
Pro Java 9 Games
Development

Leveraging the JavaFX APIs
—
Wallace Jackson

www.ebook3000.com

http://www.ebook3000.org

Pro Java 9 Games
Development

Leveraging the JavaFX APIs

Wallace Jackson

Pro Java 9 Games Development: Leveraging the JavaFX APIs

Wallace Jackson
Lompoc, California, USA

ISBN-13 (pbk): 978-1-4842-0974-5 ISBN-13 (electronic): 978-1-4842-0973-8
https://doi.org/10.1007/978-1-4842-0973-8

Library of Congress Control Number: 2017959341

Copyright © 2017 by Wallace Jackson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Jeff Friesen
Coordinating Editor: Mark Powers
Copy Editor: Kim Wimpsett

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web
page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484209745. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

www.ebook3000.com

https://doi.org/10.1007/978-1-4842-0973-8
www.freepik.com
mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484209745
http://www.apress.com/source-code
http://www.ebook3000.org

This Pro Java 9 Games Development book is dedicated to everyone in the open
source community who is working diligently to make professional new media application

development software, operating systems, and content development tools, freely available for all
of us game application developers to utilize to achieve our iTV Set creative dreams and financial

goals. Last but certainly not least, I dedicate this book to my father William Parker Jackson,
my family, my life-long friends, and all of my ranching neighbors, for their constant help,

assistance, and those starry late-night Red Oak BBQ parties.

v

Contents

About the Author ��xix

About the Technical Reviewer ��xxi

Acknowledgments ��xxiii

Introduction ���xxv

 ■ Chapter 1: The Different Faces of Java: Create a Java 9 Development
Workstation ��� 1

Java Dichotomy: Versions Used in Various Platforms ��� 2

Java Development Workstation: Required Hardware ��� 3

Prepare a Workstation for Java 9 Game Development ��� 4

Downloading and Installing the Oracle Java 9 JDK �� 6

Downloading and Installing the Oracle Java 8 JDK �� 9

Installing the Oracle NetBeans 9�0 (Development) IDE ��� 12

Installing the Apache NetBeans 9 (Development) IDE �� 14

Installing New Media Content Production Software ��� 17

Downloading and Installing InkScape for SVG Digital Illustration ��� 17

Downloading and Installing GIMP for Digital Image Compositing ��� 18

Downloading and Installing Audacity for Digital Audio Editing ��� 19

Downloading and Installing DaVinci Resolve 14 for Digital Video ��� 20

Downloading and Installing Blackmagic Fusion for Visual Effects ��� 21

Download and Install Blender for 3D Modeling and Animation �� 22

Download and Install Terragen for 3D Terrain or World Creation �� 23

Downloading and Install Daz Studio Pro for Character Animation �� 24

www.ebook3000.com

http://www.ebook3000.org

■ Contents

vi

Other Open Source New Media Software Packages �� 25

Organizing Quick Launch Icons in Your Taskbar Area ��� 28

Summary �� 28

 ■ Chapter 2: An Introduction to Content Creation: 2D New Media Asset
Fundamentals �� 29

Game Design Assets: New Media Content Concepts �� 30

Digital Imaging Concepts: Resolution, Color Depth, Alpha, Layers ��������������������������������� 31

Digital Image Resolution and Aspect Ratio: Defining Your Image Size and Shape ������������������������������� 32

Digital Image Color Theory and Color Depth: Defining Precise Image Pixel Colors ������������������������������ 32

Digital Image Compositing: Using Alpha Channels and Transparency with Layers ������������������������������� 33

Representing Color and Alpha in Java Game Logic: Using Hexadecimal Notation ������������������������������� 35

Digital Image Object Masking: Using Alpha Channels to Composite Game Sprites ������������������������������ 36

Smoothing Digital Image Composites: Using Anti-aliasing to Smooth Image Edges ���������������������������� 37

Digital Image Data Optimization: Using Compression, Indexed Color, and Dithering ���������������������������� 38

Digital Video or Animation: Frames, Frame Rate, Loops, Direction ��������������������������������� 41

Digital Video Compression Concepts: Bit Rate, Data Streaming, SD, HD, and UHD ������������������������������� 42

Digital Video Data Footprint Optimization: Important Settings for Video Codecs ���������������������������������� 43

Digital Audio Concepts: Amplitude, Frequency, Samples, Waves ������������������������������������ 45

Converting Analog Audio to Digital Audio Data: Sampling, Accuracy, and HD Audio ����������������������������� 46

Digital Audio Asset Playback: Captive Audio Playback vs� Streaming Audio��� 48

Digital Audio Assets in JavaFX: Digital Audio Codec and Data Format Support ������������������������������������ 49

Digital Audio Optimization: Start with CD Quality Audio and Work Backward ��������������������������������������� 50

Summary �� 51

 ■ Chapter 3: Advanced 3D Content Rendering: 3D Asset Concepts and
Principles �� 53

Interactive 2D Assets: 2D Vector Content Concepts ��� 54

Points on a Plane: 2D Vertices, Model Reference Origin, Pivot Point, Dummy Point ����������������������������� 54

Connect the 2D Dots: Vector Lines and Spline Curves Connect Your 2D Vertices ��������������������������������� 55

Filling the Shape Interior: Color Fills, Gradients, and Patterns ��� 56

■ Contents

vii

Interactive 3D Assets: 3D Vector Content Concepts ��� 57

The Foundation of 3D: The Geometry of the Mesh �� 57

Skinning Your 3D Model: 2D Texture Mapping Concepts �� 61

Animating Your 3D Model: Keyframes, Motion Curves, and IK �� 65

JavaFX 3D Support: Geometry, Animation, and Scene Packages ��� 68

Summary �� 71

 ■ Chapter 4: An Introduction to Game Design: Game Design Concepts,
Genres, Engines, and Techniques �� 73

High-Level Concepts: Static vs� Dynamic Gaming �� 74

Game Optimization: Balancing Static Elements with the Dynamic ��� 75

2D vs� 3D Rendering: Static vs� Dynamic Under the Hood �� 76

Game Components: 2D, 3D, Collision, Physics, and AI �� 77

2D Sprites: The Foundation of Arcade-Style Gaming �� 77

3D Models: The Foundation of the Role-Playing Style of Gaming ��� 78

Collision Detection: The Foundation of Game Asset Interaction ��� 78

Physics Simulation: The Foundation of Gameplay Realism �� 79

Artificial Intelligence: The Foundation of Your Gameplay Logic �� 79

Java Engines: Game, Physics, and Inverse Kinematic �� 80

Game Engines: JMonkey and the Lightweight Java Game Library ��� 80

Physics and Collision Engines: Jbox2D, JBullet, Dyn4j, Jinngine�� 81

Inverse Kinematics and Robot Engines: JRoboOp and JavaFX-IK �� 82

Game Genres: Puzzle, Board, Arcade, Shooter, or VR �� 83

Static Games: Strategy, Knowledge, Memory, and Board Games ��� 83

Dynamic Games: Arcade, Shooter, Platform, and Action Games ��� 84

Hybrid Games: An Opportunity to Leverage JavaFX Creatively ��� 84

Summary �� 85

 ■Chapter 5: A Java Primer: Introduction to Java Concepts and Principles ����������� 87

Writing Java Syntax: Comments and Code Delimiters ��� 88

Java Packages: Organizing the Java API by Function �� 91

www.ebook3000.com

http://www.ebook3000.org

■ Contents

viii

Java Classes: Java Structure to Modularize the Game �� 92

Nested Classes: Java Classes Living Inside of Other Classes �� 94

Inner Classes: Different Types of Nonstatic Nested Classes ��� 95

Java Methods: Core Logic Function Java Constructs ��� 96

Declaring Your Method: Modifier, Return Type, and Method Name ��� 96

Overloading Your Methods: Providing Unique Parameter Lists ��� 97

Constuctor Methods: Turning a Java Class into a Java Object ��� 98

Java Variables and Constants: Values in Data Fields �� 100

Fixing Data Values in Memory: Defining a Data Constant in Java �� 102

Java Modifier Keywords: Access Control and More ��� 103

Access Control Modifiers: Public, Protected, Package, or Private ��� 103

Non Access Control Modifiers: Final, Static, and Abstract �� 105

Java Data Types: Defining Data Types in Applications �� 108

Primitive Data Types: Character, Numbers, and Boolean �� 108

Reference Data Types: Objects and Arrays ��� 109

Java Operators: Manipulating Data in the Application�� 109

Java Arithmetic Operators: Basic Mathematics �� 110

Java Relational Operators: Making Comparisons ��� 111

Java Logical Operators: Processing Groups and Opposites �� 112

Java Assignment Operators: Assigning a Result to a Variable �� 113

Java Conditional Operator: Set One Value If True, Another If False ��� 114

Java Conditional Control: Loops or Decision Making ��� 114

Decision-Making Control Structures: Switch - Case and If - Else �� 114

Looping Control Structures: While, Do - While, and the For Loop �� 117

Java Objects: Virtualizing Reality Using OOP in Java ��� 118

Coding the Object: Turning Your Object Design into Java Code �� 120

Extending a Java Object Structure: Java Inheritance ��� 125

The Java Interface: Defining the Class Usage Pattern�� 126

What’s New in Java 9: Modularity and Project Jigsaw ��� 128

The Definition of a Java 9 Module: A Collection of Packages ��� 128

The Properties of Java Modules: Explicit, Automatic, or Unnamed ��� 129

■ Contents

ix

An Example of a Java 9 Module Hierarchy: JavaFX Modules ��� 129

The Purpose of Java 9 Modules: Secure, Strong Encapsulation ��� 131

Creating a Pro Java 9 Game Module: Using the Exports Keyword �� 131

Resource Encapsulation: Further Module Security Measures �� 132

Summary �� 132

 ■Chapter 6: Setting Up Your Java 9 IDE: An Introduction to NetBeans 9 ������������� 135

New NetBeans 9 Features: Java 9 Module Integration �� 136

Java 9 Support: Modules, Ant, Java Shell, Multirelease ��� 136

IDE User Experience: More Information and Intelligent Coding �� 137

Java Code Profiling: Completely Redesigned Java Profiling Suite �� 137

Primary Attributes of NetBeans 9: An Intelligent IDE �� 138

NetBeans 9 Is Intelligent: Put Your Code Editing in Hyperdrive �� 138

NetBeans 9 Is Extensible: Code Editing with Many Languages �� 140

NetBeans 9 Is Efficient: Organized Project Management Tools �� 140

NetBeans 9 Is UI Design Friendly: User Interface Design Tools �� 141

NetBeans 9 Is Not Bug Friendly: Squash Bugs with the Debugger ��� 141

NetBeans 9 Is a Speed Freak: Optimize Your Code with a Profiler ��� 141

Creating the Pro Java 9 Game Project: JavaFXGame ��� 142

Compiling a Pro Java 9 Game Project in NetBeans 9 ��� 147

Running Your Pro Java Game Project in NetBeans 9 �� 148

Summary �� 150

 ■ Chapter 7: Introduction to JavaFX 9: Overview of the JavaFX
New Media Engine ��� 151

Overview of JavaFX: From SceneGraph Down to OS �� 152

The JavaFX Scene Package: 16 Java Scene Classes ��� 154

JavaFX Scene Class: Defining Dimension and Background Color �� 155

JavaFX Scene Graph: Organizing Scenes by Using Parent Nodes �� 157

JavaFX Scene Content: Lights, Camera, Cursor, Action! ��� 158

JavaFX Scene Utilities: Scene Snapshots and Anti-aliasing ��� 159

www.ebook3000.com

http://www.ebook3000.org

■ Contents

x

Scene Subpackages: Nine Scene-Related Packages ��� 159

The javafx�graphics Module: 18 Multimedia Packages �� 162

JavaFX Animation for Games: Using javafx�animation Classes �� 163

JavaFX Screen and Window Control: Using javafx�stage Classes ��� 168

Using the JavaFX Stage Object: Creating a Floating Windowless
Application �� 169

JavaFX Bounds and Dimensions: Using javafx�geometry Classes �� 179

JavaFX Input Control for Games: Using the javafx�event Classes ��� 180

JavaFX UI Elements: Using the javafx�scene�control Classes ��� 180

JavaFX Business Charting: Using the javafx�scene�chart Classes �� 181

JavaFX Media Control: Using the javafx�scene�media Classes ��� 181

JavaFX Web Rendering: Using the javafx�scene�web Classes �� 181

Other JavaFX Packages: Print, FXML, Beans, and Swing ��� 181

Summary �� 182

 ■ Chapter 8: JavaFX 9 Scene Graph Hierarchy: A Foundation for
Java 9 Game Design �� 185

Game Design Foundation: Primary Function Screens �� 186

Java Class Structure Design: Game Engine Support �� 187

JavaFX Scene Graph Design: Minimizing UI Nodes �� 188

JavaFX Design: Using VBox, Pos, Insets, and Group ��� 189

JavaFX Pos Class: Generalized Positioning Using Constants �� 189

JavaFX Insets Class: Providing Padding Values for Your UI �� 190

JavaFX VBox Class: Using a Layout Container for Your Design ��� 191

JavaFX Group Class: High-Level Scene Graph Node Grouping ��� 193

Scene Graph Code: Optimize the JavaFXGame Class ��� 194

JavaFX Object Declarations: Global Class Access for Methods �� 196

Scene Graph Design: Optimizing the BoardGame �start() Method �� 197

Add Scene Graph Nodes: addNodesToSceneGraph() �� 199

Adding New UI Scene Graph Nodes to createBoardGameNodes() �� 200

Adding the New UI Design Nodes in addNodesToSceneGraph() ��� 203

■ Contents

xi

Interactivity: Creating the BoardGame Button UI Control ��� 205

Testing Your BoardGame: Process the Scene Graph �� 208

Summary �� 210

 ■ Chapter 9: JavaFX 9 User Interface Design: The Front End for
Java 9 Game Design �� 211

UI Design Foundation: Finishing the Scene Graph�� 212

JavaFX 9 UI Compositing: ImageView and TextFlow �� 213

JavaFX Image Class: Referencing Digital Imagery in Your Design �� 213

JavaFX ImageView Class: Display Digital Images in Your Design ��� 214

JavaFX TextFlow Class: Use Text Objects (Content) in a Design ��� 216

Coding the User Interface: A UI Compositing Pipeline �� 217

Instantiating the Compositing Layers: �createBoardGameNodes() ��� 218

Adding UI Backplate to Scene Graph: addNodesToSceneGraph() ��� 219

Asset Load Methods: loadImageAssets() and createTextAssets() ��� 219

Creating SplashScreen Assets: Using 3D Assets in a 2D Pipeline �� 220

Adding Image Assets to Your Project: Using the \src\ Folder �� 221

A Method for Loading Image Assets: �loadImageAssets() ��� 222

A Method for Creating Text Assets: �createTextAssets() �� 223

Using a Button�setMaxWidth() Method: Making Buttons Uniform ��� 224

Using StackPane Background: Leverage All Compositing Layers ��� 226

Using TextFlow: Setting Up Your Information Overlay Object �� 228

Using StackPane: Add More Digital Image Compositing Layers ��� 231

Finishing Up Your UI Design Object Creation and Configuration ��� 236

Summary �� 238

 ■ Chapter 10: User Interface Design Interactivity: Event Handling and
Imaging Effects�� 239

Event Handling: Adding Interactivity to Your Games ��� 239

Types of Controllers: What Types of Events Should We Handle? ��� 240

Java and JavaFX Event Packages: java�util and javafx�event ��� 240

Adding Keyboard Event Handling: Using KeyEvents ��� 244

www.ebook3000.com

http://www.ebook3000.org

■ Contents

xii

Finishing Your UI Design: Coding the Event Handling ��� 247

Special Effects: The javafx�scene�effects Package ��� 254

Creating Special Effects: Add a createSpecialEffects() Method �� 255

Drop Shadows: Adding Drop Shadows to Your TextFlow Object ��� 256

Color Adjust: Adjusting Hue, Saturation, Contrast, and Lightness ��� 258

Summary �� 265

 ■ Chapter 11: 3D Scene Configuration: Using the PerspectiveCamera
and PointLight ��� 267

Use a 3D Camera: Adding Perspective to 3D Games �� 267

JavaFX Camera Class: An Abstract Superclass Defining Camera ��� 268

JavaFX PerspectiveCamera Class: Your 3D Perspective Camera�� 268

JavaFX ParallelCamera Class: Your 2D Space Parallel Camera �� 270

Adding a PerspectiveCamera to Your Scene: Using �setCamera() ��� 271

StackPane UI Testing: Making Sure Everything Else Still Works ��� 277

Implementing the Start Game Button: Hiding Your UI ��� 282

Using 3D Lighting: Adding Illumination to 3D Games ��� 284

JavaFX LightBase Class: An Abstract Superclass Defining Light �� 284

JavaFX AmbientLight Class: Lighting Your 3D Scene Uniformly ��� 285

JavaFX PointLight Class: Lighting Your 3D Scene Dramatically �� 286

Adding Light to the Game’s 3D Scene: Using PointLight Objects�� 286

Summary �� 290

 ■ Chapter 12: 3D Model Design and Primitives: Using JavaFX 9
Shape3D Classes ��� 291

JavaFX Shape3D Superclass: Primitive or MeshView �� 291

JavaFX Sphere: Creating Sphere Primitives for Your 3D Games ��� 293

JavaFX Cylinder: Creating Cylinder or Disk Primitives for Games �� 294

JavaFX Box: Creating Boxes, Posts, and Planes for 3D Games ��� 295

Using Primitives: Adding Primitives to Your JavaFXGame Class ��� 295

Shape3D Draw Mode Property: Solid Geometry and Wireframe ��� 303

Shape3D Face Culling Property: Optimize the Rendering Pipeline ��� 307

■ Contents

xiii

JavaFX Mesh Superclass: Construct a TriangleMesh ��� 309

JavaFX Mesh Superclass: Your Raw 3D Model Data Container �� 310

JavaFX MeshView Class: Format and Present Your 3D Mesh Data ��� 310

JavaFX VertexFormat Class: Define Your 3D Vertex Data Format ��� 311

JavaFX TriangleMesh Class: Create a 3D Polygonal Mesh Object �� 312

Summary �� 314

 ■ Chapter 13: 3D Model Shader Creation: Using the JavaFX 9
PhongMaterial Class�� 315

JavaFX Material Superclass: i3D Shader Properties �� 315

JavaFX PhongMaterial: Phong Shading Algorithm and Attributes �� 316

Implementing PhongMaterial: Assigning Color and Power Values�� 319

Using External Image Assets: Creating Texture Maps �� 325

Using External Third-Party Software: Creating Maps Using GIMP �� 325

Using Texture Maps in a PhongMaterial: Shader Special Effects ��� 328

GameBoard Texturing: Creating a GameBoardSquare �� 334

Getting Ready to Create the GameBoard: Code Reconfiguration �� 334

Creating Your Game Board Square Diffuse Texture: Using GIMP ��� 337

Summary �� 340

 ■ Chapter 14: 3D Model Hierarchy Creation: Using Primitives to Create a
Game Board ��� 341

Primitive Creation Method: createGameBoardNodes() ��� 341

Preparing to Position Gameboard SceneGraph Nodes �� 348

Coding a Phong Shader Creation Method: createMaterials() �� 350

Finishing Your GameBoard Construction: Quadrants 2 Through 4 �� 353

Changing Cameras: Using the ParallelCamera Class ��� 365

Summary �� 368

 ■ Chapter 15: 3D Gameplay UI Creation: Using the Sphere Primitive to
Create a UI Node �� 369

Finish Your 3D Assets: Topic Quadrants and Spinner ��� 369

Creating Your Quadrant and Spinner Diffuse Color Texture Maps ��� 372

Texture Mapping the 3D Game Board Quadrants: The Java Code ��� 376

www.ebook3000.com

http://www.ebook3000.org

■ Contents

xiv

Use Google to Resolve JavaFX Anomalies: Using StackOverflow ��� 379

Creating a 3D User Interface Element: A 3D Spinner Randomizer �� 380

Enhancing the 3D Spinner Texture Map: Increasing Resolution ��� 383

Summary �� 387

 ■ Chapter 16: 3D Game Animation Creation: Using the Animation
Transition Classes ��� 389

Animating the 3D Assets: The Animation Superclass ��� 389

Automated Object Animation: Transition Superclass �� 392

Animating 3D Object Rotation: Using the RotateTransition Class ��� 393

A RotateTransition Example: Set Up Your RotateAnimation Asset��� 394

Animating Node Movement: Using the TranslateTransition Class ��� 402

TranslateTransition Example: Set Up Translate Animation Assets ��� 404

Merging Animation Properties: Using a ParallelTransition Class �� 405

ParallelTransition Object: Merge rotSpinner and moveSpinnerOn �� 406

Summary �� 408

 ■ Chapter 17: i3D Game Square Selection: Using the PickResult Class with
3D Models �� 409

Select Your 3D Assets: The PickResult Class �� 409

The MouseEvent Class: Trapping Mouse Clicks on 3D Primitives ��� 411

Implementing Spinner UI Functionality: Mouse Event Handling ��� 413

Using java�util�Random: Generating a Random Spin �� 423

Random Quadrant Selection: Using Random with Conditional If() �� 424

Summary �� 433

 ■ Chapter 18: 3D Gameplay Design: Creating Your Game Content Using
GIMP and Java ��� 435

Design Your Gameplay: Create Quadrant Definitions �� 435

Game Board Quadrant: Creating Game Quadrant Content (GIMP)��� 436

Game Board Squares: Creating Game Squares Content in GIMP �� 446

Summary �� 463

■ Contents

xv

 ■ Chapter 19: Game Content Engine: AI Logic with Random Content
Selection Methods ��� 465

Coding a Random Spin Tracker: Remainder Operator �� 465

Implementing Spin Tracker Functionality: Create Empty Methods ��� 466

Populating Quadrants After a Spin: OnFinished() Event Handling ��� 470

Texture Map Management: Coding a resetTextureMaps() Method ��� 482

Summary �� 486

 ■ Chapter 20: Coding Gameplay: Set Up Gameplay Methods and
Animated Camera View ��� 487

Select Game Content: selectQSgameplay() Methods ��� 487

Game Board Square Interaction: OnMouseClick() Event Handling �� 488

Camera Animation: Position Game Board After Select ��� 507

Summary �� 511

 ■ Chapter 21: Questions and Answers: Finishing the Setup Methods
and Digital Audio ��� 513

Finishing the Gameplay: Adding a qaLayout Branch �� 513

Adding Another Organization Layer: The createUInodes() Method �� 514

Implementing the New Q&A User Interface in Your JavaFXGame ��� 524

Tweaking the Q&A Panel: Refining the createQAnodes() Settings �� 527

Adding Answer Button Content to setupQSgameplay() Methods �� 529

Digital Audio for Games: Using the AudioClip Class ��� 531

Implementing AudioClip: Add Digital Audio Asset Sound Effects �� 532

Finding Free for Commercial Use Digital Audio: 99Sounds�org �� 534

Data Footprint Optimization: Use Audacity to Create Game Audio �� 535

Use toExternalForm() to Load a URI Reference as a String Object ��� 539

Triggering Spinner Audio Playback in createSceneProcessing() �� 541

Camera Animation Audio: Matching Audio Length to Animation ��� 542

Summary �� 544

www.ebook3000.com

http://www.ebook3000.org

■ Contents

xvi

 ■ Chapter 22: Scoring Engine: Creating the Score UI Layout and Scoring
the Content �� 545

SplashScreen Render Bug: Hide UI Panels on Startup ��� 545

Scoreboard UI Design: A createScoreNodes() Method ��� 548

Adding Your Score UI Container Design Elements: Text Objects ��� 554

Scoring Engine: Logic to Calculate Score on Answer ��� 561

Score UI Testing: Displaying Higher Integer Numbers �� 570

Completing the Gameplay: Add Answers and Score ��� 572

Summary �� 573

 ■ Chapter 23: Completing the Gameplay Code and Player Proofing
Your Event Handling �� 575

Finishing Gameplay: Populating Gameplay Methods ��� 576

Add Answer Options: Finishing the setupQSgameplay() Methods �� 576

Player-Proofing Code: Controlling Player Event Usage ��� 583

Let’s Play Again Button: Resetting Player Event Handling �� 588

Camera Zoom Back Out: Another ParallelTransition ��� 593

Finishing the Play Again Button: resetTextureMaps() ��� 596

Quadrant-Level Protection: squareClick per Quadrant ��� 598

Summary �� 602

 ■ Chapter 24: Optimizing Game Assets and Code, and Game Profiling Using
NetBeans ��� 603

Optimizing Texture Maps: Converting to 8-Bit Color ��� 603

Creating Indexed Color Textures: Changing Color Mode in GIMP �� 603

NetBeans 9 Profiler: Testing Memory and CPU Usage �� 611

Implementing Indexed-Color Imagery: Adding a Path �� 620

Optimizing Audio: Use 16-Bit at a Lower Sample Rate ��� 622

■ Contents

xvii

Java Game Code Optimization: Leverage Java Tricks �� 623

Future Expansion: Add Digital Video and 3D Models �� 625

Summary �� 625

Index ��� 627

www.ebook3000.com

http://www.ebook3000.org

xix

About the Author

Wallace Jackson has been writing for leading multimedia publications
about his work process for interactive new media content development
since the advent of Multimedia Producer Magazine, nearly two decades
ago, when he wrote about an advanced computer processor architecture
for the issue centerfold (removable “mini-issue” insert) distributed at the
SIGGRAPH trade show. Since then, Wallace has written across a significant
number of popular publications about his work product in interactive
3D and new media advertising campaign design, including: 3D Artist
Magazine, Desktop Publisher Journal, Cross Media Magazine, AV Video
and Multimedia Producer Magazine, Digital Signage Magazine, and even
Kiosk Magazine.

Wallace has authored more a dozen books for Apress including
Beginning Java 8 Games Development, Android Apps for Absolute
Beginners, Pro Android Graphics, Pro Android UI, Pro Android
SmartWatch, Learn Android Design, VFX Fundamentals, Digital Audio
Editing, Digital Image Compositing Fundamentals, HTML Quick Markup

Reference, Digital Illustration Fundamentals, Digital Painting Fundamentals, Android Studio 3 New Media
Fundamentals, Digital Video Editing Fundamentals, and many other titles.

He is currently the CEO of Mind Taffy Design the new media content production and digital campaign
design and development agency, located in North Santa Barbara County, halfway between clientele in
Silicon Valley to the north and in Hollywood, “The OC,” and San Diego, to the south. Mind Taffy will also
produce Interactive 3D content for major brands around the world, from their content production studio on
Point Concepcion Peninsula in the California Central Coast area. Mind Taffy Design has created open source
technology (HTML5, Java, and Android) and digital new media content deliverables for more than a quarter
century (starting in 1991) for a large number of the top branded manufacturers in the world, including Sony,
Samsung, IBM, Epson, Nokia, TEAC, Sun, SGI, Dell, Compaq, ViewSonic, Western Digital, Mitsubishi, KDS
USA, CTX International, NEC, Micron, KFC, Tyco Electronics, and ADI Systems.

Wallace Jackson received his undergraduate degree in Business Economics from the University of
California at Los Angeles (UCLA) and his graduate degree in MIS Design and Implementation from the
University of Southern California. His post-graduate degree from USC is in Marketing Strategy. He also
completed the USC Graduate Entrepreneurship Program at USC’s popular Marshall School of Business
MBA evening program. You can connect with Wallace at his business social media account at: https://www.
linkedin.com/in/wallacejackson. His Twitter account is: @wallacejackson.

https://www.linkedin.com/in/wallacejackson
https://www.linkedin.com/in/wallacejackson

xxi

About the Technical Reviewer

Jeff Friesen is a freelance teacher and software developer with an emphasis on Java. In addition to authoring
Java I/O, NIO and NIO.2 (Apress) and Java Threads and the Concurrency Utilities (Apress), Jeff has written
numerous articles on Java and other technologies (such as Android) for JavaWorld (JavaWorld.com),
informIT (InformIT.com), Java.net, SitePoint (SitePoint.com), and other websites. Jeff can be contacted via
his website at JavaJeff.ca. or via his LinkedIn profile (www.linkedin.com/in/javajeff).

www.ebook3000.com

http://www.linkedin.com/in/javajeff
http://www.ebook3000.org

xxiii

Acknowledgments

I would like to acknowledge all my fantastic Editors, and their support staff at Apress, who worked those
long hours and toiled so very hard on this book, to make it the ultimate Pro Java 9 Games Development
application production book title.

Steve Anglin, for his work as the Lead Editor on the book, and for recruiting me to write Java, HTML5
and Android programming titles at Apress covering the most popular open source application development
platforms available anywhere today.

Matthew Moodie, for his work as the Development Editor on the book, and for his experience and
guidance during the process of making this book one of the great Pro Java 9 Games Development titles
currently available in the market.

Mark Powers, for his work as the Coordinating Editor on the book, and for his constant diligence in
making sure I either hit my Java 9 chapter delivery deadlines or surpassed them.

Jeff Freisen, for his work as the Technical Reviewer on the book, and for making sure that I did not
make any Java 9 programming mistakes, because Java code with mistakes does not run properly, if at all,
unless the Java code includes very lucky mistakes, which is quite rare in computer programming these days.

xxv

Introduction

The Java 9 Programming Language is currently the most popular object-oriented programming (OOP)
language in the world today. Java runs on consumer electronic devices from SmartWatches to UHD
Smartphones, to Touchscreen Tablets, to eBook Readers, to Game Consoles, to SmartGlasses, to Ultra-High
Definition (UHD) 4K Interactive Television Sets (or iTV Sets), with even more types of consumer electronics
devices, such as those found in the automotive, home appliances, healthcare, digital signage, security, home
automation market, VR AR and so on, increasingly adopting this open source Java 9 platform for usage to
drive i3D new media experiences within their hardware devices.

Since there are literally billions of Java 9 compatible consumer electronics devices, owned by the
billions of users all over the world, it stands to reason that developing popular Pro Java 9 Games for all of
these people could be an extremely lucrative undertaking, given that you have the right game concepts,
artwork, new media assets, game design, and optimization processes, of course.

Java 9 (and its multimedia engine, JavaFX 9) code can run on just about every operating system out
there, including Windows 7, 8.1 and 10, Linux distributions such as Ubuntu LTS 18 or Fedora, 32-bit Android
1-4 and 64-bit Android 5-8, Open Solaris, Macintosh OS/X, iOS, Symbian, and the Raspberry Pi, it’s only a
matter of time before any other popular OSes will add support for this popular open source programming
language. Additionally, every popular Internet Browser has Java capability. Java provides the ultimate
flexibility in installing software, as an application, or in the browser, as an applet. You can even drag a Java
application right out of the browser, and have it install itself on a user’s desktop. Java 9 is truly remarkable
technology all the way around.

There are a plethora of embedded and desktop hardware support levels currently for Java 9 and
for JavaFX 9, including the full Java SE 9, Java SE 9 Embedded, Java ME (Micro Edition) 9 and Java ME 9
Embedded, as well as Java EE 9 for Enterprise Application Development.

Talk about being able to “code once, then deliver everywhere!” This is the pipe-dream of every
programmer, and Oracle (Java) and Apache (NetBeans 9) is making it a reality with the powerful JavaFX 9
multimedia programming platform. This book will go a long way towards helping you to learn exactly how
to go about developing Java 9 games, using the Java programming language in conjunction with the JavaFX 9
multimedia engine. These Java 9 game applications will be able to run across a plethora of Java-compatible
consumer electronics devices. Developing Java 9 game applications which play i3D smoothly across all of
these different types of consumer electronics devices requires a very specific work process, including game
asset design, game code design, UI design, and data footprint optimization, all of which I’ll be covering
during this Pro Java 9 book.

I wrote the Pro Java 9 Game Development title from scratch, using a real world Interactive 3D or i3D
game project that I am actually working on, and will be delivering to the public sometime in 2017. I am
targeting those readers who wish to become i3D Game Developers, and who haven’t coded in Java 9 with
JavaFX 9. The readers are technically savvy, but are not completely familiar with Java 9 object-oriented
computer programming concepts and techniques, or with i3D game development. Since Java 9 has now
been released to the public on September 22, 2107 the book will be more advanced than many of the other
Java books out there. Java 9 has added some very advanced features, such as a more secure module system
and the JavaFX 9 API. This gives Java 9 its own interactive 3D capable new media engine supporting SVG, 2D,
3D, audio or video media.

www.ebook3000.com

http://www.ebook3000.org

■ IntroduCtIon

xxvi

I designed this book to contain a comprehensive overview of optimal Java 9 games development work
processes. Most professional Java 9 application development books only cover the language; however, if you
really want to become that well known Java 9 game or IoT application developer that you seek to become,
you will have to understand, as well as master, all of the areas of game design, including multimedia asset
creation, user interface design, Java 9 Programming, JavaFX 9 class usage, and data footprint optimization,
as well as memory and CPU usage optimization.

Once you’ve mastered these areas, hopefully, by the end of this book, you will be able to create the
memorable user experience that will be required to create popular, best-selling Java 9 games. You can do it,
I know you can!

Java 9 games are not only developed using a NetBeans 9 Integrated Development Environment (IDE)
alone, but also in conjunction with the use of JavaFX 9 and several other different types of new media
content development software packages (more than a dozen, at this point; all open source). For this reason,
this book covers the installation and usage of a wide variety of other popular open source software packages,
such as GIMP 2.9.7 and Audacity 2.1.3, for instance, in conjunction with developing Java 9 game applications
using the NetBeans 9.0 IDE and the JavaFX 9 new media game engine, which brings the “wow factor” to the
Java 9 programming language.

I am architecting this book in this fashion so that you can ascertain precisely how your usage of new
media content development software will fit into the overall Pro Java 9 Game Development work process.
A comprehensive approach will serve to set this unique book title distinctly apart from all of the other Java 9
game application development titles which are currently out on the market. The book startes out in Chapter
One with downloading and installing the latest Java JDK as well as NetBeans 9 IDE, along with a dozen open
source content development applications.

In Chapter Two you’ll learn about new media concepts for the 2D and i2D capabilities in JavaFX 9,
and in Chapter Three you will learn about more advanced 3D new media concepts for the 3D and i3D
capabilities in JavaFX 9. In Chapter Four we will cover game design concepts for JavaFX.

In Chapter Five, you’ll learn about the fundamentals of the Java 9 programming language, which you’ll
be implementing to create a Java 9 game during the remainder of the book. In Chapter Six, you will learn
about NetBeans 9, and create your first JavaFX 9 game application, and take a look at useful NetBeans 9
features, such as code completion and code profiling.

In Chapter Seven, you will learn all about the JavaFX 9 new media engine (JavaFX API), and how its
impressive features can take your Pro Java 9 Game Development and place it in the stratosphere. Thus, the
first third of this book is “foundational” material, which you will need to understand in order to be able
to understand how NetBeans 9.0, Java 9, JavaFX 9.0, and the various new media genres and asset types
supported by the JavaFX 9 game engine function together as a platform.

In Chapter Eight, you will learn all about the JavaFX 9 Scene Graph and how to use its hierarchy to begin
to design the first i2D parts of the Java 9 Game, the top-level splashscreen and its user interface design. This
is where we start into coding Java 9 and JavaFX 9 APIs more aggressively.

In Chapter Nine, you will learn about user interface design, including using digital image assets and text
assets. Major JavaFX classes we will cover include the Image class, the ImageView class, and the TextFlow
class. We will be looking at digital image compositing pipelines in the creation of the SplashScreen as well
as game information overlays such as game play instructions, legal disclaimers, content production credits,
and starting the game play to remove the SplashScreen.

In Chapter Ten we will learn about the JavaFX event processing engine, which will process all of the
different types of action, key, mouse, and drag events that you are likely to utilize in your Java 9 game
development work process in the future when you create your own custom pro Java 9 games. We will
implement event handling in Java 9 during this chapter which will make the user interface and SplashScreen
created in the previous chapter interactive.

In Chapter Eleven we will start coding our primary i3D Game SceneGraph for the i3D Board Game.
During the chapter you’ll be learning about the different types of JavaFX 9 Camera and LightBase
subclasses which are contained in the core javafx.scene package, which, in turn, is contained (as of Java 9)
in the javafx.graphics module. We will cover PerspectiveCamera, since you will be using this for your basic

■ IntroduCtIon

xxvii

3D scene infrastructure, which we’ll be creating during this chapter, as well as ParallelCamera, another
Camera subclass which is better suited for 2D or 2.5D game development pipelines. We will also learn about
the LightBase abstract superclass, and its two core lighting subclasses, AmbientLight and PointLight.

In Chapter Twelve you will learn about 3D modeling classes in the JavaFX API. You’ll be learning about
the different JavaFX 9 3D model classes, which are contained in your javafx.scene.shape package. You will
cover Sphere, which can be used to create a Sphere primitive, and which you have used already to test your
3D Scene setup in Chapter Eleven. We will also look at the other two primitive classes, Box and Cylinder,
which can also be used to create your Plane and Disk primitives. These primitives are based on the Shape3D
superclass, which we will be looking at first. We will also look at the more advanced TriangleMesh class,
which allows you to build a polygon-based Mesh object, and finally, at the Mesh and MeshView class
hierarchy, which will allow you to render your 3D Mesh objects.

During Chapter Thirteen you’ll be learning about the JavaFX 9 3D shader class hierarchy, which is
contained in the javafx.scene.paint package. In Java 9 and Android 8 the Paint class applies pixel colors
and attributes to the Canvas, and in this case, the surface of your JavaFX 9 i3D primitives. The paint package
contains classes which are related to this “skinning,” or “texture mapping” 3D object shading objective. You
will cover Material, a superclass which holds the top level shader definition, and the PhongMaterial class,
which can be used to create a texture map, or “skin,” for the i3D primitives for your game which were covered
in Chapter 12.

In Chapter Fourteen, you will create an advanced i3D object for your game using the JavaFX 9
SceneGraph hierarchy and JavaFX 3D primitives. During this chapter, you will be building your gameBoard
Group branch of your SceneGraph, which is under the SceneGraph root, next to the SplashScreen (UI)
branch, which we have already built in Chapter Nine. Under your gameBoard Group branch, we will
segment your i3D game board into four quadrants, so the middle of the gameboard can have four larger
300x300 unit areas which we can use for gameplay. Each of the four game quadrants will have another 5
(of 20) perimeter game board squares as child objects.

In Chapter Fifteen, we’ll be using i3D primitives in JavaFX, to create i3D UI elements for your i3D Scene,
and will work through some of the 3D face rendering anomalies which we saw in Chapter 14. The i3D UI
element we’ll create will spin the gameboard, to select a quadrant topic for play.

In Chapter Sixteen, we’ll take a detailed look at the JavaFX 9 (abstract) Animation and Transition
superclasses, and all of the powerful property transition subclasses, which you can implement as different
types of Animation objects in your i3D boardgame. Animation adds professionalism to any game because
motion, especially in a 3D game, adds a ton of realism to the user experience.

In Chapter Seventeen, we’ll take a close look at a public PickResult class and public MouseEvent class,
and use these for our own game play design in a custom .createSceneProcessing() method which will be
used to process i3D game elements (Box or Sphere objects) selection by the player (more event handling
coding), so that our players can interact with their i3D game components.

During Chapter Eighteen, we will look at the work process for creating alternate texture maps, which
will be changed during game play, by changing the Image object asset reference to add content to game
board squares and quadrants, based on random spins and player mouse clicks (or screen touches). Although
this particular chapter does not get into Java code too deeply, it is important to note that developing
professional Java 9 games involves digital image artisans, as well as digital audio engineers, 3D modelers,
3D texture artists, animators, 2D illustrators, and VFX artists, so we will need to cover some non-Java-specific
topics as well during this book.

During Chapter Nineteen, an i3D game AI chapter, we will create two new int (integer) variables;
spinDeg for spin degrees, and an accumulator (total) of the sum of the rotational degrees which have been
spun by the players, and quadrantLanding, for holding the latest result of a simple yet powerful calculation
which will always tell us what quadrant the latest spin landed on.

During Chapter Twenty, we’ll be creating over a dozen .setupQSgameplay() methods, which will
contain the Java code that sets up the next level of gameplay for each gameboard square so that when a
player clicks a gameboard square, a method will be called to set up the Q&A experience.

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_12
http://dx.doi.org/10.1007/978-1-4842-0973-8_14
http://www.ebook3000.org

■ IntroduCtIon

xxviii

In Chapter Twenty-One, we will finish coding the .setupQSgameplay() methods, by adding the Q&A
parts of the game play logic. We will also be looking at the JavaFX AudioClip class, which will allow us to add
digital audio sound effects. This will further enhance the pro Java 9 game play experience using yet another
new media component (digital audio) of the JavaFX 9 API.

During Chapter Twenty-Two, we’ll be implementing a single player game play and scoring engine,
to get your game scoring user interface in place, because a lot of game players will want to play the game
against the content, as a learning experience. That said, there will still be a lot of code to write for each
Button UI element, that looks at if the answer is the correct answer, and if it is, will increments the
“Right:” score, and if it is not, will increment the “Wrong:” score.

During Chapter Twenty-Three, we’ll finish populating the setupQSgameplay() methods with the
text-based answer content that matches up with the questions. We’ll also finish the createQAprocessing()
method, which holds the answer scoring code that updates the Score UI panel. The players will use these to
select the correct answer revealing what the visual for that square represents and scoring their answer. Once
we finish coding the bulk of the game play “answer display, selection, and scoring” infrastructure, and test
each square to make sure it is working, we can create the “error-proofing” portion of the Java code, to finish
up a professional game, which makes sure the players use it properly. This involves using Boolean variables
(called “flags”) to hold “click” variables, where once a player clicks the spinner, game board square or answer
Button element, the “elementClick” variable is set to “false” so your game player cannot click it again and
“game” the game play code.

During Chapter Twenty-Four on Data and Memory Footprint Optimization, we will convert your digital
image assets to use 8-bit (indexed) color, rather than the 24-bit truecolor depth, for your texture maps, and
we’ll run the NetBeans Profiler to see how much memory and CPU processing your Java 9 code is using to
run your game.

This book attempts to be the most comprehensive Pro Java 9 Games application development
programming title on the market, by covering most, if not all, of the major Java 9 and JavaFX 9 classes that
will need to be used to create i3D Java 9 Game Applications.

If you’re looking for the most comprehensive, up to date overview of the Java 9 programming
language for games, including JavaFX 9.0 and NetBeans 9.0 IDE all seamlessly integrated with new media
content development work processes, as well as a “soup to nuts” knowledge about how to optimally use
these technologies in conjunction with the leading open source new media game content design and
development tools, then this book will really be of significant interest to you.

It is the intention of this book to take you from being an Intermediate in Java 9 game application
development to a solid professional knowledge level regarding Java 9, NetBeans 9, and JavaFX 9 game
application development. Be advised, this book, even though it’s ostensibly a professional title, contains
a significant amount of new media technical knowledge. All of the work processes which are described
during the book could take more than one or two read throughs in order to assimilate this knowledge
into an application development knowledge base (into your quiver of technical knowledge). It will be
well worth your time, however, rest assured, so read it more than once. There is also a Beginning Java
Games Development book from Apress called Beginning Java 8 Games Development that covers i2D game
development using different classes from the JavaFX API.

1© Wallace Jackson 2017
W. Jackson, Pro Java 9 Games Development, https://doi.org/10.1007/978-1-4842-0973-8_1

CHAPTER 1

The Different Faces of Java: Create
a Java 9 Development Workstation

Welcome to the Pro Java 9 Games Development book. In this first chapter, I’m going to discuss the various
versions of Java which are still being used today to develop software applications for open source platforms
such as Android, as well as for open source browsers based on WebKit, such as Google Chrome, Mozilla
Firefox, Apple Safari, and Opera. After going over which versions of Java, spanning from JDK 1.6, also known
as Java 6, through JDK 1.9, which was recently released as Java 9, will need to be used to develop for various
versions of these popular platforms. We’ll also need to take a detailed look at how to create a professional
Java 9 software development workstation for use during the rest of this book. This will include other software
such as new media content production software packages which can be used with your Java software
development packages to create games and IoT (Internet of Things) applications.

The core of your workstation will be either a Java 8 SDK or Software Development Kit which is also
referred to as the JDK or Java Development Kit, or the new Java 9 JDK, which came out in 2017 and is
more modular than Java 8, but which features the same classes and methods for creating games or IoT
user experiences. This fact will allow us to safely focus on both Java 8, as well as Java 9, during the course
of the book. This is because, for our purposes, these are fundamentally the same, allowing us to focus on
the latest Java APIs, and not on what Java version you are using. In fact, since we are going to focus on Java’s
multimedia APIs, commonly known as JavaFX, what you learn during this book can also be coded in Java 7
as well! Android recently upgraded to Java 7 and Java 8 compatibility (from Java 6).

We will also set you up with a NetBeans 9.0 IDE, or Integrated Development Environment, which
will make coding Java 8 or 9 games so much easier. Expect to use NetBeans 9 once Java 9 comes out in Q4 of
2017, since NetBeans 9 IDE will have been upgraded significantly to accommodate the new modular nature
of Java 9 and will allow you to mix functional modules, to create custom Java package collections
(API versions) for any type of application development.

After your Java JDK and NetBeans IDE are configured, we will get you setup with the latest open source
new media content creation software packages, including professional software packages such as GIMP for
digital imaging, InkScape for digital illustration, DaVinci Resolve for digital video editing or special effects,
Audacity for digital audio editing, Fusion for special effects and 3D, Open Office 4 Suite for Business and
Project management, Blender for 3D modeling, texturing, animation, rendering, particle systems, fluid
dynamics or special effects, and Terragen 4 for virtual planets.

At the end of this chapter, I might even suggest some other professional level software packages, which
you should consider adding to this professional game development workstation that we will be creating
during the course of this chapter. In this way, you will have an incredibly valuable production resource for
your business, by the time we are finished with this first chapter. Hopefully, just this first chapter alone will
be worth what you’ve paid for this entire book, as you can pay $500 for a powerful 64-bit workstation, and
make it worth five figures in just a couple of hours!

www.ebook3000.com

https://doi.org/10.1007/978-1-4842-0973-8_1
http://www.ebook3000.org

Chapter 1 ■ the Different faCes of Java: Create a Java 9 Development Workstation

2

We will also be going over some hardware requirements and considerations for your new Java 9 content
production workstation. Finally, note the Java code in this book will work just as well in a Java 8 IDE (or
integrated development environment), so this book could just as easily be called the Pro Java 8 Games
Development book!

Java Dichotomy: Versions Used in Various Platforms
There are a number of different versions of Java which are still widely used for development across a number
of different popular platforms, including Java 6 for 32-bit Android (Versions 1.x, 2.x, 3.x and 4.x of Android
are 32-bit), as well as Java 7 for early 64-bit Android versions (5.0, 5.1, and 6.0), Java 8 for recent Android
Versions (7.0, 7.1.2, 8.0), and Java 9 for Windows 10 OS, Ubuntu Linux OS (and other Linux distributions),
Macintosh OSX, and Open Solaris OS.

It is important to note that there are three primary versions of Java; Java ME or Micro Edition is
optimized for embedded devices, Java SE or Standard Edition, which we’ll be covering, which is used
on the “client side” as well as in mobile consumer electronics devices and in iTV sets, and Java EE, or
Enterprise Edition, which could be thought of as a “server side” paradigm, as large corporate computing
environments are generally server-based, and not “peer to peer” (pure client side, with client to client inter-
communication possible, in addition to client-server interactions).

Java 6, released in December of 2006 (over a decade ago), is still widely used in conjunction with the
Eclipse IDE to develop applications for all 32-bit versions of Android, from version 1.0 through version
4.4. This is because this is the Java version Google originally specified for use in developing 32-bit Android
applications, when Android 1.0 was released in September of 2008. It is important to note that Google
created a custom version of Java 6, using the Open Java Project, but this won’t effect the programming API,
as the classes, methods, and interfaces still function the same way that they would if you were using Java 6 in
the NetBeans IDE or the IntelliJ IDEA, instead of using the Eclipse IDE.

When Google upgraded Android to a 64-bit Linux Kernel, in Android 5.x, which uses the Android Studio
IDEA based on IntelliJ, they upgraded to using Java 7, which also has a 64-bit version. Java 7 was released
in July of 2011. So if you are developing Android 5-6 applications for advanced platforms, such as Android
Wear, which is covered in my Pro Android Wearables (2015) title from Apress, or Android TV or Android
Auto, covered in Android Apps for Absolute Beginners (2017) title from Apress, you will want to utilize Java 7.
The JavaFX 8 engine found in JavaFX 8 and JavaFX 9, has been back-ported to Java 7 as well; however Java 7
was retired this year. Java 6, 7 and 8 are still used in Android.

Java 8 is the current version of Java SE, as of the writing of this book, and additionally, features the
powerful JavaFX 8.0 multimedia engine, which has also been made compatible with Java 7, although JavaFX
8.0 APIs are not yet natively supported inside of the Android APIs. It is however, possible to develop JavaFX
8 or 9 applications that run on both Android OS and iOS platforms, making this book significantly more
valueable to our readers! Java 8 is supported across all popular browsers, in Android 7, 7.1.2 and 8.0, and
across all four of the popular OSes, including Windows 7, 8.1 and 10, in all Linux Distros, Macintosh OS/X,
and Open Solaris from Oracle. Java 8 was released in March of 2014, and added a powerful new feature
called Lambda Expressions, which we will be covering during the book, as this is a way to write more
compact code, which is also often more multi-processor (and multi-thread) efficient.

Java 9 is the next major revision of Java. Java 9 was released September 22, 2017. The primary new
feature in Java 9 that the Java language developers are reworking is making the Java 9 language API modular.
This will allow Java 9 developers to “mix and match” features in “modules” (code libraries), and create their
own custom, optimized versions of Java. These custom Java versions would work exactly the way that the
developer will need it to for custom development environments or custom applications. As of the release of
this book, NetBeans 9 is still in development.

As a Game Developer, or as an IoT Developer, this means that you could create several Game
Development customized Java Version levels, or alternately several custom IoT Development Java Version
levels. Start with a Java 7 version, add Lambda Expressions (a coding shortcut which we will cover later) if
needed, to create a Java 8 version, or package as custom modules (a new feature in Java 9) to create a Java

Chapter 1 ■ the Different faCes of Java: Create a Java 9 Development Workstation

3

9 version for all the popular OS platforms. If you are using the JavaFX multimedia/game engine, the latest
JavaFX features exist across both the Java 8 and Java 9 APIs.

I wanted to point out to readers that they can optimize their game program logic to span several
versions of Java, optimizing for Java 7 (Android 5 or 6) to Java 8 (Android 7, 8 and modern OSes) to the Java 9
version which came out on September 22, 2017 before the book release. This can also be done without any
major code changes, because the core JavaFX game processing logic, other than using Lambda Expressions,
exists across all of these Java revisions.

Java Development Workstation: Required Hardware
To get the best results from all of the professional open source software we will be installing during the
course of this chapter, you will want to have a powerful 64-bit workstation, running a paid OS, such as
Windows 10 or OSX, or a free OS, such as Ubuntu LTS 17. I use Windows 10 on several workstations, and
Ubuntu LTS 17.10 on several workstations. You will also want a large display, preferably HD (1920 by 1080)
or UHD (3840 by 2160). If you do the math, a UHD display is four HD displays in a single bezel, and UHD
displays are now $300 to $500. I got one at a Thanksgiving sale for $250. The sizes I use for HD range from 32"
to 43" and for UHD range from 44" to 55" yeilding a tight pixel density.

A computer workstation should feature (contain) at least 8 Gigabytes (8GB) of DDR3 system memory
(16GB or 32GB of system memory would be even better). This memory should cycle at 1333, 1600, 1866, or
2133 megahertz clock speed. Cutting-edge systems often feature DDR4 system memory running at 2400
megahertz clock speed. DDR4 memory also comes in 16GB DIMMS, so that you can put 48GB, 64GB, or
128GB in your workstation motherboard. I’d do this for workstations running Fusion 9, DaVinci Resolve 14,
Blender 2.8, JavaFX 9 or other i3D production software.

The faster your system memory runs, the faster your computer can process data, and the faster the CPU
can get what it needs to process. That brings us to the “brain” or CPU/GPU for the workstation which does
the processing. The same concept holds true; the more instructions a 64-bit CPU can process per second the
more you’re going to get done in a shorter period of time, and the smoother your i3D applications are going
to perform their given functions.

Almost all 64-bit workstations these days will feature a multi-core processor, often called a CPU, or
Central Processing Unit. Popular CPUs include AMD Ryzen (QuadCore, HexaCore or OctaCore), 9590
(OctaCore or eight cores), or the more expensive Intel i7, which comes in QuadCore, HexaCore, OctaCore,
and DecaCore versions. Like the AMD Ryzen, the Intel i7 features two threads per core, so these will look like
8, 12, 16 or 20 core processors to an operating system, which is why they’re more expensive than the AMD
FX 9590 series of processors. I use AMD Ryzen or Intel i7 processors, depending on the application. For
instance, Android Studio 3 is optimized for Intel hardware architecture, and doesn’t emulate Android Virtual
Devices (AVD) fast enough on AMD FX CPU for smooth development and testing.

To store your data, you will also need a hard disk drive. Computers these days will usually come with
a one terabyte (1TB) hard disk drive, and you can even get a workstation with a 2TB, 3TB, 4TB, 6TB, or an
8TB HDD. Opt for the 3GB or 4GB model if you are working on games (or 3D, film, special effects, or video
assets) which feature UHD, or 4K, screen resolution. If you want your system to boot (start-up) rapidly, and
load your software into memory rapidly, be sure to get an SSD (Solid State Drive) as your primary (C:\ for
Windows, or, C:/ for Linux) drive assignment. These are more expensive than the traditional Terabyte Hard
Disk Drives, but you only really need 64GB or 128GB to hold your OS and software. I have a 256GB SSD, and
512GB SSD and 768GB SSDs are also becoming much more affordable.

Workstations with features such as these have essentially become commodity items, priced between
$500 and $750, and can be purchased at WalMart or Best Buy, or on-line, at www.PriceWatch.com, where you
can compare market prices on any of the components that I have mentioned in this section of the chapter.
If you are new to Java 9 Game Development, and if you do not yet have an appropriate workstation, go to
WalMart, or PriceWatch.com, and purchase your affordable 3D multi-core (purchase a 4, 6, or 8 core) 64-bit
computer running Windows 10, or Ubuntu LTS 17, that has 8, 16 or 32 Gigabytes of DDR3 system memory, at
the very least. You will also want a fairly large hard disk drive, at least a 750GB, or even a 1.5TB or 2TB hard

www.ebook3000.com

www.PriceWatch.com
http://www.ebook3000.org

Chapter 1 ■ the Different faCes of Java: Create a Java 9 Development Workstation

4

disk drive, as well as a 3D GPU from AMD (Radeon), or nVidia (GeForce), which will be used for real-time
i3D rendering for both JavaFX 9 as well as Fusion, Blender, and DaVinci Resolve.

During the rest of this chapter, I am going to proceed as if you have just purchased one of these
affordable 64-bit workstations, and we’re going to create a premiere Java 9 Games and IoT development
workstation 100% from scratch! In case you already have an existing game development workstation, I’m
going to include a short section that shows you how to remove outdated Java development software from
Windows, so that we can all start from scratch.

Prepare a Workstation for Java 9 Game Development
Assuming that you already have a professional level workstation in place for new media content development
and game development, you may need to remove an outdated JDK or IDE, to make sure that you have the
latest software. The first thing that you will do in this section is make sure you have removed any of the
outdated versions of Java, such as Java 6 or Java 7, and any outdated versions of NetBeans, such as NetBeans
6 or NetBeans 7. This involves uninstalling (removing, or completely deleting) outdated Java development
software versions from the workstation. I had to do this on one of my QuadCore AMD workstations, to make
room for the NetBeans 9.0 IDE for development of Java 9 and JavaFX 9 apps and games, so the screenshots in
this section show a Windows 7 operating system. You’ll do this by using an OS Software Management Utility.
On Windows this is the “Programs and Features” utility. This can be found under the Windows Control
Panel, shown highlighted in blue in the middle column (seventh row) of Figure 1-1.

Figure 1-1. Use the Programs and Features utility icon to uninstall or change programs on your computer
workstation

If you have a brand new workstation, you will not have to remove any previous software. There are
similar software installation and removal utilities for Linux and Mac, if you happen to be using one of these
OSes. Since most developers are using 64-bit versions of Windows 7, 8.1, or 10, we’ll only be using this 64-bit
OS platform for this book.

It’s important to note that Java 9 now comes only in a 64-bit version, so you must have a 64-bit
workstation, as I’ve specified in the previous section of this book (In fact, you cannot even buy a new 32-bit
computer these days).

The way you customize Windows OS “chrome” (the windowing UI elements), as well as the desktop,
and installed software packages is via the Windows Control Panel, and its set of more than 50 utility icons.
One of these is the Programs and Features icon (in Windows versions 7 through 10), which can be seen
selected in blue in Figure 1-1.

Note that in earlier versions of Windows (Vista or XP), this program utility icon would be labeled
differently, as: Add or Remove Programs. It still works in the same fashion, select software, right-click, and

Chapter 1 ■ the Different faCes of Java: Create a Java 9 Development Workstation

5

remove old versions. I do not recommend using outdated Vista or XP, as these are no longer supported by
advanced Java 9 JDKs and IDEs.

Click this Programs and Features link, or double-click the icon, for previous versions of Windows, and
launch the utility. Scroll down, and see if you have any older versions of the Java development tools (Java 5,
Java 6, or Java 7) installed on your workstation. Note that if you have a brand new workstation, you should
find there are no pre-installed versions of Java or NetBeans on the system. If you find them, return the
system, as it may have been used previously.

As you can see in Figure 1-2, on my Windows 7 development workstation, I had an old version of Java
8u131 installed, taking up 442 Megabytes of hard disk drive space, and installed in 2017, on April 22nd. This
was used to run the “Alpha” version of NetBeans 9, which runs on Java 8. To remove a piece of software,
select it, by clicking on it (it will turn blue), and either click the Uninstall button, shown at the top of
Figure 1-2, or you can alternately right-click on the (blue) software package (removal) selection, and select
Uninstall from a context-sensitive menu that appears.

I left the tool-tip which says: “Uninstall” showing in the screen shot, so that you can see that if you
“hover” your mouse over anything in the Programs and Features utility, it will tell you what that particular
feature is used for.

Once you click on the Uninstall button, this utility will remove your older versions of Java 8. Remove
the smaller version of Java 8 (non-JDK) first, and then remove the larger (full JDK) version, as the full JDK
is required to remove the smaller JDK, as well as any old versions of NetBeans. You will need to have Java 8
installed if you want to remove NetBeans IDE, as NetBeans IDE is written in Java and requires a Java JDK to
be installed in order to uninstall it.

Once you remove the full Java 8 JDK, there will only be (Alpha) versions of Java 9 (if you are me, writing
this book, that is), as can be seen in Figure 1-3, labeled as Version 9.0.0.0. If you want to keep your older
Java project files, make sure and back up your Java project files folder, if you haven’t done that already, that
is. Make sure that you back up your workstation’s hard disk drive regularly, so that you do not lose any 3D,
content production and coding work.

I removed any Alpha or Beta versions of Java 9 JDK software by again selecting it by clicking on it (it will
turn blue), and either click the Uninstall button, seen at the top of Figure 1-3, or you can alternately right-
click on the blue software package (removal) selection, and select Uninstall from a context-sensitive menu
(opened by right-clicking).

Figure 1-2. Select versions of Java older than Java 9 and click the Uninstall option at the top, or right-click
and uninstall

www.ebook3000.com

http://www.ebook3000.org

Chapter 1 ■ the Different faCes of Java: Create a Java 9 Development Workstation

6

Now that I have removed outdated versions of Java from my workstation, I will go and get the latest Java
9 Development Kit (JDK) versions from the Internet and install them on my Windows content development
workstation.

Downloading and Installing the Oracle Java 9 JDK
Now that outdated versions of Java have been removed from your workstation, you will need to go onto the
Internet and to the Oracle website to get the latest Java 9 development JDK and IDE, since after all this is the
Pro Java 9 Games Development book. I’ll show you how to do this using direct download URLs, and where
they are are currently, at the time of writing this book. If these links have changed, simply use Google with
the search term “Java 9 JDK Download.” The download is currently located at the Oracle Tech Network, as is
shown at the top of the screen shot in Figure 1-4.

Figure 1-3. Select Alpha versions of Java 9, and click the Uninstall option at the top, or, right-click, and select
Uninstall

Chapter 1 ■ the Different faCes of Java: Create a Java 9 Development Workstation

7

Before you can download the 360 Megabyte JDK9 installer file for Windows 64-bit, you will need to click
the radio button next to an Accept License Agreement option, which can be found at the top-left of the
download table.

Once you accept this license agreement, five OS-specific links will become activated for use, including
Linux, Mac OS/X, Windows (7 through 10), and Solaris. Be sure to match the Java JDK software that you
download to match your operating system. As you can see, there are now only 64-bit (or x64) versions
available for use on 64-bit systems.

To launch a downloaded JDK9 installer, right-click on the file and use Run as Administrator to install
it using Administrator priveledges (or as Superuser on Linux). Accept the default settings in the six dialogs,
seen in Figure 1-5.

Figure 1-4. The JDK9 Download link at oracle.com/technetwork/java/javase/downloads/jdk9-downloads-
3848520.htm

www.ebook3000.com

http://www.ebook3000.org

Chapter 1 ■ the Different faCes of Java: Create a Java 9 Development Workstation

8

If you want to check and see if Java 9 installed on your system simply use the same Control Panel
utility that you used in Figures 1-1 through 1-3. As you can see in Figure 1-6, the real version of Java 9.0
(not the alpha version) is now installed on my system, at 763 megabytes in size, and in my case, installed on
10/7/2017.

Figure 1-5. Install the Java 9 JDK on the workstation, accepting the default settings in the six Java 9
installation dialogs

Figure 1-6. Find the JDK-for the latest (currently 9.0.1) Java 9 version and make sure it is installed

Next, let’s install Java 8, used currently to run NetBeans 8.2 (you may already be developing using
this IDE), and also used currently to run the NetBeans 9.0 IDE (beta), which I used for this book, because
eventually Java 9 and NetBeans 9 will be used together to develop Java 9 Games. During the transition
period, NetBeans 9.0 runs on Java 8, so I am adding a section or two on how this works, for the early adopters
of the book who may use this configuration.

Chapter 1 ■ the Different faCes of Java: Create a Java 9 Development Workstation

9

Downloading and Installing the Oracle Java 8 JDK
You may be wondering why we are downloading the latest version of Java 8 (currently update 152) right now,
given that this is a Java 9 Games book. The reason is because although Java 9 JDK came out in September, the
NetBeans 9 IDE version is still in beta (I wrote the book while it was still in alpha), meaning that NetBeans 9
(beta) still runs on top of Java 8, due to the complexity of modules in Java 9 (meaning the programmers are still
modularizing NetBeans 9 so that it will be coded in Java 9). Once NetBeans 9 is released, it is likely that it will
run directly on top of Java 9 JDK. There is a way to get to a webpage on the Oracle Tech Network that has links
to both Java 8u144 and Java 9.0, located at the URL www.oracle.com/technetwork/java/javase/overview/
index.html as seen in Figure 1-7. The download links for both JDKs are located at the very bottom of the
webpage, so just click the Download link for the Java SE 8 update 144 JDK (already upgraded to 8u152).

Figure 1-7. The Oracle Tech Network Java SE Overview webpage, which has links to Java 9 JDK as well as to
Java 8u144

As you can see, there is also a red End of Public Updates for Oracle JDK 8 admonition, circled in the
middle of the webpage. Java 8 does not have a lot of bugs, as after all it has been through over 144 updates
and is quite solid! Java 9 is a rewrite, in a sense, as it has been remodularized, so all the “wiring” of API
classes and packages (into modules) is being redone, which is why NetBeans 9 (which was coded in Java) is
not complete (coded and debugged) at the same time as Java 9. Previous versions of Java and NetBeans have
come out at (or near) the same time, and had a NetBeans bundle download (shown for NetBeans 8.2 at the
top of Figure 1-8, via the download icon on the right hand side).

www.ebook3000.com

http://www.oracle.com/technetwork/java/javase/overview/index.html
http://www.oracle.com/technetwork/java/javase/overview/index.html
http://www.ebook3000.org

Chapter 1 ■ the Different faCes of Java: Create a Java 9 Development Workstation

10

The Java SE downloads page seen in Figure 1-8, is the page the Download link on the previous page will
take you. At the bottom of the page you will find the Java SE 8u144 section with three Download buttons in
it. The first top button says JDK. This is the button you want to click to start a JDK 8u144 download. This will
take you to the page for oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html,
which is shown in Figure 1-9.

Click an Accept the License radio button to enable all download links, and click the link for your OS
version.

Figure 1-8. The Oracle Tech Network Java SE Download webpage which has links to Java 8u144 JDK at the
very bottom

Chapter 1 ■ the Different faCes of Java: Create a Java 9 Development Workstation

11

Notice that for Java 8 there are both 32-bit (i586) and 64-bit (x64) versions, as well as ARM CPU versions,
which gives us over a dozen choices. Select the 64-bit version for your OS, to match what you installed for
Java 9.0.

Now we can install the NetBeans 9.0 Integrated Development Environment, or IDE for short, which will
use the Java 8 Run-Time Engine (JRE) that we just installed to run Java code which will create the NetBeans 9
IDE for you.

Since NetBeans 9 is transitioning from Oracle to Apache, there are actually two code repositories
currently. I am going to first show you the one that I used while writing the book, which is hosted at Oracle,
and second, I’ll show you the one hosted at Apache, which uses a beta repository called Jenkins, and also a
link to GIT where you can build the NetBeans IDE from scratch if you so desire. There will also eventually be
a “bundle” of Java 9 and NetBeans 9 as a single install. This is of course the easiest and most desireable, but
does not exist currently, so I am covering the more advanced ways to build and install NetBeans 9.0 since it
is not yet finished. This complicates installation currently, but there is nothing that I can do about this other
than to give you all of this additional extra information, so that you can get NetBeans 9.0 up and running for
Java 9 and JavaFX 9 development before the final NetBeans 9 on Java 9 bundle is released. This gives you a
head start on everybody else as far as Pro Java 9 Games Development is concerned.

Figure 1-9. The JDK8 Download link at oracle.com/technetwork/java/javase/downloads/jdk8-downloads-
2133151.htm

www.ebook3000.com

http://www.ebook3000.org

Chapter 1 ■ the Different faCes of Java: Create a Java 9 Development Workstation

12

Installing the Oracle NetBeans 9.0 (Development) IDE
Since NetBeans 9 is still in development, I am going to show you how I got the NetBeans 9 release from
Oracle, as well as in the next section how the general public will eventually get the NetBeans 9 IDE from
Apache. In this way you will know all of the ways to download and install NetBeans 9. The Oracle repository
(which will exist until the official transfer of the software to Apache) is located at bits.netbeans.org/
download/trunk/nightly/latest/ and looks like the original NetBeans download page that you are all familiar
with, shown in Figure 1-10. I would recommend using the simplest (smallest) Java SE version of the software,
since it includes the three APIs (NetBeans, Java and JavaFX) which we are covering in this book. Click the
first Download (Free, 97MB) button, and start the NetBeans download process.

Figure 1-10. The Oracle NetBeans 9.0 IDE download page located at bits.netbeans.org/download/trunk/
nightly/latest/

Once this installation file downloads, right-click on it, and select Run as Administrator (Superuser on
Linux), and you will see the first Welcome dialog, seen at the top-left of the six dialog screenshot, shown in
Figure 1-11.

Chapter 1 ■ the Different faCes of Java: Create a Java 9 Development Workstation

13

Click on the Next button to begin the default (full) installation, and you will get the NetBeans IDE 9
License Agreement dialog, shown in the top middle of Figure 1-11. Select the “I accept the terms in the
license agreement” checkbox, shown circled in red, and click the Next button, to advance to the NetBeans
IDE Build Installation dialog, shown on the right side of Figure 1-11. The third dialog specifies the install
location in the Program Files directory, and also specifies the JDK to use for Java development. Notice that
NetBeans 9 is smart enough to pick Java 9 over Java 8 (you have installed both, as you can have more than
one Java version installed on any given workstation), and defines what version of Java you will be developing
games for (this used to have to be set manually inside NetBeans). Leave these at their default setting, and
click the Next button to advance to the Summary dialog, shown in the lower-left in Figure 1-11. Be sure to
leave Check for Updates selected, so that NetBeans 9 will automatically update itself.

Once you click on the Install button, NetBeans will install the base IDE as can be seen in the bottom-
middle dialog in Figure 11-1, showing you what it is doing via a progress bar and extracted files text
underneath it. When the setup is complete, you will get a Setup Complete dialog, which will give you the
checkbox option to “Contribute to the NetBeans project by providing anonymous usage data.” I chose to
select this option, to help the NetBeans developers.

One final step, which you should do for all of the various game development and game asset
development software packages which we will be installing in this first chapter, is to test the installation by
launching the software to make sure that it runs.

This is done by finding the software icon on your desktop (double-click desktop icons to launch them)
or in your Taskbar (called a Quick Launch icon, which only requires a single click to launch) and launching
the software. In the case of NetBeans 9 IDE, the result should look like Figure 1-12 on the left hand side.

Figure 1-11. Accept the terms of the license agreement, click the Next button (left) and do the same for JUnit
(right)

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_11#Fig1
http://www.ebook3000.org

Chapter 1 ■ the Different faCes of Java: Create a Java 9 Development Workstation

14

To confirm how NetBeans 9 is set up, use the Help ➤ About menu sequence, which is seen on the
right hand side of Figure 1-12, showing your product version, Java JDK version being used, Java Runtime
Environment (JRE) being used (JRE is part of the JDK install) to run NetBeans 9.0, Operating System being
used, and the User directory location and Cache directory location. If you ever have a problem installing
subsequent versions of this IDE, try deleting these two (that is, deleting the \dev folder), as they contain
information from the previous NetBeans installation which may misdirect the next NetBeans installation.

Next, I’m going to show you how and where to go to install the Apache NetBeans product, as at some
point in time, NetBeans 9.0 will be finished transferring over from Oracle to Apache (just as was done with
Open Office). I’m not sure when this will happen, probably sometime in 2018, but I cannot wait that long to
release this book, so I am simply going to show you all of the different ways that you can get NetBeans 9.0.
Note that if you wanted to use 8.2, on top of Java 8, this is fine as well, as the JavaFX 8 (and JavaFX 9) classes
(API) have not changed. This is because the focus for Java 9 (and NetBeans 9) was just to introduce modules
into the workflow and get the IDE working, so JavaFX was left alone and the focus was on the other parts of
Java (as you’ll see, JavaFX is the Java multimedia/game engine).

Installing the Apache NetBeans 9 (Development) IDE
Next we are going to take a look at the Apache Jenkins and GIT Repository for NetBeans, which is where the
software is going to “land” after the transfer currently underway is finished. The Apache Jenkins’ NetBeans
site is located at https://builds.apache.org/job/incubator-netbeans-windows/ and is what is called
an “incubator” site. An incubator is used to hatch eggs, so the inference here is that until a NetBeans 9
on Java 9 bundle is “hatched,” this is where you can get the NetBeans 9 IDE software while it is still under
development. You can see what the Apache Jenkins website looks like at this time (there is a chance that this
could change) in Figure 1-13. As you can see it has quite a few options.

Figure 1-12. Launch NetBeans using the Desktop or Quick Launch (Silver Cube), and make sure the software
will launch

https://builds.apache.org/job/incubator-netbeans-windows/

Chapter 1 ■ the Different faCes of Java: Create a Java 9 Development Workstation

15

The top left part of Jenkins has the Jenkins software incubator function navigation links, so that you
can go back to the Dashboard (home page), get Development Status, see Changes amongst builds, see a
Dependency Graph, get a Build Time Blame Report, see a GIT Polling Log, get the Embedded Build Status,
see a Test Results Analyzer, Skip Builds and Open Blue Ocean. Blue Ocean is a free, open source, continuous
update utility which essentially makes you feel like you are part of the software development team.

Underneath that is the Build History. This is a pane that contains the builds, as they are built, complete
with progress bars and build times and completion estimates. If you click on one of these builds (if it is
finished) it opens up another window (browser tab) with details on the build and a download link. This is
shown in Figure 1-14.

Figure 1-13. Apache Jenkins' NetBeans is located at https://builds.apache.org/job/incubator-
netbeans-windows/

www.ebook3000.com

https://builds.apache.org/job/incubator-netbeans-windows/
https://builds.apache.org/job/incubator-netbeans-windows/
http://www.ebook3000.org

Chapter 1 ■ the Different faCes of Java: Create a Java 9 Development Workstation

16

To download one of these ZIP files, right-click on it, and use the Save As function, and save the ZIP file
in the location (directory/folder) on your hard disk drive that you want to unZIP (decompress) NetBeans 9
from. Notice that this is a different approach than an installer (.exe or .msi) will take, as an installer will put
the files into a Program Files folder, along with other installed applications, and will create a desktop icon
and Taskbar quick launch icon.

I was told that the Linux builds work under Windows as well, but at some point there may be separate
build versions for Mac OS/X, Linux and Windows. I also put a request into the developer list for an Ubuntu
LTS Linux 17 PPA repository to be set up, so that automatic updates to NetBeans 9.0 IDE can be done by
Ubuntu LTS with little end-user intervention needed. If you have not looked at Ubuntu LTS 17.10 or 18.04 yet
you might want to do that now; you will be amazed at how far Ubuntu Linux (Debian, the other major Linux
distribution is Fedora) has come relative to OSX or Windows.

Once you unzip NetBeans 9 (I named my folder NetBeans-9-Build) go into the /bin (binary) folder, and
right-click on netbeans64.exe, and use Run as Administrator. After the startup branding screen and load
progress bar, you will get a Licensing Agreement dialog, which you will have to accept (agree to) in order to
launch the IDE software.

Figure 1-14. Click a version to get a build page, shown is builds.apache.org/job/incubator-netbeans-
linux/74/

Chapter 1 ■ the Different faCes of Java: Create a Java 9 Development Workstation

17

Next, let’s go and download a dozen or so of the most popular (and free) open source new media
content development software packages, so that you will have all of the powerful, professional tools that
you will ultimately need for your Pro Java 9 Game Development business. This represents tens of thousands
of (your currency here, mine is dollars) paid software packages, so this first chapter will ultimately become
quite valuable to all of the readers.

After that, I’ll tell you about some other impressive open source software that I use on my workstations,
so that if you want to put together the ultimate software development workstation, before this chapter is
over, you can do that, creating an incredibly valuable content production workstation, for the cost of the
hardware (and OS) alone.

Installing New Media Content Production Software
There are a number of “genres” of new media elements, or “assets” as I call them, which are supported in
JavaFX 9, which is the new media “engine” for Java 9, and therefore what you’ll be using as the foundation for
your Pro Java 9 Games Development. The primary genres of new media, which you will be installing leading
open source software for during the remainder of this chapter, include: SVG digital illustration, digital image
compositing, digital audio editing, digital video editing, VFX or Visual Effects, 3D modeling and animation,
virtual world creation, character animation, songwriting, digital audio sampling, office productivity (yes, you
have to sell your games as well), and much more.

Downloading and Installing InkScape for SVG Digital Illustration
Since JavaFX supports 2D or “vector” technology, commonly used in digital illustration software packages
such as Adobe Illustrator and Freehand, we will download and install the popular open source digital
illustration software package known as InkScape, which recently had a huge jump in versioning from 0.48
to 0.92, and has professional features. InkScape is available for the Linux, Windows and Macintosh operating
systems, just like all of these software packages that we will be installing during this chapter, so readers can
use any platform they like to develop games. If you want to learn more about digital illustration and SVG,
take a look at the Digital Illustration Fundamentals title from Apress.

To find the InkScape software package on the Internet, use the Google Search Engine, and type in
InkScape. Visit the website and click on the DOWNLOAD menu at the top left or on the Download icon on
the right, as shown in Figure 1-15. The Download icon will represents the operating system which you are
using as auto-detected by website code that polls your system for what OS it is using, and automatically gives
you the correct version, with a single click.

www.ebook3000.com

http://www.ebook3000.org

Chapter 1 ■ the Different faCes of Java: Create a Java 9 Development Workstation

18

Once you have downloaded the InkScape software, right-click on the filename, and Run as
Administrator to install it on your workstation. If you like, you can use the Programs and Features utility
that you used earlier in the chapter to uninstall a previous Inkscape version.

After your software is installed, create a Quick Launch Icon on your Taskbar so that you can launch
InkScape with a single click of the mouse. Next, you’ll install a popular digital imaging software package
called GIMP, which will allow you to create “raster,” or pixel-based, artwork for games using JPEG, PNG,
WebP, or GIF digital image formats.

Downloading and Installing GIMP for Digital Image Compositing
Since JavaFX also supports 2D images that utilize “raster” image technology which represents images as
an array of pixels. This is what is used in paid digital image compositing software packages, such as Adobe
Photoshop and Corel Painter. We’ll download and install the popular open source digital image editing and
compositing software package known as “The Gimp.” GIMP is available for the Linux, Windows, Solaris,
FreeBSD, and Macintosh operating systems. If you want to learn more about digital image compositing, take
a look at the Digital Image Compositing Fundamentals title from Apress. To find the GIMP software on the
Internet, use Google Search, and type in GIMP. The website is shown in Figure 1-16.

Figure 1-15. Google the word InkScape, go to the inkscape.org website, click on the download icon, or
download menu

Chapter 1 ■ the Different faCes of Java: Create a Java 9 Development Workstation

19

Click on the Download link (or right-click, and open it in a separate tab), and click on the Download
GIMP 2.8.22 (or later version such as the new 2.10 or 3.0 versions currently in beta at 2.9.6 and soon 2.9.8)
which represent the operating system that you are using.

The download page will automatically detect what OS you are using, and give you the correct OS
version; in my case, I am using GIMP on Windows7, Windows 10 and Ubuntu LTS Linux 17.04, as I have
it installed on every single workstation I have. Needless to say, open source software has a plethora of
advantages over paid software packages.

Once the software is downloaded, install the latest version of GIMP, and then create a Quick Launch
Icon for your workstation Taskbar, as you did for InkScape.

Next, we’ll install a powerful digital audio editing and special effects software package called Audacity.

Downloading and Installing Audacity for Digital Audio Editing
JavaFX supports 2D (and 3D) digital audio which utilizes digital audio technology. Digital audio represents
analog audio by taking digital audio “samples.” Digital audio content is commonly created using digital
audio composition and sequencer software packages such as Cakewalk Sonar. If you want to learn more
about digital audio editing, take a look at the Digital Audio Editing Fundamentals title from Apress. In
this section, we will download and install the popular open source digital audio editing and optimization
software package known as “Audacity.” Audacity is available for the Linux, Windows and Macintosh
operating systems. To find the Audacity software package on the Internet, use the Google Search Engine,
and type in Audacity, which will show you the Audacity Team website. Go to this website, as shown in
Figure 1-17, at the top-left. Click on the Download Audacity link (or use the Download menu) and click on
the Audacity for Windows (or OS version which you’re using). I also use Audacity 2.1.3 on Ubuntu Linux
LTS OS 17.04.

Figure 1-16. Google Search GIMP; go to gimp.org; click the Download link for 2.8.22, or for 2.10 (currently
2.9.6 beta)

www.ebook3000.com

http://www.ebook3000.org

Chapter 1 ■ the Different faCes of Java: Create a Java 9 Development Workstation

20

Download and install the latest version of Audacity, currently this is 2.1.3, and create the Quick Launch
Icon for your workstation Taskbar, as you did for InkScape and GIMP. Audacity 2.2.0 may be out by the time
you read this, and adds a new user interface design and lots of cool new digital audio editing, synthesis, and
sweetening features.

Next, you will install a professional, non-linear digital video editing and “color timing” (also known as
color correction) software package used for feature films, recently upgraded from version 12.5 to version 14,
called Black Magic Design DaVinci Resolve. This software packages used to cost thousands of dollars, just a
year or two ago!

Downloading and Installing DaVinci Resolve 14 for Digital Video
JavaFX 9 supports digital video, which utilizes “raster” pixel-based motion video technology. This represents
video as a sequence of frames, each of which contains a digital image based on an array of pixels. Digital
video assets are usually created with digital video editing and color timing software packages such as
AfterEffects and EditShare LightWorks. In this section, we will download and install the latest version of
an open source digital video editing software known as DaVinci Resolve 14. This package is available for
Windows 10, Mac OSX, and Ubuntu Linux, and other distributions. To find DaVinci Resolve, use Google
Search and type in DaVinci Resolve. Click the Download button as seen in Figure 1-18 in the middle, or
scroll to the bottom of the page, where you can click on the FREE DOWNLOAD button.

Figure 1-17. Google the word Audacity, go to audacityteam.org, and click a Download Audacity link
matching your OS

Chapter 1 ■ the Different faCes of Java: Create a Java 9 Development Workstation

21

Install the software, and create a Quick Launch Icon for your Taskbar, as you did for all the other
software. If you want to learn more about digital video editing, take a look at the Digital Video Editing
Fundamentals title from Apress. Next, we’ll install an advanced Special Effects, 3D modeling and animation,
and VR package, called BlackMagic Fusion.

Downloading and Installing Blackmagic Fusion for Visual Effects
JavaFX also supports special effects pipelines, since all of the new media genres can be combined together
seamlessly using Java 9 code. SFX utilizes “raster” pixel-based motion video technology, static image
compositing, digital audio, 3D, i3D and SVG digital illustration together all at once, and is therefore as
advanced as 3D modeling and animation. BlackMagicDesign’s Fusion used to be a paid software package
until it was made open source. There is a professional version which used to cost $999 which is now $299! If
you are serious about multimedia, purchase this!

You first have to register on the BlackMagicDesign.com website to be able to download and use this
software. This package is available for Linux, Windows 10, and Macintosh operating systems. To find Fusion
the Internet, use Google Search Engine and type in Fusion 9, and you will be directed to what is shown in
Figure 1-19. Click on the DOWNLOADS button that represents the operating system that you are using.
This download page will automatically detect what OS you are using; in my case, Windows.

Figure 1-18. Google the word DaVinci Resolve; go to BlackMagicDesign.com webpage; click on the Download
button

www.ebook3000.com

http://www.ebook3000.org

Chapter 1 ■ the Different faCes of Java: Create a Java 9 Development Workstation

22

Register on the BlackMagicDesign.com website, if you havn’t done so already, and once you’re
approved, you can then download and install the latest version of Fusion 9. Install the software, and create
a Quick Launch Icon for your Taskbar, as you did for the other software. If you want to learn Fusion in
detail, Apress.com has a recent book entitled VFX Fundamentals that gets into Fusion and Visual Effects
Compositing Pipelines in much greater detail.

Next, we’ll install a 3D modeling and animation package, called Blender.

Download and Install Blender for 3D Modeling and Animation
JavaFX has recently moved to support 3D new media assets which are created outside of the JavaFX
environment, which means that you will be able to create 3D models, textures and animation using third
party software packages such as Autodesk 3D Studio Max or Maya and NewTek Lightwave. In this section we
will download and install the popular open source 3D modeling and animation software package known as
“Blender.” Blender is available for the Linux, Windows and Macintosh operating systems, so readers can use
any operating system platform that they like to create and optimize 3D models, 3D texture mapping and 3D
animation for use in their Java 9 and JavaFX 9 games.

To find the Blender software on the Internet, using the Google Search Engine and type in Blender as
shown in Figure 1-20. Click on the correct download link to download and install Blender, then create the
Quick Launch Icon.

Figure 1-19. Google the word Fusion 9; go to the blackmagicdesign.com download page; click on the
download button

Chapter 1 ■ the Different faCes of Java: Create a Java 9 Development Workstation

23

Download and Install Terragen for 3D Terrain or World Creation
Another impressive (and free, for the basic version, or if you are in the education industry) 3D world
generation software package is Terragen 4.1 from Planetside Software in the UK. You can download the
basic version at Planetside.co.uk, as well as joining their Forum. I’ve used this software in a couple of my
Android application development book titles as well, so I know it works well for use in projects such as
multimedia applications, Interactive TV or iTV, and games. It is also used by professional filmmakers, as its
quality level is extremely pristine. Since we’re covering 3D in the book, you may want to look into Terragen,
as it’s affordable, and used by television producers and movie studios. To find the Terragen software on the
Internet, use the Google Search Engine and type in Terragen 4.1. Click on the link, which will bring up the
Planetside Software website as shown in Figure 1-21.

Figure 1-20. Google the words Blender 3D, go to www.blender.org and click on the blue Download Blender
2.79 button

www.ebook3000.com

http://www.blender.org/
http://www.ebook3000.org

Chapter 1 ■ the Different faCes of Java: Create a Java 9 Development Workstation

24

Click on the GET IT download link to download and install Terragen, then create a Quick Launch Icon
for the software. If you like this 3D software be sure and upgrade to the Pro version of the software, which is
very affordable.

Downloading and Install Daz Studio Pro for Character Animation
For professional 3D character modeling and animation, be sure to check out the 3D software packages from
DAZ 3D, located at daz3d.com, when you have the chance. The current version of DAZ Studio PRO is 4.9,
and yes, it is free! You have to log in and sign up, like you did for Black Magic Design software, but that is a
small price to pay! There is also a free 3D modeling software package on this website called Hexagon. The
most expensive software on the DAZ 3D website is Carrara ($150) or Carrara Pro ($285). DAZ Studio makes
most of their revenues selling character models of one type or another, so check them out, as they are a force
to be reckoned with in the 3D content (virtual) world!

To find the Daz Studio Pro software on the Internet, using the Google Search Engine and type in
Daz Studio Pro 5 download. The link should take you to the daz3d.com/daz_studio page, as is shown in
Figure 1-22. Click on the download link to download and install the latest version of Daz Studio Pro, and
then create your Quick Launch Icon.

Figure 1-21. Google the word Terragen; go to the planetside.co.uk website; click on a blue GET IT button to
download

Chapter 1 ■ the Different faCes of Java: Create a Java 9 Development Workstation

25

Other Open Source New Media Software Packages
There are a significant number of other professional level, open source software packages which I also use in
my new media content production business. I thought it would be nice to let you know about some of these,
in case you had not heard about them. These will add even more power and versatility to the new media
production workstation that you have built up to this point during this chapter. It is important to note that
you have already saved yourself thousands of dollars (or your native unit of currency), which would have
been spent on similar paid content production software packages, during this process of doing all of this
extensive downloading and installing. I guess my motto could be said to be: “do it right the first time, and be
sure to go all the way,” so I will go ahead and tell you about some of the other free, and even about some of
the more approachable (not free, but very affordable) new media content production software packages that
I usually have installed on my 3D content production workstations.

One of the best values in open source software, aside from the DaVinci Resolve package, which used
to cost close to six figures (back in the day), is a business productivity software suite which was acquired
by Oracle after their acquisition of Sun Microsystems and then made open source. Oracle transferred their
OpenOffice software suite over to the popular Apache open source project, just like they are doing currently
with NetBeans 9.

Open Office 4.3 is an entire office productivity software suite, which contains six full-fledged business
productivity software packages! Since your content production agency is actually a full-fledged business
concern, you should probably know about office software, as this is an exceptionally solid open source software
offering. You can find it at: OpenOffice.org, and this popular business software package has been downloaded
by savvy professionals such as yourself over one hundred million times, so, it’s no joke, as they say!

For user interface (UI) design prototyping there’s a free software package called Pencil 2.0.6 from
Evolus.vn which will allow you to easily prototype user interface designs before you create them in Java,
Android or HTML5. The software is located at pencil.evolus.vn and is available for Linux Distros,
Windows 7 and 8.1, and Macintosh OS/X.

A great compliment to the Audacity 2 digital audio editing software is the Rosegarden MIDI sequencing
and music composition and scoring software, which can be used for music composition, and for printing
out your resulting scores for music publishing. Rosegarden is currently being ported from Linux to Windows.

Figure 1-22. Google the words Daz Studio Pro, go to www.daz3d.com, and download the latest version of Daz
Studio

www.ebook3000.com

http://www.daz3d.com/
http://www.ebook3000.org

Chapter 1 ■ the Different faCes of Java: Create a Java 9 Development Workstation

26

Note the most full featured version is for Linux, and can be seen in Figure 1-23. It can be found using Google
Search, or at RoseGardenMusic.com, and it is currently at version 17.04 (same as Ubuntu LTS). This is
popularly called the “Twice in a Blue Moon” version.

Figure 1-23. Rosegarden is a MIDI, music scoring, and notation program for Linux which is being ported to
Windows 10

Another impressive audio, MIDI and sound design software package is called Qtractor, which is a hard
disk drive based audio sampler, editor and sound design package, shown in Figure 1-24. So if you’re running
the Linux OS, be sure to Google Search, download, and install this professional level digital audio synthesis
software package, which you can find on SourceForge at the Qtractor.SourceForge.net URL website
address.

Chapter 1 ■ the Different faCes of Java: Create a Java 9 Development Workstation

27

Figure 1-24. Qtractor, the hard disk based digital audio editing software for Linux

Another impressive free 3D modeling and animation software, which used to cost nearly a thousand
dollars when it was developed by Roman Ormandy at Caligari Corporation (it was later purchased by
Microsoft), was Caligari TrueSpace 7.61, which you can find on multiple sites simply by doing a Google
Search for Caligari TrueSpace 3D.

Another 3D rendering software you should take a look at is POVRay. POV stands for “Persistence of
Vision,” and this software is what is known as a “raytracer,” an advanced rendering engine, which works with
any 3D modeling and animation software packages, to generate impressive 3D scenes using advanced ray-
traced rendering algorithms. The most recent version can be found on the www.povray.org website. It is 3.7,
and the latest version is 64-bit, and is multi-core (multi-threaded) compatible, and can be downloaded for
free, which is why I am telling you about it here.

Another sleek 3D modeling software package which was specifically designed for use with POVRay
is Bishop 3D. The software could be used to create custom 3D objects, which can then be imported into
POVRay (and then into JavaFX) for use in your pro Java games. The most recent version is 1.0.5.2, for
Windows 7, or 10. The software can be found on www.bishop3d.com, and the latest version is an 8MB
download, and can currently be downloaded for free.

Another free 3D subdivision modeling software you should take a look at is Wings3D. This software
could be used to create 3D objects, which could then be imported into JavaFX for use in your games. The
most recent version is 2.1.5 and was released in December of 2016 for Windows 10, Macintosh OS/X and

www.ebook3000.com

http://www.povray.org/
http://www.bishop3d.com/
http://www.ebook3000.org

Chapter 1 ■ the Different faCes of Java: Create a Java 9 Development Workstation

28

Ubuntu Linux. The software can be found on the wings3d.com and the latest version is 64-bit, is a 16MB
download, and can currently be downloaded for free.

Next I will show you how I organize some of the basic OS utilities and open source software on the
Taskbar. Over the next few chapters, we will start to learn the principles behind using new media assets, and
after that, how to use NetBeans 9 to create a JavaFX 9 project, and then we will get into the Java programming
language, in the chapter after that, before we start to learn about the particulars regarding the powerful
JavaFX 9.0 multimedia game engine.

Organizing Quick Launch Icons in Your Taskbar Area
There are certain operating system utilities, such as the calculator, text editor (called Notepad in Windows),
and file manager (called Explorer in Windows), for which I keep Quick Launch Icons in my Taskbar, as
these are used frequently in programming and new media content development work processes. I also keep
a wide range of new media development, programming, and office productivity applications on my Taskbar
as Quick Launch Icons, as you can see in Figure 1-25, which shows a dozen of these, including everything
that we just installed, in the order that we installed it, as well as a few others, including OpenOffice 4.3, DAZ
Studio Professional 4.9, and Bryce Professional 7.1.

Figure 1-25. Make Taskbar Quick Launch Icons for key system utilities, NetBeans 9 and new media
production software

There are a couple of ways to create these Quick Launch Icons; you can drag and drop programs right
out of the Start menu onto the Taskbar, or you can right-click icons on the desktop or in the Explorer file
manager and select the Pin to Taskbar context-sensitive menu option. Once icons are in the Taskbar, you
can change their position simply by dragging them to the left or to the right.

Congratulations! You’ve just created your new media Java Game and IoT Development workstation,
which is highly optimized, and will allow you to create any new media Java Game, or IoT project, that your
clients can imagine!

Summary
In this first chapter, you made sure that you had everything that you needed to develop innovative Java
Games or IoT projects, complete with the latest versions of Java 9, JavaFX 9.0, NetBeans 9 and all of the latest
open source new media software. This involved getting the latest Java 9 JDK and NetBeans 9 IDE software,
and then we installed Java 9 and then NetBeans 9. After that, you did the same for a gaggle of professional,
open source, new media content tools.

29© Wallace Jackson 2017
W. Jackson, Pro Java 9 Games Development, https://doi.org/10.1007/978-1-4842-0973-8_2

CHAPTER 2

An Introduction to Content
Creation: 2D New Media Asset
Fundamentals

Now that you have a pro Java game and IoT development workstation put together, thanks to the previous
chapter, let’s jump right in and learn about the basic 2D content development concepts and principles that
most of these new media content development software packages are based on. The exception to this is
Blender, which is based on more advanced 3D content development, which we will cover in the next chapter.
The reason that we need to cover this foundational multimedia material before we get into Java, NetBeans, and
JavaFX is because there’s an incredible level of support, thanks to the JavaFX multimedia engine, for digital
illustration using Scalable Vector Graphics (SVG); digital imaging using raster (bitmap) image formats such as
PNG, JPEG, or GIF; and digital audio using audio formats such as MP3, MPEG4 AAC, WAV or AIFF (PCM), and
3D, using the JavaFX internal rendering engine. I assume that you are not going to be creating text-based games
but rather interactive new media applications, so I wanted to cover some non-coding-related topics first. Once
we start coding using the NetBeans, Java, and JavaFX APIs, we’ll never stop coding.

During this chapter, you’ll get a detailed overview of the concepts behind each of the 2D new media
content types that are supported in JavaFX, including digital illustration (vector), digital imaging (raster),
digital video (motion), and digital audio (waveform). We will do this so that you have the foundational
knowledge to be able to use the free, open source, multimedia content production tools that you
downloaded and installed in Chapter 1 for game design.

The first thing that I want to cover is the foundational new media asset type of digital imagery, as it
will be used as the foundational input asset for many of the other new media asset types. For instance, your
digital video is simply a series of digital images played rapidly over time to create an illusion of motion. Your
2D vector illustration assets can be filled with digital image data using the JavaFX ImagePattern class, and
your 3D vector assets can use digital image assets for shaders and texture maps, which we will be covering
in Chapter 3, including advanced 3D content creation and related JavaFX packages and classes that are used
to implement these 3D content elements.

The next thing I will cover are the concepts, techniques, and “lingo” of digital video, including things
such as frames, frame rates, bit rates, and other concepts that add the fourth dimension of time, making
static digital image assets into animated digital video assets. These concepts also relate to animation as well,
including both 2D animation and 3D animation. We will be covering 2D vector and 3D vector concepts
during Chapter 3, as they are closely related.

Finally, we’ll take a look at digital audio concepts; digital audio is closely related to digital video because
it can be contained within a digital video file format. Digital audio can also exist on its own, and therefore
we will also cover digital audio format support in JavaFX, as well as a digital audio asset data footprint

www.ebook3000.com

https://doi.org/10.1007/978-1-4842-0973-8_2
http://dx.doi.org/10.1007/978-1-4842-0973-8_1
http://dx.doi.org/10.1007/978-1-4842-0973-8_3
http://dx.doi.org/10.1007/978-1-4842-0973-8_3
http://www.ebook3000.org

Chapter 2 ■ an IntroduCtIon to Content CreatIon: 2d new MedIa asset FundaMentals

30

optimization work process. We will thus be covering all of the 2D (X,Y data representation) new media forms
in this chapter with the exception of 2D vector illustration, which is closely related to 3D vector rendering,
which we cover in the first part of Chapter 3.

Game Design Assets: New Media Content Concepts
One of the most powerful tools that you have to make your game content professional and visually desirable
to your customers is the multimedia production software that you downloaded and installed in Chapter 1.
Before I get too far into this book, I need to spend some time providing you with the basic foundational
knowledge regarding the four primary types of new media assets that are supported in Java via the JavaFX
multimedia engine. These include digital images, used for sprites, background imagery, and 2D animation;
vector shapes, used in 2D illustration, collision detection, 2D shapes, paths, and curves; digital audio,
used for sound effects, narration, and background music; and digital video, used in games for animated
background loops (birds flying through sky, drifting clouds, etc.) and highly optimized video playback. As
you can see in Figure 2-1, these four 2D genres, or areas, are all installed in your games using the JavaFX
Scene Graph. There is one other new media area that I like to call Interactive 3D (i3D). i3D, which we will
cover in the next chapter about OpenGL ES, brings real-time 3D rendering to Java 8 and 9.

Since you’ll need to have a technical foundation before you can create, or properly implement, any
of these new media elements in a Java game design (or programming) pipeline, I am going to go over core
concepts for each of the four new media areas. The only two that are related conceptually are 2D animation
and digital video, as each of these involve using the fourth dimension of time and use frames, so I’ll cover

Figure 2-1. How 2D or audio new media assets are implemented in Scene Graph using JavaFX 9, Java 9, and
NetBeans 9

http://dx.doi.org/10.1007/978-1-4842-0973-8_3
http://dx.doi.org/10.1007/978-1-4842-0973-8_1

Chapter 2 ■ an IntroduCtIon to Content CreatIon: 2d new MedIa asset FundaMentals

31

these together. Since digital audio also involves the fourth dimension of time, I will finish up with digital
audio concepts; finally, we will take a quick look at digital content optimization so that your pro Java games
and IoT projects are compact and download quickly.

Digital Imaging Concepts: Resolution, Color Depth, Alpha,
Layers
JavaFX supports the most popular digital imaging file (data) formats, which gives us game designers a ton
of flexibility. Since the JavaFX 8 API is now part of Java 8 and 9, this means Java also supports these image
formats. Some of these digital image formats have been around for decades, like the CompuServe Graphics
Information Format (GIF) or the widely used Joint Photographic Experts Group (JPEG) format. Some
of the JavaFX digital image formats are more modern; for instance, the Portable Network Graphics (PNG,
pronounced “ping”) is the file format that we will be using for our games because it yields the highest quality
level and supports image compositing, which we will be learning about soon. All of these mainstream digital
image file formats supported in Java are also supported in HTML5 browsers, and since Java apps can be used
inside HTML apps or web sites, this is a very logical synergy indeed! You can also use a third-party digital
image library called ImageJ, if you need a wider range of digital image file format support.

The oldest format is a lossless digital image file format called CompuServe GIF. It is termed lossless
because it does not throw away (lose) any source image data to achieve its compression result. The GIF
compression algorithm is not as refined (not as powerful) as the PNG format, and GIF only supports
indexed color, which is how it obtains its compression (smaller file size). We will be learning about color
depth (indexed color versus true color) in detail later in this section. If all your game image assets are
already created using the GIF format, you’ll be able to use them in your Java game with no problems, rather
than less efficient image compression and limited image compositing capabilities.

The most popular digital image format that Java supports via JavaFX is JPEG. JPEG uses a “true color”
color depth, instead of an indexed color depth. We’ll be covering color theory and color depth a bit later.
JPEG uses what is termed lossy digital image compression. This is because the compression algorithm
“throws away” image data so that it can achieve a smaller file size. This image data is lost forever, unless you
are smart and save the original raw image!

If you magnify a JPEG image after compression, you will see discolored or dirty areas, which clearly
weren’t present in your original image. The degraded area or areas in an image are termed compression
artifacts in the digital imaging industry. This will only occur in lossy image compression and is common
with JPEG (and MPEG) compression.

The digital imaging format that I recommend you use for your pro Java games is the Portable Network
Graphic file format. PNG has two true-color file versions; one is called PNG24 and can’t be used in image
compositing, and the other is called PNG32 and carries an alpha channel used to define transparency,
which we will be covering a bit later. There is also an indexed (a maximum of 256; can be fewer) color
version of the PNG format, called PNG8.

The reason I recommend PNG for your games is because it has a decent image compression algorithm
and because it is a lossless image format. This means that PNG has great image quality as well as reasonable
levels of data compression efficiency, which will make your game distribution file smaller. The real power of
the PNG32 format comes in its ability to composite with other game imagery using transparency and anti-
aliasing (via its alpha channel).

www.ebook3000.com

http://www.ebook3000.org

Chapter 2 ■ an IntroduCtIon to Content CreatIon: 2d new MedIa asset FundaMentals

32

Digital Image Resolution and Aspect Ratio: Defining Your Image Size
and Shape
As you probably know, digital imagery is made up of two-dimensional (2D) arrays of pixels. Pixels is short
for Picture (pix) Elements (els). The number of pixels in an image is expressed by its resolution, which
is the number of pixels in the image Width (or W, sometimes referred to as the x-axis) and Height (or H,
sometimes referred to as the y-axis) dimensions. The more pixels your image has, the higher the resolution
is said to be. This is similar to how digital cameras work, as the more megapixels there are in your image
capture device (which is usually your camera’s Charged-Coupled Device (CCD), which captures the image
data), the higher the image quality that can be achieved.

To find the total number of image pixels, multiply the width pixels by the height pixels. For instance, a
wide VGA 800x480 image will contain 384,000 pixels, which is exactly 3/8ths of 1MB. This is how you would
find the size of your image, both as far as kilobytes (or megabytes) used and height and width on the display
screen.

The shape of a digital image asset is specified using the image aspect ratio. Aspect ratio is the
width:height ratio for the digital image and defines a square (1:1 aspect ratio) or rectangular (also known
as widescreen) digital image shape. Displays featuring a 2:1 (widescreen) aspect ratio, such as 2160x1080
resolution, are widely available.

A 1:1 aspect ratio display or image is always perfectly square, as is a 2:2 or 3:3 aspect ratio image. An
IoT developer might see this aspect ratio on a smart watch, for instance. It is important to note that it is the
ratio between these two width and height numbers, or X and Y variables, that define the shape of an image
or a display screen, not the actual numbers themselves. The actual numbers define the resolution, or total
pixel array capability, for a screen.

An aspect ratio should always be expressed as the smallest pair of numbers that can be achieved
(reduced) on either side of the aspect ratio colon. If you paid attention in high school while you were
learning about the lowest common denominator, then an aspect ratio will be very easy for you to calculate.
I usually do aspect ratio calculation by continuing to divide each side of the colon by 2. For instance, if you
take the SXGA 1280x1024 resolution, half of 1280x1024 is 640x512, and half of 640x512 is 320x256. Half of
320x256 is 160x128, half of that again is 80x64, half of that is 40x32, and half of that is 20x16. Half of 20x16 is
10x8, and half of that gives you the 5:4 aspect ratio for SXGA.

Digital Image Color Theory and Color Depth: Defining Precise Image
Pixel Colors
The color values for each digital image pixel can be defined by an amount of three different colors, red,
green, or blue (RGB), which are present in different amounts in every pixel. Consumer electronic display
screens leverage additive colors, which is where wavelengths of light for each RGB color channel are
summed together in order to create 16.8 million different color values. Additive color is utilized in LCD,
LED, or OLED displays. It is the opposite of subtractive color, which is used in printing. To show you the
different results, under a subtractive color model, mixing red with green (inks) will yield purple colors,
whereas in an additive color model, mixing red with green (light) creates a vibrant yellow coloration.
Additive color can provide a much broader spectrum of colors than subtractive color can provide.

There are 256 levels of brightness for each red, green, and blue color value that is held for each pixel.
This allows you to set 8 bits of data value range, or zero through 255, controlling color brightness variation
for each of the red, green, and blue values. This data is represented using hexadecimal notation, from a
minimum of zero (#00, or off, all dark, or a black color) to a maximum of 255 (#FF, or fully on, or a maximum
RGB color contributed, making white).

The number of bits that are used to represent the number of digital image pixel colors supported is
referred to as color depth for an image and uses “power of 2” just like 3D does for texture mapping, which
we will get into in the next chapter. So, PNG8 images use 256 colors, PNG7 uses half as many as that (128),

Chapter 2 ■ an IntroduCtIon to Content CreatIon: 2d new MedIa asset FundaMentals

33

PNG6 uses half as many as that (64), PNG5 uses half as many as that (32), PNG 4 would therefore use 16,
PNG3 would use 8, PNG2 would use 4, and PNG1 would use 2, or black and white (on or off). Generally, you
will want to use the full 256 colors, because JavaFX only supports PNG8, PNG4, or PNG1, so use PNG8 if you
are going to use indexed color imagery at all.

Common color depths used in the digital imaging industry include 8-bit, 16-bit, 24-bit, and 32-bit. I’ll
outline the common ones here, along with their formats. The lowest color depth exists in 8-bit indexed
color images. These feature a maximum of 256 color values and use GIF and PNG8 image formats to hold
this indexed color type of data.

A medium color depth image will feature 16-bit color depths and will thus contain 65,536 colors
(calculated as 256 times 256) and is supported by the TARGA (TGA) and Tagged Image File Format (TIFF)
digital image formats. If you want to use digital image formats other than GIF, JPEG, and PNG in your Java 8
games, import the ImageJ library.

True-color color depth images will feature the 24-bit color depth and will thus contain more than
16 million colors. This is calculated as 256 times 256 times 256 and equals 16,777,216 colors. File formats
supporting 24-bit color depth include JPEG (or JPG), PNG, BMP, XCF, PSD, TGA, TIFF, and WebP. JavaFX
supports three of these: JPEG, PNG24 (24-bit), and PNG32 (32-bit). Using the true-color depth 24-bit or
32-bit imagery will give you the highest level of quality. This is why I have been recommending that you use
the PNG24 or PNG32 formats for your Java 9 games and IoT projects.

Next, let’s take a look at how we represent image transparency, by using the PNG32 image’s alpha
channel.

Digital Image Compositing: Using Alpha Channels and Transparency
with Layers
Next let’s take a look at how to define digital image pixel transparency values using alpha channels and
how these can be used for compositing digital imagery in real time for your Java game. Compositing is the
process of seamlessly blending together more than one layer of digital imagery. As you might well imagine,
this is an extremely important concept for game design and development. Compositing is useful when you
want to create an image on the display that appears as though it is one single image (or animation) but is
actually the seamless collection of (more than one) composited image layers. One of the principal reasons
you would want to set up an image or animation composite is to allow programmatic control over various
elements in those images, by having each element on a different layer.

To accomplish this, you need to have an alpha channel transparency value, which you can utilize to
precisely control the blending of that pixel with the pixel in the same X,Y image location on other layers that
are underneath it. In digital imaging software, transparency values for each image layer are represented by
using a checkerboard pattern, which you can see on the right side of Figure 2-2.

www.ebook3000.com

http://www.ebook3000.org

Chapter 2 ■ an IntroduCtIon to Content CreatIon: 2d new MedIa asset FundaMentals

34

On the left side of GIMP you can see Alpha layer, which I selected in blue. This contains the
transparency values for the MindTaffy logo. The GIMP Channels palette, which is the tab that I selected
to show you these color and alpha channels (Red, Green, Blue, Alpha), holds these color (and alpha)
channels separately for each layer, allowing you an incredible level of control over each pixel in each image
composite layer.

Like the other RGB channels, an alpha channel has 256 levels, but instead of red, green, or blue, these
values are transparency levels. In Java programming, the alpha channel is represented by the first two slots
in a hexadecimal representation delineated in the format #AARRGGBB data value. We will be covering
this in detail in the next section. Alpha plus color channel ARGB data values utilize eight slots (32-bit) of
data, rather than the six data slots (#RRGGBB) used in a 24-bit image, which could be thought of as a 32-bit
image with zero (no) alpha channel data.

Therefore, a 24-bit (PNG24) image has no alpha channel and will not be used for compositing, unless
it’s the background (bottom) image plate in your compositing layer stack. On the other hand, PNG32
imagery will be used as compositing layers on top of a PNG24 (background plate) image, or on top of lower
z-order PNG32 compositing layers that will need their alpha channel capability in order to show through,
via these alpha channel transparency values, in certain pixel locations in the image composite where some
measure of transparency (or opacity) is required.

How do digital image alpha channels, and the concept of image compositing, factor into Java Game
Design? You must be wondering! The primary advantage is an ability to break the gameplay screen, and the
sprites, projectiles, and background graphic elements that it includes, into a number of component layers.
The reason for doing this is to be able to apply Java programming logic (or JavaFX or SVG special effects) to

Figure 2-2. Showing the checkerboard representation of transparent pixels in an image, as well as the RGBA
channels

Chapter 2 ■ an IntroduCtIon to Content CreatIon: 2d new MedIa asset FundaMentals

35

the individual graphic image elements to control parts of your gameplay screen. Without a 2D compositing
approach, you would not otherwise be able to individually control game components, as pixel-by-pixel
processing is too processing intensive for most devices.

There is another part of image compositing, called blending modes, that also factors heavily into
professional image compositing capabilities. JavaFX blending modes are applied by using the Blend class
with BlendMode constant values found in a javafx.scene.effect subpackage that we will be covering
later during this book. This JavaFX blend effect class gives Java game developers many of the same image
compositing modes that Photoshop or GIMP affords to a digital imaging artisan. This turns Java and JavaFX
into a powerful image compositing engine, just like GIMP, and the blending algorithms are controllable
at a very flexible level, using custom Java code. Some JavaFX blending mode constants include the ADD,
SCREEN, OVERLAY, DARKEN, LIGHTEN, MULTIPLY, DIFFERENCE, EXCLUSION, SRC_ATOP,
SRC_OVER, SOFT_LIGHT, HARD_LIGHT, COLOR_BURN, and COLOR_DODGE constants.

Representing Color and Alpha in Java Game Logic: Using
 Hexadecimal Notation
Now that you know what color depth and alpha channels are and that color and transparency are
represented by using a combination of four different alpha, red, green, and blue (ARGB) image channels
within any given digital image, it is now important to understand how, as programmers, we are supposed to
represent these four ARGB image color and transparency channel values in Java and in JavaFX.

In the Java programming language, color and alpha are not only used in 2D digital imagery, commonly
termed bitmap imagery, but are also used in 2D illustration, commonly termed vector imagery. Colors and
transparency values are also often used across a number of different color setting options. For instance, you
could set a background color (or a transparency value) for the JavaFX Stage, a Scene, a layout container such
as a StackPane, a vector shape fill, or a UI control, among other things, such as 3D asset characteristics. We
will be covering 3D and JavaFX in future chapters.

In Java and the JavaFX API, different levels of ARGB color intensity values are represented using
hexadecimal notation. Hexadecimal, or “hex” for short, is based on the original Base16 computer notation.
This was used long ago to represent 16 bits of data values. Unlike the more common Base10, which counts
from zero through 9, the Base16 notation counts from zero through F, where F represents the Base10 value of
15 (0 through 15 yields 16 data values).

Hexadecimal values in Java always start with a zero and an x, so the 24-bit color value for white would
look like this: 0xFFFFFF. This hexadecimal color value represents Java’s Color.WHITE constant and uses
no alpha channel. A 32-bit color value for white would look like 0xFFFFFFFF, with the alpha channel data
being fully opaque. White with a transparent alpha channel, which could not be white at all but rather would
be “clear,” is coded like this using hexadecimal: 0x00FFFFFF. I usually use 0x00000000 to represent a clear
(transparent) alpha+color value in Java code.

Each slot in a 24-bit hexadecimal representation represents one Base16 value, so getting the 256
values that we need for each RGB color will take 2 slots, as 16 times 16 equals 256. Therefore, to represent
the 24-bit image using hexadecimal notation, we would need to have six slots after the 0x to hold each
of those six hexadecimal data values (data pairs representing 256 levels of values each). If you multiply
16x16x16x16x16x16, you should get the 16,777,216 colors that are possible to address by using 24-bit, also
known as true-color digital image data.

The hexadecimal data slots represent RGB values in the following format: 0xRRGGBB. For the
Java constant Color.WHITE, all of the red, green and blue channels in the hexadecimal color data value
representation are at the full (maximum color value) luminosity setting. If you additively sum all of these
colors together, you will get white light.

The color yellow would be represented by the red and green channels being on and the blue channel
being off, so the hexadecimal representation for Color.YELLOW would therefore be 0xFFFF00 where both
the red and green channel slots are fully on (FF, or a 255 Base10 data value) and the blue channel slots are
fully off (00, or a zero value).

www.ebook3000.com

http://www.ebook3000.org

Chapter 2 ■ an IntroduCtIon to Content CreatIon: 2d new MedIa asset FundaMentals

36

The eight hexadecimal data slots for an ARGB value will hold data with the following format:
0xAARRGGBB. Thus, for Color.WHITE, all alpha, red, green, and blue channels in the hexadecimal color
data value representation would be at their maximum luminosity (or opacity), and the alpha channel is fully
opaque, that is, not transparent, as represented by an FF value. Therefore, a 32-bit hexadecimal value for the
Color.WHITE constant would be 0xFFFFFFFF.

A 100 percent transparent alpha channel can be represented by the alpha slot being set to zero, creating
a “clear” image. Therefore, you would represent transparent image pixel values using any data value
between 0x00000000 and 0x00FFFFFF. It is important to note that if an alpha channel value equates to this
full transparency level, then it would follow that the 16,777,216 color values that will be contained in the
other six (RGB) hexadecimal data value slots will not matter whatsoever, because that pixel will be evaluated
as not being there, as it is transparent and, thus, will not be composited in the final image or animation
composite image, so its color is moot (does not matter at all).

Digital Image Object Masking: Using Alpha Channels to Composite
Game Sprites
One of the primary applications for alpha channels in game design is to mask out areas of an image or an
animation (an image series) so that it can be utilized as a game sprite in a gameplay image compositing
scenario. Masking is the process of “cutting” subject matter out of a digital image so that it can be placed on
its own layer using alpha channel transparency values. This is done using a digital imaging software package,
as shown in Figure 2-2.

Digital image compositing software packages such as Photoshop or GIMP feature tools that are
included for use in masking and image compositing. You can’t do effective image compositing without doing
effective masking, so this is an important area to master for game designers who want to integrate graphics
elements, such as image sprites and sprite animation, into their game designs. The art of digital image
masking has been around for a very long time!

Masking can be done for you automatically, using professional bluescreen (or greenscreen) backdrops
along with computer software that can automatically extract those exact color values to create a mask. This
mask is turned into alpha channel (transparency) information (data). Masking can also be done manually by
hand, by using digital image software, by using one of the algorithmic selection tools in conjunction with
various sharpening and blur algorithms.

We’ll learn a lot about this work process during the course of this book using common open source
software packages such as GIMP. Masking can be a complex and involved work process, and a complete
mastery of this process may need to span a couple of chapters, instead of trying to fit it all into one single
chapter in the book (this one). This chapter is to expose you to foundational knowledge of the work
processes we undertake during the book.

A key consideration for the masking process is getting smooth, sharp edges around a masked object
(subject matter). This is so that when you place a masked object (in the case of this book, it would be a game
sprite) into (over) new background imagery, it will look to a game player like it was photographed there in
the first place (like it is in the video).

The key to doing this successfully lies in the pixel selection work process, which involves using digital
image software selection tools such as the scissors tool in GIMP or the magic wand tool in Photoshop.
These must be used in the proper fashion (order) to be completely effective. Using the correct selection work
process is critical!

For instance, if there are areas of uniform color around the object that you want to mask (maybe
you shot it against a bluescreen), you’ll use a magic wand tool with a proper threshold setting to select
everything except your object. Then you invert the selection, which will give you a selection set containing
the object. Often the correct work process involves approaching something in reverse. Other selection tools
contain complex algorithms that can look at color changes between pixels. These can be useful for edge
detection, which we can use for other selection methods.

Chapter 2 ■ an IntroduCtIon to Content CreatIon: 2d new MedIa asset FundaMentals

37

Smoothing Digital Image Composites: Using Anti-aliasing to Smooth
Image Edges
Anti-aliasing is a popular digital image compositing technique, where two adjacent colors in a digital image
that are on an edge between two areas of different color are blended together along that edge. This will serve
to make this edge look smoother (less jagged) when an image is zoomed out. What this does is to “trick” the
viewer’s eye into seeing a smoother edge and gets rid of what has come to be called image jaggies. Anti-
aliasing provides an impressive result by using averaged color values using just a few colored pixels along the
edge that needs to be made smoother. By averaged color values, I mean some color range that is a portion
of the way between the two colors that are coming together along an image’s jagged edge. This takes only a
half-dozen or so intermediate colors. I created an example of this to show you what I’m talking about; see
Figure 2-3.

As you can see, I created what appears to be a razor-sharp red circle on one layer, overlaying a yellow
filling color on a background layer. I zoomed into the red circle shape’s edge and took another screenshot
and placed this to the right of the zoomed-out circle. This reveals a range of yellow-orange through orange to
red-orange anti-aliasing color values, right on the edge that is between the red and yellow colors bordering
each other at the edge of where the circle meets the background.

It is important to note that the JavaFX engine will anti-alias 2D shapes and 3D objects against the
background colors and background imagery, using the Java2D software renderer or the hardware rendered
i3D, using the Prism engine, which can use OpenGL or DirectX. You will still be responsible for correctly
compositing, that is, providing anti-aliasing for your multilayered imagery, by effectively using the alpha
channel, which we learned about earlier in this chapter.

Figure 2-3. A red circle composited on a yellow background (left) and a zoomed-in view (right) showing anti-
aliasing

www.ebook3000.com

http://www.ebook3000.org

Chapter 2 ■ an IntroduCtIon to Content CreatIon: 2d new MedIa asset FundaMentals

38

Digital Image Data Optimization: Using Compression, Indexed Color,
and Dithering
A number of factors affect digital image compression, and you can use some basic techniques to achieve a
better-quality result with a smaller data footprint. This is a primary objective in optimized digital imagery;
obtaining the smallest possible data footprint for your application (in this case it is a game) while at the same
time achieving the highest-quality visual result. We’ll start with the aspects that most significantly affect the
data footprint and examine how each of these contributes to data footprint optimization for any given digital
image. Interestingly, these are similar to the order of the digital imaging concepts that we have covered thus
far during this section on imaging.

The most critical contributor to a resulting digital image asset file size, what I like to call the data
footprint, is going to be the number of pixels, or the resolution of a digital image. This is logical, because
each of the pixels needs to be stored, along with the color and alpha values that are contained in their three
(24-bit) or four (32-bit) channels. The smaller you can get your image resolution, while still having it look
sharp, the smaller the resulting file size will be.

Raw (or uncompressed) image size is calculated by width times height times 3 for 24-bit RBG images,
or for 32-bit ARGB images that would be width times height times 4. For instance, an uncompressed,
true-color, 24-bit VGA image will have 640 times 480 times 3, equaling 921,600 bytes of original (raw)
uncompressed digital image data. To determine the number of kilobytes that is in this raw VGA image, you
would divide 921,600 by 1024 (the number of bytes that are in a kilobyte), and this would give you an even
900 KB of data in a true-color VGA image.

It is important to optimize for raw (uncompressed) image size by optimizing your digital imagery
resolution. This is because once an image is decompressed out of a game application file into system
memory, this is the amount of memory that it is going to occupy since the image is going to be stored pixel
for pixel using a 24-bit (RGB) or 32-bit (ARGB) representation in memory. This is one of the reasons I’m
using PNG24 and PNG32 for my game development and not indexed color (GIF or PNG8) because if the
OS is going to transmute the color to a 24-bit color “space,” then we should utilize that 24-bit color space for
quality reasons and deal with (accept) a slightly larger application file size.

Image color depth is the next most critical contributor to the data footprint of a compressed image,
because the number of pixels in the image is multiplied by one (8-bit), two (16-bit), three (24-bit), or four
(32-bit) color data channels. This small file size is the reason 8-bit indexed color images are still widely used,
especially using the GIF image format.

Indexed color images can simulate true-color images, if the colors that are used to make up the image
do not vary too widely. Indexed color imagery uses only 8 bits of data (256 colors) to define the image pixel
color, using what is called a palette of up to 256 optimally selected colors, instead of 3 RGB color channels,
or 4 ARGB color channels, containing 256 levels of color each. Again, it is important to note that after you
turn a 24-bit image into an 8-bit image by compressing it, then once it is decompressed in system memory
and turned back into a 24-bit RGB or ARGB data model used for the game (the representation used out of
system memory), you only have a potential (maximum) 256 colors out of the original 16.8M colors to use!
This is why I am advocating using PNG24 or PNG32 imagery, rather than GIFs or PNG1 (1-color), PNG2
(4-color), PNG4 (16-color), and PNG8 (256-color) images that JavaFX also supports.

Depending on how many colors are used in any given 24-bit source image, using 256 colors to represent
an image originally containing 16,777,216 colors can cause an effect called banding. This is where the
transfer between adjoining colors in the resulting (from compression) 256 (or less) color palette is not
gradual and thus doesn’t appear to be a smooth color gradient. Indexed color images have an option to
visually correct for banding, called dithering.

Dithering is an algorithmic process of creating dot patterns along those edges between any adjoining
colors within an image to trick the eye into thinking there’s a third color used. Dithering will give you a
maximum perceptual amount of colors of 65,536 colors (256x256), but this will occur (be necessary) only
if each of those 256 colors borders one of the other (different) 256 colors. Still, you can see the potential for

Chapter 2 ■ an IntroduCtIon to Content CreatIon: 2d new MedIa asset FundaMentals

39

creating additional colors, and you would be amazed at the result that indexed color formats can achieve in
some compression scenarios (with certain imagery).

Let’s take a true-color image, such as the one that is shown in Figure 2-4, and save it as a PNG5 indexed
color image format to show you this dithering effect. It is important to note that PNG5, although supported
in Android and HTML5, is not supported in JavaFX, so if you do this exercise yourself, select the PNG1 (2),
PNG2 (4), PNG4 (16), or full PNG8 (256) color options!

We will take a look at the dithering effect on the driver-side rear fender on the Audi 3D image because
it contains a gray gradient to which we will apply this dithering effect. You can see the 24-bit source digital
imagery in Figure 2-4.

It is interesting to note that it is permissible to use less than the 256 maximum colors that can be
used for an 8-bit indexed color image. This is often done to further reduce the imagery’s data footprint. For
instance, an image that can attain good results by using only 32 colors is actually a 5-bit image and would
technically be called a PNG5, even though the format itself is generally called PNG8 for the indexed color
usage level. Remember that JavaFX supports only PNG4 (16 colors) or PNG8 (256 colors), so for this image in
a Java game, you would use PNG8, or 256 colors.

I will set this indexed color PNG5 image, shown in Figure 2-5, to use 5-bit color (32 colors) using
Photoshop so that you can see this dithering effect clearly. As you can see, in the Photoshop image preview
area on the left side of Figure 5-4, the dithering algorithm creates dot patterns between adjacent colors in
order to create additional colors.

Figure 2-4. This is a true-color PNG24 image created with Autodesk 3ds Max that we are going to compress as
PNG5

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_5#Fig4
http://www.ebook3000.org

Chapter 2 ■ an IntroduCtIon to Content CreatIon: 2d new MedIa asset FundaMentals

40

Also, notice that you can set the percentage of dithering used. I often select either the 0 percent or 100
percent setting; however, you can fine-tune the dithering effect anywhere in between these two extreme
values to fine-tune your resulting file size because these dithering dot patterns introduce more data to
compress and increase file size.

You can also choose between dithering algorithms because, as you probably have surmised already,
these different dithering effects are created mathematically by using dithering algorithms that are ultimately
compatible with (supported by) indexed file format compression, which uses a palette to hold the color
values used for the pixels.

I use diffusion dithering, which gives a smooth effect along irregularly shaped gradients, as is seen in
the car fender. You can also use a noise option, which is more randomized, or a pattern option, which is
less randomized. The diffusion option usually gives the best results, which is why I use it when I am using
indexed color (which is not often).

Dithering, as you might imagine, adds data patterns into your images. These are more difficult to
compress. This is because smooth areas in an image, such as gradients or fill areas, will generally be easier
for these compression algorithms to compress, whereas sharp transitions (anti-aliased edges), or random
pixel patterns usually generated by dithering, or possibly by “noise” from a camera with a substandard CCD,
for instance.

Therefore, applying the dithering option will always increase the data footprint by a few percentage
points. Be sure to check the resulting file size with and without dithering applied (selected in an export
dialog) to see whether this is worth the improved visual result that it affords. Notice that there is also a
transparency option check box for indexed color PNG images but that an alpha channel used in PNG8
images is only 1-bit (on/off), not 8-bit like with PNG32.

The final concept that we have learned about so far that can increase the data footprint of your image is
adding the alpha channel to define transparency for compositing. This is because adding the alpha channel
will add in another 8-bit color channel (more accurately, a transparency or alpha channel) to the image
being compressed. If you need an alpha channel to define transparency for the image, most likely to support
future compositing requirements such as using the image as a game sprite, there’s not a whole lot of choice
in the matter, so include the alpha channel.

If your alpha channel contains all zeros (that is, uses an all-black fill color, which would define your
imagery as being completely transparent) or if your alpha channel contains all FF values (or uses an
all-white fill color, defining your image as being completely opaque or a background plate), you would
essentially (in practical use) be defining an alpha channel that does not contain any useful alpha data values.

Figure 2-5. Setting dithering to the Diffusion algorithm and 32 colors (5-bit color) with 100 percent dithering
for PNG5 output

Chapter 2 ■ an IntroduCtIon to Content CreatIon: 2d new MedIa asset FundaMentals

41

Unused alpha channels will therefore need to be removed, and an opaque image would need to be defined
as a PNG24 rather than a PNG32 to save on the data footprint.

Finally, most alpha channels that are used to mask objects that are in the RGB layers of the digital image
should compress very well. This is because they are largely areas of white (opaque) and black (transparent)
with some medium gray values along the edges between the two colors to anti-alias your mask (see Figure 2-2).
These gray areas that contain the anti-aliasing transparency values in the alpha channel, which will always
provide you with visually smooth edge transitions, between the object in the RGB layers of the image, and
any background color or background images that might be used behind it. Essentially, anti-aliasing in
the alpha channel provides you with real-time compositing for the object that the alpha channel serves
because you could put video behind it, in the background plate, and the alpha anti-aliasing will in real time
guarantee a smooth edge result with different edge color blending on every single frame of the video.

The reason for this is that since your alpha channel image mask uses an 8-bit transparency gradient,
ranging from white to black and defining levels of transparency rather than color, this should be thought
of as per-pixel blending, or opacity strength value. Therefore, the medium gray values, on the edges of
each object in a mask that is contained in the alpha channel, will serve to essentially average the colors of
your object’s edges and any target background, no matter what color value, image asset, illustration asset,
animation asset, or video asset that a background plate might contain.

This provides real-time anti-aliasing with any target background that might be used, even if your object
is a static object, because the anti-aliasing provided by your alpha channel will even work using animated
backgrounds.

Digital Video or Animation: Frames, Frame Rate, Loops,
Direction
It is interesting to note that all the concepts that we have just covered for digital images apply equally as
well to digital video and 2D animation since both of these fourth-dimensional (time-based) new media
formats use digital images as a foundation for their content. Digital video, as well as 2D animation, extends
digital imaging into the fourth dimension of time by introducing something called frames. Digital video and
animation are comprised of an ordered sequence of frames, which are displayed rapidly over time to create
the illusion of movement, bringing imagery alive.

The term frame comes from the film industry where even today film frames are run through film
projectors, at a frame rate of 24 frames per second (typically abbreviated as 24 FPS). This creates the
illusion of motion. Since both digital video and animation are made up of a collection of frames containing
digital imagery, this concept of frame rate, expressed as frames per second, is also very important when it
comes to both the memory data footprint optimization work process (for animation assets) and the digital
video file size data footprint optimization work process. In JavaFX, as you will soon learn, this attribute for
animation is stored in the Animation object’s rate variable.

The optimization concept regarding frames in an Animation object or digital video asset is very similar
to the optimization concept regarding pixels in the image (the resolution of a digital image); the fewer used,
the better! This is because the number of frames used in an animation or video multiplies both the system
memory used and the file size data footprint with each frame that is used. In digital video, not only does
each frame’s (image) resolution greatly impact the file size, but so does the number of frames per second, or
frame rate, that is specified in the compression settings dialog. Earlier in this chapter, we learned that if we
multiply the number of pixels in the image by its number of color channels, we’ll get the raw data footprint
for the image. With animation or digital video, we will now multiply that number again by the total number
of frames that will need to be utilized in order to create an illusion of motion.

Therefore, if we have an animated VGA (RGB) background plate for our game (remember that each
frame is 900KB) that uses five frames to create the illusion of motion, we are using 900KB times five, or
4500KB (or 4.5MB), of system memory to hold that animation. Of course, this is too much memory to use
for a background, which is why we will be using static backgrounds with sprite overlays to achieve this same

www.ebook3000.com

http://www.ebook3000.org

Chapter 2 ■ an IntroduCtIon to Content CreatIon: 2d new MedIa asset FundaMentals

42

end result during the book in less than a megabyte. The calculation for digital video is a bit different; as with
digital video, you have hundreds, or thousands, of frames. For digital video you would multiply your raw
image data size by the number of frames per second (the frame rate), which the digital video is set to play
back at (this frame rate value is specified during the compression process), and then multiply that result by
the total number of seconds of content duration, which is contained in your video file.

To continue with the VGA example used earlier, you now know a 24-bit VGA image is 900KB. This
makes the calculation to take this to the next level very easy. Digital video traditionally runs at 30 FPS, so one
second of standard definition (SD, or VGA) raw (uncompressed) digital video in system memory prior to
play back on the screen would be 30 image frames, each of which is 900KB, yielding a total data footprint in
memory of 27000KB, about 27MB!

You can see why having digital video compression file formats such as the MPEG-4 H.264 AVC format,
which can significantly compress this massive raw data footprint that digital video can create, is extremely
important.

The JavaFX multimedia package uses one of the most impressive video compression codecs (codec
stands for COde-DECode) that is also supported in HTML5 and Android: the aforementioned MPEG-4
H.264 Advanced Video Codec (AVC). This “cross open platform support” spanning the three major “open
platforms” today (Java, HTML5, and Android) is extremely convenient for developer asset optimization
because one single digital video asset can be used across Java, JavaFX, HTML5, and Android applications.
There is also a “native” digital video codec, called VP6, included in the JavaFX engine in case H.264 is not
installed. I am going to cover the basics of digital video asset compression and data footprint optimization
next, before I get into digital audio, to be thorough. Then, in the next chapter, we will get into the
complexities of 3D so you have a complete foundational understanding of new media elements in games.

Digital Video Compression Concepts: Bit Rate, Data Streaming, SD,
HD, and UHD
Let’s start out covering the primary or standard resolutions that are used in commercial video. These also
happen to be common consumer electronics device screen resolutions, probably because if the display
screen pixel resolution matches the video pixel resolution that is being played “full screen” on the screen,
there will be zero “scaling,” which can cause scaling artifacts. Before HDTV or high definition came along,
video was called standard definition (SD) and used a standard pixel vertical resolution of 480 pixels.
VGA is an SD resolution, and 720 by 480 could be called Wide SD resolution. High Definition (HD) video
comes in two resolutions, 1280 by 720, which I call Pseudo HD, and 1920 by 1080, which the industry calls
true HD. Both HD resolutions feature a 16:9 aspect ratio and are used in TV and iTV sets, smartphones,
tablets, e-book readers, and game consoles. There is also an UHD resolution out now that features 4096 by
2160 pixels. IMAX resolution was 4096 by 4096, so UHD has IMAX resolution in the horizontal, or x-axis,
resolution, which is pretty impressive since consumers can now have IMAX in their living rooms for $1,000!

Video streaming is a more complicated concept than resolution because it involves playing back video
data over a wide expanse, such as the one between your Java game application and the remote video data
servers that will hold your potentially massive digital video assets. Streaming is complicated because the
device that your Java game app is running on will be communicating, in real time, with remote data servers,
receiving video data packets as the video plays! This is why it is termed streaming; as the video is streaming
from the video server over the Internet and into the hardware devices. Video streaming is supported by the
MPEG-4 H.264 AVC format codec (encoder-decoder pair).

The last concept that we need to cover in this section is the concept of bit rate. Bit rate is the key setting
used in the video compression process; bit rates represent your target bandwidth, or data pipe size, that
is able to accommodate a certain number of bits streaming through it every second. Your bit-rate setting
should also take into consideration the CPU processing power that exists within any given Java-capable
device, making your digital video’s data optimization even more challenging. Fortunately, most devices
these days feature dual-core or quad-core CPUs!

Chapter 2 ■ an IntroduCtIon to Content CreatIon: 2d new MedIa asset FundaMentals

43

The reason for this is because once these bits travel through a data pipe, they also need to be processed
and displayed onto the device screen. Thus, bit rates for digital video assets need to be optimized not only
for bandwidth but in anticipation of variances in CPU processing power. Some single-core CPUs may not
be able to decode high-resolution, high-bit-rate digital video assets without dropping frames. Make sure to
optimize low-bit-rate video assets if you are going to target older, or less expensive, consumer electronics
devices, like those used in third-world nations.

Digital Video Data Footprint Optimization: Important Settings for
Video Codecs
As you have learned in the previous section, digital video assets are compressed using software utilities
called codecs. There are two “sides” to the video codec: one that encodes the video data stream and the other
that decodes the video data stream. The video decoder will be part of your OS, platform (JavaFX), or browser
that uses it. The decoder is primarily optimized for speed, as smoothness of playback is a key issue, and the
encoder is optimized to reduce the data footprint for the digital video asset it is generating. For this reason,
the encoding process can take a longer time and depends on how many processing cores a workstation
contains. Most digital video content production workstations should support eight processor cores, like my
64-bit AMD OctaCore workstation.

Codecs (the encoder side) are like plug-ins, in the sense that they can be installed into different digital
video editing software packages in order to enable them to encode different digital video asset file formats.
Since Java and JavaFX 9 support the ON2 VP6 format natively and MPEG4, if it’s installed, you’ll need to
make sure you’re using one of the digital video packages that supports encoding digital video using one of
these digital video file formats.

It’s important to note that more than one software manufacturer makes MPEG4 encoding software, so
there will be different MPEG4 H.264 AVC codecs that will yield different (better or worse) results, as far as
encoding speeds and file size go. I prefer the MainConcept H.264 codec. A professional solution, which I
highly recommend that you secure if you want to produce digital video professionally, is called Sorenson
Squeeze Pro, and it supports ON2 VP6.

I will show you the digital video compression setting (Presets) dialog for Sorenson Squeeze Pro in
Figure 2-6, and then we will go over some of these important settings during the remainder of this section of
the chapter.

www.ebook3000.com

http://www.ebook3000.org

Chapter 2 ■ an IntroduCtIon to Content CreatIon: 2d new MedIa asset FundaMentals

44

There is also an open source solution called EditShare LightWorks 14, which is scheduled to natively
support output to open source codecs (by 2018). For now, I will have to use Squeeze Pro 11 for this book,
until codec support for JavaFX (and HTML5 and Android) is added to EditShare LightWorks 14 sometime
during 2018. When optimizing for (setting compression settings for) digital video data file size, there are
a large number of variables that directly affect the digital video data footprint. I’ll cover these in the order
in which they affect a video file size, from the most impact to the least impact, so that you know which
parameters to tweak to obtain the result you’re looking for.

As with digital image compression, the resolution, or number of pixels, in each frame of video is the
optimal place to start the optimization process. If your user is using 1024x640 or 1280x720 smartphones,
e-readers, or tablets, then you don’t need to use true HD, 1920 by 1080 resolution, to get good visual results
for your digital video assets. With today’s super-fine density (small dot pitch) displays, you could scale a 1280
video up 33 percent, and it will look reasonably good. The exception to this might be HD or UHD (popularly
termed 4K iTV) games targeted at iTV sets; for these huge 65- to 96-inch screen scenarios, you would want to
use industry-standard true HD at 1920x1080 resolution.

The next level of optimization would come in the number of frames used for each second of video
(or FPS), assuming the actual number of seconds in the digital video itself can’t be shortened. This is
known as the frame rate, and instead of setting the video standard 30 FPS frame rate, seen at the top left
of Figure 2-6, set to 1:1, or one frame compressed for each source frame, consider using the film standard
frame rate of 24 FPS or even a multimedia standard frame rate of 20 FPS. You might even be able to use a
15 FPS frame rate, which is half of the video standard 30 FPS, which would equate to a 1:2 setting for the
Frame Rate field shown in Figure 2-6, depending upon the amount of (and speed of) movement within
the content. Note that 15 FPS is half as much data as 30 FPS (a 100 percent reduction in data encoded).

Figure 2-6. Digital video compression Presets dialog for the Sorenson Squeeze Pro digital video compression
utility

Chapter 2 ■ an IntroduCtIon to Content CreatIon: 2d new MedIa asset FundaMentals

45

For some video content, this will play back (look) the same as the 30 FPS content. The only way to test this
is to try different frame rate settings and observe the results during your video optimization (encoding)
process.

The next most optimal setting for obtaining a smaller data footprint would be the bit rate that you set
for a codec to try to achieve. This is shown on the left side of Figure 2-6, encircled in red. Bit rate equates to
the amount of compression applied and thus sets the quality level for the digital video data. It is important
to note that you could simply use 30 FPS, 1920-resolution HD video and specify a low-bit-rate ceiling. If
you do this, the results would not be as professional looking as they would be if you first experimented with
compression using a lower frame rate and (or) a lower resolution, in conjunction with using the higher
(quality) bit-rate setting. There is no set rule of thumb for this, as every digital video asset contains 100
percent different and unique data (from a codec algorithm’s point of view, that is).

The next most effective setting for obtaining a smaller data footprint is the number of keyframes, which
the codec uses to sample your digital video asset. This setting is seen encircled in red on the right side of
Figure 2-6. Video codecs apply compression by looking at each frame and then encoding any pixel changes
over the next several frames so the codec algorithm doesn’t have to encode every single frame in a video
data stream. This is why a talking head video will encode better than a video where every pixel moves on
every frame (like video with camera panning).

A keyframe is the setting in a codec that forces the codec to take a fresh sampling of the video data asset
every so often. There is usually an auto setting for keyframes, which allows a codec to decide how many
keyframes to sample, as well as a manual setting, which allows you to specify a keyframe sampling every
so often, usually a certain number of times per second or a certain number of times over the duration of the
entire video (the total frames).

Some codec setting dialogs have either a quality or sharpness setting (a slider) that controls the
amount of blur applied to the video frame before compression. In case you don’t know this trick, applying
a slight blur to your image or video, which is usually not desirable, can allow for better compression as
sharp transitions (sharp edges) in an image are harder to encode (these take more data to reproduce) than
softer transitions are. That said, I’d keep the quality (or sharpness) slider between an 85 percent and 100
percent quality level and then try to get your data footprint reduction using the other variables that we have
discussed here, such as decreasing the resolution, frame rate, or bit rate.

Ultimately, there will be a number of variables that you’ll need to fine-tune to achieve the best data
footprint optimization for any given digital video data asset. It is important to remember that each digital
video asset will “look” different (mathematically) from a digital video codec. For this reason, there can be
no standard settings that can be developed to achieve any given compression result. That said, experience
tweaking various settings will eventually allow you to get a better feel, over time, as to the various settings
that you need to change to get the desired end result.

Digital Audio Concepts: Amplitude, Frequency, Samples,
Waves
Those of you who are audiophiles already know that sound is created by sending sound waves pulsing
through the air. Digital audio is complex; part of the complexity comes from the need to bridge “analog”
audio technology created with speaker cones with digital audio codecs. Analog speakers generate sound
waves by pulsing them into existence. Our ears receive analog audio in exactly the opposite fashion, catching
and receiving those pulses of air, or vibrations with different wave lengths, and then turning them back into
“data” that our brain can process. This is how we “hear” the sound waves; our brain then interprets different
audio sound wave frequencies as different notes or tones.

Sound waves generate various tones depending on the frequency of each sound wave. A wide or
infrequent (long) wave produces a low (bass) tone, whereas a more frequent (short) wavelength produces a
higher (treble) tone. It’s interesting to notice that different frequencies of light will produce different colors,
so there is a close correlation between analog sound (audio) and analog light (color). There are many other

www.ebook3000.com

http://www.ebook3000.org

Chapter 2 ■ an IntroduCtIon to Content CreatIon: 2d new MedIa asset FundaMentals

46

similarities between digital images (and video) and digital audio that will carry through into your digital new
media content production, as you will soon see.

The volume of a sound wave will be determined by the amplitude of the sound wave or the height
(or size) of that wave. Thus, frequency of sound waves equates to how closely together the waves are
spaced, along the x-axis, if you are looking at it in 2D, and the amplitude equates to how tall the waves are,
as measured along the y-axis.

Sound waves can be uniquely shaped, allowing sound waves to “piggyback” various sound effects.
A “pure,” or baseline, type of sound wave is called a sine wave, which you learned about in high school
trigonometry, using the sine, cosine, and tangent math functions. Those of you who are familiar with audio
synthesis are aware that there are other types of sound waves that are utilized in sound design, such as the
saw wave that looks like the edge of a saw (hence its name) or the pulse wave that is shaped using only right
angles, resulting in immediate on and off sounds that translate into pulses (or bursts) of synthesized digital
audio.

Even randomized waveforms, such as noise, are used in sound design to obtain “edgy” sound results.
As you may have ascertained by using your recently acquired knowledge regarding data footprint
optimization, the more “chaos” or noise that is present in the sound waves (and in new media data in
general), the harder they will be to compress for a codec. Therefore, more complex sound waves will result in
larger digital audio file sizes because of the chaos in the data.

Converting Analog Audio to Digital Audio Data: Sampling, Accuracy,
and HD Audio
The process of turning analog audio (sound waves) into digital audio data is called sampling. If you work in
the music industry, you have probably heard about a type of keyboard (or even rack-mount equipment) that
is called a sampler. Sampling is the process of slicing an analog audio wave into segments so that you can
store the shape of the wave as digital audio data using a digital audio format. This turns an infinitely accurate
analog sound wave into a discreet amount of digital data, that is, into zeroes and ones. The more zeroes and
ones used, the more accurate the reproduction of the infinitely accurate (original) analog sound wave. Each
digital segment of a sampled audio sound wave is called a sample, because it samples that sound wave at
that exact point in time. The sample accuracy determines how many zeroes and ones are used to reproduce
analog sound waves, so the precision of a sample is determined by how much data is used to define each
wave slice’s height. Figure 2-7 shows a button sound effect that I sampled using Audacity, using a 32-bit float
sample accuracy and a 48 kHz sampling rate, which we will cover next.

Chapter 2 ■ an IntroduCtIon to Content CreatIon: 2d new MedIa asset FundaMentals

47

Just like with digital imaging, this sampling accuracy precision is termed the resolution or, more
accurately (no pun intended), the sampling resolution. Sample resolution is usually defined using 8-bit,
12-bit, 16-bit, 24-bit, or 32-bit resolution. Java games mostly leverage the 8-bit resolution for effects such as
explosions where clarity is not as important, use 12-bit resolution for crystal-clear spoken dialog and more
important audio effects assets, and possibly use CD quality 16-bit resolution for background music or audio
elements that need to exhibit pristine audio quality.

In digital imaging and digital video, this resolution is quantified in the number of pixels, and in digital
audio, this resolution is quantified in how many bits of data are used to define each of the analog audio
samples taken. Just like in digital imaging (more pixels yields better quality), a higher sample resolution
yields better sound reproduction. Thus, higher sampling resolutions, using more data to reproduce a given
sound wave sample, will yield a higher audio playback quality, at the expense of a larger data footprint. This
is the reason why 16-bit audio, commonly termed CD-quality audio, will sound better than 8-bit audio.
Depending on the audio involved, 12-bit can be a good compromise.

In digital audio, there is a new type of 24-bit audio sample, known as HD audio, in the consumer
electronics industry. HD digital audio broadcast radio uses 24-bit sample resolution. Each audio sample,
or slice of a sound wave, can potentially contain up to 16,777,216 bits of sound wave sampling resolution,
although all the bits are rarely used.

Figure 2-7. Stereo sample of button sound effect in Audacity using 32-bit float sample accuracy and 48kHz
sample rate

www.ebook3000.com

http://www.ebook3000.org

Chapter 2 ■ an IntroduCtIon to Content CreatIon: 2d new MedIa asset FundaMentals

48

Some new hardware devices now support HD audio, such as the smartphones you see advertised,
featuring “HD-quality” audio. This means they have 24-bit audio hardware. PC and laptops these days, as
well as game consoles and iTV sets, also come standard with 24-bit audio playback hardware, so the support
is there for high-quality audio.

It is important to note that HD audio is probably not necessary for a Java 9 game, unless your game is
music oriented and makes use of high-quality music, in which case you could use HD audio samples via a
WAVE file format.

Besides digital audio sample resolution, we also have a digital audio sample frequency. This is how
many of these samples at a particular sample resolution are taken during one second of sampling time
frame. In digital image editing, the sampling frequency would be analogous to the number of colors that
are contained within a digital image. Sampling frequency can also be called the sampling rate. You are
probably familiar with the term CD-quality audio, which is defined as using a 16-bit sample resolution and a
44.1 kHz sampling rate. This is taking 44,100 samples, each of which contains 16 bits of sample resolution, or
65,536 bits of audio data held in each of these 44,100 samples. You can figure out raw data in an audio file by
multiplying the sampling bit rate by the sampling frequency by the number of seconds in the audio snippet.
You can see that it can potentially be a huge number! Audio codecs are really great at optimizing sampled
sound wave data down to an amazingly small data footprint with very little audible loss in quality.

Thus, the same trade-off that we have in digital imaging and in digital video exists with digital audio.
The more data that we include, the more high quality of a result that we will obtain! However, this always
comes at the cost of a much larger data footprint. In the visual mediums, the amount of data footprint is
defined using color depth, pixels, and, in the case of digital video and animation, frames. In a digital audio
medium, it is defined with the sampling resolution, in combination with the sampling rate. The most
common sampling rates in the digital audio industry currently include 8kHz, 11.25 kHz, 22.5kHz, 32kHz,
44.1kHz, 48kHz, 96kHz, 192kHz, and even 384kHz.

Lower sampling rates, such as 8kHz, 22kHz, and 32kHz, are the ones that we’re going to use in our
games, as with careful optimization, these can yield high-quality sound effects and arcade music. These
rates would be optimal for sampling any “voice-based” digital audio as well, such as movie dialogue or an
e-book narration track, for instance. Higher sampling rates allow audio reproduction exhibiting theater
sound quality but is not required for most games.

Digital Audio Asset Playback: Captive Audio Playback vs. Streaming
Audio
Just like with digital video data, digital audio data can be captive, held within the application distribution
file (in the case of Java, this is a JAR file); alternately, the digital audio can be streamed using remote data
servers. Similar to digital video, the upside to streaming digital audio data is that it can reduce the data
footprint of the application file, just as streaming digital video data can. The downside is reliability. Many of
the same concepts apply equally well to audio and video. Streaming audio will save data footprint because
you do not have to include all of that heavy new media digital audio data in your JAR files, so if you are
planning on coding a jukebox application, you may want to consider streaming your digital audio data.
Otherwise, try to optimize your digital audio data so that you can include it (captive) inside the JAR file. In
this way, it will always available to the application’s users when they need it!

The downside to streaming digital audio is that if a user’s connection (or the audio data server) goes
down, your digital audio file may not always be present for your end users to play and listen to using your
game application. The reliability and availability of digital audio data are key factors to be considered on
the other side of this “streaming audio data versus captive digital audio data” trade-off. The same trade-off
would apply to digital video assets as well.

Just like with digital video, one of the primary concepts in regard to streaming your digital audio is your
bit rate for that digital audio data. As you learned in the previous section, this bit rate is defined during your
compression process. As with digital video, digital audio files that need to support lower bit-rate bandwidth

Chapter 2 ■ an IntroduCtIon to Content CreatIon: 2d new MedIa asset FundaMentals

49

are going to have more compression applied to the audio data, which will result in lower quality. These will
stream (play back) more smoothly across a greater number of devices because fewer bits can be quickly
transferred, as well as processed, more easily.

Digital Audio Assets in JavaFX: Digital Audio Codec and Data Format
Support
There are considerably more digital audio codecs in JavaFX than there are digital video codecs, as there
are only two video codecs, which are MPEG-4 H.264 AVC or ON2 VP6. JavaFX audio support includes MP3
(MPEG3) files, Windows Wave (Pulse Code Modulated [PCM] audio) WAV files, MP4 (or M4A) MPEG-4
AAC audio, and Apple’s AIFF (PCM) file format. The most common audio format supported by JavaFX is the
MP3 digital audio file format. The reason the MP3 digital audio file format is popular is because it has a good
compression to quality ratio and is widely supported.

MP3 would be an acceptable digital audio format to use in a Java game or IoT application, as long as you
get the highest quality level possible out of it, using an optimal encoding work process. It’s important to note
that MP3 is a lossy audio file format, like JPEG uses for digital images, where some of the audio data, and
therefore some of your original audio sample quality, is thrown away during your compression process and
cannot later be recovered.

JavaFX does have two lossless audio compression codecs, called AIFF and WAVE. You are probably
familiar with these digital audio formats, as they are the original audio formats used for the Apple and
Microsoft Windows operating systems, respectively. These files use PCM audio, which is lossless, in this
case, because there is no compression applied whatsoever! Pulse Code Modulated refers to the data format it
holds.

PCM audio is commonly used for CD-ROM content, as well as telephony applications. This is because
PCM Wave audio is an uncompressed digital audio format, and it has no CPU-intensive compression
algorithms applied to the data stream; thus, decoding (CPU data processing) is not an issue for telephony
equipment or for CD players.

For this reason, when we start compressing digital audio assets into these various file formats, we will
use PCM as our baseline file format. Not only can we look at the difference between the PCM (Wave) and
MP3 or MP4 audio compression results to get an idea of how much data footprint optimization we are
getting for our JAR file, but more importantly, we can see how our sample resolution and sample frequency
optimization are going to affect system memory used for our game audio effects. Even if we used MP3 or
MP4 format, it would still have to be decompressed into memory before the audio asset can be used with the
AudioClip class, and used as a sound effect, in a Java game.

Since a Wave or AIFF file will not have any quality loss because there is also no decompression
needed, this Pulse Code Modulated data can be placed straight from the JAR file into system memory!
This makes PCM audio great for game sound effects that are short in duration (0.1 to 1 second) and can be
highly optimized, using 8-bit and 12-bit sample resolution and 8kHz, 22kHz, or 32kHz sample frequency.
Ultimately, the only real way to find out which audio format supported by JavaFX has the best digital audio
compression result for any given digital audio data is to actually encode your digital audio in the primary
codecs that we know are supported and efficient. We will be going through this work process in Chapter 21
when we add audio to the game and will observe the relative data footprint results between the different
formats using the same source audio sample. Then we will listen to the audio playback quality so that we
can make our final quality to file size decision. This is the work process that you will need to go through to
develop your JavaFX digital audio assets, for use in your pro Java game development work process.

JavaFX also supports the popular MPEG-4 Advanced Audio Coding (AAC) codec. This digital audio
data can be contained in MPEG4 containers (.mp4, .m4a, .m4v) or file extensions and can all be played back
using all operating systems. It’s important to note that JavaFX does not contain an MPEG-4 decoder but
instead supports what is called a “Multimedia Container.” What this means is that it uses the host operating
system’s MPEG-4 decoder for decoding.

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_21
http://www.ebook3000.org

Chapter 2 ■ an IntroduCtIon to Content CreatIon: 2d new MedIa asset FundaMentals

50

For this reason and because online listening studies have concluded that MP3 has better quality
(for music) than the MP4 format, we will be using MP3 audio file format for longer-form audio (game
background musical loops), which we’ll use via the Media and MediaPlayer classes. We’ll use the PCM
Wave audio format for short-form audio (game sound effects, such as shots, bells, yelps, grunts, laughter,
cheering, and similar, one-second long or less digital audio assets), which we will use via the AudioClip
digital audio sequencing engine (class) that JavaFX so generously provides.

Digital Audio Optimization: Start with CD Quality Audio and Work
Backward
Optimizing your digital audio assets for playback across the widest range of hardware devices in the market
is going to be easier than optimizing your digital video or digital imagery (and thus animation) across
hardware devices. This is because there is a much wider disparity of target screen resolutions and display
aspect ratios than there is a disparity of digital audio playback hardware support across hardware devices
(with the possible exception for new hardware featuring 24-bit HD audio playback hardware compatibility).
All hardware plays digital audio assets well, so audio optimization is a “one audio asset hits all devices”
scenario, whereas with the visual (video, image, animation) part of the equation, you have display screens as
large as 4096x2160 pixels (4K iTV Sets) down to 320x320 pixels (flip phones and smart watches).

It’s important to remember that a user’s ears can’t perceive the same quality difference with digital
audio that a user’s eyes can with digital imagery, 2D animation, or digital video. Generally, there are three
primary “sweet spots” of digital audio support, across all hardware devices, which you should target for
support for Java game audio.

Lower-quality audio, such as short narration tracks, character exclamations, or short-duration sound
effects, can achieve remarkably high quality by using an 8 kHZ, 11.25 kHz, or 22.5 kHz sampling rate, along
with 8-bit or 12-bit sampling resolution. Medium-quality audio, like long narration tracks, long duration
sound effects, looped background (termed: ambient) audio, and the like, can achieve a very high-quality
level by using a 22.5 kHz or 32 kHz sampling rate along with a 12-bit or 16-bit sampling resolution.

High-quality audio assets, such as music, should be optimized approaching CD-quality audio and
would use a 32 kHz or 44.1 kHz sampling rate, along with the 16-bit data sampling resolution. For HD-
quality audio, being at the ultra-high-end of this audio spectrum, you would use the 48 kHz sampling rate,
along with the 24-bit digital audio data sampling resolution. There is also an unnamed “somewhere in
the middle” high-end audio specification, using a 48 kHz sampling rate along with a 16-bit data sampling
resolution, which just happens to be what Dolby THX used to use for its high-end audio experience
technology. This was used in movie theaters “back in the day” for Star Wars.

Ultimately, it comes down to the quality to file size results that emerge from the digital audio data
footprint optimization work process, which can yield some amazing results. Therefore, your initial work
process for optimizing your digital audio assets across all of these hardware devices is going to be to create
“baseline” 16-bit assets, either at 44.1 kHz or at 48 kHz, and then optimize (compress) them using the
different formats supported in JavaFX. Once that work process is completed, you can see which resulting
digital audio assets provide the smallest data footprint, along with the highest-quality digital audio playback.
After that, you can reduce your 48 kHz or 44.1 kHz data to 32 kHz and save that out using 16-bit resolution
and then using 12-bit resolution. After that, re-open the original 48 kHz data, downsample to 22.5 kHz
sample frequency, and export that using 16-bit or 12-bit resolution, and so on, and so forth. We will be
performing this work process later during this book, in Chapter 21, so that you’ll have experience with the
audio work process.

