
Pro SAP Scripts,
Smartforms, and
Data Migration

ABAP Programming Simplified
—
Sushil Markandeya

www.allitebooks.com

http://www.allitebooks.org

Pro SAP Scripts,
Smar tforms, and Data

Migration
ABAP Programming Simplified

Sushil Markandeya

www.allitebooks.com

http://www.allitebooks.org

Pro SAP Scripts, Smartforms, and Data Migration

Sushil Markandeya
Saket, New Delhi, India

ISBN-13 (pbk): 978-1-4842-3182-1 ISBN-13 (electronic): 978-1-4842-3183-8
https://doi.org/10.1007/978-1-4842-3183-8

Library of Congress Control Number: 2017961575

Copyright © 2017 by Sushil Markandeya

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Nikhil Karkal
Development Editor: Matthew Moodie
Technical Reviewer: Srivastava Gauraw
Coordinating Editor: Prachi Mehta
Copy Editor: Lori Jacobs

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook Bulk
Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-3182-1.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3183-8
www.freepik.com
orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
http://www.apress.com/source-code
http://www.allitebooks.org

To those of my trainees who persuaded me that my classroom training
material can be transformed into books.

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Author ���xvii

About the Technical Reviewer ��xix

Acknowledgments ��xxi

Introduction ��xxiii

 ■Chapter 1: SAP Script–Forms, Styles, and Standard Texts ������������������������������������ 1

SAP Script–A Brief Description of Its Components ��� 2

An Overview of SAP Script Form Elements �� 3

Style Elements and Standard Text �� 6

SAP Script Form and ABAP Print Programs �� 6

Generating Business Documents Using SAP Script—Architecture ���������������������������������� 7

SAP Script Relationship with Client Code ��� 8

SAP Script Relationship with Language Key �� 9

Navigation and Transaction Codes ��� 9

Transaction Code SE74—Format Conversion ��� 11

Transaction Code SE75–SAP script Settings �� 11

Fonts in SAP Script Environment �� 12

Font Families �� 12

Proportionate and Non-proportionate Fonts ��� 13

System Fonts �� 14

Printer Fonts, System Bar Codes, and Printer Bar Codes ��� 15

True Type Font Installation �� 15

A Note on Naming Convention of Objects in the Book ��� 21

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vi

Form Graphics–Import Graphics �� 22

Forms: Searching and Classification �� 25

Dimensions in SAP Script Environment �� 28

A Detail on SAP Script Form Elements–A Tour of the Form MEDRUCK �������������������������� 28

Form Element—Header �� 30

Form Element—Page Formats ��� 32

Form Elements–Windows and Page Windows�� 35

Form Elements–Windows and Page Windows: Tour of Form MEDRUCK Continued ����������������������������� 40

Form Element–Paragraph Formats �� 43

Form Element–Character Formats ��� 46

Form Element—Text Elements ��� 48

Demonstration I �� 52

Form Header ��� 53

Page Format ��� 53

Specifications of the Text in the Variable Window �� 54

Paragraph Formats ��� 55

Complete Mandatory Entries in the Form Header �� 56

Windows and page windows �� 56

Character Formats �� 61

Text in Text Element �� 62

Test or Print Preview Form ��� 64

Recapitulation ��� 65

Demonstration II ��� 66

Create Style YCH01_01 ��� 66

Create Standard Text YCH01_01_SEL_TABLES ��� 68

Create Form YCH01_02_SEC_FRM, Page Format FIRST, Graphic Window LOGO, etc� �������������������������� 71

Create a Variable Window VARIABLE, Page Window and Include Standard Text ����������������������������������� 71

Test Print Form YCH01_02_SEC_FRM �� 73

Recapitulation ��� 74

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vii

Demonstration III �� 74

Create Form YCH01_03_MLIST1, Page Format FIRST, etc� ��� 78

Create Variable Window, Its Corresponding Page Window, Create Text Element, etc� �������������������������� 78

Create Page Window for the Main Window, Create Text Element, etc� �� 79

Create an ABAP Program YCH01_01_MLIST_ONE_MWINDOW (Print Program), etc� ���������������������������� 80

Test form YCH01_03_MLIST1, Execute Program YCH01_01_MLIST_ONE_MWINDOW ������������������������� 82

Recapitulation ��� 83

Form Check Text ��� 83

Demonstration IV �� 86

Create Form YCH01_04_MLIST2 �� 87

Create and Test ABAP Program YCH01_02_MLIST_TWO_MWINDOWS (Print Program) ����������������������� 90

Test Form YCH01_04_MLIST2, Execute Program YCH01_02_MLIST_TWO_MWINDOWS ��������������������� 91

Recapitulation ��� 91

Conclusion �� 91

 ■Chapter 2: SAP Script–Hands-on Exercises ��� 93

Hands-on Exercise I–Output Vendors’ Address Labels
of a Specific Company Code��� 93

Output Specification and Layout ��� 94

Output Considerations �� 95

Inputs �� 96

Text element contents in the main window �� 97

Source program �� 98

Creation of Form YCH02_01_ADR_STK and Print Program
YCH02_01_PPRG_YCH02_01_ADR_STK �� 100

Output ��� 100

Hands-on Exercise Recapitulation �� 101

Hands-on Exercise II—Output Custom Purchase Order ��� 102

Hands-on Exercise–Scope and Limits �� 102

Output and Layout Specification ��� 102

Output Considerations �� 106

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

Data Inputs and Data Input Considerations �� 108

Creation of SAP Script Form, Print Program, and Related Workbench Objects ���������������������������������� 110

Output ��� 124

Hands-on Exercise Recapitulation �� 128

Hands-on Exercise III—Output Custom Purchase Order—Use Control
Command PERFORM �� 129

Output, Layout Specification, and Output Considerations �� 129

Creation of SAP Script Form, Print Program, and Related Workbench Objects ���������������������������������� 131

Output ��� 138

Hands-on Exercise Recapitulation �� 140

Hands-on Exercise: IV–Copy, Modify, and Customize SAP Delivered
Form MEDRUCK �� 140

