices. When started from the home screen, the game experience is very similar to apps
installed via the app stores.

If you try the game on a mobile browser and save the game page to the home screen, you should be able
to play the game full-screen, without the URL bar or the browser frame, just like an installed application.
Now it’s time to fix audio by enabling WebAudio.

Chapter 11 ■ Wrapping Up the Single-Player Campaign

329

Enabling WebAudio Support
In an attempt to prevent excessive battery usage, mobile browsers put a lot of restrictions on audio playback.
The simplest way to get around most of these restrictions is to use the WebAudio API and to play a sound on
the first user interaction to unlock audio playback on mobile.

To make this conversion to WebAudio effortless, we will use the same wAudio.js library that we used in
Chapter 5. We will start by adding a reference to wAudio.js inside the head section of index.html as shown in
Listing 11-11.

Listing 11-11.  Referring to wAudio.js (index.html)

<script src="js/wAudio.js" type="text/javascript"></script>

Next, we will modify the loadSound() method inside the loader object to use wAudio if available, as
shown in Listing 11-12.

Listing 11-12.  Using the wAudio Object to Load Sounds (common.js)

loadSound: function(url) {
 this.loaded = false;
 this.totalCount++;

 game.showScreen("loadingscreen");

 var audio = new (window.wAudio || Audio)();

 audio.addEventListener("canplaythrough", loader.itemLoaded, false);
 audio.src = url + loader.soundFileExtn;

 return audio;
},

The loadSound() method should now use the wAudio object if available, or fall back to the default
HTML5 audio if not. Our game audio should now work on most mobile devices, but we still need to unlock
the audio on a user interaction before it can work properly on iOS devices. Since this is such a common
requirement, wAudio.js has two ways to do so: the wAudio.playMutedSound() method, which we can call
from any tap or click event, and the wAudio.mobileAutoEnable property, which will automatically unlock
the audio on the first user interaction. We will set the wAudio.mobileAutoEnable property to true inside
game.init(), as shown in Listing 11-13.

Listing 11-13.  Setting mobileAutoEnable in game.init() (common.js)

// Start initializing objects, preloading assets, and display start screen
init: function() {
 // Initialize objects
 loader.init();
 mouse.init();
 sidebar.init();
 sounds.init();

http://dx.doi.org/10.1007/978-1-4842-2910-1_5

Chapter 11 ■ Wrapping Up the Single-Player Campaign

330

 // Initialize and store contexts for both the canvases
 game.initCanvases();

 �// If wAudio has been added, automatically enable mobile audio on the first user touch
event

 if (window.wAudio) {
 wAudio.mobileAutoEnable = true;
 }

 // Display the main game menu
 game.hideScreens();
 game.showScreen("gamestartscreen");
},

Again, we check for the presence of the wAudio object, and if present, we set its mobileAutoEnable
property to true. Behind the scenes, the wAudio object will wait for the first touch event anywhere on the
document, and then play a muted sound to unlock audio playback on the device automatically. If you run the
game on a mobile device, you should now see that the game audio works as expected on all mobile devices.

Keep in mind that since wAudio uses XMLHttpRequest, the game will now have to be hosted on a web
server to work around the browser’s security feature that prevents access to local files. If you find hosting on a
web server inconvenient during development, you can comment out the wAudio.js script tag inside
index.html, and the code should fall back to using HTML5 audio as before. When you are finished with game
development and ready to release the game, you can uncomment the line to re-enable the wAudio.js library.

If you find this library useful, you can read more about it, as well as find the latest code, at
https://github.com/adityaravishankar/wAudio.js. This library is MIT licensed, so you can feel free to
use it any of your own game projects.

Now that our game works on mobile devices, it’s time to start building the actual levels for our
single-player campaign.

Building the Single-Player Campaign
We will build three levels in our game campaign. Each of the levels will get progressively harder, while
building upon the story from the previous levels. These levels will illustrate the typical types of levels you
would find in an RTS game.

Before we begin, we will first modify our game map to use the non-debug version of the map image as
shown in Listing 11-14.

Listing 11-14.  Removing the Debug Grid (levels.js)

/* Details of the maps used by the levels */
var maps = {
 "plains": {
 "mapImage": "plains.png",

 /* Terrain Data - Auto Generated By level/convert-levels.js */
 "mapGridWidth": 60,
 "mapGridHeight": 40,
 �"mapObstructedTerrain": [[0, 0], [1, 0], [2, 0], [26, 0], [27, 0], /* Extremely huge

array snipped for brevity */ [58, 39], [59, 39]],
 }
};

https://github.com/adityaravishankar/wAudio.js

Chapter 11 ■ Wrapping Up the Single-Player Campaign

331

If you run the game now, you should no longer see the grid on top of the map. Now it’s time to create the
first level of our campaign: Rescue.

The Rescue
The introductory level in our game will be a relatively easy mission so that the player can get comfortable
with moving units around the map and attacking enemy units.

The player will need to navigate across a map populated with easily defeated enemies and then escort
a convoy of transport vehicles back to that player’s starting location. After the mission briefing, we will move
the story line forward using character dialogue that is triggered by timed and conditional triggers.

We will start with a completely fresh level object inside levels.js, as shown in Listing 11-15.

Listing 11-15.  Creating the First Level (levels.js)

{
 "name": "Rescue",
 �"briefing": "In the months since the great war, mankind has fallen into chaos. Billions

are dead with cities in ruins.\nSmall groups of survivors band together to try and
survive as best as they can.\nWe are trying to reach out to all the survivors in this
sector before we join back with the main colony.",

 /* Map Details */
 "mapName": "plains",
 "startX": 36,
 "startY": 0,

 /* Entities to be loaded */
 "requirements": {
 "buildings": ["base"],
 "vehicles": ["transport", "scout-tank", "heavy-tank"],
 "aircraft": [],
 "terrain": []
 },

 /* Entities to be added */
 "items": [
 /* Slightly damaged base */
 { "type": "buildings", "name": "base", "x": 55, "y": 6, "team": "blue", "life": 100 },

 /* Our hero tank */
 �{ "type": "vehicles", "name": "heavy-tank", "uid": -1, "x": 57, "y": 12,

"direction": 4, "team": "blue" },

 /* Two transport vehicles waiting just to be rescued just outside the visible map */
 �{ "type": "vehicles", "name": "transport", "uid": -3, "selectable": false, "x": -3,

"y": 2, "direction": 2, "team": "blue" },
 �{ "type": "vehicles", "name": "transport", "uid": -4, "selectable": false, "x": -3,

"y": 4, "direction": 2, "team": "blue" },

Chapter 11 ■ Wrapping Up the Single-Player Campaign

332

 /* Two damaged enemy scout-tanks patroling the area*/
 �{ "type": "vehicles", "name": "scout-tank", "uid": -2, "x": 40, "y": 20,

"direction": 4, "team": "green", "life": 20, "orders": { "type": "patrol", "from": {
"x": 34, "y": 20 }, "to": { "x": 42, "y": 25 } } },

 �{ "type": "vehicles", "name": "scout-tank", "uid": -5, "x": 14, "y": 0, "direction": 4,
"team": "green", "life": 20, "orders": { "type": "patrol", "from": { "x": 14, "y": 0 },
"to": { "x": 14, "y": 14 } } },

],

 "cash": {
 "blue": 0,
 "green": 0
 },

 /* Conditional and Timed Trigger Events */
 "triggers": [
 {
 "type": "timed", "time": 3000,
 // Tell the player to search for the convoy
 "action": function() {
 �game.showMessage("op", "Commander!! We haven't heard from the last convoy in

over two hours. They should have arrived by now.");
 }
 },
 {
 "type": "timed", "time": 10000,
 // Give player hint to help find the convoy
 "action": function() {
 �game.showMessage("op", "They were last seen in the North West Sector. Could

you investigate?");
 }
 },
 {
 "type": "conditional",
 // Check if either the hero tank or the two convoy vehicles are dead
 "condition": function() {
 return (game.isItemDead(-1) || game.isItemDead(-3) || game.isItemDead(-4));
 },
 // End the mission as failure
 "action": function() {
 singleplayer.endLevel(false);
 }
 },
],
},

The first portion of the level consists of the same basic metadata that we saw in earlier levels. We start
with the mission briefing, which gives the player a little background on the level. We also set the starting
position to the top-right corner of the map. Next we load a few essential items in the requirements array and
set the starting cash balance for both players to 0.

Chapter 11 ■ Wrapping Up the Single-Player Campaign

333

Within the level’s items array, we add a damaged base, a heavy tank that the player will control, two
enemy scout tanks that patrol the area, and two transports. We set UIDs for each of these units so that we can
refer to them from the triggers.

Since this is the first level, we reduce the life of the enemy scout tanks so the player will find it easy to
destroy them. The transports are positioned slightly outside the bounds of the top-left corner of the map so
that they do not become visible to the player until the right time.

Within the triggers array, we define our first few triggers. The first two timed triggers show the player
a message from the operator, asking them to find the missing transport. The third is a conditional trigger
that will end the mission as a failure if either the transports or the heavy tank get destroyed by using the
isItemDead() method.

Next, we will add a few new characters to the characters object inside the game object, as shown in
Listing 11-16.

Listing 11-16.  Adding New Characters (game.js)

// Profile pictures for game characters
characters: {
 "system": {
 "name": "System Control",
 "image": "system.png"
 },
 "op": {
 "name": "Operator",
 "image": "girl1.png"
 },
 "pilot": {
 "name": "Pilot",
 "image": "girl2.png"
 },
 "driver": {
 "name": "Driver",
 "image": "man1.png"
 }
},

■■ Note  These new character images are Creative Commons–licensed artwork found at
http://opengameart.org.

We will also define the isItemDead() method inside game.js, as shown in Listing 11-17.

Listing 11-17.  The isItemDead() Method (game.js)

isItemDead: function(uid) {
 let item = game.getItemByUid(uid);

 return !item || item.lifeCode === "dead";
}

We consider an item dead if we can no longer find it in the game.items array or if its lifeCode property
is set to dead.

http://opengameart.org/

Chapter 11 ■ Wrapping Up the Single-Player Campaign

334

If you run the game so far, you should see the operator giving you your first mission task by asking you
to investigate the situation, as shown in Figure 11-1.

You should be able to select the tank and move it around, with the fog of war slowly clearing up as you
explore the map.

Now, we will introduce the enemy and the convoy by adding a few more triggers to the first level, as
shown in Listing 11-18.

Listing 11-18.  Introducing the Enemy and the Convoy (levels.js)

{
 "type": "conditional",
 // Check if first enemy is dead
 "condition": function() {
 return game.isItemDead(-2);
 },
 // Make a comment about the rebel aggression
 "action": function() {
 �game.showMessage("op", "The rebels have been getting very aggressive lately. I hope

the convoy is safe. Find them and escort them back to the base.");
 }
},
{
 "type": "conditional",
 // Check if hero has reached the top-left quadrant of the map
 "condition": function() {
 let hero = game.getItemByUid(-1);

 return (hero && hero.x < 30 && hero.y < 30);
 },

Figure 11-1.  The first mission task

Chapter 11 ■ Wrapping Up the Single-Player Campaign

335

 // Display distress call from the driver
 "action": function() {
 �game.showMessage("driver", "Can anyone hear us? Our convoy has been pinned down by

rebel tanks. We need help.");
 }
},

In the first conditional trigger, we show a message from the operator discussing the rebels once the first
enemy scout tank is destroyed. In the second conditional trigger, we show a message from the convoy driver
once we enter the top-left corner of the map.

If we run the game now, we should see the operator urging us to hurry after the first fight with the rebels
and the convoy driver calling for help when we approach the convoy location, as shown in Figure 11-2.

Finally, we will add a few triggers to implement rescuing the convoy and completing the mission, as
shown in Listing 11-19.

Listing 11-19.  Rescuing the Convoy and Completing the Mission (levels.js)

{
 "type": "conditional",
 // Check if player is near convoy location
 "condition": function() {
 let hero = game.getItemByUid(-1);

 return (hero && hero.x < 10 && hero.y < 10);
 },

Figure 11-2.  Convoy driver asking for help

Chapter 11 ■ Wrapping Up the Single-Player Campaign

336

 // Show thank you message from driver and tell convoy to follow hero
 "action": function() {
 var hero = game.getItemByUid(-1);

 �game.showMessage("driver", "Thank you. We thought we would never get out of here
alive.");

 game.sendCommand([-3, -4], { type: "guard", to: hero });
 }
},
{
 "type": "conditional",
 // Check if convoy vehicles are near the base
 "condition": function() {
 var transport1 = game.getItemByUid(-3);
 var transport2 = game.getItemByUid(-4);

 �return (transport1 && transport2 && transport1.x > 52 && transport2.x > 52 &&
transport2.y < 18 && transport1.y < 18);

 },
 // End the mission as success
 "action": function() {
 singleplayer.endLevel(true);
 }
},

In the first conditional trigger, we show another message from the driver when the hero tank reaches
the top-left corner of the map. We then command both the transports to guard the tank, which means they
will follow the tank wherever it goes.

In the second conditional trigger, we end the game once both the transports reach the top-right corner
of the map where the base is located.

If you run the game now, you should see the convoy driver thank you for saving the convoy and then
follow you back to the base, as shown in Figure 11-3.

Chapter 11 ■ Wrapping Up the Single-Player Campaign

337

The return journey should be uneventful since all the enemies in this level are dead. Once the two
transports reach the base, the mission will end. You have just completed your first mission in the single-
player campaign.

Now it’s time to make the next level, Assault.

Assault
The second level in our game will be a little more challenging than the first one. This time we will introduce
the player to the idea of micromanaging units to attack the enemy, without having to worry about managing
resources or the production of units.

Players will be provided a steady stream of reinforcements that they will need to use to locate and
capture a small enemy base across the map. The enemy base will keep sending out steady waves of attacking
units to make the mission more challenging.

We will create a new level object inside the singleplayer array of the levels object, as shown in
Listing 11-20. This new level will automatically be loaded once the first mission has been completed.

Listing 11-20.  Creating the Second Level (levels.js)

{
 "name": "Assault",
 �"briefing": "Thanks to the supplies from the convoy, we now have the base up and running.

\n The rebels nearby are proving to be a problem. We need to take them out.
\n First set up the base defenses. Then find and destroy all rebels in the area.
\n The colony will be sending us reinforcements to help us out.",

 /* Map Details */
 "mapName": "plains",
 "startX": 36,
 "startY": 0,

Figure 11-3.  Rescuing the convoy

Chapter 11 ■ Wrapping Up the Single-Player Campaign

338

 /* Entities to be loaded */
 "requirements": {
 "buildings": ["base", "ground-turret", "starport", "harvester"],
 "vehicles": ["transport", "scout-tank", "heavy-tank"],
 "aircraft": ["chopper"],
 "terrain": []
 },

 /* Economy Related*/
 "cash": {
 "blue": 0,
 "green": 0
 },

 /* Entities to be added */
 "items": [
 { "type": "buildings", "name": "base", "uid": -1, "x": 55, "y": 6, "team": "blue" },

 { "type": "buildings", "name": "ground-turret", "x": 53, "y": 17, "team": "blue" },
 �{ "type": "vehicles", "name": "heavy-tank", "uid": -2, "x": 55, "y": 16,

"direction": 4, "team": "blue", "orders": { "type": "sentry" } },

 /* The first wave of attacks*/
 �{ "type": "vehicles", "name": "scout-tank", "x": 55, "y": 36, "direction": 4,

"team": "green", "orders": { "type": "hunt" } },
 �{ "type": "vehicles", "name": "scout-tank", "x": 53, "y": 36, "direction": 4,

"team": "green", "orders": { "type": "hunt" } },

 /* Enemies patroling the area */
 �{ "type": "vehicles", "name": "scout-tank", "x": 5, "y": 5, "direction": 4,

"team": "green", "orders": { "type": "patrol", "from": { "x": 5, "y": 5 },
"to": { "x": 20, "y": 20 } } },

 �{ "type": "vehicles", "name": "scout-tank", "x": 5, "y": 15, "direction": 4,
"team": "green", "orders": { "type": "patrol", "from": { "x": 5, "y": 15 },
"to": { "x": 20, "y": 30 } } },

 �{ "type": "vehicles", "name": "scout-tank", "x": 25, "y": 5, "direction": 4,
"team": "green", "orders": { "type": "patrol", "from": { "x": 25, "y": 5 },
"to": { "x": 25, "y": 20 } } },

 �{ "type": "vehicles", "name": "scout-tank", "x": 35, "y": 5, "direction": 4,
"team": "green", "orders": { "type": "patrol", "from": { "x": 35, "y": 5 },
"to": { "x": 35, "y": 30 } } },

 /* The Evil Rebel Base*/
 { "type": "buildings", "name": "base", "uid": -11, "x": 5, "y": 36, "team": "green" },
 �{ "type": "buildings", "name": "starport", "uid": -12, "x": 1, "y": 30,

"team": "green" },
 �{ "type": "buildings", "name": "starport", "uid": -13, "x": 4, "y": 32,

"team": "green" },

 �{ "type": "buildings", "name": "harvester", "x": 1, "y": 38, "team": "green",
"action": "deploy" },

Chapter 11 ■ Wrapping Up the Single-Player Campaign

339

 { "type": "buildings", "name": "ground-turret", "x": 5, "y": 28, "team": "green" },
 { "type": "buildings", "name": "ground-turret", "x": 7, "y": 33, "team": "green" },
 { "type": "buildings", "name": "ground-turret", "x": 8, "y": 37, "team": "green" },
],

 /* Conditional and Timed Trigger Events */
 "triggers": [
 {
 "type": "timed", "time": 8000,
 // Send in reinforcements to guard the hero tank from the first enemy wave
 "action": function() {
 �game.showMessage("op", "Commander!! Reinforcements have arrived from the

colony.");
 let hero = game.getItemByUid(-2);

 game.add({
 "type": "vehicles",
 "name": "scout-tank",
 "team": "blue",
 "x": 61, "y": 22,
 "orders": { "type": "guard", "to": hero }
 });
 game.add({
 "type": "vehicles",
 "name": "scout-tank",
 "team": "blue",
 "x": 61, "y": 21,
 "orders": { "type": "guard", "to": hero }
 });
 }
 },
 {
 "type": "timed", "time": 25000,
 // Supply extra cash
 "action": function() {
 game.cash["blue"] = 1500;
 �game.showMessage("op", "Commander!! We have enough resources for another

ground turret. Set up the turret to keep the base safe from any more
attacks.");

 }
 },
]
},

The first portion of the level has nearly the same metadata as the previous level. We are reusing the map
from level 1. The only thing that changes is the mission briefing.

Next, we load all the essential items in the requirements array, and set the starting cash balance for
both players to 0.

This time, we add a lot more items in the level’s items array. We start with the base, a heavy tank that
the player will control, and a ground turret to protect the base.

Next, we add two enemy scout tanks that are set to hunt mode so they will attack our base as soon as the
game starts. We then add several more enemy scout tanks that are set to patrol around the map.

Chapter 11 ■ Wrapping Up the Single-Player Campaign

340

Finally, we add an enemy base that has two starports and a refinery. It is also well defended with several
ground turrets and scout tanks patrolling nearby.

The triggers array contains two timed triggers that are set off within the first few seconds of the game.
Within the first trigger, we add two friendly scout tanks to the game and notify the player that reinforcements
have arrived.

In the second trigger, we give players 1,500 credits and tell them they have enough resources to build
one ground turret. Placing this turret will be the only sidebar-related task players will perform in this game.

If you run the game, you will find that the second level starts in a much more exciting way than the first
level. You will see that the base is under attack within the first few seconds and reinforcements arrive in the
nick of time to save you, as shown in Figure 11-4.

Once the attack has been stopped, the operator will notify you that you have enough resources to build
one more turret.

Now we will add a few more triggers to add waves of attacking units and reinforcements, as shown in
Listing 11-21.

Listing 11-21.  Adding Enemy Waves and Reinforcements (levels.js)

{
 "type": "timed", "time": 60000, "repeat": true,
 // Construct a couple of bad guys to hunt the player every time enemy has enough money
 "action": function() {
 if (game.cash["green"] > 1000) {
 game.sendCommand([-12, -13], {
 type: "construct-unit",
 details: { type: "vehicles", name: "scout-tank", orders: { "type": "hunt" } }
 });
 }
 }
},

Figure 11-4.  Saved by reinforcements

Chapter 11 ■ Wrapping Up the Single-Player Campaign

341

{
 "type": "timed", "time": 180000, "repeat": true,
 // Send in more reinforcements every three minutes
 "action": function() {
 game.showMessage("op", "Commander!! More reinforcements have arrived.");
 game.add({
 "type": "vehicles",
 "name": "scout-tank",
 "team": "blue",
 "x": 61, "y": 22,
 "orders": { "type": "move", "to": { "x": 55, "y": 21 } }
 });
 game.add({
 "type": "vehicles",
 "name": "heavy-tank",
 "team": "blue",
 "x": 61, "y": 23,
 "orders": { "type": "move", "to": { "x": 56, "y": 23 } }
 });
 }
},

In the first timed trigger, we check whether the green player has enough money every 60 seconds, and
whenever the green player does, we construct a couple of scout tanks in hunt mode. In the second timed
trigger, we send the hero two reinforcing units every 180 seconds.