You’ll perform this work process using the open source Audacity 2.1.3 digital audio editing and
engineering software package. You downloaded and installed this software package during Chapter 1, and
ideally, you installed all of those free VST, Nyquist, LV2, and LADSPA plug-ins, as well as the LAME MPEG3
encoders and FFMPEG encoders for the AC3, AMR-NB, M4A, and WMA audio formats. You will want to do
this, if you have not done so already, so that you have absolutely the most powerful digital audio editing and
engineering suite possible for your Java workstation.

http://dx.doi.org/10.1007/978-1-4842-0973-8_21
http://dx.doi.org/10.1007/978-1-4842-0973-8_1

Chapter 2 ■ an IntroduCtIon to Content CreatIon: 2d new MedIa asset FundaMentals

51

If you have not done this yet and don’t feel like doing it now, I will show you how to do that in the
chapter where we learn how to use the AudioClip, Media, and MediaPlayer classes to add digital audio
elements to your Java 9 game environment. It’s really quite simple; all that you have to do is to download
these plug-ins and place them in the correct plug-ins folder underneath the primary Audacity software
installation folder so it’s not difficult to add effects.

Summary
In this second chapter, we took a closer look at some of the more important 2D new media concepts that we
will be using in our pro Java game and IoT development work process so that you have a solid foundational
knowledge for these 2D multimedia assets that JavaFX 8 support has taken care of adding to your Java 9
environment. Note that Java and JavaFX releases are not synchronized, so for instance Java 6 used JavaFX 1.x
and Java 7 used JavaFX 2.x. They are getting closer to synchronizing the releases, as Java 8 used JavaFX 8, but
the focus in Java 9 is modularizing the language, and not on JavaFX 9, so for now, the Java 9 platform may
start out using JavaFX 8 technology.

I started out covering the most important and foundational 2D new media concepts as they relate to
Java FX 8, which is the new media engine for Java 8 and Java 9, as well as to Android, iOS, Windows, Linux
OS, and HTML5 development, for that matter. New media concepts are as important to understand for
games developers as Java 9 and JavaFX coding practices, as new media makes your game more immersive,
compelling, and visually exciting. I have a series of new media “fundamentals” books at www.apress.com
if you want to dive deeper into these new media topics. Each of the books focuses specifically on one new
media vertical (audio, video, VFX, illustration, painting, etc.).

Since 3D is considerably more complex, I saved that foundational information for Chapter 3; I wanted
to keep the chapters in this book at reasonable lengths to optimally digest all of this technical information.
3D and i3D new media assets are distinctly different from 2D and i2D new media assets, as these add an
entirely new dimension, depth data, and the z-axis to the already complex undertaking of scratch new media
content creation. This serves to turn basic 2D (area) math into vector or matrix algebra (BA level to MS or
PhD level); thus, 3D is an order of magnitude more complex than 2D.

We also took a look at some fairly advanced digital imaging concepts, JavaFX-supported formats,
techniques, and data footprint optimization. This information will allow you to extract the maximum utility
and performance from every pixel you utilize inside of your pro Java games or IoT applications.

You learned all about pixels, resolutions, and how aspect ratios define the shape of an image,
animation, or video, as well as about color depth, layers, channels, and how alpha channel transparency
allows you to implement image compositing pipelines. You learned how to define colors, as well as alpha
channel transparency values, by using hexadecimal notation. We looked at advanced digital imaging
concepts such as masking, dithering, anti-aliasing, and blending and transfer modes.

Next, we looked at the fourth dimension of time and learned about how frames, frame rates, and bit
rates are used in conjunction with the concepts that we learned about in the digital imaging section to add
motion to our new media assets, creating 2D animation or digital video. We looked at different formats and
the codecs that encode them and looked at some of the software packages that will edit and encode digital
video, such as DaVinci Resolve, Lightworks, and Sorenson Squeeze.

Finally, we looked at digital audio, and we learned about sampling frequency and sampling resolution,
as well as the MP3 and PCM audio formats supported by JavaFX, and how to use these codecs to optimize
digital audio to use the least amount of system memory. We looked at how to get the smallest data footprint
for our pro Java 9 games and IoT applications, while still putting a high-quality product into the game and
app stores.

In the next chapter, we’re going to take a look at the 3D and i3D concepts, principles, formats,
optimization, and work processes that we will be using for your pro Java 9 games and IoT applications. You
will get a feel for how complex 3D is relative to 2D new media assets, as we look at things such as 3D character
modeling, bones, rigging and animation, particle systems, physical systems (physics forces), fluid dynamics,
visual effects (VFX) and special effects (SFX), texture mapping, shaders, and UVW mapping coordinates.

www.ebook3000.com

http://www.apress.com/
http://dx.doi.org/10.1007/978-1-4842-0973-8_3
http://www.ebook3000.org

53© Wallace Jackson 2017
W. Jackson, Pro Java 9 Games Development, https://doi.org/10.1007/978-1-4842-0973-8_3

CHAPTER 3

Advanced 3D Content Rendering:
3D Asset Concepts and Principles

Now that you have learned about the 2D (raster and audio) content development concepts and principles
that your 2D new media open source content development software packages (GIMP, Lightworks, Audacity,
and DaVinci Resolve) are based on, we will finish up learning about new media assets by taking a look at
Inkscape (2D vector, or shapes), Blender (3D vector, or polygons), and Fusion (2D and 3D visual effects)
during this chapter. The reason we are covering Inkscape 2D in this chapter, instead of in the 2D content
chapter, is because we can use the basic concepts regarding how 2D vector graphics work as our conceptual
bridge between 2D vector graphics and 3D vector graphics. This is because 3D vectors work just like 2D
vectors do in the 2D X and Y dimensions, only in the 3D X,Y,Z dimensions. For this reason, we’ll start this
chapter by learning about Inkscape 2D vector illustration, or digital illustration, so that we can build onto
this 2D vector knowledge and then learn about more complex 3D vector graphics software packages.

I first cover the underlying concepts of vertices (points) and splines (lines or curves connecting points)
since these provide the foundation for 2D shapes or 3D geometry. This is important because this is the
foundation you will build upon whether you decide to become a 2D vector illustrator or a 3D vector modeler
(or both). Working with vertices and splines can become an entire profession, so be sure to master these first
few sections.

Next, we will get into how you turn an empty 2D shape or a 3D wireframe into something solid looking.
This is done using color fills, gradients, or pattern fills for 2D shapes (these can also be used with 3D models)
and by using texture maps for 3D geometry. Texture maps use UVW maps to position the 2D texture maps
onto the 3D geometry.

After we have covered all of those concepts that apply to both the 2D and 3D space, we can get into
things that are encountered only in 3D. These include 3D rendering, which is the process of turning
3D models, which have 3D geometry along with 2D texture maps attached with 3D UVW texture mapping
coordinates, into 3D imagery. I call 3D imagery static 3D since the 3D technology is being used to make
images that do not move and thus are static, or fixed. There’s also 3D animation, which features movement,
much like digital video does, and Interactive 3D (i3D) where programming logic is embedded inside
3D objects or scene hierarchy, which is the most advanced level of 3D.

Animation gets into a fourth dimension of time, just like digital video does, and 3D animation adds
another layer of complexity into the 3D new media asset development work process. 3D animation utilizes
keyframes just like digital video does, so all of those same concepts apply, such as frame rates; it also has
some other concepts, such as motion curves, which are supported by JavaFX and which change the rate of
acceleration and deceleration to provide realistic movement to your 3D animation, as well as your
2D animation in JavaFX, as they are separate functions.

Interactive 3D involves inserting code into an object hierarchy called a Scene Graph, which holds
the assets, as well as the code and other elements, in a hierarchical format. Scene Graphs were invented

https://doi.org/10.1007/978-1-4842-0973-8_3

Chapter 3 ■ advanCed 3d Content rendering: 3d asset ConCepts and prinCiples

54

by 3D software packages back in the Amiga days. The 3D software package that originated this design and
development approach was Real 3D, by Realsoft OY, which today is called Realsoft 3D. Fortunately, JavaFX 9
also has an extensive Scene Graph API, which makes it perfect for creating both Interactive 3D and
Interactive 2D games and IoT applications.

Interactive 2D Assets: 2D Vector Content Concepts
There is one other type of 2D asset that we didn’t cover in detail in Chapter 2 as its concepts relate directly to
3D, so I decided to logically put this information at the beginning of this chapter so the information flowed
together better. 2D and 3D are very similar in their use of vertices and splines, which we will be learning
about next. 2D uses the X,Y dimension, which is a flat plane (or planar area, if you will), and 3D uses the
X,Y,Z dimension (which is a cubic area, if you will).

Therefore, in this section, we will look at how to create 2D vector illustration by placing points, or
vertices, in 2D space and then connecting them together by using straight lines, or curved splines, and filling
closed shapes with solid colors, color gradients, or tiling image patterns. JavaFX 9 offers a plethora of
2D classes supporting each of these 2D elements, as well as a SVGPath class, used for importing all of these
2D data elements, if you choose to use Inkscape.

The 2D assets or objects that you will use in Java using the JavaFX APIs are generally called shapes,
although they are technically also geometry since shapes are inherently geometric! Typically in the industry,
3D is referred to as 3D Geometry, and 2D is referred to as 2D Shapes. The foundation of both 2D and 3D
assets start with points in space called vertices. These are connected with (straight) lines or (nonstraight)
curves. Let’s look at these next.

Points on a Plane: 2D Vertices, Model Reference Origin, Pivot Point,
Dummy Point
Now don’t get excited—this is not the sequel to Snakes on a Plane; it’s just a discussion regarding the
foundation of 2D shapes, which, like 3D models, are based on points in space. Since 2D space consists of an
X,Y plane, we place points on a 2D plane. Each point in space is called a vertex in professional terminology,
since this is Pro Java 9 Games Development after all. You can use these vertices both in planar X,Y space for
your 2D shape creation and in cubic X,Y,Z space for 3D geometry creation, which we will be covering later
during this chapter.

The reason I subtitled this section “Points on a Plane” is because vertices are placed in 2D space using
an X,Y grid on a 2D plane and in an X,Y,Z cubic area in 3D space. The origin of this 2D grid is located at 0,0.
Usually this is the upper-left corner of the screen, and for the 3D cubic area, this referencing origin would be
located 0,0,0.

For both 2D shapes and 3D objects, this origin can be relocated, so different packages will reference
this grid from a different corner of the plane or cube. You will see this later in JavaFX, which has different
ways to reference coordinates. Another reference point inside of that plane or cubic area is used for the
rotation of your 2D or 3D object and is called the pivot point.

For instance, if you wanted your hammer 2D shape (or 3D model) to rotate near the end of the handle,
as it would be rotated in real life, you would accomplish this by moving the pivot from the default (center)
position in your 2D (or 3D) modeling space down toward the end of the handle of the hammer. For this
application, your pivot point will then become the center for the axis for that object. The pivot point is
a referencing origin for how the asset needs to be rotated, whereas the grid (space) origin will provide a
reference for how the points will be positioned relative to each other. Thus, a rotation algorithm will use both
the modeling grid origin as well as the pivot point position. These are usually different point coordinates;
however, it is possible that they can be the same point, in some scenarios.

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_2
http://www.ebook3000.org

Chapter 3 ■ advanCed 3d Content rendering: 3d asset ConCepts and prinCiples

55

Both origins and pivots represent that point in space using an axis. This axis can be moved and looks
like a star in 3D software and like a plus symbol in 2D software. In fact, an axis is really a separate object
within a 2D shape or 3D geometry, and it can even be animated just like every other 2D or 3D object element
can, using JavaFX and Java code, to create special effects relating to how the shape or geometry rotates over
time. There’s also a “dummy point” used for special effects and advanced applications that is very similar
to a pivot but used for other purposes that is also represented using an axis. You’ll see later during the book
how important this axis element is for Java games.

Connect the 2D Dots: Vector Lines and Spline Curves Connect Your
2D Vertices
Since vertices are mathematically infinitely small, making these tiny dots essentially invisible, you will need
to connect them to make something that you can visualise. The simplest incarnation of this is a straight line,
known as a vector (also sometimes termed a ray in 3D rendering). A vector starts at one vertex and projects
out until it hits a second vertex, which defines the direction of the vector. A vector is inherently straight, so it
would be considered a line, not a curve. A curve is mathematically far more complex than a straight line is,
as you are about to see.

Since we often want an infinitely smooth curve as part of our 2D shape or 3D geometry, we will need to
use a different type of mathematical construct, called a spline. The reason why a spline is infinitely smooth
is because it is a curvature that is defined using a mathematical equation, the resolution of which can be
increased by using smaller numbers such as by using floating-point numbers rather than integers, for all of
you computer programmers out there (which I am hoping is everyone, given the professional nature of this
Pro Java 9 Games Development book).

The mathematical foundation for most types of splines is called the Bezier curve, which was named
after the mathematician Pierre Étienne Bézier, who was a French engineer who lived from 1910 to 1999.
Pierre was one of the founders of the fields of 3D solids, geometric modeling, and physical modeling, as well
as the leader in the specialty area of representing curves, especially in CAD CAM and 3D systems. There
are several mathematical formats for Bézier curves, including cubic or quadratic Bézier curves, which are
defined using different types of mathematical equations that define how each curve is to be constructed.

The simplest of these curves is the Linear Bézier curve, which can be used to create straight-line
(vector) rays and which uses only two control points to define your curve. If you can get your shapes defined
using only Linear Bezier curves, less processing and memory will be used by your game or IoT application.
This is because fewer control points will need to be processed. As you can see in the top part of Figure 3-1,
Inkscape draws control points and their handles using blue. If you want to try this in Inkscape, click the
Spline/Line tool, shown on the left of Figure 3-1, and click to create a point, click a second point somewhere
else to add a straight line, and then click a third point and drag to create a curve! It’s fairly easy once you get
the hang of it; that being said, the truth is, everything you learn in this book takes tons of practice to master
at a professional level.

To adjust the curvature of the Linear Bezier curve, you can move each of the two handles that come
out of the vertex you just added. If you want a straight line, just click to add vertices, and straight lines will
connect them. On the other hand, if you want to make a curve, click down to add the vertex, and with the
mouse still clicked (keep your mouse depressed), drag out the Bezier curve control point handles.

The next most complex type of Bezier curve is a Quadratic Bézier curve, named after the type of
quadratic mathematical algorithm that is used to prescribe it. A Quadratic Bezier has three control points
instead of two, so it is more processing intensive but provides more control over “tweaking” the curvature of
the curve by using the handles.

The most complex is the Cubic Bézier curve, named after the type of cubic mathematical algorithm
that is used to prescribe it, and it has four control points, instead of three, so it is even more processing
intensive, but again, it provides even more control over tweaking the curvature of the curve.

Chapter 3 ■ advanCed 3d Content rendering: 3d asset ConCepts and prinCiples

56

In Adobe Illustrator, control points are subdivided into using handles and anchor points. The handle
positions that are used to influence the curvature are the handles. The anchor points are the vertices
describing the start and end positions of the Bézier curve. Inkscape uses a different term for an anchor point,
calling it a node.

There is also a 3D modeling approach called NURBS, or Non-Uniform Rational B-Spline, which is
related to a Bezier spline representation but optimized for use in 3D X,Y,Z space. A NURBS is more complex
and allows a smooth, organic 3D geometry representation to be created. Moment of Inspiration 3D by
Michael Gibson is one of the really affordable NURBS modelers, at only $295; it is based on the original SGI
Alias Wavefront NURBS Modeler API.

Filling the Shape Interior: Color Fills, Gradients, and Patterns
If the 2D shapes that you create using these vertices and splines (or vectors/lines) are closed, then they can
be filled with various things such as solid colors, color gradients, or tiled image patterns. This is shown on
the bottom portion of Figure 3-1. To close a curve, draw your final vector (line) or spline (curve) until your
mouse cursor is over the starting vertex, and when that vertex changes (in Inkscape, it turns from black to
red), click down to create a closed shape. To fill the shape you just closed in Inkscape, click the Fill tool,
shown on the left along with the Spline/Line tool and their tooltips, and then click the color, along the
bottom swatches, to fill the selected shape with that color.

The 2D vector shape file format used by both Inkscape and JavaFX is Scalable Vector Graphics (SVG),
so if you save your Inkscape project, it will use the .svg extension, like ProjectName.svg, for instance. If
you want to learn more about SVG, take a look at Digital Illustration Fundamentals from Apress.com. Next
let’s take a look at i3D media assets, which are fully supported in Java 8 and 9 using the JavaFX 9 new media
engine.

Figure 3-1. Creating an open shape in Inkscape using vectors and splines, closing that shape, and then filling
the shape

www.ebook3000.com

http://www.ebook3000.org

Chapter 3 ■ advanCed 3d Content rendering: 3d asset ConCepts and prinCiples

57

Interactive 3D Assets: 3D Vector Content Concepts
The most advanced type of multimedia asset is an interactive 3D vector object, which can be created using
Java and the JavaFX API (classes and methods) or using a combination of this approach with 3D modeling
packages (such as those discussed in Chapter 1) or with 3D animation packages (such as Autodesk 3ds Max,
which is what I have used since its first version; 3D Studio DOS; or Blender, which is nearing a similar level
of professional features). i3D assets are comprised of 3D vector geometry, surfaced using 2D raster imagery
(which we learned about in Chapter 2), and contain programming logic inside of their model and scene
hierarchy that will bring them to life.

We will learn about how a 3D object goes from a mesh to a surfaced model during this section of the
chapter. We’ll also look at animation, motion curves, object hierarchies, axis placement, dummy objects,
particle systems, fluid dynamics, hair and fur dynamics, rigid body dynamics, soft body dynamics, cloth
dynamics, rope dynamics, and related 3D topics during this chapter. As you can see, 3D is by far the most
complex and interesting new media type.

These 3D objects can further be made to be interactive by using programming logic inside of a Scene
Graph object hierarchy, which defines what each part of the 3D object will do and which is an integral part
of JavaFX 9. Let’s start from the ground up. I’ll show you the various attributes that take a 3D asset from being
3D geometry to being a 3D model to being a 3D hierarchy to being a 3D object. This is the most involved
multimedia and is the least common new media asset type to be found in HTML5 (using WebGL2),
Android 8 (using Vulkan), and Java 8 and 9 using JavaFX.

The Foundation of 3D: The Geometry of the Mesh
The lowest level of your 3D new media elements is, just as with 2D shape new media elements, the vertices
and the connections between those vertices. In 3D you will still have vertices, but the connections between
them become a bit more complicated. In 2D, the vertices, vectors (rays or lines), and splines (curves)
between themselves are empty (nonfilled), closed shapes or open shapes, which cannot be filled because
they are open and will spill over. Connections between 3D geometry (which before it is texture mapped is
sometimes referred to in the 3D industry as a mesh or wireframe since that is what 3D geometry looks like
before it is texture mapped, or skinned), are called “edges” between vertices and “faces” between edges.

Points in Space: Origins of the 3D Vertex
Just like with 2D vertices (or anchor points as they are called in Illustrator or nodes as they are called in
Inkscape), the vertex is the foundation of 3D geometric and organic (NURBS, Catmull-Rom Splines, and
Hash Patches) modeling. The vertex defines where the model’s infrastructure, whether that is edges or
splines, is in 3D space, and in 3D, vertex data can hold surface color data, normal data, UVW texture
mapping data, and vertex XYZ location data. Those of you who are familiar with 3D scanners may be familiar
with the term point clouds, so the vertex is still the foundation of everything that we do in the 3D industry.

For Java 8 and 9 coding, JavaFX 9 has a VertexFormat class that can hold vertex data, which includes
your vertex location, normal information (we will cover normals soon), and UVW texture mapping
coordinates. So, you can place the vertices for your Java 9 game or IoT application by using Java code or you
can use a 3D modeler, such as Daz Hexagon, MoI 3D, or Nevercenter SILO, or a 3D modeling and animation
package, such as Blender or Autodesk 3ds Max.

http://dx.doi.org/10.1007/978-1-4842-0973-8_1
http://dx.doi.org/10.1007/978-1-4842-0973-8_2

Chapter 3 ■ advanCed 3d Content rendering: 3d asset ConCepts and prinCiples

58

Connect the 3D Vertices: Edges Bridge 3D Vertices
Most 3D geometry uses something called an edge to connect two vertices. An edge is a vector, or straight
line, so it looks like the edge of a razor in 3D space. Three or more edges are needed to form a polygon,
which we are going to cover next. When you are modeling 3D geometry, you can select vertices, edges,
polygons, or entire objects.

If you’ve created your 3D geometry using a more advanced spline-based modeling paradigm, such as
NURBS using MoI 3D, Quads using SILO 2 (which is only $160), or Hash Patches using Animation:Master
(which is only $80), you will need to decimate these formats into polygons or triangles, which we are going
to cover next. The process of decimation turns the infinitely smooth curves used in these paradigms into a
collection of straight edges. This is done using a decimation (smoothness) numeric factor (slider or setting),
which is usually supplied in the File Export function that outputs the spline modeling format from your
curve-based modeler into a polygonal geometric model format.

Creating the Surface: Three Edges Form Polygons, Four Edges Form Quads
Once you have put three edges together in the format of a triangle, you have a polygon, which can be used
as a surface to host a skin, or texture, to make the 3D data look more realistic. Polygons are sometimes
referred to as Triangles, Tris, or Faces, and some modelers use square polygons that are referred to as
“Quads.” If your rendering engine requires triangles as JavaFX and its TriangleMesh class do, you can
decimate Quads into Tris. The decimation algorithm is fairly simple, in this case, as it simply inserts an
edge between two opposite corners of the quad surface, creating two triangles of equal (mirrored) angle
characteristics. The optimal triangle comes from a square polygon and has a 45-45-90 degree corner angle
configuration. The rule of thumb is that the more uniform (square) a triangle is, the better it renders,
whereas “slivered,” or long, thin triangles, could cause rendering artifacts but usually do not.

Once you have a surface (which is usually a triangle, as shown in Figure 3-2), the faces on the basic cube
are quads, and you have defined its normal (which we will learn about next), then you can apply a texture
map. We will cover texture mapping in the next major section of this chapter. There is also another principle
that is related to adjacent polygons or faces that is called a smoothing group, which we will take a look at after
we cover surface normals. So, at the very least, a surface (polygon, triangle, quad, face) will host one normal,
one or more texture maps, and a smoothing group.

www.ebook3000.com

http://www.ebook3000.org

Chapter 3 ■ advanCed 3d Content rendering: 3d asset ConCepts and prinCiples

59

Specify the Direction the Surface Is Facing: The Concept of Surface Normals
If you know how to turn the “show normals” feature on in your 3D software, you can see the face surface
normals, which will be displayed as a line coming out of the exact center of the face, as you can see in light
blue in Figure 3-2.

There are also toggles (buttons) in Blender 2.8 for showing vertex normals, which point outward from
the vertex, so for this model the vertex normals point out diagonally from the corners of the cube
(45 degrees), the exact opposite result from the face normals, which point straight up (90 degrees, straight
up, like a skyscraper) coming out of the center of the face (surface, quad). As you can see in Figure 3-2, two of
the normals shown are actually aligned with the x-axis (red) and y-axis (green), which intersect the cube at
90 degrees.

The axis guide is in the lower-left corner of the 3D Edit Mode view, which is also indicated under the
XYZ axis guide at the bottom left of the Blender UI. The function of this surface normal is fairly simple; it tells
the rendering engine which direction the surface is facing. In this case, this cube would render as a cube,
with whatever texture (skin) you give it to color it. The same logic would apply to a vertex normal; it would
show the rendering engine which side of your 3D geometry to process for surface rendering.

If the normals in this cube geometry had been pointing inward instead of outward, the cube would not
be visible at all when rendered. There’s a flip normals operation (algorithm) in 3D software that is used to
reverse your normal directions for a model universally (all normals are flipped 180 degrees). This will be
utilized when you render a scene, and your imported object is not visible when you render the scene.

Flipped normals can appear when the 3D import utility points (flips) the normals for imported 3D
geometry in the wrong direction or when the exporter from the other 3D tool exported them in the wrong
direction, relative to the software you are importing them into. This will be a fairly common occurrence in
your 3D workflow, so expect to use this flip normals function at least a few times if you are going to work in
3D, or in i3D, frequently.

Figure 3-2. Use the “Display face normals as lines” button to show direction normals for each quad face as
light blue lines

Chapter 3 ■ advanCed 3d Content rendering: 3d asset ConCepts and prinCiples

60

If you need something (like a house, for instance) where the 3D geometry has to render from the
outside as well as from the inside, which is common in i3D (virtual worlds, for instance), you would have
to create the geometry, the faces in particular, to be double-sided. You would then need to apply a double-
sided texture map and UVW map, which we will be covering in the next section of the chapter when we talk
about 3D texture mapping concepts and techniques.

It is important to note that for i3D, double-sided geometry with double-sided textures requires
significantly more rendering engine processing, and the rendering is being implemented in real time based
on a user’s exploration of the interactive 3D environment, world, or simulation, so JavaFX will be navigating,
processing, and rendering an i3D scene all at the same time, which requires a lot of processor cycles to do
smoothly, so data optimization is important.

Although you can assign a normal to a vertex in JavaFX, a normal is usually assigned on a per-face basis.
This is why there are two formats for the VertexFormat class. One supports location and texture for polygons
that have the normal defined once because defining the normal using three vertices is not as efficient as just
using the one face, and the other is a VertexFormat data format for when you want to define normals using
the vertices instead of the polygons.

Smoothing the Surface: Using Smoothing Groups to Make Polys Look Like
Splines
You probably have seen 3D models that are rendered as solid (instead of wireframe) but still look like they
are chiseled; that is, you can see the polygons (faces) rendered as if they were flat. In this case, the rendering
engine has smoothing turned off. If you render with smoothing turned on, this effect disappears, and the
geometry looks like it was intended to look, which is infinitely smooth, like it was created using splines
when it actually is using polygons. It is more efficient to have the rendering engine do the smoothing,
so there is something called a smoothing group, which is applied to each face, to tell a renderer when
to smooth between two faces and when to not smooth, which leaves what is commonly referred to as a
seam. A smoothing group uses simple integer numbers. If the numbers match on each side of a face (for
each adjacent face on the opposite side of that edge), it renders as a smooth transition (color gradient). If
the numbers are different, it renders as a seam; that is, the edge is clearly visible as the color gradients on
each side of that edge are different (the color gradient is not seamless across the two faces, also known as
polygons).

In some 3D software packages, such as Autodesk 3D Studio Max, you can see this smoothing group
number schema in the user interface and can actually select the (integer) numbers used next to each edge.
You can also select the numbers on either side of an edge, which is a much more complex approach but
gives a 3D modeler much more precise smoothing control.

In others such as Blender, the numbering is hidden, and the smoothing group function is “exposed” by
using commands such as Mark Seam, Clear Seam, Mark Sharp, and Clear Sharp. These commands are
found in the Blender Edges Menu, as shown on the left side of Figure 3-3 with the Mark Sharp option shown
selected in light blue.

www.ebook3000.com

http://www.ebook3000.org

Chapter 3 ■ advanCed 3d Content rendering: 3d asset ConCepts and prinCiples

61

In Blender, some 3D modelers (people, not software) will make the mistake of trying to expose a
seam, or a sharp edge, in their 3D geometry by actually splitting the edge of the 3D geometry itself, which
will achieve this visual effect but which could also cause a problem down the line during a 3D geometry
topology refinement work process. If you’re familiar with the term topography used in mapping, topology
is very similar, referring to how 3D geometry is constructed and, therefore, how it will be rendered since a
rendering engine is “math-based,” just as 3D geometry is.

The topology of a 3D model is the construction of the 3D geometry, that is, where vertices, edges, and
faces are placed relative to each other, or it’s the construction of spline-based organic 3D models where
control point, handles, and similar spline-based topology have been placed (and the order in which they are
placed). In other words, 3D modeling is complex!

Having to split your geometry edges to achieve a seam can be avoided by instead using the Mark Seam
or Mark Sharp edge modifier in Blender. These particular Blender modifiers are actually smoothing group
based and therefore achieve this smoothing (or edge seam) effect without actually affecting the 3D geometry
topology.

A Blender modifier is applied just before rendering and therefore does not affect the actual
mathematical topology of your underlying 3D geometry. A Blender modifier is always a more flexible 3D
content creation approach because it applies smoothing (or any other desired effect) at the rendering engine
level, not at the 3D geometry topological level, leaving your 3D mesh intact. As with anything in Pro Java 9
Games Development (and IoT design), simpler will always be better if you can achieve a desired effect and
end result because simpler equals less processor overhead.

Skinning Your 3D Model: 2D Texture Mapping Concepts
Once your 3D geometry, which is the foundation for your 3D model is completed, you can apply texture
maps to it to create a solid appearance for your 3D model and add detail and special effects to it to make
its appearance more and more realistic. If you are wondering what the difference is between 3D geometry
and a 3D model, 3D geometry is just the mesh or wireframe, whereas a 3D model could have (should have)

Figure 3-3. Set edge smoothing in Blender using the Edges menu (Ctrl-E when in Edit Mode) command called
Mark Seam or Mark Sharp

Chapter 3 ■ advanCed 3d Content rendering: 3d asset ConCepts and prinCiples

62

texture maps also applied. If you purchase third-party 3D models, you expect them to look like what they
are when you render them, instead of just being flat gray, which is what a rendered model will look like
without any texture mapping (and no vertex color) information applied. In fact, some 3D models that you
will find online (free or paid) will not even have smoothing groups applied, so you will have some that are
faceted, some that are smoothed, and some that are textured to various levels of detail. Some may even have
their normals flipped and will not even appear in your 3D scene until you apply a flip normals operation or
modifier to them. Usually you will have to do additional modeling, smoothing, and texture mapping work to
any preexisting models that you do not create from scratch. I usually try to create everything from scratch,
so I have control over, and familiarity with, the underlying 3D geometry topology and how my smoothing
groups, UVW mapping coordinates, shaders, and texture maps are applied to a model. We will be covering
all of this in this section.

Texture Map Basics: Concepts, Channels, Shading, Effects, and UVW
Coordinates
Texture mapping is as complex an area of 3D as creating geometric topology correctly is; in fact, each of
the areas of 3D is equally complex, which is what makes 3D the most complex new media type by far and
why 3D feature films employ artists to specifically focus on (work on) and handle each of these areas we are
looking at during this chapter. Texture mapping is one of the primary areas in 3D modeling that is able to use
2D vector, or 2D raster image, assets.

It is important to note that there is also a more complex area of 3D texture mapping, also called
texturing, that uses 3D texture algorithms, commonly termed volumetric textures, to create texture effects
that go all the way through your 3D object, as though it were a solid and not a hollow (think double-sided
here) 3D object.

The basic concept behind texture mapping is taking 2D assets, such as those that we learned about
during the previous chapter, and applying these 2D assets to the surface of your 3D geometry. This is
accomplished by using UVW, or 3D, mapping coordinates to show how you want that 2D image (plane)
oriented to, or projected on, your 3D geometry surface topology. Now I want you to quickly look up from the
book and exclaim to those within earshot: “I really need to decimate this spline topology into a polygonal
topology so that I can apply shaders using UVW texture mapping coordinates onto the resulting geometry
and export this 3D model into my JavaFX Scene Graph hierarchy.” Then just resume reading as though
nothing has happened, even though you just established your pending interactive multimedia production
genius to everyone who is currently within earshot.

You can add more than one texture map to the surface of your 3D geometry using texture channels,
which are analogous to the layers that you use in your 2D image compositing software. JavaFX currently
supports four of the most important texture channels: the diffuse texture map (basic ARGB color values),
the specular texture map (where surface is shiny or dull), the illumination texture map (also called a glow
map), and a bump texture map.

3D software packages support other texture map channel types for additional texture mapping effects.
To be able to bring these into JavaFX, you’ll have to use a process called baking. Baking texture maps
involves rendering all of the not yet supported texture channels into a single diffuse texture map since that
is what JavaFX 8 and 9 supports. This provides much of the same visual result that you get in your more
advanced 3D animation packages.

As you can see in Figure 3-4, Blender 2.8 also uses a Scene Graph, just like most modern-day 3D
software packages do, and JavaFX offers this Scene Graph functionality as well; we will be covering it in
Chapter 8. The sphere geometry and texture mapping are grouped together in the Scene Graph hierarchy,
which I expanded for you.

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_8
http://www.ebook3000.org

Chapter 3 ■ advanCed 3d Content rendering: 3d asset ConCepts and prinCiples

63

As time goes on, ideally JavaFX 9 will add more texture channel support and give developers more
visual flexibility regarding their 3D new media asset usage, as transparency areas (opacity maps) and surface
details (normal map) are two of the most important areas regarding advanced texture mapping support.
These will ultimately need to be added to Java using the JavaFX API in order for developers to be able to
create realistic i3D models for Java games.

The collection of texture channels and any code governing these channels’ relationship to each other,
as well as how they will be composited, applied, and rendered relative to each other, is called the shader
definition. Shaders are also commonly referred to as materials in the 3D industry. We will be covering
shaders and shader languages, as this is another specialized and complex area of 3D and i3D games
development, in the next section of this chapter. I also go into shader construction in detail in my book VFX
Fundamentals (Apress, 2016) using open source Fusion 8.2.1.

Finally, once your textures are defined inside the shaders, you will need to orient these 2D assets to
your 3D geometry, which is done by using texture mapping coordinates, usually done via something called
UVW mapping, which we will also be covering in its own specific section, before we move on to the fourth
dimension and animation.

Texture Map Design: Shader Channels and Shader Language
Shader design is an art form in and of itself; thousands of shader artists work on 3D movies, games, and
television shows making sure that the shaders used to “shade” or “skin” the 3D geometry make the resulting
3D model look as real as possible, which is often the objective of 3D, to replace more expensive video camera
shoots (and reshoots).

The basic shader consists of a series of 2D vector shapes, 2D raster images, or volumetric textures,
held in different types of channels that apply different types of effects, such as diffuse (color), specular
(shininess), glow (illumination), bump (topography), normal (height), opacity (transparency), and
environmental (surroundings) maps. Volumetric shaders are also 3D in nature and as such do not use

Figure 3-4. Using a Scene Graph (right) to apply a gold texture map and shader (bottom) to a sphere object in
Blender

Chapter 3 ■ advanCed 3d Content rendering: 3d asset ConCepts and prinCiples

64

2D imagery as inputs but instead use complex algorithm definitions that produce a 3D shader that cuts
through the 3D object, which is why it is called volumetric. These 3D volumetric shaders can also be
animated and can change color and translucency based on their position in 3D space.

On top of this, advanced shader languages, such as Open GL Shader Language (GLSL), use code to
specify how these channels interrelate to each other, how to apply or process the data contained in these
channels, and how to provide other more complex applications of the data within these channels based
on complex factors such as time, orientation, or position in 3D space. The complex nature of shaders
also means that the render-time processing of the shader is more time-consuming, and processing cycle
consuming, the more complex a shader becomes. The processor cycles required can often be expensive
because of the ability of complex shaders to produce photorealistic results.

This is probably the primary reason that JavaFX 9.0 currently supports the four basic (and easiest to
process) shaders. As hardware becomes more powerful (you’ll see six-, eight-, and ten-core CPUs in more
consumer electronics products), JavaFX will probably add the last two important shader channels: opacity
(or transparency mapping) and normals mapping.

Texture Map Orientation: Texture Map Projection Types and UVW Coordinates
It is important to align the detail features in your 2D texture map channels, especially the foundational
diffuse color channel, to the 3D geometry correctly or some fairly odd or at least visually incorrect results
can appear at render time. This needs to be done in 3D X,Y,Z space, especially for volumetric textures but
also for 2D textures to define how they project onto, or envelop around, the 3D geometry.

One of the easiest ways this can be done is by applying texture map projection types, and related
settings, which will then automatically set your UVW mapping numeric values for you. These UVW map
coordinate values will define how the 2D imagery plane maps onto the 3D geometry in 3D space, sort of
a bridge between the 2D space and the 3D space, and UVW floating point values can be set or tweaked
manually in order to fine-tune your visual results.

The simplest of these is planar projection, which you can visualize as if your texture map were in front
of the 3D object and you were shining a light through it, so it looks like the colors in the diffuse texture map
are on the 3D object. Planar projection is the simplest for a computer to process, so use it if you can get
the results that you’ll need for your pro Java game or IoT application. However, it is usually used for static
rendered 3D imagery because once you move (the camera) around to the sides of the 3D model, this type of
projection mapping does not provide photoreal results.

Camera Projection is similar to planar projection. Camera projection projects your texture from
the camera lens (100 percent parallel with the lens) onto a 3D object surface much like a slide projector
would do. This could be used for projecting video backgrounds on your scene so that you could model,
or eventually animate, your 3D assets in front of them. If the camera moves, the camera projection stays
parallel with the front of the lens. This is sometimes termed billboard mode (or projection).

The next simplest is cylindrical projection, which provides more of a 3D application of the texture map
than the (inherently) 2D planar projection of a texture map onto a 3D object from one direction. A cylinder
would surround your object, in the up and down (the z-axis) dimension, projecting the image all the way
around your object! So, if you walked around it, there would be unique texture detail in another dimension
that planar projection does not provide.

A more complex type of projection is called a spherical projection. This provides an even more
complete 3D application of the texture map than the cylindrical projection of a texture map onto a 3D object,
from both the X and Y directions along the Z dimension. Spherical projection attempts to address all three
(X,Y,Z) axis projection directions.

Similar to a spherical projection is the cubic projection, which is like having six planar projections in a
cube format; this gives a result similar to the spherical projection. When you apply a cubic projection to a 3D
object, the object’s faces are assigned to a specific face of a cubic texture map, based on the orientation of the
polygon normal or on the proximity to the face. The texture is then projected from each face of the cubic texture
map using a planar projection method, or possibly a spherical projection map for some 3D software packages.

www.ebook3000.com

http://www.ebook3000.org

Chapter 3 ■ advanCed 3d Content rendering: 3d asset ConCepts and prinCiples

65

If you are using volumetric textures, the spatial projection is a three-dimensional UVW texture
projection, which projects through a 3D object’s volume. It is typically used with procedural or volumetric
textures for materials that need to have an internal structure, such as wood, marble, sponge, agate, and
so forth. If you deform a 3D object or transform the texture mapping coordinate relative to the 3D object,
different parts of the volumetric or procedural texture will be revealed.

There’s also a simpler texture mapping called UV mapping (no W dimension). This applies the texture
in two dimensions, instead of three, and is easier to process because it has less data. We will probably map
our 3D models outside of JavaFX using 3D software and then use a model importer to import the already
texture-mapped 3D object into Java as the classes for some of this more advanced 3D map support have not
been added to the JavaFX API as of JavaFX 8.

Animating Your 3D Model: Keyframes, Motion Curves, and IK
After you have created your 3D geometry and texture mapped it using shaders and mapping coordinates,
you might want to make it move in some fashion, such as flying an airplane model, for instance. The
concepts that you learned about for digital video assets as well as for 2D animation assets in Chapter 2 apply
equally as well for 3D animation.

Linear Animation: Tracks, Keyframes, Looping, and Ranges
The simplest type of 3D animation, and 2D animation for that matter, is linear animation, which is fine for
many types of animation. Figure 3-5 shows how to add a keyframe to a cube object in Blender 2.8 using the
Insert Keyframe Menu.

Figure 3-5. Using the Insert Keyframe Menu in Blender 2.8 with a Cube object selected to add a Delta Scale
keyframe

http://dx.doi.org/10.1007/978-1-4842-0973-8_2

Chapter 3 ■ advanCed 3d Content rendering: 3d asset ConCepts and prinCiples

66

The I hotkey on your keyboard is used to access this Insert Keyframe Menu, with the Cube object
selected. Most 3D software packages have what are generally termed track editors that allow you to add
keyframes and a motion curve to the tracks. Each track will relate to a 3D model, and if your 3D model
uses subcomponent grouping, then there will be tracks for groups and subgroups as well as individual
components inside of a group or subgroup.

Linear animation uses the least amount of processing power, so it is the most efficient. If you can use
linear animation to accomplish your animation objective, use the fewest number of tracks you can, and the
fewest number of keyframes, because this will use the least amount of system memory.

If the animation motion is repetitive, use a seamless loop instead of a long range. One seamless motion
loop can take up less memory than a long range containing multiple copies of the same motion. Using
looping is a great optimization principle where linear animation is concerned. Next, let’s take a look at some
of the more complex types of animation, including those that are not linear (in a straight line, with evenly
spaced keyframes) as well as character animation and procedural animation, which is used for things such
as rigid body or soft body physical (physics) simulations, cloth dynamics, hair and fur dynamics, particle
systems, and fluid dynamics, for instance.

Nonlinear Animation: Motion Paths and Motion Curves
A more complex type of nonlinear animation, which is less regular and often looks more realistic, especially
where human motion and simple physics simulation is concerned, will implement a motion path for the
animated 3D object or element (subobject in a hierarchy) to move along. JavaFX has a Path class that can
be utilized as a motion path for your own complex animation or game sprite movements. To add even more
complexity to the motion along that path, it is possible to use a motion curve so that the movement itself
can speed up or slow down, simulating things like gravity and friction. The mathematical algorithms that are
represented visually, using these motion curves, are called interpolators, and JavaFX has an Interpolator
class that contains a wide variety of the most standard (yet still quite powerful, if used effectively) motion
curve algorithms.

A good example of nonlinear irregular motion keyframing would be a rubber ball bouncing down a
curvy road. The curved path of the road would use your motion path to make sure the ball stays on the road
curvature and that the ball floor conforms to the slope (angle) of that road. The bouncing of the ball would
use a motion curve, also sometimes called a motion interpolator, to make each bounce look more realistic
regarding the timing of the acceleration and deceleration of its movement through space over time. In this
case, this would control how your ball reacts to the ground.

Figure 3-6 shows the Blender Timeline Editor at the bottom of the screen; you can see two rotation
keyframes as vertical yellow lines, with the current frame setting as a vertical green line.

www.ebook3000.com

http://www.ebook3000.org

Chapter 3 ■ advanCed 3d Content rendering: 3d asset ConCepts and prinCiples

67

Complex physics simulations containing many interacting elements can’t be done using keyframes,
although it is theoretically possible if you have a massive amount of time on your hands; however, this would
not be profitable (worth your time). Just like the application of motion curves to keyframe playback utilizes
interpolation algorithms, a procedural animation algorithm goes one step further and also affects not only
the timing of the keyframes but also the keyframe data itself (X, Y, Z data, rotation data, scale data, etc.).

Since procedural animation is in the form of an algorithm, it’s quite efficient because once the
algorithm has been created, it can be used again and again with no additional work. These procedural
animation algorithms have created a number of special effects genres in 3D, including rigid body dynamics
and soft body dynamics (physics simulations), rope and chain dynamics, cloth dynamics, hair and fur
dynamics, particle systems, fluid dynamics, muscle and skin flex dynamics, lip-sync dynamics, and facial
expression dynamics. We will cover procedural animation a bit later, as we are progressing from the less
advanced concepts to more advanced concepts in each of these chapter sections.

Let’s cover an overview of character animation next; it is the next type of animation that is likely to be
supported in JavaFX because the JavaFX importers are supporting the import of more complex types of 3D
data, including advanced types of animation such as character animation.

Character Animation: Skeletal, Muscles, Skin, Forward, and Inverse
Kinematics
An even more complex type of animation is character animation, and character animators are one of the
popular positions on a 3D film, game, or television content production team. Character animation involves
a number of complex layers, including setting up a “bones” hierarchy for the character’s skeleton, using
inverse kinematics to control the skeletal (character) movement, attaching muscles to the skeleton and
defining how they flex, attaching the muscles to the skin, and even adding clothing and cloth dynamics to
dress the character. In 3D character animation, things are done in a very similar matter to how they are done
in real life so as to realistically simulate real life, which is often what 3D, i3D, and VR are attempting to do.

Figure 3-6. The Blender 2.8 Timeline Editor, with two keyframes at frame 0 and frame 10, and the current
frame 6 setting

Chapter 3 ■ advanCed 3d Content rendering: 3d asset ConCepts and prinCiples

68

Therefore, simulating living beings using character animation gets about as complex as animation can
get without using straight coding, which as you now know is called procedural animation.

At the lowest level of character animation you have the bone; the bone uses an inverse kinematics
algorithm that tells the bone its range of movement (rotation) so you don’t have elbows that bend the wrong
way or a head that spins around like in The Exorcist! Bones are connected in a hierarchy into, you guessed
it, a skeleton. This skeleton is what you animate (keyframe) later to animate your character. You can also
simulate muscles and skin by attaching these to the bones and defining how the bone movement will flex
the muscles and stretch the skin for your character. As you might imagine, setting all of this up is a complex
process; it’s an area of character animation called rigging. If you need to add clothing, there is a new area of
3D called cloth dynamics that defines how clothing will move, wrinkle, and blow in the wind, and there are
similar procedural animation algorithms targeted at increasing realism. Let’s take a look at this next, along
with some other similarly advanced procedural animation and simulation FX algorithms.

Procedural Animation: Physics, Fluid or Cloth Dynamics, Particle Systems, Hair
The most complex type of animation is procedural animation, because it needs to be done using code, and
writing code that computes 3D vectors and matrices, along with physics and fluid dynamics equations, is
just as complex, if not more so, than game programming code (depending on the complexity of the game).
In 3D packages, this coding is usually done using C++, Python, or Java, and procedural 3D animation in your
Pro Java 9 Games Development would be accomplished by using a combination of Java 9 APIs and JavaFX 8
APIs. Procedural is the most complex but also the most powerful type of 3D animation and is the reason why
procedural animation programmers are another one of the more popular 3D job openings in the 3D film,
gaming, IoT, and interactive television (iTV) industries currently.

There are a lot of “features” in 3D modeling and animation packages such as Blender or 3D Studio
Max that are actually procedural animation algorithm plug-ins, which expose a user interface to the user
to specify parameters that will control the result of a procedural animation once it is applied to 3D models
or a complex 3D model hierarchy (created by using the 3D software or JavaFX Scene Graph, such as the
Scene Graph shown on the right in Figure 3-4). We just discussed a complex bones-rigging-muscles-skin
character model hierarchy to which cloth dynamics can be applied to make clothing move realistically with
3D characters as they run, fight, drive, dance, and so forth.

Examples of procedural animation algorithm–controlled features, many of which include real-world
physics simulation support, that are often added to advanced 3D animation software packages include 3D
particle systems, fluid dynamics, cloth dynamics, rope dynamics, hair and fur dynamics, soft body dynamics,
and rigid body dynamics.

JavaFX 3D Support: Geometry, Animation, and Scene Packages
There are three top-level packages in JavaFX that contain all of the support for both 2D and 3D new media
asset types. The javafx.geometry package supports the low-level 3D geometric constructs such as vertices,
with the Point2D and Point3D classes, and areas, using the Bounds and BoundingBox classes. The javafx.
animation package supports the low-level animation constructs such as timelines, keyframes, and motion
curves using the Timeline, KeyFrame, KeyValue, and Interpolator classes. The javafx.scene package
contains a number of nested packages, which I like to call subpackages, including javafx.scene.shape for
2D or 3D shape constructs, such as the Mesh, TriangleMesh, and MeshView classes; the javafx.scene.
transform package supporting 2D and 3D transformations, including Rotate, Scale, Shear, and Transform
classes; the javafx.scene.paint package containing shading classes like the Material and PhongMaterial
classes; and the javafx.scene.media package (MediaPlayer and MediaView classes).

www.ebook3000.com

http://www.ebook3000.org

Chapter 3 ■ advanCed 3d Content rendering: 3d asset ConCepts and prinCiples

69

JavaFX API 3D Modeling Support: Points, Polygons, Mesh, Transforms,
Shading
I will split the JavaFX 3D asset support into two diagrams, one for static 3D (rendered images) and one for
animated 3D (3D animation). Interactive 3D will use all of the JavaFX 3D capabilities plus some of the Java
API capabilities. The first diagram, Figure 3-7, shows the four major areas that are supported in JavaFX
packages. These are important for creating 3D models that can be used in static 3D imagery as well as with
other JavaFX APIs for animated 3D and with Java APIs for interactive 3D games, IoT applications, and 3D
simulations.

The javafx.geometry package contains the foundation for all 3D or 2D geometry in Java and
JavaFX, namely, the vertex (points) and space (bounds). The Point2D class supports both vertex (a point
in 2D space) and vector (a line in 2D space emanating from a point) representations. A Point3D class
also supports both vertex (a point in 3D space) and vector (a line in 3D space emanating from a point)
representations. The Bounds superclass represents the boundaries of a JavaFX Scene Graph Node and the
object that it contains. The BoundingBox subclass of the Bounds superclass contains a more specialized
representation of a Scene Graph Node object’s boundaries in 2D or 3D space.

The javafx.scene.shape package contains the Mesh, MeshView and TriangleMesh objects (classes)
used to create 3D geometry, and the javafx.scene.transform package contains the Rotate, Scale, Shear
and Transform objects (classes) used to apply 3D spatial transformations to your 3D geometry in 3D space.

Figure 3-7. High-level diagram of JavaFX 3D modeling asset support for geometry, shape, transform, and
texture map

Chapter 3 ■ advanCed 3d Content rendering: 3d asset ConCepts and prinCiples

70

The javafx.scene.paint package contains the Material and PhongMaterial objects (classes) that allow you
to texture your 3D objects in JavaFX using different shader algorithms. Next, let’s take a closer look at what
the JavaFX API offers us to support the fourth dimension of time so that we can add 3D animation features to
your Pro Java 9 games (or IoT applications or 3D simulations).

JavaFX API 3D Animation Support: Timeline, KeyFrame, KeyValue, Interpolator
As you might imagine, most of the key (no pun intended) classes for implementing both 2D and 3D vector
animation in JavaFX are stored inside the javafx.animation package, as shown in Figure 3-8. The exception
to this is the Camera superclass and its two subclasses, PerspectiveCamera (Perspective Projection) and
ParallelCamera (Orthographic Projection). The Timeline object (class) holds the animation definition,
which is made up of KeyFrame objects (class), which are in turn made up of KeyValue objects that contain
the actual transformation instruction data. A KeyFrame object can hold an array of KeyValue objects, so a
KeyFrame can hold several different KeyValue transformation data objects. There is also an Interpolator
class that holds a number of advanced algorithms for applying motion curves to the KeyFrame objects
inside of the Timeline object. Currently supported Interpolator algorithms include DISCRETE, or discrete
time interpolation, EASE_IN and EASE_OUT as well as EASE_BOTH (easing in and also out), and LINEAR
straight line (evenly spaced) interpolation, which is obviously the least processing intensive.

Now that you have a solid (3D) overview of 2D vector illustration and 3D vector rendering and
animation concepts, we’ll take a little break before we get into game theory, concepts, optimizations, and the
like in Chapter 4.

Figure 3-8. High-level diagram of JavaFX 3D animation support, showing javafx.animation and javafx.scene
packages

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_4
http://www.ebook3000.org

Chapter 3 ■ advanCed 3d Content rendering: 3d asset ConCepts and prinCiples

71

Summary
In this third chapter, we took a close look at some of the more important new media concepts relating to 2D
vector illustration and 3D vector rendering, texturing, and animation, which you will be using in your pro
Java game development work process so that you have the foundational knowledge for these things taken
care of in advance.

I started out covering the 2D vector graphics concepts that also hold true for 3D vector graphics,
including vertices (vertex or point), vectors (rays or straight lines), and splines (curved lines with control
handles). We also took a look at how to fill these 2D shapes with solid colors, color gradients, or tiled image
patterns.

Then we built on those concepts and took you into 3D vector graphics where we learned about
polygons, triangles, quads, faces, and edges, all of which combine with vertices to create 3D geometry. We
looked at how to make 3D geometric wireframes, also known as mesh objects, look solid using texture maps,
UVW mapping, and projection mapping, as well as how all of these come together in the form of a material
or shader.

Next we looked at 3D animation, which is significantly more complex than 2D animation or digital
video, as on the high end this includes character animation, procedural animation, and algorithmic special
effects that include physics simulation mathematics and things like controlling large amounts of particles
that yield powerful types of code-based animation systems such as flocking simulations, hair and fur
dynamics, crowd simulation, fluid dynamics, cloth dynamics, soft body, and rigid body dynamics. In the
next chapter, we are going to take a look at game design genres.

Finally, we looked at the JavaFX 9 APIs, which we will be using during the book to implement all of the
3D concepts and principles that we learned about during the chapter. We will be taking a look at these in
detail when we implement components of our Java 9 game.

In the next chapter, we’ll take a global look at game theory and concepts relating to creating games,
using Java 9 and new media assets to implement our gameplay design and game objectives.

73© Wallace Jackson 2017
W. Jackson, Pro Java 9 Games Development, https://doi.org/10.1007/978-1-4842-0973-8_4

CHAPTER 4

An Introduction to Game Design:
Game Design Concepts, Genres,
Engines, and Techniques

Let’s build on the knowledge of the new media assets that we learned about in the previous two chapters here by
taking a look at how these powerful pixels, frames, samples, and vectors can be utilized to create pro Java 9 games
as well as IoT applications and why (or why not) to use these in certain types of pro Java 9 game development
genres and scenarios. We will take a look at high-level game concepts, basic game design genres, and game design
optimization concepts, as well as open source game engines that are available for the Java platform, including
physics engines such as JBox2D, JBullet, Jinngine, and Dyn4J, and 3D game engines such as LWJGL and JMonkey.

The first thing that I want to cover is the underlying concept of static (fixed) versus dynamic (real time)
as it applies to game genres and game design as well as to game optimization. I have already covered the
concept of static (images, rendered static 3D imagery) versus dynamic (digital video, 2D and 3D animation,
interactive 3D, digital audio) in Chapter 2 (image versus audio-video) and Chapter 3 (rendered 3D versus
3D animation versus interactive 3D). This simple concept is a great way to classify game genres and is a
foundational principle underneath game optimization, as you will see. In this chapter, we get a high-level
overview of gameplay design, new media incorporation, and what different game design approaches and
strategies might cost in memory footprint and CPU processing cycles.

The reason why this is important, and why we are “prethinking” all of these game design factors here in the
first part of the book, is because you should want your game to play smoothly across all of the different platforms
and consumer electronics devices that are used to play your game, even if those devices feature a single-core
processor. Single-core processors are actually exceedingly rare these days. Entry-level consumer electronics
devices now feature DualCore (two-processor), QuadCore (four-processor), HexaCore (six-processor), or
OctaCore (eight-processor) CPUs. The opposite of smooth gameplay would be classified as stilted or jerky
gameplay, which is not a good user experience (UX). User experience results from your combination of user
interface design, game concept, and new media asset and code optimization, as well as from how much each
individual user is interested in, and intrigued by, your gameplay design.

The next thing I will cover are the different aspects or components of game design and development.
These include the concepts, techniques, and “lingo” of game design and development that I want to make
sure you are up to speed on. These include topics such as 2D sprites, 3D models, artificial intelligence,
layers, levels, collision detection, physics simulation, background plate animation, gameplay logic, game
design, user interface, and similar game design and development aspects that can be thought of as game
“components,” as each one adds different attributes and capabilities to professional Java 9 games. Finally,
I’ll get into the different types, or genres, of games that you could design and develop, just to get the left and
right sides of your brain firing at the same time, and then I will explore some of the technical issues and asset
and code optimization considerations of how the genres differ from each other.

www.ebook3000.com

https://doi.org/10.1007/978-1-4842-0973-8_4
http://dx.doi.org/10.1007/978-1-4842-0973-8_2
http://dx.doi.org/10.1007/978-1-4842-0973-8_3
http://www.ebook3000.org

Chapter 4 ■ an IntroduCtIon to Game desIGn: Game desIGn ConCepts, Genres, enGInes, and teChnIques

74

High-Level Concepts: Static vs. Dynamic Gaming
I want to start with a high-level concept that touches everything that I will be talking about in this chapter,
from the types of games you can create to the optimization of games to the construction of your JavaFX
Scene Graph. We took a look at this concept in Chapters 2 and 3, and we will look at it again in the next
chapter when we look at the concept of Java constants that are fixed or static and do not change versus Java
variables that are dynamic and change in real time. Similarly, user interface design in a JavaFX Scene Graph
can be static (fixed or immovable) or dynamic (animated, draggable, or skinnable) which means you can
change the UI look to suit your personal tastes.

The reason these concepts are so important in game design and development is because your game
engine, which you will design to “run” or “render” your game, will need to constantly check on (process)
the dynamic portions of your game to see if they have changed and therefore require a response. A response
requires processing, and Java code will need to be executed (processed) to update a score, move gameboard
positions, play animation frames, change a game piece’s state, calculate collision detection, calculate
physics, apply gameplay logic, and so forth. These dynamic checking requirements (and ensuing processing)
on every gameplay cycle (called the pulse in JavaFX) update to make sure that variables, positions, states,
animations, collisions, physics, and the like, are conforming to your Java game engine logic and can really
add up. This is why a balance of static versus dynamic in your game design is important; at some point, the
processor, which is doing all of this work, could get overloaded, slowing your gameplay down.

The result of this overloading of all the real-time, per-pulse checking that enhances the dynamics of
the gameplay is that the frame rate that your game is running at could decrease. That’s right, just like digital
video and animation, games have frame rates too, but game frame rates are based on the efficiency of your
programming logic. The lower the frame rate of the game, the less smooth the gameplay becomes, at least for
dynamic, real-time games such as arcade games. How smoothly a gameplays relates to how “seamless” the
user experience is for the customer.

For this reason, the concept of static versus dynamic is very important to every aspect of gameplay
design and makes certain types of games easier to achieve a great user experience for than other types. We
will be covering different types of games in a future section of this chapter, but as you might imagine, board
games are more “static” in nature, and arcade games are more “dynamic” in nature. That said, there are
game optimization approaches, which we’ll be covering during this book, that can make a game remain
dynamic (seem like lots is going on), when from your CPU’s processing point of view, what is really going on,
from a processing point of view, becomes manageable. This is one of the many tricks of game design, which,
when all is said and done, is about optimization in one way or another.

One of the most significant static versus dynamic design issues that I cover in Android (Java)
programming books is UI design using XML (static design) versus UI design using Java (dynamic design).
The Android platform will allow UI design to be done using XML instead of Java so that nonprogrammers
(designers) can do the front-end design for an application. JavaFX allows exactly the same thing to be done
by using JavaFX Markup Language (FXML).

You must create FXML JavaFX apps in order to do this, as you’ll see when you create your game
application in NetBeans 9 during Chapter 6. This option adds the javafx.fxml package and classes to
your application, allowing you to design UIs using FXML, and later have your Java programming logic
“inflate” them so that the design becomes JavaFX UI objects. It’s important to note that using FXML adds
another layer of processor overhead, including FXML markup and its translation (and processing), into the
application development and compilation process. For this reason and because, at the end of the day, this
is a Pro Java 9 Games Development book, not an FXML markup title, I am going to focus during this book on
how to do everything using Java 9 and the JavaFX APIs and not doing things by using FXML.

In any event, the point I am making regarding using XML (or FXML) to create the UI design is that this
XML approach could be viewed as “static,” because the design is created beforehand using XML and is
“inflated” at compile time using Java. The Java inflation methods use a designer-provided FXML design to
create a Scene Graph, which is filled with JavaFX UI objects, based on a UI design structure defined by using
FXML. A static UI is designed to be fixed to process a user interface for the game player and is placed into
memory one time when your game is loaded.

http://dx.doi.org/10.1007/978-1-4842-0973-8_2
http://dx.doi.org/10.1007/978-1-4842-0973-8_3
http://dx.doi.org/10.1007/978-1-4842-0973-8_6

Chapter 4 ■ an IntroduCtIon to Game desIGn: Game desIGn ConCepts, Genres, enGInes, and teChnIques

75

Game Optimization: Balancing Static Elements with the Dynamic
Game optimization comes down to balancing static elements, which do not require processing in real time,
with dynamic elements, which require constant processing. Too much dynamic processing, especially when
it’s not really needed, can make your gameplay jerky or stilted. This is why game programming is an art form;
it requires “balance,” as well as great characters, a storyline, creativity, illusions, anticipation, accuracy, and,
finally, optimization.

For instance, Table 4-1 describes some of the different game component considerations for
optimization in a dynamic game. As you can see, there are a lot of areas of gameplay that can be optimized to
make the processor’s workload significantly less “busy.” If you have even one of these primary dynamic game
processing areas “run away” with the processor’s precious “cycles per frame,” it can greatly affect the user
experience for your game. We will be getting into game terminology (sprites, collision detection, physics
simulation, etc.) in the next section of the chapter.

Table 4-1. Some Aspects of Gameplay That Can Be Optimized

Gameplay Aspect Basic Optimization Principle

Sprite Position (Move) Move sprite as many pixels as possible while still achieving a smooth
movement appearance

Sprite Animation Minimize the number of frames needing to be cycled to create illusion of
smooth animation

Collision Detection Check for collision between objects on the screen only when necessary (in
close proximity)

Physics Simulation Minimize number of objects in a scene that require physics calculations to be
performed

Flock/Crowd Simulation Minimize number of members that need to be cycled to create an illusion of
crowd or flock

Particle Systems Minimize particle complexity and number of particles needed to create
intended illusion

Camera Animation (3D) Minimize camera animation unless it’s an integral part of (absolutely required
for) gameplay

Background Animation Minimize animated background regions so entire background looks animated
but is not

Digital Video Decoding Minimize digital video use, unless it’s an integral part of (absolutely required
for) gameplay

Gameplay (or AI) Logic Design/code gameplay logic, simulated, or artificial intelligence to be efficient
as possible

Scoreboard Updates Update scoreboard via binding and minimize display updates to once per
second maximum

User Interface Design Use static user interface design so that pulse events aren’t used for UI element
positioning

Considering all these gameplay memory and CPU processing optimization issues will make your
Pro Java 9 games design, and Java coding, quite a tricky endeavor indeed. Needless to say, a lot goes into
professional Java 9 games.

www.ebook3000.com

http://www.ebook3000.org

Chapter 4 ■ an IntroduCtIon to Game desIGn: Game desIGn ConCepts, Genres, enGInes, and teChnIques

76

It is important to note that some of these work together to create a given illusion to the player; for
instance, the sprite animation will create the illusion of a character running, jumping, or flying, but without
combining that code with sprite positioning (movement) code, the reality of the illusion would not be
achieved. To fine-tune an illusion, the speed of the animation (frame rate) and the distance moved (in pixels
moved each frame) may need to be adjusted. I like to call these adjustments tweaking. To tweak means to
interpolate a data value by hand in order to achieve the most realistic end result. Game development is an
iterative process; as much as you might try to sit down and design your game up front and then create the
new media assets and write the Java code, modifications will be inevitable.

We’ll be getting into many of these areas of pro Java game design and development during this book,
but to elucidate on these in a bit more detail here, while we are looking at these considerations, if you can
move gameplay elements (primary player sprites, projectile sprites, enemy sprites, background imagery, 3D
models) a greater number of pixels a fewer number of times, you will save processing cycles. It’s the moving
part that takes processing time, not the distance (how many pixels are moved). Similarly, with animation,
the fewer frames needed to achieve a convincing animation, the less memory will be required to hold the
frames. The same principle applies to the processing of digital video data, whether your digital video asset is
captive (contained inside a JAR file) or streaming from a remote server. Decoding frames of digital video is
processor intensive whether you are streaming the data or not and can take away valuable CPU cycles from
each of the other components of the game, which probably also require a lot of processing.

It’s also important to remember here that we are optimizing memory usage as well as processor cycles,
and the two go hand in hand. The fewer memory locations used, the less effort the processor has to make to
retrieve the data because memory locations are read and processed one memory address at a time; fewer
addresses to process means less processing is going on. Therefore, memory optimization should also be
considered as a processing cycle optimization.

With Flocking, Crowd Dynamics, and Particle Systems effects, fewer elements to process and less
complexity per element will add up quickly when using processing-intensive special effects such as these.
These types of particle-based special effects add a ton of “wow” factor to any game, movie, or television
series but also require huge arrays of data to be processed in real time, which can be processing intensive.
We’ll cover arrays in Chapter 5.

Detecting collisions is another major part of game programming logic for a number of different game
genres such as arcade games, board games, and virtual reality games such as first-person shooters. It is very
important not to blindly check (process) for collisions between game elements. Be sure to exclude game
assets that are not “in play” (on the screen) or are not active, that are not near each other, or that cannot
ever collide with each other (static elements). As you might imagine, collision detection considerations,
optimizations, and programming are art forms in and of themselves, and entire books on this topic alone
have been written, so keep this fascinating topic in perspective and investigate it on your own as well,
especially if you are interested in creating Pro Java 9 Games where lots of collisions could occur.

Calculating forces of nature for physics simulations is the most processor intensive, and like collisions,
many books have been written on each individual area of physics programming, including rigid body or soft
body dynamics, cloth dynamics, rope dynamics, hair and fur (which are actually connected cylinder particle
systems), and fluid dynamics or driving dynamics (which are used in driving games). If any of these types
of physics simulations have not been coded and optimized with great care, then the entire gameplay user
experience may come to a grinding halt, based on how many processor cores the game player has inside the
consumer electronics hardware they are playing the game with.

2D vs. 3D Rendering: Static vs. Dynamic Under the Hood
Static 3D games, such as chess, where the game board is static unless you are moving a game piece to a
new location on the chessboard, may seem to be static; however, since they utilize 3D real-time rendering
to create the virtual reality environment, “under the hood” the system could be busy rendering geometry,
lighting, cameras, and materials in real time, depending on how you have designed all of these elements in
your scene graph and how your Java game processing logic is set up. Just like we saw in Chapter 3 that the

http://dx.doi.org/10.1007/978-1-4842-0973-8_5
http://dx.doi.org/10.1007/978-1-4842-0973-8_3

Chapter 4 ■ an IntroduCtIon to Game desIGn: Game desIGn ConCepts, Genres, enGInes, and teChnIques

77

nature of 3D new media assets is an order of magnitude more complex than 2D new media assets, the same
thing applies to 3D games versus 2D games. 2D games do have an element of “rendering” called double
buffering where the next frame is composited in memory, before it is displayed on the screen. 3D rendering,
however, is actually creating the pixel color and alpha values, not simply organizing them in an X,Y
location. 3D rendering creates the pixel color values and X,Y locations from scratch, based on 3D geometry,
transformations, materials, shaders, mapping coordinates, light position, and camera position.

Next let’s take a look at the pro Java game design aspects and considerations for some of these core
gaming concepts in greater detail and look at some of the core optimization principles that apply across all
genres of games.

Game Components: 2D, 3D, Collision, Physics, and AI
Let’s take a look at the various game design concepts, aspects, and components that you will need to
understand in order to be able to build a game, as well as what Java (or JavaFX) packages and classes we
can use to implement these aspects of gameplay, which I like to term components of gameplay design and
development. These could include the gameplay elements themselves, commonly referred to in the game
industry as sprites for a 2D game or models for a 3D game, as well as the processing engines, which we will
either code ourselves or import preexisting Java code libraries for, such as artificial intelligence, physics
simulations, particle systems, inverse kinematics, or collision detection. I will spend some time covering
each of these and why they would be applicable to a pro Java game and some optimization considerations
that you should keep in mind if you decide to use any of these game components.

2D Sprites: The Foundation of Arcade-Style Gaming
Let’s start with the foundation of one of the oldest forms of electronic gameplay, the arcade game. The 2D
assets, called sprites, define our main character, projectiles used to damage the main character, treasures
collected by the main character, and the enemies that are firing these projectiles. Sprites are 2D graphics
elements and can be either static (fixed, a single image) or dynamic (animated, a seamless loop of several
images). Sprites can be either vector (shapes) or raster (image-based) assets. If they are image based, they
will usually be PNG32 and carry an alpha channel so that they can be composited over the rest of the game
design in real time and have the result look like it is digital video, that is, like it is being shot with a camera
and played on the screen rather than being composited in real time based on the game player’s input, which
is usually a game controller, keyboard keys, or iTV set remote control.

A sprite will be moved around on the screen based on programming logic that dictates how the game
is to function. Sprites need to be composited with background imagery and other gameplay elements in the
Scene Graph as well as with other players’ sprites, so the PNG32 graphics that are used to create the sprites
will need to support transparent backgrounds. This is also why I covered the topic of masking 2D objects—
to use as sprites for your games.

This is also why I introduced you to the concept of alpha channel transparency, in Chapter 2, as we
will need to achieve this same end result with our sprites so that we achieve a seamless visual experience
with our game. We’ll be covering how to use GIMP to create graphics that use alpha channels later during
this book so you can create professional-level sprites that composite seamlessly with the rest of your game
graphics.

Since 3D models are all in the same rendered space together, the 3D rendering engine will take care of
this transparency factor for you, and you do not have to worry about having an alpha channel for each 3D
component of your game if you use 3D models instead of 2D sprites. Let’s take a look at 3D models next as a
follow-up to this point.

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_2
http://www.ebook3000.org

Chapter 4 ■ an IntroduCtIon to Game desIGn: Game desIGn ConCepts, Genres, enGInes, and teChnIques

78

3D Models: The Foundation of the Role-Playing Style of Gaming
One of the newer forms of electronic gameplay involves real-time rendered virtual worlds, thanks to the
advent of real-time rendering platforms such as OpenGL ES 3 and Vulkan, which are used in Android,
HTML5, JavaFX, and DirectX (DirectX is used in Microsoft products such as Xbox and Windows). 3D models
provide far more flexible, advanced, and photorealistic gameplay because they combine all of the other
new media types (except for digital audio) into one; because textures, materials, and shaders can use digital
imagery and digital video; and because 3D geometry mesh objects can use their actual geometry to calculate
collisions with the actual object, and in three dimensions instead of two on top of that. Add in the fact that
3D assets can react in real time to multiple lights and cameras, and you have a far more powerful game
design environment with i3D, albeit more complex from a mathematics and a Java coding standpoint.

Since 3D and i3D are so complex, there are a plethora of optimization considerations, such as
optimizing the mesh (geometry), a process called low-poly modeling that involves using points, edges, and
faces sparingly and then using smoothing groups to provide a smooth curvature that could also be achieved
simply by adding more geometry. I also covered some of the optimization principles of using fewer pixels,
lower color depth, and fewer channels that would be used for texture maps, which are images, in Chapter 2.
Similarly, for 3D animation, in Chapter 2 I covered some of the optimization principles that would be used
for animation data, which is similar to digital video, such as using fewer pixels, fewer frames, lower color
depth, and fewer channels, along with simpler interpolation algorithms.

Another optimization for 3D and i3D games has to do with the number of lights that are utilized to
light a virtual world. Light calculations tend to be expensive, so much so that most game engines, including
JavaFX, limit the number of allowed lights to eight or fewer. The fewer light objects you can use, the fewer
calculations the rendering engine will have to do and the higher frame rate (faster) your game will run at.

The same consideration would apply to cameras in 3D animation software. When you’re rendering out
to film, for instance, you can render out as many camera views of the scene as you need with no (real-time)
processor penalty. When a consumer electronics device is processing that 3D (versus a massive render
farm of workstations), it becomes important to minimize the number of cameras as each one is outputting
the equivalent of an uncompressed raw digital video data stream. In this situation you have a 3D rendering
engine generating another uncompressed 2D animation (video) asset in real time, which again takes up a
lot of your processing power, so use this only if your game absolutely requires a real-time Head’s Up Display
(HUD), for instance, for a real-time second gameplay perspective.

Collision Detection: The Foundation of Game Asset Interaction
Another important component, or aspect, of gameplay for some types of games is collision detection
because if your game elements simply flew right past each other on the screen and never did anything
cool when they touch, or “intersect” each other, then you really would not have much of a game! Imagine
a pinball game or billiards without any collision detection! Once you add a collision detection engine
comprised of intersection logic processing routines, your game will be able to ascertain when any 2D vector
sprites or 3D models are touching or overlapping each other by processing intersections of their component
geometry, usually edges, lines, curves, or their bounds (BoundingBox).

A collision detection will call (that is, trigger) related game logic processing routines that will ascertain
what happens when any given 2D sprites or 3D models, such as a projectile and the main character,
intersect. For instance, when a projectile intersects the main character, damage points might accrue, a life
force index might be decreased, or a death throes animation might be started. If a treasure item intersects
with (that is, is picked up by) a main character, on the other hand, power or capability points might accrue,
the life force index might be increased, or an “I found it” jubilation animation might be started.

As you can see, depending on the type of game you are creating, the collision detection engine for
the game could well be one of the foundational design elements behind your gameplay, besides your i2D
sprites or i3D models, which represent your characters, projectiles, treasures, enemies, obstacles, and props
themselves, which is why I’ve covered these in this order. Once a collision is detected, often your physics

http://dx.doi.org/10.1007/978-1-4842-0973-8_2
http://dx.doi.org/10.1007/978-1-4842-0973-8_2

Chapter 4 ■ an IntroduCtIon to Game desIGn: Game desIGn ConCepts, Genres, enGInes, and teChnIques

79

simulation code will be triggered to show the game player how the objects need to react to each other after
that collision. So, let’s take a look at that next.

Physics Simulation: The Foundation of Gameplay Realism
Another important component, or attribute, to add to your gameplay is real-world physics simulation. The
addition of things like gravity, friction, bounce, drag, wind, acceleration, deceleration, and motion curves,
like the JavaFX Interpolator class provides, and similar forces, will each add an additional level of realism
on top of the already photorealistic sprites, your synchronized animation sequences, scenic backgrounds,
and highly accurate collision detection.

Gravity, friction, drag, and wind are the easiest factors to either simulate or adjust a 2D sprite or 3D model
movement for in your Java code. I touch on this near the end of my book Beginning Java 8 Games Development
(Apress, 2014). Bounce is similar to the mathematics done for acceleration and deceleration in motion curves,
which could be used to simulate a single bounce, but not the decay of a bounce that a physics simulation will.

You can code your own Java methods to apply physics to your pro Java game or you can use the third-
party Java libraries, which are available on sites like SourceForge, GitHub, or code.google.com. I will cover
some of the libraries that are out there for 2D and 3D game engines, 2D and 3D physics simulation engines,
2D and 3D collision detection engines, forward and inverse kinematics engines, and the like. I will cover this
in the next major section for this chapter, just in case you want to use these in your pro Java games or IoT
applications instead of writing your own.

It is interesting to note that most of the open source third-party physics engines, which I’m going
to cover in the “Java Engines: Game, Physics, and Inverse Kinematic” section of this chapter, not only
implement physics simulation but also implement collision detection. This is because these two things are
closely tied together in real life. To do collisions really well, the physics simulation needs to be a seamless
integration in that code. There are physics involved both before and after a collision in real life, and these
engines seek to re-create real-life (completely believable) implementation results. Be advised that as of Java
9 these offerings will need to be “modularized” for use with the new Java 9 module system in order to be
used properly within that system.

Artificial Intelligence: The Foundation of Your Gameplay Logic
Finally, the most proprietary attribute or logic constructs (Java code) that you can add to add to your
gameplay is the custom gameplay logic, which makes your game truly unique in the marketplace. This
artificial intelligence (AI) programming logic should be kept in its own Java class and methods, separate
from physics simulation or collision detection code. After all, Java makes modularization easy, and this
gameplay intelligence is like the referee for your pro Java game. It oversees the player, opponents, obstacles,
treasure, scoring, penalties, and similar, making sure the game experience is the same every time and for
everyone! This is the same function that a referee performs at a sporting event or competition.

There are third-party AI engines for Java; however, I suggest this is an area where you may want to write
your gameplay logic code from scratch so that it integrates with your user interface (UI) code, your scoring
engine code, your animation engine code, your actor (sprites or models) movement code, and your collision
processing code in a much more seamless fashion than any third-party AI rules engine ever could.

When you start to add all these game components together, it starts to make the game more believable,
as well as more professional. One of the key objectives for a great game is “suspension of belief,” which
simply means that your player is “buying into” the premise, characters, objectives, and gameplay 100 percent
completely. This is the same objective that any content producer, whether it be a filmmaker, television series
producer, author, songwriter, game programmer, or application developer, is going for. Games these days
have the same revenue generation capability as any of the other content distribution genres, if not more, and
you can distribute them directly to the public without a middleman such as a movie studio, record producer,
or television network. That’s the most significant part, as you will get a “70 percent you, 30 percent store”
split, rather than a “70 percent distributor, 30 percent you” split!

www.ebook3000.com

http://www.ebook3000.org

Chapter 4 ■ an IntroduCtIon to Game desIGn: Game desIGn ConCepts, Genres, enGInes, and teChnIques

80

Java Engines: Game, Physics, and Inverse Kinematic
There are a number of open source third-party game engines, physics and collision engines, AI engines, and
even inverse (or forward) kinematics (IK) engines that can easily be found on the Internet. Most of these are
on SourceForge or GitHub or on code.google.com and can be found using a basic Google search. Most of
these come in JAR format.

Game Engines: JMonkey and the Lightweight Java Game Library
LWJGL is an open source, cross-platform Java library that is useful for the development of 3D graphics
(OpenGL), 3D audio (OpenAL), and parallel computing (OpenCL) applications (Figure 4-1). API access is
direct and high-performance yet also wrapped in a type-safe layer appropriate for Java ecosystems. Other
high-level 3D game engines may also make use of LWJGL.

Figure 4-1. The Lightweight Java Game Library 3 is an open source Java game library compatible with Java
and JavaFX

Chapter 4 ■ an IntroduCtIon to Game desIGn: Game desIGn ConCepts, Genres, enGInes, and teChnIques

81

JMonkey is also a free, open source game engine targeted at Java game developers who want to create
i3D games (Figure 4-2). This software is programmed entirely in Java and is intended to provide wide
accessibility and rapid deployment.

It’s important to note that I’m going to show you how to create games using only Java (8 or 9) and
JavaFX 8 or 9 because that is what this book is about: using and learning about the native Java APIs
(of which one is JavaFX) to make games or IoT applications. I just wanted to make you aware of the two
leading Java games platforms before we start.

Physics and Collision Engines: Jbox2D, JBullet, Dyn4j, Jinngine
There are a large number of third-party physics engines that also include support for collision detection, so
you can add collision and physics at the same time to your game using any one of these collision physics
code libraries to your pro Java games or IoT application projects simply by importing a JAR file into your
project and calling the proper APIs.

Jbox2D is a “port” or recoding for use in Java of the Box2D C++ physics engine. Box2D is an open
source, C++-based physics and collision engine for simulating rigid body dynamics in i2D (X,Y) space.
Box2D was developed by Erin Catto and was released under the zlib license, which does not require formal
acknowledgment of usage; however, it is encouraged that you give credit to Box2D in your pro Java game if
you use the Jbox2D API port from C++ Box2D.

JBullet is a partial port of the Bullet 2.7 3D C++ physics engine for use in Java. Bullet 2.87 is an open
source, C++ physics and collision engine for simulating rigid body dynamics in 3D (X,Y,Z) space. The Bullet
collision detection and physics library was developed by Advanced Micro Devices, otherwise known as
AMD. It can be found at http://bulletphysics.org if you want more information. JBullet was released
under the zlib license, which does not require formal acknowledgment of usage. However, it is encouraged
that you to give credit to JBullet in your pro Java game if you use the JBullet API partial port from the Bullet
2.7 C++ physics engine.

The dyn4j engine shown in Figure 4-3 is a 2D collision detection and physics engine compatible with
Java 6 and 7, meaning that it works with the Java 8 and 9 versions we are covering in this book. Dyn4j was
designed to be stable, extensible, optimized (fast), and relatively easy to use. Dyn4j is free for commercial
use, as well as for use in noncommercial applications. It is licensed by its author, William Bittle, under the
BSD licensing model.

Figure 4-2. jMonkeyEngine 3.0 is an open source cross-platform game engine compatible with Java and
JavaFX

www.ebook3000.com

http://bulletphysics.org/
http://www.ebook3000.org

Chapter 4 ■ an IntroduCtIon to Game desIGn: Game desIGn ConCepts, Genres, enGInes, and teChnIques

82

Jinngine is an open source lightweight 3D physics engine written in Java that gives you real-time
collisions, as well as real-time physics calculation capabilities. A user can set up and simulate physics by
calling API functions to specify geometry, joints, and parameters. Friction is modeled by implementing an
approximation of the Coloumb law of friction. This physics engine focuses on collision and physics only,
has no rendering features, and is built using a velocity-based algorithmic approach that is solved using an
efficient NCP solver. You can use jinngine as your physics engine, and you can also use other components
of this engine as if it were a Java code library, for instance, if you want to only implement collision detection
or if you wanted to only utilize the point-of-contact generation features. Next, let’s take a look at inverse
kinematics, or IK engines, which are used in character animation to define skeletal structures and their joint
movement restrictions.

Inverse Kinematics and Robot Engines: JRoboOp and JavaFX-IK
JRoboOp is an open source Java library (package) designed for IK robotics simulation with visualization
of a 3D robot model. The engine simulates robotic inverse kinematics as well as robot dynamics and is
based upon the C++ library called ROBOOP. This library was developed by Richard Gourdeau of École
Polytechnique de Montréal, and the library is compatible with Java 5 and later as well as with JavaFX 1.3
and later, meaning that it will work great with the Java 7, Java 8, JavaFX 9, and Java 9 versions that we will be
covering during this book. This package is distributed under the GNU Public License (GPL).

The JavaFX-IK library was created about two years ago specifically for JavaFX and is available on
GitHub at https://github.com/netopyr/javafx-ik. It is licensed under the Apache License, version 2.0.
The IK software, which allows you to create Skeleton object structures in the JavaFX Scene Graph using
Bone objects, was created by senior software engineer Michael Heinrichs, of Freiburg, Germany.

Next, let’s take a look at the different types of games that can be created as well as how these differ
in their application of the core game components of sprites, collision detection, physics simulation, and
gameplay AI logic.

Figure 4-3. Dyn4j is an open source, 2D collision detection and physics engine that is available under the BSD
license

https://github.com/netopyr/javafx-ik

Chapter 4 ■ an IntroduCtIon to Game desIGn: Game desIGn ConCepts, Genres, enGInes, and teChnIques

83

Game Genres: Puzzle, Board, Arcade, Shooter, or VR
Like everything else we have talked about in this chapter, games themselves can be categorized by using
a “static versus dynamic” approach. Static games aren’t “processor bound” because they tend to be “turn
based” and not “hand to eye coordination based” in nature, so in a sense they are easier to get working
smoothly, as only the programming logic for the “rules” of gameplay and the attractive graphics need to be
put into place and debugged. A significant opportunity also exists for developing new types of game genres
that use a hybrid combination of static and dynamic gameplay in creative ways that have never before been
seen. I’m working on a few of these myself!

Static Games: Strategy, Knowledge, Memory, and Board Games
Since this is a pro Java games programming book at its core, I am going to approach everything from this
important (for game development) static versus dynamic standpoint, and it just so happens to be a pretty
slick way to categorize games into three discrete categories (static, dynamic, and hybrid). Let’s cover the
static (fixed graphics), turn-based games first. These would include the “move-based” or “turn-based”
games such as board games, puzzle games, knowledge games, memory games, and strategy games,
all of which should not be underestimated in their popularity and marketability, especially where families
are concerned. Not all of your game customers are going to be teenage males, and this category of games
is also the most likely to be used for edutainment, a popular buzzword these days where education and
entertainment are fused together to further the success of the education part of that equation. There are a
dearth of fun, effective games for educational content, so this is a significant games business opportunity.

The thing that is important to remember regarding static games is that they have the capability of being
just as fun to play as dynamic games. Static games by their very nature have significantly less processing
overhead, as they do not have to achieve the 60 FPS real-time processing target in order to achieve smooth,
professional gameplay. This is because the nature of the game is not predicated upon continuous motion
but rather on making the right strategic moves. Moves are made when it is your turn to do so, which is why
these types of static games will often be referred to as move-based games.

There can be some form of basic “collision detection” involved in static games, regarding which game
pieces have been moved and to which location on your game board or playing surface. With a static game,
however, there is no danger of overloading the processor with collision detection because the rest of the
game board is static, with the exception of the one piece that is being strategically moved during that
particular player’s turn. Once that process of ascertaining the collision is completed, there is no (real-time)
collision detection needed until the next turn is taken by either the single player (in a single-player game) or
the opponent (in a multiplayer game).

The processing logic for strategy games is more strategy logic–based programming, geared toward
allowing the players to achieve a given end “win” given the right sequence of moves, whereas the dynamic
game programming logic looks more at what collisions are taking place between game sprites. Dynamic
games are focused on point score, which is generated by dodging projectiles, finding treasures, landing on
targets, killing enemies, and completing those types of level objectives in order to get to the next level, where
players can generate even higher point scores.

Complicated strategy games with lots of interrelated rule sets, such as chess, for instance, are even
likely to have far more complex programming logic routines than dynamic games feature. However, since
the execution of the code is not as time sensitive, the resulting gameplay will be smooth, no matter how
powerful the platform and CPU are, because the player is willing to wait for the game to verify the validity
of the move and score it, if appropriate. Of course, the game ruleset logic must be flawless for this type of
game to be perceived as truly professional. Therefore, in the end, both static as well as dynamic games, the
great ones at least, can be difficult to code, albeit for significantly different reasons. Next let’s take a look at
dynamic games, which tend to have high public profiles, appeal to younger player demographics, and tend
to be played individually, instead of by groups, students, or families.

www.ebook3000.com

http://www.ebook3000.org

Chapter 4 ■ an IntroduCtIon to Game desIGn: Game desIGn ConCepts, Genres, enGInes, and teChnIques

84

Dynamic Games: Arcade, Shooter, Platform, and Action Games
Dynamic games could be termed Action Games or Arcade Games and include a lot of movement on
the display screen. These highly dynamic games almost always involve shooting things, such as in first-
person shooters (Doom and Half-Life, for instance) as well as in third-person shooters (Resident Evil and
Grand Theft Auto) genres, or stealing things or evading scary things. Action sports games, such as football,
soccer, baseball, basketball, golf, and lacrosse, are also very popular in the dynamic games genre, and
they are almost always created using a photorealistic, i3D virtual world or virtual reality game simulation
environment. Driving games are another incarnation of this genre and also tend to use real-time i3D game
rendering technologies to provide the driver with an ultrarealistic driving simulation.

There is also the obstacle course navigation paradigm, such as commonly seen in platformer games
such as Donkey Kong, Pac-Man, or Super Mario Brothers. Platformer games are often arcade games, which
are typically 2D or 2.5D, which is called isometric. The arcade game ZAXXON was a great example of an
isometric game that was 2D, and looked 3D, or Tempest, where geometric shapes climbed up a geometric
well where the player shot down the side to prevent the climbing shapes from reaching the top.

It’s important to note that any genre of game can be produced using 2D or 3D graphic assets or can even
be produced using a combination of 2D and 3D assets, which is allowed by JavaFX 9.0 and which I would
term a hybrid.

Hybrid Games: An Opportunity to Leverage JavaFX Creatively
From a JavaFX Scene Graph assets perspective, a hybrid game would be one that used both 2D and 3D
assets, most of which we covered in Chapters 2 and 3. There is another type of hybrid, which could span
different game genres, which we just covered some of in the previous section. There are so many popular
game types that there is always a fantastic opportunity to create an entirely new genre of game by using a
hybrid gameplay approach. For instance, imagine taking some of the characteristics from a static (strategic)
game type, such as a board game, and adding elements of a dynamic (action) game type. A good example of
this would be Battle Chess, where chess pieces do battle to the death when they come into each other’s chess
board square.

In my Beginning Java 8 Games Development (Apress, 2014), I used JavaFX 8.0 to create a hybrid game
engine that has support for attributes of a platformer game, a shooter game, and a treasure hunting game. As
you can see in Figure 4-4, the BagelToons InvinciBagel game engine created in that book, where I cover i2D
games development, has elements normally found in different types of 2D games, including superheroes,
enemies, shooting, treasures, obstacles, hiding places, buildings, cars, landscaping, magic carpet cats, safe
cracking, food, and the like.

http://dx.doi.org/10.1007/978-1-4842-0973-8_2
http://dx.doi.org/10.1007/978-1-4842-0973-8_3

Chapter 4 ■ an IntroduCtIon to Game desIGn: Game desIGn ConCepts, Genres, enGInes, and teChnIques

85

In summary, Java is positioned to allow game developers to deliver vanguard, hybrid games, containing
both 2D and 3D assets, as well as high-quality 16-bit 48 kHz and 24-bit 48 kHz digital audio. With a little bit
of creativity and the knowledge you are garnering during the course of this book, you should be able to pull
off what’s never been done before. This is especially true for areas that hybrid gaming will be beneficial for,
such as the areas of education (edutainment) and the workplace (business process gamification). This is
because Java is widely used in OSs and browsers, as well as in 64-bit platforms such as Android 5 - 8, which
have a majority market share and manufacturer following in consumer electronics. That said, it is important
to point out that JavaFX is not (yet) suited for i3D VR real-time 3D-rendered games with an HD or UHD high
frame rate, like those created using C++ for customized game consoles such as PlayStation or Xbox.

Summary
In this fourth chapter, we took a closer look at some of the more important game design concepts that we
will be using in our pro Java game development work process so that you have the foundational knowledge
for these things taken care of in advance, in the first section of the book.

I started out covering the key concept of static versus dynamic and how these are important for both
game design and game optimization, as too many dynamics can overload older single-core and even dual-
core CPUs if game optimization is not an ongoing consideration throughout the game design, development,
and optimization process.

Next, you looked at some of the key components of game design and development, such as sprite
position, sprite animation, collision detection, physics simulation, flocking, or crowd dynamics, particle
systems, background animation, camera animation, digital video streaming, user interface design,
scoring engines, and gameplay AI logic.

Figure 4-4. My i2D game development book called Beginning Java 8 Games Development covers using sprites
to develop games

www.ebook3000.com

http://www.ebook3000.org

Chapter 4 ■ an IntroduCtIon to Game desIGn: Game desIGn ConCepts, Genres, enGInes, and teChnIques

86

We took a look at how these applied to static games, which are games without continuous movement,
such as move-based strategy games, board games, puzzles, knowledge games, and memory games, and then
at how these applied to dynamic games, which are games using continuous movement, such as platformers,
arcade games, first-person shooters, third-person shooters, driving games, sports games, science-fiction
games, and similar games where 3D real-time rendering along with various types of physical systems and
particle systems simulations are heavily leveraged.

We also took a look at some of the most popular third-party game engines, physics (and collision)
engines, and inverse kinematics engines. We looked at some different genres of games, and their
characteristics, so that you could get your creative juices flowing and think about what types of pro Java
games you want to create.

In the next chapter, we are going to take a look at the Java programming language and get a refresher
or a primer just to make sure everyone is on the same page regarding Java programming language API
components such as packages, classes, interfaces, methods, constants, variables, modifiers, and so on.

87© Wallace Jackson 2017
W. Jackson, Pro Java 9 Games Development, https://doi.org/10.1007/978-1-4842-0973-8_5

CHAPTER 5

A Java Primer: Introduction to
Java Concepts and Principles

Let’s make sure that all of our readers are on the same page here in Chapter 5 by reviewing the core
programming language concepts and principles behind the Java programming language. It is important
that we take this chapter to give our readers a Java “primer,” or comprehensive overview, and concisely
review the programming language in a single chapter. The Java 9 JDK (and JRE) that you installed in the
first chapter of this book will be the foundation for your Pro Java Games and IoT applications, as well as for
the NetBeans 9 IDE. (We’ll cover NetBeans in the next chapter so you can see how the IDE that you will be
using to code Java 9 games or IoT applications functions as a code editor and application testing tool.)

Most of the core Java constructs and principles that we will be covering during this chapter go back fairly
far in the Java programming language, most as far back as Java 5 (known as 1.5) or Java 6 (1.6). We will also be
covering the features added in Java 7 (1.7) and Java 8 (1.8), which is the most recent release, as well as the new
features planned for Java 9 (1.9), which will be released in the third quarter of 2017. These versions of Java are
used on billions of devices. Java 6 is used in the 32-bit Android 2.x, 3.x, and 4.x OS and applications; Java 7 is
used in the 64-bit Android 5.x and 6 OS and applications; Java 8 is used in Android 7 through 8, and in popular
operating systems (including Microsoft Windows, Apple Macintosh, Open Solaris, and a plethora of popular Linux
distributions such as SUSE, Ubuntu, Mint, Fedora, and Debian); and Java 9 is now released to the general public.

You will of course learn about new advanced concepts of Java 8 such as Lambda Expressions and about
Java 8 and Java 9 components, such as the JavaFX multimedia engine, as we progress through the book. This
chapter will cover the most foundational Java programming language concepts, techniques, and principles
that span the five major versions of Java that are currently in widespread use today, on computers, iTV sets,
and handheld devices.

We will start out with the easiest concepts and progress to the more difficult ones, so we will be starting
at the highest level of Java, which is the API and its modules, and then progress down to those “hands-on”
parts of the Java programming constructs inside of those modules, including packages, classes, interfaces,
methods, constants, and variables.

Before you get into the structural part of Java, such as packages, classes, and methods, you will take a
look at Java syntax, including what Java keywords are, how to delimit Java programming structures, and
how to add function comments into your Java code. Then we’ll cover top-level concepts of application
programming interfaces (APIs), what a package is, and how you can import and use existing code
provided by Java packages that are part of this API, as well as how to create custom Java packages of your
own that contain your own games and IoT application code.

You will take a look at the constructs that are held inside of the Java packages, which are called Java
classes. You will learn about the methods, variables, and constants that classes contain; about what
superclasses and subclasses are; and about what nested classes and inner classes are and how to use them.
Finally, you’ll learn about Java objects and how they form the foundation of Object-Oriented Programming
(OOP). You will learn what a constructor method is and how it creates a Java object using a special kind of
method that has the same name as a class in which it is contained.

www.ebook3000.com

https://doi.org/10.1007/978-1-4842-0973-8_5
http://dx.doi.org/10.1007/978-1-4842-0973-8_5
http://www.ebook3000.org

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

88

Writing Java Syntax: Comments and Code Delimiters
There are a couple of things that you need to understand right off of the bat regarding writing Java syntax.
Syntax controls how Java “parses” things regarding the programming language. Parsing your code syntax
allows Java to understand what it is that you want to do with your programming logic. The primary syntax
rules are important to understand because they allow the Java compiler to understand how you are
structuring Java code. Java compilation is the part of a Java programming process where the JDK compiler
(program) turns your Java code into bytecode. This gets executed (run) by the JRE Java Runtime Engine,
which is installed on the end user’s computer system. This Java compiler needs to know what parts of your
code are Java programming logic and what parts are comments to yourself (or comments to other members
of your project programming team); where your Java code blocks begin and end; and, inside of those Java
code blocks, where your individual Java programming statements or instructions begin and end. Once this is
clear to the compiler, it can parse the statements and turn them from code into bytecode.

Let’s start with comments, as this topic is the easiest to grasp. There are two ways to add comments to
Java code: single-line or in-line comments, which can be placed right after each line of Java code logic, and
multiple-line or block comments, which are placed before (or after) a line of Java code or a block of Java
code (a Java code structure).

A single-line comment is used to add a comment regarding what a line of Java code, or a Java
programming statement, is doing. This comment explains what that line of Java code is there to accomplish
within your overall code structure. Single-line comments in Java will start with a double forward slash
character sequence. For instance, if you want to comment one of your import statements in the BoardGame
bootstrap code that you will be creating later in Chapter 6, you would add double forward slashes after the
line of code. This is what your line of Java code would look like once it has been single-line commented; it is
also shown in Figure 5-1 at the bottom-right side of NetBeans:

import javafx.stage.Stage; // This line of code imports Stage class from JavaFX.stage
package

Let’s also take a look at multiline comments, shown at the top of Figure 5-1 above the package
invincibagel statement, which we’ll be learning about in the next section of this chapter. As you can see,
block comments are done differently, using a single forward slash next to an asterisk to start the comment,

Figure 5-1. Multiline comments (first five lines of code at the top) and single-line comments (last three lines of
code at the bottom)

http://dx.doi.org/10.1007/978-1-4842-0973-8_6

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

89

and the reverse of that, using an asterisk and then a single forward slash, to end the multi-line comment
(this kind of comment is also called a block comment). These are the two ways that you will generally add
short (single-line) or long (multiline) comments to your pro Java games.

It is important to note that you cannot “nest” multiline comments. Simply use a larger multiline
comment!

In case you are wondering, this InvinciBagel project was the i2D arcade game that I taught readers
how to create in the Beginning Java 8 Games Development book I wrote for Apress covering i2D game
development using Java 8 and JavaFX 8. All of the principles in that book apply to Pro Java 9 Games
Development, so I’m using that code here.

I usually line up my single-line comments to look fairly orderly. The Java convention for block
commenting is to line up your asterisks, with an asterisk in your beginning comment delimiter and one in
your ending comment delimiter. This is shown in Figure 5-1 at the top of the InvinciBagel.java code editor
tab in NetBeans.

There is a third type of comment called a Javadoc comment, which you’ll not be using in your pro Java
game development in this book, as the code is intended to be used to create your game and not distributed
to the public. If you’re going to write a Java game engine for use by others to create games, that is the point
in time when you would use a Javadoc comment to add documentation to your pro Java game engine. The
JDK has a Javadoc tool that is used to process the Javadoc comments and add them into the NetBeans 9 IDE.
A Javadoc comment is similar to a multiline comment, but instead it uses two asterisk characters to create
your opening Javadoc comment delimiter, as I have done here:

/** This is an example of the Java Documentation (Javadoc) type of Java code commenting
 This is a type of comment that will automatically generate your Java documentation!
*/

If you want to insert a comment right in the middle of your Java statement or programming structure,
which you should never do as a professional Java games developer, you would use the multiline comment
format, like this:

import /* This line of code imports the Stage class */ javafx.stage.Stage;

This will not generate any errors but could confuse the readers of your code, so don’t comment the
code in this way. The following way of commenting this, using a single-line comment format, will, however,
generate errors:

import // This line of code will not successfully import the Stage class javafx.stage.Stage;

This is because the compiler will see only the word import, as this single-line comment parses to the
end of the line, whereas the multiline comment is specifically ended using the block comment delimiter
sequence (asterisk and forward slash). For this reason, a Java compiler will throw an error for this second
improperly commented code, essentially asking “import what?” Since you cannot import nothing, you must
import a Java class from a Java package.

www.ebook3000.com

http://www.ebook3000.org

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

90

Just as the Java programming language uses the double forward slash and slash-asterisk pairing to
delimit the comments in your Java code, there are a couple other key characters that are used to delimit
Java programming statements, as well as to delimit entire blocks of Java program logic. I often call Java code
blocks code structures.

The semicolon character is utilized in Java (all versions) to delimit or separate Java programming
statements such as the package and import statements shown in Figure 5-1. What the Java compiler does is
look for a Java keyword, which starts a Java statement, and then takes everything after that keyword as being
part of that Java code statement until it reaches the semicolon character, which is the way that you tell the
Java compiler “I am done coding this Java statement.” For instance, to declare your Java package at the top
of your Java application, you would use the Java package keyword, the name of your package, and then a
semicolon character, as follows (as shown in Figure 5-1):

package invincibagel;

We will be covering APIs and packages in the next section, as well as how they are accessed by using
import statements. Import statements are also delimited using the semicolon character (also shown in
Figure 5-1). The import statement starts with the import keyword, the package and class to be imported, and
finally, the semicolon delimiter, as shown in the following Java programming statement:

import javafx.application.Application;

The next delimiters that we should take a look at are the curly braces {…}. Like a multiline comment
delimiter, curly braces feature an opening { curly brace, which delimits (or shows the compiler) the
beginning, or start, of a collection of Java statements, and a closing } curly brace, which delimits (or shows
the compiler) the end of a collection of Java programming statements. Curly braces allow you to nest Java
programming statements inside of other Java constructs. We’ll be covering nesting Java constructs frequently
throughout this book.

As you can see in Figure 5-2, Java code blocks delimited using these curly braces can be nested
(contained) inside of each other, allowing more complex Java code structures. Figure 5-2 shows the first
(outermost) code block using curly braces in your class. Inside of that is your start() method, inside of that
is your .setOnAction() method call, and inside of that is a handle() method definition. We will be taking a
look at what all of this Java code does as this chapter progresses. What I want you to visualize now, which
I am helping you to do by drawing red squares in Figure 5-2, is how these curly brackets are allowing your
methods (and class) to define their own code blocks (structures), each of which are a part of a larger Java
structure, with the largest Java structure being an InvinciBagel class. Each left curly bracket has a matching
right curly bracket, and also notice the indenting of the code so that the innermost Java code structures
are indented the farthest to the right. Each block of Java code is indented by an additional four characters,
or spaces. As you can see, the class is not indented (zero), the start() method is four spaces in, the
.setOnAction() method is eight spaces in, and the handle() method is twelve spaces in. Note that NetBeans
9 will indent each of your Java code structures for you.

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

91

Note that the nested Java code, inside each of these red squares, begins with a curly brace and ends with
a curly brace. Now that you are familiar with the various Java code commenting approaches, as well as how
your Java programming statements need to be delimited (both individually and as Java code blocks), you’re
going to take a look at the various Java code structures. You will see how they’re used, what they can do for
your applications and games, and which important Java keywords are utilized in order to implement your
Java programming structures.

Java Packages: Organizing the Java API by Function
At the highest level of a programming platform, such as Google’s 32-bit Android 4 (which uses Java SE 6),
64-bit Android 5 (which uses Java SE 7), or the current Oracle Java SE platform (which was recently released
as Java SE 9), there is a collection of packages that contains classes, interfaces, methods, and constants,
which collectively form the Application Programming Interface (API). This collection of Java code (in
our case, this is currently the Java 9 API) can be used by application (in this case, games) developers to
create professional-level software across many OSs, platforms, and consumer electronics devices such as
computers, laptops, netbooks, tablets, HD and UHD iTV sets, e-book readers, and smartphones.

To install a given version of an API level, you install its Software Development Kit (SDK). The Java
SDK has a special name, the Java Development Kit (JDK). Those of you who are familiar with Android
development (Android is actually Java on top of Linux OS) know there’s a different API level released every
time a few new features have been added. This is because of the fact that hardware devices that run Android
add new hardware features that need to be supported, not because Google feels like releasing a new SDK
every couple months. Android has released over 26 different API levels in just a few years, whereas Java SE
has released only nine in more than a decade. Only four of Java’s API levels (Java 6, 7, 8, and 9) are in active
use currently in billions of consumer electronics devices.

Java 6 is used with Eclipse’s ADT IDE to develop for 32-bit Android (versions 1.5 through 4.4), Java 7
 is used with Android Studio to develop for 64-bit Android (versions 5.x, 6, 7.x), Java 8 is used with the IntelliJ
IDE to develop for Android Studio 3.0, and Java 9 is used across the Windows, Macintosh, Linux,

Figure 5-2. Nested Java code blocks for InvinciBagel class, start method, setOnAction method, and the handle
method

www.ebook3000.com

http://www.ebook3000.org

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

92

and OpenSolaris OSs. I have three different workstations that are optimized for each of the Java API
platforms and IDE software packages so that I can develop applications for 32-bit Android devices (Java 6),
Android 5 through 6 (Java 7), HTML5 and Android 7 through 8 (Java 8), and JavaFX 9 (Java 9) at the same
time. Fortunately, you can get a powerful Windows 10 or Ubuntu LTS 18 HexaCore (or OctaCore) 64-bit pro
Java 9 game development workstation at www.PriceWatch.com for a few hundred dollars.

Besides the API level (the SDK you installed and are using), the highest-level construct in the Java
programming language is a package. Java packages use the package keyword to declare your own application
package at the top of your Java code. This needs to be the first line of code declared other than comments,
as you’ll see in Chapter 6 (and shown in Figure 5-1 earlier in this chapter). You can have only one package
declaration and can declare only one package, and it must be the first Java statement! The New Project series
of dialogs in NetBeans 9 that you will use in Chapter 6 will create your package for you and will import other
packages that you will need to use based on what you want to do in your application. In our case, these will
be JavaFX 9 packages, so we can utilize the JavaFX new media engine. Java 9 further groups packages into
modules, which are added to an application outside of (externally to) your main Java program logic.

As you may have ascertained from the name, a Java package bundles together all of the Java
programming constructs that you will be learning about, or reviewing, during this chapter. These include
classes, interfaces, and methods that relate to your application, so the gameboard package will contain all
of your code, as well as all of the code that you imported to work with your code, that is needed to create,
compile, and run your board game. We will take a look at the concept of importing and the Java import
keyword next, as it relates closely to the package concept.

A Java package is useful for organizing and containing all of your own application code, but it is even
more useful for organizing and containing the SDK’s (API’s) Java code that you will utilize along with your
own Java programming logic to create your pro Java games or IoT applications. As of Java 9, Java packages
will now be organized by functional modules, which we will be covering at the end of this chapter, as
modules do not affect your Java game programming logic; they simply organize things at a high level to
allow you to optimize your distribution so that you can obtain the smallest download size for your Java game
distribution to your target game-playing end users.

You can use any of the classes that are part of the API that you are developing “under,” or with, by using
the Java import keyword, which, in conjunction with the package and the classes that you want to use, is
called an import statement. This import statement begins with the import keyword, the package and
class reference path (full proper name) is next, and then the statement needs to be terminated using a
semicolon. As you saw in Figure 5-1, the import statement used to import the JavaFX EventHandler class
from the javafx.event package should look like this:

import javafx.event.EventHandler;

An import statement informs the Java compiler that it will need to bring a specified external package
inside of your package (import it into your package), because you will be using methods (and constants)
from the class that is referenced using the import keyword, as well as what package it’s stored in. If you use a
class, method, or interface in your own Java 9 class, such as the BoardGame class you will be creating during
Chapter 6, and you have not declared that class for use by using an import statement, the Java 9 compiler
will throw an error. This is because it cannot locate or reference the class that is going to be used in your
package so that it can import that functionality.

Java Classes: Java Structure to Modularize the Game
The next largest Java programming structure underneath the package level is the Java class level, as you have
seen in the import statement, which references both the package that contains the class and a class itself.
Just like a package organizes all of the related classes, a class organizes all of its related methods, variables,
and constants, and sometimes other nested classes as well, which we will cover in the next section of this
chapter.

http://www.pricewatch.com/
http://dx.doi.org/10.1007/978-1-4842-0973-8_6
http://dx.doi.org/10.1007/978-1-4842-0973-8_6
http://dx.doi.org/10.1007/978-1-4842-0973-8_6

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

93

The Java class can be used to organize your Java code at the next logical level of functional organization,
and therefore, your classes will contain Java code constructs that add specific functionality to a game
application. These include methods, variables, constants, nested classes, or inner classes, all of which will be
covered during this chapter.

Java classes can also be used to create Java objects, which we’ll cover after we learn about classes,
nested classes, methods, and data fields. Java objects are constructed using your Java class. They have the
same name as the Java class and as that class’s constructor method, which we will be covering a bit later
during this chapter.

As you can see in Figure 5-2, you declare your class using a Java class keyword along with a name for
your class. You can also preface the declaration with Java modifier keywords, which we will cover later in
this chapter. Java modifier keywords are always placed before (or, in front of) the Java class keyword, using
the following format:

<Java modifier keywords here> class <your custom class name goes here>

One of the powerful features of Java classes is that they can be used to modularize your Java game code
so your core game application features can be part of a high-level class, which can be subclassed to create
more specialized versions of that class. Once a class has been used to create a subclass, it then becomes the
superclass, to use Java class hierarchy terminology. A class will usually subclass another superclass using a
Java extends keyword.

Using a Java extends keyword tells the compiler that you want the superclass’s capabilities and
functionality added (extended) to your class, which, once it uses this “extends” keyword, becomes a
subclass. A subclass “extends” the core functionality that is provided by the superclass that it is extending. To
extend the class definition to include a superclass, you add to (or extend, no pun intended) your existing Java
class declaration using the following format:

<Java modifier keywords here> class <your class name here> extends <superclass name here>

When you extend a superclass using your class, which becomes the subclass of that superclass, you
can use all of that superclass’s features (nested classes, inner classes, methods, constructors, variables,
and constants) in your subclass. You can do this without having to explicitly rewrite (recode) these Java
constructs in the body of your class, which would be redundant (and disorganized) because your class
extends the superclass, making it part of your class. We’ll be covering nested and inner classes in the next
section of this chapter, in case you’re wondering what they are.

The body of your class is coded inside of the curly braces (the outer red box, in Figure 5-2), which follow
your class and javafx.application.Application superclass (in this particular case) declaration. This is why you
learned about, or reviewed, Java syntax first; you are building upon that with the class declaration and then
the Java syntax that holds the class definition (variables, constants, methods, constructors, nested classes,
inner classes) constructs.

Notice in Figure 5-2 that the InvinciBagel class extends the Application superclass from a JavaFX application
package. Doing this gives the InvinciBagel class everything that it needs to host, or run, the JavaFX 8 application.
What this JavaFX 8 Application class does is to “construct” your Application object so that it can use system
memory, call an .init() method (to initialize anything that might need initializing), and call the .start() method
that you can see in Figure 5-2 (in the second red box). This .start() method is where you put Java code statements
in place that will ultimately be needed to “fire up” (that is, to start or launch) the InvinciBagel i2D arcade game
Java 8 application. This Java 8 game will also run under Java 9 without modification.

When the end user finishes using the i2D InvinciBagel Java Application, the Application object created
by the Application class, using the Application() constructor method, will call its .stop() method and remove
your application from system memory. This will free up memory space for other uses by an end user. We will
be getting into methods, constructors, and objects soon, as we are progressing from the high-level package
and class constructs to lower-level methods and object constructs so that we can approach the learning

www.ebook3000.com

http://www.ebook3000.org

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

94

process from a high-level overview to lower levels as we go along. You may be wondering if Java classes can
be nested inside of each other. That is, can Java classes contain other Java classes? The answer is yes, they
can. Let’s take a closer look at this concept of Java nested classes next.

Nested Classes: Java Classes Living Inside of Other Classes
A nested class in Java is a class that is defined inside of another Java class. A nested class is part of the class
that it is nested inside of, and this nesting signifies that the two classes are intended to be utilized together
in some way. There are two types of nested classes: static nested classes, which are commonly referred to
simply as nested classes, and nonstatic nested classes, which are commonly referred to as inner classes.

Static nested classes, which I will refer to as nested classes, are used to create utilities for use with the
class that contains them and are sometimes used simply to contain constants for use with the class that
contains them. Those of you who develop Android applications are familiar with nested classes, as they’re
quite commonly used in the Android API, either to hold utility methods or to contain Android constants,
which are used to define things like screen density settings, animation motion interpolation curve types,
alignment constants, and user interface element scaling settings, among other things. In Chapter 4 we
covered the concept of static as it relates to games, and for code this has the same meaning or implication.
Java constants can be thought of as fixed, or not capable of being changed.

A nested class uses what is commonly referred to in Java as dot notation in order to reference the
nested class “off of” its master (or parent) containing class. For instance, MasterClass.NestedClass would
be the referencing format that would be used to reference a nested class using, or via, its master class
(containing class) name, using generic class type names here. If you created your SplashScreen nested class
to draw the splash screen for your Java board game, it would be referenced in your Java code as BoardGame.
SplashScreen by using Java dot notation syntax.

As an example of this, let’s take a look at the JavaFX Application class, which contains the Parameters
nested class. This nested class encapsulates, or contains, the parameters that you can set for your JavaFX
Application. Thus, this Application.Parameters nested class would be part of the same javafx.application
package as your Application class and would be referenced as javafx.application.Application.Parameters
if you were using an import statement.

Similarly, the constructor method (we will be learning about constructor methods soon) would be
written as Application.Parameters() since constructor methods must have the same name as the classes
that they are contained in. Unless you are writing code for other developers to use, which is where nested
classes are most often utilized, like with the JavaFX Application class or the many nested (utility or constant
provider) classes in the Android 8 OS, you are far more likely to utilize nonstatic nested classes. These
nonstatic nested classes are commonly referred to as inner classes for Java games.

A nested class, technically termed a static nested class, is declared using the static keyword (modifier),
which you will be learning about a bit later on during this chapter. So, if you were to create the BoardGame.
SplashScreen nested class, the BoardGame class and the SplashScreen nested class declaration would look
something like the following code:

public class BoardGame extends Application {
 static class SplashScreen {
 // The Java code that creates and displays your splashscreen is in here
 }
}

It is important to note that if you use import javafx.application.Application.Parameters (as an
example) to import the nested class, you can reference the nested class within your class at that point, using
just the Parameters class name, rather than having to use the full class name “path” that shows your class’s
code how to travel through its parent class to the nested class using the Application.Parameter (ClassName.
NestedClassName) reference.

http://dx.doi.org/10.1007/978-1-4842-0973-8_4

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

95

As you’ll see many times throughout this book, methods can also be accessed using dot notation.
So, instead of using ClassName.NestedClassName.MethodName, you could, if you had used the import
statement to import this nested class, simply use NestedClassName.MethodName. This is because the
import statement has already been used to establish the full “reference path” to this nested class, through its
containing class, so you don’t have to.

Next, let’s take a look at nonstatic nested classes, which are more commonly referred to as inner
classes.

Inner Classes: Different Types of Nonstatic Nested Classes
Java inner classes are also nested classes, but they are not declared using the static keyword modifier before
the class keyword and class name, which is why they are called “nonstatic” nested classes. Thus, any class
declaration that is inside another class that doesn’t use the static (keyword) modifier would be termed an
inner class in Java. There are three types of inner classes in Java: the member class, the local class, and
the anonymous class. We’ll cover what the differences are between these inner class types, as well as how
they’re implemented, in detail during this section.

Like nested classes, Member classes are defined within the body of your containing (parent) class. You
can declare a member class anywhere within the body of the containing class. You would want to declare a
member class when you wanted to access data fields (variables or constants) and methods belonging to the
containing class without having to provide a path (via dot notation) to the data field or method (ClassName.
DataField or ClassName.Method). A member class can be thought of as a nested class that does not use the
Java static modifier keyword.

Whereas a nested class is referenced through its containing or “top-level” class, using a dot notation
path to the static nested class, a member class, since it is not static, is “instance-specific,” which means that
objects (instances) created using that class can be different from each other (an object is a unique “instance”
of a class), whereas a static (fixed) nested class will have only one version that doesn’t change. For instance,
a private inner class can only be used by a parent class that contains it. The SplashScreen inner class coded
as a private class would look something like this:

public class BoardGame extends Application {
 private class SplashScreen {
 // The Java code that creates and displays your splashscreen is in here
 }
}

Since this is declared as private, it is for our own application usage (the containing class’s usage
specifically). Thus, this would not be a utility or constant class for use by other classes, applications, or
developers. You can also declare your inner class without using the private access modifier keyword, which
would look like the following Java programming construct:

public class BoardGame extends Application {
 class SplashScreen {
 // The Java code that creates and displays your splashscreen is in here
 }
}

This level of access control is called package or package private and is the “default” level of access
control that is applied to any class, interface, method, or data field that is declared without using one of the
other Java access control modifier keywords (public, protected, or private). This type of inner class can be
accessed not only by the top-level or containing class but also by any other class member of the package that
contains that class. This is because the containing class is declared as “public” and the inner class is declared

www.ebook3000.com

http://www.ebook3000.org

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

96

as “package private.” If you wanted an inner class to be available outside of the package, you would declare it
to be public, using the following Java code structure:

public class BoardGame extends Application {
 public class SplashScreen {
 // The Java code that creates and displays your splashscreen is in here
 }
}

You can also declare an inner class to be protected, which means that it can be accessed by any
subclasses of the parent or containing class. We’ll be getting into Java modifiers after we cover Java methods
and Java variables.

If you declare a class inside of a lower-level Java programming structure that is not a class, such as a
method or an iteration control (commonly called a loop) structure, it would be technically referred to as a
local class. This local class would be visible only inside of that block of code, and as such it does not allow
(or make sense to use) class modifiers such as static, public, protected, or private.

A local class is used like a local variable, except that it is a more complex Java coding construct, rather
than a simple data field value that is used locally. This is not often used in games, as you usually want your
game to be divided “functionally,” into functional classes with methods and variables that clearly are for
a distinct use and reason to keep the complexity of game design and processing clearly defined using the
organization or encapsulation of Java. We will be looking at this throughout the book as we design a different
functional component of the game in each chapter starting in Chapter 6. In this way we are using Java’s
features to their best advantage to create a game design.

Finally, there’s a type of inner class that is called an anonymous class. An anonymous class is a local
class that has not been given any class name. You are likely to encounter anonymous classes far more often
than you are local classes. This is because programmers often do not name their local classes (making them
anonymous classes). The logic local classes contain is only used locally to their declaration, and therefore,
these classes do not really need to have a name, as they are only referenced internally to that block of
Java code.

Java Methods: Core Logic Function Java Constructs
Inside of classes you generally have methods and the data fields (variables or constants) that these methods
utilize. Since we are going from outer structures to inner structures, or top-level structures to lower-level
structures, we will cover methods next. Methods are sometimes called functions in other programming
languages, and you can see an example of the .start() method in Figure 5-2, which shows how the method
holds the programming logic that creates your basic Java game application. The programming logic inside of
the method uses Java programming statements to create a Stage and a Scene, places a button on the screen
in a StackPane, and defines event handling logic so that when the button is clicked, the bootstrap Java code
writes some “Hello World” text to your NetBeans 9 IDE output area.

Declaring Your Method: Modifier, Return Type, and Method Name
The method declaration starts with an access control modifier keyword, either public, protected, private,
or package private (which is designated by not using any access control modifier keyword at all). As you can
see in Figure 5-2, your .start() method has been declared using the public access control modifier. We will be
covering access modifier keywords in greater detail later during this chapter.

After this access control modifier, you will need to declare the method’s return type. This is the type
of data that the method will return, after it is called, or invoked. Since the .start() method performs setup
operations but does not return any specific type of value, it uses a void return type, which signifies that the

http://dx.doi.org/10.1007/978-1-4842-0973-8_6

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

97

method performs a task but does not return any resulting data to the calling entity. In this case, the calling
entity is the JavaFX Application class since the .start() method is one of the key methods (the others being
the .stop() and .init() methods) provided by the Application superclass that we extended, which controls the
life-cycle stages for your i3D BoardGame JavaFX application.

After the return type, you will supply your method name, which, by convention (programming rules),
should start with a lowercase letter (or word, preferably a verb), with any subsequent (internal) words
(nouns or adjectives) starting with a capital letter. For instance, a method to display the splash screen would
be named .showSplashScreen() or .displaySplashScreen() and, since it does something but does not return a
value, would be declared using this code:

public void displaySplashScreen() { method Java code to display splashscreen goes in here }

If you need to pass parameters, which are named data values that need to be operated on within
the body of your method (the part inside of the curly braces), these go inside of the parentheses that are
attached to the method name. In Figure 5-2, the .start() method for your bootstrap HelloWorld JavaFX
application receives a Stage object, named primaryStage, using the following Java method declaration
syntax:

public void start(Stage primaryStage) { bootstrap Java code to start Application goes in
here }

You can provide as many parameters using the data type and parameter name pairs as you like,
with each pair separated by a comma character. Methods can also have no parameters in which case the
parameter parentheses are empty and the opening and closing parentheses are right next to each other; this
is how I am writing method names in this book so that you know that they are methods. I am using the dot
(notation) before, and the parentheses characters after, the method name, like .start() or .stop() and so forth,
so that you know I am referencing a Java method.

The programming logic that defines your method will be contained inside the “body” of the method,
which as you have already learned is inside the curly braces that define the beginning and the end of the
method. The Java programming logic inside of methods can include variable declarations, program logic
statements, interative control structures, and iterative loops, among other things, all of which we will be
leveraging to create our Java game during this book.

Overloading Your Methods: Providing Unique Parameter Lists
There is another concept in Java that applies to methods that I will cover in this section before I move on,
called overloading Java methods. Overloading the Java method specifically refers to using the same method
name but using different parameter list configurations. What overloading signifies is the Java compiler will
be able to figure out which of your overloaded methods to use, if you have defined more than one method
with the same name.

The Java compiler differentiates overloaded methods by looking at your parameter data types as well
as the order in which they are being passed into the method being called. The Java compiler then uses the
uniqueness of the parameter list as a fingerprint of sorts to discern which of the identically named methods
(that have the same names) to utilize. Therefore, your parameter list configurations must all be completely
unique from each other in order for a Java method overloading feature to be able to work correctly.

We will be learning how to use and how to code Java methods during the course of this book, from
Chapter 6 introducing NetBeans 9 and onward until the end of the book, so I am not going to spend too
much time on them here, other than to define what they are and the basic rules for how they are declared
and utilized inside Java classes.

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_6
http://www.ebook3000.org

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

98

Constuctor Methods: Turning a Java Class into a Java Object
There is one specialized type of Java method I’m going to cover in detail in this section of this chapter called
a constructor method. This is a special type of method that can be used to create (construct) Java objects,
which we will be covering a bit later in the chapter, after we cover all of the different types of Java syntax
and programming structures that can be used to create, define, and interface with these Java objects. Java
objects just happen to be the foundation of Object-Oriented Programming (OOP), so we will be taking a
look at constructor methods here; it is important to have an understanding of this before we cover the Java
object itself later in the chapter. Since we are covering methods in this section, this is the most logical place
to take a look at constructors, as constructor methods are sometimes called (for short) by veteran Java game
developers, which you are on your way to becoming.

Creating a Java Object: Invoking the Class Constructor Method
A Java class can contain a constructor method with the same name as the class and can be used to create
Java objects using that class. A constructor method uses its Java class as a blueprint to create an instance
of that class in system memory, which creates the Java object. A constructor method will always return a
Java object and thus does not use any of the other Java return types that other methods will typically use
(void, String, float, int, byte, etc.). We will be covering these Java return types later during the chapter. The
constructor method should be invoked by using the Java new keyword since you are creating a new Java
object.

You can see an example of this in the bootstrap JavaFX code shown in Figure 5-2, in line numbers 20, 28,
and 30. These lines are where the Button, StackPane, and Scene objects are created, respectively, by using
the following object declaration, naming, and creation Java code structure, as follows:

<Java class name> <object instance name> =
 new <Java constructor method name><parameter list><semicolon>

The reason that a Java object is declared in this fashion—using the class name, the name of the object
you’re constructing, the Java new keyword, and the class’s constructor method name (and parameters, if
any) in a single Java statement terminated (finished) with a semicolon character—is because each Java
object is an instance of a Java class.

To use the Button object creation from line 20 of your current Java code as an example, what you
are telling the Java language compiler using the part of the Java statement on the left side of the equals
“operator” is that you want to create a Button type object named btn using a JavaFX Button class as the
object blueprint. This “declares” the Button class (object type) and gives it a unique name. (We will soon be
covering operators, a bit later on in the chapter.)

The first part of creating the object is thus called the object declaration. The second part of creating
your Java object is called the object instantiation, and this part of the object creation process can be seen on
the right side of the equals operator and involves a constructor method and the Java new keyword.

What you do to instantiate a Java object is that you invoke, or utilize, the Java new keyword in
conjunction with an object constructor method call. Since this takes place on the right side of the equals
operator, the result of the object instantiation is placed into the declared object, which is on the left side of
the Java statement. As you will see a bit later in the chapter when we discuss operators, this is what an equals
operator does, and a useful operator it is.

This completes a process of declaring (class name), naming (object name), creating (using a new
keyword), configuring (using a constructor method), and loading (using the equals operator) your very own
custom Java object.

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

99

It’s important to note that the declaration and instantiation part of this process can be coded using
separate lines of Java code. For instance, the Button object instantiation (Figure 5-2, line 20) could be coded
as follows:

Button btn; // Declare a Button object named btn
btn = new Button(); // Instantiate btn object using Java new keyword and Button()
constructor

The reason this is significant is because coding an object creation in this way allows you to declare an
object at the top of your class, where each of the methods inside of the class that use or access these objects
can “see” the object. In Java, unless declared as otherwise using modifiers, which we will be covering next,
an object or data field is only visible inside of the Java programming construct (class or method) that it is
declared inside of.

If you declare an object inside of your class, and therefore outside of all the methods contained in the
class, all of the methods in your class can access (see and use) that object. Similarly, anything declared
inside of a method is “local” to that method and is only “visible” to other “members” of that method,
meaning all Java statements inside of that method scope that is inside of the {…} delimiters. If you wanted
to implement this separate object declaration in the class, outside of the methods and object instantiation
inside of the .start() method, in a current BoardGame class, the first few lines of Java code for your class
would change to look like the following Java programming logic:

public class BoardGame extends Application {
 Button btn;
 @Override
 public void start(Stage primaryStage) {
 btn = new Button();
 btn.setText("Say 'Hello World'");
 // other programming statements continue here
 }
}

When the object declaration and instantiation are split up, they can be placed inside (or outside) of
methods as needed for visibility. In the previous code, other methods of the BoardGame class could call a
btn.setText() method call shown earlier without the Java compiler “throwing” an error. The way the Button
object is declared in Figure 5-2, only the .start() method can “see” the object, so only the .start() method can
implement the btn.setText() method call.

Creating a Constructor Method: Designing and Coding a Java Object
Structure
A constructor method is a specialized type of method that is utilized to create an object in system memory.
This differs significantly from other methods (if you use a different programming language, you are used to
referring to them as functions). Nonconstructor methods in Java are used to perform some sort of complex
calculation or encapsulated (modularized) processing of one form or another. The constructor method’s
usage for creating Java objects in memory, rather than performing some other programming functionality,
as evidenced by the use of the Java new keyword in conjunction with the constructor method, which creates
a new Java object of that unique class type in memory. For this reason, a constructor method will therefore
define an internal structure of a unique type of Java object. If you want to configure the Java object at the
same time as you instantiate it, you can define the constructor method parameter list to allow the calling
entity to populate the object structure with specific (custom) data values. That way, you can create different
types of that object by passing in different attributes in the constructor’s parameter list.

www.ebook3000.com

http://www.ebook3000.org

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

100

We will create a couple of sample constructor methods in this section to show you the basics regarding
how to create a constructor method and what it usually contains. Let’s say you were creating an object for
the game. You could declare a public BoardGame() constructor method by using this following Java code
structure, for instance:

public BoardGame() {
 int healthIndex = 1000; // Defines units of Health
 int scoreIndex = 0; // Defines units of Scoring
 int boardIndex = 0; // Current Game Board Location
 boolean turnActive = false; // Flag showing if current turn
}

A constructor method, called using the BoardGame playerName = new BoardGame(); constructor
method call, creates a BoardGame game player object named playerName. The object has 1,000 units of
Health, has no current score because the object is on the first square of the game board, and is not currently
moving because it is not currently their turn.

Next, let’s explore the concept of overloading this constructor method, which we learned about earlier,
and create another constructor method that has parameters that will allow us to define your healthIndex
and turnActive variables of the BoardGame object at the same time that you’re creating it. A constructor
method would look like this:

public BoardGame(int startingHealthIndex, boolean isTurnActive) {
 int healthIndex = startingHealthIndex;
 int scoreIndex;
 int boardIndex;
 boolean turnActive = isTurnActive;
}

In this version, I still initialize the scoreIndex and boardIndex variables to zero, which is the default
value for an Integer value, so I do not have to use lifeIndex = 0 or hitsIndex = 0 in this code, just to show
you an optional way to code these two statements. Since the Java programming language accommodates
method overloading, if you use the BoardGame playerOne = new BoardGame(1250, true); method call to
instantiate a BoardGame object, the correct constructor method will be utilized to create the object. This
BoardGame object named playerOne will have a healthIndex of 1250 units of Health, would have a zero
score, would be on the first game board location, and would currently be at their turn.

The Java keyword this can be used to access data fields created using a constructor method. For
instance, within an object’s code, this.startingHealthIndex = value; sets that object’s own internal data field
to the value that you specify. You can also use this() to invoke another constructor method within the same
class construct.

You can have as many (overloaded) constructor methods as you like, as long as they are each 100
percent unique. This means that overloaded constructors must have different parameter list configurations,
including parameter list length (the number of parameters), order, and/or different parameter list types
(different data types). As you can see, it is your parameter list (number of parameters, parameter data types,
and parameter order) that allows a Java compiler to differentiate your overloaded methods from one another.

Java Variables and Constants: Values in Data Fields
The next level down, from API to package to class to method, are the actual data values that are being
operated upon in these Java classes and methods. In Java this is called the data field. Data is held inside of
something that is called a field, just like in database design. Java data fields can be dynamic, or variable,

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

101

which is why they are often referred to as “variables,” and can change during the operation of your Java game
or IoT application. Alternatively, they can be static (fixed), which makes that data permanent, in which case
it would be called a constant. A constant is a special type of variable, which we will cover in the next section,
because declaring a constant correctly in the Java programming language is a bit more involved (advanced)
than declaring a Java variable.

As far as Java lingo (convention) goes, variables declared at the top of a class are called member
variables, fields, or data fields, although all variables and constants can be considered to be data fields at a
fundamental level.

A variable declared inside of a method, or other lower-level Java programming structure (nested inside
of a class or a method), is called a local variable because it can only be “seen” or used locally, inside of that
programming construct that has been delimited by using curly {…} braces. Finally, variables passed inside
of a parameter list area of a method declaration, constructor method definition, or a method call are, not
surprisingly, called parameters.

A variable is a data field that holds an attribute of your Java object or software, which can (and will)
change during the course of the execution of your software. As you might imagine, this can be especially
important for game programming. The simplest form of variable declaration can be achieved by using one
of the Java data type keywords along with the name that you want to use for that particular variable within
the Java program logic. In the constructor method in the previous section, we declared an integer variable
named scoreIndex to hold the score that your object will accumulate during gameplay. We defined the
variable data type and named it using the following Java variable declaration programming statement:

int scoreIndex; // This could be coded as: int scoreIndex = 0; (default integer value is zero)

As you also saw in the previous section on constructor methods, you can initialize your variable to
a starting value, using the equals operator, along with a data value that matches up with the data type
declared. Here’s an example:

boolean turnActive = false; // Could be: boolean turnActive; (default boolean value is false)

This Java statement declares a boolean data type variable and names it turnActive, on the left side of
your equals operator, and then sets a declared variable to a value of false, which will signify that player’s turn
is not active. This is similar to how an object is declared and instantiated, except the Java new keyword and
constructor method are replaced by the data value itself since now a variable (data field) is being declared
instead of an object being created. We will be covering the different data types (we’ve already covered
integers, Boolean, and Object) in a future section of this chapter.

You can also use Java modifier keywords with variable declarations, which I will do in the next section
of the chapter when I show you how to declare an immutable variable, also known as a constant, which is
fixed or locked into place in memory and which cannot be changed or altered in any way so that it remains,
you guessed it, constant.

We will be covering the Java access modifier keywords, as they pertain to all Java constructs, in the
sections that follow the next section on constants. So, now that I’m almost finished going from the largest
Java constructs, or packages, to the smallest, or data fields, we will start to cover those topics that apply to all
levels (classes, methods, data fields) of Java. These Java concepts will increase in complexity as we progress
through the end of this Java primer chapter, as I wanted to start with easier high-level concepts and drill
down to more complex lower-level ones. At the end of the chapter, we will also cover packaging your Java
project for distribution using the new Java 9 modules feature, which will allow you to optimize the data
footprint for your Pro Java 9 game and make it more secure as well. Java 9 should be released at around the
same time that this book is released to the public, so I am making this book a Java 9 book. Everything in the
Beginning Java 8 Games Development book would still apply to Java 9 development.

www.ebook3000.com

http://www.ebook3000.org

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

102

Fixing Data Values in Memory: Defining a Data Constant in Java
If you are already familiar with computer programming, you will know that there is often a need to have
data fields that will always contain the same data value and that will not change during the duration of
the application’s run cycle. These are termed constants and are defined, or declared, using a special
combination of Java access modifier keywords that are used to fix things in memory so that they cannot be
changed. There are also Java modifier keywords that will restrict (or unrestrict) object instances, or access to
certain classes inside or outside of a Java class or package. We will be getting into these in detail in the next
section of the chapter, covering Java modifier keywords.

To declare Java variables as “fixed,” you must use Java’s final modifier keyword. Final means the same
thing as when your parents say something is final; it is fixed in place, a fact of life (FOL), and not going to
change, ever. Thus, the first step in creating a constant is to add this final keyword in front of the data type
keyword in your declaration.

A convention when declaring a Java constant (and constants in other programming languages, as well)
is to use uppercase characters with underscore characters between each word, which signifies a constant
in your code.

If we wanted to create screen width and screen height constants for your game, you would do so like
this:

final int SCREEN_HEIGHT_PIXELS = 480;
final int SCREEN_WIDTH_PIXELS = 640;

There is also a “blank” final, which is a nonstatic final variable whose initialization will be deferred to
your constructor method body. It is also important to note that each object gets its own copy of a nonstatic
final variable.

If you wanted all of the objects created by your class’s constructor method to be able to “see,” and use,
this constant, you would have to also add the Java static modifier keyword in front of the final modifier
keyword, like this:

static final int SCREEN_HEIGHT_PIXELS = 480;
static final int SCREEN_WIDTH_PIXELS = 640;

If you wanted only your class and objects created by this class to be able to see these constants, you
would declare the constants using the Java private modifier keyword in front of the static modifier keyword,
using this code:

private static final int SCREEN_HEIGHT_PIXELS = 480;
private static final int SCREEN_WIDTH_PIXELS = 640;

If you wanted any Java class, even those outside of your package (that is, anyone else’s Java classes), to
be able to see these constants, you would declare the constants using the Java public modifier keyword in
front of the static modifier keyword using the following Java code:

public static final int SCREEN_HEIGHT_PIXELS = 480;
public static final int SCREEN_WIDTH_PIXELS = 640;

As you can see, declaring the constant can be a significantly more detailed Java statement construction
than declaring a simple variable for use in your class. Next we should take a deeper look at Java’s access
modifier keywords since they allow you to control things (like access to classes, methods, constants, and
variables, allowing you to lock a Java code structure from being modified) and similar high-level Java code
control concepts that are fairly complicated.

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

103

Now that you understand the primary Java programming logic constructs or structures, you’re ready to
learn about (or review) more complicated language features, such as modifiers, operators, data types, and
statements.

Java Modifier Keywords: Access Control and More
Java modifier keywords are reserved Java keywords that modify the access control, visibility, or longevity
(how long something exists in memory, during the execution of your application) for code or data structures
inside of the primary types of Java programming structures that you have learned about (reviewed) thus far.
The modifier keywords are the first Java reserved words that are “declared” or utilized on the “outside” and
“head” (beginning) of your Java code structures since the Java logic for the structure, at least for classes and
methods, is contained within the curly braces {…} delimiters, which come after the class keyword and class
name or after the method name and parameter list. Modifier keywords come before any of these and can be
utilized with your Java classes, methods, data fields (variables and constants), and Java interfaces, which we
will be covering a bit later.

As you can see at the bottom of Figure 5-2 for the .main() method, which was created by NetBeans 9 for
the BoardGame class definition (which uses the public modifier that we are going to be covering next), you
can use more than one Java modifier keyword. The .main() method first uses a public modifier keyword,
which is the access control modifier keyword, and then it uses a static modifier keyword second, which is a
nonaccess control modifier keyword. Let’s cover the Java access control modifiers next, and after that, we
will get into the much more complex nonaccess control modifiers. These access control modifiers become
much more important with the extra security protection in Java 9 afforded by the Java Modules feature,
which controls how your packages and API are bundled and distributed.

Access Control Modifiers: Public, Protected, Package, or Private
Let’s cover access control modifiers first since they are declared first before any nonaccess control modifier
keywords and before any return type keywords; they are easier to understand conceptually as well. There
are four access control modifier levels that can be applied to any Java programming structure. If you do
not declare any access control modifier keyword, a “default” access control level of package private
will be applied to that Java code structure, which allows it to be “visible to,” and thus usable by, any Java
programming structure inside of your Java package. In this case, that would be the boardgame package.

The other three Java access control modification levels all have their own access control modifier
keywords, including the public, private, and protected keywords. These are aptly named for what they do,
so you probably have a fairly good idea of how to apply these to either share your code publicly or protect it
from public usage already, but let’s cover each of these in detail here, just to make sure. As you know, access
control, as in security, is the important issue for Java software these days, both inside of your code and in
the outside world, which is why Java 9 added modules. We will start with the least amount of access control
(security) first, with the public access control modifier.

Java Public Modifier: Variables or Methods That Exist Independently of
Instances
The Java public access modifier keyword can be used by classes, methods, constructors, data fields
(variables and constants), and interfaces. If you declare something as public, it can be accessed by the
public. This means it can be imported and utilized by any other class, in any other package, as long as it is
exported in a module. Essentially this means your code can be used in any software that is created using the
Java 9 language. As you will see in the classes that you use from the Java and JavaFX programming platforms

www.ebook3000.com

http://www.ebook3000.org

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

104

(APIs), the public keyword is most often used in open source programming Java platforms or packages that
are used to create custom applications, including games.

It is important to note that if a public class that you are trying to access and utilize exists in another
package other than your own package (in our case, your own package will be named boardgame), then
you will need to use the Java import keyword to create an import statement to be able to utilize that public
class. This is why, by the end of this book, you will have dozens of import statements at the top of your
JavaFXGame.java class. You will be leveraging preexisting Java and JavaFX classes in code libraries, which
have already been coded, tested, refined, and made public, by using a public access control modifier
keyword so that you can create pro Java 9 games and IoT apps that leverage Java APIs.

Because of class inheritance in Java, all of the public methods and public variables inside a public
class will be inherited by the subclasses of that class (which, once it is subclassed, becomes a superclass).
You can see an example of a public access control modifier keyword in front of the Invincibagel class
keyword, as shown in Figure 5-2.

Java Protected Modifier: Variables and Methods Allow Access by Subclasses
The Java protected access modifier keyword can be used by data fields (variables and constants) and by
methods, including constructor methods, but cannot be used by classes or interfaces. We will be covering
Java interfaces later in this chapter. The protected keyword allows variables, methods, and constructors in a
superclass to be accessed only by subclasses of that superclass in other packages (such as your boardgame
package) or by any class within the same package as the class containing those protected members (Java
constructs). Using this access control modifier is like putting a lock on the original Java code; to use the
original code (much less to add to it and thus modify its intended usage), you are forced to extend, or
subclass, the protected class, and then you can override its methods.

This access modifier keyword therefore essentially protects methods or variables in a class that is
intended to be (is hoped to be) used as a superclass by being subclassed (extended) by other developers.
Unless you own this package, which these protected Java constructs are defined inside (which you don’t),
you must extend this superclass and create your own subclass implementation in order to be able to utilize
these protected methods and variables.

You might be wondering when would one want to do this and protect Java code structures like this?
When you are designing a larger project, such as the Android operating system API, for instance, you will
often want to have the highest-level methods and variables not be used directly, right out of the class, or
directly from within that class.

In this situation, where others are using your code structures, you would rather that your original Java
code be used within a separately defined, developer-coded subclass structure. This “isolates” the superclass
code so that it will remain directly untouched, in a sense, guaranteeing that the original methods, fields, and
intent are maintained as they were originally intended by the Java code author or authors (package owner
or owners), protected from others’ modifications. This ensures that your API and its superclasses remain, ad
infinitum, as a “blueprint” for other Java 9 developers to utilize to create their own (Android, JavaFX, etc.)
games, business utilities, and IoT applications.

You can achieve this direct use prevention by protecting methods and variable constructs from being
used directly so that they become only a blueprint for more detailed implementations in other classes and
are not able to be used directly. Essentially, protecting a method or variable turns it into a blueprint, or
“implementation road map.”

Java Private Modifier: Fields, Methods, or Constructors Allowed Local Access
The Java private access control modifier keyword can be used by data fields (variables or constants) and by
methods, including constructor methods and interfaces, but cannot be used by classes. We will be covering
Java interfaces later in this chapter. The private access control keyword allows variables, methods, and

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

105

constructors in a class to be accessed only inside of that class, and as of Java 9, private interfaces are now
allowed. This private access control keyword allows Java to implement a concept called encapsulation,
where a class (and objects created using that class) can encapsulate itself, hiding its “internals” from the
outside Java universe, so to speak. This encapsulation is further enhanced in Java 9 using modules, which
we’ll be covering toward the end of this chapter. The OOP concept of encapsulation can be used to allow
teams to create (and debug) their own classes and objects. In this way, no one else’s Java code can break
code that exists inside of a class because its methods, variables, constants, interfaces, and constructors are
private. Encapsulation can also be utilized to protect code and resources (assets) from public access.

This access modifier keyword essentially “privatizes” methods or variables in a class so that they can
be used locally only within that class or by objects created by that class’s constructor methods. Unless you
own the class that these private Java constructs are inside of, you cannot access, or utilize, these methods
or data fields. This is the most restrictive level of access control in Java. A variable declared as private can
be accessed outside of the class, if a public method that accesses a private variable from inside of the class,
called a public .get() method call, is declared as public and thus provides a pathway (or doorway) through
that public method to the data in the private variable or constant.

Java Package Private Modifier: Variables, Methods, or Classes in the Package
If no Java access control modifier keyword is declared, then a default access control level, which is also
referred to as the package private access control level, will be applied to that Java construct (class, method,
data field, constructor, or interface). This means that these package private Java constructs are visible, or
available, to any other Java class that is inside of that Java package that contains them. This package private
level of access control is the easiest to apply to your classes, interfaces, methods, constructors, constants,
and variables since it is applied as a default action by simply not explicitly declaring any Java access control
modifier keyword before your Java construct.

You will use this default package private access control level quite a bit for your own pro Java games
and IoT applications programming, as usually you are creating your own application in your own package
for your users to use in a completed, compiled, executable state with Java 9’s new enhanced security Java
Module System (Project Jigsaw).

As of Java 9, you will also install your package into one of the core JavaFX modules, probably javafx.
media or javafx.graphics. As you will see in the final section in this chapter, using the public and private
keywords correctly will allow you to fully leverage the power of Java 9’s new module features. We’ll be
covering modules in detail at the end of this chapter, after we cover all of the other core Java programming
language features that have existed in many of the previous versions of Java and that are still in use today in
Java 6 (32-bit Android), Java 7 (64-bit Android 5 through 6), and Java 8 (64-bit Android 7 through 8 and the
current version of Java, until Java 9 is released, during the last quarter of 2017).

If you were developing game engines for other game developers to use, however, you would most
probably end up using more of the other three access control modifier keywords that we have been
discussing in this section so that you would be able to control precisely how others would implement your
game engine’s Java code structures. Next, let’s take a look at the nonaccess control modifier keywords, which
are even more intellectually challenging!

Non Access Control Modifiers: Final, Static, and Abstract
The Java modifier keywords that do not specifically provide access control features to your Java constructs
are termed nonaccess control modifier keywords. These include the often used static, final, and abstract
modifier keywords, as well as the not so often used synchronized and volatile modifier keywords, which
are used for more advanced thread control, which I will be covering later during this professional-level
programming title. I will cover those keywords in this section so that you will know what they mean if you
encounter them in your Java programming before then.

www.ebook3000.com

http://www.ebook3000.org

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

106

I will cover these concepts in order of their complexity, from the easiest for developers to wrap their
minds around to the most difficult for the object-oriented programming developers to wrap their minds
around. OOP is like surfing, in that it seems very difficult until such time as you have practiced doing it a
large number of times and then suddenly one day you just get it.

Java Final Modifier: Variable Reference, Method, or Class Cannot Be Modified
We have already looked at the final modifier keyword, as it is used to declare a constant along with a static
keyword. A final data field variable can be initialized (set) one time. A final reference variable, which
is a special type of Java variable that contains a reference to an object in memory, cannot be changed
(reassigned) to refer to a different object. The data that is held inside of the (final) referenced object can be
changed, however, as only the reference to the object itself is the final reference variable, which is essentially
“locked in” using a Java final keyword.

A Java method can also be “locked” using the final modifier keyword. When a Java method is made
“final,” it means that if the Java class that contains that method is subclassed, that final method cannot
be overridden, or modified, within the body of the subclass. This essentially “locks” what is inside of the
method code structure. For example, if you wanted the .start() method for your JavaFXGame class (were it to
ever be subclassed) to always do the same things that it does for your JavaFXGame superclass (prepare the
JavaFX staging environment), you would do this:

public class JavaFXGame extends Application {
 Button btn;
 @Override
 public final void start(Stage primaryStage) {
 btn = new Button(); // other Java statements can be added
 }
}

This would prevent any subclasses (public class JavaFXGame3D extends JavaFXGame) from changing
anything regarding how the JavaFXGame game engine (JavaFX) is set up initially, which is what the .start()
method does for your game applications, as you’ll see in Chapters 7 and 8, covering the JavaFX 9 multimedia
engine. A class that is declared using a final modifier keyword can’t be extended (also called subclassed),
locking that class against any future usage.

Java Static Modifier: Variables or Methods That Exist Independently of
Instances
As you have seen already, the static keyword can be used in conjunction with the final keyword to
create a constant. The static keyword is used to create Java constructs (methods or variables) that exist
independently or “outside of” any object instances that are created using the class that static variables or
static methods are defined in. A static variable in a class will force all instances of the class to share the
data in that variable. In other programming languages, this is generally referred to as a global variable, one
everything created by the code can access and share.

Similarly, a static method will also exist outside of instanced objects for that class and will be shared
by all of those objects. A static method will not reference variables “outside of” itself, such as an instanced
object’s variables.

Generally, the static method will reference its local, or static, variables and constants from its declaring
class and will also take in variables using that method’s parameter list. It will then provide processing or
computation based on those parameters, as well as using the method’s own static or local constants or
variables, and programming logic.

http://dx.doi.org/10.1007/978-1-4842-0973-8_7
http://dx.doi.org/10.1007/978-1-4842-0973-8_8

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

107

Since static is a concept that applies to instances of a class and is thus inherently at a lower level that
any class itself, a Java class would therefore not ever be declared using the static nonaccess control
modifier keyword.

Java Abstract Modifier: Classes or Methods to Be Extended or Implemented
The Java abstract modifier keyword has more to do with protecting your actual code than it has to do with
code that has been placed into memory (object instances and variables and so on) at run time. The abstract
keyword allows you to specify how the code will be utilized as a superclass, that is, how it is implemented in
a subclass once it is extended. For this reason, the abstract modifier keyword would only apply to classes and
methods and would not apply to data fields (variables and constants), as these data structures hold values
and are not code (programming logic) constructs.

A class that has been declared using the abstract modifier keyword cannot be instanced, and it is
intended to be used only as a superclass (blueprint) to create (extend) other classes. Since a final class
cannot be extended, you will not use the final and the abstract modifier keywords together, at a class level.
If a class contains any method that has been declared using the abstract modifier keyword, that class
must then itself be declared to be an abstract class. An abstract class does not have to contain any abstract
methods, however.

A method that has been declared using the abstract modifier keyword is a method that has been
declared for use in subclasses but that has no current implementation. This means it will have zero Java
code inside of its “method body,” which, as you know, is delineated in Java by using the curly braces. Any
subclass that extends an abstract class must implement all of these abstract methods, unless that subclass
is also subsequently declared to be abstract, in which case the abstract method is passed down to the next
subclass level to eventually be implemented.

Java Volatile Modifier: Advanced Multithreading Control Over Your Data Fields
The Java volatile modifier keyword is used when you are developing multithreaded applications, which
you are not going to be doing for Java 9 game development, as you want to optimize your game well enough
so that it only uses the JavaFX threads. What the volatile modifier does is to tell the Java Virtual Machine
(JVM) that is running your application to merge the private (that thread’s) copy of the data field (variable or
constant) that has been declared as volatile with the master copy of that variable in system memory.

Volatility is associated with the property of visibility to the running app. When a variable is declared
volatile, a write will affect the main memory copy of a variable so that any thread running on any CPU or
core will observe the change. When a variable is not declared to be volatile, that write is made to a cached
copy, so only the thread making that change will be able to observe that change. Only use volatile when it’s
absolutely necessary for your Java 9 game.

This is similar to the static modifier keyword, with the difference that a static variable (data field) is
shared by more than one object instance, whereas a volatile data field (variable or constant) is shared by
more than one thread.

Java Synchronized Modifier: Advanced Multithreading Control Over Methods
The Java synchronized modifier keyword is also used when you’re developing multithreaded applications,
which we are not going to be doing for your Java 9 game development engine in this particular book. What
the synchronized modifier does is to tell the Java Virtual Machine (JVM) that is running your application
that the method that has been declared as synchronized can be accessed by only one thread at a time.
This concept is similar to the concept of synchronized in database access, so you don’t have data record
access collisions. A synchronized modifier keyword thus also prevents these collisions between threads

www.ebook3000.com

http://www.ebook3000.org

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

108

accessing your method (in system memory) by “serializing” the access to one at a time so simultaneous
access (collision) of a method in memory by multiple threads can never occur. The synchronized keyword is
associated with the properties of visibility and mutual exclusion for the running app. Many multithreading
scenarios do not require mutual exclusion, only visibility, and therefore using a synchronized keyword
instead of a volatile keyword in those situations would be considered overkill (the opposite of optimization).

Now that we have covered primary Java constructs (classes, methods, and fields) and basic modifier
(public, private, protected, static, final, abstract, etc.) keywords, let’s journey inside of the curly braces: { }
now, learning about the tools that are used to create the Java programming logic that will eventually define
your pro Java 9 gameplay.

Java Data Types: Defining Data Types in Applications
Since we have already covered variables and constants, you have encountered a few of the Java data types
already. Let’s get into that topic next, as it’s not too advanced for our current progression from easy-to-
comprehend to more difficult topics! There are two primary data type classifications in Java: primitive
data types, which are the ones that you are probably the most familiar with if you have used different
programming languages, and reference (object) data types, which you are probably familiar with if you
have used another Object-Oriented Programming language, such as LISP, Python, Objective-C, Ruby,
Groovy, Modula, Object COBOL, ColdFusion, C++, and C# (C Sharp and .NET).

Primitive Data Types: Character, Numbers, and Boolean
There are eight primitive data types in the Java programming language, as shown in Table 5-1. We will be
using these during the book to create our JavaFXGame i3D Java 9 game, so I am not going to go into a high
level of detail regarding each one of these now, except to say that boolean data is usually used in games
to hold “flags” or “switches” (on/off), char data is usually used to contain Unicode characters or is used to
create more complex String objects (which are essentially are an array of char), and the rest are used to hold
numeric values of different sizes and resolutions. Integer values hold whole numbers, while a floating-point
value holds fractional (decimal point value) numbers.

It’s important to use the right numeric data type for a variable’s “scope” or range of use, because as you
can see in Table 5-1, large numeric data types can use up to eight times more memory than the smaller ones.
Notice that a Boolean data value can be 64 times smaller than a long or double numeric value, so designing
your Java 9 games to utilize lots of Boolean values can be an incredible memory optimization technique.
Don’t use any more numeric value resolution than you absolutely need to accomplish your game processing
objective, as memory is a valuable resource.

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

109

Next, let’s take a look at reference data types, which are termed this because they reference more
complex data structures in memory, such as objects and arrays, both of which contain far more complex
data structures that will either hold complex data and method substructures (objects) or will hold more
extensive lists of data (arrays). I will logically cover Java operators, which “operate” on these Java data
structures, in the section right after data types.

Reference Data Types: Objects and Arrays
Object-Oriented Programming (OOP) languages also have reference data types, which provide a reference
in memory to another structure containing a more complex data structure, such as an object or an array.
These more complex data structures are created using code. In the case of Java, this is a class. There are
Java Array classes of one type or another that create arrays of data (like simple databases), as well as the
constructor method in any Java class, even custom classes that you create, which can create the object
structure in memory, which can contain both Java code (methods) as well as data (fields).

Since a reference data type is a reference to a memory location, the default value is always null, which
will signify that the object has not been created yet, as there is no reference in place. Since there are different
Array and DataSet classes, arrays are also reference objects, but since they are created by class constructor
methods, they are actually objects. The bottom line is that reference data types are created using classes and
are always an object of one type or another, which is referenced in memory. Usually this reference is static
and/or final so that the memory location is fixed and memory use is therefore optimized. Next, let’s take a
look at Java operators that are utilized to operate on (that is, perform operations on or with) the different Java
data types that we have just covered.

Java Operators: Manipulating Data in the Application
In this section we are going to cover some of the most often used operators in the Java programming
language, especially the ones that are the most useful for programming games. These include the arithmetic
operators, used for mathematical expressions; the relational operators, used to ascertain relationships
(equal, not equal, greater than, less than, etc.) between data values; the logical operators, used for boolean

Table 5-1. Primitive Data Types in Java 9 Along with Their Default Values, Size in Memory, Definition, and
Numeric Range

DataType Default Binary Size Definition Range

boolean false 1 bit (or 8 in 1 byte) A true or false value 0 to 1 (false or true)

char \u0000 16 bit A Unicode character \u0000 to \uFFFF

byte 0 8 bit A signed integer value -128 to 127 (256 total values)

short 0 16 bit A signed integer value -32768 to 32767 (65,536 total
values)

int 0 32 bit A signed integer value -2147483648 to 2147483647

long 0 64 bit A signed integer value -9223372036854775808 to
9223372036854775807

float 0.0 32 bit IEEE 754 floating-point value ±1.4E-45 to ±3.4028235E+38

double 0.0 64 bit IEEE 754 floating-point value ±4.9E-324 to
±1.7976931348623157E+308

www.ebook3000.com

http://www.ebook3000.org

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

110

logic; the assignment operators, which do the arithmetic operations and assign the value to another variable
in one compact operation (operator); and the conditional operator, also known as a ternary operator, which
assigns a value to a variable based upon the outcome of a true or false (boolean) evaluation.

There are also the conceptually more advanced bitwise operators, used to perform operations at the
binary data (zeroes and ones) level, the application of which is beyond the scope of the book. The use
of binary data is not as common in JavaFX game programming as these other more mainstream types of
operators, each of which you will be using during this book to accomplish various programming objectives
in your pro Java games and IoT application logic.

Java Arithmetic Operators: Basic Mathematics
The Java arithmetic operators are the most commonly used operators in pro Java game programming,
especially in dynamic action-type games, where things are moving on the screen by a precise, highly
controlled number of pixels. Don’t underestimate simple arithmetic operators, as in the framework of a OOP
language. Far more complex mathematical equations can be created using Java structures, such as methods,
that leverage these basic arithmetic operators using the other powerful tools that Java offers, which we are
reviewing (learning about) during this chapter.

The only arithmetic operators, shown in Table 5-2, that you might not be that familiar with are the
Modulus operator, which will return the remainder (what is left over) after a divide operation is completed;
and the Increment or Decrement operator, which adds or subtracts one, respectively, from a value. These
operators are sometimes used to implement your counter logic. Counters (using increment and decrement
operators) were originally used for loops, which we will be covering in the next section; however, increment
and decrement operators are also extremely useful in game design as well, for point scoring, life-span loss,
game piece movement, and similar linear numeric progressions.

Table 5-2. Java Arithmetic Operators, Their Operation Type, and a Description of That Arithmetic Operation

Operator Operation Description

Plus + Addition Operation adds the operands on either side of the operator

Minus - Subtraction Operation subtracts the right operand from the left operand

Multiply * Multiplication Operation multiplies the operands on both sides of the operator

Divide / Division Operation divides the left operand by the right operand

Modulus % Remainder Operation divides the left operand by the right operand, returning
the remainder

Increment ++ Adding One Increment operation will increase the value of the operand by one

Decrement -- Subtract One Decrement operation will decrease the value of the operand by one

To implement the arithmetic operators, place the data field (variable) that you want to receive the
results of the arithmetic operation on the left side of your equals assignment operator (we will cover
assignment operators during this section of the chapter as well) and the variables that you want to perform
arithmetic operations on the right side of the equals sign. Here’s an example of adding an X and a Y variable
and assigning the result to a z variable:

Z = X + Y; // Using the Addition Operator

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

111

If you wanted to subtract Y from X, you would use a minus sign rather than a plus sign, and if you
wanted to multiply the X and Y values, you would use an asterisk character, rather than a plus sign. If you
wanted to divide X by Y, you would use a forward slash character, instead of using a plus sign. If you wanted
to find the remainder of divide X by Y, you would use a percentage sign character. Here is how these basic
arithmetic operations would look in code:

Z = X - Y; // Subtraction Operator
Z = X * Y; // Multiplication Operator
Z = X / Y; // Division Operator
Z = X % Y; // Modulus Operator

You should be careful if your Java code involves division by zero (0). Dividing an integer by 0 will result
in an ArithmeticException. Dividing a floating-point value by 0 will result in +Infinity, -Infinity, or NaN. In
game development environments, it is possible that you might encounter this scenario, and you will have to
redesign your programming logic to make sure that these scenarios do not interfere with your gameplay.

