Pro HTML5
Games

Learn to Build your Own Games
using HTML5 and JavaScript

Second Edition

Aditya Ravi Shankar

Apress’

ww.allitebooks.cor

http://www.allitebooks.org

Pro HTML5 Games

Aditya Ravi Shankar

Apress-

[vww allitebooks.cond

http://www.allitebooks.org

Pro HTML5 Games: Learn to Build your Own Games using HTML5 and JavaScript

Aditya Ravi Shankar
Bangalore, India

ISBN-13 (pbk): 978-1-4842-2909-5 ISBN-13 (electronic): 978-1-4842-2910-1
DOI10.1007/978-1-4842-2910-1

Library of Congress Control Number: 2017956216
Copyright © 2017 by Aditya Ravi Shankar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Technical Reviewer: Gaurav Mishra
Coordinating Editor: Nancy Chen
Copy Editor: Bill McManus
Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484229095. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

[vww allitebooks.cond

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484229095
mailto:rights@apress.com
http://www.allitebooks.org

Contents at a Glance

About the AUtROrccvverimmmis s ———————————— Xiii
About the Technical REVIEWETccussssssmssmsssmssmmssssssssssmssssssssssssssssssssssssnssssssnsssnnns Xv
Chapter 1: HTML5 and JavaScript Essentials.........ccccnnmmmmsmmmmmmnmmmmmsssssssssssmssssssnes 1
Chapter 2: Creating a Basic Game World..........cccccuusemmmmmnsssnsnmmssssssnsssssssssssssssnsns 21
Chapter 3: Physics Engine BasiCSccuseemmrssssssnmmsssssnnsssssssssssssssssssssssssnssssssssnnnns 47
Chapter 4: Integrating the Physics ENginecccccouvvnmsssssssssssmnsssssssssssssssssssssssssss 73
Chapter 5: Creating a Mobile GAME........ccccusseemnrnssssnsssmssssssnsssssssssssssssnssssssssnnnes 115
Chapter 6: Creating the RTS Game Worldccocusmmmsssmnmsssnsmsssnsssssnsssssssssssnnsnns 137
Chapter 7: Adding Entities to Our World........ccccccnirrnssssssmssnmmmmmmssssssssssnsssessssnes 167
Chapter 8: Intelligent Unit Movement.........c..ccccinnnemmmmnnnsennnnnssssnnmsssssnsssnnn 211
Chapter 9: Adding More Game Elements.......cccciumssmmmsssssmsssssmsssssssssssssssssssssnnsnss 243
Chapter 10: Adding Weapons and Combatccccccmmmmmnnmnmmssssnsnmsssssssnssssssnnns 283
Chapter 11: Wrapping Up the Single-Player Campaignccuuseenmnssssnnnssssssnnns 319
Chapter 12: Multiplayer with WebSo0CKetsccccusseemmmmssssnnnmmsssssnsssssssnsnssssssnnns 353
Chapter 13: Multiplayer Gameplaycccussrmsssmsmsssnsssssssesssssesssssesssnssssssnssssansnss 381
Chapter 14: Essential Game Developer Toolkit..........cussmmmmmmnnmnmmmmmsssssssnmmmmmns 409
INA@X.ciieesiiensinsssansssnssssn s s s s ssn s s ran s n s n e 421
iii

[vww allitebooks.cond

http://www.allitebooks.org

Contents

About the AULNOFcceiiiiiemmmmmisssssnmnssssn s s ass s sann s e s s s annnesssnnnnnnsssnnns Xiii
About the Technical REVIEWETccuussesssssasssssanssssanssssanssssanssssansssssnsssssnsssssnnssssnnssssns XV
Chapter 1: HTML5 and JavaScript Essentials.........ccccnnnmssmmmmmnmmmmmmsssssssssssmmssssnes 1
A BaSiC HTIMILD PAQEccereereereereereersessessesaessesassasssessesssssssassassssssssssssssssssssssssssassssssssssnns 1
The canvas EIBMENt ... sn s nn e nn s 2
Drawing RECIANGIEScoveireciiecirerir e e r e s p e e s n e p e nennnnas 4
Drawing COmPIEX PAENS ... s e e a e e s 5
DIAWING TEXL.. .t r s s e et e r e R e e e Re e e AR e e e R e e Re e e Re e e senRe e enenrnnin 7
Customizing Drawing Styles (Colors and TEXIUIES)ccverererinerererrnesesessss e sesessssssssesssssseas 8
Drawing IMAQGES.......cccerierrirerresieesese s ese s ss s e s s se e se e s s s e s s e e R e e e Re s e e Re e e e e e R e e e Re e s Re e e senre e nne e nnin 9
Transforming and ROtatingccccevveeiicrennesre e 11
The audio EIBMEeNt...........ooeerr s n e n e 12
The image EIBMENT ... sn e nn e 15
111 T T30 T2 Vo1 T 16

LS 01 (ST 111 17
Animation: Timer and GAme LOOPS......cccccvverrrmrernsesessnessssesessssessesessessssessessssesssssssesns 18
requestANIMALIONFIAME ... e e nennn s 19
1111 11 SRS 20
Chapter 2: Creating a Basic Game World..........cccccunnemmnmmssssssmmmsssssssmssssssssssssssssns 21
BasiC HTML LayOUL.........ccccvcrircerereren s sn s sn s sn s nn s sn s sn e sna e 21
Creating the Splash Screen and Main MenU..........cccocevererrrennrs s 22
LEVEl SEIECHONeceeeree e a s e ne e 27
LOAAING IMAQGESceueeeereerrerrerierie e ss e e e s e s e a e sa e a e sn e r e sn e s nenn e snesn e nnennennnnnennan 30
\%

[vww allitebooks.cond

http://www.allitebooks.org

vi

CONTENTS

LOAING LEVEISeeeeeererrerseresse s ses s e sss s s s sss s sse s ssssssssnsssssssssnssneas 34
ANimMating the GAME........ccccvererirerere s sa e s a e sa e sa e sa e sn e nnenen 35
Handling MOUSE INPULoeeeeeeceeeeee e sn e sn e sn e nn e n e nas 39
Defining Our Game STates........ccccveverere e 41
SUMMEAIY ...ttt r e n s R e s e e e Re e e eR e e e Re e e e nne e nneas 45
Chapter 3: Physics Engine BasiCscuseemmmmssssmnmmsssssnnssssssssssssssssssssssssssssssssssnnnss 47
(3100074 DI g0 Ty [T) 47
SELHNG UP BOX2D......c..cceeeeereerererererassersesesaesessesassessssessssessssessessssessssessssssssssssesassessesssssnassssassessenesssnsnaes 48
DEfiNiNg the WOFIHccceeerereeere et reserse e e rae e s e ra s sae e saesesse s e saesas e sae e sae e saesesaesassenaesesasnesasnanaens 49
Adding Our First Body: TRE FIOOKcoecererererererereressersssereesessessssessssessssessesessssssssssssessssessssessssssssnssaes 50
Drawing the World: Setting Up Debug DraWingccccvvvereerererereressersssersesessesessesessessssessssesssssssssansens 52
ANIMAting the WOTIAccoveeeeerererereres s re s se s e sae e sae e ssesesaesasaesassesas e sae e saesesaesassesassesasnessensnaes 53
Adding More BoxX2D EIEMENTS.........cccceeeeererererrerse e ssessesse e ssessssssssssnsssssssssssssssssssnnnns 55
Creating @ Rectangular BOOYcococeceerurenenenesecnisisee e 55
Creating @ CirCUlar BOY..........c.cococeuriccrireecse e 58
Creating @ Polygon-Shaped BOY ..o 59
Creating Complex Bodies with Multiple Shapes..........ccvvvrirrnienncenrr s 61
Connecting Bodies With JOINEScoveriiinncrcsrer e sne e 63
Tracking Collisions and DAMAQEcceeereriernnereressessesesesesse s s s sessessssesssssssssnes 66
CONTACE LISTBNEIS.....c.ceeeeeccririeccre et e s e e e nn e s 67
Drawing Our OWn CharaClers.........coceveverereereereessessessessesss s ssssssssssassssssssssssssssssssasssssns 69
BT 111 1= SRS 72
Chapter 4: Integrating the Physics ENGINEccccvussseemnmsssssnssmsssssnsssssssssssssssssnnnns 73
Defining ENItIEScoeeeececeeccee et e 73
AddINg BOX2D.......cceieeererrenesessessssessssssssssssesssens 76
Creating ENtitiescveverererere e sa e sa e e e e a e sa e sa e sa e sa e sa e sn e nn e nn e nn e 78
Adding Entities t0 LEVEISccceeeeeeeee et sse s snesnesne s sns s snesne s s s nns 80
Setting Up Box2D Debug Drawing........c.cceeueeresmmsersnsssessssessssssessssssssssssessssssssssssssssssssens 82

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Drawing the ENtItIES.......ccccccvieennerenineressreses e sn s 85
Animating the BoX2D WOrId..........ccocerererirrrrrrree s sss e e sss e ssssassssssssssssssnnns 87
LOAAING the HEIO....c.eeeeceeeececece e sn e r e sn e s sn e n e n e sn e n e nn e nn e nan 89
Firing the HEr0.......cceiececeeet et sn s sne s 92
ENAING the LEVEL.......o ettt s sae e s e 96
ColliSiON DAMAGE.......cceereererrerrerrerressessessessessessessessessessessesssssessessesssssssssssessassssssssessansannen 99
Drawing the SIingShot Band..............cocceiennicnnnscrssessse s s 102
CRANGING LEVEISveveeeeereerrereereeseesaesaesaesassaesasssssassassassassassssssssssssssasssssassssssssssssssssnnnns 104
LA [0] T TS0 o SRS 105
Adding Break and BOUNCE SOUNMSccoeierererreerirse e se s sa s 107
Adding Background MUSIC.........cccceererenererinerssese e sesse s e se e sss e sss e ssssessesesssssssessssessssssnes 110
SUMMEAIY ...t a s ae e r e e s a e e ae e s nnnnnnnas 113
Chapter 5: Creating a Mobile GAME........ccoccrrssmrrssnsmssssesssssesssssesssnsesssnnssssnnsss 115
Challenges in Developing for Mobile DEVICESccecvrererrriernsesennsereseseses s 115
Making the Game RESPONSIVEceerereereerersereersessesaessesssssssassssssssssssssassassssssssssssssnnns 116
Automatic Scaling and RESIZINGccccerererrerrrerereresererssersssessesessesessessssessssssssssssessssessssesssssssssssaes 117
Handling Different ASPECE RAtI0S........cccvverererrerrerereerererereresersssessesessesessesessessssessssessessssssessesassesssnenes 121
Fixing Mouse and Touch Event Handling.........ccceeeeeeececesescse e ses s snnnns 123
Loading the Game on a Mobile DEVICE...........cucrererrerenserenrssesssn s sesse s 125
Fixing Audio Problems on Mobile BrOWSEISccccverererserressesssssssssssessasssssesssssasssssenns 127
THE WED AUIO APl...ovvvoeeeeeesssseeeessssssssssssssssssssssssssssssssssssssessnns 127
INtegrating WEb AUGIO........cccvueererererere e resereeseree e saesesseses e sas e saesesaesessesasaesassesassesassesassessesassesasnenes 130
Adding Some Finishing TOUCNES.........cccceeecerencrcreree e s 132
Preventing Accidental SCrOlliNgG.........ccoeciernirnnre e sn s 132
AlIOWING FUIE SCIBEIN.........ceueererircre ettt s e b s bt a e e b e s b s p e e nennnnis 132
Using Hybrid Mobile Application Frameworks...........cccuoverrnernnnnnesnsesessssessssessesessens 133
Optimizing Game Assets for MODIIEccoccvererere e 134
BT 111 12 SRS 135
vii

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Chapter 6: Creating the RTS Game Worldccccussemmmmnssemnmnssssssnsssssssssssssssnsns 137
BasiC HTML LayOUL.........c.ccocveerseriersersessesessesses e s s s s e sesssssessns s snssnssnssnssnssnssnssnsssnnnnns 137
Creating the Splash Screen and Main MenU...........ccoceeererereresece e seeeens 138
Creating Our FirSt LEVEL........ccverereere e see s sessse s sasssssasssssassassesssssassassassassasssssasnnnns 146
Loading the Mission Briefing SCreeNccceeeeeieresesesese e sse e sessse e snssnssnssssnnnns 148
Implementing the Game INterface..........c.ccoeevcrenricrns e 153
Implementing Map Panningccccccevererenenennrs s ses s sssssssssssssssssssssssssssssssassssssnns 161
ST 165
Chapter 7: Adding Entities to Our World..........ccccnnemmmmmnssnnnmnssssnnmssssssssssssssnnns 167
Defining ENtItieSccccvcicrcrsr st 167
Defining Our First Entity: The Main Base..........cccoovvrrennnennnmnsennsesssssessssessessssesssennes 168
Adding Entities 10 the LeVel..........corcrce e 172
Drawing the ENtitiesS.......c.ccocvvrencercrsn s sn s nnn e 176
Adding the STArPOrt........cccccveriseienriere e san e nnas 180
Adding the Harvester ... e 183
Adding the Ground TUITEL ..o s 185
Adding the VENICIESc.coueveererere e sa s s sn e sn e sa s 188
Adding the AIrCraftcccoeeeeeeecerere e nn s 192
Adding the TEITaINcoeeeeececee e sr e r e sr s n e nn e sn e n s 196
Selecting Game ENtitieSccocvvrvrvrnrsrsr s 199
Highlighting Selected ENtitiescccccveeriresncnnrcsr e 205
1111 1= SRS 209
Chapter 8: Intelligent Unit Movement.........c.occccnnnnemmnnmnnssnnnnmsssssnssssssnssssnnn 211
CommMaNAiNg UNITS......coueeeeeeeeecece e e ss e sn e sn e sn e sn e sn e snesn s sn s sn e nnnnns 211
Sending and Receiving Commands...........ccoovrrrerrerrersensessesssssesses s sesssssesssssessssssssasses 213
ProCesSing OrUErSccccieeeriererirerre e e sn s s ae s n s s en e 215
Implementing Aircraft Movement............oo e 216
viii

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Pathfinding.......ccoceeiieieircr e 221
Defining Our Pathfinding Grid...........cccvrrvrnniensnrerser s se s sassnseens 221
Implementing Vehicle Movement ... 226
Collision Detection and StEErINGccoevrerrerrrrerssesseressese e sse e s 230
Deploying the HAarvester ... s s s ssne s 236
Smoother Unit MOVEMENL..........ccoriii 238
SUMMAIY ...t r s as s a s s re e e e r e e s e an e e ae e s snnnnnnnnas 241
Chapter 9: Adding More Game Elements.........cccccuvermssssssssssnmsnnmssssssssssssssssessssnns 243
Implementing the Basic ECONOMYccccveeivennnenesnesesssse s ssess s sessessssens 243
Setting the Starting MONEY ... s 243
Implementing the SIAEDAT ..o 245
GENEIAtiING MONEYcccoveieecrerrrrceer e e st e s e se e e s s ae e e s nne e e nennnsnnnes 247
Purchasing Buildings and UNits...........ccvvrvrrniennennensnses s sessss e s sessessesenns 248
Adding SideDar BULLONS.........cccvrereererererererersssersesersesesseressersssessesessssessesassessssessssesssssssessssesssssassnaes 249
Enabling and Disabling Sidebar BUILONSccccccverrerererererercrre e sessesessesssessesessesessssassesassessssenes 252
Constructing Vehicles and Aircraft at the STarportccovcevrvrerre s 255
Constructing Buildings at the BASEccccvrrererererrsnerererersssessesessesessessssesssessssessesssssssssessssessssees 264
ENAING @ LEVEI ...ttt sn e e sn s sn s nn s nn s nn e nnnnn 272
Implementing the Message Dialog BOX ... e s ssssesns 272
IMPIEMENtNG THOGEIS....co i e s e e e e sp e p e s 277
SUMMEAIY ...t a s ae e r e e s a e e ae e s nnnnnnnas 282
Chapter 10: Adding Weapons and Combatccucccmmmmmsnmmnmmsssssnmsssssssnssssssnnns 283
Implementing the Combat System...........ccocoivrenrinnr s 283
AQAING BUIILS ...t se s se s e se e s s e ne s e s e nsans 283
Combat-Based Orders fOr TUITELScoorrerererncneneresese e 291
Combat-Based 0rders for AIrCraftcoorrerrnnenenensseeese s 296
Combat-Based 0rders for VENICIES..........cocoererererencneneneseeeessesesese e 300
Building Intelligent ENemy..........ccovivnnnnmsss s 306
ix

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Adding @ FOG Of WAcoeiicreceirerie e s 309
Defining the FOG ODJECT ..o 309
Drawing the FOQcccoeeriieicrerrceirire e p e nennn e e e 311
Adding FiniSRING TOUCNESc.ccoeeirirecririreceresse s sn s 315

E3 1111 P2 7S 317

Chapter 11: Wrapping Up the Single-Player Campaigncccusemmmnssssnnnsssssannns 319

A Lo T TS0 o S 319
SELHNG UP SOUNMScceeeeeeeeerc e rerereeeree e e saesassesss e ssesesaesessesasaesassesassesssssassessesassessenssssnssaesansens 319
Acknowledging COMMANGSccceererererererrersesersesersessssersssersssessesessssassessssessssesssssssessssessssessenesssssaes 321
LT Vo [T SRS 324
COMDAL ... 324

Supporting Mobile DEVICES.........cccceeeeerrerrrrsreses s snssnssnssnssn s snesnesnanas 325
Enabling TOUCH SUPPOM ..ot n e s e e e s p s e 326
Enabling WebAUdio SUPPOI ...t n e r e e e e s p e e 329

Building the Single-Player Campaign..........ccccoveernnerenrnsesnsessesessessssssessssessesessessssesnes 330
THE RESCUE ... s 331
ASSAUIL.......c.cecceeecc e 337
UNGEE SIBOE ...vveeereeeeereseeseesesssse e es e s e ss e e e s s e e e e s se e s se e sesae e e e s ase e e s nse s e nsnse s e nansannnnnnes 343

E3 U] P2 7 352

Chapter 12: Multiplayer with WebSoCKetsccccusseemmmmssssnnnmmssssnnsssssssnsnssssssnnns 353

Using the WebSocket APl With NOGE.[S.......cccererererrrrerrerser s ses e e sessassasenns 353
WebhS0CKets 0N the BrOWSE ... ssssssssns 353
Creating an HTTP Server in NOGE.JS......coovrerrrerrerereerererereresersssessesessesessessssessssessesessessssssassesassesssnenes 356
Creating @ WEDSOCKEE SEIVEcovcererererererte st sesessesseses e sas e saesessesesssssssesassessesessesessssessesassesssnenes 358

Building the Multiplayer Game LobDY..........ccocvercrcrcrce s 361
Defining the Multiplayer LODDY SCIEEN..........ccccecererrcrcriner e ss e sre s 361
Populating the GAMES LiSt..........cccviiiiirnre e s s sn e sns e s ns 363
Joining and Leaving @ GAME ROOIM ..o e e e snesesnesessesannens 369

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Starting the Multiplayer GAMEccoceeiieeniererrere e 374
Defining the MURIPIAYET LEVEL.......cccov ettt enns 374
Loading the MUHPIAYEE LEVEL........c.cou et ss e 376

E3 1111 P2 7S 380

Chapter 13: Multiplayer Gameplayccccvussesnmmsssssnsmmssssssnssssssssssssssssssssssssnnns 381

The Lock-Step Networking MOodel.........ccccvvrververreriernenrersersesses s sns e e sesses 381
Measuring NEtWOrK LATENCY.........cccverererererererserereesersesessesesessssessesessssesssssssessssessssesssssssssassesassesssnenes 382
SeNdiNg COMMANUS........coerrererererererereeserseserseressesasessesessesessessssersssessssessssessessssessssesssessenssssnsssesansens 387

Ending the Multiplayer GAMEccocvereersercersircr s sne e 392
Ending the Game When a Player Is Defeated...........ccoevvernirninnccnecnesnerncss s 392
Ending the Game When a Player IS DiSCONNECTEdcccoverrriniccrccnesnernes e 396
Ending the Game When a Connection IS LOST ... 398

Implementing Player Chat ..o s 400

E3 1111 P2 7S 406

Chapter 14: Essential Game Developer ToolKit..........cuscsmssaesmsssnsssssnsssssnnssssansns 409

Customizing Your Code Editorccooerererererereeseesessesssssssssssssssssssssssasssssessasssssssnnns 410
Syntax Highlighting and Code COMPIELION..........ccccerrererrererererererereres e raesersesessesessesassessssessssessesasaens 410
CUSTOM EXIBNSIONS ...t 412
6T 0= L] 415
Integrated DEDUGQINGccvoererrerererrerererereresersesersesesaeressesassessssessesessesessessssesassessesessssesssassesasserseneres 416

Writing Modular COde.........ccucrvririerrirserser s sn e 417

Automating Your Development WOrkflowcccovceeenricnnsenesssessssse e sesseenas 417
Essential Tools for a Streamlined WOrkflow.............cococnenennnncnincnnnseseseseesese s 418

E3 1111 P2 7S 420

INA@X . iiiiisssnnnnnnnnnnnnssssssssnnnnnnnnnesssssssnnnnnnnnnssssssssssnnnnnnnnsssssssssnnnnnnnnnssssssssnnnnnnnnnnssssssnn 421

xi

About the Author

Aditya Ravi Shankar started programming in 1993 when he was first
introduced to the world of computers. With no access to the Internet
or online tutorials at the time, he wrote his first game in GW-BASIC by
painstakingly retyping code from a book he found at the local library.

After graduating from the Indian Institute of Technology - Madras
in 2001, Aditya spent nearly a decade working as a software consultant,
developing trading and analytics systems for investment banks and
large Fortune 100 companies, before eventually leaving his corporate life
behind so he could focus on doing what he loved.

A self-confessed technology geek, Aditya has spent the time since
then working on his own projects and experimenting, with every new
language and technology that he could, including of course HTMLS5.
During this time, he became well known for re-creating several classic
games in HTML5, including the real-time strategy game Command and
Conquer and the tactical game Commandos: Behind Enemy Lines. He
has also worked as a consultant to develop a large variety of HTML5
games, including endless runner games, racing games, base-defense games, arcade games, puzzle games,
educational games, and different types of multiplayer games.

Apart from programming, Aditya is passionate about billiards, salsa dancing, and personal
development. He maintains a personal website (http://www.adityaravishankar.com) where he writes
articles on game programming, personal development, and billiards.

xiii

http://www.adityaravishankar.com/

About the Technical Reviewer

Gaurav Mishra is an expert in user interface development and UX design with more than 10 years of
experience. He provides workshops and training in UI development, UX design, and Drupal. Gaurav
has played a key role in the success of many organizations and likes to build products and services from
scratch. Gaurav lives in New Delhi, India, and likes to spend his leisure time with his baby Yuvika and
wife Neeti. He likes all genres of music, from Indian classical to club music. Gaurav can be reached at
mr.gauravmishr@gmail.com and also tweets at @gauravmishr.

XV

mr.gauravmishr@gmail.com

CHAPTER 1

HTMLS and JavaScript Essentials

HTMLS5, the latest version of the HTML standard, provides us with many new features for improved
interactivity and media support. These new features (such as canvas, audio, and video) have made it
possible to make fairly rich and interactive applications for the browser without requiring third-party plug-
ins such as Flash.

Even though the HTMLS5 standard continues to grow and improve as a “living standard,” all the
elements that we need for building some very amazing games are already supported by all modern browsers
(Google Chrome, Mozilla Firefox, Internet Explorer 9+, Microsoft Edge, Safari, and Opera).

Over the past half-decade (since I wrote the first edition of this book), HTML5 support has become a
standard across all modern browsers, both desktop and mobile. This means we now can make games in
HTMLS5 that can be easily extended to work on both mobile and desktop across a wide variety of operating
systems.

All you need to get started on developing your games in HTML5 are a good text editor to write your
code (I currently use Visual Studio Code on both Mac and PC—https://code.visualstudio.com/) and
amodern, HTML5-compatible browser (I primarily use Google Chrome). Once you have installed your
preferred text editor and HTML5-compatible browser, you are ready to create your first HTML5 page.

A Basic HTML5 Page

The structure of an HTML5 document is very similar to the structure in previous versions, except that
HTMLS5 has a much simpler DOCTYPE tag at the beginning of the document. This simpler DOCTYPE tag
lets the browser know that it needs to use the latest standards when interpreting the document.

Listing 1-1 provides a skeleton for a very basic HTMLS file that we will be using as a starting point for the
rest of this chapter. Executing this code involves saving it as an HTML file and then opening the file in a web
browser. If you do everything correctly, the browser should pop up the message “Hello World!”

Listing 1-1. Basic HTMLS5 File Skeleton

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-type" content="text/html; charset=utf-8">
<title>Sample HTML5 File</title>
<script type="text/javascript">
// This function will be called once the page loads completely
function pageloaded(){
alert("Hello World!");
}

© Aditya Ravi Shankar 2017 1
A.R. Shankar, Pro HTML5 Games, DOI 10.1007/978-1-4842-2910-1_1

https://code.visualstudio.com/

CHAPTER 1 © HTML5 AND JAVASCRIPT ESSENTIALS

</script>
</head>
<body onload="pagelLoaded();">

</body>
</html>

Note We use the body’s onload event to call our pageLoaded() function so that we can be sure that
our page has completely loaded before we start working with it. This will become important when we start
manipulating elements like images and audio. Trying to access these elements before the browser has finished
loading them will cause JavaScript errors or other unexpected behavior.

Before we start developing games, we need to go over some of the basic building blocks that we will be
using to create our games. The most important ones that we need are

e The canvas element, to render shapes and images
e The audio element, to add sounds and background music
e The image element, to load our game artwork and display it on the canvas

e The browser timer functions, and game loops to handle animation

The canvas Element

The most important element for use in our games is the new canvas element. As per the HTML5 standard
specification, “The canvas element provides scripts with a resolution-dependent bitmap canvas, which
can be used for rendering graphs, game graphics, art, or other visual images on the fly”” You can find the
complete specification at https://html.spec.whatwg.org/multipage/scripting.html#the-canvas-
element.

The canvas allows us to draw primitive shapes like lines, circles, and rectangles, as well as images and
text, and has been optimized for fast drawing. Browsers have started enabling GPU-accelerated rendering of
2D canvas content, so that canvas-based games and animations run fast.

Using the canvas element is fairly simple. Place the <canvas> tag inside the body of the HTMLS5 file we
created earlier, as shown in Listing 1-2.

Listing 1-2. Creating a Canvas Element

<body onload="pagelLoaded();">
<canvas width="640" height="480" id="testcanvas" style="border: 1px solid black;"»
Your browser does not support HTML5 Canvas. Please shift to a newer browser.
</canvas>
</body>

The code in Listing 1-2 creates a canvas that is 640 pixels wide and 480 pixels high. By itself, the canvas
shows up as a blank area (with a black border that we specified in the style). We can now start drawing inside
this rectangle using JavaScript.

https://html.spec.whatwg.org/multipage/scripting.html#the-canvas-element
https://html.spec.whatwg.org/multipage/scripting.html#the-canvas-element

CHAPTER 1 * HTML5 AND JAVASCRIPT ESSENTIALS

Note Browsers that do not support canvas will ignore the <canvas> tag and render anything inside
the <canvas> tag. You can use this feature to show users on older browsers alternative fallback content or a
message directing them to a more modern browser.

We draw on the canvas using what is known as its primary rendering context. We can access this context
with the getContext () method of the canvas object. The getContext () method takes one parameter: the
type of context that we need. We will be using the 2d context for our games.

Listing 1-3 shows how we can access the canvas and its context once the page has loaded by modifying
the pagelLoaded() method.

Listing 1-3. Accessing the Canvas Context

<script type="text/javascript">
function pageloaded(){

// Get a handle to the canvas object
var canvas = document.getElementById("testcanvas");

// Get the 2d context for this canvas
var context = canvas.getContext("2d");

// Our drawing code here...

}

</script>

Note All browsers support the 2d context that we need for 2D graphics. Most browsers also implement
other contexts with names such as webgl or experimental-webgl for 3D graphics.

This code doesn’t seem to do anything yet. However, we now have access to a 2d context object. This
context object provides us with a large number of methods that we can use to draw our game elements on
the screen. This includes methods for the following:

e Drawingrectangles

e Drawing complex paths (lines, arcs, and so forth)

e Drawing text

e Customizing drawing styles (colors, alpha, textures, and so forth)
e Drawingimages

e Transforming and rotating

We will look at each of these methods in more detail in the following sections.

CHAPTER 1 © HTML5 AND JAVASCRIPT ESSENTIALS

Drawing Rectangles

Before you can start drawing on the canvas, you need to understand how to reference coordinates on it. The
canvas uses a coordinate system with the origin (0, 0) at the top-left corner of the canvas, x increasing toward
the right, and y increasing downward, as illustrated in Figure 1-1.

height

width

Y

Figure 1-1. Coordinate system for canvas

We can draw a rectangle on the canvas using the context’s rectangle methods:
o fillRect(x, y, width, height): Draws a filled rectangle
e strokeRect(x, y, width, height): Draws a rectangular outline

e clearRect(x, y, width, height): Clears the specified rectangular area and makes
it fully transparent

Listing 1-4. Drawing Rectangles Inside the Canvas

// FILLED RECTANGLES

// Draw a solid square with width and height of 100 pixels at (200,10)
context.fillRect(200, 10, 100, 100);

// Draw a solid square with width of 90 pixels and height of 30 pixels at (50,70)
context.fillRect(50, 70, 90, 30);

// STROKED RECTANGLES

// Draw a rectangular outline with width and height of 50 pixels at (110, 10)
context.strokeRect(110, 10, 50, 50);

// Draw a rectangular outline with width and height of 50 pixels at (30, 10)
context.strokeRect(30, 10, 50, 50);

// CLEARING RECTANGLES

// Clear a rectangle with width of 30 pixels and height of 20 pixels at (210, 20)
context.clearRect(210, 20, 30, 20);

// Clear a rectangle with width of 30 pixels and height of 20 pixels at (260, 20)
context.clearRect(260, 20, 30, 20);

CHAPTER 1 © HTML5 AND JAVASCRIPT ESSENTIALS

The code in Listing 1-4 will draw multiple rectangles on the top-left corner of the canvas, as shown in
Figure 1-2. Add the code to the bottom of the pageLoaded () method, save the file, and refresh the browser to
see the result of these changes.

Figure 1-2. Drawing rectangles inside the canvas

Drawing Complex Paths

The context has several methods that allow us to draw complex shapes when simple boxes aren’t enough:

beginPath(): Starts recording a new shape

closePath(): Closes the path by drawing a line from the current drawing point to the
starting point

fi11(), stroke(): Fills or draws an outline of the recorded shape
moveTo(x, y): Moves the drawing point to x, y
lineTo(x, y):Draws a line from the current drawing point to x, y

arc(x, y, radius, startAngle, endAngle, anticlockwise):Draws an arcatx,y
with specified radius

Using these methods, drawing a complex path involves the following steps:

1.

> w0

Use beginPath() to start recording the new shape.
Use moveTo(), lineTo(), and arc() to create the shape.
Optionally, close the shape using closePath().

Use either stroke() or fi11() to draw an outline or filled shape. Using fi11()
automatically closes any open paths.

CHAPTER 1 © HTML5 AND JAVASCRIPT ESSENTIALS

Listing 1-5 will create the triangles, arcs, and shapes shown in Figure 1-3.

Listing 1-5. Drawing Complex Shapes Inside the Canvas

// DRAWING COMPLEX SHAPES

// Draw a filled triangle

context.beginPath();

context.moveTo(10, 120); // Start drawing at 10, 120
context.lineTo(10, 180);

context.lineTo(110, 150);

context.fill(); // Close the shape and fill it out

// Draw a stroked triangle

context.beginPath();

context.moveTo(140, 160); // Start drawing at 140, 160
context.lineTo(140, 220);

context.lineTo(40, 190);

context.closePath();

context.stroke();

// Draw a more complex set of lines
context.beginPath();

context.moveTo(160, 160); // Start drawing at 160, 160
context.lineTo(170, 220);

context.lineTo(240, 210);

context.lineTo(260, 170);

context.lineTo(190, 140);

context.closePath();

context.stroke();

// DRAWING ARCS & CIRCLES

// Draw a semicircle

context.beginPath();

// Draw an arc at (400, 50) with radius 40 from 0 to 180 degrees, anticlockwise
// PI radians = 180 degrees

context.arc(100, 300, 40, 0, Math.PI, true);

context.stroke();

// Draw a full circle

context.beginPath();

// Draw an arc at (500, 50) with radius 30 from 0 to 360 degrees, anticlockwise
// 2*PI radians = 360 degrees

context.arc(100, 300, 30, 0, 2 * Math.PI, true);

context.fill();

// Draw a three-quarter arc

context.beginPath();

// Draw an arc at (400, 100) with radius 25 from 0 to 270 degrees, clockwise
// (3/2*PI radians = 270 degrees)

context.arc(200, 300, 25, 0, 3 / 2 * Math.PI, false);

context.stroke();

CHAPTER 1 © HTML5 AND JAVASCRIPT ESSENTIALS

Figure 1-3. Drawing complex shapes inside the canvas

Drawing Text

The context also provides us with two methods for drawing text on the canvas:
o strokeText(text, x, y):Draws an outline of the text at (x, y)
o fillText(text, x, y):Fillsout the textat (x,y)

Unlike text inside other HTML elements, text inside canvas does not have CSS layout options such
as wrapping, padding, and margins. However, the text output can be modified by setting the context font,
stroke, and fill style properties, as shown in Listing 1-6.

Listing 1-6. Drawing Text Inside the Canvas

// DRAWING TEXT
context.fillText("This is some text...", 330, 40);

// Modify the font
context.font = "10pt Arial";
context.fillText("This is in 10pt Arial...", 330, 60);

// Draw stroked text
context.font = "16pt Arial";
context.strokeText("This is stroked in 16pt Arial...", 330, 80);

CHAPTER 1 © HTML5 AND JAVASCRIPT ESSENTIALS

The code in Listing 1-6 will draw the text shown in Figure 1-4.

This is some text...
This is in 10pt Arial...

This is stroked in 16pt Arial...

Figure 1-4. Drawing text inside the canvas

When setting the font property, you can use any valid CSS font property. As you can see from the
previous example, while you may not have the same degree of flexibility in formatting that HTML and CSS
provide, you can still do a lot with the canvas text methods. Of course, this would look a lot better if we could
add some color.

Customizing Drawing Styles (Colors and Textures)

So far, everything we have drawn has been in black, but only because the canvas default drawing color is
black. We have other options. We can style and customize the lines, shapes, and text on a canvas. We can
draw using different colors, line styles, transparencies, and even fill textures inside the shapes.

If we want to apply colors to a shape, there are two important properties we can use:

e fillStyle: Sets the default color for all future fill operations
e strokeStyle: Sets the default color for all future stroke operations

Both properties can take valid CSS colors as values. This includes rgb() and rgba() values as well as
color constant values. For example, context.fillStyle ="red"; will define the fill color as red for all future
fill operations (fillRect, fillText, and fill).