Unlike the first level, the enemy has a lot more units and turret defenses. A direct frontal assault on the
enemy base will not work because the player is likely to lose all the units. The player also cannot wait too
long since the enemy will keep sending out waves of enemies every few minutes.

A player’s best strategy will be to make small attacks, chipping away at the opposition and then falling
back to the base for reinforcements until ready to make the final attack.

Finally, we will add triggers to provide the player with air support and to complete the mission, as
shown in Listing 11-22.

Listing 11-22.  Adding Air Support and Completing the Mission (levels.js)

{
 "type": "timed", "time": 600000,
 // Send in air support if the mission hasn't finished after 10 minutes
 "action": function() {
 �game.showMessage("pilot", "Close Air Support en route. Will try to do whatever I can

to help.");
 game.add({
 "type": "aircraft",
 "name": "chopper",
 "team": "blue",
 "selectable": false,
 "x": 61, "y": 22,
 "orders": { "type": "hunt" }
 });
 }
},

Chapter 11 ■ Wrapping Up the Single-Player Campaign

342

{
 "type": "conditional",
 // Check if the player's base has been destroyed
 "condition": function() {
 return game.isItemDead(-1);
 },
 // End level as failure
 "action": function() {
 singleplayer.endLevel(false);
 }
},

{
 "type": "conditional",
 // Check if the enemy base is at least half destroyed
 "condition": function() {
 let enemyBase = game.getItemByUid(-11);

 return (!enemyBase || (enemyBase.life <= enemyBase.hitPoints / 2));
 },
 // End level as success
 "action": function() {
 singleplayer.endLevel(true);
 }
},

In the first timed trigger, we release a friendly chopper in hunt mode, ten minutes after the game starts.
The next two conditional triggers set the conditions for successfully completing or failing the mission.

If we run the game now, we should see the chopper pilot coming in to give us a helping hand after some
time, as shown in Figure 11-5.

Figure 11-5.  Pilot flying in chopper for air support

Chapter 11 ■ Wrapping Up the Single-Player Campaign

343

If you have trouble completing the mission, the extra air support should help. Again, we introduce a
new character, the pilot, who will stay with us for the next mission. With the assistance of the chopper, we
can capture the enemy base and complete the mission so we can go on to the final mission.

Now it’s time to build our final mission: Under Siege.

Under Siege
The final level in our game will be the most challenging. The player will need to constantly build units to
fight off several waves of enemy units.

This time, the player will take over the enemy base captured after the last mission. The player will be
provided some initial supplies to help get started. After that, the player will need to fend off several waves of
units and protect the transport vehicles filled with refugees until the colony reinforcements arrive to help
them.

We will create a new level object inside the singleplayer array of the levels object, as shown in
Listing 11-23. This new level will automatically be loaded once the second mission has been completed.

Listing 11-23.  Creating the Third Level (levels.js)

{
 "name": "Under Siege",
 �"briefing": "Thanks to the attack led by you, we now have control of the rebel base. We

can expect the rebels to try to retaliate.\n The colony is sending in aircraft to help
us evacuate back to the main camp. All we need to do is hang tight until the choppers
get here. \n Luckily, we have some supplies and ammunition to defend ourselves with
until they get here. \n Protect the transports at all costs.",

 /* Map Details */
 "mapName": "plains",
 "startX": 0,
 "startY": 20,

 /* Entities to be loaded */
 "requirements": {
 "buildings": ["base", "ground-turret", "starport", "harvester"],
 "vehicles": ["transport", "scout-tank", "heavy-tank"],
 "aircraft": ["chopper", "wraith"],
 "terrain": []
 },

 /* Economy Related*/
 "cash": {
 "blue": 200,
 "green": 0
 },

 /* Entities to be added */
 "items": [
 /* The Rebel Base, which is now in our hands */
 { "type": "buildings", "name": "base", "uid": -11, "x": 5, "y": 36, "team": "blue" },
 �{ "type": "buildings", "name": "starport", "uid": -12, "x": 1, "y": 28,

"team": "blue" },

Chapter 11 ■ Wrapping Up the Single-Player Campaign

344

 �{ "type": "buildings", "name": "starport", "uid": -13, "x": 4, "y": 32,
"team": "blue" },

 �{ "type": "buildings", "name": "harvester", "x": 1, "y": 38, "team": "blue",
"action": "deploy" },

 { "type": "buildings", "name": "ground-turret", "x": 7, "y": 28, "team": "blue" },
 { "type": "buildings", "name": "ground-turret", "x": 8, "y": 32, "team": "blue" },
 { "type": "buildings", "name": "ground-turret", "x": 11, "y": 37, "team": "blue" },

 /* The transports that need to be protected*/
 �{ "type": "vehicles", "name": "transport", "uid": -1, "x": 2, "y": 33, "team":

"blue", "direction": 2, "selectable": false },
 �{ "type": "vehicles", "name": "transport", "uid": -2, "x": 1, "y": 34, "team":

"blue", "direction": 2, "selectable": false },
 �{ "type": "vehicles", "name": "transport", "uid": -3, "x": 2, "y": 35, "team":

"blue", "direction": 2, "selectable": false },
 �{ "type": "vehicles", "name": "transport", "uid": -4, "x": 1, "y": 36, "team":

"blue", "direction": 2, "selectable": false },

 /* The chopper pilot from the last mission */
 {
 "type": "aircraft",
 "name": "chopper",
 "x": 15, "y": 40,
 "team": "blue",
 "selectable": false,
 "uid": -5,
 �"orders": { "type": "patrol", "from": { "x": 15, "y": 40 }, "to": { "x": 0,

"y": 25 } }
 },

 /* The first wave of attacks*/
 �{ "type": "vehicles", "name": "scout-tank", "x": 15, "y": 16, "direction": 4,

"team": "green", "orders": { "type": "hunt" } },
 �{ "type": "vehicles", "name": "scout-tank", "x": 17, "y": 16, "direction": 4,

"team": "green", "orders": { "type": "hunt" } },

 /* Secret Rebel bases*/
 �{ "type": "buildings", "name": "starport", "uid": -23, "x": 35, "y": 37,

"team": "green" },
 �{ "type": "buildings", "name": "starport", "uid": -24, "x": 33, "y": 37,

"team": "green" },
 �{ "type": "buildings", "name": "harvester", "x": 28, "y": 39, "team": "green",

"action": "deploy" },
 �{ "type": "buildings", "name": "harvester", "x": 30, "y": 39, "team": "green",

"action": "deploy" },

 �{ "type": "buildings", "name": "starport", "uid": -21, "x": 3, "y": 0,
"team": "green" },

 �{ "type": "buildings", "name": "starport", "uid": -22, "x": 6, "y": 0,
"team": "green" },

Chapter 11 ■ Wrapping Up the Single-Player Campaign

345

 �{ "type": "buildings", "name": "harvester", "x": 0, "y": 2, "team": "green",
"action": "deploy" },

 �{ "type": "buildings", "name": "harvester", "x": 0, "y": 4, "team": "green",
"action": "deploy" },

],

 /* Conditional and Timed Trigger Events */
 "triggers": [
 {
 // Check if any of the transports is dead
 "condition": function() {
 �return game.isItemDead(-1) || game.isItemDead(-2) || game.isItemDead(-3) ||

game.isItemDead(-4);
 },
 // End the level as failure
 "action": function() {
 singleplayer.endLevel(false);
 }
 },
 {
 "type": "timed", "time": 5000,
 // Display warning message about attacks
 "action": function() {
 �game.showMessage("op", "Commander!! The rebels have started attacking. We

need to defend the base and protect the transports at all costs.");
 }
 },
],
}

Again, we are reusing the map from level 1. The first portion of the level has nearly the same metadata
as the previous levels. The only thing that changes is the mission briefing.

Next we load all the essential items in the requirements array and set the starting cash balance for both
players.

This time, we add a lot more items to the map. First, we re-create the entire enemy base, but for the
player team. Next, we add several transport vehicles that we will be protecting in this mission and add the
chopper from the last mission on patrol mode to protect the base. Next, we add a few enemy units for a first
wave of attacks. Finally, we define several starports and refineries for two secret enemy bases that will be
attacking the player.

Within the triggers, we define one conditional trigger that ends the mission in case even one of the
transports dies. The second timed trigger just displays a message from the operator.

If we run the game and start the third level, we should see the rebels attacking the base and the
patrolling chopper fending them off, as shown in Figure 11-6.

Chapter 11 ■ Wrapping Up the Single-Player Campaign

346

Now that the first wave of attacks has been fended off, we will build a little drama with a small cinematic
story line within the mission by adding a few creative triggers to the map, as shown in Listing 11-24.

Listing 11-24.  Adding a Little Drama to the Level (levels.js)

{
 "type": "timed", "time": 20000,
 // Add a new transport to the top right of the map
 "action": function() {
 �game.add({ "type": "vehicles", "name": "transport", "x": 57, "y": 3, "team": "blue",

"direction": 4, "selectable": false, "uid": -6 });
 �game.showMessage("driver", "Commander!! The colony has sent some extra supplies. We

are coming in from the North East sector through rebel territory. We could use a
little protection.");

 }
},
{
 "type": "timed", "time": 24000,
 // Make the pilot guard the new transport
 "action": function() {
 game.sendCommand([-5], { "type": "guard", "toUid": -6 });
 game.showMessage("pilot", "Hang tight. I'm on my way.");
 }
},

{
 "type": "timed", "time": 28000,
 // Add some villains to make it interesting
 "action": function() {

Figure 11-6.  Patrolling chopper defending the base

Chapter 11 ■ Wrapping Up the Single-Player Campaign

347

 �game.add({ "type": "vehicles", "name": "scout-tank", "x": 57, "y": 28,
"team": "green", "orders": { "type": "hunt" } });

 �game.add({ "type": "aircraft", "name": "wraith", "x": 55, "y": 33, "team": "green",
"orders": { "type": "sentry" } });

 �game.add({ "type": "aircraft", "name": "wraith", "x": 53, "y": 33, "team": "green",
"orders": { "type": "sentry" } });

 �game.add({ "type": "vehicles", "name": "scout-tank", "x": 35, "y": 25, "life": 20,
"direction": 4, "team": "green", "orders": { "type": "patrol", "from": { "x": 35,
"y": 25 }, "to": { "x": 35, "y": 30 } } });

 }
},
{
 "type": "timed", "time": 48000,
 // Start moving the transport toward the base
 "action": function() {
 game.showMessage("driver", "Thanks! Appreciate the backup. All right. Off we go.");
 game.sendCommand([-6], { "type": "move", "to": { "x": 0, "y": 32 } });
 }
},
{
 "type": "conditional",
 // Check if pilot has been hurt
 "condition": function() {
 let pilot = game.getItemByUid(-5);

 return pilot.life < pilot.hitPoints;
 },
 // Have pilot ask for help
 "action": function() {
 �game.showMessage("pilot", "We are under attack! Need assistance. This doesn't look

good.");
 }
},
{ "type": "conditional",
 // Check if new transport has reached base with supplies
 "condition": function() {
 let driver = game.getItemByUid(-6);

 return driver && driver.x < 2 && driver.y > 30;
 },
 // Give player extra cash "supplies"
 "action": function() {
 �game.showMessage("driver", "The rebels came out of nowhere. There was nothing we

could do. She saved our lives. Hope these supplies were worth it.");
 game.cash["blue"] += 1200;
 }
},

In the first timed trigger, the driver from the first mission asks for assistance while standing at the top-
right corner of the map.

Chapter 11 ■ Wrapping Up the Single-Player Campaign

348

In the second timed trigger, the pilot announces she is on her way. We then command the pilot to guard
the transport.

In the third timed trigger, we also add several enemy units to the map.
In the fourth timed trigger, which will be set off around the time the pilot arrives at the transport’s

location, we command the transport to start moving toward the base.
In the fifth conditional trigger—which is set off if the pilot’s chopper gets attacked—the pilot messages

asking for help.
In the final conditional trigger, which is set off once the transport reaches its destination, the driver talks

about his experience, and the player’s cash resources are increased.
If you run the game now, you should see a fairly interesting scene play out. You will see the pilot going

out to help the driver when he calls for help. The pilot then protects the transport before getting ambushed
by several enemy aircraft. The transport continues to drive toward the base while under enemy fire. Once the
driver reaches the base, he provides the player with some supplies and describes the experience, as shown
in Figure 11-7.

At the end of the whole experience, the player now has some extra cash to start building units.
Even though the story in our game is a little rushed, as you can see, this trigger mechanism can be used

to tell a fairly interesting story. The game framework can also be extended to use a combination of video,
audio, or animated GIFs to make the experience even more immersive.

Now let’s add a trigger to set up the waves of enemy units, as shown in Listing 11-25.

Listing 11-25.  Adding Enemy Waves (levels.js)

{
 "type": "timed", "time": 150000, "repeat": true,
 // Send in waves of enemies every 150 seconds
 "action": function() {
 // Count aircraft and tanks already available to bad guys
 let wraithCount = 0;

Figure 11-7.  Driver describes the ordeal after getting back

Chapter 11 ■ Wrapping Up the Single-Player Campaign

349

 let chopperCount = 0;
 let scoutTankCount = 0;
 let heavyTankCount = 0;

 game.items.forEach(function(item) {
 if (item.team === "green") {
 switch (item.name) {
 case "chopper":
 chopperCount++;
 break;
 case "wraith":
 wraithCount++;
 break;
 case "scout-tank":
 scoutTankCount++;
 break;
 case "heavy-tank":
 heavyTankCount++;
 break;
 }
 }
 }, this);

 �// Make sure enemy has at least two wraiths and two heavy tanks, and use the
remaining starports to build choppers and scouts

 if (wraithCount === 0) {
 �// No wraiths alive. Ask both starports to make wraiths
 �game.sendCommand([-23, -24], { type: "construct-unit", details: { type:

"aircraft", name: "wraith", "orders": { "type": "hunt" } } });
 } else if (wraithCount === 1) {
 // One wraith alive. Ask starports to make one wraith and one chopper
 �game.sendCommand([-23], { type: "construct-unit", details: { type: "aircraft",

name: "wraith", "orders": { "type": "hunt" } } });
 �game.sendCommand([-24], { type: "construct-unit", details: { type: "aircraft",

name: "chopper", "orders": { "type": "hunt" } } });
 } else {
 // Two wraiths alive. Ask both starports to make choppers
 �game.sendCommand([-23, -24], { type: "construct-unit", details: { type:

"aircraft", name: "chopper", "orders": { "type": "hunt" } } });
 }

 if (heavyTankCount === 0) {
 // No heavy-tanks alive. Ask both starports to make heavy-tanks
 �game.sendCommand([-21, -22], { type: "construct-unit", details: { type:

"vehicles", name: "heavy-tank", "orders": { "type": "hunt" } } });
 } else if (heavyTankCount === 1) {
 // One heavy-tank alive. Ask starports to make one heavy-tank and one scout-tank
 �game.sendCommand([-21], { type: "construct-unit", details: { type: "vehicles",

name: "heavy-tank", "orders": { "type": "hunt" } } });
 �game.sendCommand([-22], { type: "construct-unit", details: { type: "vehicles",

name: "scout-tank", "orders": { "type": "hunt" } } });

Chapter 11 ■ Wrapping Up the Single-Player Campaign

350

 } else {
 // Two heavy-tanks alive. Ask both starports to make scout-tanks
 �game.sendCommand([-21, -22], { type: "construct-unit", details: { type:

"vehicles", name: "scout-tank", "orders": { "type": "hunt" } } });
 }
 // Ask any enemy units on the field to attack
 let uids = [];

 game.items.forEach(function(item) {
 if (item.team === "green" && item.canAttack) {
 uids.push(item.uid);
 }
 }, this);

 game.sendCommand(uids, { "type": "hunt" });
 }
},

Unlike the previous level, the enemy waves trigger is a little more intelligent. The timed trigger runs
every 150 seconds. It first counts the number of enemy units of each type. It then decides which units to
build based on what units are available. In this simple example, we first make sure that the green team has
at least two wraiths to control the sky and two heavy tanks to control the ground, and if not, we build them at
the starports. We build choppers and scout tanks on any remaining starports. Finally, we command all green
team units that can attack to go in hunt mode.

If you run the game now, the enemy will send out waves every few minutes. This time, the composition
of the enemy units will vary with each attack. If you don’t plan your defense properly, you can expect to get
overwhelmed by the enemy.

This AI can be improved further by tweaking the enemy composition based on the player’s composition
or selecting the targets to attack intelligently. However, as you can see, even this simple set of instructions
provides us with a fairly challenging enemy.

Now that we have a challenging enemy in the level, we will implement triggers for ending the mission,
as shown in Listing 11-26.

Listing 11-26.  Implementing the Ending (levels.js)

{
 "type": "timed", "time": 480000,
 // After 8 minutes, start preparing for the end
 "action": function() {
 game.showMessage("op", "Commander!! The colony air fleet is just a few minutes away.");
 }
},
{
 "type": "timed", "time": 600000,
 //After 10 minutes send in reinforcements
 "action": function() {
 game.showMessage("op", "Commander!! The colony air fleet is approaching");
 �game.add({ "type": "aircraft", "name": "wraith", "x": -1, "y": 28, "team": "blue",

"orders": { "type": "hunt" } });
 �game.add({ "type": "aircraft", "name": "chopper", "x": -1, "y": 29, "team": "blue",

"orders": { "type": "hunt" } });

Chapter 11 ■ Wrapping Up the Single-Player Campaign

351

 �game.add({ "type": "aircraft", "name": "wraith", "x": -1, "y": 30, "team": "blue",
"orders": { "type": "hunt" } });

 �game.add({ "type": "aircraft", "name": "chopper", "x": -1, "y": 31, "team": "blue",
"orders": { "type": "hunt" } });

 �game.add({ "type": "aircraft", "name": "wraith", "x": -1, "y": 32, "team": "blue",
"orders": { "type": "hunt" } });

 �game.add({ "type": "aircraft", "name": "chopper", "x": -1, "y": 33, "team": "blue",
"orders": { "type": "hunt" } });

 �game.add({ "type": "aircraft", "name": "wraith", "x": -1, "y": 34, "team": "blue",
"orders": { "type": "hunt" } });

 �game.add({ "type": "aircraft", "name": "chopper", "x": -1, "y": 35, "team": "blue",
"orders": { "type": "hunt" } });

 �game.add({ "type": "aircraft", "name": "wraith", "x": -1, "y": 36, "team": "blue",
"orders": { "type": "hunt" } });

 �game.add({ "type": "aircraft", "name": "chopper", "x": -1, "y": 37, "team": "blue",
"orders": { "type": "hunt" } });

 �game.add({ "type": "aircraft", "name": "wraith", "x": -1, "y": 38, "team": "blue",
"orders": { "type": "hunt" } });

 �game.add({ "type": "aircraft", "name": "chopper", "x": -1, "y": 39, "team": "blue",
"orders": { "type": "hunt" } });

 }
},
{
 "type": "timed", "time": 660000,
 // And a minute after the reinforcements arrive, end the level
 "action": function() {
 singleplayer.endLevel(true);
 }
},

The first trigger, eight minutes into the game, is the operator announcing that the colony air fleet has
almost arrived. In the second trigger, two minutes later, we add an entire fleet of friendly aircraft in hunt
mode. Finally, one minute after the fleet arrival we end the level.

The only goal of this mission is for the player to survive and protect the transport until the fleet arrives.
If you play the mission now and survive long enough, you should see the large fleet flying in and destroying
the enemy, as shown in Figure 11-8.

Chapter 11 ■ Wrapping Up the Single-Player Campaign

352

Figure 11-8.  The colony air fleet flying in to save the day

Once the fleet flies in, we have an extra minute to enjoy watching them attack and destroy the enemy
before completing the last level in our single-player campaign.

Summary
In this chapter, we completed the entire single-player campaign of our RTS game. We started by adding
sound to the game. We then added support for mobile devices by listening for touch events and used the
wAudio.js library to switch to Web Audio.

Finally, we used the framework that we built over the past few chapters to develop several levels for the
campaign. We looked at ways to make the levels challenging and interesting by creatively using triggered
events. We also saw how we could weave a complete story into the game using triggered events combined
with the game’s messaging framework.

At this point, you have a complete, working, single-player RTS game that you can either extend or use
for your own ideas. A good way to go forward from here is to try developing your own interesting levels for
this campaign.

After that, if you are ready for something more challenging, you should try building your own game. You
can use this code to prototype new game ideas fairly quickly by just modifying the artwork and adjusting the
settings. If the feedback on your prototype is encouraging, you can then invest more time and effort to build
a complete game.

Of course, while playing against the computer is fun, it can be a lot more fun to challenge your friends.
In the next two chapters, we will look at the HTML5 WebSocket API and how we can use it to build a
multiplayer game so you can play against your friends over the network. So, once you have spent some time
enjoying the single-player game, proceed on to the next chapter so that we can get started with multiplayer.

353© Aditya Ravi Shankar 2017
A. R. Shankar, Pro HTML5 Games, DOI 10.1007/978-1-4842-2910-1_12

CHAPTER 12

Multiplayer with WebSockets

No matter how challenging we make a single-player game, it will always lack the challenge of competing
against another human being. Multiplayer games allow players to either compete against each other or work
cooperatively toward a common goal.