You will be using these arithmetic operators quite a bit during this book, so you will get some great
practice with these before you’re done with your game! Let’s take a closer look at relational operators next, as
sometimes you will want to compare values rather than calculating values precisely.

Java Relational Operators: Making Comparisons
The Java relational operators can be used to make logical comparisons between two variables or between
a variable and a constant, in some circumstances. These should also be familiar to you from junior high
school, and they include equals, not equal, greater than, less than, greater than or equal to, and less than or
equal to. The greater than uses the open end of the arrow (chevron) since the open span is greater than the
closed span, and the less than uses the closed end of the arrow (chevron) since the closed span is less than
the open span. This is a great way to look at this visually; when you do, you can immediately see that in the
relational operator X > Y, X is (on the) greater than (side of) Y. In Java, the equal to relational operator uses
two equals signs, side by side, between the data fields being compared and uses an exclamation point
before an equals sign is used to denote not equal, as you can see in Table 5-3, which shows the relational
operators along with an example and a description of each.

Table 5-3. Java Relational Operators, an Example Where A=10 and B=20, and a Description of the Relational
Operation

Operator Example Description

== (A == B) not true Comparison of two operands: if they are equal, then the condition
equates to true

!= (A != B) is true Comparison of two operands: if they are not equal, the condition
equates to true

> (A > B) not true Comparison of two operands: if left operand is greater than right
operand, equates to true

< (A < B) is true Comparison of two operands: if left operand is less than right
operand, equates to true

>= (A >= B) not true Compare two operands: if left operand is greater or equal to right
operand equates to true

<= (A <= B) is true Compare two operands: if left operand less than or equal to right
operand, equates to true

www.ebook3000.com

http://www.ebook3000.org

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

112

The greater-than symbol is the right-facing arrowhead, and the less-than symbol is a left-facing
arrowhead. These are used before the equals sign to create greater than or equal to and less than or equal to
relational operators, respectively, as you can see at the bottom of Table 5-3.

These relational operators return a boolean value of true or false. As such, they are also used in control
(loop) structures in Java quite a bit and are used in gameplay programming logic as well to control the path
(result) that the gameplay will take. For instance, let’s say you want to determine where the left edge of the
game board is so that the GamePiece 3D object does not fall right off of the board when it is being moved to
the left. Use this relational comparison:

boolean gameBoardEdge = false; // boolean variable gameBoardEdge initialized to be
false
gameBoardEdge = (GamePieceX <= 0); // boolean gameBoardEdge set to TRUE if left side
reached

Notice that I have used <= less than or equal to (yes, Java supports negative numbers too), so that if the
GamePiece has gone past the (x=0) left side of the screen, the gameBoardEdge boolean flag will be set to
the value of true, and the game movement programming logic can deal with the situation by changing the
direction of movement (so GamePiece does not fall off GameBoard) or stopping its movement entirely
(so the GamePiece stops at the edge).

You will be getting a lot of exposure to these relational operators during this book as they are quite
useful in creating gameplay logic, so we are going to be having a lot of fun with these soon enough. Let’s take
a look at logical operators next so we can work with Boolean sets and compare things in groups, which is
also important for gaming.

Java Logical Operators: Processing Groups and Opposites
The Java logical operators are somewhat similar to the Boolean operations (union, intersection, etc.) in that
they compare Boolean values to each other and then make decisions based upon these comparisons. Java
logical operators will allow you to determine whether two Boolean variables hold the same value, which is
called an AND operation, or whether one of the Boolean variables is different from the other, which is called
an OR operation. There is also a third logical operator called the NOT operator, which will reverse the value
of any of your compared boolean operands, or even reverse the value of a boolean operand that is not being
compared, if you simply want to flip a switch or reverse a boolean flag in your gameplay programming logic.
As you may have guessed, the AND operator uses two of the AND symbols, like this: &&. The OR operator
uses two vertical bars, like this: ||. The NOT operator uses the exclamation point, like this: !. So, if I were to say
I was not joking, I would write !JOKING (hey, that would be a great programmer’s T-shirt). Table 5-4 shows
Java logical operators, with an example of each, along with a brief description.

Table 5-4. Java Logical Operators, an Example Where A=true and B=false, and a Description of the Logical
Operation

Operator Example Description:

&& (A && B) is false A logical AND operator equates to true when BOTH of the operands
hold the true value.

|| (A || B) is true A logical OR operator equates to true when EITHER of the operands
hold the true value.

! !(A && B) is true A logical NOT operator reverses the logical state of the operator (or set)
it is applied to.

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

113

Let’s use logical operators to enhance the game logic example I used in the previous section to ascertain
whether a player has fallen off of the game board (moved beyond the edge) while they are moving the game
piece (that is, while it is their turn).

The modified code for doing this will include a logical AND operator, which will set the fellOffBoard
boolean variable to a value of true, if gameBoardEdge = true AND turnActive = true. The Java code to
ascertain this will look like the following Java statements:

boolean gameBoardEdge = false; // boolean variable gameBoardEdge is initialized to be false
gameBoardEdge = (GamePieceX < 0); // boolean gameBoardEdge set TRUE if past (before) left side
fellOffBoard = (gameBoardEdge && turnActive) // It's your turn, but you fell off the left edge!

Now you have a little practice declaring and initializing variables and using relational and logical
operators to determine the turn, boundary, and location of your game pieces. Next, let’s take a look at Java
assignment operators.

Java Assignment Operators: Assigning a Result to a Variable
The Java assignment operators assign a value from a logic construct on the right side of the assignment
operator to a variable on the left side of the assignment operator. The most common assignment operator is
also the most commonly used operator in the Java programming language, the equals operator. The equals
operator can be prefixed with any of the arithmetic operators to create an assignment operator that also
performs an arithmetic operation, as shown in Table 5-5. This allows a “denser” programming statement to
be created when the variable itself is going to be part of the equation. Thus, instead of having to write
C = C + A;, you can simply use C+=A; and achieve the same end result. We’ll be using this assignment
operator shortcut often during our game logic design.

Table 5-5. Java Assignment Operators, What That Assignment Is Equal to in Code, and a Description of the
Operator

Operator Example Description

= C=A+B Basic assignment operator: assign value from right-side operands
to left-side operand

+= C+=A equals C=C+A ADD assignment operator: add right operand to left operand; put
result in left operand

-= C-=A equals C=C-A SUB assignment operator: subtract right operand from left
operand; put result in left operand

= C=A equals C=C*A MULT assignment: multiply right operand and left operand; put
result in left operand

/= C/=A equals C=C/A DIV assignment operator: divide left operand with right operand;
result in left operand

%= C%=A equals C=C%A MOD assignment: divide left operand with right operand; put
remainder in left operand

Finally, we’re going to take a look at conditional operators, which also allow us to code powerful
game logic.

www.ebook3000.com

http://www.ebook3000.org

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

114

Java Conditional Operator: Set One Value If True, Another If False
The Java language also has a conditional operator that can evaluate a condition and make a variable
assignment based upon the resolution of that condition for you, using only one compact programming
construct. The generic Java programming statement format for a conditional operator always takes the
following basic format:

Variable = (evaluated expression) ? Set this value if TRUE : Set this value if FALSE ;

So, on the left side of the equals sign, you have the variable that is going to change (going to be set)
based on what is on the right side of the equals sign, which conforms to what you have learned during this
section thus far.

On the right side of the equals sign, you have an evaluated expression. For instance, “x is equal to
three,” and then you have the question mark character. After that you have two numeric values that are
separated from each other using the colon character, and finally, the conditional operator statement is
terminated using the semicolon. If you wanted to set a variable y to the value of 25 if x was equal to 3 and
otherwise set its value to 10 if x was not equal to 3, you would write that conditional operator programming
statement by using the following Java programming logic:

y = (x == 3) ? 25 : 10 ;

It is important to note that the data types of the expression after the ? and after the : must agree with
the type of data variable on the other side of the equals operator. As an example, you cannot specify the
following:

int x = (y > z) ? "abc" : 20;

Next we’re going to look at Java logic control structures that leverage the operators you just learned
about.

Java Conditional Control: Loops or Decision Making
As you have just seen, many of the Java operators, especially the conditional operator, can have a fairly
complex program logic structure and provide a ton of processing power using very few characters of Java
programming code. Java also has several more complicated conditional control structures, which can make
decisions automatically for you or automatically perform repetitive tasks for you once you have set up the
conditions for Java to make those decisions. You can also carry out those task repetitions by coding what is
popularly called a Java logic control structure.

In this section of the chapter, we will first take a look at decision-making control structures, such as the
Java Switch-Case structure and the If-Then-Else structure, and then we will take a look at Java’s looping
control structures, including the For, While, and Do-While iterative (looping) control structures.

Decision-Making Control Structures: Switch - Case and If - Else
Some of the most powerful Java logic control structures, especially when it comes to pro Java games
development, are those that allow you to define gameplay decisions that you want your gameplay program
logic to make for you as your game application is running. One of these, called a switch, provides a case-by-
case “flat” decision matrix, and the other, called an if-else, provides a cascading decision tree, evaluating “if
this, do this, if not, else do this, if not, else do this, if none of these, else do this.” Both of these can be used to

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

115

create a type of evaluation structure where things are evaluated in precisely the order and in the fashion that
you want them to be evaluated.

Let’s start by looking at the Java switch statement, which uses the Java switch keyword and an
expression at the top of this decision tree. Inside of the decision tree the switch construct uses a Java case
keyword to provide Java statement blocks for each outcome for the switch statement expression’s evaluation.
If none of these cases inside the switch statement’s structure (that is, inside the curly {} braces) is used by the
expression evaluation, you can provide a Java default keyword and a Java statement code block for what you
want done if none of these cases is invoked.

The general format for your switch-case decision tree programming construct would look like the
following:

switch(expression) {
 case value1 :
 programming statement one;
 programming statement two;
 break;
 case value2 :
 programming statement one;
 programming statement two;
 break;
 default :
 programming statement one;
 programming statement two;
}

The variable used in case statements can be one of five Java data types: char (character), byte, short,
string, or int (integer). You will generally want to provide the Java break keyword, at the end of each of your
case statement code blocks, at least in the use case where the values being switched between need to be
“exclusive” and only one is viable (or permissible) for each invocation of the switch statement.

The default statement does not need to use any break keyword.
If you do not provide a Java break keyword in each of your case logic blocks, more than one case

statement can be evaluated, in the same pass, through your switch statement. This would be done as your
expression evaluation tree progresses from top (the first case code block) to bottom (last case code block or
default keyword code block).

The significance of this is that you can create some fairly complex decision trees based upon case
statement evaluation order and whether you put the break keyword at the end of any given case statement’s
code block.

Let’s say you want to have a decision in your game as to what GamePiece moving animation is called
when the GamePiece is moved (walk, jump, dance, etc.). The GamePiece animation routine (method) would
be called based on what the GamePiece is doing when he (or she) is moved, such as Walking (W), Jumping
(J), Dancing (D), or Idle (I). Let’s say these “states” are held in the data field called gpState of type char that
holds a single character. Your switch-case code construct for using these game piece state indicators to call a
correct method, once a turn has been taken, and movement needs to occur. This should look something like
the following Java pseudocode (prototyping code):

switch(gpState) { // Evaluate gpState char, execute case code blocks accordingly
 case 'W' :
 gamePieceWalking(); // Java method controlling Walk sequence if GamePiece is walking
 break;
 case 'J' :
 gamePieceJumping(); // Java method controlling Jump sequence if GamePiece is jumping
 break;

www.ebook3000.com

http://www.ebook3000.org

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

116

 case 'D' :
 gamePieceDancing(); // Java method controlling Dance sequence if GamePiece is dancing
 break;
 default :
 gamePieceIdle(); // Java method controlling processing if a GamePiece is idle

This switch-case logic construct evaluates the gpState char variable, inside of the evaluation portion of
the switch() statement (notice that this uses a Java method structure), and then provides a case logic block
for each of the game piece states of Walking, Jumping, and Dancing. It also implements a default logic block
for the Idle state. This is the most logical way to set this up because the game piece is usually idle unless it is
that user’s turn.

Since a game piece cannot be Idle, Walking, Running, and Dancing at the same time, I need to use the
break keyword to make each of the branches of this decision tree unique (mutually exclusive) to the other
branches (states).

The switch-case decision-making construct is generally considered to be more efficient and faster than
the if-else decision-making structure, which can use just the if keyword for simple evaluations, which would
look like this:

if(expression == true) {
 programming statement one;
 programming statement two;
}

You can also add an else keyword to make this decision-making structure evaluate statements that
would need to execute if the boolean variable (true or false condition) evaluates to false rather than true,
which makes this structure more powerful (and useful). This general programming construct would then
look like the following:

if(expression == true) {
 programming statement one;
 programming statement two;
} else { // Execute this code block if (expression == false)
 programming statement one;
 programming statement two;
}

You can also nest if-else structures, thereby creating if-{else if}-{else if}-else{} structures. If these
structures get nested too deeply, then you would want to switch, no pun intended, over to using the switch-
case structure. This structure will become more and more efficient, relative to the nested if-case structure,
the deeper your if-else nesting goes. Here’s an example of how the switch-case statement that I coded
earlier for the BoardGame game could translate into a nested if-else decision-making construct in a Java
programming structure:

if(gpState = 'W') {
 gamePieceWalking();
} else if(gpState = 'J') {
 gamePieceJumping();
 } else if(gpState = 'D') {
 gamePieceDancing();
 } else {
 gamePieceIdle();
 }

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

117

As you can see, this if-else decision tree structure is quite similar to the switch-case that we created
earlier, except that the decision code structures are nested inside of each other, rather than contained
in a “flat” structure. As a general rule of thumb, I would use an if, and the if-else, for one- and two-value
evaluations, and I would use a switch-case for three-or-more-value evaluation scenarios. I use a switch-case
structure extensively in my books covering Android, such as Android Apps for Absolute Beginners (Apress,
2017) and Pro Android Wearables (Apress, 2015).

Next, let’s take a look at the other types of conditional control structures that are used extensively in
Java, the “looping” or iterative programming structures. These iterative conditional structures will allow you
to execute any block of programming statements a predefined number of times by using the for loop or until
the Java programming objective has been achieved by using either the while or do-while loop.

As you might imagine, these iterative control structures can be extremely useful for your game control
logic.

Looping Control Structures: While, Do - While, and the For Loop
Whereas the decision tree type of control structure is traversed a fixed number of times (once all the way
through, unless a break [switch-case], or resolved expression [if-else], is encountered), a looping control
structure keeps executing over time, which for the while and do-while structures makes them a bit
dangerous as an infinite loop could be generated if you are not careful with your programming logic! The
for loop structure executes for a finite number of loops specified in the definition of the loop, as we will see
during this section of the chapter.

Let’s start with the finite loop and cover the for loop first. A Java for loop uses the following general
format:

for(initialization; boolean expression; update equation) {
 programming statement one;
 programming statement two;
}

The three parts of the evaluation area for the for loop, inside the parentheses, are separated
by semicolons, and each contains a programming construct. The first is a variable declaration and
initialization, the second is a Boolean expression evaluation, and the third is an update equation showing
how to increment the loop during each pass.

If you wanted to move the GamePiece 40 pixels diagonally on the board, your for loop would be as
follows:

for (int x; x < 40; x = x + 1) { // Note: the x = x + 1 statement could also be coded as x++
 gamePieceX++; // Note: gamePieceX++ could be coded gamePieceX = gamePieceX + 1;
 gamePieceY++; // Note: gamePieceY++ could be coded gamePieceY = gamePieceY + 1;
}

The while (or do-while) type of loop, on the other hand, does not execute over a finite number of
processing cycles but rather executes the statements inside of the loop until a condition is met, using the
following structure:

while (boolean expression) {
 programming statement one;
 programming statement two;
 expression incrementation;
}

www.ebook3000.com

http://www.ebook3000.org

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

118

Coding your for loop that moves the GamePiece 40 pixels, using a while loop structure, would look
like this:

int x = 0;
while(x < 40) {
 invinciBagelX++;
 invinciBagelY++;
 x++;
}

The only difference between a do-while loop and a while loop is that in a do-while loop the loop logic
programming statements are performed before the evaluation, instead of after the evaluation, as they are in
the while loop. Thus, the previous example would be written with a do-while loop programming structure
that has a Java programming logic structure inside of curly braces, after the Java do keyword, with the while
statement after the closing brace, coded as follows:

int x = 0;
do {
 invinciBagelX++;
 invinciBagelY++;
 x++;
 }
while(x < 40);

You should also take notice that for the do {…} while(…); construct, the while evaluation statement
(and thus the entire do-while programming construct) needs to be finished with a semicolon, whereas the
while(…){…} structure does not.

If you wanted to make sure that the programming logic inside of the while loop structure is at the very
least performed one time, use the do-while, as the evaluation is performed after the loop logic is executed.
If you wanted to make sure that the logic inside of the loop is executed only after, or whenever, the evaluation
is successful (which is the safer way to code things), use the while loop structure.

Java Objects: Virtualizing Reality Using OOP in Java
The reason I saved the best for last, Java Objects, is because they can be constructed in one fashion or
another using all of the concepts that I have covered thus far in the chapter and because they are the
foundation of the Object-Oriented Programming (OOP) language, in this case, Java 7, 8, and 9. Everything in
the Java programming language is based on the Java language’s Object superclass (I like to call it the master
class), which is in the java.lang package, so an import statement for it would reference java.lang.Object,
which is the full pathname to the Java Object class. All other Java classes are created, or rather, subclassed
using this class because everything in Java is an Object.

Note that your Java compiler automatically imports this java.lang package for you! Java objects are
used to “virtualize” reality by allowing objects you see around you in everyday life (or, in the case of your
game, objects that you are creating out of your imagination) to be realistically simulated. This is done
by using data fields (variables and constants) and the methods that you’ve been learning about during
this chapter. These Java programming constructs will make up the object characteristics or attributes
(constants), states (variables), and behaviors (methods).

The Java class construct will organize each object definition (constants, variables, and methods) and
will give birth to an instance of that object. It does this by using the constructor method for the class, which
designs and defines your object, and by using the various Java keywords and programming constructs that

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

119

you have learned about during this chapter. In this section I will give you an idea as to how this can be done,
and I think you will find it very interesting if you are new to Java 9.

One way to think about Java objects is like they are nouns, that is, things (objects) that exist in and of
themselves! The object behaviors, created using methods, are like verbs, that is, things that the nouns can do.
As an example, let’s consider that very popular object in all of our lives: the car. We could very well add this
car to our board game as one of the GamePieces or as another component of the board game altogether.

Let’s define the Car object attributes next. Some characteristics, or attributes, that do not change and
are held in constants could be defined as follows:

•	 Color (Candy Apple Red)

•	 Engine type (gas, diesel, hydrogen, propane, or electric)

•	 Drivetrain type (2WD or 4WD)

Some states that change, define the car in real time, and are held in variables could be defined as follows:

•	 Direction (N, S, E, or W)

•	 Speed (15 miles per hour)

•	 Gear setting (1, 2, 3, 4, or 5)

The following are some things that a car should be able do, that is, the car’s behaviors, defined as methods:

•	 Accelerate

•	 Shift gears

•	 Apply the brake

•	 Turn the wheels

•	 Turn on the stereo

•	 Use the headlights

•	 Use the turn signals

You get the idea. Now stop daydreaming about your new GamePiece, and let’s get back down to
learning about Objects!

Figure 5-3 shows the Java object structure, using this car as an example. It shows the characteristics, or
attributes, of the car that are central to defining the Car object and the behaviors that can be used with the
Car object.

www.ebook3000.com

http://www.ebook3000.org

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

120

These attributes and behaviors will serve to define a car to the outside world, just like your pro Java 9
game application objects will do for your Java 9 and JavaFX 9 game applications.

Objects can be as complicated as you want them to be, and Java objects can also nest, or contain, other
Java objects within their object structure or their object hierarchy. An object hierarchy is like a tree structure,
with a main trunk, branches, and then subbranches as you move up (or down) the tree structure, very
similar to a JavaFX or a 3D software Scene Graph, which you saw in Chapter 3 (on the right of Figure 3-4).

A good example of a hierarchy that you use every day would be the multilevel directory or folder
structure, which is on your computer’s hard disk drive.

Directories or folders on your hard drive will contain other directories or folders, which can, in turn,
contain yet other directories and folders, allowing complex hierarchies of organization to be created.

You’ll notice that, in real life, objects can be made up of other objects. For example, a car engine object
is made up of hundreds of discrete objects that function together to make the engine object work as a whole.

This same construction of more complicated objects out of simpler objects can be done in OOP
languages, where complex hierarchies of Java objects can contain other Java objects. Many of these Java
objects may have been created using preexisting or previously developed Java code, which is one of the
objectives of modular programming.

As an exercise, you should practice identifying different complex objects in the room around you and
then break their definition or description down into states (variable states or constant characteristics) as well
as behaviors (things that the objects can or will do) and object and subobject hierarchies.

This is a great exercise to perform because this is how you will eventually need to start thinking to
become more successful in your professional object-oriented game programming endeavors using the
JavaFX engine, inside of the larger Java programming language framework.

Coding the Object: Turning Your Object Design into Java Code
To illustrate this further, let’s construct a basic class for our Car object example. To create a Car class, you
use the Java keyword class, followed by your custom name for the new class that you are writing, and then
curly brackets that will contain your Java code class definition. The first things that you usually put inside

Figure 5-3. The anatomy of a car GamePiece object, with methods encapsulating variables or constants inside
a class

http://dx.doi.org/10.1007/978-1-4842-0973-8_3
http://dx.doi.org/10.1007/978-1-4842-0973-8_3#Fig4

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

121

of a class (inside the curly {} brackets) are the data fields (variables). These variables will hold the states,
or characteristics, of your Car object. In this case, you will have six data fields, which will define the car’s
current gear, current speed, current direction, fuel type, color, and drivetrain (two-wheel or four-wheel
drive), as specified earlier for this Car object. So, with six variables from Figure 5-3 in place, a Car class
definition will initially look something like this:

class Car {
 int speed = 15;
 int gear = 1;
 int drivetrain = 4;
 String direction = "N";
 String color = "Red";
 String fuel = "Gas";
}

Notice how the example spaces out the curly braces: { } on their own lines, as well as indenting certain
lines. This is done as a Java programming convention so that you can visualize the organization of the code
constructs that are contained within your Java class structure inside of those curly braces more easily and
more clearly, analogous to a “bird’s eye view” of your Java 9 code construct.

Since we specified a starting value using the equals sign for all of these variables, remember that these
variables will all contain this default or starting data value. These initial data values will be set (in the system
memory) as the Car object’s default values at construction since these are set as your class’s “starting”
variable data values.

The next part of your Java class definition file will contain your methods. Java methods will define how
your Car object will function, that is, how it will “operate” on the variables that you defined at the top of
the class that hold the Car object’s current “state of operation.” Method “calls” will invoke the variable state
changes, and methods can also “return” data values to the entity that “calls” or “invokes” the method, such
as data values that have been successfully changed or even the result of an equation.

For instance, there should be a method to allow you to shift gears by setting the object’s gear variable or
attribute to a different value. This method would be declared as void since it performs a function but does
not return any. In this Car class and Car object definition example, we will have four methods, as defined in
Figure 5-3.

The .shiftGears() method will set the Car object’s gear attribute to the newGear value that was passed
into the .shiftGears() method. You should allow an integer to be passed into this method to allow “user
error,” just as you would have when you are driving your car in the real world when a user might accidentally
shift from first to fourth gear.

void shiftGears (int newGear) {
 gear = newGear;
}

The .accelerateSpeed() method takes your object speed state variable and then adds your
acceleration factor to that speed variable, which will cause your object to accelerate. This is done by taking
your object’s current speed setting, or state, and adding an acceleration factor to it and then setting the result
of this addition operation back into the original speed variable so that the object’s speed state now contains
the new (accelerated) speed value.

void accelerateSpeed (int acceleration) {
 speed = speed + acceleration;
}

www.ebook3000.com

http://www.ebook3000.org

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

122

The .applyBrake() method takes the object’s speed state variable and subtracts a braking factor from
the current speed, which causes the object to decelerate, or to brake. This is done by taking the object’s
current speed setting and subtracting the brakingFactor from it and then setting the result of the subtraction
back to the original speed variable so that the object’s speed state now contains the updated (decelerated)
braking value.

void applyBrake (int brakingFactor) {
 speed = speed - brakingFactor;
}

The .turnWheel() method is straightforward, much like the .shiftGears() method, except that it uses a
String value of N, S, E, or W to control the direction that the car turns. When .turnWheel(“W”) is used, a Car
object will turn to the left. When .turnWheel(“E”) is used, the car will turn to the right, given, of course, that
the car object is currently heading to the north, which according to its default direction setting, it is.

void turnWheel (String newDirection) {
 direction = newDirection;
}

The methods that make a Car Object function go inside the class, after the variable declarations, as
follows:

class Car {
 int speed = 15;
 int gear = 1;
 int drivetrain = 4;
 String direction = "N";
 String color = "Red";
 String fuel = "Gas";

 void shiftGears (int newGear) {
 gear = newGear;
 }

 void accelerateSpeed (int acceleration) {
 speed = speed + acceleration;
 }

 void applyBrake (int brakingFactor) {
 speed = speed - brakingFactor;
 }

 void turnWheel (String newDirection) {
 direction = newDirection;
 }
}

This Car class will allow you to define a Car object, even if you don’t specifically include the Car()
constructor method, which we will cover next. This is why your variable settings will become your Car object
defaults. It is best to code your own constructor method, however, so that you take total control over your
object creation and so that you don’t have to pre-initialize your variables to one value or another. Therefore,

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

123

the first thing that you’ll want to do is to make the variable declarations undefined, removing the equal sign
and initial data values, as shown here:

class Car {
 String name;
 int speed;
 int gear;
 int drivetrain;
 String direction;
 String color;
 String fuel;
 public Car (String carName) {
 name = carName;
 speed = 15;
 gear = 1;
 drivetrain = 4;
 direction = "N";
 color = "Red";
 fuel = "Gas";
 }
}

Instead, the Car() constructor method itself will set data values as part of the construction and
configuration of the Car object. As you can see, I added a String name variable to hold the Car object’s name
(carName parameter).

A Java constructor method will differ from a regular Java method in a number of distinct ways. First
of all, it will not use any of the data return types, such as void and int, because it is used to create a Java
object rather than to perform a function. It does not return nothing (void keyword) or a number (int or float
keywords) but rather returns an object of type java.lang.Object. Note that every class that needs to create
a Java Object will feature a constructor with the same name as the class itself, so a constructor is the one
method type whose name can (and should always) start with a capital letter. As I mentioned, if you do not
code a constructor, the Java compiler will create one for you!

Another difference between constructor methods and any other method is that constructors need
to utilize the public access control modifier and can’t use any non-access-control modifiers. If you’re
wondering how to modify the previous Car() constructor method, say if you wanted to not only name your
Car object using the constructor method but also define its speed, direction, and color using an overloaded
Car() constructor method call, you might accomplish this more advanced objective by creating a longer
parameter list for your constructor by using this following code:

class Car {
 String name;
 int speed;
 int gear;
 int drivetrain;
 String direction;
 String color;
 String fuel;
 public Car (String carName, int carSpeed, String carDirection, String carColor) {
 name = carName;
 speed = carSpeed;
 gear = 1;

www.ebook3000.com

http://www.ebook3000.org

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

124

 drivetrain = 4;
 direction = carDirection;
 color = carColor;
 fuel = "Gas";
 }
}

It is important to note here that constructor methods can be declared without using the public
keyword, as long as the classes containing nonpublic constructors do not need to be instantiated from
beyond their packages. If you wanted to code one constructor invoking another constructor using this(), you
could do this as well. For example, Car() might execute the constructor method call this(“myCar”, 10, 1, 4,
“N”, “red”);, and this would be legal Java code.

To use the overloaded Car() class constructor and the Java new keyword to create a new Car object, you
would use like the following Java code:

Car carOne = new Car(); // Creates a Car object using default values
Car carTwo = new Car("Herbie", 25, "W", "Blue"); // Creates a customized Car object

The syntax for constructing an object is similar to declaring a variable but also uses the Java new
keyword:

•	 Define the object type Car.

•	 Give a name to the Car object (carOne, carTwo, etc.) that you can reference in the
class Java code.

•	 Use the default Car() constructor method to create your generic or default Car
object, or…

•	 Use an overloaded Car(name, speed, direction, color) constructor with different
value parameters.

Invoking the Car object methods using these Car objects requires the use of something called dot
notation, which is used to chain or reference Java constructs to each other. Once the Java object has been
declared, named, and instantiated, you can then call methods “off of it.” This would be done, for example,
using the following Java code:

 objectName.methodName(parameter list variable);

So, to shift to third gear, for the Car object named carOne, you would use this Java programming
statement:

carOne.shiftGears(3);

This “calls” or “invokes” the .shiftGears() method “off of” the carOne Car Object and “passes over” the
gear parameter, which contains an integer value of 3, which is then placed into the newGear variable, which
is utilized by the .shiftGears() method internal code to change a gear attribute of that Car object instance,
setting a new value of 3.

Java dot notation “connects” the Java method call to the Java object instance, which then invokes, or
“calls,” that method off of (or from or for) that Java object instance. If you think about it, how Java works is
logical and cool.

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

125

Extending a Java Object Structure: Java Inheritance
There is also support in Java for developing different types of enhanced classes (and therefore objects).
This is done by using an OOP technique called inheritance. Inheritance is where more specialized classes
(more uniquely defined objects) can be subclassed using the original superclass; in this case, it would be
Car. The inheritance process is shown in Figure 5-4. Once a class is used for inheritance by “subclassing” it,
it then becomes the superclass. Ultimately, there can be only one superclass at the very top of the chain, but
there can be an unlimited number of subclasses. All of the subclasses inherit the methods and fields from
the superclass. The ultimate example of this in Java is the java.lang.Object superclass (I sometimes call this
the master class), which is used to create all other classes in Java 9.

As an example of inheritance using the Car class, you could “subclass” the Suv class from the Car class,
using the Car class as the superclass. This is done using the Java extends keyword, which extends the Car
class definition, to create an Suv class definition. This Suv class will define only those additional attributes
(constants), states (variables), and behaviors (methods) that apply to an SUV type of Car object, in addition
to extending all attributes (constants), states (variables), and behaviors (methods) that apply to all types of
Car objects. This is the functionality that the Java extends keyword provides for this subclassing (inheritance)
operation, which is one of the more important and useful features for code modularization within the Java 9
OOP language. You can see this modularization visually in Figure 5-4, with additional Car features for each
subclass added in orange. This is a great way to organize your code!

The Suv Car object subclass might have additional .onStarCall() and .turnTowLightOn() methods
defined, in addition to inheriting the usual Car object operation methods, allowing the Car object to shift
gears, accelerate, apply the brakes, and turn the steering wheel.

Similarly, you might also generate a second subclass, called the Sport class, which creates Sport Car
objects. These might include an .activateOverdrive() method to provide faster gearing and maybe an
.openTop() method to put down the convertible roof. To create the subclass using a superclass, you extend

Figure 5-4. The inheritance of a Car object superclass will allow you to create an SUV Car object and a Sport
Car object

www.ebook3000.com

http://www.ebook3000.org

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

126

the subclass from the superclass by using a Java extends keyword inside of the class declaration. The Java
class construct would thus look just like this:

class Suv extends Car {
 void applyBrake (int brakingFactor) {
 super.applyBrake(brakingFactor);
 speed = speed - brakingFactor;
 }
}

This extends the Suv Object to have access to, essentially to contain, all of the data fields and methods
that the Car Object features. This allows the developer to only have to focus on the new, or different, data
fields and methods that relate to the differentiation of the Suv Object from the regular or “master” Car Object
definition.

To refer to one of the superclass’s methods from within the subclass that you are coding, you can use the
Java super keyword. For example, in the new Suv class you may want to use the Car superclass .applyBrake()
method and then apply some additional functionality to the brake that is specific to Suv. You call the
Car object’s .applyBrake() method by using super.applyBrake() in the Java code. The Java code shown
earlier will add additional functionality to the Car object’s .applyBrake() method, inside of the Suv Object
.applyBrake() method by using this super keyword to access the Car Object’s .applyBrake() method and then
add in additional logic to make the brakingFactor apply twice. This serves to give the Suv object twice the
braking power that a standard car would have, which an SUV would need.

The reason this Java code doubles the SUV’s braking power is because the Suv object’s .applyBrake()
method first calls the Car object’s .applyBrake() method from the Car superclass using a super.applyBrake
(brakingFactor); line of Java code in the Suv subclass’s .applyBrake() method. The line of Java code that
comes next increments the speed variable by applying brakingFactor a second time, making your SUV
object’s brakes twice as powerful.

The Java Interface: Defining the Class Usage Pattern
In many Java applications, Java classes must conform to a certain usage pattern. There is a specialized Java
construct that is called an interface that can be implemented so that application developers will know
exactly how to implement those Java classes, including alerting developers that methods are required for a
proper implementation of the class. Defining an interface will allow your class to inform other developers
using that class that behaviors (which Java methods) for your class must be implemented in order to
correctly utilize your Java class’s infrastructure.

Interfaces in essence prescribe a programming contract between the class and the rest of the
development community. By implementing a Java interface, a contract can be enforced at build time by the
Java compiler. If a class “claims” to implement a public interface, all of the methods that are “defined” by that
Java interface definition must appear in the source code for the class that implements that interface, before
that class will successfully compile.

Interfaces are especially useful when working within a complex, Java-based programming framework,
such as Android uses, that is utilized by developers who build applications on the Java classes that the
Google Android OS developer team members have written specifically for that purpose. A Java interface
should be used like a road map, showing developers how to best implement, and utilize, the Java code
structure that is provided by that Java class within another Java programming structure.

Basically, a Java interface guarantees that all methods in a given class will get implemented together
as an interworking, interdependent, collective programming structure, guaranteeing that any individual
function needed to implement that functional collective does not get inadvertently left out. This public
interface that a class “presents” to other developers who are using the Java language makes using that class

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

127

more predictable and allows developers to safely use that class in programming structures and objectives
where a class of that particular end-usage pattern is suitable for their implementation. As of Java 9 you can
also define private interfaces to be used internally to your app.

The following is an ICar interface, which forces all cars to implement all of the methods that are defined
in this interface. These methods must be implemented and exist even if they’re not utilized, that is, no code
exists inside the curly braces. This also guarantees that the rest of the Java application knows that each Car
object can perform all of these behaviors because implementing an ICar interface defines a public interface
for all Car objects. The way that you would implement the ICar public interface, for those methods that are
currently in your Car class, is as follows:

public interface ICar {
 void shiftGears (int newGear);
 void accelerateSpeed (int acceleration);
 void applyBrake (int brakingFactor);
 void turnWheel (String newDirection);
}

To implement an interface, you need to use the Java implements keyword, as follows, and then define
all of the methods exactly as you did before, except that the methods must now be declared using the public
access control modifier in addition to the void return data type. So, you will add the public keyword before
the void keyword, which will allow other Java classes to be able to call or invoke the methods, even if those
classes are in a different package. After all, this is a public interface, and any developer (or more accurately,
any class) should be able to access it. Here is how your Car class should implement this ICar interface by
using the Java implements keyword:

class Car implements ICar {
 String name = "Generic";
 int speed = 15;
 int gear = 1;
 int drivetrain = 4;
 String direction = "N";
 String color = "Red";
 String fuel = "Gas ";

 public void shiftGears (int newGear) {
 gear = newGear;
 }
 public void accelerateSpeed (int acceleration) {
 speed = speed + acceleration;
 }
 public void applyBrake (int brakingFactor) {
 speed = speed - brakingFactor;
 }
 public void turnWheel (String newDirection) {
 direction = newDirection;
 }
}

A Java interface cannot use any of the other Java access control modifier keywords, so it cannot be
declared as private (prior to Java 9) or protected. It’s important to note that only those methods declared in
an interface definition will need to be implemented. The data fields that I have at the top of the class definition

www.ebook3000.com

http://www.ebook3000.org

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

128

are optional. These are in this example to show it’s parallel to the Car class, which I declared earlier without
using an interface. There is not too much difference, other than using the implements keyword, except that
implementing an interface tells the Java compiler to check and make sure that all of the necessary methods
that make the Car class work properly are included by the developer.

What’s New in Java 9: Modularity and Project Jigsaw
You might be wondering why I am covering Java 9 and its new modules last, and there are a couple of
reasons for this, which I will explain first before we get into what is new in Java 9. None of what is new
in Java 9 affects your game code, which is great because you can write the same basic Java game code in
Java 6, Java 7, and Java 8; this means your game can go places that are not yet using Java 9 and probably
won’t be for a while. Since 32-bit Android uses Java 6 and 64-bit Android uses Java 7 (Android 5 and 6)
and Java 8 (Android 7, 8 and later), this means you can write game logic in Java that spans a decade worth
of platforms. Since Java 9 is a couple of years late in its release originally planned for the fourth quarter
of 2015, I had to develop the code for this book, which releases the same time as Java 9, using Java 8.
Fortunately, Project Jigsaw (Java 9’s primary feature) affects the modularity of the programming language
and not the code inside of the modules, which stays the same as Java 8 and JavaFX 8. So for the purposes of
what this book is about, writing Pro Java Game Logic, there is no significant change between Java 8 and Java
9. Whether or not a game is modularized using the Java 9 features does not affect performance (gameplay),
only its distribution, so I’m covering this modularity feature last during this chapter, as it is the least
important Java aspect regarding game performance.

I did want to include this coverage of modules in Java because as of Java 9 modules are now a core
feature, even though they only affect the packaging of a Pro Java Game and not how games are actually
coded and optimized for memory and processor usage.

The Definition of a Java 9 Module: A Collection of Packages
The defining feature of Java 9 is JEP 200 (Modular JDK), which stands for JDK Enhancement Proposal
200. This is an “umbrella” JEP over JEP 201 (Modular Source Code), JEP 220 (Modular RunTime), JEP 260
(Encapsulate APIs), and JEP 261 (Module System), which encapsulate what needs to be accomplished to
achieve a Modular JDK (JEP 200).

Currently, Java 8 and JavaFX 8.0 are like having two different programming languages in one. The first
thing that is therefore going to be modularized for Java 9 JDK is JavaFX 8 (now renamed JavaFX 9), and since
that is what you are going to be using to create games, we’ll get into that in detail in this section. If you are
an enterprise (business apps) Java 9 developer, this Java 9 module system will allow you to exclude all of the
“heavy” JavaFX API libraries, packages, classes, and so on. However, the knife also cuts the other way as well,
so if you are only going to be developing an i2D or i3D Java game, you will only need to declare and include
the javafx.graphics module, and your distribution package (module) for your game will not need to include
the plethora of other Java APIs that a game does not need, as it just focuses on graphics and event processing
(multimedia visuals on the screen and how they interact with the player).

A Java module contains a collection of Java packages, so Java modules add another hierarchical level
above the Java package-class-method-variable hierarchy that exists currently. A Java package can belong
to only one module, and you cannot split Java packages between modules. This makes your organization
of packages even more important both for your own game and for JavaFX, which has been organized into
packages and modules for you in Java 9. We will be learning about that later during this section of the
chapter.

Whereas Java packages allow you to organize by function, modules allow you to organize by features.
This allows data (and code) footprint optimization. For instance, we will not be using JavaFX Swing,
Standard UI Controls, FXML, or WebKit for our Pro Java 9 Game; thus, we will not need to include these code
modules in our distribution.

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

129

The Properties of Java Modules: Explicit, Automatic, or Unnamed
There are three ways to create Java modules: explicitly, implicitly, and anonymously. An Explicit Module
is created on purpose by the developer by specifying a module-info.java file that defines what other
modules and packages will be in the explicit module. The explicit module defines requires:inputs (needed
API packages) and exports:outputs (published packages). Exported packages are visible to the Java
environment and can thus be executed. Only requires (input or read packages) packages specified in the
module definition file can be accessed (utilized) by that module. I will show you the format for this definition
a bit later during this section of the chapter.

The Java 9 environment can also create an Implicit Module, which is also known as an Automatic
Module, if the developer has not supplied a module-info.java file and if it finds a JAR file on a module-path
that does not contain a module-info.java definition file, so the Java 9 environment automatically creates an
implicit module for the JAR file’s contents. In this case, it will automatically export all packages needed, require
(input or read) all modules needed, and include any unnamed modules as well, which we will cover next.

Finally, the Java 9 environment may also create an Unnamed Module by adding classes on a classpath
that are not in JAR files and do not have developer-supplied module-info.java files. This allows the Java 9
environment to accommodate older Java 6 through 8 projects by making them into Unnamed Modules so
that they will still function in the Java 9 environment even though they were created in earlier versions of
Java where module-info.java did not yet exist. An explicit module cannot require an unnamed module,
meaning developers of older versions of their Java software must create a module-info.java definition file to
bring their software into the Java 9 modularity realm.

If an application’s main classes are in the unnamed module, all default modules will be loaded to make
sure that the Java 9 application can function, and the benefits of modularity (data footprint reduction of the
distribution) will be lost. If you do optimally define a module-info.java file with the minimum packages
needed to run your Pro Java 9 Game, the javapackager utility will be able to produce a bundled application
for you with only the needed modules.

An Example of a Java 9 Module Hierarchy: JavaFX Modules
Since JavaFX was the first API that Oracle modularized and the native Java multimedia API that we will
need to use to create Pro Java 9 Games, it makes sense to use this as the example of how modules work,
which at the same time will show us how JavaFX is modularized and which JavaFX modules we could need
to “require” (input) for our own Java 9 module definition file. With Java 9 modules, JavaFX can be linked
directly into the JDK “image,” and there will be no need to reference an external JFXRT.JAR file. Third-party
JARs such as JFXSWT.JAR would become automatic modules. This JFXSWT.JAR will be renamed JAVAFX-
SWT.JAR for Java 9 so that when the automatic module derives its name, using the JAR file, it will become
JAVAFX.SWT.

The Java 9 Runtime Environment (JRE) contains seven JavaFX modules that you can “require” in your
own game module as needed. The fewer of these you require, the more optimized your data and memory
footprint would be for your game, and the more system resources will be available to your game processing
requirements.

Table 5-6 shows you the new JavaFX module hierarchy, which modules (base and graphics) are
required for any JavaFX usage, and which of the nonbase and nongraphics JavaFX modules require the other
JavaFX modules.

www.ebook3000.com

http://www.ebook3000.org

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

130

For example, javafx.web (the WebKit API WebEngine) will require javafx.controls (used for the UI
elements for the audio and video transport bar user interface element), javafx.media (audio or video
playback codec support), and javafx.graphics (application, stage, scene, geometry, image, shapes, canvas,
effects, text, and animation support).

Since modular applications need to list dependencies in that module-info.java file, let’s take a
look at how that would look for an application that uses the WebKit support API in JavaFX. Here’s the
module-info.java syntax:

module myWebKitApp.app { requires javafx.web; }

You might be wondering why you do not explicitly have to require those other modules that the
javafx.web module requires in the module-info.java file’s module myWebKitApp.app { … } module use
declaration, which one might suspect should look more like this:

module myWebKitApp.app {
 requires javafx.base;
 requires javafx.graphics;
 requires javafx.controls;
 requires javafx.media;
 requires javafx.web;
}

This is because modules required by modules further down the chain are imported (required)
automatically as part of the syntax. So, if we created a JavaFX game that did not use “canned” UI elements
(called controls in JavaFX) or WebKit, FXML, or Java Swing, we could get away with using just base, graphics,
and media modules.

Since the javafx.graphics module requires javafx.base and the javafx.media module requires javafx.
graphics, you can simply write the entire module declaration Java file in one line of code, which would look
like the following:

module ProJava9GamesDevelopment.app { requires javafx.media; }

Table 5-6. Seven Core JavaFX Modules Contained in the Java 9 Runtime Environment for Use in New Media
Applications

Module Name Required? Used For Required JavaFX 8 Modules

javafx.base Yes Events, Utilities, Beans, Collections None (this is a Foundational
JavaFX Library)

javafx.graphics Yes Stage, Images, Geometry, Animation javafx.base

javafx.controls No User Interface Controls Module javafx.graphics (require will
also import base)

javafx.media Yes Audio/Video MediaPlayer Module javafx.graphics

javafx.fxml No JavaFX Markup Language Module javafx.graphics

javafx.swing No Java Swing Compatibility Module javafx.graphics

javafx.web No WebKit Support Module javafx.controls, javafx.
media, javafx.graphics

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

131

Between these three JavaFX modules (base, graphics, and media) you have everything you need for
games in Java 9, as long as you make your own user interface element control graphics, which is standard
practice in games development. We’ll be taking a look at what packages, classes, and methods are contained
within these core modules over the course of the book. When I cover a given package and classes, I will let
you know what module it is a part of.

The Purpose of Java 9 Modules: Secure, Strong Encapsulation
One of the biggest complaints over the years has been that Java is not as secure as other platforms, and that
has prevented widespread use as a digital content distribution avenue. Like all the distribution formats
(Kindle, Android, HTML5, etc.), secure DRM is also needed and on the way next year, but internal security of
the API itself is also an issue that needs to be addressed in Java in particular, and as you’ll see in this section,
Java 9 Modules Strong Encapsulation rules will go a long way toward doing this by preventing access to the
Java internal API as well as private encapsulation.

Applications previous to Java 9 will have to be modularized to “lock them down” using the
module-info.java definition file discussed previously. Only explicitly exported packages will be visible;
the internal API used to create an application will not be visible (accessible) anymore. Attempting to
access any type in a package not explicitly exported will throw an error. Advanced programmers will not
be able to use reflection to call a .setAccessible() method to force access. For testing, there is currently a
command-line switch that will allow access to nonexported packages. This will be called --add-exports
and should be used only when absolutely necessary.

There is also increased security within exported packages because now only types declared using a
public access control modifier will be accessible. Attempting to access any type in an explicitly exported
package not declared using public access control throws an error. Programmers will not be able to use
reflection to call a .setAccessible() method to force access. For testing, there is currently a command-line
switch that will allow access to nonpublic types. As you might have guessed, this will be called --add-
exports-private and should be used only when absolutely necessary.

Strong encapsulation allows you to selectively support or expose only portions (modules) of the API. In
this case, we are using the JavaFX API, and I am going to show you how to create a robust i3D game in this
book using only the two core JavaFX packages (base and graphics) and the MediaPlayer (media) package,
along with highly optimized new media assets. We will not need to include the “heavy” WebKit (web), Swing
(swing), FXML (fxml), or UI (controls) packages, which will reduce the distribution file data footprint and
increase the security of this Pro Java 9 Game. Each module you access (require) will list its publicly exported
packages, and your public classes and methods will be part of the API.

Creating a Pro Java 9 Game Module: Using the Exports Keyword
Let’s continue looking at how to set up the Java 9 Game we will be creating using the JavaFX API by looking
at how we use the exports keyword to add your BoardGame package to the rest of the Java (JavaFX) APIs
we are going to be using to create the game. The JavaFX launcher will construct an instance of your
application subclass, which will be called BoardGame or something similar. You can see this in Figure 5-4
for the InvinciBagel i2D game created in Beginning Java 8 Games Development. You can export the package
that contains this Application subclass to the javafx.graphics module (which contains the majority of the
packages and classes that will comprise this game) using an exports keyword and package name and a to
keyword and module name. Here’s the Java code:

module BoardGame.app {
 requires javafx.media;
 exports boardgame.pkg to javafx.graphics;
}

www.ebook3000.com

http://www.ebook3000.org

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

132

It’s important to note that if you use FXML, which allows nonprogrammers to design the UI layouts, this
will require the javafx.fxml module, which needs the ability to access your private variables and methods.
This will require the exports private keyword string in your module-info.java declaration file, which would
then look like the following:

module BeginnerBoardGame.app {
 requires javafx.media;
 requires javafx.fxml;
 exports private beginnerboardgame.pkg to javafx.fxml;
}

We are not using FXML in this Pro Java 9 Games Development book because we will be doing everything
with Java and external new media content development applications, just like a professional Java 9 game
developer would. This will keep your application more secure and more compact because the library for
using FXML is massive in size and scope; the same goes for the library for using CSS, HTML5, and JavaScript
(javafx.web) as well as the libraries for using generic user interface control or widget collections
(javafx.swing and javafx.controls).

Resource Encapsulation: Further Module Security Measures
Java 9 modularity not only covers your Java code but also your application resources, which in the case of a
Java 9 game include audio, video, image, vector (SVG), and animation assets. As you probably know, security
can be breached through these file formats as easily as it can through text file formats. The only issue
preventing Java from taking off in web, e-mail, apps, e-books, or iTV sets is the security issue, and it looks like
Oracle is determined to fix this very soon. Another issue with Java has been the deployment of a huge Java
runtime and the many different versions of this runtime. The new module feature will allow developers to
optimize their distribution to only include needed Java components.

Resources are encapsulated using the java.lang.Class class, and resources can be retrieved using only
the Class.getResource() method. As of Java 9, there is no ClassLoader.getResource() method call access,
as there was in previous Java versions.

You cannot use URLs to access resources in a class anymore either, so /path/name/voiceover.mp3 will
no longer work. This again makes the Java 9 distribution more secure. Some of the other modules still allow
URL access, such as javafx.web and javafx.media; however, we are going to use captive (that is, internal
to your JAR) media assets, and we are not going to open up our game to the Internet by not requiring the
javafx.web (WebKit API) module. The package containing the resource must be accessible (exported) for
the resources to be “visible” and not hidden from public view. This is done via your exports boardgame.
pkg to javafx.graphics; line of code. Since javafx.media is also dependent on javafx.graphics, exports
boardgame.pkg to javafxmedia; should also work since your chain of module requirements goes from
javafx.media ➤ javafx.graphics ➤ javafx.base, as you can see in Table 5-6.

If you wanted to externalize your new media and design assets (which I never do, for my Android
and Java 9 development), there are several JavaFX APIs that will still take a URL object or a URL specified
using a String URL value. These include CSS (Cascading Style Sheets in javafx.web); FXML (JavaFX Markup
Language in javafx.fxml); image, audio, and video assets (javafx.media and javafx.graphics); and HTML and
JavaScript (WebKit WebEngine javafx.web).

Summary
In this fifth chapter we reviewed some of the more important concepts and structures found in the Java
programming language. Certainly I cannot cover everything about Java in one chapter, so I stuck with key
concepts, constructs, and keywords that you will be using to create a game during this book. Most Java books

Chapter 5 ■ a Java primer: introduCtion to Java ConCepts and prinCiples

133

are 1,000 pages or more, so if you want to get really deep into pure Java, I suggest the Pro Java Programming
book from Apress. Of course, we’ll be learning more about Java as we progress through this book, as well as
learning about the JavaFX 9.0 engine’s classes.

We started by taking a high-level view of Java by looking at the syntax of Java, including Java comments
and delimiters, and then we took a look at what Application Programming Interfaces (APIs) are. We also
learned about the Java packages that a Java API contains.

Next, we covered Java classes, including nested classes and inner classes, since these Java packages
contain Java classes. We learned that a Java class has a constructor method that can be used to instance
objects from a class.

The next level down in Java is the method, which is like the functions you are familiar with in many of
your other programming languages, and we looked at a required type of Java method called the constructor
method.

Next we took a look at how Java represents data using fields, or data fields, and we looked at the different
types of data fields such as constants (fixed data fields) and variables (or data fields that can change their
values).

After that, we took a closer look at Java access control modifier keywords, including public, private,
and protected access control keywords, and then we looked at the nonaccess modifier keywords, including
the final, static, abstract, volatile, and synchronized nonaccess control modifier keywords.

After we finished covering the basic code structures and how to modify them to do what we wanted
them to do, we looked at the primary Java data types, such as boolean, char, byte, int, float, short, long, and
double, and then we looked at the Java operators that are used to process or “bridge” these data types over
to our programming logic. We looked at arithmetic operators for use with numeric values, logical operators
for use with boolean values, relational operators to look at relationships between data values, conditional
operators to allow us to establish any conditional variable assignments, and assignment operators that
allow us to assign values to (or between) variables.

Next, we looked at Java logic control structures, including decision-making (I like to call them decision
trees) control structures and looping, or iterative logic control structures. We learned about the Java switch-
case structure, the if-else structure, the for loop structure, and the do-while loop structure.

Next, we looked at Java objects and learned how to define object attributes, states, and behaviors
using a Java class, methods, and constructor methods, and we looked at the Java OOP language concepts of
inheritance and the public Java interface and learned how to implement these using Java code.

Finally, we looked at Java modules, added in Java 9, and learned how to define module hierarchies
and module types using an example of how this was done for the JavaFX API, the first major Java API to
be modularized. We learned about the advantages of Java 9 modules and how this was a major step in
reworking the Java language to obtain the security level that the public has come to expect from the language
and that we’ve all been waiting for.

In the next chapter, we’re going to look at the NetBeans 9 integrated development environment (IDE)
and how to create the foundation (project and core APIs) for your game development during the rest of
this book.

www.ebook3000.com

http://www.ebook3000.org

135© Wallace Jackson 2017
W. Jackson, Pro Java 9 Games Development, https://doi.org/10.1007/978-1-4842-0973-8_6

CHAPTER 6

Setting Up Your Java 9 IDE:
An Introduction to NetBeans 9

Let’s get started here in Chapter 6 by learning about the important features and characteristics of the
NetBeans 9 Integrated Development Environment (IDE) since that is the primary piece of software that you
are going to be using to create your Pro Java 9 Games and IoT Applications. Even though the Java 9 JDK is
the foundation for your Pro Java 9 Games as well as for the NetBeans 9 IDE, we will start on our Java game
coding journey by learning about NetBeans, which is the “front end” (or window through which you look at
and work on) for your Java Game Projects.

NetBeans 9 is the official IDE for the Java 9 JDK, and as such, it is what you will be using for this book.
That is not to say you cannot use another IDE, such as Eclipse or IntelliJ, which are the official IDEs for 32-bit
Android 4.4 and for 64-bit Android Studio 3.0, respectively. I prefer to use NetBeans 9 for my new media
apps and game development for my Java 9 and JavaFX games and IoT application software development
programming paradigm.

This is not only because NetBeans 9 can integrate third-party plug-ins, such as the JavaFX Scene
Builder from Gluon, but because it is an HTML5+CSS4+JS IDE, and I usually create everything I design for
my clientele using Java 9, JavaFX, Android 4.4, and Android 8.0, using HTML5 as well. I do this so that the
content works across or on closed and proprietary operating systems and platforms, which will hitherto
remain unnamed. As most of you know, I prefer open (source) software and platforms, as you might have
observed as recently as during Chapter 1, as they are “inherently” open, free for commercial use, widely
available, supported by 99 percent of the major manufacturers, and do not require an approval process. or
that I publish applications for only one specific hardware platform or just one operating system.

It’s important to note that NetBeans 9 supports many other popular programming languages such
as C, C++, Groovy, and PHP, for instance. I use NetBeans 9 for HTML, CSS, and JavaScript web sites and
applications development, as NetBeans is rapidly moving to become a premiere Java, JavaFX, and HTML5
applications development environment.

The first thing we’ll do is take a look at what is new in NetBeans version 9. NetBeans 8.2 was released
in the fourth quarter of 2016, about a year and a half after Java 8 was released. This version number
synchronization is no coincidence, as NetBeans 8.0 was released right after Java 8, and NetBeans 9 will
probably be released right after Java 9 in the fourth quarter of 2017. We’ll look at why you’ll want to use
NetBeans 9, rather than an older version of NetBeans, during this chapter.

The next thing that we will do is take a look at the various attributes of the NetBeans 9 IDE that make it
an invaluable tool for Pro Java 9 Games Development. We will look at all the amazing features that it will be
providing to you during the course of this book; you will not be able to get hands-on experience with some
of these features during this chapter, as we also need to get started creating your game and therefore put the
bootstrap codebase or application infrastructure in place so that you can really give some of these NetBeans
9 IDE features a good workout.

https://doi.org/10.1007/978-1-4842-0973-8_6
http://dx.doi.org/10.1007/978-1-4842-0973-8_6
http://dx.doi.org/10.1007/978-1-4842-0973-8_1

Chapter 6 ■ Setting Up YoUr Java 9 iDe: an introDUCtion to netBeanS 9

136

Therefore, during the latter part of this chapter, you will be learning how to create your Java 9 and
JavaFX 9 project using NetBeans 9. This is so that you can start making solid progress toward and making
your Pro Java 9 Games Development a reality by creating a real-world i3D board game, which you will be
developing during the course of this book.

New NetBeans 9 Features: Java 9 Module Integration
NetBeans 9 is the next major revision of the software after the stable edition 8.2 and now features integration
of the Java 9 Module System, Java 9 Runtime Edition (JRE), and JUnit Java Testing Suite, so these do not have
to be downloaded separately. If you’re downloading NetBeans 9 for HTML5+CSS+JS, PHP, or C++, you no
longer have to download the JDK or JRE. This can be seen on the NetBeans IDE Download Bundles page,
shown in Figure 6-1, and is the reason why there are 32-bit (x86) or 64-bit (x64) precompiled NetBeans 9
versions for HTML5/JS, PHP, and C/C++.

That said, if you are using any of the other (Java SE, Java EE, or All) versions, as we are for this book,
the JRE is not included. This is because you’ll be downloading the JDK, as you did in Chapter 1, to be able
to use these Java SE (or EE, for large corporations) versions, and the JRE is included in the download and
installation process, as you have already seen. NetBeans 9 also includes support for the latest revisions of the
Apache Ant and Maven repositories. I’ll cover some of the new features in NetBeans since version 8.0 came
out more than three years ago in the first quarter of 2014 during the rest of this section of the chapter. I’ll
classify these using subsections to organize them by relevant topic for readers.

Java 9 Support: Modules, Ant, Java Shell, Multirelease
NetBeans 9 will release around the same time as Java 9, so its main objective will be supporting the Java SE
9 release in all of its features and capabilities. This will include the new Java 9 modules feature, which will
improve security and give developers the capability of optimizing the data footprint of their Java 9 game

Figure 6-1. The Java SE Edition NetBeans download bundle contains the NetBeans platform, Java SE, and
JavaFX SDKs

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_1
http://www.ebook3000.org

Chapter 6 ■ Setting Up YoUr Java 9 iDe: an introDUCtion to netBeanS 9

137

distribution. This will include Ant-based and Maven-based Java 9 projects, so the Ant and Maven Build Systems
will be upgraded to support Java 9 modules.

The Java 9 SE application project will initially support single-module development (all modules
included) as well as a new project type that will support multimodule development, so you can pick and
choose Java 9 modules. We will eventually be using just a few of the core JavaFX modules (base, graphics,
and media) so that our distribution data footprint will be significantly reduced, but we’ll do that at the end of
this book, as this is a more advanced topic.

Apache Ant is being updated to get support for JDK 9 covering the basic Ant tasks, and all the tools
in Java 9 SE distribution will work correctly when NetBeans 9 is running on JDK 9 or while JDK 9 is set to
be your project’s Java Platform. The NetBeans Profiler now works with JDK 9 applications, and Java shell
support and integration with the NetBeans 9 IDE has been added at every level of NetBeans 9 projects.
Multirelease JAR files are now handled properly by NetBeans 9 and its integrated Java 9 support.

Finally, the NetBeans 9 project will soon be moved over to Apache. The proposal for this can be
reviewed at https://wiki.apache.org/incubator/NetBeansProposal. The proposal covers how the change
will impact the NetBeans 9 releases. This moving of source, bugs, build jobs, and related services will happen
during the NetBeans 9.0 and 9.0.1 releases.

IDE User Experience: More Information and Intelligent Coding
NetBeans 8.1 introduced an improved Code Navigator pane, which now distinguishes the superclasses
or interfaces that your game’s Java methods are contained in, along with the method name and its
return type. Code completion, which we’ll be covering in the next major section of this chapter, has also
been significantly improved in almost all of the areas of NetBeans 8.1 (and in later versions such as 8.2
and 9), including improved preselection of the most relevant Java code insertion item, improved prefix
autocompletion, improved subword autocompletion, and improved autocompletion of Java enum values.

Java Code Profiling: Completely Redesigned Java Profiling Suite
NetBeans did a complete overhaul of its Java Code Profiling Suite in version 8.1, including a simplified
profiler setup, new single-click Java code profiling without having to set up anything in advance, and
the ability to select methods or classes for detailed profiling simply by selecting check boxes next to the
code profiling results. There is an improved ability to attach to running processes, and selected PIDs are
remembered for subsequent sessions. New features include the monitoring of CPU utilization, an ability to
dump threads from the profiled application, the ability to display merged results for selected threads in CPU
profiling views, and an improved live application profiling view.

Other new profiler features include live forward and live reverse call trees in your CPU profiling results,
live allocation trees in your System Memory profiling results, and simplified tweaking of settings during a
profiling session.

This NetBeans Profiling Engine has the most improvements of any area of the 8.1 (and later) IDEs,
including a significantly faster connection speed when connecting to an already running process, a limit
on outgoing calls from your currently profiling methods, and the ability to profile your System Memory
performance for certain preselected classes. All of these will be useful for optimizing Pro Java 9 Games
Development as games require peak performance.

The profiler User Interface (UI) is now much more polished and professional, featuring one unified
profiling window with all actions, settings, and results in one single customizable, managed view. There is a
separate Snapshots window pane, which you can use to manage persistent profiling data.

There are also a completely new, 100 percent reimplemented profiler tables and tree tables area,
which delivers a native-looking profiling appearance, allowing developers to seamlessly integrate code
development and optimization.

https://wiki.apache.org/incubator/NetBeansProposal

Chapter 6 ■ Setting Up YoUr Java 9 iDe: an introDUCtion to netBeanS 9

138

There’s also much improved profiler integration with the rest of the NetBeans IDE; in addition, there
is a more polished profile menu, a new action called the Attach to Project action has been added, and
Profile Class and Profile Method actions have been added into the Code Navigator. We will be taking a look
at the NetBeans 9 Profiler later during this book, when we need to implement system memory and CPU
optimizations into your Java 9 game.

Primary Attributes of NetBeans 9: An Intelligent IDE
In this section I will give you a comprehensive overview of all the amazingly powerful features of NetBeans
9 so that you understand just how powerful this IDE tool is that you have installed on your development
workstation and how important it is that you master all of its features so that you can wield all of this power
as a Pro Java 9 games or IoT applications developer. The IDE is the interface between the Java 9 code you are
writing using the JavaFX APIs and your computer; it allows you to visualize your code, organize it into logical
methods, test it on your computer, profile how optimally it is functioning relative to your system memory
and processor cycles, and package it for distribution on the Internet via web sites or as a stand-alone
application for Windows, OS/X, Linux, or OpenSolaris for Desktop Computers or even as an embedded
device application for Android OS or Tizen OS. Ideally, iOS, Opera OS, and Chrome OS will also move to
support Java 9 applications by 2018 since Android and Tizen already have the largest market share for
Java-on-top-of-Linux-kernel (Android OS) and HTML5-on-top-of-Linux-kernel (Tizen OS) platforms.

NetBeans 9 Is Intelligent: Put Your Code Editing in Hyperdrive
Although it’s true that an IDE is quite similar to a word processor, only optimized for creating modular
code constructs rather than writing business documents, an integrated development environment such as
NetBeans 9 is able to assist developers significantly more in their programming work process than a word
processor will help an author in their writing and document authoring work process. Word processors are
mostly for formatting text to make it look presentable using desktop publishing features, correcting spelling
errors, and correcting grammar and sentence structure.

For instance, your word processor does not make suggestions in real time regarding the content that
you’re writing for your business, whereas the NetBeans 9 IDE will actually look at what you are coding while
you are writing that code in real time and help you finish writing the Java code statements and Java code
construct that you are coding as you create them. Therefore, NetBeans 9.0 could be said to have a higher
artificial intelligence quotient than work processors, such as Microsoft Office, Corel WordPerfect, Apache
Open Office, or Ubuntu Libre Office currently feature.

One of the things that NetBeans will do is to finish lines of Java code for you, as well as applying color to
the code statements to highlight different types of constructs (classes, methods, variables, constants, arrays,
references), as shown in Figure 6-2. NetBeans will apply the industry-standard code indenting to make
Java code much easier to read, for both yourself and for the other members of your Pro Java 9 game and IoT
application development team.

www.ebook3000.com

http://www.ebook3000.org

Chapter 6 ■ Setting Up YoUr Java 9 iDe: an introDUCtion to netBeanS 9

139

NetBeans will also provide matching or missing code structure elements such as brackets, colons,
and semicolons so that you don’t get lost when you are creating complex, deeply nested, or exceptionally
dense programming constructs. You will be creating advanced Java constructs with these characteristics, as
you progress in your Java code complexity throughout this book as I take you from Java Game Developer to
Pro Java 9 Game Developer, and I will be sure to point out Java 8 and Java 9 code that is dense, complex, or
deeply nested as we implement it in your games.

NetBeans can also provide bootstrap code, such as the JavaFX game application bootstrap code that we
will be creating a bit later during this chapter, since I know you are eager to get started creating your Pro Java
9 Game. NetBeans 9 provides code templates that you can fill out and customize, coding tips and tricks, and
code refactoring tools. As your Java 9 code becomes more complex, it becomes a logical candidate for code
refactoring, which can make code easier to understand, easier to upgrade, and more efficient. NetBeans can
also refactor your code automatically.

In case you’re wondering what code refactoring is, it is changing the structure of existing computer code
to make it more efficient or scalable, without changing its external behavior (that is, what it accomplishes).
For instance, NetBeans can take legacy Java 7 code and make it more efficient by implementing the Lambda
Expressions introduced in Java 8.

NetBeans 9 will also provide pop-up helper dialogs, of one type or another, containing methods,
constants, asset references (all of which you will be learning about as you code your Pro Java 9 game during
this book), and even suggestions, regarding how to construct your Java statements. For instance, NetBeans
9 will suggest when it might be appropriate to use the Java 8 Lambda Expressions to make your code
streamlined and multithreading compatible.

Figure 6-2. NetBeans includes Files, Services, Projects, Navigator, and Output Panes (left top to bottom) as
well as a Java editor

Chapter 6 ■ Setting Up YoUr Java 9 iDe: an introDUCtion to netBeanS 9

140

NetBeans 9 Is Extensible: Code Editing with Many Languages
Another thing that your word processor can’t do is allow you to add features to it, which NetBeans 9 can do
with its plug-in architecture. The term that describes this type of architecture is extensible, which means
that, if needed, it can be extended to include additional features. So if you wanted to extend NetBeans 9 to
allow you to program in Python, for instance, you could. NetBeans 9 can also support older languages such
as COBOL or BASIC in this fashion as well, although since the majority of popular consumer electronics
devices use Java, XML, JavaScript, SVG, and HTML5 these days, I’m not really sure why anyone would want
to take the time do this. I Googled it and found there are people coding in Python and COBOL in NetBeans,
so there’s real-world proof that this IDE is indeed extensible.

Probably because of its extensibility, the NetBeans 9 IDE supports a number of popular programming
languages, including C, C++, Java SE, Javadoc, JavaScript, XML, HTML5 and CSS on the client side, and
PHP, Groovy, Java EE, and Java Server Pages (JSP) on the server side. Client-side software is run on the
device that the end user is holding or using (in the case of an iTV set), and server-side software is running
remotely on a server somewhere and talking to the end user over the Internet or similar network while the
software is running on the server.

Client-side software will be more efficient, as it is local to the hardware device that it is running on,
and thus it is more scalable, as there is no server involved to experience any overload. Server overload will
always occur as more and more people use the server-side software at any given point in time. The Java SE
9 and JavaFX games or IoT deliverables you create will tend to be on the client side, delivered in and using
a web site, but also downloadable for use on the client side via JNLP or downloading a JAR or a compiled
executable file for a given operating system platform.

NetBeans 9 Is Efficient: Organized Project Management Tools
Clearly, project management features must be extremely robust in any mainstream IDE, and NetBeans
9 contains a plethora of project management features that allow you to look at your pro Java game
development projects, and their corresponding files and the interrelationships between those files, in a
number of different analytical ways for this very reason. There are six primary project management views,
or panes, that you can use to observe the various types of interrelationships within your project. Figure 6-2
shows the bootstrap pro Java 9 games development JavaFX project that we will be creating a bit later during
this chapter.

Figure 6-2 shows the six primary project management panes or windows opened up for this new project
so that you can see exactly what they will show you. A great programming IDE needs to be able to manage
projects that can grow to become quite massive, involving well over a million lines of code and contained
in hundreds of folders in your project folder hierarchy. This can potentially involve thousands of text (Java
9 code) files, along with hundreds of new media assets in the form of files, some text-based (SVG, XML) and
some in binary data format (JPEG, MPEG).

The Projects pane shows the Java Source Packages, Libraries, and Modules that make up your Java 9
game project. This can be seen on the bottom left in Figure 6-2. The pane at the top is the Files pane and
shows the project folder and its file hierarchy on your hard disk drive.

The Services pane underneath that shows Databases, Servers, Repositories, Docker, and Build Hosts so
that these can be used in a project. These are primarily server-side technologies, and these technologies are
generally used with a large development team, so we’re not going to get into these in detail as this is a book
for solo game designers.

The Projects pane should always be left open, on the left side of your IDE, as you will see in all of the
figures in this chapter from Figure 6-7 onward. The Projects pane, or window, provides you with a primary
access point for all of the project source code and assets (content) in your Java 9 game project. The Files
pane not only shows the project folder and file hierarchy but also shows the data, JavaFX new media assets,
and Java 9 code hierarchy inside each file.

www.ebook3000.com

http://www.ebook3000.org

Chapter 6 ■ Setting Up YoUr Java 9 iDe: an introDUCtion to netBeanS 9

141

The Navigator pane, shown on the bottom of the NetBeans IDE underneath the Files, Projects, and
Services panes, shows the relationships that exist inside your Java code structures. In this case, that is
the JavaFXGame class, the .start() method, and the .main() method, which we will be learning about in
Chapter 7, after we learn all about the NetBeans 9 IDE and how to use it to create a Java 9 game project called
JavaFXGame, which we are going to do soon.

NetBeans 9 Is UI Design Friendly: User Interface Design Tools
NetBeans 9’s extensible plug-in capabilities support the design-your-UI drag-and-drop design tools for a
number of platforms, including Java SE, Java EE, Java ME, JavaFX, and Swing, as well as C, C++, PHP, HTML5,
and CSS4. NetBeans 9 supports visual editors that write application UI code for you, so all you have to do is
make the visual on the screen look like what you want it to look like in the game application. Since games use
the JavaFX new media game engine, NetBeans supports the Gluon JavaFX Scene Builder Kit, an advanced
JavaFX user interface design visual (drag-and-drop) editor.

Since JavaFX has the PRISM game engine as well as 3D (using OpenGL ES or Embedded Systems)
support, we will be focusing primarily on i3D for this book since I covered i2D in Beginning Java 8 Games
Development (Apress, 2014). The assumption for the book is that readers will want to build the most
advanced pro Java games possible, which would equate to 3D and i3D leveraging a JavaFX engine, which is
now part of Java 8 and 9 (along with Lambda Expressions). The most efficient way to accomplish this is by
using Java code and not a drag-and-drop code generator.

The fastest way to develop pro Java 9 games is to leverage advanced code and programming constructs
that the Java and JavaFX environments generously provide to you for your use in creating cutting-edge
applications. In this case, that would be pro Java games that contain powerful new media elements, such as
2D vectors, 3D vectors, digital audio, video, and digital images, assembled together as one single unified 2D
and 3D hybrid content creation pipeline.

NetBeans 9 Is Not Bug Friendly: Squash Bugs with the Debugger
There is a general assumption that applies across every computer programming language that the negative
impact to a programming project of a “bug,” or code that does not do exactly what you want it to, will
increase in magnitude the longer it remains unresolved. For this reason, these bugs need to be “squashed”
as soon as they are “born,” so to speak. NetBeans 9 has extensive bug-finding code analysis tools that
can be accessed using an integrated NetBeans Debugger. NetBeans 9 also supports integration with the
third-party FindBugs 3.0.1 project, which can be found on SourceForge.net, which is located at findbugs.
sourceforge.net if you want to download the stand-alone version.

These tools take the real-time “as you type” code correction and coding efficiency tools we discussed at
the beginning of this section of the chapter to the next level of advanced debugging.

Your Java code won’t be getting that complicated until a bit later in the book, so we will cover how these
advanced tools work when we need to use them in later chapters, when your knowledge base is a bit more
advanced.

NetBeans 9 Is a Speed Freak: Optimize Your Code with a Profiler
NetBeans also has something that is called a Profiler, which is one of the areas that the NetBeans IDE
overhauled in release version 8.1, as I pointed out in the “NetBeans Code Profiling” section earlier. The
NetBeans Profiler Tool will look at your Java 8 or Java 9 code while it is actually running and will tell you how
efficiently it uses memory as well as CPU cycles. This profiling analysis will allow you to refine your code
and will make it more efficient in its use of critical system resources, such as Threads, System Memory,
and Processing Cycles. This can become quite important for Pro Java 9 Game Development, as profiling

http://dx.doi.org/10.1007/978-1-4842-0973-8_7

Chapter 6 ■ Setting Up YoUr Java 9 iDe: an introDUCtion to netBeanS 9

142

complex games can help you to optimize the “smoothness” of your game play on embedded systems, which
are not as powerful (on single-core or dual-core CPUs, for instance), or on less powerful computer systems
using dual-core or quad-core CPUs, for instance, versus commonplace six- and eight-core CPUs.

This Profiler is a dynamic software analysis tool, as it looks at your Java code while it is running,
whereas the FindBugs code analysis tool could be said to be a static software analysis tool, as it simply looks
at your code in the editor, when it is not “compiled” and running in system memory. Since I have already
gone into the significance of static versus dynamic in Chapter 4, you know how much more powerful and
CPU-intensive dynamic processing can be for your pro Java games development work process. The same
considerations also apply here to real-time debugging. The NetBeans Debugger will also allow you to step
through your code while it is running, so that tool could be viewed as a “hybrid,” which spans the gap that
exists between static (editing) and dynamic (executing) code analysis modes.

After you create a project foundation for a Pro Java 9 Game and its JavaFX PRISM Engine, in the next
section of this chapter, you can run the Profiler if you like using the Profile menu at the top of the IDE.
However, if you do this, you won’t really see much at all, as the Hello World bootstrap application does not
really do much of anything.

Therefore, we will get into the NetBeans Profiler as we add things such as real-time rendered 3D assets.
I’m going to try to expose you to as many of these key features of NetBeans 9 as possible “up front” during
this chapter, without using a lot of pages, so that you get comfortable with the software and are not surprised
or “blindsided” by anything IDE related when it pops up (sometimes literally) over the course of this book.

Without further ado, let’s fire up NetBeans 9 and create your bootstrap JavaFX API–based Pro Java 9
Game project so that we can make some Java 9 and JavaFX programming progress toward your pro Java 9
game during this chapter.

Creating the Pro Java 9 Game Project: JavaFXGame
Let’s get down to business and create a project foundation for the pro Java 9 game that you are going
to create over the course of the book so that you make progress toward your ultimate goal during every
chapter of this book yet to come. I am going to show you how to create an original game during the course
of this book so you see the process involved in creating a game that does not exist, rather than most game
programming books that replicate a game that already exists in the market or drag and drop assets into a
prebuilt game engine. For Beginning Java 8 Games Development (Apress, 2014), I got permission from my
client to allow readers to see the process of creating the i2D InvinciBagel game during the course of that
book. For this book, I’m going to create the i3D board game engine for use on my own iTVboardgame.com
web site.

Click the Quick Launch Icon on your Taskbar, or double-click the icon on your desktop to launch
NetBeans 9, and you will see the NetBeans 9 startup screen. This screen shows a progress bar and will
tell you what’s being done to configure the NetBeans 9 IDE for use. This involves loading the various
components of the IDE into your computer’s system memory so that the IDE can be used smoothly and in
real time during your pro Java 9 games development.

After the NetBeans 9 IDE has been loaded into the system memory, the initial NetBeans 9 Start Page
will be displayed on your display screen, as shown in Figure 6-3. Click the x at the right side of the Start Page
tab. This will close this introductory page (tab) and will reveal the NetBeans 9 IDE, shown on the left of
Figure 6-4.

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_4
http://www.ebook3000.org

Chapter 6 ■ Setting Up YoUr Java 9 iDe: an introDUCtion to netBeanS 9

143

This will display what I term a “virgin” IDE, with no projects active in the IDE. Enjoy this now, as soon
we will be filling this IDE with windows (I call these floating palettes panes, as the entire IDE is in what I call
a window) for your project components. You can see part of this empty IDE in Figure 6-4, and there is not
much to see, as currently there are only top menus and shortcut icons, also at the top of the IDE, and not
much else is currently visible.

In case you are wondering, the Start Page that you exited displays only the first time you start the
NetBeans IDE, although if you wanted to open this Start Page tab up later, perhaps so that you could explore
the Demos and Tutorials sections, you can! To open this Start Page at any time, you would use the NetBeans
9.x Help menu and then select the Start Page submenu. I will usually denote a menu sequence like Help ➤
Start Menu just for your future reference. If you see a structure like this later in the book, it is a cascading
menu sequence of nested submenus.

The first thing that you will want to do in the NetBeans 9.0 IDE is to create a new JavaFXGame Java
Project. To do this, we will use the NetBeans 9.0 New Project series of dialogs. This is one of those helpful
Java programming features that I was talking about in the previous section, which creates your bootstrap
project with the correct JavaFX libraries, .main() and .start() methods, java statements, and import
statements, all of which you’ll be learning about in the next chapter. Click the File menu in the upper-left
corner of your NetBeans 9 IDE, as shown in Figure 6-4, and then select the New Project menu item, which
happens to be the first menu item.

Figure 6-3. Close the Start Page tab (upper left) by clicking the x on the right side of the tab to reveal NetBeans
9 IDE

Chapter 6 ■ Setting Up YoUr Java 9 iDe: an introDUCtion to netBeanS 9

144

Notice on the right side of the New Project menu item that there’s a Ctrl+Shift+N shortcut keystroke
combination listed in case you want to memorize it.

If you want to use this keyboard shortcut to invoke the New Project series of dialogs, hold down the Ctrl
and Shift keys on your keyboard (both at the same time), and while they are depressed (held down), hit the
N key. This will do the same thing as selecting the File ➤ New Project menu sequence using your mouse.

The first dialog in the series is the Choose Project dialog and is shown on the right side of Figure 6-5.
Since you are going to use the powerful JavaFX new media engine in your game, select the JavaFX category
from the list of all of the programming language categories in the Categories selector pane on the left,
labeled with a red number 2 for step 2.

Figure 6-4. Use the File ➤ New Project menu sequence (upper left) to open the NetBeans 9 New Project series
of dialogs

Figure 6-5. Use the Choose Project dialog to specify a JavaFX Application for your Pro Java Game

www.ebook3000.com

http://www.ebook3000.org

Chapter 6 ■ Setting Up YoUr Java 9 iDe: an introDUCtion to netBeanS 9

145

Next, select JavaFX Application from the Projects selector pane on the right, labeled with the red number
3, for step 3. We are selecting this because your pro Java 9 game is going to be a type of JavaFX API application.
You can read the description of each project type in the Description pane (shown as a red number 4) and finally
click the Next button to advance to the next dialog, which is shown as a red number 5 in Figure 6-5.

Remember that Oracle made a decision to integrate the JavaFX API (then libraries, now modules) back
in Java 7 and then in Java 8, and so a JavaFX Game is now simply a Java Game, whereas before Java 7 (in Java
6), JavaFX 2.0 was its own separate programming language! The JavaFX engine, which you will learn more
about during the next chapter, had to be completely recoded to be a Java 7 (and Java 8) API, or collection
of libraries (and now in Java 9 it becomes modules), in order for it to become the seamless, integrated
component of the Java 9 programming language that it is currently.

The JavaFX API will replace Abstract Windowing Toolkit (AWT) and Swing (UI elements), and although
these older UI design libraries can still be utilized in Java projects, they are normally used only by legacy
(older) Java code so that those projects will still compile and run under Java 1.02, 2, 3, 4, 5, 6, 7, 8, and 9.
You’ll be compiling and running this new JavaFX API–based project that you are creating during this section
of the chapter, so you will see JavaFX is running under Java 9. The current version of JavaFX is 9, because
Oracle made the version number match with Java 9, however, the classes are the same ones used in my
Beginning Java 8 Games Development book.

Notice there is a Description pane underneath the other panes that will tell you what you have
selected will give you. In this case, that would be a new Java application with enabled JavaFX features,
where “enabled” means that the JavaFX 9 API libraries will be included (and started) in the Java application
project’s class and methods, as you will soon see in the code, via a series of import statements. You will learn
what all of this Java 9 and JavaFX 9 code does in Chapter 7, which will cover JavaFX 9 and its many user
interface design and multimedia-related features.

Click the Next button to advance to the next dialog in the New Java Project series of dialogs, which is
the Name and Location dialog, as shown in Figure 6-6. This dialog allows you to set an application Project
Name, which will be used to create both a Class Name and a Package Name, as well as where you want the
project stored on the hard disk drive, using the Project Location and Project Folder data fields, which are
also shown in Figure 6-6.

Figure 6-6. Name the project JavaFXGame, and leave all other naming conventions the way NetBeans
set them

http://dx.doi.org/10.1007/978-1-4842-0973-8_7

Chapter 6 ■ Setting Up YoUr Java 9 iDe: an introDUCtion to netBeanS 9

146

Name the project JavaFXGame, and leave the default Project Location, Project Folder, JavaFX
Platform and Create Application Class settings exactly the way that NetBeans has configured them for
you, as this NetBeans dialog will implement all of your class and package naming conventions for you
automatically, based upon the Project name.

Once you are done, you can click the Finish button, which will tell NetBeans 9 to create the JavaFX game
application for you and open it up in the NetBeans 9 IDE so you can start working on it and learning about
the JavaFX API.

It’s usually a good idea to let NetBeans 9.0 do things for you in the way that they should be done. As
you can see in Figure 6-6, NetBeans creates the logical C:\Users\Walls\Documents\NetBeansProjects\
JavaFXGame folder for your user folder and Documents subfolder using the Project Location and Project
Folder data fields from this dialog.

For the Project Folder data field, NetBeans will (logically) create the subfolder named JavaFXGame. This
will be underneath a NetBeansProjects folder, just as if you had created it yourself, only NetBeans 9 has done
it for you.

For the JavaFX Platform selection drop-down, NetBeans 9 defaults you to the very latest Java 9 JDK,
which is also known as JDK 1.9 and has the latest JavaFX API (which is now an integrated part of the Java 7, 8,
and 9 languages).

We are not going to be implementing a custom preloader project at this point, although if I have time
and any page count left, I may revisit this later during the book. Thus, leave this option unchecked so you
can learn to create this preloader Java 9 project code on your own, rather than having NetBeans 9 do it for
you.

Since you are not creating multiple applications that will share libraries, leave the Use Dedicated
Folder for Storing Libraries check box unchecked, and lastly, make sure that the Create Application Class
is configured correctly. The Java 9 Class should be named JavaFXGame, and it should be contained in the
javafxgame package.

In this configuration, the package path and class name will be javafxgame.JavaFXGame. This will follow
the PackageName.ClassName Java class and package name paradigm, camelCase capitalization, and path,
using your dot notation period character to concatenate the Package Name to the head of the Class Name,
showing where it is kept.

I will go over some of the basic components of the Java code shown in Figure 6-7 during Chapter 7,
because we are primarily going to focus on the NetBeans 9.0 IDE and its features during this chapter and
concentrate fully on the JavaFX programming language during Chapter 7 and then again in Chapter 8 as well
when we cover Scene Graph.

As you can see in Figure 6-7, NetBeans has written the package statement, seven JavaFX API package
import statements, and the public class JavaFXGame extends Application declaration; subclassed
your JavaFXGame class, used a JavaFX Application superclass, created a method for startup public void
start(Stage primaryStage), and created a .main() method to manage your main JavaFX thread public
static void main(String[] args).

As you can see in Figure 6-7, NetBeans 9 will color important Java programming statement keywords,
putting keywords in blue, String Objects in orange, internal Java and System references in green, and
comments in gray. Warnings and suggestions inserted by the NetBeans 9 IDE regarding your Java 9 code
are colored using yellow, and Java 9 coding errors that prevent compilation of an executable (JAR) will be
colored using red.

Line 20 also shows that NetBeans is offering to convert your Button object event handling to a Lambda
Expression by underlining it in yellow (warning: this can be converted to a Java 8 Lambda Expression).

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_7
http://dx.doi.org/10.1007/978-1-4842-0973-8_7
http://dx.doi.org/10.1007/978-1-4842-0973-8_8
http://www.ebook3000.org

Chapter 6 ■ Setting Up YoUr Java 9 iDe: an introDUCtion to netBeanS 9

147

You can also change these colors, if you like, but I suggest you use the industry-standard coding colors
implemented by Oracle NetBeans 9 and earlier versions, as these have become standardized over time.

Before you can run this bootstrap code to make sure that NetBeans 9 wrote bootstrap Java 9 code for
you that actually works, you will need to compile this code into an executable format that will be run using
system memory. NetBeans 9 also manages the compilation and run processes for you, even though these
operations actually utilize utilities provided by the Java Development Kit (JDK).

Let’s take a look at how this is done using NetBeans 9 next, using the NetBeans 9 Run menu, which
contains Run, Test, Build, Clean, Compile, Check, Validate, Generate JavaDoc, and other Run-related Java
compilation functions.

Compiling a Pro Java 9 Game Project in NetBeans 9
In the interest of showing you how to compile your Java game code before you run and test it, I am showing
you the step-by-step work process here so you are exposed to every step of the compile/build/run/test Java
code testing process. Click the Run menu and the Run Project (JavaFXGame) (first) menu item in order
to build, compile, and run your Java 9 and JavaFX code, as shown in Figure 6-8. You can also use the F6
shortcut key, as indicated on the right side of the menu item selection. Now your project is ready to test!

Figure 6-7. Examine the bootstrap JavaFX code NetBeans created for you, based on the Name and
Location dialog

Chapter 6 ■ Setting Up YoUr Java 9 iDe: an introDUCtion to netBeanS 9

148

Figure 6-9 shows the NetBeans 9.0 build/compile/run progress bar, which will always appear at the
bottom-right side of your NetBeans 9.0 IDE during compilation. Also shown is the Output Pane, maximized
so we can see what the Ant build process did, which we will be taking a closer look at in the next section of
the chapter.

It’s important to note here that NetBeans 9.0 will compile your project code whenever you use a
File ➤ Save menu sequence or the Ctrl-S keyboard shortcut, so if you had used the Save feature of the
NetBeans IDE right after the bootstrap code had been created, you would not have needed to undertake this
compilation process, which I just showed you how to do manually, as this process will be done automatically
every time you save a Java game project.

Also shown in Figure 6-9, right above the Output Pane or window, is the .start() method in the Java code
editing pane or window. At the left is a minus icon with a square around it. This should be used to collapse
or hide the contents of this method. This is done simply by clicking this minus icon at the left side of the
code editing window.

A minus icon will turn into a plus icon so that a collapsed code block can be “expanded” (uncollapsed).
Now that we have looked at how to compile the project in NetBeans 9, as well as how to collapse and expand
the view of your logical method code blocks (logical functional components of your Java class) in your
JavaFXGame.java project’s code, it’s time to run this code and see if it works. If it does, we can proceed to
Chapter 7 and start to learn about the JavaFX API and what it brings in new media development power to the
Java 9 programming environment.

Running Your Pro Java Game Project in NetBeans 9
Now that you have created and compiled your bootstrap Java 9 with JavaFX game project, it is time to run or
execute the bootstrap code, to see what it does. As you have already learned, you can access the Run Project
menu item using the Run ➤ Run Project menu sequence at the top of NetBeans, or, as shown at the top left of
Figure 6-9, you can use the shortcut icon that looks like a green video transport play button. If you mouse over
this, you will get a pale yellow tooltip, showing a Run Project (JavaFXGame) (F6) pop-up helper message.
I will generally use the longer menu sequences rather than the shortcut icons when writing Java 9 and

Figure 6-8. Use Run ➤ Run Project (JavaFXGame) to build and run the project to make sure the NetBeans
IDE is working

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_7
http://www.ebook3000.org

Chapter 6 ■ Setting Up YoUr Java 9 iDe: an introDUCtion to netBeanS 9

149

Android Studio books just to be thorough. This shows readers where everything is located in the IDE menuing
system, so everything gets covered. If you haven’t already, run your new JavaFXGame Application now. Once
you run your compiled Java 9 and JavaFX code, a window will open up over the NetBeans IDE with your
software running in it, as shown on the right of Figure 6-9. Currently it uses the popular Hello World sample
application.

Click and hold your left mouse button down on top of the divider line between the Java 9 code editing
pane and the Output tab at the bottom of the code editor pane and drag this divider line up, resizing your
relative window space. The space is shared between the JavaFXGame.java code editing pane and an Output
- JavaFXGame information pane. Doing this resizing operation will reveal your Output tab and its compile
info contents, as is shown in Figure 6-9.

This Output tab will contain different types of output for NetBeans 9, such as compile operation output,
run operation output (which is shown in Figure 6-9), profiler operation output (which we will be taking a
look at later in the book when we have something to profile), and even output from your application itself
(which we will look at here).

You may have noticed, in Figure 6-7, that your code for a bootstrap Java and JavaFX application uses
a green System.out.println("Hello World!"); Java statement on line 23, so if you wanted to see the
application that you are currently running print to the Output Pane (this is what out means and is often
referred to as the Output Console), you would click the Say “Hello World” button in the Hello World app
that is currently running on top of your IDE.

Once you click the button, the words “Hello World!” should appear in the Output tab under the red text
that says that it is executing your JavaFXGame.jar file. A JAR file is a Java ARchive (J for Java, and AR for
Archive) file and is one of the distributable formats available for your Java 9 application.

Part of the compile process involves creating this file, so if your compiled version works, you can have
your JAR file ready to distribute when all of your application design, programming, testing, and optimization
is complete.

Figure 6-9. Drag up the separator bar to reveal the Output area of the IDE (running application seen at right)

Chapter 6 ■ Setting Up YoUr Java 9 iDe: an introDUCtion to netBeanS 9

150

A JAR file does not contain your actual JavaFX code but rather a compressed, encrypted, “Java
bytestream” version of your application, which the JRE can execute and run (like NetBeans 9 is doing now).
The “path” that is attached to the front of the JavaFXGame.jar file tells you where NetBeans 9 has compiled
your JAR file to on your HDD and where it is accessing it from currently to be able to run it. On my system,
this location was as follows:

C:\Users\Walls\Documents\NetBeansProjects\JavaFXGame\dist\run1381287366\JavaFXGame.jar

Let’s take a look at some of the other Output tab text in order to see what NetBeans did to get to the
point where it could run the JAR file for the project. First the Ant Build System is invoked using ant -f
source-path jfxsarun, and since the Java executable is not found in the JDK, it finds one in the runtime
instead. It then initializes (init:) and in the JAR Dependencies (deps-jar:) section creates a \build directory
and updates the built-jar-properties file. It then creates the \build\classes, \build\empty, and \build\
generated-sources\ap-source-output directories. Ant will then compile the project to the \build\classes
directory, and if the build (compile) is successful (error-free), Ant will create the \dist distribution folder
and deposit your JAR file there.

Ant then uses the JavaFX Ant API to launch ant-javafx.jar and deploys the JavaFX API, copying the
JavaFX JAR files into a \dist\run1381287366 folder. Finally, Ant runs the JavaFX project using jfx-project-
run:, executing the Java 9 and JavaFX code, which is the equivalent of running (and testing) it, as shown on
top of the NetBeans 9 IDE.

Ant is the “build engine” or build tool that creates your JAR file, and there are other build engines, such
as Maven and Gradle, that can also be used in NetBeans if you like because, as you now know, NetBeans is
extensible. Since Ant goes back the furthest and is the “legacy” build system, we will be using that during the
course of this book.

Summary
In this sixth chapter we took a look at the NetBeans 9 “official” Integrated Development Environment (IDE)
that you will use as the foundation and primary tool for your Java 9 Game Development work process. This is
because this IDE is where your Java 9 (and JavaFX API) code is written, compiled, run, tested, and debugged,
as well as where your new media (imagery, audio, video, 3D geometry, textures, fonts, shapes, etc.) assets are
stored and referenced using your NetBeansProject folder and its subfolders. We started by taking a high-
level view of NetBeans 9 and its new features such as Java 9 module support, as well as some recent legacy
features, and added in NetBeans 8, 8.1, and 8.2. These are the powerful features that make NetBeans 9.0
the official IDE for Java 9. These features will help programmers to develop Pro Java 9 game code quickly,
efficiently, and effectively, the first time. After this overview, we created a Pro Java 9 Game Project using the
New Project series of dialogs and the JavaFX Application bootstrap Java code template.

We went through the New ➤ Java Application series of dialogs and created a JavaFX framework for
our game, which will allow us to use new media assets. After that we took a look at how to compile (build
and run) the app using NetBeans 9 and then at how to run an application using NetBeans. We looked at the
Output tab and how this is used for compiler output and looked at the Ant build process to see what it does
to combine Java 9 with its JavaFX APIs.

In the next chapter, we are going to take a tour of the JavaFX programming language, a “JavaFX primer,”
if you will, and examine the JavaFX code that is in your JavaFX bootstrap application (shown in Figure 6-7)
so that you will know what this JavaFX code is doing. We will also look at the modular components of the
comprehensive JavaFX API.

www.ebook3000.com

http://www.ebook3000.org

151© Wallace Jackson 2017
W. Jackson, Pro Java 9 Games Development, https://doi.org/10.1007/978-1-4842-0973-8_7

CHAPTER 7

Introduction to JavaFX 9: Overview
of the JavaFX New Media Engine

Let’s build on the knowledge of the Java 9 programming language and the NetBeans 9 IDE that you reviewed
in the previous two chapters here in Chapter 7; we’ll review in detail the capabilities, components, and core
classes that comprise the JavaFX 9 new media engine. This JavaFX 9 new media UI and UX API was added
to Java using the javafx package that you saw in Chapter 6 when you created your bootstrap pro Java 9 game
application. The previous JavaFX 8 API was released with Java 8 and was also compatible with Java 7, as
well as Android and iOS. The JavaFX packages are significant to game programming because they contain
advanced new media classes that you will need to harness for game programming, including classes for
organizing scene components into a hierarchy using a Scene Graph, classes for user interface layout and
design, classes for 2D digital illustration (known as vector graphics), and classes for digital imaging
(known as raster graphics), 2D animation (vector and raster), digital video, digital audio, 3D rendering,
a web page rendering engine (WebKit), and much more. We’ll be touching on all of this in this chapter so
you’ll know what you have available for Java 9 games now that JavaFX has been added into Java as an API.

The rationale for going into the API detail overview early in the book is to get the creative side of
your brain firing so you can start to think about how the JavaFX new media engine features support your
pro Java game concept and design. Not only is it important that you know what JavaFX can do for your
games development, but all of the API classes are interrelated, so you need an overview of how the various
components of the JavaFX new media engine are put together. JavaFX uses a complex set of APIs that I like
to call the engine to implement incredible “front-end” power. This is because of the inherent power that it
brings to implementing User Interface (UI) and User Experience (UX) “wins” to your pro Java games and
IoT applications. So, bear with me regarding these “foundational” chapters that cover how to master your
IDE (NetBeans 9), your foundational programming language (Java 9), and a new media engine (JavaFX 8),
which is now an integrated Java platform API and which is rapidly growing in browser support, power, and
popularity.

In this chapter you will review the JavaFX QUANTUM toolkit, the PRISM rendering technology, the
WebKit web engine, the GLASS windowing technology, the JavaFX Media Engine, the JavaFX Scene Graph,
and the JavaFX API.

Once you take a look at how JavaFX comes together at the highest level, like you did in Chapter 5 for
Java 9, you will take a look at some of the key classes that you will be using to construct pro Java games.
These include Node, as well as the following: Group, Scene, Stage, Layout, Control, StackPane, Shape,
Geometry, Media, Image, Camera, Effect, Canvas, Paint, and Animation. We already looked at the JavaFX
Application class in Chapter 6; we will continue to learn about this class, as well as about the various classes
that can be used to build complex multimedia projects such as games.

https://doi.org/10.1007/978-1-4842-0973-8_7
http://dx.doi.org/10.1007/978-1-4842-0973-8_7
http://dx.doi.org/10.1007/978-1-4842-0973-8_6
http://dx.doi.org/10.1007/978-1-4842-0973-8_5
http://dx.doi.org/10.1007/978-1-4842-0973-8_6

Chapter 7 ■ IntroduCtIon to JavaFX 9: overvIew oF the JavaFX new MedIa engIne

152

Finally, you’ll take an in-depth look at the bootstrap JavaFX application code that you generated in
Chapter 6 and look at how the Java .main() method and the JavaFX .start() method create the primaryStage
Stage object using the Stage() constructor method and, inside of that, create a Scene object named scene
using the Scene() constructor method. You’ll look at how to use methods from the Stage class to set the
Scene, title the Stage, and show the Stage. You’ll learn how to create and use StackPane and Button class
objects and how to add an EventHandler to a Button.

Overview of JavaFX: From SceneGraph Down to OS
As I did in Chapter 2 and Chapter 3 covering new media, I want to start at the highest level with JavaFX,
which is the Scene Graph. This is the level right under the new media asset types that were shown on the
very top level in Figure 2-1 and Figure 3-7. JavaFX API’s Scene Graph Java code can also be built by using
the Gluon drag-and-drop JavaFX Scene Builder, which can be integrated into NetBeans 9, as you learned in
Chapter 6, or used as a stand-alone. We will be looking at how to “scratch-code” all of these scene structures
since this is Pro Java 9 Games Development.

As you can see in Figure 7-1, the JavaFX Scene Graph Architecture sits on top of the JavaFX API, a
collection of JavaFX packages such as javafx.scene or javafx.application, which is what ultimately allows
you to build your Scene Graph and design your JavaFX new media creations. In this case, it will be a pro Java
game. Notice that the JavaFX API is connected (using steel bearings on this diagram to denote bridges) not
only to the Scene Graph Architecture above it but also to the Java API and its JavaFX Quantum toolkit below
it. As you can see, the Java JDK (and API) connects the JavaFX new media engine to NetBeans 9 and to the
JVM. The JVM allows Java to distribute your Pro Java Game across the various platforms that Java currently
supports, as well as future (native support) platforms like Android 8 and iOS.

Figure 7-1. JavaFX Component Architecture from Scene Graph at the top down through Java, NetBeans, JVM,
and OSs

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_6
http://dx.doi.org/10.1007/978-1-4842-0973-8_2
http://dx.doi.org/10.1007/978-1-4842-0973-8_3
http://dx.doi.org/10.1007/978-1-4842-0973-8_2#Fig7
http://dx.doi.org/10.1007/978-1-4842-0973-8_3#Fig7
http://dx.doi.org/10.1007/978-1-4842-0973-8_6
http://www.ebook3000.org

Chapter 7 ■ IntroduCtIon to JavaFX 9: overvIew oF the JavaFX new MedIa engIne

153

The Quantum toolkit that is connected to the JavaFX API ties together all of the powerful new media–
related engines that I’m going to talk about next. The Quantum toolkit handles thread management for
all these engines so that your game code, which is on the JavaFX primary (main) thread, and your game’s
new media assets (audio, video, 3D vector, 2D vector), which are on their own thread (A/V uses a dedicated
thread, as does WebKit, Windowing, or 3D rendering), can use separate processors via separate threads (or
processes) on those dual-core, quad-core, hexa-core and octa-core CPUs, which are now commonplace in
today’s computers and embedded consumer electronics devices. I have shown new media engines that are
important enough to have their own threads in the fourth tier of Figure 7-1.

The Glass Windowing Toolkit controls window management for JavaFX. This is responsible for the
control of any discrete areas of your display, such as your Stage or Popup windows, such as dialogs. Glass
also manages the events processing queue and passes events up to JavaFX for processing, and it also sets up
timers, which you will learn about later in the book when we get into gameplay and how pulse milliseconds
can control the timing for your games.

As you can see in the middle of Figure 7-1, there is also a WebKit engine and a Media Player engine.
These are also managed by the Quantum toolkit. The WebKit engine can render HTML5, CSS3/4, and
JavaScript content. This means you can create web content that runs seamlessly inside your JavaFX games.
The Media Player media playback engine offloads (handles) the playback, UI controls for, and navigation of
your Digital Audio and Digital Video assets.

The most important new media engine underneath the Quantum toolkit is the PRISM engine, which
I like to call the “Prism Game Engine,” as it renders 2D content using Java2D and renders 3D content using
either OpenGL (Macintosh, Linux, or Embedded OS) or DirectX if users are using the Windows 7, 8, or 10
platforms. I use Windows 7.2 and 10 on some of my production workstations. Windows XP and Vista support
was discontinued, as most of the computers and consumer electronics devices are now 64-bit capable
(Windows XP is 32-bit and only addresses 3.24 GB of memory).

What PRISM does is to “bridge” the powerful game engines (DirectX and OpenGL) that are on the major
OS platforms, as well as on consumer electronics embedded devices so that JavaFX can “offload” complex
rendering task processing to GPU hardware from nVidia (GeForce), AMD (Radeon), ARM, Qualcomm,
or Intel. This makes JavaFX/Java games faster and allows games to use less of the CPU processing power
for rendering game assets to the screen. This in turn allows more of the CPU processing power to be used
for gameplay logic, such as AI or collision detection. We’ll be getting into these areas of game design after
we master the JavaFX engine features and its Scene Graph Hierarchy and Architecture during the next two
chapters of the book, this JavaFX primer, and Chapter 8 on Scene Graph design.

It is important to note that game developers do not need to understand the inner workings of the
Quantum (threading), Glass (windowing), or Prism (rendering) engines to be able to leverage their powerful
new media features. Throughout this book, you are going to be focusing on the top-level Scene Graph
Architecture, as well as the JavaFX and Java API levels of this diagram. You’ll also be covering the NetBeans
9 IDE level, which we just took care of in Chapter 6, but whose features we will also be exploring in further
detail throughout the remainder of this book.

As far as the lower levels of the diagram in Figure 7-1 are concerned, NetBeans 9.0 will generate a Java
ByteCode file that is read by the custom JVM or Java 9 Virtual Machine, for each of the OS platforms. This
JVM, shown at the bottom of Figure 7-1, can be installed for any given OS platform by downloading the Java
9 Java Runtime Engine (JRE), which you have already encountered in Chapter 1, when you installed it as
part of your Java 9 JDK installation.

This JVM layer allows your game to be installed as an application across all popular OS platforms, as
well as on embedded devices, which will also be moving to support JavaFX. You should also generate your
pro Java game as a Java “applet” that can be embedded into a web site, and there’s even a deployment model
where the application can be dragged out of the web site and onto the desktop, where it is then installed as a
full-fledged Java game application.

There is also already a work process used to run JavaFX apps on iOS 8 and Android 8, although the
support is not “native” as yet, so JavaFX applications can’t yet run directly inside those OSs. If you are
interested in the latest information regarding this, simply Google “JavaFX on Android” or “JavaFX on

http://dx.doi.org/10.1007/978-1-4842-0973-8_8
http://dx.doi.org/10.1007/978-1-4842-0973-8_6
http://dx.doi.org/10.1007/978-1-4842-0973-8_1

Chapter 7 ■ IntroduCtIon to JavaFX 9: overvIew oF the JavaFX new MedIa engIne

154

iOS,” and you can bet that by 2018 that Android OS, iOS, BlackBerry, and Tizen OS devices will be running
JavaFX applications “natively.” This will allow you to “code once, run everywhere” with this Java and JavaFX
dynamic duo! What I mean by native is that you will someday be able to export Java (and JavaFX engine)
apps directly to Android 8 using JetBrains IntelliJ 2017 Android Studio or to iOS or Tizen OS, or possibly
even directly to Android 8, using NetBeans 9. This will add to the Windows, Mac, Open Solaris, and Linux
distributions support currently afforded by NetBeans 9.

 ■ Note the JetBrains IntelliJ IDEA is now the official Ide used for creating 64-bit android 8 applications.
this Ide is covered in my Android Apps for Absolute Beginners (apress, 2017), which covers developing
64-bit android 5 to 8 applications using the IntelliJ Idea using Java 8. IntelliJ is also covered in my Pro Android
Wearables (apress, 2015). I expect Java 9 will also feature support for wearables and appliances by the
end of 2018.

Let’s start at the top of the diagram shown in Figure 7-1 and take a look at the JavaFX Scene Graph and
the javafx.scene package, which implements the Scene Graph in the JavaFX API using 16 powerful and
useful Java classes.

The JavaFX Scene Package: 16 Java Scene Classes
The first thing that I want to do after our high-level overview is take a look at one of the most important JavaFX
packages, the javafx.scene package. As you have seen in Chapters 2 and 3, there is more than one JavaFX
package. As you can see at the top of Figure 6-7, your JavaFXGame.java application is already using four
different JavaFX packages. The javafx.scene package contains 16 powerful Java classes (remember JavaFX
was recoded in native Java) including Camera, ParallelCamera and PerspectiveCamera, Cursor and
ImageCursor, LightBase, PointLight, and AmbientLight, as well as the Scene Graph classes (Node, Parent,
Group, Scene, and SubScene) and some utility classes seen in Figure 7-2. As you can see, I have grouped
these 16 javafx.scene package classes logically. I have the Scene class inside of the Scene Graph section of this
diagram because Scene objects that are created using this Scene class will contain Scene Graph objects that
are created using the other four Node, Parent, Group, and SubScene Scene Graph–related classes, and their
subclasses. We’ll be covering all of these Scene Graph classes in detail a bit later during the chapter.

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_2
http://dx.doi.org/10.1007/978-1-4842-0973-8_3
http://dx.doi.org/10.1007/978-1-4842-0973-8_6#Fig7
http://www.ebook3000.org

Chapter 7 ■ IntroduCtIon to JavaFX 9: overvIew oF the JavaFX new MedIa engIne

155

Scene Graph Architecture classes for JavaFX start at the highest level with the Node superclass, along
with its Parent and SubScene subclasses and the Group subclass of the Parent class, which we will be using
later during this book to create our game Scene Graph hierarchy. These core Node classes are used to create
the game’s JavaFX Scene Graph hierarchy and are used to organize and group objects that have been created
using JavaFX media asset and graphic design packages, which are contained in the javafx.media and javafx.
graphics Java 9 modules.

There are three Scene utility classes, as I call them, which allow you to take a Snapshot (like a
screenshot) of your Scene or any of its Scene Graph nodes at any time, as well as to turn Scene AntiAliasing
on or off, if you are using 3D primitives (geometry defined using math rather than a mesh) in a Scene. The
other half (eight) of the classes in the javafx.scene package are utilized for scene lighting, scene cameras, and
cursor control for your scene.

We’ll be covering these javafx.scene classes in future chapters as we create your game, after we take a
look at the Scene Graph classes that are used to create, group, manage, and manipulate your JavaFX scene
content. Thus, I will be covering the javafx.scene package’s classes, shown in Figure 7-2, from the left side
of the diagram and moving to the right side of the diagram, in the order of the classes that you are likely to
use the most often to those used the least often. That said, all of these classes (with the possible exception of
Snapshot) are very important for i3D games.

JavaFX Scene Class: Defining Dimension and Background Color
The two primary classes in the javafx.scene package are the Scene class and the Node class. We will be
covering the Node class and its Parent, Group, and SubScene subclasses in the next section, as those
classes, along with their subclasses (such as the StackPane class used in the JavaFXGame class), can be
utilized to implement the Scene Graph architecture in JavaFX. Also, in a sense, and in my diagrams shown
in Figure 7-2 and 7-3, the Node class and its subclasses can be viewed as being “below” the Scene class,
although the Node class is not a subclass of the Scene class. In fact, the Node (Scene Graph) class and its
subclasses, or rather the objects created using these classes, are actually contained inside of the Scene
object itself, just like things are grouped by scene in real-life stage productions. For this reason, we will

Figure 7-2. The Java javafx.scene package and 16 core Scene Graph, Scene Utility, Lighting, Camera, and
Cursor classes

Chapter 7 ■ IntroduCtIon to JavaFX 9: overvIew oF the JavaFX new MedIa engIne

156

first take a look at how the Scene class, and its Scene() constructor method, is used to create Scene objects
for JavaFX applications. This section will provide a great reinforcement for what you learned in Chapter 5
regarding overloading constructor methods, since there needs to be several different ways to create a Scene
object.

This Scene class is used to create the Scene object, using a Scene() constructor method. This takes
between one and five parameters, depending on which of the six overloaded constructor methods you
choose to utilize. These include the following constructor methods featuring six different overloaded
parameter list data field configurations:

Scene(Parent root)
Scene(Parent root, double width, double height)
Scene(Parent root, double width, double height, boolean depthBuffer)
Scene (Parent root, double width, double height, boolean depthBuffer, SceneAntialiasing

aAlias)
Scene(Parent root, double width, double height, Paint fill)
Scene(Parent root, Paint fill)

The constructor currently used in your current bootstrap Java and JavaFX code, shown in Figure 6-7
and in your Java code seen on line number 28, is the second constructor, and thus far, it has been structured
(called) as follows:

Scene scene = new Scene(root, 300, 250);

If you wanted to add a Black background color to the scene, you would use the fifth overloaded
constructor method using a Color.BLACK constant from the Color class (this is a Paint object because
Color is a Paint subclass) as your fill data, in this case a fillColor. This would be done by using the following
Scene() object constructor method call:

Scene scene = new Scene(root, 300, 250, Color.BLACK);

Notice that the root object is a Parent subclass, called the StackPane class, and is created using
the StackPane() constructor method, two lines above the Scene() constructor method call, by using the
following line of Java code:

StackPane root = new StackPane(); // StackPane subclassed from Parent; so Parent root node
type

As you can see, any class can be used in the constructor that is a subclass of the object (class) type that is
declared (required) for that constructor parameter position (data). This is why we are able to use Color and
StackPane objects in our parameter list, because they have the superclass origins from the Paint and Parent
classes, respectively.

In case you are wondering what the boolean depthBuffer parameter is, it is used for i3D scene
components. Since these scene components are 3D and have depth (a “Z” component, in addition to a 2D
“X” and “Y” components), you will need to include this parameter and set it to a value of true, if you are
creating 3D scenes, or combining 2D and 3D scene components. Finally, if you are wondering what the
SceneAntialiasing object (and class) that is passed in the parameter list for the fourth constructor method
is, it provides real-time smoothing for 3D scene components. So, for a 3D Scene object, which is what we
will be needing, the constructor method call would look like the following:

Scene 3Dscene = new Scene(root, 300, 250, true, true);

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_5
http://dx.doi.org/10.1007/978-1-4842-0973-8_6#Fig7
http://www.ebook3000.org

Chapter 7 ■ IntroduCtIon to JavaFX 9: overvIew oF the JavaFX new MedIa engIne

157

JavaFX Scene Graph: Organizing Scenes by Using Parent Nodes
The Scene Graph, which is not at all unique to JavaFX, can now be seen in quite a few genres of new media
content creation software packages, such as 3D, digital audio, sound design, digital video, and special effects,
for instance. A Scene Graph is a visual representation for a content data structure that resembles an upside-
down tree, with the root node at the top and branch nodes and leaf nodes coming off of the root node.
The first time I saw the Scene Graph approach to scene design was when I was 3D modeling, rendering,
and animating using a software package on the Amiga 4000 called Real3D from RealSoft OY in Finland. This
approach has since been copied by a plethora of 3D, digital video, and special effects software packages since
then and is now the way that JavaFX organizes the content in its scenes. For this reason, many of you may
be familiar with, and therefore comfortable with, this design paradigm. Not only does the Scene Graph data
structure allow you to architect, organize, and design your JavaFX scene and its content, but it also allows you
to apply opacity, states, event handlers, transformations, and special effects to entire logical branches of
your Scene Graph hierarchy if you set your Scene Graph up correctly. Figure 7-3 shows a basic Scene Graph
tree, with the root node at the top and branch nodes and leaf nodes underneath that root node.

The root node is the topmost node, which is why it is called the root, even though it is at the top, rather
than at the bottom, like a root would be in the plant life world. A root node has no parent, that is, nothing
above it in the Scene Graph hierarchy. A root node is itself a parent to the branch nodes and leaf nodes that
are underneath it.

The next most powerful (and complex) construct in the Scene Graph tree is called the branch node,
which uses the javafx.scene.Parent class as its superclass and can contain children, which is logical since it
extends a class that is aptly named Parent. A branch node can contain other branch nodes, as well as “leaf”
nodes, so it can be used to create some very complicated and very powerful Scene Graph hierarchy (or Scene
Graph architecture) constructs.

The last level in the hierarchy is the “leaf” node, and a leaf node is the end of the branch. As such, a leaf
node can have no children. It is important to notice that leaf nodes can come directly off the root node, as
you can see in Figure 7-3. Branch nodes can be created by using the Parent, Group, or SubScene classes,
shown in Figure 7-2, or using any of their subclasses, such as the WebView, Region, Pane, or StackPane
classes, for instance.

Examples of objects that would be at the very end of the branches, that is, leaf nodes, include JavaFX
classes (instantiated as objects) that can be configured using parameters. Examples would include shapes,
text, or controls. These are design or content components in and of themselves, and therefore not designed

Figure 7-3. JavaFX Scene Graph hierarchy, starting with the root node and progressing to branch nodes and
leaf nodes

Chapter 7 ■ IntroduCtIon to JavaFX 9: overvIew oF the JavaFX new MedIa engIne

158

to have any children (child object), so they inherently have to be at the end of the tree and branches by the
nature of their class function design.

A leaf node will therefore always contain a JavaFX class that has not been subclassed (extended)
from the Parent class or from the Group, Region or SubScene class and that has not itself been specifically
designed to have any child elements (child objects) within it (or below it) within your JavaFX Scene Graph
hierarchy.

The three subclasses of the Parent class can be utilized as branch nodes. These include the Group class
for grouping child (leaf node) objects so that opacity, transforms, and special effects can be applied to Group
nodes all at once; the Region class for grouping child (leaf node) objects in 2D to form screen layouts, which
could be styled using CSS3, if you like; and the WebView class, which is used to manage the WebEngine
class, which renders HTML5, JS, and CSS content in a WebView.

JavaFX Scene Content: Lights, Camera, Cursor, Action!
Next, let’s take a look at the eight classes listed in the center of Figure 7-2 that provide some powerful
multimedia tools for controlling your application’s cursor, as well as providing custom lighting special
effects and custom camera capabilities to your 2D and 3D JavaFX applications. In this case that would be
games, but it could also be e-books or iTV shows or anything for IoT that requires the powerful new media
capabilities that JavaFX provides for the Java 9 APIs.

The more generalized classes (Cursor, LightBase, Camera) that are listed in the center portion of
Figure 7-2 are parent classes, and the more specialized ones (ImageCursor, PointLight, ParallelCamera,
etc.) listed after each of those are the subclasses of those parent classes. Except for the LightBase class, that
seems to be stating the obvious!

As you might have guessed (correctly), the JavaFX Cursor class can be used to control the application
cursor graphic (arrow, hand, closed hand, open hand, resize, move, text, wait, none) being used at any given
time. The ImageCursor subclass can be used to define and supply a custom image-based cursor, using an
X and Y location within a custom cursor image that will define where its “click point,” also known as the
cursor’s “hotspot,” is located.

The LightBase class, and its PointLight and AmbientLight subclasses, can be used to light your scenes.
These classes are primarily used for 3D scenes, and they require 3D capabilities on any platform that the
game is running on, which is not really a problem these days as most of the major CPU manufacturers
also make (and include) GPUs. Also, it is important to note, the Prism game engine will simulate the 3D
environment (GPU) using 3D processing emulation if a GPU is not available on the hardware platform that is
rendering your game. This is termed software rendering.

If you set it up correctly, you could also use these lighting classes with your 2D games, or use lighting
with a “hybrid” 2D and 3D game, which we will be taking a look at later during this book as well, since
JavaFX supports it.

The Camera class, and its ParallelCamera and PerspectiveCamera subclasses, can be used to
photograph or video your scene and can be used in 3D, 2D, and hybrid game applications. Two of the
camera classes, Camera and ParallelCamera, do not require that 3D (GPU) capabilities be present on the
platform that is playing your JavaFX application, in this case, a game. A Parallel Camera view is sometimes
called Orthographic Projection in 3D software.

The subclasses of the Camera class provide two different specialized types of Cameras. The
ParallelCamera class can be utilized for rendering scenes without any depth perspective correction, which in
the 3D industry is called an orthographic projection. This means this class is perfect for use with 2D scenes
(and for 2D games).

The PerspectiveCamera class provides a far more complex camera used for 3D scenes, which will
support 3D viewing volumes. Like the LightBase class, and its subclasses, a PerspectiveCamera class will
require 3D capabilities for the hardware platform that your pro Java 9 game (or IoT application) will be
running on (called the target platform).

www.ebook3000.com

http://www.ebook3000.org

Chapter 7 ■ IntroduCtIon to JavaFX 9: overvIew oF the JavaFX new MedIa engIne

159

A PerspectiveCamera class has a fieldOfView attribute (state or property). This can be used to change
your viewing volume, just like a real camera zoom lens can, when you zoom it in from a wide angle to a
zoom. The default setting for the fieldOfView attribute is an acute angle of 30 degrees. If you remember your
geometry class from high school, you can visualize this field of view by looking down the y-axis (the up and
down one) at the camera. As you might expect, there are .getFieldOfView() and .setFieldOfView(double)
method calls to control this camera class attribute.

Next, let’s take a closer look at the Scene utility classes. After that, we will take a closer look at some of
the nine javafx.scene subpackages, such as javafx.scene.text, javafx.scene.image, javafx.scene.shape, and
javafx.scene.layout.

JavaFX Scene Utilities: Scene Snapshots and Anti-aliasing
Finally, we should take a quick look at the three utility classes that are shown on the right side of Figure 7-2,
as they can be used to increase the quality of your scene output on your user’s device screen (using anti-
aliasing), as well as to provide screen capture capabilities to either your user (for social media sharing) or
your gameplay logic.

Let’s get the SceneAntialiasing class out of the way first. You learned about anti-aliasing in Chapter 2,
and I showed you how it uses an algorithm to smooth jagged edges where two different colors come together,
usually on a diagonal line or circular area of an image composite. An image composite is where two separate
images are placed in layers to form one resulting image. Sometimes the edges that differ between the image
components that are in these two (or more) image layers will need to be smoothed. Smoothing (anti-aliasing)
is needed so a final image composite looks like it is one seamless image, which is the intention of the artist
or game designer. Interestingly, we are already implementing the JavaFX “layer engine” in our JavaFXGame
application using the StackPane class (panes are layers). The “layer stack” image compositing approach is
common in games as well as in software such as Photoshop or GIMP.

What the SceneAntialiasing class does is to provide anti-aliasing processing (algorithm) to 3D scenes
so that they can be composited over your scene’s 2D background, whether that is the default Color.WHITE
or any other color value, a 2D image (creating a hybrid 2D and 3D app), or anything else, like Digital
Video. The SceneAntiAliasing class allows you to set the static SceneAntialiasing data field to a value of
DISABLED (turns anti-aliasing off) or BALANCED (turns anti-aliasing on). The balanced option provides a
balance of quality and performance, which simply means that more anti-aliasing quality will be processed
the more processing power that the device hardware brings to the table.

Next let’s take a look at the SnapshotParameters class (object), which is used to set up (contain) a
rendering attribute parameter that will be used by your SnapshotResult class (object). The parameters
include what type of Camera (parallel or perspective) object will be used, whether the depthBuffer used for
3D is on (true for 3D) or off (false for 2D), a Paint object used to contain a resulting snapshot image data, a
Transform object used to contain any transform data, and a Rectangle2D object that is used to define the
viewport area that is to be rendered. This would be the snapshot dimensions and what X,Y location on the
screen the upper-left corner of the SnapshotResult is set to.

This SnapshotResult class (and the object created using this class, more importantly) contains
your resulting snapshot image data, requested parameters, and source node in the Scene Graph that
it was generated from. For this reason, three methods supported by this class would be obvious: a
.getImage() method will get the snapshot image, a .getSource() method will get the source node, and a
.getSnapshotParameters() method will get the SnapshotParameters.

Scene Subpackages: Nine Scene-Related Packages
You might be thinking “Whew! That was a lot to cover in that javafx.scene package overview!” and indeed
the core javafx.scene package has a lot of classes in it covering scene creation, scene graph organization,
and scene utilities such as lighting, cameras, cursors, screenshots (“sceneshots”), and settings utilities.

http://dx.doi.org/10.1007/978-1-4842-0973-8_2

Chapter 7 ■ IntroduCtIon to JavaFX 9: overvIew oF the JavaFX new MedIa engIne

160

There is a lot more in the javafx.scene package, in “subpackages” as I call them, which are packages that
are underneath the javafx.scene package that are referenced using another dot with another package
name (description). In fact, there are nine more javafx.scene packages, as you can see in Table 7-1, which
cover things such as canvas drawing, texture painting, special effects, UI layout, digital imaging, event
handling, text and fonts, shapes (2D and 3D geometry), and 2D and 3D transforms. We’ll be looking at all
of these javafx.scene subpackage classes and concepts during this chapter, as well as using many of them
during the course of this book. This section of the chapter goes over javafx.scene subpackages in greater
detail, and much of the functionality that you’ll be using for your game development will be found in these
subpackages. This is why I’m giving you an overview of what JavaFX provides so that it’s done all in one place
and we can start Pro Java 9 Games coding using JavaFX 9 APIs and use all this multimedia power to create
game experiences.

Let’s start with the packages that contain the fewest classes and get those out of the way first. Even
though the table lists subpackages alphabetically, the first one, javafx.scene.canvas, contains two classes: a
Canvas class that is used to create a Canvas object and a GraphicsContext class that is used to control calls to
draw onto that Canvas.

The next subpackage, javafx.scene.effect, contains the special effects classes. These can be very useful
for pro Java 9 games development, so this is one of the subpackages that I’m going to cover in detail during
this section.

The javafx.scene.image subpackage is used to implement digital imagery within JavaFX, and it
contains your ImageView, Image, WritableImage, PixelFormat, and WritablePixelFormat classes. The
ImageView class is what you’ll normally use to hold your digital image assets, and the more advanced
PixelFormat classes allow you to create digital imagery on a pixel-by-pixel basis if you want to do more
advanced (algorithmic) pixel-based digital image creation.

Table 7-1. The Nine Second-Level JavaFX Scene Subpackages with Primary Function and Description of the
Functional Classes

Package Name Function Package Contents and Functional Description

javafx.scene.canvas Direct drawing Provides the Canvas class (and Canvas object) for a
custom drawing surface

javafx.scene.effect Special effects Special effects classes: Glow, Blend, Bloom, Shadow,
Reflection, MotionBlur

javafx.scene.image Digital imaging Digital imaging classes: Image, ImageView,
WritableImage, PixelFormat

javafx.scene.input Event handling Provides classes related to getting input from the user
into the JavaFX app

javafx.scene.layout UI layouts User interface layout container classes: TilePane,
GridPane, FlowPane, etc.

javafx.scene.paint Texture (paint) Paint classes: Paint, Color, LinearGradient,
RadialGradient, Stop, Material, etc.

javafx.scene.shape Geometry 2D and 3D geometry classes: Mesh, Shape, Shape3D,
Circle, Line, Path, Arc, etc.

javafx.scene.text Text and fonts Provides text rendering and font rendering classes:
TextFlow, Text, Font, etc.

javafx.scene.transform Transforms Provides transform classes: Transform, Affine, Rotate,
Scale, Shear, Translate

www.ebook3000.com

http://www.ebook3000.org

Chapter 7 ■ IntroduCtIon to JavaFX 9: overvIew oF the JavaFX new MedIa engIne

161

The javafx.scene.input subpackage contains classes that are used to get input from the JavaFX app’s user,
including mouse and keyboard input, gestures, touchscreen, scrolling, zooming or swipes input, and clipboard
content, among other types of input. Input and actions are processed using the event-handling capabilities,
which you will be looking at in great detail during this book and which you have already experienced in your
Pro JavaFX 9 application, as seen in your bootstrap Java 9 code in lines 20 through 25 (shown in Figure 6-7).

The javafx.scene.layout subpackage contains classes that are used to create user interface design
layouts and can be used for your screen layout designs as well. These layout classes include classes that
control and manage backgrounds, add and style borders, and provide UI Pane management classes such as
StackPane, GridPane, TilePane, FlowPane, and AnchorPane. These Pane subclasses provide automatic
screen layout algorithms for UI controls in JavaFX. The Background class provides screen background
utilities, and the Border class provides screen border utilities, which can be used for spicing up graphics for
your user interface screens.

The javafx.scene.paint subpackage contains a Stop class; a Paint superclass and Color, ImagePattern,
LinearGradient, and RadialGradient subclasses; and the 3D Material superclass and its PhongMaterial
subclass. Those of you who are familiar with 3D content production will recognize this Phong shader
algorithm, which will allow different surface looks (plastic, rubber, etc.) to be simulated. These Material and
PhongMaterial classes need the i3D capabilities to be present on the playback hardware in order to function
successfully, just like the SceneAntialiasing, PerspectiveCamera, and LightBase classes and subclasses.
These need GPU hardware acceleration or software rendering.

The abstract Paint class creates subclasses that paint objects, the Color class colors these objects (fills
them with color), LinearGradient and RadialGradient are Paint subclasses that fill objects with color
gradients, and the Stop class allows you to define where a gradient color starts and stops inside of the
gradient, which is where its name comes from. Finally, there is your ImagePattern class, which can fill a
Shape object with a tileable image pattern, which can be quite useful for games.

The javafx.scene.shape subpackage contains classes for 2D geometry, commonly called shapes,
as well as for 3D geometry, commonly called meshes. A Mesh superclass and its TriangleMesh subclass
handle 3D geometry, as do the Shape3D superclass and its Box, Sphere, Cylinder, and MeshView
subclasses. The Shape superclass has a lot more subclasses (12); these are 2D geometry elements, and they
include the Arc, Circle, CubicCurve, QuadCurve, Ellipse, Line, Path, Polygon, Polyline, Rectangle, and
SVGPath classes. There is also “path” support, which a path being defined as an “open” shape (I like to call
it a “spline” since I am a 3D modeler) provided by the PathElement superclass, and its ArcTo, ClosePath,
CubicCurveTo, HLineTo, LineTo, MoveTo, QuadCurveTo, and VLineTo subclasses, which allow you to
draw spline curves to create your own custom Scalable Vector Graphics (SVG) shapes.

The javafx.scene.text subpackage contains classes for rendering text shapes and fonts into your scenes.
This includes the Font class for using any fonts that you may want to use that are not the JavaFX “system”
font, as well as the Text class for creating a Text Node that will display the text values using this font. There’s
also a specialized layout container class called TextFlow, which is used to “flow” text, much like you would
see done in a word processor.

The javafx.scene.transform subpackage contains classes for rendering 2D and 3D spatial
transformations, such as the Scale, Rotate, Shear, Translate, and Affine (3D rotation) subclasses of the
Transform superclass. These can be applied to any Node object in the Scene Graph. This allows anything
in your Scene Graph (text, UI controls, shapes, meshes, images, media, etc.) to be transformed in any way
that you like, which affords JavaFX game developers a ton of creative power when it comes to transforming
things. Translation, in case you are wondering, is a linear movement of an entire object. Shear is linear
movement on a 2D plane in two different directions or movement in one direction when another part of the
2D plane is fixed. Imagine moving the top of a plane, while the bottom remains fixed, so the square becomes
a parallelogram, or moving the top and bottom of the same plane (a square) in different directions.

Now that we have looked at a plethora of important and useful classes (objects) in the javafx.scene
package and its related subpackages, let’s take a look at the other 18 top-level JavaFX packages to get an idea
of the other key capabilities that JavaFX offers for application development, and of course we will focus on
those that can be utilized for game development as we have been doing so far during this chapter and will
continue to do throughout the book.

http://dx.doi.org/10.1007/978-1-4842-0973-8_6#Fig7

Chapter 7 ■ IntroduCtIon to JavaFX 9: overvIew oF the JavaFX new MedIa engIne

162

The javafx.graphics Module: 18 Multimedia Packages
There are 18 top-level javafx.graphics module packages that are the most often used packages (besides the
core javafx.base module packages). These follow a javafx.packagename name format (not javafx.graphics.
packagename). Some of these, such as scene and css, have subpackage levels as well. We saw this with the
nine javafx.scene package and its subpackages, which we looked at previously, so we won’t look at these
here. The javafx.graphics module is one of three key modules to include for creating Pro Java 9 Games, with
the others being javafx.base and javafx.media. Since nine javafx.graphics module packages are included
in Table 7-2, this essentially means that from a JavaFX API module perspective, the javafx.graphics module
has a total of 18 package categories, as nine are listed in Table 7-1. These module packages have been
reorganized since JavaFX 8 by the JavaFX 9 development team at Oracle to allow better modularization
(function optimization). For instance, if you don’t need audio or video in your 3D game, you could just use
the base and graphics modules. Since we want audio, we will use base, graphics, and media modules, or
three of the seven JavaFX API modules (a 57 percent JavaFX API package code reduction right off the bat).
I wanted to give you an overview of these 18 functional areas in the javafx.graphics module’s packages,
as shown in Table 7-1 and 7-2, and take a closer look at what each of the graphics areas (vector, raster,
animation, CSS) will do.

Some of these we have covered already, such as the javafx.application package, which we learned
about in Chapter 6, and the javafx.scene package and its subpackages, which we covered in the previous
section.

The first package in Table 7-2 is the javafx.animation package. Since animation is important for Java
games, let’s cover that in the next section of the chapter. I’ll also cover javafx.geometry and javafx.stage,
as the core packages from Table 7-2 that are needed for a Java 9 game are animation, application, geometry,
scene, and stage.

Table 7-2. javafx.graphics Module Top-Level (Nonscene) Packages, with Primary Functions and Description
of Function

Package Name Functions Package Contents Description

javafx.animation Animation Classes: AnimationTimer, Timeline, Transition,
Interpolator, KeyFrame, KeyValue

javafx.application Application Provides Application (init, start, stop methods),
Preloader, Parameters, Platform

javafx.concurrent Threading Provides threading classes: Task, Service,
ScheduledService, WorkerStateEvent

javafx.css CSS Provides classes related to implementing Cascading
Style Sheets (CSS) in JavaFX

javafx.css.converter CSS Provides classes related to implementing CSS in JavaFX

javafx.geometry 3D geometry Provides 3D geometry

javafx.print Printing Provides printing

javafx.scene Scene control Classes related to scene creation, organization, and
control (see Table 7-1)

javafx.stage Stage creation Provides Stage creation

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_6
http://www.ebook3000.org

Chapter 7 ■ IntroduCtIon to JavaFX 9: overvIew oF the JavaFX new MedIa engIne

163

JavaFX Animation for Games: Using javafx.animation Classes
The javafx.animation package contains the Animation superclass and Timeline, AnimationTimer,
Interpolator, KeyFrame, and KeyValue classes. It also contains the Transition superclass and ten
transition subclasses, all of which we are going to take a look at during this section of the chapter, as
animation is an important design element for pro Java 9 games development. Since these animation classes
are already coded for us, thanks to the JavaFX 9 API, all that we have to do to add animation to games is
use these classes properly. You’ll be spending a lot of time with these classes, so I’m going to go into each
one in detail so you know how each one works, which ones work together, and which ones you’ll need to
implement your own Java 9 game logic solution.

The JavaFX Animation Class: A Foundation for Animation Objects in JavaFX
The Animation class or more accurately the Animation object, provides the core functionality for animation
in JavaFX. The Animation class contains two (overloaded) Animation() constructor methods. They include
Animation() and Animation(double targetFramerate), and they will create the Animation object in
memory, which will control your animation, and its playback characteristics and life cycle, from a high-level
object that contains other subobjects.

The Animation class contains the .play() method, the .playFrom(cuePoint) or .playFrom(Duration
time) method, and a .playFromStart() method. These methods are used to start playback for the Animation
object. There is also the .pause() method, which can pause the animation playback, and a .stop() method,
which can stop animation playback. There are .jumpTo(Duration time) and .jumpTo(cuePoint) methods
to jump to predefined positions in an animation.

You can set the animation playback speed (some call this the frame rate, or FPS) by using the rate
property. The cycleCount property (variable) allows you to specify how many times an animation will loop,
and the delay property allows you to specify a delay time before the animation starts. If your animation is
looping, this delay property would specify your delay time used between loops, which can be used to create
some realistic effects.

You can specify a seamless animation loop by setting the cycleCount attribute or property (variable)
to be INDEFINITE and then using the autoReverse property (set to false), or you can use pong (back
and forth) animation looping by specifying the true value for the autoReverse property. You can also set
cycleCount to a numeric value such as 1 if you want the animation to play only one time and not loop
indefinitely.

There is a .setRate() method to set the animation playback rate property, a .setDelay() method to set
the delay property, and .setCycleCount() and .setCycleDuration() methods for controlling the cycling
characteristics. As you might imagine, there are also similar .get() methods to “get” the currently set values
for these Animation objects variables (or properties, attributes, parameters, characteristics; however you
prefer to look at your data fields is fine).

You can assign an action to be executed when the animation has completed playback using the
onFinished property, loaded with an ActionEvent object. This will be executed when the animation reaches
the end of each loop, and as you can imagine, some very powerful things can be triggered in a pro Java game
using this particular capability.

There are read-only variables (properties) that you can “poll” at any time, to find the status,
currentTime, currentRate, cycleDuration, and totalDuration for each Animation object. For instance, you
can use this currentTime property to see the position of the playback head (frame pointer) at any point in
time in the animation playback cycle.

Chapter 7 ■ IntroduCtIon to JavaFX 9: overvIew oF the JavaFX new MedIa engIne

164

The JavaFX Timeline Class: An Animation Subclass for JavaFX Properties
Timeline Management

The JavaFX Timeline class is a subclass of the JavaFX Animation superclass, so its inheritance hierarchy
would look like the following, starting with the Java masterclass java.lang.Object and progressing on
downward to the Timeline class:

> java.lang.Object
 > javafx.animation.Animation
 > javafx.animation.Timeline

Timeline objects can be used to define a special kind of Animation object that is comprised, or made up
of, JavaFX values (properties) of object type WritableValue. All JavaFX properties are of type WritableValue,
so this class can be used to animate anything in JavaFX, which means what you can do with it is limited only
to your imagination.

Timeline animations are defined using KeyFrame objects, created via the KeyFrame class mentioned
earlier. This KeyFrame class, not surprisingly, allows you to create and manage the KeyFrame objects that
live inside the Timeline object. Those familiar with animation know keyframes set the different interpolated
data values for different points in the animation of an object or data value to create smooth movements.

KeyFrame objects will always be processed by Timeline objects according to a time variable (accessed
using KeyFrame.time) and by properties to be animated, which are defined using the KeyFrame object’s
values and accessed using the KeyFrame.values variable.

It is important to note that you need to set up your KeyFrame objects before you start running the
Timeline object, as you cannot change a KeyFrame object within a running Timeline object. This is because
it has been put into system memory once it has been started. If you wanted to change a KeyFrame object in
a running Timeline object in any way, first stop the Timeline object, then make the change to the KeyFrame,
and then restart the Timeline object. This will reload the Timeline object and its revised KeyFrame objects
into memory along with their new values.

An Interpolator class, which you will be using during the book, interpolates these KeyFrame objects in
your Timeline object based on the Timeline direction. Interpolation is a process of creating in-between, or
“tween,” frames based on the beginning and ending values. In case you’re wondering how the direction is
inferred, it is kept in the rate property and the read-only currentRate property of the Animation superclass,
which is part of the extended Timeline subclass.

Inverting the value of the rate property (i.e., making it negative) will reverse (toggle) the playback
direction, and the same principle would hold when reading the currentRate property (the negative value
signifies the reverse, or backward, direction). Finally, a KeyValue class (object) is used to hold the data
values inside of each KeyFrame object. A KeyFrame object stores multiple (as many as needed) KeyValue
objects, using one KeyValue object per data value.

The JavaFX Transition Class: Animation Subclass for Transitions and
Special Effects Application

The JavaFX Transition class is a subclass of the JavaFX Animation superclass, so its inheritance hierarchy
would look like the following, starting with a Java master class called java.lang.Object and progressing
downward to a Transition class:

> java.lang.Object
 > javafx.animation.Animation
 > javafx.animation.Transition

www.ebook3000.com

http://www.ebook3000.org

Chapter 7 ■ IntroduCtIon to JavaFX 9: overvIew oF the JavaFX new MedIa engIne

165

The Transition class is a public abstract class, and as such, it can only be utilized (subclassed or
extended) to create transition subclasses. In fact, there are ten of these subclasses that have already been
created for you to use, to create your own transition special effects. These include your SequentialTransition,
FadeTransition, FillTransition, PathTransition, PauseTransition, RotateTransition, ScaleTransition,
TranslateTransition, ParallelTransition, and StrokeTransition classes. The Java 9 class inheritance hierarchy
for these subclasses would look similar to the following:

> java.lang.Object
 > javafx.animation.Animation
 > javafx.animation.Transition
 > javafx.animation.PathTransition

As a subclass of Animation, the Transition class contains all the functionality of Animation. Chances
are you will end up using the ten custom transition classes directly, since they provide the different types
of transitions you are likely to want to use (fades, fills, path based, stroke based, rotate, scale, movement or
translate, etc.). We’ll be learning how to use some of these as the book progresses, so I’m going to move on to
the AnimationTimer class.

The JavaFX AnimationTimer Class: Frame Processing, Nanoseconds,
and Pulse
The JavaFX AnimationTimer class is not a subclass of the JavaFX Animation superclass, so its inheritance
hierarchy would look like the following; it starts with the Java master class called java.lang.Object and ends
with AnimationTimer:

> java.lang.Object
 > javafx.animation.AnimationTimer

This means the AnimationTimer class was scratch-coded specifically to provide AnimationTimer
functionality to JavaFX and that it is not related to the Animation (or Timeline or Transition) class or
subclasses in any way. For this reason, the name of this class might be somewhat misleading if you are
mentally grouping it in with the Animation, Interpolator, KeyFrame, and KeyValue classes that occupy the
javafx.animation package with it; it has no relation to these classes whatsoever! This class allows you to
implement your own animation (or game engine) timer and scratch-code everything yourself! I showed how
to do this for i2D games in Beginning Java 8 Games Development.

This AnimationTimer class has also been declared to be a public abstract class, just like the Transition
class. Since it’s an abstract class, it can be utilized (subclassed or extended) only to create AnimationTimer
subclasses. Unlike the Transition class, it has no subclasses that have been created for you; you have to
create your own AnimationTimer subclasses from scratch.

The AnimationTimer class is deceptively simple, in that it has only one method that you must
“override,” or replace, which is contained in the public abstract class: the .handle() method. This method
contains the programming logic that you want to have executed on every frame of the JavaFX engine’s stage
and scene processing cycle, which is optimized to play at 60 FPS (60 frames per second), which just happens
to be perfect for games. JavaFX uses a pulse system, which is based on the new Java nanosecond unit of
time (versions previous to Java 7 used milliseconds).

Chapter 7 ■ IntroduCtIon to JavaFX 9: overvIew oF the JavaFX new MedIa engIne

166

JavaFX Pulse Synchronization: Asynchronous Processing for Your JavaFX
Scene Graph Elements

A JavaFX pulse is a type of timing, or synchronization event, which synchronizes the states of your elements
that are contained within any given Scene Graph structure that you create for your Pro Java 9 game or IoT
application. The pulse system in JavaFX is administered by the Glass Windowing Toolkit. Pulse uses the
high-resolution (nanoseconds) timers, which are also available to Java programmers using the System.
nanoTime() method, introduced as of Java 7.

The pulse management system in JavaFX is “capped” or “throttled” to 60 FPS. This is an optimization so
that all the JavaFX threads we discussed earlier have enough “processing headroom” to do what they need to
do. A JavaFX application will automatically spawn up to three threads, based on what you’re doing in your
pro Java 9 game logic. A basic business application would probably only use the primary JavaFX thread,
but an i3D game would also spawn the Prism rendering thread and if that pro Java 9 game also uses audio
and or video, which it usually will, it would also spawn a Media playback thread, and if it also implements
a social media interface or element, it would also spawn the WebKit rendering thread. So, as you will see,
robust Java 9 games will require careful processor time management.

We will be using audio, 2D, 3D, and possibly video during the course of our game development journey,
so our JavaFX game application will certainly be multithreaded! As you will see, JavaFX has been designed to
be able to create games with multithreading and nanosecond timing capabilities and i3D PRISM rendering
hardware support.

When something is changed in your Scene Graph, such as UI control positioning, a CSS style definition,
or an Animation is playing, a pulse event is scheduled and is eventually “fired” to synchronize the states of
elements in the Scene Graph. The trick in JavaFX game design is to optimize pulse events so that they are
focusing on gameplay logic (animation, collision detection). For this reason, for pro Java 9 games, you’ll
want to minimize nongameplay changes (UI control location, style changes) that the pulse engine needs to
process. You will do this by using a Scene Graph for a Static design system, that is, to design the fixed visual
elements (UI, background imagery, etc.) that are not altered by the pulse engine. This will save “pulses” for
use on dynamic elements of the game that animate or are interactive.

What I mean by this is you will use the Scene Graph to design your game’s structure but will not
manipulate static design Nodes (UI, background, decoration) in real time via the Scene Graph, using
dynamic programming logic, as the pulse system would need to be utilized to perform these UI updates,
and we’ll most likely need those real-time processing events to use for our Pro Java 9 gameplay processing.
There it is again: static versus dynamic game design.

The JavaFX pulse system allows developers to handle events asynchronously, or out of order, and
schedules tasks on the nanosecond level. Next, we will take a look at how to schedule code in a pulse using a
.handle() method.

Harnessing JavaFX Pulse Engine: Extending AnimationTimer Superclass to
Generate Pulse Events

Extending your AnimationTimer class is a great way to get the JavaFX pulse engine to process Java code
on every pulse that it processes. Your real-time game programming logic will be placed inside of your
.handle(long now) method and can be started and stopped at will by using the other two AnimationTimer
methods, .start() and .stop().

The .start() and .stop() methods are called from the AnimationTimer superclass, although the two
methods can also be overridden; just make sure to eventually call super.start() and super.stop() in the
overridden code methods. The code structure for this might look like the following, if you were to add it as

www.ebook3000.com

http://www.ebook3000.org

Chapter 7 ■ IntroduCtIon to JavaFX 9: overvIew oF the JavaFX new MedIa engIne

167

an inner class inside of your current JavaFX public void .start() method structure (which you can reference
in Figure 6-7, to refresh your memory):

public void start(Stage primaryStage) {
 Button btn = new Button;
 btn.setText("Say 'Hello World'");
 btn.setOnAction(new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent event) {
 System.out.println("Hello World!);
 }
 }
 new AnimationTimer() {
 @Override
 public void handle(long now) {
 // Program logic that gets processed on every pulse which JavaFX processes
 }
 }.start();
 // Rest of start() method code regarding Stage and Scene objects is in here
}

The previous programming logic shows how the AnimationTimer inner class could be constructed
“on the fly,” as well as how Java dot chaining works, as a .start() method call to the AnimationTimer
superclass is appended to the end of a new AnimationTimer() constructor. In one statement, you have the
AnimationTimer creation (new keyword), declaration (constructor method), and execution (start() method
call chained to the AnimationTimer object construct).

If you want to create a more complex AnimationTimer implementation for something central to your
game logic, such as Collision Detection, it would be a better approach (that is, a better pro Java 9 game
design) to make game timing logic into its own (custom) AnimationTimer subclass, instead of an inner class.
This is especially true if you are going to be creating more than one AnimationTimer subclass so that you can
implement custom pulse event processing. You can have more than one AnimationTimer subclass running
at the same time, but I recommend that you don’t get carried away and use too many AnimationTimer
subclasses but instead optimize your Java code and just use one.

To create your own AnimationTimer class called BoardGamePulseEngine using the Java extends
keyword in conjunction with an AnimationTimer superclass, implement this AnimationTimer class
definition and these required AnimationTimer superclass methods to create your “empty” JavaFX pulse
board game logic timing engine.

public class BoardGamePulseEngine extends AnimationTimer {
 @Override
 public void handle(long now) { // Program logic here that gets processed on every pulse
 }
 @Override
 public void start() {
 super.start();
 }
 @Override
 public void stop() {
 super.stop();
 }
}

http://dx.doi.org/10.1007/978-1-4842-0973-8_6#Fig7

Chapter 7 ■ IntroduCtIon to JavaFX 9: overvIew oF the JavaFX new MedIa engIne

168

We will be creating animation code later in the book after we learn the basics about Java 9, NetBeans 9,
JavaFX 9, and SceneGraph (Chapter 8). The code examples in this chapter are just examples to show you how
these JavaFX animation implementations would be accomplished. Next, let’s take a look at the JavaFX Stage
classes, where I will actually show you some code to make your JavaFX environment transparent so your games
can float over the OS desktop, an effect in Windows called a “Windowless ActiveX Control,” which allows you to
create virtual i3D objects.

JavaFX Screen and Window Control: Using javafx.stage Classes
The javafx.stage package contains classes that can be considered to be “top level” where the display that
your JavaFX application uses. In your use case, this is pro Java 9 games. This stage is at the “top” of your
resulting gameplay, because it shows your game’s scenes to the end user of your application. Inside of your
Stage object you have Scene objects, and inside of these are SceneGraph Node objects, which contain the
elements that comprise a Java 9 game or a Java 9 IoT application. Thus, a JavaFX Stage object is the highest-
level object you’ll be using in your Java 9 game.

The classes that are in this package, on the other hand, could be considered to provide low-
level services, from an operating system’s perspective. These would include Stage, Screen, Window,
WindowEvent, PopupWindow, Popup, DirectoryChooser, and FileChooser, as well as the FileChooser.
ExtensionFilter nested class. These classes will be utilized to interface with device display hardware,
operating system windowing management, file management, and directory (folder) management
functionality. This is because a Stage class (object) asks the OS for these features, rather than actually
implementing them using Java or JavaFX APIs, so the OS is actually spawning these services at the request of
your Java 9 game or Java 9 IoT application’s request for the OS to provide these OS front-end utilities.

The Screen class is what you will want to use if you want to get a description of the display hardware
that is being used by the hardware device that a JavaFX application is running on. This class supports
multiscreen (second screen is the common industry term) scenarios by providing a .getScreens() method
that can access ObservableList objects (a list object that allows listeners to track changes when they occur),
which will contain a list array containing all of the currently available screens. There is a “primary” screen
that is accessed using the .getPrimary() method call. You can get the physical resolution for the current
screen hardware by using a .getDpi() method call. There are also .getBounds() and .getVisualBounds()
method calls for usable resolution.

The Window superclass, and its Stage and PopupWindow subclasses, can be used by the JavaFX
end user to interact with your application. This is done using the Stage object named primaryStage that is
passed into your .start() method (see Figure 5-2) or using a PopupWindow (dialog, tooltip, context menu,
notification, etc.) subclass, such as a Popup or PopupControl object.

You can use the Stage class to create secondary stages within your JavaFX application programming
logic. A primary Stage object is always constructed by the JavaFX platform, using the public void
start(Stage primaryStage) method call (as you have seen already in Chapter 6 in your bootstrap JavaFX
9 application created by NetBeans 9). All JavaFX Stage objects must be constructed using, and modified
inside of, the primary JavaFX Application Thread, which I talked about earlier, when we looked at pulse
event processing. Since a Stage equates to a window on the operating system platform it is running on,
certain attributes, or properties, are read-only and need to be controlled at your OS level. These are boolean
properties (variables), and they include alwaysOnTop, fullScreen, iconified, and maximized.

All Stage objects have a StageStyle attribute and a Modality attribute, which can be set using constants.
The stageStyle constants include the StageStyle.DECORATED, StageStyle.UNDECORATED, StageStyle.
TRANSPARENT, StageStyle.UNIFIED, and StageStyle.UTILITY constants. The Modality constants include
the Modality.NONE, Modality.APPLICATION_MODAL, and Modality.WINDOW_MODAL constants. After
we finish discussing the javafx.stage package, in the next section, I will show you how to do something really
impressive using this StageStyle attribute and the TRANSPARENT constant that will set your JavaFX-based
Java 9 games and IoT applications far apart from everyone else’s in the marketplace.

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_8
http://dx.doi.org/10.1007/978-1-4842-0973-8_5#Fig2
http://dx.doi.org/10.1007/978-1-4842-0973-8_6
http://www.ebook3000.org

Chapter 7 ■ IntroduCtIon to JavaFX 9: overvIew oF the JavaFX new MedIa engIne

169

The Popup class can be used to create custom popup notifications, or even custom game components,
from scratch. Alternately, you can use the PopupControl class and its ContextMenu and Tooltip subclasses
to provide predefined (that is, precoded for your own implementation) JavaFX graphical user interface (GUI)
controls.

The DirectoryChooser and FileChooser classes provide support for passing through the standard
OS file selection and directory navigation dialogs into your JavaFX applications. The FileChooser.
ExtensionFilter nested class provides a utility for filtering the files that will come up in the FileChooser
dialog based on file type (file extension).

Next, let’s take your current JavaFXGame Application’s Stage object to the next level and show you how
to make your Java 9 (JavaFX 9) game a windowless (floating) application! This is one of the many impressive
features of JavaFX 9 that you can leverage in your Pro Java 9 Games Development pipeline.

Using the JavaFX Stage Object: Creating a Floating Windowless
Application
Let’s make the primaryStage Stage object, created by our .start(Stage primaryStage) method constructor,
for our JavaFXGame application transparent so that the HelloWorld Button (UI control) floats right on top of
your OS desktop (or in this case, on top of NetBeans 9). This is something that JavaFX can do that you don’t
see utilized very often, and it will allow you to create i3D games that will appear to “float” right on top of
your user’s OS desktop. For i3D virtual objects, at least on the Windows 7, 8, and 10 OS, this would be called
a “windowless ActiveX control.” Removing the window “chrome” or decorations should also be supported
in other advanced OSs such as Linux and Mac as well, and there is a program call to determine whether this
“remove everything except my content using alpha channel (transparency)” capability is in place, so you
can implement a fallback plan to a solid color or background image. This cool little trick (I thought I’d show
you something cool and powerful early on in the book) is accomplished in part by using the StageStyle.
TRANSPARENT constant, which you have just learned about, in conjunction with the .initStyle() method
from the Stage class. StageStyle is a “helper” class filled with stage (or OS window, ultimately) decoration
constants, one of which is TRANSPARENT. The fallback we’ll use is UNDECORATED (a normal OS window).

Adding a StageStyle Constant: Using the .initStyle(StageStyle style) Method
Call
As you can see in Figure 7-4, I have added a new line 26 in the Java 9 code (highlighted in light blue) and
typed in the primaryStage Stage object name; then I hit the period key to insert a Java dot chain to the
method that I want to use. At this point, NetBeans 9 will open a pop-up method selector helper dialog (more
of a chooser UI, actually); look for the .initStyle(StageStyle style) method, as shown in Figure 7-4. Clicking
the method will select it in blue, and double-clicking it will insert it into your code. We will do the same thing
for the parameter for the method next using the same work process of allowing (or enticing) NetBeans 9 into
doing the Java coding work for you.

Chapter 7 ■ IntroduCtIon to JavaFX 9: overvIew oF the JavaFX new MedIa engIne

170

As you can see in Figure 7-4, I clicked the initStyle(StageStyle style) option in the NetBeans 9 helper,
and this brings up a Javadoc window above the line of code you are crafting with documentation about the
method. You can use this as a way to learn what methods an object supports by typing the object name,
hitting the period key, and then selecting each method to see what it does.

As you can see in Figure 7-5, the Stage object is created using the .start(Stage primaryStage)
method call declaration and is set up (titled, styled, loaded with a scene, and then displayed) using the
.setTitle(), .initStyle(), .setScene(), and finally the .show() method calls inside of the .start() method
structure.

I’m going to leave a .setTitle() method call in the Java 9 code for now, but make a mental note that once
you get this windowless application treatment working, this title is part of the window’s chrome (titlebar UI
element). Once these are gone (including the titlebar), this setting of the title attribute will amount to being a
moot point.

If you were focusing on memory optimization at this point in the application development work
process, you would remove this .setTitle() method call because the title attribute would take up memory
space and wouldn’t even be seen because of your use of the StageStyle.TRANSPARENT constant for the
StageStyle (actually window style) attribute.

Inside of the .initStyle() method type, type the required StageStyle class (object) and a period to
bring up the next helper selector. This time it is a constant selector, as shown in Figure 7-5. Select the
TRANSPARENT option, read the Javadoc information on it, and then double-click it to complete the code
statement, which should look like the following:

primaryStage.initStyle(StageStyle.TRANSPARENT); // Insert StageStyle Class TRANSPARENT
Constant

Figure 7-4. Call an .initStyle() method off of the primaryStage Stage object, using dot notation to invoke a
helper menu

www.ebook3000.com

http://www.ebook3000.org

Chapter 7 ■ IntroduCtIon to JavaFX 9: overvIew oF the JavaFX new MedIa engIne

171

As you can see in Figure 7-5 in the Javadoc information pop-up, a fallback (downgrade) method
automatically will be coded for a TRANSPARENT window (stage) decoration style to be UNDECORATED.
This features a background color of white and still removes the standard OS windowing chrome (title bar,
minimize, maximize, close, resize, etc.). Next, let’s test our code and see if the button is now floating over
whatever is behind it (in this case, this is NetBeans).

Figure 7-5. Type StageStyle and a period in the method parameter area to pop up a constant selector
NetBeans helper

Chapter 7 ■ IntroduCtIon to JavaFX 9: overvIew oF the JavaFX new MedIa engIne

172

Next use the Run icon (or the Run menu) and run the application. As you can see in Figure 7-6, what we
are trying to achieve did not work, and the Window chrome elements are gone, but the transparency value is
not evident.

As you can see, there is an off-white color value (used in iTV set applications, as some iTV sets don’t
support a 255,255,255 White) that is evident against the full 255,255,255 white that NetBeans 9 uses for its
code editor pane.

There must be something else in your processing pipeline that is not yet defining your Stage’s
background using the transparency value. Transparency is defined using the hexadecimal value of
0x00000000, which signifies all AARRGGBB (Alpha, Red, Green Blue) transparency and color values being
turned off. You need to start thinking about the JavaFX components within your application as being layers
(currently these are Stage, Scene, StackPane, Button).