In addition, the context object’s createTexture() method creates a texture from an image, which can
also be used as a fill style. Before we can use an image, we need to load the image into the browser. For now,
we will just add an tag after the <canvas> tag in our HTML file:

The code in Listing 1-7 will draw colored and textured rectangles, as shown in Figure 1-5.

Listing 1-7. Drawing with Colors and Textures

// FILL STYLES AND COLORS

// Set fill color to red
context.fillStyle = "red";

// Draw a red filled rectangle
context.fillRect(310, 160, 100, 50);

// Set stroke color to green
context.strokeStyle = "green";

// Draw a green stroked rectangle
context.strokeRect(310, 240, 100, 50);

CHAPTER 1

// Set fill color to yellow using rgb()
context.fillStyle = "rgb(255, 255, 0)";
// Draw a yellow filled rectangle
context.fillRect(420, 160, 100, 50);

// Set fill color to green with an alpha of 0.6
context.fillStyle = "rgba(0, 255, 0, 0.6)";

// Draw a semi-transparent green filled rectangle
context.fillRect(450, 180, 100, 50);

// TEXTURES

// Get a handle to the Image object

var fireImage = document.getElementById("fire");

var pattern = context.createPattern(fireImage, "repeat");

// Set fill style to newly created pattern
context.fillStyle = pattern;

// Draw a pattern filled rectangle
context.fillRect(420, 240, 130, 50);

Figure 1-5. Drawing with colors and textures

HTML5 AND JAVASCRIPT ESSENTIALS

In addition to these methods, the canvas also provides several methods to use color gradients, shadows,
and patterns while drawing. I encourage you to take the time to explore the canvas and context API more

thoroughly when you get the chance.

Drawing Images

Although we can achieve quite a lot using just the drawing methods we have covered so far, we still need
to explore how to use images. Learning how to draw images will enable you to draw game backgrounds,
character sprites, and effects like explosions that can make your games come alive.

CHAPTER 1 © HTML5 AND JAVASCRIPT ESSENTIALS

We can draw images and sprites on the canvas using the drawImage () method. The context provides us
with three different versions of this method:

e drawImage(image, x, y):Draws the image on the canvas at (x, y)

e drawImage(image, x, y, width, height): Scales the image to the specified width
and height and then draws it at (x, y)

e drawImage(image, sourceX, sourceY, sourceWidth, sourceHeight, x, vy,
width, height): Clips a rectangle from the image at (sourceX, sourceY) with
dimensions (sourceWidth, sourceHeight), scales it to the specified width and height,
and draws it on the canvas at (x, y)

Before we start drawing images, we need to load another image into the browser. We will add one more
 tag after the <canvas> tag in our HTML file:

Once the image has been loaded, we can draw it using the code shown in Listing 1-8.

Listing 1-8. Drawing Images

// DRAWING IMAGES
// Get a handle to the Image object
var image = document.getElementById("spaceship");

// Draw the image at (0, 350)
context.drawImage(image, 0, 350);

// Scale the image to half the original size
context.drawImage(image, 0, 400, 100, 25);

// Draw part of the image
context.drawImage(image, 0, 0, 60, 50, 0, 420, 60, 50);

The code in Listing 1-8 will draw the images shown in Figure 1-6. The last example in Listing 1-8, where

we draw only a part of the image, will become especially useful when we start using sprite sheets to combine
our game assets and store multiple sprites in a single large image.

10

CHAPTER 1 * HTML5 AND JAVASCRIPT ESSENTIALS

e B

s B2

Figure 1-6. Drawing images

Transforming and Rotating

The context object has several methods for transforming the coordinate system used for drawing elements.
These methods are

e translate(x, y): Moves the canvas and its origin to a different point (x, y)

e rotate(angle): Rotates the canvas clockwise around the current origin by angle
(radians)

e scale(x, y):Scales the objects drawn by a multiple of x and y along the respective
axes

A common use of these methods is to rotate objects or sprites when drawing them. We can do this by
e Translating the canvas origin to the location of the object
e Rotating the canvas by the desired angle
e Drawing the object
e Restoring the canvas back to its original state

Let’s look at rotating objects before drawing them, as shown in Listing 1-9.

Listing 1-9. Rotating Objects Before Drawing Them

// ROTATION AND TRANSLATION

//Translate origin to location of object
context.translate(250, 370);

//Rotate about the new origin by 60 degrees
context.rotate(Math.PI / 3);

context.drawImage(image, 0, 0, 60, 50, -30, -25, 60, 50);
//Restore to original state by rotating and translating back
context.rotate(-Math.PI / 3);

context.translate(-240, -370);

11

CHAPTER 1 © HTML5 AND JAVASCRIPT ESSENTIALS

//Translate origin to location of object
context.translate(300, 370);

//Rotate about the new origin

context.rotate(3 * Math.PI / 4);

context.drawImage(image, 0, 0, 60, 50, -30, -25, 60, 50);
//Restore to original state by rotating and translating back
context.rotate(-3 * Math.PI / 4);

context.translate(-300, -370);

The code in Listing 1-9 will draw the two rotated ship images shown in Figure 1-7.

Figure 1-7. Rotating images

Note Apart from rotating and translating back, you can also restore the canvas state by first using the
save() method before starting the transformations and then calling the restore() method at the end of the
transformations.

With this last example, we have covered all the essentials of the canvas that we will need to build our
games. There is still a lot of the API that we have not covered here. You can read more about the canvas API
athttps://developer.mozilla.org/en-US/docs/Web/API/Canvas_API.

The audio Element

Using the HTML5 audio element is the new standard way to embed an audio file into a web page. Until this
element came along, most pages played audio files using embedded plug-ins (such as Flash).

The audio element can be created in HTML using the <audio> tag or in JavaScript using the Audio
object. An example is shown in Listing 1-10.

Listing 1-10. The HTML5 <audio> Tag

<audio src="music.mp3" controls="controls">
Your browser does not support HTML5 Audio. Please shift to a newer browser.
</audio>

12

https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API

CHAPTER 1 * HTML5 AND JAVASCRIPT ESSENTIALS

Note Browsers that do not support audio will ignore the <audio> tag and render anything inside the
<audio> tag. You can use this feature to show users on older browsers alternative fallback content or a
message directing them to a more modern browser.

The controls attribute included in Listing 1-10 makes the browser display a simple browser-specific
interface for playing the audio file (such as a play/pause button and volume controls).
The audio element has several other attributes, such as the following:

e preload: Specifies whether or not the audio should be preloaded

e autoplay: Specifies whether or not to start playing the audio as soon as the object
has loaded

e loop: Specifies whether to keep replaying the audio once it has finished

There are currently three popular file formats supported by browsers: MP3 (MPEG Audio Layer 3),
WAV (Waveform Audio), and OGG (Ogg Vorbis). One thing to watch out for is that not all browsers support
all audio formats. Firefox, for example, does not play MP3 files directly because of patent and licensing
issues (and has to rely on operating system support), though it does play OGG and WAV files directly. Safari,
on the other hand, supports MP3 but does not support OGG. Table 1-1 shows the formats supported by the
latest version of popular browsers.

Table 1-1. Audio Formats Supported by Current Browsers

Browser MP3 WAV OGG
Internet Explorer Yes No No
Edge Yes Yes No
Firefox Using OS support Yes Yes
Chrome Yes Yes Yes
Safari Yes Yes No
Opera Yes Yes Yes

The way to work around this limitation is to provide the browser with alternative formats to play. The
audio element allows multiple source elements within the <audio> tag, and the browser automatically uses
the first recognized format (see Listing 1-11).

Listing 1-11. The <audio> Tag with Multiple Sources

<audio controls="controls">
<source src="music.ogg" type="audio/ogg" />
<source src="music.mp3" type="audio/mpeg" />
Your browser does not support HTML5 Audio. Please shift to a newer browser.
</audio>

13

CHAPTER 1 © HTML5 AND JAVASCRIPT ESSENTIALS

Audio can also be loaded dynamically by using the Audio object in JavaScript. The Audio object allows
us to load, play, and pause sound files as needed, which is what will be used for games (see Listing 1-12).

Listing 1-12. Dynamically Loading an Audio File

<script>
//Create a new Audio object
var sound = new Audio();

// Select the source of the sound
sound.src = "music.ogg";
// This will only work on browsers that support 0GG

// Play the sound
// sound.play();
</script>

Unlike with the <audio> HTML tag, where we could easily specify multiple formats, when using
JavaScript we need a way to detect the formats supported by the browser so we can load the appropriate
format. The Audio object provides us with a method called canPlayType() that returns values of "", "maybe",
or "probably" to indicate support for a specific codec. We can use this to create a simple check and load the

appropriate audio format, as shown in Listing 1-13.

Listing 1-13. Testing for Audio Support

<script>
var audio = document.createElement("audio");
var mp3Support, oggSupport;

if (audio.canPlayType) {
// Currently canPlayType() returns:

, "maybe", or "probably"

mp3Support = "" l== audio.canPlayType("audio/mpeg");
oggSupport = "" l!== audio.canPlayType("audio/ogg; codecs=\"vorbis\"");
} else {

// The audio tag is not supported
mp3Support = false;
oggSupport = false;

// Check for ogg, then mp3, and finally set soundFileExtn to undefined
var soundFileExtn = oggSupport ? ".ogg" : mp3Support ? ".mp3" : undefined;

if (soundFileExtn) {
var sound = new Audio();

// Load sound file with the detected extension

sound.src = "music" + soundFileExtn;
sound.play();

</script>

14

CHAPTER 1 * HTML5 AND JAVASCRIPT ESSENTIALS

Listing 1-13 uses canPlayType() to set a soundFileExtn property, which we can then use to load future
audio files. We will use this idea when we build audio into our games in later chapters.

The Audio object triggers several different events to help us know when the sound has been loaded and
is ready for playing. The loadedmetadata event is fired when the initial audio file metadata has been loaded
by the browser. The canplay event is fired once enough of the audio file has been downloaded
to start playing, and the canplaythrough event is fired when the browser can play the entire audio file
without needing to pause and buffer the file. We can use the canplaythrough event to keep track of when
the sound file has been loaded sufficiently for our purposes. Listing 1-14 shows an example of how the
canplaythrough event can be used to play a sound once it has been loaded.

Listing 1-14. Waiting for an Audio File to Load

<script>
// Play the sound after waiting for it to load
if (soundFileExtn) {
var sound = new Audio();

sound.addEventListener("canplaythrough", function() {
sound.play();
D;

// Load sound file with the detected extension
sound.src = "music" + soundFileExtn;

}

</script>

Now that we have looked at how to check for supported audio formats, dynamically load audio, and
detect when an audio file has loaded, we can combine these concepts to design an audio preloader that will
dynamically load all the game audio resources before starting the game. We will look at this idea in more
detail in the next few chapters when we build an asset loader for our games.

The image Element

The image element allows us to display images inside an HTML file. The simplest way to do this is by using
the <image> tag and specifying an src attribute, as shown earlier and again here in Listing 1-15.

Listing 1-15. The <image> Tag

You can also load an image dynamically using JavaScript by instantiating a new Image object and setting
its src property, as shown in Listing 1-16.

Listing 1-16. Dynamically Loading an Image

var image = new Image();
image.src = "spaceship.png";

You can use either of these methods to get an image for drawing on a canvas.

15

CHAPTER 1 © HTML5 AND JAVASCRIPT ESSENTIALS

Image Loading

Games are usually designed to wait for all the images to load completely before they start so as to avoid
errors due to partly loaded images. While the images are being loaded, programmers commonly display a
progress bar or status indicator that shows the percentage of images loaded.

The Image object provides us with an onload event that gets fired as soon as the browser finishes
loading the image file. Using this event, we can keep track of when the image has loaded, as shown in the
example in Listing 1-17.

Listing 1-17. Waiting for an Image to Load

image.onload = function() {
alert("Image finished loading");
b

Using the onload event, we can create a simple image loader that tracks images loaded so far
(see Listing 1-18).

Listing 1-18. Simple Image Loader

var imageloader = {
loaded: true,
loadedImages: 0,
totalImages: 0,
load: function(url) {
this.totalImages++;
this.loaded = false;
var image = new Image();
image.src = url;
image.onload = function() {
imageloader.loadedImages++;
if (imageloader.loadedImages === imageloader.totalImages) {
imageloader.loaded = true;
}

image.onload = undefined;

}

return image;

In this code, we create an imagelLoader object with a load() method. This load() method takes an
image URL, and increases the totalImages counter each time it is called. It then dynamically creates
an Image object and sets the object’s src property. Finally, it uses the object’s onload event handler to
increment the loadedImages counter, and once the counter reaches totalImages, it sets the loaded variable
back to true.

This image loader can be invoked to load a large number of images (say in a loop). We can check to see
if all the images are loaded by using imageLoader.loaded, and we can draw a percentage/progress bar by
using loadedImages/totalImages.

Don’t worry about actually using this loader yet. This is just a partial code snippet to help illustrate the
basic idea for an image loader. We will be building a more complete version of an asset loader for our games
in the coming chapters.

16

CHAPTER 1 * HTML5 AND JAVASCRIPT ESSENTIALS

Sprite Sheets

Another concern when your game has a lot of images is how to optimize the way the server loads these
images. Games can require anything from tens to hundreds of images. Even a simple real-time strategy (RTS)
game will need images for different units, buildings, maps, backgrounds, and effects. In the case of units and
buildings, you might need multiple versions of images to represent different directions and states, and in the
case of animations, you might need an image for each frame of the animation.

In one of my earlier RTS game projects, I used individual images for each animation frame and state
for every unit and building, ending up with over 1,000 images. Since most browsers make only a few
simultaneous requests at a time, downloading all these images took a lot of time, with an overload of HTTP
requests on the server. While this wasn’t a problem when I was testing the code locally, it was a bit of a pain
when the code went onto the server. Players ended up waiting 5 to 10 minutes (sometimes longer) for the
game to load before they could actually start playing. All the concurrent requests also caused considerable
load on my web server.

Luckily for us, there is a simple way to fix this problem of too many images and HTTP requests, and this
is where sprite sheets come in. Sprite sheets store all the sprites (images) for a game entity in a single large
image file. When displaying the images, we calculate the offset of the sprite we want to show and use the
ability of the drawImage () method to draw only a part of an image. The spaceship.png image we have been
using in this chapter is an example of a sprite sheet since it contains multiple spaceship sprites within the
same file.

Looking at the code fragments in Listings 1-19 and 1-20, you can see examples of drawing an image
loaded individually versus drawing an image loaded in a sprite sheet.

Listing 1-19. Drawing an Image Loaded Individually

// First: (Load individual images and store in a big array)

// Three arguments: the element, and destination (x, y) coordinates
var image = imageArray[imageNumber];
context.drawImage(image, x, y);

Listing 1-20. Drawing an Image Loaded in a Sprite Sheet

// First: (Load single sprite sheet image)

// Nine arguments: the element, source (x, y) coordinates,
// source width and height (for cropping),

// destination (x, y) coordinates, and

// destination width and height (resize)

context.drawImage (this.spriteImage, this.imageWidth*(imageNumber), 0, this.imageWidth,
this.imageHeight, x, y, this.imageWidth, this.imageHeight);

In the first example, we store each individual sprite as a separate Image object in an array, and then

draw a specific sprite by accessing the Image object. This method would require as many Image objects as
sprites, and just as many HTTP requests to the server to fetch each image.

17

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 1 © HTML5 AND JAVASCRIPT ESSENTIALS

In the second example, we load a single large sprite sheet where all the sprites are placed side by side.
Drawing the sprite involves calculating the x and y offset of the sprite within the image and then drawing
just the appropriate portion of the image. This method involves only a single HTTP request and only a single
Image object per sprite sheet, along with a little more complexity in computing the sprite location within the
image. In terms of utilization of network resources, this is significantly better.

The following are some of the advantages of using a sprite sheet, which make using sprite sheets for any
kind of complex game a no-brainer:

e Fewer HTTP requests: A unit that has 80 images (and so 80 requests) will now be
downloaded in a single HTTP request.

e Better compression: Storing the images in a single file means that the header
information doesn’t repeat for each file and the single combined file is significantly
smaller than all the individual files.

e Faster load times: With significantly lower HTTP requests and file sizes, the
bandwidth usage and load times for the game drop as well, which means users won’t
have to wait for as long a time for the game to load.

Animation: Timer and Game Loops

The last thing you need to understand before you get started with actually building games is animation.
Animating is just a matter of drawing an object, erasing it, and drawing it again at a new position, fast
enough that the human eye only sees it as smooth movement.

The most common way to handle animation is by keeping a drawing function that gets called several
times a second. Within this function, we iterate through all the game entities and draw them one by one.

Simpler games typically handle both animating or moving the entities and drawing them within the
same drawing function. However, some games have a separate control/animation function that updates
movement of the entities within the game, while the drawing function handles only the actual drawing of the
entities on the screen. The animation function, since it is independent of the drawing function, can be called
less often than the drawing function. Listing 1-21 contains skeleton code illustrating a typical animation and
drawing routine.

Listing 1-21. Typical Animation and Drawing Loop

function animationLoop(){
// Iterate through all the items in the game
//And move them

}

function drawingloop(){
//1. Clear the canvas
//2. Tterate through all the items
//3. And draw each item

Assuming we built a working drawingLoop() method for our game, we need to figure out a way to call
drawingLoop() repeatedly at regular intervals. The simplest way of achieving this is to use the two timer
methods setInterval() and setTimeout(). setInterval(functionName, timeInterval) tells the browser
to keep calling a given function repeatedly at fixed time intervals until the clearInterval() function is
called. When we need to stop animating (when the game is paused, or has ended), we use clearInterval().
Listing 1-22 shows an example of how this would work.

18

CHAPTER 1 * HTML5 AND JAVASCRIPT ESSENTIALS

Listing 1-22. Calling Drawing Loop with setInterval()

// Call drawingloop() every 20 milliseconds

var gameloop = setInterval(drawingloop, 20);

// Stop calling drawinglLoop() and clear the gameloop variable
clearInterval(gameloop);

setTimeout(functionName, timeInterval) tells the browser to call a given function one single time
after a given time interval, as shown in the example in Listing 1-23.

Listing 1-23. Calling Drawing Loop with setTimeout()

function drawinglLoop(){
// 1. Call the drawingloop() method once after 20 milliseconds
var gameloop = setTimeout(drawingloop,20);

// 2. Clear the canvas
// 3. Iterate through all the items

// 4. And draw them

Unlike with setInterval(), when using setTimeout () we need to make a new call each time since
setTimeout() only calls the drawinglLoop() method once. When we need to stop animating (when the game
is paused, or has ended), we can use clearTimeout():

// Stop calling drawinglLoop() and clear the gameloop variable
clearTimeout(gameLoop);

Now, don’t get too worried if some of this seems a little confusing or abstract at this point. This chapter
is only meant to be a quick crash course, and I just want you to get a general overview of how this works. We
will be looking at detailed working examples of all of these functions when we start building our games in
later chapters, at which point everything should start making a lot more sense.

requestAnimationFrame

While using setInterval() or setTimeout() as a way to animate frames does work, browser vendors have
come up with a new API specifically for handling animation. Some of the advantages of using this API
instead of setInterval() are that the browser can do the following:

e Optimize the animation code into a single reflow-and-repaint cycle, resulting in
smoother animation

e Pause the animation when the tab is not visible, leading to less CPU and GPU usage

e Automatically cap the frame rate on machines that do not support higher frame
rates, or increase the frame rate on machines that are capable of processing them

Around the time that I was writing the first edition of this book, browser vendors had their own
proprietary names for the methods in the API (such as Microsoft’s msrequestAnimationFrame() method and
Mozilla’s mozRequestAnimationFrame() method). Since then, however, all browsers have standardized this
API implementation and you can now use requestAnimationFrame() and cancelAnimationFrame() across
all browsers that support HTMLS5.

19

CHAPTER 1 © HTML5 AND JAVASCRIPT ESSENTIALS

Note Now that we have no guarantee of frame rate (the browser decides the speed at which it will call our
drawing loop), we need to ensure that animated objects move at the same speed on the screen independent of
the actual frame rate. We do this either by animating objects in a separate setTimeout() or setInterval()
loop, or by calculating the time since the previous drawing cycle and using it to interpolate the location of the
object being animated.

The requestAnimationFrame () method can be called from within the drawinglLoop() method similar to
setTimeout(), as shown in Listing 1-24.

Listing 1-24. Calling Drawing Loop with requestAnimationFrame()

function drawinglLoop(nowTime){
// 1. Call the drawingloop() method whenever the browser is ready to draw again
var gameloop = requestAnimationFrame(drawingloop);

// 2. Clear the canvas
// 3. Iterate through all the items
// 4. Optionally use nowTime and the last nowTime to interpolate frames

// 5. And draw the items

When we need to stop animating (when the game is paused, or has ended), we can use
cancelAnimationFrame():

// Stop calling drawinglLoop() and clear the gameloop variable
cancelAnimationFrame(gamelLoop);

This section has covered the primary ways to add animation to your games. We will be looking at actual
implementations of these animation loops in the coming chapters.

Summary

In this chapter, we looked at the basic elements of HTML5 that are needed for building games. We covered
how to use the canvas element to draw shapes, write text, and manipulate images. We examined how to use
the audio element to load and play sounds across different browsers. We also briefly covered the basics of
animation, preloading objects and using sprite sheets.

The topics we covered here are just a starting point and not exhaustive by any means. This chapter was
meant to be a quick crash course or refresher on HTML5 and a handy reference for easily looking up syntax
or code examples whenever needed. As I mentioned earlier, we will be going into these topics in more detail,
along with complete implementations, as we build our games in the coming chapters.

If you had trouble keeping up and would like a more detailed explanation of the basics of JavaScript and
HTML5, I would recommend reading introductory books on JavaScript and HTML5, such as JavaScript for
Absolute Beginners by Terry McNavage and The Essential Guide to HTML5 by Jeanine Meyer.

Now that we have the basics out of the way, let’s get started building our first game.

20

CHAPTER 2

Creating a Basic Game World -

The arrival of smartphones and handheld devices that support gaming has created a renewed interest in
simple puzzle and physics-based games that can be played for short periods of time. Most of these games
have a simple concept, small levels, and are easy to learn. One of the most popular and famous games in
this genre is Angry Birds (by Rovio Entertainment), a puzzle/strategy game where players use a slingshot to
shoot birds at enemy pigs. Despite a fairly simple premise, the game has been downloaded and installed on
over two billion devices around the world. The game uses a physics engine to realistically model the slinging,
collisions, and breaking of objects inside its game world.

Over the next four chapters, we are going to build our own physics-based puzzle game with complete
playable levels. Our game, Froot Wars, will have fruits as protagonists, junk food as the enemy, and some
breakable structures within the level.

We will be implementing all the essential components you will need in your own games—splash
screens, loading screens and preloaders, menu screens, parallax scrolling, sound, realistic physics with the
Box2D physics engine, and a scoreboard. Once you have this basic framework, you should be able to reuse
these ideas in your own puzzle games.

So let’s get started.

Basic HTML Layout

The first thing we need to do is to create the basic game layout. This will consist of several layers:
e Splash screen: Shown when the game page is loaded
e Game start screen: A menu that allows the player to start the game or modify settings

e Loading/progress screen: Shown whenever the game is loading assets (such as
images and sound files)

e Game canvas: The actual game layer
e Scoreboard: An overlay above the game canvas to show a few buttons and the score
e Ending screen: A screen displayed at the end of each level

Each of these layers will be either a div element or a canvas element that we will display or hide as
needed. The code will be laid out with separate folders for images and JavaScript code.

© Aditya Ravi Shankar 2017 21
A.R. Shankar, Pro HTML5 Games, DOI 10.1007/978-1-4842-2910-1_2

CHAPTER 2 © CREATING A BASIC GAME WORLD

Creating the Splash Screen and Main Menu

We start with a skeleton HTML file, similar to the first chapter, and add the markup for our containers, as
shown in Listing 2-1.

Listing 2-1. Basic Skeleton (index.html) with the Layers Added

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-type" content="text/html; charset=utf-8">
<title>Froot Wars</title>
<script src="js/game.js" type="text/javascript"></script>
<link rel="stylesheet" href="styles.css" type="text/css" media="screen">
</head>

<body>
<div id="wrapper">
<div id="gamecontainer">

<canvas id="gamecanvas" width="640" height="480" class="gamelayer">
</canvas>

<div id="scorescreen" class="gamelayer">

Score: 0

</div>

<div id="gamestartscreen" class="gamelayer">

</div>

<div id="levelselectscreen" class="gamelayer">
</div>

<div id="loadingscreen" class="gamelayer">
<div id="loadingmessage"></div>
</div>

<div id="endingscreen" class="gamelayer">
<div>
<p id="endingmessage">The Level Is Over Message</p>
<p id="playcurrentlevel" class="endingoption"><img src="images/
icons/prev.png" alt="Replay">Replay Current Level</p>

22

CHAPTER 2 © CREATING A BASIC GAME WORLD

<p id="playnextlevel" class="endingoption"><img src="images/icons/
next.png" alt="Next">Play Next Level</p>
<p id="returntolevelscreen" class="endingoption"><img src="images/
icons/return.png" alt="Return">Return to Level Screen</p>
</div>
</div>

</div>
</div>
</body>
</html>

As you can see, we defined a main gamecontainer div element that contains each of the game
layers: gamestartscreen, levelselectscreen, loadingscreen, scorescreen, endingscreen, and finally
gamecanvas. All of these are placed inside a wrapper div, which we can later use for positioning and resizing
the game around the page as needed

We also link to two external files: game. js for JavaScript and styles.css for CSS. Keeping the JavaScript
and CSS as separate files makes the code easier to maintain. In larger projects, it is common to break out
the CSS and JavaScript into multiple files, and very large projects often use a dependency loading system
to automatically load all the distinct JavaScript files. For this game, single files for JavaScript and CSS will
suffice

We will start by creating the styles.css file and adding styles for the game container and the starting
menu screen, as shown in Listing 2-2.

Listing 2-2. CSS Styles for the Container and Start Screen (styles.css)
body {
background: #000900;

/* Prevent the ugly blue highlighting from accidental selection of text */
user-select: none;

}
#wrapper {

position: absolute;
}

#gamecontainer {

/* Set game container width, height, and background */
width: 640px;

height: 480px;

background: url("images/splashscreen.png");

}

.gamelayer {
width: 100%;
height: 100%;
position: absolute;
display: none;

23

CHAPTER 2 © CREATING A BASIC GAME WORLD

/* Game Starting Menu Screen */

#gamestartscreen {
padding-top: 250px;
text-align: center;

}

#gamestartscreen img {
margin: 10px;
cursor: pointer;

We have done the following in this CSS style sheet so far:

e Set the default page background color to almost black with a slight tinge of green and
disabled highlighting of text or elements by dragging the mouse.

e Defined our game container with a size of 640px by 480px.

e Made sure all game layers are positioned using absolute positioning (they are placed
on top of each other) so that we can show/hide and superimpose layers as needed.
Each of these layers has the same size as the parent game container and is hidden by
default.

e Setour game splash screen image as the main container background so it is the first
thing a player sees when the page loads.

e Added some styling for our game start screen (the starting menu), which has options
such as starting a new game and changing game settings.

Note All the images and source code are available from this book’s product page on the Apress website
(www . apress.com/9781484229095) by clicking the Download Source Code button. If you would like to follow
along, you can copy all the asset files into a fresh folder and build the game on your own.

If we open in a browser the HTML file we have created so far, we see the game splash screen, as shown
in Figure 2-1.

24

http://www.apress.com/9781484229095

CHAPTER 2 © CREATING A BASIC GAME WORLD

Figure 2-1. The game splash screen

We need to add some JavaScript code to start showing the main menu, the loading screen, and the
game. We will keep all our game-related JavaScript code in a single file (js/game. js).

We start by defining a game object that will contain most of our game code. The first thing we need is an
init() function that will be called after the browser loads the HTML document.

Listing 2-3. A Basic game Object (js/game.js)

var game = {
// Start initializing objects, preloading assets and display start screen
init: function() {
//Get handler for game canvas and context
game.canvas = document.getElementById("gamecanvas");
game.context = game.canvas.getContext("2d");

// Hide all game layers and display the start screen
game.hideScreens();
game.showScreen("gamestartscreen");

1
/1

hideScreens: function() {
var screens = document.getElementsByClassName("gamelayer");

25

CHAPTER 2 © CREATING A BASIC GAME WORLD

// Iterate through all the game layers and set their display to none
for (let i = screens.length - 1; i >= 0; i--) {
var screen = screens[i];

screen.style.display = "none";

1

hideScreen: function(id) {
var screen = document.getElementById(id);

screen.style.display = "none";

1

showScreen: function(id) {
var screen = document.getElementById(id);

screen.style.display = "block";
1
};

The code in Listing 2-3 defines a JavaScript object called game with an init() function. This init()
function first saves references to the game canvas and context so we can refer to them more easily using
game.context and game. canvas. After that it hides all game layers and shows the game start screen using
the hideScreens() and showScreen() methods. Next, we have three helper methods, hideScreens(),
hideScreen(), and showScreen(), which modify the display CSS attribute to help us show or hide the
menu screens that we created.

Trying to manipulate image and div elements before confirming that the page has loaded completely
will result in unpredictable behavior (including JavaScript errors). We can safely call this game.init()
method after the window has loaded by adding a small snippet of JavaScript code at the bottom of game. js
(shown in Listing 2-4).

Listing 2-4. Calling game.init() Method Safely Using the 1load Event

// Initialize game once page has fully loaded
window.addEventListener("load", function() {

game.init();
1

When we open our HTML code in the browser, the browser initially displays the splash screen and then
displays the game start screen on top of the splash screen, as shown in Figure 2-2.

26

CHAPTER 2 © CREATING A BASIC GAME WORLD

"f

PLAY

SETTINGS

Figure 2-2. The game start screen and menu options

Level Selection

So far we have waited for the game HTML file to load completely and then displayed a main menu with
two options, Play and Settings. When the user clicks the Play button, ideally we would like to display a level
selection screen that shows a list of available levels.

Before we can do this, we need to create an object for handling levels. This object will contain both the
level data and some simple functions for handling level initialization. We will create this levels object inside
game. js and place it after the game object, as shown in Listing 2-5.

Listing 2-5. Simple levels Object with Level Data and Functions

var levels = {

// Level data

data: [{ // First level
foreground: "desert-foreground",
background: "clouds-background",
entities: []

}, { 7/ Second level
foreground: "desert-foreground”,
background: "clouds-background",
entities: []

1,

27

CHAPTER 2 © CREATING A BASIC GAME WORLD

// Initialize level selection screen
init: function() {
var levelSelectScreen = document.getElementById("levelselectscreen");

// An event handler to call
var buttonClickHandler = function() {
game.hideScreen("levelselectscreen");

// Level label values are 1, 2. Levels are 0, 1
levels.load(this.value - 1);

};

for (let i = 0; i < levels.data.length; i++) {
var button = document.createElement("input");

button.type = "button";
button.value = (i + 1); // Level labels are 1, 2
button.addEventListener("click", buttonClickHandler);

levelSelectScreen.appendChild(button);

b

// Load all data and images for a specific level
load: function(number) {
}

b

The levels object has a data array that contains information about each of the levels. For now, the
only level information we store is a background image and foreground image. However, we will be adding
information about the hero characters, the villains, and the destructible entities within each level. This will
allow us to add new levels very quickly by just adding new items to the array.

The next thing the levels object contains is an init() function that goes through the level data and
dynamically generates buttons for each of the levels. Each of the buttons is assigned a click event handler,
which calls the 1oad() method and then hides the level selection screen. Note that we use a level index
starting from 0 internally since JavaScript arrays are zero-based, but when we display the level numbers to
the player on the level selection screen, we start the numbering from 1.

Finally, the levels object has a placeholder load() method, which is currently empty.

We will call levels.init() from inside the game.init() method to generate the level selection screen
buttons when the game is first initialized. The game. init() method now looks as shown in Listing 2-6.

Listing 2-6. Initializing Levels from game.init()

init: function() {
//Get handler for game canvas and context
game.canvas = document.getElementById("gamecanvas");
game.context = game.canvas.getContext("2d");

28

CHAPTER 2 © CREATING A BASIC GAME WORLD

// Initialize objects
levels.init();

// Hide all game layers and display the start screen
game.hideScreens();
game.showScreen("gamestartscreen");

b

We also need to add some CSS styling for the buttons inside styles.css, as shown in Listing 2-7.

Listing 2-7. CSS Styles for the Level Selection Screen

/* Level Selection Screen */

#levelselectscreen {
padding-top: 150px;
padding-left: 50px;

#levelselectscreen input {
margin: 20px;
cursor: pointer;

background: url("images/icons/level.png") no-repeat;
color: yellow;
font-size: 20px;

width: 64px;
height: 64px;

border: 0;

/* Remove the default blue border when an input is selected */
outline: 0;

This fairly simple CSS code adds some padding, margins, and styling to the buttons. It also sets a default
background image for the buttons.

The next thing we need to do is create, inside the game object, a simple game.showLevelScreen()
method that hides the main menu screen and displays the level selection screen, as shown in Listing 2-8.

Listing 2-8. showLevelScreen() Method Inside the game Object

showLevelScreen: function() {
game.hideScreens();
game.showScreen("levelselectscreen");

1

29

CHAPTER 2 © CREATING A BASIC GAME WORLD

This method first hides all the other game layers and then shows the levelselectscreen layer.
The last thing we need to do is call the game. showLevelScreen() method when the user clicks the Play
button. We do this by calling the method from the play image’s onclick event in our HTML file:

<img src="images/icons/play.png" alt="Play Game"
onclick="game.shoulLevelScreen()">

Now, when we start the game and click the Play button, the browser hides the main menu, and shows
the level selection screen with buttons for each of the levels, as shown in Figure 2-3.

Figure 2-3. The level selection screen

Right now, we only have a couple of levels showing. However, as we add more levels, the code will
automatically detect the levels and add the right number of buttons (formatted properly, thanks to the CSS).
When the user clicks these buttons, the browser will hide the level selection screen and then call the
levels.load() method that we have yet to implement.

Loading Images

Before we implement the levels themselves, we need to put in place the image loader and the loading
screen. This will allow us to programmatically load the images for a level and start the game once all the
assets have finished loading.

30

CHAPTER 2 © CREATING A BASIC GAME WORLD

We are going to design a simple loading screen that contains an animated GIF with a progress bar image
and some text above it showing the number of images loaded so far. First, we need to add the CSS in Listing 2-9
tostyles.css.

Listing 2-9. CSS for the Loading Screen

/* Loading Screen */

#loadingscreen {
background: rgba(100, 100, 100, 0.5);
}

#loadingmessage {
margin-top: 400px;
text-align: center;
height: 48px;
color: white;
background: url("images/loader.gif") no-repeat center;
font: 12px Arial;

This CSS adds a dim gray color over the game background to let the user know that the game is
currently processing something and is not ready to receive any user input. It also displays a loading message
in white text. Finally, it places a progress bar image, which is an animated GIF file, in the background.