Output Specifications ��� 140

Copy Form MEDRUCK to Y Namespace��� 140

Modifications to the Copied Form YCH02_04_MEDRUCK ��� 142

Output ��� 153

Hands-on Exercise Recapitulation �� 160

Form YCH02_04_MEDRUCK vis-à-vis Form YCH02_03_PORDER2 ��� 160

Hands-on Exercise V—Output Customer-wise Sales Summary of a
Company Code—Use SAP Script Form �� 161

Output Specification and Layout ��� 161

Data Inputs ��� 162

SAP Script Form YCH02_05_SALESSUM �� 163

Print Program YCH02_05_PPRG_YCH02_05_SALESUM for SAP Script Form
YCH02_05_SALESUM ��� 165

Check and Activate Form �� 167

Output ��� 167

Hands-on Exercise Recapitulation �� 168

Classifying Forms ��� 169

SAP Script Form Documentation �� 175

SAP Script Tidbits ��� 176

Conclusion �� 177

www.allitebooks.com

http://www.allitebooks.org

■ Contents

ix

 ■Chapter 3: Smartforms—Forms, Styles, and Text Modules ������������������������������� 179

SAP script and Smartforms—Similarities and Differences �� 179

Extra Features and Facilities in Smartforms over SAP Script �������������������������������������� 180

SAP Script Objects Available in Smartforms Environment ��� 181

Smartforms Form Elements and Smartforms Form Environment �������������������������������� 181

Application Toolbar ��� 182

Menu Bar and Menu Options �� 183

Node: Global Settings ��� 184

Node: Pages and Windows ��� 189

Recapitulation—Node: Pages and Windows �� 213

Smartforms Form Environment—Settings and Field List��� 214

Smartforms Form and ABAP Driver Program ��� 215

Generating Business Documents Using Smartforms—Architecture ���������������������������� 215

Demonstration I �� 217

Recapitulation of Specifications of Text in Secondary Window �� 217

Create Style �� 218

Create Form—Form Attributes and Page Format ��� 222

Create Form—Graphic and Secondary Window ��� 223

Create Form—Text ��� 226

Test or Print Preview Form ��� 231

Recapitulation ��� 232

Demonstration II ��� 233

Create Text Module YCH03_01_SEL_TABLES ��� 233

Create Form YCH03_02_SEC_FRM—Page Format FIRST and Graphic Window LOGO ����������������������� 234

Create Form—Create a Secondary Window VARIABLE and Include Text Module ������������������������������� 235

Test Print Form YCH03_02_SEC_FRM �� 237

Recapitulation ��� 238

Demonstration III �� 238

Create Style YCH03_02 ��� 241

Create Form YCH03_03_MLIST1, Page Format FIRST, etc� ��� 241

www.allitebooks.com

http://www.allitebooks.org

■ Contents

x

Create Secondary Window, Create Text, etc� ��� 243

Adjust Dimensions of Main Window, Create Text in Main Window, etc� �� 245

Create an ABAP Program YCH03_01_MLIST1 (Driver Program), etc� �� 246

Test Form YCH03_03_MLIST1, Execute Program YCH03_01_MLIST1 �� 247

Recapitulation ��� 248

Demonstration IV �� 248

Create ABAP Dictionary Structure YCH03_2REC_MAKT_STRU ��� 251

Create Form YCH03_04_MLIST2 �� 251

Create and Test ABAP Program YCH03_02_MLIST2 (Driver Program) �� 254

Test Form YCH03_04_MLIST2, Execute Program YCH03_02_MLIST2 �� 257

Recapitulation ��� 258

Conclusion �� 258

 ■Chapter 4: Smartforms–Hands-on Exercises ��� 259

Hands-on Exercise I—Output Vendors’ Address Labels
of a Specific Company Code��� 259

Output Specification and Layout ��� 260

Output Considerations �� 260

Inputs ��� 263

Creation of Style YCH04_01, Form YCH04_01_ADR_STK and Driver Program
YCH04_01_DPRG_YCH04_01_ADR_STK �� 264

Output ��� 272

Hands-on Exercise Recapitulation �� 273

Hands-on exercise II—Output Purchase Orders Using Custom Form �������������������������� 274

Hands-on Exercise—Scope and Limits �� 274

Output and Layout Specification �� 275

Output Considerations �� 277

Data Inputs and Data Input Considerations �� 278

Creation of Smartforms Form, Driver Program, and Related Workbench Objects ������������������������������ 281

Output ��� 307

Hands-on Exercise Recapitulation �� 311

www.allitebooks.com

http://www.allitebooks.org

■ Contents

xi

Hands-on Exercise III–Copy, Modify, and Customize SAP Delivered
Form /SMB40/MMPO_A, etc� �� 311

A Note on the SAP Delivered Smartforms Form /SMB40/MMPO_A �� 312

Stage I: Enable Purchase Order Output with Smartforms Form
YSM_SMB40_MMPO_A, ��� 312

Stage II: Enable Purchase Order Output with a Modified and Customized Copy of
Smartforms Form /SMB40/MMPO_A �� 321

Hands-on Exercise Recapitulation �� 327

Smartforms System Fields: SFSY-PAGE and SFSY-FORMPAGES ��� 327

Three Page Formats and Runtime Assignment of Page Format with Command Node ���������������������� 328

Forms: /BPR3PF/MMPO_L, /BPR3PF/MMPO_A, and Driver Program /BPR3PF/FM06P ����������������������� 329

Hands-on Exercise: IV–Generate Material Bar Code Labels ��� 329

Output Specification, Major Tasks, etc� ��� 330

Creation of Custom Bar Code YCH_04BC, Assignment to a Print Device �� 330

Creation of Style YCH04_04 �� 335

Creation of Form YCH04_04_MATERIAL_BCODES �� 335

Creation of Driver Program YCH04_04_DPRG_YCH04_04_MBCODES �� 341

Execution of Driver Program—Output �� 342

Hands-on Exercise Recapitulation �� 344

Hands-on Exercise V—Output Customer-wise Sales Summary of a
Company code—Use Smartforms Form ��� 344