You learned about digital imaging concepts, such as color depth, alpha channels, layers, blending,
dithering, and all of that fun technical information that relates to processing pixels in a 2D plane during
Chapter 2 of this book.

The next thing that we should try to set to this transparent value is the next level down in your JavaFX
Scene Graph hierarchy from the Stage, which contains the Scene Graph itself. The next most top-level
component, as you’ve learned during this chapter, is the Scene object, which also has a background color
value parameter or attribute.

Therefore, the next step is to try to set that attribute to zero opacity and color using the hexadecimal
value of 0x00000000 or a Java 9 Color class constant that will accomplish this same exact objective.

Your Scene class (object) does not have the style constant of TRANSPARENT like the Stage class (object)
has, so you will have to approach setting the Scene object’s background to a transparency value in a different
way, using a different method and constant. One thing that you should realize is that everything in JavaFX
that writes itself to the screen will in some way or another support transparency. This allows multiple layer
compositing within JavaFX apps.

Figure 7-6. Run Project to see if the Stage object is transparent; clearly there is an object set to off-white
background color

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_2
http://www.ebook3000.org

Chapter 7 ■ IntroduCtIon to JavaFX 9: overvIew oF the JavaFX new MedIa engIne

173

If you look at the Scene class documentation, you will notice that there is a .setFill(Color value)
method that takes a Color (class or object) value, so let’s try that next. As you see in Figure 7-7, I called the
.setFill() method off of the Scene object named scene using a scene.setFill(); method, which NetBeans
lets me select from the drop-down helper.

Select and double-click the .setFill(Paint value) method and then type the Java 9 Color class name
in the parameter area (Color is a subclass of Paint). Next, type a period to bring up the constants contained
in the Java 9 Color helper class, as shown in Figure 7-8, and find and select a TRANSPARENT constant. As
you can see in the Javadoc helper pane, the ARGB color value is the desired #00000000.

Figure 7-7. Add a new line of code and type in the scene’s Scene object and a period to invoke a method helper
selector

Chapter 7 ■ IntroduCtIon to JavaFX 9: overvIew oF the JavaFX new MedIa engIne

174

Run the application again to see whether the transparency is showing yet. As you can see in Figure 7-9,
it is still not transparent. Since we are using a StackPane object to implement layers in the BoardGame
application, this is the next level up that we need to try to set a transparency value at. JavaFX uses a Color
class constant to determine a default background color value for all its UI objects. If I were on the JavaFX 9
team, I’d be arguing for this to be changed to the Color.TRANSPARENT constant, but of course, this might
confuse new users, as alpha channel and compositing layers are advanced concepts and topics, which is
why they are at the beginning of this pro Java 9 games development book in Chapter 2 covering digital image
compositing and related concepts. Notice in Figure 7-9 that NetBeans has imported the Java Color class for
you since you used it in the scene.setFill(Color.TRANSPARENT); Java statement.

Figure 7-8. Type the Color class name and period in the parameter area, and find and select a
TRANSPARENT constant

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_2
http://www.ebook3000.org

Chapter 7 ■ IntroduCtIon to JavaFX 9: overvIew oF the JavaFX new MedIa engIne

175

The javafx.scene.layout.StackPane class is subclassed from the javafx.scene.layout.Region class,
which has a .setBackground() method to set the Background (class or object) value. Again, there must be
a TRANSPARENT value constant available, or something similar to that such as Background.EMPTY, as you
need to always set the background values to be transparent, especially for pro Java 9 game design, where you
need the flexibility to achieve advanced 2D and 3D compositing and rendering pipelines. This support for
transparency also holds true for Android UI containers.

It is interesting to note that things are not always as straightforward and consistent as we would want
them to be in Java programming, as we’ve used three different method calls, passing three custom object
types, thus far, to achieve exactly the same end result (installing a transparent background color/image plate
for the design element): .initStyle(StageStyle object), .setFill(Color object), and .setBackground(Background
object). This time, you are going to call a .setBackground(Background value) method with yet another
Background class (object) constant called EMPTY.

NetBeans 9 will help you to find the constant once you call the method off of the StackPane
object named root, using the root.setBackground(Background.EMPTY); Java statement. This time it
is easier as the Background.EMPTY constant happens to be the default configuration setting for the
.setBackground() method call. If you want to see all of the Background helper class constants, type root.
setBackground(Background. into NetBeans 9 and look at the results that appear in the constants pop-up
helper selector pane.

As you can see in Figure 7-10, NetBeans 9 provides a method selector drop-down, and once you select
and double-click the .setBackground(Background value) method, NetBeans 9 will write the code statement
for you, automatically inserting the default EMPTY constant called off of the Background class using

Figure 7-9. Set the Scene object fill color to TRANSPARENT, and notice that NetBeans codes a Color class
import statement

Chapter 7 ■ IntroduCtIon to JavaFX 9: overvIew oF the JavaFX new MedIa engIne

176

dot notation. As you will see in Figure 7-11 in red, NetBeans will also code the import statement for the
Background class at the top of the Java class.

Figure 7-10. Add a line of code after the root StackPane object, type root and a period, and select
setBackground()

www.ebook3000.com

http://www.ebook3000.org

Chapter 7 ■ IntroduCtIon to JavaFX 9: overvIew oF the JavaFX new MedIa engIne

177

You’re now ready to again test your windowless (transparent) JavaFX application version by using your
Run Project work process, either via the Run menu or via the green play transport icon at the top left of the
NetBeans IDE.

As you can see in Figure 7-11, we’ve now achieved our objective, and just the Button object is visible on
top of the NetBeans IDE Java code editing pane, which is the next application under the running Java code
window. Under that is the OS desktop.

You can also see that NetBeans added your Background class import statement and the nine lines of
the StackPane (root) and Scene (scene) objects Java 9 code, which we added to make this end result happen
in lines 25 to 33 of Figure 7-11. Be sure to understand the progression of the creation of these objects and
how they link, or “wire up,” as I like to call it, into each other, becoming inexorably functionally intertwined.
Understand that the order of the Java 9 programming statements is nearly as important as the construction
of the Java 9 statements themselves.

For instance, you can’t code line 28 until you have coded line 25, where you instantiate your root
StackPane object, so that you can use it to create the scene’s Scene object.

I clicked the root object in NetBeans 9 to tell the IDE to show me the usage of that object in the class,
which, as you’ll see in Figure 7-11, is tracked using yellow highlighting on the root object in the Java 9 code.
This cool feature becomes more and more important the more complex and complicated your pro Java 9
games code becomes. As I mentioned in Chapter 6, we will be covering handy NetBeans 9 features during
many of the chapters in this book.

Figure 7-11. The transparency now goes through all objects (layers), and the button is now rendered on the
OS directly

http://dx.doi.org/10.1007/978-1-4842-0973-8_6

Chapter 7 ■ IntroduCtIon to JavaFX 9: overvIew oF the JavaFX new MedIa engIne

178

The last test is to make sure that our JavaFX application is transparent on top of the OS desktop itself.
Drag the NetBeans 9 IDE out of the way, and see your Button UI element on top of the desktop background
image, which you can see in Figure 7-12 is now working perfectly.

You can also see the code collapse and expand icons (plus and minus icons at the left of the code) at
work. I have closed (collapsed) the .start() method and opened the .main() method. Clicking the minus will
close the .main() method, and clicking the plus icons will open the import statements and .start() method
code bodies.

I closed the import statements block and .start() method code block to show you the five primary
areas for this class: your javafxgame package declaration, your import statements block, your JavaFXGame
Application subclass declaration, and the two primary methods needed for any JavaFX 9 games (or IoT)
application, which are .start() and .main().

Using 2D, 3D, and alpha channels, some crazy cool apps can be created using this StageStyle.
TRANSPARENT capability, so I thought I would show this to you early on during the book so that I could get
some cool tricks and tips pertaining to enhancing your JavaFX IoT application and pro Java games coding
experience into this JavaFX “overview” chapter. Defining a game or i3D virtual object that floats right on an
OS desktop is a rare and visually impactive result.

Now that we’ve taken a fun coding break from reviewing all of the JavaFX 9 APIs that most directly relate
to pro Java 9 games development, let’s get back into looking at some of the other JavaFX modules, packages,
and class offerings that you may want to know about regarding interactivity, UI design, charting, audio, or
video media assets, as well as about interfacing with the Internet and social media platforms. We’ll also
briefly cover some of the APIs you won’t use!

Now that we have taken a look at the javafx.stage package, let’s look at the javafx.geometry package next.

Figure 7-12. The JavaFX application seamlessly composited on top of the Windows 7 OS desktop's wallpaper

www.ebook3000.com

http://www.ebook3000.org

Chapter 7 ■ IntroduCtIon to JavaFX 9: overvIew oF the JavaFX new MedIa engIne

179

JavaFX Bounds and Dimensions: Using javafx.geometry Classes
Even though the term geometry technically applies to 2D and 3D assets, these are contained in a javafx.
scene.shape package, which we have already covered earlier in the chapter. The javafx.geometry package
can be considered to be more of a “utility” package, containing foundational classes for building 2D or
3D constructs from scratch. As such, the package contains classes such as a Bounds superclass and its
BoundingBox subclass, as well as Insets, Point2D, Point3D, Dimension2D, and Rectangle2D geometry
content creation utility classes. All of these classes in this javafx.geometry package, except for the
BoundingBox class, were extended directly from the java.lang.Object master class, meaning that they were
each developed (coded from scratch) for providing points (also called vertices), rectangles, dimensions,
boundaries, and insets (inside boundaries) for use as geometric utilities for your Java 9 games.

The Point2D and Point3D classes (objects, ultimately) hold X,Y coordinates for a 2D point on a 2D
plane, or X,Y,Z coordinates for a 3D point in 3D space, respectively. These Point objects will ultimately be
utilized to build more complex 2D or 3D structures, made up of a collection of points, such as a 2D path,
or a 3D mesh. The Point2D and the Point3D constructor method calls are not overloaded, and they use the
following standard format, respectively:

Point2D(double X, double Y)
Point3D(double X, double Y, double Z)

The Rectangle2D class (object) can be used to define a rectangular 2D area, often referred to as a
“plane,” and has many uses in graphics programming, as you might well imagine.

A Rectangle2D object has a starting point on the upper-left corner of the rectangle, specified using
an X and Y coordinate location, as well as a dimension (width by height). A constructor method for a
Rectangle2D object has the following standard format and is not overloaded:

Rectangle2D(double minX, double minY, double width, double height)

There is also a Dimension2D class (object) that specifies only the width and height dimension and
does not place the dimension (which would make it a rectangle) on the screen using an X, Y location. Its
constructor method is as follows:

Dimension2D(double width, double height)

The Insets class (object) is like a Dimension2D class, in that it does not provide a location value for
the inset but does provide offsets for a rectangular inset area based on top, bottom, left, and right offset
distances. The Insets method is, in fact, overloaded so that you can specify an equidistant inset, or a
customized inset, using the following:

Insets(double topRightBottomLeft)
Insets(double top, double right, double bottom, double left)

The Bounds class is a public abstract class and will never be an object but instead is a blueprint for
creating Node boundary classes such as its BoundingBox subclass. The Bounds superclass also allows a
negative value, which is used to indicate that a bounding area is empty (think of it as null, or unused).
A BoundingBox class uses the following (overloaded) constructor methods to create a 2D (first constructor)
or a 3D (second constructor) BoundingBox object:

BoundingBox(double minX, double minY, double width, double height)
BoundingBox(double minX, double minY, double minZ, double width, double height, double depth)

Next, let’s take a look at Event and ActionEvent processing in JavaFX, as this adds interactivity to your game.

Chapter 7 ■ IntroduCtIon to JavaFX 9: overvIew oF the JavaFX new MedIa engIne

180

JavaFX Input Control for Games: Using the javafx.event Classes
Since games are interactive by their very nature, let’s take a look at the javafx.event package next, since it
provides us with the Event superclass and its ActionEvent subclass for handling ACTION events like UI
elements use or animation KeyFrame processing events use, for instance. Since you are going to be using
ActionEvent in pro Java 9 games (or IoT applications), I am going to look at its cross-package (Java to JavaFX)
class inheritance hierachy here, as that will also show you the origin of the JavaFX Event class. This is
possible because JavaFX API is part of (underneath) the Java API.

Java.lang.Object
 > java.util.EventObject
 > javafx.event.Event
 > javafx.event.ActionEvent

The JavaFXGame application is already using this ActionEvent class (object) with the EventHandler
interface and its .handle() method, which you’ll implement in order to tell the Java application what to do
to handle that Event, which is an ActionEvent once it has occurred (the programming term is fired). This
.handle() method then “catches” the fired event and processes it, according to the Java 9 programming logic
inside of the “body” of this .handle() method.

As you know from Chapter 5, a Java interface is a type that provides empty methods that are declared
for use but do not yet contain any Java constructs. The unimplemented methods will, at the time of their
use, need to be implemented by you, the Java programmer. This Java interface defines only which methods
need to be implemented; in this case, it’s a single method that will “handle” the ActionEvent so that this
event gets processed in some fashion.

It is important to note that the Java interface defines a method that needs to be coded but does not
write the method code for you, so it is a “road map” of what you must do to complete, or interface with,
the programming structure that is in place. In this case, this is a Java programming structure for handling
ActionEvent objects, or, more accurately, a programming structure for handling ActionEvents once they have
been fired.

As with everything else covered in this JavaFX new media engine overview chapter, you will soon be
getting deeper into the details of how to use these packages, classes, nested classes, interfaces, methods,
constants, and data fields (variables) during the course of this pro Java 9 games and IoT applications
development book as you apply these JavaFX 9 programming structures, JavaFX scene graph construction,
and new media asset design concepts.

JavaFX UI Elements: Using the javafx.scene.control Classes
The javafx.scene.control package, along with the javafx.scene.chart package, which we will cover next, is in
the javafx.controls module. This package contains all the user interface control (they are called “widgets”
in Android, and I like to call them UI “elements”) classes, like Alert, Button, Cell, CheckBox, ChoiceDialog,
ContextMenu, Control, DatePicker, ColorPicker, Label, ProgressBar, Slider, Label, RadioButton, ScrollBar,
and TextField. Since there are more than 100 classes in javafx.scene.control, I am not even going to attempt
to cover them all here, as an entire book could be written about this one Java 9 module. If you wanted to
review these classes, simply reference javafx.control module using Google, or on the Oracle Java web site,
and you can peruse what these classes can do for days on end. For this module, “reference” is the key word,
as you will want to reference this package, and its classes, individually, at the time you need to implement
a given UI element. I will be attempting to create the i3D game in this book (eventually) using my own 3D
UI elements and code so that I do not have to include this javafx.controls module in the distribution, saving
the overhead of having to include more than 100 control classes (not to mention well over a dozen charting
classes) in the distribution that are not even utilized.

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_5
http://www.ebook3000.org

Chapter 7 ■ IntroduCtIon to JavaFX 9: overvIew oF the JavaFX new MedIa engIne

181

JavaFX Business Charting: Using the javafx.scene.chart Classes
The javafx.scene.chart package is in the javafx.controls module with the predefined UI controls (UI elements).
This package contains the business charting classes, such as Chart, ScatterChart, StackedAreaChart, XYChart,
PieChart, LineChart, BarChart, StackedBarChart, AreaChart, BubbleChart and the like, for use in business
applications, which is a different book entirely, so we won’t be covering charting during this book. In fact,
for my games I’m going to use a 3D UI approach, which would mean that I don’t need to include the javafx.
controls module (a massive amount of classes) at all, meaning my game module would only have to include
javafx.base, javafx.media and javafx.graphics, making the distribution a significantly smaller download (base
has only 10 packages, media has 9, while graphics has 18 as you have seen throughout this chapter).

JavaFX Media Control: Using the javafx.scene.media Classes
The javafx.scene.media package is contained in the javafx.media module and contains classes that are
used for the playback of audio and video media assets, including the Media, MediaPlayer, and MediaView
classes, as well as the AudioClip, AudioEqualizer, EqualizerBand, Track, VideoTrack, and SubtitleTrack
classes. The Media class (or object) references or contains an audio or video media asset, the MediaPlayer
plays that asset, and the MediaView, especially in the case of video, displays the digital audio or video media
asset along with a transport used for media playback.

We will be using the AudioClip class later in this book when we add digital audio sound effects for your
pro Java 9 game, and as long as we are using the digital audio portions of this module, if we have to include
it in your application (modules) distribution, we might as well leverage the digital video asset (video classes)
features as well.

JavaFX Web Rendering: Using the javafx.scene.web Classes
The javafx.scene.web package is contained in the javafx.web module and contains classes for rendering web
(Internet) assets in a scene. This package contains a collection of classes, including WebEngine, WebView,
WebEvent, WebHistory, and HTMLEditor. The WebEngine class (hey, someone else calls these algorithms
engines), as you might imagine, does the processing for showing HTML5, CSS3, CSS4, and JavaScript in
JavaFX Scenes, and the WebView creates the Node to display the WebEngine output in a JavaFX Scene
Graph. The WebHistory class (object, ultimately) holds the Internet “session,” from WebEngine instantiation
to removal from memory, which is a history of web pages visited, and the WebEvent class “bridges” the
JavaScript web event processing with the JavaFX 9 event processing. We will not be using the javafx.web
module for the i3D game that we will be creating over the course of this book, as I am going to focus on the
core APIs that can be used to provide the most visually professional i3D gameplay results.

Other JavaFX Packages: Print, FXML, Beans, and Swing
There are a few other JavaFX packages that you should take a closer look at before you are done with this
JavaFX overview chapter, as they are packages that contain classes that you may want to use in your pro Java
games development but that provide more specialized capabilities such as printing, using third-party Java
code, using older UI paradigms such as AWT and Swing, and offloading UI design to nonprogrammers using
XML (specifically FXML). These APIs include the javafx.print package (javafx.graphics module), javafx.fxml
package (javafx.fxml module), javafx.beans package (javafx.base module), and javafx.embed.swing package
(javafx.swing module). You are not likely to use these in your Java game design and development work
process unless you have a specialized need for your project. The most obvious of these is javafx.print used
to allow printers to work with your pro Java 9 games. If you need to use older Swing UI elements, there is a
javafx.swing module that will allow this but will add a bigger data footprint to your Java 9 game distribution.
The javafx.beans package will allow you to use Java Beans (third party or added-in classes), and the javafx.

Chapter 7 ■ IntroduCtIon to JavaFX 9: overvIew oF the JavaFX new MedIa engIne

182

fxml module will allow you to use Java FXML, the XML language that allows user interface and graphics
design to be offloaded to XML instead of Java coding. This allows non-Java-savvy designers to work on a
game project. This approach is also used by the Android OS and Android Studio IDE, which uses XML for
many top-level design tasks so the designers don’t also have to be programmers.

Summary
In this seventh chapter, you got an overview of some of the most important packages, concepts, components,
classes, constructors, constants, and variables (attributes, parameters, data fields) that can be found in the
JavaFX 9 API. This is an impressive collection of seven Java 9 modules containing 36 packages, many of
which I outlined succinctly using tables and then covered one by one. I did this as most, if not all, of the
packages and classes outlined during this chapter will eventually be needed, in one way or another, for new
media, 2D, 3D, and hybrid 2D+3D pro Java 9 games development. When I say a comprehensive overview, I
mean let’s take a look at everything we’ll need for game development using JavaFX 9 under Java 9.

Certainly, I can’t cover every functional class in the JavaFX 9 API in one chapter, so I started with the
overview of the JavaFX API new media engine in Figure 7-1 and how it integrates with the JavaFX Scene
Graph above it and with the Java 9 APIs, NetBeans 9, and the target operating systems below these APIs.
Your Java 9 game distribution and the OSs are bridged using the Java Virtual Machine (JVM). This serves to
give JavaFX its expansive OS support across so many popular platforms and consumer electronics devices,
from smartphones to tablets to iTV sets, as well as all of the leading web browsers (Chrome, Firefox, and
Opera) that are based on the popular WebKit engine.

You took a high-level technical view of JavaFX by looking at the structures that make up your JavaFX
engine, including a JavaFX Scene Graph, the JavaFX APIs, Quantum, Prism, Glass, WebKit, and the
Media Player engine. You looked at how these multithreading, rendering, windowing, media, and web
engines interface with the Java 9 APIs and the JDK, as well as with NetBeans 9 and the JVM bytecode that
it generates, which is supported by all the various operating system platforms that are currently running on
top of more than a dozen different consumer electronics device types from 96-inch UHD iTV sets down to
4-inch smartphones.

I covered JavaFX core concepts, such as using the JavaFX Scene Graph, and the JavaFX pulse events
system, which we’ll be leveraging to create a pro Java 9 game throughout the course of the book, starting in
the next chapter, when we start to design the game and cover how to use the JavaFX Scene Graph to develop
the processing hierarchy.

I dove into some of the key JavaFX packages, subpackages, and classes used for pro Java 9 game design,
such as application, scene, shape, effect, layout, control, media, image, stage, animation, geometry, event,
fxml, and web, as well as their related Java 9 modules, packages, subpackages, classes, and subclasses. In
some cases, I even covered their interfaces, nested (helper) classes, and data constants.

You took a break from this JavaFX 9 API review to add some code to the JavaFXGame application that
allowed it to be a “windowless” application, which is able to “float” over any popular OS desktop. You
learned about how to make the Stage, Scene, and StackPane objects’ background attribute transparent by
using the alpha channel with a hexadecimal setting of 0x00000000 or by using the equivalent constant
representing 100 percent alpha transparency, such as Color.TRANSPARENT, StageStyle.TRANSPARENT, or
Background.EMPTY. You also saw that the Group (Node) class and object inherently have a transparent
background; when you changed your top-level Node for your Scene Graph from a StackPane to a Group
(a much better top-level Node), the Group background transparency did not need to be set at all.

I had to get some work using the NetBeans 9 IDE, the Java 9 programming language, and the JavaFX
9 API into this chapter, so we can start to gradually add more and more code until (soon) the remaining
chapters are completely coding, as all of this foundational material, covering new media asset design,
API, IDE, game concepts, JVM, UI, UX, 3D rendering engines, 2D playback engines, WebKit, static versus
dynamic, game optimization, and so forth, have all been put firmly into place in your minds, as you will need
to build upon this advanced knowledge throughout the duration of the book.

www.ebook3000.com

http://www.ebook3000.org

Chapter 7 ■ IntroduCtIon to JavaFX 9: overvIew oF the JavaFX new MedIa engIne

183

In the next chapter, you’re going to look at the JavaFX 9 Scene Graph. You’ll begin to construct your
Scene Graph structures that you learned about during this chapter and start to build the foundation for
the game, including a UI “panel” of Button elements used to start your game. I’ll also explain your game’s
rules, display high scores, give production credits, and include legal disclaimers. I know you’re eager to get
started building your pro Java 9 game infrastructure, which you’ll begin doing in earnest in the next chapter,
creating custom methods and adding new Java code using JavaFX APIs to start creating the top level for
your JavaFXGame class. Actually, you started doing this a little bit during this chapter by learning how to
implement transparency inside of (and through) your JavaFX 9 Scene Graph layers (Application to Scene to
Group to StackPane to VBox to Button).

185© Wallace Jackson 2017
W. Jackson, Pro Java 9 Games Development, https://doi.org/10.1007/978-1-4842-0973-8_8

CHAPTER 8

JavaFX 9 Scene Graph
Hierarchy: A Foundation for
Java 9 Game Design

Let’s build on our newfound knowledge of JavaFX, game design, multimedia, and Java that we learned about
in the previous chapters here in Chapter 8 by starting to design the infrastructure of our i3D JavaFXGame
game, from both a User Interface and User Experience standpoint and an “under the hood” game
engine, 3D sprite engine, collision engine, and physics engine standpoint. We will keep optimization
in mind, as we must do during the rest of the book, so that we don’t get a Scene Graph that is so extensive
or complicated that the pulse system cannot update everything efficiently. This means keeping primary
game UI screens (StackPane Node) to a minimum (four or five) to leave most processing power for the
3D game rendering (Group Node) and making sure the Media Player (digital audio or digital video) uses
its own thread, if this type of media is used at all. (Audio and especially video is very data heavy and can
be very processing intensive.) You will also need to make sure that the functional “engines” that drive the
game are all coded modularly and logically, use their own classes, and utilize the proper Java programming
conventions, structures, methods, variables, constants, and modifiers that you learned about in Chapter 5.
It will be a massive undertaking and will take hundreds of pages to implement, starting with this chapter,
now that I have made sure you are all on point with your knowledge of Java, JavaFX, NetBeans, 2D, and 3D
new media concepts.

The first thing that I will cover is a top-level, front-facing user interface screen design, which your game
will offer to the user when launching the Java application. This will include the BoardGame “branding”
splash screen that a user sees when launching the application. This screen will have Button controls on
one side that access information screens containing instructions, credits, legal disclaimers, and the like.
These UI screens, which we want to minimize in number, will be StackPane Node layers. A StackPane
object is designed to contain stacked image (compositing) layers. These game support screens will contain
information that a user needs to know in order to play the game effectively. This includes text-based
information, such as game instructions, credits, legal disclaimers, and a high score screen. We will include
legal disclaimers to keep the legal department happy and will feature a credits screen highlighting the
contributions of programmers and new media artisans who worked on creating the game and game assets.

The next level down of this BoardGame design foundation that we will conceptualize during this
chapter is the under the hood, back-facing game engine component Java class design aspects for the
BoardGame. These will be unseen by the game user but are still very important. They might include a
GamePlay Engine to control gameplay updates to the game using JavaFX pulse, a 3D Sprites Engine to
manage 3D game sprites for the game, a Collision Engine that detects and responds when any collision has
occurred between two sprites, a Physics Engine that will apply force and similar physics simulations to the
gameplay so the 3D sprites accelerate and bounce realistically, and finally the 3D Actor Engine that will

www.ebook3000.com

https://doi.org/10.1007/978-1-4842-0973-8_8
http://dx.doi.org/10.1007/978-1-4842-0973-8_8
http://dx.doi.org/10.1007/978-1-4842-0973-8_5
http://www.ebook3000.org

Chapter 8 ■ JavaFX 9 SCene Graph hierarChy: a Foundation For Java 9 Game deSiGn

186

manage the characteristics for individual Actors that have been instantiated for your JavaFXGame game.
You will modify the existing JavaFXGame.java class to implement a UI, with Button controls accessing
functional information screens needed to provide the top-level user interface gameplay information
features. You’ll learn about several new JavaFX classes used for organization and positioning, including the
Group, VBox, Insets, and Pos classes.

Game Design Foundation: Primary Function Screens
One of the first things you will want to design for your game is the top-level, or highest-level, user interface
screens with which your game’s users will interface. This defines the user experience when the user
first opens your game. These screens will be accessed using your JavaFXGame Splash (Branding) Screen,
contained in the primary JavaFXGame.java class code. As you have seen already, this Java code will extend
the javafx.application.Application class and will launch the application, displaying a splash screen,
along with options to review the instructions, play the game, see the high scores, or review the game legal
disclaimers and game creator credits (programmer, artist, writer, composer, sound designer, etc.). Figure 8-1
shows a high-level diagram of the game starting with functional UI screens at the top and progressing down
to the JavaFXGame.java code and then to the APIs, to the JVM, and to the OS level.

This will require you to add four more Button nodes to the StackPane layout container Parent branch
node and eventually (in Chapter 9) an ImageView node to serve as a SplashScreen image container. This
ImageView node will have to be added to the StackPane “backplate” in order to be the first child node in the
StackPane (z-order=0), as the ImageView holds what I term the background plate for your Splashscreen UI
design. Since it is in the background, the image needs to be behind Button UI Control Node (SceneGraph)
elements, which will have z-order values of 1 to 5.

This means that initially you’ll be using only eight JavaFX SceneGraph Node objects: one Parent root
Group Node, a second StackPane layout “branch” Node, and five “leaf” Button Control Nodes in a VBox UI
container Node to create your JavaFXGame (functional) info screens. Your instructions, legal disclaimers, and
credit screens will utilize a TextFlow and ImageView Node, so we’ll be at ten Node objects after Chapter 9.
You can use the VBox Node to contain UI Buttons, which we will be doing during this chapter to put game UI
navigation infrastructure in your game application. This is before we even consider adding a Group “branch”
Node, and branch and leaf Node objects under that, to contain the 3D gameplay screen. This is, of course,
where you want to get the best pulse update performance for your Java game.

Figure 8-1. JavaFXGame functional screens and how they’ll be implemented in Java 9 and JavaFX 9 by using
the JVM

http://dx.doi.org/10.1007/978-1-4842-0973-8_9
http://dx.doi.org/10.1007/978-1-4842-0973-8_9

Chapter 8 ■ JavaFX 9 SCene Graph hierarChy: a Foundation For Java 9 Game deSiGn

187

This really isn’t so bad if you think about it, as these UI screens are all static and do not need to be
updated. That is, the UI elements contained in these Node objects are fixed and do not require any updating
using a pulse system, so you should still have 99 percent of the power of the JavaFX pulse engine left over
to process the JavaFXGame gameplay engine we’ll be coding during the book. You always need to remain
aware of how many SceneGraph Node objects you’re asking the pulse engine to process because if this
number gets to be too large, it will start to affect the game’s i3D performance. If the i3D game performance
suffers, gameplay won’t be smooth, which will affect your user experience (UX). The more Node objects we
keep static, the fewer have to be processed on each pulse.

Java Class Structure Design: Game Engine Support
Next let’s take a look at the functional structure of how the JavaFXGame code will need to be put together
“under the hood,” so to speak. This will be done using your Java 9 game programming code, which we
will be creating during this book. There is really no correlation between what the front-facing UI screens
look like and what your underlying programming logic will look like, as the majority of the programming
code for your game will always go toward creating the gameplay experience on the gameplay screen. The
game instruction and legal and credits screens will just be text (held in a TextFlow object) composited over
background imagery (held in an ImageView object). The scoreboard and high score screens will take a little
bit more programming logic, which we will do toward the end of the book since the game logic needs to be
created (and played) for a scoring engine and high scores to be able to be generated.

Figure 8-2 shows the primary functional game components that will be needed for your JavaFXGame to
be complete. The diagram shows a JavaFXGame.java Application subclass at the top of the hierarchy. This
creates the top-level JavaFXGame Scene object and the SceneGraph it contains, underneath or inside of, the
JavaFXGame application. These functional areas can either be implemented as methods or as classes. In this
book, we implement an i3D game using methods.

Underneath the JavaFXGame Scene object, which is created inside the JavaFXGame.java Application
subclass, is a broader structural design for functional Java 9 classes that you’ll need to code during the
remainder of the book. These engines (classes), shown in Figure 8-2, will create your game functions, such
as game engine (gameplay processing loop), logic engine (gameplay logic), sprite engine (3D geometry
management), actor engine (character’s attributes), score engine (game score logic), render engine
(real-time rendering), collision detection, and physics simulation. You will need to create all of these Java
methods in order to implement a comprehensive game engine for an i3D BoardGame.

Figure 8-2. Primary game engine functions, representing Java methods that you will need to code for your
game

www.ebook3000.com

http://www.ebook3000.org

Chapter 8 ■ JavaFX 9 SCene Graph hierarChy: a Foundation For Java 9 Game deSiGn

188

The Game Engine class, which I’ll call GamePulse.java, is the primary class that creates an
AnimationTimer object that processes your game logic at a high level based on pulse events that continually
trigger the gameplay loop. This loop, as you know, will call a handle() method that will in turn contain
method calls that will ultimately access your other classes that you will be creating to manage 3D geometry
(sprite engine), move the 3D objects around the screen (actor engine), detect collision (collision engine),
apply game logic after all collisions have been detected (logic engine), and apply the forces of physics to
provide realistic effects, such as friction, gravity, and wind (physics engine) to your gameplay. During the
remainder of this book you will be building some of these engines, which will be used to create the gameplay
experience for your players. We’ll logically stratify chapter topics based on each of the engines and what they
need to process, so everything is structured logically from a learning, as well as a coding, perspective.

JavaFX Scene Graph Design: Minimizing UI Nodes
The trick to minimizing the Scene Graph is to use as few Nodes as possible to implement a complete UI
design, and as you can see in Figure 8-3, I’ve accomplished this with one Group root Node object, one
StackPane layout “branch” Node object, one VBox branch Node object, and eight leaf (children) nodes
(one TableView, one ImageView, one TextFlow, and five Button UI controls). As you will see when we get
into coding the Scene Graph next, I will use only 12 objects and import only 12 classes to make the entire
top-level UI for the JavaFXGame class that we designed in the previous section a reality. The TableView and
TextFlow objects will be overlaid on top of the ImageView object, which contains the background imagery
for the UI design. This TableView object will be added later in the book and will be updated with code from
the Score Engine, shown in Figure 8-2, which you’ll be coding in a future chapter.

The ImageView backplate will contain the BoardGame artwork, and you can use the ImageView
container to hold different digital image assets, if you want. In this way, based on your ActionEvent objects,
processing clicks on Button controls, you can use different background image assets for each of the
information screens. The VBox Parent UI layout container will control the layout (spacing) for your five
Button controls. There is also the Inset object, which you will create to hold the UI button Padding values to
fine-tune how the Button objects align, relative to each other.

Figure 8-3. Game Scene Graph Node hierarchy, objects that Nodes contain, and new media assets they
reference

Chapter 8 ■ JavaFX 9 SCene Graph hierarChy: a Foundation For Java 9 Game deSiGn

189

Since a Button object can’t be positioned individually, I had to use the VBox class along with the Insets
class to contain and position the Button controls professionally. We will be going over the classes that you
will be using to create this high-level design during this chapter so that you have an overview of each class
that you are going to be adding to your JavaFXGame in order to create this top-level UI design for your
JavaFXGame.java Application subclass.

The way we optimize your Scene Graph use for the five different screens needing to match the five
different buttons is to use one ImageView as a backplate to contain the BoardGame splash screen artwork
on game startup. When a user clicks your UI buttons, you can use Java code to have the ImageView reference
different images using one single ImageView Scene Graph Node object. Your TextFlow object will overlay
your text assets on the ImageView.

Finally, there may be a SceneGraph Node that will contain the data structure for a High Score Table.
This will be created via a Score Engine that we’ll be creating later when we cover game score approaches and
techniques. For now, we’ll leave score and gameplay code unimplemented. Let’s look at some new JavaFX UI
design classes next.

JavaFX Design: Using VBox, Pos, Insets, and Group
Before we dive into coding, let’s take an in-depth look at some of the new JavaFX classes we are going to
utilize to complete these top-level game application UI and SceneGraph designs. These include the Pos
class (positioning), the Insets class (padding), the VBox class (a vertical UI layout container), and the Group
class (Scene Graph Node grouping). In the next chapter, we will cover the Image (image asset holder),
ImageView (image backplate display), and TextFlow (text data display) classes. We will look at these in order
from the simplest (Pos) to the most complex (Group), and then you will code fairly extensive changes to your
bootstrap JavaFX project code, which will add these new classes (and objects) to your JavaFX Scene Graph
hierarchy, as well as reorganizing it to better suit your game.

JavaFX Pos Class: Generalized Positioning Using Constants
The Pos class is an Enum<Pos> class, which is short for enumeration. It contains a list of constants that
are actually translated into integer values for use in your code. The constant values make it easier for
programmers to use these values in their code. In this case, it would be positioning constant prefixes like
TOP, CENTER, or BASELINE, for instance.

The Java class extension hierarchy for the Pos class starts at the java.lang.Object master class and
progresses through the java.lang.Enum<Pos> class, ending with the javafx.geometry.Pos class. You are
referencing Pos in line 56 in the code in Figure 8-10. Pos is in the javafx.geometry package and uses the
following subclass hierarchy structure:

java.lang.Object
 > java.lang.Enum<Pos>
 > javafx.geometry.Pos

As you’ll see in the next section, you will have to use the Insets class and object to obtain the pixel-
accurate positioning that you desire. Since this is an Enum class, there is not too much to learn in this
section, other than what the constants are that the Pos class offers to you to use for generalized and relative
positioning in your Java games.

Therefore, the Pos class is great for general positioning, using top, bottom, left, and right, as well as
baseline (this is for positioning relative to fonts, primarily). Each of these also has a CENTER option for
centering, so by using the dozen constants provided for in this helper class, you can implement any kind of
generalized positioning you will need.

www.ebook3000.com

http://www.ebook3000.org

Chapter 8 ■ JavaFX 9 SCene Graph hierarChy: a Foundation For Java 9 Game deSiGn

190

For an example of generalized position, refer to your web site design experience where you can design
a web page so that it will scale to fit different window sizes and shapes. This is quite different from pixel-
accurate positioning where you start at location 0,0 on a fixed screen size and shape and place elements
precisely where you want them!

Game design more often than not uses pixel-precise positioning, but in this chapter I am going to show
you how to position a bank of UI buttons in a general location (such as the top right or bottom left of the
user’s screen) so that you are exposed to as many of the JavaFX API utility classes (this one is in the javafx.
geometry package) as possible.

You will be using the TOP_RIGHT constant, as shown on line 56 in Figure 8-10, to position your Button
control bank in the top-right corner of your BoardGame user interface design, out of the way of the primary
central 3D view.

The Pos class provides a set of constants, which I will summarize in Table 8-1, for providing
“generalized” horizontal and vertical positioning and alignment.

The Pos class provides generalized positioning; it can be used in conjunction with the Insets class to
provide a more pixel-precise positioning. Let’s take a look at the Insets class next, as it is also in the javafx.
geometry package.

JavaFX Insets Class: Providing Padding Values for Your UI
The Insets class is a public class that directly extends the java.lang.Object master class, meaning that the
Insets class was “scratch-coded” to provide insets, or offsets, inside of a rectangular area. Imagine a picture
frame where you leave a “matte,” or attractive border, between the frame on the outside and the picture on
the inside. This is what the Insets class does with two constructor methods; one provides equal or even
insets, and one provides unequal or uneven insets.

We will be using the constructor that provides unequal inset values, which would look very
unprofessional if we were framing a picture! The Java class hierarchy for the Insets class starts with the java.
lang.Object master class and uses this class to create the javafx.geometry.Insets class. As you will see later
in this chapter in code line 58 in Figure 8-11, the Insets class is set to provide zero pixels on two sides and ten

Table 8-1. The Pos Class Enum Constants That Can Be Used for Positioning and Alignment in JavaFX

Pos Class Constant General Positioning Result

BASELINE_CENTER Positions an object on the baseline vertically and at the center horizontally

BASELINE_LEFT Positions an object on the baseline vertically and on the left horizontally

BASELINE_RIGHT Positions an object on the baseline vertically and on the right horizontally

BOTTOM_CENTER Positions an object on the bottom vertically and at the center horizontally

BOTTOM_LEFT Positions an object on the bottom vertically and on the left horizontally

BOTTOM_RIGHT Positions an object on the bottom vertically and on the right horizontally

CENTER Positions an object at the center vertically and at the center horizontally

CENTER_LEFT Positions an object at the center vertically and on the left horizontally

CENTER_RIGHT Positions an object at the center vertically and on the right horizontally

TOP_CENTER Positions an object at the top vertically and at the center horizontally

TOP_LEFT Positions an object at the top vertically and on the left horizontally

TOP_RIGHT Positions an object at the top vertically and on the right horizontally

Chapter 8 ■ JavaFX 9 SCene Graph hierarChy: a Foundation For Java 9 Game deSiGn

191

pixels on two sides. This pushes the Button bank away from the corner of your user’s display screen.
The JavaFX Insets class is contained in the javafx.scene.geometry package, just like the Pos class, and uses
the following Java 9 class hierarchy structure:

java.lang.Object
 > javafx.scene.geometry.Insets

The Insets class provides a set of four double offset values specifying the top, right, bottom, and left
sides of a rectangle and should be specified in that order within a constructor method, as you saw when you
wrote your code. You will be using this Insets class (object) to “fine-tune position” your Button control bank,
which you will be creating using the VBox layout container (which you will be learning about in the next
section). Think of these Insets objects as a way to draw a box inside of another box, which shows the spacing
that you want the objects inside of the rectangle to “respect” around its edges. This is often called padding,
especially in Android Studio and HTML5 programming.

The simplest Insets() constructor for use in creating your Insets object would use the following format:

Insets(double topRightBottomLeft)

This constructor uses a single value for all the spacing sides (topRightBottomLeft), and an overloaded
constructor allows you to specify each of these values separately, which looks like the following:

Insets(double top, double right, double bottom, double left)

These values need to be specified in this order. A great way to remember this is to think of an analog
clock. The clock has 12 at the top, 3 at the right, 6 at the bottom, and 9 at the left. So, simply remember to
specify clockwise starting at high noon (for you Western film genre lovers out there), and you will have
a great way to remember how to specify the Insets values when using the “uneven values” constructor
method.

You are using the Insets class to position your Button control bank, which would initially be “stuck” in
your bottom-left corner of the BoardGame user interface design. The Insets object will allow you to push
the Button controls away from the right side of your screen and away from the top of your VBox, using two of
these four Insets parameters.

JavaFX VBox Class: Using a Layout Container for Your Design
Since Button objects cannot be positioned easily, I will be placing the five Button objects into a layout
container from the javafx.scene.layout package called VBox, which stands for vertical box. This public
class arranges things into a column, and since you want the buttons aligned at the side of your BoardGame,
it is the Parent Node that you will use for five Button control Nodes, which will become children leaf nodes
of this VBox branch node. This will create a “bank” of UI Button controls that can be positioned (moved
around) together as a single unit of the UI and splash screen design.

A VBox class is a public class that directly extends the javafx.scene.layout.Pane superclass, which in
turn extends a javafx.scene.layout.Region superclass, which extends the javafx.scene.parent superclass,
which extends a javafx.scene.Node superclass, which extends the java.lang.Object master class. As you
can see in line 55, in Figure 8-10, you will use VBox as a Button control positioning user interface layout
container. This VBox class is contained in the javafx.scene.layout package, just like the StackPane class, and
it uses the following Java class hierarchy structure:

java.lang.Object
 > javafx.scene.Node
 > javafx.scene.Parent

www.ebook3000.com

http://www.ebook3000.org

Chapter 8 ■ JavaFX 9 SCene Graph hierarChy: a Foundation For Java 9 Game deSiGn

192

 > javafx.scene.layout.Region
 > javafx.scene.layout.Pane
 > javafx.scene.layout.VBox

If the VBox has a border or padding value specified, the contents inside of your VBox layout container
will “respect” that border and padding specification. A padding value is specified using the Insets class,
which we covered earlier and which you will be using for this fine-tuned user interface Control Button bank
application.

You are using the VBox class (object), along with the Pos class constant and the Insets class (object), in
order to group your UI Button objects together and, later, to fine-tune position them as your Button control
bank. This VBox layout container will thus become a Parent Node (as well as a branch node) for the UI
Button controls (or leaf nodes).

Think of a VBox object as a way to vertically array child objects together using a column. This could
be your image assets, arranged on top of each other, which would use the basic VBox constructor (with zero
pixels spacing) or UI controls, such as Buttons arranged on top of each other, spaced apart, using one of the
overloaded constructors.

The simplest constructor for a VBox object creation would use the following empty constructor
method call:

VBox()

The overloaded constructor that you’ll be using for your VBox object creation will have a spacing value
to put some space in between your child Button objects inside of a VBox. It uses the following constructor
method call format:

VBox(double spacing)

There are also two other overloaded constructor method call formats. These will allow you to specify
your children Node objects (in our case, these are Button objects) inside of the constructor method call
itself, as follows:

VBox(double spacing, Nodes... children)

This constructor would specify zero pixels of spacing value in between the Array of Node objects:

VBox(Nodes... children)

We’re going to be using the “short form” and .getChildren().addAll() method chain in our code to
show you how this is done, but we could also declare our VBox, and its Button Node objects, by using the
following constructor:

VBox uiContainer = new VBox(10, gameButton, helpButton, scoreButton, legalButton,
creditButton);

Your VBox layout container will control the resizing of child elements based on different screen sizes,
aspect ratios, and physical resolutions if the child objects are set to be resizable. If the VBox area will
accommodate the child object preferred widths, they will be set to that value. There is a boolean fillWidth
attribute (property), which is set to true as its default value. This specifies whether a child object should fill
(scale up to) the VBox width value.

The alignment of a VBox is controlled by the alignment attribute (property or variable), which defaults
to the TOP_LEFT constant from the Pos class (Pos.TOP_LEFT). If the VBox fillWidth property is false and

Chapter 8 ■ JavaFX 9 SCene Graph hierarChy: a Foundation For Java 9 Game deSiGn

193

VBox is sized above its specified width, the child objects use their preferred width values, and the extra space
will go unutilized. The default setting of fillWidth is true, and the children widths will be resized to fit the
VBox width. It is important to note that the VBox UI layout engine will lay out the managed child elements
regardless of their visibility attribute (also called a property, characteristic, or object variable) setting.

You will also notice that the classes we are adding during this chapter have inherently transparent or
empty backgrounds (I call them backplates), so we don’t have to do any extra work like we did in Chapter 7
to maintain alpha.

Now that we have taken several pages to discuss some of the classes from the javafx.scene.layout and
javafx.geometry packages, which you are using to create your UI (bank of Button objects) Design, let’s take
a close look at the SceneGraph grouping-related classes from the javafx.scene package. These classes will
allow us to implement the high-level SceneGraph hierarchy that you will need to put into place next to the
five JavaFX Button Control UI elements (objects) held inside your VBox UI layout container object, which is
inside of your StackPane UI layer compositing object. This Group (Node) container object will hold your i3D
game object hierarchy when we get into 3D and i3D later during this book.

JavaFX Group Class: High-Level Scene Graph Node Grouping
The Group class is a public class that directly extends the javafx.scene.Parent superclass, which extends the
javafx.scene.Node class, which extends the java.lang.Object master class. The Group object is therefore a
type of Parent (branch) Node object in the JavaFX Scene Graph, which is used for grouping other branch and
leaf node objects. The Group class uses the following Java class inheritance hierarchy structure:

java.lang.Object
 > javafx.scene.Node
 > javafx.scene.Parent
 > javafx.scene.Group

The Group Parent Node object contains an ObservableList of children Node objects, which will be
rendered in a predetermined order whenever this Group Parent Node object is rendered. A Group Node
object will take on the collective (summary) bounds of its children; however, it is not directly resizable. Any
transform, effect, or state applied to a Group will be applied to (passed through to) all of the children of that
Group Node but not to the Group itself.

This means that these applied transforms and effects will not be included in the Group Parent Node’s
layout bounds; however, if transforms and effects are set directly on the child Node objects inside of this
Group, those will be included in this Group’s layout bounds. So, to affect a Group Parent Node’s layout
bounds, you will do it from the inside out by transforming the members of the Group ObservableList, rather
than by transforming the Group object itself.

By default a Group Parent Node will automatically scale its managed child objects set to be resizable to
their preferred sizes during the layout pass. This ensures the Region or Control child objects will be scaled
properly as their state changes. If an application needs to disable this autosizing behavior, then it should
set autoSizeChildren to false. It is important to note that if the preferred size attribute of any of the child
objects is changed, they won’t be resized automatically because autoSizeChildren has been set to false.
This Group() constructor will create an empty group.

Group()

The overloaded Group(Collection<Node>) constructor method will construct a Group consisting of
a Java Collection<Node> containing a given Java collection of Node object children, using the following
constructor method:

Group(Collection<Node> children)

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_7
http://www.ebook3000.org

Chapter 8 ■ JavaFX 9 SCene Graph hierarChy: a Foundation For Java 9 Game deSiGn

194

The second overloaded Group(Node…) constructor method will construct a Group consisting of a
Java List of child Node objects, constructed as a comma-delimited list inside of the constructor method
parameter area. This can be accomplished by using the following constructor method format:

Group(Node... children)

Now that you have taken an overview of the various classes you are using during this chapter, let’s get
back to organizing the code for the JavaFXGame class so that it conforms to what we’re doing with the game
SceneGraph.

Scene Graph Code: Optimize the JavaFXGame Class
I know you are eager to work on the JavaFXGame class code, so let’s clean up, organize, and optimize the
existing Java 9 code to implement the majority of this top-level user interface and SceneGraph design shown
in Figure 8-3 so that you make some progress toward creating your top-level Java 9 game framework during
this chapter. The first thing you’re going to do is to put all the object declaration and naming statements
at the top of the JavaFXGame class, after the import block and the Java class declaration. These object
declarations will come before all of your methods. Many of you programmers are used to declaring global
variables at the top of your code, and an empty object declaration can be declared for use at the top of your
Java code in much the same fashion. This approach is more organized, and all the methods that are inside of
this class will be able to “see” (access or reference) these objects, without using any Java modifier keywords.
This is because the object declarations are at the top of the JavaFXGame class and not inside any of the
methods contained in the class, so all of the declarations done in this way are “visible” to all of the methods
declared “underneath” them. As you can see in Figure 8-4, I am adding a new Group object, which I am
naming root because it will become the new SceneGraph root. Notice the wavy red underline error under
Group because there is no import statement telling Java 9 that you want to use the Group class. Use the
Alt+Enter keystroke combination to bring up the NetBeans helper pop-up and select the Add import for
javafx.scene.Group option, as shown in Figure 8-4.

Figure 8-4. Declare the scene Scene object and the root Group object at the top of the JavaFXGame class before
.start()

Chapter 8 ■ JavaFX 9 SCene Graph hierarChy: a Foundation For Java 9 Game deSiGn

195

As you can see, I also moved the declaration for your existing scene Scene object to the top of the class,
so, instead of Scene scene = new Scene();, we now have the following Scene object declaration Java code
structure, which can be seen in Figure 8-5:

public class JavaFXGame extends Application {
 Scene scene;
 public void start(Stage primaryStage) {
 scene = new Scene(root, 300, 250);
 }
}

Next, we will do the same thing for the StackPane object, which I am going to rename uiLayout, as the
root object is now a Group Node class object. Add a StackPane uiLayout; declaration, as shown in Figure 8-5,
and then change the Java code shown in Figure 8-5 in a red box to use the uiLayout name instead of the root
name, as follows:

uiLayout = new StackPane;
uiLayout.setBackground(Background.EMPTY);
uiLayout.getChildren().add(btn);

I placed the uiLayout StackPane code right before the scene Scene instantiation. We are going to be
moving the object instantiations, with the exception of the Stage object (which needs to be part of the .start()
method), into their own .createBoardGameNodes() method, after we create the block of object declarations
and naming at the top of the JavaFXGame.java class.

Figure 8-5. Organize the .start() method by creating createBoardGameNodes() and
addNodesToSceneGraph() methods

www.ebook3000.com

http://www.ebook3000.org

Chapter 8 ■ JavaFX 9 SCene Graph hierarChy: a Foundation For Java 9 Game deSiGn

196

Remember that if you declare any object by using its class name at the top of your class and a wavy red
underline appears underneath it, you can simply use the Alt+Enter keystroke combination and select the
import javafx.packagename.classname option to have NetBeans code the import statement for you.

As you can see in Figure 8-4, there is often more than one possible import statement in a pop-up helper
dialog, so be sure to select the classes from the JavaFX API since that is what we will be using for rich media,
IoT, and games development; that is where all of the multimedia production features are now kept in the
Java 9 APIs.

In the case of our new top-level Group SceneGraph Node subclass, there is also the java.security.acl.
Group class and a second javafx.swing.GroupLayout.Group helper class. Since we are not using Swing UI
elements (Java 5) and ACL security here, we know that the correct import statement for us to select is the
javafx.scene.Group option.

JavaFX Object Declarations: Global Class Access for Methods
Let’s add JavaFX object declarations and names for the new classes we’ve covered and the ImageView
and TextFlow objects we’ll be needing in the next chapter on designing the UI visuals and splash screen
elements for the game. Add a VBox object (button alignment) named uiContainer, an Insets object named
uiPadding, an ImageView object named boardGameBackPlate, a TextFlow object named infoOverlay,
and five Image objects named splashScreen, helpLayer, legalLayer, creditLayer, and scoreLayer. Add
four more Button objects to your Button declaration named helpButton, legalButton, creditButton,
and scoreButton, and change the bootstrap code–generated btn Button object to instead be named
gameButton. You can see the block of nine lines of declaration code, some of which will be compound
declarations with one class name and multiple object names (such as Image and Button below, and soon,
we’ll also have multiple Group objects named root and gameBoard), in the following Java 9 code, as well as
in Figure 8-6:

Scene scene;
Group root;
StackPane uiLayout;
VBox uiContainer;
Insets uiPadding;
ImageView boardGameBackPlate;
TextFlow infoOverlay;
Image splashScreen, helpLayer, legalLayer, creditLayer, scoreLayer; // Compound
Declaration
Button gameButton, helpButton, legalButton, creditButton, scoreButton; // a Compound
Declaration

Chapter 8 ■ JavaFX 9 SCene Graph hierarChy: a Foundation For Java 9 Game deSiGn

197

As you can see in Figure 8-6 outlined in red, NetBeans will code five new import statements for you,
as long as you hit Alt+Enter as you type these object declaration and naming statements at the top of the
JavaFXGame class.

As you can see highlighted in yellow, I have renamed the bootstrap btn Button to gameButton and
changed its .setText("Hello World") to .setText("Start Game") to more directly reflect what this Button
UI element will eventually accomplish, as we continue to refine this Java 9 class code throughout the course
of this book.

I also changed uiLayout.getChildren().add(btn); to uiLayout.getChildren().add(gameButton);
to reflect this name change throughout all of the Java 9 code in this class that currently affects this Button
object. All of this is shown highlighted in Figure 8-6 using red boxes, blue line selection, and yellow object
reference selection.

NetBeans 9 will write these five new import statements for you as long as you utilize an Alt+Enter
keystroke combination. Be sure to select the option with the correct javafx package class path. Next, let’s
optimize your .start() method by offloading game object instantiation (with the exception of Stage, which is
part of your .onCreate(Stage primaryStage) method) so that all non-Stage object creation is done using
the .createBoardGameNodes() method.

Scene Graph Design: Optimizing the BoardGame .start() Method
Now we can optimize the .start() method so that it uses less than a dozen lines of code (see Figure 8-16 if you
want to look ahead). The first thing that I want to do is to modularize the Scene Graph Node creation Java
constructs into their own createBoardGameNodes() method, which will be called at the top of the .start()
method, as shown in Figure 8-7. Add a line of code at the top of the method, type createBoardGameNodes();,

Figure 8-6. Declare five new object types at the top of the JavaFXGame class and rename the btn object
gameButton

www.ebook3000.com

http://www.ebook3000.org

Chapter 8 ■ JavaFX 9 SCene Graph hierarChy: a Foundation For Java 9 Game deSiGn

198

and use the Alt+Enter key combination to have NetBeans 9 create this method infrastructure for you at
the bottom of the class. Also, be sure that you add the root = new Group(); object instantiation since you
renamed the StackPane object uiLayout (as shown in Figure 8-5).

Cut and paste your object instantiation and configuration code currently in the .start() method (you will
be adding to this later) into the createBoardGameNodes() method to replace the “Not Supported Yet” line of
error code in the bootstrap method, as shown (selected) in Figure 8-8. The new .createBoardGameNodes()
method should look like the following once you are finished with this Java 9 code reconfiguration operation:

private void createBoardGameNodes() {
 root = new Group();
 scene = new Scene(root, 640, 400);
 scene.setFill(Color.TRANSPARENT);
 gameButton = new Button();
 gameButton.setText("Start Game");
 uiLayout = new StackPane();
 uiLayout.setBackground(Background.EMPTY);
 uiLayout.getChildren().add(gameButton);
}

Figure 8-7. Add a createBoardGameNodes() method call at the top of the .start() method and add root = new
Group()

Chapter 8 ■ JavaFX 9 SCene Graph hierarChy: a Foundation For Java 9 Game deSiGn

199

Notice that we are taking everything out of the .start() method that is not required to be “hosted”
there. As the primaryStage Stage object is created by the .start() method parameter passed in, we’ll leave all
primaryStage object references inside of this method, as well as all of the event-processing structures, which
need to be put into place on application startup. Everything else will be going in createBoardGameNodes()
and another addNodesToSceneGraph() method we’ll be creating later in the chapter to hold the
.getChildren.add() or .getChildren().addAll() method call.

So, in the .start() method, we will call createBoardGameNodes() first to create all of your
SceneGraph Node objects (that is, all the subclasses of Node, Parent, or Group) and then call the
addNodesToSceneGraph() method to add all of these to the SceneGraph using the .getChildren().add()
method chain or the .getChildren().addAll() method call chain. This organizational method allows us to add
new nodes to your SceneGraph as we build your Java 9 game.

Next, let’s create a second addNodesToSceneGraph() method that we can use to organize, reconfigure,
and expand the SceneGraph Node building part of the JavaFX game application development work process.

Add Scene Graph Nodes: addNodesToSceneGraph()
Next, you need to create a method that will add the SceneGraph Node objects that we have created, and the
ones we are about to instantiate using the VBox constructor, to the Scene Graph root object, which in this
case is now a Group object. This new higher-level SceneGraph root Group object will hold your StackPane
UI Panel for your high-level game functions, as well as another Group object that we will be creating to
hold the 3D game branch of the SceneGraph. In a sense, we are already using JavaFX 9 to create a hybrid
application, as the game UI (StackPane) branch will be 2D and the game itself (Group) will be 3D. We will
use the .getChildren().add() method chain or the .getChildren().addAll() method chain to add the “children”
Node (subclasses of Node, Parent, or Group) objects to the “parent” Group object named root, which is now
the “root” of the JavaFX SceneGraph.

Figure 8-8. Select all non-Stage and non-event-handling code in the start() method and cut and paste it in
new method

www.ebook3000.com

http://www.ebook3000.org

Chapter 8 ■ JavaFX 9 SCene Graph hierarChy: a Foundation For Java 9 Game deSiGn

200

To create this second method, we will follow the same work process that we used to create the first of
your custom methods. Add a line of code immediately after the createBoardGameNodes(); line of code and
then type in addNodesToSceneGraph(); as the second line of code.

After NetBeans 9 highlights this with a wavy red error underline, use the Alt+Enter keystroke
combination and select the Create method "addNodesToSceneGraph" to javafxgame.JavaFXGame
option, as shown highlighted in Figure 8-9. I have also highlighted in red the one statement currently in the
createBoardGameNodes() method body, which will be relocated into this new addNodesToSceneGraph()
method body. This will replace the stock throw new UnsupportedOperationException() Java statement,
which NetBeans puts into all newly created bootstrap methods that it creates using this particular work
process where you can get NetBeans to write your new method code for you.

Cut the uiLayout.getrChildren().add(gameButton); statement at the end of createBoardGameNodes()
and paste it over the placeholder throw new UnsupportedOperationException() line of code, replacing that
code. We will be adding more nodes to the SceneGraph using this method once we instantiate those new
nodes in the next section.

Adding New UI Scene Graph Nodes to createBoardGameNodes()
Let’s add those new UI design and positioning JavaFX class objects (VBox, Pos, Insets) that we learned about
earlier in the chapter to the JavaFXGame class and the createBoardGameNodes() method we created that
contains our JavaFX 9 SceneGraph Node object creation (and configuration) Java 9 statements.

Create a new VBox named uiContainer by using the following Java object instantiation code, which
uses the Java new keyword in conjunction with the VBox() constructor method:

uiContainer = new VBox(); // Create a Vertical Box UI element container named "uiContainer"

Figure 8-9. After creating addNodesToSceneGraph() method, copy the uiLayout.getChildren() method chain
to new method

Chapter 8 ■ JavaFX 9 SCene Graph hierarChy: a Foundation For Java 9 Game deSiGn

201

Set the alignment of the VBox to the Pos.TOP_RIGHT constant from the Pos helper class using the
.setAlignment() method by using the following Java statement, shown under construction in Figure 8-10:

uiContainer.setAlignment(Pos.TOP_RIGHT); // Set VBox Alignment to TOP_RIGHT via Pos helper
class

Use the Alt+Enter keystroke combination to eliminate the wavy red error underlining, and be sure to
select the correct solution to the problem, which in this case is an Add import for javafx.geometry.Pos
option, which is listed first (most likely to be the correct solution) and which is the solution that allows a Pos
class to be used in your code.

In the next step, we will create the uiPadding Insets object using the uiPadding = new
Insets(0,0,10,10); Java instantiation statement, shown in line 58 in Figure 8-11. Finally, we will
“wire up” the uiPadding Insets object to the uiContainer VBox object by using the uiContainer.
setPadding(uiPadding); method call. This connection is shown in yellow in Figure 8-11 and shows a
connection between the Insets declaration, instantiation, and implementation.

Figure 8-10. Inside of the .setAlignment() method parameter area, type Pos.TOP_RIGHT and hit Alt+Enter to
import

www.ebook3000.com

http://www.ebook3000.org

Chapter 8 ■ JavaFX 9 SCene Graph hierarChy: a Foundation For Java 9 Game deSiGn

202

We’ve already renamed our Button object to be gameButton (was btn), so we now have six lines of
object instantiation code and five lines of object configuration code, as shown in Figure 8-11, using the
following Java 9 code:

private void createBoardGameNodes() {
 root = new Group();
 scene = new Scene(root, 300, 250);
 scene.setFill(Color.TRANSPARENT);
 gameButton = new Button();
 gameButton.setText("Start Game");
 uiLayout = new StackPane();
 uiLayout.setBackground(Background.EMPTY);
 uiContainer = new VBox();
 uiContainer.setAlignment(Pos.TOP_RIGHT);
 uiPadding = new Insets(0,0,10,10);
 uiContainer.setpadding(uiPadding);
}

It is important to note that since your root Group object is used in the constructor method call for the
scene Scene object, this line of code will need to come first so that the root Group object is created before it
is utilized.

Next, let’s take the handy programmer’s shortcut and cut and paste your two gameButton instantiation
and configuration lines of code underneath the uiContainer.setPadding(uiPadding); method call and then
copy and paste that code four times underneath itself, as shown highlighted at the bottom of Figure 8-12,
to create all ten of your user interface button elements using the modified gameButton (btn) bootstrap UI
element created in Chapter 6.

Figure 8-11. Create a uiPadding Insets object and wire it to the uiContainer VBox object using
.setPadding(uiPadding);

http://dx.doi.org/10.1007/978-1-4842-0973-8_6

Chapter 8 ■ JavaFX 9 SCene Graph hierarChy: a Foundation For Java 9 Game deSiGn

203

This will allow you to change gameButton to be helpButton, scoreButton, legalButton, and
creditButton, respectively, to create five unique UI Button objects. Your Java 9 game code for your Buttons
should look like this:

gameButton = new Button();
gameButton.setText("Start Game");
helpButton = new Button();
helpButton.setText("Game Rules");
scoreButton = new Button();
scoreButton.setText("High Scores");
legalButton = new Button();
legalButton.setText("Disclaimers");
creditButton = new Button();
creditButton.setText("Game Credits");

Adding the New UI Design Nodes in addNodesToSceneGraph()
As you can see in Figure 8-13, the Java code is error-free, and I have now declared and instantiated another
Group object named gameBoard. This will hold the 3D game elements branch of the SceneGraph, so the
Group object declaration has now become a compound statement at the top of your class. I clicked the
gameBoard object in the code to create a highlighted tracking of this object’s declaration, instantiation in
createBoardGameNodes(), and use in addNodesToSceneGraph(), showing that if you declare at the top of
the class, you can use objects anywhere you need to. This click object name to track is a useful NetBeans
9 trick and is one you will want to use whenever you want to track object usage. I will be using it often in
screenshots to highlight what I’m doing (and why) as I add new Java code.

Figure 8-12. Create 10 Button object instantiation and configuration statements at the end of
createBoardGameNodes()

www.ebook3000.com

http://www.ebook3000.org

Chapter 8 ■ JavaFX 9 SCene Graph hierarChy: a Foundation For Java 9 Game deSiGn

204

Next, let’s make sure our nodes are added to the SceneGraph correctly. Out of the root (top) of the
Scene Graph, which is a Group object, we will have another gameBoard Group object to hold the i3D game
elements and assets, as well as the uiLayout StackPane object. These are added to the root Group using the
following statements:

root.getChildren().add(gameBoard); // Add new i3D Game Group Node to root Group Node
root.getChildren().add(uiLayout); // Add uiLayout StackPane Node to root Group Node

Next, we add the uiContainer VBox layout container branch node to the uiLayout StackPane branch
node and add five Button UI element leaf nodes to the uiContainer VBox. This is done using two lines of Java
9 code, like this:

uiLayout.getChildren().add(uiContainer); // Add VBox Vertical Layout Node to StackPane
Node
uiContainer.getChildren().addAll(gameButton, // Add All UI Button Nodes to the VBox Node
 helpButton,
 legalButton, creditButton, scoreButton);

Figure 8-13 shows this SceneGraph construction code. I used color fills on the object hierarchy, which
is visualized to show Node objects (Node subclassed objects, more accurately), which are Scene, root, or
branch nodes. (This is shown in Figure 8-3 if you want to review these JavaFX root, branch, and leaf Node
object hierarchies.)

The important thing to observe here is the order that you have added the Node objects to the Group
root Scene Graph object. The order affects the compositing layer order for the scene render compositing,

Figure 8-13. Add gameBoard Group object and add Node objects to SceneGraph using .getChildren().add
and .addAll()

Chapter 8 ■ JavaFX 9 SCene Graph hierarChy: a Foundation For Java 9 Game deSiGn

205

as well as for the UI element compositing, on top of your 3D elements. The first Node added to the root
Group will be on the bottom of the scene compositing (rendering) stack. Therefore, this needs to be the
gameBoard Group Node object, which will hold the i3D game so that Node is added to the Scene Graph
root first and is at the bottom, if you are looking down, or at the back, if you are looking forward, of the Scene
compositing and rendering stack. You can see this in Figure 8-13.

The next Node to add will be your uiLayout StackPane Node object because your 2D user interface
(floating) panel will need to overlay right on top of your 3D GameBoard. After these top-level Node objects
are placed into your Scene Graph hierarchy, we can add the uiContainer VBox Node object, which will
contain all of the Button Control leaf Node objects, to the StackPane Node object. Note that we are using
the .getChildren().addAll() method chain to add Button Control objects to the VBox because we can more
easily add them using a Java List object or comma-delimited list in the parameter area of the .addAll()
method call (chain) called off of the .getChildren() method.

In Chapter 9 we’ll also add an ImageView object named boardGameBackPlate and a TextFlow object
named infoOverlay. I will also need to instantiate five Image objects to hold digital image assets in memory
during Chapter 9 so that the image objects we declared in this chapter can be implemented. As you know,
we named these splashScreen, helpLayer, legalLayer, creditLayer, and scoreLayer using a compound Java
statement, as we did for the Button objects.

Interactivity: Creating the BoardGame Button UI Control
The next thing you need to do is to copy the gameButton.setOnAction() event-handling Java code structure
in your .start() method and then paste it four more times underneath itself to create your helpButton,
legalButton, creditButton, and scoreButton Button Control object event-handling structures. For testing
purposes, at this stage, you will want to change the System.out.println statements to each print a unique
message to your Output console window, so you can make sure that each of the five Button UI elements is
unique to itself and is handling its Button events properly. It is important to always make sure that your Java
9 code constructs work at each stage (that is, after each change or enhancement) before proceeding to add
even more Java code and thus more application complexity. This takes a little bit longer during development
than writing all your code at once but saves time in debugging.

In case you are wondering what the wavy yellow underline warning (or suggestion) is in Figure 8-14,
along with the pop-up message I generated by putting my mouse over this yellow highlighting found under
your event handler ActionEvent processing construct EventHandler<ActionEvent>() { public void
handle(){...} });, it is because this expression can be turned into a lambda expression using less code. Be
aware that doing this will ensure your code works only under Java 8 and Java 9. If you want to use your code
in Android, which uses Java 6 and Java 7, you may just want to leave these slightly longer Java code structures
in place, as they do exactly the same thing.

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_9
http://dx.doi.org/10.1007/978-1-4842-0973-8_9
http://www.ebook3000.org

Chapter 8 ■ JavaFX 9 SCene Graph hierarChy: a Foundation For Java 9 Game deSiGn

206

When you are finished, your new event-handling structures should look like the following Java code
shown in the middle of Figure 8-15:

gameButton.setOnAction(new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent event) {
 System.out.println("Starting Game");
 }
});
helpButton.setOnAction(new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent event) {
 System.out.println("Game Instructions");
 }
});
scoreButton.setOnAction(new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent event) {
 System.out.println("High Score");
 }
});

legalButton.setOnAction(new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent event) {
 System.out.println("Copyrights");
 }
});

Figure 8-14. Copy the gameButton event processing code and paste it underneath itself and create your
helpButton event handling

Chapter 8 ■ JavaFX 9 SCene Graph hierarChy: a Foundation For Java 9 Game deSiGn

207

creditButton.setOnAction(new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent event) {
 System.out.println("Credits");
 }
});

As you can see in Figure 8-15, your event-handling code is error-free, and you are ready to run and test
your JavaFXGame.java game application to make sure that your Scene Graph hierarchy is rendering to the
screen and that your Button UI Control objects are handling event processing correctly. Once you make sure
that your Scene Graph is constructed at this high level for your game and your core user interface processing
Java 9 code structures are also in place and working properly, you can proceed, during the next chapter, to
add digital image assets and fine-tune all of the UI element positioning so that you can make everything look
and function correctly at the top level of your game.

As you can see in Figure 8-16, after you duplicate the .setOnAction() event-handling constructs for
each of your Button objects, when you collapse the EventHandler routines using the minus icons at the left
side of the screen (shown circled in red on the left side of Figure 8-16), you’ll have fewer than a dozen lines
of code in the .start() method. Your first line of code will call a method to create Node objects and configure
them, your second line of code will call a method to add these Node objects to your Scene Graph hierarchy,
lines 3 through 6 will configure your Stage object, and lines 7 through 11 will set up your UI Button Control
object event handling. This is relatively compact if you consider the amount of functionality that you are
adding to the top level of your game infrastructure, including creating your top-level (root and branch node)
Scene Graph structure and user interface design elements for your gameplay, instructions, legal disclaimers,
credits, and scoreboard display.

Figure 8-15. Copy the gameButton and helpButton and paste them to create your scoreButton, legalButton,
and creditButton

www.ebook3000.com

http://www.ebook3000.org

Chapter 8 ■ JavaFX 9 SCene Graph hierarChy: a Foundation For Java 9 Game deSiGn

208

Next, it’s time to test the code that reorganizes the JavaFXGame class and creates your UI design
structure and Scene Graph hierarchy for your game application. Let’s make sure all these UI Button elements
(objects) function.

Testing Your BoardGame: Process the Scene Graph
Click the green Play arrow shown at the top of the NetBeans 9 IDE circled in red in Figure 8-16 and Run your
JavaFXGame project. This will bring up the VBox UI layout container that is shown encircled in red on the
top-middle part of Figure 8-16. As you can see, you are getting a professional result, with no crashes, using
around a dozen-and-a-half import statements (external classes), a few dozen lines of Java code, and less
than a dozen child Nodes underneath your Scene Graph root Group Node object. It is important to optimize
your Scene Graph hierarchy because each pulse event that JavaFX will use to process your game design
structure will have to traverse this hierarchy, so the more compact it is, the better your game will perform,
and the smoother your user experience will be. Therefore, you should optimize everything from the get-go.
As you can see circled in red in the Output-JavaFXGame tab at the bottom of Figure 8-17, I have tested the
event-handling structures attached to all Button UI Control objects.

Figure 8-16. Click the Run (Play) icon at the top of NetBeans and test your code to make sure your UI design is
working

Chapter 8 ■ JavaFX 9 SCene Graph hierarChy: a Foundation For Java 9 Game deSiGn

209

I did this to make sure each button is implementing its own event handling and is printing out the
correct System.out.println() text message when I click each of the five UI Button Controls.

Later we can replace this System.out.println() method call with a different one that controls the
ImageView reference to the Image object, allowing us to switch between your digital image assets for your
user interface design ImageView digital image backplate holder.

Since we only copied and pasted the EventHandler routines for each Button and changed only your
Button objects names and the code that is executed inside of these routines, these Button objects should
still work properly (writing text to the console) and not cause any compiler errors. However, they will not
ultimately do what you want them to, which is to change the Image object, which is referenced in the
ImageView object (UI backplate) underlay, or to place the proper text over this using the TextFlow. This is
what you are going to be coding in the next chapter; you’ll also do some UI design tweaking that will put the
Button bank in the proper location on the display screen. As you can see in Figure 8-16, although the Button
Control objects are indeed aligned at the TOP_RIGHT position inside the VBox UI container Node, the VBox
itself is not yet aligned within its Parent (branch) StackPane Node object. Just like with the transparency in
Chapter 7, the VBox (in StackPane) and StackPane (in a Group) must be positioned correctly.

Congratulations, you have maintained the improvements added in Chapter 7 and put in place new
methods for organizing your Scene Graph hierarchy and improved this Scene Graph to include your i3D
game branch, which we will start to add objects and assets into during the second half of the book.

Figure 8-17. Click each of the Button objects and make sure your event-handling code is printing the right
messages

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_7
http://dx.doi.org/10.1007/978-1-4842-0973-8_7
http://www.ebook3000.org

Chapter 8 ■ JavaFX 9 SCene Graph hierarChy: a Foundation For Java 9 Game deSiGn

210

Summary
In this eighth chapter, we got your hands into our JavaFXGame.java code by refining your actual top-level
user interface design for our game, as well as outlining the underlying game engine component design
and figuring out the most efficient Scene Graph Node design using fewer than a dozen nodes to implement
the majority of the top-level game user interface structure. You got back into Java game programming by
redesigning the existing JavaFXGame.java bootstrap Java code, which was originally created for you by
NetBeans 9 in Chapter 6. Since the NetBeans 9–generated Java 9 code design was not optimal for your
purposes, you rewrote it significantly to make it more modular, streamlined, and organized.

You did this by creating two new Java methods: .createBoardGameNodes() and
.addNodesToSceneGraph(). You did this so you could modularize your Scene Graph Node creation
process and also so that you could modularize the adding of the two Parent branch Node and five Control
leaf Node objects to your Scene Graph root, which in this case happens to be the Group Node object. Under
that you have your StackPane branch Node named uiLayout, which you are using for its multilayer UI object
compositing capability, and a Group branch Node named gameBoard, which you will be using to hold the
i3D game object hierarchy that you will be building during the remainder of this book.

You learned about some of the JavaFX classes that we’re going to implement in these new methods.
These included a Pos class and an Insets class from the javafx.scene.geometry package, the VBox class
from the javafx.scene.layout package, and the Group class from the javafx.scene package. You coded your
new .createBoardGameNodes() method that instantiated and configured the VBox object using the Inset
object, the StackPane uiLayout branch Node object, the Group gameBoard branch Node object, and your
five UI Button Control leaf Node objects.

Once all of your Scene Graph Nodes were instantiated and configured, you were able to then construct
your .addNodesToSceneGraph() method to add your Scene Graph Node objects to your Group root object.
You did this so that the correct Scene Graph Node hierarchy would be displayed inside of your Stage object,
which will reference and load your Scene Graph root Group Node object and the hierarchy that we are
building underneath it.

Finally, you created the other four Button UI Control objects and added ActionEvent EventHandler
program logic. This completed our programming tasks for this chapter that are related to setting up your
Scene Graph hierarchy and user interface design infrastructure for the JavaFXGame.java Java 9 game
application.

Once this was all coded, you tested your top-level Java 9 game application user interface design and
Scene Graph hierarchy in NetBeans 9.

In the next chapter, you are going to add cool digital image assets to your user interface design and work
on the positioning and alignment, as well as getting everything working with your UI Button objects.

http://dx.doi.org/10.1007/978-1-4842-0973-8_6

211© Wallace Jackson 2017
W. Jackson, Pro Java 9 Games Development, https://doi.org/10.1007/978-1-4842-0973-8_9

CHAPTER 9

JavaFX 9 User Interface
Design: The Front End for
Java 9 Game Design

Let’s build upon the top-level Scene Graph architecture that you built during Chapter 8 by continuing to
design the front-end user interface infrastructure of your i3D BoardGame. This will be done inside of your
StackPane branch Node, using three primary nodes underneath that Node. The VBox branch Node holds
the Button leaf Nodes, the ImageView leaf Node displays different Image objects, and the TextFlow leaf Node
displays (flows) different text descriptions that are overlaid on top of the ImageView Node. These seven leaf
nodes will work together to form your game’s top-level user interface design. The StackPane Node will serve
as the background image plate (holder), and the ImageView leaf node will hold five different Image objects
that reference your digital image section assets for each of the five buttons. The StartGame background
image asset will be what’s considered to be the splash screen. On top of the ImageView in the StackPane
hierarchy will be the TextFlow leaf node, which will serve as the foreground text information holder and will
reference different text data based on which Button Control object has been clicked. On top of the TextFlow
layer will be the VBox branch Node layer, which will hold five Button leaf nodes. This will hold, align, and
position your five Button Control objects, which will eventually use event handlers to swap different Image
objects into your ImageView object, as well as different text data into your TextFlow object.

The first thing that I will cover since you have already declared your five background Image objects
(as well as your ImageView and TextFlow objects for use at the top of the JavaFXGame.java class) is how
you’re going to finish implementing your user interface design using your Scene Graph hierarchy that you
started building during Chapter 8.

The next thing that we will need to cover are the four new JavaFX classes from the javafx.scene.image
and javafx.scene.text packages, which you are going to be instantiating and configuring for use in your Java
game during this chapter. These will include the Image class, the ImageView class, the Text class, and the
TextFlow class.

The next thing that you will need to do is to create the background imagery that will be loaded in the
Image objects so that you have something to test your Java code with later so you can make sure it is working
properly.

After that, you will learn a cool trick to add another compositing layer to your compositing pipeline
without adding another Node object to your Scene Graph hierarchy. This will involve learning about how
to utilize your JavaFX Background class (object) along with the JavaFX BackgroundImage class (object) to
utilize the Background attribute of Node subclasses as another Image object holding layer within your pro
Java game digital image compositing pipeline.

www.ebook3000.com

https://doi.org/10.1007/978-1-4842-0973-8_9
http://dx.doi.org/10.1007/978-1-4842-0973-8_8
http://dx.doi.org/10.1007/978-1-4842-0973-8_8
http://www.ebook3000.org

Chapter 9 ■ JavaFX 9 User InterFaCe DesIgn: the Front enD For Java 9 game DesIgn

212

All of this will involve adding new Java statements to both your .createBoardGameNodes() method
and your .addNodesToSceneGraph() method to put the ImageView background image plate and TextFlow
information text overlay into place, behind your VBox Button Control bank. You will also be adding two new
Java methods into the JavaFXGame class to load the Image assets (the loadImageAssets() method) and to
create your Text assets (the createTextAssets() method). You have a lot of coding, recoding, rewiring (object
referencing changes), and parameter adjustments to do to get your user interface a lot more organized and
professional, and we’ll get started on that after we look at some of the JavaFX API classes that we will be
leveraging over the course of this chapter on user interfaces.

UI Design Foundation: Finishing the Scene Graph
One of the first things that you are going to do in this chapter is to finish up your Scene Graph design for the
top-level user interface screens. This means instantiating your ImageView digital image display backplane,
which will hold your background Image objects that will reference your digital image assets. You will be
referencing these digital image assets during this chapter that were created using GIMP 2.10. On top of the
ImageView in the Scene Graph hierarchy, you will be adding a TextFlow information container; therefore,
your text content will be on top of the background image and not underneath it. Finally, on top of these
two leaf Node objects will be the VBox Button Control branch Node object, which you already created and
implemented during Chapter 8. Figure 9-1 shows the final Scene Graph hierarchy (expanding on the generic
root, branch, and leaf Scene Graph diagram that you saw in Chapter 7 in Figure 7-3). This time, I have
customized it for your pro Java 9 game application. Notice there are no connectors on the i3D Group branch
Node leaf Node objects, as we have not yet implemented them in the Java code.

This will require you to add two more leaf Nodes to your StackPane layout container Parent branch
Node, as shown on the lower left in Figure 9-1. Before we get into the Java coding to instantiate these two leaf
Node objects in the .createBoardGameNodes() method and to add them in your Scene Graph hierarchy, let’s
get an overview of each of the classes that you’ll be using in the new Java statements that you will be putting
into place during this chapter.

Figure 9-1. BoardGame user interface design Scene Graph hierarchy, showing the root, branch, and leaf Node
objects

http://dx.doi.org/10.1007/978-1-4842-0973-8_8
http://dx.doi.org/10.1007/978-1-4842-0973-8_7
http://dx.doi.org/10.1007/978-1-4842-0973-8_7#Fig3

Chapter 9 ■ JavaFX 9 User InterFaCe DesIgn: the Front enD For Java 9 game DesIgn

213

JavaFX 9 UI Compositing: ImageView and TextFlow
Next, let’s take a look at the primary JavaFX classes that can be used to create the basic compositing pipeline
for the game splash screen and text information screens that will be next to (and underneath) the UI Button
bank that you created during the previous chapter. The game instructions, high scores, and legal and credits
screens will essentially be text (held inside your TextFlow object) composited over background imagery
(held in an ImageView object). The splash screen will be associated with the Start Game Button and will
display on launch of the game application; it will become invisible when the Start Game Button is pressed.
This is because the StackPane UI construct is on a higher-level z-order than the root Group and gameBoard
Group Node objects, which are above it on the Scene Graph. This means that anything that is opaque in the
StackPane will overlay (block from view) the i3D gameBoard Group that is directly underneath the Scene
Graph root, as shown in Figure 8-3. Let’s take a look at the Image class first.

JavaFX Image Class: Referencing Digital Imagery in Your Design
The Image class is a public class that directly extends the java.lang.Object master class, meaning that the
Image class was also “scratch-coded” to provide image loading (referencing) and scaling (resizing). You
can lock the aspect ratio for scaling and specify the scaling (algorithm) quality as well. All URLs that are
supported by the java.net.URL class are supported. This means you can load images from the Internet
(www.domainname.com/imagename.png), from the OS file system (file:imagename.png), or from your JAR file
using a forward slash character (/imagename.png).

The JavaFX Image class is part of the javafx.scene.image package. The class hierarchy for the JavaFX
Image class originates with the java.lang.Object master class and uses the following Java class hierarchy:

java.lang.Object
 > javafx.scene.image.Image

The Image class provides six different (overloaded) Image() constructor methods. These take anything
from a simple URL to a set of parameter values specifying the URL, width, height, aspectRatioLock,
smoothing, and preload options. These should be specified in this order within your constructor method.
You’ll see this soon when you code an Image() constructor using the most complicated of all of these
constructor methods, which uses the following format:

Image(String url, double requestedWidth, double requestedHeight,
 boolean preserveRatio, boolean smooth, boolean backgroundLoading)

The simplest constructor for an Image object specifies only the URL and would use the following
format:

Image(String url)

If you wanted to load the image and also have the constructor method scale the image to a different
width and height (usually this would be smaller, for better quality) using the highest-quality resampling
(smooth pixel scaling) while also locking (preserving) the aspect ratio, you would utilize the following format
for the Image object constructor:

Image(String url, double scaleWidth, double scaleHeight, boolean preserveAspect, boolean
smooth)

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_8#Fig3
http://www.domainname.com/imagename.png
http://www.ebook3000.org

Chapter 9 ■ JavaFX 9 User InterFaCe DesIgn: the Front enD For Java 9 game DesIgn

214

If you wanted to load an image using its “native” or “physical” (default) resolution and native aspect
ratio and have it load the image in the background (asynchronously), you would use the following format
for the Image() constructor:

Image(String url, boolean backgroundLoading)

There are also two Image() constructor methods that use the java.io.InputStream class. This class
provides a lower-level Java input stream of input data to the Image() constructor method. Generally,
you’ll use a URL to reference your digital image files. These two Image object constructor formats take the
following formats. The simple format is as follows:

Image(InputStream is)

The complex InputStream constructor method allows you to specify the width, height, aspect ratio lock,
and image scaling interpolation smoothing algorithm (on/true or off/false). The second format will look like
the following:

Image(InputStream is, double newWidth, double newHeight, boolean preserveAspect, boolean
smooth)

The Image class (object) is thus used to prepare a digital image asset for use, that is, to read its data
from a URL, resize it if necessary (using whatever smoothing and aspect ratio lock you like), and even load
it asynchronously while other things are going on within the application. It is important to note that this
Image class (or object) does not display your image asset; it just loads it, scales it if needed, and places it into
system memory, to be used in your app.

To display an Image object, you’ll need to utilize a second class (object), called an ImageView, which we
are going to cover in the next section of this chapter. This ImageView object is implemented as a leaf Node in
your Scene Graph and references and then “paints” your Image object data onto the layout container, which
contains this ImageView Node. In our case, this is the uiLayout StackPane Parent (or branch) Node above
the leaf ImageView Node.

From a digital image compositing perspective, the StackPane class (object) is the layer compositing
engine, or the layer manager if you will, and the ImageView object represents one single digital image layer
in the layer stack. An Image object contains the digital image data that is displayed inside of the ImageView
layer or in more than one ImageView, if that is required, since the Image objects and the ImageView objects
are decoupled and therefore exist independently of each other. I am trying to minimize Scene Graph Node
use, so I’m using one ImageView image plate and one text information compositing plate to create the user
interface screens and then using code to switch them.

JavaFX ImageView Class: Display Digital Images in Your Design
The ImageView class is a public class that directly extends the javafx.scene.Node superclass, which is an
extension of the java.lang.Object master class. The ImageView object is therefore a type of Node object in the
JavaFX Scene Graph that is used for painting a graphic viewport using the data contained in an Image object.
The class has methods that allow image resampling (resizing), and like with the Image class, you can lock
aspect ratio for scaling, as well as specify the resampling algorithm (the smoothing quality, through the use
of pixel interpolation).

As you can see in line 24 of your Java code, shown in Figure 8-6, you will be using an ImageView object
named boardGameBackPlate to display your Image object data. This ImageView class, like your Image
class, is also contained in the javafx.scene.image package. The Java class hierarchy for the ImageView class
starts out with the java.lang.Object master class and uses this class to create a javafx.scene.Node class,

http://dx.doi.org/10.1007/978-1-4842-0973-8_8#Fig6

Chapter 9 ■ JavaFX 9 User InterFaCe DesIgn: the Front enD For Java 9 game DesIgn

215

which is then used to create the javafx.scene.image.ImageView Node subclass. An ImageView class uses the
following Java class inheritance hierarchy:

java.lang.Object
 > javafx.scene.Node
 > javafx.scene.image.ImageView

The ImageView class provides three different (overloaded) ImageView() constructor methods. These
range from the empty ImageView constructor (which is the one you are going to use later in your code) to
one that takes an Image object as its parameter to one that takes a URL String object as the parameter and
creates the Image object automatically. The simplest, empty parameter list ImageView() constructor method
will create an (empty) ImageView object (that is, one with no Image object to display but can hold Image
objects). It will use this following format:

ImageView()

We will be using this constructor method so that I can show you how to use the .setImage() method call
to load your Image object into an ImageView object. If you wanted to avoid using the .setImage() method
call, you could use another overloaded constructor method. That ImageView object constructor would use
this following format:

ImageView(Image image)

So, the way that I’m going to explicitly set up an ImageView and wire it to the Image object will look like this:

boardGameBackPlate = new ImageView(); // This uses empty constructor method approach
boardGameBackPlate.setImage(splashScreen);

This could be condensed into one line of code using an overloaded constructor method, structured
like this:

boardGameBackPlate = new ImageView(splashScreen); // using the overloaded constructor method

If you also want to bypass the process of creating and loading an Image object, there is another
constructor method for that as well, which uses the following format:

ImageView(String url)

If you wanted to load an image using its “native” or “physical” (default) resolution and native aspect
ratio and have it load the image in the background (asynchronously), the Image() constructor would use
the following format:

backPlate = new Image("/backplate8.png", 1280, 640, true, false, true);
boardGameBackplate = new ImageView();
boardGameBackplate.setImage(backPlate); // use empty ImageView constructor method approach

If you didn’t want to specify the image dimensions, background image loading, or smooth scaling and
you wanted to lock the aspect ratio for any scaling, you could condense the previous three lines of Java code
into the one following constructor:

boardGameBackPlate = new ImageView("/backplate8.png"); // uses third constructor method

www.ebook3000.com

http://www.ebook3000.org

Chapter 9 ■ JavaFX 9 User InterFaCe DesIgn: the Front enD For Java 9 game DesIgn

216

At least initially, for learning purposes, I am going to do this the long way, and I will always “explicitly”
load Image objects using the Image() constructor method so that we can specify all of the different attributes
and so that you can see all of the different image assets that you’re using in your Java 9 programming logic.
I wanted to show you the shortcut code here because you might want to use this shortcut approach later
if you start using ImageViews as 2D sprites. You can use this shortcut approach with your sprites because
you will not be scaling them and because they are so highly optimized that the background loading option,
which saves long loading times, won’t be necessary.

JavaFX TextFlow Class: Use Text Objects (Content) in a Design
The TextFlow class is a public class that allows the developer to create a text paragraph. A text paragraph is a
container for multiple lines of text, each of which is delimited using a “new line” character, denoted using an
“escape n” sequence in your Java code.

The TextFlow class would therefore use the following Java class inheritance hierarchy:

java.lang.Object
 > javafx.scene.Node
 > javafx.scene.Parent
 > javafx.scene.layout.Region
 > javafx.scene.layout.Pane
 > javafx.scene.text.TextFlow

This TextFlow object is the type of Node object in the JavaFX Scene Graph that can be used for
rendering text paragraphs using the data contained in a Text object, in much the same way an ImageView
can render data contained in an Image object. The TextFlow can handle more than one Text object at a
time, however, allowing you to style different Text objects differently using method calls like .setFill() and
.setFont(). TextFlow is a specialized text layout class designed to render what’s commonly referred to as rich
text format (RTF). Some call this desktop publishing, and it involves using different fonts, styles, or color to
enhance the presentation of text-based content. It’s interesting to note that javafx.scene.text is kept in the
javafx.graphics module and not in the javafx.controls module. This is significant, because if you wanted to
optimize out (not use) the JavaFX 9 UI Control classes (100 classes or more), you could still create your own
UI elements using Image, ImageView, Text, and 3D geometry objects using only the javafx.base and javafx.
graphics modules, which give you everything you need to create pro Java 9 i3D games.

A TextFlow object can be used to lay out a number of Text nodes within a single TextFlow object.
A TextFlow object uses the text and the font and style settings for each of the Text Node objects inside of it,
plus its own maximum width and text alignment style properties, to determine the location for rendering
each child Text object.

A single Text node can span several lines because of the wrapping capability of the TextFlow object, and
a visual location of a Text node can differ from the logical location because of bidirectional (bidi) reordering.
The Java Bidi object provides information on the bidirectional reordering of the text used to create it. This
is required, for example, to properly display Arabic or Hebrew text, which is read from right to left (RTL)
instead of left to right (LTR).

Any other Node object type, other than a Text Node object, of course, will be treated as an embedded
“rich content” object within the TextFlow object’s layout. It will be inserted in the content using its preferred
width, height, and baseline offset values to space and align it relative to the other Text objects within the
parent TextFlow object.

When a Text Node object is inside of a TextFlow object, some its properties will be ignored. For example,
the X and Y properties of a Text Node object will be ignored since the location of the child Text Node is
determined by the Parent TextFlow object. Likewise, the wrapping width in the Text node will be ignored
since the maximum width used for wrapping will inherit the TextFlow object’s maximum width property.

Chapter 9 ■ JavaFX 9 User InterFaCe DesIgn: the Front enD For Java 9 game DesIgn

217

The wrapping width of a TextFlow layout will be determined by the Region object’s current width. This can
be specified by your application by setting the TextFlow object’s preferred width property. If no wrapping
feature is desired, the application can set the preferred width to either Double.MAX_VALUE or, alternately,
Region.USE_COMPUTED_SIZE. Paragraphs should be separated using the new line, or \n (escape
character), inside of any of your child Text Node objects, shown in the following bold code example.

The value of the pickOnBounds property of a Text Node object will be set to false when it is rendered in
the TextFlow object. This happens because your content in a single Text Node object can become divided by
the TextFlow algorithm and be placed in different locations in the TextFlow because of line breaking and bidi
reordering. TextFlow algorithms will lay out each managed child Text Node object regardless of that child’s
visibility property value, leaving gaps for Text Node objects that are set to be invisible. Here is an example of
the TextFlow object creation workflow:

Text titleText = new Text("Welcome to iTVboardgame! \n");
titleText.setFill(Color.RED).setFont(Font.font("Helvetica", FontPosture.ITALIC, 40));
Text pressPlayText = new Text("Press the Start Game Button to Start!");
pressPlayText.setFill(Color.BLUE).setFont(Font.font("Helvetica", FontWeight.BOLD, 10));
TextFlow gameTextFlow = new TextFlow(titleText, pressPlayText);

The TextFlow class has two properties: the DoubleProperty lineSpacing attribute, which defines
the vertical space using pixels between the lines of Text, and the ObjectProperty<TextAlignment>
textAlignment attribute, which defines the horizontal text alignment constant such as LEFT, RIGHT,
CENTER, or JUSTIFY.

The TextFlow class has two constructor methods; the first has an empty parameter area and constructs
an empty TextFlow text layout object. This constructor method would use the following format:

TextFlow()

The second TextFlow constructor method used previously creates a TextFlow with the child Text (or
rich media) Node objects that are passed into the parameter area using a comma-delimited list, using the
following format:

TextFlow(Node... children)

The reason this second constructor method takes a parameter list Array of Node objects is because the
TextFlow object supports “Rich Text Layouts,” which is the combination of Text objects and other supported
Node objects that support rich media (images, shapes, geometry, mesh, animation, video, etc.).

Let’s get back to coding and instantiate and configure the Image, ImageView, Text, and TextFlow objects
so that you can add them into your existing Scene Graph hierarchy to achieve what is shown in Figure 9-1.
After that, in Chapter 10 we can write code in your Button ActionEvent handlers that will customize your UI
based on clicks.

Coding the User Interface: A UI Compositing Pipeline
To get the User Interface Design dialed in, you will need to instantiate the ImageView and TextFlow objects,
add them to your Scene Graph in the proper position in the hierarchy, import digital images into your
project, create a method to load your Image objects with your digital image assets, create a method to create
your Text objects with the proper information, and finally tweak your SceneGraph and UI elements to fine-
tune your UI end result.

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_10
http://www.ebook3000.org

Chapter 9 ■ JavaFX 9 User InterFaCe DesIgn: the Front enD For Java 9 game DesIgn

218

Instantiating the Compositing Layers: .createBoardGameNodes()
Since you have already declared the boardGameBackPlate ImageView and infoOverlay TextFlow and coded
the import statements for these classes in Chapter 8, the next thing that you will need to do is to instantiate
them into objects using the Java new keyword along with their basic (empty parameter list) constructor
methods. You will do this in your createBoardGameNodes() method to keep things highly organized. To
mirror the Scene Graph hierarchy, you will instantiate them after the StackPane and before the VBox since
that will be the compositing (layer) order you will be using. As you can see in Figure 9-2, the Java code is
error-free, and you have a SceneGraph root, i3D gameBoard branch, and UI layout branch instantiated using
only a root and three branch Node objects in system memory, including one Group Node, a StackPane, and
a VBox (the Insets object is a utility object and not a SceneGraph Node).

If you count the Scene object holding the SceneGraph, there are five game organization objects in
memory. Add to this the Stage object, which was created using the .start() method, and your Application
object, created by the JavaFXGame class extends Application declaration, and you have created the top-level
infrastructure for your pro Java 9 games development using a mere seven objects in system memory. With
the ImageView and TextFlow displays, we are still under ten objects in system memory. Once we load your
five Image objects with digital image assets and set up five UI Button objects, you still have fewer than 20
objects in memory, which is still quite well optimized. You will also be adding eight Text objects later during
the chapter, but these are not pixel-centric, so they will not take up much memory footprint at all. We’ll also
be using some utility objects, like Insets, but even with those you’ll still be under 30 objects before you start
adding the core 3D objects that will make up your i3D BoardGame. Let’s add your ImageView and TextFlow
to the Scene Graph next, placing them behind the VBox UI Button bank so they render first.

Figure 9-2. Instantiate boardGameBackPlate and infoOverlay objects inside of your
createBoardGameNodes() method

http://dx.doi.org/10.1007/978-1-4842-0973-8_8

Chapter 9 ■ JavaFX 9 User InterFaCe DesIgn: the Front enD For Java 9 game DesIgn

219

Adding UI Backplate to Scene Graph: addNodesToSceneGraph()
For the ImageView compositing layer and the TextFlow information plate to be on top of the Scene,
3D gameBoard, and StackPane but behind the VBox Button bank, you will need .getChildren().add()
method calls off of the uiLayout StackPane object, after the root method calls, and before the uiContainer
method call. This is shown in Figure 9-3 and will use the following two Java statements inside of your
addNodesToSceneGraph() method structure:

uiLayout.getChildren().add(boardGameBackPlate); // Add ImageView backplate behind TextFlow Node
uiLayout.getChildren().add(infoOverlay); // Add TextFlow information overlay second

Since a Button object can’t be positioned individually, I had to use the VBox class, along with an Insets
class, to contain and position a vertical bank of Button controls. Now we are ready to code our two asset-
loading methods.

Asset Load Methods: loadImageAssets() and createTextAssets()
The next thing that we want to do to keep things organized as we create this game over the course of the
book is to create another two dedicated methods for loading Image object assets and creating Text object
assets. This creates a dedicated “method-based work process” for adding elements to your game. Instantiate
in .createBoardGameNodes(), add to SceneGraph in .addNodesToSceneGraph(), reference Image objects
in .loadImageAssets(), and create Text objects in .createTextAssets(). As you can see in Figure 9-4, I have
placed these two new method calls at the top of the .start() method, as well as having NetBeans create empty
methods for them, which we’ll add Java code to, as we add assets to your game. I placed these at the top of

Figure 9-3. Add boardGameBackPlate and infoOverlay to your Scene Graph in the addNodesToSceneGraph()
method

www.ebook3000.com

http://www.ebook3000.org

Chapter 9 ■ JavaFX 9 User InterFaCe DesIgn: the Front enD For Java 9 game DesIgn

220

the start method so that your application can load these assets into system memory first thing so they are
there when the rest of your pro Java game code needs them and so that we do not have to use any specialized
preloader. Also, these objects must be in place before they can be called by other methods, so they need
to be called first, before the methods that set up more advanced objects and add them to the SceneGraph
hierarchy. Later, we can make sure this asset loading is taking less than a second using the NetBeans 9
profiler, once we have things like 3D object rendering and game processing logic that we need to make
sure is highly optimized and not taking up too many of the Pulse engine’s 60 FPS interrupts (time slices)
processing the SceneGraph.

Before we can continue, we need to create some new media assets to use with the Image objects, which
we are going to instantiate and reference (load) with PNG32 digital image assets, which will leverage alpha
channels. This alpha channel data will allow us to composite these logos or screen captions on top of any
background image or even over the i3D gameBoard itself if we choose to down the line. In the next section,
I will create an iTVBoardGame logo in Autodesk 3D Studio Max and then export it as an OBJ file and render
it using a cool (or maybe, hot) rock texture. Then we will have a pro Java 9 game 3D splash screen title for use
later on during the chapter as you refine your UI design.

Creating SplashScreen Assets: Using 3D Assets in a 2D Pipeline
As you can see in Figure 9-5, I have created a “quick and dirty” iTVBoardGame 3D logo using the 2D Text
tool and then extruding it, using the Bevel modifier, as you can see in the Autodesk 3D Studio Max version
of the Scene Graph hierarchy (called a Modifier List in 3D Studio Max) on the top-right portion of the
screenshot. I later used the File ➤ Export function to output a WaveFront .OBJ 3D file format, which is
one of the several 3D file import formats supported by JavaFX 9. We may be using this format, or one of the
others, depending on what types of 3D data we need to import, as each format supports different types of 3D
data and features, such as texture maps, UVW maps, inverse kinematic (IK) skeletal animation data, mesh

Figure 9-4. Create empty methods for loadImageAssets() and createTextAssets() to create your image and text
assets

Chapter 9 ■ JavaFX 9 User InterFaCe DesIgn: the Front enD For Java 9 game DesIgn

221

morphing, animation, camera data, lighting data, and the like. JavaFX has the capability to import quite a
few advanced 3D formats, such as Collada (DAE), FrameBox (FBX), 3D Studio 3DS and OBJ.

I will import this mesh data into the rendering engine, add a burled walnut texture map, render it, and
then export the 2D pixel data as a 2D image asset. I will make sure that it has an alpha channel, so it will still
look like it is a 3D object, even though in fact it is not. This is what is termed in the industry as 2.5D.

If we want to spin it around and so on later, we can always import it as a 3D asset later in the book when
we have learned more about the i3D content production pipeline in JavaFX. One of the advantages of the
hybrid 2D+3D environment (API) that JavaFX gives you is the ability to decide what 3D is an “illusion” (like
2.5D, or stereoscopic) and what 3D is “real” i3D. Stereoscopic 3D (film, primarily) is not really 3D, as you
cannot walk behind the scene and all its characters. In an i3D game, such as Halo or Madden Football, you
can, as it is a completely virtual reality.

Next let’s take some of the UI screen title digital Image objects I’ve created for use inside of your
ImageView object, and I will show you how to add these into the proper folder in your NetBeansProject
folder hierarchy. After NetBeans 9 can “see” these PNG32 digital image assets, you will then be able to code
the loadImageAssets() method, which will load PNG32 data into Image objects in system memory so the
ImageView can reference and display them.

Adding Image Assets to Your Project: Using the \src\ Folder
As you can see at the top of Figure 9-6, the path on my Windows 7 64-bit QuadCore AMD workstation starts
with the Users folder and looks like C:\Users\Walls\MyDocuments\NetBeansProjects\JavaFXGame\src\
credits.png. As you can see, I named the PNG32 files after what was inside of them, and even though they
look like they are on a white background, they’re actually transparent. Copy the files from the book assets
repository to your project folder, and then you will be able to reference them in your code.

Figure 9-5. I created an iTVBoardGame logo with 3D Studio Max, exported it to an OBJ file format, and
rendered it

www.ebook3000.com

http://www.ebook3000.org

Chapter 9 ■ JavaFX 9 User InterFaCe DesIgn: the Front enD For Java 9 game DesIgn

222

A Method for Loading Image Assets: .loadImageAssets()
Open your empty loadImageAssets() method structure to add five Image() constructor methods,
instantiating and loading your Image objects with the correct image asset and its specifications, as shown
highlighted in Figure 9-7.

The Java code, shown in Figure 9-7, should look like this:

splashScreen = new Image("/welcome.png", 1280, 640, true, false, true);
helpLayer = new Image("/instructions.png", 1280, 640, true, false, true);
legalLayer = new Image("/copyrights.png", 1280, 640, true, false, true);
creditLayer = new Image("/credits.png", 1280, 640, true, false, true);
scoreLayer = new Image("/highscores.png", 1280, 640, true, false, true);

Figure 9-7. Instantiate and reference your five Image objects inside of the loadImageAssets() method you just
created

Figure 9-6. Copy the PNG32 files for the digital image titles for the UI screens to /NetBeansProjects/
JavaFXGame/src/

Chapter 9 ■ JavaFX 9 User InterFaCe DesIgn: the Front enD For Java 9 game DesIgn

223

What this constructor method format does is to load the Image with the digital image asset in your JAR
file, referenced using the “root” or forward slash character, since the file is in the /src/ folder. The second
and third entries represent the image X and Y resolution, and the fourth true entry turns on aspect ratio
locking. The fifth false entry turns off bilinear interpolation, and a sixth true entry turns on background
image loading, as a speed optimization.

A Method for Creating Text Assets: .createTextAssets()
Open your empty createTextAssets() method structure and add eight Text() constructor methods,
instantiating and loading your Text objects with correct information. The code, shown in Figure 9-8, should
look something like this:

playText = new Text("Press the Start Game Button to Start! \n");
moreText = new Text("Use other buttons for instructions, copyrights, credits and high scores.");
helpText = new Text("To play game roll dice, advance gamepiece, follow gameboard instruction.");
cardText = new Text("If you land on square that requires card draw it will appear in UI area.");
copyText = new Text("Copyright 2015 Wallace Jackson, All Rights Reserved. \n");
riteText = new Text("Visit the iTVboardGame.com website on the Internet: www.iTVboardgame.com");
credText = new Text("Digital Imaging, 3D Modeling, 3D Texture Mapping, by Wallace Jackson. \n");
codeText = new Text("Game Design, User Interface Design, Java Programming by Wallace Jackson.");

Figure 9-8. Declare eight Text objects at top of class; instantiate and load Text objects in the createTextAssets()
method

www.ebook3000.com

http://www.ebook3000.org

Chapter 9 ■ JavaFX 9 User InterFaCe DesIgn: the Front enD For Java 9 game DesIgn

224

The next thing you may want to do is to make the Button Controls uniform in width, which you’ll
accomplish by using a Button.setMaxWidth() method. When you upgrade your Scene object constructor to
support iTV 1280x720, you’ll be able to see the TOP_RIGHT Pos constant in action, and a uniform block of
buttons will look more professional.

Using a Button.setMaxWidth() Method: Making Buttons Uniform
The first thing that you will need to do is to set the scene Scene object to an iTV width of 1280 and a height of
640 so that you are using a wide 2:1 aspect ratio and have the minimum supported iTV screen resolution for
your pro Java 9 game application. As you can see in Figure 9-9, I upgraded the Scene() constructor method to
use these new application window screen dimensions in the following Java code, shown on line 83 at the top
of Figure 9-9:

scene = new Scene(root, 1280, 640);

The next thing that you’ll do is to set the boardGameBackPlate ImageView to contain the welcome
message image. You’ll do this using a .setImage() method with the splashScreen Image, using this code on
line 89 in Figure 9-9:

boardGameBackPlate.setImage(splashScreen);

Finally, to make the Button objects 125 pixels in uniform width, use the .setMaxWidth(125) method
call, called off of each of the five Button UI objects (as shown in Figure 9-9, on code lines 97, 100, 103, 106,
and 109).

Figure 9-9. Use the .setMaxWidth() method call to set your Button UI objects to 125 so that they have a
uniform width

Chapter 9 ■ JavaFX 9 User InterFaCe DesIgn: the Front enD For Java 9 game DesIgn

225

I configured the VBox to space its children out by 10 pixels, placing a value of 10 in the VBox(10)
constructor method call. I increased the Insets() spacing value to Insets(16). Run the project to view the
changes, shown in Figure 9-10.

Next, copy the backplate8.png and alphalogo.png image assets to the source folder, as shown in
Figure 9-11.

Figure 9-10. Use the Run ➤ Project work processing to see your Button bank design improvements in spacing
and width

Figure 9-11. Use your file management utility to copy the backplate8.png and alphalogo.png assets to your /
src folder

www.ebook3000.com

http://www.ebook3000.org

Chapter 9 ■ JavaFX 9 User InterFaCe DesIgn: the Front enD For Java 9 game DesIgn

226

Next, let’s use the Background Image capability of the StackPane. Currently we’re using the EMPTY
constant from the Background class, so let’s replace that with a BackgroundImage object, which your
Background class will also support. Let’s take a look at how to wire this up next so we can optimize your
SceneGraph further by using an unused feature (a StackPane background) rather than by adding another
ImageView object, which most will be inclined to do.

Using StackPane Background: Leverage All Compositing Layers
The JavaFX StackPane class supports a .setBackground(Background background) method call, which,
in turn, supports a BackgroundImage object, which can be loaded with an Image object or used with the
EMPTY constant. This means you can reference an image asset in the background of a StackPane UI layout
container object, so let’s take a look at how to use this to your advantage so that you have five compositing
layers (Stage background, Scene background, ImageView, TextFlow, StackPane) you can utilize, using only
the nodes you have added to the Scene Graph. All these are currently set to EMPTY or TRANSPARENT
or contain a PNG32 with alpha. Add the backPlate and alphaLogo object names to your existing Image
declaration compound Java statement at the top of the class, using the following code:

Image splashScreen, helpLayer, legalLayer, creditLayer, scoreLayer, backPlate, alphaLogo;

Next, declare a BackgroundImage object named uiBackgroundImage at the top of your class and use
Alt+Enter to have NetBeans 9 write your import statement for you. Next, add a Background object named
uiBackground (notice that the Background class was already imported during Chapter 6, so you can utilize
the Background.EMPTY constant) at the top of your JavaFXGame class, as shown in the following Java code,
as well as highlighted in Figure 9-12:

BackgroundImage uiBackgroundImage; // Object Declaration at the top of the JavaFXGame class
Background uiBackground; // Object Declaration at the top of the JavaFXGame class

http://dx.doi.org/10.1007/978-1-4842-0973-8_6

Chapter 9 ■ JavaFX 9 User InterFaCe DesIgn: the Front enD For Java 9 game DesIgn

227

In the beginning of the loadImageAssets() method, instantiate the backPlate and alphaLogo Image
objects and then load them with their associated digital image assets using the following Java code, as shown
in Figure 9-12:

backPlate = new Image("/backplate8.png", 1280, 640, true, false, true);
alphaLogo = new Image("/alphalogo.png", 1200, 132, true, false, true);

At the end of this same loadImageAssets() method, instantiate your uiBackgroundImage object and
load it with the backplate Image object, which we will use as an optimized, 8-bit PNG8 background image
for the composite splash screen image we’re creating using Node subclasses (StackPane, ImageView, and
VBox); you can do this using the following Java code, also shown in Figure 9-12:

uiBackgroundImage = new BackgroundImage(backPlate,
 BackgroundRepeat.NO_REPEAT, BackgroundRepeat.NO_REPEAT,
 BackgroundPosition.CENTER, BackgroundSize.DEFAULT);

Finally, you will need to instantiate the uiBackground Background object and, using its constructor
method, load it with the uiBackgroundImage BackgroundImage object you just created in the previous
line of Java code. This would be done using the following line of code, shown highlighted in the
loadImageAssets() method in Figure 9-12:

uiBackground = new Background(uiBackgroundImage);

Figure 9-12. Add a backgroundImage object named uiBackgroundImage; use the .setBackground() method
to load it

www.ebook3000.com

http://www.ebook3000.org

Chapter 9 ■ JavaFX 9 User InterFaCe DesIgn: the Front enD For Java 9 game DesIgn

228

In the createBoardGameNodes() method, call the .setBackground() method off the uiLayout object and
pass over a uiBackground Background object, replacing the Background.EMPTY constant, using the code in
Figure 9-12:

uiLayout.setBackground(uiBackground);

Use Run ➤ Project to see if a backplate image is in the background of your StackPane, as shown in
Figure 9-13.

Now we’re ready to add your text layer into your compositing pipeline using the TextFlow and Text
objects.

Using TextFlow: Setting Up Your Information Overlay Object
Open your createTextAssets() method, add two method calls off of each of the playText and moreText
objects, make sure that they use the Color.WHITE constant to fill the font, and select a widely supported
Helvetica font, using its REGULAR font face and setting a large 50 pixels for the font height. Use the
FontPosture helper class (font face constants) to set the playText and moreText objects to use the regular
font style. Add the escape newline, or \n character sequence, inside of the moreText object to split it into
two lines. The new Text objects configuration highlighted in the middle of Figure 9-14 should look like the
following Java code:

playText = new Text("Press the Start Game Button to Start! \n");
playText.setFill(Color.WHITE);
playText.setFont(Font.font("Helvetica", FontPosture.REGULAR, 50));
moreText = new Text("Use other buttons for instructions, \n copyrights, credits and scores.");
moreText.setFill(Color.WHITE);
moreText.setFont(Font.font("Helvetica", FontPosture.REGULAR, 50));

Figure 9-13. Use the Run ➤ Run Project (JavaFXGame) menu sequence to test your new compositing pipeline
Java code

Chapter 9 ■ JavaFX 9 User InterFaCe DesIgn: the Front enD For Java 9 game DesIgn

229

Open the createBoardGameNodes() method, and after your infoOverlay object instantiation, add a
line of code and call the .setTranslate X() method with a value of 240 off of the infoOverlay object. Then
add another line of code and call the .setTranslateY() method with a value of 420. This will position the
TextFlow container underneath the ImageView object (currently a welcome message) so that your block of
composited text will be at the bottom of the screen. The Java code for these statements should look like the
following (and are shown highlighted in Figure 9-15):

infoOverlay.setTranslateX(240);
infoOverlay.setTranslateY(420);

Figure 9-14. Add .setFill() and .setFont() methods to your SplashScreen text

www.ebook3000.com

http://www.ebook3000.org

Chapter 9 ■ JavaFX 9 User InterFaCe DesIgn: the Front enD For Java 9 game DesIgn

230

Open the addNodesToStackPane() method. At the end of the method add an infoOverlay object and call
the .getChildren().addAll() method, with the playText and moreText objects separated by commas, as shown
in Figure 9-16.

Figure 9-15. Add Text objects to your TextFlow object and .setTranslateX() and .setTranslateY()

Figure 9-16. Add infoOverlay object to end of .addNodesToSceneGraph() and use .addAll() to add playText
and moreText objects to infoOverlay

Chapter 9 ■ JavaFX 9 User InterFaCe DesIgn: the Front enD For Java 9 game DesIgn

231

The Java code for this statement should look like the following and is shown highlighted in Figure 9-16:

infoOverlay.getChildren().addAll(playText, moreText);

As you can see in Figure 9-17, the white text objects look cool, and your image compositing pipeline
looks as if it is being created using professional digital imaging software. Next, let’s add an image
compositing layer for a logo.

This UI design is starting to look more professional, with the Buttons positioned over the outcropping
of the rock and the “Welcome!” text centered in the screen design. However, the UI design still needs a
branding logo, and there is an extra space pushing the third line to the right that needs to be fixed (removed).
Let’s do this in the next section.

Using StackPane: Add More Digital Image Compositing Layers
Let’s add another ImageView object declaration named logoLayer at the top of the JavaFXGame class,
turning the ImageView declaration into an ImageView boardGameBackPlate, logoLayer; compound Java
statement. Open your createBoardGameNodes() method, add an object instantiation for this object, and then
a .setImage() method call wiring this to the alphaLogo Image object you created earlier when you imported
this digital image asset. Next, you will add two method calls off of the logoLayer object, one for X scaling and
one for Y scaling, using the same 80 percent value of 0.8, so that we lock the aspect ratio (also called uniform
scaling) for this scaling operation. Finally, you will move the logo up the y-axis 225 pixels from the center of the
screen, using a -225 value, as StackPane uses a 0,0 center screen referencing model rather than the standard
0,0 upper-left corner pixel referencing model. We will also pull the logo 75 pixels back toward the left using an

Figure 9-17. Run the project and check the result of adding a TextFlow object to the splash screen
compositing pipeline

www.ebook3000.com

http://www.ebook3000.org

Chapter 9 ■ JavaFX 9 User InterFaCe DesIgn: the Front enD For Java 9 game DesIgn

232

X translation value of -75 pixels. The new logoLayer ImageView object instantiation, asset referencing, and
transformation (location/translation and scale) configuration code can be seen highlighted in the middle of
Figure 9-18 and should look like this following Java 9 code statement block:

logoLayer = new ImageView();
logoLayer.setImage(alphaLogo);
logoLayer.setScaleX(0.8);
logoLayer.setScaleY(0.8);
logoLayer.setTranslateX(-75);
logoLayer.setTranslateY(-225);

Next, you’ll have to add this new logoLayer ImageView to the StackPane uiLayout container of
compositing layers in your addNodesToSceneGraph() method. While we’re there, since we are adding
multiple Node subclasses to the root and uiLayout SceneGraph hierarchy, we’ll switch from using the
.getChildren().add() method chain to using a .getChildren().addAll() method chain to reduce the number of
Java statements in this method from eight to four.

The order added affects the compositing layer order, so for .add() statements, this equates to top
to bottom. The first statements added (top) are on the bottom of the compositing layer stack (sort of
counterintuitive, isn’t it?).

Figure 9-18. Create a logoLayer ImageView referencing the alphaLogo image; set scale to 80 percent and
position to -75,-225

Chapter 9 ■ JavaFX 9 User InterFaCe DesIgn: the Front enD For Java 9 game DesIgn

233

With the .addAll() method, this changes to become left to right, so the objects added first (left) are
on the bottom of the compositing layer stack. A new addNodesToStackPane() method structure using
.getChildren().addAll() method calls would therefore look like the following, as shown highlighted at the
bottom of Figure 9-19:

private void addNodesToSCeneGraph() {
 root.getChildren().addAll(gameBoard, uiLayout);
 uiLayout.getChildren().addAll(boardGameBackPlate, logoLayer, infoOverlay, uiContainer);
 uiContainer.getChildren().addAll(gameButton, helpButton, legalButton,
 creditButton, scoreButton);
 infoOverlay.getChildren().addAll(playText, moreText);
}

Figure 9-19. Consolidate six .add() method calls into two .addAll() method calls off of a SceneGraph root and
UI branch

www.ebook3000.com

http://www.ebook3000.org

Chapter 9 ■ JavaFX 9 User InterFaCe DesIgn: the Front enD For Java 9 game DesIgn

234

As you can see in Figure 9-20, I have added the logo and fixed the text paragraph (left) alignment,
removing that space after the\n, which is counterintuitive because it leaves\ncopyrights and there is no
escape ncopyrights. You as a Java programmer would need to know in this situation that the compiler will
look at the escape (\) character, and only one letter thereafter (in this case n or newline), and then continue
parsing characters as part of your text content.

The logo has been added to the compositing layer container (StackPane), resized (scaled) to fit next to
the Button bank, and moved up (translated) to center with your Button bank. This all looks well-balanced
and professional; it uses very few nodes in the SceneGraph and very few objects in system memory, so it’s
optimized.

Since we’re not using the transparency (trick) that I showed you back in Chapter 7 for this UI, let’s
replace the OS chrome by reverting to the default DECORATED StageStyle class constant, which I could do
by removing the primaryStage.initStyle() method call. Instead, I will leave that Java statement in place and
change the TRANSPARENT constant use to a DECORATION constant use in case we want to decorate the Stage
object differently in the future. This is done by changing this line of code, shown in line 46 in Figure 9-21, to the
following Java code:

primaryStage.initStyle(StageStyle.DECORATED);

Figure 9-20. Run the project and check the result of adding ImageView object to the splash screen compositing
pipeline

http://dx.doi.org/10.1007/978-1-4842-0973-8_7

Chapter 9 ■ JavaFX 9 User InterFaCe DesIgn: the Front enD For Java 9 game DesIgn

235

Next, add your title for your OS window chrome by replacing the “Hello World” placeholder text from
the bootstrap code that was created for you in Chapter 6. I’m going to use iTVBoardGame to match the 3D
logo and add “JavaFX 9 Game” using parentheses to clarify to the user what platform this application is built
on. The code for doing this is shown in orange in Figure 9-21 above the .initStyle() method and should look
like the following Java statement:

primaryStage.setTitle("iTVBoardGame (JavaFX 9 Game)");

As you can see in Figure 9-22, we now have an initial application startup splash screen with logo,
background image, user interface button bank, and sectional title image layer. In the case of the splash
screen, this is “Welcome!”

Figure 9-21. Revert to StageStyle.DECORATED and add an iTVBoardGame (JavaFX 9 Game) title for your
OS window

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_6
http://www.ebook3000.org

Chapter 9 ■ JavaFX 9 User InterFaCe DesIgn: the Front enD For Java 9 game DesIgn

236

The only thing that we have left to do is to finish implementing the Image objects for the other four
sections and implement font style and color in the other four TextFlow objects. All of these objects will be
called in your event-handling code, which we’ll be adding in Chapter 10 (which covers event handling and
effects in JavaFX 9 and Java 9 games).

After all of this 2D screen design and UI design and event handling has been coded, we can start getting
into 3D and i3D during the second half of the book.

Finishing Up Your UI Design Object Creation and Configuration
Let’s open your createTextAssets() method and add the .setFill() and .setFont() method calls off of the other
six Text objects to set their color to match the boardGameBackPlate ImageView that holds the handwriting
text images and to set their Font style to Helvetica Regular. This is a relatively straightforward exercise; the
resulting method body is shown in Figure 9-23 and should look like the following Java method body and Java
statements:

private void createTextAssets(){
 playText = new Text("Press the PLAY GAME Button to Start!\n");
 playText.setFill(Color.WHITE);
 playText.setFont(Font.font("Helvetica", FontPosture.REGULAR, 50));
 moreText = new Text("Use other buttons for instructions,\ncopyrights, credits and
scores.");
 moreText.setFill(Color.WHITE);
 moreText.setFont(Font.font("Helvetica", FontPosture.ITALIC, 50));
 helpText = new Text("To play game roll the dice, advance\ngame piece and
 follow game board\ninstructions. ");
 helpText.setFill(Color.GREEN);

Figure 9-22. Run the project to make sure the OS chrome has been replaced and the window title is in place
and correct

http://dx.doi.org/10.1007/978-1-4842-0973-8_10

Chapter 9 ■ JavaFX 9 User InterFaCe DesIgn: the Front enD For Java 9 game DesIgn

237

 helpText.setFont(Font.font("Helvetica", FontPosture.REGULAR, 50));
 cardText = new Text("If you land on a square\nthat requires you draw a card, it
 will\nappear in the floating UI text area.");
 cardText.setFill(Color.GREEN);
 cardText.setFont(Font.font("Helvetica", FontPosture.REGULAR, 50));
 copyText = new Text("Copyright 2015 Wallace Jackson.\nAll Rights Reserved.\n");
 copyText.setFill(Color.PURPLE);
 copyText.setFont(Font.font("Helvetica", FontPosture.REGULAR, 50));
 riteText = new Text("Visit the iTVboardGame.com website on\nthe Internet
 at www.iTVboardgame.com");
 riteText.setFill(Color.PURPLE);
 riteText.setFont(Font.font("Helvetica", FontPosture.REGULAR, 50));
 credText = new Text("Digital Imaging, 3D Modeling, 3D\nTexture Mapping
 by Wallace Jackson.\n");
 credText.setFill(Color.BLUE);
 credText.setFont(Font.font("Helvetica", FontPosture.REGULAR, 50));
 codeText = new Text("Game Design, User Interface Design,\nJava Programming
 by Wallace Jackson.");
 codeText.setFill(Color.BLUE);
 codeText.setFont(Font.font("Helvetica", FontPosture.REGULAR, 50));
}

You have made a lot of progress toward putting together your professional Java game splash screen
design, user interface design, and top-level SceneGraph and class (and method) infrastructure during
this chapter. You have also learned about the Image, ImageView, Text, TextFlow, Background, and
BackgroundImage classes. Pat yourself on the back, if you are that flexible, and then take a little break from
Java 9 programming!

Figure 9-23. Finish configuring your Text objects using .setFill() and .setFont() methods with Color and
Helvetica values

www.ebook3000.com

http://www.ebook3000.org

Chapter 9 ■ JavaFX 9 User InterFaCe DesIgn: the Front enD For Java 9 game DesIgn

238

You are by no means finished with this user interface design part of your pro Java 9 game development.
Be prepared to refine it even more later in the book, when we make it interactive (Chapter 10) and make it a
2D plane when we convert your now 2D Scene into a 3D Scene by adding a PerspectiveCamera to the Scene
root (Chapter 11), all of which will necessitate changes to the StackPane object compositing layer pipeline
attributes as well as to the coordinate referencing system. As I said, this book is going to get more and more
complex with each chapter, until your knowledge of Java 9 and JavaFX and NetBeans 9 is good enough to
create any i3D game design you can imagine!

Summary
In this ninth chapter, you added even more code to your JavaFXGame.java class by adding to the
compositing pipeline for your actual top-level user interface design for your game using the JavaFX
Image, ImageView, Background, BackgroundImage, Text, and TextFlow classes. The first thing that you did
was to finish the JavaFX Scene Graph hierarchy design, which I visualized in Figure 9-1, showing how the
SceneGraph uses one root Node object, three branch Node objects, and seven leaf Node objects (five Button
objects, one ImageView object, and one TextFlow object). Later, you will add more branch and leaf Node
objects for the 3D part of the game, primarily to hold 3D objects (primitives) offered by JavaFX or your own
3D mesh geometry. During the chapter you added a second ImageView node for logo compositing.

Next, you learned about some of the JavaFX classes that we were going to implement in these new
methods during this chapter as well as the next one. These included the Image class, as well as the
ImageView class, both from the javafx.scene.image package. You also looked at the Text and TextFlow
classes from the javafx.scene.text package.

You instantiated and configured these new compositing Node objects and then coded two new
methods to handle your Image and Text assets. Your loadImageAssets() method instantiated and
configured your digital imagery assets into Image objects, and a createTextAssets() method instantiated
and configured your text information assets into Text objects for later use with the TextFlow Node object in
your Scene Graph.

Then you made your Button widths uniform using a value of 125 pixels and subsequently learned
how to use the Background and BackgroundImage classes (objects) to be able to utilize the background
property of the StackPane as another compositing layer in your compositing pipeline without adding any
more Node objects to your JavaFX Scene Graph hierarchy. This reinforces my optimization approach for
pro Java games development of utilizing everything that each Node in your Scene Graph gives you so that
you can keep the total number of Nodes that are being traversed on each pulse event to an absolute bare
minimum.

In the next chapter, you are going to learn about event handling classes in JavaFX and implement
the Java code inside of your ActionEvent EventHandler program logic. You will also be learning how to
implement some cool special effects in the process, as some of these will be triggered by Java 9 statements,
inside of your event handlers. After that, we will be getting into 3D and the classes and assets you will need
to know about to enter the realm of 3D.

http://dx.doi.org/10.1007/978-1-4842-0973-8_10
http://dx.doi.org/10.1007/978-1-4842-0973-8_11

239© Wallace Jackson 2017
W. Jackson, Pro Java 9 Games Development, https://doi.org/10.1007/978-1-4842-0973-8_10

CHAPTER 10

User Interface Design Interactivity:
Event Handling and Imaging
Effects

Now that you have finished the Scene Graph hierarchy for the splash screen and user interface design, let’s
get back into our JavaFXGame primary application class coding here in Chapter 10 and finish implementing
the event handling framework that you have in place but that is essentially “empty” (except for a few System.
out.println calls to test your Button Control Node objects). The Java and JavaFX event handling that we will
take an overview of during this chapter will implement the user interface that the player will use to learn
about and start your Java 9 game. During the book you will use other types of event handling (keystroke
and mouse) that we will look at during this chapter. You will be adding Java game UI programming logic
that could be looked at as an interactivity engine for your game. There are many ways to interface with
a game, including arrow keys, known as the DPAD (direction pad) for consumer electronics devices and
modern remote controls; a keyboard; a mouse; a trackball; a game controller; a touchscreen; or even
advanced hardware, including gyroscopes and accelerometers. One of the important choices that you will
make for your pro Java 9 game development will be how your players will interface with your Java game
using hardware devices that they are playing your game on and the hardware input capabilities the game
supports.

During this chapter you will be learning about the different types of JavaFX event types that are
contained in the javafx.event, javafx.scene.input, and the java.util packages. You will cover ActionEvent
since you are using this in your user interface design currently, as well as Input Events such as MouseEvent
and KeyEvent.

Besides continuing to work on your JavaFXGame Java code by adding event handling, you’ll be learning
about JavaFX Special Effects during this chapter, just to make sure I cover everything that is cool in Java
during this book. These JavaFX special effects are stored in the javafx.scene.effect package and give JavaFX,
and thus Java, a lot of the same special effects advantages that a digital image compositing software package
such as GIMP gives you.

Event Handling: Adding Interactivity to Your Games
One could argue that event handing is the foundation of game development. This is because if you don’t
have a way to interface with gameplay logic and game elements, you really don’t have much of a game. I’m
going to cover JavaFX event handling classes during this section of the chapter, and you will implement
your ActionEvent handing structures so that your users can utilize your user interface that you have been
designing over the past several chapters. The first thing I want to talk about before we start dissecting

www.ebook3000.com

https://doi.org/10.1007/978-1-4842-0973-8_10
http://dx.doi.org/10.1007/978-1-4842-0973-8_10
http://www.ebook3000.org

Chapter 10 ■ User InterfaCe DesIgn InteraCtIvIty: event hanDlIng anD ImagIng effeCts

240

Java and JavaFX packages, classes, interfaces, and methods is the different types of input hardware events
that can be handled for pro Java games. These can be generated using the arrow keys on your iTV remote
or smartphone DPAD, to your keyboard, to your mouse or trackball, and to the touchscreen on your
smartphone and tablet or iTV set. There is also custom input hardware, including game controllers on game
consoles and now on iTV sets, gyroscopes and accelerometers in smartphones and tablets, and freeform
hand gesture and motion controllers such as the Leap Motion, VR Glove, and Razer Hydra Portal.

Types of Controllers: What Types of Events Should We Handle?
One of the key things to look at is what is the most logical approach to supporting gameplay-related events,
such as arrow keys, mouse clicks, touchscreen events, game controller buttons (A, B, C, and D), and more
advanced controllers, such as gyroscopes and accelerometers available on Android, Kindle, Tizen, HTML5
OS, and iOS consumer electronics devices. This decision will be driven by the hardware devices that a game
is targeted to run on; if a game needs to run everywhere, then code for handling different event types, and
even different programming approaches to event handling, will ultimately be required. We will be taking a
closer look at what input events are currently supported in Java and JavaFX during this section of the chapter
to give you an overview for your game development.

It is also interesting to note that Java and JavaFX apps can already be run on two popular embedded
platforms, Android and iOS, and I would put money on native support on open source platforms (Opera,
Tizen, Chrome, Ubuntu, and Firefox) and proprietary platforms that currently support Java 8 or 9 technology
(Windows, Samsung Bada, RIM Blackberry, LG WebOS, OpenSolaris) at some point in the near future. The
future of Java 9 is bright, thanks to JavaFX, the momentum of the Java platform over several decades, and
new advanced i3D hardware platform support!

Java and JavaFX Event Packages: java.util and javafx.event
As you have seen in your event handling structure’s new EventHandler<ActionEvent> declaration, the
javafx.event package’s EventHandler public interface, which extends the java.util package’s EventListener
interface, is the way that Event objects are created and handled, either using an anonymous inner class
(Java 7) structure, which we are using as it is compatible with Android, or using a lambda expression (Java 8).
You have become familiar now with how to code this type of event handling structure, and I will continue
during this book to code methods using the Java anonymous inner class approach. That said, you can mouse
over the wavy yellow underline highlight under any Java 7 code and have NetBeans 9 convert it to use a more
streamlined Java 8 lambda expression. In this way, you can create games that are compatible with Java 7
(64-bit Android 5 and 6), Java 8 (64-bit Android 7 and 8), and Java 9 (PC OSs and future versions of Android)
game code delivery pipelines. In this section, we will look at ActionEvent and InputEvent EventObject
subclass categories so that you have an understanding of what the major events are in JavaFX. These come
from the java.util.EventObject superclass, and we will take a look at how they would be applied to handling
actions, keystrokes, mouse events, touch events, and similar advanced input event types.

JavaFX ActionEvent Class: Created from the java.util.EventObject Superclass
The ActionEvent class (and objects) that you’ve used thus far during the book for your user interface Button
control event handling is a subclass of the javafx.event package’s Event superclass, which is itself a subclass
of the java.util package’s EventObject superclass, which is a subclass of the java.lang.Object master class.

Chapter 10 ■ User InterfaCe DesIgn InteraCtIvIty: event hanDlIng anD ImagIng effeCts

241

This class also has one known direct subclass, the MediaMarkerEvent class. The class hierarchy structure
therefore looks like the following:

java.lang.Object
 > java.util.EventObject
 > javafx.event.Event
 > javafx.event.ActionEvent

The ActionEvent class is contained in the javafx.event package along with the EventHandler public
interface. An ActionEvent object, as you might have guessed, is an Event object that represents some type of
action. This type of Event object can be used to represent a wide variety of things. As you have seen, it is used
when a Button has been fired and is also used, for instance, when a KeyFrame has finished playing and in
other similar internal software usage. The ActionEvent was introduced to JavaFX in version 2.0 and was not
available in the JavaFX 1.x versions (1.0 to 1.3). It remains in JavaFX 7 for Java 7 (both now discontinued), in
JavaFX 8 for Java 8, and now in JavaFX 9 for Java 9.

There are two data fields (attributes) of an ActionEvent object. The first is a static
EventType<ActionEvent> ACTION characteristic, which is the only valid EventType for the
ActionEvent. There is also, however, a supertype for an ActionEvent object that takes the form of static
EventType<ActionEvent> ANY that provides developers with a common supertype that is able to represent
all action event types. Thus, if you want your Java code to process any ActionEvent object, use this data
field, and if you want your Java code to process specific ActionEvent objects, use the ACTION data field.

There are also two constructor methods supported by this ActionEvent class. The default empty
parameter list ActionEvent() constructor method creates a new ActionEvent object with the default event
type of ACTION. There is also an ActionEvent(Object source, EventTarget target) constructor method,
which will create the new ActionEvent with the specified event Object source and EventTarget target.

There are also two methods supported by this ActionEvent class. The first is an ActionEvent
copyFor(Object newSource, EventTarget newTarget) method, which is used to create and return a copy of
the event using a specified event source and target. The second is an EventType<? extends ActionEvent>
getEventType() method, which will get the event type for the event object that it has been called off of.

All the other event-related classes that we’ll be using for the i3D component of the gameplay are
contained in the javafx.scene.input package. I’m going to focus on the javafx.scene.input package for
the rest of this section, as you have already learned how to code your new EventHandler<ActionEvent>
{ … } structure for Java 7. If you instruct NetBeans 9 to turn this into a Lambda Expression, it will take the
(ActionEvent) -> { … } code structure format for Java 8.

Now it’s time to learn how to use other types of events, called input events, in your Java game
development work process. Let’s take a look at the javafx.scene.input package and its 25 input event-related
classes.

JavaFX Input Event Classes: The javafx.scene.input Package
Even though the java.util and javafx.event packages contain the core EventObject, Event, and
EventHandler classes that “handle” your events, at the foundational level of making sure that the events get
processed (handled), there is another JavaFX package called javafx.scene.input that contains the classes
that you’ll be interested in using to process (handle) your player’s input for the different types of games that
you might be creating. These are called input events, and they are different events than the ActionEvents and
pulse events, which you learned about already.

It’s interesting to note that a number of the input event types that are supported in the javafx.scene.
input package are more suited to consumer electronics (the industry term is embedded) devices such as
smartphones and tablets. This tells me that JavaFX is being positioned (designed) for use on open source
platforms, such as Android OS, Firefox OS, Tizen OS, Bada OS, Opera OS, Ubuntu OS, or Chrome OS. JavaFX 9
has “specialized” events, such as GestureEvent, SwipeEvent, TouchEvent, and ZoomEvent, that support

www.ebook3000.com

http://www.ebook3000.org

Chapter 10 ■ User InterfaCe DesIgn InteraCtIvIty: event hanDlIng anD ImagIng effeCts

242

specific features in the new embedded devices marketplace. These input event classes support advanced
touchscreen device features, such as gestures, page swiping, touchscreen input handling, and multitouch
display features, such as two-finger “pinching” or “spreading” touch input, for instance, for zooming in and
out of the content on the screen, respectively.

We will be covering the more “universal” input types in this book, which are supported across both
personal computers (desktops, laptops, notebooks, netbooks, and the newer “pro” tablets, such as the
Surface Pro 4) and embedded devices, including smartphones, tablets, e-readers, iTV sets, game consoles,
home media centers, set-top boxes (STBs), and so forth. These devices will also process these more
widespread (in their implementation) KeyEvent and MouseEvent types of input events, as mouse events
and key events will always be supported for legacy software packages. For example, mouse click events are
supported by touchscreens, but touchscreen events are not supported with positioning devices (mouse,
trackball, controller, DPAD, etc.). So if you can, use keyboard and mouse events!

It is interesting to note that a touchscreen display will “handle” mouse events as well as touch events,
which is quite convenient as far as making sure that your game works across as many different platforms
as possible. I often use this approach of using mouse event handling in my Android books so that both the
touchscreen and a DPAD center (click) button can be used by the user to generate a mouse click event,
without having to specifically use touch events. Another advantage of using mouse (click) events, when
possible, for touchscreen users is that if you use touch events, you cannot go in the other direction. That is,
your game application will only work on touchscreen devices and not on devices (such as iTV sets, laptops,
desktops, netbooks, and the like) that feature mouse hardware of some type.

This same principle applies to key events, especially the arrow keys developers use for their games, as
these keys can be found on the arrow keypad on keyboards and remote controls, on game controllers, and
on the DPAD on most smartphones. I will also show you how to include alternate key mappings so that
your player can decide which input method they prefer to use to play your pro Java 9 game. Let’s take a look
at KeyCode and KeyEvent classes next.

The KeyCode Class: Using Enum Constants to Define Keys Players Use
for Game
Since a lot of games use the arrow keypad for navigation (usually the A, S, D, and W keys) and sometimes
use alternate mappings for these to the game controller’s GAME_A, GAME_B, GAME_C, and GAME_D
buttons, let’s take a closer look at the JavaFX KeyCode class first. This class is a public Enum class, which
holds enumerated constant values for keys that are evaluated when a key is pressed or released. This class
is where the KeyEvent class goes to get the keycode constant values that it uses (processes) to determine
which key was used by the player for any particular key event invocation. The Java and JavaFX class
hierarchy for the KeyCode class will look like the following:

java.lang.Object
 > java.lang.Enum<KeyCode>
 > javafx.scene.input.KeyCode

The constant values contained in the KeyCode class use capital letters and are named after the key that
the keycode supports. For instance, a, s, w, and d keycodes are A, S, W, and D. The arrow keypad keycodes
are UP, DOWN, LEFT, and RIGHT, and the game controller button keycodes are GAME_A, GAME_B,
GAME_C, and GAME_D.

You will be implementing KeyCode constants along with the KeyEvent object in an EventHandler object
later in this book, so I am covering these event-related packages and classes for input event handling here.
As you’ll see, this is done in much the same way that an ActionEvent is set up to be handled. Your KeyEvents
can also be coded using the Java 7 inner class approach or via Java 8 lambda expressions. Your KeyEvent
object handling should be done in a modular fashion so your KeyCode evaluation structure sets Boolean

Chapter 10 ■ User InterfaCe DesIgn InteraCtIvIty: event hanDlIng anD ImagIng effeCts

243

flag variables for each KeyCode mapping. The Boolean flags will provide an accurate view of what keys are
being pressed, or released, by a player in any millisecond.

These Boolean values can then be read and acted upon by using Java game programming logic in
your other game engine classes, which will then process these key events in real time so that your pro Java
gameplay works well and your user experience is good. Next, let’s take a look at the KeyEvent objects that
process these KeyCode objects.

The KeyEvent Class: Using KeyEvent Objects to Hold KeyCode Constants
Next, let’s take a closer look at the KeyEvent class. This class is designated public final KeyEvent, and it
extends the InputEvent superclass, which is used to create all of the input event subclasses that are in the
javafx.scene.input package. The KeyEvent class is set into motion using the EventHandler class and handles
KeyCode class constant values. This class’s hierarchy starts with the java.lang.Object master class and goes
through the java.util.EventObject event superclass to the javafx.event.Event class, which is used to create
the javafx.scene.input.InputEvent class that the KeyEvent class extends (subclasses). It is interesting to note
that we are spanning four different packages here.

The Java and JavaFX class hierarchy for the KeyEvent class jumps from the java.lang package to the java.
util package to the javafx.event package to the javafx.scene.input package. A KeyEvent hierarchy looks like
the following:

java.lang.Object
 > java.util.EventObject
 > javafx.event.Event
 > javafx.scene.input.InputEvent
 > javafx.scene.input.KeyEvent

The generation of a KeyEvent object by an EventHandler object indicates that a keystroke has occurred.
This KeyEvent is often generated using one of your Scene Graph Node objects such as an editable text UI
control; however, in the case of your game, you’re probably going to attach the key event handling above
the Scene Graph Node object hierarchy level directly to the Scene object named scene. This will serve to
minimize the Scene Graph pulse processing overhead by not attaching any KeyEvent handling to any of the
Node objects in your Scene Graph. In the case of your game, this is the root Group object containing the
uiLayout StackPane object and the gameBoard Group object.

A KeyEvent object is generated whenever a key is pressed and held down, released, or typed (pressed
and immediately released). Depending on the nature of this key pressing action itself, your KeyEvent object
is passed into an .onKeyPressed(), .onKeyTyped(), or .onKeyReleased() method for further processing
inside a .handle() method.

Games typically use key-pressed and key-released events, as users typically press and hold keys to move
the actors in the game. Key-typed events on the other hand tend to be “higher-level” events and generally
do not depend upon the OS platform or the keyboard layout. Typed key events (.onKeyTyped() method
calls) will be generated when a Unicode character is entered. They are used to obtain character input for
UI controls such as text fields and are used for business applications, such as calendars, calculators, e-mail
clients, and word processors, for instance.

In a simple case, the key-typed event will be produced by using a single key press and its immediate
release. Additionally, alternate characters can be produced using combinations of key press events. For
instance, a capital A is produced using a Shift key press and an “a” key-type (press and immediate release).

A key-release is not usually necessary to generate a key-typed KeyEvent object. It is important to notice
that there are some fringe cases where a key-typed event is not generated until the key is released; a great
example of this is the process of entering ASCII character code sequences using that old-school

www.ebook3000.com

http://www.ebook3000.org

Chapter 10 ■ User InterfaCe DesIgn InteraCtIvIty: event hanDlIng anD ImagIng effeCts

244

Alt-key-with-numeric-keypad entry method that was used “back in the day” with DOS and held over into
Windows OSs. It is important to note that no key-typed KeyEvent objects will be generated for computer
keyboard keys that do not generate Unicode (visible, printable) characters, such as the Shift, Control (Ctrl),
or Alternate (Alt) keys, commonly referred to as modifier keys.

The KeyEvent class has a character variable (I am tempted to call this a character characteristic, but I
won’t) that will always contain a valid Unicode character for a key-typed event or CHAR_UNDEFINED for a
key-pressed or key-released events. Character input is reported only for key-typed events, since key-pressed
and key-released events are not necessarily associated with character input. Therefore, your character
variable is guaranteed to be meaningful only for key-typed events.

For key-pressed and key-released KeyEvent objects, the code variable in the KeyEvent class will contain
your KeyEvent object’s keycode, defined using the KeyCode class you learned about earlier. For key-typed
events, this code variable always contains the constant KeyCode.UNDEFINED. So as you can see, key-
pressed and key-released are thus designed to be used differently than key-typed, and that is the reason
you will probably be using key-pressed and key-released events for game event handling. Key-pressed and
key-released events are low level and are generated whenever a given key is pressed or released. They are
the only way to “poll” the keys that do not generate character input. Your key being pressed or released is
indicated to the OS using the code variable, which contains a virtual KeyCode.

Adding Keyboard Event Handling: Using KeyEvents
I think that is enough background information for you to understand a basic example of how to implement
KeyEvent processing for pro Java games. It’s fairly straightforward, so I’m going to give you a quick overview
of how it is done here, since we are covering the KeyEvent class. This is also covered in my Beginning Java
8 Games Development book. The first thing that you would do is to add a line of code at the top of your
JavaFXGame class and declare four Boolean variables, named up, down, left, and right, using a single
compound declaration statement, shown here:

boolean up, down, left, right;

Since the default value of a boolean variable is false, this will signify a key that is not being pressed, that
is, a key that is currently released, or unused. Since this is also the default state for keys on a keyboard, this
would be the correct default value for this application. Since in Java, boolean variables default to false, you
do not have to explicitly initialize these variables.

I put an event handling foundation for a KeyEvent (key-pressed, in this instance) object in place
by using the .setOnKeyPressed() method call off of the Scene object named scene, which I have already
instantiated. Inside of this method call, I create the new EventHandler<KeyEvent> just like is done for the
ActionEvent. The code looks like this:

scene.setOnKeyPressed(new EventHandler<KeyEvent>() { a .handle() method will go in here });

KeyEvent object processing just happens to be the perfect application for implementing the highly
efficient Java switch statement. You can add a case for each of the JavaFX KeyCode constants that you want
to process. These are contained inside of the KeyEvent object named event that is passed into this .handle()
method via its parameter area.

Chapter 10 ■ User InterfaCe DesIgn InteraCtIvIty: event hanDlIng anD ImagIng effeCts

245

The KeyCode is then extracted from the KeyEvent object inside of the switch() evaluation area by using
your .getCode() method call, off of an event KeyEvent object. This can be done by using the following Java
switch-case Java code programming structure:

scene.setOnKeyPressed(new EventHandler<KeyEvent>() {
 @Override
 public void handle(KeyEvent event) {
 switch (event.getCode()) {
 case UP: up = true; break;
 case DOWN: down = true; break;
 case LEFT: left = true; break;
 case RIGHT: right = true; break; // No break; statement is needed here, if there
 // are no more case statements to be added later
 }
 }
});

This will give you the basic key-pressed event handling structure, which you can add to your pro Java
games and poll these four boolean variables with your code to find out what your user is doing with their
arrow keys. If you instruct NetBeans 9 to turn this Java 7 structure into a Java 8 lambda expression for you,
you’ll get a compact structure. A number of things, such as the public void handle() declaration and the new
EventHandler<KeyEvent>() declaration, will become implied or assumed (but still exist to the compiler) in
the lambda expression Java 8 code structure. Using a lambda expression will simplify code, reducing it from
a three-deep nested code block to one that is nested only two deep and from eleven lines of code to eight.
Lambda expressions can really be elegant for writing tighter code but do not show you everything that is going
on with the classes (objects), modifiers, and return types that are being used. This is the reason why I am
opting to utilize the more explicit Java 7 (and earlier) code structure, utilized in Java 5 through 7 and prior to the
introduction of Lambda Expressions in Java 8. Both approaches are supported in Java 9.

Your resulting Java 8 lambda expression code structure would look like the following Java code
structure:

scene.setOnKeyPressed(KeyEvent event) -> {
 switch (event.getCode()) {
 case UP: up = true; break;
 case DOWN: down = true; break;
 case LEFT: left = true; break;
 case RIGHT: right = true; break;
 }
});

The next thing that you’ll want to do is to create the polar opposite of the OnKeyPressed structure and
thus create an OnKeyReleased structure. This will use the same code structure, except the true values would
become false values, and the .setOnKeyPressed() method call will instead be a .setOnKeyReleased() method
call. The easiest way to do this is to select the .setOnKeyPressed() structure and copy and paste it underneath
itself. The Java code would look like the following:

scene.setOnKeyReleased(new EventHandler<KeyEvent>() {
 @Override
 public void handle(KeyEvent event) {
 switch (event.getCode()) {
 case UP: up = false; break;
 case DOWN: down = false; break;

www.ebook3000.com

http://www.ebook3000.org

Chapter 10 ■ User InterfaCe DesIgn InteraCtIvIty: event hanDlIng anD ImagIng effeCts

246

 case LEFT: left = false; break;
 case RIGHT: right = false; break;
 }
 }
});

One of the interesting things that using lambda expressions does by “implicitly” declaring and using
classes, such as the EventHandler class in the instances in this chapter, is that it reduces the number of
import statements in the top of your class code. This is because if a class is not specifically used (its name
written) in your code, the import statement for that class does not have to be in place at the top of your
code with the other import statements. You’ll also notice that your code-collapsing plus or minus icons in
the left margin of NetBeans 9 will disappear if you convert into the lambda expression. This is because a
lambda expression is a basic Java code statement, and not a construct or structure such as an inner class or a
method, which is what it was before you converted it to a lambda expression.

Now that you have taken a look at how KeyEvent handling structures would be put in place, let’s take
a look at how easy it is to add an alternate key mapping to the ASDW keys that are often used in gameplay.
This is done by adding in a few more case statements for the A, S, D, and W characters on the keyboard and
setting these to the UP, DOWN, LEFT, and RIGHT boolean equivalents (up, down, left, and right variables)
that we have set up already.

This will allow users to use the A and D characters with their left hand and the UP and DOWN arrows
with their right hand for easier gameplay, for instance. Later if you wanted to add more features to the
gameplay using your game controller and its support for the KeyCode class GAME_A, GAME_B, GAME_C,
and GAME_D constants, all that you will have to do to add these new features into your game would be to
add another four boolean variables (a, b, c, and d) to the up, down, left, and right variables at the top of the
class and add in another four case statements.

These four W (UP), S (DOWN), A (LEFT), and D (RIGHT) case statements, once added to the switch
statement, would make your KeyEvent object and its event-handling Java code look like the following 15
lines of Java code:

scene.setOnKeyPressed(new EventHandler<KeyEvent>() {
 @Override
 public void handle(KeyEvent event) {
 switch (event.getCode()) {
 case UP: up = true; break;
 case DOWN: down = true; break;
 case LEFT: left = true; break;
 case RIGHT: right = true; break;
 case W: up = true; break;
 case S: down = true; break;
 case A: left = true; break;
 case D: right = true; break;
 }
 }
});

As you can see, now the user can use either set of keys, or both sets of keys at the same time, to control
the gameplay. Now do the same thing to the .setOnKeyReleased() event-handling structure using a
copy-and-paste work process and change the value to false. The .setOnKeyReleased() event-handling Java
code will look like the following:

Chapter 10 ■ User InterfaCe DesIgn InteraCtIvIty: event hanDlIng anD ImagIng effeCts

247

scene.setOnKeyPressed(new EventHandler<KeyEvent>() {
 @Override
 public void handle(KeyEvent event) {
 switch (event.getCode()) {
 case UP: up = false; break;
 case DOWN: down = false; break;
 case LEFT: left = false; break;
 case RIGHT: right = false; break;
 case W: up = false; break;
 case S: down = false; break;
 case A: left = false; break;
 case D: right = false; break;
 }
 }
});

Next, let’s switch back into Java coding mode and implement event handling for your user interface
design.

Finishing Your UI Design: Coding the Event Handling
Let’s finish your top-level UI design by writing Java statements inside of your ActionEvent EventHandler
structures inside of the .handle() method. This method clears and then adds Text objects to the
infoOverlay TextFlow object and sets the correct section imagery in your compositing pipeline using the
.setBackground() and .setImage() method calls. As you can see in Figure 10-1, I always clear the TextFlow
object first using the .getChildren().clear() method call, and then I use the .getChildren.addAll() method
call to add the correct Text objects to the TextFlow object. I then use the .setTranslateX() and .setTranslateY()
method calls off the infoOverlay TextFlow to position that container (and layer). After that, I use the
.setBackground() method call to set the uiLayout VBox object background image (for the SplashScreen)
or Background.EMPTY for the other four Button objects, which allows the Color.WHITE background color
to show through. Finally, I use the .setImage() method call to set the boardGameBackPlate ImageView
object with the correct Image object. In the case of the Game Rules (Help) Button, this is a helpLayer Image
object reference. For the first helpButton event handler, this .handle() method code body would include the
following Java statements:

helpButton.setOnAction(new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent event) {
 infoOverlay.getChildren().clear();
 infoOverlay.getChildren().addAll(helpText, cardText);
 infoOverlay.setTranslateX(130);
 infoOverlay.setTranslateY(360);
 uiLayout.setBackground(Background.EMPTY);
 boardGameBackPlate.setImage(helpLayer);
 }
});

www.ebook3000.com

http://www.ebook3000.org

Chapter 10 ■ User InterfaCe DesIgn InteraCtIvIty: event hanDlIng anD ImagIng effeCts

248

Now when you use your Run ➤ Project work process, the Game Rules Button UI control will trigger
the user interface design that is optimized for showing your game players your instruction (help) screen,
as shown in Figure 10-2. We will be doing further design “tweaks” to this design using Java code during this
chapter.

Figure 10-2. Test your UI Button event handling with the Start Game and Game Rules buttons, switching
back and forth

Figure 10-1. Implement the code in the handle() method to reconfigure your helpButton UI compositing layer
objects

Chapter 10 ■ User InterfaCe DesIgn InteraCtIvIty: event hanDlIng anD ImagIng effeCts

249

This code configures the different objects in the compositing stack (Stage ➤ Root ➤ StackPane
➤ ImageView ➤ TextFlow) to display the default white background for the OS, which is the Scene
(and Stage) object, by installing transparency in a StackPane object using Background.EMPTY. The
boardGameBackPlate ImageView contains a transparent Instructions script font drop-shadowed PNG32
image, which lets the white background color through. The TextFlow and two Text objects also support
transparency and add the game instructions, so the Information screen is a nice, readable white color with
the text preset to Color.GREEN. If you click the Start Game Button (which we’ll be coding next, to reset itself
to the default settings), you can switch between the SplashScreen and the new help text, albeit with some
mistakes on the SplashScreen because the gameButton event handler needs to reset characteristics, which
we’ll do next to restore the white text, text location, splash screen image, and welcome image, since this
Button changes the object characteristics.

Next, let’s copy and paste these Java statements into the gameButton event handling structure, and
then we will configure your method call parameter areas using the correct Text, Background, and Image
objects and pixel location values. Clear your TextFlow object and then load your TextFlow object with your
playText and moreText Text objects using the .addAll() method. Next, set the TextFlow container X,Y pixel
location (its position on the screen) using a 240 Integer value for your .setTranslateX() method call and a
420 Integer value for your .setTranslateY() method call. Load your uiLayout StackPane object’s background
with the uiBackground Background object by using the .setBackground() method call and then load the
boardGameBackPlate ImageView with the splashScreen Image object by using the .setImage() method
call. This is all accomplished using the following Java code structure inside the .handle() method, as shown
highlighted in the middle of Figure 10-3:

gameButton.setOnAction(new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent event) {
 infoOverlay.getChildren().clear();
 infoOverlay.getChildren().addAll(playText, moreText);
 infoOverlay.setTranslateX(240);
 infoOverlay.setTranslateY(420);
 uiLayout.setBackground(uiBackground);
 boardGameBackPlate.setImage(splashScreen);
 }
});

www.ebook3000.com

http://www.ebook3000.org

Chapter 10 ■ User InterfaCe DesIgn InteraCtIvIty: event hanDlIng anD ImagIng effeCts

250

Notice in Figure 10-3 that I left both the gameButton and helpButton event handling structures open in
the NetBeans 9 IDE using the plus (+) icons in the left margin of the code editing pane so that you can see
from a Java code perspective how these Java 9 code blocks inside of your .handle() methods set all of your
compositing pipeline object characteristics to control each different Button object’s screen designs using
only a handful of different variable and object settings. This is an example of how powerful Java can be when
you set up your JavaFX Scene Graph optimally.

Use your Run ➤ Project work process, and again toggle between the Start Game and Game Rules
Button UI controls. You’ll see that the Game Rules button no longer messes up your Start Game screen, as
shown in Figure 10-4.