Now that we have a working single-player campaign, we will look at how we can add multiplayer
support to our RTS game by using the HTML5 WebSocket API.

Before we start adding multiplayer to our game, let’s first take a look at some networking basics using
the WebSocket API with Node.js.

Using the WebSocket API with Node.js
The heart of our multiplayer game is the HTML5 WebSocket API. Before WebSockets came along, the only
way browsers could interact with a server was by polling and long-polling the server with a steady stream
of requests. These methods, while they worked, had a very high network latency as well as high-bandwidth
usage, making them unsuitable for real-time multiplayer games.

All of this changed with the arrival of the WebSocket API. The API defines a bidirectional, full-duplex
communications channel over a single TCP socket, providing us with an efficient, low-latency connection
between browser and server.

In simple terms, we can now create a single, persistent connection between a browser and server and
send data back and forth much faster than before. You can read more about the benefits of WebSockets at
www.websocket.org/. Let’s take a look at a simple example of communication between the browser and the
server using WebSockets.

WebSockets on the Browser
Using WebSockets to communicate with a server involves the following steps:

	 1.	 Instantiating a WebSocket object by providing the server URL

	 2.	 Implementing the onopen, onclose, and onerror event handlers as needed

	 3.	 Implementing the onmessage event handler to handle actions when a message is
received from the server

	 4.	 Sending messages to the server by using the send() method

	 5.	 Closing the connection to the server by using the close() method

We can create a simple WebSocket client in a new HTML file, as shown in Listing 12-1. We will place this
new file inside the websocketdemo folder to keep it separate from our game code.

http://www.websocket.org/

Chapter 12 ■ Multiplayer with WebSockets

354

Listing 12-1.  A Simple WebSocket Client (client.html)

<!DOCTYPE html>
<html>
 <head>
 <title>WebSocket Client</title>
 <meta charset="UTF-8">
 <script type="text/javascript">
 var websocket;
 var serverUrl = "ws://localhost:8080";

 function displayMessage(message) {
 document.getElementById("display").value += message + "\n";
 }

 function initWebSocket() {

 // Make sure the browser supports WebSockets
 if (!window.WebSocket) {
 displayMessage("Your browser does not support WebSockets");
 return;
 }

 // Instantiate a new websocket object with the server URL
 websocket = new WebSocket(serverUrl);

 // Set handler for when the socket connection is opened
 websocket.addEventListener("open", function() {
 displayMessage("WebSocket connection opened");
 document.getElementById("sendmessage").disabled = false;
 });

 // Set handler for when the socket connection is closed
 websocket.addEventListener("close", function() {
 displayMessage("WebSocket connection closed");
 document.getElementById("sendmessage").disabled = true;
 });

 // Set handler for when a socket connection error occurs
 websocket.addEventListener("error", function() {
 displayMessage("WebSocket connection error");
 document.getElementById("sendmessage").disabled = true;
 });

 // Set handler for when the socket receives a message
 websocket.addEventListener("message", function(message) {
 displayMessage("Received Message: \"" + message.data + "\"");
 });
 }

Chapter 12 ■ Multiplayer with WebSockets

355

 function sendMessage() {

 if (websocket.readyState === WebSocket.OPEN) {
 var message = document.getElementById("message").value;

 displayMessage("Sending Message: \"" + message + "\"");
 websocket.send(message);
 } else {
 �displayMessage("Cannot send message. The WebSocket connection is not open.");
 document.getElementById("sendmessage").disabled = true;
 }
 }

 </script>
 </head>
 <body onload="initWebSocket()">
 <p>
 <input type="text" placeholder="Enter Message Here" size="40" id="message">
 �<input type="button" value="Send" id="sendmessage" onclick="sendMessage()"

disabled="true">
 </p>
 <p>
 <textarea rows="10" cols="80" id="display"></textarea>
 </p>
 </body>
</html>

The body tag of the HTML file contains a few basic elements: an input box for a message, a button for
sending messages, and a textarea to display all messages.

Within the script tag, we start by declaring a server URL that points to the WebSocket server using the
WebSocket protocol (ws://).

We then declare a simple displayMessage() method that appends a given message to the display
textarea element.

Next we declare the initWebSocket() method that initializes the WebSocket connection and sets up the
event handlers.

Within this method, we first check for the existence of the WebSocket object to verify that the browser
supports WebSockets and, if not, display an appropriate message and exit.

We then initialize the WebSocket object by passing the server URL to the constructor and saving it to the
websocket variable.

Finally, we define handlers for the onopen, onclose, onerror, and onmessage event handlers, where we
display appropriate messages to the user. We also enable the sendmessage button when the connection is
opened and disable it when the connection is closed.

In the sendMessage() method, we check that the connection is open using the readyState property and
then use the send() method to send the contents of the message input box to the server.

Our browser client needs a server that it can communicate with using the WebSocket protocol. There
are already several WebSocket server implementations available for most popular languages, such as
jWebSocket (http://jwebsocket.org/) and Jetty (www.eclipse.org/jetty/) for Java, Socket.io (https://
github.com/socketio/socket.io) and WebSocket-Node (https://github.com/theturtle32/WebSocket-
Node) for Node.js, and WebSocket++ (https://github.com/zaphoyd/websocketpp) for C++.

In this book, we will be using WebSocket-Node for Node.js. We will start by setting up Node.js and
creating an HTTP server and then add WebSocket support to it.

http://jwebsocket.org/
http://www.eclipse.org/jetty/
https://github.com/socketio/socket.io
https://github.com/socketio/socket.io
https://github.com/theturtle32/WebSocket-Node
https://github.com/theturtle32/WebSocket-Node
https://github.com/zaphoyd/websocketpp

Chapter 12 ■ Multiplayer with WebSockets

356

Creating an HTTP Server in Node.js
Node.js (http://nodejs.org/) is a server-side platform consisting of several libraries built on top of
Google’s JavaScript V8 engine. Originally created by Ryan Dahl starting in 2009, Node.js was designed for
easily building fast, scalable network applications. Programs are written in JavaScript using an event-driven,
nonblocking I/O model that is lightweight and efficient. Node.js has gained a lot of popularity in a relatively
short time and is used by a large number of companies, including LinkedIn, Microsoft, and Yahoo.

Before you can start writing Node.js code, you will need to install Node.js on your computer.
Implementations of Node.js are available for most operating systems, such as Windows, Mac OS X, Linux,
and SunOS. For Windows and Mac OS X, the simplest installation method is to run the ready-made
installer files downloadable at http://nodejs.org/download/. Detailed instructions for setting up Node.
js via package manager on your specific operating system are also available at https://nodejs.org/en/
download/package-manager/.

Once Node.js has been set up correctly, you will be able to run Node.js programs from the command
line by calling the node executable and passing the program name as a parameter.

When building a Node.js application, it is considered a good practice to create a package.json file,
which contains important details for the project such as the name, version, and most importantly any
external project dependencies that need to be downloaded to run the project. If Node.js and its package
manager npm have been set up correctly, you should be able to set up this file by running the following
command from the command line:

npm init

The npm utility will then walk you through the process of creating a package.json file by asking you a
few questions about the project, while providing sensible defaults. As you add dependencies to your project,
they can be saved to this file as well, making it easier for other users to build and run your projects. An
example of a package.json file is shown in Listing 12-2.

Listing 12-2.  A Sample package.json File

{
 "name": "websocket-demo",
 "version": "1.0.0",
 "description": "A simple WebSocket server demo",
 "main": "server.js",
 "scripts": {
 "start": "node server.js"
 },
 "author": "Aditya Ravi Shankar",
 "license": "MIT"
}

After setting up the package.json file, we can create a simple HTTP web server inside a new JavaScript
file, as shown in Listing 12-3. We will place this file inside the websocketdemo folder.

http://nodejs.org/
http://nodejs.org/download/
https://nodejs.org/en/download/package-manager/
https://nodejs.org/en/download/package-manager/

Chapter 12 ■ Multiplayer with WebSockets

357

Listing 12-3.  A Simple HTTP Web Server in Node.js (server.js)

// Create an HTTP Server
var http = require("http");

// Create a simple web server that returns the same response for any request
var server = http.createServer(function(request, response) {
 console.log("Received HTTP request for URL", request.url);

 response.writeHead(200, { "Content-Type": "text/plain" });
 response.end("This is a simple node.js HTTP server.");
});

// Listen on port 8080
server.listen(8080, function() {
 console.log("Server has started listening on port 8080");
});

The code for building a simple web server in Node.js is surprisingly small using the Node.js HTTP
library. You can find detailed documentation on this library at https://nodejs.org/api/http.html.

We first refer to the HTTP library using the require() method and save it to the http variable. We then
create an HTTP server by calling the createServer() method and passing it a method that will handle all HTTP
requests. In our case, we send back the same text response for any HTTP request to the server. Finally, we tell the
server to start listening on port 8080, and ask it to show a message on the console once it has started listening.

If you run the code in server.js from the command line and try to access the web server’s URL
(http://localhost:8080) from the browser, you should see the output shown in Figure 12-1.

Figure 12-1.  A simple HTTP server in Node.js

https://nodejs.org/api/http.html

Chapter 12 ■ Multiplayer with WebSockets

358

We have our HTTP server up and running. This server will return the same page no matter what path we
pass after the server name in the URL. This server also does not yet support WebSockets.

Next, we will add WebSocket support to this server by using the WebSocket-Node package.

Creating a WebSocket Server
The first thing you will need to do is install the WebSocket-Node package using the npm command. Detailed
instructions for installation along with sample code is available at https://github.com/theturtle32/
WebSocket-Node.

If Node.js is set up correctly, you should be able to set up WebSocket by running the following
command from the command line:

npm install websocket --save

■■ Tip  In case you have previously installed Node.js and WebSocket-Node, you should ensure that you are
using the latest version by running the npm update command.

The extra save parameter tells npm to add this dependency to the package.json file. As long as you
include package.json with your source code, others can install all the dependencies for the project using
the npm install command.

Once the WebSocket package has been installed, we will add WebSocket support by modifying server.js,
as shown in Listing 12-4.

Listing 12-4.  Implementing a Simple WebSocket Server (server.js)

// Create an HTTP Server
var http = require("http");

// Create a simple web server that returns the same response for any request
var server = http.createServer(function(request, response) {
 console.log("Received HTTP request for URL", request.url);

 response.writeHead(200, { "Content-Type": "text/plain" });
 response.end("This is a simple node.js HTTP server.");
});

// Listen on port 8080
server.listen(8080, function() {
 console.log("Server has started listening on port 8080");
});

// Attach WebSocket server to HTTP server
var WebSocketServer = require("websocket").server;
var wsServer = new WebSocketServer({
 httpServer: server
});

https://github.com/theturtle32/WebSocket-Node
https://github.com/theturtle32/WebSocket-Node

Chapter 12 ■ Multiplayer with WebSockets

359

// Logic to determine whether a specified connection is allowed
function connectionIsAllowed(request) {
 // Check criteria such as request.origin, request.remoteAddress
 // Return false to prevent connection, true to allow connection
 return true;
}

// Handle WebSocket Connection Requests
wsServer.on("request", function(request) {
 // Reject requests based on certain criteria
 if (!connectionIsAllowed(request)) {
 request.reject();
 console.log("WebSocket Connection from " + request.remoteAddress + " rejected.");

 return;
 }

 // Accept Connection
 var websocket = request.accept();

 console.log("WebSocket Connection from " + request.remoteAddress + " accepted.");
 websocket.send("Hi there. You are now connected to the WebSocket Server");

 websocket.on("message", function(message) {
 if (message.type === "utf8") {
 console.log("Received Message: " + message.utf8Data);
 websocket.send("Server received your message: " + message.utf8Data);
 }
 });

 websocket.on("close", function(reasonCode, description) {
 console.log("WebSocket Connection from " + request.remoteAddress + " closed.");
 });
});

The first part of the code where we create the HTTP server remains the same. In the newly added code,
we start by using the require() method to save a reference to the WebSocket server. We then create a new
WebSocketServer object by passing the HTTP server that we created earlier as a configuration option. You can
read about the different WebSocketServer configuration options as well as details on the WebSocketServer API
at https://github.com/theturtle32/WebSocket-Node/blob/master/docs/index.md.

Next we implement the handler for the request event of the server. We first check whether the
connection request should be rejected and, if so, call the reject() method of the request.

We use a method called connectionIsAllowed() to filter connections that need to be rejected. Right
now we approve all connections; however, this method can use information such as the connection
request’s IP address and origin to intelligently filter requests.

If the connection is allowed, we accept the request using the accept() method and save the resulting
WebSocket connection to the websocket variable. This websocket variable is the server-side equivalent of
the websocket variable that we created in the client HTML file earlier.

Once we create the connection, we use the websocket object’s send() method to send the client a
welcome message notifying it that the connection has been made.

https://github.com/theturtle32/WebSocket-Node/blob/master/docs/index.mdAuthor: This paragraph and a few of the following paragraphs were formatted completely in Code Inline, so I turned off Track Changes to remove CI from text that shouldn't be. Please double-check that I left CI intact for the correct terms

Chapter 12 ■ Multiplayer with WebSockets

360

Next we implement the handler for the message event of the websocket object. Every time a message
arrives, we send back a message to the client saying the server just received the message and then log the
message to the console.

■■ Note  The WebSocket API allows for multiple message data types such as UTF8 text, binary, and blob data.
Unlike on the browser, the message object on the server side stores the message data using different properties
(such as utf8Data, binaryData) based on the data type.

Finally, we implement the handler for the close event, where we just log the fact that the connection
was closed.

If you run the server.js code from the command line using the command node server.js, and open
client.html in the browser, you should see the interaction between the client and the server, as shown in
Figure 12-2.

As soon as the WebSocket connection is established, the browser receives a welcome message from
the server. The Send button also gets enabled on the client. If you type a message and click Send, the server
displays the message in the console and sends back a response to the client, which displays the response.
Finally, if you shut down the server using the Ctrl+C key combination, the client displays a message that the
connection has been closed.

We now have a working example of transmitting plain-text messages back and forth between the client
and the server.

Figure 12-2.  Interaction between client and server

Chapter 12 ■ Multiplayer with WebSockets

361

■■ Note  It is possible to reduce the message size and optimize bandwidth usage by using binary data instead
of plain text. However, we will continue to use UTF8 text even in our game implementation to keep the code
simple.

Now that we have looked at the basics of WebSocket communication, it is time to add multiplayer to our
game. We will continue from where we left off at the end of Chapter 11.

The first thing we will build is a multiplayer game lobby.

Building the Multiplayer Game Lobby
Our game lobby will display a list of game rooms. Players can join or leave these rooms from the game lobby
screen. Once two players join a room, the multiplayer game will start, and the two players can compete with
each other.

Defining the Multiplayer Lobby Screen
We will start by adding the HTML code for the multiplayer lobby screen into the gamecontainer div in
index.html, as shown in Listing 12-5.

Listing 12-5.  HTML Code for the Multiplayer Lobby Screen (index.html)

<div id="multiplayerlobbyscreen" class="gamelayer">
 <table id="multiplayergameslist">
 </table>
 <input type="button" id="multiplayerjoin" onclick="multiplayer.join();">
 <input type="button" id="multiplayercancel" onclick="multiplayer.cancel();">
</div>

The layer contains a table element to display the list of game rooms along with two buttons. We will
also add the CSS code for the lobby screen to styles.css, as shown in Listing 12-6.

Listing 12-6.  CSS Code for the Multiplayer Lobby Screen (styles.css)

/* Multiplayer Lobby Screen */

#multiplayerlobbyscreen {
 background: url("images/screens/multiplayerlobby.png") no-repeat center;
 text-align: center;
}

#multiplayergameslist {

 /* Center on the screen */
 position: absolute;
 left: 50%;
 top: 50%;

http://dx.doi.org/10.1007/978-1-4842-2910-1_11

Chapter 12 ■ Multiplayer with WebSockets

362

 transform: translate(-50%, -50%);
 transform-origin: center center;

 width: 394px;
 height: 274px;

 /* Hide scrollbar and border effects */
 overflow: hidden;
 border: none;
 outline: none;

 /* Translucent gray background */
 background: rgba(0, 0, 0, 0.5);

 /* Format Text */
 color: lightblue;
 font-size: 14px;
 font-family: "Courier New", Courier, monospace;
 padding: 20px;

 text-align: left;
}

/* Styles for Join and Cancel buttons */

#multiplayerlobbyscreen input[type="button"] {
 position: relative;
 top: 410px;
 width: 74px;
 height: 26px;
}

#multiplayerjoin {
 left: -225px;
 background-position: -4px -186px;
}

#multiplayerjoin:active, #multiplayerjoin:disabled {
 background-position: -82px -186px;
}

#multiplayercancel {
 background-position: -4px -154px;
 left: 225px;
}

#multiplayercancel:active, #multiplayercancel:disabled {
 background-position: -82px -154px;
}

Chapter 12 ■ Multiplayer with WebSockets

363

/* Styles for different game room statuses */

tr {
 cursor: pointer;
}

.selected {
 background-color: #274466;
}

.running, .starting {
 background-color: #444444;
 color: #666666;
 cursor: not-allowed;
}

.waiting {
 color: lightgreen;
}

.empty {
 color: lightblue;
}

Now that the lobby screen is in place, we will build the code to connect the browser to the server and
populate the games list.

Populating the Games List
We will start by defining a new multiplayer object inside multiplayer.js, as shown in Listing 12-7.

Listing 12-7.  Defining the multiplayer Object (multiplayer.js)

var multiplayer = {

 // Open multiplayer game lobby
 websocket: undefined,
 start: function() {
 if (!window.WebSocket) {
 �game.showMessageBox("Your browser does not support WebSocket. Multiplayer will

not work.");

 return;
 }

 const websocketUrl = "ws://" + (window.location.hostname || "localhost") + ":8080";

 this.websocket = new WebSocket(websocketUrl);

 this.websocket.addEventListener("open", multiplayer.handleWebSocketOpen);
 this.websocket.addEventListener("message", multiplayer.handleWebSocketMessage);

Chapter 12 ■ Multiplayer with WebSockets

364

 this.websocket.addEventListener("close", multiplayer.handleWebSocketConnectionError);
 this.websocket.addEventListener("error", multiplayer.handleWebSocketConnectionError);
 },

 // Display multiplayer lobby screen after connection is opened
 handleWebSocketOpen: function() {
 game.hideScreens();
 game.showScreen("multiplayerlobbyscreen");
 },

 handleWebSocketMessage: function(message) {
 var messageObject = JSON.parse(message.data);

 switch (messageObject.type) {
 case "room-list":
 multiplayer.updateRoomStatus(messageObject.roomList);
 break;
 }
 },

 statusMessages: {
 "starting": "Game Starting",
 "running": "Game in Progress",
 "waiting": "Waiting for second player",
 "empty": "Open"
 },

 selectRow: function(index) {
 var list = document.getElementById("multiplayergameslist");

 // Remove any existing selected rows
 for (let i = list.rows.length - 1; i >= 0; i--) {
 let row = list.rows[i];

 row.classList.remove("selected");
 }

 list.selectedIndex = index;
 let row = list.rows[index];

 list.value = row.cells[0].value;
 row.classList.add("selected");
 },

 updateRoomStatus: function(roomList) {
 var list = document.getElementById("multiplayergameslist");

 // Clear all the old options
 for (let i = list.rows.length - 1; i >= 0; i--) {
 list.deleteRow(i);
 }

Chapter 12 ■ Multiplayer with WebSockets

365

 roomList.forEach(function(status, index) {
 let statusMessage = multiplayer.statusMessages[status];
 let roomId = index + 1;
 let label = "Game " + roomId + ". " + statusMessage;

 // Create a new option for the room
 let row = document.createElement("tr");
 let cell = document.createElement("td");

 cell.innerHTML = label;
 cell.value = roomId;

 row.appendChild(cell);

 row.addEventListener("click", function() {
 if (!list.disabled && !row.disabled) {
 multiplayer.selectRow(index);
 }
 });

 row.className = status;

 list.appendChild(row);

 // Disable rooms that are running or starting
 if (status === "running" || status === "starting") {
 row.disabled = true;
 }

 �// In case multiplayer.roomId is set, select the room with that roomId and
unselect others

 if (multiplayer.roomId === roomId) {
 this.selectRow(index);
 }

 }, this);

 },

};

Inside the multiplayer object, we first define a start() method that tries to initialize a WebSocket
connection to the server and saves the connection object in the websocket variable. We then set the
websocket object’s onmessage event handler to call the handleWebSocketMessage() method and use the
onopen event handler to call the handleWebSocketOpen() method, which will display the lobby screen once
the connection is opened.

An interesting thing to note is how we decide the URL for the WebSocket. If the game is accessed using
a file:// URL, we use localhost for the WebSocket server. If, however, the game is hosted on a web server
and accessed via an http:// URL, we get hostname from the window object. In both cases, we assume that
the server is running on port 8080.