Output Specification and Layout ��� 345

Data Inputs ��� 345

Create ABAP Dictionary Structure YCH04_SALES_SUMM_STRU �� 346

Create Smartforms Style YCH04_05 and Form YCH04_05_SALESSUM ��� 346

Driver Program YCH04_05_DPRG_YCH04_05_SALESUM for Smartforms Form
YCH04_05_SALESUM �� 351

Output ��� 353

Hands-on Exercise Recapitulation �� 354

■ Contents

xii

Smartforms Tidbits �� 355

Smartforms Opening Screen Menu Options ��� 355

Final Window �� 356

Copy Window �� 357

Conclusion �� 357

 ■ Chapter 5: Migration Using Batch Input Session and
Call Transaction Methods �� 359

Data Migration–Issues and Considerations �� 360

Data Migration–A Brief on Tools and Facilities Available�� 361

Recording a Transaction, BDCDATA Table, and the Include Program BDCRECX1 ���������� 362

Recording a Transaction, BDCDATA Table ��� 363

Include Program BDCRECX1 ��� 368

Determine Program Name, Screen Numbers, Screen Field Names ����������������������������� 371

Hands-on Exercise I: Migrate Vendor Data Using Batch Input Method ��� 373

Specification and Scope ��� 373

Data Flow When Running Program Using Batch Input Method ��� 376

Task List �� 378

Perform Recording of Vendor Creation Using Transaction Code XK01 and Save It ����������������������������� 378

Generate an ABAP Program from Saved Recording �� 385

Perform Modifications to a Copy of the Generated Program �� 388

Run the Program with the Batch Input Option (Default) for Creation of a Batch Input Session ���������� 395

Run the Batch Input Session in Foreground with Transaction Code SM35 ��� 400

Check and Verify Migration of Vendor Data—Transaction Code XK02 or XK03, etc� �������������������������� 405

Prepare Text Files; Run Program with the Batch Input Option to Create a Session;
Run Session in Background and Verify Migration of Data �� 405

Issue of Number of Rows Greater Than Visible Number of Rows in Table Control Area ��������������������� 409

Recapitulation—Hands-on Exercise I: Migrate Vendor Data Using Batch Input Method �������������������� 412

Hands-on Exercise II: Migrate Vendor Data Using Call Transaction Method ����������������� 414

Extra Features in the Program �� 414

Migrate Data of Text Files on Application Server Using Call Transaction Method ������������������������������� 415

■ Contents

xiii

Migrate Data of Text Files on Application Server Using Call Transaction Method,
Create Log File on Application Server ��� 426

Recapitulation—Hands-on Exercise II: Migrate Vendor Data Using Call Transaction Method ������������ 435

Batch Input vis-à-vis Call Transaction Methods ��� 436

Conclusion �� 437

 ■ Chapter 6: Data Migration Using Legacy System
Migration Workbench LSMW–I �� 441

LSMW—Project Structure and an Overview of the Opening Screen ���������������������������� 442

Project Structure �� 443

LSMW Opening Screen Overview—Some Application Toolbar Buttons and Menu Options ��������������� 444

A Brief on the LSMW Hands-on Exercises �� 446

Hands-on Exercise I—Migration of Vendor Data Using Standard Batch/Direct
Input Method �� 446

Specification and Scope ��� 447

Create Project, Subproject, and Object ��� 448

Process Step 1—Maintain Object Attributes �� 451

Process Step 2—Maintain Source Structures �� 453

Process Step 3—Maintain Source Fields ��� 455

Process Step 4—Maintain Structure Relations �� 457

Process Step 5—Maintain Field Mapping and Conversion Rules �� 458

Process Step 6—Maintain Fixed Values, Translations, and User-Defined Routines �������������������������� 463

Process Step 5—Revisited ��� 465

Process Step 7—Specify Files �� 467

Process Step 8—Assign Files ��� 469

Data Creation on Presentation Server, Copy to Application Server �� 470

Process Step 9—Read Data �� 472

Process Step 10–Display Read Data ��� 473

Process Step 11–Convert Data �� 475

Process Step 12–Display Converted Data ��� 477

Process Step 13–Create Batch Input Session ��� 478

■ Contents

xiv

Process Step 14—Run Batch Input Session ��� 479

Vendor Data Creation—Cross-Verification �� 481

Hands-on Exercise I—Recapitulation �� 482

Hands-on Exercise II—Migration of Vendor Data Using Batch Input
Recording Method �� 483

Create Object YCH06_RC and Recording YCH06_XK01 of Transaction Code XK01 ���������������������������� 483

Process Step 1—Maintain Object Attributes �� 489

Process Step 2—Maintain Source Structures �� 490

Process Step 3—Maintain Source Fields ��� 491

Process Step 4—Maintain Structure Relations �� 492

Process Step 5—Maintain Field Mapping and Conversion Rules �� 493

Process Step 6—Maintain Fixed Values, Translations, and User-Defined Routines �������������������������� 496

Process Step 5—Revisited ��� 498

Process Step 7—Specify Files �� 499

Process Step 8—Assign Files ��� 499

Data Creation on Presentation Server, Copy to Application Server �� 500

Process Step 9—Read Data �� 501

Process Step 11—Convert Data �� 501

Process Step 13—Create Batch Input Session ��� 502

Process Step 14—Run Batch Input Session ��� 503

Vendor Data Creation—Cross-Verification �� 504

Hands-on Exercise II Recapitulation �� 506

Process Steps Screen—Menu Options ��� 507

Project, Project Components Export and Import �� 510

Conclusion �� 516

 ■ Chapter 7: Data Migration Using Legacy System Migration
Workbench LSMW–II �� 517

Hands-on Exercises in This Chapter—Issues and Considerations ������������������������������� 517

Purchase Order Database Tables �� 518

Database Table EKKO �� 519

Database Table EKPO �� 519

■ Contents

xv

Database Table EKET �� 520

Database Tables of Purchasing Documents–ER Diagram and Data Storage �������������������������������������� 521

A Brief on IDocs �� 523

IDoc–A Data Container �� 523

IDoc–Deployment Scenarios ��� 524

IDocs–Storage in Database Tables ��� 524

IDocs–Outbound and Inbound Processing �� 524

IDocs–ALE Technology, SAP Ready-to-Use IDocs ��� 526

IDoc Components–A Look at the IDoc Type PORDCR05 �� 526

Hands-on Exercise III–Migration of Purchase Order Data Using IDoc ������������������������� 534