The next step is to create a JavaScript asset loader based on the code from Chapter 1. The loader will do
the work of actually loading the assets and then updating the loadingscreen div element. We will define a
loader object inside game. js, as shown in Listing 2-10.

Listing 2-10. The Image/Sound Asset Loader

var loader = {
loaded: true,
loadedCount: 0, // Assets that have been loaded so far
totalCount: 0, // Total number of assets that need loading

init: function() {
// Check for sound support
var mp3Support, oggSupport;
var audio = document.createElement("audio");

if (audio.canPlayType) {
// Currently canPlayType() returns:

, "maybe" or "probably"

mp3Support = "" !== audio.canPlayType("audio/mpeg");
oggSupport = "" l== audio.canPlayType("audio/ogg; codecs=\"vorbis\"");
} else {

// The audio tag is not supported
mp3Support = false;
oggSupport = false;

// Check for ogg, then mp3, and finally set soundFileExtn to undefined
loader.soundFileExtn = oggSupport ? ".ogg" : mp3Support ? ".mp3" : undefined;

}s
31

http://dx.doi.org/10.1007/978-1-4842-2910-1_1

CHAPTER 2 © CREATING A BASIC GAME WORLD

loadImage: function(url) {
this.loaded = false;
this.totalCount++;

game.showScreen("loadingscreen");
var image = new Image();

image.addEventListener("load", loader.itemLoaded, false);
image.src = url;

return image;

1

soundFileExtn: ".ogg",

loadSound: function(url) {
this.loaded = false;
this.totalCount++;

game. showScreen("loadingscreen");
var audio = new Audio();

audio.addEventListener("canplaythrough", loader.itemLoaded, false);
audio.src = url + loader.soundFileExtn;

return audio;

1

itemLoaded: function(ev) {
// Stop listening for event type (load or canplaythrough) for this item
now that it has been loaded
ev.target.removeEventListener(ev.type, loader.itemLoaded, false);

loader.loadedCount++;

document.getElementById("loadingmessage").innerHTML = "Loaded " + loader.loadedCount
+ " of " + loader.totalCount;

if (loader.loadedCount === loader.totalCount) {
// Loader has loaded completely..
// Reset and clear the loader
loader.loaded = true;
loader.loadedCount = 0;
loader.totalCount = 0;

// Hide the loading screen
game.hideScreen("loadingscreen");

32

CHAPTER 2 © CREATING A BASIC GAME WORLD

// and call the loader.onload method if it exists
if (loader.onload) {

loader.onload();

loader.onload = undefined;

};

The asset loader in Listing 2-10 has the same elements we discussed in Chapter 1, but it is builtin a
more modular way. It has the following components:

e Aninit() method that detects the supported audio file format and saves it.

¢ Two methods for loading images and audio files: loadImage() and loadSound().
Both methods increment the totalCount variable and show the loading screen when
invoked. The methods then dynamically create the asset, set the src attribute, and
set the appropriate event listener (Load for images and canplaythrough for audio) to
call itemLoaded() once the asset is loaded.

e AnitemLoaded() method that is invoked each time an asset finishes loading. This
method updates the loaded count and the loading message. Once all the assets are
loaded, the loading screen is hidden and an optional loader.onload() method is
called (if defined). This lets us assign a callback function to be called once the images
are loaded.

Note Using a callback method makes it easy for us to wait while the images are loading and start the
game once all the images have loaded.

Before the loader can be used, we need to call the loader.init() method from inside game.init()
so that the loader is initialized when the game is getting initialized. The game.init() method now looks as
shown in Listing 2-11.

Listing 2-11. Initializing the Loader from game.init()

init: function() {
//Get handler for game canvas and context
game.canvas = document.getElementById("gamecanvas");
game.context = game.canvas.getContext("2d");

// Initialize objects
levels.init();
loader.init();

// Hide all game layers and display the start screen
game.hideScreens();
game.showScreen("gamestartscreen");

1

33

http://dx.doi.org/10.1007/978-1-4842-2910-1_1

CHAPTER 2 © CREATING A BASIC GAME WORLD

We will use the loader by calling one of the two load methods, loadImage() or loadSound(). When
either of these load methods is called, the browser will display the loading screen shown in Figure 2-4 until
all the images and sounds are loaded.

Figure 2-4. The loading screen

Note You can optionally have different images for each of these screens by setting a different background
property style for each div element.

Loading Levels

Now that we have an image loader in place, we can work on getting the levels loaded. For now, let’s start with
loading the game background, foreground, and slingshot images by defining a 1load() method inside the
levels object, as shown in Listing 2-12.

Listing 2-12. Basic Skeleton for the load() Method Inside the levels Object

// Load all data and images for a specific level
load: function(number) {

// Declare a new currentlevel object

game.currentlLevel = { number: number };

game.score = 0;

document.getElementById("score").innerHTML = "Score: " + game.score;
var level = levels.data[number];

34

CHAPTER 2 © CREATING A BASIC GAME WORLD

// Load the background, foreground, and slingshot images
game.currentLevel.backgroundImage = loader.loadImage("images/backgrounds/" + level.
background + ".png");
game.currentlevel.foregroundImage
foreground + ".png");
game.slingshotImage = loader.loadImage("images/slingshot.png");
game.slingshotFrontImage = loader.loadImage("images/slingshot-front.png");

loader.loadImage("images/backgrounds/" + level.

// Call game.start() once the assets have loaded
loader.onload = game.start;

The load() function creates a currentLevel object to store the loaded level data. So far we have only
loaded a few images for the background, the foreground, and the front and back of the slingshot. We will
eventually also use this method to load the heroes, villains, and blocks needed to build the game.

One last thing to note is that we call the game. start() method once the images are loaded by setting an
onload callback. This start() method is where the actual game will be drawn.

Animating the Game

As discussed in Chapter 1, to animate our game, we will call our drawing and animation code multiple times
a second using requestAnimationFrame.

We use the game. start() method to set up the animation loop, and then we draw the level inside the
game.animate() method. The code is shown in Listing 2-13.

Listing 2-13. The start() and animate() Functions Inside the game Object

// Store current game state - intro, wait-for-firing, firing, fired, load-next-hero,
success, failure
mode: "intro",

// X & Y coordinates of the slingshot
slingshotX: 140,
slingshotY: 280,

// X & Y coordinate of point where band is attached to slingshot
slingshotBandX: 140 + 55,
slingshotBandY: 280 + 23,

// Flag to check if the game has ended
ended: false,

// The game score
score: 0,

// X axis offset for panning the screen from left to right
offsetlLeft: o,

start: function() {
game.hideScreens();

35

http://dx.doi.org/10.1007/978-1-4842-2910-1_1

CHAPTER 2 © CREATING A BASIC GAME WORLD

1

// Display the game canvas and score
game. showScreen("gamecanvas");
ame.showScreen("scorescreen");
)

game.mode = "intro";
game.currentHero = undefined;

game.offsetLeft = 0;
game.ended = false;

game.animationFrame = window.requestAnimationFrame(game.animate, game.canvas);

handleGamelogic: function() {

1

// Temporary placeholder code. Keep panning the game towards the right
game.offsetleft++;

animate: function() {

b

36

// Handle panning, game states, and control flow
game. handleGameLogic();

// Draw the background with parallax scrolling

// First draw the background image, offset by a fraction of the offsetlLeft distance (1/4)
// The bigger the fraction, the closer the background appears to be

game. context.drawImage(game.currentLevel.backgroundImage, game.offsetlLeft / 4, 0, game.
canvas.width, game.canvas.height, 0, 0, game.canvas.width, game.canvas.height);

// Then draw the foreground image, offset by the entire offsetlLeft distance
game.context.drawImage(game.currentLevel.foregroundImage, game.offsetlLeft, 0, game.
canvas.width, game.canvas.height, 0, 0, game.canvas.width, game.canvas.height);

// Draw the base of the slingshot, offset by the entire offsetlLeft distance
game. context.drawImage(game.slingshotImage, game.slingshotX - game.offsetlLeft, game.
slingshotY);

// Draw the front of the slingshot, offset by the entire offsetleft distance
game. context.drawImage(game.slingshotFrontImage, game.slingshotX - game.offsetleft,
game.slingshotY);

if (!game.ended) {
game.animationFrame = window.requestAnimationFrame(game.animate, game.canvas);
}

CHAPTER 2 © CREATING A BASIC GAME WORLD

The preceding code consists primarily of two methods, game.start() and game.animate(). The
start() method does the following:

e Initializes a few variables that we need in the game: offsetLeft and mode.
offsetLeft will be used for panning the game view around the entire level, and mode
will be used to store the current state of the game (intro, wait for firing, firing, fired).

e Hides all other layers and displays the canvas layer and the score layer, which is a
narrow bar on the top of the screen that contains the game score and a few game
interface control elements.

e Sets the game animation interval to call the animate() function by using window.
requestAnimationFrame.

The bigger method, animate(), will do all the animation and drawing within our game. The method
starts with calling a temporary placeholder handleGameLogic () method, which we will use to handle
panning as well as the game control flow using game modes. We will be implementing these later. For now,
it contains a single line of code to keep increasing the offsetLeft property, which should pan the game
screen toward the right.

We then draw the background and foreground images. For both the images, we first crop a canvas-sized
portion of the image that is offset appropriately along the x-axis using the offsetLeft variable, and then
draw it onto the canvas. One thing to note is that the background image and foreground image are moved
at different speeds relative to the left offset: the background image is moved only one-fourth of the distance
that the foreground image is moved. This difference in movement speed of the two layers will give us the
illusion that the clouds are further away once we start panning around the level.

After the backgrounds, we draw the slingshot in the foreground, subtracting offsetLeft from its x-axis
position so that the slingshot appears to stay in the same place while the game pans to the right.

Finally, we check if the game. ended flag has been set and, if not, use requestAnimationFrame to call
animate() again. We can use the game.ended flag later to decide when to stop the animation loop.

Note Parallax scrolling is a technique used to create an illusion of depth by moving background images
slower than foreground images. This technique exploits the fact that objects at a distance always appear to
move slower than objects that are close by.

Before we can try out the code, we need to add a little more CSS styling inside styles.css to implement
our score screen panel, as shown in Listing 2-14.

Listing 2-14. CSS for Score Screen Panel

/* Score Screen */

#scorescreen {
height: 60px;
font: 32px "Comic Sans MS";
text-shadow: 0 0 2px black;
color: white;

37

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 2 © CREATING A BASIC GAME WORLD

#scorescreen img {
opacity: 0.6;
top: 5%;
left: 5%;
position: relative;
padding: 8px;
cursor: pointer;

}

#score {
position: absolute;
top: 5%;
right: 5%;

}

The scorescreen layer, unlike the other layers in our game, is just a narrow band at the very top of our
game. Along with the usual positioning and styling, we set the opacity for the interface buttons to make
them translucent. This ensures that the interface buttons (for toggling music and restarting the level) do not
distract from the rest of the game.

When we run this code and try to start a level, we should see a basic level with the interface buttons and
the score displayed at the top of the screen, as shown in Figure 2-5.

Figure 2-5. A basic level with the score

38

CHAPTER 2 © CREATING A BASIC GAME WORLD

Our crude implementation of panning currently causes the screen to slowly pan toward the right until
the image is no longer visible. Don’t worry, we will be working on a better implementation soon.

Asyou can see, the clouds in the background move slower than the foreground because we move the
background layer at a different speed, making it seem like the clouds are much farther than the mountains.
We could potentially add more layers and move them at different speeds to build more of an effect. For
example, the foreground with the cactus, the mountains, and the clouds in the background could form three
distinct layers, moving at three different speeds. However, the two layers that we have right now are sufficient
to illustrate the parallax effect fairly well.

Now that we have a basic level in place, we will add the ability to handle mouse input and implement
panning around the level with game states.

Handling Mouse Input

JavaScript has several events that we can use to capture mouse input: mousedown, mouseup, and mousemove.
To keep things simple we will create a separate mouse object inside game. js to handle all the mouse events,
as shown in Listing 2-15.

Listing 2-15. Handling Mouse Events

var mouse = {
x: 0,
y: 0,
down: false,
dragging: false,

init: function() {
var canvas = document.getElementById("gamecanvas");

canvas.addEventListener("mousemove”,
mouse .mousemovehandler, false);
canvas.addEventListener ("mousedown",
mouse .mousedownhandler, false);
canvas.addEventListener("mouseup”,
mouse.mouseuphandler, false);
canvas.addEventListener("mouseout”,
mouse.mouseuphandler, false);

1

mousemovehandler: function(ev) {
var offset = game.canvas.getBoundingClientRect();

mouse.x = ev.clientX - offset.left;
mouse.y = ev.clientY - offset.top;

if (mouse.down) {
mouse.dragging = true;
}

ev.preventDefault();
b

39

CHAPTER 2 © CREATING A BASIC GAME WORLD

mousedownhandler: function(ev) {
mouse.down = true;

ev.preventDefault();
b

mouseuphandler: function(ev) {
mouse.down = false;
mouse.dragging = false;

ev.preventDefault();
b

This mouse object has an init() method that sets event handlers for when the mouse is moved, when a
mouse button is pressed or released, and when the mouse leaves the canvas area. The following are the three
handler methods that we use:

e mousemovehandler(): Uses the canvas'’s getBoundingClientRect() method and the
event object’s clientX and clientY properties to calculate the x and y coordinates of
the mouse relative to the top-left corner of the canvas and stores them. It also checks
whether the mouse button is pressed down while the mouse is being moved and, if
s0, sets the dragging variable to true.

e mousedownhandler(): Sets the down variable to true.

e mouseuphandler(): Sets the down and dragging variables to false. If the mouse
leaves the canvas area, we call this same method.

All three methods additionally contain an extra line to prevent the default browser behavior for the
mouse event.

Now that we have these methods in place, we can add code to interact with the game elements as
needed. We also have access to the mouse.x, mouse.y, mouse.dragging, and mouse.down properties from
anywhere within the game. As with all the previous init() methods, we call this method from game.init(),
so it now looks as shown in Listing 2-16.

Listing 2-16. Initializing the Mouse from game.init()

init: function() {
// Get handler for game canvas and context
game.canvas = document.getElementById("gamecanvas");
game.context = game.canvas.getContext("2d");

// Initialize objects
levels.init();
loader.init();
mouse.init();

// Hide all game layers and display the start screen
game.hideScreens();
game.showScreen("gamestartscreen");

b

With this bit of functionality in place, let's now implement some basic game states and panning.

40

CHAPTER 2 © CREATING A BASIC GAME WORLD

Defining Our Game States

Remember the game.mode variable that we briefly looked at earlier when we were creating game.start()?

Well, this is where it comes into the picture. We will be storing the current state of our game in this variable.

Some of the modes or states that we expect our game to go through are as follows:

e intro: Thelevel has just loaded and the game will pan around the level once to show
the player everything in the level.

e load-next-hero: The game checks whether there is another hero to load onto the
slingshot and, if so, loads the hero. If we run out of heroes or all the villains have
been destroyed, the level ends.

e wait-for-firing: The game pans back to the slingshot area and waits for the user
to fire the “hero.” At this point, we are waiting for the user to click the hero. The user
may also optionally drag the canvas screen with the mouse to pan around the level.

e firing: This happens after the user clicks the hero but before the user releases the
mouse button. At this point, we are waiting for the user to drag the mouse around to
decide the angle and height at which to fire the hero.

e fired: This happens after the user releases the mouse button. At this point, we
launch the hero and let the physics engine handle everything while the user just
watches. The game will pan so that the user can follow the path of the hero as far as
possible.

We may implement more states as needed. One thing to note about these different states is that only
one of them is possible at a time, and there are clear conditions for transitioning from one state to another,
and what is possible during each state. This construct is popularly known as a finite state machine in
computer science. We will be using these states to create some simple conditions for our panning code.

First we will build a panTo() method that will pan the screen to any specific location on the game, as

shown in Listing 2-17. All of this code goes inside the game object after the start() method.

Listing 2-17. Tmplementing a panTo() Function

// Maximum panning speed per frame in pixels
maxSpeed: 3,

// Pan the screen so it centers at newCenter
// (or at least as close as possible)
panTo: function(newCenter) {

// Minimum and Maximum panning offset
var minOffset = 0;
var maxOffset = game.currentlLevel.backgroundImage.width - game.canvas.width;

// The current center of the screen is half the screen width from the left offset

var currentCenter = game.offsetlLeft + game.canvas.width / 2;

41

CHAPTER 2 © CREATING A BASIC GAME WORLD

// If the distance between new center and current center is > 0 and we have not panned
to the min and max offset limits, keep panning
if (Math.abs(newCenter - currentCenter) > 0 &3 game.offsetlLeft <= maxOffset && game.
offsetLeft >= minOffset) {
// We will travel half the distance from the newCenter to currentCenter in each tick
// This will allow easing
var deltaX = (newCenter - currentCenter) / 2;

// However if deltaX is really high, the screen will pan too fast, so if it is
greater than maxSpeed
if (Math.abs(deltaX) > game.maxSpeed) {

// Limit deltaX to game.maxSpeed (and keep the sign of deltaX)

deltaX = game.maxSpeed * Math.sign(deltaX);

}

// And if we have almost reached the goal, just get to the ending in this turn
if (Math.abs(deltaX) <= 1) {

deltaX = (newCenter - currentCenter);
}

// Finally add the adjusted deltaX to offsetX so we move the screen by deltaX
game.offsetleft += deltaX;

// And make sure we don't cross the minimum or maximum limits
if (game.offsetlLeft <= minOffset) {
game.offsetlLeft = minOffset;

// Let calling function know that we have panned as close as possible to the
newCenter
return true;
} else if (game.offsetlLeft >= maxOffset) {
game.offsetlLeft = maxOffset;

// Let calling function know that we have panned as close as possible to the
newCenter
return true;

}

} else {
// Let calling function know that we have panned as close as possible to the
newCenter
return true;

1

The panTo() method slowly pans the screen to a given x coordinate (newCenter) and returns true either
when the screen center reaches the coordinate or when the screen has panned to the extreme left or right.

The speed of panning varies based on the distance of the current center from newCenter, so the panning
slows down as the screen pans closer to its destination. The code caps the panning speed using maxSpeed so
that the panning never becomes too fast.

Each time panTo() is called, the screen center is shifted toward newCenter while there is still space to pan.

42

CHAPTER 2 © CREATING A BASIC GAME WORLD

Eventually, once the screen either reaches its destination or reaches as close as possible (when
offset reaches either minOffset or maxOffset), the method returns true. The maxOffset is calculated by
comparing the width of the background image with that of the canvas, so the game will never pan past the
end of the background image.

Now that we have an effective way to pan the screen, we will use it to implement panning within the
handleGamelLogic() method, as shown in Listing 2-18.

Listing 2-18. Implementing Panning in handleGameLogic()

handleGamelLogic: function() {
if (game.mode === "intro") {
if (game.panTo(700)) {
game.mode = "load-next-hero";

}
}
if (game.mode === "wait-for-firing") {
if (mouse.dragging) {
game.panTo(mouse.x + game.offsetleft);
} else {
game.panTo(game.slingshotX);
}
if (game.mode === "load-next-hero") {
// First count the heroes and villains and populate their respective arrays
// Check if any villains are alive, if not, end the level (success)
// Check if there are any more heroes left to load, if not end the level (failure)
// Load the hero and set mode to wait-for-firing
game.mode = "wait-for-firing";
}
if (game.mode === "firing") {
// If the mouse button is down, allow the hero to be dragged around and aimed
// If not, fire the hero into the air
}
if (game.mode === "fired") {
// Pan to the location of the current hero as he flies
// Wait till the hero stops moving or is out of bounds
}
if (game.mode === "level-success" || game.mode === "level-failure") {
// First pan all the way back to the left
// Then show the game as ended and show the ending screen
}

1

43

CHAPTER 2 © CREATING A BASIC GAME WORLD

We have now improved the handleGameLogic() method so it implements several of the game states we
described earlier.

When the game is in the default intro mode, we pan the screen all the way to the right and, once there,
switch the mode to load-next-hero. We haven’t implemented the load-next-hero, firing, fired, level -
success, or level-failure states yet. For now, the code just flips the load-next-hero mode on towait-
for-firing, which pans the screen back to the slingshot.

If we run the code we have so far, we will see that as the level starts, the screen pans toward the right
until we reach the right extreme and panTo() returns true (see Figure 2-6). The game mode then changes
from intro towait-for-firing and the screen slowly pans back to the starting position and waits for user
input.

Score: 0

Figure 2-6. The final result: panning around the level

We can also use the mouse to interact with the level, by clicking and holding the mouse on the right side
of the screen to make the screen pan right and then releasing the mouse button to pan back to the left.

44

CHAPTER 2 © CREATING A BASIC GAME WORLD

Summary

In this chapter we set out to develop the basic framework for our game.

We started by defining and implementing a splash screen and game menu. We then created a simple
level system and an asset loader to dynamically load the images used by each level. We set up the game
canvas and animation loop and implemented parallax scrolling to give the illusion of depth. We used game
states to simplify our game flow and move around our level in an interesting way. Finally, we captured and
used mouse events to let the player pan around the level.

At this point we have a basic game world that we can interact with, so we are ready to add the various
game entities and game physics.

In the next chapter we will take a break from this game code to briefly explore the basics of the Box2D
physics engine and see how it can be used to model typical game physics. We will also look at how to
animate characters using data from the physics engine.

Once we have done this, in Chapter 4, we will integrate the Box2D engine with our existing game
framework so that the game entities move realistically within our game world, after which we can actually
start playing the game.

45

http://dx.doi.org/10.1007/978-1-4842-2910-1_4

CHAPTER 3

Physics Engine Basics

A physics engine is a program that provides an approximate simulation of a game world by creating
a mathematical model for all the object interactions and collisions within the game. It accounts for
gravity, elasticity, friction, and conservation of momentum between colliding objects so that the objects
move in a believable way. For our game, we are going to be using an existing and very popular physics
engine called Box2D.

The Box2D engine is a free, open source physics engine that was originally written in C++ by Erin Catto.
It has been used in a lot of popular physics-based games, including Crayon Physics Deluxe, Rolando, and
Angry Birds. The engine has since been ported to several other languages, including Java, ActionScript, C#,
and JavaScript. We will be using a JavaScript port of Box2D known as Box2dWeb. You can find the latest
source code and documentation for Box2dWeb at https://github.com/hecht-software/box2dweb.

Before we start integrating the engine into our own game, let’s go over some of the basic components of
Box2D for creating and simulating worlds.

Box2D Fundamentals

Box2D uses a few basic objects to define and simulate the game world. The most important of these objects
are as follows:

e World: The main Box2D object that contains all the world objects and simulates the
game physics.

e Body: Arigid body that may consist of one or more shapes attached to the body
via fixtures.

e Shape: A two-dimensional shape such as a circle or a polygon, which are the
fundamental shapes used within Box2D.

e Fixture: Used to attach a shape to a body for collision detection. Fixtures hold
additional, non-geometric data such as friction, collision, and filters.

e Joint: Used to constrain two bodies together in different ways. For example, a
revolute joint constrains two bodies to share a common point while they are free to
rotate about the point.

When using Box2D in our game, we first need to define the game world. We then add bodies and their
corresponding shapes using fixtures. Once this is done, we step through the world and let Box2D move the
bodies around. Finally, we draw the bodies after each step. Most of the heavy lifting is done by the Box2D
world object.

Now let’s look at these steps in more detail as we use Box2D to create a simple world.

© Aditya Ravi Shankar 2017 47
A.R. Shankar, Pro HTML5 Games, DOI 10.1007/978-1-4842-2910-1_3

https://github.com/hecht-software/box2dweb

CHAPTER 3 ' PHYSICS ENGINE BASICS

Setting Up Box2D

We will start with a simple HTML file just like in the previous chapters (box2d-demo.html). The first thing we
need to do is include a reference to the Box2dWeb library (Box2d.min. js) in the head section of the HTML
file (see Listing 3-1).

Listing 3-1. Basic HTMLS File for Box2D (box2d-demo.html)

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-type" content="text/html; charset=utf-8">
<title>Box2d Demo</title>
<script src="Box2d.min.js" type="text/javascript"></script>
<script src="box2d-demo.js" type="text/javascript"></script>
</head>
<body onload="init();">
<canvas id="canvas" width="640" height="480" style="border: 1ipx solid black;">
Your browser does not support HTML5 Canvas
</canvas>
</body>
</html>

Asyou see in Listing 3-1, the box2d. html file consists of only a single canvas element that we will be
drawing on. We refer to two JavaScript files: the Box2dWeb library file and a second file that we will use to
store all our JavaScript code (box2d-demo. js). Once the HTML file has loaded completely, it will call an
init() function that we will use to initialize the Box2D world and start animating.

Referencing the Box2dWeb JavaScript file gives us access to the Box2D object in our JavaScript code.
This object contains all the objects that we will need, including the world (Box2D.Dynamics.b2World) and
the body (Box2D.Dynamics.b2Body).

Itis convenient to define the commonly used objects as variables to save us some typing effort when we
reference them. The first thing we will do in our JavaScript file (box2d-demo. js) is to declare these variables
(see Listing 3-2).

Listing 3-2. Defining Commonly Used Objects as Variables

// Declare all the commonly used objects as variables for convenience
var b2Vec2 = Box2D.Common.Math.b2Vec2;

var b2BodyDef = Box2D.Dynamics.b2BodyDef;

var b2Body = Box2D.Dynamics.b2Body;

var b2FixtureDef = Box2D.Dynamics.b2FixtureDef;

var b2World = Box2D.Dynamics.b2World;

var b2PolygonShape = Box2D.Collision.Shapes.b2PolygonShape;

var b2CircleShape = Box2D.Collision.Shapes.b2CircleShape;

var b2DebugDraw = Box2D.Dynamics.b2DebugDraw;

var b2RevoluteJointDef = Box2D.Dynamics.Joints.b2RevoluteJointDef;

Once we define these variables as shortcuts, we can access the Box2D.Dynamics.b2World object by
using the b2World variable. Now, let’s start defining our world.

48

CHAPTER 3 ' PHYSICS ENGINE BASICS

Defining the World

The Box2D.Dynamics.b2World object is the heart of Box2D. It contains methods for adding and removing
objects, methods for simulating physics in incremental steps, and even an option for drawing the world on
a canvas. Before we can start using Box2D, we need to create the b2World object. We do this in an init()
function that we create inside our JavaScript file (box2d-demo. js), as shown in Listing 3-3.

Listing 3-3. Creating the b2World Object

var world;

//30 pixels on our canvas correspond to 1 meter in the box2d world
var scale = 30;

function init() {
// Setup the box2d World that will do most of the physics calculation
var gravity = new b2Vec2(0, 9.8); // Declare gravity as 9.8 m/s*2 downwards
// Allow objects that are at rest to fall asleep and be excluded from calculations
var allowSleep = true;

world = new b2World(gravity, allowSleep);

The init() function starts by defining b2Wor1ld and passing the following two parameters to its
constructor:

e gravity: Defined as a vector using a b2Vec2 object, which takes two parameters, the
x and y components. We set the world’s gravity to be 9.8 meters per square second
in the downward direction. The ability to set a custom gravity lets us simulate
environments with different gravity fields, such as the moon or fantasy worlds with
very low or very high gravity. We can also set gravity to 0 and use only the collision
detection features of Box2D for games in which we don’t need gravity (space-based
games or top-down view games like racing games).

e allowSleep: Used by b2World to decide whether or not to include objects that are
atrest during its simulation calculations. Allowing objects that are at rest to be
excluded from calculations reduces the number of unnecessary calculations and
thus helps improve performance. Even if an object is asleep, it will wake up if a
moving body collides with it.

One other thing that we do within our code is define a scale variable that we will use to convert
between Box2D units (meters) and our game units (pixels).

Note Box2D uses the metric system for all its calculations. It works best with objects that are between 0.1
meter and 10 meters large. Since we use pixels when drawing on our canvas, we will need to convert between
pixels and meters. A commonly used scale is 30 pixels to 1 meter.

Now that we have a basic world, we need to start adding bodies to it. The first body we will create is a
static floor at the bottom of our world.

49

CHAPTER 3 ' PHYSICS ENGINE BASICS

Adding Our First Body: The Floor

Creating a body in Box2D involves the following steps:

1. Declare a body definition in a b2BodyDef object. The b2BodyDef object contains
details such as the position of the body (x and y coordinates) and the type of body
(static or dynamic). Static bodies are not affected by gravity and collisions with
other bodies and remain static, while dynamic bodies are affected by interactions
with external forces and will fall, bounce, roll, and behave like typical objects in
the real world.

2. Pass the body definition object to the createBody () method of the world and get
back a body object.

3. Declare a fixture definition in a b2FixtureDef object. This is used to attach a
shape to the body. A fixture definition also contains additional information such
as density, friction coefficient, and the coefficient of restitution for the attached
shape.

4. Setthe shape of the fixture definition. The two types of shapes that are used in
Box2D are polygons (b2PolygonShape) and circles (b2CircleShape). Pass the
fixture definition to the createFixture() method of the body object and attach
the shape to the body.

Now that we know these basic steps, we will create our first body inside the world: the floor. We will do

this by creating a createFloor () method right below the init() function we created earlier. This is shown
in Listing 3-4.

Listing 3-4. Creating the Floor

function createFloor() {

50

// A body definition holds all the data needed to construct a rigid body
var bodyDef = new b2BodyDef;

bodyDef.type = b2Body.b2_staticBody;
bodyDef.position.x = 640 / 2 / scale;
bodyDef.position.y = 450 / scale;

// A fixture is used to attach a shape to a body for collision detection
// A fixture definition is used to create a fixture
var fixtureDef = new b2FixtureDef;

fixtureDef.density = 1.0;
fixtureDef.friction = 0.5;
fixtureDef.restitution = 0.2;

fixtureDef.shape = new b2PolygonShape;
fixtureDef.shape.SetAsBox(320 / scale, 10 / scale); // 640 pixels wide and 20 pixels tall

var body = world.CreateBody(bodyDef);
var fixture = body.CreateFixture(fixtureDef);

CHAPTER 3 ' PHYSICS ENGINE BASICS

The first thing we do is define a bodyDef object. We set its type to be static (b2Body.b2_staticBody)
since we want our floor to stay in the same place and not be affected by gravity or collisions with other
bodies. We then set the position of the body near the bottom of our canvas (x = 320 pixels, y = 450 pixels) and
use the scale variable to convert the pixels to meters for Box2D.

Note Unlike the canvas, where the position of rectangles is based on the top-left corner, the Box2D body
position is based on the origin of the object. In the case of boxes created using SetAsBox(), this origin is at the
center of the box.

The next thing we do is define the fixture definition (fixtureDef). The fixture definition contains values
like the density, the frictional coefficient, and the coefficient of restitution of its attached shape. The density
is used to calculate the weight of the body, the frictional coefficient is used to make sure the body slides
realistically, and the restitution is used to make the body bounce.

Note The higher the coefficient of restitution, the more “bouncy” the object becomes. Values close to
0 mean that the body will not bounce and will lose most of its momentum in a collision (called an inelastic
collision). Values close to 1 mean that the body retains most of its momentum and will bounce back as fast as it
came (called an elastic collision).

We then set the shape for the fixture as a b2PolygonShape object. The b2PolygonShape object has a
helper method called SetAsBox() that sets the polygon as a box which is centered on the origin of the parent
body. The SetAsBox() method takes the half-width and half-height (the extents) of the box as parameters.
Again, we use the scale variable to define a box that is 640 pixels wide and 20 pixels high.

Finally, we create the body by passing bodyDef to world.CreateBody() and create the fixture by passing
the fixtureDef to body.CreateFixture().

One other thing we need to do is call this newly created method from inside the init() function we
declared earlier so that this body is created when the init() function is called, as shown in Listing 3-5.

Listing 3-5. Calling createFloor() from init()

function init() {
// Setup the box2d World that will do most of the physics calculation
var gravity = new b2Vec2(0, 9.8); // Declare gravity as 9.8 m/s"2 downwards

// Allow objects that are at rest to fall asleep and be excluded from calculations
var allowSleep = true;

world = new b2World(gravity, allowSleep);

createFloox();

Now that we have added our first body to the world, we need to learn how to draw the world so that we
can see what we have created so far.

51

CHAPTER 3 ' PHYSICS ENGINE BASICS

Drawing the World: Setting Up Debug Drawing

Box2D is primarily meant to be an engine that handles physics calculations, while we are expected to handle
drawing all the objects in the world ourselves. However, the Box2D world object provides us with a simple
DrawDebugData() method that we can use to draw the world on a given canvas for debugging and testing
purposes.

The DrawDebugData() method draws a very simple representation of the bodies inside the world and is
best used for helping us visualize the world while we are creating it.

Before we can use DrawDebugData(), we need to set up debug drawing by defining a b2DebugDraw()
object and passing it to the world. SetDebugDraw() method. We do this in a setupDebugDraw() method that
we will place below the createFloor () method inside box2d-demo. js (see Listing 3-6).

Listing 3-6. Setting Up Debug Drawing

var context;

function setupDebugDraw() {
context = document.getElementById("canvas").getContext("2d");

var debugDraw = new b2DebugDraw();

// Use this canvas context for drawing the debugging screen
debugDraw.SetSprite(context);

// Set the scale

debugDraw. SetDrawScale(scale);

// Fill boxes with an alpha transparency of 0.3
debugDraw.SetFillAlpha(0.3);

// Draw lines with a thickness of 1

debugDraw.SetLineThickness(1.0);

// Display all shapes and joints

debugDraw. SetFlags(b2DebugDraw.e_shapeBit | b2DebugDraw.e jointBit);

// Start using debug draw in our world
world.SetDebugDraw(debugDraw);

We first define a handle to the canvas context using the getContext () method that you have previously
seen.
We then create a new b2DebugDraw object and set a few attributes using its Set methods:

SetSprite(): Used to provide a canvas context for the drawing.

SetDrawScale(): Used to set the scale to convert between Box2D units and pixels.
e SetFillAlpha() and SetLineThickness(): Used to set drawing styles.

e SetFlags(): Used to choose which Box2D entities to draw. We have selected flags
for drawing all shapes and joints, and we use logical OR operators to combine the
two flags. Some of the other entities we can ask Box2D to draw are the center of mass
(e_centerOfMassBit) and axis-aligned bounding boxes (e_aabbBit).

52

CHAPTER 3 ' PHYSICS ENGINE BASICS

Finally, we pass the debugDraw object to the world.SetDebugDraw() method. After creating the
function, we need to call it from inside the init() function as shown in Listing 3-7.
Listing 3-7. Calling setupDebugDraw() from init()

var allowSleep = true;

world = new b2World(gravity, allowSleep);
createFloor();

setupDebugDrau();

Now that debug drawing is set up, we can use the world.DrawDebugData() method to draw the current
state of our Box2D world onto the canvas.

Animating the World
Animating a world using Box2D involves the following steps that we repeat within an animation loop:

1. Tell Box2D to run the simulation for a small time step (typically 1/60th of a
second). We do this by using the world. Step() function.