Figure 10-3. Implement the code in the handle() method to configure gameButton default UI compositing
layer objects

Chapter 10 ■ User InterfaCe DesIgn InteraCtIvIty: event hanDlIng anD ImagIng effeCts

251

Next, let’s copy and paste the helpButton Java statements into the legalButton event handling structure
and then configure these method call parameter areas by using the correct Text, Background, and Image
objects and pixel location values. Again, clear your TextFlow object and then load your TextFlow object
with your copyText and riteText Text objects using the .addAll() method. Next, set the TextFlow container
X,Y pixel location (its position on the screen) using a 200 Integer value for the .setTranslateX() method
call and a 370 Integer value for the .setTranslateY() method call. Load your uiLayout object background
with the Background.EMPTY constant using your .setBackground() method call and then load your
boardGameBackPlate ImageView with your legalLayer Image object by using the .setImage() method call.
This is all accomplished using the following Java code structure inside the .handle() method, as shown
highlighted in the middle of Figure 10-5:

legalButton.setOnAction(new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent event) {
 infoOverlay.getChildren().clear();
 infoOverlay.getChildren().addAll(copyText, riteText);
 infoOverlay.setTranslateX(200);
 infoOverlay.setTranslateY(370);
 uiLayout.setBackground(Background.EMPTY);
 boardGameBackPlate.setImage(legalLayer);
 }
});

Figure 10-4. Test your UI Button event handling with the Start Game and Game Rules, switching back and
forth

www.ebook3000.com

http://www.ebook3000.org

Chapter 10 ■ User InterfaCe DesIgn InteraCtIvIty: event hanDlIng anD ImagIng effeCts

252

Next, use your Run ➤ Project work process, and make sure your Disclaimers Button is configuring
your Text objects in a readable, organized format on a white background. As you’ll see in Figure 10-6, your UI
screen looks good, and you can move on to create a Game Credits Button object event handling structure by
again using copy and paste.

Figure 10-5. Implement the code in the handle() method to reconfigure your legalButton UI compositing layer
objects

Figure 10-6. Test UI Button event handling with the Start Game, Game Rules, and Disclaimers, switching
back and forth

Chapter 10 ■ User InterfaCe DesIgn InteraCtIvIty: event hanDlIng anD ImagIng effeCts

253

Next, let’s copy and paste the helpButton Java statements into the legalButton event handling structure
and then configure these method call parameter areas by using the correct Text, Background, and Image
objects and pixel location values. Again, clear your TextFlow object and then load your TextFlow object
with your copyText and riteText Text objects using the .addAll() method. Next, set the TextFlow container’s
X,Y pixel location (its position on the screen) using a 240 Integer value for the .setTranslateX() method
call and a 370 Integer value for the .setTranslateY() method call. Load your uiLayout object background
with the Background.EMPTY constant using your .setBackground() method call and then load your
boardGameBackPlate ImageView with your legalLayer Image object by using the .setImage() method call.
This is all accomplished using the following Java code structure inside the .handle() method, as shown
highlighted in the middle of Figure 10-7:

creditButton.setOnAction(new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent event) {
 infoOverlay.getChildren().clear();
 infoOverlay.getChildren().addAll(credText, codeText);
 infoOverlay.setTranslateX(240);
 infoOverlay.setTranslateY(370);
 uiContainer.setBackground(Background.EMPTY);
 boardGameBackPlate.setImage(creditLayer);
 }
});

Figure 10-7. Implement the code in the handle() method to reconfigure your creditButton UI compositing
layer objects

Next, use your Run ➤ Project work process and make sure your Credits TextFlow object is positioning
all its Text objects in a readable format on the screen. As you can see in Figure 10-8, your UI screen looks
great. We’ll leave the High Scores Button unimplemented for now, as we’ll be creating a scoring engine and
high score table a bit later.

www.ebook3000.com

http://www.ebook3000.org

Chapter 10 ■ User InterfaCe DesIgn InteraCtIvIty: event hanDlIng anD ImagIng effeCts

254

Special Effects: The javafx.scene.effects Package
The javafx.scene.effect package contains a foundational superclass for all the JavaFX special effects. Not
surprisingly, this is called the Effect class. The Effect class has 17 known direct subclasses for 2D digital
image compositing effects, such as you would find in GIMP 2.10, which are also contained in this package.
These include Blend, Bloom, BoxBlur, ColorAdjust, ColorInput, DisplacementMap, DropShadow, FloatMap,
GaussianBlur, Glow, ImageInput, InnerShadow, Lighting, MotionBlur, PerspectiveTransform, Reflection,
SepiaTone, and Shadow classes. For 2D, this package also contains the Light superclass and the Light.
Distant, Light.Point, and Light.Spot subclasses, which we’ll use later, during the 3D part of this book.

Let’s cover the JavaFX Effect superclass first. This class is a public abstract class, extending a java.
lang.Object master class. This means that it was created, from scratch, by the JavaFX development team,
specifically for providing image-based (pixel-based) special effects in JavaFX and to provide lighting support,
usable for 2D and 3D. The effects provided are much like those that GIMP 3 or Photoshop provide in their
respective digital imaging software packages.

The JavaFX Effect Java class hierarchy would therefore look like the following:

java.lang.Object
 > javafx.scene.effect.Effect

The Effect class provides an abstract or “base” class for the creation of all special effects
implementations in JavaFX. An Effect object (and subclass) in JavaFX will always contain a pixel graphics
algorithm that produces an Image object. This will be an algorithmic modification of the pixels in your
source Image object and works in both 2D and 3D.

Figure 10-8. Implement the code in the handle() method to reconfigure the creditButton UI compositing layer
objects

Chapter 10 ■ User InterfaCe DesIgn InteraCtIvIty: event hanDlIng anD ImagIng effeCts

255

An Effect object can also be associated with a Scene Graph Node (rather than an Image object) by
setting an attribute called Node.effect, that is, the effect attribute for the Node class (or object created from a
Node subclass).

Some effects, such as ColorAdjust, will change the color characteristics (hue, lumination, and
saturation) for the source pixels, while others such as Blend will combine multiple images together
algorithmically (via Porter-Duff).

The DisplacementMap and PerspectiveTransform special effects classes will warp, or move, the pixels
of the source image around in 2D space to simulate 3D space, commonly called “2.5D” or “isometric” spatial
optical effects.

All JavaFX special effects have at least one input defined. Additionally, this input can be set to
another Effect object, allowing developers to chain the Effect objects together. This allows developers
to combine the Effect results, allowing compound or hybrid special effects to be created. This input can
also be left “unspecified,” in which case the effect will apply its algorithm to the graphical rendering (pixel
representation or rendering result) of the Node object that it has been attached to using a .setEffect() method
call or back onto the Image object that has been provided.

It’s important to note that special effects processing is a conditional feature. The ConditionalFeature.
EFFECT enum class and constant will define a set of conditional (supported) special effects features. These
features may not be available on all operating system or on all embedded platforms, although “modern-day”
consumer electronics devices can usually support effects processing as well as i3D rendering using their
hardware GPU graphics-processing abilities.

If your pro Java games application wanted to poll the hardware platform to ascertain whether any
particular effect feature is available, you may query effects support using the Platform.isSupported()
method call. If you use any conditional feature on a platform that does not support it, it will not cause an
exception. In general, the conditional feature will simply be ignored so that you don’t have to code any
specific error-trapping or error-handling Java code.

Next, let’s take a look at how you would implement one or two of these special effects in the UI design
and add drop shadows to the TextFlow object so the text that it displays is made more readable using
increased contrast. After that, we will take a look at the way that you can shift your digital image color around
the visible color spectrum.

Creating Special Effects: Add a createSpecialEffects() Method
Let’s follow our trend of organizing your Java code and create a method for setting up all of your
special effects called .createSpecialEffects(). Have NetBeans 9 create an empty private void
createSpecialEffects() {...} infrastructure by adding a line of code to call it in the start() method, after
the createTextAssets() method call, as shown highlighted in Figure 10-9. The logic here is that we will first
load images, then define effects, and then create text.

www.ebook3000.com

https://docs.oracle.com/javase/8/javafx/api/javafx/application/Platform.html#isSupported-javafx.application.ConditionalFeature-
http://www.ebook3000.org

Chapter 10 ■ User InterfaCe DesIgn InteraCtIvIty: event hanDlIng anD ImagIng effeCts

256

Next, we will replace the bootstrap code inside this createSpecialEffects() method with special
effects code.

Drop Shadows: Adding Drop Shadows to Your TextFlow Object
Now it is time to add Java code into the empty createSpecialEffects() method to set up the drop shadowing
effect. You will apply this to your TextFlow objects later by using the .setEffect() method call. The first thing
that you will need to do is to declare a DropShadow object named dropShadow at the top of your class and
use an Alt+Enter work process to have NetBeans generate an import statement for you. Next, inside the
createSpecialEffects() method, instantiate this object using the Java new keyword and the DropShadow()
constructor method. Next, use the .setRadius() method call off of the dropShadow object to set a shadow
radius (how much it spreads out from the source) of 4.0 pixels. Next, use the .setOffsetX() and .setOffsetY()
method calls with a setting of 3.0 pixels to offset the shadow diagonally to the right (use negative values to go
the other direction). Finally, use a .setColor() method call to specify a DARKGRAY Color class constant. The
code, shown highlighted in Figure 10-10, should look like the following:

DropShadow dropShadow;
...
private void createSpecialEffects() {
 dropShadow = new DropShadow();
 dropShadow.setRadius(4.0);
 dropShadow.setOffsetX(3.0);
 dropShadow.setOffsetY(3.0);
 dropShadow.setColor(Color.DARKGRAY);
}

Figure 10-9. Add a createSpecialEffects() method call at the top of .start() so that NetBeans creates the
method body

Chapter 10 ■ User InterfaCe DesIgn InteraCtIvIty: event hanDlIng anD ImagIng effeCts

257

Next, open your createTextAssets() method body and add a .setEffect(dropShadow) method call off
each Text object to wire them to the DropShadow effect and the settings you’ve set for the object, as shown
in Figure 10-11.

Figure 10-11. Add a .setEffect(dropShadow) method call to each of your Text objects in the createTextAssets()
method

Figure 10-10. Code your private void createSpecialEffects() method body to create and configure a
DropShadow object

www.ebook3000.com

http://www.ebook3000.org

Chapter 10 ■ User InterfaCe DesIgn InteraCtIvIty: event hanDlIng anD ImagIng effeCts

258

Another popular and useful special effect that you will want to use in your pro Java 9 games
development is adjusting pixel color value. There’s a powerful ColorAdjust special effect class in the javafx.
scene.effect package that allows developers to adjust digital imaging attributes for images, including
contrast using .setContrast(), brightness using .setBrightness(), saturation using .setSaturation(), and hue
(color) using .setHue(). Let’s learn about this next.

Color Adjust: Adjusting Hue, Saturation, Contrast, and Lightness
Let’s use the .setHue() method call off of a ColorAdjust object to allow us to “color shift” the color
temperature of our PNG32 transparent logo digital image asset so that it will match up visually with the color
of all of your other screen design element color values for each of the Button Control user interface designs
we are refining during this chapter. Declare a ColorAdjust object named colorAdjust at the top of your class.
Inside of your createSpecialEffects() method, instantiate the object using the ColorAdjust() constructor and
then call a .setHue() method off this object using a floating-point 0.4 value to color shift the current image
color value 40 percent of the way (forward) around the color wheel. The Java code, which is highlighted in
the middle and bottom of Figure 10-12, would look like the following:

DropShadow dropShadow;
ColorAdjust colorAdjust;
...
private void createSpecialEffects() {
 dropShadow = new DropShadow();
 dropShadow.setRadius(4.0);
 dropShadow.setOffsetX(3.0);
 dropShadow.setOffsetY(3.0);
 dropShadow.setColor(Color.DARKGRAY);
 colorAdjust = new ColorAdjust();
 colorAdjust.setHue(0.4); }

Figure 10-12. Add a colorAdjust object instantiation and use a .setHue(0.4) method call off of the object to
configure it

Chapter 10 ■ User InterfaCe DesIgn InteraCtIvIty: event hanDlIng anD ImagIng effeCts

259

The next step in this implementation of your ColorAdjust Effect object is to add the
.setEffect(colorAdjust) method call off of your logoLayer ImageView object, inside the helpButton.
setOnAction() event handler. This will shift the brown colored pixels in the transparent logo PNG32 image
to be green, while leaving the transparent pixels alone, as they have zero color value (and maximum
transparency value). If these pixels had been defined using a partial color value and a partial transparency
value, then the partial color values would be shifted forward 40 percent.

I have added this .setEffect() method call right after your boardGameBackPlate.setImage(helpLayer);
method call since we now need to color shift the logo image composite layer, as you can see highlighted in
Figure 10-13. The logoLayer object’s Effect object is set to the colorAdjust object, which is then set to a Hue
value of 0.4 (40 percent).

Figure 10-13. Use a Run ➤ Project work process to make sure that the drop shadow special effects are working
well

www.ebook3000.com

http://www.ebook3000.org

Chapter 10 ■ User InterfaCe DesIgn InteraCtIvIty: event hanDlIng anD ImagIng effeCts

260

You may be wondering why I set Hue to 40 percent (again) when I did this already in the
createSpecialEffects() method. The reason for this is that the setting in the createSpecialEffects() method
could be viewed to be a “default” setting, and the reason I have to specify it (again) in the helpButton event
handler code is that other Button handlers will set different Hue values. Your helpButton.setOnAction()
event-handling code should now look like the following:

helpButton.setOnAction(new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent event) {
 infoOverlay.getChildren().clear();
 infoOverlay.getChildren().addAll(helpText, cardText);
 infoOverlay.setTranslateX(130);
 infoOverlay.setTranslateY(360);
 uiLayout.setBackground(Background.EMPTY);
 boardGameBackPlate.setImage(helpLayer);
 logoLayer.setEffect(colorAdjust);
 colorAdjust.setHue(0.4);
 }
});

Now it’s time to use the Run ➤ Project work process and make sure the drop shadow effect on
the TextFlow object is making your Text objects more readable and matches the drop shadow on the
screen caption image. You can see in Figure 10-14 that something is amiss in the Java code, as the JavaFX
application runs but is not drop shadowing the text. Let’s check the order our Java code is executing our
statements in to see if there is something out of order!

Figure 10-14. Declare and instantiate a ColorAdjust object named colorAdjust and use .setHue() to shift the
color 40 percent

Chapter 10 ■ User InterfaCe DesIgn InteraCtIvIty: event hanDlIng anD ImagIng effeCts

261

Since the Java code is in the right order inside of the methods, I suspect that the order the methods
are called in is most likely the source of this problem. Let’s take a look at the order of the method
calls inside of the start() method, shown at the top of Figure 10-9. Notice that createSpecialEffects() is
called after createTextAssets(), and yet we’re using the .setEffect(dropShadow) method call inside of
the createTextAssets() method, so we have to move the createSpecialEffects() method call above the
createTextAssets() method call, as shown in Figure 10-13, so your effect is set up before you utilize it. Java
code is pretty logical if you trace that logic through the process of what you’re doing!

As you can see in Figure 10-16, this solved the problem, and your drop shadow effect is rendering
correctly.

The next modification you will need to make is to your legalButton.setOnAction() event-handling
structure to make everything on the screen a nice shade of purple. This can be achieved by color shifting the
hue of your logo 40 percent, this time in the negative direction around the color wheel. Using floating-point
numbers, the right positive 180 degrees of a color wheel ranges from 0.0 to 1.0, and the left negative side
ranges from 0.0 to -1.0.

The Java code for your legalButton event-handling Java statements is shown, highlighted, at the bottom
of Figure 10-15. It should look like the following Java code:

legalButton.setOnAction(new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent event) {
 infoOverlay.getChildren().clear();
 infoOverlay.getChildren().addAll(copyText, riteText);
 infoOverlay.setTranslateY(200);
 infoOverlay.setTranslateY(370);
 uiLayout.setBackground(Background.EMPTY);
 boardGameBackPlate.setImage(legalLayer);
 logoLayer.setEffect(colorAdjust);
 colorAdjust.setHue(-0.4);
 }
});

www.ebook3000.com

http://www.ebook3000.org

Chapter 10 ■ User InterfaCe DesIgn InteraCtIvIty: event hanDlIng anD ImagIng effeCts

262

Figure 10-15. Add a .setEffect(colorAdjust) method call off logoLayer and call .setHue(-0.4) to change the
color shift

Figure 10-16. Use the Run ➤ Project work process and make sure that the drop shadow effect is rendering
correctly

Chapter 10 ■ User InterfaCe DesIgn InteraCtIvIty: event hanDlIng anD ImagIng effeCts

263

Figure 10-17 shows my Run ➤ Project Button handler testing work process, showing both a drop
shadowing effect and the hue (color) shifting in place in the Disclaimers Button control, refining the design
even further. I clicked back and forth between all the different Button elements to make sure that all of the
attributes are not resetting any other Button screen design attributes in a way that is not desirable, which is
the reason that I put all of the correct variables in all the event handling code bodies so that no method call
has a setting overlooked (not specified/passed).

The final modification you will need to make is to your creditButton.setOnAction() event handling
structure to make everything on the screen a nice shade of blue. This can be achieved by color shifting the
hue of your logo 90 percent in the negative direction around a color wheel. The code for your creditButton
event handling Java statements is shown highlighted in the middle of Figure 10-18 and should look like the
following:

creditButton.setOnAction(new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent event) {
 infoOverlay.getChildren().clear();
 infoOverlay.getChildren().addAll(credText, codeText);
 infoOverlay.setTranslateY(240);
 infoOverlay.setTranslateY(370);
 uiLayout.setBackground(Background.EMPTY);
 boardGameBackPlate.setImage(creditLayer);
 logoLayer.setEffect(colorAdjust);
 colorAdjust.setHue(-0.9);
 }
});

Figure 10-17. Use the Run ➤ Project work process and make sure that the color hue shift matches the rest of
the design

www.ebook3000.com

http://www.ebook3000.org

Chapter 10 ■ User InterfaCe DesIgn InteraCtIvIty: event hanDlIng anD ImagIng effeCts

264

Figure 10-18. Copy and paste the colorAdjust.setHue(-0.9) and logoLayer.setEffect(colorAdjust) Java code in
creditButton

Use your Run ➤ Project work process, and make sure that this 90 percent negative shift around the
color wheel is now turning the logo into a vibrant blue color, which looks good with the rest of your user
interface design. As you can see in Figure 10-19, the Credits Button Control screen now matches up in both
color and drop shadowing effects.

Chapter 10 ■ User InterfaCe DesIgn InteraCtIvIty: event hanDlIng anD ImagIng effeCts

265

Figure 10-19. Use the Run ➤ Project work process and make sure that the color hue shift matches the rest of
the design

We will code the interior of the scoreButton.setOnAction() event handler when we cover implementing
the scoring engine and high scores UI design later in the book when you have a board game that you can
score in place.

The work process to implement dozens of other special effects in your pro Java 9 game development can
be implemented in much the same way—by declaring a class for the effect you want to utilize, instantiating it
inside of the createSpecialEffects() method, setting parameters for the effect configuration by using methods
from the class, and finally applying the effect to whatever Node object, Control object, ImageView object,
3D object, or Text object that you want by using the .setEffect(effectClassNameHere) method call off of the
object name you’re applying it to.

You will find that the JavaFX special effect package and classes are especially flexible in this
implementation approach, as you can apply all of the popular special effects found in most software
packages to almost any object or Scene Graph Hierarchical structure in JavaFX 9, usually using around a
dozen lines of code and sometimes even fewer.

Once you know how to create and apply these special effects in JavaFX, your pro Java 9 games
development creative power goes up by an order of magnitude. This is because these effects can be applied
anywhere in the Scene Graph hierarchy, as well as anywhere in the 2D, imaging, and 3D rendering pipeline.

I will try to use more of these JavaFX 9 Effect subclasses later during this book as I add more and more
complexity to each chapter and as we progress throughout the book.

Summary
In this tenth chapter, we added interactivity to your user interface design using ActionEvent handling
structures, learned about InputEvent objects and MouseEvent and KeyEvent object processing, and learned
how to apply the special effects contained in the javafx.scene.effects package that leverage the JavaFX
Effect superclass.

www.ebook3000.com

http://www.ebook3000.org

Chapter 10 ■ User InterfaCe DesIgn InteraCtIvIty: event hanDlIng anD ImagIng effeCts

266

Next you learned about how events, which allow interactivity, are handled in Java 9 and JavaFX by
using the java.util and javafx.event packages and their EventObject, Event, ActionEvent, and InputEvent
classes. We discussed the different types of InputEvent objects, such as MouseEvents, TouchEvents, and
KeyEvents, and then you implemented your ActionEvent handling to make the (middle three) Instructions,
Legal Disclaimers, and Production Credits sections (Button objects) of your user interface interactive.

Finally, you learned about the javafx.scene.effects package and the dozens of special effects that
JavaFX offers developers. We looked at the Effect superclass and went over how to implement both the
DropShadow class (and object) and the ColorAdjust class (and object) so that you can spruce up your user
interface by adding shadows to your TextFlow objects, improve readability (contrast), and color shift your
top logo digital image asset to match the color schema for each of your Button Control object user interface
designs.

In Chapter 11, we’re going to take a look at how to configure your JavaFX game to utilize 3D assets. This
involves the Camera superclass and its ParallelCamera and PerspectiveCamera subclasses. We’re also
going to learn how to create light in your 3D Scene so that the Camera object can “see.” We will look at the
LightBase superclass and its AmbientLight and PointLight subclasses, which are specifically provided for
lighting design in 3D Scene applications.

http://dx.doi.org/10.1007/978-1-4842-0973-8_11

267© Wallace Jackson 2017
W. Jackson, Pro Java 9 Games Development, https://doi.org/10.1007/978-1-4842-0973-8_11

CHAPTER 11

3D Scene Configuration: Using the
PerspectiveCamera and PointLight

Now that you have finished the 2D SceneGraph hierarchy for the splash screen and user interface design,
let’s get back into our JavaFXGame primary application class coding here in Chapter 11 and start to design
the 3D GameBoard Scene Infrastructure that will be the foundation for the rendering and lighting of the
board game and its gameplay. We will learn about the basic 3D scene components that you will find pre-
installed (for all default or empty scenes) in 3D software packages like Blender or Autodesk 3D Studio Max.
After that, we can get into JavaFX Primitives (Box, Plane, Cylinder, Disk, Sphere, and Pill) during Chapter 12
and shading with materials and texture maps in Chapter 13.

During the chapter you’ll be learning about the different types of JavaFX 9 Camera and LightBase
subclasses that are contained in the core javafx.scene package, which, in turn, is contained (as of Java 9)
in the javafx.graphics module. We will cover PerspectiveCamera since you will be using this in the basic
3D scene infrastructure that we’ll be creating during this chapter, as well as ParallelCamera, another
Camera subclass that is better suited for your 2D or 2.5D game development pipeline. Camera is an abstract
superclass and cannot be utilized directly. We’ll also learn about the public LightBase abstract superclass
and its two core lighting subclasses, AmbientLight and PointLight.

We will also continue to work on your JavaFXGame Java code by adding 3D rendering, camera, and
lighting to the JavaFX SceneGraph so that you can start to add 3D elements to your 3D game, which we will
do after we cover the JavaFX Shape3D class and its primitive subclasses (in Chapter 12) and using shaders
and applying materials and texture maps to that 3D geometry (in Chapter 13).

We have a lot to learn about what is needed for JavaFX to even be able to visualize (render) your game’s
3D geometry assets and their texture maps in your 3D scene, so let’s get started learning about the scene
camera object.

Use a 3D Camera: Adding Perspective to 3D Games
The top level of any 3D rendering pipeline is the scene camera, as this is what processes everything in the
3D scene and then hands that data over to the rendering engine. In this case, that’s the PRISM software
renderer (in the absence of a GPU), or it could be the OpenGL hardware rendering engine on the consumer
electronic device (PC, phone, tablet, iTV set, laptop, game console, set-top box) that your 3D game is playing
on. If you are still using Windows, it might also include DirectX 3D rendering. The Camera object (in our
case, this will be a PerpectiveCamera object) is used specifically for 3D scene rendering; we will be looking
at it during this section of the chapter. It is so integral to the JavaFX 9 SceneGraph that it has its own Scene.
setCamera(Camera) method call. This method call is used to add the Camera object to the SceneGraph
root to make sure it is at the very top (the root) of the SceneGraph rendering hierarchy. It does not use the

www.ebook3000.com

https://doi.org/10.1007/978-1-4842-0973-8_11
http://dx.doi.org/10.1007/978-1-4842-0973-8_11
http://dx.doi.org/10.1007/978-1-4842-0973-8_12
http://dx.doi.org/10.1007/978-1-4842-0973-8_13
http://dx.doi.org/10.1007/978-1-4842-0973-8_12
http://dx.doi.org/10.1007/978-1-4842-0973-8_13
http://www.ebook3000.org

Chapter 11 ■ 3D SCene Configuration: uSing the perSpeCtiveCamera anD pointLight

268

.getChildren().add() method chain, and therefore, it will be set up inside of your createSceneGraphNodes()
method, as you will see a bit later during this section of the chapter when we set up this Camera object for
your pro Java 9 game. We’ll also cover ParallelCamera, which is better suited for 2D games.

JavaFX Camera Class: An Abstract Superclass Defining Camera
The public JavaFX Camera superclass is an abstract class, used only to create different types of cameras.
Currently there is an orthographic or ParallelCamera subclass (object) or a PerspectiveCamera subclass
(object). Your application should not attempt to extend this abstract Camera class directly; if you attempt
this, Java will throw an UnsupportedOperationException, and your pro Java 9 game will not compile or run.
The Camera class is kept in the javafx.graphics module in the core javafx.scene package and is a subclass of
Node, as it is ultimately a Node at the top of your SceneGraph. The Camera class implements the Styleable
interface so it can be styled, and it contains the EventTarget interface so it can process events. The Java 9
class hierarchy for the JavaFX Camera class thus looks like the following:

java.lang.Object
 > javafx.scene.Node
 > javafx.scene.Camera

The Camera class is the base class for any camera subclass that is used to render scenes. A camera is
used to define how the scene’s coordinate space is rendered on the 2D window (Stage) that a user is looking
at. The default camera (if you don’t create one specifically, which we’ll be doing later in this section) will
be positioned in a scene such that its projection plane in a scene’s coordinate space is at Z=0 (in the exact
middle) and is looking into the screen in the positive Z direction. For this reason, we’ll be backing our
camera 1,000 units away from (-1000) the center of the screen in the code since the i3D GameBoard will be
at “center stage” and located at 0, 0, 0 (X, Y, Z).

The distance in Z units from the camera to the projection plane can be determined by the width and
height of the Scene to which it is attached (which is also the resulting projection plane) and the fieldOfView
parameter for a Camera object. The nearClip and farClip properties for a Camera object are the only
two properties or characteristics defined in this abstract class and are specified in what JavaFX calls eye
coordinate space. This space is defined with the viewer’s eye at the Camera object’s origin, and the projection
plane is one unit in front of the eye in the positive Z direction. The nearClip and farClip properties for any
Camera subclass, such as PerspectiveCamera, can be set using the .setNearClip() and .setFarClip() method
calls. These are two PerspectiveCamera class (object) method calls that we will be utilizing later during this
section of the chapter to configure our SceneGraph camera object.

JavaFX PerspectiveCamera Class: Your 3D Perspective Camera
The JavaFX PerspectiveCamera class extends the Camera class and is used to create a PerspectiveCamera
(object) that is used to render your i3D scene. The PerspectiveCamera class is also kept in the javafx.
graphics module in the core javafx.scene package; it is a subclass of Node and is a Node at the top of your
JavaFX SceneGraph. The PerspectiveCamera class also implements the Styleable interface so it can be
styled and the EventTarget interface so it can process events. The Java 9 class hierarchy for the JavaFX
PerspectiveCamera class looks like the following:

java.lang.Object
 > javafx.scene.Node
 > javafx.scene.Camera
 > javafx.scene.PerspectiveCamera

Chapter 11 ■ 3D SCene Configuration: uSing the perSpeCtiveCamera anD pointLight

269

The PerspectiveCamera object defines the viewing volume for a perspective projection. Imagine a
truncated right-facing pyramid, as most cameras are represented visually in 3D software such as Blender or
3D Studio Max.

There are two (overloaded) constructor methods for this class. One has an empty parameter area, like this:

camera = new PerspectiveCamera();

The second uses the boolean value fixedEyeAtCameraZero attribute (or parameter or characteristic),
which is the one we are going to use in our camera object declaration, instantiation, and configuration Java
code, like this:

camera = new PerspectiveCamera(true);

Of course, we will also declare a PerspectiveCamera camera at the top of the class, and use Alt+Enter to
have NetBeans 9 write an import statement for this class for us. The PerspectiveCamera has a fieldOfView
value, which can be used to change the field of view (FOV) angle for a camera projection and is measured in
degrees. I will leave the FOV at its default value and assume that this default FOV gives the best visual result,
as determined by the JavaFX Development Team.

My tendency in using i3D for games and for simulations is to “dolly,” or move the camera along the
Z (in and out of the scene) transformation axis rather than to use FOV value changes, as even in real life
changing a camera lens (like going from 24mm to 105mm) tends to change perspective more drastically. In
my experience, using different 3D virtual cameras, this change in perspective is even more drastic in virtual
3D than it is when using real-life cameras.

By default, your PerspectiveCamera is located at center of your scene on creation (instantiation)
and looks along (is pointed down) the positive z-axis. If you construct a PerspectiveCamera using
PerspectiveCamera(false), then the coordinate system defined by the camera will have its 0,0 origin located
in the upper-left corner of the panel, with the y-axis pointing down and the z-axis pointing away from
the viewer (into the screen). If a PerspectiveCamera node is added to the scene graph, the transformed
position and orientation of the camera will define the position of the camera and the direction that the
camera is looking. In the default camera, where fixedEyeAtCameraZero is false, the eye position Z value is
adjusted in Z such that the projection matrix generated using the specified fieldOfView will produce units
at Z = 0 (on the projection plane) using device-independent pixels. This matches your characteristics for a
ParallelCamera. When the Scene is resized, the objects in the scene on the projection plane (Z = 0) will stay
the same size, but more or less content in your scene is viewable, which is more appropriate for 2D camera
and 2D scroller use than 3D camera use, where resizing a camera will instead zoom your scene. This is why
a PerspectiveCamera is usually instantiated using the PerspectiveCamera(true), as we will be doing later
during this section of the chapter.

When fixedEyeAtCameraZero is set to true, the eye position is fixed at (0, 0, 0) in the local coordinates
of the camera. The projection matrix will be generated using the default (or specified) fieldOfView attribute,
and a projection volume will be mapped on the window (viewport or Stage object) such that it will be
“stretched” (zoomed) over more or fewer device-independent pixels at the point of the projection plane.
When the Scene size attribute is changed, the objects in a scene will shrink or grow proportionally, but the
visible extent (bounds) of the content will be unchanged.

The JavaFX Development Team recommends setting this fixedEyeAtCameraZero to true if you’re planning
to transform (move or dolly) your camera object. Transforming your camera when fixedEyeAtCameraZero is
set to false may lead to results that are not intuitive to the end user.

www.ebook3000.com

http://www.ebook3000.org

Chapter 11 ■ 3D SCene Configuration: uSing the perSpeCtiveCamera anD pointLight

270

Note that the PerspectiveCamera is a conditional 3D feature. You can poll the ConditionalFeature.
SCENE3D boolean variable to ascertain if a given user’s device supports this feature (in this case, supports
i3D). This would be done using the following Java code structure, which sets a boolean variable to reflect
system support for 3D rendering:

boolean supportFor3D = Platform.isSupported(ConditionalFeature.SCENE3D);

Finally, there is a Boolean property for this class called verticalFieldOfView, which is used to define
whether the fieldOfView property will apply to the vertical dimension of the projection. This logically
means that increasing or decreasing the FOV will change the width of the projection but not the (vertical)
height if this is false, and if this is true, it will change (scale) both the horizontal (width) and vertical (height)
dimensions of the camera projection, which would ostensibly maintain aspect ratio better than changing
only one dimension of the camera’s projection plane.

Next, let’s take a look at the ParallelCamera class, which we’ll cover to be consistent in our Camera
subclass coverage, even though this camera is more useful for use with 2D games and possibly Orthographic
3D applications.

JavaFX ParallelCamera Class: Your 2D Space Parallel Camera
The JavaFX ParallelCamera class also extends the Camera class and is used to create a ParallelCamera
(object), which is used to render your i2D scene. This ParallelCamera class is also kept in the javafx.graphics
module in the core javafx.scene package; it is a subclass of Node and is a Node at the top of your JavaFX
SceneGraph. The ParallelCamera class also implements the Styleable interface so it can be styled and the
EventTarget interface so it can process events. The Java class hierarchy for the JavaFX ParallelCamera class
will therefore look like the following:

java.lang.Object
 > javafx.scene.Node
 > javafx.scene.Camera
 > javafx.scene.ParallelCamera

The default camera created by JavaFX 9 will always be a ParallelCamera, which is why we are coding
specific Camera and LightBase object creation during this chapter. For instance, if you simply created a
Sphere object without creating any Camera subclass object or any LightBase subclass object, the JavaFX
runtime would automatically create a ParallelCamera object and an AmbientLight object so that the
Shape3D subclass (Sphere) would be visible to the renderer.

If a scene contains only 2D transforms, then it does not require a PerspectiveCamera and would thus
utilize a ParallelCamera, which doesn’t render all of a 3D object’s characteristics. The ParallelCamera would
be better suited for what is covered in Beginning Java 8 Games Development (Apress, 2014). This camera
defines a viewing volume for a parallel, also called an orthographic projection in the 3D industry. Essentially
an orthographic projection would equate to being a rectangular plane.

The ParallelCamera is always located at center of the window and will look along the positive z-axis.
What is different about the ParallelCamera (relative to the PerspectiveCamera) is that the scene coordinate
system defined by this camera has its origin in the upper-left corner of the screen, with a y-axis running
down the left side of the screen, the x-axis running to the right along the top of the screen, and the z-axis
pointing away from the viewer (into the distance in the screen representation).

Chapter 11 ■ 3D SCene Configuration: uSing the perSpeCtiveCamera anD pointLight

271

The units used in a ParallelCamera object are represented using pixel coordinates, so this is exactly like
a 2D digital imaging software package and the 2D StackPane image compositing layer object we are using for
2D UI design, which also references coordinates from the upper-left corner of the screen at 0,0 (X,Y). This is
yet another indicator of the fact that this is a more logical Camera subclass to use for your i2D games, rather
than your i3D games.

There is one sole constructor method for this class that uses an empty parameter area and looks like this:

Camera2D = new ParallelCamera();

Next, let’s take a look at how to create the PerspectiveCamera object, which we’ll be using for our pro
Java 9 game. We’ll see how we will initially configure it for use and how we will add it to the root of our
JavaFX SceneGraph.

Adding a PerspectiveCamera to Your Scene: Using .setCamera()
The first thing that we need to add to the top of the JavaFXGame class is a declaration of the
PerspectiveCamera object using the PerspectiveCamera camera; Java statement, which will then
present a wavy red underline indicator underneath the PerspectiveCamera object (class usage). Use
the Alt+Enter keystroke shortcut to have NetBeans 9 write the import statement for you and then open
up the createSceneGraphNodes() method so you can add that camera object to the top (root) of the
SceneGraph. Instantiate this camera object underneath the root Group instantiation using the camera = new
PerspectiveCamera(true); constructor statement. Then, on the next line, call a .setTranslateZ() method with
a -1000 value to move the camera 1,000 units away from the 0,0,0 center of the 3D scene.

Set the nearClip Camera object attribute to 0.1 by using a .setNearClip() method call off the camera
object, and set the farClip attribute to 5000.0 by using the .setFarClip() method call. Finally, wire this
camera object into your scene object (root), using the .setCamera() method call off of the scene object, and
pass the camera object over using a camera object as the parameter in the .setCamera(camera) method
call. Set your scene object Background value to Color.BLACK by using the .setFill() method call so your 3D
objects will stand out well, using these Java statements:

PerspectiveCamera camera;
...
createSceneGraphNodes() {
 camera = new PerspectiveCamera(true);
 camera.setTranslateZ(-1000);
 camera.setNearClip(0.1);
 camera.setFarClip(5000.0);
...
 scene.setFill(Color.BLACK);
 scene.setCamera(camera);

As you can see in Figure 11-1, your code is error-free, and the camera is now set up and attached to
your 3D scene, which we have now converted into being a 3D scene. It is now a 3D Scene because it uses a
PerspectiveCamera at the top of its rendering pipeline (that is, at its root), so all objects underneath it will
now use the 3D perspective.

www.ebook3000.com

http://www.ebook3000.org

Chapter 11 ■ 3D SCene Configuration: uSing the perSpeCtiveCamera anD pointLight

272

Next, let’s use the Run ➤ Project work process to see how the new 3D Scene you have created by adding
a PerspectiveCamera is affecting your existing 2D UI design; this is now a “hybrid” 2D and 3D application,
which is the most advanced type of JavaFX application. This is true because we need to combine 2D and
3D assets in one seamless compositing environment, which is an extremely complicated undertaking. Two
of the most advanced film and special effects compositing software packages available, Fusion and Nuke,
accomplish this fusion of 2D with 3D. In fact, if you want to learn more about combining 2D and 3D assets
into one pipeline, check out VFX Fundamentals (Apress, 2016). As you can see in Figure 11-2, the StackPane
branch of your SceneGraph root, and everything underneath it, is being carried (correctly) with it and is now
referencing (visually) from PerspectiveCamera at the top of the hierarchy and its 0,0,0 center of the screen
that you learned about earlier in the chapter.

Figure 11-1. Add a PerspectiveCamera object declaration at the top of the class and then instantiate it and
configure it

Chapter 11 ■ 3D SCene Configuration: uSing the perSpeCtiveCamera anD pointLight

273

The first thing I tried was to place the StackPane origin in the upper-left corner by using
.setTranslateX(-640) and .setTranslateY(-320), which worked to some extent as the result looked like
Figure 11-2; however, it was up in the upper-left corner, with the entire StackPane layout visible, and it was
scaled down 200 percent (four times, or one-quarter screen).

What this told me was that the StackPane was a 2D object, technically a “plane,” that was in “perfect
parallel” with the camera projection plane, facing the z-axis of the camera object. By contrast, now the
StackPlane is part of the 3D rendering pipeline because it’s a child of (underneath the renderer processing
pipeline) PerspectiveCamera.

This means that the StackPane and all of its children (VBox, ImageView, and TextFlow) are being
processed through the PerspectiveCamera object. This includes all of its algorithms and coordinate systems
(and similar “rules of engagement” if you will), all of which change how and where it will be rendered to the
screen (the Scene object).

The next thing I tried was logically setting the uiLayout object X and Y coordinates back to the 0,0 origin
settings using the .setTranslateX(0) and .setTranslateY(0) method calls. This is accomplished by adding the
following two Java statements to relocate your StackPane to 0,0 inside of the .start() method somewhere after
your uiLayout StackPane object instantiation Java statement.

Figure 11-2. Run the Project and notice that the StackPane is now located at the PerspectiveCamera 0,0,0
center origin

www.ebook3000.com

http://www.ebook3000.org

Chapter 11 ■ 3D SCene Configuration: uSing the perSpeCtiveCamera anD pointLight

274

This Java code is shown here, as well as being highlighted in blue near the middle of Figure 11-3:

uiLayout = new StackPane();
uiLayout.setTranslateX(0);
uiLayout.setTranslateY(0);

Notice in Figure 11-3 that you are using .setTranslateX() and .setTranslateY() on your logoLayer
ImageView, as well as on your infoOverlay TextFlow, each of which retain their positioning relative to your
uiLayout StackPane.

This preservation of relative positioning is because of the parent-child relationships that you have
established in your SceneGraph hierarchy, which is why this is a powerful scene construction tool for any
type of Scene whether it’s i2D, i3D, or hybrid. This will also be very important as we develop the i3D portion
of your pro Java 9 game during this book, as we will need to do even more integral transformations in the 3D
portion of your gameplay than simply centering your UI control panel in front of the camera so that it blocks
the view of the 3D game (at least for now; we may change this UI design later as we continue to refine the
Java code and the game design). This is exactly how game design, and coding, transpires in real life; game
development is a journey, not a destination.

Use a Run ➤ Project work process to see whether we’re getting closer to synchronizing your 2D UI
overlay with the 3D scene behind it. As you can see in Figure 11-4, the UI panel is now in the center of your
screen, albeit scaled down. Therefore, we will continue to refine our object attributes. Next, we will use the
camera object’s Z translation variable to bring the camera closer in to the 3D scene in order to achieve our
desired end result.

Figure 11-3. Add the .setTranslateX() and .setTranslateY() method calls off the uiLayout StackPane object,
both set to zero

Chapter 11 ■ 3D SCene Configuration: uSing the perSpeCtiveCamera anD pointLight

275

I expect that this is because the Z translation of the camera is set 1,000 units away from the center of
this new 3D Scene. Therefore, the next thing I am going to try to do is to reduce the camera.setTranslateZ()
method call parameter, from -1000 to -500, to see what the resulting change in the 2D inside of 3D composite
will be.

The Java code to accomplish this modification should look like the following and can be seen
highlighted in blue at the top of Figure 11-5:

camera.setTranslateZ(-500);

Figure 11-4. Run the project; your StackPane is now centered, but your camera object Z translation is too far out

Figure 11-5. Move the camera object 50 percent closer to the 3D scene projection plane by setting
.setTranslateZ() to -500

www.ebook3000.com

http://www.ebook3000.org

Chapter 11 ■ 3D SCene Configuration: uSing the perSpeCtiveCamera anD pointLight

276

Again, use your Run ➤ Project work process. As you can see in Figure 11-6, your UI screen is now 50
percent larger, so we need to reduce our .setTranslateZ() to zero to synchronize your StackPane with the 3D
Scene projection plane.

The Java code to accomplish this looks like the following and can be seen highlighted in blue in
Figure 11-7:

camera.setTranslateZ(0);

Figure 11-7. Set the camera.setTranslateZ() method call to zero to synchronize the StackPane and projection plane

Figure 11-6. Run the project to see that the StackPane is still centered, but the camera Z translate value is still
too far out

Chapter 11 ■ 3D SCene Configuration: uSing the perSpeCtiveCamera anD pointLight

277

Next, use the Run ➤ Project work process to see whether you’ve accomplished the visual objective of
synchronizing your StackPane Node branch and its children with the 3D camera object’s projection plane.
As you can see in Figure 11-8, your UI screen looks great and the buttons are working.

Before we get into learning about the LightBase (superclass) object and the AmbientLight and PointLight
subclasses, let’s make sure all of our other previous 2D UI code is still working and doing what we want it to do.
When adding a major feature or change to your Java 9 code, it is always important to take the time to do this.

StackPane UI Testing: Making Sure Everything Else Still Works
Click the Game Rules Button, shown in Figure 11-8, and make sure the UI screen for your game instructions
is still readable and professional in appearance, even though we are going to refine this UI further, before
the game is published. As you can see in Figure 11-9, the Instructions screen in indeed still readable;
however, the Color.WHITE background color has been replaced with Color.BLACK since we set our new 3D
Scene object to use this for its Fill Color value, as shown in Figure 11-1, using a scene.setFill(Color.BLA
CK); Java statement. This means that we need to now set the Background Color value for our StackPane to
Color.WHITE to fill our UI screen with a white color somewhere farther up in the scene compositing (now
rendering) pipeline. Since the StackPane is above the Scene and below the VBox, ImageView, and TextFlow,
this is the logical object to set to a Color.WHITE Background Fill color. This will involve placing only one
Java statement in the three active Button event handling structures located in the .start() method, rather than
changing dozens of Java statements relating to setting Text object Color and DropShadow attributes, not
to mention lightening the ImageView using the .setLightness() method call to brighten the heading image
text elements. This will also give me a chance to show you how to get around the limitation of the StackPane
object (class) not having a .setFill() method, which means we have to create a complex method chain with
two nested “object instantiation inside of a method” Java constructs, where we create a new Background
object and a new BackgroundFill object inside of a .setBackground(Background) method call and configure
the BackgroundFill to white.

Figure 11-8. Use Run ➤ Project to see that your StackPane is perfectly synchronized (visually) with the
camera projection plane

www.ebook3000.com

http://www.ebook3000.org

Chapter 11 ■ 3D SCene Configuration: uSing the perSpeCtiveCamera anD pointLight

278

The basic Java 9 programming statement structure for this method call, which contains two nested
object instantiations, will look like the following (initially; we will configure it further next) Java 9
programming structure:

uiLayout.setBackground(new Background(new BackgroundFill(Color.WHITE)));

This is shown in Figure 11-10, albeit with a wavy red underline under the BackgroundFill, as we will need
to use an Alt+Enter keystroke combination to have NetBeans import the BackgroundFill class from javafx.
scene.layout (package). This is also shown highlighted in blue in the figure as “Add import for javafx.scene.
layout.BackgroundFill,” which you will double-click to have NetBeans 9 write this import statement for you.

Figure 11-9. Click the Game Rules Button control to see whether the Instructions section is rendering correctly.
It is now black!

Chapter 11 ■ 3D SCene Configuration: uSing the perSpeCtiveCamera anD pointLight

279

NetBeans evaluates problems from the most basic (no import statement) on down. Thus, once you have
the import statement in place for the BackgroundFill object, NetBeans continues to evaluate the statement
to see whether there are any other problems with your Java programming constructs, from the inside (the
BackgroundFill) out (to the new Background object, to the .setBackground() method call).

It turns out the constructor method for the BaclgroundFill class requires several parameters, not just
the Color.WHITE color fill specification. This is because the BackgroundFill class will create rounded
corners and supports an Insets object specification as well, so the proper constructor method format for the
BackgroundFill constructor should look like the following:

backgroundFill = new BackgroundFill(Paint, CornerRadii, Insets);

Therefore, for our usage, a complete white color background fill constructor method would use the
EMPTY constant to not have any padding or rounded edges and would therefore look like the following Java
instantiation:

new BackgroundFill(Color.WHITE, CornerRadii.EMPTY, Insets.EMPTY);

Once a BackgroundFill class is imported, NetBeans shows us that the new BackgroundFill(Color.
WHITE) object instantiation has a problem with it, indicated by a wavy red underline underneath the entire
code structure, as shown in Figure 11-11. I placed my mouse over the section of the Java statement I am
constructing, and NetBeans 9 pops up an explanation for the problem, which is shown in the pale yellow box
with a black outline around it.

Figure 11-10. Code your private void createSpecialEffects() method body to create and configure a
DropShadow object

www.ebook3000.com

http://www.ebook3000.org

Chapter 11 ■ 3D SCene Configuration: uSing the perSpeCtiveCamera anD pointLight

280

I want a white fill, so I used CornerRadii.EMPTY and Insets.EMPTY for the last two parameters, in that
order, as required by the constructor method parameter. The final method call looks like this, as shown in
Figure 11-12:

.setBackground(new Background(new BackgroundFill(Color.White,CornerRadii.EMPTY,Insets.EMPTY)));

Figure 11-11. Set uiLayout StackPane background to white using .setBackground(new Background(new
BackgroundFill(Color.WHITE)));

Figure 11-12. Add BackgroundFill constructor method parameters (Paint, CornerRadii, and Insets) to the
method call

Chapter 11 ■ 3D SCene Configuration: uSing the perSpeCtiveCamera anD pointLight

281

Finally, use the Run ➤ Project work process to see whether you’ve acomplished the objective of a white
StackPane background color fill. As you can see in Figure 11-13, your UI screen again looks great, and the UI
Buttons are working.

Let’s implement this fix in the Legal and Credits Button event handling structures and bring our
application back to 100 percent working condition. As you can see in Figure 11-14, I have copied and pasted
this uiLayout StackPane object Background attribute configuration Java 9 code structure into both your
legalButton as well as your creditButton event handling infrastructures, and the code is compiling error-free.

Figure 11-13. The StackPane now has a Color.WHITE background fill, preventing scene Color.BLACK from
showing

www.ebook3000.com

http://www.ebook3000.org

Chapter 11 ■ 3D SCene Configuration: uSing the perSpeCtiveCamera anD pointLight

282

If you use your Run ➤ Project work process and test these three Button UI elements, you will see that
all of your hard design work from the previous chapters has been completely restored thanks to our use of
the StackPane’s backplate (Background object) to hold the Paint object set to a Color helper class constant of
Color.WHITE.

Implementing the Start Game Button: Hiding Your UI
The next thing that we want to do is to comment out all the code in the gameButton event handler code
(so we can restore these later, if we want to) and then add some new statements that will hide (set visibility
to false) the StackPane branch of the SceneGraph; we will also set the camera.setTranslateZ() method
call to the -1000 value we wanted to use originally. As we build the game, we will be adding additional
configuration and control statements into this Button regarding the i3D game, which, as you can now see,
will “live” behind the StackPane UI Control Panel.

Figure 11-14. Copy and paste the uiLayout.setBackground() construct from helpButton to legalButton and
creditButton

Chapter 11 ■ 3D SCene Configuration: uSing the perSpeCtiveCamera anD pointLight

283

As you can see in Figure 11-15, I have commented out the code relating to your StackPane UI
compositing pipeline; I have added statements relating to removing the UI control panel from view and to
setting the 3D Scene Camera object to the position we want to have it is when the game is initially started.
The new code statements look like the following Java code and are shown highlighted in the middle of
Figure 11-15:

uiLayout.setVisible(false);
camera.setTranslateZ(-1000);

Now when you use your Run ➤ Project work process and click the Start Game Button, your StackPane
will disappear and the empty (black) 3D scene will be revealed.

Now it is time to learn about 3D Scene lighting using the JavaFX 9 LightBase superclass and its
AmbientLight and PointLight subclasses. We will cover these in detail before implementing them in our
JavaFXGame class, before we end this chapter on core 3D Scene elements (Camera and LightBase) that need
to be at the root of our SceneGraph in our i3D pro Java 9 game design and development pipeline. Getting
excited yet? Lights, Camera…ActionEvents!

Figure 11-15. Add a .setVisible(false) method call off of uiLayout and a .setTranslateZ(-1000) method call off
the camera

www.ebook3000.com

http://www.ebook3000.org

Chapter 11 ■ 3D SCene Configuration: uSing the perSpeCtiveCamera anD pointLight

284

Using 3D Lighting: Adding Illumination to 3D Games
There are two different sets of lighting APIs in JavaFX 9. One is for 3D Scene usage and is contained in
the javafx.scene package featuring an abstract LightBase superclass and the “concrete” (usable in your
code as objects you can construct) subclasses AmbientLight and PointLight. The other is the abstract
Light superclass and is contained in the javafx.scene.effect package; this package contains 2D digital
imaging effects, as we covered earlier during this book. For 3D use we are going to focus on the LightBase,
AmbientLight, and PointLight classes and use the PointLight class initially as we can obtain the most
dramatic and realistic results using that class.

JavaFX LightBase Class: An Abstract Superclass Defining Light
The public JavaFX LightBase superclass is an abstract class, used only to create different types of lights.
Currently there is a general or “ambient” level of illumination for a 3D scene provided by an AmbientLight
subclass (object) or a PointLight subclass (object) that emulates the properties of a light bulb. Your
application should not attempt to extend the abstract LightBase class directly; if you attempt this, Java will
throw an UnsupportedOperationException, and your pro Java 9 game will not compile or run. The LightBase
class is kept in the javafx.graphics module in the core javafx.scene package and is a subclass of Node, as it is
ultimately a Node at the top of the SceneGraph. The LightBase class implements a Styleable interface so it
can be styled and an EventTarget interface so it can process events. The Java 9 class hierarchy for the JavaFX
LightBase class therefore would look like the following:

java.lang.Object
 > javafx.scene.Node
 > javafx.scene.LightBase

The LightBase class provides definitions of common properties for subclasses that construct objects
that are used to represent (“cast”) some form of light in your 3D Scene. These LightBase object properties
should include your initial color for the light source and whether the light source is initially turned on
(enabled) or off (disabled). It’s important to note that since this is a 3D feature, it is a conditional feature.
Reference the example I laid out in the PerspectiveCamera section of the chapter as to how to set up code
that detects the ConditionalFeature.SCENE3D flag.

LightBase subclasses have two properties (or attributes or characteristics if you prefer those terms); one
is the color or ObjectProperty<color> that specifies the color of light emanating from the light source, and
the second is a BooleanProperty called lightOn that allows the light to be turned on and off.

The LightBase abstract class has two overloaded protected constructor methods. One has no
parameters and creates a default Color.WHITE light source, using this constructor method call format:

protected LightBase()

The second overloaded protected constructor method allows the subclass to specify a color value for
the light, using the following constructor method call format:

protected LightBase(Color color)

The LightBase class has seven methods that will all be available to (inherited by) every LightBase
subclass, including the AmbientLight and PointLight subclasses, so pay attention to these here as I will cover
them only once.

Chapter 11 ■ 3D SCene Configuration: uSing the perSpeCtiveCamera anD pointLight

285

The colorProperty() method specifies the ObjectProperty<Color> for the light source, while the
getColor() method gets the Color value property for the light source. The getScope() method will get an
ObservableList<Node> containing a List of Nodes that specifies the hierarchical scope for the LightBase
subclass (object).

The isLightOn() method call returns the boolean value of on (true) or off (false) for the light
source, and the lightOnProperty() method call will set the boolean data value for the light source
BooleanProperty lightOn.

Finally, the void setColor(Color value) method will set the data value of the light color property, and
the void setLightOn(boolean value) method will set the data value of the LightBase subobject lightOn
boolean value property.

Next, let’s take a closer look at the AmbientLight and PointLight concrete classes individually.

JavaFX AmbientLight Class: Lighting Your 3D Scene Uniformly
The public JavaFX AmbientLight class is a concrete class, used to create a general or “ambient” level of
illumination for a 3D scene. There is generally only one instance of AmbientLight defined for a given 3D
Scene instance. The AmbientLight class is kept in the javafx.graphics module in the core javafx.scene
package and is a subclass of LightBase, which is a Node subclass, as it is ultimately a Node at the top of
the SceneGraph. The AmbientLight class also implements a Styleable interface so it can be styled and an
EventTarget interface so that it can process events. The Java class hierarchy for the JavaFX AmbientLight
class therefore would look like the following:

java.lang.Object
 > javafx.scene.Node
 > javafx.scene.LightBase
 > javafx.scene.AmbientLight

The AmbientLight class defines the ambient light source object for your 3D Scene, if needed. Ambient
light can be defined as a global or general amount of illumination of an area from an unseen light source that
appears to be coming into the scene from every direction. All AmbientLight object properties are inherited
from the LightBase superclass and should include an initial color for the light source and whether the light
source is initially turned on (enabled) or off (disabled). It’s again important to note that since this is a 3D
feature, it is a conditional feature.

AmbientLight has two overloaded constructor methods; the first one creates an unconfigured
AmbientLight object class using the (default) Color.WHITE light source, using the following Java
instantiation programming format:

AmbientLight ambient = new AmbientLight();

The second overloaded constructor method creates a new instance of PointLight using a specified color
that is not Color.WHITE, using the following Java instantiation programming format:

AmbientLight ambientaqua = new AmbientLight(Color.AQUA);

Next, let’s take a look at the PointLight concrete class in detail, and then we can add a PointLight object
into your 3D Scene before we finish up with this chapter on setting up a 3D rendering scene environment
that we can drop 3D objects into over the duration of the rest of this book.

www.ebook3000.com

http://www.ebook3000.org

Chapter 11 ■ 3D SCene Configuration: uSing the perSpeCtiveCamera anD pointLight

286

JavaFX PointLight Class: Lighting Your 3D Scene Dramatically
The public JavaFX PointLight class is a concrete class, used to create a local or “point source” instance of
illumination for a 3D scene. There is often more than one PointLight instance in a 3D Scene to allow the
artist to implement complex lighting models simulating real-world light sources. The PointLight class is
kept in the javafx.graphics module in the core javafx.scene package and is a subclass of LightBase, which is a
Node subclass, as it is ultimately a Node at the top of the SceneGraph. The PointLight class also implements
a Styleable interface so it can be styled and an EventTarget interface so that it can process events. The Java
class hierarchy for the JavaFX PointLight class therefore would look like the following:

java.lang.Object
 > javafx.scene.Node
 > javafx.scene.LightBase
 > javafx.scene.PointLight

The PointLight class defines the point light source (think lightbulb) objects for your 3D Scene, as
are needed. Try to use as few PointLight objects as possible as they are expensive to render (calculate, or
process, their algorithm). Point lights are defined as a local light emanation point and can be animated
to create a wide range of special effects. All PointLight object properties are inherited from the LightBase
superclass and should include an initial color for the light source and whether the light source is initially
turned on (enabled) or off (disabled). It’s again important to note that since this is a 3D feature, it is also a
conditional feature.

The PointLight has two overloaded constructor methods. The first one creates an unconfigured
PointLight object class with the default Color.WHITE light source, using the following Java instantiation
programming format:

PointLight light = new PointLight();

The second overloaded constructor method creates a new instance of PointLight using a specified color
that is not Color.WHITE, using the following Java instantiation programming format:

PointLight aqualight = new PointLight(Color.AQUA);

Next, let’s take a closer look at the work process for adding a PointLight object to use as a light source for
your JavaFXGame class infrastructure.

Adding Light to the Game’s 3D Scene: Using PointLight Objects
Next, let’s add a point light source into your JavaFXGame code so that we can learn about 3D primitives in
the next chapter. Declare a PointLight object named light at the top of your JavaFXGame class; then use the
Alt+Enter keystroke combination to bring up the helper pop-up and select the “Add import for javafx.scene.
PointLight” option, as highlighted in yellow and blue at the bottom of Figure 11-16.

Chapter 11 ■ 3D SCene Configuration: uSing the perSpeCtiveCamera anD pointLight

287

Since you’ll also need something for the light to illuminate, add a Sphere sphere declaration after
your PointLight light declaration so that we have something to test our code with, as shown highlighted
in yellow at the top of Figure 11-17. Next, instantiate your PointLight after the scene.setCamera(camera);
method call. I have used the second more explicit constructor method but given it the default Color.WHITE,
which we might change later, after we look at materials and how they interact with light color values. Move
the light down a bit so it’s not inside of the Sphere (at 0,0,0) using a light.setTranslateZ(-25); method
call. Next, use a light.getScope().add(sphere); method chain and add the sphere object to the scope of
what the PointLight object “sees.” Notice that this allows you to have different light objects affect different
3D objects in the 3D Scene, which is quite a powerful feature. The Java code for your PointLight and
Sphere object declarations, instantiation, and configuration Java statements is highlighted at the bottom of
Figure 11-17 and should look something like the following Java code:

PointLight light;
Sphere sphere;
...
private void createBoardGameNodes() {
 ...
 light = new PointLight(Color.WHITE);
 light.setTranslateY(-25);
 light.getScope().add(sphere); // "Wire" the Sphere and Light together via .getScope().
add()
 sphere = new Sphere(100);
 ...
}

Figure 11-16. Declare a PointLight named light at the top of your JavaFXGame class and hit Alt+Enter and
Add Import.

www.ebook3000.com

http://www.ebook3000.org

Chapter 11 ■ 3D SCene Configuration: uSing the perSpeCtiveCamera anD pointLight

288

The final thing that you will need to do to wire your PointLight and Sphere to each other, to the
camera, and to the GameBoard 3D branch of the SceneGraph is to add your sphere Node object to your
gameBoard Group object using the .getChildren().add() method chain in the proper order inside of your
.addNodesToSceneGraph() method.

The code for your addNodesToSceneGraph() method Java statements is highlighted in the middle of
Figure 11-18 and should look like this Java method body:

private void addNodesToSceneGraph() {
 root.getChildren().addAll(gameBoard, uiLayout);
 gameBoard.getChildren().add(sphere);
 uiLayout.getChildren().addAll(boardGameBackPlate, logoLayer, infoOverlay, uiContainer);
 ...
}

Figure 11-17. Declare a sphere and light object, and in createBoardGameNodes instantiate and configure
them for use.

Chapter 11 ■ 3D SCene Configuration: uSing the perSpeCtiveCamera anD pointLight

289

Figure 11-18. Add the sphere to the gameBoard branch of the root Node so the primitive is added to your
scenegraph.

Use your Run ➤ Project work process, and make sure that all of these code upgrades and additions that
we have accomplished during this chapter are working properly and giving you the end result that should be
expected at this early stage of your pro Java 9 game development.

Make sure the three (middle) Game Rules, Disclaimers, and Game Credits buttons have been restored
to full working capacity (now have a white background fill again). In addition, the High Scores Button should
still print out a text message to the Output Console in NetBeans 9, and the Start Game should now remove
the StackPane uiLayout overlay panel and show the 3D Scene.

Inside of that 3D Scene should be a 3D Sphere object primitive, which we will be learning about during
the next chapter on 3D objects in your 3D Scene, called Models, Geometry, Mesh, and Primitives in the 3D
industry. Since the 3D primitive has no texture mapping or color value yet and since the PointLight object is
set to Color.WHITE, this should be a light gray sphere lit with white light.

As you can see in Figure 11-19, the Start Game Button Control now hides the entire 2D compositing
pipeline for the splash screen, UI design, Button controls, and TextFlow and Text elements and formatting
with one simple Java statement of uiLayout.setVisible(false); and because of the StackPane parent
Node and VBox, ImageView, and TextFlow child hierarchy that we have set up thus far in the book. Once
the pipeline is hidden from view, we see the 3D Scene, to which we’ve temporarily added a Sphere object
primitive in order to test the PerspectiveCamera and PointLight objects.

www.ebook3000.com

http://www.ebook3000.org

Chapter 11 ■ 3D SCene Configuration: uSing the perSpeCtiveCamera anD pointLight

290

Figure 11-19. Use your Run ➤ Project work process and test the 3D Scene infrastructure that you have put
into place

We are now in a position to be able to work on 3D modeling and 3D texture mapping using the JavaFX APIs.

Summary
In this eleventh chapter, we added 3D Scene capabilities to JavaFXGame.java by adding a PerspectiveCamera
object, which allows the rendering of 3D assets using X, Y, and Z dimensions, and a 3D perspective to the
Scene object. We also added a PointLight object to simulate a lightbulb light source to illuminate these 3D
assets, as well as a Sphere object (a “primitive”) to test our basic 3D Scene setup.

You learned about the abstract Camera superclass and its ParallelCamera (for 2D or Orthographic
3D Scene usage) and PerspectiveCamera, which we are going to use for the most effective 3D or i3D
Scene rendering. We then learned how to declare, instantiate, and configure a PerspectiveCamera in the
JavaFXGame, changing how it operates.

We then tested our 2D UI elements and hierarchy and observed that these are now on a 2D “plane” in
3D space. We corrected the Java code to compensate for this change in coordinate space, restoring your UI to
full-screen.

We then tested all the UI Button objects and found our new 3D Scene black background color was
affecting our information screens and very cleverly used a complex nested Java statement to create and
insert a Color.WHITE BackgroundFill object into your StackPane object’s Background object. This solved
the problem by replacing one of the compositing layer’s transparency with a white color fill and adding
another opaque layer to our now hybrid 3D and 2D compositing pipeline. Once that problem was solved, we
changed the logic in the gameButton event handler and allowed the end user to start the game by hiding the
UI overlay and reveal the test Sphere primitive, correctly lit.

In the next chapter, we are going to take a look at the JavaFX Shape3D superclass and its subclasses as
we continue to begin working on the foundation knowledge needed to create the i3D portions of your pro
Java 9 game.

291© Wallace Jackson 2017
W. Jackson, Pro Java 9 Games Development, https://doi.org/10.1007/978-1-4842-0973-8_12

CHAPTER 12

3D Model Design and Primitives:
Using JavaFX 9 Shape3D Classes

Now that you have finished setting up a basic (empty) 3D Scene by adding a Camera object to the Scene
root and a PointLight object specifically designed to work with 3D assets, let’s start to get some foundational
knowledge about the 3D assets themselves. These assets come in the form of predefined basic 3D shapes,
called primitives, as well as more custom 3D geometry assets commonly referred to in the industry as mesh
or wireframe 3D assets. JavaFX 9 comes with seven classes in the javafx.scene.shape package in the javafx.
graphics module that specifically create 3D geometry (primitives or mesh) for you, and we are going to take
a look at them during this chapter. We will also get back into our JavaFXGame primary application class
coding here in Chapter 12 and start to add 3D primitives to the gameBoard Group Node of our SceneGraph
to get some practice adding 3D assets to our JavaFXGame application. Whereas we could do this in a 3D
software package such as Blender, a board game is simple enough (squares, spheres, cylinders) that we can
do this entirely in JavaFX code, which means we do not need to import (and distribute) 3D models but can
rather write code to model your i3D game “out of thin air.” This will also teach you a lot more about the 3D
APIs in Java 9 and JavaFX 9, as you can learn how to model complex objects (such as your board game’s
gameboard) using only the latest Java and JavaFX APIs.

During this chapter, you will be learning about the different types of JavaFX 3D classes contained in
the javafx.scene.shape package. We will cover Sphere, which can be used to create a Sphere primitive and
which you have used already to test your 3D Scene setup in Chapter 11. We will also look at the other two
primitive classes, Box and Cylinder, which can be used to create your Plane and Disk primitives. These
primitives are based on the Shape3D superclass, which we will be looking at first. We will also look at the
more advanced TriangleMesh class that allows you to build a polygon-based Mesh object and, finally, at
the Mesh and MeshView class hierarchy, which will allow you to render the 3D Mesh objects that you’ll
have created in external 3D modeling and rendering software packages such as Blender 2.8 (open source) or
Autodesk 3D Studio Max (a paid software package).

JavaFX Shape3D Superclass: Primitive or MeshView
The public abstract Shape3D superclass is used to create the four primary 3D classes: Box, Sphere,
Cylinder, and MeshView. You’ll use these classes to create and display the 3D assets for your pro Java 9
games development. Three of these subclasses create primitives, which are predefined 3D objects created
algorithmically, and the MeshView subclass allows more detailed complex 3D models based on polygonal
geometry to be rendered inside your 3D Scene. It is important to note that there is also a javafx.scene.shape.
Shape superclass that is not related (class hierarchy wise) to javafx.scene.shape.Shape3D; it is used for 2D
shapes like those commonly found in the SVG 2D digital illustration language, which is covered in Beginning
Java 8 Games Development (Apress, 2014) and Digital Illustration Fundamentals (Apress, 2016).

www.ebook3000.com

https://doi.org/10.1007/978-1-4842-0973-8_12
http://dx.doi.org/10.1007/978-1-4842-0973-8_12
http://dx.doi.org/10.1007/978-1-4842-0973-8_11
http://www.ebook3000.org

Chapter 12 ■ 3D MoDel Design anD priMitives: Using JavaFX 9 shape3D Classes

292

The Shape3D superclass is a subclass of Node, as are most of the concrete classes that we will be
using in your JavaFXGame code. Like the Camera and LightBase superclasses, this Shape3D superclass
implements both the Styleable and EventTarget interfaces so that its subclasses (objects) can be styled and
process events (can be interactive). The Java 9 class hierarchy therefore spans both Java and JavaFX APIs and
looks like the following:

java.lang.Object
 > javafx.scene.Node
 > javafx.scene.shape.Shape3D

The Shape3D base (abstract or not directly instantiated) class was created to provide definitions of
common properties for 3D objects that represent 3D geometric shapes. The three primary 3D properties
include the “Material” (or shader and texture maps) to be applied to the fillable interior of the shape or the
outline of the shape, which we’ll be covering during Chapter 13; the “Draw Model” properties, which define
how the JavaFX 9 rendering engine will represent the geometry to the viewer (as a solid or a wireframe
model); and the “Face Culling” properties that define which faces to cull. Face culling is an optimization that
a rendering engine will utilize to get better performance (faster FPS) by not rendering all of the polygons in
the models in the scene. Since a renderer is taking a 3D Scene and rendering a 2D view from the Camera,
this “backface culling” will not render any faces (polygons) on the part of a model facing away from (not
visible to) the Camera. Front-face culling will do the opposite, rendering only the back-facing polygons,
which basically renders the inside of the polygon, with the model front faces (polygons) becoming hidden or
invisible. There is also the CullFace.NONE constant that turns off the Face Culling Optimization Algorithm.
CullFace.BACK is the default setting and is what you’ll usually want to use, unless you are using CullFace.
FRONT to get some special inside volume rendering effect, which, after this chapter is over, you will know
exactly how to experiment with, if you so desire.

As you know, 3D rendering, and therefore any of the Shape3D subclasses, is a conditional feature that
you can check for in your code, as we covered in the previous chapter. Let’s get into the three object settings
(properties, attributes, characteristics) for any Shape3D subclassed object that define how the 3D rendering
engine will render it.

The cullFace ObjectProperty<CullFace> will define which CullFace optimization algorithm (FRONT,
BACK, or NONE) will be used on this Shape3D object. This could very well affect the performance of a pro
Java 9 3D game.

The drawMode ObjectProperty<DrawMode> will define the draw mode used to render the Shape3D
object. Your two options include DrawMode.FILL for a solid 3D object and DrawMode.LINE for a wireframe
representation.

The material ObjectProperty<Material> defines the material the Shape3D object will be utilizing as
a “skin.” We’ll be learning all about shading algorithms, materials, and texture maps in Chapter 13, which
covers materials.

The protected (not directly usable) constructor for the abstract Shape3D superclass looks like the
following:

protected Shape3D()

Now let’s get into methods that are going to be part of all your Shape3D subclasses. This is convenient
because we can cover all these methods here in one place. These can be used on any primitive 3D shape or
MeshView.

The .cullFaceProperty() method defines the ObjectProperty<CullFace> for the Shape3D object,
whereas the .getCullFace() method allows you to poll the Shape3D object for its current CullFace constant
setting. There is also the .setCullFace(CullFace value) method, which allows you to change the CullFace
constant setting for a Shape3D object.

http://dx.doi.org/10.1007/978-1-4842-0973-8_13
http://dx.doi.org/10.1007/978-1-4842-0973-8_13

Chapter 12 ■ 3D MoDel Design anD priMitives: Using JavaFX 9 shape3D Classes

293

The .drawModeProperty() method defines the ObjectProperty<DrawMode> for a Shape3D object,
whereas the .getDrawMode() method allows you to poll the Shape3D object for its current DrawMode
constant setting. There is also the .setDrawMode(DrawMode value) method, which allows you to change
the DrawMode constant setting for the Shape3D object.

The .materialProperty() method defines the ObjectProperty<Material> for a Shape3D object, whereas
your .getMaterial() method allows you to poll the Shape3D object for its current Material object setting.
There is also the .setMaterial(Material value) method, which allows you to change the Material object
setting for the Shape3D object.

Next, let’s take a look at the Shape3D subclasses individually as we’ll be leveraging them in the
JavaFXGame.

JavaFX Sphere: Creating Sphere Primitives for Your 3D Games
Since we already created a Sphere object named sphere in the previous chapter to test the
PerspectiveCamera and PointLight 3D Scene setup Java code, let’s cover that Shape3D subclass here first.
This class is kept in the javafx.scene.shape package and is a subclass of Shape3D, as you know, so it has the
following Java class hierarchy:

java.lang.Object
 > javafx.scene.Node
 > javafx.scene.shape.Shape3D
 > javafx.scene.shape.Sphere

The Sphere class defines a three-dimensional sphere with the specified size. A Sphere is a 3D geometry
primitive created algorithmically using the input by the programmer of a radius dimension (size). This
Sphere is always initially centered at the 3D origin 0,0,0. The Sphere object therefore has one radius
DoubleProperty that defines the radius of the Sphere as well as three cullFace, drawMode, and material
properties inherited from javafx.scene.shape.Shape3D.

The Sphere class contains three overloaded constructor methods, including one with no parameters,
which creates an instance of a Sphere with a radius of 1.0. This would look like the following Java 9 Sphere
instantiation:

sphere = new Sphere();

The second constructor method, which is the one we used in Chapter 11, allows you to specify a radius
using a double numeric value. This would look like the following Sphere instantiation Java code:

sphere = new Sphere(100);

The third constructor allows you to specify a radius and a mesh density via a number of divisions
parameter, which looks like the following Java statement that creates a 100 unit radius Sphere with 24
divisions:

sphere = new Sphere(100, 24)

The Sphere class has some of its own unique methods in addition to the ones it inherits from the
Shape3D class, including the .getDivisions() method, which polls the Sphere object to see how many
divisions it is using; the .radiusProperty() method, which defines the radius of the Sphere object; the
.getRadius() method, which gets the value of the current radius; and the .setRadius(double value) method,
which sets the value for the radius to a different value.

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_11
http://www.ebook3000.org

Chapter 12 ■ 3D MoDel Design anD priMitives: Using JavaFX 9 shape3D Classes

294

JavaFX Cylinder: Creating Cylinder or Disk Primitives for Games
Next, let’s cover the public Cylinder Shape3D subclass, which can be used to create cylindrical 3D objects
as it is a concrete (usable) class that also implements the Styleable and EventTarget interfaces. This class is
kept in the javafx.scene.shape package and is a subclass of Shape3D, so it will have the following Java class
hierarchy:

java.lang.Object
 > javafx.scene.Node
 > javafx.scene.shape.Shape3D
 > javafx.scene.shape.Cylinder

The Cylinder class is used to define a three-dimensional cylinder with a specified radius and height.
A Cylinder is a 3D geometric primitive algorithm that takes a radius (double) property and a height (double)
property. It is initially centered at the 0,0,0 origin with the radius using the z-axis direction and the height
using the y-axis direction.

Besides the radius and height properties, it will also inherit the Shape3D cullFace, drawMode, and
material properties. It has three overloaded constructor methods, with one the default (empty), one with a
radius and height, and the third with a radius, height, and divisions.

The first empty constructor method creates a new instance of a Cylinder object with a radius of 1.0 and
height of 2.0. It has the following Java statement format:

cylinder = new Cylinder();

The second constructor method creates a new instance of a Cylinder object with a developer specified
radius and height. It has the following Java statement format:

cylinder = new Cylinder(50, 250);

The third constructor method creates a new instance of a Cylinder object with a developer-specified
radius, height, and resolution (number of divisions to determine smoothness). It has the following Java
statement format:

cylinder = new Cylinder(50, 250, 24);

There are three methods for radius, three methods for height, and one .getDivisions() method used
to poll the divisions property, which must be set using the third constructor method format as there is no
.setDivisions() method call or divisionsProperty() method call.

The double .getHeight() method will poll for (get) the value of the height property for a Cylinder object.
The DoubleProperty heightProperty() method defines the height attribute for, or the Y dimension of, the
Cylinder object. Finally, a void setHeight(double value) method allows developers to set the value of the
height property for a Cylinder object.

The double getRadius() method will poll for (get) the value of the radius property for a Cylinder object.
The DoubleProperty radiusProperty() method defines the radius attribute for, or the Z dimension of, the
Cylinder object. Finally, a void setRadius(double value) method allows developers to set the value of the
radius property for a Cylinder object.

Finally, let’s take a look at a Box primitive class, which allows the creation of a wide range of useful
shapes.

Chapter 12 ■ 3D MoDel Design anD priMitives: Using JavaFX 9 shape3D Classes

295

JavaFX Box: Creating Boxes, Posts, and Planes for 3D Games
Next, let’s cover the public Box Shape3D subclass, which can be used to create square, rectangular, and
planar 3D objects as it is a concrete (usable) class that also implements the Styleable and EventTarget
interfaces. This class is kept in the javafx.scene.shape package and is a subclass of Shape3D, so it will have
the following Java class hierarchy:

java.lang.Object
 > javafx.scene.Node
 > javafx.scene.shape.Shape3D
 > javafx.scene.shape.Box

A Box class defines a three-dimensional box, often called a cube primitive, with a specified size. A Box
object is a 3D geometric primitive with three double properties(depth, width, and height) in addition to
the three inherited cullFace, drawMode, and material Shape3D properties. Upon instantiation, it is initially
centered at the origin.

The Box class has two overloaded constructor methods. One creates a default 2,2,2 cube and looks like
the following Java code:

box = new Box();

A second constructor method allows you to specify dimensions for the cube and looks like the following:

box = new Box(10, 200, 10); // Creates a Post (or Tall Rectangle) Primitive
box = new Box(10, 0.1, 10); // Creates a Plane (or a Flat Surface) Primitive

As you might have guessed, there are nine methods, three for each property, available in the Box class.
This is the class we will use to create the majority of our gameboard infrastructure, so we could be using
these quite often.

The DoubleProperty depthProperty() method is used to define the depth, or the Z dimension, for the
Box. A double getDepth() method can be used to get (poll) the value of the depth property from the Box
object. The void setDepth(double value) method can be used to set or specify a new value for the depth
property for a Box object.

The DoubleProperty heightProperty() method is used to define the height, or the Y dimension, for the
Box. A double getHeight() method can be used to get (poll) the value of the height property from the Box
object. The void setHeight(double value) method can be used to set or specify a new value for the height
property for a Box object.

The DoubleProperty widthProperty() method is used to define the width, or the X dimension for your
Box. A double getWidth() method can be used to get (poll) the value of the width property from your Box
object. The void setWidth(double value) method can be used to set or specify a new value for the width
property for your Box object.

Next, let’s take a look at what it takes to actually implement different primitives in your JavaFXGame code!

Using Primitives: Adding Primitives to Your JavaFXGame Class
Let’s add the other two primitive objects, Box and Cylinder, to your JavaFXGame class, so we can learn about
Face Culling and Draw Modes. We’ll save Material for its own Chapter 13, as shaders and texture maps
deserve their own chapter and focused discussion. Declare a Box object named box at the top of your class
and use Alt+Enter to have NetBeans 9 help you write the import statement. As you can see in Figure 12-1,
it is important that you add the correct class to your Java 9 game because there is also a javax.swing.Box

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_13
http://www.ebook3000.org

Chapter 12 ■ 3D MoDel Design anD priMitives: Using JavaFX 9 shape3D Classes

296

class (second in the pop-up helper drop-down list) that is used for 2D UI design and at the top of the list
is (NetBeans best guess) the javafx.scene.shape.Box that is for use as a 3D primitive! Double-click the first
(correct) class and have NetBeans write the import statement for you.

Instantiate the box object in the createBoardGameNodes() method using the second constructor,
as shown in Figure 12-2. Remember, you need to add this box Node to the SceneGraph in the
.addNodesToSceneGraph() method.

Figure 12-1. Declare a Box object at the top of the class; use Alt+Enter, and select Add import for javafx.scene.
shape.Box

Figure 12-2. Instantiate the Box in createBoardGameNodes, and set the depth, height, and width to 100, 100, 100

Chapter 12 ■ 3D MoDel Design anD priMitives: Using JavaFX 9 shape3D Classes

297

This can be easily accomplished by modifying your current gameBoard.getChildren().add(sphere);
Java statement to instead be gameBoard.getChildren().addAll(sphere, box);, as shown here and in
Figure 12-3:

box = new Box(100, 100, 100); // in .createBoardGameNodes() method
gameBoard.getChildren().addAll(sphere, box); // in .addNodesToSceneGraph() method

After declaring the Box object, instantiate the object inside of your createBoardGameNodes() method
using the same 100 units value that you used for the Sphere. You will be able to see how the sizes relate to
each other since they will both be created at 0,0,0. For the Box constructor method, this takes three (double)
values, which should all be 100.

Next, declare a Cylinder named pole at the top of your class, and instantiate it inside of the
.createBoardGameNodes() method, using a width of 50, a height of 250 and 24 for the number of sections
or divisions used for the mesh (LINE) draw representation.

 This should all look like the following Java code, which is shown highlighted in yellow and blue in
Figure 12-4:

Cylinder pole; // Declare object for use at the top of your class
...
pole = new Cylinder(50, 250, 24); // in .createBoardGameNodes() method

Figure 12-3. Use the .addAll() method to add a box object to the SceneGraph in the addNodesToSceneGraph()
method

www.ebook3000.com

http://www.ebook3000.org

Chapter 12 ■ 3D MoDel Design anD priMitives: Using JavaFX 9 shape3D Classes

298

If you used your Run ➤ Project work process at this point, you would not see the pole object, as
you have not added it to the JavaFX SceneGraph yet. Open the addNodesToSceneGraph() method and
add the pole object to the end of the Java List contained inside of the parameter area (parens). This is all
accomplished using the following Java code structure inside the .handle() method, as is shown highlighted
in the middle of Figure 12-5:

gameBoard.getChildren().addAll(sphere, box, pole); // in addNodesToSceneGraph() method

Figure 12-5. Add a pole Cylinder object to SceneGraph, at the end of the gameBoard.getChildren().addAll()
method call

Figure 12-4. Create a Cylinder object named pole and instantiate it with a radius of 50, a height of 250, and
24 divisions

Chapter 12 ■ 3D MoDel Design anD priMitives: Using JavaFX 9 shape3D Classes

299

As you will see when we render this code in the 3D Scene, the order you add objects to your
SceneGraph in 3D compositing turns out to be similar to what happens regarding 2D asset layer order in
a 2D compositing StackPane as the 3D primitives will appear to be “in front of each other.” The later that
objects are added to the gameBoard Group in the SceneGraph, the later they will be rendered to the screen.
Thus, the last primitive added to a SceneGraph will be rendered on top of all of the other primitives before it,
and the first primitive added to a SceneGraph will be rendered first (that is, below or behind all of the other
3D primitives).

In most 3D software packages, three primitives located at 0,0,0 (Scene center) would render inside of
each other. This tells us something very important as 3D artists regarding JavaFX, which is that you cannot
perform Constructive Solids Geometry (CSG) modeling using JavaFX primitives. CSG was one of the early
forms of modeling in 3D and involves using the basic 3D primitives in conjunction with boolean operations
in order to create more complex 3D models.

Let’s use your Run ➤ Project work process and see how JavaFX is rendering these three primitives
located at 0, 0, 0. As you can see in Figure 12-6, the Cylinder object is in front of a Box object, which is in front
of a Sphere object. Most 3D software packages would render this as a Box inside of a Sphere, possibly with the
corners of the Box poking through the Sphere (depending on scale) and the ends of the Cylinder would be
coming out of the top and bottom of the Sphere. I did this exercise in this particular order because it is critical
for the developer to realize what they can do and what they cannot do as they build their Java 9 game. You can
achieve this boolean effect in JavaFX by using a mesh object imported from a 3D modeler such as MOI3D,
SILO or Blender where the Boolean operations have been done outside of JavaFX 9.

Figure 12-6. Use the Run ➤ Project to see these three primitives in the Z-order that you added them to the
SceneGraph

www.ebook3000.com

http://www.ebook3000.org

Chapter 12 ■ 3D MoDel Design anD priMitives: Using JavaFX 9 shape3D Classes

300

Next, let’s use some of the 3D primitive modification (move and rotate) method calls to move these
away from center Scene and rotate the cube so that it does not look like a 2D object. This can all be
accomplished using the .setTranslateX() and setRotate() method calls off the box and pole objects, as is
shown at the bottom of Figure 12-7:

box.setTranslateX(500);
box.setRotate(45);
pole.setTranslateX(250);

Next, use a Run ➤ Project work process to view the primitives individually. As you can see in Figure 12-8,
the .setRotate() method is using the z-axis for its rotation, so your 3D object is still rendering as a 2D object.
Let’s fix that!

Figure 12-7. Use setTranslateX(250) to move primitives 250 units apart and use setRotate(45) to rotate the
box 45 degrees

Chapter 12 ■ 3D MoDel Design anD priMitives: Using JavaFX 9 shape3D Classes

301

To change the rotation axis that your .setRotate() method uses to configure its rotation algorithm, there
is a second .setRotationAxis() method that you can use to change the default Rotate.Z_AXIS setting to the
Rotate.X_AXIS constant, which as you can see by the dot notation in the Rotate class.

Obviously, as you have learned by now, the .setRotationAxis() method call will have to take place before
the .setRotate(45) method call so that the rotation axis will be changed before the rotate algorithm is actually
utilized.

Add a .setRotateAxis() method call off your box object after the box.setTranslateX(500); method call,
using the Rotate.X_AXIS constant to configure the Rotate algorithm for use. The Java statement sequence
should look like the following Java code and can be seen near the bottom of Figure 12-9:

box.setTranslateX(500);
box.setRotationAxis(Rotate.X_AXIS);
box.setRotate(45);
pole = new Cylinder(50, 250, 24);
pole.setTranslateX(250);

Figure 12-8. All three primitives are now spaced apart; the box still looks 2D

www.ebook3000.com

http://www.ebook3000.org

Chapter 12 ■ 3D MoDel Design anD priMitives: Using JavaFX 9 shape3D Classes

302

Next, use a Run ➤ Project work process and again view your primitives individually. As you can see,
in Figure 12-10, the .setRotate() method is now using the z-axis for its rotation, so your 3D object is now
rendering as a 3D object, and you can see the shading (color or lightness difference on the different faces).

Figure 12-9. Add a .setRotationAxis() method call off box after the box.setTranslateX(500); and set it to
Rotate.X_AXIS

Figure 12-10. Now all primitives are oriented in such a way that their default light gray shading is visible in
the renderer

Chapter 12 ■ 3D MoDel Design anD priMitives: Using JavaFX 9 shape3D Classes

303

There are more complex ways to rotate 3D objects in JavaFX that we will get into as the book progresses
because rotation is quite a complex subject in 3D that doesn’t seem to be “on the surface” (no pun
intended). Rotation uses a more complex set of mathematics in its algorithms than translation, and some of
this complexity will percolate to the surface and therefore will have to be dealt with, and comprehended by,
all you pro Java 9 3D game developers.

Now that we have the three basic primitives offered in JavaFX separated and facing in a way that will
show you more of their faces and edges in the rendered view, we’ll take a closer look at what Face Culling
and Draw Modes do to your geometry. We will save Material object creation and application for its own in
Chapter 13; Material object creation is a core 3D topic (texture mapping) and should be treated as its own
topic, as a 3D object’s shading determines its visual quality.

Next, let’s take a look at Draw Modes (called rendering modes in most 3D software packages) so that you
can look at the 3D wireframe representations of your objects as you develop your pro Java 9 games.

Shape3D Draw Mode Property: Solid Geometry and Wireframe
Now that we have the three primary JavaFX primitives arrayed across our screen, let’s take a look at the
drawMode property of the Shape3D superclass, which is inherited by each of these primitives. This property
uses a constant from the DrawMode class, as you may have guessed already, and the two constants available
currently are DrawMode.FILL and DrawMode.LINE. The FILL constant gives you a Solid Model Geometry
representation, and the LINE constant gives you a Wireframe Model Geometry representation. We are
going to use the .setDrawMode(drawMode) method call in this section to change our three primitives from
being solid models to being wireframe models so that we can change the resolution or divisions of the
wireframe and see what that does and so that we can rotate the Sphere around the X dimension to see how
its wireframe construction looks and how the divisions attribute changes how it looks (renders) in your 3D
Scene. First, however, I am getting a bit tired of looking at these primitives in the upper-left corner of the 3D
scene, so we are going to use .setTranslateZ(-500) to move the Camera object 100 percent closer (or scale
the primitives up in size 100 percent) and use the .setTranslateY(300) method to center the primitives in the
horizontal center of the view. Later we will use the .setTranslateX(-300) method call to center the primitives
in the vertical center of the view.

Open your .start() method and your gameButton event handling code block and change the
.setTranslateZ() method call value from -1000 to -500. Then add a .setTranslateY() method call off the
camera object and pass it a -300 scene units data value, as shown in Figure 12-11 as well as in the following
Java code statements:

camera.setTranslateZ(-500);
camera.setTranslateY(-300);

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_13
http://www.ebook3000.org

Chapter 12 ■ 3D MoDel Design anD priMitives: Using JavaFX 9 shape3D Classes

304

Next, let’s open the createBoardGameNodes() method and add a .setDrawMode(DrawMode.LINE)
method call to each of the primitives, setting their rendering mode from solid geometry to wireframe
geometry so we can see their underlying construction. Your Java statements, which are highlighted in yellow
in Figure 12-12, should look like the following:

sphere.setDrawMode(DrawMode.LINE);
box.setDrawMode(DrawMode.LINE);
pole.setDrawMode(DrawMode.LINE);

Figure 12-12. Set the drawMode property to LINE for all primitives with a .setDrawMode(DrawMode.LINE)
method call

Figure 12-11. Zoom the camera object in 100 percent using .setTranslateZ(-500), and move it down with
.setTranslateY(-300)

Chapter 12 ■ 3D MoDel Design anD priMitives: Using JavaFX 9 shape3D Classes

305

Next, use a Run ➤ Project work process and again view your primitives. As you can see, in Figure 12-13,
your primitives are being rendered using a wireframe representation and are centered in the Y dimension in
the 3D Scene.

Center the camera in the X dimension using .setTranslateX() with the following code, shown in
Figure 12-14:

camera.setTranslateX(-300);

Figure 12-13. All three primitives are now rendered in wireframe mode and are centered vertically

Figure 12-14. Add a .setTranslateX(-300) to move your primitives to the vertical (X dimension) center of your
3D Scene

www.ebook3000.com

http://www.ebook3000.org

Chapter 12 ■ 3D MoDel Design anD priMitives: Using JavaFX 9 shape3D Classes

306

Notice when you move the Camera object, it stays looking straight ahead, whereas in 3D software
packages, there is a Camera “target” that stays locked in the center of the scene or on a 3D object in the
Scene. In JavaFX, the Camera object is “fixed” with a straight line (called a ray or vector) that emanates
from the back of the camera out through the front, going out to infinity in the direction the camera object is
pointed in. So, in 3D software, if you move the camera up, its field of view rotates down, and there is a link (or
line) between the camera and its subject.

If you wanted this behavior in JavaFX, you would have to rotate the camera manually, as the JavaFX
Camera superclass currently has no specifyTarget attribute (target functionality). We will be looking at the
PerspectiveCamera object and how to leverage it in a more advanced way in your 3D Scene as the book
progresses because cameras are an important aspect of an i3D scene and an important tool for use in the pro
Java 9 i3D games development process.

Before we render the 3D Scene again, since we know from our code that it is now going to be centered
well enough for us to look at attributes such as divisions and face culling and see how these affect the
polygons that make up the 3D primitives, let’s use the overloaded (second) Sphere(size, divisions)
constructor method format and reduce the mesh resolution of the Sphere object to optimize the amount of
memory that it takes to hold this 3D object. You will also rotate it forward so that you can see the top of the
Sphere’s construction and also reduce the resolution of the Cylinder by 100 percent, from 24 to 12 divisions.
I always use a division value that is divisible by four (90 degrees times 4 is 360), and half of the divisions
are not even rendering if face culling is turned on. This can all be accomplished by using the following Java
statements, which are highlighted in (and at the bottom of) Figure 12-15:

sphere = new Sphere(100, 12);
sphere.setRotationAxis(Rotate.X_AXIS);
sphere.setRotate(90);
sphere.setDrawMode(DrawMode.LINE);

Figure 12-15. Construct your Sphere with 12 divisions, X rotate it 90 degrees, and reduce your Cylinder to 12
divisions

Chapter 12 ■ 3D MoDel Design anD priMitives: Using JavaFX 9 shape3D Classes

307

Now it’s time to use a Run ➤ Project work process and render our Scene. As you can see in Figure 12-16,
our 3D primitives are closer to the center of the 3D Scene, are easily viewable, and are using far less data to
construct. As you saw in Figure 12-13, the Sphere was using 48 divisions to construct. This uses several hundred
polygons and can be calculated as 48 × 48 × 2 = 192; 192 polygons takes a lot of memory to process (storing
and rendering) as each polygon has a lot of data to define it (location in model, size, orientation, color, normal
direction, smoothing groups).

When we render these primitives in the next section on face culling, you will see the cube and cylinder
have not really changed in appearance, so the cylinder’s 100 percent decrease in divisions (24 to 12) was
a successful optimization. The Sphere reduction of 200 percent (from 48 to 12) was a bit drastic, and the
illusion of smoothness falls apart a bit around the perimeter of the Sphere, especially when rendered from
the top, which is why I rotated it forward (X) 90 degrees.

Next, let’s take a look at optimization for the rendering algorithm using back-face culling and how a
lower resolution (fewer divisions) can affect the visual quality of the 3D primitives once they are rendered
using solid mode.

Shape3D Face Culling Property: Optimize the Rendering Pipeline
The Shape3D cullFace property and the CullFace class are used to control face and polygon rendering
optimization for your 3D Scene. The default is CullFace.NONE, so you will need to turn this optimization
on using code, which I’m going to show you how to do in this section of the chapter. I think the models look
better (more contrast) with face culling off, and if you optimize your pro Java 9 game well enough, it should
play well on all platforms and devices without having to cull half the faces off of your model. That said, once
you know how to do this, it should be easy enough for you to experiment during the testing phase to see how
it affects visual quality versus smoothness of gameplay.

Figure 12-16. Your primitives are now centered in the 3D Scene Camera view, and you can see the Sphere
construction

www.ebook3000.com

http://www.ebook3000.org

Chapter 12 ■ 3D MoDel Design anD priMitives: Using JavaFX 9 shape3D Classes

308

Let’s continue to add code to the createBoardGameNodes() method to set backface culling for the
primitive objects. First, we will need to change the drawMode property for your primitives back to FILL for
solid modeling using .setDrawMode(DrawMode.FILL) on each of your sphere, box, and pole objects. Right
after this method call on each of your primitive objects, add a .setCullFace(CullFace.BACK) method call on
that object. If you use the pop-up helper work process in NetBeans 9, you will see that it writes your code
using the default CullFace.NONE setting, so you will have to change this to CullFace.BACK in order to turn
on this rendering pipeline optimization algorithm.

The Java code for your backface culling statements are highlighted at the bottom of Figure 12-17 and
should look like the following Java code:

sphere.setDrawMode(DrawMode.FILL);
sphere.setCullFace(CullFace.BACK);
box.setDrawMode(DrawMode.FILL);
box.setCullFace(CullFace.BACK);
pole.setDrawMode(DrawMode.FILL);
pole.setCullFace(CullFace.BACK);

Figure 12-18 shows a Run ➤ Project Java code testing work process, showing the backface culling
algorithm installed and operating on the 3D Scene primitives. Notice on your Sphere that a reduced
geometry resolution (fewer divisions) causes some smoothing problems on the mesh where the mesh
topology is showing through the smoothing algorithm. I’d increase Sphere divisions to 24 to mitigate this,
which is still a 100 percent optimization on the default setting.

Figure 12-17. Add method calls to .setCullFace() with the value CullFace.BACK off of all of the primitives in
your Scene

Chapter 12 ■ 3D MoDel Design anD priMitives: Using JavaFX 9 shape3D Classes

309

Also notice that the shading contrast on the cube (Box) primitive has far less contrast (difference in
shading color between faces) when backface culling is turned on. This will become less of a problem (less
noticeable) the more custom texture mapping you do (covered in the next chapter and thereafter), but it
may be why the default is NONE for the FaceCull class, and for this method call, because the face culling
optimization may be affecting contrast (quality) in some way in the current algorithm code. I set up the
chapter in this way so that you could see this because one of the most basic primitives is showing a distinct
reduction in contrast between faces, using a default medium gray shader color, as you can see if you
compare Figure 12-10 and Figure 12-18, where contrast goes from high to almost none whatsoever.

Next, let’s take a look at the three mesh-related classes, Mesh, TriangleMesh, and MeshView, to see
what these do, and how they interrelate, as they will allow you to render complex mesh objects created using
3D software.

JavaFX Mesh Superclass: Construct a TriangleMesh
It is important to understand the abstract Mesh superclass and how it relates to its TriangleMesh subclass,
which can be used to “hand-code” complex mesh objects into existence, and how it relates to the MeshView
class, which is actually a subclass of Shape3D and not of Mesh! This is so that MeshView can inherit (extend)
the cullFace, drawMode, and material properties of Shape3D, which are, of course, crucial to making a mesh
object realistic (especially the material property and Material class). The MeshView constructor takes a
Mesh object, as you will see. That is the core class (algorithm) that complex 3D objects is based on, so Mesh
and MeshView are the most key classes to use for pro Java 9 games development. If, for some reason, you
want to code complex polygonal geometry, also called “a triangle mesh,” which is not an optimal workflow,
you can use TriangleMesh, which we will cover in detail.

Figure 12-18. The renderer is now rendering half as much 3D data, and your lower resolution can be seen on
the Sphere

www.ebook3000.com

http://www.ebook3000.org

Chapter 12 ■ 3D MoDel Design anD priMitives: Using JavaFX 9 shape3D Classes

310

A better workflow is to use an external 3D software package and import your 3D object directly into a
Mesh object, which is then referenced by a MeshView object. This is a much faster way to get an advanced
i3D game up and running quickly and efficiently, as well as a way to bring specialized artisans into an i3D
game development workflow.

JavaFX Mesh Superclass: Your Raw 3D Model Data Container
The public abstract Mesh superclass is deceptively simple with only a Mesh() constructor method and
a TriangleMesh subclass (for loading it with mesh data using Java code), so we’ll cover it here first. It is
essentially an object used to contain 3D data and is contained in the javafx.scene.shape package with the
other 3D model-centric classes. The Java class hierarchy looks like the following, as the Mesh class was
scratch-coded to be a Java class holding a representation of a 3D Mesh:

java.lang.Object
 > javafx.scene.shape.Mesh

This is a base class for representing complex 3D geometric surfaces that are not JavaFX Shape3D
primitives. Note that this is obviously a conditional feature as complex 3D geometry will require a
3D rendering pipeline to be in place to be useful to your pro Java 9 games development. Polling the
ConditionalFeature.SCENE3D will be necessary.

As stated initially, the constructor method is very basic and will look like the following Java code:

protected Mesh() // Protected Code Cannot Be Used Directly (but can be used by a subclass)

Next, let’s take a look at the MeshView class, which will reference, hold in memory, and display this
Mesh object in the 3D Scene using the rendering engine. This class is the “bridge” between the Mesh engine
and Shape3D.

JavaFX MeshView Class: Format and Present Your 3D Mesh Data
The public MeshView class is almost as simple as the Mesh class, with only two overloaded MeshView()
constructor methods and no subclasses, so I’ll cover it here next. It is a subclass of Shape3D and stored in
the javafx.scene.shape package. It implements the Styleable and EventTarget interfaces just like the three
primitives classes do. It is used to define a 3D surface using the raw 3D model data held in a Mesh object.
The Java class hierarchy for the MeshView class looks like the following, as a MeshView class needs to inherit
all of those key Shape3D rendering characteristics:

java.lang.Object
 > javafx.scene.Node
 > javafx.scene.shape.Shape3D
 > javafx.scene.shape.MeshView

The MeshView object has one ObjectProperty<Mesh> mesh property that specifies the 3D mesh data
for the MeshView, which it gets from the second overloaded constructor method parameter or using a
.getMesh(mesh) method call. This class (object) also inherits the core Shape3D properties from the class
javafx.scene.shape.Shape3D, which you have already covered (except for material) and which are cullFace,
drawMode, and material.

Chapter 12 ■ 3D MoDel Design anD priMitives: Using JavaFX 9 shape3D Classes

311

There are two overloaded constructor methods. One creates an empty MeshView to be loaded with
Mesh object (3D data) in the future, which would of course utilize the following Java statement format:

meshView = new MeshView();

The second overloaded constructor method call both instantiates the MeshView object and loads
it with a Mesh object (3D geometry data) at the same time, using the following object instantiation Java
statement format:

meshView = new MeshView(yourMeshNameHere);

The MeshView class has three method calls for working with Mesh objects, including a getMesh(Mesh)
method call that will get the Mesh object value of the property mesh, the ObjectProperty<Mesh>
meshProperty() method call that will specify the 3D mesh (Mesh object) data for any MeshView that this
method is called off of, and the void setMesh(Mesh value) method call that will set the Mesh object value
for the MeshView property mesh.

Before we cover the TriangleMesh class, let’s take a look at the VertexFormat class, which will define
vertex data, by specifying a vertex data format to use with a given 3D model (that is, the Mesh object and its
3D model data).

JavaFX VertexFormat Class: Define Your 3D Vertex Data Format
The public final VertexNormal class also extends the Java Object master class, which means the class was
scratch-coded to define a format for the Array of data points, their texture coordinates, and their normals,
if any are provided by the external 3D models exported in a variety of data formats supported by JavaFX
import/export software. This class is a utility class for the Mesh, TriangleMesh, and MeshView classes, as
you can tell by its final modifier, which means that it cannot be subclassed. As with the other six we have
covered, it is kept in the javafx.scene.shape package in the javafx.graphics module, and its class hierarchy
looks like the following:

java.lang.Object
 > javafx.scene.shape.VertexFormat

The VertexFormat class (object) defines two different data format constants that reflect the type of 3D
data that is contained in each vertex in a 3D Mesh object. The static VertexFormat POINT_NORMAL_
TEXCOORD field will specify a format for a vertex that contains data for the point coordinates, a normal,
and texture coordinates. A static VertexFormat POINT_TEXCOORD field will specify a format for a vertex
that contains data for the point coordinates and for texture coordinates. I recommend using the format
that supports normals as the more data that you can use to define your 3D models, the more the renderer
can render them accurately and, therefore, more professionally.

There are five methods in this class for working with vertices and their normal, point, and texture
coordinate data components. The .getVertexIndexSize() method will return the integer number of
component indices that will represent a vertex index. The .getNormalIndexOffset() method will
return the integer index offset for the face array of the normal component within a given vertex. The
.getPointIndexOffset() method will return your integer index offset in the face array of the point component
within a given vertex. The .getTexCoordIndexOffset() method will return the index offset in a face array of
the texture coordinates component within a vertex. The String toString() method will return the string (text)
data for the VertexFormat, allowing you to look at the vertex data in a readable format.

Next, let’s take a look at the TriangleMesh object, which is the most complicated; it allows you to do 3D
model creation using Java code. We will not be looking at an example of this during this chapter because it is
not the most efficient way to get quick, professional i3D game development 3D model creation result.

www.ebook3000.com

http://www.ebook3000.org

Chapter 12 ■ 3D MoDel Design anD priMitives: Using JavaFX 9 shape3D Classes

312

This is because using professional 3D modelling, texturing, rendering, and animation software packages
such as the open source Blender.org, Autodesk 3D Studio Max, Maya, or NewTek Lightwave is the most
logical work process to create a professional 3D model.

Because of the significant number of 3D data import file formats, 3D models can more quickly be
created, and then pro Java 9 game developers can use one of the JavaFX 9 importer formats to bring that
high-quality 3D data into JavaFX as a Mesh object.

We will look at this work process during Chapter 14, after we look at texture mapping in Chapter 13,
so that we understand more about what texture mapping is since it is also used in third-party 3D modeling
software packages. Using third-party development tools such as Fusion, Blender, Audacity, Gimp, and
Inkscape often yields better results.

JavaFX TriangleMesh Class: Create a 3D Polygonal Mesh Object
The public TriangleMesh class is a subclass of the Mesh superclass and does not implement any interfaces
as it is used to create 3D data intended to be stored inside of the Mesh object, much like 3D models that are
imported into JavaFX using a number of popular 3D file format importers that we’ll be covering in Chapter 14.
The TriangleMesh is stored in the javafx.scene.shape package in the javafx.graphics module, and its Java class
hierarchy looks like the following:

java.lang.Object
 > javafx.scene.shape.Mesh
 > javafx.scene.shape.TriangleMesh

A TriangleMesh object is used to define a 3D polygonal mesh. This object will use one of two
VertexFormat constants and include a set of separate data array objects containing vertex components,
including points, normals, texture coordinates, and an array of faces that define the individual triangles of
the mesh. As I have mentioned in this chapter more than once, this low-level complexity can be avoided
altogether, and accelerated past, by using an external 3D software package that supports modeling, such as
Blender, Hexagon, Lightwave, Maya, or 3D Studio Max.

Note that the JavaFX term point equates to the 3D software term vertex. JavaFX 9 uses vertex to refer to
the vertex (point) and all of its associated attributes, including its normal position and associated UV texture
map coordinates. So, the point referred to in the TriangleMesh method names and method descriptions that
we will be covering later during this section of the chapter actually refers to 3D point (x, y, z) locational data
in 3D space, representing the spatial positioning for one single vertex.

Similarly, the term points (or a collection of point) is used to indicate sets of 3D points representing
multiple vertices. The term normal is used to indicate a 3D vector (nx, ny, nz) in 3D space that represents a
direction of a single vertex, which tells the rendering engine which way the face is facing so it can render the
texture on the correct side of the face. The term normals (or a collection of normal data) is used to indicate
sets of 3D vectors for multiple vertices.

The term texCoord is used to indicate one single pair of 2D texture coordinates (u,v) for a single vertex,
while the term texCoords (a collection of texCoord) is used to indicate sets of texture coordinates across
multiple vertices.

Finally, the term face is used to indicate a set of three interleaving points, normals (these are optional
and will depend on the associated VertexFormat field type specified), and texture coordinates that together
would represent the geometric topology of one single triangle. The term faces (a collection of face) is used
to indicate a set of triangles (each represented using a face), which is generally what a 3D polygonal model
is comprised of. Confused yet? As I said, using an import/export workflow and letting the advanced 3D
modeling software user interface do all of the work is a better way to get incredible results rather than trying
to use Java to place points, normal, and UV coordinates into 3D space. What I am trying to do in this book
is show you the fastest, easiest, and most optimized way to create a hybrid 2D and 3D game so that you can
create the pro Java 9 game on the market which has never been experienced before by any game player.

http://dx.doi.org/10.1007/978-1-4842-0973-8_14
http://dx.doi.org/10.1007/978-1-4842-0973-8_13
http://dx.doi.org/10.1007/978-1-4842-0973-8_14

Chapter 12 ■ 3D MoDel Design anD priMitives: Using JavaFX 9 shape3D Classes

313

This TriangleMesh class (object) has one ObjectProperty<VertexFormat> vertexFormat property, which
will be used to specify the vertex format of this TriangleMesh, using the VertexFormat utility class, and therefore
this will be either VertexFormat.POINT_TEXCOORD or VertexFormat.POINT_NORMAL_TEXCOORD.

A TriangleMesh class has two overloaded constructor methods. The first (empty) one creates an
instance of TriangleMesh class using the default VertexFormat.POINT_TEXCOORD format type and looks
like the following:

triangleMesh = new TriangleMesh(); // Creates Points & Texture Map Only Polygonal Mesh Object

The second constructor method creates a new instance of TriangleMesh using the VertexFormat that is
specified in the parameter area of the method call. This looks like the following Java instantiation statement:

normalTriangleMesh = new TriangleMesh(VertexFormat.POINT_NORMAL_TEXCOORD) // Includes Normals

There are a dozen methods used for working with TriangleMesh object construction; let’s look at
them next.

The .getFaceElementSize() method will return the number of elements that represent a given face. Use
this method to determine what data (point, normal, texturemap) is being used for any given face.

The ObservableFaceArray getFaces() method will get the entire array of faces in a TriangleMesh object,
including indices into the points, normals (only if VertexFormat.POINT_NORMAL_TEXCOORD is specified
for a mesh), and texCoords arrays. Use this to extract the polygon data from your TriangleMesh object.

The ObservableIntegerArray getFaceSmoothingGroups() method will get a faceSmoothingGroups
data array from a TriangleMesh object. Smoothing groups define where seams appear in your surface
shading (smoothing) for the rendered 3D object. We covered this topic earlier in the book in Chapter 3.

The .getNormalElementSize() method will return the number of elements that represent a normal in
your TriangleMesh object. This tells you how many normals are being used to represent surface direction.

The ObservableFloatArray getNormals() method will get your normals array for a TriangleMesh
object.

The .getPointElementSize() method will return the number of elements representing XYZ points
in your TriangleMesh object. This will tell you how many vertices (vertex count) in the 3D model in your
TriangleMesh.

The ObservableFloatArray getPoints() method is used to get the points data array for a TriangleMesh.
The .getTexCoordElementSize() method will return a number of data elements that represent texture

coordinates within a TextureMesh object. Use this to determine the number of UV mapping coordinates in
the model.

The ObservableFloatArray getTexCoords() method will get your texCoords array for your
TriangleMesh object. Use this to extract the texture coordinate data (only) from your TextureMesh 3D
polygonal object.

The VertexFormat getVertexFormat() method will get the value of your vertexFormat property from
inside your TriangleMesh object. Use this to ascertain if Normals are supported (or not) with this 3D model
data.

The void .setVertexFormat(VertexFormat value) method is used to set the value of the vertexFormat
property for the TriangleMesh object. Be sure the data arrays inside the object match up correctly with this
setting.

The ObjectProperty<VertexFormat> vertexFormatProperty() method can be used to specify the
vertex format for the TriangleMesh; it can be either VertexFormat.POINT_TEXCOORD or VertexFormat.
POINT_NORMAL_TEXCOORD.

After we learn more about shaders, textures, and mapping in the next chapter, we’ll get into 3D software
and learn the import workflow that allows us to bridge powerful 3D software over to the JavaFX 9 game
engine.

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_3
http://www.ebook3000.org

Chapter 12 ■ 3D MoDel Design anD priMitives: Using JavaFX 9 shape3D Classes

314

Summary
In this twelveth chapter, we learned about the classes in the javafx.scene.shape package that allow you to
work with 3D models, including primitives with the Box, Sphere, and Cylinder classes and polygonal objects
with the MeshView, VertexFormat, and TriangleMesh classes. These classes all are based on the abstract
Mesh and Shape3D superclasses.

You learned how to create 3D primitives and how to set their properties, you learned about face culling
and wireframes, and you observed how the Camera object works when you move (translate) it around the
3D Scene.

You learned about the difference between algorithmically (code) generated primitives and more
advanced polygonal mesh objects and about the different workflows for creating 3D models for your pro Java
9 game design and development pipeline, which we will be continuing to learn about over the next several
chapters.

In the next chapter, we are going to take a look at the JavaFX texture mapping using the abstract
Material superclass and its PhongMaterial subclass, as well as learn more about shaders, textures, texture
mapping, and related topics such as ambient, diffuse, specular, and self-illumination attributes.

315© Wallace Jackson 2017
W. Jackson, Pro Java 9 Games Development, https://doi.org/10.1007/978-1-4842-0973-8_13

CHAPTER 13

3D Model Shader Creation: Using
the JavaFX 9 PhongMaterial Class

Now that you have learned about the 3D assets, called primitives, that are included in the JavaFX API, let’s start
to get some foundational knowledge about how to “dress up” those 3D assets using 2D image assets, which we
will turn into materials that we can apply to the 3D surface using a shader. JavaFX supports the Phong shader,
which contains several channels that accept special images called texture maps that apply different effects such
as coloration, illumination, surface bumps, surface shininess, and so forth. JavaFX comes with two core shader
classes in the javafx.scene.paint package in the javafx.graphics module that specifically “shade” or surface 3D
geometry (primitives or mesh) for you, and we are going to take a look at them during this chapter. We will also
look at how to use GIMP 2.8.22 to create texture maps rapidly and accurately based on pixels and mathematics so
they provide an accurate texture mapping result. We will also get back into our JavaFXGame primary application
class coding and start to add Phong shader materials to 3D primitives to get some practice. You could do this in
3D software packages like Blender, but a board game is simple enough (squares, spheres, cylinders) that we can
do this using only JavaFX code. This means we do not need to import (and distribute) 3D models but can rather
write code to model your i3D game “out of thin air.” This will also teach you a lot more about the 3D APIs in Java 9
and JavaFX, as you will learn how to model complex 3D objects using only Java 9 and its JavaFX APIs.

During this chapter, you will be learning about the JavaFX 3D shader class hierarchy, which is contained
in the javafx.scene.paint package. In Java 9 and Android 8, the Paint class applies pixel colors and attributes
to the Canvas and in this case the surface of 3D primitives. The paint package contains classes that are
related to this “skinning,” or texture mapping objective. You will cover Material, a superclass that holds the
top-level shader definition, and the PhongMaterial class, which can be used to create a texture map, or
“skin,” for 3D primitives (covered in Chapter 12).

JavaFX Material Superclass: i3D Shader Properties
The public abstract Material superclass is used to create the PhongMaterial class that you will use to create
a material attribute used by the Shape3D subclasses for the i3D primitives that you use in your pro Java 9
games design and development. The advanced models that you import from external 3D software packages
will already have materials (sometimes called shaders) and texture maps applied to them in the 3D software
production environment, and after import, they will be in Mesh objects displayed using MeshView objects,
so you will not always directly use the PhongMaterial class at this low level to shade advanced 3D objects in
most practical applications. The Material superclass is even more of an empty shell than Mesh, as it has only
one empty constructor and no properties or methods! The Material class is part of the javafx.scene.paint
package and has the following Java class hierarchy:

java.lang.Object
 > javafx.scene.paint.Material

www.ebook3000.com

https://doi.org/10.1007/978-1-4842-0973-8_13
http://dx.doi.org/10.1007/978-1-4842-0973-8_12
http://www.ebook3000.org

Chapter 13 ■ 3D MoDel ShaDer Creation: USing the JavaFX 9 phongMaterial ClaSS

316

The one empty constructor method is protected, which means that it is not instantiated directly.
However, this constructor method functionality is implemented in the PhongMaterial subclass, as
PhongMaterial(), which we will be covering in the next section of this chapter.

protected Material()

Next, let’s take a look at the PhongMaterial subclass, which represents the Phong shader rendering
algorithm. This is what we will be using (and learning about) directly during the chapter to color our 3D
primitives we created during Chapter 12.

JavaFX PhongMaterial: Phong Shading Algorithm and Attributes
The public PhongMaterial class extends the Material class to define Phong (algorithm) shader materials,
their color settings, and their texture maps for your JavaFX 3D Scene. This class is kept in the javafx.scene.
paint package in the javafx.graphics module and is a subclass of Material, as you know, so you will have the
following Java class hierarchy:

java.lang.Object
 > javafx.scene.paint.Material
 > javafx.scene.paint.PhongMaterial

The Phong shading (materials and texture rendering) algorithm in JavaFX 9 describes the interaction
between your PointLight object(s) and AmbientLight object (if present) and the surface of the 3D primitive
that the PhoneMaterial object is applied to. The PhongMaterial object reflects light while applying a diffuse
and specular color tinting, just like light in real life. When it bounces off a colored object, the light itself
becomes colored. The PhongMaterial algorithm supports the AmbientLight object settings, if present, and
supports self-illumination, or “glow” mapping, so that you can apply special effects to further enhance the
shader realism.

According to the JavaFX 9 PhongMaterial documentation, the coloration of any given point on a
geometric surface is a mathematical function of these four components: ambient, diffuse, specular,
and self-illumination map. Subcomponents (algorithm input) for these include AmbientLight (Object),
PointLight (Object), Diffuse Color (setting), Diffuse Color Map (Image Object), Specular Color (setting),
Specular Power (setting), Specular Map (Image Object), Self Illumination, or Glow Map (Image Object).

The final color for an AmbientLight source if there is more than one AmbientLight object, in which
case their values will simply be summed (which is why I suggested using one), will be computed using the
following equation:

For each AmbientLight (Object) Source [i]: { ambient += AmbientLightColor[i] } // Color Summed

The PointLight source algorithm calculation is far more advanced, which is why I suggested using
PointLight for your use in Pro Java 9 3D Games, as it allows fine-tuned control over how PhongMaterial
objects perform, as well as adding more dramatic lighting (fall-off, shadows, higher contrast, etc.) to your
3D Scene, making it more photoreal. It is important to note that the period used in these equations is
referencing the dot product mathematical operation.

http://dx.doi.org/10.1007/978-1-4842-0973-8_12

Chapter 13 ■ 3D MoDel ShaDer Creation: USing the JavaFX 9 phongMaterial ClaSS

317

For each PointLight (Object) Source [i]:
{ diffuse += (SurfaceToLightVector . Normal) * PointLightSourceColor[i]

 specular += ((NormalizedReflectionVector . NormalizedViewVector)
 ^ (specularPower * intensity(specularMap)))
 * PointLightSourceColor[i]
}

The color values in your rendered result will be calculated using the following input components algorithm:

color = ((ambient + diffuse) * diffuseColor * diffuseMap
 + specular * specularColor * specularMap
 + selfIlluminationMap

These are outlined here for the sake of completeness and because they are outlined in the
PhongMaterial documentation, not because you need to become an advanced shader mathematician in
order to develop pro Java 9 games. That said, this will give you an idea of how the shader input components
we are going to be exploring during this chapter interact with each other in the Phong shader algorithm
and how, with enough map and parameter tweaking, fine-tuning any one of these inputs can allow you to
achieve any professional surface rendering result you desire!

There are seven properties in the PhongMaterial class that tell you what types of texture maps and
color specifications you can use to surface your 3D primitives with. These are also available in all standard
3D packages, so models created and textured externally to JavaFX 9 also have access to these (and more,
actually).

The ObjectProperty<Image> bumpMap is an Image object that’s used to simulate bumps or slight
variations in surface height on a 3D model. This can be used to add fine surface details to a 3D model that
are not actually part of a model’s geometry surface topology, but a bump map will make it appear to be
part of the model’s physical topology. A bump map is sometimes incorrectly called a normal map, as it is
in the JavaFX 9 documentation. The documentation says “the bump map of the PhongMaterial is a normal
map stored as an RGB Image,” so I wrote to Oracle asking them if the bumpMap property was a bump map
or a more advanced normal map! What I’m hoping is that it was originally a bump map algorithm that was
upgraded over time to support a more complex normal map algorithm while leaving the property name
bumpMap, so as to not break existing code. Normal maps can create far superior surface effects.

The ObjectProperty<Color> diffuseColor represents the diffuse, or base (foundational), surface color
of the material. The color can be changed over the surface of the object by using a Diffuse Color Map or
Diffuse Map. If your 3D software has more advanced shading map types than can be imported into JavaFX,
a technique called baking can be used, where the 3D renderer’s shader pipeline and texture map result can
be rendered into a diffuse map image and then exported (as a TIFF, BMP, PNG, or TGA 24-bit RGB image)
and used as a diffuse map Image object in JavaFX. Let’s take a look at that next, in fact, since we’ve basically
covered it already!

The ObjectProperty<Image> diffuseMap property references an Image object whose data defines a
diffuse map that will be mapped using the UV texture coordinates onto the surface of a 3D primitive using a
PhongMaterial.

The ObjectProperty<Image> selfIlluminationMap property references an Image object whose data
defines a glow or illumination map (using a grayscale Image object representing lighting intensity) that will
be mapped onto a 3D primitive using the UV texture coordinates onto the surface of the primitive using a
PhongMaterial.

The ObjectProperty<Color> specularColor property specifies the specular color for the
PhongMaterial. This is the color for the specular highlight (see Figure 13-5) that refines the visual
characteristics for a 3D primitive surface.

www.ebook3000.com

http://www.ebook3000.org

Chapter 13 ■ 3D MoDel ShaDer Creation: USing the JavaFX 9 phongMaterial ClaSS

318

The ObjectProperty<Image> specularMap property references an Image object whose pixel data
defines an area on the surface of the 3D primitive that will respond to specular color using the specular
map (a grayscale Image object representing where specular color will or will not be applied). This should
be mapped onto a primitive using UV texture coordinates and will affect how shiny (or not shiny) specular
mapped areas of the primitive surface will be.

The DoubleProperty specularPower property is used to specify a power (I like to think of it as focus)
for the specular highlight. This attribute will be especially noticable on sphere and cylinder (curved)
primitives, as shown in Figure 13-8, which has a high (tight or focused) specular highlight power value of 100
applied to the phongMaterial.

The PhongMaterial class has three overloaded constructor methods. The first one creates a new
instance of a PhongMaterial object using the default Color.WHITE diffuseColor property. This would use
the following Java code:

phongMaterial = new PhongMaterial();

The second constructor will create a new instance of a PhongMaterial object using a specified
diffuseColor property. This would use the following Java code and the Color class GOLD constant, as we will
in our code later:

phongMaterial = new PhongMaterial(Color.GOLD);

The third constructor allows you to specify the diffuse color and four different types of effects maps.
This is the most convenient constructor method, which we will use once we get to more advanced stages
of our game design and development. This advanced constructor method will take the following Java code
statement format:

phongMaterial = new PhongMaterial(Color diffuseColor, Image diffuseMap, Image specularMap,
 Image bumpMap, Image selfIlluminationMap)

Finally, let’s take a look at the 22 methods that allow you to work with all of these PhongMaterial
components. These allow you to change a PhongMaterial on the fly, or interactively, using Java code. This
will allow you to create some pretty impressive effects on your 3D and i3D game properties, as you will see
during this book.

The ObjectProperty<Color> diffuseColorProperty() method call will return the diffuseColor
property for the PhongMaterial that it is called off of. This is a Color value that sets the foundational (or base)
color for the primitive.

The ObjectProperty<Color> specularColorProperty() method call returns a specularColor property
for the PhongMaterial that it is called off of. This is a Color value that sets the specular (or highlight) color for
the primitive.

The DoubleProperty specularPowerProperty() method call returns a double specularpower
property for a PhongMaterial that it is called off of. This is a Double value that sets a specular (or highlight)
power for a primitive.

The ObjectProperty<Image> bumpMapProperty() method call will return the bumpMap property for
the PhongMaterial that it is called off of. This is a normal map that is stored as an RGB Image object.

The ObjectProperty<Image> diffuseMapProperty() method call will return the diffuseMap property
for the PhongMaterial that it is called off of. This is a diffuse color map that is stored as an RGB Image object.

The ObjectProperty<Image> selfIlluminationMapProperty() method call will return a
selfIlluminationMap property for the PhongMaterial that it is called off of. This self-illumination map is
stored as an RGB Image object.

Chapter 13 ■ 3D MoDel ShaDer Creation: USing the JavaFX 9 phongMaterial ClaSS

319

The ObjectProperty<Image> specularMapProperty() method call returns the specularMap property
for the PhongMaterial that it is called off of. This specular color map is stored as an RGB Image object.

The getBumpMap() method call gets the Image object for the PhongMaterial property bumpMap.
The getDiffuseColor() method call gets the Color value for the PhongMaterial property diffuseColor.
The getDiffuseMap() method call gets the Image object for the PhongMaterial property diffuseMap.
The getSelfIlluminationMap() method call gets the Image object for the property

selfIlluminationMap.
The getSpecularColor() method call gets the Color value for the PhongMaterial property

specularColor.
The getSpecularMap() method call gets the Image object for the PhongMaterial property

specularMap.
The getSpecularPower() method call gets a double value for a PhongMaterial property

specularPower.
The void setBumpMap(Image image) method call sets the Image reference for the property

bumpMap.
The void setDiffuseColor(Color color) method call sets the Color value for the property diffuseColor.
The void setDiffuseMap(Image image) method call sets an Image reference for the property

diffuseMap.
The void setSelfIlluminationMap(Image) method call sets the Image for the property

selfIlluminationMap.
The void setSpecularColor(Color color) method call sets the Color value for the property

specularColor.
The void setSpecularMap(Image image) method call sets an Image object for a property

specularMap.
The void setSpecularPower(double value) method call sets the value of the property specularPower.
The toString() method call converts any data in a nontext (binary, numeric, etc.) format into a text

format.
Next, let’s implement some of the core color attributes in our JavaFXGame class and see how they

function.

Implementing PhongMaterial: Assigning Color and Power Values
Let’s get down to business now that we’ve perused the PhongMaterial class. Let’s declare a PhongMaterial
object at the top of the JavaFXGame class and name it phongMaterial. In the createBoardGameNodes()
method after the light object code, add a PhongMaterial instantiation using the second overloaded
constructor method and set the diffuse color to Color.GOLD, as shown highlighted in Figure 13-1 as well as
in the following Java code statement:

PhongMaterial phongMaterial; // Declared at the top of the JavaFXGame class
...
phongMaterial = new PhongMaterial(Color.GOLD); // In the createBoardGameNodes() method body

www.ebook3000.com

http://www.ebook3000.org

Chapter 13 ■ 3D MoDel ShaDer Creation: USing the JavaFX 9 phongMaterial ClaSS

320

As you know, your PhongMaterial object can be configured with color values and loaded up with cool
effect texture maps (Image objects), but unless you utilize the Shape3D class setMaterial(Material) method
call (which you learned about in the previous chapter) to wire the 3D primitive and the Phong shader
definition together, you won’t see the shader applied to the 3D object’s surface.

After the sphere object instantiation, add a setMaterial(phongMaterial) method call off of the sphere
object using dot notation, as shown highlighted in yellow in Figure 13-2. Add this same method call to your
pole Cylinder object and the box Box object as well. I clicked the phongMaterial shader object to highlight
all of the uses of it, from declaration to instantiation to usage, in yellow in NetBeans 9 before I took the
screenshot. The Java code for the statements that you have added should look like the following:

sphere.setMaterial(phongMaterial);
box.setMaterial(phongMaterial);
pole.setMaterial(phongMaterial);

Figure 13-1. Declare and instantiate your phongMaterial object and configure its diffuse color value to be
Color.GOLD

Chapter 13 ■ 3D MoDel ShaDer Creation: USing the JavaFX 9 phongMaterial ClaSS

321

Use your Run ➤ Project work process, and view the phongMaterial rendering, which is shown in
Figure 13-3.

Figure 13-2. Wire the phongMaterial to the three primitives, using a setMaterial(phongMaterial) method call
off each

Figure 13-3. Showing the phongMaterial object with the diffuseColor property set to a Color.GOLD value

www.ebook3000.com

http://www.ebook3000.org

Chapter 13 ■ 3D MoDel ShaDer Creation: USing the JavaFX 9 phongMaterial ClaSS

322

Next, let’s add a specular (highlight) color to your phongMaterial shader object using the
setSpecularColor() method and the Color.YELLOW constant. Add a line of code after the phongMaterial
object instantiation and then type in the phongMaterial object name. Hit the period key, select the
setSpecularColor(Color value) option from a pop-up helper selector, and double-click it to insert it into
your Java statement. Type Color inside the parameter area and then a period key, and select the YELLOW
constant, either by scrolling down or by typing Y to jump to the Y color constants.

Your resulting Java statement should look like the following Java code, which is shown highlighted in
yellow and light blue in the middle of Figure 13-4:

phongMaterial.setSpecularColor(Color.YELLOW);

If you use your Run ➤ Project work process, at this point, you will see that the appearance of the
surface of your primitives has changed drastically the more rounded edges the primitive has. In fact, if you
compare Figure 13-3 and Figure 13-5, you’ll see that the Box primitive is not affected by specular color
highlights at all, unless you animate it, in which case an occasional face would be colored with the specular
color when it is parallel to the PointLight.

Figure 13-4. Call the setSpecularColor() method off of the phongMaterial object, passing the Color.YELLOW
constant

Chapter 13 ■ 3D MoDel ShaDer Creation: USing the JavaFX 9 phongMaterial ClaSS

323

The appearance of the Cylinder and Sphere class (object) primitives has changed drastically, however,
with the addition of a specular highlight using the specularColor property. I used YELLOW to give it a
metallic look, but if you use WHITE (the default), it will look more normal. Notice that the PointLight can be
set to WHITE, and you can intercede (add a color filter) to the PointLight before it hits the primitive surface.

Therefore, if you are seeking photorealism, make sure you match your PointLight and specularColor
values!

The specularPower property (attribute) of the PhongMaterial class (object) controls how shiny your
surface is, at least on curved objects. Having zero specular highlights, as shown in Figure 13-3, creates what
is called a matte surface. It is important to note that calling setSpecularPower(0) will not remove the specular
highlight. In fact, that would do just the opposite and give you a huge “blown-out” specular highlight,
which looks terrible. Let’s play around with this property next, and then we can move on to look at all the
other properties. The rest of the properties involve Maps and their Image objects, which will involve digital
imaging software, in our case GIMP 2.10 (or 3.0 if it has been released).

Let’s add a specularPower property setting to the phongMaterial shader object using a
setSpecularPower() method call with the double data value of 12. Technically, this is annotated in your
Java code as “12.0d.” However, since an Integer (just 12) data value fits into (conforms with) the Double
specification, you can just use 12 and the Java build and compile process will understand what you are doing
and make sure it’s configured as a Double value (at runtime).

Add a line of code after the PhongMaterial object instantiation and type in the phongMaterial object
name. Hit the period key, select the setSpecularPower(Double value) option from a pop-up helper selector,
and double-click it to insert it into your Java statement. Type 12 or 12.0d inside the parameter area.

Your resulting Java code will look like one of the following two Java statements, shown in the bottom
third of Figure 13-6:

sphere.setSpecularPower(12); // If you use Integer (simpler) format Java will convert for
you

sphere.setSpecularPower(12.0d); // You can also use the 12.0d (double) required numeric format

Figure 13-5. Run your project to see the PhongShader object configured to use a Color.YELLOW specularColor
property

www.ebook3000.com

http://www.ebook3000.org

Chapter 13 ■ 3D MoDel ShaDer Creation: USing the JavaFX 9 phongMaterial ClaSS

324

I fooled around with this value, changing it and rendering via Run ➤ Project. The default, shown in
Figure 13-5, seems to be around 20, or 20.0d. Changing this value gives very subtle changes; lower numbers
will serve to widen the specular highlight (try a zero setting, but don’t use it in your games other than for
special effects), and high numbers will constrict it to a pinpoint on any curved surface. Flat surfaces will not
be affected much by this, if at all.

Use a Run ➤ Project work process to see how a specularPower setting of 12 will expand a specular highlight.
This can be seen in Figure 13-7.

Figure 13-6. Call the setSpecularPower() method off of the phongMaterial object, passing the double value of 12

Figure 13-7. A specularPower property set to 12 will expand the specular highlight on the surface

Chapter 13 ■ 3D MoDel ShaDer Creation: USing the JavaFX 9 phongMaterial ClaSS

325

Next, change your setSpecularPower() method call value to 100 (or 100.0d) and then use the Run ➤
Project work process to view your primitives with a higher specular power, which will make them shinier, or
more “glossy,” as you can see in Figure 13-8.

Now that we have covered basic diffuse color and specular color and specular power attributes in the
first part of this chapter, let’s get more advanced and get into applying images created in GIMP to learn
advanced texture mapping using the four texture map effects (bump/normal, diffuse, specular, and glow or
self-illumination) channels.

Using External Image Assets: Creating Texture Maps
The most powerful capabilities of the PhongMaterial class and its algorithms are the four texture map
properties that are supported. This gives you four shader channels to affect your surface color (diffuseMap):
shininess (specularMap), illumination (selfIlluminationMap), and height (bumpMap or normal map). Think
of this kind of like digital image layer compositing, where these four channels will be combined by the Phong
Shader Rendering Algorithm before your specular color and power are applied to the surface (as guided by
your specularMap property Image object, if present in the PhongMaterial shader pipeline).

Using External Third-Party Software: Creating Maps Using GIMP
Java 9 and JavaFX are designed to be flexible enough to allow you to use advanced (professional) third-
party software such as GIMP (digital image compositing), Blender (3D modeling), Fusion (special effects),
Inkscape (SVG content), or Audacity (digital audio editing). Texture maps are usually best crafted and
refined in professional pixel editing and layer compositing software such as the free open source GIMP 2.8
(soon to be GIMP 3.0), which is extremely powerful.

Figure 13-8. A specularPower property set at 100 will actually contract or reduce the specular highlight on the
surface

www.ebook3000.com

http://www.ebook3000.org

Chapter 13 ■ 3D MoDel ShaDer Creation: USing the JavaFX 9 phongMaterial ClaSS

326

Download GIMP at www.gimp.org and install it. Then launch it so you can follow along with me in
creating some texture maps that will aptly demonstrate the four different types of texture map channels
you learned about during the first few pages of this chapter. Use a File ➤ New menu sequence and access
the Create a New Image dialog, shown in Figure 13-9 with a red 1, and set the Width and Height fields to
a Power of Two size. The renderer works best with numbers that are binary or power of two, which would
include 2, 4, 8, 16, 32, 64, 128, 256, and so forth. Most games use 256-pixel texture maps, so I’ll use that size
here. Set the Color space drop-down to RGB and set the Background Color Fill with drop-down to White.
Create a new layer by using the Layer ➤ New Layer menu series or by right-clicking the Background layer in
the Layers palette (red 3) and selecting New Layer, which accesses the New Layer dialog shown as the red 2
in Figure 13-9. Set Layer name to Grayscale Map, leave Layer Fill Type set to Transparency, and click the
OK button to create a layer. Use this same work process to create a second layer, called Color Map, as shown
by the red 3. Select the Grayscale Map layer to show GIMP where to apply your next image creation “moves”
(operations), and select a Rectangle Select Tool, shown depressed at the top middle of the right section in
Figure 13-9. A Rectangle Select tool option (red 4) will appear as shown at the bottom-right corner of the
figure, where you can precisely (pixel accurately) set the Position and Size settings of the selection.

Next, draw out any size rectangle selection on the GIMP canvas, which is shown on the right in
Figure 13-10. In the Position fields, set 0, 0, and in the Size fields, set 32, 256. This will put the selection
at one-eighth span and at the left side of the canvas. Click the tiny black-over-white icon next to the
foreground/background color swatch under the GIMP tool icons to set FG Color to Black and BG Color to
White; then use your Edit ➤ Fill with FG Color menu sequence and fill the first of four stripes with Black.
Since that layer is transparent and the background is White, the resulting composite will be a black-and-
white texture map (eventually four alternating black-and-white stripes). Next, drag the selection to the right
and position it for the second stripe fill; then edit the Position fields to set 64, 0 and leave the Size fields set
at 32, 256. Again, use an Edit ➤ Fill with FG Color and drag the selection to position (or set Position fields to)
128, 0, select Fill with FG Color, and drag the selection to position (or set Position fields to) 192, 0. Finally,
select Fill with FG Color one last time to complete the black-and-white effect (bump, specular) application
texture map. The black and white (or transparent) texture map can be seen in the second layer named
Grayscale Map in Figure 13-10.

Figure 13-9. Create a 256-pixel image, add layers to hold your color and grayscale maps, and create eight
striped areas

http://www.gimp.org/

Chapter 13 ■ 3D MoDel ShaDer Creation: USing the JavaFX 9 phongMaterial ClaSS

327

Now that we have created the (easier) specular or bump map effect Image asset, let’s create one with
color to show how a diffuse color map will work. Later, we will use these in conjunction with each other (in
different shader channels) and experiment with what these PhongMaterial properties can do for our pro Java
9 games development.

To make sure your color data is separate from your effect (grayscale) data, select the Color Map layer,
which will turn blue to show it is selected, as shown on the left in Figure 13-10. If you like, you can turn your
Grayscale Map layer’s visibility off by clicking the eye icon at the left side of the layer. In the Position fields,
set 0, 0, and in the Size fields set 32, 256. This will again put the selection at one-eighth span and at the left
side of the canvas. Click the Black color square on the FG/BG color swatch (color selector) to bring up the
color picker dialog and set a green color, as shown in Figure 13-10. Once you click OK, this will set FG Color
to Green, and BG Color will remain White. Use the Edit ➤ Fill with FG Color menu sequence, and fill the
first of four stripes with green. Since the layer is transparent and the background is White, the resulting
composite will be a green-and-white texture map (eventually four alternating color-and-white stripes). Next,
drag the selection 64 pixels to the right and position it for the second stripe fill; then edit the Position fields
to set 64, 0 and leave the Size field set to 32, 256. Use the color picker to set a blue color, and again use the
Edit ➤ Fill with FG Color to create a second blue stripe. Next, drag 64 pixels to the right to position 128 (or
set the Position fields to 128, 0), use a color picker to select a yellow foreground (FG) color, and use Fill with
FG Color to fill your third stripe. Finally, drag the selection to position 192,0 (or set using the Position fields),
use your color picker to select a red foreground (FG) color, and then use the Edit ➤ Fill with FG Color menu
sequence one last time to complete the beach ball color (diffuse, glow) application texture map creation.
Figure 13-10 shows the finished result in GIMP.

Figure 13-10. Create a beach ball texture in the Color Map layer and an on/off (black/white) grayscale
striped texture

www.ebook3000.com

http://www.ebook3000.org

Chapter 13 ■ 3D MoDel ShaDer Creation: USing the JavaFX 9 phongMaterial ClaSS

328

I am also going to create a texture map to use with alternating 25 percent gray and 50 percent gray
stripes to show the application of different effects, such as specular and self-illumination, and how the
intensity, or magnitude, of the application of an effect can be controlled by using different shades of gray.
You can create this third map as a “practice round” in re-creating the work process we used earlier for color
and black-and-white texture maps. To export any of your texture maps that you create in GIMP 2.10, you
can use the File ➤ Export Image As menu sequence, which brings up the Export Image dialog shown in
Figure 13-11.

As you can see in Figure 13-11, you can use the file navigation part of this dialog, at the top, to locate
your NetBeansProjects folder. I named the files with a description, number of colors, and number of pixels
in the file name. Be sure to use your JavaFXGame folder and \src\ subfolder, which holds your source assets
for the game, as we have been doing thus far during the book. Once the files are in the proper folder, they will
be visible to NetBeans 9, and we can use them as Image object assets in our code. Next, let’s get back into
PhongMaterial object coding and explore shader pipeline creation even further, as this is one way to make
your Pro Java 9 i3D games look really spectacular.

Using Texture Maps in a PhongMaterial: Shader Special Effects
The first step in using an Image object in JavaFX is to add the name of the Image object to an Image object
compound declaration statement at the top of your class. I will name the Image objects the same as the
properties they will be used for. Next, since we have a loadImageAssets() method, we’ll add four Image
instantiation statements that reference PNG files that contain the texture mapping data. The Java code,
shown in Figure 13-12, should look like the following:

Image diffuseMap, specularMap, glowMap, bumpMap // plus the other Image objects already in
use
...
diffuseMap = new Image("/beachball5color256px", 256, 256, true, true, true);
specularMap = new Image("/beachball3grayscale256px", 256, 256, true, true, true);

Figure 13-11. Export to C:\Users\Name\Documents\NetBeansProjects\JavaFXGame\src

Chapter 13 ■ 3D MoDel ShaDer Creation: USing the JavaFX 9 phongMaterial ClaSS

329

glowMap = new Image("/beachball2grayscale256px", 256, 256, true, true, true);
bumpMap = new Image("/beachball3grayscale256px", 256, 256, true, true, true);

Next, go into the createBoardGameNodes() method, change the diffuse and specular color settings to a
Color.WHITE value, and add a setDiffuseMap(diffuseMap) method call off of the phongMaterial object. The
Java code for the diffuse color texture map statements, highlighted in blue in Figure 13-13, should look like
the following:

phongMaterial = new PhongMaterial(Color.WHITE);
phongMaterial.setSpecularColor(Color.WHITE);
phongMaterial.setSpecularPower(20);
phongMaterial.setDiffuseMap(diffuseMap);

Figure 13-13. Add a diffuseMap to the shader pipeline to add some surface color and set the specular and
diffuse colors to white

Figure 13-12. Declare and instantiate Image objects to hold texture map data for a diffuse, specular, glow, or
bump map

www.ebook3000.com

http://www.ebook3000.org

Chapter 13 ■ 3D MoDel ShaDer Creation: USing the JavaFX 9 phongMaterial ClaSS

330

Next, use a Run ➤ Project work process and again view your primitives. As you can see, in Figure 13-14,
your primitives’ surfaces are now being rendered using a diffuse map to control their surface coloration, and
the Sphere 3D primitive now looks like a beach ball.

Next, let’s rotate your Sphere primitive 25 degrees so that the delineation between the yellow and white
stripe happens in the specular highlight, which we broadened back to its default setting of 20 in the previous
code.

We will use the beachball3grayscale256px.png image asset; it has eight stripes, four of which are
100 percent on (white), two of which are 75 percent on (25 percent gray), and two of which are 50 percent
on (half power, or 50 percent gray). What this will do is to “mute,” or diminish, the specular flare on the
white portion of the beach ball since a specular map defines the power or amount of the specular effect
(shininess).

We will leave the setDiffuseMap(diffuseMap) method call off phongMaterial in place as we are
attempting to construct an advanced shader rendering pipeline in this chapter to push the PhongMaterial
class to the limits of a professional shader effect creation pipeline, as we would in 3D software but by using
only JavaFX API and Java 9 statements.

Therefore, after the setDiffuseMap() method call, we will add a line of Java code calling
setSpecularMap() off of the phongMaterial object and then pass in the specularMap Image object, which has
been set to a beachball3grayscale256px.png image asset in the loadImageAssets() method, as shown in
Figure 13-12. This would all be accomplished by using the following Java statements, which is highlighted at
the bottom of Figure 13-15:

phongMaterial = new PhongMaterial(Color.WHITE);
phongMaterial.setSpecularColor(Color.WHITE);
phongMaterial.setSpecularPower(20);
phongMaterial.setDiffuseMap(diffuseMap);

Figure 13-14. A diffuse color texture map is now painting the surface of the primitive, making a sphere into a
beach ball

Chapter 13 ■ 3D MoDel ShaDer Creation: USing the JavaFX 9 phongMaterial ClaSS

331

phongMaterial.setSpecularMap(specularMap);
sphere = new Sphere(100, 24);
sphere.setRotationAxis(Rotate.Y_AXIS);
sphere.setRotate(25);
sphere.setMaterial(phongMaterial);

It’s time to again use the Run ➤ Project work process and render this shader pipeline into your 3D
Scene. As you can see in Figure 13-16, the specular highlight on the Sphere primitive seems to get cut off
with the line between the yellow and the white color. This is caused by the specular map (turning down
the specular highlight intensity) for alternating areas of the texture map. This can be seen on the Cylinder
primitive as well. You may have noticed by now that I decreased the Camera object distance from the center
of the Scene, from 250 units away to 100 units away, to zoom into the view, and I increased the size of the 3D
primitives so we can see the texture mapping effects more clearly.

Figure 13-15. Add a SpecularMap Image reference to the shader pipeline to control the specular highlight
intensity

www.ebook3000.com

http://www.ebook3000.org

Chapter 13 ■ 3D MoDel ShaDer Creation: USing the JavaFX 9 phongMaterial ClaSS

332

Next, let’s rotate your Sphere primitive back to 5 degrees so your yellow portion is centered in the
specular highlight, with white stripes on either side. This will more accurately show you the power of the
self-illumination map.

We will use the beachball2grayscale256px.png image asset, which has eight stripes. Four of these are
100 percent on (white) and four are 100 percent off (black), which is about as extreme as you can get as far
as effect processing texture mapping is concerned, as this equates to fully apply (white or all on 255 value) or
do not apply (black or zero).

What this self-illumination map (commonly called a glow map in 3D software) will do is to turn sections
of the 3D primitive mapped with white on like a light source, whereas black areas will not be illuminated and
will use the existing texture map pipeline. More gray will add more light, so 25 percent gray would simulate
25 percent illuminated (25 percent light intensity). We will leave the setDiffuseMap() and setSpecularMap()
method calls off phongMaterial in place as we’re attempting to construct an advanced shader rendering
pipeline and to push the PhongMaterial class to the limits of a professional shader effect creation pipeline as
we would in 3D software, but by using only JavaFX API and Java 9 statements.

Therefore, after the setSpecularMap() method call, we’ll call a setSelfIlluminationMap(gl
owMap) method off the phongMaterial object and pass in the glowMap Image object, set to the
beachball2grayscale256px.png image asset instantiated in the loadImageAssets() method, as shown in
Figure 13-12. This would all be accomplished by using the following Java statements, which are highlighted
in yellow and light blue at the bottom of Figure 13-17:

phongMaterial = new PhongMaterial(Color.WHITE);
phongMaterial.setSpecularColor(Color.WHITE);
phongMaterial.setSpecularPower(20);
phongMaterial.setDiffuseMap(diffuseMap);
phongMaterial.setSpecularMap(specularMap);
phongMaterial.setSelfIlluminationMap(glowMap);
sphere = new Sphere(100, 24);
sphere.setRotationAxis(Rotate.Y_AXIS);

Figure 13-16. The specular highlight on the curved surface sphere and pole objects is now brighter on the
colored area

Chapter 13 ■ 3D MoDel ShaDer Creation: USing the JavaFX 9 phongMaterial ClaSS

333

sphere.setRotate(5);
sphere.setMaterial(phongMaterial);

Figure 13-18 shows the Run ➤ Project Java code testing work process with the self-illumination
mapping on all three primitives. The white areas have turned into light sources, with the colored areas still
showing the diffuse and specular mapping characteristics. There seems to be a bit of a problem with the
anti-aliasing algorithm portion of the selfIlluminationMap property code, as you can see on the perimeter
edges of the Sphere primitive.

Figure 13-18. The self-illumination map turns white area on 3D primitives into a light source, leaving color
areas alone

Figure 13-17. Add the SelfIlluminationMap Image reference to the shader pipeline to control self-illumination
intensity

www.ebook3000.com

http://www.ebook3000.org

Chapter 13 ■ 3D MoDel ShaDer Creation: USing the JavaFX 9 phongMaterial ClaSS

334

Next, let’s take a look at how to use what we have learned thus far and create some of the shader’s
texture map components in GIMP 2.8.22, for use in the gameBoard Group Node hierarchy that we are going
to create in Chapter 14 as we start to build our i3D game using the JavaFX 9 APIs in Java 9.

GameBoard Texturing: Creating a GameBoardSquare
It is important to understand the abstract Mesh superclass and how it relates to its TriangleMesh subclass
(which can be used to “hand-code” complex mesh objects into existence) and how it relates to the
MeshView class, which is actually a subclass of Shape3D and not of Mesh! This is so that MeshView can
inherit (extend) the cullFace, drawMode, and material properties of Shape3D, which are, of course, crucial
to making a mesh object realistic (especially the material property and Material class). The MeshView
constructor takes a Mesh object, as you will see, so that is the core class (algorithm) that complex 3D objects
are based on; therefore, Mesh and MeshView are the key classes to use for pro Java 9 games development. If,
for some reason, you want to code complex polygonal geometry, also called “Triangle Mesh” (which is not
an optimal workflow), you can use TriangleMesh, which we will cover in detail.

A better workflow is using an external 3D software package and “importing” your 3D object directly
into a Mesh object, which is then referenced by a MeshView object. This is a workflow we will dedicate an
entire chapter to how to “model” a 3D game using these JavaFX classes, so that you do not have to import
any “data heavy” mesh objects. Importing 3D assets can be a much faster way to get an advanced i3D game
up and running quickly and efficiently, as well as a way to bring specialized artisans into an i3D game
development workflow.

Getting Ready to Create the GameBoard: Code Reconfiguration
Let’s get ready for what we are going to be doing in the next chapter (building our i3D game board) and
reconfigure our Java code bodies for our gameButton event handler, createBoardGameNodes() method,
addNodesToSceneGraph() method, and loadImageAssets() method. Let’s switch from Camera object
dollying, set Camera Z = 0, and instead use FOV to zoom in and out of the scene. Since we’re going to delete
the Sphere and Cylinder primitives for now, we’ll set the X and Y translate properties to -500 and rotate the
camera around the x-axis 45 degrees so that it looks down onto the game board. The Java code to do these
camera adjustments is shown in Figure 13-19 and looks like the following:

camera.setTranslateZ(0);
camera.setTranslateY(-500);
camera.setTranslateX(-500);
camera.setRotationAxis(Rotate.X_AXIS);
camera.setRotate(-45);
camera.setFieldOfView(1);

http://dx.doi.org/10.1007/978-1-4842-0973-8_14

Chapter 13 ■ 3D MoDel ShaDer Creation: USing the JavaFX 9 phongMaterial ClaSS

335

Next, let’s remove the sphere Sphere and pole Cylinder instantiations and configuration statements; you
can leave the declarations at the top of the class if you want to as we will use these later.

To make a game board square, which will be used around the perimeter of the game board and
will be 150 units square and 5 units thin (tall), we will leave the Box box object and construct it with the
Box(150,5,150) method call. I will also rotate it 45 degrees for now so the point (corner) is facing the camera
object. We can keep the PhongMaterial code because all we have to do to change the diffuseMap once we
create it in GIMP is to change the file name in the loadImageAssets() method, which we will do after we
create the game board square texture map. Don’t forget, if you forget to remove the objects we’ve removed
from the SceneGraph node, you will get a fatal error during compile.

As stated initially, a Box constructor method is very basic and looks like the Java code in Figure 13-20:

box = new Box(150, 5, 150);
box.setRotationAxis(Rotate.Y_AXIS);
box.setRotate(45);
box.setMaterial(phongMaterial);

Figure 13-19. Reconfigure your camera object to dolly to Z = 0, rotate 45 degrees, and zoom in with FOV = 1

www.ebook3000.com

http://www.ebook3000.org

Chapter 13 ■ 3D MoDel ShaDer Creation: USing the JavaFX 9 phongMaterial ClaSS

336

Next, let’s take care of removing these (currently) unused pole and sphere primitives from your
gameBoard Group object, which will change our addAll() method call back into an add() method call. If you
forget to do this and try to select Run ➤ Project, it will not compile. The resulting Java statement, shown in
Figure 13-21, looks like this:

gameBoard.getChildren().add(box);

Now let’s go back into GIMP and add a layer to our texture map composite and create a game board
square.

Figure 13-20. Remove sphere and pole instantiations and configurations and change the box dimensions to
150, 5, 150

Figure 13-21. Remove the pole and sphere objects from your gameBoard.getChildren().addAll() method call
for now

Chapter 13 ■ 3D MoDel ShaDer Creation: USing the JavaFX 9 phongMaterial ClaSS

337

Creating Your Game Board Square Diffuse Texture: Using GIMP
Let’s get some of our game board square design done during this chapter, so in the next chapter all we have
to do is to design the center of the board, create the perimeter squares, and color shift the image to create a
delineation for the squares from each other. We will do this in GIMP using the same approach that we used
earlier in this chapter, with the same 32x256 stripes, only this time the four stripes will be located around the
perimeter of the game board square. We’ll use RGB 255,0,0 (pure red) so we can color shift this value with
the algorithms in GIMP.

Open your multilayer GIMP XCF file, right-click the top layer, and use the New ➤ Layer menu item
to create an empty transparent layer. Turn all of the visibility (eye) icons in the other layers, other than the
white Background layer, off. Set Layer name to GameBoardTile. Make sure to select this layer so it turns
blue to show GIMP where to apply your next image creation “moves” (operations).

Select your Rectangle Select Tool, shown depressed near the top-middle of Figure 13-22. Rectangle
Select Tool options will appear, underneath the tool icons, as shown at the bottom middle of the figure,
where you can (again) precisely (pixel accurately) set the Position and Size settings of your selections.

Figure 13-22. Use the same Rectangle Select technique we used earlier in the chapter to create a game board
square

www.ebook3000.com

http://www.ebook3000.org

Chapter 13 ■ 3D MoDel ShaDer Creation: USing the JavaFX 9 phongMaterial ClaSS

338

Next, draw any size rectangle selection on the GIMP canvas, which is shown on the right of Figure 13-22.
In the Position fields, set 0, 0, and in the Size fields, set 32, 256. This will put the selection at one-eighth span
and at the left side of the canvas. Click the large foreground/background color swatch, located under the
GIMP tool icons, on the top color, and set FG Color to Red. Then use your Edit ➤ Fill with FG Color menu
sequence and fill the first four stripes with red. Since this layer is transparent and the background is white,
the resulting composite will be a red-and-white texture map (eventually four overlapping red perimeter
stripes).

Next, drag the selection to the right and position it for the second stripe fill. Then edit the Position field,
leaving it set to 0, 0, and reverse the Size fields to set them at 256, 32, as shown in Figure 13-22. Again, select
Edit ➤ Fill with FG Color. Half of the game board square diffuse color texture map has been created in only
a few moves!

Let’s finish the other two perimeter stripes by again dragging the selection to position (or, set the
Position fields to) 224, 0 on the right side of your 256-pixel texture map canvas. Be sure to set your Size data
fields back to 32, 256 (width, height), and then again use Edit ➤ Fill with FG Color to fill the right perimeter
stripe with red (also a Color class constant in JavaFX). Finally, drag the selection to position (or set Position
fields to) 0, 224 and then use Edit ➤ Fill with FG Color, one last time, to complete the black-and-white effect
(bump, specular) application texture map.

Besides being able to color shift this perimeter color for your diffuse color texture map, to create dozens
of unique game board squares, since the interior color is white, which won’t be affected (white, black, and
grays have no color values to be color-shifted).

Using other concepts and code techniques we learned about during the chapter, we would be able to
create other PhongMaterial class shader objects, which will highlight, glow, or color your currently active
game board square differently than all of the others when the game piece lands on that particular game
board square.

It is important to note that this will be done, using only a single diffuse color texture map (680 bytes or
two-thirds of one kilobyte of data/memory) and thus interactively lending a much more professional user
experience for your gameplay. I will also create an effects texture map (maybe two or three) using black,
white, and gray, which will match the red-and-white one pixel for pixel, giving me the most processional
(surgical) effects application within the game code. A white perimeter (and black interior) would allow me to
isolate only the color areas for special effects, and a black perimeter (and white interior) allows me to isolate
the interior of a game board square for special effects applications. We’ll combine these few textures with
digital imaging (Chapter 2) and diffuse and specular color control.

Finally, make sure to use the GIMP’s File Export As work process, as shown in Figure 13-11, to save
the completed game board square diffuse texture map data in a file named gameboardsquare.png in
the correct source assets folder in your NetBeansProject folder and JavaFXGame subfolder. Now all we
have to do is to swap this file name reference into the diffuseMap Image object instantiation inside of the
loadImageAssets() method body, and we can utilize it on the new box Box object configuration that we
created earlier (see the earlier Figure 13-20) using a Box() constructor method.

Open your loadImageAssets() method body and edit your diffuseMap Image object instantiation so
that it references the gameboardsquare.png file that you exported from GIMP to your NetBeansProject\
JavaFXGame\src\ folder. The Java statement for the new Image instantiation should look like the following,
as highlighted using yellow and light blue in Figure 13-23:

diffuseMap = new Image("/gameboardsquare.png", 256, 256, true, true, true);

http://dx.doi.org/10.1007/978-1-4842-0973-8_2

Chapter 13 ■ 3D MoDel ShaDer Creation: USing the JavaFX 9 phongMaterial ClaSS

339

Figure 13-24 shows the Run ➤ Project Java code testing work process; you can see the new game board
square box Box object mapped with the new diffuse color texture map that you just created using GIMP
2.8.22 (or later).

Figure 13-23. Change your diffuseMap Image object instantiation statement to reference your
gameboardsquare.png file

Figure 13-24. We now have a game board square, which will be duplicated around the perimeter (in the next
chapter)

www.ebook3000.com

http://www.ebook3000.org

Chapter 13 ■ 3D MoDel ShaDer Creation: USing the JavaFX 9 phongMaterial ClaSS

340

There’s a little white on the edges (JavaFX currently does not allow per-side Box object mapping), which
we’ll minimize in future chapters by adjusting the camera.setRotate() method call value until this becomes
less evident.

There’s one last point I want to make, before I finish up with shader pipeline creation and texture maps
for this chapter, on how to skin your 3D primitives with JavaFX. You’re probably wondering why I used a
PNG24 (24-bit) image format for this texture, instead of the more optimized PNG8 format. Well, this PNG24
codec did a pretty great job of compressing 256 × 256 × 3 (196,608) bytes into 680 bytes, which is a 290 : 1 or
99.67 percent reduction in data!

On the more technical side of the equation, Java will use a 24-bit RGB color representation in memory,
and therefore, if we had used an indexed 8-bit color image, it would have simply been transmuted back
into a 24-bit color value image when it was loaded into memory. Therefore, my inclination is to use PNG24
and PNG32 images whenever possible, especially for 3D texture maps that are primarily going to be 32x32,
64x64, 128x128, 256x256, and 512x512 for pro Java 9 game design and development applications anyway. For
photographic imagery, you can also use JPEG.

Summary
In this thirteenth chapter, we learned about the classes in the javafx.scene.paint package that allow you
to work with 3D shaders, texture maps, and materials, including the PhongMaterial class based on the
abstract Material superclass. We learned that the Material class is basically an “empty” class or a “shell”
to hold a “material” object (attribute in the Shape3D class) and that the heavy lifting (algorithms) is in a
PhongMaterial subclass. We looked at the properties, constructors, and method calls in this class in a fair
amount of detail so that you would know what the PhongMaterial object can do, and then we looked at how
to implement these in Java code (other than bumpMap, which isn’t working in the current JavaFX 9 code
base I am using, so we’ll revisit this later during the book).