Specification and Scope ��� 534

Perform IDoc Inbound Settings ��� 537

Create Subproject YCH07_PO ��� 543

Create Object YCH07_IDOC ��� 544

Process Step 1–Maintain Object Attributes �� 545

Process Step 2–Maintain Source Structures �� 546

Process Step 3–Maintain Source Fields ��� 547

Process Step 4–Maintain Structure Relations �� 547

Process Step 5–Maintain Field Mapping and Conversion Rules��� 548

Process Step 7–Specify Files �� 550

Process Step 8–Assign Files ��� 551

Data Creation on Presentation Server ��� 551

Process Step 9–Read Data �� 552

Process Step 10—Display Read Data ��� 553

Process Step 11—Convert Data �� 553

Process Step 12—Display Converted Data ��� 554

Process Step 13—Start IDoc Generation �� 555

Process Step 14—Start IDoc Processing �� 555

Process Step 15—Create IDoc Overview ��� 559

Process Step 16—Start IDoc Follow-Up ��� 559

Purchase Orders Created—Cross-Verification with Input Data ��� 560

Hands-on Exercise III—Recapitulation �� 566

■ Contents

xvi

Hands-on Exercise IV—Migration of Purchase Order Data Using Business
Object Method ��� 567

Deficiencies of Hands-on Exercise III—Rectification ��� 567

Specification and Scope ��� 567

Create Object YCH07_BAPI ��� 569

Process Step 1—Maintain Object Attributes �� 570

Process Step 2—Maintain Source Structures �� 572

Process Step 3—Maintain Source Fields ��� 572

Process Step 4—Maintain Structure Relations �� 573

Process Step 5—Maintain Field Mapping and Conversion Rules �� 574

Process Step 7—Specify Files �� 576

Process Step 8—Assign Files ��� 577

Data Creation on Presentation Server ��� 578

Process Step 9—Read Data �� 579

Process Step 10—Display Read Data ��� 579

Process Step 11—Convert Data �� 580

Process Step 12—Display Converted Data ��� 581

Process Step 13—Start IDoc Generation �� 581

Process Step 14—Start IDoc Processing �� 582

Process Step 15—Create IDoc Overview ��� 584

Process Step 16—Start IDoc Follow-Up ��� 584

Purchase Orders Created—Cross-Verification with Input Data ��� 585

Hands-on Exercise IV—Recapitulation �� 589

Project Components Export ��� 590

Conclusion ��� 592

Index ��� 593

xvii

About the Author

Sushil Markandeya is a B.E. from Osmania University (1973) and M.E.
(Electrical Engineering) from B.I.T.S.—Pilani. (1975) In 1977, he shifted to
Information Technology. He has always been involved in creating business
application software on various platforms.

Since July 2006, he has been doing corporate training in SAP ABAP
for people just out of college. Some of the major Indian corporate clients
he has trained for are Accenture, Wipro group Sony India, Mphasis (part
of H.P), ITC Info tech., Hyundai Motor, Godrej Info tech., CGI, Orient
Cements, and Sopra India.

He, along with Kaushik Roy, authored the book: SAP ABAP—Hands-
On Test Projects with Business Scenarios (Apress, 2014).

Presently, he is located in Delhi, India.

xix

About the Technical Reviewer

Srivastava Gauraw is a SAP Technofunctional Consultant. He holds several certificates in SAP. He has been
working as an independent consultant providing his services in development, training, and documentation,
and troubeshooting queries during SAP implementation. He has expertise in ABAP, HANA, Workflow, and
other technical and functional aspects of SAP.

xxi

Acknowledgments

The manuscript submitted by the author to the publisher goes through a series of processes, mostly of an
editorial nature, to produce the book. My acknowledgements to the following editorial and allied personnel
of Apress (in chronological order of my first interaction with them)

Mr. Nikhil Karkal Acquisitions Editor
Mr. Celestin Suresh John Senior Editor
Ms. Prachi Mehta Coordinating Editor
Mr. Matthew Moodie Lead Development Editor

Acknowledgements to the personnel of Springer and Apress who worked behind the scenes to produce
this book.

Acknowledgements to the technical reviewer Mr. Srivastava Gauraw.

xxiii

Introduction

The present book Pro SAP Scripts, Smartforms, and Data Migration, is a sequel to our earlier book
SAP ABAP—Hands-On Test Projects with Business Scenarios. It is perceived by enterprises or corporates that
an entry-level ABAP consultant must be well grounded in the topics contained in the two books. Personnel
trained in classrooms on the topics contained in the two books were included as a shadow resource in the
SAP project teams. Subsequently, after three to six months, the shadow resource graduated to a tangible
resource in the project teams.

The books come from the training material created for the corporate trainings by the authors. They
can now serve as training material for classroom training, individual learning, and reference material for
experienced consultants.

Target Audience
The book is basically addressing people who want to learn SAP Scripts, Smartforms, and Data Migration
afresh and people who have been working in these areas for a few years (0-4 years). People with experience
in these areas will find this book useful as a reference in the context of doing things.

Target Audience Prerequisites
Ideally, people who want to read this book should have read the book SAP ABAP—Hands-On Test Projects with
Business Scenarios and grasped the concepts presented in that book. Alternatively, to be able to comprehend the
contents of the present book, the reader should have been exposed to the following areas of ABAP:

•	 ABAP dictionary—domains, data elements, tables, text tables, structures, database
views, search helps, etc.

•	 ABAP language elements—declarations, arithmetic, string manipulation, conditions,
looping, etc.

•	 Reporting—classical and ALV

•	 Internal tables—filling, retrieval, initialization, etc.

•	 Modularization—includes, subroutines, and function modules

•	 Open SQL

•	 Selection screens

•	 Dynpro programming

•	 ABAP debugger, messages, field symbols, etc.

•	 Familiarity with the basic functional module database tables of sales and purchase

■ IntroduCtIon

xxiv

Though project experience is not essential, the target audience must have worked extensively in the
ABAP workbench environment in the areas mentioned previously.