Chapter 12 ■ Multiplayer with WebSockets

366

Next we define the handleWebSocketMessage() method to handle the message data. Instead of passing
strings like we did in our WebSocket example earlier, we are going to be passing complete objects between
the server and the browser by using JSON.parse() and JSON.stringify() to convert between objects and
strings. We start by parsing the message data into a messageObject variable and then use its type property to
decide how to handle the message.

If the type property is set to room-list, we call the updateRoomStatus() method and pass it the
roomList property.

Finally, we define an updateRoomStatus() method that takes an array of status messages and populates
the multiplayergameslist table element. We disable any options that have a status of starting or
running and also set the CSS class of the option to the status. We define a statusMessages object that we use
to map the status codes passed to us by the server into more descriptive messages.

We also define a selectRow() method that allows us to select a specific row within the table, highlight it,
and access the index of the selected row using the selectedIndex attribute, and the room number using the
value attribute. In essence, the table now behaves like a nice-looking HTML select element.

Next, we will add a reference to multiplayer.js inside the head section of index.html, as shown in
Listing 12-8.

Listing 12-8.  Adding Reference to multiplayer.js (index.html)

<script src="js/multiplayer.js" type="text/javascript"></script>

Now that the multiplayer client is in place, we will build our multiplayer server. We will keep our code
inside a server folder to separate it from our client code.

We will start by building a package.json file using npm init and installing the WebSocket package
using npm install websocket --save, just as we did in our WebSocket example.

We will then define our multiplayer WebSocket server inside a new file called server.js, as shown in
Listing 12-9.

Listing 12-9.  Defining the Multiplayer Server (server.js)

// Create an HTTP Server
var http = require("http");

// Create a simple web server that returns the same response for any request
var server = http.createServer(function(request, response) {
 console.log("Received HTTP request for URL", request.url);

 response.writeHead(200, { "Content-Type": "text/plain" });
 response.end("This is a simple node.js HTTP server.");
});

// Listen on port 8080
server.listen(8080, function() {
 console.log("Server has started listening on port 8080");
});

// Attach WebSocket server to HTTP server
var WebSocketServer = require("websocket").server;
var wsServer = new WebSocketServer({
 httpServer: server,
 autoAcceptConnections: false
});

Chapter 12 ■ Multiplayer with WebSockets

367

// Initialize a set of 10 rooms
var gameRooms = [];

for (var i = 0; i < 10; i++) {
 gameRooms.push({ status: "empty", players: [], roomId: i + 1 });
}

// Store all the players currently connected to the server
var players = [];

wsServer.on("request", function(request) {

 var connection = request.accept();

 console.log("Connection from " + request.remoteAddress + " accepted.");

 // Add the player to the players array
 var player = {
 connection: connection,
 latencyTrips: []
 };

 players.push(player);

 // Send a fresh game room status list the first time player connects
 sendRoomList(connection);

 // Handle receiving of messages
 connection.on("message", function(message) {
 if (message.type === "utf8") {
 var clientMessage = JSON.parse(message.utf8Data);

 // Handle message based on message type
 switch (clientMessage.type) {

 }
 }
 });

 // Handle closing of connection
 connection.on("close", function() {
 console.log("Connection from " + request.remoteAddress + " disconnected.");

 // Remove the player from the players array
 var index = players.indexOf(player);

 if (index > -1) {
 players.splice(index, 1);
 }

 });
});

Chapter 12 ■ Multiplayer with WebSockets

368

function getRoomListMessageString() {
 var roomList = [];

 for (var i = 0; i < gameRooms.length; i++) {
 roomList.push(gameRooms[i].status);
 }

 var message = { type: "room-list", roomList: roomList };
 var messageString = JSON.stringify(message);

 return messageString;
}

function sendRoomList(connection) {
 var messageString = getRoomListMessageString();

 connection.send(messageString);
}

We start by defining the HTTP server and the WebSocketServer like we did in our earlier websocketdemo
example.

Next, we define a rooms array and fill it with ten room objects that have a status property set to empty.
Finally, we implement the connection request event handler. We start by creating a player object

for the connection and adding it to the players array. We then call the sendRoomList() method for the
connection.

Next, we implement the message event handler for the connection to parse the message data and respond
based on the type property just like we did on the client. We aren’t processing any message types yet.

Next, we implement the close event handler where we remove the player from the players array once
the connection closes.

Finally, we create a sendRoomList() method that sends a status array inside a message object of type
room-list. This is the same message that we will be parsing on the client side.

If we run the newly created server.js file and then open our game in the browser, we should be able to
click the Multiplayer menu option and arrive at the multiplayer game lobby screen, as shown in Figure 12-3.

Chapter 12 ■ Multiplayer with WebSockets

369

Behind the scenes, the client is creating a socket connection to the server, and the server is sending back
a room-list message to the client, which is then used to populate the list.

You should be able to select any of the game rooms but cannot join or leave these rooms. We will now
implement joining and leaving a game room.

Joining and Leaving a Game Room
We will start by implementing join() and cancel() methods inside the multiplayer object, as shown in
Listing 12-10.

Listing 12-10.  Implementing join() and cancel() (multiplayer.js)

join: function() {
 var selectedRoom = document.getElementById("multiplayergameslist").value;

 if (selectedRoom) {
 // If a room has been selected, try to join the room
 multiplayer.sendWebSocketMessage({ type: "join-room", roomId: selectedRoom });

 // Disable room list and join button
 document.getElementById("multiplayergameslist").disabled = true;
 document.getElementById("multiplayerjoin").disabled = true;
 } else {
 // Otherwise ask player to select a room first
 game.showMessageBox("Please select a game room to join.");
 }
},

Figure 12-3.  The multiplayer game lobby screen

Chapter 12 ■ Multiplayer with WebSockets

370

cancel: function() {
 if (multiplayer.roomId) {
 // If the player is in a room, Cancel will just leave the room
 multiplayer.sendWebSocketMessage({ type: "leave-room", roomId: multiplayer.roomId });
 document.getElementById("multiplayergameslist").disabled = false;
 document.getElementById("multiplayerjoin").disabled = false;

 // Clear roomId and color
 delete multiplayer.roomId;
 delete multiplayer.color;
 } else {
 // If the player is not in a room, leave the multiplayer screen itself
 multiplayer.closeAndExit();
 }
},

closeAndExit: function() {
 // Clear all handlers and close connection
 multiplayer.websocket.removeEventListener("open", multiplayer.handleWebSocketOpen);
 multiplayer.websocket.removeEventListener("message", multiplayer.handleWebSocketMessage);

 multiplayer.websocket.close();

 // Enable room list and Join button
 document.getElementById("multiplayergameslist").disabled = false;
 document.getElementById("multiplayerjoin").disabled = false;

 // Show the starting menu layer
 game.hideScreens();
 game.showScreen("gamestartscreen");
},

sendWebSocketMessage: function(messageObject) {
 var messageString = JSON.stringify(messageObject);

 this.websocket.send(messageString);
},

In the join() method, we check whether a room has been selected and, if it has, send a join-room
WebSocket message to the server with the roomId property, using the sendWebSocketMessage() method. We
then disable the Join button and the games list. If no room is selected, we ask the player to select a room first.

The Cancel button serves two purposes: leaving a joined room or leaving the multiplayer lobby entirely.
Within the cancel() method, we first check whether the player is in a room using the multiplayer.roomId
property. If so, we send a leave-room WebSocket message to the server, delete the roomId and color
properties, and enable the Join button and the games list element. If not, we close the socket connection and
return to the game start screen using the closeAndExit() method.

In the closeAndExit() method, we first clear the websocket object’s event handlers and close the
connection. We then enable the Join button and games list and return to the game start screen.

Chapter 12 ■ Multiplayer with WebSockets

371

Finally, we define a sendWebSocketMessage() method that converts the messageObject into a string
and sends it to the server.

Next, we will modify the server to handle the join-room and leave-room message types by modifying
the message event handler in server.js, as shown in Listing 12-11.

Listing 12-11.  Handling join-room and leave-room Messages (server.js)

// Handle receiving of messages
connection.on("message", function(message) {
 if (message.type === "utf8") {
 var clientMessage = JSON.parse(message.utf8Data);

 // Handle message based on message type
 switch (clientMessage.type) {
 case "join-room":
 joinRoom(player, clientMessage.roomId);
 sendRoomListToEveryone();
 break;

 case "leave-room":
 leaveRoom(player, clientMessage.roomId);
 sendRoomListToEveryone();
 break;
 }
 }
});

When a join-room message comes in, we first call the joinRoom() method and then send the room list
to all players using the sendRoomListToEveryone() method. Similarly, when a leave-room message comes
in, we first call the leaveRoom() method and then call the sendRoomListToEveryone() method.

Next, we will define these three new methods inside server.js, as shown in Listing 12-12.

Listing 12-12.  The joinRoom(), leaveRoom(), and sendRoomListToEveryone() Methods (server.js)

function sendRoomListToEveryone() {
 var messageString = getRoomListMessageString();

 // Notify all connected players of the room status changes
 players.forEach(function(player) {
 player.connection.send(messageString);
 });
}

function joinRoom(player, roomId) {
 var room = gameRooms[roomId - 1];

 console.log("Adding player to room", roomId);
 // Add the player to the room
 room.players.push(player);
 player.room = room;

Chapter 12 ■ Multiplayer with WebSockets

372

 �// Update room status and choose player color (blue for first player, green for the second)
 if (room.players.length === 1) {
 room.status = "waiting";
 player.color = "blue";
 } else if (room.players.length === 2) {
 room.status = "starting";
 player.color = "green";
 }

 // Confirm to player that he was added
 var confirmationMessage = { type: "joined-room", roomId: roomId, color: player.color };
 var confirmationMessageString = JSON.stringify(confirmationMessage);

 player.connection.send(confirmationMessageString);

 return room;
}

function leaveRoom(player, roomId) {
 var room = gameRooms[roomId - 1];

 console.log("Removing player from room", roomId);

 // Remove the player from the players array
 var index = room.players.indexOf(player);

 if (index > -1) {
 room.players.splice(index, 1);
 }

 delete player.room;

 // Update room status
 if (room.players.length === 0) {
 room.status = "empty";
 } else if (room.players.length === 1) {
 room.status = "waiting";
 }
}

In the sendRoomListToEveryone() method, we iterate through all the players in the players array and
send them a room-list message with the list of rooms.

In the joinRoom() method, we first get the room object using roomId and add the player to the room
object’s players array. We then set the room object’s status to waiting or starting depending on how many
players are in the room. We also set the player’s color to blue or green based on whether the player is the
first or second player to join the room. Finally, we send a joined-room message back to the player, with
details of the room ID and player color.

In the leaveRoom() method, we first get the room object using roomId and remove the player from the
room object’s players array. We then set the room object’s status to empty or waiting depending on how
many players are left in the room.

Chapter 12 ■ Multiplayer with WebSockets

373

The next change we will make is to handle the joined-room confirmation message inside multiplayer.js,
as shown in Listing 12-13.

Listing 12-13.  Handling the joined-room Message (multiplayer.js)

handleWebSocketMessage: function(message) {
 var messageObject = JSON.parse(message.data);

 switch (messageObject.type) {
 case "room-list":
 multiplayer.updateRoomStatus(messageObject.roomList);
 break;

 case "joined-room":
 multiplayer.roomId = messageObject.roomId;
 multiplayer.color = messageObject.color;
 break;

 }
},

When a joined-room message comes in, we save the message’s roomId and color properties inside the
multiplayer object.

Finally, we will ensure that a player is removed from a game room if the player is disconnected by
modifying the close event handler on the server, as shown in Listing 12-14.

Listing 12-14.  Handling Player Disconnects (server.js)

// Handle closing of connection
connection.on("close", function() {
 console.log("Connection from " + request.remoteAddress + " disconnected.");

 // Remove the player from the players array
 var index = players.indexOf(player);

 if (index > -1) {
 players.splice(index, 1);
 }

 var room = player.room;

 if (room) {
 // If the player was in a room, remove the player from the room
 leaveRoom(player, room.roomId);

 // Notify everyone about the changes
 sendRoomListToEveryone();
 }
});

Chapter 12 ■ Multiplayer with WebSockets

374

In the newly added code, we check whether the disconnected player is in a room, and if so, we
remove the player from the room using the leaveRoom() method and then notify everyone using the
sendRoomListToEveryone() method.

If we restart the server and run the game in more than one browser window, we should be able to join a
room in one window and see the status change in both the windows, as shown in Figure 12-4.

You will notice that the Join button and the list get disabled once you join a room and the room has a
new status of waiting. If you join the same room on both browsers, the room status changes to starting and
no one else can join the room.

If you click Cancel, you will leave the room, and the Join button will be reenabled. If you click Cancel
again, you will be taken back to the main menu. If you disconnect from the server by closing the browser
window, you will be removed from the room.

We now have a working game lobby where players can join and leave game rooms. Next we will start the
multiplayer game once the players join the game room.

Starting the Multiplayer Game
Our multiplayer game will start once two players join a game room. We will need to tell both the clients to
load the same level. Once the level has loaded on both browsers, we will then start the game. The first thing
we need to do is define a new multiplayer level.

Defining the Multiplayer Level
The multiplayer level, while being similar to the single-player levels, will contain some extra information
such as the starting location for each player and the starting items for each team. We will start by defining a
new level inside the multiplayer array in the levels object, as shown in Listing 12-15.

Figure 12-4.  Room status updated on both browsers when joining a room

Chapter 12 ■ Multiplayer with WebSockets

375

Listing 12-15.  A Multiplayer Level Inside the multiplayer Array (levels.js)

"multiplayer": [
 {
 /* Map Details */
 "mapName": "plains",

 /* Entities to be loaded */
 "requirements": {
 "buildings": ["base", "harvester", "starport", "ground-turret"],
 "vehicles": ["transport", "scout-tank", "heavy-tank", "harvester"],
 "aircraft": ["wraith", "chopper"],
 "terrain": ["oilfield"]
 },

 /* Starting Cash */
 "cash": {
 "blue": 3000,
 "green": 3000
 },

 /* Entities to be added */
 "items": [
 { "type": "terrain", "name": "oilfield", "x": 16, "y": 4, "action": "hint" },
 { "type": "terrain", "name": "oilfield", "x": 34, "y": 12, "action": "hint" },
 { "type": "terrain", "name": "oilfield", "x": 1, "y": 30, "action": "hint" },
 { "type": "terrain", "name": "oilfield", "x": 38, "y": 38, "action": "hint" },
],

 /* Entities for each starting team */
 "teamStartingItems": [
 { "type": "buildings", "name": "base", "x": 0, "y": 0 },
 { "type": "vehicles", "name": "harvester", "x": 4, "y": 0 },
 { "type": "vehicles", "name": "heavy-tank", "x": 4, "y": 2 },
 { "type": "vehicles", "name": "scout-tank", "x": 6, "y": 0 },
 { "type": "vehicles", "name": "scout-tank", "x": 6, "y": 2 },
],

 /* Possible starting spawn locations for the players */
 "spawnLocations": [
 { "x": 48, "y": 36, "startX": 36, "startY": 20 },
 { "x": 3, "y": 36, "startX": 0, "startY": 20 },
 { "x": 36, "y": 3, "startX": 32, "startY": 0 },
 { "x": 3, "y": 3, "startX": 0, "startY": 0 },
],

 /* Conditional and Timed Trigger Events */
 "triggers": [
]

 }

]

Chapter 12 ■ Multiplayer with WebSockets

376

The two new elements that we have introduced in the multiplayer level are the teamStartingItems and
spawnLocations arrays.

The teamStartingItems array contains a list of items that each team will have at the beginning of the
level. The x and y coordinates will be relative to the location where the team is spawned.

The spawnLocations array contains a few spots on the map where each player team can start. Each
object contains the x and y coordinates of the location, as well as the starting panning offset for the location.

Now that we have defined the multiplayer level, we need to load the level once the two players join a
game room.

Loading the Multiplayer Level
When two players join a room, we will tell them both to initialize the level and wait for both to confirm that
the level has been initialized. Once this happens, we will tell them both to start the game.

We will start by adding a few new methods to server.js to handle initializing and starting the game, as
shown in Listing 12-16.

Listing 12-16.  Initializing and Starting the Game (server.js)

function initializeGame(room) {
 console.log("Both players Joined. Initializing game for Room " + room.roomId);

 // Number of players who have loaded the level
 room.playersReady = 0;

 // Load the first multiplayer level for both players
 // This logic can change later to let the players pick a level
 var currentLevel = 0;

 // Randomly select two spawn locations between 0 and 3 for both players
 var spawns = [0, 1, 2, 3];
 �var spawnLocations = { "blue": spawns.splice(Math.floor(Math.random() * spawns.length),

1), "green": spawns.splice(Math.floor(Math.random() * spawns.length), 1) };

 �sendRoomWebSocketMessage(room, { type: "initialize-level", spawnLocations:
spawnLocations, currentLevel: currentLevel });

}

function startGame(room) {
 console.log("Both players are ready. Starting game in room", room.roomId);

 room.status = "running";
 sendRoomListToEveryone();
 // Notify players to start the game
 sendRoomWebSocketMessage(room, { type: "play-game" });

}

function sendRoomWebSocketMessage(room, messageObject) {
 var messageString = JSON.stringify(messageObject);

Chapter 12 ■ Multiplayer with WebSockets

377

 room.players.forEach(function(player) {
 player.connection.send(messageString);
 });
}

In the initializeGame() method, we initialize the playersReady variable to 0, select two random
spawn locations for both the players, and send the location to both the players inside an initialize-level
message using the sendRoomWebSocketMessage() method.

In the startGame() method, we set the room status to running, update every player’s room list, and
finally send both players the play-game message using the sendRoomWebSocketMessage() method.

Finally, in the sendRoomWebSocketMessage() method we iterate through all the players in a room and
send each of them a given message.

Next, we will modify the message event handler in server.js to initialize and start the game, as shown
in Listing 12-17.

Listing 12-17.  Modifying the Message Event Handler (server.js)

// Handle receiving of messages
connection.on("message", function(message) {
 if (message.type === "utf8") {
 var clientMessage = JSON.parse(message.utf8Data);

 // Handle Message based on message type
 switch (clientMessage.type) {
 case "join-room":
 joinRoom(player, clientMessage.roomId);

 sendRoomListToEveryone();

 if (player.room.players.length === 2) {
 // Two players have joined. Initialize the game
 initializeGame(player.room);
 }

 break;

 case "leave-room":
 leaveRoom(player, clientMessage.roomId);
 sendRoomListToEveryone();
 break;

 case "initialized-level":
 player.room.playersReady++;

 if (player.room.playersReady === 2) {
 // Both players are ready, Start the game
 startGame(player.room);
 }

 break;
 }
 }

Chapter 12 ■ Multiplayer with WebSockets

378

We first modify the join-room case to call the initializeGame() method once the second player
has joined. Next, when we receive an initialized-level message from a player, we increment the
playersReady count. Once this count reaches two, we call the startGame() method.

This way, the server waits for two players to join a room, after which it tells both the players to initialize
the level. Once both players confirm that they have initialized the level, the server starts the game.

Next we will add two new methods to the multiplayer object to initialize the multiplayer level and start
the game, as shown in Listing 12-18.

Listing 12-18.  Initializing and Starting the Multiplayer Game (multiplayer.js)

currentLevel: 0,
initLevel: function(spawnLocations) {
 game.type = "multiplayer";
 game.team = multiplayer.color;

 // Load all the items for the level
 var level = levels.multiplayer[multiplayer.currentLevel];

 game.loadLevelData(level);

 fog.initLevel();

 // Initialize multiplayer-related variables
 multiplayer.commands = [[]];
 multiplayer.lastReceivedTick = 0;
 multiplayer.currentTick = 0;

 // Add starting items for both teams at their respective spawn locations
 for (let team in spawnLocations) {
 let spawnIndex = spawnLocations[team];

 for (let i = 0; i < level.teamStartingItems.length; i++) {
 let itemDetails = Object.assign({}, level.teamStartingItems[i]);

 // Position item at spawn location
 itemDetails.x += level.spawnLocations[spawnIndex].x;
 itemDetails.y += level.spawnLocations[spawnIndex].y;
 itemDetails.team = team;

 game.add(itemDetails);
 }
 }

 // Position current player at correct spawn offset location
 let spawnIndex = spawnLocations[game.team];

 game.offsetX = level.spawnLocations[spawnIndex].startX * game.gridSize;
 game.offsetY = level.spawnLocations[spawnIndex].startY * game.gridSize;

 game.createTerrainGrid();

Chapter 12 ■ Multiplayer with WebSockets

379

 // Notify the server once all assets have been loaded
 loader.onload = function() {
 multiplayer.sendWebSocketMessage({ type: "initialized-level" });
 };

},

play: function() {
 // Run the animation loop once
 game.animationLoop();

 game.start();
},

You will notice that the multiplayer initLevel() method is very similar to its single-player counterpart.
Within the method, we start by initializing the game.team and game.type variables. We then load the level
data like we did for single-player. We then initialize a few multiplayer-related variables that we will use later.

Next, we place all the starting items for both the players at their respective spawn locations and set the
offset location for each player based on their spawn locations.

We then load the terrain grid like we did for single-player, and finally we send the initialized-level
message to the server once the level has loaded completely to let the server know that we are ready to start
the game.