2. Draw all the objects in their new positions using either world.DrawDebugData()
or our own drawing functions.

3. Clear any forces that we have applied using world.ClearForces().
We can implement these steps in our own animate() function that we create inside box2d-demo. js after
init(), shown in Listing 3-8.
Listing 3-8. Setting Up a Box2D Animation Loop
var timeStep = 1 / 60;
//As per the Box2d manual, the suggested iteration count for Box2D is 8 for velocity and 3
for position

var velocityIterations = 8;
var positionIterations = 3;

function animate() {
world.Step(timeStep, velocityIterations, positionIterations);
world.ClearForces();
world.DrawDebugData();
setTimeout(animate, timeStep);

We first call world. Step() and pass it three parameters: time step, velocity iterations, and position
iterations.

53

CHAPTER 3 ' PHYSICS ENGINE BASICS

Box2D uses a computational algorithm called an integrator. Integrators simulate the physics equations
at discrete points of time. The time step is the amount of time we want Box2D to simulate. We set this to a
value of 1/60th of a second.

In addition to the integrator, Box2D also uses a larger bit of code called a constraint solver. The
constraint solver solves all the constraints in the simulation, one at a time. To get a good solution, we need
to iterate over all constraints a number of times. There are two phases in the constraint solver: a velocity
phase and a position phase. Each phase has a separate iteration count, and we set these two values to 8 and
3, respectively.

Note Generally, physics engines for games work well with a time step at least as fast as 60Hz or 1/60
second. As per Erin Catto’s original C++ Box2D v2.2.0 User Manual (available at http://box2d.org/manual.
pdf), it is preferable to keep the time step constant and not vary it with frame rate, as a variable time step
produces variable results, which makes it difficult to debug.

Also as per the Box2d C++ manual, the suggested iteration count for Box2D is 8 for velocity and 3 for position.
You can tune these numbers to your liking, but keep in mind that this has a trade-off between speed and
accuracy. Using a lower iteration count increases performance but reduces accuracy. Likewise, using a higher
iteration count decreases performance but improves the quality of your simulation.

After stepping through the simulation, we call world.ClearForces() to clear any forces that are applied
to the bodies. We then call world.DrawDebugData() to draw the world on the canvas.

Finally, we use setTimeout () to call our animation loop again after the timeout for the next time step.
We use setTimeout () for now because it is simpler for us to use the Box2d.Step() function with a constant
frame rate. In the next chapter, we will look at how to use requestAnimationFrame() and a variable frame
rate when integrating Box2D with our game.

Now that the animation loop is complete, we can see the world we have created so far by calling
animate() from the init() function to start the animation loop, as shown in Listing 3-9.

Listing 3-9. Calling animate() from the init() Function

world = new b2World(gravity, allowSleep);
createFloor();
setupDebugDraw();

// Start the Box2D animation loop
animate();

When we open box2d.html in the browser, we should see our world with the floor drawn, as shown in
Figure 3-1.

54

http://box2d.org/manual.pdf
http://box2d.org/manual.pdf

CHAPTER 3 ' PHYSICS ENGINE BASICS

Figure 3-1. Our first Box2D body: the floor

This doesn’t look like much yet. The floor is a static body that just stays floating at the bottom of the
canvas. However, now that we have set up everything to create our basic world and display it on the screen,
we can start adding some more Box2D elements to our world.

Adding More Box2D Elements

Box2D allows us to add different types of elements to our world, including the following:

Simple bodies that are rectangular, circular, or polygon shaped
Complex bodies that combine multiple shapes
Joints such as revolute joints that connect multiple bodies

Contact listeners that allow us to handle collision events

We will now look at each of these elements in turn in more detail.

Creating a Rectangular Body

We can create a rectangular body just like we created our floor—by defining a b2PolygonShape and using its
SetAsBox() method. We will do this within a new method called createRectangularBody() that we will add
to box2d-demo. js (see Listing 3-10).

55

CHAPTER 3 ' PHYSICS ENGINE BASICS

Listing 3-10. Creating a Rectangular Body

function createRectangularBody() {
var bodyDef = new b2BodyDef;

bodyDef.type = b2Body.b2_dynamicBody;
bodyDef.position.x = 40 / scale;
bodyDef.position.y = 100 / scale;

var fixtureDef = new b2FixtureDef;

fixtureDef.density = 1.0;
fixtureDef.friction = 0.5;
fixtureDef.restitution = 0.3;

fixtureDef.shape = new b2PolygonShape;
fixtureDef.shape.SetAsBox(30 / scale, 50 / scale);

var body = world.CreateBody(bodyDef);
var fixture = body.CreateFixture(fixtureDef);

We create a body definition and place it near the top of the canvas at x = 40 pixels and y = 100 pixels. The
one difference this time is that we define the body type as dynamic (b2Body.b2_dynamicBody). This means
that the body will be affected by gravity and collisions. We then define the fixture with a polygon shape that is
set as a box that is 60 pixels wide and 100 pixels tall. Again, note that we specify half-values, 30 and 50, in the
SetAsBox() method. Finally, we add the body to our world.

We will need to add a call to createRectangularBody() inside the init() function so that it is called
when the page loads. The init() function will now look like Listing 3-11.

Listing 3-11. Calling createRectangularBody() from init()

function init() {
// Setup the box2d World that will do most of the physics calculation
var gravity = new b2Vec2(0, 9.8); // Declare gravity as 9.8 m/s"2 downwards

// Allow objects that are at rest to fall asleep and be excluded from calculations
var allowSleep = true;

world = new b2World(gravity, allowSleep);
createFloor();

// Create some bodies with simple shapes
createRectangularBody();

setupDebugDraw();

// Start the Box2D animation loop
animate();

56

CHAPTER 3 ' PHYSICS ENGINE BASICS

When we run the code in the browser, we should see the new body that we just created, as shown in
Figure 3-2.

Figure 3-2. Our first dynamic body: a bouncing rectangle

Since this body is dynamic, it will fall downward because of gravity until it hits the floor, and then
it will bounce off the floor. The body rises to a lower height after each bounce until it finally settles
down on the floor. If we want, we can change the coefficient of restitution to decide how bouncy
the object is.

Note Once the body comes to rest, Box2D changes the color of the body and makes it darker. This
is how Box2D tells us that the object is considered asleep. Box2D will wake up a body if another body
collides with it.

57

CHAPTER 3 ' PHYSICS ENGINE BASICS

Creating a Circular Body

The next body we will create is a simple circular body. We can define a circular shape by setting the shape
property to a b2CircleShape object. We will do this within a new method called createCircularBody() that
we will add to box2d-demo. js, as shown in Listing 3-12.

Listing 3-12. Creating a Circular Shape

function createCircularBody() {
var bodyDef = new b2BodyDef;

bodyDef.type = b2Body.b2_dynamicBody;
bodyDef.position.x = 130 / scale;
bodyDef.position.y = 100 / scale;

var fixtureDef = new b2FixtureDef;

fixtureDef.density = 1.0;
fixtureDef.friction = 0.5;
fixtureDef.restitution = 0.7;

fixtureDef.shape = new b2CircleShape(30 / scale);

var body = world.CreateBody(bodyDef);
var fixture = body.CreateFixture(fixtureDef);

The b2CircleShape constructor takes one parameter, the radius of the circle. The rest of the code,
defining a body, defining the fixture, and creating the body, remains very similar to the code for the
rectangular body.

One change we have made is to increase the restitution value to 0.7, which is much higher than the
value we used for our previous rectangular body. We need to call createCircularBody() from inside the
init() function, right after createRectangularBody() as shown in Listing 3-13.

Listing 3-13. Calling createCircularBody() from init()

// Create some bodies with simple shapes
createRectangularBody();
createCircularBody();

Once we do this and run the code, we should see the new circular body that we just created (as shown
in Figure 3-3).

58

CHAPTER 3 ' PHYSICS ENGINE BASICS

Figure 3-3. A bouncier circular body

You will notice that the circular body bounces much higher than the rectangular one, and takes a longer
time to come to rest. This is because of the larger coefficient of restitution. If you set this value to 1, the ball
will bounce back to the same height and never stop bouncing. If you choose a value greater than 1, the ball
will go higher after each bounce, and eventually fly outside the screen.

Typically, a higher coefficient of restitution and lower gravity gives the game a spacey, sci-fi feel, while
going in the opposite direction makes the game feel more realistic and grounded.

When creating your own game, you should play around with these values and tweak them until they feel
right for your game.

Creating a Polygon-Shaped Body

The last simple shape we will create is the polygon. Box2D allows us to create any polygon we want by
defining the coordinates of each of the points. The only restriction is that polygons need to be convex
polygons (that is, no internal angle can be more than 180 degrees).

To create a polygon, we first need to create an array of b2Vec2 objects with the coordinates of each of its
points, and then we need to pass the array to the shape. SetAsArray() method. We will do this within a new
method called createSimplePolygonBody() that we will add to box2d-demo. js (see Listing 3-14).

59

CHAPTER 3 ' PHYSICS ENGINE BASICS

Listing 3-14. Defining a Polygon Shape with Points

function createSimplePolygonBody() {
var bodyDef = new b2BodyDef;

bodyDef.type = b2Body.b2_dynamicBody;
bodyDef.position.x = 230 / scale;
bodyDef.position.y = 50 / scale;

var fixtureDef = new b2FixtureDef;

fixtureDef.density = 1.0;
fixtureDef.friction = 0.5;
fixtureDef.restitution = 0.6;

fixtureDef.shape = new b2PolygonShape;
// Create an array of b2Vec2 points in clockwise direction
var points = [

new b2Vec2(0, 0),

new b2Vec2(40 / scale, 50 / scale),

new b2Vec2(50 / scale, 100 / scale),

new b2Vec2(-50 / scale, 100 / scale),

new b2Vec2(-40 / scale, 50 / scale),

I;

// Use SetAsArray() to define the shape using the points array
fixtureDef.shape.SetAsArray(points, points.length);

var body = world.CreateBody(bodyDef);

var fixture = body.CreateFixture(fixtureDef);

We defined a points array that contains the coordinates for each of the polygon points inside b2Vec2
objects. The following are a few things to note:

e All the coordinates are relative to the body origin. The first point (0,0) starts at the
origin of the body and will be placed at the body position (230,50).

e We do not need to close out the polygon. Box2D will take care of this for us.

e All points must be defined in a clockwise direction.

Tip If we define the coordinates in the counter-clockwise direction, Box2D will not be able to handle
collisions correctly. If you find objects passing through each other, check to see whether you have defined
points in the clockwise direction.

We then call the SetAsArray() method and pass it two parameters: the points array and the number of
points. The rest of the code remains the same as it was for the previous shapes we covered.

60

CHAPTER 3 ' PHYSICS ENGINE BASICS

Now we need to call createSimplePolygonBody() from the init() function as shown in Listing 3-15.

Listing 3-15. Calling createSimplePolygonBody() from init()

// Create some bodies with simple shapes
createRectangularBody();
createCircularBody();
createSimplePolygonBody();

If we run this code, we should see our new polygon-shaped body (see Figure 3-4).

Figure 3-4. A polygon-shaped body

We now have created three simple bodies, with different shapes and properties. These simple shapes
are usually enough to model a wide array of objects within our games (fruits, tires, crates, and so forth).
Sometimes, however, these shapes are not enough. There are times when we need to create more complex
objects that combine more than one shape.

Creating Complex Bodies with Multiple Shapes

So far we have been creating simple bodies with a single shape. However, as previously mentioned, Box2D
lets us create bodies that contain multiple shapes.

To create a complex shape, all we need to do is attach multiple fixtures (each with its own shape) to the same
body. Let’s try to combine two of the shapes we just covered into a single body: a circle and a polygon. We will do
this within a new method called createComplexBody() that we will add to box2d-demo. js (see Listing 3-16).

61

CHAPTER 3 ' PHYSICS ENGINE BASICS

Listing 3-16. Creating a Body with Two Shapes

function createComplexBody() {
var bodyDef = new b2BodyDef;

bodyDef.type = b2Body.b2_dynamicBody;
bodyDef.position.x = 350 / scale;
bodyDef.position.y = 50 / scale;
var body = world.CreateBody(bodyDef);

// Create first fixture and attach a circular shape to the body
var fixtureDef = new b2FixtureDef;

fixtureDef.density = 1.0;

fixtureDef.friction = 0.5;

fixtureDef.restitution = 0.7;

fixtureDef.shape = new b2CircleShape(40 / scale);
body.CreateFixture(fixtureDef);

// Create second fixture and attach a polygon shape to the body.
fixtureDef.shape = new b2PolygonShape;
var points = [

new b2Vec2(0, 0),

new b2Vec2(40 / scale, 50 / scale),

new b2Vec2(50 / scale, 100 / scale),

new b2Vec2(-50 / scale, 100 / scale),

new b2Vec2(-40 / scale, 50 / scale),

I;

fixtureDef.shape.SetAsArray(points, points.length);
body.CreateFixture(fixtureDef);

We first create a body, and then two different fixtures—the first for a circular shape and the second for
a polygon shape. We then attach both these fixtures to the body using the CreateFixture() method. Box2D
will automatically take care of creating a single rigid body that includes both these shapes.

One thing you might have noticed is that we reused the fixtureDef object for creating both the shape
fixtures, and only changed its shape property. Reusing the object saves us the effort of setting properties like
density and restitution again.

Now that we have created createComplexBody(), we need to call it from inside the init() function as
shown in Listing 3-17.

Listing 3-17. Calling createComplexBody() from init()

// Create some bodies with simple shapes
createRectangularBody();
createCircularBody();
createSimplePolygonBody();

// Cxeate a body combining two shapes
createComplexBody();

62

CHAPTER 3 ' PHYSICS ENGINE BASICS

When we run this code, we should see our new complex body, as shown in Figure 3-5.

Figure 3-5. A complex body with two shapes

You will notice that the two shapes behave as one single unit. This is because Box2D treats these
multiple shapes as a single rigid body. This ability to combine shapes allows us to emulate all kinds of object
with complex shapes, such as trees and tables. It also allows us to get around the limitations on creating
concave polygon shapes, since any concave polygon can be broken into multiple convex polygons.

Connecting Bodies with Joints

Now that we’ve explored how to make different types of bodies in Box2D, we will take a brief look at creating
joints.

Joints are used to constrain bodies to the world or to each other. Box2D supports many different types of
joints, including pulley, gear, distance, revolute, and weld joints.

Some of these joints restrict motion (for example, the distance joint and the weld joint), while others
allow for interesting types of movement (for example, the pulley joint and the revolute joint). Some joints
even provide motors that can be used to drive the joint at a specified speed. We will take a look at one of the
simpler joints that Box2D offers: the revolute joint.

The revolute joint forces two bodies to share a common anchor point, often called a hinge point. What
this means is that the bodies are attached to each other at this point, and can rotate about that point.

63

CHAPTER 3 ' PHYSICS ENGINE BASICS

We can create a revolute joint by defining a b2RevoluteJointDef object and then passing it to the

world.CreateJoint() method. This is illustrated in the createRevoluteJoint() method that we add to
box2d-demo. js (see Listing 3-18).

Listing 3-18. Creating a Revolute Joint

function createRevoluteJoint() {

64

// Define the first body
var bodyDefl = new b2BodyDef;

bodyDef1.type = b2Body.b2_dynamicBody;
bodyDef1.position.x = 480 / scale;
bodyDef1.position.y = 50 / scale;
var bodyl = world.CreateBody(bodyDef1);

// Create first fixture and attach a rectangular shape to the body
var fixtureDef1l = new b2FixtureDef;

fixtureDefi.density = 1.0;

fixtureDefi.friction = 0.5;

fixtureDefi.restitution = 0.5;

fixtureDef1.shape = new b2PolygonShape;
fixtureDef1.shape.SetAsBox(50 / scale, 10 / scale);

body1.CreateFixture(fixtureDef1);

// Define the second body
var bodyDef2 = new b2BodyDef;

bodyDef2.type = b2Body.b2_dynamicBody;
bodyDef2.position.x = 470 / scale;
bodyDef2.position.y = 50 / scale;
var body2 = world.CreateBody(bodyDef2);

// Create second fixture and attach a polygon shape to the body
var fixtureDef2 = new b2FixtureDef;

fixtureDef2.density = 1.0;
fixtureDef2.friction = 0.5;
fixtureDef2.restitution = 0.5;
fixtureDef2.shape = new b2PolygonShape;
var points = [
new b2Vec2(0, 0),
new b2Vec2(40 / scale, 50 / scale),
new b2Vec2(50 / scale, 100 / scale),
new b2Vec2(-50 / scale, 100 / scale),
new b2Vec2(-40 / scale, 50 / scale),

I

fixtureDef2.shape.SetAsArray(points, points.length);
body2.CreateFixture(fixtureDef2);

CHAPTER 3 ' PHYSICS ENGINE BASICS

// Create a joint between bodyl and body2
var jointDef = new b2RevoluteJointDef;
var jointCenter = new b2Vec2(470 / scale, 50 / scale);

jointDef.Initialize(body1, body2, jointCenter);
world.CreateJoint(jointDef);

In this code we first define two bodies, a rectangle (body1) and a polygon (body2), that are positioned on
top of each other, and then add them to the world.

We then create a b2RevolutionJointDef object and initialize it by passing three parameters to the
Initialize() method: the two bodies (body1 and body2), and the joint center, which is the point around
which the joints rotate.

Note that the joint center is specified in Box2D world coordinates (the same coordinate system used
to specify the location for the two bodies). Also note that the joint center is placed at a point that is located
within both the bodies.

Finally, we call world.CreateJoint() to add the joint to the world.

We need to call createRevoluteJoint() from our init() function, as shown in Listing 3-19.

Listing 3-19. Calling createRevoluteJoint() from init()

// Create a body combining two shapes
createComplexBody();

// Join two bodies using a revolute joint
createRevoluteJoint();

When we run our code, we should see our revolute joint in action. You can see this in Figure 3-6.

Figure 3-6. A revolute joint in action
65

CHAPTER 3 ' PHYSICS ENGINE BASICS

Asyou can see, the rectangular body rotates about its anchor point, almost like a windmill blade. This is
very different from the complex body we created earlier, where the shapes acted like a single body.

Each of the joints in Box2D can be combined in different ways to create interesting motions and
effects, such as pulleys, ragdolls, and pendulums. You can read more about these other types of joints in the
Box2D reference API, which you can find at waw.box2dflash.org/docs/2.1a/reference/. Note that this
documentation is for the Flash version of Box2D that our JavaScript version is based on. We can still refer to
the method signatures and documentation in this Flash version when developing for the JavaScript version
because the JavaScript version of Box2D was developed by directly converting the Flash version, and the
method signatures remain the same across the two.

Tracking Collisions and Damage

One thing that you may have noticed in the previous few examples is that some of the bodies were colliding
against each other and bouncing back and forth. It would be nice to be able to keep track of these collisions
and the amount of impact they cause, and simulate a body getting damaged.

Before we can track the damage to an object, we need to be able to associate a life or health with it.
Box2D provides us with methods that allow us to set custom properties for bodies, fixtures, or joints. We
can assign any JavaScript object as a custom property for a body by calling its SetUserData() method, and
retrieve the property later by calling its GetUserData() method.

Let’s create another body that will have its own health unlike any of the previous bodies. We will do this
inside a method called createSpecialBody() that we will add to box2d-demo. js (see Listing 3-20).

Listing 3-20. Creating a Special Body with Its Own Properties
var specialBody;

function createSpecialBody() {
var bodyDef = new b2BodyDef;

bodyDef.type = b2Body.b2_dynamicBody;
bodyDef.position.x = 450 / scale;
bodyDef.position.y = 0 / scale;

specialBody = world.CreateBody(bodyDef);
specialBody.SetUserData({ name: "special", life: 250 });

// Create a fixture to attach a circular shape to the body
var fixtureDef = new b2FixtureDef;

fixtureDef.density = 1.0;
fixtureDef.friction = 0.5;
fixtureDef.restitution = 0.5;

fixtureDef.shape = new b2CircleShape(30 / scale);

var fixture = specialBody.CreateFixture(fixtureDef);

The code for creating this body is similar to the code for the circular body that we looked at earlier.
The only difference is that once we create the body, we call its SetUserData() method and pass it an object
parameter with two custom properties, name and life.

We can add as many properties as we like to this object. Also, note that we saved a reference to the body
in a variable called specialBody that we defined outside the function. This way, we can refer to this body
even outside of the createSpecialBody() function.

66

http://www.box2dflash.org/docs/2.1a/reference/

CHAPTER 3 ' PHYSICS ENGINE BASICS

If we call createSpecialBody() from the init() function, we won’t see anything exceptional—just
another bouncing circle. We still want to be able to track collisions happening to this body. This is where
contact listeners come in.

Contact Listeners

Box2D provides us with objects called contact listeners that let us define event handlers for several contact-
related events. To do this, we must first define a b2ContactListener object and override one or more of the
events we want to monitor. The b2ContactListener has four events we can use based on what we need:

e BeginContact(): Called when two fixtures begin to touch.
e EndContact(): Called when two fixtures cease to touch.

e PostSolve(): Lets us inspect a contact after the solver is finished. This is useful for
inspecting impulses.

e PreSolve(): Lets us inspect a contact before it goes to the solver.

Once we override the methods that we need, we need to pass the contact listener to the world.
SetContactListener() method. Since we want to track the damage a collision causes, we will listen to the
PostSolve() event, which provides us with the impulse transferred during a collision (see Listing 3-21).

Listing 3-21. Implementing a Contact Listener

function listenForContact() {
var listener = new Box2D.Dynamics.b2ContactlListener;

listener.PostSolve = function(contact, impulse) {
var bodyl = contact.GetFixtureA().GetBody();
var body2 = contact.GetFixtureB().GetBody();

// If either of the bodies is the special body, reduce its life
if (bodyl == specialBody || body2 == specialBody) {
var impulseAlongNormal = impulse.normalImpulses[0];

specialBody.GetUserData().life -= impulseAlongNormal;
console.log("The special body was in a collision with impulse", impulseAlongNormal,
"and its life has now become ", specialBody.GetUserData().life);
}
1

world.SetContactListener(listener);

As you can see, we create a b2ContactListener object and override its PostSolve () method with our
own handler. The PostSolve () method provides us with two parameters: contact, which contains details
of the fixtures that were involved in the collision, and impulse, which contains the normal and tangential
impulse during the collision.

Within PostSolve(), we first extract the two bodies involved in the collision and check to see if our
special body is one of them. If it is, we extract the impulse along the normal between the two bodies, and
subtract life points from the body. We also log this event to the console so we can track each collision.

Obviously, this is a rather simplistic way of handling object damage, but it does what we need it to
do. The greater the impulse in a collision, and the higher the number of collisions, the faster the body
loses health.

67

CHAPTER 3 ' PHYSICS ENGINE BASICS

Note The PostSolve() method is called for every collision that takes place in the Box2D world, no matter
how small. It is even called when an object is rolling on another. Be aware that this method will be called a lot.

Next we call both createSimpleBody() and listenForContact() from init() as shown in Listing 3-22.

Listing 3-22. Calling createSpecialBody() and listenForContact() from init()

// Join two bodies using a revolute joint
createRevoluteJoint();

// Cxeate a body with special user data
createSpecialBody();

// Cxreate contact listeners and track events
listenForContact();

If we run our code now, we should see the circle bouncing about, with a message in the browser console
after each collision telling us how much the body’s health has dropped, as shown in Figure 3-7.

[ﬂ Elements Console Sources Network Timeline Profiles Application Security Audits

® ¥V top ¥ Preserve log
The special body was in a collision with impulse 9.18870481555076782 and its life has now become 121.71933696026231
The special body was in a collision with impulse 1.386@576367584235 and its life has now become 120.41327932351189
The special body was in a collision with impulse 1.6587628247992592 and its life has now become 118.76251649871263
The special body was in a collision with impulse 2.849548711008918 and its life has now become 116.71297578770371
The special body was in a collision with impulse 2.4648969591781036 and its life has now become 114.2480788285256

Figure 3-7. Watching collisions with contact listeners

68

CHAPTER 3 ' PHYSICS ENGINE BASICS

It is nice to be able to track the life of our special body, but it would be nicer if we could do something
when it runs out of life.

Now that we have access to specialBody and the life property, we can check after every iteration
to see if the body life has reached 0 and, if so, remove it from the world using the wor1ld.DestroyBody ()
method. The easiest place to do this check is in the animate() method. The animate() function will now
look like Listing 3-23.

Listing 3-23. Destroying the Body

function animate() {
world.Step(timeStep, velocityIterations, positionIterations);
world.ClearForces();

world.DrawDebugData();

// Kill Special Body if Dead

if (specialBody &% specialBody.GetUserData().life <= 0) {
world.DestroyBody(specialBody);
specialBody = undefined;
console.log("The special body was destroyed");

}

setTimeout(animate, timeStep);

Once we finish calling world.Step() and drawing the world, we check to see whether specialBody is
still defined and whether its life has reached 0. Once its life reaches 0, we remove the body from the world
using DestroyBody () and then set specialBody to undefined.

This time when we run the code, the special body bounces around with its life dropping until it finally
disappears. A message appears in the console telling us that the body was destroyed.

Note We can track all the bodies and elements in a game using a similar principle by iterating through an
array of objects. The point where we destroy a body is the perfect place for us to add explosion sounds or visual
effects in a game and maybe update the score.

Drawing Our Own Characters

We have played with a lot of Box2D features so far. However, we have only been drawing using the default
DrawDebugData() method. While this method is fine when testing code, we can'’t really write an amazing
game looking like this. We need to know how to draw our own characters using all the drawing methods we
covered in the first chapter.

Every b2Body object has two methods, GetPosition() and GetAngle(), that provide us with the
coordinates and rotation of the body inside the Box2D world. Using the scale variable we defined in this
chapter and the canvas translate() and rotate() methods we explored in Chapter 1, we can draw our
characters or sprites on the canvas at the location that Box2D calculates for us.

To illustrate this, we can draw the special body that we have been playing with so far inside a
drawSpecialBody() method that we will add to box2d-demo. js (see Listing 3-24).

69

http://dx.doi.org/10.1007/978-1-4842-2910-1_1

CHAPTER 3 ' PHYSICS ENGINE BASICS

Listing 3-24. Drawing Our Own Character

function drawSpecialBody() {
// Get body position and angle
var position = specialBody.GetPosition();
var angle = specialBody.GetAngle();

// Translate and rotate axis to body position and angle
context.translate(position.x * scale, position.y * scale);
context.rotate(angle);

// Draw a filled circular face
context.fillStyle = "rgh(200, 150, 250)";
context.beginPath();

context.arc(o, 0, 30, 0, 2 * Math.PI, false);
context.fill();

// Draw two rectangular eyes
context.fillStyle = "rgb(255, 255, 255)";
context.fillRect(-15, -15, 10, 5);
context.fillRect(5, -15, 10, 5);

// Draw an upward or downward arc for a smile depending on life
context.strokeStyle = "rgb(255, 255, 255)";
context.beginPath();
if (specialBody.GetUserData().life > 100) {

context.arc(0, 0, 10, Math.PI, 2 * Math.PI, true);
} else {

context.arc(0, 10, 10, Math.PI, 2 * Math.PI, false);
}

context.stroke();

// Translate and rotate axis back to original position and angle
context.rotate(-angle);
context.translate(-position.x * scale, -position.y * scale);

We start by translating the canvas to the body’s position and rotating the canvas to the body’s angle. This
is very similar to the code we looked at in Chapter 1.

We then draw a filled circle for the face, two rectangular eyes, and a smile using an arc. Just for fun,
when the body life goes below 100, we change the smile to a sad face.

Finally, we undo the rotation and translation.

Before we can see this method in action, we will need to call it from inside animate(). The finished
animate() method will now look like Listing 3-25.

Listing 3-25. The Finished animate() Method

function animate() {
world.Step(timeStep, velocityIterations, positionIterations);
world.ClearForces();

world.DrawDebugData();

70

http://dx.doi.org/10.1007/978-1-4842-2910-1_1

CHAPTER 3 ' PHYSICS ENGINE BASICS

// Custom Drawing

if (specialBody) {
drawSpecialBody();

}

// Kill Special Body if Dead

if (specialBody &3 specialBody.GetUserData().life <= 0) {
world.DestroyBody(specialBody);
specialBody = undefined;
console.log("The special body was destroyed");

}

setTimeout(animate, timeStep);

What we have done here is check whether specialBody is still defined and call drawSpecialBody () if it
is. Once the body dies, specialBody will become undefined and we will stop trying to draw it. You will notice
that we draw after DrawDebugData() has completed, so we end up drawing on top of the debug drawing.

When we run this finished code, we see our new version of specialBody with a smiley face that
becomes sad after a while before finally disappearing (see Figure 3-8).

Figure 3-8. Drawing our own character

71

CHAPTER 3 ' PHYSICS ENGINE BASICS

We have just animated our own character using the Box2D engine. This may not seem like much,
but we now have all the building blocks that we need to build games using Box2D.

When you create your own game, you won'’t just be playing with boxes and circles. You will still use
simple shapes that are similar in appearance to your game elements so that they seem to move realistically.
However, you will be drawing all the characters yourself instead of using debug drawing, which means you
can now use all of the methods that you learned about in Chapter 1, including drawings sprites, to create any
desired effect for your characters.

Summary

In this chapter we took a crash course on the Box2D engine. We created a world in Box2D and drew different
kinds of bodies within it. We made simple circular and rectangular shapes, polygons, and complex bodies
that combined multiple shapes, and we used joints to combine shapes.

We animated the world realistically by letting Box2D handle the physics computations and drawing the
world using DrawDebugData(). We used contact listeners to track collisions and slowly damage and destroy
objects within the world. Finally, we drew our own character that was moved by Box2D.

We covered most of the elements of Box2D that we will be using in our game. If you would like to dive
deeper into the Box2D API, you can look at the API reference available at www.box2dflash.org/docs/.

You can also read the Box2D guide available at the same site.

In the next chapter, we will combine everything that we have learned so far to integrate Box2D into our
game. We will create a framework to handle creation of our game entities inside Box2D. We will then use
images and sprites to draw our characters over the parallax scrolling backgrounds that we built in Chapter 2.
After that, we will spend some time polishing up our game by adding sound effects, and then wire everything
together to create a finished, physics-based puzzle game.

72

http://dx.doi.org/10.1007/978-1-4842-2910-1_1
http://www.box2dflash.org/docs/
http://dx.doi.org/10.1007/978-1-4842-2910-1_2

CHAPTER 4

Integrating the Physics Engine -

In Chapter 2, we developed the basic framework for our game, Froot Wars, and in Chapter 3, we looked at
how to simulate a game world in Box2D. Now it is time to put together all the pieces to complete our game.

In this chapter, we will continue where we left off at the end of Chapter 2. We will add entities to our
levels, use Box2D to simulate these entities, and then animate these entities within the game. We will use
these entities to create a couple of working levels, and we will add mouse interactivity so that we can play
the game. Once we have a working game, we will add sounds, background music, and a few other finishing
touches to wrap up our game.

Now let’s get started. We will be using the code from Chapter 2 as our starting point.

Defining Entities

So far, our game levels contain data for the background and foreground images and an empty array for
entities. This entities array will eventually contain all the entities within our game: the heroes, the villains,
the ground, and the blocks used to create the environment. We will then use this array to ask Box2D to create
the corresponding Box2D shapes.

Typical entities will look like the examples shown in Listing 4-1.

Listing 4-1. Typical Entities

{ type: "ground", name: "dirt", x: 500, y: 440, width: 1000, height: 20, isStatic: true },
{ type: "block", name: "wood", x: 500, y: 375, angle: 90, width: 100, height: 25 },
{ type: "hero", name: "orange", x: 90, y: 410 },
{ type: "villain", name: "burger", x: 500, y: 200, calories: 590 },

The type property can contain values like "hero", "villain", "ground", and "block". We will use this
property to decide how to handle an entity during creation and drawing operations.

The x, y, and angle properties are used to set the starting position and orientation of the entities.

The entity can also contain specific properties for its type, such as calories, which is the number of
points scored when destroying a villain.

The name property tells us which sprite to use to draw the entity. All the images that we will use for the
entities are stored in the images/entities folder.

The name property will also be used to refer to entity definitions. These definitions will include fixture
data such as density and restitution, health data for destructible objects, and, in the case of heroes and
villains, even details on the shape. Typical entity definitions will look like the examples shown in Listing 4-2.

© Aditya Ravi Shankar 2017 73
A.R. Shankar, Pro HTML5 Games, DOI 10.1007/978-1-4842-2910-1_4

http://dx.doi.org/10.1007/978-1-4842-2910-1_2
http://dx.doi.org/10.1007/978-1-4842-2910-1_3
http://dx.doi.org/10.1007/978-1-4842-2910-1_2
http://dx.doi.org/10.1007/978-1-4842-2910-1_2

CHAPTER 4 = INTEGRATING THE PHYSICS ENGINE

Listing 4-2. Typical Entity Definitions

"wood": {
fullHealth: 500,
density: 0.7,
friction: 0.4,
restitution: 0.4,

}

"dirt": {
density: 3.0,
friction: 1.5,
restitution: 0.2,

}

"burger": {
shape: "circle",
fullHealth: 40,
radius: 25,
density: 1,
friction: 0.5,
restitution: 0.4,

1

All the entity definitions contain the density, friction, and restitution necessary to model the game in
Box2D. In the case of game characters, we store additional data for the shape and dimensions. Also note that
the definitions contain a fullHealth property whenever we need a character or material to be destructible.

Now that we have decided how we will be storing the entities, we also need a way to create them. We
will start by creating an entities object in game. js that will handle all entity-related operations in our game.
This object will contain all the entity definitions as well as the methods for creating and drawing entities
(see Listing 4-3).

Listing 4-3. The entities Object with Definitions for Entities

var entities = {
definitions: {
"glass": {
fullHealth: 100,
density: 2.4,
friction: 0.4,
restitution: 0.15

}s

"wood": {
fullHealth: 500,
density: 0.7,
friction: 0.4,
restitution: 0.4

}s

"dirt": {
density: 3.0,
friction: 1.5,
restitution: 0.2

b

74

1

CHAPTER 4

"burger": {

}5

shape: "circle",
fullHealth: 40,
radius: 25,
density: 1,
friction: 0.5,
restitution: 0.4

"sodacan": {

1

shape: "rectangle",
fullHealth: 80,
width: 40,

height: 60,
density: 1,
friction: 0.5,
restitution: 0.7

"fries": {

15

shape: "rectangle",
fullHealth: 50,
width: 40,

height: 50,
density: 1,
friction: 0.5,
restitution: 0.6

"apple": {

1

shape: "circle",
radius: 25,
density: 1.5,
friction: 0.5,
restitution: 0.4

"orange": {

1

shape: "circle",
radius: 25,
density: 1.5,
friction: 0.5,
restitution: 0.4

"strawberry": {

shape: "circle",
radius: 15,
density: 2.0,
friction: 0.5,
restitution: 0.4

INTEGRATING THE PHYSICS ENGINE

75

CHAPTER 4 = INTEGRATING THE PHYSICS ENGINE

// Take the entity, create a Box2D body, and add it to the world
create: function(entity) {

1

// Take the entity, its position, and its angle and draw it on the game canvas
draw: function(entity, position, angle) {

}
};

The entities object contains an array with definitions for all the material types (glass, wood, and dirt)
and definitions for all the heroes and villains that we will have in the game (orange, apple, and burger).