Book’s Approach
This book’s major thrust is on the “doing” part: to be able to create objects and programs required as per a
defined context or scenario.

The book, for most part, uses a scenario-orientated presentation. Concepts and features are
communicated through illustrative examples and scenarios. Wherever possible, business scenarios are used
to communicate concepts and features.

The book is a completely practical approach, demonstrating and conveying the topics and features
through demonstration and hands-on examples.

The demonstration and hands-on exercise objects, including the programs, rely on some of the
SAP functional module database tables being populated. This is assured if the reader is logged on to an
IDES (Internet demonstration and evaluation system) server or system. An IDES server is now a de facto
system for all SAP training-related activities. Specifically, SAP functional module database tables used for
demonstration and hands-on exercises in the book are the basic database tables of sales and purchase. Most
people with nil or little exposure to business and the commercial world relate to the business areas of sales
and purchase.

All the hands-on exercises in the book are performed using SAP sales and purchase functional module
database tables.

The author strongly insists that you perform the demonstration and hands-on exercises as
you read a chapter and come to the exercises, not defer to performing them after completing
a chapter or the book. It should not be just reading but reading and simultaneously
performing the demonstration and hands-on exercises.

Resources
The book is complemented and supplemented with an E-resource containing various objects including a
source program created during the performance of the demonstration and hands-on exercises in the book.
We recommend that you read the document A Guide to Use E-resource, located in the folder E_RESOURCE
before you commence reading the book.

Most source programs in the E-resource are also listed in the book. Some source programs of
E-resource are partially listed in the book and some are not listed in the book. This is indicated in the
respective chapters.

In addition to the book and the E-resource, you will use the following additional resources:

•	 You must have connectivity to the SAP system, specifically, a SAP IDES server. Your
log-in user id must be able to create, edit, and delete objects in the ABAP workbench
environment. Your log-in user id must be able to access and update data of SAP
functional module database tables.

•	 Apart from book reading, some extra reading is required.

•	 You will need to read extra theory and description not exposited in the book.

•	 You need to refer to some detailed information like all formatting options
available in the SAP Script environment, a complete list of SAP Script control
commands, etc.

■ IntroduCtIon

xxv

The material for most of the above-mentioned readings is available in
freely downloadable PDF documents from the following link http://www.
easymarketplace.de/online-pdfs.php. You will not violate any copyright law
by downloading the documents from this link. These are PDF documents of SAP
version 4.6C. Though the documents are older version, they will largely serve
your purposes.

Download the following PDF documents from the link http://www.
easymarketplace.de/online-pdfs.php. For downloading a specific document,
click the link (consolut mirror) against the document title.

•	 BC Style and Form Maintenance BCSRVSCRFORM.pdf

•	 SAP Smart Forms (BC-SRV-SCR) BCSRVSCRSF.pdf

•	 BC Basis Programming Interfaces BCDWBLIB.pdf

(Consider topics of data transfer only)

You will need to refer (not read) to these documents for information during chapter readings. If you
do want to read these documents, preferably, do not read them while you are reading a chapter. Read these
documents between chapters. At what stage you are to refer to which of these documents is indicated in the
book’s chapters.

•	 After completing a chapter, you can also visit the SAP portal of online
documentation. You can look up the chapter’s topic in the online documentation.

Conventions Used in the Book
The following conventions were used in the book:

•	 All ABAP workbench object names appear in upper case or capitals

•	 All references to ABAP workbench objects you are expected to be exposed to (as a
prerequisite) appear in lower case. For example, program, data element, message
class, and so on.

•	 Generally, terms which are supposedly new to the first-time reader of topics in the
book will appear in italics. All components of topics covered will appear in italics.
The topic itself will not appear in italics. For example, the topic SAP Script—no
italics. SAP Script components: Form, Style—in italics. SAP Script fonts—no italics,
because you are expected to know what fonts are.

•	 All nomenclatures or screen field labels in the running text will appear in italics.

Conclusion
A caution on similar sounding terms: function module and functional module. A function module is part
of the ABAP modularization feature. A functional module is, loosely, a SAP functional area like sales or
purchase.

So on to stimulating reading. Not just readings though, the exercises should be performed
simultaneously with the readings.

http://www.easymarketplace.de/online-pdfs.php
http://www.easymarketplace.de/online-pdfs.php
http://www.easymarketplace.de/online-pdfs.php
http://www.easymarketplace.de/online-pdfs.php

1© Sushil Markandeya 2017
S. Markandeya, Pro SAP Scripts, Smartforms, and Data Migration,
https://doi.org/10.1007/978-1-4842-3183-8_1

CHAPTER 1

SAP Script–Forms, Styles, and
Standard Texts

SAP script is essentially a tool for the presentation of business data. Business data is presented in a SAP
environment using mostly reporting tools: WRITE statement, ALV (ABAP List Viewer) function modules,
and ALV classes—the ALV functionalities. SAP script provides a special case of business data presentation.
In business applications, data has to be presented in modes other than the tabulated mode produced by the
WRITE statement and ALV functionalities.

A specific type of business document layout might require separate font types and font sizes to be
used in different parts of the business document. Its layout might require separate font styling (bold,
italic, underlining, etc.) in different parts of the business document. The layout might also require the
incorporation of graphics (e.g., a company logo). It might require the output of formatted long text,
(e.g., the terms & conditions in a purchase order). Figure 1-1 shows the rough layout of a business document-
type purchase order highlighting the previously mentioned special output requirements.

Figure 1-1. Rough layout of a purchase order highlighting special output requirements

https://doi.org/10.1007/978-1-4842-3183-8_1

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

2

ABAP environment reporting tools (i.e., the WRITE statement and ALV functionalities) do not provide
the facilities that could produce an output like the one shown in Figure 1-1. Hence, we have SAP script, the
tool to create and maintain business document layouts and produce business documents.

SAP script is used to format and generate business document types like purchase requisitions, requests
for quotations, purchase orders, sales orders, delivery notes, invoices, credit memos, debit memos, invoice
cancellations, and so on.