You learned how to create texture map assets using GIMP (currently at version 2.8.22 for this book, but
I am expecting 2.10 to be out in 2017 and 3.0 to be out in 2018) and how to be surgically accurate by using
GIMP’s tools in an optimal workflow to create balanced, pixel-precise, power-of-two texture maps optimized
for professional 3D game development.

We then took a look at how to implement these texture map assets in four current texture map
“channels,” which are currently afforded to us via the JavaFX 9 PhongMaterial class. We saw how these
texture map channels allow us to fine-tune how our material attribute is rendered, allowing us to create a far
more professional appearance for our Java 9 games.

Finally, we created the diffuseColor property texture map for our game board square, transmuted
the box Box object into one of these game board squares, and applied the new texture map to the new 3D
primitive “plane” object in preparation for what we are going to be doing in the next chapter (creating our
gameBoard branch in the SceneGraph) so that it will look like a game board as we are creating it. As you
know, I recommend going about your pro Java 9 games development in such a way that you see what JavaFX
9 is going to do as you are writing your Java 9 code, creating your new media assets, and “morphing” your pro
Java 9 game content and deliverable into what you ultimately want it to be. Pro Java 9 Games Development
is a refinement process, so that is how I am writing this book. I’m showing you how I actually “vaporize a 3D
board game application out of thin air” using the NetBeans 9 IDE and the Java 9 and JavaFX 9 APIs.

In Chapter 14, we are going to further refine our Java code organization, creating new methods
and reorganizing some existing methods, to create and incorporate the core of our i3D board game, the
gameboard. We will create a nested Group 3D hierarchy under the gameBoard Group Node (branch)
and look at 3D primitive X,Y,Z positioning and related concepts that apply to seamlessly laying out
a 3D gameboard in such a way that future Java code can access and reference its components and
subcomponents in a logical, optimal fashion. Just like database design, how you design your SceneGraph
greatly affects how your Pro Java 9 3D Game functions in the future. The simpler and more straightforward
we can keep the design, hierarchy, and 3D object naming schema, the better shape we will be in when
crafting future code for interactivity, animation, movement, collision detection, and the like. At this point,
you should be starting to get excited about the possibilities that Java 9 and JavaFX 9 afford you.

http://dx.doi.org/10.1007/978-1-4842-0973-8_14

341© Wallace Jackson 2017
W. Jackson, Pro Java 9 Games Development, https://doi.org/10.1007/978-1-4842-0973-8_14

CHAPTER 14

3D Model Hierarchy Creation:
Using Primitives to Create a
Game Board

Now that you have learned how to “skin” your 3D primitives using the JavaFX Phong shader algorithms and
their various color and effects mapping channels and you have created colorful, highly optimized game board
square texture maps, it’s time to add some more custom methods for building the game board and setting up
the Phong shader objects with the texture maps. We’ll need to create a createGameBoardNodes() method to
organize the 3D primitive assets that comprise our 3D gameboard, as the createBoardGameNodes() method
should (and does) contain higher-level Node subobject instantiation and configuration, such as the Scene,
Root, UI StackPane, 3D gameBoard Group, Camera, and Lighting, as well as four game board Quadrant Group
objects named Q1 through Q4 (quadrants 1 through 4). We will also create the other 19 game board square
objects, named Q1S1 through Q1S5, Q2S1 through Q2S5, Q3S1 through Q3S5, and Q4S1 through Q4S5 to keep
object names short. Naming the objects the abbreviated version of Quadrant1Square1 (Q1S1) will make the
Java code that uses these abbreviated terms much more readable.

During this chapter, you will be building your gameBoard Group branch of your SceneGraph, which
is under your SceneGraph root, next to the uiLayout branch, which you’ve already built. Under your
gameBoard Group branch, we’ll segment the game board into four quadrants, so the middle of the game
board can have four larger 300x300 unit areas we can use for gameplay, with each of the quadrants having 5
of your 20 perimeter game board squares as child objects. With a three-tiered 3D primitive object hierarchy,
we can access your entire game board as a whole (to rotate it, for instance), access each quadrant as a unit
(to levitate it or apply shader effects, for instance), and access individual game board squares at the bottom
(leaf Node subobjects) of the hierarchy. Let’s get to work! We have hundreds of lines of new Java code to
write during this chapter implementing primitives, shaders, images, and SceneGraph hierarchy nodes.

Primitive Creation Method: createGameBoardNodes()
Since creating the 24 primitives (4 center board quadrants and 20 perimeter squares) is going to take over
100 Java statements (instantiate using new, setTranslateX(), setTranslateZ(), setMaterial(), etc.), let’s create
a method specifically to hold our game board objects and their instantiation and configuration statements.
In this way, a createBoardGameNodes() method will create the global and top-level Node subclass objects
(scene, root, camera, light, uiLayout branch, gameBoard branch, Q1 through Q4 branches, etc.). Later in the
chapter, we will also extract the PhongMaterial shader creation logic to another custom createMaterials()
method, where we will create a couple dozen custom shader objects to use to skin various components

www.ebook3000.com

https://doi.org/10.1007/978-1-4842-0973-8_14
http://www.ebook3000.org

Chapter 14 ■ 3D MoDel hierarChy Creation: Using priMitives to Create a gaMe BoarD

342

of this game board. To get NetBeans 9 to create this new method for you, add a line of code after the
createBoardGameNodes() method call, in the first portion of your start() method, and then type in the
following Java method call, naming your new method:

createGameBoardNodes();

NetBeans will realize this is not a valid method call and will highlight it by using a wavy red underline.
Use your Alt+Enter work process, and double-click your Create method “createGameBoardNodes()”

in javafxgame.JavaFXGame option, highlighted in Figure 14-1, to have NetBeans create an empty method
body structure for you. Next, remove the box Box object–related code from createBoardGameNodes() and
place this code in this new method. We’ll also remove the pole Cylinder and sphere Sphere so they don’t
interfere with your game board design.

Cut and paste your Box primitive code from .createBoardGameNodes() to .createGameBoardNodes()
and rename the box to Q1S1. Delete all the Java statements, except an instantiation and shader method call,
as shown in Figure 14-2:

Q1S1 = new Box(150, 5, 150);
Q1S1.setMaterial(phongMaterial);

Figure 14-1. Open the start() method; type a createGameBoardNodes() method call after
createBoardGameNodes()

Chapter 14 ■ 3D MoDel hierarChy Creation: Using priMitives to Create a gaMe BoarD

343

Change your Java code referencing the box to reference Q1S1 using the following code, which is also
shown in Figure 14-3:

light.getScope().addAll(Q1S1);

Figure 14-2. Copy the primitive code to createGameBoardNodes(); delete everything except the instantiation
and .setMaterial

Figure 14-3. Be sure to change all referencing from the box to Q1S1 in createBoardGameNodes() and
addToSceneGraph()

www.ebook3000.com

http://www.ebook3000.org

Chapter 14 ■ 3D MoDel hierarChy Creation: Using priMitives to Create a gaMe BoarD

344

You will also have to open the addNodesToSceneGraph() method and change the box to Q1S1, inside
of the gameBoard node line of code, so the Q1S1 game board square will be visible in the test render we are
about to do next. Later, we’ll reference the Q1 through Q4 quadrants in this statement and then reference
the game board square objects using those branch nodes, which we’ll be doing next, to create the three-
tiered hierarchy. Your resulting Java statement should look like the following Java 9 code, which is shown
highlighted in yellow and light blue in the middle of Figure 14-4:

gameBoard.getChildren().add(Q1S1);

If you use the Run ➤ Project work process, at this point you will see in Figure 14-5 that we have reset
the 3D Scene to be just a game board square, and we can start to build other parts of your game board
relative to that square.

Figure 14-4. Add the first Q1S1 game board square to the gameBoard Group node for now so it will compile
the test render

Figure 14-5. Use the Run ➤ Project work process to test render the reconfiguration of the 3D Scene from Box to square

Chapter 14 ■ 3D MoDel hierarChy Creation: Using priMitives to Create a gaMe BoarD

345

Now it is time to start constructing the SceneGraph hierarchy underneath the 3D gameBoard Group
branch of the SceneGraph. The gameBoard Group will contain four quadrant Group branches named
Q1 through Q4. Each of these quadrant Group Node objects will contain a Box primitive quadrant (one-
quarter of the game board center) and that quadrant’s attached five game board squares. The q1 through
q4 quadrant planar objects will also be Box primitives that are four times (300x300) the size of a game board
square.

I am going to move the gameBoard Group object instantiation under the root Group
instantiation and then add the Q1 through Q4 Group object instantiations under that at the top of the
createBoardGameNodes() method so that the Java code order reflects the parent-child hierarchy. Your leaf
objects (bottommost nodes) will be created inside of your createGameBoardNodes() method, including the
q1 through q4 quadrant planar objects, which are leaf nodes of the Q1 through Q4 Group (branch) nodes.

If you like, you can use the handy copy-and-paste programmer’s trick and type in the first Q1 Group
object’s instantiation statement and then copy and paste it three more times underneath itself, changing Q1
to be Q2 through Q4, since at this point, we are just creating four empty quadrant group nodes, which we will
reference to a gameBoard Group node above them and to the Q1S1 through Q4S5 (and q1 through q4) leaf
nodes below them. The resulting Java code should look like the following, as highlighted in yellow, red, and
blue at the top of Figure 14-6:

gameBoard = new Group();
Q1 = new Group();
Q2 = new Group();
Q3 = new Group();
Q4 = new Group();

Now we need to remove your Q1S1 leaf node from the gameBoard branch node and replace it with the Q1
through Q4 branch nodes. For the Q1S1 Box primitive to show up when we select Run ➤ Project (render) for
the 3D Scene, you’ll need to create a second “node builder” .getChildren().add() method chain off of Q1 (Q1S1
object’s parent branch) so that the gameBoard node references the Q1 node, which references Q1S1 node.

Figure 14-6. Add four Group branch node object instantiations under your gameBoard Group, named Q1
through Q4

www.ebook3000.com

http://www.ebook3000.org

Chapter 14 ■ 3D MoDel hierarChy Creation: Using priMitives to Create a gaMe BoarD

346

Your reconfigured addNodesToSceneGraph() method statements will now number six Java statements,
and your gameBoard SceneGraph hierarchy, from root to game board squares, now spans three Java 9
statements, which should look like the following Java statements inside of the addNodesToSceneGraph()
method, as shown highlighted in yellow and blue at the middle (with related declarations also highlighted
the top) of Figure 14-7:

root.getChildren().addAll(gameBoard, uiLayout);
gameBoard.getChildren().addAll(Q1, Q2, Q3, Q4);
Q1.getChildren().add(Q1S1);

Next, let’s add the q1 Box game board center quadrant, which will be the parent to the Q1S1 game
board square; thus, this is the next logical thing to add. Since you have already declared the q1 through q4
Box objects at the top of your class, shown in Figures 14-6 through 14-8, you can add this q1 object to your
Q1 branch node first, or you can instantiate it first, in the createGameBoardNodes() method with a 300,
5, 300 (X, Y, Z) parameter, and then add it to the addNodesToSceneGraph() method later, as you can see in
Figure 14-8 and in the following Java code:

Q1.getChildren().addAll(q1, Q1S1); // In addNodesToSceneGraph() method body
q1 = new Box(300, 5, 300); // In createGameBoardNodes() method body

Figure 14-7. Replace a Q1S1 reference in the gameBoard node builder with Q1 through Q4, and add a Q1
node builder

Chapter 14 ■ 3D MoDel hierarChy Creation: Using priMitives to Create a gaMe BoarD

347

Figure 14-9 shows a Run ➤ Project work process showing a game board square and quadrant rendered
at 0,0.

Figure 14-8. Change the .add() method call to an .addAll() method call; add the q1 Box primitive for your
first quadrant

Figure 14-9. Select Run ➤ Project and render your 3D Scene; both the quadrant and game board square are
at 0,0,0

www.ebook3000.com

http://www.ebook3000.org

Chapter 14 ■ 3D MoDel hierarChy Creation: Using priMitives to Create a gaMe BoarD

348

Preparing to Position Gameboard SceneGraph Nodes
Before we get into positioning 4 quadrants and 20 squares around their perimeter, let’s put the infrastructure
in place for the rest of the SceneGraph and all of the texture maps for the shader (PhongMaterial) to use. Add
the other three Q2 through Q4 SceneGraph Group nodes to your addNodesToSceneGraph() method using
cut and paste, as shown highlighted in light blue in Figure 14-10. Notice that you can use the .getChildren().
addAll() method chain even if you have only one Node subclass object element in the List! Your Java
statements will look like the following:

Q2.getChildren().addAll(q2);
Q3.getChildren().addAll(q3);
Q4.getChildren().addAll(q4);

While we’re at it, create the other three q2 through q4 game board center quadrants so that we can add
them to the Q2 through Q4 node construction statements. Again, since these objects are declared at the top
of your class, you can construct these statements in any order that you want; just don’t use Run ➤ Project
to render the Scene, as you won’t see the objects until they are instantiated and added to the SceneGraph
hierarchy. The Box instantiation Java code should look like the following, as shown at the bottom of
Figure 14-10:

q2 = new Box(300, 5, 300);
q3 = new Box(300, 5, 300);
q4 = new Box(300, 5, 300);

Figure 14-10. Instantiate your other three quadrant Box primitives and your other three quadrant branch
node objects

Chapter 14 ■ 3D MoDel hierarChy Creation: Using priMitives to Create a gaMe BoarD

349

As you can see in Figure 14-9, quadrant 1 is underneath game board square 1 and not in a position
where their corners are touching. So, move quadrant 1’s q1 Box object diagonally 225 units. This equates to
the length of the board game square side plus another 50 percent, or 225 units. If you use only 150 units, the
quadrant corner will be centered in the game board square. The code to create this alignment looks like the
following .setTranslateX() and .setTranslateZ() Java method calls, as shown highlighted in yellow and blue in
the middle of Figure 14-11:

private void createGameBoardNodes() {
 q1.setTranslateX(225);
 q1.setTranslateZ(225);
 Q1S1 = new Box(150, 5, 150);
 Q1S1.setMaterial(phongMaterial);
 q2 = new Box(300, 5, 300);
 q2.setVisible(false);
 q3 = new Box(300, 5, 300);
 q3.setVisible(false);
 q4 = new Box(300, 5, 300);
 q4.setVisible(false);
}

Also notice that I have “hidden” quadrants 2 through 4 using the .setVisible(false) method call so that I
can work on quadrant 1’s q1 Box and its five game board square children first, as I am going to do quadrant
1 first to show you the work process I am using, then quadrant 2, then quadrant 3, and so forth. It is useful to
break any complex tasks into subtasks if possible so you don’t get overwhelmed during development. Since
the SceneGraph hierarchy is set to use four board quadrants under the gameBoard branch, this is how I am
going to go about building the game board, one quadrant (in this case, Q1) at a time. Notice my game board
square names also match this, so I have an advantage, as my game board square objects, in this case Q1S1
through Q1S5, match up with the quadrant Group object name Q1. Since I can’t duplicate the Q1 Group
object name for the Box quadrant object name, I have to use a lowercase q1 through q4 for my quadrant
planar primitives, which is fine, as I still know what is going on and because the quadrant portions of the
game board are not nearly as important as the game board squares themselves.

Figure 14-11. Move the q1 quadrant to the X,Z location 225,225 so that it is internal to square Q1S1 with the
corners touching

www.ebook3000.com

http://www.ebook3000.org

Chapter 14 ■ 3D MoDel hierarChy Creation: Using priMitives to Create a gaMe BoarD

350

Let’s render the 3D Scene using the Run ➤ Project work process and see if the two Box primitives are
still overlapping or if they are positioned correctly. As you can see in Figure 14-12, the corners of the game
board square and the first quadrant are now aligned corner to corner, and you can begin to see how the
game board will be laid out.

Although this is the result I wanted to see, in thinking ahead about how I am going to access each
quadrant and its child squares, I want to keep the squares in QxSy 1 through 5 order going around the game
board, and this would not work if I started with square 1 on the corner of each quadrant! Think about it!
Therefore, I actually need to move this square location from 0, 0 (X, Z) to 300, 0 (X, Z). I will do this after I
create the custom method body to hold my shaders next.

Since I’m going to have a couple dozen shaders, I’m going to quickly create another custom method to
keep the shader creation separate and organized so that I can collapse and expand the shader-related code
as needed.

Coding a Phong Shader Creation Method: createMaterials()
Since shaders are an important part of a pro Java 9 game design pipeline, let’s give them their own method
body and move the PhongMaterial object code from createBoardGameNodes() to this new createMaterials()
method. Add a line of code at the top of your start() method after loadImageAssets() as these are used
in the shaders and before createGameBoardNodes(); these objects will use the shaders created in this
createMaterials() method body. Type in createMaterials() and a semicolon to call the nonexistent method;
then use your Alt+Enter keystroke combination and select the “add the createMaterials() method in
javafxgame.JavaFXGame” option. Let’s also change our PhongMaterial name to Shader1. We can name
these first 20 shaders in this method body, as well as at the top of your class where I have added declarations

Figure 14-12. Use the Run ➤ Project work process to see if the two 3D primitives are precisely aligned corner
to corner

Chapter 14 ■ 3D MoDel hierarChy Creation: Using priMitives to Create a gaMe BoarD

351

for Image objects named diffuse1 through diffuse 20 and Shader1 through Shader 20, in anticipation of the
code we are about to write. Cut and paste the PhongMaterial code to “live” in createMaterials() and delete
the specular attributes. The code, shown in Figure 14-13, should look like the following:

Image diffuse1 ... diffuse20; // Object Declarations at top of class
PhongMaterial Shader1 ... Shader20;
...
Shader1 = new PhongMaterial(Color.WHITE); // Create Diffuse Shader in createMaterials()
Shader1.setDiffuseMap(diffuse1);

Next, let’s remove all the special effects map-related code in loadImageAssets() that we created in
Chapter 13, except for diffuseMap, which you will rename diffuse1. Copy and paste the diffuse1 instantiation
four times, and reference the next four game board square texture maps, gameboardsquare2.png through
gameboardsquare5.png.

You’re now ready, from a shader standpoint, to construct the first quadrant of your game board. You
should now have five (diffuseMap) Image objects, named diffuse1 through diffuse5, in the last half of your
loadImageAssets() method. These will hold the diffuseMap property texture maps defining where the warm
colors (red, orange, yellow) will be mapped onto your game board squares that are the children of quadrant
(1) for the game board, which we will lay out first. We’ll lay out the green quadrant second and then the blue
and purple quadrants last.

These first five of the (eventual) 24 diffuse color texture map (diffuseMap property) Image objects
should be added using the following Java statements, which are highlighted at the bottom of Figure 14-14:

diffuse1 = new Image("/gameboardsquare.png", 256, 256, true, true, true);
diffuse2 = new Image("/gameboardsquare2.png", 256, 256, true, true, true);
diffuse3 = new Image("/gameboardsquare3.png", 256, 256, true, true, true);
diffuse4 = new Image("/gameboardsquare4.png", 256, 256, true, true, true);
diffuse5 = new Image("/gameboardsquare5.png", 256, 256, true, true, true);

Figure 14-13. Add Image object declarations diffuse1 through diffuse20 and create a createMaterials() shader
method

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_13
http://www.ebook3000.org

Chapter 14 ■ 3D MoDel hierarChy Creation: Using priMitives to Create a gaMe BoarD

352

Next, close the loadImageAssets() method body. Open the new createMaterials() method body
and copy and paste the Shader1 Java statements four times underneath themselves. Then rename them
to Shader2 through Shader5. Set the Image objects representing your game board square diffuseMap
properties to reference the diffuse2 through diffuse5 Image objects that you just created.

This could all be accomplished by using the following ten Java statements, which are highlighted in
yellow and blue at the bottom of Figure 14-15:

Shader1 = new PhongMaterial(Color.WHITE);
Shader1.setDiffuseMap(diffuse1);
Shader2 = new PhongMaterial(Color.WHITE);
Shader2.setDiffuseMap(diffuse2);
Shader3 = new PhongMaterial(Color.WHITE);
Shader3.setDiffuseMap(diffuse3);
Shader4 = new PhongMaterial(Color.WHITE);
Shader4.setDiffuseMap(diffuse4);
Shader5 = new PhongMaterial(Color.WHITE);
Shader5.setDiffuseMap(diffuse5);

Figure 14-15. Copy and paste the Shader1 Java code block four times underneath itself to create Shader2
through Shader5

Figure 14-14. Instantiate diffuse1 through diffuse5 in loadImageAssets() using your first five PNG diffuse
texture maps

Chapter 14 ■ 3D MoDel hierarChy Creation: Using priMitives to Create a gaMe BoarD

353

Finishing Your GameBoard Construction: Quadrants 2 Through 4
Close your createMaterials() method and reopen your createGameBoardNodes() method. Add the location
statement to the Q1S1 object using Q1S1.setTranslateX(300) to position the first child square where we
want it to be, at the beginning of the quadrant, going in the clockwise direction.

Next, copy and paste your three Q1S1 game board square statements four times underneath themselves
to create the rest of the square objects, which we will also have to reconfigure, as far as X, Z location
parameters go and as far as the shader object referencing is concerned.

Q2S2 only needs to position itself 150 units from the 0,0 origin, because your squares are 150 by
150. This is done by changing the location method call to .setTranslateX(150). Be sure to also set
.setMaterial(Shader2) to reference the correct shader that then references (and applies) the diffuse2
Image object as a diffuseMap property.

Q2S3 is the only square that doesn’t need repositioning, as it will be at the 0,0 origin. I’ve added
the method call .setTranslateX(0) in the sample code (but not in NetBeans 9). Be sure to also set
.setMaterial(Shader3) to reference the correct shader, which then references (and applies) the diffuse3
Image object as a diffuseMap property.

Q2S4 only needs to position itself 150 units from the 0,0 origin, but this time, in the Z direction. This is
done by changing the location method call to .setTranslateZ(150). Be sure to set .setMaterial(Shader4)
to reference the correct Shader4 object, which then references (and applies) the diffuse4 Image object as a
diffuseMap property.

Q2S5 needs to position itself 300 units in the Z direction from 0,0. This is done using a location method
call to .setTranslateZ(300). Be sure to set .setMaterial(Shader5) to reference the correct Shader5
object, which then references (and applies) the diffuse5 Image object as a diffuseMap property. The Java
code, which is also shown highlighted in Figure 14-16, should look like the following:

private void createGameBoardNodes() {
 q1.setTranslateX(225);
 q1.setTranslateZ(225);
 Q1S1 = new Box(150, 5, 150);
 Q1S1.setTranslateX(300);
 Q1S1.setMaterial(Shader1);
 Q1S2 = new Box(150, 5, 150);
 Q1S2.setTranslateX(150);
 Q1S2.setMaterial(Shader2);
 Q1S3 = new Box(150, 5, 150);
 Q1S3.setTranslateX(0); // This statement can be omitted, as default X location is 0
 Q1S3.setMaterial(Shader3);
 Q1S4 = new Box(150, 5, 150);
 Q1S4.setTranslateZ(150);
 Q1S4.setMaterial(Shader4);
 Q1S5 = new Box(150, 5, 150);
 Q1S5.setTranslateZ(300);
 Q1S5.setMaterial(Shader5);
 q2 = new Box(300, 5, 300);
 q2.setVisible(false); // Set q2 through q4 quadrant objects to visible=false for now
}

www.ebook3000.com

http://www.ebook3000.org

Chapter 14 ■ 3D MoDel hierarChy Creation: Using priMitives to Create a gaMe BoarD

354

Before we can see these new objects rendered in the 3D Scene, we’ll need to add them to the
SceneGraph hierarchy in your addNodesToSceneGraph() method body. Add the Q1S2 through Q1S5 Box
objects to the Q1 Group object, as highlighted in yellow and light blue in Figure 14-17.

Let’s also finish the second level (Q2 through Q4 branch nodes) of the SceneGraph hierarchy and add
the q2 through q4 Box planar primitives to the other three Q2 through Q4 Group nodes to add the interior
quadrants for the game board to the SceneGraph hierarchy. We’re doing this at this point in the work process
so that we will be able to work on the center portion of the game board since we are building it one quadrant
at a time.

Since we are basically finished with the first quadrant, we are putting the other three into the
SceneGraph so they will render (be visible) as we build out the rest of the game board quadrants and their
game board squares, which will attach to them around the perimeter of each respective quadrant.

Figure 14-16. Copy and paste the Q1S1 statements four times underneath themselves and reconfigure their
method calls

Figure 14-17. Add your other three Q2 to Q4 Group objects to the gameBoard Group and the other four
squares to Q1

Chapter 14 ■ 3D MoDel hierarChy Creation: Using priMitives to Create a gaMe BoarD

355

From an optimization standpoint, we have created a relatively complex SceneGraph hierarchy for
the 2D UI and 3D GameBoard components using only nine .getChildren().addAll() method chain Java
programming statements, as shown in Figure 14-17. This is relatively compact as we are referencing dozens
of 2D and 3D game component leaf nodes in a highly organized fashion and using only nine SceneGraph
hierarchy construction statements.

Adding the other four squares and the other three quadrants could be accomplished by using the
following Java programming statements, which are shown highlighted in yellow and light blue at the bottom
of Figure 14-17:

root.getChildren().addAll(gameBoard, uiLayout);
gameBoard.getChildren().addAll(Q1, Q2, Q3, Q4);
Q1.getChildren().addAll(q1, Q1S1, Q1S2, Q1S3, Q1S4, Q1S5);
Q2.getChildren().addAll(q2);
Q3.getChildren().addAll(q3);
Q4.getChildren().addAll(q4);

Figure 14-18 shows the Run ➤ Project JavaFX 9 code testing work process. As you can see, we already
have a quarter of the game board in place, and it looks very good for a first go-round at assembling all these
assets, including 3D Box primitives and 2D texture map images, which we have declared at the top of our
class and are about to create.

Figure 14-18. Use the Run ➤ Project work process to see if the completed 3D game board quadrant is aligning
properly

www.ebook3000.com

http://www.ebook3000.org

Chapter 14 ■ 3D MoDel hierarChy Creation: Using priMitives to Create a gaMe BoarD

356

Copy and paste the five diffuse Image statements and create diffuse6 through 20, as shown in Figure 14-19.

Close the loadImageAssets() method body now that the diffuse Image instantiation is in place, open the
createMaterials() method, and do the exact same thing, copying the first five shader Java statement pairs and
pasting them three more times underneath themselves. Change the numbering portion of each statement
so that you create your Shader6 through Shader20 Java statement pairs. This can all be seen highlighted in
yellow in Figure 14-20.

Figure 14-19. Copy and paste 5 diffuse texture Image instantiations 3 times and create all 20 diffuse Image
objects

Chapter 14 ■ 3D MoDel hierarChy Creation: Using priMitives to Create a gaMe BoarD

357

Now let’s create the second quadrant of our game board by going back into the
createGameBoardNodes() method body and creating the second section of code for Box primitives
Q2S1 through Q2S5 by copying the Q1S1 to Q1S5 statements, pasting them again underneath themselves,
and then changing the object names and method call parameters (so that you do not have to type the
majority of these Java statements into the NetBeans 9 IDE again).

The q2 Box object (second quadrant) will need to be moved by 300 units (quadrants are 300x300 in size)
out along the z-axis, so the q2.setTranslateZ() method parameter needs to be incremented from 225 to 525
to accomplish this second quadrant game board component positioning, as shown in Figure 14-22, if you
wanted to look ahead.

Q2S1 needs to position itself 450 units along the z-axis (from the 0,0 origin) because Q1S5 is at 300 plus
150, which is 450. This is done by changing the location method call to .setTranslateZ(450). Be sure to set
.setMaterial(Shader6) to reference the correct shader, which references (and applies) the diffuse6 Image
object as a diffuseMap property.

Q2S2 needs to position itself 600 units along the z-axis (from an 0,0 origin) because 450 plus 150
equals 600. This is done by changing the location method call to .setTranslateZ(600). Be sure to also set
.setMaterial(Shader7) to reference the correct shader that then references (and applies) the diffuse7
Image object as a diffuseMap property.

Figure 14-20. Copy and paste 5 Shader PhongMaterial instantiations 3 times and create all 20 Shader objects

www.ebook3000.com

http://www.ebook3000.org

Chapter 14 ■ 3D MoDel hierarChy Creation: Using priMitives to Create a gaMe BoarD

358

Q2S3 needs to position itself 750 units along the z-axis (from an 0,0 origin) because 600 plus 150
equals 750. This is done by changing the location method call to .setTranslateZ(750). Be sure to also set
.setMaterial(Shader8) to reference the correct shader that then references (and applies) the diffuse8
Image object as a diffuseMap property.

Q2S4 also needs to position itself 750 units along the z-axis from the 0,0 origin, but this time,
we’ll need to push this square over 150 units in the X direction in order to move it to the right, along
the top of your game board layout. This is done by changing over to using two location method calls.
One would be .setTranslateX(150), and the other would be .setTranslationZ(750). Be sure to set
.setMaterial(Shader9) to reference the correct Shader9 object, which then references (and applies) the
diffuse9 Image object as a diffuseMap property.

Q2S5 needs to position itself 300 units in the X direction from 0,0, as well as 750 units in the Z
direction, so that this square is located near the top middle of this game board, on the other side of the game
board from square 1. This is again done using two location method calls, to .setTranslateZ(750) and to
.setTranslateX(300). Be sure to set .setMaterial(Shader10) to reference the correct Shader10 object,
which then references (and applies) the diffuse10 Image object as a diffuseMap property.

The Java code for the construction of the second quadrant of the game board, which is shown in
Figure 14-21 after the code for the construction of the first quadrant, should look like the following (spaced
out for readability):

private void createGameBoardNodes() {
 ...
 q2 = new Box(300, 5, 300); // Java code creating a second quadrant for the gameboard
 q2.setTranslateX(225);
 q2.setTranslateZ(525);

 Q2S1 = new Box(150, 5, 150);
 Q2S1.setTranslateZ(450);
 Q2S1.setMaterial(Shader6);

 Q2S2 = new Box(150, 5, 150);
 Q2S2.setTranslateZ(600);
 Q2S2.setMaterial(Shader7);

 Q2S3 = new Box(150, 5, 150);
 Q2S3.setTranslateZ(750);
 Q2S3.setMaterial(Shader8);

 Q2S4 = new Box(150, 5, 150);
 Q2S4.setTranslateZ(750);
 Q2S4.setTranslateX(150);
 Q2S4.setMaterial(Shader9);

 Q2S5 = new Box(150, 5, 150);
 Q2S5.setTranslateZ(750);
 Q2S5.setTranslateX(300);
 Q2S5.setMaterial(Shader10);

Chapter 14 ■ 3D MoDel hierarChy Creation: Using priMitives to Create a gaMe BoarD

359

 q3 = new Box(300, 5, 300);
 q3.setVisible(false);
 ... // The third quadrant configuration code will go in here
 q4 = new Box(300, 5, 300);
 q4.setVisible(false);
}

Figure 14-21. Instantiate and configure game board squares Q2S1 through Q2S5 inside of
createGameBoardNodes()

www.ebook3000.com

http://www.ebook3000.org

Chapter 14 ■ 3D MoDel hierarChy Creation: Using priMitives to Create a gaMe BoarD

360

As you can see in Figure 14-22, use Run ➤ Project to confirm that the construction of the game board is
halfway done!

Add the Java statements for the final SceneGraph construction code for the gameBoard Group branch
next. Your 3D Scene hierarchy should look like the following, as shown highlighted using yellow and light
blue in Figure 14-23:

root.getChildren().addAll(gameBoard, uiLayout);
gameBoard.getChildren().addAll(Q1, Q2, Q3, Q4);
Q1.getChildren().addAll(q1, Q1S1, Q1S2, Q1S3, Q1S4, Q1S5);
Q2.getChildren().addAll(q2, Q2S1, Q2S2, Q2S3, Q2S4, Q2S5);
Q3.getChildren().addAll(q3, Q3S1, Q3S2, Q3S3, Q3S4, Q3S5);
Q4.getChildren().addAll(q4, Q4S1, Q4S2, Q4S3, Q4S4, Q4S5);

Figure 14-22. Quadrants 1 and 2 are now coded and aligning properly

Figure 14-23. Add all remaining SceneGraph Node object “wiring” code to add the rest of the squares to the
quadrants

Chapter 14 ■ 3D MoDel hierarChy Creation: Using priMitives to Create a gaMe BoarD

361

Next, let’s create the third quadrant for your game board by going back into the
createGameBoardNodes() method body and creating the third section of code for the Box primitives Q3S1
through Q3S5 (as well as for your q3 center quadrant). Just copy the Q2S1 to Q2S5 statements and paste
them again underneath themselves (and after the q3 instantiation and configuration statements to keep
grouped nodes together logically in the Java code body). Next, you will again change your object names and
method call parameters (so that you do not have to type the majority of these Java 9 statements into your
NetBeans 9 IDE again) to position your squares diagonally, from your first quadrant.

The q3 Box object (third quadrant) will need to be moved by 300 units (quadrants are 300x300 in
size) out along both the x- and z-axes, so the q3.setTranslateX() method parameter also needs to be
incremented from 225 to 525 to accomplish this third quadrant game board component positioning, as
shown in Figure 14-24.

Q3S1 needs to position itself 450 units along the x-axis from the 0,0 origin and 750 units out along
the z-axis. This is done by changing your locational method call to .setTranslateX(450) and leaving
(or adding w, which depends on which Java code you copied) .setTranslateZ(750). Be sure to also set
.setMaterial(Shader11) to reference the correct shader number, which then references (and applies) the
diffuse11 Image object as the diffuseMap property.

Q3S2 needs to position itself 600 units along x-axis from the 0,0 origin and 750 units out, along
the z-axis. This is done by changing the location method call to .setTranslateX(600) and leaving (or
adding, depending on the block of Java code you have copied) .setTranslateZ(750). Be sure to also set
.setMaterial(Shader12) to reference the correct shader number, which then references (and applies) the
diffuse12 Image object as a diffuseMap property.

Q3S3 needs to position itself 750 units along the z-axis from the 0,0 origin, as well as 750 units
along x-axis, which puts it diagonal to an 0,0 origin. This is done by changing the location method call to
.setTranslateZ(750) and then adding a second .setTranslateX(750) method call. Be sure to also set
.setMaterial(Shader13) to reference your correct Phong shader object number, which references (and
applies) the diffuse13 Image object as your diffuseMap property.

Figure 14-24. Use your Run ➤ Project work process to see that quadrants 1 to 4 are now coded and aligning
properly

www.ebook3000.com

http://www.ebook3000.org

Chapter 14 ■ 3D MoDel hierarChy Creation: Using priMitives to Create a gaMe BoarD

362

Q3S4 also needs to position itself 750 units along X from the 0,0 origin, but this time, we’ll also need
to pull this square back down another 150 units in the Z direction in order to move it down along the
right side of your game board layout. This is done by again using two location method calls. One would be
.setTranslateZ(600), and the other would still be set to .setTranslationX(750). Again, be sure to set
.setMaterial(Shader14) to reference the matching Shader14 object, which then references and applies a
diffuse14 Image object as a diffuseMap property.

Q3S5 needs to position itself 750 units in the X direction from 0,0 and 450 units in the Z direction
so that this square is located near the middle right of this game board. This is again done using
two location method calls, to .setTranslateX(750) and to .setTranslateZ(450). Be sure to set
.setMaterial(Shader15) to reference your correct Shader15 object, which then references (and applies)
the diffuse15 Image object as the diffuseMap property.

The Java code for the construction of the second quadrant of the game board should look like the
following:

private void createGameBoardNodes() {
 ...
 q3 = new Box(300, 5, 300); // Java code creating a third quadrant for the gameboard
 q3.setTranslateX(525);
 q3.setTranslateZ(525);
 Q3S1 = new Box(150, 5, 150);
 Q3S1.setTranslateZ(750);
 Q3S1.setTranslateX(450);
 Q3S1.setMaterial(Shader11);
 Q3S2 = new Box(150, 5, 150);
 Q3S2.setTranslateZ(750);
 Q3S2.setTranslateX(600);
 Q3S2.setMaterial(Shader12);
 Q3S3 = new Box(150, 5, 150);
 Q3S3.setTranslateZ(750);
 Q3S3.setTranslateX(750);
 Q3S3.setMaterial(Shader13);
 Q3S4 = new Box(150, 5, 150);
 Q3S4.setTranslateZ(600);
 Q3S4.setTranslateX(750);
 Q3S4.setMaterial(Shader14);
 Q3S5 = new Box(150, 5, 150);
 Q3S5.setTranslateZ(450);
 Q3S5.setTranslateX(750);
 Q3S5.setMaterial(Shader15);
 ... // Your fourth quadrant configuration code will go in here
 q4 = new Box(300, 5, 300);
 q4.setVisible(false);
}

Finally, let’s create the fourth quadrant of our game board by going back into the
createGameBoardNodes() method body and creating the fourth section of code for Box primitives
Q4S1 through Q4S5. Just copy your Q3S1 to Q3S5 statements (and q4 statements) and paste them again
underneath themselves; then change the object names and method call parameters (so that you do not have
to type all these Java statements into NetBeans 9 again).

The q4 Box object (fourth quadrant) will need to be moved back down by 300 units along the z-axis, so
your q4.setTranslateZ() method parameter needs to be decremented, from 525 to 225, to accomplish this
fourth quadrant game board component positioning, as shown in Figure 14-24.

Chapter 14 ■ 3D MoDel hierarChy Creation: Using priMitives to Create a gaMe BoarD

363

Q4S1 needs to position itself 300 units along Z (from the 0,0 origin) and 750 units along X at
the right. This is done by changing the location method call to .setTranslateZ(300). Be sure to set
.setMaterial(Shader16) to reference the correct shader that then references and applies the diffuse16
Image object as a diffuseMap property.

Q4S2 needs to position itself 150 units along Z (from the 0,0 origin) and the full 750 units
along X. This is done by changing the location method call to .setTranslateZ(150). Be sure to set
.setMaterial(Shader17) to reference the correct shader that then references and applies the diffuse17
Image object as a diffuseMap property.

Q4S3 only needs to position itself 750 units along X from the 0,0 origin because it is at the right
corner. This means the only location method call needed is .setTranslateX(750). Be sure to set
.setMaterial(Shader18) to reference the correct shader that then references and applies the diffuse18
Image object as a diffuseMap property.

Q4S4 only needs to position itself 600 units along X from the 0,0 origin to pull this square back 150 units
in the direction, of the origin, in order to move it to the left, along the bottom of your game board layout.
This is done by using only the .setTranslateX(600) method call. Be sure to set .setMaterial(Shader19)
to reference the correct Shader9 object, which references (and applies) the diffuse19 Image object as a
PhongMaterial diffuseMap property.

Q4S5 needs to position itself 450 units in the X direction from 0,0 so your last game square is
located near the bottom middle of this game board. This is again done using one location method call to
.setTranslateX(450). Be sure to set .setMaterial(Shader20) to reference the correct Shader20 object,
which then references (and applies) the diffuse20 Image object as a diffuseMap property. The Java code for
the construction of this final quadrant of the game board should look like the following Java code:

private void createGameBoardNodes() {
 ...
 q4 = new Box(300, 5, 300); // Java code creating a second quadrant for the gameboard
 q4.setTranslateX(525);
 q4.setTranslateZ(225);
 Q4S1 = new Box(150, 5, 150);
 Q4S1.setTranslateX(750);
 Q4S1.setTranslateZ(300);
 Q4S1.setMaterial(Shader16);
 Q4S2 = new Box(150, 5, 150);
 Q4S2.setTranslateX(750);
 Q4S2.setTranslateZ(150);
 Q4S2.setMaterial(Shader17);
 Q4S3 = new Box(150, 5, 150);
 Q4S3.setTranslateX(750);
 Q4S3.setMaterial(Shader18);
 Q4S4 = new Box(150, 5, 150);
 Q4S4.setTranslateX(600);
 Q4S4.setMaterial(Shader19);
 Q4S5 = new Box(150, 5, 150);
 Q4S5.setTranslateX(450);
 Q4S5.setMaterial(Shader20);
}

Figure 14-24 shows the Run ➤ Project Java code testing work process, showing a completed 3D game
board.

www.ebook3000.com

http://www.ebook3000.org

Chapter 14 ■ 3D MoDel hierarChy Creation: Using priMitives to Create a gaMe BoarD

364

There are one or two rendering anomalies visible, such as the Q1S2 square, which looks like it is lying
over the Q1S1 square. This is strange, as the code is precise and based on multiples of 150, so it should
be aligned precisely like the others. Since this problem is not with the code, we will take a look at how we
can deal with this rendering anomaly in the next chapter. Use the .setRotationAxis(Rotate.Y_AXIS) and
.setRotate(30) methods to rotate the game board 30 degrees, as you have done before, to see what pivot
point is being used to rotate this gameBoard hierarchy. This Java 9 test code should be placed in your
createBoardGameNodes() method, as shown highlighted in Figure 14-25.

The reason that we’re doing this is that we need to check, before we leave this chapter, whether or not
this game board is working as a hierarchy. That is, if we rotate it around the y-axis, will it use the center of the
gameBoard Group as the pivot point, or will it pivot (rotate) around the center of the 0,0 origin corner square
of the game board?

As you can see in Figure 14-26, the gameBoard Group object is indeed defining its own 0,0 center, using
the average center of all of its Group Node’s children. As we know from the 6 × 150 (900) construction of the
game board, this 0,0 center is offset 450 (half of 900) in X and Z (450, 450) or 625 (450 + 1/2 of 450) in linear
units (on the diagonal) between origins. By constructing things in evenly divisible whole numbers, we will
be able to use integers (int) for our gameplay code in later chapters, which saves on memory and processing
for the JavaFX game engine.

Figure 14-25. Add .setRotationAxis(Rotate.Y_AXIS) and a .setRotate(30) method call to the gameBoard
Group object

Chapter 14 ■ 3D MoDel hierarChy Creation: Using priMitives to Create a gaMe BoarD

365

Before we finish up with this chapter, let’s see if we can improve our game board rendering result by
using a different Camera (algorithm) class since we seem to be having some Box face rendering order and
positioning problems. If it is not the camera object causing these slight ridges between squares, we will have
to look further for solutions to this problem, as we need to get a photorealistic game board that looks like the
cardboard game boards we all use to play games in real life. As you now know, pro Java 9 game development
is an iterative process, so you know we will figure it out eventually!

Changing Cameras: Using the ParallelCamera Class
Next, I am going to change camera objects from a PerspectiveCamera to a ParallelCamera, both to
give you some experience using them and to see if this face-order rendering problem (the seeming
overlap in squares) is any different between the two Camera class algorithms (between the two Camera
subclasses). This is as simple as changing the declaration at the top of your class from PerspectiveCamera
to ParallelCamera and making sure the same changes are made to the instantiation statement in
createBoardGameNodes(), as shown here as well as in Figure 14-27:

ParallelCamera camera;
...
camera = new ParallelCamera();
camera.setTranslateZ(0);
camera.setNearClip(0.1);
camera.setFarClip(5000.0);

Figure 14-26. Rotate the gameBoard Group Node object 30 to 45 degrees to see where it defines its center for
rotation

www.ebook3000.com

http://www.ebook3000.org

Chapter 14 ■ 3D MoDel hierarChy Creation: Using priMitives to Create a gaMe BoarD

366

Next, let’s go into the gameButton event handling code block and remove the .setFieldOfView(1)
method call simply by commenting out that line of code, which as you can see is a slick and common code
debugging trick.

We will do this because that particular method call is not supported for the new ParallelCamera object.
We will also change the camera.setTranslateZ() method call to the diagonal value for the game board that I
calculated to place the camera view at game board center (625).

I will also set the camera.setTranslateX() method call to be one-quarter of the game board width of 225,
as shown in the highlighted camera object code in the middle of Figure 14-28.

Figure 14-27. Change the Scene camera object to use a ParallelCamera class (algorithm) instead of
PerspectiveCamera

Figure 14-28. Remove the FOV setting code, change .setTranslateX() to 225, .setTranslateZ() to 625, and Y = 0

Chapter 14 ■ 3D MoDel hierarChy Creation: Using priMitives to Create a gaMe BoarD

367

I am refining this code to get a better view of the game board and to fit it into the window better so that
when we spin it in subsequent chapters on animation and gameplay, it will perfectly fit into the scene in any
spin orientation as well as while it is animating a random spin to select a topic quadrant.

The next thing I’m going to do is “tweak” the camera values in onStart() to fit the game board in the
window. As you can see in Figure 14-29, we need to flatten the camera view (30 degrees) and adjust the X, Y,
Z location slightly.

As you can see in Figure 14-30, I tweaked the rotation to 30°, the Z to 500, the Y to -300, and the X to -260.

Figure 14-29. The game board is almost fitting perfectly in the window; let’s adjust the camera angle and
spacing next!

Figure 14-30. Set the camera rotation at 30 degrees, the Z location to 500, the Y location to -300, and the X
location to -260

www.ebook3000.com

http://www.ebook3000.org

Chapter 14 ■ 3D MoDel hierarChy Creation: Using priMitives to Create a gaMe BoarD

368

As you can see in Figure 14-31, we have now set the “extremes” of your game board to fit into the
window, using these new camera settings with the ParallelCamera algorithm, which seems to distort the
game board less than the PerspectiveCamera does. If we now rotate the game board, it should all stay inside
of the window (viewable) area.

Summary
In this fourteenth chapter, we constructed the 3D portion of our JavaFX SceneGraph hierarchy, that is,
the gameBoard Group (Node subclass) branch node underneath the root (we had previously created the
uiLayout StackPane Node subclass). We created a subgroup of four game board quadrant Group branch
nodes named Q1 through Q4 that each contained a quarter of the game board interior, which were Box
primitives named q1 through q4 to match up with their Group Node Parent objects. Underneath these
quadrants we grouped five game board square leaf node objects, which will correspond in the gameplay
design to the quadrant game functionality.

We created two new method bodies, one for creating game board squares since there are dozens of
them and the other for creating Phong materials since there are going to be dozens of them! This keeps
things organized. We now have eight (nine if you count main(), which is still in the bootstrap code state)
method bodies, seven of which are custom, and we have more than 400 lines of Java code, all organized
into logical collapsing and expanding sections. We created colorful shaders for each game board square,
mapping the appropriate diffuse texture maps onto each one.

In Chapter 15, we’re going to further refine our game board design and Java code organization and
create a way for game players to manipulate the board in 3D space so they (or the gameplay AI code) can
access the game board content and topic section that interests them.

Figure 14-31. Use your Run ➤ Project work process to see if the new camera algorithm and settings fit the
game board

http://dx.doi.org/10.1007/978-1-4842-0973-8_15

369© Wallace Jackson 2017
W. Jackson, Pro Java 9 Games Development, https://doi.org/10.1007/978-1-4842-0973-8_15

CHAPTER 15

3D Gameplay UI Creation:
Using the Sphere Primitive to
Create a UI Node

Now that you have created the multitiered gameBoard Group Node (subclass) hierarchy and tested it to
see whether it rotates as if it were one 3D model, it is time to add a Sphere 3D primitive so we can create a
3D user interface element for the user to use to create random “spins” during gameplay. We will also set
up the Phong shader objects for these and again use GIMP 2.8.22 to create (from scratch) the rest of your
diffuse texture maps for the game board quadrants, as well as a 3D “spinner” UI texture map for a Sphere
primitive. This spinner will be used on each player’s turn to randomly spin the gameboard to select the topic
category. You will always need to differentiate your pro Java 9 game from others out there, so we’ll be unique
and spin the gameboard itself to pick the quadrant (topic category), which cannot be done with real-life
game boards but which can be done with virtual i3D game boards. We’ll add Java 9 code to the top of your
class as well as in the createMaterials(), addNodesToSceneGraph(), and loadImageAssets() method bodies.
We’ll create custom PNG24 diffuse textures to add to your project source (/src) folder. We’ll rearrange your
createGameBoardNodes() method to reorganize the quadrant 3D primitives that we’ll work on during this
chapter to complete the interior parts of the game board design. We’ll place the quadrants together at the
top of this method.

During the chapter, we will also take a look at how you solve problems that you encounter on your way
to creating professional-quality games. In this case, there is a face rendering problem that we encountered
when modeling the game board; it should render smoothly (flat on top) but is rendering with game board
square overlaps that should not be happening. There are also small Y (height) variations that make the
quadrants look depressed once they’re diffuse texture mapped. (Remember the center quadrants looked flat
in Chapter 14 without shaders applied, but they also exhibit these rendering artifacts once we continue to
work on them, which you’ll see later during this chapter.)

Finish Your 3D Assets: Topic Quadrants and Spinner
Let’s continue with the design and development of the 3D components for the board game, including texture
map development using GIMP for the interior of the game board and a 3D spinner UI element used to create
random spins for the game, just like you have in real-life board games. We will do this using Java 9 (JavaFX
API) classes so that we create the game using only the Java 9 APIs and our digital image assets (background
images and texture maps). So far, we have done this in around 400 lines of code! We will add another 10
percent (440) during this chapter to “skin” the quadrants and add a “spinner” UI element located at the top-
left corner of the screen. The first thing we will need to do at the top of the class is to add five more Image

www.ebook3000.com

https://doi.org/10.1007/978-1-4842-0973-8_15
http://dx.doi.org/10.1007/978-1-4842-0973-8_14
http://www.ebook3000.org

Chapter 15 ■ 3D Gameplay UI CreatIon: UsInG the sphere prImItIve to Create a UI noDe

370

object declarations, named diffuse21 through diffuse25, and five more PhongMaterial object declarations,
named Shader21 through Shader25. This is shown in the following Java code, as well as in green (with some
code being highlighted using yellow and blue) at the top of the class in Figure 15-1:

Image ... diffuse21, diffuse22, diffuse23, diffuse24, diffuse25;
PhongMaterial ... Shader21, Shader22, Shader23, Shader24, Shader25;

Cut and paste the last five diffuse16 through diffuse20 Image object declarations, create five new ones
named diffuse21 through diffuse25, and configure them for use, as shown here and in Figure 15-2:

diffuse21 = new Image("/gameboardquad1.png", 512, 512, true, true, true);
diffuse22 = new Image("/gameboardquad2.png", 512, 512, true, true, true);
diffuse23 = new Image("/gameboardquad3.png", 512, 512, true, true, true);
diffuse24 = new Image("/gameboardquad4.png", 512, 512, true, true, true);
diffuse25 = new Image("/gameboardspin.png", 256, 256, true, true, true);

Figure 15-1. Add objects at the top of your class for diffuse texture maps and shaders for your quadrants and
a spinner

Chapter 15 ■ 3D Gameplay UI CreatIon: UsInG the sphere prImItIve to Create a UI noDe

371

We will create these diffuse texture map digital image assets in the next section of the chapter using
GIMP. Open the createMaterials() method body and add the corresponding Shader21 through Shader25
object instantiation and configuration statements, which “wire up the Shaders” to reference the diffuse
texture map Image object assets.

If you like, you can also use copy and paste to accomplish this just like you did with the diffuse texture
map Image objects. The Java code creating the new shaders and referencing them to the diffuse texture
map Image object assets should look like the following Java code block of statements, shown highlighted in
Figure 15-3:

Shader21 = new PhongMaterial(Color.WHITE);
Shader21.setDiffuseMap(diffuse21);
Shader22 = new PhongMaterial(Color.WHITE);
Shader22.setDiffuseMap(diffuse22);
Shader23 = new PhongMaterial(Color.WHITE);
Shader23.setDiffuseMap(diffuse23);
Shader24 = new PhongMaterial(Color.WHITE);
Shader24.setDiffuseMap(diffuse24);
Shader25 = new PhongMaterial(Color.WHITE);
Shader25.setDiffuseMap(diffuse25);

Figure 15-2. Create five new diffuse image map objects in your loadImageAssets() method and configure
them for use

www.ebook3000.com

http://www.ebook3000.org

Chapter 15 ■ 3D Gameplay UI CreatIon: UsInG the sphere prImItIve to Create a UI noDe

372

You will now have to again utilize GIMP to create your quadrant and spinner texture maps to
professionally texture your board game elements. The current version is 2.8.22.

Creating Your Quadrant and Spinner Diffuse Color Texture Maps
Use the GIMP File ➤ New work process to create a transparent (empty) diffuse texture map composite,
and this time make it 512 by 512 pixels since the quadrant Box objects q1 through q4 are twice as big as
the square Box objects on both axes (or four times larger in total). This matches up mathematically with
doubling the 256-pixel texture map size used for the game board squares. Click the circle (or ellipse) select
tool, shown highlighted at the top of Figure 15-4, and again use the Ellipse Select Tool options tab, below
the tool icons, to set a precise size and location for the circle since we want a white circle perfectly centered
in each game board quadrant. I set the circle’s Size to 400 (equal width and height values create a perfect
circle; any variation will create an ellipse or oval shape), and I divided the rest (512 - 400 = 112 / 2 = 56) to get
my X,Y Position value of 56, which is also highlighted in red.

Figure 15-3. Create five new Shader PhongMaterial objects in your createMaterials() method and wire them
to diffuseMap objects

Chapter 15 ■ 3D Gameplay UI CreatIon: UsInG the sphere prImItIve to Create a UI noDe

373

With the Background layer selected, make sure the Foreground (FG) Color swatch is set to white
and use the Edit ➤ Fill with FG Color (White) option to create the white center for all four quadrant
texture maps at the very bottom of the compositing layer stack, as shown in Figure 15-4. Right-click your
Background layer, use the New Layer command, and create a new layer named GameBoardQuadrant.
Use the Select ➤ Invert menu sequence to invert the selection and select the GameBoardQuadrant layer
to designate that layer to hold your outer color fill. Open the gameboardsquare3.png file and use the
Eyedropper tool to select its orange color value. Click your FG Color (foreground) swatch, invoke the color
picker dialog, and set the Value (V) slider to 60 percent color (40 percent white) to create a pastel version of
the corner square’s color for the quadrant located diagonally from it. Use Edit ➤ Fill with FG Color to fill the
area around the center circle with the color, use File ➤ Export As to save the file to the project’s /src folder,
and name it boardgamequad1.png, as referenced in your Image object code in Figure 15-2. Repeat this
process: create a new layer, get a corner square color value, lighten by 40 percent, fill with the foreground
color, and export the image as PNG24 to create the other three numbered boardgamequad PNG24 assets,
which are shown in their own layers on the far left side of Figure 15-4. You can also see the gameboardsquare
3, 8, 13, and 18 image assets I opened to sample color values from at the top-right corner of Figure 15-4. The
Eyedropper tool is on the lower right of the Ellipse Select tool.

While we’re here in GIMP, let’s open our texture map creation GIMP XCF file with all of the different
map types we created during Chapter 13, covering shaders and materials, and use your beach ball diffuse
texture to create a 3D spinner Sphere texture that reads “SPIN” as it spins around, with S and I in white (over
color) and P and N in black.

Figure 15-4. Create the four quadrant texture maps at 512-pixel resolution using 60 percent of the corner
square color value

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_13
http://www.ebook3000.org

Chapter 15 ■ 3D Gameplay UI CreatIon: UsInG the sphere prImItIve to Create a UI noDe

374

Open the Pro_Java_9_Games_Development_Texture_Maps GIMP XCF file and select the Text tool,
shown in a red box in Figure 15-5. Set your Text options to use Arial Heavy, set Font Size to 48, and select
Antialiasing. Click the Color swatch and select White, and type a capital S over the middle of the green
stripe, as shown in Figure 15-5. Right-click the S layer and select the Duplicate Layer tool, set your Text
tool Color swatch to Black, and select the S in yellow, as is shown in Figure 15-5; then type in a capital P
to replace the S. You can use the Move tool (four connected arrows) to move the text element, using the
right arrow key, so that it stays precisely aligned with the S. Center it in the white stripe and then repeat the
process for the I and the N text elements until you have created the word SPIN.

Figure 15-5. Create the word SPIN twice on your beach ball texture map to create your animated spinner
texture map

Chapter 15 ■ 3D Gameplay UI CreatIon: UsInG the sphere prImItIve to Create a UI noDe

375

Once you have done all four letters once, you can use the same right-click on a layer and use the
Duplicate Layer work process to replicate these letters; then use your Move tool to position the letters on
the other four stripes, as shown on the right in Figure 15-6.

To use the GIMP Move tool, first click the text element, which will show the Move tool what you want to
move, and then use the right arrow key to position the letter over the next stripe. Using the right arrow key
instead of dragging the letter with the mouse will keep the letter at exactly the same pixel height location,
keeping the letters in perfect alignment with each other.

As you will see in Figure 15-6, this work process will yield a uniform, professional map result. Although
your letters seem cramped on the GIMP canvas, when mapped onto the curvature of a Sphere primitive, the
result is quite readable, even while being animated, because the curvature of the surface seems to “stretch”
these letters farther apart.

Once you are satisfied with the spinner texture map, use the File ➤ Export As menu sequence, and save
your gameboardspin.png file to your C:/Users/Name/Documents/NetBeansProjects/JavaFXGame/src/
folder, as shown in Figure 15-7. Notice that our boardgamesquare PNG24 files are well optimized, at 680
bytes, and our boardgamequad files are only 10KB each. If you click a file name, you will get a good preview
of the texture map on the right side of the dialog. This is a great feature, especially for similar file names,
because you can click any file name to preview it and GIMP will put that file name in the Name field; then
you can just change the number at the end as a typing shortcut!

Figure 15-6. Replicate the four SPIN letters twice in the center of each of the eight stripes, at exactly the same
height

www.ebook3000.com

http://www.ebook3000.org

Chapter 15 ■ 3D Gameplay UI CreatIon: UsInG the sphere prImItIve to Create a UI noDe

376

Next, let’s start applying the diffuse texture maps to our 3D boardgame elements and finish creating the 3D.

Texture Mapping the 3D Game Board Quadrants: The Java Code
Open your createGameBoardNodes() method body, and cut and paste the q1 through q4 object code into
the top of the method so that your quadrant Box primitives q1 through q4 are instantiated and configured
all in the same block of Java 9 statements. You can now more clearly see the pattern of X, Z movements from
different 225 and 525 combinations relative to each quadrant, with no identical X, Z coordinate pairs, which
would overlap your quadrants.

Add q1.setMaterial(Shader21); to the first one, as shown in Figure 15-8, using the following Java code:

q1 = new Box(300, 5, 300);
q1.setMaterial(Shader21);
q1.setTranslateX(225);
q1.setTranslateZ(225);
q2 = new Box(300, 5, 300);
q2.setTranslateX(225);
q2.setTranslateZ(525);
q3 = new Box(300, 5, 300);
q3.setTranslateX(525);
q3.setTranslateZ(525);
q4 = new Box(300, 5, 300);
q4.setTranslateX(525);
q4.setTranslateZ(225);

Figure 15-7. Name your new diffuse color texture map file gameboardspin.png and then save it into your /src
folder

Chapter 15 ■ 3D Gameplay UI CreatIon: UsInG the sphere prImItIve to Create a UI noDe

377

Figure 15-9 shows a Run ➤ Project work process with game board quadrant 1 texture mapped and test
rendered. As you can see, the face order rendering problem appears once your diffuse texture map has been
applied!

Figure 15-8. Cut and paste all quadrant Box primitive code to one place and start adding shaders using
.setMaterial()

Figure 15-9. Select Run ➤ Project to render and preview the first quadrant texture map application (the face
order bug appears)

www.ebook3000.com

http://www.ebook3000.org

Chapter 15 ■ 3D Gameplay UI CreatIon: UsInG the sphere prImItIve to Create a UI noDe

378

Next, add your .setMaterial() method calls for your other three quadrant Box primitives and reference
your correct Shader22 through Shader24 PhongMaterial objects in the method call parameter list.
The wiring of the Shader objects to the Box primitives should look like the following Java code, shown
highlighted in yellow in Figure 15-10, once you are finished:

q1 = new Box(300, 5, 300);
q1.setMaterial(Shader21);
q1.setTranslateX(225);
q1.setTranslateZ(225);
q2 = new Box(300, 5, 300);
q2.setMaterial(Shader22);
q2.setTranslateX(225);
q2.setTranslateZ(525);
q3 = new Box(300, 5, 300);
q3.setMaterial(Shader23);
q3.setTranslateX(525);
q3.setTranslateZ(525);
q4 = new Box(300, 5, 300);
q4.setMaterial(Shader24);
q4.setTranslateX(525);
q4.setTranslateZ(225);

Figure 15-10. Complete the Shader object wiring to Box primitives for all quadrants so we can see the finished
gameboard

Chapter 15 ■ 3D Gameplay UI CreatIon: UsInG the sphere prImItIve to Create a UI noDe

379

As you can see in Figure 15-11, the quadrant Box primitives are now exhibiting the same face rendering
order problems as the rest of the i3D game board. Let’s take a break from coding to see whether we can find
any evidence of other Java developers experiencing this particular 3D model face render problem in their
JavaFX 9 game development. As you might imagine, the tool to use to do this research is a search engine.

Let’s take a look at how I found the solution to the face order rendering problem, which I attempted to
do using the Google search engine and well-targeted keywords, before filing a bug report on the JavaFX 9 dev
forum.

Use Google to Resolve JavaFX Anomalies: Using StackOverflow
To find developers having similar problems, use the Google search engine and type in the most common
or likely description of the problem that you are seeing on the screen. In this case, that would be “wrong
overlapping shapes” or “problem with Box face order rendering.” Sometimes you may have to try several
different keyword strings. In this case, there are several out there with the correct answer, which is to turn on
a feature called depth buffering. This is an algorithm that is processing intensive, so it is off by default. Since
we are also getting some jagged edges, we can turn on another processing-intensive algorithm called anti-
aliasing. These are both accessible in the overloaded Scene() constructor, so fixing both of these problems
can be done with one simple modification to our Scene scene object instantiation! Here is an example of two
of the StackOverflow answers regarding this problem and its solution:

stackoverflow.com/questions/19589210/overlaping-shapes-wrong-overlapping-shapes-behaviour
 --OR--
stackoverflow.com/questions/28567195/javafx-8-3d-z-order-overlapping-shape-behaviour-is-wrong

Figure 15-11. The diffuse texture mapping looks very professional, other than the face depth and rendering
anomalies

www.ebook3000.com

http://www.ebook3000.org

Chapter 15 ■ 3D Gameplay UI CreatIon: UsInG the sphere prImItIve to Create a UI noDe

380

The overloaded constructor method for the Scene that allows you to turn on both depth buffering and
anti-aliasing as the default behavior for the 3D Scene object looks like the following Java code:

Scene(Parent root, double width, double height, boolean depthBuffer, SceneAntialiasing
constant)

Thus, we need to add depthBuffer=true and SceneAntialiasing.BALANCED to the Scene()
constructor that we’re using in the createBoardGameNodes() method, which as you can see in
Figure 15-12 (in a red rectangle) I added to the end of the scene = new Scene(root, 1280, 640); Java 9
Scene object instantiation statement. This switches your constructor method call to utilize a different
overloaded constructor method to create your 3D Scene.

Let’s add a 3D UI element, called a spinner, that a player can use to randomly spin the game board to
pick a topic.

Creating a 3D User Interface Element: A 3D Spinner Randomizer
Now let’s reuse our Sphere primitive code and beach ball texture map to create a 3D user interface (UI)
element that the player can click to spin the board to pick a random subject (topic) category. Declare the
Sphere and name it spinner at the top of the class. Then instantiate it with a radius of 60 and configure it
with Shader25 and the X, Y location of -200, -500, which puts it at the top-left corner of the screen. Use the Y
rotation axis and set a rotate value of 25 degrees to try to place the word SPIN facing the user. Your Java code,
shown in Figure 15-12, will look like this:

Sphere spinner;
...
spinner = new Sphere(60);
spinner.setMaterial(Shader25);
spinner.setTranslateX(-200);
spinner.setTranslateY(-500);
spinner.setRotationAxis(Rotate.Y_AXIS);
spinner.setRotate(25);
scene = new Scene(root, 1280, 640, true, SceneAntialiasing.BALANCED);

Chapter 15 ■ 3D Gameplay UI CreatIon: UsInG the sphere prImItIve to Create a UI noDe

381

Before we will be able to render your 3D Scene and look at the new spinner UI to see whether we need
to tweak the diffuse texture map in any way, we’ll need to add it to the JavaFX SceneGraph. I am going to
add it at the top, directly under the root, as the 3D UI will eventually have its own hierarchy, just like the 2D
uiLayout does and just like the 3D gameBoard does. In this way, if we want to affect the 3D UI elements as a
whole at any time, we can do this using one line of code referencing the 3D UI branch, and that will affect all
the leaf nodes underneath it. For now, the spinner will be a leaf node underneath the root. The Java code to
add the spinner, shown in Figure 15-13, should look like the following:

root.getChildren().addAll(gameBoard, uiLayout, spinner);

Figure 15-12. Add a Sphere primitive named spinner, set the material and translation parameters, and fix the
face order render bug

www.ebook3000.com

http://www.ebook3000.org

Chapter 15 ■ 3D Gameplay UI CreatIon: UsInG the sphere prImItIve to Create a UI noDe

382

Now we can use the Run ➤ Project work process and test our new Java code to add the Sphere
spinner UI to the board game we are creating in this 3D Scene. We’ll also be able to see whether adding the
algorithms for anti-aliasing and depth buffering (which check for proper face order rendering and apply
smoothing to rough edges in the render pass, respectively) have solved our visual quality problems by using
the more complex overloaded Scene() constructor method, with five parameters, instead of only three.

As you can see in Figure 15-14, the 3D gameBoard hierarchy, with two dozen 3D primitive objects as
game board squares and game board quadrants, is now rendering as one cohesive 3D model. It finally looks
like the board game (cardboard game boards) that you see in most popular board games, and each square
and quadrant will be able to be accessed and controlled individually in your code, even though the game
board model appears to be only one 3D object in the 3D Scene. This is what we’ve been striving to learn
about, and achieve, during the past several chapters.

Figure 15-13. Add your spinner Sphere object to the top of the SceneGraph hierarchy using root.getChildren().
addAll()

Chapter 15 ■ 3D Gameplay UI CreatIon: UsInG the sphere prImItIve to Create a UI noDe

383

The spinner UI element, on the other hand, is not giving us the visual result that we wanted initially,
which was a beach ball type of object, with the word SPIN written on the front of it. This is OK, as we know
that pro Java 9 games development is an iterative refinement process, so let’s think about how we can
shrink the word SPIN down so that four letters show on the Sphere primitive at one time, rather than only
two letters as it is rendering currently.

The easiest way to shrink the text so the word SPIN fits on one-quarter of the Sphere primitive, as well as
to increase the number (and thinness) of the colored stripes, would be to make this texture map a 512-pixel
texture. This will shrink all text elements so four will fit, and we can copy and paste the stripes and color shift
them to add more color.

Next, let’s go back to GIMP and look at the work process for enhancing the spinner UI diffuse texture map.

Enhancing the 3D Spinner Texture Map: Increasing Resolution
The work process for creating a more detailed 512x512 pixel texture map for the 3D spinner UI element is
a lot easier than you might think, if you use the power of GIMP’s tools and algorithms within an optimized
work process. We can double the resolution, double the stripes, double the stripe colors, and double the
text elements in only a dozen or two “moves,” with GIMP doing all of the pixel manipulation for you, at the
highest quality level, which we will require.

Figure 15-15 shows the GIMP composite result for the moves. The first thing to do is to add another 256
pixels to the right side of the document by using Image ➤ Canvas Size ➤ Width=512 ➤ Resize (button),
which will add 256 pixels of transparency to the right half of your texture map composite. Select the
Background layer and white color swatch and use the Paintbucket tool (fourth row, fourth icon) to fill the
right half of the Background layer so it is 100 percent white. Next, right-click the Color Map layer and select
the Duplicate Layer option, which will create the Color Map copy layer, shown in Figure 15-15. Select this
layer, use the Color ➤ Hue-Saturation algorithm (menu sequence), and shift all four colors by 60 degrees or
so to create four different colors, as shown in Figure 15-15. Next, to resize the (Y or height) dimension to 512
matching pixels, this time use the Image ➤ Scale Image menu sequence, unlock the aspect ratio by clicking

Figure 15-14. The face rendering order problem has been fixed, and we're now getting a smooth, thin
cardboard game

www.ebook3000.com

http://www.ebook3000.org

Chapter 15 ■ 3D Gameplay UI CreatIon: UsInG the sphere prImItIve to Create a UI noDe

384

the chain icon between the width and height, and set the height value to 512. This will stretch the color
bars to fill the image so that you don’t have to do a lot of select-move-fill work like you did originally to create
the beach ball texture map. This scaling operation will also make the text components taller, which will
make them more readable in the Sphere spinner UI, especially while it is spinning. Finally, right-click the #2
layers for S, P, I, and N and create layer #3 and layer #4 for each. Use the Move tool and the right arrow key to
precisely position them.

Finally, use File ➤ Export As to overwrite the current gameboardspin.png file in your Project /src/
folder. Since that file name is already being referenced within the diffuse25 Image object instantiation
statement, all that you have to do is to change the width and height values from 256 to 512, which, when
mapped onto a Sphere primitive of the same size, will serve to decrease the size of both the stripes and the
text elements (letters) on the Sphere so that instead of two letters (SP, shown in Figure 15-14), four letters
(SPIN) will be shown. At that point, all that you have to do is to tweak the rotation value somewhere between
20 and 30 degrees so that the word SPIN will be centered in the Sphere object named spinner so that the user
knows what will happen when this Sphere spinner UI object is clicked.

Figure 15-15. Use a 256-pixel beach ball texture map to create a more detailed 512-pixel Sphere spinner UI
texture map

Chapter 15 ■ 3D Gameplay UI CreatIon: UsInG the sphere prImItIve to Create a UI noDe

385

The new Java 9 statement for your diffuse25 object instantiation should look like the following Java
code, which is also highlighted in yellow and blue in Figure 15-16:

diffuse25 = new Image("/gameboardspin.png", 512, 512, true, true, true);

The next thing that needs to be done is to “tweak” all the spinner object configuration settings to make
the Sphere primitive a bit larger and move it closer to the corner of the screen so that it’s well out of the way
of the game board. I made the radius 64 and the Y translation -512 to move it further up. I found the rotation
value of 30 degrees centers the word SPIN. The Java code, which is also highlighted in Figure 15-17, should
look like the following:

Sphere spinner;
...
spinner = new Sphere(64);
spinner.setMaterial(Shader25);
spinner.setTranslateX(-200);
spinner.setTranslateY(-512);
spinner.setRotationAxis(Rotate.Y_AXIS);
spinner.setRotate(30);

Figure 15-16. Modify the width and height resolution parameters and change them from 256 pixels to 512
pixels each

www.ebook3000.com

http://www.ebook3000.org

Chapter 15 ■ 3D Gameplay UI CreatIon: UsInG the sphere prImItIve to Create a UI noDe

386

Figure 15-17. Tweak the Sphere spinner settings to radius 64 to make the spinner bigger and rotate it to 30
degrees to see SPIN

Figure 15-18. The spinner Sphere UI element now looks more like a spinner, and the word SPIN is now visible
to the user

Figure 15-18 shows the Run ➤ Project Java code testing work process. As you can see, the game board
is now looking quite professional, and the 3D spinner UI looks like a spinner and is labeled SPIN, using
large, readable letters.

Chapter 15 ■ 3D Gameplay UI CreatIon: UsInG the sphere prImItIve to Create a UI noDe

387

Now we are at a point where our 3D boardgame is designed and coded, and we can get back into some
of the more technical JavaFX classes in the javafx.graphics module that are commonly used for games. One
of the most technical areas is 3D animation, which we’ll get into next so that we can animate the spinner and
game board and so forth to take our 3D boardGame Node hierarchy into the fourth dimension of time! After
that, we can add interactivity and make it an i3D board game! I just needed to get things perfected and a 3D
spinner in place, before we move on to add animation.

Summary
In this fifteenth chapter, we constructed the 3D “spinner” Sphere primitive UI element, which will allow the
user to apply a random spin to the game board to select a topic quadrant. We also finished texture mapping
the game board and figured out how to fix face rendering anomalies that kept the game board model, the
centerpiece for the game, from rendering correctly and therefore from having a professional appearance.
This solution involved using a much more complex Scene object instantiation, including a flag to turn on a
depth buffering algorithm as well as a constant that enables the scene-wide anti-aliasing of all 3D objects.
This eliminated the Y dimension (height) face rendering mistakes, as well as the jagged edges we were
seeing on the edges of game board components.

We created five new texture maps for the four game board center quadrants and for the spinner
UI element that allows the players to spin the board to determine what their next move, in this case an
educational topic, will be.

We added diffuse texture map Image objects and Phong shader definitions that utilized these texture
maps. We also added Java code to add a spinner UI to the SceneGraph hierarchy and got some more practice
using GIMP.

In Chapter 16, we’re going to learn about all of the powerful Animation-related Transition classes
in JavaFX 9.

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_16
http://www.ebook3000.org

389© Wallace Jackson 2017
W. Jackson, Pro Java 9 Games Development, https://doi.org/10.1007/978-1-4842-0973-8_16

CHAPTER 16

3D Game Animation Creation:
Using the Animation Transition
Classes

Now that you have created the multitiered gameBoard Group Node (subclass) hierarchy, textured all of
the 3D components underneath that hierarchy, made sure that your 3D game board model center-rotates,
and created a 3D spinner UI to randomly rotate this gameBoard 3D model (hierarchy) to select a random
quadrant, it’s time to add animation objects to the game design using a custom createAnimationAssets()
method for the spinner to call to create random “spins” for use during gameplay. We’ll also set up 3D
object mouse click event handling code to trigger the animation and the logic that will randomize your
RotateTransition parameters before this spin is undertaken.

During the chapter, we take a detailed look at the abstract Animation and Transition superclasses and
all of the powerful property transition subclasses, which you can implement as different types of Animation
objects in your i3D board game. We’ll animate rotation for your game board and spinner, as well as the
translation (movement) for the spinner.

Animating the 3D Assets: The Animation Superclass
The public abstract Animation class extends Object and is kept in the javafx.animation package, as are the
other animation-related classes, some of which we will be using for our game and will be covering in detail
during this chapter. The Animation superclass has two direct known subclasses, Timeline and Transition.
Transition has ten predefined Animation (algorithm) subclasses, ready to apply to your game development,
so we will focus on them since they can be used immediately and effectively. The javafx.animation
package could have an entire book written on it, and I have only one chapter, so I’ll cover the most effective
animation classes to use to create pro Java 9 games with.

The Java 9 class hierarchy for the Animation superclass shows us that the class was scratch-coded to
provide object animation capabilities as it has no superclass of its own and therefore looks like the following
class hierarchy:

java.lang.Object
 > javafx.animation.Animation

https://doi.org/10.1007/978-1-4842-0973-8_16

Chapter 16 ■ 3D Game animation Creation: UsinG the animation transition Classes

390

The abstract Animation class cannot directly create Animation objects, but it does provide
core functionality across all animation classes used in the JavaFX API. The exception to this is the
AnimationTimer class (a pulse engine), which implements a core timer pulse engine (thus, it is more of a
timer class than an animation class) and is ideal for 2D sprite-based games. I get into this class in Beginning
Java 8 Games Development, where I cover i2D games development in detail. I am focusing more on i3D
games development in this book, so I will take the opportunity to cover some of the other useful (which are
also canned or precoded) animation transition classes.

The animation can run a finite number of times by setting the cycleCount property. To make any
animation “pong” (i.e., run back and forth from start to end to start again), set the autoReverse property to
true; otherwise, use a false boolean value, which we’ll be using in our pro Java 9 game to randomly spin the
i3D game board in one direction.

To play an Animation object once you have instantiated and configured it, you call the play() method
or the playFromStart() method. The Animation object’s currentRate property sets your speed and
the direction. By inverting the numeric value of currentRate, you can toggle your play direction. Your
animation will stop whenever the duration property has been “satisfied” (exhausted, come to an end, been
expended, been reached, expired, and so forth).

You can set an indefinite duration (sometimes called a loop or infinite loop) for the Animation object by
using a cycleCount property with an INDEFINITE constant. Animation objects configured in this fashion
run repeatedly until a stop() method is called. This will stop a running Animation and reset its playback
to its starting point (property settings). An Animation can also be paused by calling pause(), and the next
play() call will resume an Animation from where it was paused, unless you use a .playFromStart() method
call. Let’s take a look at the properties that are part of the Animation superclass next. These are inherited by
the Transition superclass, and all of its subclasses, so you will be using these over the course of the rest of
this book in your Pro Java 9 Games Development code.

The autoReverse BooleanProperty is used to define whether an Animation object is supposed to
reverse its direction on alternating cycles. currentRate is a ReadOnlyDoubleProperty that is used to indicate
current speed (and direction, indicated by positive or negative value) at which an Animation object’s other
settings are being played.

A currentTime ReadOnlyObjectProperty<Duration> is used to define an Animation object playback
position, and a cycleCount IntegerProperty is used to define the number of cycles to play an Animation
object. A cycleDuration ReadOnlyObjectProperty<Duration> is a read-only variable that can be used to
indicate the duration of one cycle of the Animation object. This is the time it takes to play from time 0 to the
end of the Animation, at the default rate of 1.

The delay ObjectProperty<Duration> is used to delay the start time for your animation, and the
onFinished ObjectProperty<EventHandler<ActionEvent>> property contains the ActionEvent to be
triggered at the conclusion of the Animation object playback. The rate DoubleProperty is used to define the
speed and the direction at which your Animation is targeted to be played at. Note that because of hardware
limitations, this rate may not always be possible, so there is a currentRate property to hold the actual
achieved playback rate.

The status ReadOnlyObjectProperty<Animation.Status> property contains the enum status constant for
the Animation object. The Enum Animation.Status helper class holds three constants: PAUSED, RUNNING,
and STOPPED.

The totalDuration ReadOnlyObjectProperty<Duration> property holds a read-only variable to
indicate the total duration of the Animation object, which is multiplied by the cycleCount property to factor
in how many times it repeats. So, duration is one cycle, and totalDuration is equal to (delay + (duration *
cycleCount)).

Animation has one static (nested) class, which is an Animation.Status class that holds Enum constants
representing the possible states for status. These include PAUSED, RUNNING, and STOPPED.

Animation has one data field, the static int INDEFINITE field, which is used to specify an animation
that will repeat itself indefinitely until the .stop() method is called.

www.ebook3000.com

http://www.ebook3000.org

Chapter 16 ■ 3D Game animation Creation: UsinG the animation transition Classes

391

Animation has two overloaded constructors, one simple (empty parameter area) one that creates an
empty or unconfigured Animation object and a second that configures the Animation object with a target
frame rate. These constructor methods (their subclass’s constructor method format, as these are not directly
usable in your code) should look like the following Java code:

protected Animation() // Protected: Cannot Be Directly Instantiated
protected Animation(double targetFramerate)

There are literally dozens of methods with which you can control your Animation objects, which, in
the case of this chapter, is going to be the various Transition subclasses. These inherit the methods from the
Animation class, through the Transition class, to the various property transition classes, which we will be
using for Java 9 games.

The autoReverseProperty() method call returns a BooleanProperty defining whether the Animation
object will reverse its direction between (alternating) playback cycles. The currentRateProperty() method
call returns a read-only double variable used to indicate the current speed and direction at which the
Animation object is playing.

A .rateProperty() method call returns a double value speed and direction at which an Animation is
expected to play. A .statusProperty() method call returns a ReadOnlyObjectProperty<Animation.Status>
status of an Animation, and a .currentTimeProperty() method call returns an Animation object’s playback
position. The .cycleCountProperty() returns the number of cycles in an Animation object using an integer
value that represents the cycleCount property.

The .cycleDurationProperty() method returns a read-only variable indicating a duration of one cycle
of the Animation, which is the time it takes to play from time 0.0 to the end of the Animation at the default
rate of 1.0. The .delayProperty() method call returns the duration of the delay property that delays the start
of an Animation object.

A .totalDurationProperty() method call returns a read-only Duration property setting to indicate the
total duration for the Animation object. It is important to note that this value will include all of the animation
repeat cycles.

The .getCuePoints() method call returns an ObservableMap<String,Duration> containing the cue
points for the Animation object. These cue points should be used to mark important positions within the
Animation object. The .getCurrentRate() method call will return the double value for your Animation
object’s currentRate property.

The .getCurrentTime() method call will return the value of the Animation object’s currentTime
property.

The .getCycleCount() method call will return the integer value of the Animation object cycleCount
property, and the .getCycleDuration() method call will return the value of the cycleDuration property. The
.getDelay() method call will return the value of the delay property.

A .getOnFinished() method call will return an EventHandler<ActionEvent> value of an onFinished
property, and a .getRate() method call will return the double value of the rate property. The .getStatus()
method call will return the Animation.Status value of the status property.

The .getTargetFramerate() method call will return the target frame rate, which is the maximum frame
rate at which the Animation object will run (using frames per second).

The .getTotalDuration() method call will return the Duration value for the totalDuration property.
The .isAutoReverse() method call will return the value of the autoReverse property.
The void .jumpTo(Duration time) method call will jump to a given position in the Animation object,

as will the void .jumpTo(String cuePoint) method call, using a cuePoint parameter rather than a Duration
parameter.

The .onFinishedProperty() method call returns the ObjectProperty<EventHandler<ActionEvent>>
action to be triggered at the conclusion of the Animation object playback. The void .pause() method call
is used to pause the animation object playback cycle. The void .play() method call will play an Animation
object from its current position, in the direction indicated by the rate property.

Chapter 16 ■ 3D Game animation Creation: UsinG the animation transition Classes

392

The void .playFrom(Duration time) method call is a convenience method that will play an Animation
from a specific position, as will the void .playFrom(String cuePoint) method call using a cuePoint rather
than a Duration. A void .playFromStart() method call will play an Animation object from its initial position
in a forward direction. A void .setAutoReverse(boolean value) method call can be used to set the value of
the autoReverse property.

The void .setCycleCount(int value) method call can be used to set the value of the cycleCount
property. The protected void .setCycleDuration(Duration value) method call can be used to set the value
of the cycleDuration property. The void .setDelay(Duration value) method call can be used to set the
value of the delay property. The void .setOnFinished(EventHandler<ActionEvent> value) method call can
be used to set a value of an onFinished property.

The void .setRate(double value) method call can be used to set the value for your Animation object’s
rate property. The protected void .setStatus(Animation.Status value) method call can be used to set the
constant value of the status property.

The void .stop() method call is used to stop the Animation object playback cycle, and it is important
to note that this method call will reset the playback head to its initial starting position so it can be used as a
reset. Next, let’s take a look at another abstract superclass, Transition, a subclass of Animation and used to
create property transitions.

Automated Object Animation: Transition Superclass
The public abstract Transition superclass is kept in the javafx.animation package along with its subclasses,
which are predefined algorithms, for applying different types of property animation without having to use
timelines or animation timers or to set up keyframes. Therefore, the Transition subclasses are the highest
(most advanced) form of Animation classes and are perfectly suited for pro Java 9 game development, as
they allow you to focus your time on the gameplay development rather than reinventing Java animation
code. This is why we are covering these classes for quickly implementing game animation! The Java class
hierarchy for the Transition superclass looks like the following:

java.lang.Object
 > javafx.animation.Animation
 > javafx.animation.Transition

The known direct subclasses that can be quickly and effectively implemented to enhance your
Java games development process include RotateTransition, ScaleTransition, and TranslateTransition
to invoke basic 3D object transforms (these can also be used on 2D, Text, and UI elements); and
FadeTransition, FillTransition, StrokeTransition, and PathTransition for working with 2D (i.e., vector)
objects (FadeTransition works with Text, and UI elements as well). There are also two subclasses used
to create compound (or complex) animations, which combine these other types of property transitions
seamlessly. These include the ParallelTransition, which executes property transitions at the same time, and
SequentialTransition, which executes a string of property transitions serially (one after the other). There’s
also a PauseTransition subclass used to introduce “wait states” into complex animation that will allow more
motion realism to be added into the special animation effect you are trying to create.

The abstract Transition superclass contains all the basic functionality that is required by Transition-
based animation. The class offers a framework to define property animation and can be used to define your
own Transition subclasses as well, if you wish. Most of the types of transitions used for games are already
provided (fade, transforms, path, etc.), however, so all you have to do is implement code that has already
been created, debugged, and optimized.

Transition subclasses all require implementation of a method called .interpolate(double). This
method is called in each cycle of the Animation object, so long as the Transition subclass (object) is running.
In addition to the .interpolate() method, any subclass extending Transition will be required to set a duration
for an Animation cycle using the Animation.setCycleDuration(javafx.util.Duration) method call.

www.ebook3000.com

http://www.ebook3000.org

Chapter 16 ■ 3D Game animation Creation: UsinG the animation transition Classes

393

This duration should be set using the duration property (as in RotateTransition.duration), for example.
But it can also be calculated by the extending class as is done in ParallelTransition and FadeTransition.

The Transition class has one interpolator property, of type ObjectProperty<Interpolator>, which
is used to control the timing for the acceleration and deceleration of each Transition cycle. Properties
inherited from Animation superclass include the autoReverse, currentRate, currentTime, cycleCount,
cycleDuration, delay, onFinished, status, rate, and totalDuration properties. There’s also an Animation.
Status nested class, inherited from the Animation class.

There are two overloaded Constructors; one constructs an empty transition subclass object, and
the other one constructs a frame-rate-configured transition subclass. These look like the following two
constructor methods:

Transition()
Transition(double targetFramerate)

Finally, there are six methods added to this abstract superclass, most of which are related to
the interpolate property. This class also inherits the methods we covered in the previous section. A
.getCachedInterpolator() method returns the Interpolator property that was set when the Transition
subclass was started. The .getInterpolator() method will get the value of the interpolator property, while the
void .setInterpolator(Interpolator value) method will set a value for the interpolator property. As mentioned,
the protected abstract void .interpolate(double) method needs to be provided by Transition subclasses, and
the .interpolatorProperty() method controls your timing for acceleration and deceleration.

Finally, the .getParentTargetNode() method call will return the Node that has been targeted to play
the animation for the Transition subclass. Next, let’s take a look at one of these Transition subclasses in
detail, and then we can implement it in your JavaFXGame Java code to rotate (animate the rotation of) your
gameBoard Group Node.

Animating 3D Object Rotation: Using the RotateTransition Class
The public final RotateTransition class will be used to create rotation animation and extends the Transition
superclass. It will be stored in the javafx.animation package, with all the other animation and animation
timer-related classes. The Java class hierarchy for the RotateAnimation subclass should look like the
following Java class hierarchy:

java.lang.Object
 > javafx.animation.Animation
 > javafx.animation.Transition
 > javafx.animation.RotateTransition

A RotateTransition class (object) can be used to create a rotation animation that lasts as long as its
duration setting. This is done by updating the rotate variable of the Node it is attached to at a regular
interval. A rotation angle value should be specified using degrees. Rotation starts from a fromAngle property,
if provided, or else it will proceed from the node’s current (previous) rotation value. Rotation will stop using
the toAngle value, if provided, or else it will use a start value plus the byAngle value. The toAngle value will
take precedence if both the toAngle and the byAngle have been specified.

The RotateTransition adds properties to those inherited from Animation and Transition, which help to
define the rotation transition algorithm. These include an axis ObjectProperty<Point3D> property that is
used to specify an axis of rotation for the RotateTransition object; a node ObjectProperty<Node> property,
which is used to specify your target Node object that should be affected by the RotateTransition; and
duration ObjectProperty<Duration> property, which is used to specify the duration for the RotateTransition.

Chapter 16 ■ 3D Game animation Creation: UsinG the animation transition Classes

394

The byAngle DoubleProperty can be utilized to specify an incremental stop angle value from the
start of the RotateTransition. The fromAngle DoubleProperty can be used to specify a start angle value for
your RotateTransition. The toAngle DoubleProperty can be used to specify your stop angle value for your
RotateTransition.

The nested class, fields, and properties discussed previously are inherited from Animation and Transition.
There are three overloaded constructor methods for a RotateTransition class. One creates an

unconfigured RotateTransition, one creates a duration configured RotateTransition, and one creates a
duration and Node object configured RotateTransition. These three constructor methods look like the
following Java code:

RotateTransition()
RotateTransition(Duration duration)
RotateTransition(Duration duration, Node node)

There are 19 methods specifically for use in this class besides the methods inherited from Animation
and Transition superclasses extended by this class. The .axisProperty() method call specifies an axis of
rotation for the RotateTransition using an ObjectProperty<Point3D> format. The .byAngleProperty()
method specifies an incremental stop angle value, which is an offset from the start angle, for the
RotateTransition object.

The .durationProperty() method specifies the duration of the RotateTransition using an
ObjectProperty<Duration>. The .fromAngleProperty() method specifies the start angle value for this
RotateTransition using a DoubleProperty. The .getAxis() method call gets the value of the axis property
using a Point3D object.

The .getByAngle() method will get the double value of the byAngle property. The .getFromAngle()
method call will get the double value of the fromAngle property. The .getToAngle() method call will get the
double value of the toAngle property. The .getNode() method call will get the Node object value of the node
property, and the .getDuration() method call will get the value of the duration property. The protected
void .interpolate(double value) method call, as you know, has to be provided by subclass implementations
of a Transition superclass. The .nodeProperty() method specifies the target ObjectProperty<Node> for the
RotateTransition.

The void .setAxis(Point3D value) method call is used to set the value of the property axis.
The void .setByAngle(double value) method call is used to set the value of the byAngle property.
The void .setDuration(Duration value) method call is used to set the value of the property duration.
The void .setFromAngle(double value) method call is used to set the value of the property fromAngle.
The void .setNode(Node value) method call is used to set the value of the property node.
The void .setToAngle(double value) method call is used to set the value of the property toAngle.
The .toAngleProperty() method specifies a stop angle value for the RotateTransition using a
DoubleProperty. Let’s implement the rotGameBoard and rotSpinner RotateTransition objects next to give
you some hands-on experience.

A RotateTransition Example: Set Up Your RotateAnimation Asset
Let’s create a createAnimationAssets() method to hold the RotateTransition, TranslateTransition, and
other Transition subclass objects using the following Java statement, shown highlighted in yellow (and wavy
red underlining) in Figure 16-1:

createAnimationAssets();

www.ebook3000.com

http://www.ebook3000.org

Chapter 16 ■ 3D Game animation Creation: UsinG the animation transition Classes

395

Remember to double-click the Create method “createAnimationAssets()” in javafxgame.
JavaFXGame option and have NetBeans code a bootstrap method for you. You’ll be replacing the
placeholder Java code with your RotateTransition object instantiation and configuration code over the
course of this section of the chapter.

The first thing that you need to do is to declare a RotateTransition object for use at the top of
your class and name it rotGameBoard since that is what that object is going to do. Inside of your
.createAnimationAssets() method, instantiate the rotGameBoard object and configure it to play for
five seconds; then wire it to the gameBoard Group Node, as shown in the following Java 9 code and as
highlighted in light blue and yellow in Figure 16-2:

RotateTransition rotGameBoard;
...
private void createAnimationAssets() {
 rotGameBoard = new RotateTransition(Duration.seconds(5), gameBoard);
}

Figure 16-1. Add a createAnimationAssets() method call at the end of the custom method call list in the
start() method

Chapter 16 ■ 3D Game animation Creation: UsinG the animation transition Classes

396

Now you can start configuring this RotateTransition Animation object using the various .set()
method calls that you learned about in the previous section of the chapter. Set a Y rotation axis using
.setAxis(Rotate.Y_AXIS) and set the cycleCount property to one cycle using a .setCycleCount(1) method call.
Set the rate property to 50 percent speed using a .setRate(0.5) method call off your rotGameBoard object.
The Java statements for the core Animation object settings should look like the following Java 9 statements,
which are highlighted at the bottom of Figure 16-3:

RotateTransition rotGameBoard;
...
private void createAnimationAssets() {
 rotGameBoard = new RotateTransition(Duration.seconds(5), gameBoard);
 rotGameBoard.setAxis(Rotate.Y_AXIS);
 rotGameBoard.setCycleCount(1);
 rotGameBoard.setRate(0.5);
}

Figure 16-2. Declare a rotGameBoard object at the top of your class and instantiate it inside
createAnimationAssets()

www.ebook3000.com

http://www.ebook3000.org

Chapter 16 ■ 3D Game animation Creation: UsinG the animation transition Classes

397

You already know why we are using the y-axis for rotation; however, you might be wondering why we
are using only one cycle. The reason is that once we make this RotateTransition interactive by specifying
the fromAngle and toAngle values that will be set before each rotGameBoard.play() method call using code
from the random spin generator that we’ll be coding later, we will control the number of rotations using the
difference between these angles (currently this is 1080 or three spins); therefore, we use only one cycle. I’m
using three spins for code testing purposes.

The rate setting of 1 is too fast to get a smooth spin animation, and game boards shouldn’t spin that
fast, so I reduced this 1.0 default value by 50 percent to 0.5 to show you how the rate variable gives you finely
tuned speed control.

Next, let’s add that required Interpolator class constant specification, which will be the default LINEAR
for now, as we want a smooth, even rotation. This is added and configured using the .setInterpolator()
method call and the Interpolator.LINEAR constant. Finally, we want to add the two most important
configuration statements, which tell the RotateTransition engine the starting angle (fromAngle property)
and the ending angle (toAngle property) for the spin. Using these will allow us to control what quadrant the
spin starts on (45, 135, 225, or 315) and ends on. For now, we will just use three full rotations (1080) from the
starting 45-degree angle, which will be 1125 for toAngle. To start (and test) the animation, you will also need
a .play() method call, which is shown in the following completed Java method body and shown highlighted
in yellow and light blue at the bottom of Figure 16-4:

RotateTransition rotGameBoard;
...
private void createAnimationAssets() {
 rotGameBoard = new RotateTransition(Duration.seconds(5), gameBoard);
 rotGameBoard.setAxis(Rotate.Y_AXIS);
 rotGameBoard.setCycleCount(1);
 rotGameBoard.setRate(0.5);
 rotGameBoard.setInterpolator(Interpolator.LINEAR);
 rotGameBoard.setFromAngle(45);
 rotGameBoard.setToAngle(1125);
 rotGameBoard.play();
}

Figure 16-3. Configure the rotGameBoard RotateTransition object with a y-axis, cycleCount of 1, and rate of
50 percent speed

Chapter 16 ■ 3D Game animation Creation: UsinG the animation transition Classes

398

Figure 16-5 shows the Run ➤ Project work process, with a game board in the middle of its rotation
cycle. A screenshot cannot show the smooth motion, but you can tell the game board is not at one of its four
quadrant “at rest” positions (45, 135, 225, 315 degrees) because the point of the game board is not centered
at the bottom of the screen. In Figure 16-5 I hit a PrintScreen key while the 3D gameBoard Group Node was
still animating.

Figure 16-4. Configure the rotGameBoard object with a LINEAR interpolator, a fromAngle of 45, and a
toAngle of 1125

www.ebook3000.com

http://www.ebook3000.org

Chapter 16 ■ 3D Game animation Creation: UsinG the animation transition Classes

399

It’s also important to note that when you test your animation code, you need to click the Start Game
Button UI element as soon as the application launches (later, this will be triggered by a click on the 3D
spinner UI element, as you may have surmised already). This is so that you can see your animation
characteristics, which we are developing during this chapter, because currently your Java 9 code starts
the play life cycle immediately after the Animation (Transition subclass) object has been constructed and
configured. So, click your Start Game 2D UI button as soon as it appears!

Later, when we get into how to trap mouse clicks (or screen touches) on 3D objects, such as your
spinner UI element, we’ll trigger rotGameBoard.play() with a click on the spinner UI element to randomly
spin the gameboard to pick a new quadrant. We will trigger the rotSpinner.play() when the next player’s turn
is ready so they can spin the gameboard. We will be developing the complexity of this animation code during
the remainder of this book.

Later during this chapter, we will use TranslateTransition with RotateTransition using a
ParallelTransition, which will allow us to animate the 3D spinner UI element in and out of view so that the
player will know when to use it to randomly spin the game board to select a new quadrant (a new content
topic animal-vegetable-mineral or landmark category) for use in the gameplay cycle.

Next, let’s add the rotSpinner RotateTransition object. First turn your RotateTransition declaration
into a compound statement by adding the rotSpinner object name after the rotGameBoard object name at
the top of the class. Cut and paste the rotGameBoard statements after themselves, change rotGameBoard to
rotSpinner, and make sure to change the Node parameter of the instantiation from gameBoard to spinner.
Change fromAngle to 30 degrees (the starting value you developed in Chapter 15) and toAngle to 1110
degrees (1080 + 30). Your Java 9 code should look like the following method body, which is also highlighted
at the bottom of Figure 16-6:

Figure 16-5. Use your Run ➤ Project work process, click Start Game, and watch your gameboard spin around
smoothly

http://dx.doi.org/10.1007/978-1-4842-0973-8_15

Chapter 16 ■ 3D Game animation Creation: UsinG the animation transition Classes

400

RotateTransition rotGameBoard, rotSpinner;
...
private void createAnimationAssets() {
 rotGameBoard = new RotateTransition(Duration.seconds(5), gameBoard);
 rotGameBoard.setAxis(Rotate.Y_AXIS);
 rotGameBoard.setCycleCount(1);
 rotGameBoard.setRate(0.5);
 rotGameBoard.setInterpolator(Interpolator.LINEAR);
 rotGameBoard.setFromAngle(45);
 rotGameBoard.setToAngle(1125);
 rotGameBoard.play();
 rotSpinner = new RotateTransition(Duration.seconds(5), spinner);
 rotSpinner.setAxis(Rotate.Y_AXIS);
 rotSpinner.setCycleCount(1);
 rotSpinner.setRate(0.5);
 rotSpinner.setInterpolator(Interpolator.LINEAR);
 rotSpinner.setFromAngle(30);
 rotSpinner.setToAngle(1110);
 rotSpinner.play();
}

Figure 16-6. Add a rotateSpinner RotateTransition object and configure it with the same parameters as
rotGameBoard

www.ebook3000.com

http://www.ebook3000.org

Chapter 16 ■ 3D Game animation Creation: UsinG the animation transition Classes

401

Use the Run ➤ Project work process to see both gameBoard and spinner rotating, as shown in
Figure 16-7.

As you can see, the only problem is that your “SPIN” spinner is rotating backward, and we want the
word SPIN to rotate forward, so we’ll need to change the direction by setting fromAngle to 30 and toAngle
to -1050 (1080 = 30 - -1050). The final Java code block is shown here, as well as highlighted in yellow and
blue in Figure 16-8:

RotateTransition rotGameBoard, rotSpinner;
...
private void createAnimationAssets() {
 rotGameBoard = new RotateTransition(Duration.seconds(5), gameBoard);
 rotGameBoard.setAxis(Rotate.Y_AXIS);
 rotGameBoard.setCycleCount(1);
 rotGameBoard.setRate(0.5);
 rotGameBoard.setInterpolator(Interpolator.LINEAR);
 rotGameBoard.setFromAngle(45);
 rotGameBoard.setToAngle(1125);
 rotGameBoard.play();
 rotSpinner = new RotateTransition(Duration.seconds(5), spinner);
 rotSpinner.setAxis(Rotate.Y_AXIS);
 rotSpinner.setCycleCount(1);
 rotSpinner.setRate(0.5);
 rotSpinner.setInterpolator(Interpolator.LINEAR);
 rotSpinner.setFromAngle(30);
 rotSpinner.setToAngle(-1050); // Reverse rotation direction using a negative toAngle

value
 rotSpinner.play();
}

Figure 16-7. Select Run ➤ Project and click Start Game to preview the game board and spinner rotation

Chapter 16 ■ 3D Game animation Creation: UsinG the animation transition Classes

402

Next, let’s take a look at the TranslationTransition, which can be used to move objects around the 3D
Scene in any of the X, Y, or Z dimensions. We will be using this to bring our spinner UI element onto (and off
of) the screen as it is needed during gameplay to allow the player to randomly spin the game board to select
their new topic quadrant.

Animating Node Movement: Using the TranslateTransition Class
The public final TranslateTransition class extends the public abstract Transition superclass and is kept
in the javafx.animation package in the javafx.graphics module. A TranslateTransition creates a move
(translate) animation, which lasts as long as its duration property. Movement is created by updating
translateX, translateY, and translateZ variables (properties) of the Node you are animating at an interval
defined by the Interpolator constant. Translation will start from the “from” value (fromX, fromY, fromZ) if
one is provided; otherwise, the algorithm will use the Node object’s current position (translateX, translateY,
translateZ) value. Translation stops at the “to” value (toX, toY, toZ), if it is provided; otherwise, it will use the
start value, plus the byX, byY, or byZ value. The “to” value (toX, toY, toZ) will take precedence if both “to”
(toX, toY, toZ) and “by” (byX, byY, byZ) values have been specified.

java.lang.Object
 > javafx.animation.Animation
 > javafx.animation.Transition
 > javafx.animation.TranslateTransition

Figure 16-8. Adjust the rotSpinner.setToAngle() method call to spin in a negative direction so the spinner UI
spins forward

www.ebook3000.com

http://www.ebook3000.org

Chapter 16 ■ 3D Game animation Creation: UsinG the animation transition Classes

403

The TranslateTransition class has eleven properties, nine of which involve to, from, and by
specifications for each of the X, Y, and Z 3D coordinates. The other two are the duration property and the
node property that define the length of time of the animation and what Node object it is affecting. The byX
property is used to specify the incremental stop X coordinate double value, calculated from the start value,
for the TranslateTransition. The byY property is used to specify the incremental stop Y coordinate double
value, calculated from the start value, for the TranslateTransition. The byZ property is used to specify the
incremental stop Z coordinate double value, calculated from the start value, for the TranslateTransition.
The fromX property is used to specify a starting X coordinate double value for the TranslateTransition. The
fromY property is used to specify the starting Y coordinate double value for the TranslateTransition. A fromZ
property is used to specify a starting Z coordinate double value for a TranslateTransition. The toX property is
used to specify the stopping (resting, or final) X coordinate value for a TranslateTransition. The toY property
is used to specify a stopping (resting or final) Y coordinate value for a TranslateTransition. The toZ property
is used to specify the stopping (resting or final) Z coordinate value for the TranslateTransition object.

There are three overloaded constructor methods for TranslateTransition; one is empty, one has the
duration specified, and one has a duration and a node property specified. They look like this:

TranslateTransition()
TranslateTransition(Duration duration)
TranslateTransition(Duration duration, Node node)

There are nearly three dozen methods for use with this class, and twenty-seven of them (nine sets
of three) deal with the from, to, and by properties. This is because for each X, Y, and Z property, there is
a .get(), a .set(), and a .property() method. There are also methods for use with the duration, node, and
interpolator properties. All of the X, Y, and Z methods use double values. A .byXProperty() method is used
to specify the stop X coordinate value as an incremental offset from the start of the TranslateTransition. The
.byYProperty() method is used to specify an offset incremental stop Y coordinate value as an offset from
the start of the TranslateTransition. The .byZProperty() method is used to specify your incremental stop X
coordinate value as an offset from the start of the TranslateTransition.

The .fromXProperty() method call is used to specify a starting X coordinate value for the
TranslateTransition.

The .fromYProperty() method call is used to specify a starting Y coordinate value for the
TranslateTransition.

The .fromZProperty() method call is used to specify a starting Z coordinate value for the
TranslateTransition.

The .getByX() method call is used to get the value for the property byX. The .getByY() method call is used
to get the value for the property byY. The .getByZ() method call is used to get the value for the property byZ.

The .getFromX() method call is used to get the value for the property fromX. The .getFromY() method
call is used to get the value for the property fromY. The .getFromZ() method call is used to get the value for
the property fromZ. The .getToX() method call is used to get the value of the property toX. The .getToY()
method call is used to get the value of the property toY. The .getToZ() method call is used to get the value of
the property toZ.

The void .setByX(double value) method call is used to set (specify) the value of the property byX.
The void .setByY(double value) method call is used to set (specify) the value of the property byY. The
void .setByZ(double value) method call is used to set (specify) the value of the property byZ. The void
.setFromX(double value) method call is used to set (specify) the value of the property fromX. The void
.setFromY(double value) method call is used to set (specify) the value of the property fromY. The void
.setFromZ(double value) method call is used to set (specify) the value of the property fromZ.

The void .setToX(double value) method call is used to set (specify) the value of the property toX.
The void .setToY(double value) method call is used to set (specify) the value of the property toY. A void
.setToZ(double value) method call is used to set (specify) the value of the property toX.

Chapter 16 ■ 3D Game animation Creation: UsinG the animation transition Classes

404

The .toXProperty() method call is used to specify a stop X coordinate value for a TranslateTransition object.
The .toYProperty() method call is used to specify a stop Y coordinate value for a TranslateTransition object. The
.toZProperty() method call is used to specify a stop Z coordinate value for a TranslateTransition object.

The .durationProperty() method call will return the current duration property for the
TranslateTransition. A .getDuration() method call is used to get the Duration value for the
TranslateTransition duration property. The void .setDuration(Duration value) can be used to set (specify)
the Duration value of the duration property.

The .nodeProperty() method call will return the target node Node property for the TranslateTransition.
The .getNode() method call will get (read) the Node object reference value for the node property
of a TranslateTransition. The void .setNode(Node value) method call will set the Node value for a
TranslateTransition node property. The void .interpolate(double frac) method call will always need to be
provided by subclasses of Transition.

Next, let’s implement a TranslateTransition Animation object that moves the spinner UI element
onto and off of the screen. These Animation objects will eventually be named moveSpinnerOn and
moveSpinnerOff. After that we will get into the ParallelTransition class and combine the movement and
rotation to spin the spinner UI element across the screen, from the left corner to the right corner.

TranslateTransition Example: Set Up Translate Animation Assets
Let’s add a TranslateTransition Animation object to your game project by declaring one named
moveSpinner at the top of the class and then instantiate it inside of the createAnimationAssets() method,
after the RotateTransition Java code. Reference the spinner Node and use a five-second duration. Next,
configure the moveSpinnerOn Animation object to move by 1150 X units across the top of the screen
(actually 1350 units, as the spinner is currently at -200) and set the cycleCount property to one cycle, using
the following Java statements, shown highlighted in yellow in Figure 16-9:

TranslateTransition moveSpinnerOn;
...
moveSpinnerOn = new TranslateTransition(Duration.seconds(5), spinner);
moveSpinnerOn.setByX(1150);
moveSpinnerOn.setCycleCount(1);

www.ebook3000.com

http://www.ebook3000.org

Chapter 16 ■ 3D Game animation Creation: UsinG the animation transition Classes

405

Next, let’s take a look at the ParallelTransition class since we’ll need to use this object algorithm to
combine the spinner rotSpinner Animation object with a moveSpinnerOn Animation object so that your
final result is a spinner that spins while it is moving across the top of the screen.

Merging Animation Properties: Using a ParallelTransition Class
The public final class ParallelTransition extends the abstract Transition superclass and can be found in
the javafx.animation package, which can be found in the javafx.graphics module. This Transition plays
a list of Animation objects in parallel, which means at the same time (one after the other is termed serial
or sequential). Children of this Transition inherit the Node node property if their node property has not
been explicitly specified using a method call (usually the constructor method). The reason for this is that a
ParallelTransition simply merges existing Animation objects together, so a node may already be specified in
the merged animations. The Java class hierarchy for the ParallelTransition looks like this:

java.lang.Object
 > javafx.animation.Animation
 > javafx.animation.Transition
 > javafx.animation.ParallelTransition

Figure 16-9. Declare a moveSpinnerOn TranslateTransition at the top of the class and instantiate it in
createAnimationAssets()

Chapter 16 ■ 3D Game animation Creation: UsinG the animation transition Classes

406

The ParallelTransition class has only one native property, an ObjectProperty<Node> node property,
which is the Node object to which the combined animation will be applied. If a node isn’t specified, the child
Animation object node property will be utilized instead. If a node is specified, that Node will be set (i.e.,
specified) for all child Transitions that do not themselves define any target Node node property.

The ParallelTransition class contains four overloaded constructor methods. The first creates an empty
object, the second specifies a list of child Animation objects, the third specifies a Node to be affected, and
the fourth specifies both the Node object to be affected and a list of child Animation objects. The second and
fourth constructor methods are the most frequently used. We will be using the second constructor for our child
Animation objects; both referenced Animation Transition objects specify the spinner Node object as the target
for the ParallelAnimation object. The Java code for these constructor methods looks like the following:

parallelTransition = new ParallelTransition();
parallelTransition = new ParallelTransition(Animation... children);
parallelTransition = new ParallelTransition(Node node);
parallelTransition = new ParallelTransition(Node node, Animation... children);

The ParallelTransition class has only about a half-dozen method calls that you will need to master. The
.getChildren() method call will return an ObservableList<Animation>of Animation objects that are to be
played together as a single, unified animation.

The .getNode() method call can be used to get (poll) the Node object value of the node property, and
the void .setNode(Node value) method call can be used to set (specify) the Node object value of the node
property.

There is also a protected Node .getParentTargetNode() method call that will return the target Node for
child Animation objects for the Transition that do not have a node property specified. To specify a parent
target node property, the fourth constructor method, which specifies a node property for ParallelTransition
(the parent), must be utilized. Otherwise, the second constructor method would be used, and the child
Animation object’s node property will define what Node object the Animation object will be affecting.

The ParallelTransition .nodeProperty() method call will return your ParallelTransition (parent)
ObjectProperty<Node> value, which would be set using the third or fourth constructor method or
.setNode(Node). This Node, if specified (set), will be used in all child Transitions that do not specifically
define their target Node.

Finally, the protected void .interpolate(double value) method call is required to be provided by all
subclass implementations of the abstract Transition superclass.

Next, let’s set up a ParallelTransition object that seamlessly combines your rotSpinner and
moveSpinnerOn Animation objects together.

ParallelTransition Object: Merge rotSpinner and moveSpinnerOn
Let’s add a ParallelTransition Animation object to your game project by declaring one named spinnerAnim
at the top of your class and then instantiate it inside of the createAnimationAssets() method, after
the RotateTransition and the TranslateTransition Java code. In the constructor method, reference the
moveSpinnerOn and rotSpinner Animation child objects and then call the .play() method off the
spinnerAnim object. Notice I have commented out the rotSpinner.play() method call and did not add
a .play() method call to the moveSpinnerOn Animation object, as this is done in the spinnerAnim
ParallelTransition object instead. The setup for this parallel (hybrid) animation would be accomplished
using the following Java statements, which are also highlighted in yellow and blue in Figure 16-10:

ParallelTransition spinnerAnin;
...
spinnerAnin = new ParallelTransition(moveSpinnerOn, rotSpinner);
spinnerAnim.play();

www.ebook3000.com

http://www.ebook3000.org

Chapter 16 ■ 3D Game animation Creation: UsinG the animation transition Classes

407

When you select Run ➤ Project, a spinner spins from the left to the right side of the game, as shown in
Figure 16-11.

Figure 16-11. Select Run ➤ Project, click Start Game, and watch the spinner animate

Figure 16-10. Declare a spinnerAnim ParallelTransition at the top of the class and instantiate it in
createAnimationAssets()

Chapter 16 ■ 3D Game animation Creation: UsinG the animation transition Classes

408

After the next chapter, when we cover 3D Scene event handling as well as the PickResult class, we can
start to finish the animation of the spinner UI element so that it comes on the screen when needed and goes
off the screen when the user no longer needs to spin the game board.

I wanted to dedicate a chapter to Animation objects, show you how the precoded Transition
subclasses can provide you with Java 9 code to add animation to your game play, and show you how
to set up the majority of the Animation objects and their code. I also wanted to show you how put the
createAnimationAssets() method in place so that you can add Animation objects, which will have their
very own place to live in your pro Java 9 game development from this point onward.

Summary
In this sixteenth chapter, we learned about the Animation superclass and the Transition superclass, as well
as some of the important Transition subclasses, RotateTransition and TranslationTransition, that allow us
to move and rotate 3D objects during and for gameplay. We also looked at the ParallelTransition subclass,
which allows us to combine these Animation objects to create more complex Animation objects. We also
constructed the Animation objects for our game, which will allow the user to apply a random spin to the
game board to select a topic quadrant and to move a spinning spinner UI element on and off the screen,
when it is time to randomly spin the game board.

We created a new custom method for our JavaFXGame class called createAnimationAssets(), which
will hold all of the Animation objects created for the pro Java 9 game design using Transition subclasses
such as RotateTransition, TranslateTransition, ScaleTransition, and ParallelTransition.

In Chapter 17, we’re going to learn about MouseEvent handling for the 3D Scene elements so that we
can click the Sphere 3D spinner UI to spin the game board and so we can eventually click each of the game
board squares in order to select the educational question categories and bring up the questions for the
player to answer.

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_17
http://www.ebook3000.org

409© Wallace Jackson 2017
W. Jackson, Pro Java 9 Games Development, https://doi.org/10.1007/978-1-4842-0973-8_17

CHAPTER 17

i3D Game Square Selection:
Using the PickResult Class with
3D Models

Now that you have created the multitiered gameBoard Group Node (subclass) hierarchy, textured all of
the 3D components underneath that hierarchy, made sure the hierarchy center-rotates, created a spinner
UI to randomly rotate the gameBoard 3D model (hierarchy) to a random quadrant, and added animation
objects to your game design using your createAnimationAssets() method, it is time to make your 3D game
elements interactive. We will set up your 3D object mouse click event handling code that will be used to
trigger the 3D spinner animation and select game board squares.

During this chapter we’ll take a detailed look at the public PickResult class and public MouseEvent
class and use these for our own gameplay design in a custom createSceneProcessing() method that will be
used to process i3D game element (Box and Sphere object) event handling so that our players can interact
with the 3D game components.

Select Your 3D Assets: The PickResult Class
The public class PickResult extends Object and is kept in the javafx.scene.input package, which contains
input event handling utilities such as clipboard, GestureEvent, SwipeEvent, TouchEvent, and ZoomEvent.
The PickResult object contains the result of a pick event, in the case of this game, from a mouse or touch.
Input classes that support using a PickResult object in their constructor methods include MouseEvent,
MouseDragEvent, DragEvent, GestureEvent, ContextMenuEvent, and TouchPoint. There is a .getPickResult()
method call in each of these classes that returns the PickResult object, which contains all the pick
information that you’ll need to process for your Java game development.

A Java class hierarchy for a PickResult class shows us that this class was scratch-coded to provide 3D
object selection capabilities; it has no superclass of its own and therefore looks like the following Java 9 class
hierarchy:

java.lang.Object
 > javafx.scene.input.PickResult

The PickResult class contains one data field, the static int FACE_UNDEFINED data field, which
represents an undefined face. We will generally be using this class to select entire nodes (the spinner,
quadrants q1 through q4, squares Q1S1 through Q4S5, and similar 3D game elements) and not individual
polygon faces or texture map pixels, which is also possible.

https://doi.org/10.1007/978-1-4842-0973-8_17

Chapter 17 ■ i3D Game Square SeleCtion: uSinG the piCkreSult ClaSS with 3D moDelS

410

The first two constructor methods in the PickResult class create PickResult objects that handle 2D
and 2.5D Scene picking scenario results. The first constructor creates a PickResult object for a 2D scenario
using an EventTarget object and (double) sceneX and sceneY properties. This constructor method uses the
following Java statement syntax:

PickResult(EventTarget target, double sceneX, double sceneY);

The second constructor creates a PickResult object for a “non-Shape3D” target. Since it uses the
Point3D object and distance, I call this the 2.5D PickResult scenario because it does not support 3D
primitives based on the Shape3D class. However, it does support the Point3D object and the concept of
distance into the Scene object. This constructor method uses the following Java statement syntax:

PickResult(Node node, Point3D point, double distance)

The third constructor creates a PickResult object for a Shape3D target, which is what we are using to
create our i3D games. The Java syntax for creating this constructor method should look like the following
Java statement:

PickResult(Node node, Point3D point, double dist, int face, Point2D texCoord);

The fourth constructor creates a PickResult object for an imported 3D object target that contains
Normals. This would be utilized if you imported an advanced 3D model from an external 3D modeling
software package such as Blender. The Java syntax for creating this advanced constructor method should
look like the following Java statement:

PickResult(Node node, Point3D point, double distance, int face, Point3D normal, Point2D
texCoor)

The PickResult class supports six .get() method calls, which return an intersected distance, an
intersected face, an intersected Node, an intersected Normal, an intersected Point, or an intersected
texture coordinate (texCoord). A .getIntersectedDistance() method call will return, as a double value, the
intersected distance between your current camera position and an intersected point.

The .getIntersectedFace() method call will return an integer representing the intersected face of
the picked Node. If the node doesn’t have user-specified faces, such as one of the Shape3D primitives, or
was picked on bounds, this method will return a FACE_UNDEFINED constant. A .getIntersectedNode()
method call will return an intersected node as a Node object and is the method call we’ll be using to select
the spinner UI and gameBoard Node elements.

The .getIntersectedNormal() method call will return an intersected Normal of the picked
Shape3D object or imported 3D geometry. The .getIntersectedPoint() method call will return an
intersected point (Point3D object) using the local coordinate system for your picked Node object. The
.getIntersectedTexCoord() method call will return the intersected texture coordinates of the picked 3D
shape in Point2D object format.

Next, let’s take a look at another important event-handling class, MouseEvent. This is a subclass of
InputEvent and used to attach mouse event handling to the 3D primitives we have utilized to create your i3D
BoardGame simulation.

www.ebook3000.com

http://www.ebook3000.org

Chapter 17 ■ i3D Game Square SeleCtion: uSinG the piCkreSult ClaSS with 3D moDelS

411

The MouseEvent Class: Trapping Mouse Clicks on 3D Primitives
The public MouseEvent class extends the InputEvent superclass. MouseEvent is kept in a javafx.scene.
input package along with its subclass MouseDragEvent and other InputEvent superclass subclasses.
MouseEvent implements the Serializable and Cloneable Java interfaces. This class is used for implementing
or “trapping” mouse events for processing by your Java game logic, which you will learn how to do during
this chapter. When mouse event generation, such as a click, occurs, the first (top or front) Node object under
cursor is “picked,” and the MouseEvent is delivered to that Node object event handling structure. The event
is delivered by using capturing and bubbling phases described by the public EventDispatcher Java interface
that is stored in the javafx.event package. The Java hierarchy for the MouseEvent class should therefore look
like the following:

java.lang.Object
 > java.util.EventObject
 > javafx.event.Event
 > javafx.scene.input.InputEvent
 > javafx.scene.input.MouseEvent

The mouse pointer (cursor) location is available in several different coordinate systems. It is available
using X,Y coordinates relative to the origin of the MouseEvent’s Node object (as well as relative to your
Scene object), using sceneX, sceneY coordinates relative to the origin of the Scene that contains the Node,
or even using screenX, screenY coordinates relative to the origin of the display screen that contains the
mouse pointer. We’ll be comparing the Node that is clicked to our game-processing logic in the case of this
particular i3D BoardGame project.

There are a number of Event fields specific to the MouseEvent object. These are static and use
uppercase letters, as they’re “hard-coded” constants for different types of events offered by the MouseEvent
type of InputEvent. An ANY static EventType<MouseEvent> is used as a common “supertype” to represent
any of the mouse event types.

A DRAG_DETECTED static EventType<MouseEvent> will be delivered to any Node object that is
identified as a source of a dragging gesture. A MOUSE_CLICKED static EventType<MouseEvent> will be
delivered when the mouse button has been clicked (pressed and released on the same node). This is what
we’ll be using for our i3D BoardGame. You can also trap events for the mouse being pressed and the mouse
being released. A MOUSE_PRESSED static EventType<MouseEvent> will be delivered when the mouse
button is pressed, and the MOUSE_RELEASED static EventType<MouseEvent> will be delivered when the
mouse button is released.

You can also process events when your mouse moves over a Node and then off of that Node again
without any mouse click occurring! A MOUSE_ENTERED static EventType<MouseEvent> will be delivered
when a mouse enters a Node object but is not clicked (this is called a hover). A MOUSE_ENTERED_TARGET
static EventType<MouseEvent> will be delivered when the mouse first enters the Node (crosses over its edge
boundary). Similarly, a MOUSE_EXITED static EventType<MouseEvent> will be delivered when the mouse
exits a Node object. The MOUSE_EXITED_TARGET static EventType<MouseEvent> will be delivered when a
mouse first exits a Node object (crosses an edge boundary).

Finally, the MOUSE_MOVED static EventType<MouseEvent> will be delivered when a mouse moves
within a Node object when no buttons are being pressed or released. The MOUSE_DRAGGED static
EventType<MouseEvent> will be delivered when the mouse is being moved using a depressed (held) mouse
button (called a drag operation).

Chapter 17 ■ i3D Game Square SeleCtion: uSinG the piCkreSult ClaSS with 3D moDelS

412

We will not be specifically constructing (instantiating) MouseEvent objects. We’ll use
.setOnMouseClick() event handling constructs, which will do the construction for us, as part of their
functionality. I will include these two overloaded constructor methods here for the sake of completeness,
however. The first constructs a new MouseEvent Event object, with a null source and target, and would look
like the following Java 9 constructor method syntax:

MouseEvent(EventType<? extends MouseEvent> eventType, double x, double y, double screenX, double
 screenY, MouseButton button, int clickCount, boolean shiftDown, boolean controlDown,
 boolean altDown, boolean metaDown, boolean primaryButtonDown, boolean
 middleButtonDown, boolean secondaryButtonDown, boolean synthesized, boolean
 popupTrigger, boolean stillSincePress, PickResult pickResult)

The second constructs a new MouseEvent Event object and would look like the following Java syntax:

MouseEvent(Object source, EventTarget target, EventType<? extends MouseEvent> eventType, double
 x, double y, double screenX, double screenY, MouseButton button, int clickCount,
 boolean shiftDown, boolean controlDown, boolean altDown, boolean metaDown, boolean
 primaryButtonDown, boolean middleButtonDown, boolean secondaryButtonDown, boolean
 synthesized, boolean popupTrigger, boolean stillSincePress, PickResult pickResult)

There are 27 methods that are part of the MouseEvent class to help you control your mouse event
processing. The .copyFor(Object newSource, EventTarget newTarget) MouseEvent method call will copy
the Event object so that it can be used with a different source and target.

The .copyFor(Object newSource, EventTarget newTarget, EventType<? extends MouseEvent>
eventType) MouseEvent method call will also create a copy of the given Event object, with a given
MouseEvent field substituted.

The static MouseDragEvent .copyForMouseDragEvent(MouseEvent e, Object source, EventTarget
target, EventType<MouseDragEvent> type, Object gestureSource, PickResult pickResult) method call
will create a copy of a MouseEvent of type MouseDragEvent.

The .getButton() method call will poll the MouseEvent object to see which, if any, of the mouse buttons
was responsible for generating that Event object. The .getClickCount() method call will return the integer
(int) number of mouse clicks that are associated with the Event object.

The .getEventType() method call will return the EventType<? extends MouseEvent> event type for that
Event object. The .getPickResult() method call will return the PickResult object’s information regarding
that pick.

The .getSceneX() method call will return the double value for the horizontal position of the event
relative to the origin of the Scene that contains your MouseEvent’s source. The .getSceneY() method call will
return the double value for the vertical position of the event relative to the origin of the Scene that contains
your MouseEvent’s source.

The .getScreenX() method call will return the double value for the absolute horizontal position of the
event. The .getScreenY() method call will return the double value for the absolute vertical position of the
event.

www.ebook3000.com

http://www.ebook3000.org

Chapter 17 ■ i3D Game Square SeleCtion: uSinG the piCkreSult ClaSS with 3D moDelS

413

The .getX() method call will return the double value for the horizontal position for the event relative
to the origin of the MouseEvent source. The .getY() method call will return the double value for the vertical
position for the event relative to the origin of the MouseEvent source. The .getZ() method call will return a
double value for the depth position for the event, relative to the origin of the MouseEvent source.

The .isAltDown() method call can be used to ascertain whether the Alt modifier key is being held down
during this event. It returns a true or false (boolean) value. The .isControlDown() method call can be used
to ascertain whether the Ctrl modifier key is being held down during this event. It also returns a true or false
(boolean) value. The .isMetaDown() method call can be used to ascertain whether the META modifier
key is being held down during this event. It also returns a true or false (boolean) value. The .isShiftDown()
method call can be used to ascertain whether the SHIFT modifier key is being held down during this event.
It also returns a true or false (boolean) value.

The .isDragDetect() method call should be used to determine whether this MouseEvent will be
followed by a DRAG_DETECTED event and will return a boolean true (yes drag detected) or false (no drag
not detected) data value.

An .isMiddleButtonDown() method call can be used to determine whether the middle mouse button
is being held down. It will return a true boolean value if your middle button (mouse button #2) is currently
depressed.

The .isPopupTrigger() method call should be used to determine whether this event is a pop-up menu
trigger event for the platform. It will return true if the mouse event is in fact the pop-up menu trigger event
for the platform.

The .isPrimaryButtonDown() method call will return the true boolean value if your primary
mouse button (button #1, which is usually the left mouse button) is currently being pressed. The
.isSecondaryButtonDown() method call will return the true boolean value if your secondary button
(button #2, which is usually the right mouse button) is currently being pressed.

The .isShortcutDown() method call will return whether the host platform’s common shortcut modifier
is being held down during this MouseEvent.

The .isStillSincePress() method call uses a boolean value to indicate whether the mouse cursor stayed
in the system-provided hysteresis area since the last mouse pressed event that occurred before this event.

The .isSynthesized() method call returns a boolean value that indicates whether the MouseEvent has
been synthesized by using a touchscreen device, instead of the usual mouse event source device, such as the
mouse, track ball, track pad, or similar mouse-emulation hardware device.

Finally, a void .setDragDetect(boolean dragDetect) method call is used to augment drag detection
behavior when using MouseEvent handling in conjunction with drag detection using a mouse, track pad, or
touchscreen device.

Implementing Spinner UI Functionality: Mouse Event Handling
Let’s create a createSceneProcessing() method to hold the Scene object creation, configuration, and event-
processing Java code. The Scene scene object must be created after the root Group Node object has been
created, so this method must be called after the createBoardGameNodes() method call, where these Node
objects are created. This is done using the following Java statement, also shown highlighted in light blue
(and wavy red underlining) in Figure 17-1:

createSceneProcessing();

Chapter 17 ■ i3D Game Square SeleCtion: uSinG the piCkreSult ClaSS with 3D moDelS

414

Remember to double-click the Create method “createSceneProcessing()” in javafxgame.
JavaFXGame option to have NetBeans 9 code a bootstrap method for you. You’ll be replacing the
placeholder Java code with your scene Scene object instantiation and configuration code and then adding
the MouseEvent handling logic after that.

The first thing that you’ll need to do is to open your createBoardGameNodes() method and select
all of the Scene scene object instantiation and configuration Java 9 code, for which there are three Java 9
statements currently; then right-click the selection set and select the Cut option to remove the Java code
from that method body.

Inside of your .createSceneProcessing() method, replace your bootstrap code (unimplemented error
code) by selecting that one line of code and right-click it; select Paste to replace it with the three lines of
code that you “cut” from your createBoardGameNodes() method. Finally, add a line of code at the end of
the method to start to build your Scene object’s event handling; type scene and then a period and then
setOnMouse, which will give you a pop-up helper dialog containing all of the MouseEvent events. The
following is the Java code for the existing statements and an empty event handling lambda expression
infrastructure (for a change), as highlighted in blue in Figure 17-2:

private void createSceneProcessing() {
 scene = new Scene(root, 1280, 640, true, SceneAntialiasing.BALANCED);
 scene.setFill(Color.BLACK);
 scene.setCamera(camera);
 scene.setOnMouseClicked(event-> { ... }); // This is an Empty OnMouseClicked Event Handler
} // Structure is using a Lambda Expression Format

Figure 17-1. Add the createSceneProcessing() method call, after the createBoardGameNodes() method in the
start method

www.ebook3000.com

http://www.ebook3000.org

Chapter 17 ■ i3D Game Square SeleCtion: uSinG the piCkreSult ClaSS with 3D moDelS

415

Double-click your setOnMouseClicked(EventHandler<? super MouseEvent> value) (void) option,
shown in bright blue in Figure 17-2, and add the (event->{}); empty lambda expression inside the
.setOnMouseClicked() method call parameter area to create an empty event processing infrastructure,
which will yield zero errors in NetBeans 9. As I have said before in this book, when you write code, make sure
it is error-free in your IDE at all times!

Now you can start configuring the onMouseClicked() event handling, which as you can see uses a
simplified lambda expression that was introduced in Java 8. All a lambda (as it’s called for short) needs
is the event name and an arrow, and the Java compiler will figure out what type of event-handling object
(EventHandler) to use and what type of Event object (MouseEvent) will need to be processed. Your
logic goes inside of your curly braces, and you can focus on what your event-processing logic is going
to do, which is to declare a Node object named picked and load it with the result of a .getPickResult().
getIntersectedNode() method chain. Make sure to use Alt+Enter when you get a wavy red error underline,
under the Node picked (initial) portion of your Java statement, and select the “import javafx.scene.Node”
option from the pop-up helper dialog to instruct NetBeans 9 to write the Node class import statement for
you. If you like, you can type in the equals (=) sign and the event and hit the period; the NetBeans pop-
up helper will let you select the .getPickResult() method. Double-click that to insert it and then use the
period again to bring up the pop-up helper. This time select the .getIntersectedNode() method call. Add a
semicolon to finalize the Java statement. The Java statements for your MouseEvent handling should look like
the following and are shown at the bottom of Figure 17-3:

private void createSceneProcessing() {
 scene = new Scene(root, 1280, 640, true, SceneAntialiasing.BALANCED);
 scene.setFill(Color.BLACK);
 scene.setCamera(camera);
 scene.setOnMouseClicked(event->{
 Node picked = event.getPickResult().getIntersectedNode();
 });
}

Figure 17-2. Cut and paste the Scene object code into the new method and call .setOnMouseClicked() off the
scene object

Chapter 17 ■ i3D Game Square SeleCtion: uSinG the piCkreSult ClaSS with 3D moDelS

416

Now that you’ve created and loaded a Node object named picked with the Node object in your
BoardGame, which has been clicked with the mouse (or touchscreen, which also generates mouse events)
by the user, we need to add the conditional processing logic (artificial intelligence) to tell the game how to
operate. The first thing that you need to do is filter out all clicks that are not on 3D Node objects, which is
done by using the if (picked != null) construct, which says if the picked Node object is not empty, then
proceed. The next nested if() statement looks for a spinner Node object to be the same as (== or equivalent
to) the picked Node object. If this equates to a true value, the rotGameBoard Animation object is triggered
by using the .play() method call, spinning the gameBoard Group Node. If you use the Run ➤ Project work
process and test this code, it works perfectly, although you have to wait until the code for the last chapter
finishes (we will be fixing that next, as we change Animation objects to be MouseEvent triggered).

The entire completed Java 9 structure is only eight lines of code; this will grow as we build the game
logic. The completed Java method body’s code is shown here and is highlighted in yellow and blue in
Figure 17-4:

private void createSceneProcessing() {
 scene = new Scene(root, 1280, 640, true, SceneAntialiasing.BALANCED);
 scene.setFill(Color.BLACK);
 scene.setCamera(camera);
 scene.setOnMouseClicked(event->{
 Node picked = event.getPickResult().getIntersectedNode();
 if (picked != null) {
 if (picked == spinner) {
 rotGameBoard.play();
 }
 }
 });
}

Figure 17-3. Configure event handling as a lambda expression, create a Node named picked, and get an
intersected Node

www.ebook3000.com

http://www.ebook3000.org

Chapter 17 ■ i3D Game Square SeleCtion: uSinG the piCkreSult ClaSS with 3D moDelS

417

To make the spinner UI animate onto the screen, we first have to set its initial position off-screen to the
left of its current starting position. Go into createBoardGameNodes() and change the TranslateX property
from -200 to -350. This will remove the spinner from view, just off of the left side of your screen. Later we will
change the .setByX() method in moveSpinnerIn to a setting of 150 so it lands at -200. This is done using the
Java code shown here and in Figure 17-5:

spinner.setTranslateX(-350);

Figure 17-4. Evaluate the picked Node object using two nested if{} constructs, testing for null and then for the
spinner UI Node

Figure 17-5. Prepare for implementing the interactive spinner UI by setting its initial position off-screen value
to the -350 X location

Chapter 17 ■ i3D Game Square SeleCtion: uSinG the piCkreSult ClaSS with 3D moDelS

418

Notice that TranslateY is -512; this places the 3D spinner UI at the top of the screen, out of the way of
the game board view, and in the upper-left corner of the screen once the spinner animates out to the -150 X
position.

Next, let’s recode our createAnimationAssets() method body so that it only instantiates and configures
our Animation objects and does not trigger them, which will now be done during gameplay by the user with
mouse clicks (or screen touches, as these will also generate MouseEvents, widening our target consumer
electronics devices).

Remove the .play() method call off of the rotGameBoard, rotSpinner, and spinnerAnim Animation
object constructs, and then change the moveSpinnerOn TranslateTransition object’s .setByX() method call
to reference 150 units. This will move your 3D spinner UI into the upper-left corner of the screen from its
new -350 location off-screen. The logical place to trigger this animation, bringing the spinner on-screen for
the first time, would be in the Start Game Button UI event handling method, which we’ll be doing soon. We’ll
also create your rotSpinner Animation object later during this chapter, which will spin the 3D spinner UI
when it is clicked so that it also spins when the player initiates each random spin for the 3D game board.

Besides bringing this i3D spinner on-screen in the Start Game Button event handling, we will bring it
on-screen at the end of each player’s turn (in Chapter 21) so that the next player knows to randomly spin
the game board to select a new educational question category (quadrant). We will animate it off-screen
in Chapter 20, when the game board finishes its camera rotation Animation object. There is a lot more to
learn about in this chapter regarding how to integrate your interactivity (event handling) with your different
Animation objects in JavaFX so that you can achieve a seamless and responsive gameplay result.

Your new createAnimationAssets() Java method body should now look like the following, which is also
highlighted in light blue and yellow in Figure 17-6:

RotateTransition rotGameBoard, rotSpinner;
TranslateTransition moveSpinnerOn;
ParallelTransition spinnerAnim;
...
private void createAnimationAssets() {
 rotGameBoard = new RotateTransition(Duration.seconds(5), gameBoard);
 rotGameBoard.setAxis(Rotate.Y_AXIS);
 rotGameBoard.setCycleCount(1);
 rotGameBoard.setRate(0.5);
 rotGameBoard.setInterpolator(Interpolator.LINEAR);
 rotGameBoard.setFromAngle(45);
 rotGameBoard.setToAngle(1125);

 // .play() removed
 rotSpinner = new RotateTransition(Duration.seconds(5), spinner);
 rotSpinner.setAxis(Rotate.Y_AXIS);
 rotSpinner.setCycleCount(1);
 rotSpinner.setRate(0.5);
 rotSpinner.setInterpolator(Interpolator.LINEAR);
 rotSpinner.setFromAngle(30);
 rotSpinner.setToAngle(-1110); // .play() removed
 moveSpinnerOn = new TranslateTransition(Duration.seconds(5), spinner);
 moveSpinnerOn.setByX(150);
 moveSpinnerOn.setCycleCount(1);
 spinnerAnim = new ParallelTransition(moveSpinnerOn, rotSpinner);
 // .play() removed
}

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_21
http://dx.doi.org/10.1007/978-1-4842-0973-8_20
http://www.ebook3000.org

Chapter 17 ■ i3D Game Square SeleCtion: uSinG the piCkreSult ClaSS with 3D moDelS

419

Add a spinnerAnim.play(); statement at the end of the gameButton event handler, as shown in
Figure 17-7.

Figure 17-6. Remove all .play() method calls and change the .setByX() method call to 150 to bring the spinner
on-screen

Figure 17-7. Add the spinnerAnim.play() method call to the end of your gameButton event-handling method
construct

Chapter 17 ■ i3D Game Square SeleCtion: uSinG the piCkreSult ClaSS with 3D moDelS

420

Now use your Run ➤ Project work process to test your code, and you can see that the spinner is not
shown on game start (after you click the Button that hides the uiLayout StackPane Node object) and slowly
and smoothly spins into view in the upper-left corner of the game screen.

The next thing that we need to do is to create a separate rotSpinner Animation object so that we can
have a 3D spinner UI rotation happening at the same time the game board is spinning, for continuity sake.
You will find that if you call rotSpinner.play in your MouseEvent handling construct, you will get an error
as the rotSpinner is part of the spinnerAnim ParallelAnimation object; therefore, we need to duplicate a
rotSpinner construct and create a rotSpinnerIn construct to use in the spinnerAnim ParallelAnimation,
leaving the rotSpinner Animation free for us to call whenever the player randomly spins the game board.

To do this, select all rotSpinner-related Java code, right-click the selection set, and select Copy; then add
a line (space) of code after this code block, right-click, and select Paste to duplicate this code block. Then, all
you have to do is to add “In” at the end of “rotSpinner” and create a rotSpinnerIn code block, which does the
same thing but is not a component of the ParallelTransition construction. Reference the new rotSpinnerIn
Animation object in the object instantiation (constructor method) of the spinnerAnim ParallelTransition
object.

As you can see, the only problem is that your “SPIN” spinner is rotating to the wrong toAngle of 1110,
as we coded it in Chapter 16. I’ll set this to -1050 in the next section. The code looks like the following and is
shown in Figure 17-8:

RotateTransition rotGameBoard, rotSpinner;
TranslateTransition moveSpinnerOn;
ParallelTransition spinnerAnim;
...
private void createAnimationAssets() {
 rotGameBoard = new RotateTransition(Duration.seconds(5), gameBoard);
 rotGameBoard.setAxis(Rotate.Y_AXIS);
 rotGameBoard.setCycleCount(1);
 rotGameBoard.setRate(0.5);
 rotGameBoard.setInterpolator(Interpolator.LINEAR);
 rotGameBoard.setFromAngle(45);
 rotGameBoard.setToAngle(1125);
 rotSpinner = new RotateTransition(Duration.seconds(5), spinner);
 rotSpinner.setAxis(Rotate.Y_AXIS);
 rotSpinner.setCycleCount(1);
 rotSpinner.setRate(0.5);
 rotSpinner.setInterpolator(Interpolator.LINEAR);
 rotSpinner.setFromAngle(30);
 rotSpinner.setToAngle(-1110);
 rotSpinnerIn = new RotateTransition(Duration.seconds(5), spinner);
 rotSpinnerIn.setAxis(Rotate.Y_AXIS);
 rotSpinnerIn.setCycleCount(1);
 rotSpinnerIn.setRate(0.5);
 rotSpinnerIn.setInterpolator(Interpolator.LINEAR);
 rotSpinnerIn.setFromAngle(30);
 rotSpinnerIn.setToAngle(-1110);
 moveSpinnerOn = new TranslateTransition(Duration.seconds(5), spinner);
 moveSpinnerOn.setByX(150);
 moveSpinnerOn.setCycleCount(1);
 spinnerAnim = new ParallelTransition(moveSpinnerOn, rotSpinnerIn);
}

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_16
http://www.ebook3000.org

Chapter 17 ■ i3D Game Square SeleCtion: uSinG the piCkreSult ClaSS with 3D moDelS

421

Now I can add a rotSpinner.play(); Java statement to the conditional event handling construct,
without generating any errors, so that when the spinner UI is clicked, it spins alongside the game board
for the same amount of time and at the same rate. The completed Java code looks like this and is shown
highlighted in yellow in Figure 17-9:

private void createSceneProcessing() {
 scene = new Scene(root, 1280, 640, true, SceneAntialiasing.BALANCED);
 scene.setFill(Color.BLACK);
 scene.setCamera(camera);
 scene.setOnMouseClicked(event->{
 Node picked = event.getPickResult().getIntersectedNode();
 if (picked != null) {
 if (picked == spinner) {
 rotGameBoard.play();
 rotSpinner.play();
 }
 }
 });
}

Figure 17-8. Copy and paste the rotSpinner object code under itself to create a rotSpinnerIn, and reference in
spinnerAnim

Chapter 17 ■ i3D Game Square SeleCtion: uSinG the piCkreSult ClaSS with 3D moDelS

422

Let’s use a Run ➤ Project work process and test our code. Click the Start Game Button object and
notice that the screen contains only the game board. The spinner UI then appears, rotating into place (to the
wrong “PINS” position, which we will fix soon). When you click the spinner, the spinner and the game board
rotate, as shown in Figure 17-10.

Figure 17-10. The spinner UI element now animates on-screen and also rotates when clicked to spin the game
board

Figure 17-9. Add rotSpinner.play() after rotGameBoard.play() in the mouse event handling construct so both
will animate

www.ebook3000.com

http://www.ebook3000.org

Chapter 17 ■ i3D Game Square SeleCtion: uSinG the piCkreSult ClaSS with 3D moDelS

423

Using java.util.Random: Generating a Random Spin
The public class Random extends Object and implements Serializable. It is kept in the java.util package
and has two known direct subclasses, SecureRandom and ThreadLocalRandom. An instance of this
class can be used to create a random number-generating object, which will generate a stream of
“pseudorandom numbers.” These numbers will be random enough for the purposes of creating random
game spinner UI functionality. The algorithm for this class uses a 48-bit seed, which is modified using a
linear congruential formula. If you want to research this algorithm in more detail, you can reference The
Art of Computer Programming (Volume 2, Section 3.2.1) by Donald Knuth. The Java class hierarchy for the
Random class would therefore look like the following:

java.lang.Object
 > java.util.Random

It’s important to note that if two different instances of Random objects are created using the same seed
and the same sequence of method calls is made for each object, an algorithm generates (returns) the same
sequence of numeric results. In some applications, this is actually desirable; so, to guarantee an identical
result, specific algorithms are implemented for the java.util.Random class. Subclasses of class Random are
permitted to use alternate algorithms for increased security or multithread use, as long as they adhere to
general contracts for all the methods.

The instances of java.util.Random are thread-safe. However, a concurrent use of the same java.util.Random
instance across multiple threads could encounter contention and consequently result in poor performance. You
should consider using the ThreadLocalRandom subclass for your multithreaded game designs.

Additionally, instances of java.util.Random are not cryptographically secure. You should consider
instead using the SecureRandom subclass to get a cryptographically secure, pseudorandom number
generator for use by applications that are sensitive and that require a high level of security.

There are two overloaded constructor methods for this class. The first creates a random number
generator, and the second creates a random number generator and gives it a seed value using a long format.
These constructor methods look like the following Java code:

Random() // We'll be using this in our code later on during this chapter
Random(long seed)

This class has 22 methods that can be used to obtain random number results from the Random object.
The .doubles() method call will return an unlimited stream of numeric values called a DoubleStream,
which contains pseudorandom double values. Each of these values will fall between zero (inclusive) and
one (exclusive). There are three additional overloaded .doubles() method calls. The .doubles(double
randomNumberOrigin, double randomNumberBound) method call will return an unlimited bound
stream of pseudorandom double values, each conforming to the given binding origin (inclusive) and bound
limit (exclusive) specified in the method call parameter area. The .doubles(long streamSize) method
call will return a stream that produces the given streamSize number of pseudorandom double values that
are between zero (inclusive) and one (exclusive). Finally, there is a .doubles(long streamSize, double
randomNumberOrigin, double randomNumberBound) method call that returns a stream that produces
a stream conforming to the given streamSize number of pseudorandom double values, each conforming to
the given binding origin (inclusive) and bound limit (exclusive).

The .ints() method call will return an unlimited stream of pseudorandom int (integer) numeric values
called an IntStream. There are three additional overloaded .ints() method calls, including an .ints(int
randomNumberOrigin, int randomNumberBound) method call, which will return an unlimited stream
of pseudorandom int (integer) values, each of which will conform to a binding origin (inclusive) and bound
limit (exclusive) value specified in the parameter area. The .ints(long streamSize) method call will return
a random values stream, which produces a stream size that is specified using the streamSize parameter that
establishes a desired number of pseudorandom int (integer) values.

Chapter 17 ■ i3D Game Square SeleCtion: uSinG the piCkreSult ClaSS with 3D moDelS

424

Finally, the .ints(long streamSize, int randomNumberOrigin, int randomNumberBound) method
call will return a stream of numeric (integer) values that produces the streamSize number of pseudorandom
int values that are specified in the parameter area, with each value conforming to the specified binding
origin (inclusive) and bound limit (exclusive), which are also taken from the method call parameter area.

The .longs() method call will return an unlimited stream of pseudorandom long numeric values,
called a LongStream. There are three additional overloaded .longs() method calls, including a .longs(long
randomNumberOrigin, int randomNumberBound) method call, which will return an unlimited stream
of pseudorandom long values, each of which will conform to a binding origin (inclusive) and bound limit
(exclusive) value specified in the parameter area. The .longs(long streamSize) method call will return a
random long values stream that produces the stream size that is specified using the streamSize parameter
that establishes a desired number of pseudorandom long values.

Finally, a .long(long streamSize, int randomNumberOrigin, long randomNumberBound) method
call will return a stream of numeric long values that produces the streamSize number of pseudorandom long
values that are specified in the parameter area, with each value conforming to the specified binding origin
(inclusive) and bound limit (exclusive), which are also taken from the method call parameter area.

The protected int .next(int bits) method call will generate the next pseudorandom integer number
using an integer number of bits as the parameter specification. The .nextBoolean() method call will
return a pseudorandom, uniformly distributed, boolean value from the random number generator object’s
sequence. This method probably shouldn’t be used for this game’s use case because next() is designed to be
called by other random() methods.

The void .nextBytes(byte[] bytes) method call will generate a parameter-supplied byte array and
fill it with random byte values. The .nextDouble() method call will return a pseudorandom, uniformly
distributed, double value between the values of 0.0 and 1.0 by using a random number generator object’s
sequence. The .nextFloat() method call will return a pseudorandom, uniformly distributed, float (or
floating-point) value, between 0.0 and 1.0, using the random number generator object’s sequence.

The .nextGaussian() method call will return a pseudorandom, Gaussian distribution, double value,
with its mean at 0.0 and its standard deviation at 1.0, from this random number generator object’s sequence.
The .nextInt() method call will return the next pseudorandom, uniformly distributed, int (integer) value
from this random number generator object’s sequence.

The .nextLong() method call will return the next pseudorandom, uniformly distributed, long value
from this random number generator object’s sequence.

The void .setSeed(long seed) method call can be used to set (or reseed) the seed of the random
number generator object using a single long value seed specification inside of the parameter area for the
method call.

Finally, the .nextInt(int bound) method call, which is the one that we are going to utilize in the final
section of this chapter, will return a pseudorandom, uniformly distributed, int (integer) value between 0
(inclusive) and the specified value (exclusive), in our case 4, drawn from the random number generator
object’s random int sequence.

Random Quadrant Selection: Using Random with Conditional If()
Now that we have set up our spinner and game board rotation and MouseEvent handling well enough
to connect the two together to create a random spin for the game board, we need to add a randomizer
algorithm to the code so that each time a spinner is clicked, the game board is randomly set to a new
quadrant. We’ll use at least three rotations so that the spin is long enough to appear completely random to
the player. Let’s declare a Random object named random at the top of the class and then use the Alt+Enter
keystroke combination to bring up the NetBeans 9 pop-up helper. Finally, select (double-click) the “Add
import for java.util.Random” option, as shown in blue in Figure 17-11.

www.ebook3000.com

http://www.ebook3000.org

Chapter 17 ■ i3D Game Square SeleCtion: uSinG the piCkreSult ClaSS with 3D moDelS

425

Since we want to instantiate (create) our random number generator “engine” before it is actually
utilized, let’s have our code instantiate (create and load into system memory) the Random number generator
when the game application starts up.

This dictates that we will place the Random() constructor method code in your .start() method, right
before your ActionEvent handling constructs and right after all of your Node and Scene and Stage objects
have been created and added to the SceneGraph. For good measure, we’ll put it after all of the custom
methods that create the assets, images, animation and eventually the digital audio samples and other new
media assets that we’ll be using to create a professional Java 9 game.

We can do this because this Random object (named random) is not utilized until the player has clicked
the Start Game Button object to enter the 3D Scene and then clicked the spinner 3D UI (Sphere) element.
Thus, you can put this Random object instantiation anywhere in your .start() method, from the first line of
code to the last, as long as this object is created (loaded into system memory) before you start generating
any MouseEvent handling method calls in your custom createSceneProcessing() method, which we will
be enhancing as we proceed through this chapter. Open your .start() method body in NetBeans 9, add a
line of code after your custom method calls, and instantiate your Random object named random using the
following Java code, which is also shown in Figure 17-12:

public void start(Stage primaryStage) {
 ... // Custom Methods Up Here
 random = new Random();
 ... // ActionEvent Handling Constructs Down Here
}

Figure 17-11. Declare a Random object named random at the top of class; use Alt+Enter to add import
java.util.Random

Chapter 17 ■ i3D Game Square SeleCtion: uSinG the piCkreSult ClaSS with 3D moDelS

426

Now you are ready to call this random number generator inside of your spinner logic in your
MouseEvent handling code, which tells your game what to do when the 3D spinner UI is clicked. Obviously,
the first thing to do is to check for NULL to see whether the click was on a 3D Scene element and, if so, to
then see whether it was the 3D spinner that has been clicked on.

If the spinner was clicked, then the first line of code after if(picked==spinner) would be a
.nextInt(bound) method call, with an upper boundary value of 4 (the lower boundary is zero). This gives
us a random result among four quadrants (zero through three, as the upper bound of four is exclusive and
therefore not utilized in the random number pick range), which is what we will need to randomly select
between for the game’s four quadrants.

Add a line of code before your calls to invoke the RotateTransition Animation objects and create a new
int variable named spin, which will hold the result of your random.nextInt(4) method call. Add an equal (=)
operator and then type random and a period, which will bring up your NetBeans 9 method helper pop-up
selector drop-down.

Select the .nextInt(int bound) (int) option, which is shown in blue in Figure 17-13, and then double-
click it and insert it into your code. Change the default 0 (which turns the random number generator off by
generating zero to zero results) to a 4 to tell the random number generator to generate four integer values at
random, which will give you the four different quadrant results for your player spins. The Java code at this
point should look like the following Java nested if() constructs, which are also shown highlighted in blue
(and also under construction) in Figure 17-13:

if (picked != null) {
 if (picked == spinner) {
 int spin = random.nextInt(4);
 rotGameBoard.play();
 rotSpinner.play();
 }
}

Figure 17-12. Instantiate the random Random object in the .start() method so that it is loaded into memory
and ready

www.ebook3000.com

http://www.ebook3000.org

Chapter 17 ■ i3D Game Square SeleCtion: uSinG the piCkreSult ClaSS with 3D moDelS

427

Before we code this spin logic, we need to remove the .setFromAngle() and .setToAngle() method calls
from your rotGameBoard block of statements in the createAnimationAssets() method, which simplifies
your rotGameBoard Animation object logic down to its five required statements (instantiation, axis, cycles,
rate, and interpolator). We will also do this later for your rotSpinner, after we have ascertained that a switch
from toAngle and fromAngle to byAngle is going to work correctly for generating ongoing game board spins
using the fewest lines of code and with zero errors.

What we are doing here is using createAnimationAssets() to create and configure the Animation
objects and then using a .setByAngle() in the if() conditional statements, which evaluate the Random
random object result, placed into the spin integer, which we will be doing next. This approach will also
reduce the amount of code in this method body as well to less than two dozen lines of code (unless we add
game board animation later during the design and development process, outlined within this book). The
rotGameBoard code, shown in Figure 17-14, now looks like this:

private void createAnimationAssets() {
 rotGameBoard = new RotateTransition(Duration.seconds(5), gameBoard);
 rotGameBoard.setAxis(Rotate.Y_AXIS);
 rotGameBoard.setCycleCount(1);
 rotGameBoard.setRate(0.5);
 rotGameBoard.setInterpolator(Interpolator.LINEAR);
 rotSpinner = new RotateTransition(Duration.seconds(5), spinner);
 rotSpinner.setAxis(Rotate.Y_AXIS);
 rotSpinner.setCycleCount(1);
 rotSpinner.setRate(0.5);
 rotSpinner.setInterpolator(Interpolator.LINEAR);
 rotSpinner.setFromAngle(30);
 rotSpinner.setToAngle(-1050);
 ...
}

Figure 17-13. Add an int variable named spin and then type random and a period and select nextInt(int
bound) set to 4

Chapter 17 ■ i3D Game Square SeleCtion: uSinG the piCkreSult ClaSS with 3D moDelS

428

The easiest way to make sure a game board spin ends on a quadrant is to initialize gameBoard rotation
at 45 degrees and use .setByAngle() to rotate by 90-degree increments (plus three spins) for each if()
evaluation. This gives us 1080 for 0, 1170 for 1, 1260 for 2, and 1350 for 3. The Java if() constructs are shown
in Figure 17-15 and look like this:

if (picked == spinner) {
 int spin = random.nextInt(4);
 if (spin == 0) {
 rotGameBoard.setByAngle(1080); // Zero degrees plus 1080
 }
 if (spin == 1) {
 rotGameBoard.setByAngle(1170); // 1080 plus 90 degrees is 1170
 }
 if (spin == 2) {
 rotGameBoard.setByAngle(1260); // 1080 plus 180 degrees is 1260
 }
 if (spin == 3) {
 rotGameBoard.setByAngle(1350); // 1080 plus 270 degrees is 1350
 }
 rotGameBoard.play();
 rotSpinner.play();
}

Figure 17-14. Remove the .setFromAngle(45) and .setToAngle(1125) method calls from the rotGameBoard
object code

www.ebook3000.com

http://www.ebook3000.org

Chapter 17 ■ i3D Game Square SeleCtion: uSinG the piCkreSult ClaSS with 3D moDelS

429

Use the Run ➤ Project work process and click the spinner UI multiple times to test, as shown in Figure 17-16.

Figure 17-15. Add if() constructs, setting the .setByAngle() method call to four different 90-degree increments
plus 1080

Figure 17-16. The game board now randomly lands on a different quadrant with each 3D spinner click

Chapter 17 ■ i3D Game Square SeleCtion: uSinG the piCkreSult ClaSS with 3D moDelS

430

Go back into your createAnimationAssets() method and remove the .setFromAngle() and
.setToAngle() method calls from the rotSpinner Animation object, resulting in the following Java code, as
shown in Figure 17-17:

private void createAnimationAssets() {
 rotGameBoard = new RotateTransition(Duration.seconds(5), gameBoard);
 rotGameBoard.setAxis(Rotate.Y_AXIS);
 rotGameBoard.setCycleCount(1);
 rotGameBoard.setRate(0.5);
 rotGameBoard.setInterpolator(Interpolator.LINEAR);
 rotSpinner = new RotateTransition(Duration.seconds(5), spinner);
 rotSpinner.setAxis(Rotate.Y_AXIS);
 rotSpinner.setCycleCount(1);
 rotSpinner.setRate(0.5);
 rotSpinner.setInterpolator(Interpolator.LINEAR);
}

Figure 17-17. Remove rotSpinner.setFromAngle() and rotSpinner.setToAngle() method calls in
createAnimationAssets

www.ebook3000.com

http://www.ebook3000.org

Chapter 17 ■ i3D Game Square SeleCtion: uSinG the piCkreSult ClaSS with 3D moDelS

431

Go back into your createSceneProcessing() method and add the rotSpinner.setByAngle() method calls
using the negative angle values used in the rotGameBoard.setByAngle() method calls, using this code, also
shown in Figure 17-18:

if (picked == spinner) {
 int spin = random.nextInt(4);
 if (spin == 0) {
 rotGameBoard.setByAngle(1080);
 rotSpinner.setByAngle(-1080); // Zero degrees minus 1080
 }
 if (spin == 1) {
 rotGameBoard.setByAngle(1170);
 rotSpinner.setByAngle(-1170); // -1080 minus 90 degrees is -1170
 }
 if (spin == 2) {
 rotGameBoard.setByAngle(1260);
 rotSpinner.setByAngle(-1260); // -1080 minus 180 degrees is -1260
 }
 if (spin == 3) {
 rotGameBoard.setByAngle(1350);
 rotSpinner.setByAngle(-1350); // -1080 minus 270 degrees is -1350
 }
 rotGameBoard.play();
 rotSpinner.play();
}

Chapter 17 ■ i3D Game Square SeleCtion: uSinG the piCkreSult ClaSS with 3D moDelS

432

Now use a Run ➤ Project work process and test the code we have developed during this chapter
thoroughly. As you can’t see in Figure 17-19 (as it is not animated or interactive, like our game is now), every
time you click the 3D spinner, you get a different quadrant and also a different sequence of colors on the 3D
spinner UI itself while it still always says “SPIN”!