The values for some of these properties (such as size, restitution, and fullHealth) were decided
based on feel, by constantly tweaking them in an effort to make the game as much fun as possible. The
correct values for these properties will vary with each game you make.

We also have placeholders for the create() and draw() functions that we need to implement. However,
before we can implement these, we need to add Box2D to our code.

Adding Box2D

The first thing we need to do is add a reference to Box2d.min. js in the <head> section of index.html before
the reference to game. js. The <head> section of the file will now look like Listing 4-4.

Listing 4-4. Adding Box2D to the index.html <head> Section

<head>
<meta http-equiv="Content-type" content="text/html; charset=utf-8">
<title>Froot Wars</title>
¢<script src="js/Box2d.min.js" type="text/javascript"s</scripts
<script src="js/game.js" type="text/javascript" charset="utf-8"></script>
<link rel="stylesheet" href="styles.css" type="text/css" media="screen">

</head>

One other thing that we will do is add references for all the commonly used Box2D objects to the
beginning of game. js (see Listing 4-5).

Listing 4-5. Adding References to Commonly Used Box2D Obijects

// Declare all the commonly used Box2D objects as variables for convenience
var b2Vec2 = Box2D.Common.Math.b2Vec2;

var b2BodyDef = Box2D.Dynamics.b2BodyDef;

var b2Body = Box2D.Dynamics.b2Body;

var b2FixtureDef = Box2D.Dynamics.b2FixtureDef;

var b2World = Box2D.Dynamics.b2World;

var b2PolygonShape = Box2D.Collision.Shapes.b2PolygonShape;

var b2CircleShape = Box2D.Collision.Shapes.b2CircleShape;

var b2DebugDraw = Box2D.Dynamics.b2DebugDraw;

var b2ContactlListener = Box2D.Dynamics.b2ContactlListener;

76

CHAPTER 4 INTEGRATING THE PHYSICS ENGINE

Now that we have the references set up, we can start using Box2D from within our game code. We will
be creating a separate box2d object inside game. js to store all our Box2D-related methods (see Listing 4-6).

Listing 4-6. Creating a box2d Object

var box2d = {
scale: 30,

init: function() {

b

// Set up the Box2D world that will do most of the physics calculation

var gravity = new b2Vec2(0, 9.8); // Declare gravity as 9.8 m/s"2 downward

var allowSleep = true; // Allow objects that are at rest to fall asleep and be
excluded from calculations

box2d.world = new b2World(gravity, allowSleep);

createRectangle: function(entity, definition) {

1

var bodyDef = new b2BodyDef();

if (entity.isStatic) {

bodyDef.type = b2Body.b2 staticBody;
} else {

bodyDef.type = b2Body.b2_dynamicBody;
}

bodyDef.position.x = entity.x / box2d.scale;
bodyDef.position.y = entity.y / box2d.scale;
if (entity.angle) {

bodyDef.angle = Math.PI * entity.angle / 180;
}

var fixtureDef = new b2FixtureDef();

fixtureDef.density = definition.density;

fixtureDef.friction = definition.friction;

fixtureDef.restitution = definition.restitution;

fixtureDef.shape = new b2PolygonShape();
fixtureDef.shape.SetAsBox(entity.width / 2 / box2d.scale, entity.height / 2 /
box2d.scale);

var body = box2d.world.CreateBody(bodyDef);

body.SetUserData(entity);
body.CreateFixture(fixtureDef);

return body;

7

CHAPTER 4 = INTEGRATING THE PHYSICS ENGINE

createCircle: function(entity, definition) {
var bodyDef = new b2BodyDef();

if (entity.isStatic) {

bodyDef.type = b2Body.b2_staticBody;
} else {

bodyDef.type = b2Body.b2 dynamicBody;
}

bodyDef.position.x
bodyDef.position.y

entity.x / box2d.scale;
entity.y / box2d.scale;

if (entity.angle) {
bodyDef.angle = Math.PI * entity.angle / 180;
}

var fixtureDef = new b2FixtureDef();

fixtureDef.density = definition.density;
fixtureDef.friction = definition.friction;
fixtureDef.restitution = definition.restitution;

fixtureDef.shape = new b2CircleShape(entity.radius / box2d.scale);
var body = box2d.world.CreateBody(bodyDef);

body.SetUserData(entity);
body.CreateFixture(fixtureDef);

return body;

IR
};

The box2d object contains an init() method where we initialize a new b2Wor1ld object, just like we did
in Chapter 3.

The object also contains two helper methods, createRectangle() and createCircle(). Both methods
accept two parameters, the entity and definition objects that we described earlier. The entity object
contains details about the entity we want to create, such as its position, angle, and whether or not the entity
is static. The definition object contains details about the fixture, such as restitution and density.

Using these parameters, the methods create Box2D bodies and fixtures and add them to the Box2D world.

Finally, both the methods also attach the entity object to the body using the SetUserData() method.
This enables us to retrieve any of the entity-related data for a Box2D body using its GetUserData() method.

One thing to note is that both these methods convert the position and size using box2d.scale and
convert the angle from degrees to radians before they can be used by Box2D.

Creating Entities

Now that we have Box2D set up, we will implement the entities.create() method inside the entities
object that we defined earlier. This method will take an entity object as a parameter and add it to the world
(see Listing 4-7).

78

http://dx.doi.org/10.1007/978-1-4842-2910-1_3

CHAPTER 4 INTEGRATING THE PHYSICS ENGINE

Listing 4-7. Defining the entities.create() Method

// Take the entity, create a Box2D body, and add it to the world
create: function(entity) {
var definition = entities.definitions[entity.name];

if (!definition) {
console.log("Undefined entity name", entity.name);

return;

}

switch(entity.type) {
case "block": // simple rectangles
entity.health = definition.fullHealth;
entity.fullHealth = definition.fullHealth;
entity.shape = "rectangle";
entity.sprite = loader.loadImage("images/entities/" + entity.name + ".png");

box2d.createRectangle(entity, definition);
break;
case "ground": // simple rectangles
// No need for health. These are indestructible
entity.shape = "rectangle";
// No need for sprites. These won't be drawn at all
box2d.createRectangle(entity, definition);
break;
case "hero": // simple circles
case "villain": // can be circles or rectangles
entity.health = definition.fullHealth;
entity.fullHealth = definition.fullHealth;
entity.sprite = loader.loadImage("images/entities/" + entity.name + ".png");
entity.shape = definition.shape;
if (definition.shape === "circle") {
entity.radius = definition.radius;
box2d.createCircle(entity, definition);
} else if (definition.shape === "rectangle") {
entity.width = definition.width;
entity.height = definition.height;
box2d.createRectangle(entity, definition);
}
break;
default:
console.log("Undefined entity type", entity.type);
break;

1

79

CHAPTER 4 = INTEGRATING THE PHYSICS ENGINE

In this method, we use the entity type to decide how to handle the entity object and its properties:

e Block: For block entities, we set the entity health and fullHealth properties based
on the entity definition, and set the shape property to "rectangle". We then load the
sprite, and call the box2d.createRectangle() method.

e Ground: For ground entities, we set the entity object’s shape property to
"rectangle" and call the box2d. createRectangle() method. We do not load a
sprite because we will be using the ground from the level foreground image and
won’t be drawing the ground separately.

e Hero and villain: For hero and villain entities, we set the entity health,
fullHealth, and shape properties based on the entity definition. We then set either
the radius or the height and width properties based on the shape of the entity.
Finally, we call either box2d.createRectangle() or box2d.createCircle() based
on the shape.

Now that we have a way to create entities, let’s add some entities to our levels.

Adding Entities to Levels

The first thing we will do is add a few entities inside our levels.data array, as shown in Listing 4-8.

Listing 4-8. Adding Entities to the levels.data Array

// Level data

data: [{ // First level

foreground:
background:
entities: [

"desert-foreground",
"clouds-background"”,

// The ground

{ type:

"ground", name: "dirt", x: 500, y: 440, width: 1000, height: 20,

isStatic: true },
// The slingshot wooden frame

{ type:

"ground", name: "wood", x: 190, y: 390, width: 30, height: 80,

isStatic: true },

{ type:
{ type:
{ type:

{ type:
{ type:
{ type:

{ type:
{ type:

]

"block", name: "wood", x: 500, y: 380, angle: 90, width: 100, height: 25 },
"block", name: "glass", x: 500, y: 280, angle: 90, width: 100, height: 25 },
"villain", name: "burger", x: 500, y: 205, calories: 590 },

"block", name: "wood", x: 800, y: 380, angle: 90, width: 100, height: 25 },
"block", name: "glass", x: 800, y: 280, angle: 90, width: 100, height: 25 },
"villain", name: "fries", x: 800, y: 205, calories: 420 },

"hero", name: "orange", x: 80, y: 405 },
"hero", name: "apple", x: 140, y: 405 }

}, { // Second level

foreground:
background:

80

"desert-foreground",
"clouds-background",

CHAPTER 4 INTEGRATING THE PHYSICS ENGINE

entities: [
// The ground
{ type: "ground", name: "dirt", x: 500, y: 440, width: 1000, height: 20,
isStatic: true },
// The slingshot wooden frame
{ type: "ground", name: "wood", x: 190, y: 390, width: 30, height: 80,
isStatic: true },

{ type: "block", name: "wood", x: 850, y: 380, angle: 90, width: 100, height: 25 },
{ type: "block", name: "wood", x: 700, y: 380, angle: 90, width: 100, height: 25 },
{ type: "block", name: "wood", x: 550, y: 380, angle: 90, width: 100, height: 25 },
{ type: "block", name: "glass", x: 625, y: 316, width: 150, height: 25 },
{ type: "block", name: "glass", x: 775, y: 316, width: 150, height: 25 },

{ type: "block", name: "glass", x: 625, y: 252, angle: 90, width: 100, height: 25 },
{ type: "block", name: "glass", x: 775, y: 252, angle: 90, width: 100, height: 25 },
{ type: "block", name: "wood", x: 700, y: 190, width: 150, height: 25 },

{ type: "villain", name: "burger", x: 700, y: 152, calories: 590 },
{ type: "villain", name: "fries", x: 625, y: 405, calories: 420 },
{ type: "villain", name: "sodacan", x: 775, y: 400, calories: 150 },

{ type: "hero", name: "strawberry", x: 30, y: 415 },
{ type: "hero", name: "orange", x: 80, y: 405 },
{ type: "hero", name: "apple", x: 140, y: 405 }
]
H,

The first level contains two ground entities—one for the floor and the other for the slingshot. These
entities are meant to be static objects that are not drawn by us.

The level also contains four rectangular block entities (glass and wood). These are destructible
elements that we have positioned using their angle, x, and y properties.

Finally, the level contains two hero entities (orange and apple) and two villain entities (burger and
fries). Note that the villain entities have an extra property called calories, which we will be using to
increase the player score whenever a villain has been destroyed.

The second level has a similar design, except with a few more entities.

Now that we have defined entities for each level, we need to load these entities when we load the level.
To do this, we will modify the load() method of the levels object (see Listing 4-9).

Listing 4-9. Modifying levels.load() to Load the Entities

// Load all data and images for a specific level
load: function(number) {

// Initialize Box2D world whenever a level is loaded
box2d.init();

// Declare a new currentlevel object

game.currentlLevel = { number: number, hero: [] };
game.score = 0;

81

CHAPTER 4 = INTEGRATING THE PHYSICS ENGINE

document.getElementById("score").innerHTML = "Score: " + game.score;
var level = levels.data[number];

// Load the background, foreground, and slingshot images
game.currentlLevel.backgroundImage = loader.loadImage("images/backgrounds/" +
level.background + ".png");

game.currentLevel.foregroundImage = loader.loadImage("images/backgrounds/" +
level.foreground + ".png");

game.slingshotImage = loader.loadImage("images/slingshot.png");
game.slingshotFrontImage = loader.loadImage("images/slingshot-front.png");

// Load all the entities
for (let i = level.entities.length - 1; i »= 0; i--) {
var entity = level.entities[i];

entities.create(entity);

}

// Call game.start() once the assets have loaded
loader.onload = game.start;

The first change we have made is the addition of a call to box2d.init() at the very beginning of the
method. This will create a new Box2D world for the level so that we can start adding our entities to it.

The other change is the addition of a for loop where we iterate through all the entities for a level and
call entities.create() for each entity. Now when we load a level, Box2D will get initialized and all the
entities will get loaded into the Box2D world.

We still can’t see the bodies we have added. Let’s use the Box2D debug drawing method introduced in
Chapter 3 to see what we created.

Setting Up Box2D Debug Drawing

Our game doesn't strictly need debug drawing since we will be handling drawing the game world and
entities ourselves. We will use debug drawing only temporarily, to help us design and test our levels. We can
remove all traces of debug drawing once the game is complete. We will organize our debug drawing code so
that it can easily be activated or deactivated within the code.

The first thing we will do is create a box2d. setupDebugDraw() method inside the box2d object for setting
up debug drawing when we are initializing Box2D. We will then call this method from the box2d. init()
method as shown in Listing 4-10.

Listing 4-10. Setting Up Debug Drawing

init: function() {
// Set up the Box2D world that will do most of the physics calculation
var gravity = new b2Vec2(0, 9.8); // Declare gravity as 9.8 m/s"2 downward
var allowSleep = true; // Allow objects that are at rest to fall asleep and be excluded
from calculations

82

http://dx.doi.org/10.1007/978-1-4842-2910-1_3

CHAPTER 4 INTEGRATING THE PHYSICS ENGINE

box2d.world = new b2World(gravity, allowSleep);

// Activate debug drawing. Comment the line below to disable it.
this.setupDebugDrau();

b

debugCanvas: undefined,
setupDebugDraw: function() {
// Dynamically create a canvas for the debug drawing
if (!box2d.debugCanvas) {
var canvas = document.createElement("canvas");

canvas.width = 1024;

canvas.height = 480;

document . body.appendChild(canvas);
canvas.style.top = "480px";
canvas.style.position = "absolute";
canvas.style.background = "white";
box2d.debugCanvas = canvas;

}

// Set up debug draw
var debugContext = box2d.debugCanvas.getContext("2d");
var debugDraw = new b2DebugDraw();

debugDraw. SetSprite(debugContext);

debugDraw. SetDrawScale(box2d.scale);

debugDraw.SetFillAlpha(0.3);

debugDraw.SetLineThickness(1.0);

debugDraw. SetFlags(b2DebugDraw.e_shapeBit | b2DebugDraw.e jointBit);
box2d.world.SetDebugDraw(debugDraw);

b

Within the method, we first use document.createElement() to create a new canvas object and append
it to the document body. The canvas is sized to fit the entire level, and styled to be positioned below our
game area, with a white background.

We then use the newly created debugCanvas property to set up the Box2D debug draw just like we did in
Chapter 3.

Finally, we add a line in box2d.init() to call box2d.setupDebugDraw(). The advantage of doing
everything in a single method like this is that we can remove all traces of debug draw just by commenting out
this single line in box2d. init().

Before we can see the results of debug draw, we need to call the world object’s DrawDebugData() method.
We will do this in a new method called drawAl1Bodies() inside the game object, as shown in Listing 4-11.

We will call this method from the animate () method of the game object.

83

http://dx.doi.org/10.1007/978-1-4842-2910-1_3

CHAPTER 4 = INTEGRATING THE PHYSICS ENGINE

Listing 4-11. Modifying animate() and Creating drawAllBodies()

animate: function() {

// Handle panning, game states, and control flow
game.handleGamelogic();

// Draw the background with parallax scrolling

// First draw the background image, offset by a fraction of the offsetlLeft distance (1/4)
// The bigger the fraction, the closer the background appears to be

game. context.drawImage(game.currentLevel.backgroundImage, game.offsetLeft / 4, 0,
game.canvas.width, game.canvas.height, 0, 0, game.canvas.width, game.canvas.height);
// Then draw the foreground image, offset by the entire offsetlLeft distance
game.context.drawImage(game.currentLevel.foregroundImage, game.offsetleft, 0,
game.canvas.width, game.canvas.height, 0, 0, game.canvas.width, game.canvas.height);

// Draw the base of the slingshot, offset by the entire offsetlLeft distance
game. context.drawImage(game.slingshotImage, game.slingshotX - game.offsetleft,
game.slingshotY);

// Draw all the bodies
game.drawAllBodies();

// Draw the front of the slingshot, offset by the entire offsetleft distance
game. context.drawImage(game.slingshotFrontImage, game.slingshotX - game.offsetleft,
game.slingshotY);

if (!game.ended) {
game.animationFrame = window.requestAnimationFrame(game.animate, game.canvas);
}

b

drawAllBodies: function() {
// Draw debug data if a debug canvas has been set up
if (box2d.debugCanvas) {
box2d.world.DrawDebugData();
}

// TODO: Iterate through all the bodies and draw them on the game canvas
b

For now, we have created a simple drawAl1Bodies () method that calls box2d.wor1ld.DrawDebugData()
if the box2d. debugCanvas is present. We will eventually need to add code to iterate through all the bodies in
the Box2D world and draw them on the game canvas.

We then call this new method from inside the game object’s animate() method. One thing to note is that
we draw the bodies after drawing the slingshot background but before drawing the slingshot foreground
image. This way, the front of the slingshot is drawn on top of all the game entities.

If we run our code now and load the first level, we should see the debug canvas with all the entities, as
shown in Figure 4-1.

84

CHAPTER 4 INTEGRATING THE PHYSICS ENGINE

Figure 4-1. First level drawn on the debug canvas

The debug canvas view shows us all the game entities as circles and rectangles. We can also see the
ground and slingshot blocks in a different color. We can use this view to quickly test our levels and make sure
that all the entities are positioned correctly. Now that we can see that everything in the level looks alright, it’s
time to actually draw all the entities onto our game canvas.

Drawing the Entities

To draw an entity, we will define a method called draw() inside the entities object. This object will take the
entity, its position, and its angle as parameters and draw it on the game canvas (see Listing 4-12).

Listing 4-12. The entities.draw() Method

// Take the entity, its position, and its angle and draw it on the game canvas
draw: function(entity, position, angle) {

game.context.translate(position.x * box2d.scale - game.offsetlLeft, position.y *
box2d.scale);

game.context.rotate(angle);

var padding = 1;

switch (entity.type) {
case "block":
game.context.drawImage(entity.sprite, 0, 0, entity.sprite.width,
entity.sprite.height,
-entity.width / 2 - padding, -entity.height / 2 - padding,
entity.width + 2 * padding, entity.height + 2 * padding);
break;
case "villain":
case "hero":
if (entity.shape === "circle") {
game.context.drawImage(entity.sprite, 0, 0, entity.sprite.width,
entity.sprite.height,
-entity.radius - padding, -entity.radius - padding,
entity.radius * 2 + 2 * padding, entity.radius * 2 + 2 * padding);
} else if (entity.shape === "rectangle") {
game.context.drawImage(entity.sprite, 0, 0, entity.sprite.width,
entity.sprite.height,

85

CHAPTER 4 = INTEGRATING THE PHYSICS ENGINE

-entity.width / 2 - padding, -entity.height / 2 - padding,
entity.width + 2 * padding, entity.height + 2 * padding);
}
break;
case "ground":
// Do nothing... We draw objects like the ground & slingshot separately
break;

}

game.context.rotate(-angle);
game.context.translate(-position.x * box2d.scale + game.offsetlLeft, -position.y *
box2d.scale);

This method first translates and rotates the context to the position and angle of the entity. It then draws
the object on the canvas based on the entity type and shape. Finally, it rotates and translates the context
back to the original position.

One thing to note is that when using drawImage() the code stretches the image and makes it slightly
larger than the original sprite by a padding size of one pixel in each direction. This is so that small gaps
between Box2D objects get covered up.

Note Box2D creates a “skin” around all polygons. The skin is used in stacking scenarios to keep
polygons slightly separated. This allows continuous collision to work against the core polygon. When drawing
Box2D objects, we need to compensate for this extra skin by drawing bodies slightly larger than their actual
dimensions; otherwise, stacked objects will have unexplained gaps between them.

Now that we have defined an entities.draw() method, we need to call this method for every entity
in our game world. We can iterate through every body in the game world by using the world object’s
GetBodylList() method. We will now modify the game object’s drawAllBodies () method to do this, as shown
in Listing 4-13.

Listing 4-13. Tterating Through All the Bodies and Drawing Them

drawAllBodies: function() {
// Draw debug data if a debug canvas has been set up
if (box2d.debugCanvas) {
box2d.world.DrawDebugData();
}

// Iterate through all the bodies and draw them on the game canvas
for (let body = box2d.world.GetBodylList(); body; body = body.GetNext()) {
var entity = body.GetUserData();

if (entity) {
entities.draw(entity, body.GetPosition(), body.GetAngle());
}

1

86

CHAPTER 4 INTEGRATING THE PHYSICS ENGINE

The for loop initializes body using world.GetBodyList(), which returns the first body in the world.
The body object’s GetNext () method returns the next body in the list until it reaches the end of the list and body
becomes undefined, at which point we exit the for loop. Within the loop, we check to see if the body has an
attached entity; if it does, we call entities.draw(), passing it the body’s entity object, position, and angle.

If we run our game and load the first level now, we should see all the entities drawn on the canvas, as
shown in Figure 4-2.

Score: O

Figure 4-2. Drawing the game entities on the canvas

Once the level loads, the game pans to the right so that we can see the bad guys clearly, and then it
pans back to the slingshot. We can see all the entities drawn properly at the same locations as on the debug
canvas. The extra pixel we added in our draw() method ensures that all the stacked objects are positioned
tightly next to each other. Note that the canvas preserves image transparencies when drawing images, which
is why we can see the background through the glass block.

Now that we have drawn all the elements in the Box2D world, we need to animate the Box2D world.

Animating the Box2D World

As in the previous chapter, we can animate the Box2D world by calling the world object’s Step() method
and passing it the time step interval as a parameter. However, this is where things get a little tricky.

As per the Box2D manual recommendation, ideally, we should use a fixed time step for best results
because variable time steps are hard to debug. Also as per the manual, Box2D works best with a time step of
around 1/60th of a second, and you should use a time step no larger than 1/30th of a second. If the time step
becomes very large, Box2D starts having problems with collisions, and bodies start passing through each other.

87

CHAPTER 4 = INTEGRATING THE PHYSICS ENGINE

The requestAnimationFrame API can vary the frequency at which it calls the animate () method across
browsers and machines. One way to get around this is to measure the time elapsed since the last call to
animate() and pass this difference as a time step to Box2D.

However, if we switch tabs on the browser and then return to the game tab, the browser will call the
animate() method less often, and this time step may become much larger than the upper limit of 1/30th of
a second. To avoid problems due to a large time step, we will need to actively cap the time step if it becomes
larger than 1/30th of a second.

Armed with this information, we will first define a step() method inside the box2d object. This method
will take a time interval as a parameter and call the world object’s Step() method (see Listing 4-14).

Listing 4-14. The box2d.step() Method

step: function(timeStep) {
// As per Box2D docs, if the timeStep is larger than 1 / 30,
// Box2D can start having problems with collision detection
// So cap timeStep at 1 / 30

if (timeStep > 1 / 30) {
timeStep = 1 / 30;
}

// velocity iterations = 8
// position iterations = 3

box2d.world.Step(timeStep, 8, 3);

The step() method takes a time step in seconds and passes it to the world. Step() method. If timeStep
istoo large, we cap it at 1/30th of a second. We use the Box2D manual recommended values of 8 and 3 for
velocity and position iterations. We will call this method from the game.animate() method after calculating
the time step, as shown in Listing 4-15.

Listing 4-15. Calling box2d.step() from game.animate()

animate: function() {
// Animate the characters
var currentTime = new Date().getTime();

if (game.lastUpdateTime) {
var timeStep = (currentTime - game.lastUpdateTime) / 1000;

box2d.step(timeStep);
}
game.lastUpdateTime = currentTime;

// Handle panning, game states, and control flow
game.handleGameLogic();

88

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 4 INTEGRATING THE PHYSICS ENGINE

The first time animate() is called, game. lastUpdateTime will be undefined, so we will not calculate
timeStep or call box2d.step() . However, in every subsequent animation cycle, we calculate the time
that has passed since the last cycle and pass it to the box2d. step() method as timeStep. We then save the
current time into the game.lastUpdateTime variable for the next animation cycle.

Loading the Hero

Now that the animation and engine are in place, it’s time to implement some more game states

(ak.a. game modes). The first state that we will implement is the load-next-hero state. When in this state,
the game needs to count the number of heroes and villains left in the game, check how many are left, and act
accordingly as follows:

e Ifall the villains are gone, the game switches to the state level-success.
e Ifall the heroes are gone, the game switches to the state level-failure.

e Ifthere are still heroes remaining, the game places the first hero on top of the
slingshot and then switches to the state wait-for-firing.

We will do this by creating a method called game. countHeroesAndVillains() and modifying the
game.handleGameLogic() method, as shown in Listing 4-16.

Listing 4-16. Handling the load-next-hero State

// Go through the heroes and villains still present in the Box2d world and store their
Box2D bodies
heroes: undefined,
villains: undefined,
countHeroesAndVillains: function() {

game.heroes = [];

game.villains = [];

for (let body = box2d.world.GetBodyList(); body; body = body.GetNext()) {

var entity = body.GetUserData();

if (entity) {

if (entity.type === "hero") {
game.heroes.push(body);
} else if (entity.type === "villain") {

game.villains.push(body);
}

}
b

handleGamelLogic: function() {
if (game.mode === "intro") {
if (game.panTo(700)) {
game.mode = "load-next-hero";
}

89

CHAPTER 4 INTEGRATING THE PHYSICS ENGINE

if (game.mode === "wait-for-firing") {
if (mouse.dragging) {
game.panTo(mouse.x + game.offsetleft);
} else {
game.panTo(game.slingshotX);
}

}
if (game.mode === "load-next-hero") {

// First count the heroes and villains and populate their respective arrays
game. countHeroesAndVillains();

// Check if any villains are alive, if not, end the level (success)
if (game.villains.length === 0) {
game.mode = "level-success";

return;

}

// Check if there are any more heroes left to load, if not end the level (failure)
if (game.heroes.length === 0) {
game.mode = "level-failure";

return;

}

// Load the hero and set mode to wait-for-firing

if (!game.currentHero) {
/1 Select the last hero in the heroes array
game.currentHero = game.heroes[game.heroes.length - 1];

// Starting position for loading the hero
var heroStartX = 180;
var heroStartY = 180;

// And position it in mid-air, slightly above the slingshot
game.currentHero.SetPosition({ x: heroStartX / box2d.scale, y: heroStartY /
box2d.scale });

game.currentHero.SetLinearVelocity({ x: 0, y: 0 });
game.currentHero.SetAngularVelocity(0);

// And since the hero had been sitting on the ground and is "asleep" in Box2D,

"wake" it
game.currentHero.SetAwake(true);
} else {

// Wait for hero to stop bouncing on top of the slingshot and fall asleep
// and then switch to wait-for-firing
game.panTo(game.slingshotX);

90

CHAPTER 4 INTEGRATING THE PHYSICS ENGINE

if (!game.currentHero.IsAwake()) {
game.mode = "wait-for-firing";

}
}
}
if (game.mode === "firing") {
// If the mouse button is down, allow the hero to be dragged around and aimed
// If not, fire the hero into the air
}
if (game.mode === "fired") {
// Pan to the location of the current hero as it flies
// Wait till the hero stops moving or is out of bounds
}
if (game.mode === "level-success" || game.mode === "level-failure") {
// First pan all the way back to the left
// Then show the game has ended and show the ending screen
}

1

The countHeroesAndVillains() method iterates through all the bodies in the world and stores the
heroes in the game. heroes array and the villains in the game.villains array.

Inside the handleGameLogic () method, when game.mode is 1oad-next-hero, we first call
countHeroesandVillains (). We then check to see if the villain or hero count is 0 and, if so, set game .mode to
level-success or level-failure, respectively. If not, we save the last hero in the game. heroes array into the
game. currentHero variable and set hero’s position to a point in the air above the slingshot. We set its angular
and linear velocity to 0. We also wake up the body in case it is asleep.

As soon as the body is woken up, it will be affected by gravity and start falling toward the slingshot.
When the body drops on to the slingshot, it will bounce until it finally comes to rest and falls asleep again.
We wait for this to occur, and once the body goes back to sleep we set game .mode to wait-for-firing.

If we run the game and start the first level, we will see the first hero bounce on the slingshot and come
to rest, as shown in Figure 4-3.

91

CHAPTER 4 ' INTEGRATING THE PHYSICS ENGINE

Score: O

Figure 4-3. First hero loaded on slingshot and waiting to be fired

Now that we have the hero ready to be fired, we need to handle firing the hero from the slingshot.

Firing the Hero

We will implement firing the hero using three states:

e wait-for-firing: The game pans over the slingshot and waits for the mouse to be
clicked and dragged while the pointer is above the hero. When this happens, it shifts
to the firing state.

e firing: The game moves the hero with the mouse until the mouse button is released.
When this happens, it pushes the hero with an impulse based on its distance from
the slingshot and shifts to the fired state.

e fired: The game pans to follow the hero until it either comes to rest or goes outside
the level bounds. The game then removes the hero from the game world and goes
back to the load-next-hero state.

Before we can do that, we will need a way to detect when the user is attempting to move or fire the hero.
To do so, we will first implement a method called mouseOnCurrentHero() inside the game object to test if the
mouse pointer is positioned on the current hero (see Listing 4-17).

92

CHAPTER 4 INTEGRATING THE PHYSICS ENGINE

Listing 4-17. The game.mouseOnCurrentHero() Method

mouseOnCurrentHero: function() {
if (!game.currentHero) {
return false;
}

var position = game.currentHero.GetPosition();

// Distance between center of the hero and the mouse cursor
var distanceSquared = Math.pow(position.x * box2d.scale - mouse.x - game.offsetlLeft, 2) +
Math.pow(position.y * box2d.scale - mouse.y, 2);

// Radius of the hero
var radiusSquared = Math.pow(game.currentHero.GetUserData().radius, 2);

// If the distance of mouse from the center is less than the radius, mouse is on the hero
return (distanceSquared <= radiusSquared);

1

This method calculates the distance between the current hero center and the mouse location and
compares it with the radius of the current hero to check if the mouse is positioned over the hero. If the
distance is less than the radius, the mouse pointer is positioned on the hero.

We can get away with using this simple check since all our heroes are circular. If you want to implement
heroes with different shapes, you might need a more complex method where you compare the mouse
location with the bounds of the hero character.

We compare the squares of the values instead of calculating the square roots to save us an unnecessary
calculation since comparing the squares will give us the same result.

Now that we have this method in place, we can implement the three states inside the
handleGamelLogic() method, as shown in Listing 4-18.

Listing 4-18. Handling the Firing States Inside the handleGameLogic() Method

if (game.mode === "wait-for-firing") {
if (mouse.dragging) {
if (game.mouseOnCurrentHero()) {
game.mode = "firing";
} else {
game.panTo(mouse.x + game.offsetlLeft);

} else {
game.panTo(game.slingshotX);
}
}
if (game.mode === "firing") {

if (mouse.down) {
game.panTo(game.slingshotX);

93

CHAPTER 4 = INTEGRATING THE PHYSICS ENGINE

94

// Limit dragging to maxDragDistance

var distance = Math.pow(Math.pow(mouse.x - game.slingshotBandX + game.offsetlLeft, 2) +
Math.pow(mouse.y - game.slingshotBandY, 2), 0.5);

var angle = Math.atan2(mouse.y - game.slingshotBandY, mouse.x - game.slingshotBandX);

var minDragDistance = 10;
var maxDragDistance = 120;
var maxAngle = Math.PI * 145 / 180;

if (angle > 0 && angle < maxAngle) {
angle = maxAngle;

if (angle < 0 &3 angle > -maxAngle) {
angle = -maxAngle;
}

// If hero has been dragged too far, limit movement
if (distance > maxDragDistance) {

distance = maxDragDistance;
}

// If the hero has been dragged in the wrong direction, limit movement
if ((mouse.x + game.offsetLeft > game.slingshotBandX)) {

distance = minDragDistance;

angle = Math.PI;

}

// Position the hero based on the distance and angle calculated earlier
game. currentHero.SetPosition({ x: (game.slingshotBandX + distance * Math.cos(angle) +
game.offsetlLeft) / box2d.scale,

y: (game.slingshotBandY + distance * Math.sin(angle)) / box2d.scale });

} else {
game.mode = "fired";
var impulseScaleFactor = 0.8;
var heroPosition = game.currentHero.GetPosition();
var heroPositionX = heroPosition.x * box2d.scale;
var heroPositionY = heroPosition.y * box2d.scale;

var impulse = new b2Vec2((game.slingshotBandX - heroPositionX) * impulseScaleFactor,
(game.slingshotBandY - heroPositionY) * impulseScaleFactor);

// Apply an impulse to the hero to fire it towards the target
game. currentHero.ApplyImpulse(impulse, game.currentHero.GetWorldCenter());

// Make sure the hero can't keep rolling indefinitely
game. currentHero.SetAngularDamping(2);

CHAPTER 4 INTEGRATING THE PHYSICS ENGINE

if (game.mode === "fired") {
// Pan to the location of the current hero as it flies
var heroX = game.currentHero.GetPosition().x * box2d.scale;

game.panTo(heroX);

// Wait till the hero stops moving or is out of bounds
if (!game.currentHero.IsAwake() || heroX < 0 || heroX > game.currentLevel.
foregroundImage.width) {
// then remove the hero from the box2d world
box2d.world.DestroyBody(game.currentHero);
// clear the current hero
game.currentHero = undefined;
// and load next hero
game.mode = "load-next-hero";

The first state that we handle is wait-for-firing. When the state is wait-for-firing, if the mouse
is being dragged and the mouse pointer is positioned on the hero, we change the state to firing; if the
mouse pointer is not positioned on the hero, we pan the screen toward the cursor. If the mouse is not being
dragged, we pan back toward the slingshot.

For the second state, firing, while the mouse button is down, we allow the player to move the hero
around and set the position of the hero based on the current mouse position. We first calculate the distance
and angle of the mouse from the top of the slingshot, and then, to prevent dragging the hero too far or to very
large angles, we limit the angle and distance using minDragDistance, maxDragDistance, and maxAngle.

When the mouse button is released, we set the state to fired and apply an impulse to the hero using
the b2Body object’s ApplyImpulse() method. This method takes the impulse as a parameter in the form of a
b2Vec2 object. We set the x and y values of the impulse vector as a multiple of the x and y distance of the hero
from the top of the slingshot. The impulse scaling factor is a number that I came up with by experimenting
with different values to find one that worked well for the game. We also set an angular damping on the hero
that will cause it to slow down and come to a stop instead of rolling indefinitely.