SAP script can also be used to generate a list or report like a customer-wise sales summary, and so on,
which you normally generate using the WRITE statement or the ALV functionalities. In this chapter and the
next, we will generate lists or reports using SAP script as part of the hands-on exercises in the current and
next chapter. But the deployment of SAP script instead of the WRITE statement or ALV functionalities to
generate a report would require extra effort and time. Thus, in real-life scenarios, this extra effort and time to
produce a report must be justifiable.

Most business documents are sent to business partners—customers and vendors. In our discussions,
a specific business document means one particular business document, bearing a business document
number (e.g., one invoice or one purchase order). A specific business document might have multiple
pages, depending on the size of the stationery (A4, letter, etc.) used to output the business document and
the number of items in the document. Every business document must contain the page number on every
document page along with the total number of pages in that specific business document.

If you output multiple business documents (multiple business document numbers) at a time (e.g., more
than one purchase order), then each purchase order’s page numbering must start from 1.

In our discussions, the word “styling” has been used to mean imparting font styles: bold, italic, and
underline.

SAP in its documentation and screens uses the term SAPscript. I am using the term SAP script. Let both
these terms be considered as synonymous.

With this introduction, I will proceed to describe the components of SAP script.

SAP Script–A Brief Description of Its Components
SAP script consists of the following three components:

•	 Forms

•	 Styles

•	 Standard texts

The forms component of SAP script is used to maintain output layouts of different business document
types. That is, for a specific business document type, the form specifies which information must appear
where in what format.

The styles component of SAP script is used to maintain styles globally. That is, paragraph formats
and character formats are maintained in styles. The paragraph formats carry formatting specifications
like margins, indenting, font type, font size, and font styling. The character formats carry formatting
specifications like font type, font size, and font styling. The paragraph formats and character formats are
applied to information on the forms and standard texts. The paragraph formats and character formats can
also be maintained within a form. The paragraph formats and character formats maintained within a form
are local to the form and can be used within the form only. Styles created globally can be used in multiple
forms and standard texts.

The standard texts component of SAP script is used to maintain formatted long texts globally in multiple
languages. Formatted long texts can also be created and maintained within a form and their usage is
restricted to the form. The standard text maintained globally can be incorporated in other multiple standard
texts as well as multiple forms.

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

3

An Overview of SAP Script Form Elements
A SAP script form is essentially a layout framework of a business document type. It contains the
specifications of a business document type layout: what information appears where and in what format. An
enterprise requires a specific business document type, say, the purchase order, to be output in a particular
layout; the layout of a business document type will generally map to a SAP script form.

SAP script has a relationship with the language key. The following sections introduce the SAP script
relationship with the language key. You will be able to relate to the SAP script relationship with the language
key better if you are familiar with the basic features of the elements of a SAP script form.

Mostly, we will refer to the SAP script form as just form.
A form consists of several elements (subobjects or components).

Form Header
Like all workbench objects, a form also stores information: created by, date created, package, and so on. The
workbench objects store such information as object attributes. The forms store this information as part of
the header information. The form header contains additional information: form classification, translations
allowed languages, page setup, and so on.

Pages or Page Formats
A page element of a form is not a physical page of a business document. A page element of a form maps to
a page format of a business document type. A specific business document type can be output in more than
one format. For example, let us assume that an enterprise requires the company logo for a specific business
document type, say, a purchase order, to appear only on the first page when a purchase order outputs in
multiple pages; that is, the pages other than the first page of a purchase order will not contain the company
logo. So, in this example, the purchase order has the following two page formats:

•	 the first page of the purchase order containing the company logo and

•	 page(s) other than the first page of the purchase order without the company logo.

Corresponding to these two page formats, the purchase order form will have two pages. Though the SAP
documentation refers to this form element as a page, we will refer to this form element as a page format so as
not to confuse it with the physical pages of a business document.

SAP script as well as smartforms refer to the page sizes A4, letter size, etc., as page formats. But I will
refer to the different formats in which a business document outputs as page formats.

Figure 1-2 graphically conveys the idea of the multiple page formats. In Figure 1-2, a specific purchase
order, number 12345, runs into three physical pages marked as 1/3, 2/3, and 3/3.

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

4

You may output more than one purchase order at a time. Each purchase order will output in one or
more physical pages. The purchase orders being output will have a company logo appearing only on the first
page of every purchase order.

Although Figure 1-2 shows only one purchase order, you can visualize the case of multiple purchase
orders. Suppose two purchase orders, numbers 12345 and 12346, are being output. Purchase order 12345
consists of three physical pages, but suppose purchase order 12346 contains four physical pages. The
company logo will appear on the first page of purchase order 12345 and the first page of purchase order
12346. There will be two page formats for the purchase order: one page format containing the company logo
and the second page format without the company logo. Suppose we designate the page format containing
the company logo as format-I and the page format without the company logo as format-II. Then page
number 1 of purchase order numbers 12345 and 12346 will output with page format format-I. The pages
other than page number 1 of the purchase order numbers 12345 and 12346 will output with page format
format-II. In the example described, the form consisted of two page formats.

It is mandatory for a form to have a minimum of one page format, but a form may have more than two
page formats.

Windows and Page Windows
The windows and the page windows are two separate form elements. They are being described together
because they go together. A page window cannot exist without being assigned to a window. A page window is
a physical area on a page format. A page window is defined by the following:

•	 Left margin,

•	 Upper margin,

•	 Width, and

•	 Height

These dimensions are essential for the definition of a page window. The width and height have to be
specified; the left and upper margins need not be explicitly specified – default values are assumed.

Figure 1-2. Business document type purchase order with two page formats

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

5

It is necessary to assign a page window to the form element window. In the form environment, four
types of windows can be defined.

•	 Constant window (CONST)

•	 Variable window (VAR)

•	 Graph or Grid screen window (GRAPH)

•	 Main window (MAIN)

A constant window differs from a variable window in the following way: page windows of identical
(constant) dimensions in different page formats can be assigned to a constant window. Page windows of
identical or differing dimensions in different page formats can be assigned to a variable window. Recall that
the dimensions of a page window are left margin, upper margin, width, and height.

A graph window can contain only graphics. Graphics can also be located in a constant or a variable or
the main window.