Figure 17-18. Add the rotSpinner.setByAngle() method calls to the random spin logic, this time subtracting
1080 plus 90

www.ebook3000.com

http://www.ebook3000.org

Chapter 17 ■ i3D Game Square SeleCtion: uSinG the piCkreSult ClaSS with 3D moDelS

433

We have added some fairly complex functionality during this chapter, and we are still at around 500
lines of Java code, as you can see at the bottom of NetBeans 9 in Figure 17-18 (the end of the class at line
504). Very impressive, folks!

Summary
In this seventeenth chapter, we learned about the MouseEvent, PickResult, and Random classes, which
allow us to finish implementing our 3D spinner UI and have it select a random quadrant on each subsequent
spin of the spinning 3D spinner beach ball. We also constructed a new custom createSceneProcessing()
method that contains your MouseEvent handling logic, as well as your logic for processing the (now) i3D
primitive objects that our i3D game board and spinner is comprised of (built with). Inside this new method,
we began building a conditional if() structure to evaluate mouse clicks and what needs to happen with the
game logic based on what is clicked. We will obviously be expanding this logic as we design and develop our
gameplay model over the next several chapters.

We also got some more experience using the RotateTransition class methods by converting your
rotSpinner and rotGameBoard Animation objects from using .setFromAngle() and .setToAngle() rotation
animation configuration parameters to a single .setByAngle() rotation animation configuration approach,
reducing our lines of Java code by 12.

In Chapter 18, we are going to develop your game content so that we can finish your MouseEvent
handling code (during Chapters 19 and 20) for the game board squares and the game board quadrants.

Figure 17-19. The game board randomly lands on a different quadrant, and the spinner always lands on the
word SPIN

http://dx.doi.org/10.1007/978-1-4842-0973-8_18
http://dx.doi.org/10.1007/978-1-4842-0973-8_19
http://dx.doi.org/10.1007/978-1-4842-0973-8_20

435© Wallace Jackson 2017
W. Jackson, Pro Java 9 Games Development, https://doi.org/10.1007/978-1-4842-0973-8_18

CHAPTER 18

3D Gameplay Design: Creating
Your Game Content Using
GIMP and Java

Now that you have created your multitiered 3D gameBoard Group Node (subclass) hierarchy, textured all of
the 3D primitives underneath that hierarchy, configured RotationTransition Animation algorithms (objects)
to bring the game board to life, and created a 3D spinner UI to rotate the gameBoard 3D model (hierarchy)
to a random quadrant, it is time to finish the gameplay design and create the visual assets that comprise
the gameplay. These will replace the texture map image assets during gameplay; we will use the existing 24
board game components and morph them into different content configurations, replacing a spinning game
board with content relating to your educational game.

During the chapter, we will look at a work process for creating alternate texture maps that will be
changed during gameplay by changing the Image object asset reference to add content to game board
squares and quadrants, based on random spins and player mouse clicks (or screen touches). Although this
particular chapter does not get into Java 9 too deeply, it is important to note that developing professional
Java 9 games involves digital image artisans, as well as digital audio engineers, 3D modelers, 3D texture
artists, animators, 2D illustrators, and VFX artists. Therefore, we need to cover some non-Java topics during
this book, and this is one of those chapters. Taking a chapter for content design work process will allow us
to cover what it takes to develop a game that is considered to be “professional” by the general public. I’ll be
using many of these new media genres during this book so that I leave no stone uncovered!

Design Your Gameplay: Create Quadrant Definitions
Since this is an educational game for preschool children, as well as individuals who are autistic,
intellectually impaired, and learning impaired, we need to keep the categories simple. One of the perennial
classification paradigms that will match with our color scheme is Animal, Vegetable, or Mineral, which
will leave us with one square for other topics, such as People and Famous Places. Obviously, our green
quadrant is going to be Vegetable because people say “eat your greens,” and the orange quadrant will be
Animal because of the lions, tigers, cats, dogs, and other animals that are exactly that shade of orange. Our
blue quadrant will be Mineral because of minerals such as sapphire and amethyst, which exist in this cool
color spectrum. This leaves the pink quadrant for Other, which we can decide to classify after each spin.
These game board squares’ randomly selected topics will be presented visually using high-quality imagery,
which we will be developing the alternate texture mapping digital image assets for during this chapter
using the professional-level GIMP.

www.ebook3000.com

https://doi.org/10.1007/978-1-4842-0973-8_18
http://www.ebook3000.org

Chapter 18 ■ 3D Gameplay DesiGn: CreatinG your Game Content usinG Gimp anD Java

436

Game Board Quadrant: Creating Game Quadrant Content (GIMP)
I’ll be showing you the work process used in GIMP to create one of the game board texture assets (a parrot
for your Animal quadrant) so that the chapter does not balloon to hundreds of pages, as you ultimately
need to create hundreds of image assets for your 24 game board elements). Let’s fire up GIMP (currently at
version 2.8.22) and create a new image composite to use to develop content textures! To start your quadrant
(and game board square) texture map layer compositing construct, simply launch GIMP and use a File ➤
Open menu sequence to open the gameboardquad1.png file in your /NetBeansProjects/JavaFXGame/src/
folder. This will make it the bottom-most layer, as shown on the left side (highlighted in blue) of Figure 18-1.
Open the other three gameboardquad texture maps, as shown as three tabs on the top right of Figure 18-1.
Select each tab, use the Select ➤ All menu sequence, and then use Edit ➤ Copy. Click the first tab, which
contains your multilayer composite, and use the Edit ➤ Paste As ➤ New Layer menu sequence to add these
three layers above the first (orange) one, as shown on the left side of Figure 18-1. Rename these layers to
gameboardquad with a dash and the words animal, vegetable, mineral, and other, as shown in Figure 18-1.
With the fourth (pink, topmost) layer selected, use the File ➤ Open as Layers menu sequence and add the
SteelHoop.png 24-bit image file to the top layer of the composite, giving the result shown in the preview
area in Figure 18-1. Now, let’s find an animal image online we can use inside of the texture’s steel hoop area.

Figure 18-1. Create a quadrant texture composite with four quadrant diffuse color maps; then add a steel
decorative hoop

Chapter 18 ■ 3D Gameplay DesiGn: CreatinG your Game Content usinG Gimp anD Java

437

The web site I use for royalty-free images for commercial use (such as this educational game and book)
is Pexels.com. Go to www.pexels.com, and if you don’t see a parrot on the home page, enter parrot in the
search bar. Download a parrot image, as shown in Figure 18-2; then right-click the downloaded image (in its
own tab in the browser) and select Copy Image. Go into GIMP and use the File ➤ Create ➤ From Clipboard
menu sequence to paste the digital image data into its own composition file (and into, and under, a new tab,
on the top right) in GIMP.

We need a square area of this image to use with both the game board square texture and the round
portion of the game board quadrant texture. This will be created using the Rectangle Select tool shown in
Figure 18-3 set to a 2160x2160 square area, which will be resized 500 percent to fit a 432x432 circular area
inside the game board quadrant.

Position your square selection to optimize the recognizable portion of your content, as shown in
Figure 18-3.

Figure 18-2. Use File ➤ Create ➤ From Clipboard to paste content copied from the Pexels.com download in
GIMP for editing

www.ebook3000.com

http://www.pexels.com/
http://www.ebook3000.org

Chapter 18 ■ 3D Gameplay DesiGn: CreatinG your Game Content usinG Gimp anD Java

438

Since the Pexels.com imagery varies in pixel size, I simply find an even multiple of a target 432-pixel
square image size needed for each quadrant’s center area and set the Rectangle Select tool for that. Once
the selection square is set, you drag it around by its interior area to fine-tune its position to show the
maximum content inside of it. Then use an Edit ➤ Copy menu sequence to copy the data to the Clipboard
and then a File ➤ Create ➤ From Clipboard menu sequence to create the new square image, shown in
Figure 18-4, which we will downsample by five times, to 432x432. This is done using the Image ➤ Scale
Image menu sequence to open the Scale Image dialog, where you’ll replace 2160 with 432 (keeping the
aspect ratio locked) and click the Scale button.

Figure 18-3. Set the Rectangle Select tool’s Size properties to 2160x2160 and then drag the selection into an
optimal position

Chapter 18 ■ 3D Gameplay DesiGn: CreatinG your Game Content usinG Gimp anD Java

439

Your next step is to center this 432-pixel square image inside of the 512-pixel square area of your
quadrant’s texture map, which we will do before we copy it over, as this is an easier work process. To do this,
we’ll simply use the Image ➤ Canvas Size menu sequence and then increase the canvas size from 432x 432
to 512x 512. Make sure to click the dialog’s Center button or your image will be in the upper-left corner of
the resized canvas, this centering process will allow you to have transparency (alpha channel) values where
there was no image, which is exactly the result that we want to achieve.

As you can see in the Set Image Canvas Size dialog, once you click the Center button, shown in light
blue in Figure 18-5, the dialog will calculate the X Offset and Y Offset values (in this case, 40 pixels) around
the entire perimeter of the image, as in 512 – 432 = 80 / 2 = 40. Finally, click your Resize button to turn this
432-pixel square into a 512-pixel square, centered using transparency, so it will be centered in the steel hoop.
Now you’re ready to use Select ➤ All and then the Edit ➤ Copy menu sequence to place the data into the
Clipboard, where it will be pasted onto a different tab.

Figure 18-4. Use the Image ➤ Scale Image work process and reduce the 2160-pixel image 500 percent to be
432 pixels square

www.ebook3000.com

http://www.ebook3000.org

Chapter 18 ■ 3D Gameplay DesiGn: CreatinG your Game Content usinG Gimp anD Java

440

Make sure to set your Layers drop-down selector to All layers to include the transparent areas
generated in the layer. If you forget to do this, simply right-click the new 512-pixel layer and use the Layer to
Image Size option. Make sure to do this before you use Select ➤ All and Edit ➤ Copy so you select both the
transparency and the imagery.

The next step is to click the quadrant texture composition tab, as shown in Figure 18-6, and then select
the bottom-most (animal) layer so that when you paste the centered parrot square image, it is above the
base texture for the quadrant and underneath the steel hoop decoration. We will be using this steel hoop
image and its transparency to cut the corners off of the parrot image so that it is seamlessly integrated with
the steel hoop image.

Figure 18-5. Use the Set Image Canvas Size dialog to resize the canvas to 512 pixels

Chapter 18 ■ 3D Gameplay DesiGn: CreatinG your Game Content usinG Gimp anD Java

441

Figure 18-6. Select the Steel Hoop layer and Magic Wand tool and click inside the hoop to create a selection

At this point, since the Steel Hoop layer is selected, the selection is indeed on top of the steel hoop.
However, once the Clipboard layer (which you can rename Parrot, if you want, by double-clicking the
layer name) is selected, this selection will be on top of (as well as used on) that layer and will therefore be
underneath your Steel Hoop layer.

Set the Grow Selection dialog value to 4 and click the OK button, as shown at the bottom of Figure 18-7.

To accomplish this GIMP “move,” you will select the Steel Hoop layer, shown selected in blue in
Figure 18-6, and then click the Magic Wand tool, shown (depressed) selected in the GIMP Tool Icon area.
Click the Magic Wand tool inside of the center (transparent) area of your steel hoop, which will select this
area inside of the hoop. You’ll need to expand this selection area so that the parrot image actually goes
underneath the edges of the steel hoop, or you will see a seam around the edge of the parrot image once it’s
cut out so that it is in the interior portion of the steel hoop.

To do this, after you see your selection inside of your steel hoop, as shown in Figure 18-6, you will want
to use the Select ➤ Grow menu sequence and expand the selection so that it actually looks like it is over the
top of the steel hoop, by anywhere from 1 to 9 pixels. (I usually use at least 2, to be safe; in this case, I have
used 4 pixels.)

www.ebook3000.com

http://www.ebook3000.org

Chapter 18 ■ 3D Gameplay DesiGn: CreatinG your Game Content usinG Gimp anD Java

442

The next step is to select your Clipboard layer, which contains your parrot image, so that it is affected
by the selection, which we “culled” from the Steel Hoop layer (inner) transparency. Then select the Select ➤
Invert menu sequence. This will “keep” what is inside of the circle and delete what is outside of your circle
selection (once you tap the Delete key on the keyboard, that is). This will remove the corners of the image
that were sticking out in Figure 18-7.

As you can see in Figure 18-8, the end result of this work process is a completely smooth image
composite, with the rounded parrot image inside of (and behind) the steel hoop decoration. Also shown
in Figure 18-8 is the final step in making your perfect game board quadrant texture map, which is rotating
the content 45 degrees so that when your 3D game board is spun onto its point, the image is correctly
positioned, relative to the viewing player.

Figure 18-7. Use the Grow Selection dialog and expand the selection area by 4 pixels beyond the interior

Chapter 18 ■ 3D Gameplay DesiGn: CreatinG your Game Content usinG Gimp anD Java

443

Figure 18-8. Once you delete the corners, you have a perfect compositing result and are ready to rotate the
parrot 45 degrees

The next thing that needs to be done is to rotate the Clipboard (Parrot) layer by 45 degrees, which
should be seamless since the parrot imagery has been centered and rounded using a math-based work
process. Since your Clipboard layer is still selected, all you have to do is to select Layer ➤ Transform ➤
Arbitrary Rotation, which is shown in Figure 18-8, and open the Rotate dialog, as shown in Figure 18-9.

Figure 18-9. Rotate the parrot 45 degrees using a Rotate dialog so that it is upright for the game board
quadrant spin

www.ebook3000.com

http://www.ebook3000.org

Chapter 18 ■ 3D Gameplay DesiGn: CreatinG your Game Content usinG Gimp anD Java

444

Enter the 45-degree value into the Angle text field to rotate the parrot image so that it will be upright after
the game board spinner has selected the orange Animal quadrant. Leave your Center X and Center Y rotation
coordinates at the exact center of the 512-pixel texture map, which will be a 256 value, as shown in Figure 18-9.

Also shown in Figure 18-9 is the Rotate tool grid, which overlays the image being rotated. This will allow
you to more precisely visualize how your content is being rotated, using a 16x16 grid overlay of straight lines.

The settings for the Rotate tool and grid can be seen on the left of the Rotate dialog, where you can set
the number of grid lines (called guides), set the image preview option, set the rotation Direction, and set
the Clipping and image Opacity. As you can see, GIMP 2.8.22 can be a powerful tool for professional Java 9
games developers.

Notice the rotation grid guide is shown over the Steel Hoop layer since it is on (showing) in the layer
composition. If you wanted to see the rotation guide just on the round parrot image, you could turn off the
eye icons for the Steel Hoop and gameboardquad-animal layers. Remember, only the selected layer will be
affected by a Layer ➤ Transform ➤ Rotate operation, as GIMP is a modal software package that operates
only on a combination of selected layers, tools, colors, selection sets, and options. This makes it relatively
complex, yet this same feature makes it much more powerful than nonmodal digital imaging software.

Click the Rotate button to finish the rotation algorithm settings and apply the rotation to the image.
Now all you have to do is to export the image to the NetBeansProjects/JavaFXGame/src folder as
gamequad1bird1.png. Then we can go into the Java loadImageAssets() method and test the new texture
map by changing the diffuse21 map to reference this image, instead of the default one. (We’re doing this
temporarily so that we can see how it looks when rendered onto the 3D game board quadrant.)

Open NetBeans 9 and the JavaFXGame project. Then open the loadImageAssets() method body by
using the plus (+) icon in the margin and temporarily edit the diffuse21 texture used for the orange game
board quadrant to reference the gamequad1bird1.png file you just created using the following Java
statement, which is also shown in Figure 18-10 highlighted in yellow and blue:

...
diffuse21 = new Image("/gamequad1bird1.png", 512, 512, true, true, true);
...

Chapter 18 ■ 3D Gameplay DesiGn: CreatinG your Game Content usinG Gimp anD Java

445

Figure 18-10. Set the diffuse21 Image object to temporarily reference the gamequad1bird1.png texture map
you created

Now all we need to do is to test the new code to see how the game board looks when it lands on the
Animal (orange) quadrant when the 3D spinner randomly selected this game board quadrant (topic) for the
player to answer.

This might take a number of spin attempts as the Random class’s random object (random number
generator engine) is actually quite effective at providing a random game board quadrant result on each
subsequent spin of your 3D spinner.

Use a Run ➤ Project work process to spin the spinner until quadrant 1 is selected, as shown in
Figure 18-11.

www.ebook3000.com

http://www.ebook3000.org

Chapter 18 ■ 3D Gameplay DesiGn: CreatinG your Game Content usinG Gimp anD Java

446

Game Board Squares: Creating Game Squares Content in GIMP
The game board square definitions conform to the quadrant definition, giving the player five different topics
relating to the quadrant category to choose from. The player gets to decide their own fate (question) after
the game board random spin picks their category for them and randomly loads the squares with content for
the topic. Open the second (256-pixel) texture map file we worked on with the game board square template,
shown open in Figure 18-12 (third tab). Also open the Pexels.com image and the 2160-pixel square region
we are going to use to represent the parrot. The first thing we need to do is to scale a 2160-pixel image down
to 192 pixels to fit inside the color area. Since the perimeter is 32 pixels (256 – (2 × 32) = 192 pixels for the
center area in both dimensions), use an Image ➤ Scale Image work process to scale the image down to 192
pixels, as shown on the bottom left of Figure 18-12.

Figure 18-11. The parrot quadrant texture map rendered on the game board surface

Chapter 18 ■ 3D Gameplay DesiGn: CreatinG your Game Content usinG Gimp anD Java

447

Figure 18-12. This time scale your 2160-pixel image to 192 pixels so it perfectly fits inside your game board
squares

Next, use the View ➤ Zoom ➤ 100% (called the Actual Pixels view mode) menu sequence, “normalize”
the image that you’re looking at, and then undertake the same “centering in transparency” work process as
we did for the quadrant by using an Image ➤ Canvas Size menu sequence. Expand and center the canvas
back to 256 pixels to match the game board square texture map size, as shown in Figure 18-13, so that the
image will fit your texture map perfectly.

www.ebook3000.com

http://www.ebook3000.org

Chapter 18 ■ 3D Gameplay DesiGn: CreatinG your Game Content usinG Gimp anD Java

448

Figure 18-13. Resize the canvas to 256 pixels and center the 192-pixel image inside the 32 pixels of
transparency to center

Use the Select ➤ All menu sequence and then the Edit ➤ Copy menu sequence to copy both the
transparent 32-pixel boundary and the interior 192-pixel image data into your OS Clipboard. (Yes, the
Clipboard is actually part of your operating system, so you can cut or copy and paste data between all of your
different running applications.)

Select the 256-pixel game board square texture compositing tab and the layer underneath the game
board square layer and use the Edit ➤ Paste as Layer menu sequence to paste the image under the red
borders. Note that in this case you could also paste the layer on top of the game board square edge color
layer; because we are using all straight lines in the composited layers, each layer abuts the other “pixel
for pixel” mathematically so that there are zero overlapping pixels, which was not the case in our circular
quadrant composite.

I’m going to save this texture map file using a different name, gameboardsquarecontent1.xcf, so that it
contains only the images and edge decoration for the first game board square. Eventually there will be 20 of
these XCF files, one for each of the Q1S1 through Q4S5 gameBoard Node quadrant children.

As we add content, these will accumulate in size evenly, and you will not end up with one unwieldy file
that you have to deal with. This approach will keep your pro Java 9 game development work process far more
organized.

Note that the screenshot in Figure 18-14 still uses the Pro_Java_9_Games_Development_Texture_Maps4
XCF file from Chapter 13, which covered 3D primitive shader and texture mapping concepts and Java coding.

http://dx.doi.org/10.1007/978-1-4842-0973-8_13

Chapter 18 ■ 3D Gameplay DesiGn: CreatinG your Game Content usinG Gimp anD Java

449

Later during this chapter, we will generate the 20 game board square content generation XCF files that
will accumulate digital image content that the Java code will eventually select from for each game board
square that the initial random spin selects for gameplay (i.e., the five squares attached to the randomly
selected quadrant). This approach allows us to randomize the quadrant as well as the content for each of the
quadrant’s game board squares.

Finally, let’s use the GIMP File ➤ Export As menu sequence and save this new diffuse texture map in
the /NetBeansProjects/JavaFXGame/src folder as gamesquare1bird1.png. Notice in your file manager
that this texture map is less than 80KB in size, which is considerably larger than your 1KB default texture.
It will always be the case that high-quality 24-bit content will add to the data footprint of the application.
If you wanted to optimize this data footprint further, you should use the Image ➤ Mode ➤ Indexed menu
sequence in GIMP to turn your image into an 8-bit indexed color image and use Generate Optimum Palette
(256 colors) with Floyd-Steinberg Dithering. This will reduce gamesquare1bird1.png to 27.4KB in size, as
it is now a PNG8 image, with good-quality results.

How you name these files is important because your gameplay Java code, which we will start to
write in the next chapter, will make random decision logic based on these name components. Obviously,
gamesquare1 (the first part of the name) will define which gamesquare (Q1S1 through Q4S5) will be
mapped. The second part is a subclassification. In this case, it’s “bird” but could also be “feline” or “canine”
or “bovine” and so forth. The last part is how many selections the random number generator has to select
from, so if you have bird1 through bird5 for game board square 1, your Random object will select from 0
through 5 inclusively. In this way, as you add new content (in collections of 20, or one image subject for each
game board square), you can increment your Random object’s random number–generating Java code to add
a new maximum random number (zero through the upper selection boundary) as you add content.

Figure 18-14. Select the 256 texture map composite tab, select the layer under the red square, and select Edit ➤
Paste as Layer

www.ebook3000.com

http://www.ebook3000.org

Chapter 18 ■ 3D Gameplay DesiGn: CreatinG your Game Content usinG Gimp anD Java

450

Next, let’s test this first game board square on the 3D game board by substituting the diffuse1 Image
object reference from the blank (default) game board square texture map to the one with the image inside
of it. Your Java 9 Image object instantiation (and loading) construct is shown at the top of Figure 18-15 and
should look like this code:

diffuse1 = new Image("/gamesquare1bird1.png", 256, 256, true, true, true);

Use a Run ➤ Project work process to make sure the content is facing the right direction, as shown in
Figure 18-16.

Figure 18-15. Test the first game board square by swapping in the new texture map image in the diffuse1
instantiation

Chapter 18 ■ 3D Gameplay DesiGn: CreatinG your Game Content usinG Gimp anD Java

451

Figure 18-17. Paste the second bird image data into GIMP and use Scale Image to find the lowest common
resolution

Figure 18-16. The parrot is facing out of the edge of the game board, so there’s no need to rotate the image

Since we’ll need at least two image texture maps for each game board square, go to Pexels.com and
find another bird image to use for the second gamesquare1bird0.png image. We will start our image file
numbering with zero to more closely match the random number generator output. I found a great eagle (or
maybe a hawk; we will research the game board content in a later chapter when making sure everything is
correct), as shown in Figure 18-17.

www.ebook3000.com

http://www.ebook3000.org

Chapter 18 ■ 3D Gameplay DesiGn: CreatinG your Game Content usinG Gimp anD Java

452

Since this is a low-resolution image, we’re going to use 689 (height) as your dimension for the square,
so use the Rectangle Select tool and enter a 689, 689 Size square at Position 428,0, as shown on the left of
Figure 18-18.

Use the Edit ➤ Copy menu sequence to copy this data to your OS’s Clipboard and then use the GIMP
File ➤ Create from Clipboard menu sequence to paste the square image data into its own editing tab, as
shown in Figure 18-19. Use the Image ➤ Scale Image menu sequence and scale the 689 pixel data down
to 192 pixels. Then use the Image ➤ Canvas Size menu sequence and access the Set Image Canvas Size
dialog, shown in Figure 18-19. Expand the image canvas size to 256 pixels square while also centering the
image data in the middle of transparency by using the Center button in the dialog. Remember to select
Resize Layers All in the Layers drop-down or right-click to invoke Layer to Image Size after the Resize
operation has been applied to the image.

Figure 18-18. Create a 689x689 pixel square for the image since it’s not an HD | UHD image with thousands
of pixels

Chapter 18 ■ 3D Gameplay DesiGn: CreatinG your Game Content usinG Gimp anD Java

453

Figure 18-19. Scale 689 pixels to 192 pixels and then use Set Image Canvas Size to add your 32-pixel
transparent perimeter

Next, use your Select ➤ All and Edit ➤ Copy menu sequences to select the image and transparency data;
then click the game board square 1 texture map tab (the first tab) and click the layer underneath the game
board color square. Then use the Edit ➤ Paste as Layer menu sequence and paste this second bird image
into your composite, as shown in Figure 18-20. You can see the result of the operation from Figure 18-19 in the
preview icon for the third tab at the top-right corner of Figure 18-20.

www.ebook3000.com

http://www.ebook3000.org

Chapter 18 ■ 3D Gameplay DesiGn: CreatinG your Game Content usinG Gimp anD Java

454

GIMP does a pretty good job of showing you visually what is going on in your work process if you look at
its UI closely. You can also customize the UI by choosing different preview icon sizes and naming the layers
with your own informative (descriptive) text labels.

To change the layer icon preview size, which I’m going to do a bit later in the chapter, use the tiny arrow
at the top right of the Layers palette, next to your Brush Editor tab and above the Mode (Normal) drop-down
selector arrow. You can select Preview Size ➤ Tiny through Preview Size ➤ Gigantic, giving you eight
different icon size choices.

Now that you have created your 192-pixel game board square insert, as shown in Figure 18-20, you’ll
need to use an Edit ➤ Undo work process to get back to the 689x689 original image square so that you can
create a game board quadrant version for each game board square. We’ll be doing that next so we can create
the quadrant texture.

Once a player selects one of the five game board squares in the randomly selected quadrant, your Java
code (eventually) will put the selected question image into the game board quadrant and ask the player
questions about it.

To get back to the 689-pixel square image, select the tab in GIMP containing the square image data
and use the Edit ➤ Undo menu sequence to undo all of your selection, canvas resizing, and image scaling
operations that you previously applied to create the layer data for use in your 256-pixel game board square
diffuse color texture map.

Figure 18-20. Paste your 256-pixel image plus transparency under your GameBoardSquare1 edge coloring
texture layer

Chapter 18 ■ 3D Gameplay DesiGn: CreatinG your Game Content usinG Gimp anD Java

455

Figure 18-21. Create a 432-pixel image inside the 512-pixel texture with a transparent border; paste it
underneath the hoop

You are doing this so that you can undertake a similar work process (plus a 45-degree rotation) to
create the 512-pixel quadrant texture map. This is so that when the player clicks the game board square that
contains the same image, there will be a larger (decorated) version of the image content subject (question)
to preview.

Each time you use Edit ➤ Undo, you will see GIMP re-create the previous image-editing state in the
software so you can see visually when you are back to having your original 689x689 image square. If you
go back too far, you will see the entire original image from Pexels.com, and since there is also an Edit ➤
Redo command, you can go back to the square image version just as easily! The Undo/Redo feature can be
powerful for a repetitive work process like this one, where we need to create more than one texture map by
using the same original image data source.

Create a second quadrant texture, shown in Figure 18-21, by resizing the 689-pixel image to 432 pixels
using Image ➤ Image Size. Next, use the Image ➤ Canvas Size work process to center this image data
inside the transparency by increasing Canvas Size to 512 pixels and clicking the Center button. Use a Layer
to Image Size option to include the layer’s transparent pixels with the image pixels and then use Select ➤
All and Edit ➤ Copy to transfer all this image and transparency data into the OS clipboard. Select a layer
under the Steel Hoop layer and use Edit ➤ Paste as Layer to insert it.

www.ebook3000.com

http://www.ebook3000.org

Chapter 18 ■ 3D Gameplay DesiGn: CreatinG your Game Content usinG Gimp anD Java

456

Paste this image data under the Steel Hoop layer and rotate the Clipboard layer 45 degrees, as shown in
Figure 18-22.

Next, use the File ➤ Export As work process and save your second gameboardquadrant1bird0.png
file (as I have decided to start numbering these at zero to match up with the random number generator
output).

Let’s preview the second game board square 1 and game board quadrant 1 textures by changing the
diffuse1 and diffuse21 Image object file name references using the following Java 9 code, as shown in
Figure 18-23:

diffuse1 = new Image("/gamesquare1bird0.png", 256, 256, true, true, true);
diffuse21 = new Image("/gamequad1bird0.png", 512, 512, true, true, true);

Figure 18-22. Rotate the image layer 45 degrees after inverse-selecting and deleting corners protruding from
the hoop

Chapter 18 ■ 3D Gameplay DesiGn: CreatinG your Game Content usinG Gimp anD Java

457

Use your Run ➤ Project work process and make sure the content looks good and is facing the right
direction, as shown in Figure 18-24. Congratulations, you have completed 4 of your 80 texture maps that you
will need to have in place in order to even test the random.nextInt(2) method call Java 9 code, which will
randomly select between two images for each game board square.

Figure 18-23. Change the diffuse1 and diffuse21 Image object texture map reference to test the two new
texture maps

www.ebook3000.com

http://www.ebook3000.org

Chapter 18 ■ 3D Gameplay DesiGn: CreatinG your Game Content usinG Gimp anD Java

458

Having 4 random images per game board square to select from would require 160 images, and having 8
random images to select from for each game board square would require 320 images to be created by using
the work processes that you are learning about during this chapter.

It is important to remember that game board square corner imagery will need to be rotated 45 degrees,
as will all quadrant images. Some game board square side images (squares 4, 5, 9, 10, 14, 15, 19, and 20) will
need to be rotated 90 degrees to “face out” correctly on the game board. We’ll be looking at all of these digital
imaging scenarios during this chapter, which will be a fairly long one for a nonprogramming chapter, with
lots of GIMP screenshots.

That said, professional Java game development involves a whole lot more than coding, as JavaFX 9
supports a half-dozen new media genres, including 3D, Digital Illustration (SVG), Digital Imaging (PNG),
Digital Audio, and more!

Now that we’ve created the foundation for the GameSquare1.xcf game board square 1 image composite,
let’s create the others, substituting a correct perimeter color value for the top decoration portion of the
texture map and saving these using the same file name, while incrementing the number at the end by one
each time, until you have all 20. After that, all you have to do is add image layers to each of these to create the
board game content for the game board squares and the game board quadrants. It turns out that creating Pro
Java 9 Games involves a ton of hard work!

We can use the File ➤ Save As menu sequence to save another version of the file once we change
the color value of the game board square perimeter and replace the image layers with alternate content.
The easiest way for you to do this with surgical accuracy is use File ➤ Open As Layers and open a
gameboardsquare2.png texture map in a layer in the composite, use the Eyedropper (color picker) tool to
click the perimeter color to set the FG foreground color to that value, select your PaintCan (color filler) tool,
select the transparent game board square decoration layer, and click the PaintCan tool in the (red, in this
case) square color area. This will fill that red color with the next (orange) color value. Then, all you have to
do is to delete the layer with the default (blank) game board square color reference and use File ➤ Save As
to save the GameSquare2.xcf compositing file, which is now ready for you to fill with image data to be used
in and for your second board game square.

Figure 18-24. Use Run ➤Project and render the quadrant 1 and square 1 texture maps to check the
orientation and quality

Chapter 18 ■ 3D Gameplay DesiGn: CreatinG your Game Content usinG Gimp anD Java

459

Notice in Figure 18-25 that I have made the layer image preview icons larger so that you can see what
I am doing with the game board square 2 imagery, border decoration color, and so on, with greater detail.
This also might be necessary if you are working on one of the new UHD (4K) displays, as everything will look
a bit smaller (unless the UHD display is 60 inches or larger, that is). Most of my UHD desktop displays are 43
inches because these are affordable.

Next, let’s take a look at how you have to rotate the image content 45 degrees in GameSquare3.xcf
(corner) and how you have to rotate your image content 90 degrees for GameSquare4.xcf and GameSquare5.
xcf so it faces out away from the game board, just like the content in squares 1 and 2 does.

As you can see in Figure 18-26, the digital image content inside of the colored square perimeter
decoration for the third (and eighth, thirteenth, and eighteenth) game board corner square will need to be
rotated clockwise 45 degrees, just like the game board quadrant texture maps. This will make the digital
image content face the players after each game board spin.

Figure 18-25. Create a GameSquare2.xcf compositing file with a red-orange border and image assets to use
for square 2

www.ebook3000.com

http://www.ebook3000.org

Chapter 18 ■ 3D Gameplay DesiGn: CreatinG your Game Content usinG Gimp anD Java

460

For this reason, instead of scaling the high-definition square image down to 192 pixels, I had to use a
higher pixel resolution value, as some of the transparent pixels will be exposed by the rotation; you can see
this in the second and third layer preview images in Figure 18-26 (remember, gray checkerboard squares
represent transparent pixels).

You can see a tiny bit of this transparency in the corners of the primary GIMP image preview (canvas)
area in Figure 18-26. I used a downsampling value of 264, which was not perfect (268 or 272 would have
been better), but this was good enough for the content development and code testing phase that we are in
now, during this chapter.

I doubt if any players would even notice this handful of transparent pixels in the far corners of the
texture map image, especially after it is mapped onto the game board squares. I will do a render of the board
game using the Java code (as I have been doing during this chapter) once I have 20 texture maps done using
these work processes for quadrant 1 of the game board. If you wanted to look ahead at this and confirm
that it is hard to see any problem with the texture map for game board square 3, please feel free to do so
(Figure 18-28).

Nevertheless, before you release your game, make sure all diagonal game board square corners have
their image data scaled up enough (say, 272 pixels before rotation, just to make sure) so that there are no
corner artifacts!

Figure 18-26. Create a GameSquare3.xcf compositing file with an orange border and two image assets to use
for square 3

Chapter 18 ■ 3D Gameplay DesiGn: CreatinG your Game Content usinG Gimp anD Java

461

Figure 18-27. The game board squares 4, 5, 9, 10, 14, 15, 19, and 20 will need to use an image rotated
clockwise 90 degrees

The digital image content inside of your colored square perimeter decoration for the fourth and fifth
(and ninth, tenth, fourteenth, fifteenth, nineteenth, and twentieth) game board squares will need to be
rotated clockwise 90 degrees, as shown in Figure 18-27, for the digital image content to face your players
after each game board spin.

In this case, we will still scale your high-definition square image down to 192 pixels, add the 64 extra
pixels around the perimeter (32 when centered), and, as you can see in the second and third layer preview
images in Figure 18-27, use the Layer ➤ Transform ➤ Rotate 90° Clockwise menu sequence. Once you
have five texture maps created, you will reference them in your loadImageAssets() method and use the
Run ➤ Project work process to test them to see how they map onto the quadrant 1 game board square child
elements, as shown in Figure 18-28.

www.ebook3000.com

http://www.ebook3000.org

Chapter 18 ■ 3D Gameplay DesiGn: CreatinG your Game Content usinG Gimp anD Java

462

Figure 18-28. Render six quadrant and square texture maps to check their orientation and quality

The last thing that I am going to do is to change the Image object references for diffuse6 through
diffuse10, as well as for diffuse 22, to test how the texture maps are going to be applied to the game board
squares attached to quadrant 2. This will tell me if, and how, I will need to change my image rotation
values as I develop the vegetable quadrant texture maps. This is done using the work process shown in
Figures 18-10, 18-15, and 18-23, and half of your diffuse texture maps will be referencing texture maps you
are developing, temporarily, using your loadImageAssets() method body code. For the real board gameplay,
this will be done inside event handling method bodies, interactively, based on mouse clicks by the players
combined with conditional processing and random number generation.

Copy the file names referenced in diffuse1 through diffuse5 and in diffuse6 through diffuse10,
respectively, and change the last number from zero to one (or vice versa, if you wish, to mix up the images
used). You can see the result of the Run ➤ Project work process after you have completed this process at the
end of the chapter, in Figure 18-29.

Chapter 18 ■ 3D Gameplay DesiGn: CreatinG your Game Content usinG Gimp anD Java

463

Figure 18-29. Add the quadrant 1 texture maps to the quadrant 2 Java code and test the texture map
orientation

Figure 18-28 shows six diffuse texture maps rendered on the game board using a Run ➤ Project work
process.

As you can see in Figure 18-29, you will need to adjust the work process that you learned during this
chapter (as far as the rotate value) for each quadrant of the game board. As long as you test your texture
maps as you go along, as you learned during the chapter, this shouldn’t be a problem whatsoever and will
give you some practice with GIMP.

You will get a lot of practice with the work processes described during this chapter while creating your
own custom digital image content. GIMP is an amazing software package with a new version coming out
soon that meets, and in some cases exceeds, features found in expensive digital image compositor software
packages!

Summary
In this eighteenth chapter, we learned more about the work processes in GIMP that are needed to create
the massive amount of game content that we will need to create a professional-level educational game for
preschool children, the autistic, and the learning impaired. I showed you the work process to complete
enough content for the first quadrant to be able to develop the random content selection Java code that we
will be developing in the next chapter. You can then use this same work process to develop the content for
your other three game board quadrants.

You learned about how to get free-for-commercial-use content from Pexels.com, how to copy that to the
OS clipboard, and how to use the Create ➤ From Clipboard feature to open it in a tab in GIMP. You learned
how to make square image data for use in game board quadrant and squares texture maps, as well as how to
center it, crop it, and rotate it.

In Chapter 19, we are going to actually develop the Java code to implement more gameplay and the
game content that you learned how to create during this chapter so that we can make some progress toward
finishing your MouseEvent handling code (during Chapter 19) for the game board squares and game board
quadrants.

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_19
http://dx.doi.org/10.1007/978-1-4842-0973-8_19
http://www.ebook3000.org

465© Wallace Jackson 2017
W. Jackson, Pro Java 9 Games Development, https://doi.org/10.1007/978-1-4842-0973-8_19

CHAPTER 19

Game Content Engine: AI Logic
with Random Content Selection
Methods

Now that you have your game board animated and randomly selecting a quadrant on each click of the 3D
spinner UI element, we need to figure out how to track these spins in some way that will consistently tell
us which quadrant we have landed on. That way, we can map the correct diffuse texture maps onto that
quadrant’s game board squares. We will do this using simple math, using int (integers) no less, as the 360
degrees in a circle and the 90 degrees in a quadrant are all evenly divisible. This will be a fun chapter, as AI
can often be coded using compact Java code! A lot of thinking about logic will be involved with some testing
to refine the values once an approach has been determined.

During the chapter, we will create two new int (integer) variables: spinDeg for spin degrees, which
will be an accumulator (or total) of the rotational degrees that have been spun by the players, and
quadrantLanding, which will hold the latest result of a simple yet powerful calculation that will always tell
us what quadrant the latest spin landed on.

We’ll create six new methods including a calculateQuadrantLanding() method to ascertain what the
current quadrant is, a resetTextureMaps() method to reset the game board square texture maps to their
defaults before each new spin, and populateQuadrantOne() through populateQuadrantFour() to hold
random number generation and the conditional if() processing that picks the mixture of game board square
content for each of the player’s random spins.

Coding a Random Spin Tracker: Remainder Operator
To get the result of the latest quadrant that a player has landed on after a spin, we need to track the percentage
after the whole number of spins, especially as we are spinning three times plus the offset. So, for 45 + 1080 in
if() condition 1, this will be Quadrant One. For 45 + 1170 in if() condition 2, this will be Quadrant Two. For 45
+ 1260 in if() condition 3, this will be Quadrant Three. For if() condition 4, this will be 45 + 1350, for Quadrant
Four. However, for subsequent spins, this will not always be the same offset starting at 45 degrees, so we need
to keep a spinDeg total variable and add each spin angle to get a total, which we can divide by 360 to get the
full rotations and then use the remainder % operand in Java to get the angle rotation past the full turns that the
game board quadrant has landed on. The equation looks something like the following in Java code:

int spinDeg = 45; // Initialize at 45 degrees
int quadrantLanding; // Initialize at zero
spinDeg = spinDeg + lastSpinRotation; // Total Spin Angle Accumulator
quadrantLanding = spinDeg % 360; // Resting Angle Offset Calculation

https://doi.org/10.1007/978-1-4842-0973-8_19

Chapter 19 ■ Game Content enGine: ai LoGiC with random Content SeLeCtion methodS

466

The quadrantLanding variable will always contain one of four values: 45 (pink or other quadrant), 135
(blue or mineral quadrant), 225 (green or vegetable quadrant), or 315 (orange or animal quadrant). We’ll
create a method called calculateQuadrantLanding() that we will call at the end of the MouseEvent handler
that implements a random spin.

Implementing Spin Tracker Functionality: Create Empty Methods
Let’s create the two integer variables and five new methods’ infrastructure that we will need to hold the Java
code we will be writing during this chapter. This code will track what quadrant the game board is resting
on after each spin and will then handle the “population” of the game board squares with random content,
which we partially (25 percent) developed in the previous chapter. I will use the quadrant 1 (orange) content
to test the logic we are crafting during this chapter as I have not yet created the hundreds of image assets (six
per game board square, or 120 to start) that will be needed to develop the initial code. More assets can be
added later simply by incrementing the random number generator’s upper bounds value and updating the
populateQuadrant() method’s logic. What we will be doing in this chapter will amount to a couple hundred
lines of code nevertheless, so we will be making a lot of coding progress during this chapter regarding having
the game randomly select content for the players to solve.

Declare an int named spinDeg at the top of your JavaFXGame class and set it equal to the 45 degrees that the
game board is rotated to on startup. Also, declare a quadrantLanding variable initialized at zero (the default, so
no = 0 is needed) to hold the quadrant rotation delta (45, 135, 225, or 315). Create five empty public void methods
at the bottom of your class (you don’t always have to force NetBeans to create your Java code for you). This should
look like the Java statements and method constructs shown here and in light blue and yellow in Figure 19-1:

int spinDeg = 45; // Gameboard is always rotated to point/corner; initialize to 45 degrees
int quadrantLanding;
...
private void calculateQuadrantLanding() {...} // Empty Method Constructs will compile clean
private void populateQuadrantOne() {...}
private void populateQuadrantTwo() {...}
private void populateQuadrantThree() {...}
private void populateQuadrantFour() {...}

Figure 19-1. Declare int spinDeg and quadrantLanding variables; create empty quadrant content population
methods

www.ebook3000.com

http://www.ebook3000.org

Chapter 19 ■ Game Content enGine: ai LoGiC with random Content SeLeCtion methodS

467

The first thing we’ll need to do is to add each spin’s rotation amount to the spinDeg “accumulator”
variable. This will be done inside the if(picked == spinner) logic in the MouseEvent handler in
the createSceneProcessing() method body, inside each of four if(spin == randomNum) conditional
statements that set each random quadrant.

Inside of your .createSceneProcessing() method and inside of the if(picked == spinner) conditional
construct, add an accumulator statement spinDeg += degrees for each of the four random spin if(spin ==
random) conditional constructs.

These should be spinDeg += 1080;, spinDeg += 1170;, spinDeg += 1260;, and spinDeg += 1350;,
respectively. As you can see, the angle value passed to the Animation objects should also be the same value
added to the spinDeg accumulator variable so that you have a record of all the angle increments that your
user has spun.

At the bottom of the spinner random number picked conditional if() structure body, add the call
to the calculateQuadrantLanding() method so that after the spin has occurred, you then calculate the
offset (the quadrant) for that pick and seed (write) that integer data value into your quadrantLanding
variable for use in your other game logic, which we will be coding later during this chapter. We will code the
calculateQuadrantLanding() method next.

The Java code for the spinDeg accumulator and the calculateQuadrantLanding() method call should
look like the following and is highlighted in blue and yellow in Figure 19-2:

if (picked == spinner) {

 int spin = random.nextInt(4); // Random Number Generator determines next quadrant

 if (spin == 0) {
 rotGameBoard.setByAngle(1080);
 rotSpinner.setByAngle(-1080);
 spinDeg += 1080; // Add 1080 to the spinDeg total
 }

 if (spin == 1) {
 rotGameBoard.setByAngle(1170);
 rotSpinner.setByAngle(-1170);
 spinDeg += 1170; // Add 1170 to the spinDeg total
 }

 if (spin == 2) {
 rotGameBoard.setByAngle(1260);
 rotSpinner.setByAngle(-1260);
 spinDeg += 1260; // Add 1260 to the spinDeg total
 }

 if (spin == 3) {
 rotGameBoard.setByAngle(1350);
 rotSpinner.setByAngle(-1350);
 spinDeg += 1350; // Add 1350 to the spinDeg total
 }

 rotGameBoard.play();
 rotSpinner.play();

 calculateQuadrantLanding(); // Call Method to calculate quadrantLanding variable
}

Chapter 19 ■ Game Content enGine: ai LoGiC with random Content SeLeCtion methodS

468

Next, open your empty calculateQuadrantLanding and add the quadrantLanding variable and an
equals sign to set up the equation we are about to define on the right side of the equals operator.

Since the spinDeg accumulator is what we’re going to break down into full spins plus the quarter spin
offset, type the spinDeg variable next, which will always hold an accumulated “record” of every spin the
players have made.

To find the latest quadrant that has been landed on, simply remove all full spins from this accumulated
total value by dividing it by 360 (the number of degrees in one full rotation) to keep (extract) just the
incremental amount beyond the full spins, which will indicate the quadrant that the latest spin has landed
the player on.

Fortunately, the Java language has an operator called a remainder operator that will do exactly this
for you, saving you from having to construct any complex equations. This remainder operator uses a %
(percentage) sign after a variable that you want to extract the remainder from, and after the % sign goes the
number you want to divide into the (in this case, accumulator) variable, which in this case is the number of
degrees in a full rotation (360). If you use pseudocode, this would be TotalSpinDegreesAccumulated %
OneFullSpin = DegreesRemaining. The Java code for your calculateQuadrantLanding() method should
look like the following and is shown at the bottom of Figure 19-3:

private void calculateQuadrantLanding() {
 quadrantLanding = spinDeg % 360; // Remainder of spinDeg accumulator after all 360 spins
 System.out.println(quadrantLanding); // Print Angle Offset to Output Pane for Debugging Use
}

Figure 19-2. Add a spinDeg accumulator to your spinner UI mouse click conditional if() logic to track where
the quadrant is

www.ebook3000.com

http://www.ebook3000.org

Chapter 19 ■ Game Content enGine: ai LoGiC with random Content SeLeCtion methodS

469

Let’s use a Run ➤ Project work process and see whether the Output Pane is now telling us what
quadrant the spin is going to land on. This is information that you will eventually want to hide from the
players so that their “destination” quadrant is not revealed before the game board stops spinning, which
would ruin the anticipation and gameplay fun.

What I did to create the screenshot in Figure 19-4 was to position (and resize) the NetBeans 9 Output
Pane behind (and to the left of) the game window so that the println output of the angle delta (remainder)
is visible. While I am testing the i3D spinner UI and game board spin cycles, this println output notification
triggers to make sure that they now land randomly and accurately on different colored quadrants for random
gameplay (like a roll of the dice, only a spin of the board).

A calculated spin angle offset shows up right when you click the spinner (computers are fast these days),
so you know in advance what quadrant the game board is going to land on. For now, we are just trying to
get the game board to land on a different quadrant with each random spin and to see what angle values are
ending up inside of the quadrantLanding variable so we can test for these in our future code. We also want
to spin a bunch of times to make sure that these quadrant angle offset values are the same exact four integer
numbers every time and that they do not vary, as we only want to test for four quadrantLanding angle offset
values in our code. Any other values in this variable will “break” this code. Fortunately, everything involving
quadrants and rotation involves even numbers!

As far as which angle offset value belongs to each color quadrant, we have not tested and refined the
Java code to that point yet. This is part of what we are going to be doing in this chapter, to make sure we
know exactly what is going on between our Java 9 game code and the i3D game board spin quadrant rotation
landing visual result.

Figure 19-3. Add a calculateQuadrantLanding() method and code method body and call
calculateQuadrantLanding() at the end of each MouseEvent

Chapter 19 ■ Game Content enGine: ai LoGiC with random Content SeLeCtion methodS

470

We also want to see that we’re getting a random quadrant selection result, which is circled in red in the
bottom-left corner of Figure 19-4.

Now that you have ascertained that your calculateQuadrantLanding() method works and random
quadrant selection is working relatively well, we need to work on the code that populates your selected game
board squares.

Populating Quadrants After a Spin: OnFinished() Event Handling
Now that we have modified your MouseEvent handling construct in the createSceneProcessing()
method, let’s open up the createAnimationAssets() method and add some more event handling in the
rotGameBoard Animation object so that we can trigger some code upon the completion of the Animation
object’s rotation cycle to populate the game board squares. The reason we’re doing this is because if we
populate the game board squares before the spin, players will know where the spinning game board is going
to stop! Also, I wanted to show you how to “wire up” an Animation object so that it can trigger other events
and code constructs once it finishes playing, which is important for pro Java 9 games development, as you
might well imagine. We will start by implementing an empty event handling infrastructure that we will use to
hold conditional if() Java logic telling the game board squares how to populate themselves using a method
call to one of four populateQuadrant() methods, populateQuadrantOne() through populateQuadrantFour().
This is where we have to initially speculate on which angle offset value in quadrantLanding should equate
to each of the game board quadrant color spaces (orange or animal, green or vegetable, blue or mineral, and
pink or other topic).

The Java 9 code needed to create your initial (empty) OnFinished event handler lambda expression is
as follows; it is also highlighted in red, yellow, and blue in Figure 19-5:

rotGameBoard.setOnFinished(event-> { ... });

Figure 19-4. Test the code to make sure that the remainder output represents one of the four quadrant
rotation offsets

www.ebook3000.com

http://www.ebook3000.org

Chapter 19 ■ Game Content enGine: ai LoGiC with random Content SeLeCtion methodS

471

Next, let’s code your rotGameBoard.setOnFinished() event handling method body using a series of
conditional if() statements. Each one of these will evaluate one of the four quadrantLanding angle offset
integer values and will “wire” that value up to a method call to one of these four populateQuadrant()
methods located at the end of the class.

These populateQuadrant() methods will then do the work of randomly selecting from your different
content images for each game board square, of which I currently have fifteen (three for each of the five
attached game board squares for quadrant 1). Therefore, we’ll have a random.nextInt(3) method, which
will select from the three image assets for each square, set the diffuse Image object to reference the selected
digital image asset, and then set the Shader for that game board square to reload that Image object into
memory for that texture map.

To test this, we will need to code at least one of these populateQuadrant() methods; the logical one
is the populateQuadrantOne() method since we have the game board quadrant content (game board
squares 1 through 5) created. After we test this .setOnFinished() event handler to see whether these angle
offsets do indeed take us to the correct quadrant, we will then create the populateQuadrantTwo() through
populateQuadrantFour() method body code by (temporarily) utilizing content from quadrant 1 as “dummy”
content, used for code testing purposes only.

Your new .setOnFinished() event handling method body will initially start with 45 degrees and progress
through 315 degrees; it should look like the following code, as shown highlighted in blue and yellow in
Figure 19-6:

rotGameBoard.setOnFinished(event-> {
 if (quadrantLanding == 45) { populateQuadrantOne(); }
 if (quadrantLanding == 135) { populateQuadrantTwo(); }
 if (quadrantLanding == 225) { populateQuadrantThree(); }
 if (quadrantLanding == 315) { populateQuadrantFour(); }
});

Figure 19-5. The empty createAnimationAssets() setOnFinished() event handling infrastructure for the
rotGameBoard Animation

Chapter 19 ■ Game Content enGine: ai LoGiC with random Content SeLeCtion methodS

472

For your first populateQuadrantOne() method body, you will have sections for each of your five
game board squares. The first statement will generate your random number pick for that square, the
second three will evaluate it, and the last will set the Shader to that diffuse color map texture using the
.setDiffuesMap(Image object) method call. The Java statements for this method body should look like the
following, as highlighted in Figure 19-7:

int pickS1 = random.nextInt(3);
if (pickS1 == 0){diffuse1 = new Image("/gamesquare1bird0.png", 256, 256, true, true, true);}
if (pickS1 == 1){diffuse1 = new Image("/gamesquare1bird1.png", 256, 256, true, true, true);}
if (pickS1 == 2){diffuse1 = new Image("/gamesquare1bird2.png", 256, 256, true, true, true);}
Shader1.setDiffuseMap(diffuse1);
int pickS2 = random.nextInt(3);
if (pickS2 == 0){diffuse2 = new Image("/gamesquare2bird0.png", 256, 256, true, true, true);}
if (pickS2 == 1){diffuse2 = new Image("/gamesquare2bird1.png", 256, 256, true, true, true);}
if (pickS2 == 2){diffuse2 = new Image("/gamesquare2bird2.png", 256, 256, true, true, true);}
Shader2.setDiffuseMap(diffuse2);
int pickS3 = random.nextInt(3);
if (pickS3 == 0){diffuse3 = new Image("/gamesquare3bird0.png", 256, 256, true, true, true);}
if (pickS3 == 1){diffuse3 = new Image("/gamesquare3bird1.png", 256, 256, true, true, true);}
if (pickS3 == 2){diffuse3 = new Image("/gamesquare3bird2.png", 256, 256, true, true, true);}
Shader3.setDiffuseMap(diffuse3);

Figure 19-6. In the .setOnFinished() event handler, check the quadrantLanding variable for degree offsets to
determine quadrant

www.ebook3000.com

http://www.ebook3000.org

Chapter 19 ■ Game Content enGine: ai LoGiC with random Content SeLeCtion methodS

473

int pickS4 = random.nextInt(3);
if (pickS4 == 0){diffuse4 = new Image("/gamesquare4bird0.png", 256, 256, true, true, true);}
if (pickS4 == 1){diffuse4 = new Image("/gamesquare4bird1.png", 256, 256, true, true, true);}
if (pickS4 == 2){diffuse4 = new Image("/gamesquare4bird2.png", 256, 256, true, true, true);}
Shader4.setDiffuseMap(diffuse4);
int pickS5 = random.nextInt(3);
if (pickS5 == 0){diffuse5 = new Image("/gamesquare5bird0.png", 256, 256, true, true, true);}
if (pickS5 == 1){diffuse5 = new Image("/gamesquare5bird1.png", 256, 256, true, true, true);}
if (pickS5 == 2){diffuse5 = new Image("/gamesquare5bird2.png", 256, 256, true, true, true);}
Shader5.setDiffuseMap(diffuse5);

Next, use your Run ➤ Project work process and test your code, and you will see in Figure 19-8 that the
NetBeans Output Pane shows that the angle offset left in the quadrantLanding variable after the first click on
the spinner UI was 45, which I would initially take to be (set in the original code) as quadrant 1, as you can
see in my original code in Figure 19-6.

Figure 19-7. Create the image load and texture map change logic in the populateQuadrantOne() method
based on random number selected

Chapter 19 ■ Game Content enGine: ai LoGiC with random Content SeLeCtion methodS

474

However, the selected quadrant on the screen is quadrant 4, which means I have to shift the angle
offset numbers in my onFinished() event-handling conditional if() code around by one so that 315 will move
to the top of the evaluation statements, pushing the other three angle offset evaluations down by one angle
evaluation each.

The new Java code, which we will test next and is shown in Figure 19-9, rotates everything around by
one and now looks like the following conditional if() evaluation block of statements:

rotGameBoard.setOnFinished(event->{
 if (quadrantLanding == 315) { populateQuadrantOne(); }
 if (quadrantLanding == 45) { populateQuadrantTwo(); }
 if (quadrantLanding == 135) { populateQuadrantThree(); }
 if (quadrantLanding == 225) { populateQuadrantFour(); }
});

Figure 19-8. Test the OnFinished code with the quadrant content code, and notice that the angle offsets are off
by one

www.ebook3000.com

http://www.ebook3000.org

Chapter 19 ■ Game Content enGine: ai LoGiC with random Content SeLeCtion methodS

475

Let’s again utilize the Run ➤ Project work process and test this new code. When you click the spinner,
the game board now stops at the orange quadrant when 315 is picked by the random number generator, as
shown in Figure 19-10. Now we can move on to add code to populateQuadrantTwo() and continue with our
testing process.

Figure 19-9. Shift the angle offset evaluation down (over) by one, bringing 315 to the top and pushing the
others down

Chapter 19 ■ Game Content enGine: ai LoGiC with random Content SeLeCtion methodS

476

Select the Java code in populateQuadrantOne() and copy and paste it into populateQuadrantTwo,
changing the 1 through 5 values to be 6 through 10 for the pick integer name and the object names but not
for the file names, as is shown in Figure 19-11.

int pickS6 = random.nextInt(3);
if (pickS6 == 0){diffuse6 = new Image("/gamesquare1bird0.png", 256, 256, true, true, true);}
if (pickS6 == 1){diffuse6 = new Image("/gamesquare1bird1.png", 256, 256, true, true, true);}
if (pickS6 == 2){diffuse6 = new Image("/gamesquare1bird2.png", 256, 256, true, true, true);}
Shader6.setDiffuseMap(diffuse6);
int pickS7 = random.nextInt(3);
if (pickS7 == 0){diffuse7 = new Image("/gamesquare2bird0.png", 256, 256, true, true, true);}
if (pickS7 == 1){diffuse7 = new Image("/gamesquare2bird1.png", 256, 256, true, true, true);}
if (pickS7 == 2){diffuse7 = new Image("/gamesquare2bird2.png", 256, 256, true, true, true);}
Shader7.setDiffuseMap(diffuse7);
int pickS8 = random.nextInt(3);
if (pickS8 == 0){diffuse8 = new Image("/gamesquare3bird0.png", 256, 256, true, true, true);}
if (pickS8 == 1){diffuse8 = new Image("/gamesquare3bird1.png", 256, 256, true, true, true);}
if (pickS8 == 2){diffuse8 = new Image("/gamesquare3bird2.png", 256, 256, true, true, true);}
Shader8.setDiffuseMap(diffuse8);
int pickS9 = random.nextInt(3);
if (pickS9 == 0){diffuse9 = new Image("/gamesquare4bird0.png", 256, 256, true, true, true);}
if (pickS9 == 1){diffuse9 = new Image("/gamesquare4bird1.png", 256, 256, true, true, true);}
if (pickS9 == 2){diffuse9 = new Image("/gamesquare4bird2.png", 256, 256, true, true, true);}
Shader9.setDiffuseMap(diffuse9);
int pickS10 = random.nextInt(3);
if (pickS10 == 0){diffuse10 = new Image("/gamesquare5bird0.png", 256, 256, true, true, true);}
if (pickS10 == 1){diffuse10 = new Image("/gamesquare5bird1.png", 256, 256, true, true, true);}
if (pickS10 == 2){diffuse10 = new Image("/gamesquare5bird2.png", 256, 256, true, true, true);}
Shader10.setDiffuseMap(diffuse10);

Figure 19-10. Your logic now works, as evidenced by the Output Pane’s 315 value and the correct quadrant
positioning

www.ebook3000.com

http://www.ebook3000.org

Chapter 19 ■ Game Content enGine: ai LoGiC with random Content SeLeCtion methodS

477

Now let’s use a Run ➤ Project work process and see whether the quadrants populate with the correct
content now that we have put “dummy” (quadrant 1) content into the populateQuadrantTwo() method
body. When we click the spinner, the code should now select a random quadrant and then populate that
quadrant with content. Any visual result other than the front quadrant at the front of the game board filled
with random images would mean that there is something still amiss in the code and we’d still need to
continue our game development debugging process!

As you can see in Figure 19-12, the first spin of an angle offset of 45 degrees, which we know is quadrant
3 (pink or other content), is selecting the correct content, but the onFinished event handling construct is
populating quadrant 2 (225 degrees angle offset) instead of the correct quadrant 3! We have some more
debugging to do!

Figure 19-11. Duplicate populateQuadrantOne code in populateQuadrantTwo and configure the squares 6
through 10

Chapter 19 ■ Game Content enGine: ai LoGiC with random Content SeLeCtion methodS

478

Figure 19-12. Use Run ➤ Project to test your code; something is still wrong with the quadrantLanding
conditional if() code

Since we can’t simply rotate the values again in the conditional if() evaluation lookup matrix, something
else must be going on here! In thinking about the rotation, even though the values in the RotateTransform
are positive, I remember from correcting the spinner direction using negative values to make it move
forward that the game board is actually spinning backward or counterclockwise, which looks better for the
game board spin anyway. Thus, I do not want to change that! This means I need to go back to the original
45, 135, 225, 315 evaluation and simply reverse that because the game board is actually spinning backward
mathematically, so your correct evaluation order should be reversed to be 315 (quadrant 1), 225 (quadrant
2), 135 (quadrant 3), and then 45 (quadrant 4).

This new angle evaluation order to the populateQuadrant() method pairing should fix our problem
once and for all, so let’s go back into the createSceneProcessing() method body in the OnFinished() event-
handling infrastructure and reorder these quadrantLanding == angle values to start with 315 and decrease
by 90 degrees each time down to 45 degrees. You can see here that your code and thought logic must be in
sync to successfully create your game logic!

Notice that populating these quadrants with “dummy content” allows you to better ascertain what
is going on with your gameplay logic and still put in place code where later you only have to change a
few characters once all of the game board content has been developed. As you can probably tell from the
previous chapter, this takes as long as coding the game, possibly even longer, depending on how much
content you are going to include with your game.

I’m going to try to provide at least three images (topics or questions) per game board square. However,
for a professional Java 9 game, you would want to have at least nine (using a random.nextInt(9) method call)
to get a more random content appearance to the content selection frequency. Since I have to write this book
in a short time period, I will not be able to pull this off while also developing the gameplay logic, coding, and
screenshots.

Besides trying this new .setOnFinished() event handling Java code block, I copied and pasted the Java
code from the populateQuadrantOne() method body to create the populateQuadrantThree() method body
and edited it to create game square content for the next round of tests. If it works, I’ll do the same thing for
populateQuadrantFour().

www.ebook3000.com

http://www.ebook3000.org

Chapter 19 ■ Game Content enGine: ai LoGiC with random Content SeLeCtion methodS

479

Your OnFinished() event handling conditional if() Java code, after these modifications, should look just
like the following code block, which is also highlighted in yellow and light blue at the bottom of Figure 19-13:

rotGameBoard.setOnFinished(event-> {
 if (quadrantLanding == 315) { populateQuadrantOne(); }
 if (quadrantLanding == 225) { populateQuadrantTwo(); }
 if (quadrantLanding == 135) { populateQuadrantThree(); }
 if (quadrantLanding == 45) { populateQuadrantFour(); }
});

Figure 19-13. Reorder the angle offset if() statements so that they evaluate to the reverse direction of the game
board spin

Chapter 19 ■ Game Content enGine: ai LoGiC with random Content SeLeCtion methodS

480

As you can see in Figure 19-14, when I selected Run ➤ Project to test the code, the quadrant and content
are correct, even though the rotation of the Quadrant 1 content is not correct for the other quadrants.

Next, let’s finish creating the populateQuadrantThree() and populateQuadrantFour() methods so that
we can see digital image (visual) content in all of the game board squares as we test the game board spin and
quadrant landing code; as you have seen, there is still game content design work to be done regarding the
orientation of the game board square images depending on what quadrant they are used in.

Copy and paste your populateQuadrantTwo() (or your populateQuadrantOne() content) code structure
into the empty populateQuadrantThree() method body and change the pickS, diffuse, and Shader values to
range from 11 to 15. Leave the Image object references alone for now, as you have only one set of quadrant
Image assets created.

Copy and paste your populateQuadrantTwo() (or your populateQuadrantOne() content) code structure
into the empty populateQuadrantFour() method body and change the pickS, diffuse, and Shader values to
range from 16 to 20. Leave the Image object references alone for now, as you have only one set of quadrant
Image assets created.

Figure 19-15 shows the Java if() constructs for populateQuadrantFour(), which look like this Java code:

int pickS16 = random.nextInt(3);
if (pickS16 == 0){diffuse16 = new Image("/gamesquare1bird0.png", 256, 256, true, true, true);}
if (pickS16 == 1){diffuse16 = new Image("/gamesquare1bird1.png", 256, 256, true, true, true);}
if (pickS16 == 2){diffuse16 = new Image("/gamesquare1bird2.png", 256, 256, true, true, true);}
Shader16.setDiffuseMap(diffuse16);

Figure 19-14. The new angle offset evaluation code now provides the correct game board quadrant landing
position

www.ebook3000.com

http://www.ebook3000.org

Chapter 19 ■ Game Content enGine: ai LoGiC with random Content SeLeCtion methodS

481

int pickS17 = random.nextInt(3);
if (pickS17 == 0){diffuse17 = new Image("/gamesquare2bird0.png", 256, 256, true, true, true);}
if (pickS17 == 1){diffuse17 = new Image("/gamesquare2bird1.png", 256, 256, true, true, true);}
if (pickS17 == 2){diffuse17 = new Image("/gamesquare2bird2.png", 256, 256, true, true, true);}
Shader17.setDiffuseMap(diffuse17);

int pickS18 = random.nextInt(3);
if (pickS18 == 0){diffuse18 = new Image("/gamesquare3bird0.png", 256, 256, true, true, true);}
if (pickS18 == 1){diffuse18 = new Image("/gamesquare3bird1.png", 256, 256, true, true, true);}
if (pickS18 == 2){diffuse18 = new Image("/gamesquare3bird2.png", 256, 256, true, true, true);}
Shader18.setDiffuseMap(diffuse18);

int pickS19 = random.nextInt(3);
if (pickS19 == 0){diffuse19 = new Image("/gamesquare4bird0.png", 256, 256, true, true, true);}
if (pickS19 == 1){diffuse19 = new Image("/gamesquare4bird1.png", 256, 256, true, true, true);}
if (pickS19 == 2){diffuse19 = new Image("/gamesquare4bird2.png", 256, 256, true, true, true);}
Shader19.setDiffuseMap(diffuse19);

int pickS20 = random.nextInt(3);
if (pickS20 == 0){diffuse20 = new Image("/gamesquare5bird0.png", 256, 256, true, true, true);}
if (pickS20 == 1){diffuse20 = new Image("/gamesquare5bird1.png", 256, 256, true, true, true);}
if (pickS20 == 2){diffuse20 = new Image("/gamesquare5bird2.png", 256, 256, true, true, true);}
Shader20.setDiffuseMap(diffuse20);

Figure 19-15. Copy the populateQuadrantOne code to populateQuadrantThree and populateQuadrantFour
and modify it

Chapter 19 ■ Game Content enGine: ai LoGiC with random Content SeLeCtion methodS

482

Use a Run ➤ Project work process, and click the spinner UI multiple times to test the code thoroughly.
What you should see is that each time the game board lands on a correct quadrant, as is specified in the
NetBeans 9 Output Pane, the game board squares will populate the correct quadrant with animal imagery,
as shown in Figure 19-16.

Note that the texture map colors and orientation do not yet match up with each quadrant’s color
scheme and orientation, but then again, you can use this rendering preview to show you what you need
to do to make this happen when you are working in GIMP, which I showed you how to do in the previous
Chapter 18 on game content.

Texture Map Management: Coding a resetTextureMaps() Method
As you can tell from Figure 19-16, the next programming task at hand is to code the method that will reset
the game board to its default (empty) state before the next spin animation begins. This is done by setting the
diffuse color map digital image references back to their default files by re-instantiating the Image objects
with the new image asset reference (there is currently no setImageReference() method call, although there
should be). This will force Java 9 to garbage collect (to re-allocate) the previously referenced image in
memory and to replace it with the new image data referenced. You also have to reference the associated
Shader object, in the next line of code, to re-insert the Shader object into memory, with the new reference
data pointing to the new Image object just loaded into memory. Since we will always be using your default
(blank) texture maps, this can all be in one resetTextureMaps() method, which does not change but which,
when called, resets your 3D game board squares to their default unpopulated (with digital image topic or
question content) state, before each subsequent random game board spin begins (that is, before the rest of
the statements in your if(pressed == spinner) conditional if() construct are processed).

Figure 19-16. All the angle spin evaluations are now correct, eventually filling all Shaders with texture map
image data

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_18
http://www.ebook3000.org

Chapter 19 ■ Game Content enGine: ai LoGiC with random Content SeLeCtion methodS

483

Go back into your createSceneProcessing() method and add a resetTextureMaps(); method call at
the top of your if (picked == spinner) { ... } construct, as shown in Figure 19-17. NetBeans will pop
up a helper menu offering to code the method body for you, so select and double-click the Create method
“resetTextureMaps()” in javafxgame.JavaFXGame option, which is shown in blue in the middle of
Figure 19-17.

Creating this new method body is relatively easy using the copy-and-paste programming technique. All
you have to do is to type the new Image instantiation Java statement referencing gameboardsquare.png and
type the new Shader1 statement setting the setDiffuseMap() method to the diffuse1 Image object. After that,
all you have to do is to select those two lines of code, copy them 19 more times underneath the first two lines
of code, change 1 to the numbers 2 through 20, and add those numbers to the end of the PNG file names,
which will reference the different color default game board square texture map assets.

This will result in the following 40 Java programming statements, which are also shown in light blue and
yellow in Figure 19-18:

private void resetTextureMaps() {
 diffuse1 = new Image("/gameboardsquare.png", 256, 256, true, true, true);
 Shader1.setDiffuseMap(diffuse1);
 Diffuse2 = new Image("/gameboardsquare2.png", 256, 256, true, true, true);
 Shader2.setDiffuseMap(diffuse2);
 Diffuse3 = new Image("/gameboardsquare.png3", 256, 256, true, true, true);
 Shader3.setDiffuseMap(diffuse3);
 diffuse4 = new Image("/gameboardsquare.png4", 256, 256, true, true, true);
 Shader4.setDiffuseMap(diffuse4);
 Diffuse5 = new Image("/gameboardsquare.png5", 256, 256, true, true, true);
 Shader5.setDiffuseMap(diffuse5);
 Diffuse6 = new Image("/gameboardsquare.png6", 256, 256, true, true, true);
 Shader6.setDiffuseMap(diffuse6);
 Diffuse7 = new Image("/gameboardsquare.png7", 256, 256, true, true, true);
 Shader7.setDiffuseMap(diffuse7);

Figure 19-17. Add the resetTextureMaps() method call to the MouseClick event handling code; press Alt+Enter
to have NetBeans create it

Chapter 19 ■ Game Content enGine: ai LoGiC with random Content SeLeCtion methodS

484

 Diffuse8 = new Image("/gameboardsquare.png8", 256, 256, true, true, true);
 Shader8.setDiffuseMap(diffuse8);
 Diffuse9 = new Image("/gameboardsquare.png9", 256, 256, true, true, true);
 Shader9.setDiffuseMap(diffuse9);
 diffuse10 = new Image("/gameboardsquare.png10", 256, 256, true, true, true);
 Shader10.setDiffuseMap(diffuse10);
 diffuse11 = new Image("/gameboardsquare.png11", 256, 256, true, true, true);
 Shader11.setDiffuseMap(diffuse11);
 diffuse12 = new Image("/gameboardsquare.png12", 256, 256, true, true, true);
 Shader12.setDiffuseMap(diffuse12);
 diffuse13 = new Image("/gameboardsquare.png13", 256, 256, true, true, true);
 Shader13.setDiffuseMap(diffuse13);
 diffuse14 = new Image("/gameboardsquare.png14", 256, 256, true, true, true);
 Shader14.setDiffuseMap(diffuse14);
 diffuse15 = new Image("/gameboardsquare.png15", 256, 256, true, true, true);
 Shader15.setDiffuseMap(diffuse15);
 diffuse16 = new Image("/gameboardsquare.png16", 256, 256, true, true, true);
 Shader16.setDiffuseMap(diffuse16);
 diffuse17 = new Image("/gameboardsquare.png17", 256, 256, true, true, true);
 Shader17.setDiffuseMap(diffuse17);
 diffuse18 = new Image("/gameboardsquare.png18", 256, 256, true, true, true);
 Shader18.setDiffuseMap(diffuse18);
 diffuse19 = new Image("/gameboardsquare.png19", 256, 256, true, true, true);
 Shader19.setDiffuseMap(diffuse19);
 Diffuse20 = new Image("/gameboardsquare.png20", 256, 256, true, true, true);
 Shader20.setDiffuseMap(diffuse20);
}

Figure 19-18. Re-create the default Shader and diffuse statements for the blank game board in the body of
resetTextureMaps()

www.ebook3000.com

http://www.ebook3000.org

Chapter 19 ■ Game Content enGine: ai LoGiC with random Content SeLeCtion methodS

485

Note that I am showing only half of the statements in Figure 19-18 because my HD display could not show
all of them and still show (contain) the NetBeans IDE UI. It’s time to upgrade to a 4K UHD display I guess!

Use a Run ➤ Project work process, seen in Figure 19-19, to test the code we’ve developed so far thoroughly.
It works consistently.

We’ve added some more of the core gameplay functionality that will be needed to control and
randomize your game board square content and the gameplay during this chapter, and we’ve set up your
Java code so that it is easy to add more content by simply incrementing random.nextInt(bounds) (bound
variable) every time you add a of square content imagery. This makes our game easily extensible, which is
important for the professional Java 9 game design.

You’ll also need to add if() statements (or, more likely, change to using Java case statements if you
have more than two or three content options to select from) to add the code logic that allows the game to
randomly select from your different image options for a given square. We’ll be enhancing this code in the
next chapter as we continue to refine the populateQuadrant() methods with their own (nondummy) content
and add the ability for the players to click a game square and populate the selected content into the current
quadrant using the quadrant texture maps that we developed already during Chapter 17. At that point, we
will be ready to add gameplay directly relating to a game square content selection, challenging our game
player’s body of knowledge and educating them in the process.

Notice that we are still at less than 700 lines of Java code with 17 methods (an average of 39 per
method), as you can see at the bottom of NetBeans in Figure 19-18 (the end of the class was line 655, before I
added the last 20 Java statements, so, basically we’re at 675).

Figure 19-19. As you see in the Output Pane, subsequent random spinner clicks now populate the correct
quadrant

http://dx.doi.org/10.1007/978-1-4842-0973-8_17

Chapter 19 ■ Game Content enGine: ai LoGiC with random Content SeLeCtion methodS

486

Summary
In this nineteenth chapter, we learned about how to implement random selection of game board square
content while implementing more gameplay code that intelligently tracks game board spins and where the
quadrant will land on every spin using Java mathematic operators and simple yet powerful programming
algorithms and structures. We debugged a few problems in the order of our angle offset evaluation and what
populateQuadrant() method these pointed to, and we found a way to load images into memory without
declaring more than two dozen game board diffuse texture images in system memory at one time. This
approach allows us to add hundreds of content images to the game app without generating out-of-memory
errors.

We constructed several new custom methods, including resetTextureMaps(),
calculateQuadrantLanding(), populateQuadrantOne(), populateQuadrantTwo(), populateQuadrantThree(),
and populateQuadrantFour().

We added more game logic to your createSceneProcessing() method MouseEvent handling logic so that
on each spin, the game AI logic will now keep track of every single spin from game startup. This will allow
us to develop an algorithm that will calculate a landing angle at the time of each spin, which will give the
game logic the knowledge of what the current “landing quadrant” is for every spin, which is critical to all the
other gameplay logic we’ll develop.

We developed an elegant solution that uses only whole numbers (degrees in an angle) or int numbers
(integers) that throws away the full rotations (360 degrees) and keeps only the delta (the latest quadrant
angle offset) by dividing a spinDeg accumulator variable by 360 and keeping only the remainder angle
offset (the part beyond a full 360-degree rotation) using the Java % remainder operator, which divides a
numerator (spinDeg total) by a divisor (360 degrees) and places the remainder in the quadrantLanding
variable on the other side of the equals (=) operator.

We developed four populateQuadrant() methods to hold the code that randomly selects content for
each of the five game board squares attached to each quadrant. These methods can be expanded as game
content is added.

We also developed a resetTextureMaps() method that resets the game board to a default blank state
before the next spin. We saw how to “reuse” Image instantiation, referencing a different texture map. This
will request Java 9 to perform garbage collection to reload image content memory locations, rather than
having to load Image objects for every texture map for the game content into system memory, which would
cause an out-of-memory error!

In Chapter 20, you are going to develop additional gameplay code infrastructure, which will handle
what happens when a player clicks (selects) the game square content itself so that you can finish the
MouseEvent event handling code concerning click events pertaining to the 3D spinner UI and to each of
these game board squares. We’ll also add Camera Animation objects in the next chapter so your camera
object animates in closer to your board!

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_20
http://www.ebook3000.org

487© Wallace Jackson 2017
W. Jackson, Pro Java 9 Games Development, https://doi.org/10.1007/978-1-4842-0973-8_20

CHAPTER 20

Coding Gameplay: Set Up
Gameplay Methods and
Animated Camera View

So far you have your gameplay random quadrant selection logic coded, and you are tracking the quadrant
landing for each spin. Now we need to put the bulk of the Java code into place that populates these four
quadrants with the game board square random content selection for each of the five squares that are
attached to any given quadrant. We also need to create the code that allows a player to select one of the
topic questions by clicking an image. This will populate the quadrant with images and move the camera
into position so the selected image is larger (more viewable). This means we’ll also be covering the use of
Animation objects, in conjunction with your Camera object, during this chapter.

During this chapter, we’ll be creating more than a dozen new setupQSgameplay() methods, which will
contain the code that sets up the next level of gameplay (the questions regarding the image content) for each
game board square. This way, when a player clicks a given game board square, that method will be called to
set up the “Q&A” experience.

This means that we will be adding several hundred lines of code during this chapter; fortunately, we
will use an optimal “code once, then copy, paste, and modify” approach, so there will not be as much typing
involved as you might imagine. Once we finish coding the bulk of this gameplay content selection and
display infrastructure and test each quadrant to make sure it is working, we can do the question and answer
portion of the code in Chapter 21 and then code the scoring engine in Chapter 22 to complete the majority of
the “core” gameplay experience.

Select Game Content: selectQSgameplay() Methods
To allow a player to select a game board square to test their knowledge, we must add to the
createSceneProcessing() method, which contains our event handling for mouse clicks on the 3D
SceneGraph Node objects. Prior to this chapter, this was the 3D spinner UI element, but now we’ll have
to add 20 more event handling conditional if() processing statements so that if one of the 20 game board
squares is clicked, its corresponding selectQxSxgameplay() methods is called to process the gameplay
logic for that square’s content. We’ll start with coding and testing the first if (picked == Q1S1) structure.
Since visuals (texture maps) for the gameplay content are already created, using a work process outlined
in Chapter 18, these methods will correctly display those image assets and also trigger the gameplay

https://doi.org/10.1007/978-1-4842-0973-8_20
http://dx.doi.org/10.1007/978-1-4842-0973-8_21
http://dx.doi.org/10.1007/978-1-4842-0973-8_22
http://dx.doi.org/10.1007/978-1-4842-0973-8_18

Chapter 20 ■ Coding gameplay: Set Up gameplay methodS and animated Camera View

488

questions that the player will need to master to score points. These if() statements will look for the Node
picked and send the player to the correct selectQSgameplay() method. The pseudocode for this structure
would look like the following:

if (pickedNode == Q1S1) { call the selectQ1S1gameplay() method }
if (pickedNode == Q2S2) { call the selectQ2S2gameplay() method } // and so on, out through Q4S5

Once we’ve created several of these statements, we can use the Alt+Enter keystroke combination and
have NetBeans create an empty method structure for us. Once we create that method structure, we can then
use copy and paste to create 20 methods, testing the code for each quadrant as we create it, until all 20 have
been completed.

Game Board Square Interaction: OnMouseClick() Event Handling
Let’s create the first of the event processing conditional if() statements that look for Q1S1 through Q4S5
square node mouse click events. I’m going to put 20 game board square Node evaluations inside of (right
after) the if(picked != null) outer if() structure and before the if(picked == spinner) structure since
these structures simply call a method if a Box Node is clicked. It is important to note that I cannot use the
switch-case structure because currently that structure is not compatible with object evaluations, only string,
enum, and numeric evaluations. This should look like the Java statements and method call shown here (and
highlighted in light blue and yellow in Figure 20-1):

if (picked != null) {
 if (picked == Q1S1) { setupQ1S1gameplay(); }
 ... // 3D spinner UI processing logic will go after all game board square processing
logic
}

Figure 20-1. Add an if(picked==Q1S1) conditional evaluation; use Alt+Enter to create a
setupQ1S1gameplay() method

www.ebook3000.com

http://www.ebook3000.org

Chapter 20 ■ Coding gameplay: Set Up gameplay methodS and animated Camera View

489

Once you type in the first if() conditional evaluation, your method name will be underlined in red
because the method does not yet exist. Use the Alt+Enter work process to have NetBeans 9 write the code
for you and select the Create method “setupQ1S1gameplay()” in javafxgame.JavaFXGame option, as
shown in blue in Figure 20-1.

Inside your setupQ1S1gameplay() method, replace the bootstrap error code with three if() random
picks for square 1 (int pickS1) conditional evaluations. This will tell your game what to do when three
different random pick numbers (0, 1, or 2) are generated. This should look like the following Java code, as
shown highlighted in Figure 20-2:

private void setupQ1S1gameplay() {
 if (pickS1 == 0) {}
 if (pickS1 == 1) {}
 if (pickS1 == 2) {}
}

The reason these have wavy red error underlining under them is because pickS1 is currently declared
as int (integer) inside of the populateQuadrantOne() method, so the pickS1 variable is currently local and
needs to be made “package protected” (using no public, private, or protected keyword) and thus accessible
to your entire class.

This will be accomplished by moving your pickS1 declaration to the top of the class so that all methods
in your class (and package) can reference its data value loaded from the random number generator. You can
add pickS1 to int quadrantLanding and create a compound statement, declaring all of your integer variables
for use in one line of code.

Figure 20-2. Add conditional if() structures for random number generator result processing inside
setupQ1S1gameplay

Chapter 20 ■ Coding gameplay: Set Up gameplay methodS and animated Camera View

490

You could add pickS1 through pickS20 to this compound statement, as you modify each
populateQuadrant() method’s Java code, or you could just add all 20 new int variables first and then remove
the int declaration from all of the populateQuadrant() methods second, at which point your code structure,
shown in Figure 20-3, will be error-free.

Initially, we were using this statement in the populateQuadrant() methods to declare and load the
pickSn int (integer) variable with the current content result for the game board square from a random
number generator object.

int pickS1 = random.nextInt(3); // Next declare int at top of class, so it needs to be
removed!

Now that we have declared these integer random number “holders” with “global” (rather than local)
access, the previous Java 9 statement will become even simpler and will look like the following, as shown in
Figure 20-3:

pickS1 = random.nextInt(3);

Figure 20-3. Declare int pickS1 at the top of the class so it can be used in the populateQuadrant() and
setupQSgameplay() methods

www.ebook3000.com

http://www.ebook3000.org

Chapter 20 ■ Coding gameplay: Set Up gameplay methodS and animated Camera View

491

Notice that the random number for each game board square attached to each quadrant is generated
in the populateQuadrant() methods to select and set up the image assets used. We’ll also use this random
number result in the setupQ1S1gameplay() method to determine what quadrant texture map image to
display, if a player has clicked that square to select that content for their question. This is because each
square has more than one image.

Since this setupQ1S1gameplay() method is called as a result of a mouse click on your Q1S1 Node object,
the first thing you will need to do is to change the default texture map for game board quadrant 1 to instead
be the texture map, which matches the content shown in game board square 1, which was clicked. There will
be other Java statements added later that set up the question and answer options for the image content, but
let’s start with the visual feedback that the player will get when clicking the game board content.

Since there are currently three different content images that might be populating game board square 1,
you will have three if() constructs that will contain the Java statements relating to each content selection.
The random number generator has already randomly selected one of these three content images in your
populateQuadrantOne() method using the pickS1 variable to store this selection. So, logically we should
use this variable, which you have now made a “global” game variable, to ascertain which quadrant texture
map to set the diffuse21 quadrant texture Image object to, using the Image() object constructor with the
image asset name, resolution, and rendering settings. Then, all you have to do is to set the Shader21 object
to reference this (new) diffuse21 Image object using the setDiffuseMap() method call. This will be done
for each of the three content options, with the gamequad1bird0 through gamequad1bird2 image file name
being the primary code element that will change between three different conditional if() constructs inside of
the setupQ1S1gameplay() method. This makes the copy-and-paste coding work process the logical one to
utilize.

The Java code for your setupQ1S1gameplay() method should look like the following code, as
shown at the top of Figure 20-4 as well as copied and pasted at the bottom of the figure to create a
setupQ1S2gameplay() method:

private void setupQ1S1gameplay() {
 if (pickS1 == 0) {
 diffuse21 = new Image("gamequad1bird0.png", 512, 512, true, true, true);
 Shader21.setDiffuseMap(diffuse21);
 }
 if (pickS1 == 1) {
 diffuse21 = new Image("gamequad1bird1.png", 512, 512, true, true, true);
 Shader21.setDiffuseMap(diffuse21);
 }
 if (pickS1 == 2) {
 diffuse21 = new Image("gamequad1bird2.png", 512, 512, true, true, true);
 Shader21.setDiffuseMap(diffuse21);
 }
}

Chapter 20 ■ Coding gameplay: Set Up gameplay methodS and animated Camera View

492

Figure 20-4. The setupQ1S1gameplay method is error-free and can be finished and copied and pasted to
create setupQ1S2gameplay()

Let’s use the Run ➤ Project work process and see whether when we click square 1 it puts the correct
image in the center of the quadrant. As you’ll see in Figure 20-5, the Java code works, and we can create the
other 19 methods.

www.ebook3000.com

http://www.ebook3000.org

Chapter 20 ■ Coding gameplay: Set Up gameplay methodS and animated Camera View

493

Now that you have a setupQ1S1gameplay() method code template, cut and paste it four times
underneath itself, change Q1S1 to Q1S2 through Q1S5, and change pickS1 to pickS2 through pickS5 in the
method name and if() code structures. Also, change the image file names in the Image() instantiations to
match the PNG texture map image assets you created in Chapter 18. The Java code, also shown in Figure 20-6,
should look like the following once you are done:

private void setupQ1S2gameplay() {
 if (pickS2 == 0) {diffuse21 = new Image("gamequad1s2bird0.png", 512, 512, true, true, true);
 Shader21.setDiffuseMap(diffuse21); }
 if (pickS2 == 1) {diffuse21 = new Image("gamequad1s2bird1.png", 512, 512, true, true, true);
 Shader21.setDiffuseMap(diffuse21); }
 if (pickS2 == 2) {diffuse21 = new Image("gamequad1s2bird2.png", 512, 512, true, true, true);
 Shader21.setDiffuseMap(diffuse21); }
}
private void setupQ1S3gameplay() {
 if (pickS3 == 0) {diffuse21 = new Image("gamequad1s3bird0.png", 512, 512, true, true, true);
 Shader21.setDiffuseMap(diffuse21); }
 if (pickS3 == 1) {diffuse21 = new Image("gamequad1s3bird1.png", 512, 512, true, true, true);
 Shader21.setDiffuseMap(diffuse21); }
 if (pickS3 == 2) {diffuse21 = new Image("gamequad1s3bird2.png", 512, 512, true, true, true);
 Shader21.setDiffuseMap(diffuse21); }
}
private void setupQ1S4gameplay() {
 if (pickS4 == 0) {diffuse21 = new Image("gamequad1s4bird0.png", 512, 512, true, true, true);
 Shader21.setDiffuseMap(diffuse21); }
 if (pickS4 == 1) {diffuse21 = new Image("gamequad1s4bird1.png", 512, 512, true, true, true);
 Shader21.setDiffuseMap(diffuse21); }

Figure 20-5. Clicking quadrant 1’s square 1 (Q1S1) texture maps the game board quadrant with the correct
image asset

http://dx.doi.org/10.1007/978-1-4842-0973-8_18

Chapter 20 ■ Coding gameplay: Set Up gameplay methodS and animated Camera View

494

 if (pickS4 == 2) {diffuse21 = new Image("gamequad1s4bird2.png", 512, 512, true, true, true);
 Shader21.setDiffuseMap(diffuse21); }
}
private void setupQ1S5gameplay() {
 if (pickS5 == 0) {diffuse21 = new Image("gamequad1s5bird0.png", 512, 512, true, true, true);
 Shader21.setDiffuseMap(diffuse21); }
 if (pickS5 == 1) {diffuse21 = new Image("gamequad1s5bird1.png", 512, 512, true, true, true);
 Shader21.setDiffuseMap(diffuse21); }
 if (pickS5 == 2) {diffuse21 = new Image("gamequad1s5bird2.png", 512, 512, true, true, true);
 Shader21.setDiffuseMap(diffuse21); }
}

Before you can test all five of the attached quadrant 1 squares, you need to make sure your first five
OnMouseClicked event handler conditional if() statements are in place, inside of the createSceneProcessing()
method body. Select your first if (picked == Q1S1) conditional if() statement in Figure 20-1 and copy and
paste it four more times underneath itself. Change your Q1S1 references to Q1S2 through Q1S5, and change

Figure 20-6. Copy and paste the setupQ1S1gameplay() method four times; edit each to create the other four
methods

www.ebook3000.com

http://www.ebook3000.org

Chapter 20 ■ Coding gameplay: Set Up gameplay methodS and animated Camera View

495

setupQ1S1gameplay() to setupQ1S2gameplay() through setupQ1S5gameplay(). Your new OnMouseClicked
event handling method body should look like the following Java 9 code, which is also shown in light blue and
yellow in Figure 20-7:

scene.setOnMouseClicked(event-> {
 Node picked = event.getPickResult().getIntersectedNode();
 if (picked != null) {
 if (picked == Q1S1) { setupQ1S1gameplay(); }
 if (picked == Q1S2) { setupQ1S2gameplay(); }
 if (picked == Q1S3) { setupQ1S3gameplay(); }
 if (picked == Q1S4) { setupQ1S4gameplay(); }
 if (picked == Q1S5) { setupQ1S5gameplay(); }
 if (picked == spinner) { resetTextureMaps();
 int spin = random.nextInt(4);
 if (spin == 0) {
 ... // 3D spinner UI logic
 }
 }
 }
});

As you can tell from this chapter, we are now getting into the part of the Java coding process where we
will be generating hundreds if not thousands of lines of codes over the next few chapters, as we add in the
game content.

This will include this chapter, where we add in the infrastructure where the player can click the imagery
to select the game question they are going to answer and where we add camera animation to get a better
view of this content. It also includes the next chapter, where we’ll add questions and answers for each
question, along with a 2D UI that displays these answer options. We will also be adding digital audio spin
and zoom sound effects in Chapter 21 using the JavaFX 9 AudioClip class.

Figure 20-7. Copy the first if(picked==Q1S1) construct four more times to create the Q1S2 through Q1S5 if()
constructs

http://dx.doi.org/10.1007/978-1-4842-0973-8_21

Chapter 20 ■ Coding gameplay: Set Up gameplay methodS and animated Camera View

496

In Chapter 22, we will add a scoring engine, which is also quite a bit of code. So, from this point onward,
your lines of Java 9 code are going to increase dramatically as we continue to flesh out how our gameplay is
going to function. Once we are done with that, we will look at how NetBeans 9 allows you to test what your
code is doing and then optimize it. Let’s use a Run ➤ Project work process and see whether when we click
squares 2 to 5, it puts a correct image in the center of the quadrant. As you’ll see in Figure 20-8, the Java code
works, and we can create the other 15 methods.

Now we can copy and paste these setupQ1S1gameplay() through setupQ1S5gameplay() method
structures underneath themselves to create the setupQ2S1gameplay() through setupQ2S5gameplay()
method structures. You’ll also need to add the next five if(picked == Q2S1) through if(picked == Q2S5)
event handling structures (shown in Figure 20-7) before you test your code, as well as confirm that your
populateQuadrantTwo() method references the correct image assets. Your new methods should look like the
following code, shown in Figure 20-9, once you edit them:

private void setupQ2S1gameplay() {
 if (pickS6 == 0) {diffuse22 = new Image("gamequad2s1vegi0.png", 512, 512, true, true, true);
 Shader22.setDiffuseMap(diffuse22); }
 if (pickS6 == 1) {diffuse22 = new Image("gamequad2s1vegi1.png", 512, 512, true, true, true);
 Shader22.setDiffuseMap(diffuse22); }
 if (pickS6 == 2) {diffuse22 = new Image("gamequad2s1vegi2.png", 512, 512, true, true, true);
 Shader22.setDiffuseMap(diffuse22); }
}

Figure 20-8. Use a Run ➤ Project work process to test; ensure each square populates the quadrant with the
correct image

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_22
http://www.ebook3000.org

Chapter 20 ■ Coding gameplay: Set Up gameplay methodS and animated Camera View

497

private void setupQ2S2gameplay() {
 if (pickS7 == 0) {diffuse22 = new Image("gamequad2s2vegi0.png", 512, 512, true, true, true);
 Shader22.setDiffuseMap(diffuse22); }
 if (pickS7 == 1) {diffuse22 = new Image("gamequad2s2vegi1.png", 512, 512, true, true, true);
 Shader22.setDiffuseMap(diffuse22); }
 if (pickS7 == 2) {diffuse22 = new Image("gamequad2s2vegi2.png", 512, 512, true, true, true);
 Shader22.setDiffuseMap(diffuse22); }
}
private void setupQ2S3gameplay() {
 if (pickS8 == 0) {diffuse22 = new Image("gamequad2s3vegi0.png", 512, 512, true, true, true);
 Shader22.setDiffuseMap(diffuse22); }
 if (pickS8 == 1) {diffuse22 = new Image("gamequad2s3vegi1.png", 512, 512, true, true, true);
 Shader22.setDiffuseMap(diffuse22); }
 if (pickS8 == 2) {diffuse22 = new Image("gamequad2s3vegi2.png", 512, 512, true, true, true);
 Shader22.setDiffuseMap(diffuse22); }
}
private void setupQ2S4gameplay() {
 if (pickS9 == 0) {diffuse22 = new Image("gamequad2s4vegi0.png", 512, 512, true, true, true);
 Shader22.setDiffuseMap(diffuse22); }
 if (pickS9 == 1) {diffuse22 = new Image("gamequad2s4vegi1.png", 512, 512, true, true, true);
 Shader22.setDiffuseMap(diffuse22); }
 if (pickS9 == 2) {diffuse22 = new Image("gamequad2s4vegi2.png", 512, 512, true, true, true);
 Shader22.setDiffuseMap(diffuse22); }
}
private void setupQ2S5gameplay() {
 if (pickS10 == 0) {diffuse22 = new Image("gamequad2s5vegi0.png", 512, 512, true, true, true);
 Shader22.setDiffuseMap(diffuse22); }
 if (pickS10 == 1) {diffuse22 = new Image("gamequad2s5vegi1.png", 512, 512, true, true, true);
 Shader22.setDiffuseMap(diffuse22); }
 if (pickS10 == 2) {diffuse22 = new Image("gamequad2s5vegi2.png", 512, 512, true, true, true);
 Shader22.setDiffuseMap(diffuse22); }
}

Chapter 20 ■ Coding gameplay: Set Up gameplay methodS and animated Camera View

498

As you can see in both Figures 20-6 and 20-10, I have already been able to create all three different
content options for each square in quadrants 1 and 2, which equates to 60 image assets (5 squares × 3
options × 2 graphics × 2 quadrants) created already. This is a ton of digital image assets, as you realize from
the work process outlined in Chapter 18. I still have just as much work (another 60 digital image assets) to
complete for quadrants 3 and 4. Creating any professional Java game is a massive amount of work, which
is why large teams filled with digital artisans are almost always involved. Notice I have also made pickS6
through pickS10 global variables.

Figure 20-9. Create the setupQ2S1gameplay() to setupQ2S5gameplay() methods using the diffuse22 and
Shader22 objects

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_18
http://www.ebook3000.org

Chapter 20 ■ Coding gameplay: Set Up gameplay methodS and animated Camera View

499

Figure 20-10. Confirm the populateQuadrantTwo() method image assets cross-reference to the
createQSgameplay() methods

I will create at least three image assets for each of these four quadrants by the time that I finish writing
this chapter so that we are finished with the 120 image assets (needed for coding and testing) before we start
developing the Q&A and scoring engine Java code in Chapters 21 and 22, respectively.

We will also start adding other cool new media elements, such as digital audio, and more 2D user
interface elements in these chapters, so we have lots more exciting JavaFX game engine topics to cover still!

Oftentimes, the work creating the new media digital assets (digital images, digital audio, digital
illustration, digital video, 3D modeling or animation, visual effects, particle systems, fluid dynamics, and
so on) can be significantly more work than creating your Java 9 code! If you have more than one content
production workstation, you will have different computers working on (rendering, compositing, encoding,
modeling, texture mapping, animating, and so on and so forth) different new media assets used in your pro
Java 9 games development work process.

Let’s again use the Run ➤ Project work process and test this new code for your second quadrant
thoroughly, making sure all of your game board square images are showing and that when they are clicked
they populate your quadrant texture map with the correct (four times larger) image. As you can see in
Figure 20-11, both the game board square images and the game board quadrant images are clear and easily
identifiable for use as gameplay content.

http://dx.doi.org/10.1007/978-1-4842-0973-8_21
http://dx.doi.org/10.1007/978-1-4842-0973-8_22

Chapter 20 ■ Coding gameplay: Set Up gameplay methodS and animated Camera View

500

Let’s copy and paste another five method bodies and create the setupQSgameplay() methods
for quadrant 3. Make sure that your image asset names match up with the names you are using for
populateQuadrantThree(). The Java code should look like the following method bodies, which are also
shown in yellow in Figure 20-12:

private void setupQ3S1gameplay() {
 if (pickS11 == 0) {diffuse23 = new Image("gamequad3s1rock0.png", 512, 512, true, true, true);
 Shader23.setDiffuseMap(diffuse23); }
 if (pickS11 == 1) {diffuse23 = new Image("gamequad3s1rock1.png", 512, 512, true, true, true);
 Shader23.setDiffuseMap(diffuse23); }
 if (pickS11 == 2) {diffuse23 = new Image("gamequad3s1rock2.png", 512, 512, true, true, true);
 Shader23.setDiffuseMap(diffuse23); }
}
private void setupQ3S2gameplay() {
 if (pickS12 == 0) {diffuse23 = new Image("gamequad3s2rock0.png", 512, 512, true, true, true);
 Shader23.setDiffuseMap(diffuse23); }
 if (pickS12 == 1) {diffuse23 = new Image("gamequad3s2rock1.png", 512, 512, true, true, true);
 Shader23.setDiffuseMap(diffuse23); }
 if (pickS12 == 2) {diffuse23 = new Image("gamequad3s2rock2.png", 512, 512, true, true, true);
 Shader23.setDiffuseMap(diffuse23); }
}
private void setupQ3S3gameplay() {
 if (pickS13 == 0) {diffuse23 = new Image("gamequad3s3rock0.png", 512, 512, true, true, true);
 Shader23.setDiffuseMap(diffuse23); }
 if (pickS13 == 1) {diffuse23 = new Image("gamequad3s3rock1.png", 512, 512, true, true, true);
 Shader23.setDiffuseMap(diffuse23); }

Figure 20-11. Use a Run ➤ Project work process to test; make sure each square populates the quadrant with
the correct image

www.ebook3000.com

http://www.ebook3000.org

Chapter 20 ■ Coding gameplay: Set Up gameplay methodS and animated Camera View

501

Figure 20-12. Create the setupQ3S1gameplay() through setupQ3S5gameplay() methods, using diffuse23 and
Shader23 objects

 if (pickS13 == 2) {diffuse23 = new Image("gamequad3s3rock2.png", 512, 512, true, true, true);
 Shader23.setDiffuseMap(diffuse23); }
}
private void setupQ3S4gameplay() {
 if (pickS14 == 0) {diffuse23 = new Image("gamequad3s4rock0.png", 512, 512, true, true, true);
 Shader23.setDiffuseMap(diffuse23); }
 if (pickS14 == 1) {diffuse23 = new Image("gamequad3s4rock1.png", 512, 512, true, true, true);
 Shader23.setDiffuseMap(diffuse23); }
 if (pickS14 == 2) {diffuse23 = new Image("gamequad3s4rock2.png", 512, 512, true, true, true);
 Shader23.setDiffuseMap(diffuse23); }
}
private void setupQ3S5gameplay() {
 if (pickS15 == 0) {diffuse23 = new Image("gamequad3s5rock0.png", 512, 512, true, true, true);
 Shader23.setDiffuseMap(diffuse23); }
 if (pickS15 == 1) {diffuse23 = new Image("gamequad3s5rock1.png", 512, 512, true, true, true);
 Shader23.setDiffuseMap(diffuse23); }
 if (pickS15 == 2) {diffuse23 = new Image("gamequad3s5rock2.png", 512, 512, true, true, true);
 Shader23.setDiffuseMap(diffuse23); }
}

Chapter 20 ■ Coding gameplay: Set Up gameplay methodS and animated Camera View

502

Make sure to open your populateQuadrantThree() method and check the image assets used to
ensure that they use the same image names. The exception is that your game square image assets are 256
pixels square, whereas the game quadrant image assets are the 512-pixel square versions and start with
“gamequad” instead of “gamesquare.”

Between these two methods, all of your gamesquare and gamequad images get loaded into the two
dozen game board texture maps used for the game board shaders that will decorate the surfaces of your
game board at any given time during the gameplay. These two dozen methods (four for the quadrants and
twenty for the squares) make sure that your game board will look visually correct for any given round of
gameplay, making sure that the game board squares have the randomly selected topic content and that the
game quadrant displays a large version of the content.

All of these two dozen methods are set up in a way that content can be added as time goes on, changing
the random.nextInt() method call to the next largest upper boundary to add a level of content. You can do
this once the game design, including other new media assets such as more animation, digital audio, 3D,
and the game questions (all of which we still have to create and code), have been completed during the next
couple chapters. You will be modifying and adding content and levels to your game long past the completion
of the initial code. You can redesign your game structure, as we have during this book, adding more classes
or methods as they become needed to expand the game.

The populateQuadrantThree() method, shown in Figure 20-13, adds in a third round of image content,
which is denoted by a 2 on the end of the file name. These assets were created on another machine (in your
case, possibly by your graphics design employee) by myself while I continued work on the Java 9 code on a
quad-core Windows 7 machine.

Figure 20-13. Confirm the populateQuadrantThree() method image assets cross-reference to the
createQSgameplay() methods

www.ebook3000.com

http://www.ebook3000.org

Chapter 20 ■ Coding gameplay: Set Up gameplay methodS and animated Camera View

503

Make sure you add the five if(picked == Q3S1) through if(picked == Q3S5) statements to the
OnMouseClick event handling in createSceneProcessing() to connect the new methods to your ever-growing
gameplay experience.

As shown in Figure 20-14, use the Run ➤ Project work process and test the code related to quadrant 3
to make sure that the quadrant and content images are all appearing correctly and that they look clear and
professional.

Finally, let’s create the last five setupQSgameplay() methods, shown in Figure 20-15, which will look
like this:

private void setupQ4S1gameplay() {
 if (pickS16 == 0) {diffuse24 = new Image("gamequad4s1fame0.png", 512, 512, true, true, true);
 Shader24.setDiffuseMap(diffuse24); }
 if (pickS16 == 1) {diffuse24 = new Image("gamequad4s1fame1.png", 512, 512, true, true, true);
 Shader24.setDiffuseMap(diffuse24); }
 if (pickS16 == 2) {diffuse24 = new Image("gamequad4s1fame2.png", 512, 512, true, true, true);
 Shader24.setDiffuseMap(diffuse24); }
}
private void setupQ4S2gameplay() {
 if (pickS17 == 0) {diffuse24 = new Image("gamequad4s2fame0.png", 512, 512, true, true, true);
 Shader24.setDiffuseMap(diffuse24); }
 if (pickS17 == 1) {diffuse24 = new Image("gamequad4s2fame1.png", 512, 512, true, true, true);
 Shader24.setDiffuseMap(diffuse24); }
 if (pickS17 == 2) {diffuse24 = new Image("gamequad4s2fame2.png", 512, 512, true, true, true);
 Shader24.setDiffuseMap(diffuse24); }
}

Figure 20-14. Use a Run ➤ Project work process to test; make sure each square populates the quadrant with
the correct image

Chapter 20 ■ Coding gameplay: Set Up gameplay methodS and animated Camera View

504

private void setupQ4S3gameplay() {
 if (pickS18 == 0) {diffuse24 = new Image("gamequad4s3fame0.png", 512, 512, true, true, true);
 Shader24.setDiffuseMap(diffuse24); }
 if (pickS18 == 1) {diffuse24 = new Image("gamequad4s3fame1.png", 512, 512, true, true, true);
 Shader24.setDiffuseMap(diffuse24); }
 if (pickS18 == 2) {diffuse24 = new Image("gamequad4s3fame2.png", 512, 512, true, true, true);
 Shader24.setDiffuseMap(diffuse24); }
}
private void setupQ4S4gameplay() {
 if (pickS19 == 0) {diffuse24 = new Image("gamequad4s4fame0.png", 512, 512, true, true, true);
 Shader24.setDiffuseMap(diffuse24); }
 if (pickS19 == 1) {diffuse24 = new Image("gamequad4s4fame1.png", 512, 512, true, true, true);
 Shader24.setDiffuseMap(diffuse24); }
 if (pickS19 == 2) {diffuse24 = new Image("gamequad4s4fame2.png", 512, 512, true, true, true);
 Shader24.setDiffuseMap(diffuse24); }
}
private void setupQ4S5gameplay() {
 if (pickS20 == 0) {diffuse24 = new Image("gamequad4s5fame0.png", 512, 512, true, true, true);
 Shader24.setDiffuseMap(diffuse24); }
 if (pickS20 == 1) {diffuse24 = new Image("gamequad4s5fame1.png", 512, 512, true, true, true);
 Shader24.setDiffuseMap(diffuse24); }
 if (pickS20 == 2) {diffuse24 = new Image("gamequad4s5fame2.png", 512, 512, true, true, true);
 Shader24.setDiffuseMap(diffuse24); }
}

Figure 20-15. Create the setupQ4S1gameplay() through setupQ4S5gameplay() methods, using diffuse24 and
Shader24 objects

www.ebook3000.com

http://www.ebook3000.org

Chapter 20 ■ Coding gameplay: Set Up gameplay methodS and animated Camera View

505

Figure 20-17. Test with a Run ➤ Project work process; make sure each square populates the quadrant with
the correct image

Again, compare what you’re doing in setupQ4S1gamedesign() through setupQ4S5gamedesign()
with what you’re doing in populateQuadrantFour(). Make sure everything syncs together by comparing
Figures 20-15 and 20-16.

Let’s use the Run ➤ Project work process shown in Figure 20-17 to test the new code for the fourth quadrant.

Figure 20-16. Confirm the populateQuadrantFour() method image assets cross-reference the
createQSgameplay() methods

Chapter 20 ■ Coding gameplay: Set Up gameplay methodS and animated Camera View

506

To save on several screenshots, I have not shown the addition of the five event handling if()
structures that you have also been adding as you work on populating each new quadrant and matching
setupQSgameplay() methods over the course of this chapter, which add nearly 50 lines of Java 9 code per
quadrant.

This will result in the following 20 Java programming if() structures—which we will be filling with
calls to trigger camera animation, digital audio samples (sound effects), and more—being added to your
onMouseClicked() event handler infrastructure inside your custom createSceneProcessing() method body.

These 20 conditional if() structures can be seen selected in light blue and yellow in Figure 20-18. Notice
that I have used a red square to highlight these new setupQSgameplay() methods that we’ve added in the
first section of this chapter in the Navigator pane’s game code method Members section, which is displayed
in the far-left pane of NetBeans 9.

If you want to see all of your image assets, which are all texture maps since this is an i3D game, you can
use your OS file management utility and navigate into your /MyDocuments/NetBeansProjects/JavaFXGame/
src/ folder, as shown in Figure 20-19. I could barely fit all of these game assets (approximately 34MB) into
one screenshot! I will probably have to optimize these 120 image assets into PNG8 image assets, which
would reduce this data footprint to about 10MB. They can be even further optimized using Run Length
Encoding (RLE, also known as ZIP file compression). Most of these images will convert to 256 colors (with
dithering) quite well.

Figure 20-18. You now have all the setupQSgameplay() methods and are calling them in an OnMouseClicked
event handler

www.ebook3000.com

http://www.ebook3000.org

Chapter 20 ■ Coding gameplay: Set Up gameplay methodS and animated Camera View

507

Figure 20-19. Use your file management software to view all of the game image (texture map) assets in the
/src folder

We will also be creating our audio assets and learning some digital audio encoding tricks in the next
chapter using a professional digital audio editing and sweetening package, called Audacity 2.1.3, for
Windows, Mac, and Linux.

Next, let’s add some “wow” factor to the game by zooming the camera into the selected gameplay
quadrant.

Camera Animation: Position Game Board After Select
Let’s add some 3D Camera animation next so that after the player clicks the square that they want to use for
their turn, the Camera object moves in and turns down from -30 degrees to -60 degrees, which will make
the quadrant and its image closer (and more parallel) to the camera. This will make the quadrant image
larger for the player and will also give us more room for the 2D overlay panels on the left and right sides of
the screen. These will contain our UI, scoreboard, and answers for the selected game board square visual
content. Most of this will be created in the next couple of chapters, so we are basically finishing the i3D and
UI programming for the exterior (outer game board) parts of the game. In the next chapters, we will start the
interior (Q&A) and audio portions of the game’s programming.

Add a rotCameraDown object declaration to your RotateTransition compound statement at the top
of your class; then add an instantiation for this object to the end of the createAnimationAssets() method
using 5 seconds as the Duration setting and reference the camera object. Set the cycleCount variable to
one and Rate to 0.75 for a more moderate rate of movement. Set Delay to one (Duration.ONE) and use
an Interpolator.LINEAR Interpolator value for now. Finally, set the fromAngle variable to your current
-30 degrees and the toAngle variable to a target -60 degrees. This Java code can be seen at the end of your
createAnimationAssets() method, highlighted in yellow, in Figure 20-20.

Chapter 20 ■ Coding gameplay: Set Up gameplay methodS and animated Camera View

508

The Java 9 code for this camera object calling a RotateTransition object, shown in Figure 20-20,
should look like the following:

rotCameraDown = new RotateTransition(Duration.seconds(5), camera);
rotCameraDown.setAxis(Rotate.X_AXIS);
rotCameraDown.setCycleCount(1);
rotCameraDown.setRate(0.75);
rotCameraDown.setDelay(Duration.ONE);
rotCameraDown.setInterpolator(Interpolator.LINEAR);
rotCameraDown.setFromAngle(-30);
rotCameraDown.setToAngle(-60);

Since we also want to move the camera object in by -175 units, from 500 to 325, at the same
time we are rotating the camera object down -30 degrees, we will add a moveCameraIn object to the
TranslateTransition object compound declaration statement at the top of your class. At the end of the
createAnimationAssets() method, we will instantiate this object using 2 seconds and attach it to the
camera object. Then we will configure it to move by -175 units in the Z direction by using setByZ(-175), with
a cycleCount setting of 1. The Java code for this animation object should look like the following:

moveCameraIn = new TranslateTransition(Duration.seconds(2), camera);
moveCameraIn.setByZ(-175);
moveCameraIn.setCycleCount(1);

Figure 20-20. Add a rotCameraDown animation at the end of the createAnimationAssets() method from
-30 to -60

www.ebook3000.com

http://www.ebook3000.org

Chapter 20 ■ Coding gameplay: Set Up gameplay methodS and animated Camera View

509

Finally, to make this a compound animation, we’ll add a cameraAnimIn ParallelTransition object
declaration, making a compound declaration at the top of your class, and then we’ll instantiate the object
inside createAnimationAssets().

We will add the moveCameraIn and rotCameraDown animation objects to this ParallelTransition
object, right inside the object instantiation statement, so we will need only one line of code to combine these
two animations together seamlessly. The Java code, also shown at the end of Figure 20-22, should look like
the following:

cameraAnimIn = new ParallelTransition(moveCameraIn, rotCameraDown);

Next, let’s use a Run ➤ Project work process and test this code to see how it works! As you can see
in Figure 20-21, the quadrant is in a good location on the screen, so all we have to do is to move the 3D
spinner UI off of the screen. To accomplish this, we will add a moveSpinnerOff animation object to the
cameraAnimIn ParallelTransition so that part of rotating the camera into the game board also involves
moving the 3D spinner off of the gameplay screen.

This will make the animation sequence look much more professional. We can use your original
spinnerAnim ParallelTransition object to get the 3D spinner UI onto the screen whenever we need to spin
your game board again.

Let’s create the moveSpinnerOff animation object next, and then we can add it to the cameraAnimIn
object that we just created to create a more complex ParallelTransition Animation object to use in your
gameplay code.

Declare a moveSpinnerOff object in your compound TranslateTransition declaration statement
at the top of the class and then instantiate it in your createAnimationAssets() method body, after your
moveCameraIn statements and before the cameraAnimIn ParallelTransition object instantiation, since we
are going to add it to this compound animation transition. This way, everything that we want to animate
happens at exactly the same time.

Figure 20-21. The camera now points down 60 degrees at the game board displaying the content better

Chapter 20 ■ Coding gameplay: Set Up gameplay methodS and animated Camera View

510

We’ll move the spinner off quickly, in 2 seconds, by the same 150 units (this time negative) that we
moved the spinner onto the screen by. The Java code should look like the following, as shown in Figure 20-22
at the bottom of the method, highlighted in yellow and light blue:

moveCameraIn = new TranslateTransition(Duration.seconds(2), camera);
moveCameraIn.setByZ(-175);
moveCameraIn.setCycleCount(1);
moveSpinnerOff = new TranslateTransition(Duration.seconds(3), spinner);
moveSpinnerOff.setByX(-150);
moveSpinnerOff.setCycleCount(1);
cameraAnimIn = new ParallelTransition(moveCameraIn, rotCameraDown, moveSpinnerOff);

These four new Animation objects will add quite a bit of professionalism to your i3D game, animating
your camera view into a vastly superior position, removing the spinner i3D UI element from the screen
for each core gameplay session, rotating the 3D camera’s plane so that it is more parallel to your quadrant
content, and combining all of this movement into one ParallelTransition animation sequence.

This sets things up for the next chapter, where we’ll be adding digital audio sound effects both to the
game board spin and to the camera zoom by using a ParallelTransition object. This will make both these 3D
animation objects even more fun to use for our i3D board game players.

Figure 20-22. Add a moveSpinnerOff Animation object to a cameraAnimIn ParallelTransition object to
remove the spinner

www.ebook3000.com

http://www.ebook3000.org

Chapter 20 ■ Coding gameplay: Set Up gameplay methodS and animated Camera View

511

Finally, let’s use a Run ➤ Project work process to test the code. As you can see in Figure 20-23, it works
great, and we have some nice areas on the left and right sides of the screen to overlay our 2D user interface
areas, which we will be creating over the next couple of chapters to finish up the i3D board game.

In the next few chapters, we will continue to add not only digital audio sound effects but also the
questions and answers that will challenge our players. We’ll also add a scoring engine, which will track their
success identifying content.

Summary
In this twentieth chapter, we learned more about how to complete our implementation of the random
selection of game board square content. We implemented the onMouseEvent handling code that puts the
quadrant texture maps into place once the content has been selected by the player as a game board square
is clicked. We also implemented camera animation code, which changes the view of the game board once
the game board square is selected so that the quadrant has a larger image displayed. This essentially puts us
into a position to start coding the individual square (and quadrant, once the square is selected) gameplay,
where a visual question regarding the content is answered and scored, which we will be creating in Chapters
21 and 22. Much of this code will go into the setupQSgameplay() methods for each square, for which we put
a foundation in place in this chapter. After that, we will look at creating a scoring engine, digital audio effects
to enhance the gameplay, and maybe a few more Animation objects. This will make the gameplay even
more interactive 3D and to add even more professionalism.

This was one of your heavy coding chapters (as will be the next chapter). You constructed 20 custom
methods, setupQ1S1gameplay() through setupQ4S5gameplay(), and you placed conditional if() structures
pointing to these in your OnMouseClick() event handling infrastructure. You also cross-checked imaging
assets between all of your populateQuadrant() methods and, finally, tested all of this code together to make
sure it works properly.

Figure 20-23. The cameraAnimIn Animation object now works as expected, removing the spinner

http://dx.doi.org/10.1007/978-1-4842-0973-8_21
http://dx.doi.org/10.1007/978-1-4842-0973-8_22

Chapter 20 ■ Coding gameplay: Set Up gameplay methodS and animated Camera View

512

We also added a few more Animation objects into your setupAnimationAssets() method, to continue
to add some cool “wow” factor, including a key animation that takes the player from a “global” game board
spin select mode into a more “local” game board content gameplay mode. Later in the book, we’ll of course
reverse this animation, when the answer and scoring are completed, and animate back to the more oblique
view that is needed to review the game board spin optimally.

In Chapter 21, you are going to develop additional gameplay code infrastructure that will handle what
happens when the player clicks (selects) the game square content. This means going back to developing
more 2D game elements to hold the question and answer content that will pop up and overlay the unused
portions of the 3D game board. As you can see, developing a professional Java 9 game is a huge amount of
programming work!

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_21
http://www.ebook3000.org

513© Wallace Jackson 2017
W. Jackson, Pro Java 9 Games Development, https://doi.org/10.1007/978-1-4842-0973-8_21

CHAPTER 21

Questions and Answers:
Finishing the Setup Methods
and Digital Audio

Now that your players can click more than one image for each board game square to select the visual
question to be answered, we can add the answers to these questions in their own UI. This will be done
using a second qaLayout StackPane object and four child Button objects, which expands our SceneGraph
hierarchy to four branches (one for 3D, one for 2D UI, one for 3D UI, and one for 2D answer content). We will
add a fifth top-level branch for scoring in the next chapter, when we implement our scoring engine and a 2D
scoring content UI area on the right side of your game.

During this chapter, we will continue populating the 20 setupQSgameplay() methods with all the text-
based answer content that matches up with the visuals (questions) that we added during Chapter 20. We’ll
also be adding the qaLayout branch to your SceneGraph, which includes a StackPane background and four
large Button UI elements. The players will use these to select the correct answer, revealing what the visual for
that square represents.

This means you’ll be adding several hundred lines of code during this chapter. Fortunately, you can use
an optimal “code once, then copy, paste, and modify” approach, so there won’t be much typing involved! I
only need to show you how to add one group of answers to one setupQ1S1gameplay() method, and then you
will be able to add the rest of your visual question’s answer options, so I won’t need to actually add hundreds
of lines of Java 9 code into this chapter’s code (text) and figures. However, I will have to add them to the
source code, which you can download.

Once we finish coding the bulk of the gameplay “answer selection and display” infrastructure and test
each quadrant to make sure it is working, we can create the scoring portion of the Java code in Chapter 22.
We will also be looking at the JavaFX AudioClip class, which will allow us to add audio sound effects. This
will further enhance the pro Java 9 gameplay experience using yet another new media component (digital
audio) of the JavaFX API (environment).

Finishing the Gameplay: Adding a qaLayout Branch
The primary task for the first part of the chapter is to finish up gameplay by adding the UI for answer
selection to the game. We’ll also load the setupQSgameplay() methods with the text (Button labels) answers
for each visual question. We will do this in the first half of the chapter and then add some sound effects to the
game in the second part of the chapter. We’ll start with a bit of custom method organization and stratify our
methods so that there is one for 3D Node components, one for 2D UI Node components that you see upon
game startup, one for 2D UI Node components for selecting answers (we will create this during this chapter),

https://doi.org/10.1007/978-1-4842-0973-8_21
http://dx.doi.org/10.1007/978-1-4842-0973-8_20
http://dx.doi.org/10.1007/978-1-4842-0973-8_22

Chapter 21 ■ Questions and answers: Finishing the setup Methods and digital audio

514

and, in the next chapter, one for 2D UI Node components for creating the scoring engine. After reconfiguring
the Java code a bit, we will then create the UI infrastructure for the question and answer (Q&A) panel using
a StackPane to hold four large Button UI elements. After we create the basic code to put this UI into place,
we will “tweak” its settings to work optimally within the camera zoom in Animation object that we created in
Chapter 20, as this Animation moves the camera location and rotation, which will assuredly change how the
2D Q&A UI pane is going to render visually on your display.

Adding Another Organization Layer: The createUInodes() Method
Let’s separate your createBoardGameNodes() method into one method for creating the 3D Scene objects
(such as the PointLight, ParallelCamera, gameBoard, 3D spinner UI, and game board quadrants) and a
second createUInodes() method for holding the 2D UI objects we created in the first several chapters of this
book. This will place two to three dozen statements into each method body and better organize each section
of the SceneGraph before we create the createQAnodes() method to hold the Node objects that will create
and configure our Q&A panel, which we will do next. The selection should look like the 34 Java statements
shown in medium blue in Figure 21-1.

Figure 21-1. Select and cut your uiLayout branch Node statements and paste them into a createUInodes()
method body

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_20
http://www.ebook3000.org

Chapter 21 ■ Questions and answers: Finishing the setup Methods and digital audio

515

Right-click in the selection set, shown in blue in Figure 21-1, and select a Cut option to remove the
statements from the createBoardGameNodes() method. This will then place them into your OS clipboard to
later be pasted into the new createUInodes() method, which we are about to create.

Inside your start() method, add a line of code after createBoardGameNodes(); and create a method
call to the createUInodes() method, which does not yet exist. Use an Alt+Enter keystroke combination to
have NetBeans create this method for you, as shown in yellow and light blue in Figure 21-2 after it has been
created.

NetBeans 9 will create this new method and placeholder error code, which we will select (be sure to
select only the error code statement, not the method body) and then use Paste to replace the error code
statement with the 34 Java statements that create our uiLayout SceneGraph Node hierarchy, which is
currently in the OS clipboard. I also selected the entire method body (this must be done after the bootstrap
error code has been replaced with your clipboard code) and cut and pasted it from the end of the class to
right after the createBoardGameNodes() method body. This keeps the 20 setupQSgameplay() method
bodies at the end of the class as we’ll be adding question (image) answers to these classes as part of the
gameplay production work that must be accomplished in the chapter.

The two new methods are shown in Figure 21-3 and are simply a reconfiguration of the previous
method’s Java code. We’re simply putting a little code organization in place here before creating a
createQAnodes() method.

Figure 21-2. Create the createUInodes() method call after the createBoardGameNodes() method call and use
Alt+Enter

Chapter 21 ■ Questions and answers: Finishing the setup Methods and digital audio

516

Add a line of code after your createUInodes() method and type the createQAnodes() method name
and a semicolon, as shown highlighted in Figure 21-4. Use the Alt+Enter key combination and have
NetBeans write the bootstrap method body code.

Figure 21-4. Add a line of code after the createUInodes() method call, add the createQAnodes() method call,
and press Alt+Enter

Figure 21-3. You’ve now reorganized the Node object creation into the createUInodes() and
createBoardGameNodes() methods

www.ebook3000.com

http://www.ebook3000.org

Chapter 21 ■ Questions and answers: Finishing the setup Methods and digital audio

517

Use cut and paste to move the createQAnodes() method up to after the createAnimationAssets()
method call, as shown in Figure 21-5. Add your qaLayout StackPane object to the declaration at the top
of your class, making it a compound statement. Then instantiate the qaLayout StackPane inside of the
createQAnodes() method and configure it to be at a -250 and -425 X, Y location using the setTranslate()
methods. Also, set a Color.WHITE background color and set a 400x500 preferred size for the StackPane
using the setPrefSize() method call, as shown highlighted in Figure 21-5.

The Java 9 code, shown in Figure 21-5, should look like the following Java 9 statements once you are
done:

StackPane uiLayout, qaLayout; // Declaration at the top of the JavaFXGame class
...
qaLayout = new StackPane(); // Statements inside of the createQAnodes() method body
qaLayout.setTranslateX(-250);
qaLayout.setTranslateY(-425);
qaLayout.setBackground(new Background(new BackgroundFill(Color.WHITE, CornerRadii.EMPTY,
 Insets.EMPTY)));
qaLayout.setPrefSize(400, 500);

Before we can render the i3D scene to see our initial Q&A layout result (which will eventually
be fine-tuned), we will need to add the qaLayout StackPane to your SceneGraph root object in the
addNodesToSceneGraph() method using the getChildren().addAll() method chain. Otherwise, it will not
show up in the rendering used in Run ➤ Project.

Also notice that this qaLayout StackPane needs to be placed into the second position (of your four top-
level node branches now included in this new SceneGraph hierarchy) so that it is in front of the gameBoard
3D game board model and behind the uiLayout user interface StackPane and the 3D spinner game board
spin Sphere 3D UI element.

This addition is shown in the following Java 9 code statement and highlighted in light blue and yellow in
the middle of Figure 21-6:

root.getChildren().addAll(gameBoard, qaLayout, uiLayout, spinner);

Figure 21-5. Declare and instantiate a qaLayout object and configure it for location, color, and size in
createQAnodes()

Chapter 21 ■ Questions and answers: Finishing the setup Methods and digital audio

518

Let’s use the Run ➤ Project work process and see how well we have guessed at what the basic 2D
StackPane configuration parameters should be for our left-side Q&A panel for the game. As you will see in
Figure 21-7, the Java code is working, but there are a couple of problems with some translucency in your
StackPane background color and an intersection with the game board because of the (unspecified) position
in the Z dimension. Also, we are laying this out at the pre-zoom-in camera settings, so once we fix this Z
positioning problem, we might also need to adjust some or all of the location and size settings that we are
putting into place initially (before going that deep into the gameplay code for our Q&A UI testing purposes).
This will allow us to generate Java code quickly and tweak it for looks later.

Figure 21-7. Use your Run ➤ Project work process and test your new Java code to see whether it gives you the
desired results

Figure 21-6. Add the qaLayout StackPane object to the root.getChildren.addAll() method call list in the
second position

www.ebook3000.com

http://www.ebook3000.org

Chapter 21 ■ Questions and answers: Finishing the setup Methods and digital audio

519

Move the Z position of the qaLayout StackPane object by -75 units toward the front of the screen using
the following setTranslateZ() Java method call, which is highlighted in light blue and yellow in Figure 21-8:

qaLayout.setTranslateZ(-75);

Again, use the Run ➤ Project work process and test this new Java code by moving the z-axis forward
to see whether it gives you the desired result. As you can see in Figure 21-9, the StackPane is now rendering
correctly as a white square.

Figure 21-8. Add a setTranslateZ(-75) method call off the qaLayout object to move it 75 units toward the front
screen

Figure 21-9. Use your Run ➤ Project work process and test your new Java code to see whether it gives you the
desired results

Chapter 21 ■ Questions and answers: Finishing the setup Methods and digital audio

520

The next task is to add the four answer Button element a1Button through a4Button declarations at the
top of the class and instantiate and configure these Button objects inside of the createQAnodes() method. I
sized them at 350 units wide and 100 units tall using setMaxSize() and placed them at -180, -60, 60, and 180
using setTranslateY(). I named them Answer One through Answer Four using the setText() method for UI
design testing purposes. The Java 9 code needed to implement these four Button UI elements is shown in
Figures 21-10 and 21-11 and looks like this:

Button gameButton, ..., a1Button, a2Button, a3Button, a4Button; // at top of JavaFXGame class
a1Button = new Button(); // statements in createQAnodes() method
a1Button.setText("Answer One");
a1Button.setMaxSize(350, 100);
a1Button.setTranslateY(-180);
a2Button = new Button();
a2Button.setText("Answer Two");
a2Button.setMaxSize(350, 100);
a2Button.setTranslateY(-60);
a3Button = new Button();
a3Button.setText("Answer Three");
a3Button.setMaxSize(350, 100);
a3Button.setTranslateY(60);
a4Button = new Button();
a4Button.setText("Answer Four");
a4Button.setMaxSize(350, 100);
a4Button.setTranslateY(180);
... // Remember to add Button Nodes to SceneGraph
qaLayout.getChildren().addAll(a1Button, a2Button, a3Button, a4Button); // addNodesToSceneGraph()

www.ebook3000.com

http://www.ebook3000.org

Chapter 21 ■ Questions and answers: Finishing the setup Methods and digital audio

521

Remember that we have to add these Button objects to the SceneGraph hierarchy by adding your
qaLayout Node after the Q1 to Q4 Node objects and calling the getChildren().addAll() method chain with
the four Button objects as child objects to be added to the SceneGraph hierarchy. The Java statement is
shown highlighted in Figure 21-11.

Figure 21-10. Add four 350x100 Button UI objects at Y location -180, -60, 60, 180, labeled Answer One
through Answer Four

Figure 21-11. Add the four Button UI elements to the SceneGraph, using a qaLayout.getChildren().addAll()
method call

Chapter 21 ■ Questions and answers: Finishing the setup Methods and digital audio

522

Again, use the Run ➤ Project work process and test this new Java code by adding the Answer Button
objects to see whether it gives you the desired result. As you can see in Figure 21-12, the StackPane is
rendering, and all that we need to address is the font family and font size used on the face of the Buttons
so that text is large and readable to the player.

Add a final setFont() method call after each setText() method call to set the font family, in this case a
nice, readable Arial Black Font, as well as the font size. Initially the largest we can fit on this Button size is
30 units, which is fairly large. Inside the setFont() method call, we nest a Font.font() method call, which
creates this Font object, loads it with an Arial Black font, and sets its size to 30. This is shown in the
following Java code and shown highlighted in Figure 21-13:

a1Button = new Button();
a1Button.setText("Answer One");
a1Button.setFont(Font.font("Arial Black", 30));
a1Button.setMaxSize(350, 100);
a1Button.setTranslateY(-180);
a2Button = new Button();
a2Button.setText("Answer Two");
a2Button.setFont(Font.font("Arial Black", 30));
a2Button.setMaxSize(350, 100);
a2Button.setTranslateY(-60);
a3Button = new Button();
a3Button.setText("Answer Three");
a3Button.setFont(Font.font("Arial Black", 30));
a3Button.setMaxSize(350, 100);
a3Button.setTranslateY(60);
a4Button = new Button();

Figure 21-12. Use your Run ➤ Project work process and test your first try at your Q&A hierarchy creation and
rendering

www.ebook3000.com

http://www.ebook3000.org

Chapter 21 ■ Questions and answers: Finishing the setup Methods and digital audio

523

a4Button.setText("Answer Four");
a4Button.setFont(Font.font("Arial Black", 30));
a4Button.setMaxSize(350, 100);
a4Button.setTranslateY(180);

Let’s utilize a Run ➤ Project work process one last time before we write the code to actually implement
this new Q&A UI in the rest of our JavaFXGame code. We will need to hide this StackPane and child Button
objects until it is needed to display answer options to the player. We’ll also need to display this StackPane at
the end of your camera animation, which will tilt and zoom your camera into the game board, changing the
camera angle and distance, which may change how the StackPane and Button objects render and therefore
necessitate “tweaking” to size and position settings. After we finish implementing this StackPane and Button
objects’ Q&A UI design inside the start() method and createAnimationAssets() method, we can return
to the previous code and tweak the numeric values to fine-tune how it looks in the top-down “game board
question and answer view.”

As you can see in Figure 21-14, the font family and font size used on these Button UI objects make
a huge difference in readability from Figure 21-12. The only problem I can see is that the panel is a bit too
tall, with a bit too much space around the edges and between Button UI elements, which we’ll address
later after we implement this Q&A UI deeper in the Java code that we’ve written already. Remember, game
development is an iterative process!

Figure 21-13. Add the setFont(Font.font(“Arial Black”, 30)) method call to each Button after the setText()
method call

Chapter 21 ■ Questions and answers: Finishing the setup Methods and digital audio

524

Next, let’s take a break and implement the appearance of this StackPane and the Buttons in your
current code.

Implementing the New Q&A User Interface in Your JavaFXGame
The first thing that we’ll need to do in the Start Game Button gameButton.setOnAction() event handling
infrastructure is to hide the Q&A UI panel on game startup. After that, we will need to show this Q&A UI
panel once the camera has zoomed into the game board quadrant, which will require the addition of a
setOnFinished() method call to the end of the createAnimationAssets() method body. To hide the qaLayout
Q&A panel StackPane when the Start Game button is clicked, simply copy the first Java statement in the
handle() event handler inside of the gameButton.setOnAction() infrastructure and paste it underneath itself;
then change uiLayout to qaLayout, as shown here and as highlighted in Figure 21-15:

gameButton.setOnAction(new EventHandler<ActionEvent>() { // Using non-Lambda Expression
Format

 @Override
 public void handle(ActionEvent event) {
 uiLayout.setVisible(false);
 qaLayout.setVisible(false);
 camera.setTranslateZ(500);
 camera.setTranslateY(-300);
 camera.setTranslateX(-260);
 camera.setRotationAxis(Rotate.X_AXIS);
 camera.setRotate(-30);
 spinnerAnim.play();
 }
});

Figure 21-14. Use your Run ➤ Project work process and make sure that the text on the buttons is readable

www.ebook3000.com

http://www.ebook3000.org

Chapter 21 ■ Questions and answers: Finishing the setup Methods and digital audio

525

The next thing to do after hiding your Q&A UI Panel the first time (until it is needed) is to show it right
after the 3D camera has been rotated and moved into the game board once the player has selected the
game board square that they want to play. The theory here is that because of a new camera focal length
(unit repositioning) and camera angle (rotation to 60 degrees from 30 degrees), the new Q&A Panel visual
characteristics may have changed. In other words, different rendering parameters may have altered any of
(or all of) the StackPane, Button, and even font characteristics.

In fact, not surprisingly, this did occur, so after we implement the new cameraAnimIn.setOnFinished()
event handler, we will need to go back into the createQAnodes() method body and “tweak” the Q&A UI
Panel parameters to more closely align it with the bottom-left corner of the “question answers selection”
gameplay view. We will also tighten up the spacing around the answer Button UI elements and increase the
font size while we are at it!

After the cameraAnimIn ParallelTransition object instantiation, add your setOnFinished() method call
off of the cameraAnimIn object and place a qaLayout.setVisible(true); statement inside the event handling
infrastructure so that your Q&A UI Panel can be seen after the camera zooms into the randomly selected game
board quadrant after the player clicks the game board square to which they think they will know the answer.

This new Java code construct is shown here, as well as highlighted in blue and yellow in Figure 21-16:

private void createAnimationAssets() {
 ...
 cameraAnimIn = new ParallelTransition(moveCameraIn, rotCameraDown, moveSpinnerOff);
 cameraAnimIn.setOnFinished(event->{
 qaLayout.setVisible(true);
 });
}

Figure 21-15. Hide the Q&A UI panel on the game startup by using qaLayout.setVisible(false) in the start()
method

Chapter 21 ■ Questions and answers: Finishing the setup Methods and digital audio

526

As you can see in Figure 21-17, when you use Run ➤ Project to test the setOnFinished() code that you
just added, you will see that changing your camera view and location has changed your Q&A panel layout.

Figure 21-16. Add a cameraAnimIn.setOnFinished() method call and add qaLayout.setVisible(true) to the
event handler

www.ebook3000.com

http://www.ebook3000.org

Chapter 21 ■ Questions and answers: Finishing the setup Methods and digital audio

527

Next, let’s tweak the createQAnodes() method body StackPane and Button UI object configurations so
that the Q&A UI Panel appearance is in the very lower-left corner of the gameplay view, out of the way of the
game board squares as much as possible, and so that all Button objects are still relatively large, are uniformly
spaced out, and are using as large (and as readable) a font family and font size as possible.

Tweaking the Q&A Panel: Refining the createQAnodes() Settings
Let’s start adjusting the parameters for the object configuration settings held in the createQAnodes() method
body, starting with the StackPane. We will move it 20 units, from -405 to -385, using the setTranslateY()
method call; decrease the size 40 units, from 400 to 360, using the setPrefSize() method call; and increase
the height 154 units, from 500 to 654, also using the setPrefSize() method call. I edited the setText() method
calls to add longer answer placeholders for the Button UI elements, using Answer Choice 1 (through 4)
rather than Answer One (through Four) to better fill the Button with text. I increased the font size another
10 percent to 33 units with the setFont() method call so that I could see how large I could get the text to
be on the Button surface. I increased the Button height 40 percent using the setMaxSize() method call,
increasing the Button height to 140 units from 100 units. This Button height change also required that I
change the Y spacing intervals for the Button spacing over the StackPane, using the setTranslateY() method
call, from -160, -60, 60, and 160 to -240, -80, 80, and 240.

The new (tweaked) Java 9 code is shown here, in the new createQAnodes() method, as well as in
Figure 21-18:

private void createQAnodes() {
 qaLayout = new StackPane();
 qaLayout.setTranslateX(-250);
 qaLayout.setTranslateY(-385);
 qaLayout.setBackground(new Background(new BackgroundFill(Color.WHITE,
 CornerRadii.EMPTY,
 Insets.EMPTY)));
 qaLayout.setPrefSize(360, 654);

Figure 21-17. Use Run ➤ Project to see whether the camera has changed the Q&A panel layout

Chapter 21 ■ Questions and answers: Finishing the setup Methods and digital audio

528

 a1Button = new Button();
 a1Button.setText("Answer Choice 1");
 a1Button.setFont(Font.font("Arial Black", 33));
 a1Button.setMaxSize(350, 140);
 a1Button.setTranslateY(-240);
 a2Button = new Button();
 a2Button.setText("Answer Choice 2");
 a2Button.setFont(Font.font("Arial Black", 33));
 a2Button.setMaxSize(350, 140);
 a2Button.setTranslateY(-80);
 a3Button = new Button();
 a3Button.setText("Answer Choice 3");
 a3Button.setFont(Font.font("Arial Black", 33));
 a3Button.setMaxSize(350, 140);
 a3Button.setTranslateY(80);
 a4Button = new Button();
 a4Button.setText("Answer Choice 4");
 a4Button.setFont(Font.font("Arial Black", 33));
 a4Button.setMaxSize(350, 140);
 a4Button.setTranslateY(240);
}

As you can see in Figure 21-19, the Q&A UI Panel is now in the lower-left corner of your game board
view. The Buttons are large and close together with nice, large, readable text, and the question answer user
interface is out of the way of each of your digital image assets (the visual component of the game) and now
looks quite professional.

Figure 21-18. Recalibrate the createQAnodes() settings to adjust the Q&A Panel location, size, Button spacing,
and font

www.ebook3000.com

http://www.ebook3000.org

Chapter 21 ■ Questions and answers: Finishing the setup Methods and digital audio

529

Adding Answer Button Content to setupQSgameplay() Methods
Now we are in a position where we can simply add the Q&A UI Panel answers for each game board square
by adding four relatively simple Java statements to the inside of each of the if(pickSn == n) conditional if()
evaluation statements inside each of the setupQSgameplay() method bodies. To test our user interface with
real answer data, all we need to do is to add the first setupQ1S1gameplay() if (pickS1 == 0) section, adding
the four setText() method calls to the diffuse and Shader21 object configurations that are already in place in
this section of code to control your imagery.

The Java code, also shown at the end of Figure 21-20, should look like the following:

private void setupQ1S1gameplay() {
 if (pickS1 == 0) {
 diffuse21 = new Image("gamequad1bird0.png", 512, 512, true, true, true);
 Shader21.setDiffuseMap(diffuse21);
 a1Button.setText("Falcon Hawk");
 a2Button.setText("Seagull");
 a3Button.setText("Peacock");
 a4Button.setText("Flamingo");
 }
}

Figure 21-19. Use a Run ➤ Project work process to see if the Q&A panel layout has been restored to its large
readable state

Chapter 21 ■ Questions and answers: Finishing the setup Methods and digital audio

530

Use your Run ➤ Project work process to test this code adding real answer Button objects, seen in
Figure 21-21.

Figure 21-20. Add the four a1Button through a4Button object answers (one is correct) using the setText()
method call

Figure 21-21. Use a Run ➤ Project work process to see how answer Button data looks when you test square 1

www.ebook3000.com

http://www.ebook3000.org

Chapter 21 ■ Questions and answers: Finishing the setup Methods and digital audio

531

To get some practice, create the other 59 sets of question answers in the setupQSgameplay() methods
now. Next, let’s put an AudioClip object (class) into place so we can attach sound effects to our game board
spin animation.

Digital Audio for Games: Using the AudioClip Class
Let’s also take a look at how to add digital audio assets to your games during this chapter. This will require
the use of the javafx.media module, which will make your distribution larger because this module will need
to be added to your distribution JAR and includes both the MediaPlayer (used for both audio and video)
and the AudioClip class, among others. The AudioClip class is used for shorter audio “snippets” technically
called samples. If you want to play longer format digital audio (say, songs) or digital video, you will want to
instead use the MediaPlayer class. Games usually use shorter format audio, and therefore we are going to
cover the AudioClip class here; it is essentially a digital audio sequencer, which is a very powerful tool, both
for game developers and for sound designers and songwriters.

The public final AudioClip class extends java.lang.Object, meaning it was scratch-coded to be a digital
audio sequencer. It is kept in the javafx.scene.media package in the javafx.media module, and thus, the
Java class hierarchy for the class looks like the following:

java.lang.Object
 > javafx.scene.media.AudioClip

An AudioClip object can be used to contain short segments of digital audio that will be played with
minimal latency. Clips are loaded from a network or JAR similarly to Media objects but have a different
behavior. For example, Media objects that are played by a MediaPlayer object cannot “play” themselves,
whereas your AudioClip objects can. AudioClips are immediately reusable, so they have zero latency and
use less memory, which is important for games.

The playback behavior of an AudioClip object is what Oracle calls “fire and forget.” Once one of the
class’s play() methods is called, the only operable control is the stop() method. We will be using both of these
methods.

An AudioClip object can also be played multiple times simultaneously! To accomplish this same task
using a Media object in a MediaPlayer, one would have to create new MediaPlayer objects for each sound
played in parallel. This is not optimal for gameplay scenarios, which is why we are not covering Media and
MediaPlayer objects here.

Media objects and MediaPlayer are better suited for long-format audio such as songs or audiobooks.
This is primarily because an AudioClip stores (in memory) a raw, uncompressed (PCM) audio data for the
entire digital audio assets, which is usually quite large for long audio clips. A MediaPlayer will only have
enough decompressed audio data “prerolled” in memory to play for a short amount of time; therefore,
the MediaPlayer is far more memory efficient for longer clips, especially if they have been compressed,
for instance, using the MP3 (digital audio) or MPEG4 (digital video) file formats or the OGG Vorbis (digital
audio), FLAC (digital audio), or WebM (ON2 VP6, VP8, or VP9) digital video formats.

The AudioClip class has a half-dozen digital audio properties that affect the sound balance, cycles,
location, priority, rate, and volume. These include the balance DoubleProperty, which controls the (relative)
left and right volume levels for the AudioClip object, and the pan DoubleProperty, which controls where
the relative “center” is for the audioClip object. The rate DoubleProperty controls the relative rate (speed) at
which an AudioClip is played, and the volume DoubleProperty controls the relative volume level at which
the AudioClip is played. The cycleCount IntegerProperty controls the number of times the AudioClip will be
played when the play() method is invoked. The priority IntegerProperty controls the relative priority of the
AudioClip object with respect to other AudioClip objects.

There is one static int INDEFINITE data field, which when the cycleCount is set to this value, the AudioClip
will loop continuously until it is stopped using the stop() method call, which we will be learning about soon.

Chapter 21 ■ Questions and answers: Finishing the setup Methods and digital audio

532

There is only one AudioClip constructor method, which takes a source URL and uses this following
format:

AudioClip(String sourceURL)

Next, let’s take a look at the methods that the AudioClip class allows us to call off your AudioClip
objects. The DoubleProperty balanceProperty() method call allows you to obtain the relative left and right
volume levels for an AudioClip object. The IntegerProperty cycleCountProperty() method call allows you
to obtain the number of times the AudioClip object will be played when the play() method is called. The
DoubleProperty panProperty() method call allows you to obtain the (relative) center for an AudioClip
object. The IntegerProperty priorityProperty() method call allows you to obtain the (relative) priority
setting of that AudioClip object with respect to other AudioClip objects. The DoubleProperty rateProperty()
method call allows you to obtain a (relative) rate of speed at which that AudioClip is being played. The
DoubleProperty volumeProperty() method call allows you to obtain the (relative) volume level at which the
AudioClip is played.

Besides the six AudioClip Property methods, there are seven get() methods that allow you to get the
value of the AudioClip properties, including its digital audio source file. The double getBalance() method
call would be used to get the default balance level for the AudioClip. The int getCycleCount() method call
would be used to get the default cycle count for the AudioClip object. The double getPan() method call
would be used to get the default pan value for the AudioClip object. The int getPriority() method call
would be used to get a default playback priority value for the AudioClip object. The double getRate()
method call would be used to get the default playback rate for the AudioClip object. The String getSource()
method call would be used to get the source URL used to create the AudioClip object. The double
getVolume() method call would be used to get the default volume level for the AudioClip object.

There are also seven set() methods that allow you to set the value of the AudioClip properties, including
the digital audio source file. The void setBalance(double balance) method call should be used to set the
default balance level for the AudioClip object. The void setCycleCount(int count) method call should
be used to set the default cycle count for the AudioClip object. The void setPan(double pan) method call
should be used to set the default pan value for the AudioClip object.

The void setPriority(int priority) method call should be used to set the default playback priority.
The void setRate(double rate) method call should be used to set a default playback rate. The void
setVolume(double value) method call should be used to set the default volume level. There are also five
methods, which can be used to control the AudioClip object while it is playing.

The boolean isPlaying() method call will be used to indicate whether an AudioClip is currently playing.
The void play() method call should be used to play the AudioClip object using its default parameters. A void
play(double volume) method call should be used to play the AudioClip using all the default parameters
except for the volume. The void play(double volume, double balance, double rate, double pan, int
priority) method call should be used to play the AudioClip using the given volume, balance, rate, pan, and
priority parameters. Finally, the void stop() method call should be used to immediately stop all playback
of an AudioClip object. Now we can implement digital audio assets as AudioClip objects in our game to
provide audio sound effects for things such as gameboard spin and camera zooming.

Implementing AudioClip: Add Digital Audio Asset Sound Effects
The first thing that we will need to do is to declare two AudioClip objects named spinnerAudio and
cameraAudio at the top of the JavaFXGame class, as shown in the following Java 9 code and shown
highlighted in Figure 21-22:

AudioClip spinnerAudio, cameraAudio;

www.ebook3000.com

http://www.ebook3000.org

Chapter 21 ■ Questions and answers: Finishing the setup Methods and digital audio

533

Next, create a loadAudioAssets() method call, right under the loadImageAssets() method call, and
again use the Alt+Enter keystroke, shown in Figure 21-23, to have NetBeans create the empty bootstrap
method body for you.

Figure 21-22. Declare spinnerAudio and cameraAudio AudioClip at the top of the class; use Alt+Enter to add
an import

Figure 21-23. Create a loadAudioAssets() method call after loadImageAssets(); use Alt+Enter to have
NetBeans code it

Chapter 21 ■ Questions and answers: Finishing the setup Methods and digital audio

534

Move this new method body up in the class method structure so it is near your loadImageAssets()
method and start to add your spinnerAudio = new AudioClip(); instantiation statement, as shown under
construction in Figure 21-24. This instantiation will become more complex as we construct the inner (String
sourceURL) portion of the statement. This looks like the following code, which is under construction in
NetBeans and highlighted in Figure 21-24:

spinnerAudio = new AudioClip(JavaFXGame.class.getResource(String sourceURL));

Let’s take a couple of pages and find a professional-level CD and HD digital audio sample web site that
has free-for-commercial-usage WAVE files (uncompressed PCM digital audio at 44.1 KHz in 16-bit and 24-
bit resolutions).

Finding Free for Commercial Use Digital Audio: 99Sounds.org
Before we reference the internal file name for the spinnerAudio digital audio asset, we need to create the digital
audio asset that we will be using next, so let’s do this first. Fortunately, I found a digital audio sample library
site called 99Sounds that has gigabytes of cinematic quality audio samples that can be utilized for commercial
projects for free, as long as they are not redistributed as digital audio samples in another library. These use the
standard 44.1 Hz, CD quality, and audio sample rate, and they are either 16-bit or 24-bit resolution, using the
uncompressed PCM (WAVE) format. If you want to learn more about the digital audio editing software and
work process that is covered in this section of the chapter, check out Digital Audio Editing Fundamentals from
Apress.com. I downloaded all of the sample libraries from www.99SOUNDS.org just because I work on a lot of
games, web sites, e-books, iTV shows, smartwatches, and similar digital productions for clients as well as my
own company. Figure 21-25 shows the file explorer application listing with the dozens of folders (now on my
hard disk drive under a C:\Audio folder) I downloaded.

Figure 21-24. Add your internal getResource(String) portion of the AudioClip instantiation statement for
spinnerAudio

www.ebook3000.com

http://www.99sounds.org/
http://www.ebook3000.org

Chapter 21 ■ Questions and answers: Finishing the setup Methods and digital audio

535

I am going to use the 24th sample in the Massamolla collection, found in the Rhythmic Sequence
folder, as shown selected in Figure 21-25. This sample is called ScrewdriverGroove and is in 32-bit 44.1 Hz
WAVE format; it uses a 1411 Kbps compression rate and is 18 seconds long, of which we will loop around
7 seconds to reduce the memory data footprint. We’ll also convert this to a MONO sample to save memory
and will create several versions of this file.

Data Footprint Optimization: Use Audacity to Create Game Audio
Notice the file size in Figure 21-25 is 3,159 kilobytes, which is too much memory to use for spin audio! We
will be trimming nearly 3MB off of this file size for the low-quality audio component and creating a high-
quality audio asset that is little more than half a megabyte in size, so this should be an interesting section
for all of you game developers! Launch Audacity 2.1.3 (or later version), which I will assume you have
downloaded and installed already. Use the File ➤ Open menu sequence to open the ScrewdriverGroove
sample shown in Figure 21-25; find the first large gap in its repetitive sound, shown in Figure 21-26 using a
green line, at approximately 7.6 seconds into this file.

Figure 21-25. Go to www.99sounds.org and download free digital audio samples for all your pro Java 9 game
projects

http://www.99sounds.org/

Chapter 21 ■ Questions and answers: Finishing the setup Methods and digital audio

536

Select the portion of the audio sample in both Stereo audio tracks that extends beyond the 7.6 seconds,
as shown in Figure 21-27; use the Edit ➤ Delete menu sequence to remove this audio data from your sample.

This removes about three-fifths (7.6 of 18.3 is about two-fifths) of the digital audio data right off of the
bat. The next “move” we will make is to combine both Stereo audio tracks into one Mono audio track, again
reducing the amount of data by 100 percent. Select both Stereo audio tracks, as shown in Figure 21-28, and
use the Tracks ➤ Stereo Track to Mono menu sequence to combine these two (Stereo) digital audio tracks
into only one Mono digital audio track.

Figure 21-27. Select the portion between 7.6 and 18.3 seconds and use your Edit ➤ Delete menu sequence to
remove it

Figure 21-26. Open Audacity 2 and find a point at 7.6 seconds, which will loop seamlessly for the gameboard
spin audio

www.ebook3000.com

http://www.ebook3000.org

Chapter 21 ■ Questions and answers: Finishing the setup Methods and digital audio

537

The next thing that we need to cut in half is the amount of sample resolution, reducing a 32-bit (float)
audio sample down to the 16-bit PCM resolution commonly known as “CD-quality” audio. This is done
using the drop-down arrow on top of the Mono, 44100Hz 32-bit float indicator, on the far left of the
waveform audio, as shown in Figure 21-29.

Click this drop-down arrow and go into the Format submenu at the bottom of the main menu, which
can be seen at the bottom-left in Figure 21-30. This reveals the selected 32-bit float format and allows you to
select either a 16-bit PCM (CD) or 24-bit PCM (HD) audio resolution format. Since we are trying to conserve
system memory for game audio assets, we’ll choose a 16-bit, 44.1 KHz format.

Figure 21-29. A seven-second Mono 44.1Hz 32-bit float sample is now more than 400 percent less data than
the original sample

Figure 21-28. Select the entire sample on both tracks and use Tracks ➤ Stereo Track to Mono to combine the
sample

Chapter 21 ■ Questions and answers: Finishing the setup Methods and digital audio

538

We will now create a medium and low-quality digital audio asset by reducing the sample rate from
44.1 KHz to 22.05 Hz (exactly half). Reducing the data by 100 percent (half) or 200 percent (quarter) gives
perfect results as there are no remainder values (even division). To do this, use the Project Rate (Hz) drop-
down selector at the bottom of the track editing pane and select 22050 instead of 44100, as shown circled in
red on the left side of Figure 21-31. You can also see that the resolution has been reduced to 16-bit. Preview
the digital audio to see whether you can hear any difference in audio quality using the Play button at the top
left of the Audacity user interface, also circled in red. It still sounds great as an effect.

Finally, let’s reduce this sound effect sample by another 100 percent by taking its sample rate down to
11.025 KHz, from 44.1 KHz (always sample from the highest possible sample rate to a target sample rate to
give the algorithm the highest-quality data to work its magic with). As you can see in Figure 21-32, we have
Audacity using a 44.1 KHz, 16-bit audio sample data (see the setting on middle left) and have set the Project
Rate (Hz) drop-down to 11.025 KHz. You could again preview the audio quality, using the Play button, and
if you do, you will see that the quality level has gone down, but the quality level is still quite usable for a
repetitive game board spin animation audio feedback sound effect.

Figure 21-31. Reduce the sample format by another 100 percent, from 44.1 to 22.05 KHz using the Project Rate
drop-down menu

Figure 21-30. Reduce the sample format another 100 percent from 32-bit to 16-bit resolution using the sample
drop-down arrow

www.ebook3000.com

http://www.ebook3000.org

Chapter 21 ■ Questions and answers: Finishing the setup Methods and digital audio

539

I’ve combined all three Audacity File ➤ Save As dialogs into one in Figure 21-33 to save on space;
we have a lot that we need to look at during this chapter, in both NetBeans and Audacity. The first panel,
numbered 1, shows your 44.1 KHz 16-bit file being saved as spinner.wav in the NetBeansProjects/
JavaFXGame/src/ folder. The second portion of the figure shows a 22.05 KHz 16-bit version being saved
as spinner22.wav, and the third portion of the figure shows the 11.025 KHz 16-bit version being saved as
spinner11.wav. The file sizes for these three audio assets come to about 658KB, 329KB, and 165KB. Since
these are 16-bit PCM .wav files, the amount of memory used to store the file also happens to be the amount
of system memory used to deploy the file for use in your games.