In the play() method, we call animationLoop() once, and then call game.start(). Unlike the
single-player version, we do not set an interval to call animationLoop() repeatedly. We will be using a
slightly more complicated method for invoking animationLoop() to ensure that both the players stay in sync
during the game.

Next, we will modify the handleWebSocketMessage() method in multiplayer.js to call these newly
created methods, as shown in Listing 12-19.

Listing 12-19.  Modifying Message Handler to Initialize and Start Game (multiplayer.js)

handleWebSocketMessage: function(message) {
 var messageObject = JSON.parse(message.data);

 switch (messageObject.type) {
 case "room-list":
 multiplayer.updateRoomStatus(messageObject.roomList);
 break;

 case "joined-room":
 multiplayer.roomId = messageObject.roomId;
 multiplayer.color = messageObject.color;
 break;

 case "initialize-level":
 multiplayer.currentLevel = messageObject.currentLevel;
 multiplayer.initLevel(messageObject.spawnLocations);
 break;

Chapter 12 ■ Multiplayer with WebSockets

380

 case "play-game":
 multiplayer.play();
 break;

 }
},

We merely call the initLevel() method when we receive an initialize-level message and call the
playGame() method when we receive a play-game message.

If we restart the server and run the game in two browser windows, we should be able to join the same
room from both browsers and see the game load in both, as shown in Figure 12-5.

Figure 12-5.  Multiplayer game loading in both browser windows

Once the two players join the room, the server automatically assigns both the players different colors
and spawn locations. When the game loads, both players are placed at their respective spawn locations with
the same starting team: two scout tanks, a heavy tank, and a harvester.

We can scroll around the map and even select units; however, we still can’t play the game by giving
these units commands. This is what we will implement in the next chapter.

Summary
In this chapter, we looked at using the WebSocket API with Node.js for a simple client-server architecture.
First we installed Node.js and the WebSocket-Node package and used it to build a simple WebSocket server.
Then we built a simple WebSocket-based browser client and sent messages back and forth between the
browser and the server.

We used this same architecture to implement a multiplayer game lobby with rooms that players could
join and leave. We designed a multiplayer level with spawn locations and starting teams. Finally, we loaded
and started the same level on two different browsers, while placing the two players at different spawn
locations.

In the next chapter, we will implement the actual multiplayer gameplay by passing commands between
the browsers and server. We will use triggers to implement winning and losing a game. Finally, we will add
some finishing touches and wrap up the multiplayer section of our game.

381© Aditya Ravi Shankar 2017
A. R. Shankar, Pro HTML5 Games, DOI 10.1007/978-1-4842-2910-1_13

CHAPTER 13

Multiplayer Gameplay

In the previous chapter, we saw how the WebSocket API could be used with a Node.js server to implement a
simple client-server networking architecture. We used this to build a simple game lobby, so two players can
now join a game room on a server and start a multiplayer game against each other.

In this chapter, we will continue where we left off at the end of Chapter 12 and implement a framework
for the actual multiplayer gameplay using the lock-step networking model. We will look at ways to handle
typical game networking problems such as latency and game synchronization. We will then use the
sendCommand() architecture that we designed in earlier chapters to ensure that the players’ commands are
executed on both the browsers so that the games stay in sync. We will then implement winning and losing in
the game by using triggers like we did in Chapter 11. Finally, we will implement a chat system for our game.

Let’s get started.

The Lock-Step Networking Model
So far, we used the Node.js server to communicate simple messages such as the game lobby status and
joining or leaving a room. These messages were independent of each other, and one player’s messages did
not affect another player. However, when it comes to the gameplay, this communication is going to get a
little more complex.

One of the most important challenges in building a multiplayer game is to ensure that all the players are in
sync. This means every time a change occurs in any of the games (for example, a player issues a move or attack
command), the change is communicated to the other players so that they too can make the same change.

What is even more important is that the action or change occurs at the same moment in both the
players’ machines. If there is a delay in executing these changes, subtle differences in unit positions will
eventually build up, resulting in noticeable divergences between the game states.

For example, a unit that is just half a second late in arriving at an enemy location might avoid an enemy
attack and survive in one browser, while the same unit may have been destroyed on the other player’s
browser. The moment something like this happens, the two players are now playing two completely different
games instead of the same one.

To ensure that both players are completely in sync, we will implement an architecture known as the
lock-step networking model. Both players will start with the same game state. When the player gives a unit
a command, we will send the command to the server instead of executing it immediately. The server will
then send the same command to the connected players with instructions on when to execute the command.
Once the players receive the command, they will execute it at the same time, ensuring that the games stay
synchronized.

The server will achieve this behavior by running its own game timer, at 10 clock ticks per second. When a
player sends the server a command, the server will record the clock tick when it received the command. The
server will then send the command to the players, while specifying the game tick to execute the command.
The players in turn will keep track of the current game tick and execute the command at the right tick.

http://dx.doi.org/10.1007/978-1-4842-2910-1_12
http://dx.doi.org/10.1007/978-1-4842-2910-1_11

Chapter 13 ■ Multiplayer Gameplay

382

One thing to remember is that since the server needs to execute the commands for all the players at the
same time, it will need to wait for the commands from all the players to arrive before stepping ahead to the
next game tick, which is why it’s called lock-step.

This process is further complicated by the fact that network latency can cause communication delays,
with messages sometimes taking several hundred milliseconds to travel between client and server. Our
networking model will need to measure and take this latency into account to ensure smooth gameplay.

We will start by modifying our game code to measure the network latency for each player when the
player first connects to the server.

Measuring Network Latency
For our purposes, we will define the latency as the time taken by a message to travel from the server to the
client. We will measure this latency by sending several messages back and forth between the server and the
client and then taking an average of the time used for each trip.

We will start by defining two new methods for measuring the latency inside server.js, as shown in
Listing 13-1.

Listing 13-1.  Methods for Measuring Network Latency (server.js)

function measureLatencyStart(player) {
 var measurement = { start: Date.now() };

 player.latencyTrips.push(measurement);

 var clientMessage = { type: "latency-ping" };

 player.connection.send(JSON.stringify(clientMessage));
}

// The game clock will run at 1 tick every 100 milliseconds
var gameTimeout = 100;

function measureLatencyEnd(player) {
 // Complete the calculations for the current measurement
 var currentMeasurement = player.latencyTrips[player.latencyTrips.length - 1];

 currentMeasurement.end = Date.now();
 currentMeasurement.roundTrip = currentMeasurement.end - currentMeasurement.start;

 // Calculate the average round trip for all the trips so far
 var totalTime = 0;

 player.latencyTrips.forEach(function (measurement) {
 totalTime += measurement.roundTrip;
 });

 player.averageRoundTrip = totalTime / player.latencyTrips.length;

Chapter 13 ■ Multiplayer Gameplay

383

 // By default game commands are run one tick after they are received by the server
 player.tickLag = 1;

 // If averageRoundTrip is greater than gameTimeout, increase tickLag to adjust for latency
 player.tickLag += Math.round(player.averageRoundTrip / gameTimeout);

 �console.log("Measuring Latency for player. Attempt", player.latencyTrips.length, "-
Average Round Trip:", player.averageRoundTrip + "ms", "Tick Lag:", player.tickLag);

}

In the measureLatencyStart() method, we first create a new measurement object with a start property
set to the current time and add the object to the player.latencyTrips array. We then send a message of
type latency-ping to the player. The player will respond to this message by sending back a message of type
latency-pong.

In the measureLatencyEnd() method, we take the last measurement from the player.latencyTrips
array and set its end property to the current time and its roundTrip property to the difference between the
end and start times.

We then calculate the average round trip for the player by adding up all the roundTrip values and then
dividing the sum by the number of trips.

Finally, we use averageRoundTrip to calculate a tickLag property for the player. This is the number
of ticks after sending a command that the player can be safely expected to have received the command. By
default, tickLag is set to 1, which means we ask all the players to execute the command one tick after we
receive it.

We then adjust tickLag for network latency by estimating the number of extra game ticks the player’s
round-trip time is likely to cause. We use a very simple heuristic for this—dividing the average round-trip
time by the time each tick takes and then rounding this value.

You can play around with this heuristic and fine-tune it for accuracy if you like; however, for the
purposes of smooth gameplay, it is safer to have a high value. If the value is too low, one of the players with
high latency might not receive instructions in time and every other player will have their game freeze until
the slower player catches up. If the value is too high, players will have a higher delay between the time that
they give the command and the time it actually executes, but the game will never freeze.

It has been found that players are able to get used to network lag and automatically adjust for it as long
as the delay is consistent. Any time the lag varies too much or the game freezes unexpectedly, players tend to
get frustrated by it. In my experience, the lag compensation from this simple heuristic is sufficient for a very
decent game experience.

We also use a simple trick to mask this slight game lag. Units when given commands will immediately
acknowledge it with audio feedback, giving the player the illusion that their command was executed
immediately. The actual execution still takes place a few hundred milliseconds later, after it has gone to a
server, been acknowledged, and sent back to the clients; however this delay isn’t as noticeable. Some games
use additional animations to go along with the sound, such as a reloading or charging weapon animation to
let the player know that the command has started execution.

Next we will modify the multiplayer object’s handleWebSocketMessage() method to respond to the
server’s latency-ping message, as shown in Listing 13-2.

Chapter 13 ■ Multiplayer Gameplay

384

Listing 13-2.  Responding to latency-ping with a latency-pong (multiplayer.js)

handleWebSocketMessage: function(message) {
 var messageObject = JSON.parse(message.data);

 switch (messageObject.type) {
 case "room-list":
 multiplayer.updateRoomStatus(messageObject.roomList);
 break;

 case "joined-room":
 multiplayer.roomId = messageObject.roomId;
 multiplayer.color = messageObject.color;
 break;

 case "initialize-level":
 multiplayer.currentLevel = messageObject.currentLevel;
 multiplayer.initLevel(messageObject.spawnLocations);
 break;

 case "play-game":
 multiplayer.play();
 break;

 case "latency-ping":
 multiplayer.sendWebSocketMessage({ type: "latency-pong" });
 break;

 }

When the browser receives a latency-ping message from the server, it immediately sends back a
latency-pong message to the server.

Finally, we will modify the request event handler for the websocket object on the server to start
measuring latency when a player connects and to finish measuring latency when the player sends back a
latency-pong response, as shown in Listing 13-3.

Listing 13-3.  Starting and Finishing Latency Measurement (server.js)

wsServer.on("request", function(request) {

 var connection = request.accept();

 console.log("Connection from " + request.remoteAddress + " accepted.");

 // Add the player to the players array
 var player = {
 connection: connection,
 latencyTrips: []
 };

 players.push(player);

Chapter 13 ■ Multiplayer Gameplay

385

 // Send a fresh game room status list the first time player connects
 sendRoomList(connection);

 // Measure latency for player
 measureLatencyStart(player);

 // Handle receiving of messages
 connection.on("message", function(message) {
 if (message.type === "utf8") {
 var clientMessage = JSON.parse(message.utf8Data);

 // Handle message based on message type
 switch (clientMessage.type) {
 case "join-room":
 joinRoom(player, clientMessage.roomId);
 sendRoomListToEveryone();

 if (player.room.players.length === 2) {
 // Two players have joined. Initialize the game
 initializeGame(player.room);
 }

 break;

 case "leave-room":
 leaveRoom(player, clientMessage.roomId);
 sendRoomListToEveryone();
 break;

 case "initialized-level":
 player.room.playersReady++;

 if (player.room.playersReady === 2) {
 // Both players are ready, Start the game
 startGame(player.room);
 }

 break;

 case "latency-pong":
 measureLatencyEnd(player);

 // Measure latency at least thrice
 if (player.latencyTrips.length < 3) {
 measureLatencyStart(player);
 }
 break;
 }
 }
 });

Chapter 13 ■ Multiplayer Gameplay

386

 // Handle closing of connection
 connection.on("close", function() {
 console.log("Connection from " + request.remoteAddress + " disconnected.");

 // Remove the player from the players array
 var index = players.indexOf(player);

 if (index > -1) {
 players.splice(index, 1);
 }

 });

 // Handle closing of connection
 connection.on("close", function() {
 console.log("Connection from " + request.remoteAddress + " disconnected.");

 // Remove the player from the players array
 var index = players.indexOf(player);

 if (index > -1) {
 players.splice(index, 1);
 }

 var room = player.room;

 if (room) {
 // If the player was in a room, remove the player from the room
 leaveRoom(player, room.roomId);

 // Notify everyone about the changes
 sendRoomListToEveryone();
 }
 });
});

We start by adding a latencyTrips array to the player object and calling measureLatencyStart() once
the player has connected.

We then modify the message handler to handle messages of type latency-pong. When the player
responds to a latency-ping message with a latency-pong message, we call the measureLatencyEnd()
method that we defined earlier. We then check whether we have at least three latency measurements and, if
not, call the measureLatencyStart() method again.

Now, if you start the server and run the game, the server will make three attempts to measure the
latency. You can see the WebSocket communication using the browser’s developer console, as shown in
Figure 13-1.

Chapter 13 ■ Multiplayer Gameplay

387

You will notice that the incoming and outgoing messages have different background colors, making
them easier to distinguish. The client first receives a message of type room-list, which it uses to update
the multiplayer game lobby. It then receives three latency-ping messages and responds by sending three
latency-pong messages. All of this happens within the first few seconds after a connection is established.

Now that we have measured latency for the players, it’s time to implement sending commands.

Sending Commands
Once the game starts, we will maintain a game clock with a game tick number on both the server and the
clients. When a player sends a command to the server, we will send the command back to the clients with
instructions to execute the command at a later tick calculated by using tickLag.

We will start by modifying the multiplayer object’s handleWebSocketMessage() method to receive
commands within a game-tick message, as shown in Listing 13-4.

Listing 13-4.  Receiving Commands in game-tick Message (multiplayer.js)

handleWebSocketMessage: function(message) {
 var messageObject = JSON.parse(message.data);

 switch (messageObject.type) {
 case "room-list":
 multiplayer.updateRoomStatus(messageObject.roomList);
 break;

 case "joined-room":
 multiplayer.roomId = messageObject.roomId;
 multiplayer.color = messageObject.color;
 break;

 case "initialize-level":
 multiplayer.currentLevel = messageObject.currentLevel;
 multiplayer.initLevel(messageObject.spawnLocations);
 break;

Figure 13-1.  Observing the WebSocket communication in the developer console

Chapter 13 ■ Multiplayer Gameplay

388

 case "play-game":
 multiplayer.play();
 break;

 case "latency-ping":
 multiplayer.sendWebSocketMessage({ type: "latency-pong" });
 break;

 case "game-tick":
 multiplayer.lastReceivedTick = messageObject.tick;
 multiplayer.commands[messageObject.tick] = messageObject.commands;
 break;
 }

When we receive a game-tick message from the server containing a list of commands and the tick
number on which the commands need to be executed, we save the commands in the multiplayer.commands
array and then update the lastReceivedTick variable.

Next we will implement the game loop and handle sending and processing commands, as shown in
Listing 13-5.

Listing 13-5.  Handling Commands in the Client (multiplayer.js)

play: function() {
 // Run the animation loop once
 game.animationLoop();

 �// Instead of animationLoop, use tickLoop, which will coordinate with the server to call
animationLoop

 �multiplayer.animationInterval = setInterval(multiplayer.tickLoop, game.animationTimeout);

 game.start();
},

sendCommand: function(uids, details) {
 multiplayer.sentCommandForTick = true;
 �multiplayer.sendWebSocketMessage({ type: "command", uids: uids, details: details,

currentTick: multiplayer.currentTick });
},

tickLoop: function() {
 // If the commands for that tick have been received
 // execute the commands and move on to the next tick
 // otherwise wait for server to catch up
 if (multiplayer.currentTick <= multiplayer.lastReceivedTick) {
 var commands = multiplayer.commands[multiplayer.currentTick];

 if (commands) {
 for (var i = 0; i < commands.length; i++) {
 game.processCommand(commands[i].uids, commands[i].details);
 }
 }

Chapter 13 ■ Multiplayer Gameplay

389

 game.animationLoop();

 �// In case no command was sent for this current tick, send an empty command to the
server

 // So that the server knows that everything is working smoothly
 if (!multiplayer.sentCommandForTick) {
 multiplayer.sendCommand();
 }

 // Move on to the next tick
 multiplayer.currentTick++;
 multiplayer.sentCommandForTick = false;
 }
},

First, in the play() method, we set an interval to call the tickLoop() method every 100 milliseconds
when the game starts.

Next, in the sendCommand() method, we send a message of type command to the server with the details of
the command as well as the UIDs for the command.

The command message also contains the current game tick. This way, the command message can let
the server know what game tick the client is currently on. We also set the sentCommandForTick flag to true.

In the tickLoop() method, we check to see whether we have received commands for the current tick.
In case we have not, we will wait for the commands to arrive from the server. This is how we ensure that all of
the clients act in sync.

If we have received the commands for the tick, we process all the received commands using the
game.processCommand() method. We then call the game.animationLoop() method.

In case we have not sent out any commands so far, we also send an empty command to the server. This
acts as a heartbeat message to let the server know which game tick was completed even when the player
doesn’t issue any commands during the game tick.

Finally, we increment the game tick number and clear the sentCommandForTick flag.
With this in place, the client will coordinate with the server by sending commands with sendCommand()

and receiving them back via game-tick messages. It will then call animationLoop() for each game tick as
long as it has received commands from the server for the game tick. Ideally, if there aren’t any network
delays, tickLoop() will call animationLoop() every 100 milliseconds and never skip a tick.

Now that the client has been modified to send and receive commands, we will modify the server to
handle these commands as well.

We will start by modifying the message event handler on the server to handle messages of type command,
as shown in Listing 13-6.

Listing 13-6.  Handing Messages of Type command (server.js)

// Handle message based on message type
switch (clientMessage.type) {
 case "join-room":
 joinRoom(player, clientMessage.roomId);
 sendRoomListToEveryone();

 if (player.room.players.length === 2) {
 // Two players have joined. Initialize the game
 initializeGame(player.room);
 }

 break;

Chapter 13 ■ Multiplayer Gameplay

390

 case "leave-room":
 leaveRoom(player, clientMessage.roomId);
 sendRoomListToEveryone();
 break;

 case "initialized-level":
 player.room.playersReady++;

 if (player.room.playersReady === 2) {
 // Both players are ready, Start the game
 startGame(player.room);
 }

 break;

 case "latency-pong":
 measureLatencyEnd(player);

 // Measure latency at least thrice
 if (player.latencyTrips.length < 3) {
 measureLatencyStart(player);
 }
 break;

 case "command":
 if (player.room && player.room.status === "running") {
 if (clientMessage.uids) {
 �player.room.commands.push({ uids: clientMessage.uids, details:

clientMessage.details });
 }

 �player.room.lastTickConfirmed[player.color] = clientMessage.currentTick +
player.tickLag;

 }
 break;
}

When the server receives a message of type command, we check whether the message has UIDs. If so, we
store the commands in the room’s commands array. If not, the message is just a heartbeat message with no
command that needs saving. We then update the lastTickConfirmed property for the player.

Finally, we will modify the startGame() method in server.js to start the game loop and run the game,
as shown in Listing 13-7.

Listing 13-7.  Modifying the startGame() Method (server.js)

function startGame(room) {
 console.log("Both players are ready. Starting game in room", room.roomId);

 room.status = "running";
 sendRoomListToEveryone();
 // Notify players to start the game
 sendRoomWebSocketMessage(room, { type: "play-game" });

Chapter 13 ■ Multiplayer Gameplay

391

 room.commands = [];
 room.lastTickConfirmed = { "blue": 0, "green": 0 };
 room.currentTick = 0;

 // Calculate tick lag for room as the max of both players’ tick lags
 var roomTickLag = Math.max(room.players[0].tickLag, room.players[1].tickLag);

 room.interval = setInterval(function() {
 // Confirm that both players have sent in commands for up to present tick
 �if (room.lastTickConfirmed["blue"] >= room.currentTick && room.

lastTickConfirmed["green"] >= room.currentTick) {
 // Commands should be executed after the tick lag
 �sendRoomWebSocketMessage(room, { type: "game-tick", tick: room.currentTick +

roomTickLag, commands: room.commands });
 room.currentTick++;
 room.commands = [];
 } else {
 // One of the players is causing the game to lag. Handle appropriately
 if (room.lastTickConfirmed["blue"] < room.currentTick) {
 �console.log("Room", room.roomId, "Blue is lagging on Tick:", room.

currentTick, "by", room.currentTick - room.lastTickConfirmed["blue"]);
 }

 if (room.lastTickConfirmed["green"] < room.currentTick) {
 �console.log("Room", room.roomId, "Green is lagging on Tick:", room.

currentTick, "by", room.currentTick - room.lastTickConfirmed["green"]);
 }
 }
 }, gameTimeout);
}

When the game starts, we initialize the commands array, currentTick, and the lastTickConfirmed
object for the room. We then calculate the tick lag for the room as the maximum of the tick lag for the two
players and save it in the roomTickLag variable.

Next, we start the timer loop for the game using setInterval(). Within this loop, we first check that
both players have caught up with the server by sending commands for the present game tick.

If so, we send out a game-tick message to the players with a list of commands and ask them to execute
the commands roomTickLag ticks after the current tick. This way, both the players will execute the command
at the same time, even if the message takes a little time to reach the players.