There can be any number of constant windows, variable windows, and graph windows in a form. Only
one page window of a page format can be assigned to each of a constant, variable, or graph window.

There can only be one main window in a form. In a page format, the main window can contain a
maximum of 99 multiple page windows.

Paragraph Formats
In the form element paragraph formats, you specify font type, font size, styling, margins, page protection, tab
spacing, etc. The paragraph formats are applied to the contents of a form. A form must have a minimum of
one paragraph format.

Character Formats
In the form element character formats, you specify font type, font size, styling, bar code, etc. The character
formats are applied to the contents of a form.

The paragraph formats are applicable to an entire paragraph in a form or a document; the character
formats are applicable to parts within a paragraph of a form or a document.

Text Elements
The form elements page format, windows, page windows, paragraph formats, and character formats
constitute the output layout framework and formatting specifications. The actual contents of a business
document to be output are contained in the form element text elements. The form element text elements are
not to be confused with the text elements attached to ABAP programs. They are completely different entities.

Documentation
A form also consists of technical documentation referred as documentation. The documentation will be used
by the ABAP developers for form maintenance, and as such it does not affect the business document output
layout and output contents.

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

6

Form Elements–A Diagrammatic Representation
Figure 1-3 is a rough diagrammatic representation of the form and its elements.

Figure 1-3. SAP script form elements

In Figure 1-3, the form element windows is shown under form element page formats. Windows can be
created independent of page formats. But the contents of windows (text elements) cannot be output without
the windows being assigned to page windows which are part of page formats. Hence, the windows are shown
under page formats in Figure 1-3.

This section provided a brief description of the different form elements. I discuss the form elements in
the section “A Detail on SAP Script Form Elements—a Tour of the form MEDRUCK.”

Style Elements and Standard Text
A style consists of a header, paragraph formats, and character formats. The paragraph formats and character
formats in styles are similar to the paragraph formats and character formats in forms.

The standard text is the word processing tool in the SAP script environment. The standard text consists
of a header and text. The textual matter in the standard text can be formatted by applying the paragraph
formats and character formats of styles.

SAP Script Form and ABAP Print Programs
The SAP script form is used to design the layout of business document types, including formatted long text.
However, there is no facility to retrieve data from database tables in the SAP script forms environment. Thus,
the data originating from database tables which is to appear in the business document is retrieved and
processed in an ABAP program. Hence, an ABAP program, called the print program, is associated with a SAP
script form.

Data is sent by the print program and received by the SAP script form in terms of individual fields or
columns (elementary data objects). The individual fields can, of course, be components of a structure or
structure fields as well. I describe this transfer of data from the print program to the SAP script forms in detail
in the section “A Detail on SAP Script Form Elements.”

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

7

Generating Business Documents Using SAP Script—
Architecture
This section describes the basic architecture of the generation of business documents using the SAP script
form, depicted in Figure 1-4.

Figure 1-4. Generating business documents using SAP script—Architecture

Figure 1-4 marks the process steps as (1), (2), (3), (4), (5), and (6).

 1. Process step (1) involves retrieving all the data required to produce the business
documents. For example, if your business document type is purchase orders, then
some of the main database tables from which data will have to be retrieved are

•	 LFA1 Vendor Name and Address

•	 T005T Country Texts

•	 EKKO Purchasing Document Header Information

•	 EKPO Purchasing Document Item Information

•	 EKET Scheduling Agreement Schedule Lines

•	 MAKT Material Description Texts

Here we are not getting into the issue of how to retrieve the required data. Suffice
it to say that at this stage we just have to understand that the required data will
have to be retrieved by the print program into appropriately defined internal
tables (typical client server processing). The process will involve retrieval of
specific and selective business documents through a SELECT-OPTIONS input
statement or an equivalent in the print program.

 2. Once we retrieve the data, it may be ordered or sorted by the print program
(process step (2)). The print program will set up appropriate looping procedures
to send field-wise data to the SAP script form.

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

8

 3. Process step (3) involves the receipt of data to be output by the SAP script form
from the print program. The SAP script form specifies the business document
type layout—that is, which information is to output on which area of a page? The
SAP script form will apply formatting specifications like font type, font size and
styling, etc. (through character formats and paragraph formats), to the output
information.

 4. The standard texts to be incorporated into a business document can be specified
while designing or creating the SAP script form. The standard texts are then static
to the form. Optionally, the standard texts to be incorporated into a business
document can be specified at runtime (dynamic), shown in process step (4).

 5. A form can have paragraph formats and character formats created within the
form. The paragraph formats and character formats created within the form
are applied to the information or content for formatting. The form may also
use paragraph formats and character formats created in styles and apply the
paragraph formats and character formats of styles to the information or content
to be output. Similarly, standard texts being incorporated into the form will
use paragraph formats and character formats created in styles and apply the
paragraph formats and character formats of styles to these standard texts. Process
step (5) reflects this.

 6. In process step (6) in Figure 1-4, the generation of the business document occurs.

I describe the transfer of data from the print program to the SAP script form in the section “An Overview
of SAP Script Form Elements.”

SAP Script Relationship with Client Code
SAP supplies ready-to-use forms for every standard business document type. These ready-to-use forms
are located in client 000. You can copy the ready-to-use SAP delivered forms in client 000 to the logged-in
client in the customer’s namespace (name starting with Y/Z, etc.). You can then carry out modifications and
customize the copied forms as per requirements (customized forms) of the enterprise.

When a SAP script print program refers to a form, the runtime system at first tries to locate the referred
form in the logged-in client. If the referred form is not available in the logged-in client, the runtime
system will look for the form in client 000 as a default. So if the SAP-delivered ready-to-use forms suit your
requirements without any modifications whatsoever, you can use them without copying them from client
000 into other clients. In this way, the forms in client 000 are accessible in other clients for reference in
the print programs and displaying in transaction code SE71. Forms existing in clients other than 000 are
accessible for reference in print programs and displaying in transaction code SE71 only in that client.

You can copy SAP script forms from any client (source) into the logged-in client (destination). In the
copying process, the destination client is always the logged-in client.