Finally, when the state is fired, we pan the screen toward the hero and wait for the hero to either come
to rest or fall outside of the game bounds. If it does either, we remove the hero from the world using the
DestroyBody() method and change the state back to load-next-hero.

This cycle of states from load-next-hero towait-for-firing to firing to fired will continue until we
run out of either villains or heroes and move to the success or failure state

If we run the code we have so far and load a level, we should be able to fire the hero at the blocks and
knock them down, as shown in Figure 4-4.

95

CHAPTER 4 ' INTEGRATING THE PHYSICS ENGINE

Score: O

Figure 4-4. Firing the hero at the blocks and knocking them over

You will see that the game pans smoothly to follow the hero flying through the level. Once the hero
either stops rolling or goes outside the bounds of the level, it is removed from the game and the next hero is
loaded onto the slingshot. At this point, once all the heroes are gone, the game just stops and waits instead of
ending the level. So, the next thing that we need to do is implement ending the level.

Ending the Level

Once a level ends, we will stop the game animation loop and display a level ending screen. This screen will
give the user options to replay the current level, proceed to the next level, or return to the level selection
screen.

The first thing we need to do is add the CSS for the endingscreen div elementinto styles.css, as
shown in Listing 4-19.

Listing 4-19. CSS for the endingscreen div Element
/* Ending Screen */
#endingscreen {

text-align: center;
background: rgba(1, 1, 1, 0.3);

96

#endingscreen div {

}

/* Center the popup div within the screen */

position: absolute;

left: 50%;

top: 50%;

transform: translate(-50%, -50%);
transform-origin: center center;

height: 250px;
width: 330px;

border: 1px solid gray;
border-radius: 25px;
background: rgba(1, 1, 1, 0.3);
padding: 10px 30px 40px 50px;

text-align: left;

.endingoption {

}

font: 20px "Comic Sans MS";
text-shadow: 0 0 2px black;
color: white;

#tendingscreen p img {

}

top: 10px;
position: relative;
cursor: pointer;

padding-right: 20px;

#endingmessage {

and then adds some general styling to the text.

font: 25px "Comic Sans MS";
text-shadow: 0 0 2px black;
color: yellow;

text-align: center;

CHAPTER 4

INTEGRATING THE PHYSICS ENGINE

The CSS creates a dark background overlay above the game screen, centers the ending screen options,

Now that the ending screen is ready, we will implement a method called showEndingScreen() inside
the game object to display the endingscreen div element (see Listing 4-20).

97

CHAPTER 4 = INTEGRATING THE PHYSICS ENGINE

Listing 4-20. The game.showEndingScreen() Method

showEndingScreen: function() {
var playNextLevel = document.getElementById("playnextlevel");
var endingMessage = document.getElementById("endingmessage");

if (game.mode === "level-success") {

if (game.currentLevel.number < levels.data.length - 1) {
endingMessage.innerHTML = "Level Complete. Well Done!!!";
// More levels available. Show the play next level button
playNextLevel.style.display = "block";

} else {
endingMessage.innerHTML = "All Levels Complete. Well Done!!!";
// No more levels. Hide the play next level button
playNextLevel.style.display = "none";

} else if (game.mode === "level-failure") {
endingMessage.innerHTML = "Failed. Play Again?";
// Failed level. Hide the play next level button
playNextLevel.style.display = "none";

game. showScreen("endingscreen");

1

The showEndingScreen() method shows different ending messages based on the value of game .mode.
The option to play the next level is shown if the player was successful and the current level was not the final
level of the game. If the player was unsuccessful or the current level was the final level, the option is hidden.

We will now handle level-success and level-failure within the handleGamelLogic () method of the
game object as shown in Listing 4-21.

Listing 4-21. Implementing the Level Ending States in handleGameLogic()

if (game.mode === "level-success" || game.mode === "level-failure") {
// First pan all the way back to the left
if (game.panTo(0)) {
// Then show the game has ended and show the ending screen
game.ended = true;
game. showEndingScreen();

When game.mode is either level-success or level-failure, the game first pans back to the left, sets the
game.ended property to true, then finally displays the ending screen shown in Figure 4-5.

98

CHAPTER 4 INTEGRATING THE PHYSICS ENGINE

Failed. Play Again?

Replay Current Level

- Return to Level Screen

Figure 4-5. The level ending screen

Note that clicking the buttons won’t do anything since we have not yet implemented any event handlers
for the buttons.

Also, since we haven’t implemented collision damage, the villains cannot die and we can never win the
game. Therefore, the next thing we will implement is collision damage so we can destroy the bad guys and
win the game.

Collision Damage

The first thing we need to do is track collisions by using a contact listener and overriding its PostSolve()
method, just like we did in Chapter 3. We will create this listener in a handleCollisions() method that
we will call immediately after creating the world in the init() method of the box2d object, as shown in
Listing 4-22.

Listing 4-22. Handling Collisions Using a Contact Listener

init: function() {
// Set up the Box2D world that will do most of the physics calculation
var gravity = new b2Vec2(0, 9.8); // Declare gravity as 9.8 m/s"2 downward
var allowSleep = true; // Allow objects that are at rest to fall asleep and be excluded
from calculations

99

http://dx.doi.org/10.1007/978-1-4842-2910-1_3

CHAPTER 4 = INTEGRATING THE PHYSICS ENGINE

box2d.world = new b2World(gravity, allowSleep);

// Activate debug drawing. Comment the line below to disable it.
// this.setupDebugDraw();

this.handleCollisions();
1

handleCollisions: function() {
var listener = new b2ContactlListener();

listener.PostSolve = function(contact, impulse) {
var bodyl = contact.GetFixtureA().GetBody();
var body2 = contact.GetFixtureB().GetBody();
var entityl = body1.GetUserData();
var entity2 = body2.GetUserData();

var impulseAlongNormal = Math.abs(impulse.normalImpulses[0]);

// This listener is called a little too often. Filter out very tiny impulses.
// After trying different values, 5 seems to work well as a threshold
if (impulseAlongNormal > 5) {
// If objects have a health, reduce health by the impulse value
if (entityi.health) {
entityl.health -= impulseAlongNormal;
}

if (entity2.health) {
entity2.health -= impulseAlongNormal;
}

};

box2d.world.SetContactListener(listener);

1

Inside the handleCollisions() method, we declare a b2ContactListener, define its PostSolve()
handler, and set the contact listener for the world, just as we did in Chapter 3.

Within the PostSolve () method, if either of the bodies involved in the collision has a health property,
we reduce the health by the value of the impulse along the normal. Since the PostSolve () method is called for
every little collision, we ignore any collision where impulseAlongNormal is less than a threshold value of 5.

The next thing we will do is add some code to check if a body’s health property is less than zero or if the
body has gone outside the level bounds. If either is true, we will remove the body from the world. We will do
this by creating a method called removeDeadBodies () inside the game object as shown in Listing 4-23.

Listing 4-23. Removing Dead Bodies from the World
removeDeadBodies: function() {
// Tterate through all the bodies

for (let body = box2d.world.GetBodylList(); body; body = body.GetNext()) {
var entity = body.GetUserData();

100

http://dx.doi.org/10.1007/978-1-4842-2910-1_3

CHAPTER 4 INTEGRATING THE PHYSICS ENGINE

if (entity) {
var entityX = body.GetPosition().x * box2d.scale;

// If the entity goes out of bounds or its health goes below 0
if (entityX < 0 || entityX > game.currentlevel.foregroundImage.width ||
(entity.health !== undefined 8& entity.health <= 0)) {

// Remove the entity from the box2d world
box2d.world.DestroyBody(body);

// Update the score if a villain is killed

if (entity.type === "villain") {
game.score += entity.calories;
document.getElementById("score").innerHTML = "Score: " + game.score;

1

We iterate through all the bodies, just like we did when we were drawing them, and retrieve their entity
data. If the code finds that the entity has gone outside the level bounds or the entity has lost all its health, we
use the world object’s DestroyBody () method to remove the body. Additionally, if the entity is a villain, we
add the entity’s calorie value to the game score and update the score on the screen.

We will call this method from the animate () method right after the call to game.handleGameLogic() as
shown in Listing 4-24.

Listing 4-24. Calling removeDeadBodies() from animate()

// Handle panning, game states, and control flow
game.handleGameLogic();

// Remove any bodies that died during this animation cycle
game.removeDeadBodies();

// Draw the background with parallax scrolling
// First draw the background image, offset by a fraction of the offsetlLeft distance (1/4)
// The bigger the fraction, the closer the background appears to be

If we run the game now, the villains should get destroyed and the score should increase, as shown in
Figure 4-6.

101

CHAPTER 4 ' INTEGRATING THE PHYSICS ENGINE

Score: 590

Figure 4-6. The score increases after a bad guy gets destroyed

Now that we have a working level, let’s add a few finishing touches. The first thing we will do is draw a
slingshot band when the hero is being fired.

Drawing the Slingshot Band

The slingshot band is going to be a thick brown line from the end of the slingshot to the extreme
end of the hero. We will draw the band only when the game is in firing mode. We will do thisin a
drawSlingshotBand() method inside the game object, as shown in Listing 4-25.

Listing 4-25. Drawing the Slingshot Band

drawSlingshotBand: function() {
game.context.strokeStyle = "rgb(68,31,11)"; // Dark brown color
game.context.lineWidth = 7; // Draw a thick line

// Use angle hero has been dragged and radius to calculate coordinates of edge of hero
wrt. hero center

var radius = game.currentHero.GetUserData().radius + 1; // 1px extra padding

var heroX = game.currentHero.GetPosition().x * box2d.scale;

var heroY = game.currentHero.GetPosition().y * box2d.scale;

var angle = Math.atan2(game.slingshotBandY - heroY, game.slingshotBandX - heroX);

102

CHAPTER 4 INTEGRATING THE PHYSICS ENGINE

// This is the X, Y position of the point where the band touches the hero
var heroFarEdgeX = heroX - radius * Math.cos(angle);
var heroFarEdgeY = heroY - radius * Math.sin(angle);

game. context.beginPath();
// Start line from top of slingshot (the back side)
game.context.moveTo(game.slingshotBandX - game.offsetlLeft, game.slingshotBandY);

// Draw line to center of hero
game.context.lineTo(heroX - game.offsetlLeft, heroY);
game. context.stroke();

// Draw the hero on the back band
entities.draw(game.currentHero.GetUserData(), game.currentHero.GetPosition(),
game. currentHero.GetAngle());

game. context.beginPath();
// Move to edge of hero farthest from slingshot top
game. context.moveTo(heroFarEdgeX - game.offsetLeft, heroFarEdgeY);

// Draw line back to top of slingshot (the front side)
game.context.lineTo(game.slingshotBandX - game.offsetlLeft - 40, game.slingshotBandY + 15);
game. context.stroke();

1

We start by setting the drawing color to a dark brown using the strokeStyle property. We next set
the line drawing width to 7 pixels using the 1ineWidth property. We then draw a band from the back of
the slingshot to the hero, draw the hero on top of the band, and, finally, draw a band from the front of the
slingshot to the edge of the hero furthest from the slingshot.

We will call this method from the game.animate() method right after we draw all the other bodies, as
shown in Listing 4-26.

Listing 4-26. Calling the drawSlingshotBand() Method from animate()

// Draw the base of the slingshot, offset by the entire offsetlLeft distance
game. context.drawImage(game.slingshotImage, game.slingshotX - game.offsetleft,
game.slingshotY);

// Draw all the bodies
game.drawAllBodies();

// Draw the band when we are firing a hero

if (game.mode === "firing") {
game.drawSlingshotBand();

}

// Draw the front of the slingshot, offset by the entire offsetlLeft distance
game. context.drawImage(game.slingshotFrontImage, game.slingshotX - game.offsetleft,
game.slingshotY);

103

CHAPTER 4 ' INTEGRATING THE PHYSICS ENGINE

When we run this code, we should see a brown band around the hero, as shown in Figure 4-7.

Figure 4-7. Drawing the slingshot band

This isn’t a complete solution. The band might look a little unnatural at certain extreme angles. You
might consider improving this method by superimposing some extra images on top of the band to cover up
these edge effects. For now, this simple implementation will suffice.

Now that we have the artwork for the level wrapped up, let’s implement the buttons for changing and
restarting levels.

Changing Levels

We have already implemented one way to traverse levels, using the level selection screen. Now we will
implement the buttons for restarting a level and proceeding to the next level.

We start by implementing the restartLevel() and startNextLevel() methods inside the game object,
as shown in Listing 4-27.

Listing 4-27. Implementing restartLevel() and startNextLevel()

restartlevel: function() {
window.cancelAnimationFrame(game.animationFrame);
game.lastUpdateTime = undefined;
levels.load(game.currentLevel.number);

1

104

CHAPTER 4 INTEGRATING THE PHYSICS ENGINE

startNextLevel: function() {
window.cancelAnimationFrame(game.animationFrame);
game.lastUpdateTime = undefined;
levels.load(game.currentlLevel.number + 1);

b

The methods are fairly simple. Both of them cancel any existing animationFrame loops, reset the
game. lastUpdateTime variable, and finally call the levels.load() method with the appropriate level number.
We also need to call these level selection methods from the onclick event of the corresponding images
in the scorescreen and endingscreen layers, as shown in Listing 4-28.

Listing 4-28. Setting the onclick Events for Changing Levels

<div id="scorescreen" class="gamelayer">

Score: 0

</div>

<div id="endingscreen" class="gamelayer">
<div>
<p id="endingmessage">The Level Is Over Message</p>
<p id="playcurrentlevel” class="endingoption" onclick="game.restartLevel()">
Replay Current Level</p>
<p id="playnextlevel" class="endingoption" onclick="game.startNextLevel()">
Play Next Level</p>
<p id="returntolevelscreen" class="endingoption" onclick="game.
showLevelScreen()">Return to Level
Screen</p>
</div>
</div>

If we run the game, we should now be able to restart a level, proceed to the next level, or return to the
level screen using the provided buttons.

We now have a working game with complete levels. We also have a simple way to build new levels.
However, there is still one last element missing: sound.

Adding Sound

Adding sound makes a game much more immersive since it provides the player with an additional source of
sensory stimulation and feedback, which makes the game feel a little more real.

We will start by adding a few sound effects for when the slingshot is released, for when a hero or villain
bounces, and for when one of the blocks gets destroyed. We will also add some background music, along
with the capability to turn it off if we want.

The sounds files for each of these effects are available in the audio folder (in both MP3 and OGG format).

We will start by loading these sound files in a 1oadSounds () method in the game object, which we will
then call from the init() method, as shown in Listing 4-29.

105

CHAPTER 4 = INTEGRATING THE PHYSICS ENGINE

Listing 4-29. Loading Sound and Background Music

init: function() {

b

//Get handler for game canvas and context
game.canvas = document.getElementById("gamecanvas");
game.context = game.canvas.getContext("2d");

// Initialize objects
levels.init();
loader.init();
mouse.init();

// Load All Sound Effects and Background Music
game.loadSounds(function() {
// Hide all game layers and display the start screen
game.hideScreens();
game.showScreen("gamestartscreen");

H

loadSounds: function(onload) {

1

game.backgroundMusic = loader.loadSound("audio/gurdonark-kindergarten");

game.slingshotReleasedSound = loader.loadSound("audio/released");
game.bounceSound = loader.loadSound("audio/bounce");
game.breakSound = {

"glass": loader.loadSound("audio/glassbreak"),

"wood": loader.loadSound("audio/woodbreak")

};

loader.onload = onload;

The loadSounds () method loads the different sound files using the loader.loadSound() method

and saves them for later reference. We store the break sounds in an associative array so that we can easily
add sounds for more entities and reference them by name. The background music is an excellent Creative
Commons-licensed tune called “Kindergarten” by Gurdonark. After initiating the loading of the sound files,

we set the onload property of the loader.

Within the init() method, we first call loadSounds() and pass an onload function within which we
display the game start screen. This way, the game will display a loading screen until the audio has loaded

completely, and then finally display the game menu.

Tip You can find some amazing free music for your own games at the ccMixter website, located at

http://ccmixter.org.

106

http://ccmixter.org

CHAPTER 4 INTEGRATING THE PHYSICS ENGINE

Adding Break and Bounce Sounds

Now that we have loaded these sounds, we need to associate these sound effects with the entities and play
them at the right time. We will modify the entities.create() method and set the break and bounce sounds
in the entity definitions, as shown in Listing 4-30.

Listing 4-30. Assigning Sounds to Entities During Creation

create: function(entity) {
var definition = entities.definitions[entity.name];

if (!definition) {
console.log("Undefined entity name", entity.name);

return;

}

switch(entity.type) {
case "block": // simple rectangles
entity.health = definition.fullHealth;
entity.fullHealth = definition.fullHealth;
entity.shape = "rectangle";
entity.sprite = loader.loadImage("images/entities/" + entity.name + ".png");

entity.breakSound = game.breakSound[entity.name];

box2d.createRectangle(entity, definition);
break;
case "ground": // simple rectangles
// No need for health. These are indestructible
entity.shape = "rectangle";
// No need for sprites. These won't be drawn at all
box2d.createRectangle(entity, definition);
break;
case "hero": // simple circles
case "villain": // can be circles or rectangles
entity.health = definition.fullHealth;
entity.fullHealth = definition.fullHealth;
entity.sprite = loader.loadImage("images/entities/" + entity.name + ".png");
entity.shape = definition.shape;

entity.bounceSound = game.bounceSound;

if (definition.shape === "circle") {
entity.radius = definition.radius;
box2d.createCircle(entity, definition);

} else if (definition.shape === "rectangle") {
entity.width = definition.width;
entity.height = definition.height;
box2d.createRectangle(entity, definition);

}

break;

107

CHAPTER 4 = INTEGRATING THE PHYSICS ENGINE

default:
console.log("Undefined entity type", entity.type);
break;
}
}

The only change in the code is that we set a breakSound attribute for block entities and a bounceSound
attribute for hero and villain entities. The advantage of attaching sounds to entities during creation like
this is that every entity can have its own custom “break” sound and “bounce” sound if needed.

Now, all we need to do is play the sounds when the events actually occur. First, we play the bounce
sound whenever we detect a collision, inside the handleCollisions method we defined earlier, as shown in
Listing 4-31.

Listing 4-31. Playing the Bounce Sound During a Collision

handleCollisions: function() {
var listener = new b2ContactlListener();

listener.PostSolve = function(contact, impulse) {
var bodyl = contact.GetFixtureA().GetBody();
var body2 = contact.GetFixtureB().GetBody();
var entityl = body1l.GetUserData();
var entity2 = body2.GetUserData();

var impulseAlongNormal = Math.abs(impulse.normalImpulses[0]);

// This listener is called a little too often. Filter out very tiny impulses.
// After trying different values, 5 seems to work well as a threshold
if (impulseAlongNormal > 5) {
// If objects have a health, reduce health by the impulse value
if (entityi.health) {
entityl.health -= impulseAlongNormal;
}

if (entity2.health) {
entity2.health -= impulseAlongNormal;
}

// If entities have a bounce sound, play the sound

if (entityi.bounceSound) {
entityi.bounceSound.play();

}

if (entity2.bounceSound) {
entity2.bounceSound.play();
}

}
};
box2d.world.SetContactListener(listener);

1

108

CHAPTER 4 INTEGRATING THE PHYSICS ENGINE

During a collision, we check if the entity has a bounceSound property defined and, if so, we play the
sound. If we define bounce sounds for any entity, this code will automatically play it whenever the entity is
in a significant collision.

Next, we play the break sound any time an object gets destroyed, inside the removeDeadBodies ()
method of the game object (see Listing 4-32).

Listing 4-32. Playing the Break Sound when an Object Is Destroyed

removeDeadBodies: function() {

// Tterate through all the bodies
for (let body = box2d.world.GetBodylList(); body; body = body.GetNext()) {
var entity = body.GetUserData();

if (entity) {
var entityX = body.GetPosition().x * box2d.scale;

// If the entity goes out of bounds or its health goes below 0
if (entityX < 0 || entityX > game.currentlevel.foregroundImage.width ||
(entity.health !== undefined 88 entity.health <= 0)) {

// Remove the entity from the box2d world
box2d.world.DestroyBody(body);

// Update the score if a villain is killed

if (entity.type === "villain") {
game.score += entity.calories;
document.getElementById("score").innerHTML = "Score:

+ game.score;

}

// If entity has a break sound, play the sound

if (entity.breakSound) {
entity.breakSound.play();

}

}
b

Again, we check to see if the entity being destroyed has a breakSound property and, if so, we play the
sound. So far we have defined break sounds for the glass and wood blocks, but we can easily extend the code
to add sounds for the other entities.

Finally, we play the slingshotReleasedSound when game.mode changes from firing to fired inside the
handleGamelLogic() method (see Listing 4-33).

Listing 4-33. Playing the Slingshot Released Sound when the Hero Is Fired

} else {
game.mode = "fired";
var impulseScaleFactor = 0.8;
var heroPosition = game.currentHero.GetPosition();
var heroPositionX = heroPosition.x * box2d.scale;
var heroPositionY = heroPosition.y * box2d.scale;

109

CHAPTER 4 = INTEGRATING THE PHYSICS ENGINE

var impulse = new b2Vec2((game.slingshotBandX - heroPositionX) * impulseScaleFactor,
(game.slingshotBandY - heroPositionY) * impulseScaleFactor);

// Apply an impulse to the hero to fire it towards the target
game. currentHero.ApplyImpulse(impulse, game.currentHero.GetWorldCenter());

// Make sure the hero can't keep rolling indefinitely
game. currentHero.SetAngularDamping(2);

// Play the slingshot released sound
game.slingshotReleasedSound.play();

Now when you run the game, you should hear sound effects when the hero is fired, when it bumps
against something, or when the blocks get destroyed. The last thing we will be adding is the background
music.

Adding Background Music

We have already loaded the background music file along with the other sound files in the game . loadSounds ()
method. Now we need to create a few methods for starting, stopping, and toggling the background music.
We will add these methods to the game object, as shown in Listing 4-34.

Listing 4-34. Methods for Controlling Background Music

startBackgroundMusic: function() {
game.backgroundMusic.play();
game. setBackgroundMusicButton();

1

stopBackgroundMusic: function() {
game.backgroundMusic.pause();
// Go to the beginning of the song
game.backgroundMusic.currentTime = 0;

game. setBackgroundMusicButton();

1

toggleBackgroundMusic: function() {
if (game.backgroundMusic.paused) {
game.backgroundMusic.play();
} else {
game.backgroundMusic.pause();
}

game. setBackgroundMusicButton();

1

110

CHAPTER 4 INTEGRATING THE PHYSICS ENGINE

setBackgroundMusicButton: function() {
var toggleImage = document.getElementById("togglemusic");

if (game.backgroundMusic.paused) {
toggleImage.src = "images/icons/nosound.png";
} else {
toggleImage.src = "images/icons/sound.png";

1

The startBackgroundMusic() method first calls the backgroundMusic object's play() method and
then calls setBackgroundMusicButton() to set the toggle music button image appropriately.

The stopBackgroundMusic() method calls the backgroundMusic object’s pause() method and
sets the audio back to the beginning of the song by setting its currentTime property to 0. It then calls
setBackgroundMusicButton() to change the music button image.

Finally, the toggleBackgroundMusic() method checks to see whether or not the music is currently
paused, calls either the pause() or play() method, and then sets the toggle image appropriately.

The setBackgroundMusicButton() method simply sets the src property of the background music
image based on whether or not the background music is currently playing.

Now that we have these methods in place, we need to call them. We will call the
startBackgroundMusic() method when the game starts from inside the game.start() method, as shown in
Listing 4-35.

Listing 4-35. Starting the Background Music

start: function() {
game.hideScreens();

// Display the game canvas and score
. W \" M

ame.showScreen("gamecanvas");

game. showScreen("scorescreen");

ame.mode = "intro";
)
game.currentHero = undefined;

game.offsetlLeft = 0;
game.ended = false;

game.animationFrame = window.requestAnimationFrame(game.animate, game.canvas);

// Play the background music when the game starts
game.startBackgroundMusic();

b

Next, we will call the stopBackgroundMusic() method whenever the level ends by adding it to the
showEndingScreen() method, as shown in Listing 4-36.
Listing 4-36. Stopping the Background Music

showEndingScreen: function() {
var playNextLevel = document.getElementById("playnextlevel");
var endingMessage = document.getElementById("endingmessage");

111

CHAPTER 4 = INTEGRATING THE PHYSICS ENGINE

if (game.mode === "level-success") {

if (game.currentLevel.number < levels.data.length - 1) {
endingMessage.innerHTML = "Level Complete. Well Done!!!";
// More levels available. Show the play next level button
playNextLevel.style.display = "block";

} else {
endingMessage.innerHTML = "All Levels Complete. Well Done!!!";
// No more levels. Hide the play next level button
playNextLevel.style.display = "none";

}

} else if (game.mode === "level-failure") {
endingMessage.innerHTML = "Failed. Play Again?";
// Failed level. Hide the play next level button
playNextLevel.style.display = "none";

game.showScreen("endingscreen");

// Stop the background music when the game ends
game.stopBackgroundMusic();

1

Finally, we will call the toggleBackgroundMusic() method from the onclick event of the toggle music
button inside the scorescreen layer, as shown in Listing 4-37.

Listing 4-37. Toggling the Background Music

<div id="scorescreen" class="gamelayer">
<img id="togglemusic" src="images/icons/sound.png" alt="Toggle Music"
onclick="game.toggleBackgroundMusic()">

Score: 0

</div>

Now if we run the game, the background music starts playing as soon as the level starts. When we click
the toggle button, the music pauses and the button changes to the no-sound icon, as shown in Figure 4-8.

112

CHAPTER 4 INTEGRATING THE PHYSICS ENGINE

Score: O

Figure 4-8. The finished game with the background music switched off

With this last change, we now have a complete, working game. We can select a level from the level
selection screen, and play the game by slinging across the hero fruits to attack the evil junk food, while
listening to sound effects and background music.

Of course, there is still a lot of room for us to expand the functionality of this game. Some of the obvious
next steps would be to add animations for different entities, add more levels, tweak the game physics
parameters, and add more heroes and villains with different characteristics.

However, the game has all the essential elements that people have come to expect from a good HTML5
game. You can use the code in this game as a starting point for any of your own physics engine-based games
and take it wherever you would like.

Take some time to enjoy the game and come up with your own ideas for levels.

Summary

Over the past three chapters, we created our first physics engine-based HTML5 game. We started in Chapter 2
by creating a basic game framework with menus, a level system, and an asset loader and setting up game
animation. We then covered the basics of Box2D in Chapter 3. Finally, in this chapter we integrated Box2D into
our existing game framework and wrapped up our game by adding menu options, sounds effects, and music.

One limitation of this game we have created is that it will work only on desktop browsers, and not on
mobile devices such as smartphones and tablets. However, now that HTMLS5 is fully supported by most mobile
devices, it is possible to make this game work even on mobile devices with just a little additional work.

In the next chapter, we will look at some of the differences and challenges in building mobile device
games using HTMLS5, as well as ways to handle them. We will then apply this knowledge to modify our
existing game so it works on mobile devices as well.

113

http://dx.doi.org/10.1007/978-1-4842-2910-1_2
http://dx.doi.org/10.1007/978-1-4842-2910-1_3

CHAPTER 5

Creating a Mobile Game

Over the last few years, the use of mobile devices and their mobile browsers has steadily increased, to
the point where several popular sites have started reporting that the number of mobile device users
visiting them exceeds the number of visits from desktop users. While we may not have necessarily
reached a tipping point where mobile device usage has surpassed desktop usage everywhere, we have
definitely reached a point where mobile device users comprise a significant market share and can no
longer be ignored.

During this same time period, mobile browsers have been steadily improving their support for the
HTMLS5 AP], so essential HTMLS5 features can now be expected to work on most mobile devices without
needing significant hacks or workarounds. What this means for us as game developers is that we can now
start building HTML5 games that also work on mobile devices, something that wasn'’t easily possible a few
years ago.

In this chapter we will look at the differences between the mobile device environment and the desktop
environment and some of the considerations necessary when making games for mobile devices. We will
then continue with our game Froot Wars, using the code from Chapter 4 as a starting point, and modify it to
run on mobile devices.

So let’s get started.

Challenges in Developing for Mobile Devices

Even though the HTML5 API and JavaScript features remain almost the same on mobile devices, developing
for mobile devices is not without its challenges. Some of these challenges come from the fact that, compared
to desktops, mobile devices have a smaller form factor with limited screen real estate, typically slower
Internet access, different input methods and APIs, and significantly less computing power and memory at
their disposal.

This necessitates being extremely careful about not wasting resources while working within the
limitations of these devices. The most important considerations when developing for mobile devices are as
follows:

e Size and form factor: The smaller form factor, limited screen space, and different
device aspect ratios in various mobile devices mean games need to be designed to
be responsive and to intelligently fit the available screen space. We no longer can
assume the availability of space, and we need to adjust our game based on what
space is actually available on the device. The ability to change screen orientation
from portrait to landscape on mobile devices also means that our games need to be
able to adjust to changes in the size of the content area dynamically.

© Aditya Ravi Shankar 2017 115
A.R. Shankar, Pro HTML5 Games, DOI 10.1007/978-1-4842-2910-1_5

http://dx.doi.org/10.1007/978-1-4842-2910-1_4

CHAPTER 5 * CREATING A MOBILE GAME

e Different input events: Our game so far was designed to work with the mouse.
However, mobile devices typically do not have access to a mouse and instead use
touch-based gestures to emulate the mouse. While the emulation is sufficient for
simpler uses such as clicking buttons, we need finer control when working with
dragging and swiping within the game, which requires understanding and using the
Touch APL.

e Browser limitations for audio: In an attempt to improve the user experience and
limit unnecessary bandwidth or resource usage, some mobile browsers such as
Safari add additional safeguards such as not preloading audio and preventing audio
from playing without user interaction. While this doesn’t matter as much in typical
HTMLS5 pages, it can significantly degrade the experience in an HTML5 game, and
we need to find ways to make audio work smoothly.

e Limited Internet bandwidth: Typical mobile devices may be connecting to our game
via slower EDGE, 2G, or 3G networks, so resources can take a long time to load. We
need to ensure that the game takes this into consideration, by reducing the size of
the resources to the best of our ability and then using a preloader to wait until the
resources have loaded completely.

While there might be a few more small problems that pop up, taking care of these big issues while
developing our games for mobile devices should be sufficient for a fairly decent mobile gameplay
experience. Now that we know what the challenges are, we will start tackling them one at a time, starting
with making the game responsive.

Making the Game Responsive

Before we start working on making the game responsive, let’s take a look at the problem more closely.
Luckily for us, most desktop browsers now allow us an easy way to emulate mobile devices, including
different mobile aspect ratios and touch events, so we can do our initial development on the desktop before
we actually test the game on mobile devices.

This emulation feature is called “Device Mode” on Chrome, and “Responsive Device Mode” on Firefox
and Safari. The simplest way to activate this feature on any of these browsers is to open the developer
console and click the button with the mobile phone-shaped icon. You can read detailed instructions for this
athttps://developer.mozilla.org/en-US/docs/Tools/Responsive Design Mode for Firefox, https://
developers.google.com/web/tools/chrome-devtools/device-mode/ for Chrome, and https://support.
apple.com/kb/PH26266 for Safari.

Note While emulation will give you a close approximation of how your game will look on a mobile device,
it cannot replicate exact mobile device conditions and thus is not a substitute for an actual mobile device.
Testing your games on actual mobile devices is essential for making sure that your games work as intended.

If you open in your desktop browser the game we have developed to this point, you should be able to go
to the developer console and activate mobile emulation as shown in Figure 5-1.

116

https://developer.mozilla.org/en-US/docs/Tools/Responsive_Design_Mode
https://developers.google.com/web/tools/chrome-devtools/device-mode/
https://developers.google.com/web/tools/chrome-devtools/device-mode/
https://support.apple.com/kb/PH26266
https://support.apple.com/kb/PH26266

CHAPTER 5 ' CREATING A MOBILE GAME

iPhoneS ¥ 568 x 320 100% v &

(= El Elements Console Sources MNetwork Timeline Profiles Application Audits Security Pox
(o] Toggle device toolbar Ctrl + Shift+ M

»

Figure 5-1. Previewing the game in Responsive Device Mode

This feature allows you to choose the device resolution of several popular mobile devices, including
the iPhone and Nexus lines of phones. It also allows you to select the device orientation and easily switch
between landscape and portrait mode at the click of a button. For now, let’s just pick any one of the devices
and set the orientation to landscape so we can see what our game looks like.

The first thing you will notice, as evident in Figure 5-1, is that the lack of proper responsive behavior is
causing the game to be cropped at the bottom and aligned to the left with black space on the right. So, the
first thing we need to add is automatic scaling and positioning.

Automatic Scaling and Resizing

In an effort to adjust desktop or non-mobile content for mobile devices, mobile browsers often attempt to
automatically scale content in different ways. Since we will be handling scaling at our end, the first thing we
need to do is let the browser know not to allow zooming and scaling of its own and try to use all available space.
We will do this by adding a simple viewport meta tagto the head section of index.html as shown in Listing 5-1.

Listing 5-1. Preventing Automatic Scaling in the Browser

<head>
<meta http-equiv="Content-type" content="text/html; charset=utf-8">
<meta name="viewport" content="user-scalable=no, initial-scale=1, maximum-scale=1,
minimum-scale=1, width=device-width"»
<title>Froot Wars</title>
<script src="js/Box2d.min.js" type="text/javascript"></script>
<script src="js/game.js" type="text/javascript"></script>
<link rel="stylesheet" href="styles.css" type="text/css" media="screen">
</head>

117

CHAPTER 5~ CREATING A MOBILE GAME

The newly added viewport meta tag first tells the browser not to allow the user to change the scale by
using pinching gestures, since this would affect the game experience. It also tells the browser not try to scale
and fit content and forces the scale to stay at its original value of 1. Finally, it tells the browser to use the
entire available width of the device.

If you refresh the code in the browser, you should see that the browser no longer tries to scale or adjust
the content, as shown in Figure 5-2.

iPhone5 ¥ 568 x 320 100% v &

Figure 5-2. The game with automatic and user scaling disabled

Since the game is no longer scaled down, the dimensions of 640px by 480px are too large for the device,
and the game is now cropped on the right side as well as the bottom. Now that we know the browser won’t
be scaling or modifying our content in unexpected ways, we can write our own code to make the game scale
and fit the available space.

The first thing we will do is add some additional styles for the body, wrapper, and gamecontainer div
elements in styles.css as shown in Listing 5-2.

Listing 5-2. Additional Styles for body, wrapper, and gamecontainer

body {
background: #000900;

/* Prevent the ugly blue highlighting from accidental selection of text */
user-select: none;

/* Disable long touch hold select */
-webkit-touch-callout: none !important;

overflow: hidden;

118

CHAPTER 5 ' CREATING A MOBILE GAME

#wrapper {

}

position: absolute;

/* Wrapper covers entire window height and width */
top: 03

bottom: 0;

left: o;

right: o;

#gamecontainer {

/* Set game container width, height, and background */
width: 640px;

height: 480px;

background: url("images/splashscreen.png");

/* Center the game container relative to outer wrapper */
position: absolute;

left: 50%;

top: 50%;

transfoxm: translate(-50%, -50%);

transform-origin: center center;

In this newly added CSS code, we ensure that the wrapper div covers the entire available window area,

and that the gamecontainer div is centered within it. We also set the overflow style of the body element to
hidden to prevent unnecessary scroll bars from showing up and prevent the context menu from showing up
when the user touches the screen for a long time.