We then clear the commands array on the server and increase the currentTick variable for the room.
If the server hasn’t received confirmation for the current tick from both the clients, we log a message to

the console and do not increment the tick. You can modify this code to check whether the server has been
waiting for a long time and, if so, send the players a notification that the server is experiencing lag because of
a specific player.

If you start the server and run the game on two different browsers, you should be able to command the
units and have your first multiplayer battle, as shown in Figure 13-2.

Chapter 13 ■ Multiplayer Gameplay

392

The multiplayer portion of our game is now working. Right now both the browsers are on the same machine.
You can host the code on a web server to access them from different machines. You can also move the server
code onto a separate Node.js machine and modify the multiplayer object to point to this new server instead
of localhost. If you want to move to a public server, you can find several hosting providers that provide Node.js
support, such as EvenNode (https://www.evennode.com) and Nodejitsu (https://www.nodejitsu.com/).

Now that we have implemented sending commands, we will implement ending the multiplayer game.

Ending the Multiplayer Game
The multiplayer game can be ended in two ways. The first is if one of the players defeats the other
by satisfying the requirements for the level. The other is if a player either closes the browser or gets
disconnected from the server.

Ending the Game When a Player Is Defeated
We will implement ending the game using triggered events just like we did in Chapter 11. This gives us the
flexibility to design different types of multiplayer levels such as capture the flag or death match. We are
limited only by our imagination.

For now, we will make the level end when one side is completely destroyed. We will start by creating a
simple triggered event in the multiplayer level, as shown in Listing 13-8.

Listing 13-8.  Trigger for Ending the Multiplayer Level (levels.js)

/* Conditional and Timed Trigger Events */
"triggers": [
 {
 "type": "conditional",
 // Check if the player has lost all units and buildings
 "condition": function() {
 for (let i = 0; i < game.items.length; i++) {
 let item = game.items[i];

 if (item.team === game.team) {
 // Player still has one item in the game
 return false;
 }
 }

Figure 13-2.  Commanding units in a multiplayer battle

https://www.evennode.com/
https://www.nodejitsu.com/
http://dx.doi.org/10.1007/978-1-4842-2910-1_11

Chapter 13 ■ Multiplayer Gameplay

393

 return true;
 },
 // Player has lost the game
 "action": function() {
 multiplayer.loseGame();
 }
 },
]

In the conditional trigger, we check whether the game.items array contains at least one item belonging
to the player. If the player has no items left, we call the loseGame() method.

Next we will add the loseGame() and endGame() methods to the multiplayer object, as shown in
Listing 13-9.

Listing 13-9.  Adding loseGame() and endgame() Methods (multiplayer.js)

loseGame: function() {
 multiplayer.sendWebSocketMessage({ type: "lose-game" });
},

endGame: function(message) {
 game.running = false;
 clearInterval(multiplayer.animationInterval);

 // Show reason for game ending, and on Okay, exit multiplayer screen
 game.showMessageBox(message, multiplayer.closeAndExit);
},

In the loseGame() method, we send a message of type lose-game to the server to let it know that the
player has lost the game.

In the endGame() method, we clear the game.running flag and the multiplayer.animationInterval
interval. We then show a message box with the reason for ending the game and finally call the multiplayer.
closeAndExit() method once the Okay button on the message box is clicked.

Next, we will modify the server to handle game ending. This will involve handling the lose-game
message from either of the clients, notifying all the clients that the game has ended, and then cleaning up the
game-related variables on the server.

We will start by defining a new endGame() method in server.js, as shown in Listing 13-10.

Listing 13-10.  The Server endGame() Method (server.js)

function endGame(room, message) {
 // Stop the game loop on the server
 clearInterval(room.interval);

 // Tell both players to end game
 sendRoomWebSocketMessage(room, { type: "end-game", message: message });

 // Empty the room
 room.players.forEach(function(player) {
 leaveRoom(player, room.roomId);
 });
 room.status = "empty";

 sendRoomListToEveryone();
}

Chapter 13 ■ Multiplayer Gameplay

394

This method handles clearing up all the game-related properties and notifying the clients that the game
has ended. We start by clearing the interval for the game loop. We then send the end-game message to all the
players in the room with the reason for the game ending provided as a message parameter. We then remove
all the players from the room using the leaveRoom() method and set the room status to empty. Finally, we
send the updated room list to all connected players.

Next, we will modify the message event handler on the server to handle messages of type lose-game, as
shown in Listing 13-11.

Listing 13-11.  Handing Messages of Type lose-game (server.js)

// Handle message based on message type
switch (clientMessage.type) {
 case "join-room":
 joinRoom(player, clientMessage.roomId);
 sendRoomListToEveryone();

 if (player.room.players.length === 2) {
 // Two players have joined. Initialize the game
 initializeGame(player.room);
 }

 break;

 case "leave-room":
 leaveRoom(player, clientMessage.roomId);
 sendRoomListToEveryone();
 break;

 case "initialized-level":
 player.room.playersReady++;

 if (player.room.playersReady === 2) {
 // Both players are ready, Start the game
 startGame(player.room);
 }

 break;

 case "latency-pong":
 measureLatencyEnd(player);

 // Measure latency at least thrice
 if (player.latencyTrips.length < 3) {
 measureLatencyStart(player);
 }
 break;

 case "command":
 if (player.room && player.room.status === "running") {

Chapter 13 ■ Multiplayer Gameplay

395

 if (clientMessage.uids) {
 �player.room.commands.push({ uids: clientMessage.uids, details:

clientMessage.details });
 }

 �player.room.lastTickConfirmed[player.color] = clientMessage.currentTick +
player.tickLag;

 }
 break;

 case "lose-game":
 if (player.room && player.room.status === "running") {
 endGame(player.room, "The " + player.color + " team has been defeated.");
 }
 break;
}

When we receive a lose-game message from one of the players, we call the endGame() method with the
reason for ending the game.

Finally, we will modify the multiplayer object’s handleWebSocketMessage() method to receive
messages of type end-game, as shown in Listing 13-12.

Listing 13-12.  Receiving Messages of Type end-game (multiplayer.js)

handleWebSocketMessage: function(message) {
 var messageObject = JSON.parse(message.data);

 switch (messageObject.type) {
 case "room-list":
 multiplayer.updateRoomStatus(messageObject.roomList);
 break;

 case "joined-room":
 multiplayer.roomId = messageObject.roomId;
 multiplayer.color = messageObject.color;
 break;

 case "initialize-level":
 multiplayer.currentLevel = messageObject.currentLevel;
 multiplayer.initLevel(messageObject.spawnLocations);
 break;

 case "play-game":
 multiplayer.play();
 break;

 case "latency-ping":
 multiplayer.sendWebSocketMessage({ type: "latency-pong" });
 break;

Chapter 13 ■ Multiplayer Gameplay

396

 case "game-tick":
 multiplayer.lastReceivedTick = messageObject.tick;
 multiplayer.commands[messageObject.tick] = messageObject.commands;
 break;

 case "end-game":
 multiplayer.endGame(messageObject.message);
 break;
 }
},

When the client receives an end-game message, we call multiplayer.endGame() with the reason
provided in the message.

If you start the server and run the game, you should see a message box when one of the players destroys
all of the other player’s units and buildings, as shown in Figure 13-3.

If you click the Okay button, you should be taken back to the main game menu. You will notice that
when a game ends, the lobby automatically shows the room as empty so that the next set of players can join
the room.

We will also need to end the game whenever one of the players closes the browser or is disconnected
from the server, since the game cannot continue with just one player.

Ending the Game When a Player Is Disconnected
Whenever a player disconnects from the server while playing a game, it will trigger a WebSocket close event
on the server. We will handle this disconnect by modifying the close event handler on the server, as shown in
Listing 13-13.

Figure 13-3.  Game ends when one player defeats the other

Chapter 13 ■ Multiplayer Gameplay

397

Listing 13-13.  Handling Player Disconnects (server.js)

// Handle closing of connection
connection.on("close", function() {
 console.log("Connection from " + request.remoteAddress + " disconnected.");

 // Remove the player from the players array
 var index = players.indexOf(player);

 if (index > -1) {
 players.splice(index, 1);
 }

 var room = player.room;

 if (room) {
 var status = room.status;

 // If the player was in a room, remove the player from the room
 leaveRoom(player, room.roomId);

 // If the game had started or was already running, end the game and notify other player
 if (status === "running" || status === "starting") {
 var message = "The " + player.color + " player has been disconnected.";

 endGame(room, message);
 }

 // Notify everyone about the changes
 sendRoomListToEveryone();
 }

});

If the player is in a room, we remove the player from the room and send the updated room list to
everyone. If the game was running, we also call the endgame() method with the reason that the player has
disconnected.

If you start the server and begin a multiplayer game, you should see a disconnect message when either
of the players gets disconnected, as shown in Figure 13-4.

Chapter 13 ■ Multiplayer Gameplay

398

Clicking the Okay button will take you back to the main menu screen. Again, the lobby automatically
shows the room as empty so that the next set of players can join the room.

The last thing we will handle is ending the game if a connection error occurs and the connection is lost.

Ending the Game When a Connection Is Lost
Whenever the client gets disconnected from the server or an error occurs, it will trigger either an error event
or a close event on the client. We will handle this by implementing these event handlers within the start()
method of the multiplayer object, as shown in Listing 13-14.

Listing 13-14.  Handling Connection Errors (multiplayer.js)

start: function() {
 if (!window.WebSocket) {
 �game.showMessageBox("Your browser does not support WebSocket. Multiplayer will not

work.");

 return;
 }

 const websocketUrl = "ws://" + (window.location.hostname || "localhost") + ":8080";

 this.websocket = new WebSocket(websocketUrl);

 this.websocket.addEventListener("open", multiplayer.handleWebSocketOpen);
 this.websocket.addEventListener("message", multiplayer.handleWebSocketMessage);

 this.websocket.addEventListener("close", multiplayer.handleWebSocketConnectionError);
 this.websocket.addEventListener("error", multiplayer.handleWebSocketConnectionError);
},

Figure 13-4.  Message shown when a player gets disconnected

Chapter 13 ■ Multiplayer Gameplay

399

// Display an error message and end game in case of a connection error
handleWebSocketConnectionError: function() {
 multiplayer.endGame("Error connecting to multiplayer server.");
},

For both the events, we call the endGame() method with an error message. We will also remove these
handlers when we exit multiplayer by modifying the closeAndExit() method, as shown in Listing 13-15.

Listing 13-15.  Clearing Error Handlers (multiplayer.js)

closeAndExit: function() {
 // Clear all handlers and close connection
 multiplayer.websocket.removeEventListener("open", multiplayer.handleWebSocketOpen);
 multiplayer.websocket.removeEventListener("message", multiplayer.handleWebSocketMessage);

 �multiplayer.websocket.removeEventListener("close", multiplayer.
handleWebSocketConnectionError);

 �multiplayer.websocket.removeEventListener("error", multiplayer.
handleWebSocketConnectionError);

 multiplayer.websocket.close();

 // Enable room list and join button
 document.getElementById("multiplayergameslist").disabled = false;
 document.getElementById("multiplayerjoin").disabled = false;

 // Show the starting menu layer
 game.hideScreens();
 game.showScreen("gamestartscreen");
},

If you run the game now and shut down the server to cause a server disconnect, you should see an error
message, as shown in Figure 13-5.

Chapter 13 ■ Multiplayer Gameplay

400

If there is a problem with the connection while the player is either in the lobby or playing a game, the
browser will now display this error message and then return to the main game screen.

A more robust implementation would include trying to reconnect to the server within a timeout period
and then resuming the game. We can achieve this by passing a reconnect message with a unique player ID
to the server and handling the message appropriately on the server side. However, we will stick with this
simpler implementation for our game.

Before we wrap up the multiplayer portion of our game, we will implement one last feature in our game:
player chat.

Implementing Player Chat
The first thing that we need to do to enable chat is create an input area to enter these chat messages, and
style it appropriately.

We will start by defining an input box for chat messages inside the gameinterfacescreen layer in
index.html, as shown in Listing 13-16.

Listing 13-16.  Adding Input Box for Chat Message (index.html)

<div id="gameinterfacescreen" class="gamelayer">

 �
 <div id="gamemessages"></div>
 <div id="callerpicture"></div>
 <div id="cash"></div>
 <div id="sidebarbuttons">
 <input type="button" id="starport" title = "Starport">
 <input type="button" id="ground-turret" title = "Turret">
 <input type="button" id="harvester" title = "Harvester">
 <input type="button" id="scout-tank" title = "Scout Tank">

Figure 13-5.  Message shown in case of a connection error

Chapter 13 ■ Multiplayer Gameplay

401

 <input type="button" id="heavy-tank" title = "Heavy Tank">
 <input type="button" id="chopper" title = "Copter">
 <input type="button" id="wraith" title = "Wraith">
 </div>
 <canvas id="gamebackgroundcanvas"></canvas>
 <canvas id="gameforegroundcanvas"></canvas>
 <input type="text" id="chatmessage">
</div>

Next, we will add some extra styles for the chat message input to styles.css, as shown in Listing 13-17.

Listing 13-17.  Styles for Chat Message Input Box (styles.css)

#chatmessage {
 position: absolute;
 top: 460px;

 background: rgba(0, 255, 0, 0.1);

 color: green;

 border: 1px solid green;

 /* Hide chat input by default */
 display: none;
}

#chatmessage:focus {
 outline: none;
}

Finally, we will modify the resize() method of the game object to resize the chat input whenever the
window is resized, as shown in Listing 13-18.

Listing 13-18.  Resizing the Input for Chat Messages (game.js)

resize: function() {

 var maxWidth = window.innerWidth;
 var maxHeight = window.innerHeight;

 var scale = Math.min(maxWidth / 640, maxHeight / 480);

 var gameContainer = document.getElementById("gamecontainer");

 gameContainer.style.transform = "translate(-50%, -50%) " + "scale(" + scale + ")";

 // What is the maximum width we can set based on the current scale
 // Clamp the value between 640 and 1024
 var width = Math.max(640, Math.min(1024, maxWidth / scale));

Chapter 13 ■ Multiplayer Gameplay

402

 // Apply this new width to game container and game canvas
 gameContainer.style.width = width + "px";

 // Subtract 160px for the sidebar
 var canvasWidth = width - 160;

 // Set a flag in case the canvas was resized
 if (game.canvasWidth !== canvasWidth) {
 game.canvasWidth = canvasWidth;
 game.canvasResized = true;
 }

 // Set the chatmessage input to the same value
 document.getElementById("chatmessage").style.width = canvasWidth + "px";

 game.scale = scale;
},

Now that we have set up the chat input box, we need to allow the player to enter chat messages and
send them to the server. We will start by adding an event handler to listen for keydown events so we can
handle keyboard input for chat messages, as shown in Listing 13-19.

Listing 13-19.  Handling Keyboard Input for Chat Messages (game.js)

handleKeyboardInput: function(ev) {
 // Chatting only allowed in multiplayer when game is running
 if (game.type === "multiplayer" && game.running) {

 let chatMessage = document.getElementById("chatmessage");
 // Invisible elements have a null offsetParent
 let chatInputVisible = chatMessage.offsetParent !== null;

 if (ev.key === "Enter") {
 if (chatInputVisible) {
 // Send any text in the message input
 let message = chatMessage.value.trim();

 if (message) {
 multiplayer.sendChatMessage(message);
 }

 // Clear the input and hide it
 chatMessage.value = "";
 chatMessage.style.display = "none";
 } else {
 // Show the input and set focus on it
 chatMessage.style.display = "inline";
 chatMessage.focus();
 }
 } else if (ev.key === "Escape") {

Chapter 13 ■ Multiplayer Gameplay

403

 if (chatInputVisible) {
 // Clear the input and hide it
 chatMessage.value = "";
 chatMessage.style.display = "none";
 }
 }
 }
},

Whenever a key is pressed, we first confirm that a multiplayer game is running and exit if it is not.
If the Enter key is pressed, we check whether the chatmessage input box is visible. We then either display
the input box if it is not already visible, or send the contents of the message box to the server using the
sendChatMessage() method if it is already visible. We then clear the contents of the input box and hide it.
If the Escape key is pressed while the input box is visible, we clear the contents of the input box and hide it.

This way, the player can press Enter to start chatting, type a message, and press Enter again to send the
message. If the player starts typing a message and then decides not to send it, pressing Escape will clear the
message.

We will need to add an event listener to listen for the keydown event and call the
handleKeyboardInput() method, as shown in Listing 13-20.

Listing 13-20.  Listening for keydown Events (game.js)

// Initialize game once page has fully loaded
window.addEventListener("load", function() {
 game.resize();
 game.init();
}, false);

window.addEventListener("resize", function() {
 game.resize();
});

window.addEventListener("keydown", game.handleKeyboardInput);

Finally, we will define a sendChatMessage() method inside the multiplayer object as shown in
Listing 13-21.

Listing 13-21.  Handing Messages of Type chat (multiplayer.js)

sendChatMessage: function(message) {
 multiplayer.sendWebSocketMessage({ type: "chat", message: message });
}

The sendChatMessage() method sends the player’s message to the server with type set to chat.
Now that the client can send chat messages to the server, we will modify the message event handler on

the server to handle messages of type chat, as shown in Listing 13-22.

Chapter 13 ■ Multiplayer Gameplay

404

Listing 13-22.  Handing Messages of Type chat (server.js)

// Handle message based on message type
switch (clientMessage.type) {
 case "join-room":
 joinRoom(player, clientMessage.roomId);
 sendRoomListToEveryone();

 if (player.room.players.length === 2) {
 // Two players have joined. Initialize the game
 initializeGame(player.room);
 }

 break;

 case "leave-room":
 leaveRoom(player, clientMessage.roomId);
 sendRoomListToEveryone();
 break;

 case "initialized-level":
 player.room.playersReady++;

 if (player.room.playersReady === 2) {
 // Both players are ready, Start the game
 startGame(player.room);
 }

 break;

 case "latency-pong":
 measureLatencyEnd(player);

 // Measure latency at least thrice
 if (player.latencyTrips.length < 3) {
 measureLatencyStart(player);
 }
 break;

 case "command":
 if (player.room && player.room.status === "running") {
 if (clientMessage.uids) {
 �player.room.commands.push({ uids: clientMessage.uids, details:

clientMessage.details });
 }

 �player.room.lastTickConfirmed[player.color] = clientMessage.currentTick +
player.tickLag;

 }
 break;

Chapter 13 ■ Multiplayer Gameplay

405

 case "lose-game":
 if (player.room && player.room.status === "running") {
 endGame(player.room, "The " + player.color + " team has been defeated.");
 }
 break;

 case "chat":
 if (player.room && player.room.status === "running") {
 // Sanitize the message to remove any HTML tags
 var cleanedMessage = clientMessage.message.replace(/[<>]/g, "");

 sen�dRoomWebSocketMessage(player.room, { type: "chat", from: player.color,
message: cleanedMessage });

 }
 break;
}

When we receive a message of type chat from a player, we send back a message of type chat to all the
players in the room, with a from property set to the player’s color and a message property set to the message
we just received.

Ideally, you should validate the chat message so that a player cannot send malicious HTML and script
tags inside chat messages. For now, we use a simple regular expression to strip out any HTML tags from the
message before sending it back.

Finally, we will modify the multiplayer object’s handleWebSocketMessage() method to receive
messages of type chat, as shown in Listing 13-23.

Listing 13-23.  Receiving Messages of Type chat (multiplayer.js)

handleWebSocketMessage: function(message) {
 var messageObject = JSON.parse(message.data);

 switch (messageObject.type) {
 case "room-list":
 multiplayer.updateRoomStatus(messageObject.roomList);
 break;

 case "joined-room":
 multiplayer.roomId = messageObject.roomId;
 multiplayer.color = messageObject.color;
 break;

 case "initialize-level":
 multiplayer.currentLevel = messageObject.currentLevel;
 multiplayer.initLevel(messageObject.spawnLocations);
 break;

 case "play-game":
 multiplayer.play();
 break;

Chapter 13 ■ Multiplayer Gameplay

406

 case "latency-ping":
 multiplayer.sendWebSocketMessage({ type: "latency-pong" });
 break;

 case "game-tick":
 multiplayer.lastReceivedTick = messageObject.tick;
 multiplayer.commands[messageObject.tick] = messageObject.commands;
 break;

 case "end-game":
 multiplayer.endGame(messageObject.message);
 break;

 case "chat":
 game.showMessage(messageObject.from, messageObject.message);
 break;
 }
},

If you start the server and play a multiplayer game now, you should be able to send chat messages from
one player to the other, as shown in Figure 13-6.

We now have a working player chat for multiplayer. With this last change, we can consider our
multiplayer game wrapped up.

Summary
We have come a long way over the course of this book. We started by looking at the basic elements of HTML5
needed to build games, such as drawing and animating on the canvas, playing audio, and using sprite sheets.

We then used these basics to build a Box2D physics engine–based game called Froot Wars. In the
process, we looked at creating splash screens, asset loaders, and customizable levels. We then examined the
building blocks of the Box2D engine and integrated Box2D with the game to create realistic-looking physics.
We then added sound effects and background music to create a very polished game. Finally, we looked at
converting a game for mobile devices by making it responsive to different resolutions and aspect ratios,
handle touch events, and use WebAudio.