Now we can continue the AudioClip instantiation statement and use a new audio sample in our game logic!

Use toExternalForm() to Load a URI Reference as a String Object
Now we can add this spinner.wav file name in the getResource() method and then chain that method call
to the toExternalForm() method call, which converts the spinner.wav audio resource to the external (URI
String) form that is required by the AudioClip constructor method. Be sure to add the root (/) forward slash
to your spinner.wav so it can be seen in the root source (/src) folder. The Java code for this statement is
shown under construction in Figure 21-34:

spinnerAudio = new AudioClip(JavaFXGame.class.getResource("\spinner.wav").toExternalForm());

Figure 21-32. Reduce the sample format by another 100 percent from 44.1 to 11.025 KHz, using the Project
Rate drop-down menu

Figure 21-33. Use Audacity’s File ➤ Save function to export 44, 22, and 11 Hz, 16-bit audio versions to /
JavaFXGame/src

Chapter 21 ■ Questions and answers: Finishing the setup Methods and digital audio

540

Since the game board spins longer than seven seconds, you will need to also add a setCycleCount()
method call and set it to the INDEFINITE (infinite loop) data value using the following Java 9 code, also
shown in Figure 21-35:

spinnerAudio.setCycleCount(AudioClip.INDEFINITE);

Now that your spin AudioClip asset is set up, we now have to trigger it when the spinner UI is clicked
with the mouse.

Figure 21-34. Go back to the instantiation and add the spinner.wav audio file and the toExternalForm()
method chain

Figure 21-35. Add a slash (/), or root, to spinner.wav. Then add a spinnerAudio.setCycleCount(AudioClip.
INDEFINITE) method call

www.ebook3000.com

http://www.ebook3000.org

Chapter 21 ■ Questions and answers: Finishing the setup Methods and digital audio

541

Triggering Spinner Audio Playback in createSceneProcessing()
To play the AudioClip object, we need to insert a spinnerAudio.play(); method call into the event handling
for your if (picked == spinner) structure near the end, right before the calculateQuadrantLanding()
method call.

The Java 9 code for this addition is shown highlighted at the bottom of Figure 21-36.

To stop your spinnerAudio AudioClip object’s playback, you will need to call your stop() method off of
the spinnerAudio AudioClip inside of the setOnFinished() event handling code structure, which is called off
of the rotGameBoard Animation object inside of the createAnimationAssets() method body.

In this way, when the Animation object is finished animating, your spinnerAudio.stop() method is
called, and the game board spin audio stops when the game board stops spinning.

I placed this code at the very end of the event handling structure using the following code, which is
highlighted in light blue and yellow at the end of Figure 21-37:

rotGameBoard.setOnFinished(event-> {
 if (quadrantLanding == 315) { populateQuadrantOne(); }
 if (quadrantLanding == 225) { populateQuadrantTwo(); }
 if (quadrantLanding == 135) { populateQuadrantThree(); }
 if (quadrantLanding == 45) { populateQuadrantFour(); }
 spinnerAudio.stop();
});

Figure 21-36. Trigger a spinnerAudio.play() in the createSceneProcessing() method in an if(picked ==
spinner) structure

Chapter 21 ■ Questions and answers: Finishing the setup Methods and digital audio

542

Next, let’s create our camera Animation object audio, this time matching audio length to Animation length.

Camera Animation Audio: Matching Audio Length to Animation
For the camera object Animation AudioClip, we are going to match the five seconds of Animation with five
seconds of audio so that we do not need to loop the audio and therefore do also not need to use the stop()
method call, as the AudioClip will stop playing after its five to six seconds of length. It is important that you
see both of these primary digital audio approaches to gameplay design: looped audio started and stopped
as needed and timed audio. As you can see in Figure 21-38, I have chosen the Rhythmic Glacier sample
from the Project Pegasus Arpeggios collection and have trimmed it slightly to be around five-and-a-half
seconds in length. As you can see, this sample was 48000 Hz, so I also created 16000 Hz (1/3) and 8000 Hz
(1/6) medium- and low-quality 16-bit versions, which were 526KB, 176KB, and 88KB, respectively. This
puts CD-quality sound at about 1MB and good-quality sound at about half a megabyte.

Figure 21-38. Match almost six seconds of Rhythmic Glacier audio with almost six seconds of camera zoom
animation

Figure 21-37. Stop the spinnerAudio object in the createAnimationAssets() method in a rotGameBoard.
setOnFinished() event handler

www.ebook3000.com

http://www.ebook3000.org

Chapter 21 ■ Questions and answers: Finishing the setup Methods and digital audio

543

Now we can load a second cameraAudio AudioClip object with this camera.wav asset and use it in our code.
Since you have already declared the cameraAudio AudioClip at the top of your class, the next step will

be to instantiate it inside your loadAudioAssets() method, after the spinnerAudio AudioClip object and
its instantiation and configuration statements. After we do this, we can again add the play() trigger to your
createSceneProcessing() code.

You will not need to add a stop() method call to your createAnimationAssets() onFinished() event
handler, as the sound is playing only once and expires at around the same time that the Animation object
finishes moving and rotating the camera object. If you want to sync these more closely, use the same
approach that we did for the spinner audio asset and loop a shorter AudioClip and then call a stop() method
inside of the setOnFinished() event handler.

The Java code for the second instantiation is identical to the first (except for the audio asset’s file name)
and looks like the following, which is shown highlighted in light blue and yellow in the middle of Figure 21-39:

cameraAudio = new AudioClip(JavaFXGame.class.getResource("/camera.wav").toExternalForm());

If you want to add more digital audio sound effects, you can simply mimic one of these AudioClip
objects or the other, for instance, to add audio to the i3D spinner UI element as it comes onto the screen, to
add audio that has to do with the Q&A sessions, or even to add audio that loops as the Start Game button is
waiting to be clicked by the player. So, you might expand this loadAudioAssets() method, as you continue to
develop and refine this pro Java 9 game design.

Camera animation and audio is triggered in a different part of your createSceneProcessing() method
when the player clicks a game board square to select its content for use in a Q&A session. Therefore, instead
of the play() method being called in if(picked == spinner), it is called in if(picked == Q1S1) or one of
the other 19 game board square conditional if() statements. The Java code, shown in Figure 21-40, should
look like the following:

if (picked == Q1S1) {
 setupQ1S1gameplay();
 cameraAnimIn.play();
 cameraAudio.play();
}

Figure 21-39. Add a cameraAudio AudioClip to the loadAudioAssets() method and reference the new camera.
wav asset

Chapter 21 ■ Questions and answers: Finishing the setup Methods and digital audio

544

To get some practice with what we covered in this chapter, create the other 19 setupQSgameplay()
method calls with the questions for each topic as well as the cameraAudio.play() calls that trigger your
camera zoom in audio.

Summary
In this twenty-first chapter, we learned how to create the answer selections for each game board square.
We also created a StackPane and Button objects for the player to use to record their answer. You will need
to create the other Java code to answer each game board square random options and enter this code to
complete the gameplay so that you can proceed to the next chapter, where we will be creating the scoring
engine, scoreboard, and high-score code that will track this portion of the game.

We also learned how to add digital audio assets to a game using the JavaFX AudioClip sequencer,
which has all of the core music synthesis and sound tracking and triggering tools that a synthesizer
possesses. We created both a timed digital audio clip and a looping (played until stopped) version of digital
audio so that you understand how to add digital audio assets for aural feedback for your players during their
gameplay experience.

In Chapter 22, you’re going to develop a scoring engine code infrastructure, which will handle what
happens when the player selects the proper game square content answer. This means we will again be
developing 2D game elements to hold the scoreboard content, which will pop up and overlay more of the
unused portions of the 3D game user interface. In this case, this will be the bottom-right portions of the
gameplay screen.

Figure 21-40. To trigger a cameraAudio AudioClip, add a cameraAudio.play() method call to the
OnMouseClicked event handler

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_22
http://www.ebook3000.org

545© Wallace Jackson 2017
W. Jackson, Pro Java 9 Games Development, https://doi.org/10.1007/978-1-4842-0973-8_22

CHAPTER 22

Scoring Engine: Creating the Score
UI Layout and Scoring the Content

Now that you have your game board square answer selection logic coded and you have sound effects for
your game board spin and camera animation sequence coded, we need to put the other half of the Java code
into place that looks at what answer the user selects (clicks) and updates the scoreboard accordingly. We will
track both correct and incorrect answers and encourage the player in real time using a simple but effective
scoring interface. The work process in this chapter will necessitate that we also create a Score UI pane
(panel) for the right side of our screen, which we will create using a StackPane named scoreLayout and Text
objects whose names also begin with score.

During this chapter, we’ll be implementing a single-player gameplay and scoring model to get your
scoring user interface in place and because a lot of game players will want to play the game against the
content as a learning experience. That said, there will still be a lot of code to write for each Button UI element
that looks at whether the answer is the correct answer; if it is, the code will increment the “Right:” score, and
if it is not, it will increment the “Wrong:” score.

This means you will still need to add several hundred more lines of Java code after you learn how to
implement scoring logic in this chapter. This will score all your answers, which you learned how to put in
place in the previous chapter.

Fortunately, we will use that optimal “code once, then copy, paste, and modify” approach, so there
should not be too much typing involved, like in the previous chapter. The real work will be creating the
answers (Chapter 21) and the scoring logic (this chapter) after you have finished learning how to implement
scoring (in the current chapter).

There is also one small bug from the previous chapter that we will fix by moving the .setVisible(false)
call for the Q&A UI panel from your Start Game Button to the JavaFX application start() method startup
sequence, which will initially hide the Q&A UI panel (and later the Score UI panel) on your game’s startup,
rather than on a Button click.

SplashScreen Render Bug: Hide UI Panels on Startup
You may have noticed during the Run ➤ Project test rendering of your game in the previous chapter that
JavaFX was incorrectly rendering part of the Q&A UI pane (panel) above the SplashScreen for your game,
as shown at the top left of Figure 22-1. This Q&A UI panel should really be behind your SplashScreen, as
you’ve designated that rendering order in your addNodesToSceneGraph() method in the root.addChildren.()
addAll() method chain’s Node object parameter list sequence. By adding i3D elements to make your Scene a
3D (or a “hybrid” 2D+3D Scene) entity, this could also be a Z-unit location (position) setting issue. Therefore,
there could be two ways to investigate and fix this minor rendering issue. Since we already have our X, Y, Z
display units set and working effectively for what we want to achieve in the i3D game rendering pipeline,

https://doi.org/10.1007/978-1-4842-0973-8_22
http://dx.doi.org/10.1007/978-1-4842-0973-8_21

Chapter 22 ■ SCoring engine: Creating the SCore Ui LayoUt and SCoring the Content

546

the easiest way to fix this glitch is to simply hide the UI panel (since we are hiding it on game startup anyway)
automatically on game startup, rather than manually using a Start Game Button UI element. This is done at
the top of your start() method, required by JavaFX, rather than in an event handling structure connected to an
initial click on a Start Game Button UI element.

First, remove the qaLayout.setVisible(false); Java statement from within the gameButton event-
handling code and place it at the top of your .start() method so that this hide gets processed automatically.

Remember that your qaLayout StackPane will get created in the createQAnodes() method, so this
statement will need to come after your createQAnodes(); custom method call and thus after any of the
methods called before this custom method. This is fine, as these simply set up asset references and objects
that will be used in your game.

This ends up being a quicker and easier fix to this visual bug; since we are already going to hide this
panel on game startup, doing this hide (set visibility false) earlier on (automatically) rather than in the event
handling logic both creates cleaner code and saves us the time figuring out why (clearly a Z unit setting
problem in 3D space) this is happening and how to add (and adjust) Z location code for the qaLayout
StackPane object that will not mess up your currently pristine results (other than on this initial SplashScreen
display).

Figure 22-1. Let’s fix the Q&A Button pane rendering bug that affects the startup screen first before developing
the scoring

www.ebook3000.com

http://www.ebook3000.org

Chapter 22 ■ SCoring engine: Creating the SCore Ui LayoUt and SCoring the Content

547

The Java code for this simple modification is shown highlighted in the middle of Figure 22-2 and should
look like the following Java 9 statement, now found in the first part of your public void start() core JavaFX 9
method:

public void start() {
 loadImageAssets();
 loadAudioAssets();
 createSpecialEffects();
 createTextAssets();
 createMaterials();
 createBoardGameNodes();
 createUInodes();
 createQAnodes();
 qaLayout.setVisible(false);
 createSceneProcessing();
 createGameBoardNodes();
 ...
}

Figure 22-2. Remove the .setVisible() call from your gameButton handler and place it in .start() after
createQAnodes()

Chapter 22 ■ SCoring engine: Creating the SCore Ui LayoUt and SCoring the Content

548

Use the Run ➤ Project work process in Figure 22-3 to see the fix to this problem in your SplashScreen.

Now that we have fixed that minor (code-wise) SplashScreen rendering issue, we can proceed to create
your Score UI layout design, starting with a scoreLayout StackPane object and the Text objects that contain
its decoration.

Scoreboard UI Design: A createScoreNodes() Method
Let’s have NetBeans create a createScoreNodes() custom method body for us by adding a line of code
after the qaLayout.setVisible(false); statement we just added and then using the Alt+Enter keystroke
combination to trigger this automated method coding by NetBeans 9. The Java statement for this is shown
here and highlighted in the middle of Figure 22-4:

public void start() {
 loadImageAssets();
 loadAudioAssets();
 createSpecialEffects();
 createTextAssets();
 createMaterials();
 createBoardGameNodes();
 createUInodes();
 createQAnodes();
 qaLayout.setVisible(false);
 createScoreNodes();
 ...
}

Figure 22-3. Your Q&A UI panel is now hidden on startup, in the top of your .start() method

www.ebook3000.com

http://www.ebook3000.org

Chapter 22 ■ SCoring engine: Creating the SCore Ui LayoUt and SCoring the Content

549

Copy the method from the bottom of your class to right after the createQAnodes() method, as shown
at the bottom of Figure 22-5. Copy the qaLayout statements from the createQAnodes() method into the
createScoreNodes() method and change the .setTranslateX() method call from -250 to 250 to mirror it to
the other corner of the display.

Figure 22-4. Create a createScoreNodes() method after the qaLayout logic and use Alt+Enter to have
NetBeans code it

Figure 22-5. Add a StackPane named scoreLayout at the top of the class and instantiate and configure it like
qaLayout

Chapter 22 ■ SCoring engine: Creating the SCore Ui LayoUt and SCoring the Content

550

You’ll leave the other four copied Java statements the same (other than changing qaLayout to
scoreLayout), as other than the X location, you want to “mirror” the height, depth, background color, and
preferred StackPane size. Add this scoreLayout to the SceneGraph using the following Java code, which is
also shown highlighted in Figure 22-6:

private void addNodesToSceneGraph() {
 root.getChildren().addAll(gameBoard, uiLayout, qaLayout, scoreLayout, spinner);
 ...
}

Let’s again use the Run ➤ Project work process and test this new code for your Score UI panel to make
sure that is mirroring the Score UI panel design far enough to the right of the screen using a .setTranslateX()
method call value. As you can see in Figure 22-7, we’re falling about 400 units short of the right corner of the
game with our guess. Therefore, we’ll need to change the 250 value to a 650 value to move this StackPane
container further to the right, as well as to prevent this 2D StackPane UI container object from intersecting
with your i3D game board Node hierarchy.

Figure 22-6. To render the scoreLayout StackPane, you must first add it to the root.getChildren().addAll()
method chain

www.ebook3000.com

http://www.ebook3000.org

Chapter 22 ■ SCoring engine: Creating the SCore Ui LayoUt and SCoring the Content

551

The Java 9 code to complete the Score UI background and container is shown highlighted in Figure 22-8,
and your modified .setTranslateX() method call (from 250 X units to 650 X units) should look like the
following code:

scoreLayout.setTranslateX(650);

Figure 22-7. As you can see, this StackPane is intersecting with the game board and needs to move right 400
units in X

Figure 22-8. Change the scoreLayout.setTranslateX() method call from 250 to 650 to move the Score UI panel
by 400 units

Chapter 22 ■ SCoring engine: Creating the SCore Ui LayoUt and SCoring the Content

552

The next thing that we need to do is to put the Java code into place that will hide the Score UI pane on
the startup of the game in the same way that it is for the Q&A UI panel. Your new start() method code should
look like the following code, shown in Figure 22-9, once you add your scoreLayout.setVisible(false);
Java statement:

public void start() {
 loadImageAssets();
 loadAudioAssets();
 createSpecialEffects();
 createTextAssets();
 createMaterials();
 createBoardGameNodes();
 createUInodes();
 createQAnodes();
 qaLayout.setVisible(false);
 createScoreNodes();
 scoreLayout.setVisible(false);
 ...
}

As you can see in Figure 22-10, you still need to set your scoreLayout StackPane to be visible at the
end of your cameraAnimIn Animation object animation by using your .setOnFinished(event) event
handling infrastructure. This code is already in place because we are already revealing the Q&A UI panel
after the camera animation has been completed. Therefore, all we have to do is to add the scoreLayout.
setVisible(true); statement at the end of the cameraAnimIn.setOnFinished(event->{}); structure,
which is shown highlighted in light blue and yellow in the middle of Figure 22-10. You must put this Java 9
code into place before you will be able to test your Score UI panel.

Figure 22-9. Add the .setVisible(false) method call off scoreLayout after the createScoreNodes() method to
hide the panel on startup

www.ebook3000.com

http://www.ebook3000.org

Chapter 22 ■ SCoring engine: Creating the SCore Ui LayoUt and SCoring the Content

553

Again, use the Run ➤ Project work process and make sure your game SplashScreen and game
board spin are back to their “clean” appearance; then spin and select game board square 1 to invoke the
cameraAnimIn object .setOnFinished(event) event handling method logic, which is revealing both the
StackPane UI containers at this point.

This allows us to test the Score UI container code after the camera angles have changed. As you
can see in Figure 22-11, all we have to do is to move the StackPane down by 10 units by changing the
.setTranslateY() method call of -395 (shown in Figure 22-8) to a value of -385 to achieve a perfectly
mirrored Score UI panel result.

Figure 22-10. To show the scoreLayout StackPane, add a .setVisible(true) method call in cameraAnimIn.
setOnFinished()

Figure 22-11. Use Run ➤ Project to render the Score panel, via the .setOnFinished() event handler, showing
the initial pane position

Chapter 22 ■ SCoring engine: Creating the SCore Ui LayoUt and SCoring the Content

554

Now we can “decorate” the interior of the scoreLayout StackPane using Text objects of different colors,
which we can use to label the sections of our Score UI panel using a nice large font and dark primary (RGB)
color values.

Adding Your Score UI Container Design Elements: Text Objects
Add the scoreTitle Text object to the Text compound statement at the top of your class and then add
scoreTitle to a scoreLayout.addChildren().addAll() method chain in your addNodesToSceneGraph()
method, as shown in Figure 22-12. The Java code should look like the following, which is also shown in
yellow at the top of Figure 22-12:

private void addNodesToSceneGraph() {
 root.getChildren().addAll(gameBoard, uiLayout, qaLayout, scoreLayout, spinner);
 gameBoard.getChildren().addAll(Q1, Q2, Q3, Q4);
 Q1.getChildren().addAll(q1, Q1S1, Q1S2, Q1S3, Q1S4, Q1S5);
 Q2.getChildren().addAll(q2, Q2S1, Q2S2, Q2S3, Q2S4, Q2S5);
 Q3.getChildren().addAll(q3, Q3S1, Q3S2, Q3S3, Q3S4, Q3S5);
 Q4.getChildren().addAll(q4, Q4S1, Q4S2, Q4S3, Q4S4, Q4S5);
 qaLayout.getChildren().addAll(a1Button, a2Button, a3Button, a4Button);
 scoreLayout.getChildren().addAll(scoreTitle);
 uiLayout.getChildren().addAll(boardGameBackPlate, logoLayer, infoOverlay, uiContainer);
 uiContainer.getChildren().addAll(gameButton, helpButton, legalButton, creditButton,
 scoreButton);
 infoOverlay.getChildren()addAll(platText, moreText);
}

Figure 22-12. Add a scoreTitle Text object, instantiate it, and configure it in createScoreNodes(). Then add it
to the SceneGraph

www.ebook3000.com

http://www.ebook3000.org

Chapter 22 ■ SCoring engine: Creating the SCore Ui LayoUt and SCoring the Content

555

Set the alignment for the scoreTitle heading in the scoreLayout StackPane using the .setAlignment()
method call with the Pos.TOP_CENTER constant, which will center this crimson SCORE heading at the
top and in the center of the StackPane container. Interestingly, Text object alignment is set in the parent
StackPane container. We can custom-align nonheading Text elements later, using the .setTranslateX() and
.setTranslateY() method calls, off of the Text child objects to fine-tune the alignment within the Score UI
panel as we flesh out this design over the next few pages.

Instantiate the scoreTitle Text object at the bottom of your createScoreNodes() method and then
configure it by using the .setFont() method. Use an Arial Black font face for its bold readability at a large
72-point font size. Use the .setFill() method call and change the color from Black to Dark Red so that the
Score Title is easily viewable at the top of the Score UI panel. The Java code, shown highlighted at the bottom
of Figure 22-12, looks like the following:

private void createScoreNodes() {
 scoreLayout = new StackPane();
 scoreLayout.setTranslateX(650);
 scoreLayout.setTranslateY(-385);
 scoreLayout.setTranslateZ(-75);
 scoreLayout.setBackground(new Background(new BackgroundFill(Color.WHITE,
 CornerRadii.EMPTY,
 insets.EMPTY)));
 scoreLayout.setPrefSize(360, 654);
 scoreLayout.setAlignment(Pos.TOP_CENTER);
 scoreTitle = new Text("SCORE");
 scoreTitle.setFont(Font.font("Arial Black", 72));
 scoreTitle.setFill(Color.DARKRED);
}

Figure 22-13 shows the Run ➤ Project work process to preview how the “SCORE” title works in the
Score pane.

Figure 22-13. Use the Run ➤ Project work process to preview the Score UI panel with its new Dark Red title
heading

Chapter 22 ■ SCoring engine: Creating the SCore Ui LayoUt and SCoring the Content

556

As shown highlighted in Figure 22-14, we’ve declared a scoreRight Text object at the top of the class and
also added it to the scoreLayout.addChildren().addAll() method chain so it can be seen in the test render
we’ll be doing.

I added the scoreRight object instantiation after the scoreTitle object and configured it to use the
Dark Blue color, Arial Black font face, at a 72-point font size. I added X and Y coordinates to initially position
it at (-50, 150) within a scoreLayout StackPane. Figure 22-14 shows the code, which looks like the following:

private void createScoreNodes() {
 ...
 scoreTitle = new Text("SCORE");
 scoreTitle.setFont(Font.font("Arial Black", 72));
 scoreTitle.setFill(Color.DARKRED);
 scoreRight = new Text("Right:");
 scoreRight.setFont(Font.font("Arial Black", 72));
 scoreRight.setFill(Color.DARKBLUE);
 scoreRight.setTranslateX(-50);
 scoreRight.setTranslateY(150);
}

Figure 22-14. Add a scoreRight object at the top of the class, instantiate and configure it, and add it to the
SceneGraph

www.ebook3000.com

http://www.ebook3000.org

Chapter 22 ■ SCoring engine: Creating the SCore Ui LayoUt and SCoring the Content

557

Figure 22-15 shows a Run ➤ Project work process to preview how a Right: heading works in the
Score pane.

Since this particular i3D board game design is for younger children about to enter school, let’s also
include a “Wrong:” score tracking heading and also add some encouragement after each answer, such
as Great Job! or Spin Again. The fastest way to write this code is to copy and paste the scoreRight code,
underneath itself, and change scoreRight to scoreWrong while also changing the color to Red and X, Y
location to -25, 300. This is shown in the following Java 9 code and highlighted in yellow at the bottom of
Figure 22-16:

private void createScoreNodes() {
 ...
 scoreLayout.setPrefSize(360, 654);
 scoreLayout.setAlignment(Pos.TOP_CENTER);
 scoreTitle = new Text("SCORE");
 scoreTitle.setFont(Font.font("Arial Black", 72));
 scoreTitle.setFill(Color.DARKRED);
 scoreRight = new Text("Right:");
 scoreRight.setFont(Font.font("Arial Black", 72));
 scoreRight.setFill(Color.DARKBLUE);
 scoreRight.setTranslateX(-50);
 scoreRight.setTranslateY(150);
 scoreWrong = new Text("Wrong:");
 scoreWrong.setFont(Font.font("Arial Black", 72));
 scoreWrong.setFill(Color.RED);
 scoreWrong.setTranslateX(-25);
 scoreWrong.setTranslateY(300);
}

Figure 22-15. Use a Run ➤ Project work process to preview the Score UI panel with new Dark Blue “Right:”
score heading

Chapter 22 ■ SCoring engine: Creating the SCore Ui LayoUt and SCoring the Content

558

Figure 22-17 shows a Run ➤ Project work process, used to test the Java code for a red Wrong: text
heading.

Figure 22-16. Add scoreWrong object at the top of the class, instantiate and configure it, and add it to the
SceneGraph

Figure 22-17. Use a Run ➤ Project work process to preview the Score panel and Red “Wrong:” text

www.ebook3000.com

http://www.ebook3000.org

Chapter 22 ■ SCoring engine: Creating the SCore Ui LayoUt and SCoring the Content

559

Next, let’s add a scoreCheer Text object declaration to the compound statement at the top of your class.
As you can see in yellow at the top of in Figure 22-18, your compound statement now has two lines, one for
startup (SplashScreen) UI Text objects and a second for Score UI Text objects.

Since you have declared the object, you can add it to the scoreLayout.getChildren().addAll() method
chain, as shown in Figure 22-18, even before you instantiate it and not create an error in NetBeans 9. The
Java statement shown highlighted in light blue at the bottom of Figure 22-18 should look like the following:

scoreLayout.getChildren().addAll(scoreTitle, scoreRight, scoreWrong, scoreCheer);

Copy and paste the scoreWrong Java statements underneath themselves and change scoreWrong to
be scoreCheer. Make the scoreCheer DarkGreen and reduce the font size on scoreRight and scoreCheer to
64 and 56 points so that they fit better in the scoreLayout. Remember, we need room for the numbers that
represent these scores! Since scoreWrong is wider (because of the letters used in the font), I reduced this to
60 points. I spaced out the headings 10 units more in the Y dimension and lined them up on the left by using
the X location of -56, -44, and -2, as shown here in bold and highlighted (the scoreGrade statements at least)
in Figure 22-19:

 scoreRight = new Text("Right:");
 scoreRight.setFont(Font.font("Arial Black", 64));
 scoreRight.setFill(Color.DARKBLUE);
 scoreRight.setTranslateX(-56);
 scoreRight.setTranslateY(160);
 scoreWrong = new Text("Wrong:");
 scoreWrong.setFont(Font.font("Arial Black", 60));
 scoreWrong.setFill(Color.RED);
 scoreWrong.setTranslateX(-44);
 scoreWrong.setTranslateY(310);
 scoreCheer = new Text("Great Job!");
 scoreGrade.setFont(Font.font("Arial Black", 56));
 scoreGrade.setFill(Color.DARKGREEN);
 scoreGrade.setTranslateX(-2);
 scoreGrade.setTranslateY(460);

Figure 22-18. Declare the scoreCheer Text object at the top of the class; then add it to your scoreLayout
SceneGraph branch

Chapter 22 ■ SCoring engine: Creating the SCore Ui LayoUt and SCoring the Content

560

Figure 22-20 shows the Run ➤ Project work process used to render your new Text object headings
and their adjusted font size and positioning settings. Notice that since we have not proliferated the answers
or scoring logic yet, only the Falcon (square 1 option 1 in Figure 22-11 or 15) is showing Button labels that
represent answer options.

Figure 22-20. Use the Run ➤ Project work process to preview the Score panel and Text object headings you
have added

Figure 22-19. Add the scoreCheer Text object in DarkGreen and tweak the other Text object font sizes and XY
locations

www.ebook3000.com

http://www.ebook3000.org

Chapter 22 ■ SCoring engine: Creating the SCore Ui LayoUt and SCoring the Content

561

Now we’re ready to add the score engine logic to the Q&A Button elements we put into place in Chapter 21
and add Text answerRight and answerWrong options to our Score UI design. This will display the score generated
by the Q&A UI Button elements. After that, we can calculate the grade and assign it to a seventh Text element for a
letter grade.

Scoring Engine: Logic to Calculate Score on Answer
Let’s add a custom method to hold our scoring engine logic called createQAprocessing(), which will hold
the .setOnAction(event) event processing for the four Button elements created in the createQAnodes()
method. As you can see in Figure 22-21, this needs to come after we set up the Q&A and Score UI
designs in createQAnodes() and createScoreNodes() and before we call this Q&A event handling in
createSceneProcessing(). So, add a line of Java code after the scoreLayout.setVisible(false); statement and
before the createSceneProcessing(); statement, as shown highlighted in yellow in Figure 22-21. Use the
Alt+Enter work process to remove the wavy red error underlining by having NetBeans 9 write the bootstrap
method code and error statement, which we will be replacing soon. This will open a drop-down menu
containing the Create method “createQAprocessing()” in javafxgame.JavaFXGame option, which you will
double-click to execute (a single-click will select this single option, as shown in Figure 22-21).

The easiest way to code this first (of four) action event handling structure is to go into your .start()
method and copy and paste one of your Button event handling structures that you created earlier in the
book into this newly created createQAprocessing() method. Be sure to select the NetBeans bootstrap error
statement line of code completely before you use the Paste command so that your ActionEvent handling
code replaces this bootstrap error statement.

Figure 22-21. Add the createQAprocessing() method call after createQAnodes() and createScoreNodes() and
use Alt+Enter

http://dx.doi.org/10.1007/978-1-4842-0973-8_21

Chapter 22 ■ SCoring engine: Creating the SCore Ui LayoUt and SCoring the Content

562

Change the object that the .setOnAction() method call is called off of to a1Button and delete the
processing statements inside of this event handling construct to make it into an empty event handler so that
we can build the score processing logic from scratch. The Java code for the event handler will look like the
following, as shown in Figure 22-22:

private void createQAprocessing() {
 a1Button.setOnAction(new EventHandler<ActionEvent>() {
 @Override
 public void handle (ActionEvent event) {
 ... // An Empty ActionEvent Handling Structure
 }
 });
}

The Java code that will be generated by Alt+Enter will be the same empty event handling structure,
using the lambda expression approach, which will remove three of the eight lines of code, or 37.5 percent of
the coding structure.

Your Java 9 code should look like the following, and your resulting lambda expression is shown in
Figure 22-24. Figure 22-23 shows the work process once you invoke the NetBeans Alt+Enter keystroke.
Select the Use lambda expression option, which will execute an algorithm in the NetBeans 9 IDE that will
rewrite the Java code for you and turn it into the shorter lambda expression programming format.

Figure 22-22. Mouse over the event handling structure, and notice NetBeans wants to convert to a lambda
expression

www.ebook3000.com

http://www.ebook3000.org

Chapter 22 ■ SCoring engine: Creating the SCore Ui LayoUt and SCoring the Content

563

private void createQAprocessing() {
 a1Button.setOnAction(ActionEvent event) -> {

 ... // Empty ActionEvent Handling Lambda Expression Structure

 });
}

Inside of your empty ActionEvent handling lambda expression, we’ll have conditional if() structures
for each of the Button objects that will look at both the picked Node object and the pickSn Random object
to ascertain which game board square (Q1S1 through Q4S5) and Random number generator value (pickS1
through pickS20) we’re dealing with. This will tell us which content we are looking at, and then our scoring
engine logic will score that choice.

Inside the a1Button.setOnAction() construct, add an if(picked == Q1S1) to start this coding process.
Notice that NetBeans error highlights the picked Node object, as it is currently local (private) to the
createSceneProcessing() method, as shown in Figure 22-24. We will have to make this picked Node object a
global (public) variable next.

Figure 22-23. Use the Alt+Enter keystroke and select and double-click the “Use lambda expression” option to
convert

Chapter 22 ■ SCoring engine: Creating the SCore Ui LayoUt and SCoring the Content

564

Declare the picked Node at the top of your class, as shown highlighted in Figure 22-25, to remove this error.

Figure 22-25. Remove the Node declaration from createSceneProcessing(); relocate it to the top of the class,
making it global

Figure 22-24. NetBeans error highlights picked Node in the if() statement because it is local to
createSceneProcessing()

www.ebook3000.com

http://www.ebook3000.org

Chapter 22 ■ SCoring engine: Creating the SCore Ui LayoUt and SCoring the Content

565

Now that all of the objects we are going to be looking at inside of the createQAprocessing() method
have been declared so that they are visible to the entire class, we can continue coding the a1Button event
handling with an if (picked == Q1S2 && pickS1 == 0) { ... } structure that lives inside the a1Button
event-handling construct.

Declare a rightAnswer integer and rightAnswers Text object at the top of the class as part of the
compound declaration statements for int variables and Text objects, as we are about to write Java 9 code that
will utilize these.

What we are going to do inside this if() construct is (if Button 1 contains the right answer) to add 1
to the rightAnswer integer and then set a rightAnswers Text object to this rightAnswer value by using a
.setText() method call. Inside the .setText() method we’ll use a String.valueOf() method to convert the
rightAnswer integer to a String value and use .setText() to set scoreCheer to Great Job!. The code for correct
answer processing, which in the case of Q1S1 option 0 (the first answer option) is correct (a right answer),
should look like the following code, as highlighted in Figure 22-26. It has been coded in two lines (four lines,
including lambda expression) to allow 20 board square score logic processing Java constructs to fit in 120
lines of code inside the createQAprocessing() method body.

a1Button.setOnAction(ActionEvent event) -> {
 if (picked == Q1S1 && pickS1 == 0) { rightAnswer = rightAnswer + 1;
 rightAnswers.setText(String.valueOf(rightAnswer)); scoreCheer.setText("Great Job!");
}
});

To be able to display this rightAnswer integer, we need to add a rightAnswers Text object to your UI
design in createScoreNodes(). This is done using the copy-and-paste technique. Copy the scoreRight block
of Java code directly underneath itself. Set the color to Black and the X position to 96. The Y position should
stay the same so as to align the “right” Text objects. Set the initial text value to zero by using the “0” String
value in the constructor method.

Figure 22-26. Code a compact if() statement evaluating Q1S1 and pickS1 to see whether the a1Button answer
is a correct one

Chapter 22 ■ SCoring engine: Creating the SCore Ui LayoUt and SCoring the Content

566

The Java code, shown at the bottom of Figure 22-27, should look like the following code:

rightAnswers = new Text("0"); // Initializes rightAnswers to Zero
rightAnswers.setFont(Font.font("Arial Black", 64));
rightAnswers.setFill(Color.BLACK);
rightAnswers.setTranslateX(96);
rightAnswers.setTranslateY(160);

Figure 22-27. Add the rightAnswers Text object to createScoreNodes() to display the result of your integer
calculation

www.ebook3000.com

http://www.ebook3000.org

Chapter 22 ■ SCoring engine: Creating the SCore Ui LayoUt and SCoring the Content

567

Figure 22-28 shows a Run ➤ Project work process used to render a rightAnswers Text object and
its settings.

The other Button elements use similar code, only they’ll add one to a wrongAnswer int variable. This
means you’ll copy the a1Button construct you created three times underneath itself, changing a1Button
to a2Button through a4Button. Change rightAnswer to wrongAnswer and change rightAnswers to
wrongAnswers, as shown in Figure 22-29.

Figure 22-29. Copy and paste a1Button construct three times underneath itself and change the object and
variable names

Figure 22-28. Use a Run ➤ Project work process to preview the Score panel and the rightAnswers Text object
placement

Chapter 22 ■ SCoring engine: Creating the SCore Ui LayoUt and SCoring the Content

568

Also change “Great Job!” to “Spin Again.” To be able to display a wrongAnswer integer, we need to add
a wrongAnswers Text object to createScoreNodes(). This is done with a copy-and-paste process. Copy the
scoreWrong block of Java code directly underneath itself. Set the color to Black and the X position to 96.
The Y position stays the same to align the two Text objects. Set the initial text value to zero using a “0” String
value in the constructor method.

The Java 9 code, shown at the bottom of Figure 22-30, should look just like the following code:

wrongAnswers = new Text("0"); // Initializes wrongAnswers to Zero
wrongAnswers.setFont(Font.font("Arial Black", 64));
wrongAnswers.setFill(Color.BLACK);
wrongAnswers.setTranslateX(96);
wrongAnswers.setTranslateY(160);

Remember that in order to see the rightAnswers and wrongAnswers answer result Text object value
holders, you must add them to your SceneGraph hierarchy inside the scoreLayout StackPane .getChildren().
addAll() statement.

I used only one screenshot to show adding these Text Nodes to the StackPane to save space in
the chapter, as we have a lot of Java coding to do to complete your board game scoring and grading
infrastructure. Once we finish testing this code, all that you’ll have to do is to copy this scoring code for the
other 59 options inside of your createQAprocessing() method body, creating the scoring for the other 19
game board squares. This will need to match your other 59 sets of answers, which you’ll copy and paste to
create and then edit using the code we created in Chapter 21.

Figure 22-30. Add the wrongAnswers Text object to createScoreNodes() to display the result of the integer
calculation

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_21
http://www.ebook3000.org

Chapter 22 ■ SCoring engine: Creating the SCore Ui LayoUt and SCoring the Content

569

Then you’ll have all your answers and scoring in place! You can start “error proofing” your code in the
next chapter to ensure that multiple UI elements cannot be clicked before they’re needed. Remember, these
are young children, and intellectually challenged, playing an educational game, so you’ll need this user
interface protection. The Java code for the scoreLayout.getChildren().addAll() method chain looks like
the following Java code, shown in Figure 22-31:

scoreLayout.getChildren().addAll(scoreTitle, scoreRight, scoreWrong, scoreCheer,
 rightAnswers, wrongAnswers);

Figure 22-32 shows the Run ➤ Project work process used to render the new wrongAnswers Text object and
its settings; as you can see, this aligns the score (integer) elements and leaves room for larger scores (10s and 100s)
if the numeric fields expand to the right, which we’ll be ascertaining in the next section on score code testing.

Figure 22-32. Use your Run ➤ Project work process to preview your Score UI panel and your wrongAnswers
Text object

Figure 22-31. Be sure to add any new Node objects to the SceneGraph hierarchy so they will be visible at
render time

Chapter 22 ■ SCoring engine: Creating the SCore Ui LayoUt and SCoring the Content

570

Next, let’s test the scoring code that we just wrote and see whether the Score UI design responds
correctly to the increment of the score into double digits. That is, does an increase in numeric value expand
to the right or to the left? Or does it expand from the center? Once we figure this out, we can further “tweak”
(optimize) our Scoring UI design.

Score UI Testing: Displaying Higher Integer Numbers
Since we have not implemented “player proofing” Java code, which we are going to do in the next chapter
so that the player cannot click a UI element (3D spinner, game board square, Button) more than one time in
each gameplay cycle to “game” the system (or cause rendering errors to surface), we can currently click the
Button elements more than one time. This allows us to test the scoreboard UI to find out how numbers larger
than 9 will be displayed so that we can “tweak” the X location and space the numbers (right and wrong)
either to the left (current spacing), to the far right, or in the center of the label (heading) and the right edge of
the score UI panel. As you can see in Figure 22-33, I have clicked the correct (Falcon Hawk) answer ten times
to see how the number will move. As you can see, the number expands out from the center, which you can
see by comparing the 10 to the 2, rather than to the left or right. Therefore, we need to move these 120 units
to the right. Now your score values will be able to expand to two or three digits.

Figure 22-33. Use your Run ➤ Project work process and click the Button elements to increment (test) your
scoring code

www.ebook3000.com

http://www.ebook3000.org

Chapter 22 ■ SCoring engine: Creating the SCore Ui LayoUt and SCoring the Content

571

Increment the .setTranslateX() method call for the rightAnswers and wrongAnswers Text objects from
96 to 120. This will center the numeric part of the Score UI between the label (heading) and the right side
of the Score UI panel. Your code should now look like the following, which is highlighted in the middle and
bottom of Figure 22-34:

rightAnswers = new Text("0");
rightAnswers.setFont(Font.font("Arial Black", 64));
rightAnswers.setFill(Color.BLACK);
rightAnswers.setTranslateX(120); // Update X position 24 units from 96 to 120
rightAnswers.setTranslateY(160);
wrongAnswers = new Text("0");
wrongAnswers.setFont(Font.font("Arial Black", 64));
wrongAnswers.setFill(Color.BLACK);
wrongAnswers.setTranslateX(120); // Update X position 24 units from 96 to 120
wrongAnswers.setTranslateY(160);

Figure 22-34. Expand the X position of each numeric element 24 units to the right, from a value of 96 to a
value of 120

Chapter 22 ■ SCoring engine: Creating the SCore Ui LayoUt and SCoring the Content

572

Again, use your Run ➤ Project work process shown in Figure 22-35 to render the game and navigate to
the Score UI panel to check to see whether this spaces the number display so that 10 to 99 scores look great
when displayed in the Score UI panel.

Most players will not play (spin) the game board hundreds of times in one play session, so this should
work well for this game. However, notice that three digits (100 to 999) should also fit.

However, if you are expecting this much gameplay, you may want to space the labels (headings) four to
eight units further to the left side of the Score UI design, which would then accommodate your triple-digit
gameplay scores comfortably.

Now you are ready to “proliferate” the code that we wrote in this chapter on scoring and in Chapter 21 to
create the entire gameplay infrastructure. This is going to add another 1,000 lines of code to the 1,000 (or more)
lines of Java code that we have already created over 22 chapters to put the entire i3D board game infrastructure
in place. Let’s talk about how to do this next. This is a lot of work regarding 2D content (images, answer options,
and scoring), but it is going to integrate seamlessly with the i3D board game that we have created so far using
the JavaFX 9 APIs.

Completing the Gameplay: Add Answers and Score
Adding 4 answers for 60 different game board square options involves 240 different content options (and lines
of code), and adding scoring for those 60 different game board square options involves another 480 lines of
code and possibly a little more with the lambda expression containers included. The reason that this is a lot of
work that should be fairly easy to perform error-free is that we have created a code design that can be copied
and pasted into place and that Text values can be created, inserted, and tracked so that the game content
will work correctly when played. That said, don’t expect that creating the content for your professional Java
9 game development pipeline to be any easier than creating the Java 9 code is (was), as game design and
game development involves a plethora of new media, content, strategy, and coding work to end up with a
professional result.

Figure 22-35. Use the Run ➤ Project work process and click the Button elements to increment (test)
double-digit scores

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_21
http://www.ebook3000.org

Chapter 22 ■ SCoring engine: Creating the SCore Ui LayoUt and SCoring the Content

573

I would add (am going to add after I turn in this chapter) the answers and scoring for one game board
square at a time, until all 20 game board squares are in place. Adding future game board square options can
be easily done. You just increment the pickS1 through pickS20 variables by 1 using the random.nextInt(n)
variable to add four through however many different random image subjects you want to add to each game
board square. Adding an additional round of random content would amount to adding 20 new Button
answer rounds (80 answer options) and scoring those 80 new answers in your scoring logic, which would
amount to 160 lines of code, or about 240 lines of code per game board content depth addition. Adding more
depth to game board content means players will see duplicate content less as they play the game over longer
periods of time. You could also add code to track used content, if you wanted.

Once you proliferate the rest of the content into answers and scoring logic, you will have finished the
bulk of the game design and development work process. In the chapters that remain, we will look at error-
proofing the UI design so users are forced to use it correctly in the course of playing the game, as well as
things such as optimization and code profiling using the new Java 9 NetBeans IDE.

Summary
In this twenty-second chapter, we learned about how to implement a Score UI panel on the lower-right
side of our i3D board game design. We also learned how to change the score in the numeric portion of this
scoreboard using ActionEvent handling on the Button UI elements that live in the Q&A panel, which we
created in the previous Chapter 21. This essentially puts us into a position where we can finish both coding
and scoring the individual square (and quadrant, once the square is selected) gameplay, where a visual
question regarding the content is answered and scored. (I have to do this before I start writing Chapter 23.)

This means that this was another of your heavy coding chapters as you constructed 20 custom methods,
setupQ1S1gameplay() through setupQ4S5gameplay(). You also placed conditional if() structures for each of
your Button elements scoring these in your createQAprocessing() event handling infrastructure. You’ll still
need to be sure to cross-check the image assets between all of your board game methods, and finally, you
will need to test all of this code together to make sure it works properly for each game board square.

In Chapter 23, as part of gameplay protection, we’ll of course reverse the camera animation after the
answering and scoring have been completed and animate back to the more oblique view that is needed to
review the game board spin optimally. We will also prevent clicking any UI element that can be clicked so
that users can select only one topic and can spin the board once, for instance. We are by no means finished
with the game design work process!

http://dx.doi.org/10.1007/978-1-4842-0973-8_21
http://dx.doi.org/10.1007/978-1-4842-0973-8_23
http://dx.doi.org/10.1007/978-1-4842-0973-8_23

575© Wallace Jackson 2017
W. Jackson, Pro Java 9 Games Development, https://doi.org/10.1007/978-1-4842-0973-8_23

CHAPTER 23

Completing the Gameplay
Code and Player Proofing
Your Event Handling

Now that your i3D UI and its event handling, not to mention most of your animation and digital audio, are in
place and working, it’s time to finish loading a basic level of content (60 images, 240 answers, and scoring)
in your code base. We will do this in the first part of this chapter, so I can show you what I did to finish up
the gameplay and there is no loss of coding continuity throughout the book. Most of this coding is copy and
paste, thanks to the way I set up the game design code, and making sure answers match up and work well
when testing the game.

During this chapter, we’ll finish populating the 20 setupQSgameplay() methods with the
text-based answer content that matches up with the visuals (questions). We’ll also be finishing the
createQAprocessing() method, which holds the answer scoring code that updates the Score UI panel. The
players will use these to select the correct answer, revealing what the visual for that square represents and
scoring their answer. This means you’ll be adding several hundred more lines of code during this chapter,
approaching 1,750 lines of code before you are finished.

Once we finish coding the bulk of the gameplay “answer display, selection, and scoring” infrastructure
and test each square to make sure it is working, we can create the error-proofing portion of the Java code.
This results in a professional game that makes sure the players use it properly. This involves using Boolean
variables (called flags) to hold “click” variables; once a player clicks the spinner, game board square, or
answer Button UI element, the elementClick variable is set to false so that your game player cannot click it
again and “game” the gameplay code.

For instance, your player might click your correct answer Button UI element multiple times, which
would run up the “Right:” (answers) portion of the scoreboard! I call this “user proofing” or “error proofing”
the code, and it is a fairly complex process (as you will see in this chapter), which can sometimes go several
levels deep. For instance, we will first protect all game board squares from being clicked twice and then go
down one more level and protect a quadrant’s game board squares so that only the selected quadrant in
each round of play can be selected by a player.

We will also be adding the final animation, which takes the camera back out to the game board spin
view of the game so that a player can invoke a random spin to select the next quadrant (animal, vegetable,
mineral, or place topic). This will be done by adding a bright yellow Let’s Play Again Button element to the
top level of the board game UI design. We have a ton of work to do during this chapter, so let’s get started!

www.ebook3000.com

https://doi.org/10.1007/978-1-4842-0973-8_23
http://www.ebook3000.org

Chapter 23 ■ Completing the gameplay Code and player proofing your event handling

576

Finishing Gameplay: Populating Gameplay Methods
The first part of this chapter will show you how I put the Java code in place that finishes up gameplay. We will
add the answer options to the four Button UI elements in the setupQSgameplay() methods (twenty of them,
the first of which was coded already in Chapter 21 to show you how this Java coding works), and then we
will add the scoring for these answers in the createQAprocessing() method inside the ActionEvent handling
methods for each of four Q&A Button UI elements.

Add Answer Options: Finishing the setupQSgameplay() Methods
It’s not the copying and pasting of Java 9 code in the setupQSgameplay() methods that will take up most of
your time in this phase of gameplay content development but rather the confirmation of the correct answer
and the creation of incorrect answers that stump the player and cause a “Wrong:” answer. The method body
for setupQ1S1gameplay() looks like the 18 Java statements in Figure 23-1 once you’ve added four answer
options for each random pick.

Add your corresponding right and wrong answer processing to the createQAprocessing() scoring engine
we created in Chapter 22. The correct (rightAnswer and rightAnswers) answers are highlighted in yellow in
Figure 23-2.

Figure 23-1. Find and add a correct answer to a different button (and three incorrect answers) for each
random image

http://dx.doi.org/10.1007/978-1-4842-0973-8_21
http://dx.doi.org/10.1007/978-1-4842-0973-8_22

Chapter 23 ■ Completing the gameplay Code and player proofing your event handling

577

It is important that you do this work process very carefully so that your answers, correct and incorrect,
for each of your 20 setupQSgameplay() methods match up perfectly with your createQAprocessing()
scoring algorithm’s method body. These have to match up perfectly in order for your scoring engine to score
the gameplay accurately, as you can see by comparing Figures 23-1 and 23-2 on a question-by-question and
answer-by-answer basis.

You can either do the testing as you go along, game board square by game board square, or all at one
time when you have finished. Or you can do it both ways, which is what I did, to try to generate code that was
free from errors at both compile time and runtime. With thousands of lines of code and a Java 9 (and JavaFX
9) API that was in beta while I was writing this book, this is clearly no easy task, especially when I had to turn
in one completed chapter every week.

Use the Run ➤ Project work process to render the code and 3D and test game board square 1 in your
first quadrant, as shown in Figure 23-3. I recommend doing this one square (and one quadrant) at a time so
that you can take advantage of code “patterns,” which can be seen by comparing Figures 23-1 and 23-2. You
can visually tell which game board square, game board quadrant, Button number, and random question
selection you are working with based on the Java code object names and variable names that I have utilized
specifically for this purpose.

Figure 23-2. Add matching correct or incorrect answer score processing to the createQAprocessing() method
for Q1S1

www.ebook3000.com

http://www.ebook3000.org

Chapter 23 ■ Completing the gameplay Code and player proofing your event handling

578

As you can see highlighted in Figure 23-4, the setupQ1S2gameplay() method code is very similar, other
than a pickS2 Random object and Image references and, of course, the Button labels for the correct and
incorrect answers.

Figure 23-4. Add correct and incorrect answers to Q1S2 Button objects, which as you can see is similar to the
Q1S1 method

Figure 23-3. Use a Run ➤ Project work process and test your Q1S1 answers and scoring logic before moving
on to Q1S2

Chapter 23 ■ Completing the gameplay Code and player proofing your event handling

579

As you can see in this phase of the gameplay design and programming, the primary objective is
selecting the best Button answer labels and “wiring” them correctly to the setupQAprocessing() scoring
engine method so that the scores are calculated correctly! This is why I suggest coding each game board
square one at a time and tying them to the setupQAprocessing() scoring engine method carefully! Make sure
to test each game board square well enough so that you can make sure a click on the correct answer button
adds 1 to the “Right:” score label’s integer text value.

As you can see in Figure 23-5, I have added the scoring engine method’s Java code to evaluate these
answers, which is shown highlighted in yellow. I selected the Q1S2 Box (square) object in the code to
highlight references to it.

Figure 23-5. Add matching correct or incorrect answer score processing to the createQAprocessing() method
for Q1S2

www.ebook3000.com

http://www.ebook3000.org

Chapter 23 ■ Completing the gameplay Code and player proofing your event handling

580

Use the Run ➤ Project work process shown in Figure 23-6 and test the Q1S2 game board square logic to
see whether it scores the correct answer (Duckling) by incrementing the “Right:” score UI panel integer Text
object by one.

Next, I finished up the third through fifth game board square gameplay setup methods and tested their
code to make sure I connected the correct answer Button scoring logic in my createQAprocessing() method
body. The code in this method body will reach around 500 lines of code once we are finished adding scoring
logic and, later, a variable that will lock the Button click event handling once an answer has been selected.
There is some very cool coding to come, which I cover a bit later in this chapter, when we write code to
“player proof” the game against multiple mouse clicks on the UI.

As you will see in Figure 23-7, the answer scoring logic for the first six game board squares (30 percent
done already) is filling the IDE screen for Button 1 with three dozen lines of code, which means that we have
a dozen lines of code (144 lines) done for all four buttons.

Figure 23-6. Use a Run ➤ Project work process and test your Q1S2 answers and scoring logic before moving
on to Q1S3

Chapter 23 ■ Completing the gameplay Code and player proofing your event handling

581

Figure 23-7. Add matching correct or incorrect answer score processing to the createQAprocessing() method
for Q2S1

Figure 23-8. Use a Run ➤ Project work process to test Q2S1 through Q2S5 answers and scoring logic before
moving on

The code shown highlighted at the bottom of Figure 23-7 is also shown in Figure 23-8 on the left side
of the figure being tested. When I click the first Button element (Chard), the scoring engine adds 1 to the
“Right:” score, as shown by the number being incremented from 0 to 1.

www.ebook3000.com

http://www.ebook3000.org

Chapter 23 ■ Completing the gameplay Code and player proofing your event handling

582

At this point, you’ll have to finish the next four Q2S2 through Q2S5 game board square
setupQSgameplay() methods, and the corresponding createQAprocessing() scoring engine logic, to be
halfway done with your content for half of your board game. This is shown in Figure 23-8 on the right side;
to save space I did not show all of the game board spin screen captures involved for all of this work (and its
testing work process). There is a lot of work involved in coding the 600 lines of code needed to finish this
gameplay content (about 480 for createQAprocessing() and about 100 for 20 of the setupQSgameplay()
methods), so this took me around a day to code and test. I took some screenshots along the way, which I will
show later in this section of the chapter.

As you add game board square content and scoring logic to your game, be sure to use your Run ➤
Project work process often to test new Java code that adds Answer Button objects, as well as the code that
wires these to the createQAprocessing() scoring engine method, to see whether it gives you the desired
gameplay result. As you can see in Figure 23-8, the second quadrant answers and scoring are working
correctly, and I can move on to do quadrant 3.

As you can also see in Figure 23-9, the third quadrant answers and scoring are now working correctly,
and I can move on to add the answers and scoring code for quadrant 4. At this point, your board game
should be working fairly well, and we can now start to add code that prevents the game player from clicking
UI elements more than once.

As you can see in Figure 23-10, the gameplay content is now in place, and we can proceed with player
proofing.

Figure 23-9. Use a Run ➤ Project work process to test the Q3S1 through Q3S5 answers and scoring logic
before moving on

Figure 23-10. Use the Run ➤ Project work process to test the Q4S1 through Q4S5 answers and scoring logic to
finish 20 squares

Chapter 23 ■ Completing the gameplay Code and player proofing your event handling

583

Next, let’s “player proof” your current code by adding boolean variables that will prevent repetitive
clicks.

Player-Proofing Code: Controlling Player Event Usage
The game is “theoretically” finished, and we could just trust players to click (once) on correct i3D and i2D
UI elements to play the game. However, the intended audience for this particular game includes underage
children, mentally challenged individuals, disabled players, and autistic players. Thus, we’ll put in place
some controls that make sure players click only once on the correct UI elements to play this game. Let’s
start the process by declaring (top of class) and adding a squareClick boolean variable set to true in
rotGameBoard.setOnFinished(), as shown here and in Figure 23-11:

rotGameBoard.setOnFinished(event-> {
 if (quadrantLanding == 315) { populateQuadrantOne(); }
 if (quadrantLanding == 225) { populateQuadrantTwo(); }
 if (quadrantLanding == 135) { populateQuadrantThree(); }
 if (quadrantLanding == 45) { populateQuadrantFour(); }
 spinnerAudio.stop();
 squareClick = true;
});

Figure 23-11. Add a squareClick boolean variable set to true at the end of your rotGameBoard.
setOnFinished() handler

www.ebook3000.com

http://www.ebook3000.org

Chapter 23 ■ Completing the gameplay Code and player proofing your event handling

584

So, logically, we have connected the click “protection” for the game board squares to the game board
spin Animation object. Also, note that by initializing all of the click protection variables as boolean with no
(default) values, we have essentially set all click protection to false, or “click is locked,” simply by declaring
these variables at the top of your Java class. In this way, we do not need any clickProtect = false;
statements in your start() method body.

Notice in Figure 23-11 that I have also declared the spinnerClick and buttonClick using a compound
Java (boolean) declaration at the top of your class. This is because we want to “lock” the i3D spinner UI
element, the game board squares, and the Q&A Button UI elements once the player has clicked them. This
is to prevent multiple clicks, which prevents multiple answer button clicks (to run up the score). It also
assures that your i3D animations and audio calls are triggered only once per game round as needed to
prevent what will look (or sound) like bugs to your player. You don’t really want an animation to restart in
the middle of its intended visual result, even though it will if you tell it to (soon enough in its playback cycle,
which is what more than one click will usually do), so we’ll lock the clicks after one!

Next, let’s set up locking for the spinnerClick, starting with the if(picked == spinner) conditional
evaluation in the MouseEvent handling code. We need to add && spinnerClick == true to the if(picked ==
spinner) to evaluate whether we are allowed to click the spinner at that point in the gameplay. If we are, we
immediately set spinnerClick to a false value since the spinner Animation object (and quadrant-landing
processing) is also started within this block of code. We’ll enable clicking the spinner in the .setOnFinished()
handler for the spinner after it has finished spinning, which will prevent a player from being able to click
your i3D spinner UI element while it is actually spinning! Cool!

This new mouse-click-proofing addition to your i3D spinner’s conditional if() Java code infrastructure is
shown in bold here, as well as highlighted in light blue and yellow at the top of Figure 23-12:

if(picked == spinner && spinnerClick == true) {
 spinnerClick = false;
 ...
}

Next, we’ll add a .setOnFinished() event handler for this rotSpinner Animation object, which sets
the boolean spinnerClick variable to a false value once the rotSpinner Animation object has finished. The
reason this is false, which turns the click off, is because we don’t want the spinner (or the game board) to
spin again until the player has chosen a square and a corresponding answer Button UI element to register
(and score) their answer.

Figure 23-12. Add && spinnerClick == true to the if() evaluation for the spinner in your MouseEvent handling
structure

Chapter 23 ■ Completing the gameplay Code and player proofing your event handling

585

We do want to turn the spinner mouse click on, however, after the spinner has come in again to the
screen, which is the rotSpinnerIn Animation object. For this reason, we’ll set your spinnerClick to true in
the .setOnFinished() event handling logic. Again, the Java programming is logical here, and there’s nothing
surprising if you just think about what you want to achieve in your gameplay pipeline. It’s a lot to think about
all at once, as most gameplay logic is, so it may be difficult to do at first, until you get used to thinking about
all your real-time gameplay logic at once as it relates to the logic (processing pipeline) involved in processing
your real-time, interactive gameplay. This is why game development is considered difficult by most, as you
need to “wrap your head around” all of your gameplay code at once as a coder.

The new Java code in the createSceneProcessing() method is shown here, as well as highlighted in
light blue and yellow in Figure 23-13 in the blocks of code that set up the logic used for your rotSpinner and
rotSpinnerIn:

rotSpinner = new RotateTransition(Duration.seconds(5), spinner);
...
rotSpinner.setOnFinished(event-> {
 spinnerClick = false;
});
rotSpinnerIn = new RotateTransition(Duration.seconds(5), spinner);
...
rotSpinnerIn.setOnFinished(event-> {
 spinnerClick = true;
});

Figure 23-13. Set spinnerClick to false in rotSpinner and to true in rotSpinnerIn to control when the spinner is
to be clicked

www.ebook3000.com

http://www.ebook3000.org

Chapter 23 ■ Completing the gameplay Code and player proofing your event handling

586

The next thing we need to ascertain (and code) is when we allow Button UI elements to be clicked. This
logically would be at the end of the cameraAnimIn Animation object, again in the .setOnFinished() event
handler construct right after the qaLayout and scoreLayout StackPane 2D UI panels (and their contents
or children) have been set to be visible again by using the .setVisible(true) method call off of each of the
StackPane UI container objects. As buttonClick is false as a (declaration) default, this is as simple as using
the buttonClick = true; Java statement.

Once one of the answer Button UI objects has been clicked, buttonClick will again be set to false,
preventing any Button UI object (even the same one) from being clicked until a cameraAnimIn Animation
object is played again. We will put this Java code into place next in the createQAprocessing() scoring method
inside each of the ActionEvent handling structures attached to each of the four Button objects in their
.setOnAction() event-handling constructs.

Your new cameraAnimIn Java 9 code should now look like the following and can also be seen
highlighted in light blue and yellow at the bottom of Figure 23-14:

cameraAnimIn = new ParallelTransition(moveCameraIn, rotCameraDown, moveSpinnerOff);
cameraAnimIn.setOnFinished(event-> {
 qaLayout.setVisible(true);
 scoreLayout.setVisible(true);
 buttonClick = true;
});

Now that the camera has animated in close to the game board surface and the buttonClick boolean
variable has been set to true to allow a click on the Button to select an answer, we need to tell the buttonClick
variable to turn itself off (false) when that one button (a1Button through a4Button) has been clicked.

Figure 23-14. Add a buttonClick = true; statement to the end of the cameraAnimIn.setOnFinished() event
handler code

Chapter 23 ■ Completing the gameplay Code and player proofing your event handling

587

To do this, we’ll need to “wrap” the score-processing contents of each Button ActionEvent event
processing construct with an if(buttonClick == true) conditional evaluation layer. This will only
allow event processing if the buttonClick is on (true) and will then turn it off at the end of that processing
using the simple buttonClick = false; Java statement. This will be the last statement before exiting the
if(buttonClick == true) Java code construct.

Your Java code should look like the following, which is also highlighted at the beginning of Figure 23-15
and at the end of Figure 23-16, since the ActionEvent handling structures for these four Button UI objects
span more than 120 lines of Java code for each Button’s .setOnAction() event-handling infrastructure:

private void createQAprocessing() {
 a1Button.setOnAction((ActionEvent event) -> {
 if (buttonClick == true) { // Evaluates if (buttonClick == true) then {not yet clicked}
 if (picked == Q1S1 && pickS1 == 0)
 ...
 buttonClick = false; // If this Button has been clicked then set buttonClick to false
 }
 });
}

Figure 23-15. Use a conditional if(buttonClick == true) statement at the top of each Button event processing
structure

www.ebook3000.com

http://www.ebook3000.org

Chapter 23 ■ Completing the gameplay Code and player proofing your event handling

588

Place this same if(buttonClick == true) before each of the Button.setOnAction() constructs, and
place buttonClick = false; at the end of each Button.setOnAction() event handling construct, as shown in
Figure 23-15 and Figure 23-16.

To turn all of this event handling back on, we need a Let’s Play Again Button and .setOnAction() event
handler.

Let’s Play Again Button: Resetting Player Event Handling
Once a player clicks an answer Button UI object, all game board squares, spinner, and Button UI objects will
be locked! The best way to unlock everything for another round of gameplay is to add a large yellow Let’s
Play Again Button at the middle of your game board (if you need to peek ahead, it’s shown in Figure 23-23)
that the user will click to spin another time to randomly select a new topic and another image to identify. In
this section of the chapter, we will add this Button element to the root of your SceneGraph, develop the code
for the Button, and finish your player proofing.

Let’s set up an infrastructure for an againButton by adding againButton to the compound Button
declaration at the top of the class and then add the againButton to your SceneGraph root using a
.getChildren().addAll() method chain. The Java code needed to do this is shown here, as well as
highlighted in yellow at the top of Figure 23-17:

Button ... a1Button, a2Button, a3Button, a4Button, againButton;
...
root.getChildren().addAll(gameBoard, uiLayout, qaLayout, scoreLayout, spinner, againButton);

Figure 23-16. At the end of each if(buttonClick==true) construct, set buttonClick = false; to turn off the Button
click function

Chapter 23 ■ Completing the gameplay Code and player proofing your event handling

589

Figure 23-17. Declare an againButton Button object at the top of your class and add it to your SceneGraph
root object

Instantiate and configure againButton in createBoardGameNodes() at X, Y (200, -400) with a size of
(300, 150) and use a 34-point Arial Black font, as shown in Figure 23-18. Label it Let’s Play Again because it
triggers a round of gameplay.

Figure 23-18. Instantiate and configure againButton in the createBoardGameNodes() method and use a
large size and font

www.ebook3000.com

http://www.ebook3000.org

Chapter 23 ■ Completing the gameplay Code and player proofing your event handling

590

Since we don’t want this Button visible until after a player has selected their answer, we set againButton
to be invisible on startup. To do this we use a .setVisible(false) method call off againButton in the top of the
start() method after the createBoardGameNodes() method call. This looks like the following code, which is
shown highlighted in Figure 23-19:

againButton.setVisible(false);

Next, add the againButton.setVisible(true); Java statement to the end of each Button.setOnAction()
construct to turn on the Let’s Play Again Button visibility, as shown highlighted in yellow and blue in
Figure 23-20.

Figure 23-19. Set your againButton visibility to false in the start() method, after the createBoardGameNodes()
method

Figure 23-20. Call againButton.setVisible(true); at end of each answer Button event handler, after
buttonClick = false;

Chapter 23 ■ Completing the gameplay Code and player proofing your event handling

591

Since we only estimated the location and size of the Button in Figure 23-18, let’s use the Run ➤ Project
work process so we can see whether the Button UI element is centered over the four-color intersection of
the game board design. As you’ll see in Figure 23-21, we have some tweaking to do, as the Button is over the
quadrant image for the content.

Also notice that we need to set a Yellow background color for the Button since the quadrants use
pink, blue, green, and orange. Add in the .setBackground(new Background(new BackgroundFill(color.
YELLOW))) method chain to set a Yellow color value (don’t forget the empty CornerRadii and Insets), as
shown highlighted in blue in Figure 23-22. Increase your .setMinSize() to 300, 200; increase your font size to
35; and reposition X, Y, Z to (190, -580, 100).

Figure 23-21. Use the Run ➤ Project work process to test the againButton code to see whether it is located and
sized properly

Figure 23-22. Add a Yellow background color and adjust the translate values and size values to center the
againButton

www.ebook3000.com

http://www.ebook3000.org

Chapter 23 ■ Completing the gameplay Code and player proofing your event handling

592

Use Run ➤ Project to view the final Button UI element styling. As you can see in Figure 23-23, it looks
great!

Next, add a .setOnAction() event handling construct to againButton so that when the Button is
clicked, you can turn off the Q&A and Scoring (StackPane) panels and reset the buttonClick, squareClick,
and spinnerClick variables to false (off) so that the 3D spinner, game board squares, and answer Button UI
elements can be used. The initial Java code for these visibility and click-proofing reset statements is shown in
blue in Figure 23-24.

Figure 23-24. Add the .setOnAction() method call to againButton; start adding mouse click and visibility
event handling

Figure 23-23. Use a Run ➤ Project work process to test the againButton to see if it is located, sized, and
colored properly

Chapter 23 ■ Completing the gameplay Code and player proofing your event handling

593

The next thing that we need to create is the cameraAnimOut ParallelTransition Animation object
that will animate the camera object back out to your full game board (spin) view, as we will be calling the
.play() method off of that Animation object construct in the againButton.setOnAction() event processing
construct. Therefore, let’s create that ParallelTransition Animation object in the next section of this chapter,
as this will be a relatively complex task.

Camera Zoom Back Out: Another ParallelTransition
First let’s create an exact opposite of the rotCameraDown RotateTransition Animation object we created
earlier in the book by copying and pasting this Animation object code underneath the cameraAnimIn
object since we’re about to create the cameraAnimOut object. Everything will be identical, except change
the object name from rotCameraDown to rotCameraBack and exchange the values (-30 and -60) in the
.setFromAngle() and .setToAngle() method calls. The Java 9 code to accomplish this task is shown here, as
well as highlighted using yellow and blue in Figure 23-25:

rotCameraBack = new RotateTransition(Duration.seconds(5), camera);
rotCameraBack.setAxis(Rotate.X_AXIS);
rotCameraBack.setCycleCount(1);
rotCameraBack.setRate(0.75);
rotCameraBack.setDelay(Duration.ONE);
rotCameraBack.setInterpolator(Interpolator.LINEAR);
rotCameraBack.setFromAngle(-60);
rotCameraBack.setToAngle(-30);

Figure 23-25. Add the rotCameraBack RotateTransition object in createAnimationAssets() and instantiate
and configure it for use

www.ebook3000.com

http://www.ebook3000.org

Chapter 23 ■ Completing the gameplay Code and player proofing your event handling

594

Next, let’s create an exact opposite of your moveCameraIn TranslateTransition Animation object by
copying and pasting this Animation object code underneath the rotCameraBack object. Everything should
be identical, except change the object name from moveCameraIn to moveCameraOut and reverse the -175
value in your .setByZ() method call. Your Java code to accomplish this is shown here, as well as highlighted
in yellow and blue in Figure 23-26:

moveCameraOut = new TranslateTransition(Duration.seconds(2), camera);
moveCameraOut.setByZ(175);
moveCameraOut.setCycleCount(1);

We can use your existing moveSpinnerOn Animation object that we used as one of the components
for the spinnerAnim ParallelTransition to move the spinner back onto the screen as the ParallelTransition
brings the camera back to its original game board spin position and orientation. This will demonstrate
that this Animation object can be used in more than one ParallelTransition object, which is a coding
optimization, as coding constructs can be used for more than one purpose. You can see this already coded
animation highlighted in yellow at the top of Figure 23-27.

Figure 23-26. Create a moveCameraOut TranslateTransition Animation object and change the .setByZ()
value to 175

Chapter 23 ■ Completing the gameplay Code and player proofing your event handling

595

So, now we can create your ParallelTransition cameraAnimOut object, which will play the
moveCameraOut, rotCameraBack, and moveSpinnerOn Animation objects in parallel or at exactly the
same time! This will require only a single line of code instantiating the cameraAnimOut object and using its
constructor method to load that object with the other three Animation object references. We’ll eventually
add a second line of code calling a .setOnFinished() method off of this object so that we can reset the
spinnerClick boolean variable to false once the camera has zoomed back out so that your player is able to
use the i3D spinner UI element again to randomly spin the game board again.

The Java code for doing this should look like the following and is shown highlighted in light blue and
yellow at the bottom of Figure 23-27:

cameraAnimOut = new ParallelTransition(moveCameraOut, rotCameraBack, moveSpinnerOn);

Now we can go back to finishing the code for the againButton.setOnAction() construct, refining that result.

Figure 23-27. Create cameraAnimOut ParallelTransition and reference moveCameraOut, rotCameraback,
and moveSpinnerOn

www.ebook3000.com

http://www.ebook3000.org

Chapter 23 ■ Completing the gameplay Code and player proofing your event handling

596

Finishing the Play Again Button: resetTextureMaps()
We are now going to expand the five lines of code inside the againButton.setOnAction() event handling
infrastructure so that we call the new camera Animation object and the existing AudioClip object to add
animation and digital audio to the part of the game that returns the player to the zoomed-out view, where
they can randomly spin the game board to select new content to test their knowledge base. We are also going
to move your resetTextureMaps() method call from inside the createSceneProcessing() method into this
game-reset event processing method so that the game board squares and quadrants are reset to blank when
gameplay is finished and right before the camera zooms back away from the game board (and before the
camera zoom audio effect is played to match that animation). We will also be hiding the againButton Button
UI element as part of this process, since we do not want that Button UI element to overlay the view of our i3D
spinner and game board spinning around to randomly select the next quadrant.

Add a .setVisible(false) method call off the againButton after your qaLayout and scoreLayout visibility
calls. Next, add a resetTextureMaps() call and .play() calls off cameraAnimOut and cameraAudio at the end
of the method.

The Java 9 code for the event handling should now look like the following and is also shown in
Figure 23-28:

againButton = new Button();
againButton.setText("Let's Play Again!);
againButton.setFont(Font.font("Arial Black", 35));
againButton.setBackground(new Background(new BackgroundFill(Color.Yellow,
 CornerRadii.EMPTY, Insets.
Empty);
againButton.setMinSize(300, 200);
againButton.setTranslateX(190);
againButton.setTranslateY(-580);
againButton.setTranslateZ(100);
againButton.setOnAction((ActionEvent event) -> {
 qaLayout.setVisible(false);
 scoreLayout.setVisible(false);
 againButton.setVisible(false);
 buttonClick = false;
 squareClick = false;
 spinnerClick = false;
 resetTextureMaps();
 cameraAnimOut.play();
 cameraAudio.play();
}

Chapter 23 ■ Completing the gameplay Code and player proofing your event handling

597

Now we can add the .setOnFinished() event handling construct to the cameraAnimOut Animation
object to automatically turn on your spinnerClick function once the camera has animated back out to game
board spin view so that the player can click the i3D spinner UI element to start the gameplay process all over
again. The Java code for this functionality is shown here using a single line of code and is highlighted in light
blue and yellow in Figure 23-29:

cameraAnimOut = new ParallelTransition(moveCameraOut, rotCameraBack, moveSpinnerOn);
cameraAnimOut.setOnFinished(event-> { spinnerClick = true; });

Figure 23-28. Call resetTextureMaps(), cameraAnimOut.play(), and cameraAudio.play() in
againButton.setOnAction()

Figure 23-29. Add a cameraAnimOut.setOnFinsihed() event handler that sets the spinnerClick variable to a
true value

www.ebook3000.com

http://www.ebook3000.org

Chapter 23 ■ Completing the gameplay Code and player proofing your event handling

598

Use a Run ➤ Project work process, shown in Figure 23-30, to test an entire cycle (or two rounds of
gameplay).

Notice in Figure 23-30 that our testing process has revealed another problem! It turns out that testing
for square clicking is not “deep” enough to guarantee flawless gameplay! You can click another quadrant’s
squares when a certain quadrant has “landed” or been randomly selected for gameplay. This requires that
we add another level of protection to the game and that we must actually create four squareClick variables
(one for each quadrant) to really thoroughly protect our gameplay completely. Let’s modify our code in the
next section of the chapter to accomplish this using squareClick1 through squareClick4 boolean variables
and testing on a per-quadrant basis.

Quadrant-Level Protection: squareClick per Quadrant
Let’s change our squareClick code thus far to accommodate per-quadrant square checking. The first thing
that we will want to do is to change squareClick at the top of the class to be squareClick1 to squareClick4
(to match up with your quadrants). We also need to change the testing in the createSceneProcessing()
method to match the squareClickN variables with each of the four quadrants, so if(picked == Q1S1 &&
squareClick1) would be the modification, for instance, and if(picked == Q2S1 && squareClick2), and so
on, as shown highlighted (for quadrant 4) in Figure 23-31. The Java code for this change is fairly subtle, and
the amount of code is large and somewhat repetitive, so I’m not going to list it here. Figure 23-32 shows the
slight (but significant) modification I’m referencing.

Figure 23-30. Use Run ➤ Project to test code; notice that clicking another quadrant square sets that quadrant
image

Chapter 23 ■ Completing the gameplay Code and player proofing your event handling

599

Figure 23-31. Change your squareClick code to squareClick1 through squareClick4 to match up with the
quadrant involved

Figure 23-32. Select and delete the squareClick = true; statement in createAnimationAssets(), as we are now
moving it

Remove the squareClick reference from your createAnimationAssets() method since we’re going to
control square clicks on a quadrant basis in the four populateQuadrant() methods, which is now a more
logical place to do so.

As you can see in Figure 23-32, I’ve selected the createAnimationAssets() squareClick statement
for deletion.

www.ebook3000.com

http://www.ebook3000.org

Chapter 23 ■ Completing the gameplay Code and player proofing your event handling

600

As you can see in Figure 23-33, I have also selected the createBoardGameNodes() squareClick =
false; statement for deletion since we are going to do this in your createSceneProcessing() method. In fact,
this has already been shown in Figure 23-31, highlighted in yellow along the far right side of the screenshot,
which is where it logically belongs.

The place that you would want to set your four squareClick variables to true (allow a click on this
quadrant’s square) is at the end of each populateQuadrantNumber() method call to finalize the setup. This
allows one of the squares to be clicked in order to select the content for that quadrant’s topic.

A squareClick1 variable goes at the end of populateQuadrantOne(), a squareClick2 variable goes at
the end of populateQuadrantTwo(), a squareClick3 variable goes at the end of populateQuadrantThree(),
and the squareClick4 variable goes at the end of populateQuadrantFour().

Now there is a squareClickN variable that pertains to each of the four quadrants. This better matches
up with the gameplay paradigm, as now we can turn on mouse clicks selectively for only the game board
quadrant that a player has landed on and turn the game board squares off for the other three quadrants.
This will prevent what tests uncovered in Figure 23-30, where quadrants that had not been selected by the
random number generator could still be played. Since this looks incorrect visually (as you can see), we will
fix this by turning off the squares on a quadrant-by-quadrant basis, which will solve this problem, albeit with
more complex player-proofing Java code.

The Java code for the populateQuadrantOne() method body looks like the following, which is
highlighted in light blue and yellow at the bottom of Figure 23-34:

private void populateQuadrantOne() {
 pickS1 = random.nextInt(3);
 if (pickS1 == 0){diffuse1 = new Image("/gamesquare1bird0.png", 256, 256, true, true,
true);}
 if (pickS1 == 0){diffuse1 = new Image("/gamesquare1bird1.png", 256, 256, true, true,
true);}
 if (pickS1 == 0){diffuse1 = new Image("/gamesquare1bird2.png", 256, 256, true, true,
true);}
 Shader1.setDiffuseMap(diffuse1);
 ...
 squareClick1 = true;
}

Figure 23-33. Select and delete the squareClick = false; statement in createBoardGameNodes(), as we’ve
already moved it

Chapter 23 ■ Completing the gameplay Code and player proofing your event handling

601

Do this same squareClickN = true; Java statement in the other three populateQuadrant() methods to
turn on the squareClick function, which will be turned off once a square has been selected for the current
round of gameplay. As you can see in Figure 23-35, the game now works properly. You can click the spinner
and squares not associated with the current quadrant, and the clicks will be ignored, as will clicks on any
Button after the first answer Button that is clicked. This “error proofing” or “player proofing” makes the i3D
gameplay much more professional.

Figure 23-34. Add a squareClick1 = true; statement at the end of populateQuadrantOne() and the other three
in the other three methods

www.ebook3000.com

http://www.ebook3000.org

Chapter 23 ■ Completing the gameplay Code and player proofing your event handling

602

Figure 23-35. Use Run ➤ Project and test the final error-proofing code and Play Again User Interface

Congratulations, the basic gameplay has now been completed, and we can look at optimization and
profiling.

Summary
In this twenty-third chapter, we learned how to create the player-proofing logic to enforce proper usage
of the i3D spinner UI, the game board squares, and the Answer Button UI elements. This involved using
about a half-dozen boolean variables, which were used as “flags,” to turn off the ability of the player to click
a UI element more than one time per round of gameplay. We protected the i3D spinner UI, the Button UI
answers, and each quadrant’s game board squares from being “misused” to game the system and run up
unearned points. This is an important part of pro Java 9 game design and development to make sure that
your gameplay logic is played in the manner in which it was intended to be played.

We also finished adding the rest of the gameplay content during the first part of the chapter, adding
nearly 600 lines of Java code and taking the current pro Java 9 game development project to nearly 1,750
lines of Java code.

In Chapter 24, you’re going to finish up by looking at game optimization, evaluation using NetBeans 9,
and the NetBeans 9 Profiler.

http://dx.doi.org/10.1007/978-1-4842-0973-8_24

603© Wallace Jackson 2017
W. Jackson, Pro Java 9 Games Development, https://doi.org/10.1007/978-1-4842-0973-8_24

CHAPTER 24

Optimizing Game Assets and Code,
and Game Profiling Using NetBeans

Now that your game is working and the players are using it one click (turn) at a time, we can look at how
much memory it is using and how large all these assets are. We can also look at ways to make the digital
audio and imaging assets two to four times smaller. The data footprint optimization will be done first using
GIMP, and the profiling will be done next using NetBeans 9 Profiler on the current 24-bit image assets and
the CD-quality 16-bit 44.1KHz audio assets. In this way, we can see if the high-end multimedia assets are
taking up too much memory and CPU overhead or if these are being handled well by my development
system, which is an old 4GB Win7 Acer QuadCore mini-tower from Walmart ($300 several years ago). I have
been developing Java 9 using NetBeans 9 on this system without incident. Current systems are hexa-core or
octa-core with 8MB or 16MB of memory, so Java 9 development can be done easily on older systems and
does not require cutting-edge systems as other i3D platforms such as Unity, Android or Lumberyard do.

During this chapter, we’ll convert your digital image assets to use 8-bit (indexed) color rather than the
24-bit “true” color for your texture maps, and we’ll run the NetBeans Profiler to see how much memory and
CPU processing your Java code is using to run your game.

Optimizing Texture Maps: Converting to 8-Bit Color
Currently the digital image assets in your source (/src/) folder are at about 24MB, or 24,000,000 bytes,
which is actually quite good for an i3D board game with 120 different images (about 200KB per image on
average). However, if we could get this to about 10MB (84KB per image), it would reduce the size of our game
distribution package quite a bit. The way to achieve a 300 percent to 400 percent reduction in image “weight”
or size is to use 8-bit color (indexed color) along with “dithering” or dot patterns used to simulate more
colors than the 256 maximum used to represent an indexed image. Small to medium texture maps, which
is exactly what we are using for our game board squares and quadrants, work well with indexed color. The
reason for this is because the dithering can be seen zoomed in (up close), but this visual effect disappears
when the images are viewed farther away (from a distance or zoomed out). I will show you this in this section
of the chapter, where we will turn all 120 of our image assets from 24-bit into 8-bit indexed color.

Creating Indexed Color Textures: Changing Color Mode in GIMP
Let’s optimize our image assets in such a way that we do not have to make any significant changes to our Java
code. To keep our Java code the same, we are going to use the same file names and put them in a different
folder, under /src/ called /8bit/. Thus, we will then have the /src/8bit/ path to the indexed color assets and
the /filename path to the 24-bit high-quality assets. Use your OS file management utility to create a folder

www.ebook3000.com

https://doi.org/10.1007/978-1-4842-0973-8_24
http://www.ebook3000.org

Chapter 24 ■ Optimizing game assets and COde, and game prOfiling Using netBeans

604

(directory) called /8bit/ underneath the current /src folder, which contains the original true-color image
assets. Figure 24-1 shows this new folder.

Open the first gamequad1bird0.png texture map image in GIMP using File ➤ Open, and then use the
Image ➤ Mode ➤ Indexed menu sequence to convert a 24-bit color space (color mode) to 8-bit, as shown
in Figure 24-2. This opens the Indexed Color Conversion dialog, which allows you to select a number of
colors and a dithering algorithm. The 8-bit mode reduces the number of bits by 300 percent or more, and the
dithering algorithm simulates more than 256 colors.

Figure 24-1. Create the /JavaFXGame/src/8bit/ folder to hold optimized versions of your 120 texture map
image assets

Chapter 24 ■ Optimizing game assets and COde, and game prOfiling Using netBeans

605

I use the maximum allowed 256 colors (0 through 255) by selecting the Generate Optimum Palette
radio button, shown in the far-left dialog in Figure 24-3, along with the normal Floyd-Steinberg color
dithering algorithm. Then I click the Convert button on the lower right of the dialog. To export the 8-bit
image to the /src/8bit/ folder, use the GIMP File ➤ Export As menu sequence, double-click the 8bit folder
(shown highlighted in the second panel in Figure 24-3), and click the Export button (keeping the 24-bit
filename the same, as highlighted in the third panel).

Figure 24-2. Use a File ➤ Open menu sequence to open a texture map and use Image ➤ Mode ➤ Indexed to
convert it to 8-bit

www.ebook3000.com

http://www.ebook3000.org

Chapter 24 ■ Optimizing game assets and COde, and game prOfiling Using netBeans

606

As you can see in Figure 24-4, if we zoom into the second quadrant on one image (gamequad1bird1.png)
after we convert it to 8-bit indexed color, you can clearly see the dithering in the background, in the beak,
and in the steel hoop. Interestingly, when you use the image as a texture map (zoomed out), you cannot see
this dithering! I’ll show you this later in the chapter (in Figures 24-26 and 24-27) when we implement these
changes in the Java code.

Figure 24-3. Set the conversion to 256-color Floyd-Steinberg, convert, and save in the /src/8bit folder with the
same file name

Figure 24-4. Click the Magnify Glass (Zoom) Tool and zoom in 300 percent (three times) to see the color
dithering algorithm

Chapter 24 ■ Optimizing game assets and COde, and game prOfiling Using netBeans

607

As you can see in Figure 24-5, your true-color (24-bit) image is pristine in quality but uses several times
more data. When zoomed out (used as a texture map), both images look nearly identical, which is why we
are converting your 24-bit images into 8-bit images, as we can go from 24MB of digital image assets to less
than 8MB with little to no loss of perceived quality of your i3D game board’s texture maps, at least from the
player’s perspective.

Figure 24-5. Undo the indexed color, click the Magnify Glass Tool, and again zoom in 300 percent to see the
(original) true-color data

Use the File ➤ Close dialog, shown in Figure 24-6, to close the indexed image file once you save it into
your /src/8bit folder. Since you opened the 24-bit file from your /src folder, you want to be sure to click
Discard Changes so that you are left with the original 24-bit PNG24 file and your newly exported (saved)
8-bit PNG8 file, each using the same name but kept in a different folder. This is important to pay attention to
at this point in the 120 times you’re going to do this so that you are left with 120 PNG24 files and 120 PNG8
files in a different directory. To change the reference for these images, you simply add an /8bit/filename.
png path change to the indexed color assets folder name that you have created, and the i3D game will then
use these smaller file sizes to texture map your game board squares and quadrants.

www.ebook3000.com

http://www.ebook3000.org

Chapter 24 ■ Optimizing game assets and COde, and game prOfiling Using netBeans

608

As you can see in Figure 24-7, the first quadrant is finished, and the 8-bit files range from 76KB to 104KB
in size.

Figure 24-6. Click Discard Changes to keep a 24-bit version

Figure 24-7. The first quadrant texture maps have all been reduced more than 300 percent and still look
fantastic as texture maps

Chapter 24 ■ Optimizing game assets and COde, and game prOfiling Using netBeans

609

As you can see in Figure 24-8, we have reduced the quadrant texture map data from 4MB to 1.33MB in size.

Figure 24-8. Preview data reduction in File Explorer

As you can see in Figure 24-9, I’ve continued reducing these quadrant texture maps for all 60 image assets.

Figure 24-9. Go into the /src/8bit folder, select all 60 images, right-click the selection, and open Properties

www.ebook3000.com

http://www.ebook3000.org

Chapter 24 ■ Optimizing game assets and COde, and game prOfiling Using netBeans

610

As you can see in Figure 24-10, I have now finished these 8-bit images for your game board squares as well.

Figure 24-10. Go into the /src/8bit folder and select all 60 images; right-click the selection and open
Properties

As you can see in Figures 24-7, 24-9, and 24-10, the smaller these indexed color images get, the more
they look identical to the true-color images, even though they are several times (three to four) smaller in
many instances! We are covering optimizing images to 8-bit (indexed) color in this first part of the chapter
because it is an effective way to reduce the distribution file data footprint (the size of the image assets in your
package of code and assets).

Some of these images, such as the red bell pepper, for instance, will work extremely well with indexed
color, as the spectrum of red, a white background, and a green border color can come very close to
representing a true-color image using only 256 colors and subtle dithering between closely matched colors,
which you can’t even see when zoomed in. Figure 24-11 shows the true-color and indexed image results
(from the type of selection shown in Figures 24-9 and 24-10) for the quadrant texture maps (left half) and the
square texture maps (right side).

Chapter 24 ■ Optimizing game assets and COde, and game prOfiling Using netBeans

611

We have reduced your data footprint for the game board quadrant texture maps from 17,041,285 bytes
to 6,208,570 bytes, which is a reduction of 10,832,715 bytes. That’s a 65 percent (two-thirds) reduction in
data footprint for your quadrant images. These are 512 pixels square, which is fairly large (high quality) for
an i3D game, so 6MB for 60 images is good quality and around 100KB per quadrant image, as you saw in
GIMP already in Figure 24-7.

We have also reduced the data footprint for the game board square texture maps from 4,516,845 bytes
size to 1,701,334 bytes, which is a reduction of 2,815,511 bytes. That is a 63 percent reduction in data
footprint for game board square imagery. These are 256 pixels square, which is mainstream (high quality) for
i3D games, so 1.7MB for 60 images is good quality and around 28KB per game board square image, or about
128KB of image data per game topic selection.

To reference these optimized assets, simply add the /8bit/ path before the file name in the Java code,
which we’ll be doing later, after I profile the current code using the pristine 24-bit digital image assets and
CD-quality digital audio assets. Always profile your code using the highest-quality assets so that you can see
whether the memory and CPU cycles are being affected by new media elements that are too large
(data-footprint-wise). As far as pro Java games are concerned, this is a large part of what the NetBeans
profiler will tell you. Yes, your Java logic is important. Infinite loop problems will show up very quickly in the
profiler, but so will nonoptimal Animation object constructs, texture maps that are too large, digital audio
sound effects that are too long, digital video that is not well optimized, and i3D assets that use too many
polygons (too much geometry). This is why we looked at all the various new media concepts and principles
during the first third of this book, as the new media optimization affects how the game plays.

NetBeans 9 Profiler: Testing Memory and CPU Usage
To invoke the NetBeans 9 Profiler, simply use the Profile menu and the Profile Project (JavaFXGame)
option, located at the top of that menu, as shown in Figure 24-12. Also shown are the 40 custom methods,
the required start() and main() methods, and the 1,700 lines of Java 9 code that we have added since
we created your JavaFXGame bootstrap application. A NetBeans 9 profiling session can show a great
many complicated “under the hood” operations that are happening with your computer during program
execution, as well as interactions with servers and even SQL database access patterns. Therefore, we will not
touch on all of the NetBeans 9 profiling system’s features during this chapter; however, if you are interested
in Java software profiling, you should certainly explore and experiment with the profiler options on your own
time, using your other Java 9 software development projects on your various 64-bit workstations.

Figure 24-11. Right-click the selected square and quadrant images in both folders; use Properties to preview
the optimization

www.ebook3000.com

http://www.ebook3000.org

Chapter 24 ■ Optimizing game assets and COde, and game prOfiling Using netBeans

612

Once you invoke the Profiler the first time, you’ll get a tab in the IDE that contains the profiling UI
and the resulting profiler data UI, as shown in Figure 24-13. The JavaFXGame tab has a profiling icon, a
Configure Session drop-down menu UI element at the upper-left, and a Configure and Start Profiling
instructions sequence, which will outline the profiler option types and tell you exactly how to select which
one you want to utilize.

Figure 24-12. Invoke a Profiler ➤ Profile Project (JavaFXGame) menu sequence to start a NetBeans profiling
session

Chapter 24 ■ Optimizing game assets and COde, and game prOfiling Using netBeans

613

We are going to look at the Telemetry Profiling Mode first, as this shows us how system memory and
CPU cycles are being used by the game, as well as how threads, classes, and garbage collection are affecting
the gameplay as it occurs on your development system. This is most of the critical game code processing
information that we’ll want to look at first to make sure that your i3D board game is using Java 9 and JavaFX 9
optimally (that is, efficiently).

Click the down arrow next to the Configure Session UI selector in the upper-left corner of the tab pane
and select the Telemetry option, shown highlighted in light blue in Figure 24-14, to start the NetBeans
Telemetry profiling session. Keep the default Use Defined Profiling Points option selected to allow
NetBeans 9 to configure this profiling session for you initially. If something out of the ordinary is revealed,
you can set custom profiling points later in a profiling session to further try to ascertain what is wrong with
the Java game code. Let’s hope for now that our focus during the book on doing things in an optimal fashion
has paid off. Either way, the NetBeans profiler will reveal this!

Figure 24-13. Once you invoke the NetBeans 9 profiler, you’ll get a JavaFXGame Profiling tab and
configuration instructions

www.ebook3000.com

http://www.ebook3000.org

Chapter 24 ■ Optimizing game assets and COde, and game prOfiling Using netBeans

614

Your JavaFXGame profiling pane will then show the UI infrastructure for the CPU (and garbage
collection) graph, the (system) Memory real-time usage graph, the Garbage Collection processing graph,
and the Threads and Classes graph, as shown in Figure 24-15. No data has been collected yet as profiling
hasn’t been activated (started) using the Profile Project Icon, which is shown at the top of the figure with its
pale yellow pop-up descriptor.

Figure 24-14. Drop down the Configure Session menu and select the Telemetry option to profile your memory
and CPU

Figure 24-15. Once you click the Profile Project Icon or Menu Item, the JavaFXGame Profile pane will
populate with empty UI elements

Chapter 24 ■ Optimizing game assets and COde, and game prOfiling Using netBeans

615

Click your Profile Project icon, and you will get the “Profiler will now perform an initial calibration of
your machine and target JVM” message, as shown in Figure 24-16 on the far left of the series of five dialogs.
Remember that the NetBeans Profiler is profiling your system and a Java 9 JVM, so if you profile on an 8-core,
12-core, or 16-core computer (say a new AMD Ryzen 5 or 7 system, with 16GB of DDR4-2400), you are going
to get different results than I obtained on an old quad-core Acer AMD 3.11GHz system with only 4GB of
DDR3-1333 memory. The reason I used an older Windows 7 system like this was to show how well optimized
Java 9 and NetBeans 9 are, such that you can use a computer that isn’t usable for Amazon Lumberyard or
Android Studio 3.0 or Unity development to develop a professional JavaFX i3D game.

Figure 24-16. Once you start a profiler, you’ll get a series of dialogs for calibrating and configuring this
profiling process

If you get the Windows 7 Firewall dialog, click the Allow access button, as is shown in the second dialog
in Figure 24-16. Then select Show Details on this calibration data and click the OK button to proceed. You
will get a dialog showing you some of the obtained calibration data, and once you click the OK button for
that dialog, you will get a Connecting to the Target VM dialog, showing you a progress bar as the NetBeans 9
IDE loads your game code and content into system memory so that it can perform calibration and ultimately
the profiling data collection and display.

Figure 24-17. An Output Pane will open, showing your Java 9 code being run in the NetBeans Profiler Agent
Utility

www.ebook3000.com

http://www.ebook3000.org

Chapter 24 ■ Optimizing game assets and COde, and game prOfiling Using netBeans

616

The next thing that you will see, as shown in Figure 24-17, is the Output Pane executing your game’s
Java code.

Close the Output Pane to again show the Profiler Telemetry UI. Both the game and the profiler should
now be sharing the screen. Anything you do in the game will be reflected in real time in these NetBeans
Profiler Telemetry panels shown in Figure 24-18. I am annotating each of the next five figures using red Arial
text to clarify which of the five major stages of gameplay I am testing, and you can see from your profiler UI
data what the 3D animations, audio playback, texture map loading (or unloading), event processing, and
Java code processing are taking regarding the CPU processing (percentage) overhead, system memory use
(most of which will be utilized for loading digital images or for holding and playing digital audio, as well
as for holding the JavaFX API classes we are using to do the 3D modeling, 3D texturing, 3D animation, and
audio), garbage collection, thread usage, and (one single game prototyping) class use.

Figure 24-18. The Animation object moving a rotating 3D spinner UI onto the screen uses 0 to 5 percent of the
CPU’s capacity

As you can see in Figure 24-18, moving your i3D spinner UI onto the screen uses only a few percent of
the CPU, for only a second or two, so this seems to be well coded. Clicking the i3D spinner UI once it has
“landed” on the screen, the profiling data for which is shown in Figure 24-19, also looks highly optimized
as far as the CPU usage is concerned. Notice that the population of the landed game board quadrant (five)
square images can be seen in the Garbage Collection pane and Threads and Classes pane. This activity
spikes as your random number is generated, and the five game squares are loaded with the randomly
selected image assets, which are then placed in system memory.

Chapter 24 ■ Optimizing game assets and COde, and game prOfiling Using netBeans

617

Picking a square invokes garbage collection to load a quadrant image, CPU thread processing spikes
when a square is picked representing garbage collection, event processing, Q&A, and score processing, as
shown in Figure 24-20.

Figure 24-19. The board spin uses garbage collection to load images into memory and threads to pick a
random number

Figure 24-20. A square pick uses garbage collection to load imagery into memory and uses threads to display
UI panels

Picking the answer, on the other hand, invokes zero garbage collection to load imagery, as you can
see in Figure 24-21. It uses little (almost nothing) CPU overhead to increment the Score panel and display
Text assets.

www.ebook3000.com

http://www.ebook3000.org

Chapter 24 ■ Optimizing game assets and COde, and game prOfiling Using netBeans

618

Resetting the game using the Let’s Play Again Button object and all of its processing uses as much
overhead as a 3D board spin (Figure 24-19) does, as shown in Figure 24-22. Garbage collection resets all
the texture maps, the camera animation changes gameplay perspective, then event handling locks down
unwanted clicking, the audio playback plays a camera animation audio effect, and similar processing-
intensive code resets the gameplay for another round.

Figure 24-21. Picking an answer (Button) involves the least amount of overhead and just minor CPU
overhead for scoring

Figure 24-22. Clicking a Let’s Play Again Button object invokes a second flurry of CPU and memory use for
special effects such as audio and animation

Chapter 24 ■ Optimizing game assets and COde, and game prOfiling Using netBeans

619

Memory usage at 60MB is also pretty good, considering that this includes image data, CD-quality audio
effects, and JavaFX Animation (Transition) classes, as well as AudioClip, Images, StackPane, Buttons, 3D
Primitives, Text, (SceneGraph) Node, and utility (Inset, Color, Pos, etc.) usage, and all of these utilize these
JavaFX classes that we have used to build this i3D professional-level Java 9 game.

Very little of this memory overhead can be directly attributed to the 1,700 lines of Java code that you
wrote to put this game together; 99 percent of this memory use can be attributed to loading new media
assets and to many JavaFX 9 classes, which access and run these new media assets.

As you can see in Figure 24-23, once you are finished profiling your Java 9 game, you will get an
Information dialog that says “The profiled application has finished execution.” Click OK to terminate the
VM, and you’ll get a summary square (in black) showing the allocated memory heap size (71MB) and the
total amount of memory used (66MB) to run the profiling session. If you think 66MB is a lot of memory,
consider that this machine has 4,096MB of memory and that 66MB represents 1.6 percent of this memory.
Many modern smartphones, iTV sets, tablets, and laptops have 8GB of system memory, so this entire game
ecosystem and infrastructure would represent less than 1 percent of system resources. On a 2GB smartphone
or (ancient) computer system, this would represent around 3 percent of system resources. This is pretty good
for an animated, interactive 3D board game, so Java is doing a darned good job!

Figure 24-23. Once you are finished profiling, NetBeans will give you a memory used summary and
Information dialog

Next, let’s take a look at optimizing our Java code, as the code I used to write this book is what I would
term “prototyping” code. It is technically correct but does not (yet) leverage any of the Java coding structures
that might implement advanced Java language syntax or features such as Arrays or Hash Tables. The reason
for this is that I am trying to help new game developers and programmers to “visualize” what the Java game
logic (code) is doing inside of their heads, and the easiest way to do this is to code it visually in a way that
shows what this code is attempting to do.

Note that the Java 9 compile, build, and execute processes will do quite a lot to optimize this code
“under the hood” as well, as the previous section on profiling will show how optimal this Java 9 code is
without being specifically “programmer optimized” in any way. Additionally, there are so many different
ways to do this, from one programmer to the next, that I wanted to focus more on JavaFX game APIs,
game design and development work process, and game asset development than on standard Java code
optimization, which is well covered in hundreds of other Apress books.

www.ebook3000.com

http://www.ebook3000.org

Chapter 24 ■ Optimizing game assets and COde, and game prOfiling Using netBeans

620

We will be taking a look at some of those Java code optimizations in a later section of the chapter on
Java 9 game code optimization ideas. First, let’s finish implementing your 8-bit indexed image assets in your
game and play it to see if there is any visual difference between the indexed-color PNG8 assets and the
true-color PNG24 image assets.

Implementing Indexed-Color Imagery: Adding a Path
Changing image assets from true color to indexed color is as easy as adding the /8bit path to your
populateQuadrant() methods and setupQSgameplay methods. You don’t have to do this to the
loadImageAssets() and resetTextureMaps() methods because those methods use texture maps that are not
indexed, as they are already small (a few kilobytes) and can remain as true-color images. The reason for this
is because they contain no digital imagery, as these are the blank textures that are used to make the game
board look empty before each round of gameplay spin. I took a screenshot of the populateQuadrantOne()
method showing the added /8-bit path, as shown in Figure 24-24.

You will need to add this same /8bit path addition to the front of your digital image referencing in
your 20 methods that set up gameplay. These are named for each Quadrant (Q) and Square (S), as your
setupQSgameplay() methods, which I left at the end of the custom 40 methods and 2 required methods
(start() and main() Java methods).

I have taken a screenshot of the first setupQ1S1gameplay() method to show that I have installed the
/8bit path to the front of the digital image references. I did this so that your new 8-bit (indexed color) PNG8
digital imagery will be utilized as texture maps for the board game instead of the 24-bit true-color digital
imagery we have been using.

We are doing this so that we can test your game using the Run ➤ Project work process to see whether
there is any visual difference when the i3D game is played when using the 325 percent smaller indexed color
image instead of a true-color 24-bit PNG image. Figure 24-25 shows the first of the 20 methods that will have
to be “path modified” by adding an /8bit folder path addition to the front (head) of a digital image reference
name. To do this easily, copy the /8-bit path once and paste it 60 times in the populateQuadrant() methods
and 60 times in the setupQSgameplay() methods.

Figure 24-24. Add an /8bit path in front of the current image file name reference to point to your new indexed
imagery

Chapter 24 ■ Optimizing game assets and COde, and game prOfiling Using netBeans

621

Next, let’s use a Run ➤ Project work process shown in Figure 24-26 to see whether the game board
looks the same after the random spin. As you can see, it looks pretty much exactly the same as it has
throughout the book when we were using true-color images. The next thing we need to do is to zoom in and
see how the 8-bit images hold up.

Figure 24-25. Add an /8bit path in front of the current image file name reference to point to your new indexed
imagery

Figure 24-26. Use a Run ➤ Project work process; spin the game board to see whether the new 8-bit color
images look the same

www.ebook3000.com

http://www.ebook3000.org

Chapter 24 ■ Optimizing game assets and COde, and game prOfiling Using netBeans

622

Click the image with the color gradient, in this case that is the San Francisco Bay Bridge, as shown
selected in Figure 24-27. This will show us the large quadrant image so that we can see if there are any
dithering patterns.

Figure 24-27. Select an image that will show dithering to zoom the game board in closer to see whether the
image looks the same

As you can see, there are no visible dithering patterns (dot artifacts) that can be seen when this is used
as a texture map on the i3D game board, so this shows that we can successfully use indexed color for the
texture maps on this i3D board game and not suffer any perceived reduction in the quality of the deliverable.
This gives a professional result, and everything looks like it is using true color, right down to that steel hoop
in each quadrant, which still looks like steel with no perceptible dithering whatsoever. Next, let’s look at
optimizing your 16-bit digital audio assets.

Optimizing Audio: Use 16-Bit at a Lower Sample Rate
We did a good job covering how to optimize digital audio using Audacity 2.1.3, so I recommend using
16-bit audio sample resolution and optimizing the sample rate (48, 44, 32, 22, 16, 11, or 8kHz) until you hear
a quality change. We already have 16-bit 44.1 kHz (used currently) and 16-bit 22.05 kHz, which is half as
much data for each of our sound effect samples yet sounds very similar in quality. If you wanted to use the
smaller digital audio memory footprint, you could simply reference the more optimized audio assets in your
loadAudioAssets() method body.

I will leave this memory versus quality decision completely up to you at this point. If you wanted to
go back into Audacity and optimize the other three sample rates, such as THX (48 kHz) or 32 kHz or even
16 kHz, you can listen to your resulting 16-bit audio quality for each sampling rate and decide how much
system memory you want to use for each level of digital audio quality.

Notice that you can use different sampling rates for each of your digital audio assets in your game. Some
sound effects will hold up (quality-wise) to lower (11 and 16 kHz) sampling rates, whereas others (musical,

Chapter 24 ■ Optimizing game assets and COde, and game prOfiling Using netBeans

623

vocal) may need higher (22 and 32 kHz) sampling rates. I recommend using the 16-bit sample resolution
across the board, however, as it fits into memory better since memory “chunks” at 8-bit, 16-bit, and 32-bit,
and you want a seamless fit.

Java Game Code Optimization: Leverage Java Tricks
You may have noticed that I have been using long-form, easily readable (and understandable) Java code
as we design and construct our pro Java 9 game over the course of this book. This code is legitimate and
might be optimized by the Java 9 compile and build (and execute) software stages, so it’s not “bad” code,
but there are some optimization processes and constructs that would make it significantly shorter and more
streamlined. The problem in doing this process for a book is that every Java programmer has a different
preferred way of doing this, so which approach do I pick? Or do I show most of them? Unfortunately, I have a
fixed number of pages for this book to cover new media asset development, game design, development and
testing, and similarly broad topics requiring mastery in order to be a pro Java 9 game developer. In the final
section of this chapter, I will go over some of the other things that you may want to add to this board game
later on your own to get some practice with what you’ve learned.

Let’s take a look at the populateQuadrant() methods code first. The populateQuadrantOne() method
begins with the following Java sequence, with one of these constructs for each of five game board squares in
quadrant 1:

pickS1 = random.nextInt(3);
if (pickS1 == 0) { diffuse1 = new Image("/gamesquare1bird0.png", 256, 256, true, true, true); }
if (pickS1 == 1) { diffuse1 = new Image("/gamesquare1bird1.png", 256, 256, true, true, true); }
if (pickS1 == 2) { diffuse1 = new Image("/gamesquare1bird2.png", 256, 256, true, true, true); }
Shader1.setDiffuseMap(diffuse1);

You’ll simplify this code (once you know it works, after prototyping) by replacing it with the following
code, which also eliminates the conditional if() CPU processing and memory overhead:

pickS1 = random.nextInt(3);
diffuse1 = new Image("/gamesquare1bird" + pickS1 + ".png", 256, 256, true, true, true);
Shader1.setDiffuseMap(diffuse1);

It’s true this makes it more difficult to see what you are doing in the gameplay code, but the
code runs the same way and is almost half the number of lines of code, allowing you to reduce the
populateQuadrantN() methods from 26 lines of code to 16 lines of code, which is a 38 percent reduction in
code, or 40 lines of code across all four methods.

Next, consider the following code block from Chapter 19, which could take 17 to 25 lines of code to
write:

if (picked == spinner) {
 int spin = random.nextInt(4);
 if (spin == 0) {
 rotGameBoard.setByAngle(1080); rotSpinner.setByAngle(-1080); spinDeg += 1080;
 }
 if (spin == 1) {
 rotGameBoard.setByAngle(1170); rotSpinner.setByAngle(-1170); spinDeg += 1170;
 }
 if (spin == 2) {
 rotGameBoard.setByAngle(1260); rotSpinner.setByAngle(-1260); spinDeg += 1260;
 }

www.ebook3000.com

http://dx.doi.org/10.1007/978-1-4842-0973-8_19
http://www.ebook3000.org

Chapter 24 ■ Optimizing game assets and COde, and game prOfiling Using netBeans

624

 if (spin == 3) {
 rotGameBoard.setByAngle(1350); rotSpinner.setByAngle(-1350); spinDeg += 1350;
 }
 rotGameBoard.play();
 rotSpinner.play();
 calculateQuadrantLanding();
}

The following block of Java code is array-based and is equivalent to the previous code. It is much
shorter, at 10 lines of Java 9 code, which is a reduction of 41 percent to 60 percent (depending on how you
write the code inside if (spin == n) { … }):

if (picked == spinner) {
 int spin = random.nextInt(4);
 double[] angles = { 1080, 1170, 1260, 1350 };
 rotGameBoard.setByAngle(angles[spin]);
 rotSpinner.setByAngle(-angles[spin]);
 spinDeg += angles[spin];
 rotGameBoard.play();
 rotSpinner.play();
 calculateQuadrantLanding();
}

After calculating your random spin value, this code fragment declares a four-element array of double
values, which represent quadrant landing angles. I then used the spin value (random.nextInt(4) outputs one
of four random quadrant values, ranging from 0 through 3) to access an angle value (via angles[spin]), which
is passed to setByAngle and which is also added to the spinDeg variable.

Notice that if spinDeg is of the int (32-bit integer) type, you must cast the double angle value to
(int) before the assignment or face a Java compiler error. In this case, you would replace spinDeg +=
angle[spin]; with the Java 9 code spinDeg += (int) angle[spin]; to avoid this Java compiler error.

If you don’t want to specify angles[spin] three times, you can alternately store the value in an angle
variable and use this double angle variable instead, as is shown in the following Java code:

if (picked == spinner) {
 int spin = random.nextInt(4);
 double[] angles = { 1080, 1170, 1260, 1350 };
 double angle = angles[spin];
 rotGameBoard.setByAngle(angle);
 rotSpinner.setByAngle(-angle);
 spinDeg += angle;
 rotGameBoard.play();
 rotSpinner.play();
 calculateQuadrantLanding();
}

As you can see, there are a number of ways you can write the Java code for this game that will reduce the
lines of code used and possibly even slightly reduce a few percentage points of CPU usage that the game is
using, as was shown in the NetBeans 9 profiling section of this chapter. Since everyone has their own coding
optimization style and approach, I will leave the Java 9 code optimization to you and utilize the (longer)
prototyping code for the book material. This will allow you to better visualize what I am doing with the new
media assets within the gameplay design and development work process and focus the book content on Pro
Game Design and Development using Java 9 and its powerful JavaFX 9 API.

Chapter 24 ■ Optimizing game assets and COde, and game prOfiling Using netBeans

625

Finally, let’s add one more section to this chapter taking a look at what other JavaFX 9 API classes we
might utilize to expand this i3D game further, as you ultimately will. You can import i3D models from a
third-party importer package (unfortunately, this is not yet “natively” a part of JavaFX, so I stuck with JavaFX
i3D APIs for this book) and add in digital video assets, as long as you optimize them carefully. Since JavaFX
9 Modules (Distribution Packaging) is not quite finished as yet (we are still a month, or more, away from
the Java 9 release). An appendix covering JavaFX 9 Modules (Game Distribution Packaging) will be made
available as part of the book’s downloadable source code once Oracle has released it. To download this book’s
source code, navigate to www.apress.com/9781484209745 and click the Download Source Code button.

Future Expansion: Add Digital Video and 3D Models
You can add even more complex new media to your i3D board game by using i3D import software from
the third-party web site InteractiveMesh.org and by adding digital video assets created using something
like Black Magic Design’s DaVinci Resolve 14. You can optimize your video using something professional
like Sorenson Media’s Squeeze Desktop Pro 11. This will give you more experience using JavaFX 9’s more
advanced digital video and 3D APIs.

One of the things I am going to do next is to refine the 2D startup code for the instructions, credits, legal
information, and so forth. Now that a game is prototyped, it may also be a good idea to revisit the splash
screen graphic as well. Remember that Pro Java 9 Games Development, especially i3D games, is a refinement
process, as the hundreds of new media components that make up the i2D and i3D game assets are often
refined to bring a game in line with the vision of the game developer artisan.

Once you have prototyped your game, you can do code optimizations like the ones we covered earlier
and even create different classes for different features or functions if that is necessary. My technical editor
agreed with me that extra classes were not needed for this game, as I was attempting to create an i3D board
game using the classes that were already coded in the JavaFX API. In fact I’m importing (using) 44 Java or
JavaFX classes to create this game, so just because I have one JavaFXGame master class tying everything
together, there are actually 45 classes creating this game. Forty-four of them have been previously created,
coded, and optimized by Sun Microsystems and later by Oracle after its acquisition of Sun. What I am
trying to do in this book is show how to create a Pro Java 9 Game, leveraging all the previous work by these
companies over the past decade by simply using the JavaFX API classes optimally and minimizing the
amount of actual work a developer has to do to create an i3D board game. As Oracle continues to improve
these classes, JavaFX 9 will continue to become a more powerful and impressive game engine, and ideally
iOS and Android 8 support will continue to evolve and improve.

Summary
In this final twenty-fourth chapter, we looked at various asset (digital image and digital audio) optimization,
as well as Java code optimization. We learned about the NetBeans Profiler and how to look at how much
system memory is being used to run our game. We also looked what percentage of the CPU is being used
to process our Java code and when garbage collection is loading our texture maps into (and out of) system
memory. We also looked at when threads are being used to process memory locations, instructions, looping,
random number generation, and similar Java code instructions.

We also looked at some of the other things that we could refine in the game and add to the game in the
future in order to leverage JavaFX 9 classes even further. Just make sure to use the Profiler to keep an eye on
system memory and CPU usage. I use one of my “weak” (4GB, four-core AMD 3.11GHz Acer) workstations
so I am testing the code on a “submainstream” computer, while at the same time I have enough power and
memory to run NetBeans 9, Java 9, and JavaFX 9 smoothly. This is a testament to the efficiency of NetBeans
9, Java 9, and JavaFX.

www.ebook3000.com

http://www.apress.com/9781484209745
http://www.ebook3000.org

Chapter 24 ■ Optimizing game assets and COde, and game prOfiling Using netBeans

626

I hope that you have enjoyed these two dozen chapters covering new media asset development and
Java 9 and JavaFX 9 game development, focusing on the i3D part of the JavaFX 9 API, as my Beginning
Java 8 Games Development title focused on the i2D parts of the JavaFX API. I also have several new media
asset (content) creation books at Apress (www.apress.com), covering digital image compositing, digital
audio editing, digital video editing, digital illustration (SVG) vector editing, digital painting, and visual
special effects (VFX) creation, using Fusion 8. All of these books use free-for-commercial-use, professional,
open source software packages, such as GIMP, Inkscape, Audacity, and Fusion. As soon as Black Magic
Design finishes DaVinci Resolve 14 (a nonlinear editing suite), I will add this to my open source content
production suite that I install on each and every workstation that I set up for either JavaFX 9, Android 8, or
HTML 5.1 content production. For new hardware, I’m looking at AMD’s new Ryzen 7 1700, which uses only
65W of power to run 16 64-bit threads at 3.0GHz (3.7GHZ if overclocked); it has a Radeon 7000 GPU and
support on most motherboards for 64GB of DDR4-2400MHz memory (in four slots), USB 3.1, 24-bit audio,
an M2 SSD card, hyper-fast HDD access, and more. A fully loaded system, with Windows 10, comes in at
less than $1,000. Happy game coding!

http://www.apress.com/

627© Wallace Jackson 2017
W. Jackson, Pro Java 9 Games Development, https://doi.org/10.1007/978-1-4842-0973-8

��������� A
Access control, 95
addNodesToSceneGraph() method

configuration, 202–203
creation, 200
i3D game elements, 204–205
.setAlignment() method, 201
VBox(), 200

Advanced Audio Coding (AAC) codec, 49
Alpha, red, green, and blue (ARGB) image

channels, 35
Android Virtual Devices (AVDs), 3
Animation

AnimationTimer, 390
constructors, 391
cycleCount, 390–392
object animation, 389

Anti-aliasing transparency values, 41
Apache Ant, 137
Audacity, 19–20
AudioClip class

cameraAudio, 542–544
createSceneProcessing(), 541–542
data footprint optimization, 535–539
toExternalForm(), 539–540
media objects and MediaPlayer, 531
samples, 531
99Sounds.org, 534–535
spinnerAudio and cameraAudio, 532–534

Audio optimization, 622

��������� B
Baking texture maps, 62
Banding, 38
Bezier curve, 55
Bishop 3D, 27
Blackmagic Fusion, 21–22
Blender software, 22
Board games, 83

��������� C
calculateQuadrantLanding()

method, 466
Caligari TrueSpace 7.61, 27
Camera animation

createAnimationAssets()
method, 508

moveSpinnerOff, 509–510
rotCameraDown, 507
spinner removal, 511

Camera projection, 64
Character animation, 67–68
Classes

anonymous class, 96
inner classes, 95–96
local variable, 96
member classes, 95
nested class, 94–95
objects, 93
superclass, 93

Cloth dynamics, 68
Collision detection, 78
Comments and code

delimiters
convention, 89
Javadoc comment, 89
multiline comment, 88
nested Java code, 91
semicolon character, 90
single-line comment, 88

Conditional control
structures

decision-making, 114–116
looping, 117–118

Constants, 100–102
Constructor, 118
Constructor method

Java object creation, 98
overloading, 100
parameter list, 99

Index

www.ebook3000.com

https://doi.org/10.1007/978-1-4842-0973-8
http://www.ebook3000.org

■ INDEX

628

createGameBoardNodes() method
addNodesToSceneGraph()

method, 346, 348–350
createBoardGameNodes()

method, 343–345
createMaterials() method, 350–352
ParallelCamera (see ParallelCamera class)
square objects, 353–354, 358–359, 361–365
start(), 342

createScoreNodes() method
createQAnodes() method, 549
.setOnFinished(event), 552–553
.setTranslateX() method, 551
StackPane, 550
Text object

createScoreNodes() method, 554–555
scoreCheer, 559–560
scoreRight, 556–557

Cubic Bézier curve, 55
Cubic projection, 64
Cylindrical projection, 64

��������� D
3D animation model

character, 67–68
linear, 65–66
nonlinear, 66–67
procedural, 68

Data types, 108
DaVinci Resolve, 20–21
3D Camera

3D scene rendering, 267
JavaFX camera class, 268
JavaFX ParallelCamera class, 270–271
JavaFX PerspectiveCamera class, 268–270
.setCamera() method

PerspectiveCamera object
declaration, 272

.setNearClip() method, 271

.setTranslateX() method, 274

.setTranslateY() method, 274

.setTranslateZ() method, 271, 275–276
StackPane location, 273, 275

StackPane UI testing, 277–279, 281–282
Development workstation

hardware requirement, 3–4
for Java 9 game development, 4–6
versions of Java, 2–3

3D gameBoard Group
Animation (see Animation)
createGameBoardNodes()

(see createGameBoardNodes() method)
quadrants (see Quadrants and spinner)
Transition (see Transition)

Digital audio, 2D. See also AudioClip class
amplitude, 46
analog to digital audio data, 46–48
captive audio playback vs. streaming

audio, 48
digital audio codec and data format

support, 49–50
JavaFX, 49
optimization, 50–51
sampling, 46
sound waves, 45

Digital imaging concepts, 2D
alpha channels, 33–34
anti-aliasing, 37
blending modes, 35
color theory and color depth, 32–33
data optimization, 38, 40–41
hexadecimal notation, 35–36
object masking, 36
resolution and aspect ratio, 32
transparency values, 33

Digital video and 3D models, 625
Dithering algorithms, 38, 40
3D lighting

JavaFX AmbientLight class, 285
JavaFX LightBase class, 284–285
JavaFX PointLight class, 286
PointLight object, 286–288, 290

2D new media concepts
digital audio (see Digital audio, 2D)
digital imaging (see Digital imaging

concepts, 2D)
digital video

compression, 42
data footprint optimization, 43–45
frames, 41
HD, 42
standard definition, 42
video compression codecs, 42

do-while loop, 117–118
Dynamic games, 84
dyn4j engine, 81

��������� E, F
Eclipse IDE, 2
Event handling

ColorAdjust() constructor
creditButton.setOnAction(), 263
legalButton.setOnAction(), 261
.setEffect(), 259–262
.setHue(), 258

controllers, 240
createSpecialEffects(), 255
drop shadows, 256–258

■ INDEX

629

javafx.scene.input, 241–242
java.util, 240–241
KeyCode, 242–243
KeyEvent, 243–244
MouseEvent, 584
reset, 588–593
UI design

.setBackground(), 247

.setImage(), 247
TextFlow, 249, 251–253

��������� G
GameBoard texturing

code reconfiguration, 334, 336
GIMP, 337–340

Game components
collision detection, 78
custom gameplay logic, 79
3D models, role-playing style gaming, 78
2D sprites, arcade-style gaming, 77
physics simulation, 79

Game design assets, 30
Game engines

dyn4j engine, 81
JavaFX-IK library, 82
Jbox2D, 81
JBullet, 81
Jinngine, 82
JMonkey, 80
JRoboOp, 82
LWJGL, 80

Gameplay AI logic, 82
Genres

dynamic games, 84
hybrid games, 84–85
static games, 83

GIMP, 18–19, 326–328
GameBoard texturing, 337–338, 340

Group class, 193–194

��������� H
Hiding UI, 283
High Definition (HD), 42
Hybrid games, 84

��������� I
i3D board game, 625
i3D Shader properties. See PhongMaterial class
if-else loop, 116
if loop, 116
ImageView object

digital image, 214
Image class, 213–214
ImageView Class, 214–216

Indexed-color imagery, 620–622
Inheritance, 125–126
Inkscape, 17–18
Insets class, 190–191
Integrated Development Environment (IDE), 1
Interactive 2D assets

color fills, gradients, and patterns, 56
vector lines and spline curves, 55–56
vertices, model reference origin, pivot point,

and dummy point, 54–55
Interactive 3D assets, vector content

character animation, 67
3D geometry

3D Vertex, 57
edges bridge 3D vertices, 58
face surface normals, 59–60
polygons, 58
smoothing group, 60–61
surface creation, 58

2D texture mapping concepts
channels, shading, effects, and UVW

coordinates, 62–63
cylindrical projection, 64
shader channels and language, 63–64
texture map projection types, 64

JavaFX 3D support
points, polygons, mesh, transforms, and

shading, 69–70
timeline, keyframe, keyvalue, and

interpolator, 70
linear animation, 65–66
nonlinear animation, 66–67
procedural animation, 68

Interface, 126–127

��������� J
Java 9, 128

defined, 128
explicit, automatic/unnamed, 129
Game Module creation, 131–132
JavaFX Modules, 129–130
security measures, 132
strong encapsulation, 131

Java class structure, 187
Java Development Kit (JDK), 1
Java 9 development workstation

installation
Java SE 9–10
JDK-9u45 install file, 8
JRE installation, 11

preparation, 4–6

www.ebook3000.com

http://www.ebook3000.org

■ INDEX

630

Java engines
game engines, 80–81
inverse kinematics and robot engines, 82
physics and collision engines, 81–82

Java Enterprise Edition (EE), 2
JavaFX

Group, 193–194
insets, 190–191
Pos, 189–190
VBox, 191–193

JavaFXGame class
.addAll() method, 297
addNodesToSceneGraph(), 298
bootstrap, 147
class declaration, 194
compiling, 147–148
createBoardGameNodes(), 296
cylinder object creation, 298
description pane, 145
NetBeans 9, 146
object declarations, 196–197
project creation, 143
running, 149–150
.setRotateAxis(), 301
.setTranslateX() and setRotate(), 300
settings, 142
.start(), 197–199
Z-order primitives, 299

javafx.geometry package, 69
JavaFX-IK library, 82
JavaFX Mesh superclass

Mesh() constructor, 310
MeshView, 310–311
TriangleMesh, 309, 312–313
VertexFormat, 311

JavaFX modules, 129–130
JavaFX ParallelCamera class, 270–271
JavaFX PerspectiveCamera class, 268–270
JavaFX Shape3D superclass

.cullFaceProperty(), 292, 307–309

.drawModeProperty(), 293, 303–307
face culling, 292
JavaFX Box, 295
JavaFX Cylinder, 292
JavaFX Sphere, 293
.materialProperty(), 293
primitive objects (see JavaFXGame class)
primitives, 291

Java 9 JDK, downloading, 6–8
Java 9 Runtime Environment (JRE), 6
Java Micro Edition (ME), 2
Java 8 Software Development Kit (SDK), 1
Java Standard Edition (SE), 2
Jbox2D, 81
JBullet, 81

Jinngine, 82
jMonkeyEngine 3.0, 81
JRoboOp, 82

��������� K
KeyEvents

.setOnKeyPressed() method, 244–245

.setOnKeyReleased() method, 246–247

��������� L
Lambda Expressions, 2
Lightweight Java Game Library (LWJGL), 80
Linear animation, 65–66
Looping, 117–118
Low-poly modeling, 78

��������� M
Media content production software

Audacity, 19–20
Blackmagic Fusion, 21–22
Blender, 22–23
DaVinci Resolve, 20–21
Daz Studio Pro, 24–25
GIMP, 18–19
Inkscape, 17–18
open source software, 25–28
Terragen for 3D Terrain or World

Creation, 23–24
Methods

constructor (see Constructor method)
modifier, 96
overloading, 97
Return Type and name, 96
.start(), 96

Modifier keywords
abstract, 107
final, 106
nonaccess control, 105
package private, 103, 105
private, 104
protected, 104
public, 103
static, 106
synchronized, 107
volatile, 107

��������� N
Nested class, 117
NetBeans 9

Apache, 137
bugs, 141

■ INDEX

631

code editing and language, 140
Code Navigator Pane, 137
code refactoring, 139
IDE, 138–139
Java Code Profiling Suite, 137–138
JavaFXGame (see JavaFXGame class)
Java SE Edition, 136
profiler, 142
project management tools, 140
UI design, 141

NetBeans 9 IDE, 1
downloading, 8
installation, 12–17

NetBeans 9 profiling
garbage collection, 617–618
JavaFXGame, 612
memory used summary, 619
system memory and CPU cycles, 613
telemetry profiling session, 613, 615–616

Nonlinear animation, 66–67
Normal Floyd-Steinberg color dithering

algorithm, 605–606

��������� O
Objects

car data, 121–124
hierarchy, 120
inheritance, 125–126
syntax, 124

OnFinished() event handling
angle offsets, 471, 475
conditional if(), 474
createAnimationAssets(), 470, 471
game board spin, 478–479
image load and texture map, 473
populateQuadrant(), 471
populateQuadrantFour(), 481
populateQuadrantOne(), 472
populateQuadrantThree(), 478, 480–481
populateQuadrantTwo(), 475–477, 480–481
quadrantLanding, 472
quadrant landing position, 480

OnMouseClick() event handling
createSceneProcessing(), 494
game image viewing, 507
if(), 489
populateQuadrantFour(), 505
populateQuadrantOne(), 489, 491
populateQuadrantThree(), 500–502
populateQuadrantTwo(), 496, 499
Q1S1 texture, 493
setupQSgameplay(), 503, 506
setupQ1S1gameplay(), 491–492
setupQ1S5gameplay(), 496–498

setupQ2S5gameplay(), 496–498
setupQ4S5gameplay(), 504
testing, 500

Open GL Shader Language (GLSL), 64
Open source software packages, 25–28
Operators

arithmetic, 110–111
assignment, 113
conditional, 114
logical, 112–113
relational, 111–112

��������� P
Packages, 91–92
ParallelCamera class, 365–368
ParallelTransition class, 593–595
Pencil 2.0.6, 25
PhongMaterial class

color and power values, 319–322
Phong shading, 316–319
protected, 316
setMaterial (), 321
setSpecularColor(), 322–323
specularPower property, 323–325

Phong shading algorithm, 316–319
Physics simulation, 79
PickResult class

constructors, 410
event-handling, 409
MouseEvent, trapping, 411–413
Random

ActionEvent, 425
createAnimationAssets(), 427–430
createSceneProcessing(), 431–433
java.util, 423–424
.nextInt(int bound) (int), 426–427

spinner UI element
createAnimationAssets(), 418–419
createSceneProcessing(), 413–414
play(), 416, 418
rotSpinner construct, 420–422
.setOnMouseClicked(), 415
spinnerAnim.play(), 419–420

Pivot point, 54
Planar projection, 64
Player-proofing code, 583–584, 586–588
PointLight objects, 286–290
populateQuadrant(), 623–624
Pos class, 189–190
POVRay, 27
Primitives, 315
Procedural animation, 68
Pro Java 8 Games Development, 2
Puzzle games, 83

www.ebook3000.com

http://www.ebook3000.org

■ INDEX

632

��������� Q
qaLayout

createQAnodes(), 527–528
createUInodes()

createBoardGameNodes(), 515
createQAnodes(), 517
3D Scene, 514
gameButton.setOnAction(), 524–525
SceneGraph, 521
setFont(), 522–523
setOnFinished(), 525–526
setText(), 520
setTranslateZ(), 519

setupQSgameplay(), 529, 531
Quadrants and spinner

createMaterials(), 372
3D UI, 380–383
image object declarations, 369
loadImageAssets(), 371
resolution, 383–385, 387
StackOverflow, 379–380
texture maps

color texture, 372–373, 375–376
createGameBoardNodes(), 376–379

Quick Launch Icons, 28

��������� R
Random spin tracker

empty methods
calculateQuadrantLanding(), 467, 469–470
createSceneProcessing(), 467
populateQuadrant(), 466
remainder operator, 468

Rectangle Select technique, 337
Reference data types, 109
Remainder operator, 468
resetTextureMaps() method, 482–483, 485, 596–598
Rosegarden MIDI, 25

��������� S
Scene Graph, 53

addNodesToSceneGraph(), 199–205
animation

core functionality, 163
timeline, 164
transition, 164

AnimationTimer
pulse engine, 166–168
pulse synchronization, 166
timeline/transition, 165

API, 152
Beans, 181

business charting, 181
camera, 158
cursor, 158
dimension and background color, 155–156
event, 180
fieldOfView, 159
FXML, 181
geometry, 179
JavaFXGame (see JavaFXGame class)
JVM, 153
LightBase, 158
media control, 181
parent nodes, 157–158
primary function, 160
Print, 181
SceneAntialiasing, 159
stage, 168–169
StageStyle

.setTitle(), 170
transparency, 172–175, 177

Swing, 181
testing, 208–209
UI control, 205–208
UI design, 188–189
UI elements, 180
WebView, 181

Scoreboard UI design
createQAprocessing(), 561–562, 564
createScoreNodes() (see createScoreNodes()

method)
qaLayout StackPane, 546, 548
SceneGraph, 569
score testing, 570, 572

scoreButton.setOnAction(), 265
selectQSgameplay()

createSceneProcessing(), 487
selectQSgameplay() (see OnMouseClick() event

handling)
Self-illumination mapping, 333
.setCamera() method

PerspectiveCamera object declaration, 272
.setNearClip(), 271
.setTranslateX(), 274
.setTranslateY(), 274
.setTranslateZ(), 271, 276
StackPane location, 273, 275

setupQSgameplay() method
createQAprocessing(), 576
Q1S1, 577
Q1S2, 578, 580
Q2S1, 581
Q2S5, 581–582
Q4S1, 582

Shader definition, 63
Shape3D cullFace property, 307–309

■ INDEX

633

Shape3D drawMode property, 303–304, 306–307
Smoothing group, 58
Solid State Drive (SSD), 3
Spatial projection, 65
Spherical projection, 64
Spline, 55
Sprite animation, 76
squareCLick, 598–601
StackPane UI testing, 277–279, 281–282
Standard definition (SD), 42
Static games

board games, 83
knowledge games, 83
memory games, 83
puzzle games, 83
strategy games, 83
strategy logic–based programming, 83

Static vs. dynamic gaming
balancing static elements, 75–76
2D vs. 3D rendering, 76–77
Gameplay aspects, 75

Switch statement, 115, 116

��������� T
Tagged Image File Format (TIFF), 33
TextFlow object, 216–217, 228–231
Texture mapping

coordinates, 63
JavaFX 3D, 69
mapping coordinates, 62
shader channels and language, 63
shader definition, 63
types, 64
UVW, 57
UVW coordinates, 62
volumetric textures, 62

Texture maps, 315
GIMP, 326–328
indexed color textures

8-bit images, 610
8-bit mode, 604–605
Magnify Glass tool, 607
normal Floyd-Steinberg color dithering,

605–606
quadrant texture map, 609
square and quadrant images, 611

PhongMaterial
createBoardGameNodes(), 329
loadImageAssets(), 328
self-illumination mapping, 333
setDiffuseMap(), 330

setSpecularMap(), 332
sphere primitive, 331

projection, 64
Transition

development process, 392
duration, 393
interpolate property, 393
ParallelTransition

constructor, 405–406
rotSpinner and moveSpinnerOn, 406–408

RotateTransition
createAnimationAssets(), 394, 396–399,

401–402
object, 393–394

rotation, 393–394
TranslateTransition class

createAnimationAssets(), 404–405
property, 403

TriangleMesh object construction, 312–313

��������� U
User interface screens

addNodesToSceneGraph(), 219
.createBoardGameNodes(), 218
.createTextAssets(), 223–224
3D data, 220–221
Event handling (see Event handling)
ImageView (see ImageView object)
.loadImageAssets(), 222–223
loadImageAssets() and createTextAssets(),

219–220
object creation and configuration, 236, 238
Scene Graph, 212
.setMaxWidth(), 224–226
StackPane

logoLayer ImageView, 232–236
.setBackground, 226–228

TextFlow (see TextFlow object)
UV mapping, 65

��������� V
Variables, 100–101
VBox class, 191–193
Versions of Java, 2–3
Video streaming, 42

��������� W, X, Y, Z
while loop, 117
Wings3D, 27

www.ebook3000.com

http://www.ebook3000.org

	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: The Different Faces of Java: Create a Java 9 Development Workstation
	Java Dichotomy: Versions Used in Various Platforms
	Java Development Workstation: Required Hardware
	Prepare a Workstation for Java 9 Game Development
	Downloading and Installing the Oracle Java 9 JDK
	Downloading and Installing the Oracle Java 8 JDK
	Installing the Oracle NetBeans 9.0 (Development) IDE
	Installing the Apache NetBeans 9 (Development) IDE
	Installing New Media Content Production Software
	Downloading and Installing InkScape for SVG Digital Illustration
	Downloading and Installing GIMP for Digital Image Compositing
	Downloading and Installing Audacity for Digital Audio Editing
	Downloading and Installing DaVinci Resolve 14 for Digital Video
	Downloading and Installing Blackmagic Fusion for Visual Effects
	Download and Install Blender for 3D Modeling and Animation
	Download and Install Terragen for 3D Terrain or World Creation
	Downloading and Install Daz Studio Pro for Character Animation

	Other Open Source New Media Software Packages
	Organizing Quick Launch Icons in Your Taskbar Area
	Summary

	Chapter 2: An Introduction to Content Creation: 2D New Media Asset Fundamentals
	Game Design Assets: New Media Content Concepts
	Digital Imaging Concepts: Resolution, Color Depth, Alpha, Layers
	Digital Image Resolution and Aspect Ratio: Defining Your Image Size and Shape
	Digital Image Color Theory and Color Depth: Defining Precise Image Pixel Colors
	Digital Image Compositing: Using Alpha Channels and Transparency with Layers
	Representing Color and Alpha in Java Game Logic: Using Hexadecimal Notation
	Digital Image Object Masking: Using Alpha Channels to Composite Game Sprites
	Smoothing Digital Image Composites: Using Anti-aliasing to Smooth Image Edges
	Digital Image Data Optimization: Using Compression, Indexed Color, and Dithering

	Digital Video or Animation: Frames, Frame Rate, Loops, Direction
	Digital Video Compression Concepts: Bit Rate, Data Streaming, SD, HD, and UHD
	Digital Video Data Footprint Optimization: Important Settings for Video Codecs

	Digital Audio Concepts: Amplitude, Frequency, Samples, Waves
	Converting Analog Audio to Digital Audio Data: Sampling, Accuracy, and HD Audio
	Digital Audio Asset Playback: Captive Audio Playback vs. Streaming Audio
	Digital Audio Assets in JavaFX: Digital Audio Codec and Data Format Support
	Digital Audio Optimization: Start with CD Quality Audio and Work Backward

	Summary

	Chapter 3: Advanced 3D Content Rendering: 3D Asset Concepts and Principles
	Interactive 2D Assets: 2D Vector Content Concepts
	Points on a Plane: 2D Vertices, Model Reference Origin, Pivot Point, Dummy Point
	Connect the 2D Dots: Vector Lines and Spline Curves Connect Your 2D Vertices
	Filling the Shape Interior: Color Fills, Gradients, and Patterns

	Interactive 3D Assets: 3D Vector Content Concepts
	The Foundation of 3D: The Geometry of the Mesh
	Points in Space: Origins of the 3D Vertex
	Connect the 3D Vertices: Edges Bridge 3D Vertices
	Creating the Surface: Three Edges Form Polygons, Four Edges Form Quads
	Specify the Direction the Surface Is Facing: The Concept of Surface Normals
	Smoothing the Surface: Using Smoothing Groups to Make Polys Look Like Splines

	Skinning Your 3D Model: 2D Texture Mapping Concepts
	Texture Map Basics: Concepts, Channels, Shading, Effects, and UVW Coordinates
	Texture Map Design: Shader Channels and Shader Language
	Texture Map Orientation: Texture Map Projection Types and UVW Coordinates

	Animating Your 3D Model: Keyframes, Motion Curves, and IK
	Linear Animation: Tracks, Keyframes, Looping, and Ranges
	Nonlinear Animation: Motion Paths and Motion Curves
	Character Animation: Skeletal, Muscles, Skin, Forward, and Inverse Kinematics
	Procedural Animation: Physics, Fluid or Cloth Dynamics, Particle Systems, Hair

	JavaFX 3D Support: Geometry, Animation, and Scene Packages
	JavaFX API 3D Modeling Support: Points, Polygons, Mesh, Transforms, Shading
	JavaFX API 3D Animation Support: Timeline, KeyFrame, KeyValue, Interpolator

	Summary

	Chapter 4: An Introduction to Game Design: Game Design Concepts, Genres, Engines, and Techniques
	High-Level Concepts: Static vs. Dynamic Gaming
	Game Optimization: Balancing Static Elements with the Dynamic
	2D vs. 3D Rendering: Static vs. Dynamic Under the Hood

	Game Components: 2D, 3D, Collision, Physics, and AI
	2D Sprites: The Foundation of Arcade-Style Gaming
	3D Models: The Foundation of the Role-Playing Style of Gaming
	Collision Detection: The Foundation of Game Asset Interaction
	Physics Simulation: The Foundation of Gameplay Realism
	Artificial Intelligence: The Foundation of Your Gameplay Logic

	Java Engines: Game, Physics, and Inverse Kinematic
	Game Engines: JMonkey and the Lightweight Java Game Library
	Physics and Collision Engines: Jbox2D, JBullet, Dyn4j, Jinngine
	Inverse Kinematics and Robot Engines: JRoboOp and JavaFX-IK

	Game Genres: Puzzle, Board, Arcade, Shooter, or VR
	Static Games: Strategy, Knowledge, Memory, and Board Games
	Dynamic Games: Arcade, Shooter, Platform, and Action Games
	Hybrid Games: An Opportunity to Leverage JavaFX Creatively

	Summary

	Chapter 5: A Java Primer: Introduction to Java Concepts and Principles
	Writing Java Syntax: Comments and Code Delimiters
	Java Packages: Organizing the Java API by Function
	Java Classes: Java Structure to Modularize the Game
	Nested Classes: Java Classes Living Inside of Other Classes
	Inner Classes: Different Types of Nonstatic Nested Classes

	Java Methods: Core Logic Function Java Constructs
	Declaring Your Method: Modifier, Return Type, and Method Name
	Overloading Your Methods: Providing Unique Parameter Lists
	Constuctor Methods: Turning a Java Class into a Java Object
	Creating a Java Object: Invoking the Class Constructor Method
	Creating a Constructor Method: Designing and Coding a Java Object Structure

	Java Variables and Constants: Values in Data Fields
	Fixing Data Values in Memory: Defining a Data Constant in Java

	Java Modifier Keywords: Access Control and More
	Access Control Modifiers: Public, Protected, Package, or Private
	Java Public Modifier: Variables or Methods That Exist Independently of Instances
	Java Protected Modifier: Variables and Methods Allow Access by Subclasses
	Java Private Modifier: Fields, Methods, or Constructors Allowed Local Access
	Java Package Private Modifier: Variables, Methods, or Classes in the Package

	Non Access Control Modifiers: Final, Static, and Abstract
	Java Final Modifier: Variable Reference, Method, or Class Cannot Be Modified
	Java Static Modifier: Variables or Methods That Exist Independently of Instances
	Java Abstract Modifier: Classes or Methods to Be Extended or Implemented
	Java Volatile Modifier: Advanced Multithreading Control Over Your Data Fields
	Java Synchronized Modifier: Advanced Multithreading Control Over Methods

	Java Data Types: Defining Data Types in Applications
	Primitive Data Types: Character, Numbers, and Boolean
	Reference Data Types: Objects and Arrays

	Java Operators: Manipulating Data in the Application
	Java Arithmetic Operators: Basic Mathematics
	Java Relational Operators: Making Comparisons
	Java Logical Operators: Processing Groups and Opposites
	Java Assignment Operators: Assigning a Result to a Variable
	Java Conditional Operator: Set One Value If True, Another If False

	Java Conditional Control: Loops or Decision Making
	Decision-Making Control Structures: Switch - Case and If - Else
	Looping Control Structures: While, Do - While, and the For Loop

	Java Objects: Virtualizing Reality Using OOP in Java
	Coding the Object: Turning Your Object Design into Java Code

	Extending a Java Object Structure: Java Inheritance
	The Java Interface: Defining the Class Usage Pattern
	What’s New in Java 9: Modularity and Project Jigsaw
	The Definition of a Java 9 Module: A Collection of Packages
	The Properties of Java Modules: Explicit, Automatic, or Unnamed
	An Example of a Java 9 Module Hierarchy: JavaFX Modules
	The Purpose of Java 9 Modules: Secure, Strong Encapsulation
	Creating a Pro Java 9 Game Module: Using the Exports Keyword
	Resource Encapsulation: Further Module Security Measures

	Summary

	Chapter 6: Setting Up Your Java 9 IDE: An Introduction to NetBeans 9
	New NetBeans 9 Features: Java 9 Module Integration
	Java 9 Support: Modules, Ant, Java Shell, Multirelease
	IDE User Experience: More Information and Intelligent Coding
	Java Code Profiling: Completely Redesigned Java Profiling Suite

	Primary Attributes of NetBeans 9: An Intelligent IDE
	NetBeans 9 Is Intelligent: Put Your Code Editing in Hyperdrive
	NetBeans 9 Is Extensible: Code Editing with Many Languages
	NetBeans 9 Is Efficient: Organized Project Management Tools
	NetBeans 9 Is UI Design Friendly: User Interface Design Tools
	NetBeans 9 Is Not Bug Friendly: Squash Bugs with the Debugger
	NetBeans 9 Is a Speed Freak: Optimize Your Code with a Profiler

	Creating the Pro Java 9 Game Project: JavaFXGame
	Compiling a Pro Java 9 Game Project in NetBeans 9
	Running Your Pro Java Game Project in NetBeans 9
	Summary

	Chapter 7: Introduction to JavaFX 9: Overview of the JavaFX New Media Engine
	Overview of JavaFX: From SceneGraph Down to OS
	The JavaFX Scene Package: 16 Java Scene Classes
	JavaFX Scene Class: Defining Dimension and Background Color
	JavaFX Scene Graph: Organizing Scenes by Using Parent Nodes
	JavaFX Scene Content: Lights, Camera, Cursor, Action!
	JavaFX Scene Utilities: Scene Snapshots and Anti-aliasing

	Scene Subpackages: Nine Scene-Related Packages
	The javafx.graphics Module: 18 Multimedia Packages
	JavaFX Animation for Games: Using javafx.animation Classes
	The JavaFX Animation Class: A Foundation for Animation Objects in JavaFX
	The JavaFX Timeline Class: An Animation Subclass for JavaFX Properties Timeline Management
	The JavaFX Transition Class: Animation Subclass for Transitions and Special Effects Application

	The JavaFX AnimationTimer Class: Frame Processing, Nanoseconds, and Pulse
	JavaFX Pulse Synchronization: Asynchronous Processing for Your JavaFX Scene Graph Elements
	Harnessing JavaFX Pulse Engine: Extending AnimationTimer Superclass to Generate Pulse Events

	JavaFX Screen and Window Control: Using javafx.stage Classes
	Using the JavaFX Stage Object: Creating a Floating Windowless Application
	Adding a StageStyle Constant: Using the .initStyle(StageStyle style) Method Call

	JavaFX Bounds and Dimensions: Using javafx.geometry Classes
	JavaFX Input Control for Games: Using the javafx.event Classes
	JavaFX UI Elements: Using the javafx.scene.control Classes
	JavaFX Business Charting: Using the javafx.scene.chart Classes
	JavaFX Media Control: Using the javafx.scene.media Classes
	JavaFX Web Rendering: Using the javafx.scene.web Classes
	Other JavaFX Packages: Print, FXML, Beans, and Swing

	Summary

	Chapter 8: JavaFX 9 Scene Graph Hierarchy: A Foundation for Java 9 Game Design
	Game Design Foundation: Primary Function Screens
	Java Class Structure Design: Game Engine Support
	JavaFX Scene Graph Design: Minimizing UI Nodes
	JavaFX Design: Using VBox, Pos, Insets, and Group
	JavaFX Pos Class: Generalized Positioning Using Constants
	JavaFX Insets Class: Providing Padding Values for Your UI
	JavaFX VBox Class: Using a Layout Container for Your Design
	JavaFX Group Class: High-Level Scene Graph Node Grouping

	Scene Graph Code: Optimize the JavaFXGame Class
	JavaFX Object Declarations: Global Class Access for Methods
	Scene Graph Design: Optimizing the BoardGame .start() Method

	Add Scene Graph Nodes: addNodesToSceneGraph()
	Adding New UI Scene Graph Nodes to createBoardGameNodes()
	Adding the New UI Design Nodes in addNodesToSceneGraph()

	Interactivity: Creating the BoardGame Button UI Control
	Testing Your BoardGame: Process the Scene Graph
	Summary

	Chapter 9: JavaFX 9 User Interface Design: The Front End for Java 9 Game Design
	UI Design Foundation: Finishing the Scene Graph
	JavaFX 9 UI Compositing: ImageView and TextFlow
	JavaFX Image Class: Referencing Digital Imagery in Your Design
	JavaFX ImageView Class: Display Digital Images in Your Design
	JavaFX TextFlow Class: Use Text Objects (Content) in a Design

	Coding the User Interface: A UI Compositing Pipeline
	Instantiating the Compositing Layers: .createBoardGameNodes()
	Adding UI Backplate to Scene Graph: addNodesToSceneGraph()
	Asset Load Methods: loadImageAssets() and createTextAssets()
	Creating SplashScreen Assets: Using 3D Assets in a 2D Pipeline
	Adding Image Assets to Your Project: Using the \src\ Folder
	A Method for Loading Image Assets: .loadImageAssets()
	A Method for Creating Text Assets: .createTextAssets()
	Using a Button.setMaxWidth() Method: Making Buttons Uniform
	Using StackPane Background: Leverage All Compositing Layers
	Using TextFlow: Setting Up Your Information Overlay Object
	Using StackPane: Add More Digital Image Compositing Layers
	Finishing Up Your UI Design Object Creation and Configuration

	Summary

	Chapter 10: User Interface Design Interactivity: Event Handling and Imaging Effects
	Event Handling: Adding Interactivity to Your Games
	Types of Controllers: What Types of Events Should We Handle?
	Java and JavaFX Event Packages: java.util and javafx.event
	JavaFX ActionEvent Class: Created from the java.util.EventObject Superclass
	JavaFX Input Event Classes: The javafx.scene.input Package
	The KeyCode Class: Using Enum Constants to Define Keys Players Use for Game
	The KeyEvent Class: Using KeyEvent Objects to Hold KeyCode Constants

	Adding Keyboard Event Handling: Using KeyEvents
	Finishing Your UI Design: Coding the Event Handling
	Special Effects: The javafx.scene.effects Package
	Creating Special Effects: Add a createSpecialEffects() Method
	Drop Shadows: Adding Drop Shadows to Your TextFlow Object
	Color Adjust: Adjusting Hue, Saturation, Contrast, and Lightness

	Summary

	Chapter 11: 3D Scene Configuration: Using the PerspectiveCamera and PointLight
	Use a 3D Camera: Adding Perspective to 3D Games
	JavaFX Camera Class: An Abstract Superclass Defining Camera
	JavaFX PerspectiveCamera Class: Your 3D Perspective Camera
	JavaFX ParallelCamera Class: Your 2D Space Parallel Camera
	Adding a PerspectiveCamera to Your Scene: Using .setCamera()
	StackPane UI Testing: Making Sure Everything Else Still Works

	Implementing the Start Game Button: Hiding Your UI
	Using 3D Lighting: Adding Illumination to 3D Games
	JavaFX LightBase Class: An Abstract Superclass Defining Light
	JavaFX AmbientLight Class: Lighting Your 3D Scene Uniformly
	JavaFX PointLight Class: Lighting Your 3D Scene Dramatically
	Adding Light to the Game’s 3D Scene: Using PointLight Objects

	Summary

	Chapter 12: 3D Model Design and Primitives: Using JavaFX 9 Shape3D Classes
	JavaFX Shape3D Superclass: Primitive or MeshView
	JavaFX Sphere: Creating Sphere Primitives for Your 3D Games
	JavaFX Cylinder: Creating Cylinder or Disk Primitives for Games
	JavaFX Box: Creating Boxes, Posts, and Planes for 3D Games
	Using Primitives: Adding Primitives to Your JavaFXGame Class
	Shape3D Draw Mode Property: Solid Geometry and Wireframe
	Shape3D Face Culling Property: Optimize the Rendering Pipeline

	JavaFX Mesh Superclass: Construct a TriangleMesh
	JavaFX Mesh Superclass: Your Raw 3D Model Data Container
	JavaFX MeshView Class: Format and Present Your 3D Mesh Data
	JavaFX VertexFormat Class: Define Your 3D Vertex Data Format
	JavaFX TriangleMesh Class: Create a 3D Polygonal Mesh Object

	Summary

	Chapter 13: 3D Model Shader Creation: Using the JavaFX 9 PhongMaterial Class
	JavaFX Material Superclass: i3D Shader Properties
	JavaFX PhongMaterial: Phong Shading Algorithm and Attributes
	Implementing PhongMaterial: Assigning Color and Power Values

	Using External Image Assets: Creating Texture Maps
	Using External Third-Party Software: Creating Maps Using GIMP
	Using Texture Maps in a PhongMaterial: Shader Special Effects

	GameBoard Texturing: Creating a GameBoardSquare
	Getting Ready to Create the GameBoard: Code Reconfiguration
	Creating Your Game Board Square Diffuse Texture: Using GIMP

	Summary

	Chapter 14: 3D Model Hierarchy Creation: Using Primitives to Create a Game Board
	Primitive Creation Method: createGameBoardNodes()
	Preparing to Position Gameboard SceneGraph Nodes
	Coding a Phong Shader Creation Method: createMaterials()
	Finishing Your GameBoard Construction: Quadrants 2 Through 4

	Changing Cameras: Using the ParallelCamera Class
	Summary

	Chapter 15: 3D Gameplay UI Creation: Using the Sphere Primitive to Create a UI Node
	Finish Your 3D Assets: Topic Quadrants and Spinner
	Creating Your Quadrant and Spinner Diffuse Color Texture Maps
	Texture Mapping the 3D Game Board Quadrants: The Java Code
	Use Google to Resolve JavaFX Anomalies: Using StackOverflow
	Creating a 3D User Interface Element: A 3D Spinner Randomizer
	Enhancing the 3D Spinner Texture Map: Increasing Resolution

	Summary

	Chapter 16: 3D Game Animation Creation: Using the Animation Transition Classes
	Animating the 3D Assets: The Animation Superclass
	Automated Object Animation: Transition Superclass
	Animating 3D Object Rotation: Using the RotateTransition Class
	A RotateTransition Example: Set Up Your RotateAnimation Asset
	Animating Node Movement: Using the TranslateTransition Class
	TranslateTransition Example: Set Up Translate Animation Assets
	Merging Animation Properties: Using a ParallelTransition Class
	ParallelTransition Object: Merge rotSpinner and moveSpinnerOn

	Summary

	Chapter 17: i3D Game Square Selection: Using the PickResult Class with 3D Models
	Select Your 3D Assets: The PickResult Class
	The MouseEvent Class: Trapping Mouse Clicks on 3D Primitives
	Implementing Spinner UI Functionality: Mouse Event Handling

	Using java.util.Random: Generating a Random Spin
	Random Quadrant Selection: Using Random with Conditional If()

	Summary

	Chapter 18: 3D Gameplay Design: Creating Your Game Content Using GIMP and Java
	Design Your Gameplay: Create Quadrant Definitions
	Game Board Quadrant: Creating Game Quadrant Content (GIMP)
	Game Board Squares: Creating Game Squares Content in GIMP

	Summary

	Chapter 19: Game Content Engine: AI Logic with Random Content Selection Methods
	Coding a Random Spin Tracker: Remainder Operator
	Implementing Spin Tracker Functionality: Create Empty Methods
	Populating Quadrants After a Spin: OnFinished() Event Handling
	Texture Map Management: Coding a resetTextureMaps() Method

	Summary

	Chapter 20: Coding Gameplay: Set Up Gameplay Methods and Animated Camera View
	Select Game Content: selectQSgameplay() Methods
	Game Board Square Interaction: OnMouseClick() Event Handling

	Camera Animation: Position Game Board After Select
	Summary

	Chapter 21: Questions and Answers: Finishing the Setup Methods and Digital Audio
	Finishing the Gameplay: Adding a qaLayout Branch
	Adding Another Organization Layer: The createUInodes() Method
	Implementing the New Q&A User Interface in Your JavaFXGame
	Tweaking the Q&A Panel: Refining the createQAnodes() Settings
	Adding Answer Button Content to setupQSgameplay() Methods

	Digital Audio for Games: Using the AudioClip Class
	Implementing AudioClip: Add Digital Audio Asset Sound Effects
	Finding Free for Commercial Use Digital Audio: 99Sounds.org
	Data Footprint Optimization: Use Audacity to Create Game Audio
	Use toExternalForm() to Load a URI Reference as a String Object
	Triggering Spinner Audio Playback in createSceneProcessing()
	Camera Animation Audio: Matching Audio Length to Animation

	Summary

	Chapter 22: Scoring Engine: Creating the Score UI Layout and Scoring the Content
	SplashScreen Render Bug: Hide UI Panels on Startup
	Scoreboard UI Design: A createScoreNodes() Method
	Adding Your Score UI Container Design Elements: Text Objects

	Scoring Engine: Logic to Calculate Score on Answer
	Score UI Testing: Displaying Higher Integer Numbers
	Completing the Gameplay: Add Answers and Score
	Summary

	Chapter 23: Completing the Gameplay Code and Player Proofing Your Event Handling
	Finishing Gameplay: Populating Gameplay Methods
	Add Answer Options: Finishing the setupQSgameplay() Methods

	Player-Proofing Code: Controlling Player Event Usage
	Let’s Play Again Button: Resetting Player Event Handling
	Camera Zoom Back Out: Another ParallelTransition
	Finishing the Play Again Button: resetTextureMaps()
	Quadrant-Level Protection: squareClick per Quadrant
	Summary

	Chapter 24: Optimizing Game Assets and Code, and Game Profiling Using NetBeans
	Optimizing Texture Maps: Converting to 8-Bit Color
	Creating Indexed Color Textures: Changing Color Mode in GIMP

	NetBeans 9 Profiler: Testing Memory and CPU Usage
	Implementing Indexed-Color Imagery: Adding a Path
	Optimizing Audio: Use 16-Bit at a Lower Sample Rate
	Java Game Code Optimization: Leverage Java Tricks
	Future Expansion: Add Digital Video and 3D Models
	Summary

	Index