The game should now be centered on the device; however, the content is still too large for the screen

and needs to be resized. To handle the resizing, we will create a new resize() method inside the game object
as shown in Listing 5-3.

Listing 5-3. Adding a resize() Method to the game Object

scale: 1,
resize: function() {

1

var maxWidth = window.innerWidth;
var maxHeight = window.innerHeight;

var scale = Math.min(maxWidth / 640, maxHeight / 480);
var gameContainer = document.getElementById("gamecontainer");

gameContainer.style.transform = "translate(-50%, -50%) " + "scale(" + scale + ")";

game.scale = scale;

Within the resize() method, we first get the maximum available width and height using the

innerWidth and innerHeight properties of the window object.

119

CHAPTER 5 * CREATING A MOBILE GAME

We then calculate the maximum amount we can scale up the game without having one of the
dimensions become larger than the window size. To do this, we calculate the maximum that the game can
be scaled along each axis and pick the lower of the two using Math.min().

For example, if a device has dimensions of 1280px by 720px while our content is 640px by 480px, we could
potentially scale the x-axis by 2 but the y-axis only by 1.5. Since scaling by anything more than 1.5 would cause the
content to become too large along the y-axis, we pick the lower of the two values (1.5) as the scale to use.

Finally, we set the game container scale to this new scale value using a CSS transform attribute and
save this value in game. scale.

Now that we have our resize() method, we need to call it when the game is first loaded and any time
the browser is resized, as shown in Listing 5-4.

Listing 5-4. Calling the resize() Method on Loading and Resizing

// Initialize game once page has fully loaded
window.addEventListener("load", function() {
game.resize();
game.init();

1

window.addEventListener("resize", function() {
game.resize();
D;

We first modify the load event listener to call game.resize() as soon as the window has loaded, after
which we continue to initialize the game. We also listen for the resize event and call game.resize()
whenever the window is resized. This way, the game should automatically resize when it first loads, and
adjust anytime the window is resized or the device is rotated.

If you now run this code, you should see the game perfectly centered and scaled as shown in Figure 5-3.

iPhone5 ¥ 568 x 320 100% v &

v

tE KN 4

~PLAY

SETTINGS

Figure 5-3. Centered and scaled with the resize() method
120

CHAPTER 5 ' CREATING A MOBILE GAME

If you change the device orientation, the game should automatically adjust and fit into the new
dimensions.

Even though the game is scaled reasonably well, you will notice that there is a considerable amount of
black unused space on the sides. Most modern mobile devices tend to use wider aspect ratios, so we need a
way to take this into account while still working well with devices that do not have a wide screen.

Handling Different Aspect Ratios

The problem we have in trying to make our game work for different aspect ratios is that our game is
currently designed for a fixed 4:3 aspect ratio and our canvas and background image are sized to be
exactly 640px by 480px.

We will start by modifying our CSS to use a wider version of the background image (1024px by 480px) as
shown in Listing 5-5.

Listing 5-5. Using a Wider Background Image

#gamecontainer {

/* Set game container width, height, and background */
width: 640px;
height: 480px;

/* Use a wider splash screen and center it within the container */
background: url("images/splashscreenwide.png");
background-position: center;

background-repeat: no-repeat;

/* Center the game container relative to outer wrapper */
position: absolute;

left: 50%;

top: 50%;

transform: translate(-50%, -50%);

transform-origin: center center;

We first change the background image to the wider version (splashscreenwide.png), and then ensure
that it is centered and not repeated. This by itself won’t make any apparent change to the game since the
container is still sized at 640px by 480px.

Next we will modify the game.resize() method to also try to increase the aspect ratio where possible,
as shown in Listing 5-6.

Listing 5-6. Changing the Aspect Ratio Inside game.resize()

resize: function() {

var maxWidth = window.innerWidth;
var maxHeight = window.innerHeight;

var scale = Math.min(maxWidth / 640, maxHeight / 480);

var gameContainer = document.getElementById("gamecontainer");

gameContainer.style.transform = "translate(-50%, -50%) " + "scale(" + scale + ")";
121

CHAPTER 5~ CREATING A MOBILE GAME

// Find the maximum width we can set based on the current scale
// and clamp the value between 640 and 1024
var width = Math.max(640, Math.min(1024, maxlidth / scale));

// RApply this new width to game container and game canvas
gameContainer.style.width = width + "px";

var gameCanvas = document.getElementById("gamecanvas");
gameCanvas.width = width;

game.scale = scale;

b

In this newly added code, we first calculate the maximum width that we can set based on the newly
computed scale. Since our artwork and level backgrounds have a width of 1024px, we also make sure that
this new game width can never be greater than 1024px or less than the original 640px. We then set the
container and canvas to this newly computed width.

If you run the code after these changes, you will find that the game automatically widens to try and use
up the extra space on the sides as shown in Figure 5-4.

iPhone5 v 568 x 320 100% v &

PLAY

SETTINGS

Figure 5-4. Adjusting the aspect ratio with the resize() method

You can use the device drop-down to switch to other devices with different aspect ratios, and the game
automatically adjusts as much as possible to try and minimize any unused space.

122

CHAPTER 5 ' CREATING A MOBILE GAME

If you click Play and start the game, you will see that the game canvas has also expanded to account
for this wider space. Additionally, since our panning code takes canvas and level widths into account, even
panning should automatically work with this new width.

We now have a responsive game that adjusts to different screen sizes and aspect ratios.

However, while the game looks fine visually, you will not be able to play it properly. We still need to
make adjustments to the mouse object to handle touch events and adjust for the new game scale.

Fixing Mouse and Touch Event Handling

We need to resolve two problems in our input handling before the game can work properly:

e Our code to compute mouse.x and mouse.y does not adjust for the fact that the game
is now scaled up by game.scale. This has a reasonably simple fix. We just need to
scale down the computed x and y coordinates back by game. scale.

e Mobile devices that do not actually have a mouse do not generate all mouse events.
They primarily generate touch events, and attempt to approximate mouse events
where possible. This approximation works reasonably with events such as click,
which is why our game buttons, which rely on the click event, continue to function.
However, the browser will not generate a mousemove event and instead will generate
only a touchmove event.

We will modify the mouse object to handle both sets of events (mouse and touch) and adjust for game
scaling as shown in Listing 5-7.

Listing 5-7. Handling Touch Events and Scaling in the mouse Object

var mouse = {
x: 0,
y: 0,
down: false,
dragging: false,

init: function() {
var canvas = document.getElementById("gamecanvas");

canvas.addEventListener("mousemove", mouse.mousemovehandler, false);
canvas.addEventListener("mousedown", mouse.mousedownhandler, false);
canvas.addEventListener("mouseup”, mouse.mouseuphandler, false);
canvas.addEventListener("mouseout”, mouse.mouseuphandler, false);

// Handle touchmove separately
canvas.addEventListener("touchmove”, mouse.touchmovehandler, false);

// Reuse mouse handlers for touchstart, touchend, touchcancel
canvas.addEventListener("touchstart", mouse.mousedownhandler, false);
canvas.addEventListener("touchend”, mouse.mouseuphandler, false);
canvas.addEventListener("touchcancel”, mouse.mouseuphandler, false);

1

123

CHAPTER 5 * CREATING A MOBILE GAME

mousemovehandler: function(ev) {
var offset = game.canvas.getBoundingClientRect();

(ev.clientX - offset.left) / game.scale;

mouse.x e
(ev.clientY - offset.top) / game.scale;

mouse.y =
if (mouse.down) {

mouse.dragging = true;
}

ev.preventDefault();
}s

touchmovehandler: function(ev) {
var touch = ev.targetTouches[0];
var offset = game.canvas.getBoundingClientRect();

(touch.clientX - offset.left) / game.scale;
(touch.clientY - offset.top) / game.scale;

mouse.x =
mouse.y =
if (mouse.down) {

mouse.dragging = true;
}

ev.preventDefault();
b

mousedownhandler: function(ev) {
mouse.down = true;

ev.preventDefault();
b

mouseuphandler: function(ev) {
mouse.down = false;
mouse.dragging = false;

ev.preventDefault();

}
};

We first modify the init() method to assign handlers for all the touch events: touchmove, touchstart,
touchend, and touchcancel. We assign a new method called touchmovehandler () for the touchmove event,
but reuse the mousedown () and mouseuphandler () methods for the remaining events. This is because
touchmovehandler () will need to be slightly different from mousemovehandler (), and we cannot reuse the
same method.

Next we modify the mousemovehandler () method to adjust for game.scale when calculating the x and y
position.

Finally, we define the touchmovehander () method, which uses the event’s targetTouches array to get
the details of the first touch. We then use the touch object’s clientX and clientY properties to calculate
mouse.x and mouse.y like we did in the mousemovehandler () method.

124

CHAPTER 5 ' CREATING A MOBILE GAME

One thing to keep in mind is that the Touch API is designed to be able to handle multiple simultaneous
touches. We can access details of every one of these touches on the canvas using the targetTouches array,
as well as uniquely identify each of them using the identifier property. You can read more about the Touch
event API at https://developer.mozilla.org/en/docs/Web/API/Touch_events.

Our touch handling code assumes that the player will be using only one finger at a time, and uses
only the first touch in the targetTouches array to emulate mouse-like behavior. This will result in slightly
unexpected behavior if the user decides to use multiple touches simultaneously.

It is possible to develop a more robust solution that will ignore any additional touches apart from the
first by using the identifier property within each touch object to uniquely identify the first touch. However,
our simple implementation should suffice for now.

Another thing to note is that the call to preventDefault() at the bottom of all our handlers prevents
the browser’s typical behavior of firing the equivalent mouse events when a touch event is fired to emulate a
mouse. Using preventDefault () will ensure that the browser does not call our event handlers twice—once
as a touch event and then again as an emulated mouse event.

If you run the game on the device emulator, you should now be able to play the game normally.

You should also be able to play the game on a normal browser without emulation and see that the game
dynamically scales to fit the entire window as far as possible.

Now that the game works fairly well on our device emulator, it is time to load the game on an actual
mobile device and see how it fares.

Loading the Game on a Mobile Device

The simplest way to load a game on a mobile device is to host the game on a web server and then access the
URL from the mobile browser.

Numerous popular web servers are available for every operating system. However, to keep things
simple, we will use the Node.js http-server package, which is a simple and bare-bones server that is ideal
for quick development and testing work.

If you already have a web server on your machine and are comfortable with setting it up to serve the
game code, you can probably skip the steps in this section.

The first thing you will need to do is install Node.js and its package manager, npm. You will find the
necessary instructions for installing the latest version at https://docs.npmjs.com/getting-started/
installing-node. The reason I recommend installing and using Node.js is that we will need Node.js in later
chapters anyway, to build a JavaScript-based multiplayer game server.

Once you have installed Node.js and npm, it’s time to install http-server. You can install http-server
from the command line on your terminal using the command

npm install -g http-server

You can read more about http-server and its many configuration options and features at https://www.
npmjs.com/package/http-server. Once you have http-server installed on your machine, you should be able
to serve the game just by switching to the folder that contains index.html and using the command

http-server

As soon as the server starts, it should show you a status message letting you know the URLS by which
you can access the game:

Starting up http-server, serving ./
Available on:
http $//192.168.0.100:8080
http://127.0.0.1:8080

125

https://developer.mozilla.org/en/docs/Web/API/Touch_events
https://docs.npmjs.com/getting-started/installing-node
https://docs.npmjs.com/getting-started/installing-node
https://www.npmjs.com/package/http-server
https://www.npmjs.com/package/http-server

CHAPTER 5 * CREATING A MOBILE GAME

Note that the actual URLs displayed by http-server will vary depending on your network setup.
Once the server has started, as long as your mobile device is on the same wireless network, you should
be able to access the game on the mobile browser using one of the URLs provided. This server, while
fairly simple, has several useful configuration options such as the ability to disable caching and to run
on different ports. I'd encourage you to review the documentation and take a look at these options when
you get a chance.

Note The URLs that http-server provides include the loopback IP address (127.0.0.1), which is only
accessible from the machine where the server is running. To access the server from a different device,
you need to use one of the non-loopback URLS, which should be accessible as long as your devices are
on the same network. If you have trouble accessing the server, also make sure that your firewall isn’t
interfering.

Now that we can load the game on a mobile device, you will find that it seems to function as intended
on Android devices. However, it does not even load properly on iOS devices and gets stuck on the loading
screen, as shown in Figure 5-5.

192.168.0.100

Figure 5-5. Stuck at loading screen on an actual iOS device

Unfortunately, this occurs because of an optimization that the Safari browser for mobile devices makes,
wherein it does not load audio files until they need to be played to prevent unnecessary bandwidth usage.
An unfortunate side effect of this is that the canplaythrough event does not fire for the audio objects that we
try to preload, resulting in the game just hanging at the loading stage.

This is just one of many problems that we will face with audio on mobile devices. So the next thing we
will focus on is fixing these audio problems.

126

CHAPTER 5 ' CREATING A MOBILE GAME

Fixing Audio Problems on Mobile Browsers

In addition to the problem with preloading audio files in the Safari mobile browser, just discussed, there
are several other limitations on mobile browsers. These include not being able to play multiple audio files
simultaneously and some devices not allowing audio to play unless the sound has been triggered by a
user interaction. Luckily for us, there is a simple way to work around most of these issues: the HTML5 Web
Audio APIL

The Web Audio API

The Web Audio API is an incredibly powerful and versatile system for controlling audio in the browser. It
allows us to combine multiple audio sources, apply filters, and add all sorts of dynamics effects.

The Web Audio API uses an audio context and is designed to allow modular routing using a system
of nodes and connections. You typical connect different nodes, starting with a source node (such as an
Oscillator node or BufferSource node), which can be connected to different effect nodes (such as a Gain
node), which are then finally connected to the destination node (AudioContext.destination). You can
connect multiple sources either directly or via effect nodes to the destination node, allowing for dynamically
creating multiple channels of sound.

You can play a simple sound using Web Audio with an Oscillator node as shown in Listing 5-8.

Listing 5-8. Using Web Audio with an OscillatorNode
<IDOCTYPE html>

<html>
<head>
<title>Webaudio Example 1</title>
</head>
<body>
<script>
// Some browsers support AudioContext, while others support webkitAudioContext
var context = new (window.AudioContext || window.webkitAudioContext)();
// An oscillator source node just plays a sound at a specific frequency
var oscillatorNode = context.createOscillator();
// Connect the oscillator directly to the destination
oscillatorNode.connect(context.destination);
// Start the oscillator now (at the current time)
oscillatorNode.start(context.currentTime);
// And stop it two seconds after the current time
oscillatorNode.stop(context.currentTime + 2);
</script>
</body>
</html>

We start by first defining a new audio context using either AudioContext or webkitAudioContext,
depending on which one is available to us on the browser. We then use the context.createOscillator()
method to create an oscillator object, which we connect directly to the destination. Anything connected to
this destination can be heard by us.

127

CHAPTER 5 * CREATING A MOBILE GAME

Next we tell the oscillator when to start and stop with respect to the context current time. In our
case the start time is the current moment and the stop time is two seconds after this start time. If you
run this code in your browser, you should hear a loud, high-pitched sound that lasts for exactly two
seconds.

Now if we want to control the volume of the Oscillator node (or any other node), we can pass it
through a Gain node as shown in Listing 5-9.

Listing 5-9. Passing Audio Through a Gain Node

<!DOCTYPE html>
<html>
<head>
<title>Webaudio Example 2</title>
</head>
<body>
<script>
// Initialize the audio context
var context = new (window.AudioContext || window.webkitAudioContext)();

// An oscillator source node just plays a sound at a specific frequency
var oscillatorNode = context.createOscillator();

// A gain node controls the volume
var gainNode = context.createGain();

// Set the volume to 1/5th of the original volume
gainNode.gain.value = 0.2;

// Connect the oscillator to the gain node
oscillatorNode.connect(gainNode);

// Connect the gain node to the destination
gainNode.connect(context.destination);

// Start the oscillator now (at the current time)
oscillatorNode.start(context.currentTime);

// And stop it two seconds after the current time
oscillatorNode.stop(context.currentTime + 2);
</script>
</body>
</html>

This time we connect the oscillator node to a gain node, set the gain value to a fraction of the original,
and then connect it to the destination.

If you run this code, you should hear the same sound as before but at a much lower volume. This is how
you typically chain nodes using the Web Audio AP], to apply different kinds of effects to your sounds.

You can also use a BufferSource node to load audio files and play them. However, you will first need to
load the audio file yourself using XMLHttpRequest as shown in Listing 5-10.

128

CHAPTER 5 ' CREATING A MOBILE GAME

Listing 5-10. Playing Audio Files Using a BufferSource Node

<!DOCTYPE html>

<html>
<head>

<title>Webaudio Example 3</title>

</head>
<body>

<script>

// Initialize the audio context
var context = new (window.AudioContext || window.webkitAudioContext)();

// Load the audio file using an XMLHttpRequest
var request = new XMLHttpRequest();
request.open("GET", "audio/bounce.ogg", true);
request.responseType = "arraybuffer";

// Wait for the request to load the audio file
request.onload = function() {
// Once the audio file has loaded, decode it

};

var undecodedAudio = request.response;

context.decodeAudioData(undecodedAudio, function (decodedAudioBuffer) {

};

// Once the audio has been decoded create a buffer source
var bufferSourceNode = context.createBufferSource();

// Tell the buffer source node to use the decoded audio buffer
bufferSourceNode.buffer = decodedAudioBuffer;

// Connect the buffer source node to the destination
bufferSourceNode.connect(context.destination);

// Start playing the buffer source node now
bufferSourceNode.start(context.currentTime);

// Finally initiate the request
request.send();

</script>

</body>
</html>

This time, we create an XMLHTTPRequest object that loads our audio file as an array buffer. Once
the audio is loaded by the request, we use context.decodeAudio() to convert the audio data into an
audio buffer that can be used by a BufferSource node. After the audio has been decoded, we create a
BufferSource node, assign it the buffer, and then connect it to the destination and play it like any other

source node.

An important thing to note is that because of a security restriction on the XMLHTTPRequest object, it
cannot access local files by using the file:// protocol, and trying to do so will result in an error message.
You have to be running this code on the web server for XMLHTTPRequest to work properly.

129

CHAPTER 5 * CREATING A MOBILE GAME

If you load this code via the web server URL, you should hear the audio file being played once the file
loads. Depending on your browser, you might need to use the MP3 file instead of the OGG file.
Now that you understand how the Web Audio API works, it’s time to integrate it into our game.

Integrating Web Audio

As you can imagine, modifying our game code to use Web Audio will take considerable effort and rewriting.
We will need to modify the loader to use XMLHTTPRequest, decode the buffers, and store them after loading.
We will also need to cache these requests so that the browser doesn’t fire multiple requests in case a file
is loaded multiple times. Each time we want to play an audio, we will need to load the appropriate buffer,
create a BufferSource node, and play it. Pausing or stopping music will also need additional code.

Luckily for us, we have a much simpler way to migrate our code to use Web Audio. We are going to use
a library called wAudio.js that I created exactly for this purpose. wAudio.js is a drop-in replacement for the
HTMLS5 Audio object, which transparently uses the Web Audio API behind the scenes.

By including this library in our code, we can use wAudio() everywhere that we used Audio() before, and
the game should work just like before, while using the methods of the Web Audio API.

To load wAudio.js, we need to first include the script in the head section of index.html as shown in
Listing 5-11.

Listing 5-11. Loading wAudio.js in the head Section of index.html

<head>
<meta http-equiv="Content-type" content="text/html; charset=utf-8">
<meta name="viewport" content="user-scalable=no, initial-scale=1, maximum-scale=1,
minimum-scale=1, width=device-width">
<title>Froot Wars</title>
<script src="js/Box2d.min.js" type="text/javascript"></script>
¢<script src="js/wAudio.js" type="text/javascript"s</scripts
<script src="js/game.js" type="text/javascript"></script>
<link rel="stylesheet" href="styles.css" type="text/css" media="screen">
</head>

Note that we need to load wAudio.js before we load our game. This will automatically create a wAudio
object as long as the browser supports Web Audio. Now we need to modify the loadSound() method of the

loader object to use wAudio if it is available, as shown in Listing 5-12.

Listing 5-12. Modifying loadSound() to Use wAudio.js
loadSound: function(url) {
this.loaded = false;
this.totalCount++;
game.showScreen("loadingscreen");

var audio = new (window.wAudio || Audio)();

audio.addEventlListener("canplaythrough", loader.itemLoaded, false);
audio.src = url + loader.soundFileExtn;

return audio;

1

130

CHAPTER 5 ' CREATING A MOBILE GAME

Asyou can see, we made a very simple change to either use wAudio or fall back to using Audio in case
wAudio is not present.

If you load the game on your mobile device now, you will notice that the game no longer gets stuck at
the loading screen, and you can start the game without any problems even on iOS devices.

However, for some reason the game still doesn’t play any sound on Safari. You will also find that if you
try to mute and unmute the audio using the toggle music button in our game, the sound will miraculously
start playing.

This odd behavior occurs because of another restriction in Safari, which is that audio playback needs to
be initiated by a user input event. Once the first sound has been initiated by a user-generated event (such as
a click or tap), audio starts playing normally.

The interesting thing about this restriction is that this first sound doesn’t even need to be audible;
we can play a sound through a gain filter set to a gain value of 0, and audio will still be restored. Since
initializing audio like this is such a common requirement, the wAudio.js library includes a method called
playMutedAudio(), which behind the scenes uses an oscillator node to play a short sound without any
volume. To use this method, we will first create a playGame () method inside the game object as shown in
Listing 5-13.

Listing 5-13. The playGame() Method Inside the game Object

// Called when the Play button is clicked
playGame: function() {

// Initialize audio for mobile Safari

if (window.wAudio) {
window.wAudio.playMutedSound();

}

game. showLevelScreen();

1

The playGame () method is fairly simple. It first checks for the existence of wAudio and then calls
wAudio.playMutedSound(). It then calls game. showLevelScreen() to display the level screen.

Next, we will call this method when the Play button in the start screen is clicked by modifying index.
html as shown in Listing 5-14.

Listing 5-14. Calling playGame() when the Play Button Is Clicked

<div id="gamestartscreen" class="gamelayer">

</div>

Now when we start the game and click Play, wAudio will play the muted sound so that Safari’s
requirement for playing audio is satisfied. If we now run the game, the audio should work perfectly, even on
iOS devices.

Thanks to the wAudio.js library, our migration to Web Audio was quick and painless. The latest
version of the wAudio.js library will always be available at its GitHub URL-https://github.com/
adityaravishankar/wAudio. js. This code is shared under an MIT license, so you can feel free to use it in
any of your projects. If you prefer, you can also reuse just portions of the code that you find useful.

One thing to remember about this library is that the XMLHTTPRequest restriction on accessing file://
URLs also applies to wAudio, since wAudio uses XMLHTTPRequest behind the scenes. If we want to use
wAudio in our game, we will need to access our game via a web server.

131

https://github.com/adityaravishankar/wAudio.js
https://github.com/adityaravishankar/wAudio.js

CHAPTER 5 * CREATING A MOBILE GAME

Now that our game works on mobile devices with audio, we will add a few finishing touches to our game
so it feels less like a web page and more like a native application.

Adding Some Finishing Touches

There are still a few things that we can do to make the game look and feel better. These include preventing
accidental scrolling include preventing accidental scrolling and removing the address bar by allowing web-
app mode.

Preventing Accidental Scrolling

You might have already noticed that even though our game has been scaled to exactly match the window
size, it is possible to accidentally scroll up or down by dragging your finger on the screen. Since we have no
need to scroll within our game, we can disable this default behavior by listening to the document object’s
touchmove event as shown in Listing 5-15.

Listing 5-15. Disabling the Default Mobile Scroll

// Initialize game once page has fully loaded
window.addEventListener("load", function() {
game.resize();
game.init();

};

window.addEventListener("resize", function() {
game.resize();
D;

document.addEventListener("touchmove”, function(ev) {
ev.preventDefault();
D;

All we do is add a listener for the touchmove event and it, call the event’s preventDefault() method
to prevent the browser’s scroll behavior. If you play the game now, it will no longer scroll and the game area
should stay in place.

The next problem we will need to tackle is the presence of the address bar at the top of the browser
window, so the game can be played full screen like a native app.

Allowing Full Screen

Mobile browsers in general do not allow hiding the address bar at the top of the browser. Even desktop
browsers that allow a full screen mode explicitly ask the user for permission before switching to full screen
and hiding the address bar. This is largely due to security concerns to prevent malicious sites from rendering
a fake address bar and spoofing other sites to try and trick the user into revealing sensitive information.

While there are a few scroll based hacks that sometimes work at temporarily hiding the navigation bar,
these are somewhat unreliable and not recommended.

However, both Android and iOS devices now support meta tags that allow us to specify that a particular
page is a web app designed to work in full screen mode. We can enable this by adding new meta tags into the
head section of index.html as shown in Listing 5-16.

132

CHAPTER 5 ' CREATING A MOBILE GAME

Listing 5-16. Adding meta Tags for Web App Mode

<head>
<meta http-equiv="Content-type" content="text/html; charset=utf-8">
<meta name="viewport" content="user-scalable=no, initial-scale=1, maximum-scale=1,
minimum-scale=1, width=device-width">
<meta name="apple-mobile-web-app-capable" content="yes"»>
<meta name="mobile-web-app-capable” content="yes"»
<title>Froot Wars</title>
<script src="js/Box2d.min.js" type="text/javascript"></script>
<script src="js/wAudio.js" type="text/javascript"></script>
<script src="js/game.js" type="text/javascript"></script>
<link rel="stylesheet" href="styles.css" type="text/css" media="screen">
</head>

We add two new meta tags, one for iOS and another for Android, to let the browsers know that our game
is web app capable.

Now this won'’t directly affect the browser experience. You need to open the game in the browser and
use the option to save the web page to your home screen. Once you do this, you will find an icon for the
game on your mobile device home screen, which you can click to start the game just like you would a typical
mobile phone app.

When you start the game from the home screen, it should now run in full screen mode without the
annoying address and status bars.

Now this isn’t a perfect solution. Unless the player actually saves the game on their home screen, they
will not have the ideal experience that we want to have.

An alternative that you might consider, so that you can distribute your HTML5 game as a native
application via the mobile application stores, is using hybrid mobile application frameworks such as Apache
Cordova.

Using Hybrid Mobile Application Frameworks

Apache Cordova is an open source mobile application framework, released by Adobe Systems. It enables
software programmers to build applications for mobile devices using HTML, CSS, and JavaScript instead of
relying on platform-specific APIs like those in Android, iOS, or Windows Phone.

In addition to wrapping the HTML code into a native application, Cordova also provides access to
native device features in JavaScript via a system of plug-ins, allowing programmers to use device features
such as the accelerometer and camera. The resulting applications are considered hybrid, meaning that they
are neither truly native mobile applications nor purely Web based. You can read more about Cordova at
https://cordova.apache.org.

Installing Cordova is as simple as running a single npm command:

npm install -g cordova

Cordova lets you develop applications for multiple devices in a single build process. You can create a
Cordova project and set it up using the following command:

cordova create frootwars
Once you run this command, Cordova will create a folder with some automatically generated content.

One of these folders is the www folder, which contains a sample web application, with the typical index.html,
JavaScript, and CSS files. You can use this template as a starting point to create a Cordova web application.

133

https://cordova.apache.org/

CHAPTER 5 * CREATING A MOBILE GAME

Now that you have a template, you can add support for the device platforms you want to build the game
for using the following commands:

cd frootwars

cordova platform add android
cordova platform add ios
cordova platform add browser

Cordova provides a platform called browser to allow you to test your application deployment in the
browser. It also allows you to build native applications for iOS, Android, Windows, Blackberry, and several
other platforms.

You can test the sample application on the browser platform just by running the following command:

cordova run browser

This should open the sample application inside a browser window. The HTML code for this application
is the same code you saw within the www folder. To convert your game to work for Cordova, you will need
to place your code into the www folder and modify it to use some of the recommended tags and Cordova
commands in the sample application.

You can continue testing your changes by running the browser platform. However, before you can
actually build the application for the other platforms, you will need to set up your development environment
for each platform. This might mean installing XCode (https://developer.apple.com/xcode/) for iOS
devices, Android Studio (https://developer.android.com/studio/) for Android devices, or Visual Studio
(https://www.visualstudio.com/) for Windows devices.

You can also install plug-ins for any device feature that you would like to access for your game, such
as in-app purchases to monetize your game, accelerometer and vibration to allow better interactivity, or
geolocation and camera to build the next Pokémon Go killer.

Unfortunately, teaching you to use all these features to build a game with Cordova is beyond the scope
of this chapter, since this subject matter could fill an entire book on its own.

Once you are comfortable with building web games in HTML5 and are ready to venture into the world
of hybrid applications, I would recommend that you read the Cordova documentation (https://cordova.
apache.org/docs/en/latest/) and explore further on your own.

Before we wrap up this chapter on mobile development, I'd like to cover one more thing: optimizing
your game assets for better performance on mobile devices.

Optimizing Game Assets for Mobile

When working on games for mobile devices, it is important to keep in mind the fact that mobile device users
might be accessing you game via a slow Internet connection. Anything we can do to make the game-loading
experience as painless as possible, by reducing the bandwidth usage or the loading and waiting time, will
make a significant difference to the user experience.

While there are many things that we can do to optimize the game experience on slow connections, the
most important things that we can do are

e Loading screens with progress updates: A loading screen lets players know that

the game is doing something in the background and gives them a way to track the
progress so they have a general idea of how long they will need to wait. If you make
players wait for a long period of time without letting them know what is happening
or how much longer they need to wait, they are likely to get frustrated and impatient.
In extreme cases users might just close the browser without even trying your game
because it took too long to load. Our game already implements a game loader with a
progress bar, which automatically shows up any time assets are being downloaded.

134

https://developer.apple.com/xcode/
https://developer.android.com/studio/
https://www.visualstudio.com/
https://cordova.apache.org/docs/en/latest/
https://cordova.apache.org/docs/en/latest/

CHAPTER 5 ' CREATING A MOBILE GAME

e Lazyloading of assets: If your game has 50 levels, but the player is only about to play
the first level, there is no point in making the player wait while the data for all 50
levels has been loaded. It makes sense to load the game data “lazily,” as and when it
is needed. Our game already intelligently manages this by loading common assets up
front and then loading level-specific assets only when a level is started. This way the
player never has to wait too long for something to happen.

e Reducing size of images: We briefly discussed using techniques like sprite sheets,
which reduce network load by minimizing server calls and reducing the total
amount of data transferred. In addition, you should ensure that the resolution and
size of your game images are not unnecessarily large, and should ideally be as close
to the actual resolution that your game needs. Finally, you should add processes like
PNG optimization and compression into your workflow and build processes so that
all assets are automatically compressed in your final game. We will look into ways of
doing this in later chapters.

e Reducing size of audio: Most of us are used to using high-quality audio with multiple
channels and high bitrates when we listen to music or watch movies. However,
mobile games don’t necessarily need so much audio detail. Using programs like
Audacity (www.audacityteam.org/), you can convert your game audio to mono
instead of stereo, and reduce the bitrate of the audio with almost no perceptible
difference in quality on the phone. As an example, the code folder contains a low-
bitrate version of the background music used in this game. Making these small
changes reduced the size of the OGG file from nearly 4 megabytes to 1 megabyte,
which can be a phenomenal difference for someone using a slow 2G connection and
paying for each megabyte.

e Compressing the code: Code minifiers such as html-minifier and node-minify take
your development code and convert it to an extremely compressed version with
shorter variable names and all comments and unnecessary spaces removed. For
HTML, it is even possible to compress linked asset files and place them inline. While
this version of the code is very hard for humans to read, it is significantly smaller
than the original and can be downloaded by the browser much faster. Again, this
is something you should ideally build into your workflow and build process so it is
automated. We will look at ways of doing this in later chapters.

Now these are some of the most important ways that you can improve the experience for mobile device
users. While it might not always be feasible to do all of these in every game, every little bit you can do will
make the experience much better for the players trying your game.

Summary

In this chapter we looked at the challenges involved in building games for mobile devices. We saw how a
desktop game can easily be converted into a mobile device game, by converting the game we created in the
previous chapters.

We started by making the game responsive so it automatically scales to fit devices with different sizes
and aspect ratios. We then modified the game input handling to use the Touch API. We also used the
wAudio.js library to integrate the Web Audio API for better sound support on mobile devices. We then made
the game behave like an app by disabling default scroll and adding web app tags. Finally, we explored the
idea of using hybrid application frameworks and looked at ways to optimize game data for a better mobile
experience.

135

http://www.audacityteam.org/

CHAPTER 5 * CREATING A MOBILE GAME

At this point, you should have a strong understanding of the complexity and the typical steps involved
when building a professional mobile device game. When you start developing your own games, even if they
are not physics games, you should be able to use this game that we have built as a decent starting template,
since it covers all the essentials that you will need—menus, asset loaders, level selection, canvas animation,
sound and music, mouse and touch input, and support for mobile devices.

Now with this solid foundation, we are ready to take on a much bigger challenge. In the next few
chapters we will be building a complete real-time strategy game with a single-player campaign as well as
multiplayer mode. So let’s keep going.

136

CHAPTER 6

Creating the RTS Game World -

Real-time strategy (RTS) games combine fast-paced tactical combat, resource management, and economy
building within a defined game world.

A typical RTS game consists of a map of a world with different units, buildings, and terrain, as well as
an interface to control and manipulate these elements. The player uses the interface to handle tasks such as
gathering resources, constructing buildings, and creating an army, and then manages the army to achieve a
set of goals defined for each level.

Although these games have an extensive history, the RTS genre was largely popularized by the
games released by Westwood Studios and Blizzard Entertainment in the 1990s. Westwood’s Dune IT and
Command & Conquer series are considered classics that helped define the genre. With its engaging story
line and addictive multiplayer mode, Blizzard’s StarCraft went on to elevate RTS gaming to an e-sport with
professional competitive tournaments held around the world.

HTML5 now makes it possible to bring this genre to the browser in a way that wasn’t possible earlier. In
fact, one of my better-known game programming-related achievements a few years ago was single-handedly
re-creating the original Command & Conquer entirely in HTML5. While generating a lot of buzz on the Web,
this project proved beyond a doubt that HTML5 was now ready for the next generation of games.

Over the next few chapters, we will use what you learned in previous chapters and build upon it to
create our own RTS game. We will define a game world with buildings, units, and an overarching story
line to create an engaging single-player campaign. We will then use HTML5 WebSockets to add real-time
multiplayer support to our game.