Figure 13-6.  Chat between players during multiplayer

Chapter 13 ■ Multiplayer Gameplay

407

After that, we built a complete real-time strategy game called Last Colony. Building upon ideas from the
previous chapters, we first created a single-player game world with large pannable levels and different types
of entities. We added intelligent movement using pathfinding and steering, combat using states and triggers,
and even a game economy. We then saw how this framework could be used to tell a compelling story over
several levels of a single-player campaign.

Finally, over the last two chapters, we used Node.js and WebSockets to add multiplayer support to our
game. We started by looking at the basics of WebSocket communication and using it to create a multiplayer
game lobby.

We then implemented a framework for multiplayer gameplay using the lock-step networking model,
which also compensated for network latency while maintaining game synchronization. We handled
connection errors as well as game completion using triggered events. Finally, we built a chat system to send
messages between the players.

In the final chapter of this book, I’d like to share some of the resources, tools, and processes that I have
used over the years to build a fairly large variety of games. Incorporating some of these ideas into your own
game development should help in making your future game development faster and streamlined, so you can
feel comfortable taking on larger and more ambitious projects.

409© Aditya Ravi Shankar 2017
A. R. Shankar, Pro HTML5 Games, DOI 10.1007/978-1-4842-2910-1_14

CHAPTER 14

Essential Game Developer Toolkit

Over the past few years, I have worked on a large number and variety of game projects for clients, including
endless runner games, racing games, base-defense games, arcade games, puzzle games, educational games,
and different types of multiplayer games.

During this time, I discovered two very important things about game development. The first is that
most games consist of large portions of similar, repetitive code, and a lot of games can be developed very
quickly by reusing common components. The second thing that I realized is that the more I automated and
streamlined my workflow and eliminated repetitive and boring tasks, the easier it became to take on larger
and much more challenging game projects.

I specifically chose the two games that I did for this book because together they cover a set of
components and techniques that can be reused in a very large variety of games. With some tweaks, you
should be able to create most typical smaller mobile games such as puzzle, physics, and tower defense
games as well as larger projects such as role-playing games.

While the actual gameplay may change, the basic infrastructure that you need for common tasks such
as loading assets, selecting and loading levels, animating and commanding entities, playing sound, and
displaying scores should remain the same across most games that you develop. Even the multiplayer server
design should remain similar for a large variety of multiplayer games.

You should be able to reuse large portions of code from these sample games to get you started on your
projects, so you can focus on the creation and design aspects instead of getting bogged down in writing the
basic infrastructure each time you make a new game. You will also find that as you keep making games,
creating newer games will become much more easy and effortless, as you start developing an intuition for
which building blocks to combine, and learn to reuse these blocks instead of trying to create everything from
scratch each time.

However, there are a few simple things that you can do to make your game development even faster, as
discussed in this chapter:

•	 Use a code editor specifically customized for web and game development

•	 Write clean and modular code for easier debugging, testing, and reuse across
projects

•	 Set up a development workflow to automate any repetitive tasks with a decent
set of tools

Chapter 14 ■ Essential Game Developer Toolkit

410

Customizing Your Code Editor
As a game developer, your code editor is where you will be spending a lot of your time. Choosing the right
editor and customizing it for your needs is essential if you don’t want to waste a significant portion of this
time struggling with your editor to do common repetitive tasks.

Over the years, I have used a variety of code editors, and at any given time you will find at least a dozen
extremely popular code editors with comparable features, for any given language.

My current favorite editor is Visual Studio Code (https://code.visualstudio.com/), a free and
open source code editor developed by Microsoft for Windows, macOS, and Linux. Even though VS Code
has been around only since 2015, it has already developed a very large fan following because of its speed,
customizability, plug-in support, and steadily growing list of features.

The editor is completely open source and has been written largely in JavaScript, making it easy to
modify and extend. As a result, it also has a large community that continues to develop new extensions and
features for it.

Some of my favorite features, and the reason that I recommend Visual Studio Code, are

•	 Syntax highlighting and code completion

•	 Custom extensions

•	 Git integration

•	 Integrated debugging

Syntax Highlighting and Code Completion
Syntax highlighting is one of those features that everyone now expects in any decent code editor. It improves
the readability of the code by allowing you to easily distinguish between objects, methods, comments,
and quoted text using color, making it easier to read, understand, and navigate the code. In fact, I consider
this feature so essential that I would recommend dropping your current editor if it doesn’t support syntax
highlighting.

Another feature that VS Code has is IntelliSense, the ability to provide intelligent code completion,
parameter information, and member lists. This feature lets you easily see the member functions of an
object as you type, making it very easy to find the method or property you need, see any parameters for the
methods, and reduce unnecessary typing (see Figure 14-1).

https://code.visualstudio.com/

Chapter 14 ■ Essential Game Developer Toolkit

411

One advantage of working with an editor that supports code completion is that you can start using
descriptive names for all your methods and variables, since you no longer need to worry about typing the
variable again and again. This makes your code much more readable, and easier to maintain. Another
advantage is that you get hints when you don’t remember the exact name of a variable or parameter, so you
don’t have to look up the API each and every time.

Figure 14-1.  Syntax highlighting and code completion in action

Chapter 14 ■ Essential Game Developer Toolkit

412

Figure 14-2.  Finding and installing extensions

Custom Extensions
Visual Studio Code has a complete API for writing your own custom extensions in JavaScript. You can read
more about the extensions API at https://code.visualstudio.com/docs/extensions/overview.

These extensions allow you to add all kinds of features to the editor. There are already extensions for
verifying that your code is well written and error free, for automatically formatting your code, and even one
to automatically add browser vendor prefixes to your CSS code. All of these extensions, and countless more,
can be installed using the Extensions sidebar inside the editor (see Figure 14-2).

While you can explore the extensions library and install extensions as needed, the extensions that I
strongly recommend installing are for linting and code snippets.

Linting
Linting is the process of running a program to analyze your code for potential errors. This includes logical
and syntactical errors, as well as formatting and stylistic errors such as nonadherence to coding standards.

VS Code has extensions that will allow you to monitor your HTML, CSS, and JavaScript code for lint.
Installing the lint plug-ins—ESLint (http://eslint.org/) for JavaScript, HTMLHint (http://htmlhint.com/)
for HTML, and Stylelint (https://stylelint.io/) for CSS—allows the editor to easily prompt you to fix
your errors, almost like a spell checker in a typical word processor (see Figure 14-3).

https://code.visualstudio.com/docs/extensions/overview
http://eslint.org/
http://htmlhint.com/
https://stylelint.io/

Chapter 14 ■ Essential Game Developer Toolkit

413

As you can see, having the editor track possible errors in your code can be extremely helpful. ESLint
also has the ability to automatically fix any auto-fixable errors such as spacing or indentation, which is very
convenient.

You can customize each of these linting tools by specifying the rules that you want to apply for your
code inside their respective configuration files. A typical ESLint configuration file is shown in Listing 14-1.

Listing 14-1.  A Typical ESLint Configuration File

{
 "env": {
 "browser": true,
 "jquery": true
 },
 "globals": {
 "Box2D": true
 },
 "extends": "eslint:recommended",
 "rules": {
 "no-const-assign": "error",
 "no-this-before-super": "error",
 "no-undef": "error",
 "no-unreachable": "error",
 "no-unused-vars": "error",
 "constructor-super": "error",
 "valid-typeof": "error",
 "no-console": "off",
 "indent": ["error", 4, { "SwitchCase": 1 }],
 "quotes": ["error", "double"],

Figure 14-3.  Typical errors reported by a linting tool

Chapter 14 ■ Essential Game Developer Toolkit

414

 "semi": ["error","always"],
 "no-multi-spaces": "error",
 "no-trailing-spaces": "error",
 "space-infix-ops": "error",
 "space-unary-ops": "error",
 "func-call-spacing": ["error", "never"],
 "array-bracket-spacing": ["error", "never"],
 "block-spacing": "error",
 "brace-style": "error",
 "comma-spacing": ["error", { "before": false, "after": true }],
 "key-spacing": "error",
 "newline-after-var": ["error", "always"],
 "newline-before-return": "error",
 "no-multiple-empty-lines": "error",
 "no-tabs": "error",
 "space-before-blocks": "error",
 "object-curly-spacing": ["error", "always"],
 "eqeqeq": "error",
 "curly": "error",
 "keyword-spacing": "error"
 }
}

The configuration rules allow you to be as strict as you want with your coding standards. You can specify
whether you want to enforce spaces before curly braces, or the number of spaces used when you press the
Tab key.

The complete list of rules for each of these tools is available at their respective websites. For example,
the list of rules for ESLint is available at https://eslint.org/docs/rules/.

Obviously, you don’t need to use all of these rules. You are free to pick and choose the ones that you
would like to enforce in your project.

In fact, all the code in this book was checked and formatted using these linting tools with a fairly strict
set of rules, which is why everything from the indentation style to the spaces around brackets is consistent all
through the book.

While in the short term these linting tools will help you to quickly fix your code and maintain a
consistent coding convention, in the long term they will also train you to naturally write clean and error-free
code that follows the latest best practices.

Code Snippets
Another useful feature is the ability to define code snippets and assign shortcut letters to access them.
A typical example in JavaScript would be to map the letters cl as a shortcut for the statement console.
log(""). You would then just type the shortcut and press the Tab key to let the editor automatically replace
the shortcut with the entire statement.

In addition to defining code snippets that you often reuse (such as a basic HTML5 file template or the
asset loader object template), you can also install entire packs of commonly used snippets as extensions.

While the use of code snippets might not seem like much, being able to generate multiple lines of code
by just typing a couple of letters will give you an incredible boost in productivity and development speed.

In addition to these two categories of extensions, I also recommend keeping an eye out for new
extensions that you might find useful.

https://eslint.org/docs/rules/

Chapter 14 ■ Essential Game Developer Toolkit

415

Git Integration
Git (https://git-scm.com/) is a free and open source version-control system designed to keep track of
changes in source code while working with multiple contributors.

Git can be used via either the command line or any one of a large number of graphical user interfaces
such as GitKraken (https://www.gitkraken.com/) or SourceTree (https://www.sourcetreeapp.com/).

Visual Studio Code also provides an integrated Git interface, shown in Figure 14-4, which allows you to
handle all common Git tasks without leaving your editor.

If you plan to collaborate with other developers, intend to share your code on an online repository like
GitHub, or would like to keep track of file changes in your code, then learning to use Git is a must.

If you have never used Git before and would like to learn to use Git, I’d recommend reading the book
Pro Git, Second Edition, by Scott Chacon and Ben Straub. A free online version of this book is available at
https://git-scm.com/book/en/v2.

Figure 14-4.  Using Git from inside VS Code

https://git-scm.com/
https://www.gitkraken.com/
https://www.sourcetreeapp.com/
https://git-scm.com/book/en/v2

Chapter 14 ■ Essential Game Developer Toolkit

416

Integrated Debugging
Another useful feature in Visual Studio Code is the ability to debug your code. You can easily add
breakpoints to your code, step through lines of code, and watch the values of variables from inside the editor
window (see Figure 14-5).

There are also extensions to integrate VS Code with various browser debuggers, so you can debug
not just your Node.js JavaScript code, but also your browser JavaScript code. You can read more about the
debugging feature of VS Code here: https://code.visualstudio.com/docs/editor/debugging.

These are just a few of the features that make Visual Studio Code my current favorite editor. It has tons
of other features that I use regularly, such as the ability to use multiple cursors, to easily find and jump to a
function definition, to find and replace text using regular expressions, or to open any file just by typing a few
letters from the file’s name.

Keep in mind that there are several other editors that can be customized to provide similar
functionality. Feel free to explore and try different editors until you find one that is perfect for you. However,
no matter which editor you eventually decide to use, make sure that it contains at least some of these
essential features, so you can be as productive as possible.

Figure 14-5.  Debugging code from inside VS Code

https://code.visualstudio.com/docs/editor/debugging

Chapter 14 ■ Essential Game Developer Toolkit

417

Writing Modular Code
Another thing that will help you massively as a game developer is learning to write clean, modular, and
reusable code. A few of the more important rules for this, which you have already seen used in this book, are

•	 Minimize code repetition: Whenever you notice code that will be needed in more
than one place, immediately move it into a separate method so it can be called from
wherever it is needed. Having common code in a single place makes it easier to
modify and maintain, and putting it inside a method with a clearly understandable
name makes your code easier to read. For example, in Last Colony, we moved
common methods like addItem() and loadItem() to common.js so they could be
used by all the game item types without needing to repeat the code in the individual
item files.

•	 Convert useful code into reusable modules: If some code looks like it can be used in
multiple games, abstract it out into a separate module for easy reuse. For example,
in our games, we moved all the asset-loading code into a separate loader object that
we used for both Froot Wars and Last Colony. The loader has been designed to be
easily usable for any game.

•	 Make your code easily readable: The closer your code looks to regular English, the
easier it becomes to read, debug, and maintain. This means using descriptive names
for all your methods and variables so if someone else were to see these methods,
they would easily be able to tell what was going on. For example, in Last Colony
we used method names like showMissionBriefing(), updateRoomStatus(), and
createTerrainGrid(). In addition to this, any time you have a section of code that
isn’t self-explanatory, start with a comment briefly explaining what the code is
supposed to do. This will help you when reviewing or debugging the code, as well as
help other developers in understanding the code.

Following just these basic principles should go a long way in helping you write readable, reusable, and
maintainable code. You will find that clean code tends to have fewer bugs, and is much easier to modify
or extend. Learning to write clean code is one of the essential foundations for collaborating with other
developers to work on large projects.

If you would like to read more on the topic, you can look at books such as The Art of Readable Code by
Dustin Boswell and Trevor Foucher. Another good resource is the book Clean Code by Robert C. Martin.
While the book is written with Java in mind, the ideas from the book have been adapted for JavaScript in a
guide for producing readable, reusable, and refactorable JavaScript, which you can read at https://github.
com/ryanmcdermott/clean-code-javascript.

Automating Your Development Workflow
Automating your tasks can give you huge benefits. The most obvious one is that it will save your time and
effort in completing difficult tasks. But more importantly, by eliminating human intervention you also reduce
human error. There is no longer a chance of an accidental space or a misspelling causing your game to break
and then needing a long time to debug—something all too common when we have to do long and boring tasks
manually. Lastly, being able to do tasks fast and accurately allows you to scale up the scope of your project.

A very simple example of this automation in action is our using a Node.js script to convert the Last
Colony Tiled editor output into the map format for our game. Done manually, this could have taken a lot
of effort, with a real chance of a copy-paste error. However, with the metadata generation automated, it is
possible to delegate the task of map design to an artist or level designer, who just uses the map editor to draw
the maps using a drawing interface.

https://github.com/ryanmcdermott/clean-code-javascript
https://github.com/ryanmcdermott/clean-code-javascript

Chapter 14 ■ Essential Game Developer Toolkit

418

You could then go on to generate the output for all of the maps in a single script that iterates through all
the map files in the folder and generates the finished game files in just one quick run. Now, instead of having
to limit yourself to five or ten slowly created levels, you could look at the possibility of hundreds of auto-
generated levels designed by multiple non-technical level designers, safe in the knowledge that every level
can be automatically converted and added to your game.

I personally tend to automate or at least semi-automate any task that I find annoying or distracting. For
example, when writing this book I had to take lots of screenshots in each chapter and then crop them very
precisely for use within the book. Knowing that all the game images needed to be cropped at the same offset
and with the same dimensions, I wrote a simple script that used the ImageMagick toolkit to crop the images
for me. This meant I did not need to interrupt my writing workflow just to open an image editor and crop an
image, saving me time and effort and allowing me to focus on the task at hand.

In my larger game projects, I tend to automate everything from generating audio and image sprite
sheets and minifying and compressing game code to building the final-release game folder for deployment
on the server.

Essential Tools for a Streamlined Workflow
You can easily start automating the tasks within your own projects by using a few useful command-line
utilities and tools. Most of the tools in my regular toolkit can be broken down into five categories: image
handling, audio/video handling, code linting and compression, servers, and build automation.

Image Handling
In my experience, creating game art and assets is probably one of the most time-consuming parts of game
development. This includes everything from drawing the initial artwork and preparing the art for game use
to creating sprite sheets and compressed image files for the final game.

There are three image-handling tools that I consider essential for game development:

•	 Image editor: One thing that you definitely need is a decent image editor for creating
and modifying your artwork. Both Adobe Photoshop (www.adobe.com/products/
photoshop.html) and the GNU Image Manipulation Program, or GIMP (https://
www.gimp.org/), are great options for professional work. Both have a very large
community for support and instructional resources, and allow for scripting and
automation of repetitive tasks via macros.

•	 Command-line image editing: ImageMagick (https://www.imagemagick.org/) is my
favorite command-line tool for image manipulation. As mentioned on its website,
you can use ImageMagick to resize, flip, mirror, rotate, distort, shear, and transform
images, adjust image colors, apply various special effects, and draw text, lines,
polygons, ellipses, and Bézier curves. You can even use it to combine images into
sprite sheets, crop and resize images, and convert between different image formats.
All of this can be done via the command line or even JavaScript using the node-
imagemagick module (https://github.com/yourdeveloper/node-imagemagick),
making it easy to automate common image-manipulation tasks.

•	 Sprite sheet creation tool: While ImageMagick can be used for creating simpler
sprite sheets, another favorite tool for creating more complex sprite sheets with
different image sizes and types is TexturePacker (https://www.codeandweb.com/
texturepacker). It can combine your game artwork into sprite sheets, intelligently
position the images within the sprite sheet so they occupy the least possible space,
and generate metadata about the sprite position. It also comes with a command-line
tool to allow automation of sprite sheet generation.

http://www.adobe.com/products/photoshop.html
http://www.adobe.com/products/photoshop.html
https://www.gimp.org/
https://www.gimp.org/
https://www.imagemagick.org/
https://github.com/yourdeveloper/node-imagemagick
https://www.codeandweb.com/texturepacker
https://www.codeandweb.com/texturepacker

Chapter 14 ■ Essential Game Developer Toolkit

419

Code Linting and Compression
We have already discussed code linting and writing clean code briefly when talking about code editors. Most
editor linting plug-ins just serve as front ends for these command-line tools. The linting tools I currently use
are HTMLHint (http://htmlhint.com/) for HTML, Stylelint (https://stylelint.io/) for CSS, and ESLint
(http://eslint.org/) for JavaScript.

Another important set of tools is for code compression or minification. While spaces, indenting, and
descriptive variable names are essential for code readability, they are of no use to browsers when running
the code, and only serve to use up bandwidth.

Code compression tools (or minifiers) remove unnecessary white space from the code, replace longer
variable names with short single-letter variables, and apply various language-specific optimizations to make
the code files as small as possible.

The minifiers that I currently use are HTMLMinifier (https://github.com/kangax/html-minifier)
for HTML, Clean-CSS (https://github.com/jakubpawlowicz/clean-css) for CSS, and UglifyJS
(https://github.com/mishoo/UglifyJS) for JavaScript.

The most common way to use these tools is to integrate them into a build process so that the source files
are combined and minified into a release folder when you are ready to release a new version of the game.
The release folder, which contains only compressed versions of the code files, is then deployed onto a web
server so they can be accessed and run by browsers.

Servers
There are two server tools that I find invaluable when developing HTML5- and Node.js-based games:

•	 http-server: http-server is a simple, zero-configuration command-line HTTP server.
We looked at its use briefly when we started developing mobile game code back
in Chapter 5. The program allows you to serve the contents of any folder just by
navigating to the folder from the command line and calling it, which is extremely
convenient for local development and testing. It allows you to specify options such as
the port you want the server to run on and how long you want it to cache content. You
can read more about http-server at https://www.npmjs.com/package/http-server.

•	 Process Manager 2: Process Manager 2 (PM2) is a production process manager for
Node.js applications with a built-in load balancer. It allows you to keep applications
alive forever, to reload them without downtime, and to facilitate common system
admin tasks. This is very useful when you want to run one or more Node.js
applications, such as the Last Colony multiplayer server. PM2 lets you easily keep
track of all the server processes, view their logs and memory usage, and track
whether an application crashed and needed to be restarted. It can also monitor your
code files and automatically restart the application whenever the code changes. You
can read more about PM2 at https://www.npmjs.com/package/pm2.

Build Automation
Even though all these other tools will make your development faster and easier, you can go still further by
automating your build process. A good build automation tool will allow you to automate all the painful and
time-consuming tasks without taking too much effort to configure and set up these tasks. While there are
several popular build toolkits out there, my personal favorite is Gulp.js.

Gulp.js is a task runner, built on Node.js and npm, that allows you to define tasks in JavaScript as well as
access most npm modules from within your build scripts. This reduces the typical learning curve associated
with using the build tool, while still giving you the power and flexibility to do anything that you would do in a
typical Node.js script.

http://htmlhint.com/
https://stylelint.io/
http://eslint.org/
https://github.com/kangax/html-minifier
https://github.com/jakubpawlowicz/clean-css
https://github.com/mishoo/UglifyJS
http://dx.doi.org/10.1007/978-1-4842-2910-1_5
https://www.npmjs.com/package/http-server
https://www.npmjs.com/package/pm2

Chapter 14 ■ Essential Game Developer Toolkit

420

Instructions for setting up Gulp.js as well as detailed documentation are available at the Gulp.js site
(https://gulpjs.com/).

Gulp.js also has wrapper plug-ins for most of the tools discussed earlier, which allows you to easily
invoke them from within your build scripts. For example, Clean-CSS has the gulp-clean-css plug-in
(https://www.npmjs.com/package/gulp-clean-css) and UglifyJS has the gulp-uglify plug-in
(https://www.npmjs.com/package/gulp-uglify). You will find examples of usage for the plug-in included
with the documentation for most plug-ins.

A typical example of a build script that minifies all your HTML code is shown in Listing 14-2.

Listing 14-2.  A Typical Gulp.js Build Script

var gulp = require("gulp");
var htmlmin = require("gulp-htmlmin");

gulp.task("minify", function() {
 return gulp.src("src/*.html")
 .pipe(htmlmin({ collapseWhitespace: true }))
 .pipe(gulp.dest("dist"));
});

This example script uses the gulp-htmlmin plug-in to take all the HTML files within the src folder and
minify them before saving the compressed files in the dist folder. You can read more about the
gulp-htmlmin plug-in for HTMLMinifier at https://github.com/jonschlinkert/gulp-htmlmin.

You should be able to find a preexisting gulp plug-in for most common build tasks, and easily write
your own plug-in in JavaScript for any tasks that don’t have one.

Once you set up your plug-ins and write your tasks, you can potentially have a script run all the tasks
that you need with a single invocation of the gulp command. In time, as you get comfortable with using
(and reusing) build scripts, you should start automating as much as possible, so you can focus on new
development and game creation.

Summary
If you have been following along since the beginning of this book, you should now have the knowledge,
resources, and confidence to build your own amazing games in HTML5, and I want to thank you for taking
this journey with me.

My goal in writing this book was to demystify the process of building complex games in HTML5 and
provide you with everything that you would need to build such games on your own. I sincerely hope that I
was successful in this goal.

A lot of the changes and improvements in this second edition, such as more-detailed explanations,
newer game features, and additional content on mobile development, were based on the questions and
feedback from readers, and I would appreciate hearing your feedback as well. I would also love to hear about
how you used this book as a starting point for your own game projects.

If you have any questions, comments, or feedback, you can reach with me via my website at
www.adityaravishankar.com.

While this book should have given you a great start, in my experience most of the learning in game
programming comes from setting out on your own journey—trying your own experiments, making your own
mistakes, and constantly growing and improving with each experience. So keep going, keep creating, and
keep learning.

I wish you all the best in your game programming journey.

https://gulpjs.com/
https://www.npmjs.com/package/gulp-clean-css
https://www.npmjs.com/package/gulp-uglify
https://github.com/jonschlinkert/gulp-htmlmin
http://www.adityaravishankar.com/

421© Aditya Ravi Shankar 2017
A. R. Shankar, Pro HTML5 Games, DOI 10.1007/978-1-4842-2910-1

�       � A
Accidental scrolling, 132
Angry Birds, 21
Animation, 18

clearInterval() method, 18
drawingLoop() method, 18
requestAnimationFrame() method, 19
setInterval() method, 18

AStar() method, 230
Audio element, 12

attributes, 13
canplaythrough event, 15
canPlayType() method, 15
file formats, 13
loaded dynamically, 14
loadedmetadata event, 15
multiple source elements, 13
testing, 14

�       � B
Box2D engine, 47

animation
constraint solver, 54
integrator, 54
updated init() function, 54
world.ClearForces() function, 53
world.DrawDebugData() function, 53
world.Step() function, 53

b2World object
allowSleep, 49
creation, 49
gravity, 49

body definition, 50
contact listeners

BeginContact(), 67
createSimplyBody(), 68
DrawDebugData() method, 69
EndContact(), 67
implementation, 67

PostSolve(), 67
PreSolve(), 67
watching collisions, 69

createBody() method, 50
createFixture() method, 50
createFloor() method, 50
DrawDebugData() method, 52
elements, 55

circular body, 58
complex body, 61
joints, connecting bodies, 63
polygon-shaped body, 59
rectangular body, 55

fixture definition, 50–51
fundamentals, 47
init() function, 51
SetAsBox() method, 51
setting up, 48
shapes, fixture, 50
tracking collisions and damage, 66

box2d.setupDebugDraw() method, 82–85

�       � C
Canvas element, 2

coordinate system, 4
draw colored and textured rectangles, 8
draw complex shapes, 5
draw images, 9
drawing text, 7
draw rectangle, 4
draw style, 8
getContext() method, 3
pageLoaded() method, 3
rotating objects, 11
transformation, 11

Code completion, 411
Combat system, 283

aircraft
attack case, 299
guard mode case, 299

Index

■ INDEX

422

hunt case, 299
order states, 296
patrol case, 299
processOrders() method, 299

bullets, 283
animate() method, 287
animation sequences, 287
default moveTo() method, 287
drawingLoop() method, modify, 290
findFiringAngle() method, 288
loadItem() method, 288
processOrders() method, 287
properties, 287
reachedTarget() method, 287
references, 288
resetArrays() method, 291

fog of war, 309
animate() method, 311, 312
deploy grid, 316
draw() method, 311, 312
fog object, 309
hiding objects, 316
initLevel() method, 311–312
references, 311
unbuildable, fogged areas, 315

intelligent enemy, building, 306
showMessage() method, 308
timed triggers and hunt order, 306

turrets
ground turrets, 291
map items, update, 294

vehicles, 300
Contact listeners

BeginContact(), 67
createSimplyBody(), 68
DrawDebugData() method, 69
EndContact(), 67
implementation, 67
PostSolve(), 67
PreSolve(), 67
watching collisions, 69

countHeroesAndVillains() method, 89

�       � D
default moveTo() method, 287
DrawDebugData() method, 52, 69
drawImage() method, 10
drawingLoop() method, 158, 164
drawLifeBar() method, 206, 208
draw() method, 311, 312
drawSelection() method, 206–207

�       � E
End level, game elements

endingscreen div element, 96–97
Message dialog box, 272

CSS styles, 274
to game Object, 275
messageBoxCancel() method, 276
messageBoxOK() method, 276
showMessageBox() method, 276

trigger implementation
clearTimeout() method, 280
conditional triggers, 277
end() method, 280
initTrigger() method, 280
runTrigger() method, 280
timed triggers, 277

Entities
add() and remove() methods, 174
aircrafts, 167, 192
animate() methods, 176
Box2D

adding references, 76
animate() and drawAllBodies(), 83
animation, 87
<head> section, 76
object creation, 77

buildings, 167
collision damage, 99
create() method, 78
definition, 73, 167
draw() method, 85, 176
game.resetArrays() method, 174
ground turret, 185
harvester buildings, 183
items array, 173
levels.data array, 80

ground entities, 81
hero and villain entities, 81
rectangular block entities, 81

load-next-hero state, 89
ApplyImpulse() method, 95
countHeroesAndVillains()

method, 91
firing, 92
handlePanning() method, 93
mouseOnCurrentHero() method, 92
wait-for-firing, 92

main base
addItem() method, 170
buildings object, 168
loadItem() method, 170
sprite sheet, 168

Combat system (cont.)

■ INDEX

423

map definition, 172
name property, 73
objects, 74
references, 168
requirements property, 173
restartLevel() method, 104
selection

clearSelection() method, 205
drag selection, 203
drawLifeBar() method, 206, 208
drawSelection()

method, 206–207
enabling, 199
itemUnderMouse() method, 200
mouse.click() method, 200
mouseup event handler, 201–202
selectItem() method, 205

slingshot band, 102
sound, 105

background music, 110
break and bounce sounds, 107

starport building, 180
startCurrentLevel() method, 173
startNextLevel() method, 104
terrains, 167
type property, 73
vehicles object, 167, 188

�       � F
finishMeasuringLatency() method, 383
Fixture, 50–51

�       � G
Game development

automation, 417
build automation tool, 419
code compression tool, 419
code linting tool, 419
image-handling tools, 418
server tools, 419

code editor customization, 410
code snippets, 414
custom extensions, 412
git integration, 415
integrated debugging, 416
linting, 412
syntax highlighting, 410

writing modular code, 417
Game elements

economic system, 243
harvest animation state, 247
Loading Cash Amount, 244

sidebar object, 245
Starting Cash Amount, 243

Message dialog box, 272
purchase buildings and units, 248

adding sidebar buttons, 249
at base, 264
disable sidebar buttons, 252, 254
enable sidebar buttons, 252, 254
vehicle and aircraft construction, 255–256

trigger implementation, 277
Game responsive

emulation feature, 116
game.resize() method, 121
resize() method, 119
scaling, 117
wider background image, 121

Game world
animation

basic level, score bar, 38–39
CSS styling, 37
start() and animate() functions, 35

game states
final result, 44
finite state machine, 41
firing, 41
handlePanning() method, 44
load-next-hero, 41
panning, 41, 43
panTo() method, 42
wait-for-firing, 41

HTML layout, 21
images, loading

CSS style, 31
game.init() method, 33
Image/Sound asset loader, 31
loadImage()/loadSound() method, 34
loading screen, 34

level selection
CSS styles, 29
game.init() method, 28
levels object, 27
screen, 30
showLevelScreen() method, 29

levels, loading, 34
mouse input handling, 39
splash screen and main menu

CSS styles, 23
game layers, 23
jQuery hide() and show() functions, 26
init() function, 25–26
JavaScript code, 25
js/game.js game object, 25
skeleton HTML file, 22
start screen and menu options, 27

■ INDEX

424

�       � H
handlePanning() method, 44, 93, 163
Harvester vehicle deploy, 237
HTML5 file skeleton, 1

�       � I, J, K
Image element, 15

drawImage() method, 17
load images, 16
sprite sheets, 17

Intelligent unit movement
aircraft movement implementation, 216

Default processOrders() method, 216
moveTo() method, 217

collision detection and steering, 230
checkCollisionsObject() method, 230
default moveTo() method, 233
modify processOrders() method, 235

command units, 211
click() method modification, 211, 213
sendCommand() method, 213

Harvester vehicle deploy, 237
pathfinding, 221

A* algorithm, 221
add() and remove() methods, 225
Dijkstra’s algorithm, 221
rebuildPassableGrid() method, 224
startCurrentLevel() method, 222

processOrders() method, 215
sending and receiving commands

getItemByUid() method, 215
implementation of, 214
processCommand() method, 215
Single-Player sendCommand()

method, 215
smoother unit movement, 238
vehicle movement implementation

AStar() method, 230
findAngle() method, 230
moveTo() method, 227
pathfinding algorithm, 230
processOrders() method, 227

isItemDead() method, 333

�       � L
Lock-step networking model, 381

network latency, 382
finishMeasuringLatency()

method, 383
latency_ping message, 384
measureLatency() method, 383
starting and finishing measurement, 384

sending commands, 387
browsers, 391
from client, 388
handling messages, 389
sendCommand() method, 389
setInterval() method, 391
startGame() method, 389–390
tickLoop() method, 389

�       � M, N, O
Message dialog box, 272

CSS styles, 274
game Object, 275
messageBoxCancel() method, 276
messageBoxOK() method, 276
showMessageBox() method, 276

Mobile application framework, 133
Mobile browsers

Web Audio API, 127
bufferSourceNode, 128
context.createOscillator()

method, 127
oscillator node, 127
XMLHTTPRequest object, 129

Web Audio integration, 130
loadSound() method, 130
load wAudio.js, 130
playGame() method, 131

Mobile device
challenges, 115
game optimization, 134
load game, 125

Mouse events, 123
mousemovehandler() method, 124
Multiplayer game

ending the game
connection errors, 398–399
loseGame() and endGame()

methods, 393
player defeats, 392
player disconnected, 396
Server endGame() method, 393
triggered events, 392
type end_game, 395
type lose_game, 394

player chat, 400
Keydown events, 401–402
message event handler, 403
receive messages, 405
styles, 401

Multiplayer lobby screen
CSS code, 361
definition, 361
join(), leave() and cancel() methods, 369

■ INDEX

425

multiplayer object, 363
close event handler, 368
connection request event handler, 368
handleWebSocketMessage() method, 366
message event handler, 368
references, 366
sendRoomList() method, 368
start() method, 365
updateRoomStatus() method, 366

multiplayer server, 366
sendWebSocketMessage() method, 371

�       � P, Q
Physics engine. See Box2D engine
Purchase buildings and units, game

elements, 248
adding sidebar buttons

CSS styles, 249
enable and disable, 252, 254
gameinterfacescreen, 249

constructing buildings
animate() method, 264
cancelDeployBuilding() method, 270
deploy grid, 266–267
finishDeployBuilding()

method, 270
mouse.click() method, 268
processOrder() method, 271
rebuildBuildableGrid() method, 265

vehicle and aircraft construction
adding the Unit, 259
click event, 255–256
draw() method, 262
processOrder() method, 256
showMessage() method, 259
teleport action, 261

�       � R
Real-time strategy (RTS) games

game interface screen
animation and drawing loops, 155, 157
animationLoop() method, 158
background, 155
CSS styles, 154
drawingLoop() method, 158
gameAnimationLoop() method, 159
HTML markup, 153
layers, 154
singleplayer.play() method, 159
startCurrentLevel() method, 160
start() method, 158

Game Object init() method, 142
HTML layout, 137

map images
basic level metadata, 147
level-designing tool, 146
singleplayer array, 148
Tiled software, 146

map panning implementation
calculateGameCoordinates() method, 162
drawingLoop() method, 164
handlePanning() method, 163
mouse object, 161
panningThreshold and panningSpeed

variables, 164
updated game.init() method, 162

mission screen
advantages, 153
background, 150
CSS style sheet, 149
exit() method, 152
HTML code, 148
missionbriefing div, 149
singleplayer object, 150
start() method, 152

requestAnimationFrame and asset
loader, 140

splash screen and main menu
gamecontainer and layers, 139–140
HTML file, 138
implementation, 140
JavaScript and CSS files, 139

Starting Screen and Loading Screen
with main menu, 146
singleplayer.start() and multiplayer.start()

methods, 146
style sheet, 144

�       � S
Single-player campaign

assault, 337
air support, 341
ending mission, implementation, 350
enemy waves, 340, 348
mission brief, 345
reinforcements, 340
starports and refineries, 345
triggers array, 340, 346

rescue, 331
characters, 333
conditional trigger, 336
enemy and convoy, 334
isItemDead() method, 333
mission briefing, 332
scout-tanks, life of, 333
triggers array, 333

under seige, 343

■ INDEX

426

�       � T, U, V
teamStartingItems array, 376
Touch event handling, 123
touchmovehander() method, 124

�       � W, X, Y, Z
WebSockets

displayMessage() method, 355
elements, 355
handlers, 355
initWebSocket() method, 355
multiplayer game

in browser windows, 380
handleWebSocketMessage()

method, 379
initGame() method, 376
initMultiplayerLevel() method, 379
levels, 374
message event handler,

modify, 377
spawnLocations array, 376
startGame() method, 376
teamStartingItems array, 376

with Node.js, 353
accept() method, 359
client and server interaction, 360
connectionIsAllowed() method, 359
HTTP server, 356
reject() method, 359
require() method, 359
send() method, 359
WebSocket server, 358

sendMessage() method, 355
server implementations, 355
WebSocket client, 353

Wrapping Up
adding sound, 319

combat, 324
commands, 321
init() method, 320–321
messages, 324
objects, 319
play() method, 321
references, 321

single-player campaign
assault, 337
rescue, 330
under siege, 343

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: HTML5 and JavaScript Essentials
	A Basic HTML5 Page
	The canvas Element
	Drawing Rectangles
	Drawing Complex Paths
	Drawing Text
	Customizing Drawing Styles (Colors and Textures)
	Drawing Images
	Transforming and Rotating

	The audio Element
	The image Element
	Image Loading
	Sprite Sheets

	Animation: Timer and Game Loops
	requestAnimationFrame

	Summary

	Chapter 2: Creating a Basic Game World
	Basic HTML Layout
	Creating the Splash Screen and Main Menu
	Level Selection
	Loading Images
	Loading Levels
	Animating the Game
	Handling Mouse Input
	Defining Our Game States
	Summary

	Chapter 3: Physics Engine Basics
	Box2D Fundamentals
	Setting Up Box2D
	Defining the World
	Adding Our First Body: The Floor
	Drawing the World: Setting Up Debug Drawing
	Animating the World

	Adding More Box2D Elements
	Creating a Rectangular Body
	Creating a Circular Body
	Creating a Polygon-Shaped Body
	Creating Complex Bodies with Multiple Shapes
	Connecting Bodies with Joints

	Tracking Collisions and Damage
	Contact Listeners

	Drawing Our Own Characters
	Summary

	Chapter 4: Integrating the Physics Engine
	Defining Entities
	Adding Box2D
	Creating Entities
	Adding Entities to Levels
	Setting Up Box2D Debug Drawing
	Drawing the Entities
	Animating the Box2D World
	Loading the Hero
	Firing the Hero
	Ending the Level
	Collision Damage
	Drawing the Slingshot Band
	Changing Levels
	Adding Sound
	Adding Break and Bounce Sounds
	Adding Background Music

	Summary

	Chapter 5: Creating a Mobile Game
	Challenges in Developing for Mobile Devices
	Making the Game Responsive
	Automatic Scaling and Resizing
	Handling Different Aspect Ratios

	Fixing Mouse and Touch Event Handling
	Loading the Game on a Mobile Device
	Fixing Audio Problems on Mobile Browsers
	The Web Audio API
	Integrating Web Audio

	Adding Some Finishing Touches
	Preventing Accidental Scrolling
	Allowing Full Screen

	Using Hybrid Mobile Application Frameworks
	Optimizing Game Assets for Mobile
	Summary

	Chapter 6: Creating the RTS Game World
	Basic HTML Layout
	Creating the Splash Screen and Main Menu
	Creating Our First Level
	Loading the Mission Briefing Screen
	Implementing the Game Interface
	Implementing Map Panning
	Summary

	Chapter 7: Adding Entities to Our World
	Defining Entities
	Defining Our First Entity: The Main Base
	Adding Entities to the Level
	Drawing the Entities
	Adding the Starport
	Adding the Harvester
	Adding the Ground Turret
	Adding the Vehicles
	Adding the Aircraft
	Adding the Terrain
	Selecting Game Entities
	Highlighting Selected Entities
	Summary

	Chapter 8: Intelligent Unit Movement
	Commanding Units
	Sending and Receiving Commands
	Processing Orders
	Implementing Aircraft Movement
	Pathfinding
	Defining Our Pathfinding Grid
	Implementing Vehicle Movement
	Collision Detection and Steering
	Deploying the Harvester
	Smoother Unit Movement
	Summary

	Chapter 9: Adding More Game Elements
	Implementing the Basic Economy
	Setting the Starting Money
	Implementing the Sidebar
	Generating Money

	Purchasing Buildings and Units
	Adding Sidebar Buttons
	Enabling and Disabling Sidebar Buttons
	Constructing Vehicles and Aircraft at the Starport
	Constructing Buildings at the Base

	Ending a Level
	Implementing the Message Dialog Box
	Implementing Triggers

	Summary

	Chapter 10: Adding Weapons and Combat
	Implementing the Combat System
	Adding Bullets
	Combat-Based Orders for Turrets
	Combat-Based Orders for Aircraft
	Combat-Based Orders for Vehicles

	Building Intelligent Enemy
	Adding a Fog of War
	Defining the Fog Object
	Drawing the Fog
	Adding Finishing Touches

	Summary

	Chapter 11: Wrapping Up the Single-Player Campaign
	Adding Sound
	Setting Up Sounds
	Acknowledging Commands
	Messages
	Combat

	Supporting Mobile Devices
	Enabling Touch Support
	Enabling WebAudio Support

	Building the Single-Player Campaign
	The Rescue
	Assault
	Under Siege

	Summary

	Chapter 12: Multiplayer with WebSockets
	Using the WebSocket API with Node.js
	WebSockets on the Browser
	Creating an HTTP Server in Node.js
	Creating a WebSocket Server

	Building the Multiplayer Game Lobby
	Defining the Multiplayer Lobby Screen
	Populating the Games List
	Joining and Leaving a Game Room

	Starting the Multiplayer Game
	Defining the Multiplayer Level
	Loading the Multiplayer Level

	Summary

	Chapter 13: Multiplayer Gameplay
	The Lock-Step Networking Model
	Measuring Network Latency
	Sending Commands

	Ending the Multiplayer Game
	Ending the Game When a Player Is Defeated
	Ending the Game When a Player Is Disconnected
	Ending the Game When a Connection Is Lost

	Implementing Player Chat
	Summary

	Chapter 14: Essential Game Developer Toolkit
	Customizing Your Code Editor
	Syntax Highlighting and Code Completion
	Custom Extensions
	Linting
	Code Snippets

	Git Integration
	Integrated Debugging

	Writing Modular Code
	Automating Your Development Workflow
	Essential Tools for a Streamlined Workflow
	Image Handling
	Code Linting and Compression
	Servers
	Build Automation

	Summary

	Index