Most of the artwork for this game has been provided by Daniel Cook (www.lostgarden.com), who
originally designed this art for an unreleased RTS title called Hard Vacuum. We will be reusing the artwork
that he has graciously shared but will create our own game concept. Our game, Last Colony, will be about a
small band of survivors on a planet that has just been attacked. We will explore the story and gameplay in
more detail over the next few chapters.

While developing this game, we will keep the code as generic and customizable as possible so that you
can later reuse this code to build your own ideas. If you would like to follow along with the book, you can
find all the necessary starting assets, including the images and the audio, inside the assets folder of this
chapter’s code.

So, let’s get started.

Basic HTML Layout

Like the previous game we developed, Froot Wars, our RTS game will consist of several layers. The following
are the first few layers that we will define:

e Splash screen and main menu: Shown when the game loads and allows the player to
select campaign or multiplayer mode

e Loading screen: Shown whenever the game is loading assets

© Aditya Ravi Shankar 2017 137
A.R. Shankar, Pro HTML5 Games, DOI 10.1007/978-1-4842-2910-1_6

http://www.lostgarden.com/

CHAPTER 6 * CREATING THE RTS GAME WORLD

e Mission screen: Shown before a mission starts, with instructions for the mission

e Game interface screen: The main game screen that includes the map area and a
dashboard for controlling the game

We will define more screens as needed in later chapters. We will be organizing all of the artwork inside
an images folder. Unlike the previous game, we will break the JavaScript code into several files (such as
buildings.js, vehicles.js, levels.js, and common. js) inside the js folder so as to make the code easier
to maintain.

Creating the Splash Screen and Main Menu

We will start by creating an HTML file and adding the markup for our containers, as shown in Listing 6-1.

Listing 6-1. Basic HTML Skeleton with Layers Added (index.html)

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-type" content="text/html; charset=utf-8">

<meta name="viewport" content="user-scalable=no, initial-scale=1, maximum-scale=1,
minimum-scale=1, width=device-width">

<title>Last Colony</title>

<script src="js/common.js" type="text/javascript"></script>
<script src="js/game.js" type="text/javascript"></script>

<script src="js/mouse.js" type="text/javascript"></script>
<script src="js/singleplayer.js" type="text/javascript"></script>
<script src="js/levels.js" type="text/javascript"></script>

<link rel="stylesheet" href="styles.css" type="text/css">
</head>
<body>
<div id="wrapper">
<div id="gamecontainer">
<div id="gamestartscreen" class="gamelayer">
LAST
COLONY
Campaign
Multiplayer
</div>

<div id="loadingscreen" class="gamelayer">
<div id="loadingmessage"></div>
</div>
</div>
</div>
</body>
</html>

138

CHAPTER 6 © CREATING THE RTS GAME WORLD

The code first refers to the external JavaScript and CSS files we will be using. We will be creating and
implementing all these JavaScript files over the course of this game. Within a main wrapper div, we also
define a gamecontainer div that contains our first two game layers: gamestartscreen and loadingscreen.

The next thing we will do is define the initial style for the game container inside styles.css, as shown
in Listing 6-2.

Listing 6-2. Initial Style Sheet (styles.css) for Game Container and Layer

body {
background: #090009;

/* Disable scroll bars */
overflow: hidden;

/* Disable long touch hold select on mobile browsers */
-webkit-touch-callout: none !important;

}

#wrapper {
position: absolute;

/* Wrapper covers entire window height and width */
top: 0;

bottom: 0;

left: o;

right: o;

/* Prevent the ugly blue highlighting from accidental selection of text */
user-select: none;

}

#gamecontainer {
/* Start with a default width that we can change later */
width: 640px;
height: 480px;

/* Use a wider splash screen and center it within the container */
background: url("images/screens/splashscreen.png");
background-position: center;

background-repeat: no-repeat;

/* Center the game container relative to outer wrapper */
position: absolute;

left: 50%;

top: 50%;

transform: translate(-50%, -50%);

transform-origin: center center;

139

CHAPTER 6 * CREATING THE RTS GAME WORLD

.gamelayer {
width: 100%;
height: 100%;
position: absolute;
display: none;

In this code, we first start with setting the body background color and disabling the scrollbar and long
press context menus for mobile devices.

Next, we center the game container within the wrapper div and assign a background splash screen.
We use a wide splash screen image so our game can dynamically adjust to different aspect ratios later, just
like we did in our previous game, Froot Wars. For now, however, we assign the container an initial size of
640px by 480px.

Finally, we set the gamelayer class to position all the game layers on top of each other, assign them the
same dimensions as the container, and hide them by default.

When we load index.html in the browser, we should now see our new splash screen, as shown in
Figure 6-1.

Figure 6-1. The initial game splash screen

Now that the splash screen is in place, we can implement the main menu screen and the game loading
screen.

We will start by setting up the asset loader using the exact same code as we did in our previous game.
We will place this code inside a separate file called common. js, as shown in Listing 6-3.

140

CHAPTER 6 © CREATING THE RTS GAME WORLD

Listing 6-3. Setting Up the Asset Loader (common.js)

var loader = {
loaded: true,
loadedCount: 0, // Assets that have been loaded so far
totalCount: 0, // Total number of assets that need loading

init: function() {
// Check for sound support
var mp3Support, oggSupport;
var audio = document.createElement("audio");

if (audio.canPlayType) {
// Currently canPlayType() returns:

, 'maybe", or "probably"

mp3Support = "" l== audio.canPlayType("audio/mpeg");
oggSupport = "" l== audio.canPlayType("audio/ogg; codecs=\"vorbis\"");
} else {

// The audio tag is not supported
mp3Support = false;
oggSupport = false;

// Check for ogg, then mp3, and finally set soundFileExtn to undefined
loader.soundFileExtn = oggSupport ? ".ogg" : mp3Support ? ".mp3" : undefined;
1
loadImage: function(url) {
this.loaded = false;
this.totalCount++;
game.showScreen("loadingscreen");

var image = new Image();

image.addEventListener("load", loader.itemLoaded, false);
image.src = url;

return image;

1

soundFileExtn: ".ogg",

loadSound: function(url) {
this.loaded = false;
this.totalCount++;

game. showScreen("loadingscreen");

var audio = new Audio();

141

CHAPTER 6 * CREATING THE RTS GAME WORLD

audio.addEventListener("canplaythrough", loader.itemLoaded, false);
audio.src = url + loader.soundFileExtn;

return audio;

b

itemLoaded: function(ev) {
// Stop listening for event type (load or canplaythrough) for this item now that it
has been loaded
ev.target.removeEventListener(ev.type, loader.itemLoaded, false);

loader.loadedCount++;

document.getElementById("loadingmessage").innerHTML = "Loaded " + loader.loadedCount +
" of " + loader.totalCount;

if (loader.loadedCount === loader.totalCount) {
// Loader has loaded completely
// Reset and clear the loader
loader.loaded = true;
loader.loadedCount = 0;
loader.totalCount = 0;

// Hide the loading screen
game.hideScreen("loadingscreen");

//and call the loader.onload method if it exists
if (loader.onload) {

loader.onload();

loader.onload = undefined;

};
Next, we will define our game object inside game. js, as shown in Listing 6-4.

Listing 6-4. Defining the game Object (game.js)

var game = {

// Start initializing objects, preloading assets, and display start screen
init: function() {

// Initialize game objects

loader.init();

// Display the main game menu
game.hideScreens();
game.showScreen("gamestartscreen");

1

142

CHAPTER 6 © CREATING THE RTS GAME WORLD

hideScreens: function() {
var screens = document.getElementsByClassName("gamelayer");

// Iterate through all the game layers and set their display to none
for (let i = screens.length - 1; i >= 0; i--) {
let screen = screens[i];

screen.style.display = "none";

1

hideScreen: function(id) {
var screen = document.getElementById(id);

screen.style.display = "none";

b

showScreen: function(id) {
var screen = document.getElementById(id);

screen.style.display = "block";

1

scale: 1,
resize: function() {

var maxWidth = window.innerWidth;
var maxHeight = window.innerHeight;

var scale = Math.min(maxWidth / 640, maxHeight / 480);
var gameContainer = document.getElementById("gamecontainer");

gameContainer.style.transform = "translate(-50%, -50%) " + "scale(" + scale + ")";

game.scale = scale;

// What is the maximum width we can set based on the current scale
// Clamp the value between 640 and 1024
var width = Math.max(640, Math.min(1024, maxWidth / scale));

// Apply this new width to game container and game canvas
gameContainer.style.width = width + "px";
b
};

/* Set up initial window event listeners */

// Initialize and resize the game once page has fully loaded
window.addEventListener("load", function() {

game.resize();

game.init();
}, false);

143

CHAPTER 6 * CREATING THE RTS GAME WORLD

// Resize the game any time the window is resized

window.addEventListener("resize", function() {
game.resize();

1;

In this code, we create a game object with an init() method that first initializes our asset loader and
then uses the hideScreens () and showScreen() methods to display the game start screen.

We also define a resize() method just like we did in our previous game. The method calculates the
scale and maximum possible width for our game and sets the gamecontainer style accordingly.

Finally, we add event listeners to the window object to call these methods. We call game.resize() and
game.init() once the window hasloaded completely. We also call game.resize() whenever the window is
resized.

Next, we need to append the CSS for the game starting screen and loading screen in styles.css, as
shown in Listing 6-5.

Listing 6-5. Style for the Game Starting Screen and Loading Screen (styles.css)

/* Game Starting Menu Screen */

.game-title {
position: absolute;

top: 5%;

right: 5%;
text-align: right;
width: 100%;

font-family: "Courier New", Courier, monospace;
font-size: 90px;
line-height: 80px;

color: white;
text-shadow: -2px 0 purple, 0 2px purple, 2px O purple, 0 -2px purple;

}

.game-option {
position: relative;
top: 65%;
left: 10%;
display: block;
font-family: "Courier New", Courier, monospace;
font-size: 48px;
color: white;
text-shadow: -2px 0 purple, 0 2px purple, 2px O purple, 0 -2px purple;

cursor: pointer;

144

CHAPTER 6 © CREATING THE RTS GAME WORLD

.game-option:hover {
color: yellow;
}

/* Loading Screen */
#loadingscreen {

background: rgba(100, 100, 100, 0.7);
}

#loadingmessage {
position: relative;
top: 400px;
text-align: center;

height: 48px;

color: white;

background: url("images/loader.gif") no-repeat center;
font: 12px Arial;

When we open the game in the browser, we should see the starting screen with the main menu, as
shown in Figure 6-2.

LAST
COLONY

-

’J‘f}" ',j " ;’«.
'

I

Campaagn
u%tlplayer

Figure 6-2. The starting screen with the main menu

You will notice that the game automatically scales and widens to fit the available screen area. The extra
hidden portion of the splash screen image also automatically becomes visible as necessary.

145

CHAPTER 6 * CREATING THE RTS GAME WORLD

The menu currently offers options for Campaign, which is our story-based single-player mode, and
Multiplayer, which is our player-versus-player mode. You may have noticed in Listing 6-1 that the onclick
handlers for these two options call the singleplayer.start() and multiplayer.start() methods,
respectively. Right now, clicking the Campaign option won'’t do anything since we haven’t yet implemented
the singleplayer.start() method to start the single-player levels.

Before we can do so, however, we need to create our first single-player level.

Creating Our First Level

There are many viable approaches to defining maps or levels for our game.
One approach is to store all the information about the map terrain as metadata and then assemble
all the necessary images for the terrain on the browser at runtime to draw the map. This approach, while
slightly cumbersome, allows the use of sprite sheets for the map terrain, reducing the size of the map.
Another approach, which is slightly simpler, is to store the basic map as a large image with the terrain drawn
out using our own level-designing tool. We then need to store only the location of the map image along with
metadata such as game entities and mission objectives. This is the approach that we will be using for our game.
Map images can be designed very quickly by using general-purpose tile map-editing software such
as Tiled (www.mapeditor.org). Tiled is an excellent free tool that is available for several operating systems
including Windows, Mac, and Linux. Once you start the application, you can load the sprite sheet for the
terrain as a tile set and then use it to draw the map as if you were using a painting application (see Figure 6-3).

Properties. _ BE jvemx X B Lo B X
Value Opacity.
\[«| B Obstruction Layer
Mame Ground Layer 13 Ground Layer
Visible v
Opacity 1.00

Horizonial Oftset | 0.00
Viertical Offsal 0.00

=7
51,32 [17]

Figure 6-3. Drawing a map using Tiled

Note that we can use Tiled’s layer feature to design the level in two layers. All the game terrain and
obstructions are stored in a separate Obstruction layer. When the level JSON file is generated, we can use the
metadata to identify areas of the map that are impassable or obstructed.

Once you draw the map, you can export it to several different file formats such as PNG images or JSON
metadata.

146

http://www.mapeditor.org/

CHAPTER 6 © CREATING THE RTS GAME WORLD

You won’t need to use this tool to follow along with the book since the maps we need for our game have
already been generated. However, if you are considering developing your own game, I strongly recommend
exploring Tiled’s features.

All the files that you need, the exported level images, the JSON metadata, the master sprite sheet, and
the Tiled project file are inside the level folder of this chapter’s code. The exported images include a debug
version of the map with all the grid lines between tiles drawn in.

The level folder also contains a convert-levels. js file, which is a Node.js script that takes the
exported level. json file and creates a level-obstructed-terrain. json file for use within our game.

Note The Tiled editor’s JSON format contains references to the sprite sheet and offsets for all the tiles it
uses. This means you can also use the JSON files to create maps that are assembled at runtime (instead of the
preassembled ones we are creating).

Once we have our first map image designed, we will need to create the basic metadata describing the level.
We will do this inside levels. js, as shown in Listing 6-6.

Listing 6-6. Defining the Basic Level Metadata (levels.js)

/* Details of the maps used by the levels */
var maps = {
"plains”: {
"mapImage": "plains-debug.png",

/* Terrain Data - Auto Generated By level/convert-levels.js */

"mapGridwidth": 60,

"mapGridHeight": 4o,

"mapObstructedTerrain”: [[o, 0], [1, 0], [2, 0], [26, 0], [27, 0], /* Extremely huge
array snipped for brevity */ [58, 39], [59, 3911,

};

/* The actual levels played in the game */
var levels = {
"singleplayer": [
{

"name": "Introduction”,
"briefing": "In this level you will learn how to pan across the map.\n\nDon't
worry! We will be implementing more features soon.",

/* Map Details */
"mapName": "plains",
"startX": 4,
"startY": 4,
}
1,

"multiplayer": [

]
};

147

CHAPTER 6 * CREATING THE RTS GAME WORLD

We first define a maps object that contains details of the one map we have generated, named “plains”
This includes the map image, and some terrain data that has been generated by convert-levels.js—the
width and height of the map, as well as an extremely huge mapObstructedTerrain array, which contains the
x and y coordinates of every grid square in the map that is impassable or obstructed.

I have snipped the array in Listing 6-6 because there is absolutely no point in showing you the entire
array with several hundred numbers in it. You will find the complete mapObstructedTerrain array inside
the level-obstructed-terrain. jsonfile, as well as the finished game code. When you make your own
maps using Tiled, you can use the convert-1level. js script to generate the data for them.

The map image is broken down into a grid of squares 20 pixels wide by 20 pixels high (based on the
size of the tiles we are using). For now, we are using a “debug” version of the map that has the grid drawn
on top of the map. This will make it easier for us to position elements inside the level while we are building
the game.

Next, we create a levels object that will contain all the levels within our game, with arrays for single-
player and multiplayer.

The singleplayer array currently contains details for only one level. This array will eventually contain
all our single-player campaign levels in chronological order. When the single-player campaign is started,
the singleplayer object will load the first level in this array and then proceed down the list as the player
completes each level.

The details that we store for the level include the level name and a mission briefing that we will display
before we start the level.

We then refer to the plains map that we have defined earlier. By using this system of separating maps
and levels, we can have multiple levels share the same map as needed, depending on the game’s story line.

The starting map coordinates (startX and startY) let us decide where to position the screen on the
map when we start the level using the grid coordinates.

Now that we have a simple map defined, we will set up the singleplayer object to display the mission
briefing screen.

Loading the Mission Briefing Screen

The first thing we will do is add the HTML code for the mission briefing screen into the gamecontainer div
within our HTML file. The gamecontainer div will now look like Listing 6-7.

Listing 6-7. Adding the Mission Briefing Screen (index.html)

<div id="gamecontainer">
<div id="gamestartscreen" class="gamelayer">
LAST
COLONY
Campaign
Multiplayer
</div>

<div id="missionbriefingscreen" class="gamelayer"»
<img src="images/screens/interface-left.png" class="left-panel" draggable="false"»
<img src="images/screens/interface-right-briefing.png" class="right-panel"
draggable="false">
<input type="button" id="entermission" onclick = "singleplayer.play();">
<input type="button" id="exitmission" onclick = "singleplayer.exit();"»>
<div id="missionbriefing"»</div>

</div»

148

CHAPTER 6 © CREATING THE RTS GAME WORLD

<div id="loadingscreen" class="gamelayer">
<div id="loadingmessage"></div>
</div>
</div>

Themissionscreen div contains two buttons; they are for entering the mission screen and exiting the
mission screen. It also contains amissionbriefing div that we will use to display the briefing message.
Additionally it contains two images for the left and right side of the interface background area. We set the
draggable attribute of these images to false to prevent them from being dragged around if the player
accidentally clicks one of them.

Now that we have the HTML markup in place, we need to add the CSS styles for the mission screen into
styles.css, as shown in Listing 6-8.

Listing 6-8. CSS Style for Mission Screen

/* Mission Briefing Screen */

#missionbriefingscreen {
background: url("images/screens/interface-middle.png");
}

input[type="button"] {
border-width: 0;
outline: none;

background-color: transparent;
background-repeat: no-repeat;
background-image: url("images/buttons.png");

cursor: pointer;

}

.left-panel {
left: o;
top: 0;
position: absolute;

}

.right-panel {
right: 0;
top: 0;
position: absolute;

}

#entermission {
height: 52px;
width: 188px;

position: absolute;
top: 82px;
left: 3px;

background-position: -4px -4px;

149

CHAPTER 6 * CREATING THE RTS GAME WORLD

#entermission:disabled, #entermission:active {
background-position: -196px -4px;
}

#exitmission {
height: 52px;
width: 72px;

position: absolute;
top: 82px;
right: 164px;

background-position: -4px -64px;
}

#exitmission:disabled, #exitmission:active {
background-position: -84px -64px;
}

#missionbriefing {
position: absolute;

top: 170px;
left: 40px;
right: 220px;
height: 270px;

text-align: justify;

color: rgh(130, 150, 162);
text-shadow: -1px 1px black;

font-size: 16px;
font-family: "Courier New", Courier, monospace;

We define a new background for the mission briefing screen that fits into the center, behind the left and
right images defined in the HTML. This center background automatically repeats itself to fit all available
space. This way, the briefing screen can automatically adjust for different aspect ratios by keeping the left
and right side of the interface the same size and expanding the center area as needed to adjust for different
aspect ratios.

We then position the button and div elements to fit on top of the background. We keep different
images for the enabled and disabled states of the buttons but store all of these sprites in a single sprite-sheet
image file (buttons.png). Note that we specify left and right positions so that the buttons and briefing area
automatically position and scale appropriately when the game container width changes.

Now that the mission briefing layer is in place, we will implement the singleplayer object inside
singleplayer.js, as shown in Listing 6-9.

150

CHAPTER 6 © CREATING THE RTS GAME WORLD

Listing 6-9. Implementing the Basic singleplayer Object (singleplayer.js)

var singleplayer = {

// Begin single-player campaign
start: function() {

b

// Hide the starting menu screen
game.hideScreens();

// Begin with the first level
singleplayer.currentlevel = 0;

// Start initializing the level
singleplayer.initLevel();

currentlevel: 0,
initLevel: function() {

1

game.type = "singleplayer";
game.team = "blue";

// Don't allow player to enter mission until all assets for the level are loaded

var enterMissionButton = document.getElementById("entermission");
enterMissionButton.disabled = true;

// Load all the items for the level
var level = levels.singleplayer[singleplayer.currentlLevel];

game.loadLevelData(level);

// Enable the Enter Mission button once all assets are loaded
loader.onload = function() {
enterMissionButton.disabled = false;

};

// Update the mission briefing text and show briefing screen
this.showMissionBriefing(level.briefing);

showMissionBriefing: function(briefing) {

b

var missionBriefingText = document.getElementById("missionbriefing");

// Replace \n in briefing text with two
 to create next paragraph
missionBriefingText.innerHTML = briefing.replace(/\n/g, "

");

// Display the mission briefing screen
game.showScreen("missionbriefingscreen");

151

CHAPTER 6 * CREATING THE RTS GAME WORLD

exit: function() {
// Display the main game menu
game.hideScreens();
game.showScreen("gamestartscreen");

b
};

We define a singleplayer object with four methods: start(), initLevel(), showMissionBriefing(),
and exit().

The start() method first hides all game layers and sets singleplayer.currentLevel to 0, which refers
to the first level in the maps . singleplayer array that we defined earlier. Finally, it calls the singleplayer.
initLevel() method that we will call every time we want to load a level.

The initLevel() method first sets the game.type and game.team variables to singleplayer and
blue, respectively. We will use these values later once the game starts running. It then temporarily disables
the Enter Mission button on the screen and starts loading the level assets. Once the assets are loaded,
the Enter Mission button is enabled so that the player can click it and enter the game. Finally, it calls the
showMissionBriefing() method, which puts the level briefing inside the missionbriefing divand
displays the missionbriefingscreen div.

The exit() method hides all the game layers and takes us back to the main menu.

Note We replace carriage returns with
 tags so that they show up in the HTML. This way, we can
easily break out the mission briefing into multiple paragraphs if we want.

Next we will define the loadLevelData() method inside the game object as shown in Listing 6-10.

Listing 6-10. Loading the Level (game.js)

loadLevelData: function(level) {
game.currentlevel = level;
game.currentMap = maps[level.mapName];

// Load all the assets for the level starting with the map image
game.currentMapImage = loader.loadImage("images/maps/" + maps[level.mapName].mapImage);

b

For now, we just store the level and map objects and load the current level’s map image. This method
will eventually load all the assets for a given level.

When we load the game in the browser and click the Campaign option, we should see the mission
briefing screen for the first level, as shown in Figure 6-4.

152

CHAPTER 6 © CREATING THE RTS GAME WORLD

Figure 6-4. The mission briefing screen for our first level

The advantage of displaying the briefing screen while loading the assets in the background is that
players can spend their time reading the mission briefing while waiting for all the assets to load. You will
notice that the screen automatically adjusts to different aspect ratios and screen sizes by expanding the
center region while keeping the left and right sides the same.

Clicking the Exit button should take us back to the main menu. Once the level data has loaded
completely, the enter mission button will get enabled. We still can’t enter the mission until we implement
the actual game interface and the game animation and drawing loops, which is what we will be doing next.

Implementing the Game Interface

The first thing we will do is add the HTML markup for the game interface screen into the gamecontainer div
in our HTML file. The gamecontainer div will now look like Listing 6-11.

Listing 6-11. Adding the Game Interface Layer (index.html)

<div id="gamecontainer">
<div id="gamestartscreen" class="gamelayer">
LAST
COLONY
Campaign
Multiplayer
</div>

<div id="missionbriefingscreen" class="gamelayer">

<img src="images/screens/interface-right-briefing.png" class="right-panel"
draggable="false">
<input type="button" id="entermission" onclick = "singleplayer.play();">
<input type="button" id="exitmission" onclick = "singleplayer.exit();">
<div id="missionbriefing"></div>

</div>

153

CHAPTER 6 * CREATING THE RTS GAME WORLD

<div id="gameinterfacescreen" class="gamelayer"»

<img src="images/screens/interface-right-game.png" class="right-panel”
draggable="false"»
<div id="gamemessages"»</div>
<div id="callerpicture"»></divy
<div id="cash"></div>
<div id="sidebarbuttons"s
</div>
<canvas id="gamebackgroundcanvas"»</canvas»
<canvas id="gameforegroundcanvas"»</canvas»
</div>

<div id="loadingscreen" class="gamelayer">
<div id="loadingmessage"></div>
</div>
</div>

Our game interface layer consists of several different areas within it:

e Game area: This is where the player can see the map and interact with the buildings,
units, and other entities within the game. This is implemented using two canvas
elements: gamebackgroundcanvas for the map and gameforegroundcanvas for the
entities inside the level (such as buildings and units).

e Game messages: This is where the player can see system notifications or story-driven
messages.

e Caller picture: This is where the player will see profile pictures of the person sending
story-driven messages.

e Cash: This is where players will see their cash reserves.

e Sidebar buttons: This is where players will see buttons they can use for creating units
and buildings within the game.

We also use left and right background images just as we did in the mission briefing screen.
Now that the HTML is in place, we will add the CSS for the game interface screen to styles.css, as
shown in Listing 6-12.

Listing 6-12. CSS for the Game Interface Screen
/* Game Interface Screen */
#igameinterfacescreen {

background: url("images/screens/interface-middle.png");
}

#gameinterfacescreen #gamemessages {
position: absolute;
padding: 5px;

top: 4px;
left: 5px;

154

CHAPTER 6 © CREATING THE RTS GAME WORLD

right: 168px;
height: 60px;

color: rgh(130, 150, 162);

overflow: hidden;
font-size: 13px;
font-family: "Courier New", Courier, monospace;

}

#gamemessages span {
color: white;
}

#callerpicture {
position: absolute;

right: 20px;
top: 155px;

width: 114px;
height: 72px;

overflow: hidden;

}

#cash {
width: 120px;
height: 22px;
position: absolute;
right: 20px;
top: 241px;

color: rgh(130, 150, 162);
overflow: hidden;
font-size: 14px;
font-family: "Courier New", Courier, monospace;
text-align: right;
}

f#igameinterfacescreen canvas {
position: absolute;
top: 79px;
left: o;

We start by defining a background for the center of the gameinterfacescreen div, just as we did for the
gamebriefingscreen div, and then position the various other elements at the appropriate locations within
the interface area. Both game canvas elements are positioned at the same location, with foregroundcanvas

on top of backgroundcanvas.
Next we will modify the init() method of the game object to initialize the canvas elements when the
game is initialized, as shown in Listing 6-13.

155

CHAPTER 6 * CREATING THE RTS GAME WORLD

Listing 6-13. Initializing the Canvas Elements (game.js)

// Start initializing objects, preloading assets, and display start screen
init: function() {

// Initialize objects

loader.init();

// Initialize and store contexts for both the canvases
game.initCanvases();

// Display the main game menu
game.hideScreens();
game.showScreen("gamestartscreen");

b

canvasWidth: 480,
canvasHeight: 400,

initCanvases: function() {
game.backgroundCanvas = document.getElementById("gamebackgroundcanvas™);
game.backgroundContext = game.backgroundCanvas.getContext("2d");

game.foregroundCanvas = document.getElementById("gameforegroundcanvas");
game.foregroundContext = game.foregroundCanvas.getContext("2d");

game. foregroundCanvas .width
game.backgroundCanvas.width

= game.canvashidth;
= game.canvasWidth;
game.foregroundCanvas.height
game.backgroundCanvas.height

game.canvasHeight;
game.canvasHeight;

}s

We add a call to the initCanvases() method, which stores the canvas and context objects and sets
their initial width and height.

We also need to handle resizing the canvas elements whenever the window size changes. We will do this
by modifying the game.resize() method as shown in Listing 6-14.

Listing 6-14. Resizing the Canvas Elements (game.js)

resize: function() {

var maxWidth = window.innerWidth;
var maxHeight = window.innerHeight;

var scale = Math.min(maxWidth / 640, maxHeight / 480);
var gameContainer = document.getElementById("gamecontainer");
gameContainer.style.transform = "translate(-50%, -50%) " + "scale(" + scale + ")";

game.scale = scale;

156

CHAPTER 6 © CREATING THE RTS GAME WORLD

// What is the maximum width we can set based on the current scale
// Clamp the value between 640 and 1024
var width = Math.max(640, Math.min(1024, maxWidth / scale));

// Apply this new width to game container and game canvas
gameContainer.style.width = width + "px";

// Subtract 160px for the sidebar
var canvasWidth = width - 160;

// Set a flag in case the canvas was resized

if (game.canvasWidth !'== canvasWidth) {
game.canvasiidth = canvasWidth;
game.canvasResized = true;

b

We calculate the new width for the canvas based on the container width that we calculated earlier. If the
value has changed, we also set a canvasResized flag to true. We will use this flag inside our drawing loop to
decide whether we need to redraw parts of the game.

Now we will implement animation and drawing loops, as well as a game.start() method in our game,
as shown in Listing 6-15.

Listing 6-15. Adding Animation and Drawing Loops and Starting the Game(game.js)

start: function() {
// Display the game interface
game.hideScreens();
game.showScreen("gameinterfacescreen");

game.running = true;
game.refreshBackground = true;
game.canvasResized = true;

game.drawingLoop();

b

// A control loop that runs at a fixed period of time
animationTimeout: 100, // 100 milliseconds or 10 times a second

animationLoop: function() {

b

// The map is broken into square tiles of this size (20 pixels x 20 pixels)
gridSize: 20,

// X & Y panning offsets for the map

offsetX: o,

offsetY: o,

157

CHAPTER 6 * CREATING THE RTS GAME WORLD

drawingLoop: function() {
// Draw the background whenever necessary
game.drawBackground();

// Call the drawing loop for the next frame using request animation frame
if (game.running) {

requestAnimationFrame(game.drawingloop);
}

1

drawBackground: function() {
// Since drawing the background map is a fairly large operation,
// we only redraw the background if it changes (due to panning or resizing)
if (game.refreshBackground || game.canvasResized) {
if (game.canvasResized) {
game.backgroundCanvas.width = game.canvasWidth;
game.foregroundCanvas.width = game.canvasWidth;

// Ensure the resizing doesn't cause the map to pan out of bounds
if (game.offsetX + game.canvasWidth > game.currentMapImage.width) {
game.offsetX = game.currentMapImage.width - game.canvasWidth;

}

if (game.offsetY + game.canvasHeight > game.currentMapImage.height) {
game.offsetY = game.currentMapImage.height - game.canvasHeight;
}

game.canvasResized = false;

}

game.backgroundContext.drawImage(game.currentMapImage, game.offsetX, game.offsetY,
game.canvashWidth, game.canvasHeight, 0, 0, game.canvasWidth, game.canvasHeight);
game.refreshBackground = false;
}
1

We define a start() method that hides other layers and displays the game interface screen. It then
sets the game.running, game.backgroundChanged, and game.canvasResized variables to true for later use.
Finally, we call the drawinglLoop() method for the first time.

We also define two different methods called animationLoop() and drawinglLoop(). The animationLoop()
method will handle all control-related and animation-related logic and needs to be run at a fixed interval
(defined in animationTimeout). An animation timeout of 100 milliseconds is usually sufficient for a fairly
smooth game. For now the animationLoop() method is empty. The drawinglLoop() method handles the
actual drawing of all the game elements onto the two game canvas objects. The method is called using
requestAnimationFrame() and will run as many times a second as the browser allows.

We start by calling the game . drawBackground() method, which will draw the map on the background
canvas whenever necessary.

We then call the drawingLoop() method again using requestAnimationFrame() if the game is still
running. This way, once the drawingLoop () method has been called once, it will keep running and drawing
the game until game.running becomes false.

158

CHAPTER 6 © CREATING THE RTS GAME WORLD

In the drawBackground() method, the first thing that we do is check the canvasResized and
refreshBackground flags to determine whether the background needs to be redrawn.

If the canvas was resized, we also check and adjust the panning offsets to ensure that the screen doesn’t
pan outside the map bounds. We then draw the map image (stored in currentMapImage when the map was
loaded) using the panning offsets (offsetX, offsetY) and the canvas dimensions.

Finally, we reset both the flags to false. We use this optimization so that we don’t need to redraw the
entire background after each refresh, and only do so when something has actually changed.

The reason we break out the code into two different timer loops is because the animation code will
contain logic such as pathfinding, processing commands, and changing the animation states of sprites,
which will not need to be executed as often as the drawing code.

The animation code will also control the actual movement of units. By keeping this code independent
of the drawing code, we ensure that units will move the same amount after each animation cycle. This will
become very important when we handle multiplayer mode and need the game state to be synchronized
across different machines. If we aren’t careful, slight calculation differences between browsers and machines
can cause unexpected results such as a bullet hitting an enemy unit in one browser but missing the enemy in
the other browser.

Now that we have these loops in place, we will finally implement the singleplayer.play() method
inside singleplayer.js, as shown in Listing 6-16.

Listing 6-16. The singleplayer.play() Method (singleplayer.js)

play: function() {
// Run the animation loop once
game.animationLoop();

// Start the animation loop interval
game.animationInterval = setInterval(game.animationLoop, game.animationTimeout);

game.start();
b

This method is fairly simple. It calls the game.animationLoop () method for the first time and then uses
the setInterval() method to call the method every 100 milliseconds (as set in game.animationTimeout).
Finally, it calls the game. start() method that we defined earlier. The game.animationLoop() method is
currently empty, but we will start using it when we add entities to our game in the next chapter.

If we run the game code we have so far, we should be able to click the Enter Mission button at the
mission briefing screen and then see the game interface screen with the map loaded, as shown in Figure 6-5.

159

CHAPTER 6 * CREATING THE RTS GAME WORLD

Figure 6-5. The game interface screen with the first map loaded

You can even resize the browser window and see that the game automatically shows more of the map as
the window gets wider.

One thing you might notice is that the game starts off at the top-left corner of the map. To use the initial
mabp offset settings that we provided in levels. js, we will need to load the offset values when we start the
level. We will do this by modifying the initLevel () method in singleplayer.js, as shown in Listing 6-17.

Listing 6-17. Setting the Map Offset Inside initLevel() (singleplayer.js)

initLevel: function() {
game.type = "singleplayer";
game.team = "blue";

// Don't allow player to enter mission until all assets for the level are loaded
var enterMissionButton = document.getElementById("entermission");

enterMissionButton.disabled = true;

// Load all the items for the level
var level = levels.singleplayer[singleplayer.currentlevel];

game.loadLevelData(level);

// Set player starting location
game.offsetX = level.startX * game.gridSize;
game.offsetY = level.startY * game.gridSize;
// Enable the Enter Mission button once all assets are loaded
loader.onload = function() {

enterMissionButton.disabled = false;
};

160

CHAPTER 6 © CREATING THE RTS GAME WORLD

// Update the mission briefing text and show briefing screen
this.showMissionBriefing(level.briefing);

1

We added just two new lines to set game.offsetX and game.offsetY based on level.startX and
level.startY. This time when we load the map, it loads at the offset we defined in the map.
Now that we have finished loading the map, we will implement panning around the map using the mouse.

Implementing Map Panning

The first thing we will do is set up mouse input by creating a mouse object inside mouse. js (see Listing 6-18).

Listing 6-18. Setting Up the mouse Object

var mouse = {
init: function() {
// Listen for mouse events on the game foreground canvas
let canvas = document.getElementById("gameforegroundcanvas");

canvas.addEventListener("mousemove", mouse.mousemoveha