The client considerations described in context of forms also apply to styles.
The standard texts are incorporated into forms and also into other standard texts. The standard texts,

while being incorporated into forms or into other standard texts, must exist in that client (i.e., the logged-in
client or the client in which processing is occurring). With standard texts, unlike with forms and styles, there
is no default access to client 000.

You can copy standard texts from any client (source) into the logged-in client (destination). In the
copying process, the destination client is always the logged-in client.

In the ABAP workbench environment, all the objects that we create, like programs, ABAP dictionary
objects, screens, interfaces, classes, transaction codes, messages, etc., are cross client or client independent.
All these objects are to be assigned a package. The SAP script is one instance where you have to assign a
package and the object is client dependent as well.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

9

SAP Script Relationship with Language Key
When you create a SAP script form, the logged-in language key is stored in the header information of the
form. This is called the original language of the form. If the form exists in multiple languages, it will have
different language versions. For modifications for a form with multiple language versions, you will have to
use the following procedure:

•	 To carry out modifications to one or more form elements—page formats, windows,
page windows, paragraph formats, character formats—you need to open the original
language version of the form.

•	 To carry out modifications to the form elements text element and/or documentation,
you need to open the respective language version of the form.

For example, suppose you created a form when you were logged in with language key = EN (or English)
and then you created two other language versions of the form: German and French. Now the form exists in
three language versions: English, German, and French, but the original language of the form is English.

With this scenario in mind, if you want to carry out modifications to

•	 One or more of the following form elements—page formats, windows, page windows,
paragraph formats, character formats—you need to open the original language
version of the form (i.e., the English version of the form). If you open either the
German or French version of the form, the form elements—page formats, windows,
page windows, paragraph formats, character formats—are disabled for editing.

•	 The form element text element or documentation, you need to open the respective
language version of the form.

As mentioned in the section “SAP Script Relationship with Client Code,” all the SAP-delivered ready-
to-use forms are located in client 000. The original language of all the SAP delivered ready-to-use forms is
German. If you are editing a copy of a SAP delivered form and want to carry out modifications to one or more
of the form elements: page formats, windows, page windows, paragraph formats, character formats, you
need to open the German language version of the form.

In the context of the foregoing discussion regarding the relationship of forms with language key,
the form elements page formats, windows, page windows, paragraph formats, and character formats are
language independent and the form elements text elements and documentation are language dependent.

The language key considerations described in context of forms also apply to styles. To carry out
modifications to styles, you must open the original language version of the style.

To carry out modifications to standard text, you need to open the respective language version of the
standard text.

Navigation and Transaction Codes
In this section I describe navigations within the SAP script and the various transactions codes available to
operate SAP script.

•	 SAP script forms are maintained in transaction code SE71–form painter.

•	 On the opening screen of transaction code SE71, select Environment ➤ Style to
navigate to the screen for maintaining styles. Alternatively, you can use transaction
code SE72 to navigate directly to the opening screen for maintaining styles.

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

10

•	 To navigate to the screen for maintenance of standard texts, select Environment ➤

Standard Text from the opening screen of transaction SE71. Alternatively, you can
use the transaction code SO10 to navigate directly to the screen for maintenance of
standard texts.

•	 To view available fonts, font particulars, and maintenance of fonts, navigate from the
SE71 opening screen with the menu option Environment ➤ Administration ➤ Font.
You can navigate to the font maintenance screen directly with transaction code SE73.

•	 For format conversion, navigate from the SE71 opening screen with the menu option
Environment ➤ Administration ➤ Format Conversion. Using transaction code SE74,
you can navigate to the format conversion screen directly.

•	 For settings, navigate from the SE71 opening screen with the menu option
Environment ➤ Administration ➤ Settings. Using transaction code SE75, you can
navigate to settings screen directly.

•	 To import graphics into the SAP database, navigate from the SE71 opening
screen with the menu option Environment ➤ Administration ➤ Graphics. Using
transaction code SE78, you can navigate to import graphics screen directly.

•	 Use transaction code SE76 for the translation of SAP script forms.

•	 Use transaction code SE77 for style conversion (i.e., style translation).

Figure 1-5. Transaction Code SE71—Form Painter: opening screen.

Figure 1-5 shows the opening screen of transaction code SE71—Form Painter.
Table 1-1 summarizes the navigations and different transaction codes for operating SAP script.

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

11

Transaction Code SE74—Format Conversion
Transaction code SE74 has the following options:

•	 Import of RTF document template files (SAP environment) into forms and styles.

•	 Export from forms and styles into RTF document template Files (SAP environment).

•	 Import Word document templates (Prototypes) into RTF document template files.

•	 Format conversions in SAP script texts. With this option you can copy all or specific
character formats and paragraph formats from source form or style to a destination
form or style.

Transaction Code SE75–SAP script Settings
The following options are available in transaction code SE75:

•	 Maintain text objects (TEXT, etc.) and text IDs (ST, etc.). Ready-to-use text objects
and text IDs are available. You can create your own text objects and text IDs as well.

•	 Maintain graphical objects and graphical IDs. Ready-to-use graphical object
(GRAPHICS) and graphical ID (BMAP) are available. You can create your own
graphical objects and graphical IDs as well.

•	 Maintain standard symbols. Ready-to-use standard symbols are available like for
month names, (symbol name = %%SAPSCRIPT_MMMM_01 and symbol value =
January), month short names, week names, week short names. Standard symbols
are language dependent. You can create your own standard symbols. When you
specify a standard symbol in a SAP script text element, it will be replaced by its value
at runtime.

Table 1-1. SAP Script Navigations

Trans. Code Description Navigation Through Menu Selection from SE71 Screen

SE71 Forms maintenance

SE72 Style maintenance Environment ➤ Style

SE73 Font maintenance Environment ➤ Administration ➤ Font

SO10 Standard text maintenance Environment ➤ Standard Text

SE74 Format conversion Environment ➤ Administration ➤ Format Conversion

SE75 SAP script settings Environment ➤ Administration ➤ Settings

SE78 Import graphics Environment ➤ Administration ➤ Graphics

SE76 SAP script form translation

SE77 SAP script style conversion

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

12

Fonts in SAP Script Environment
The SAP script environment supports its own font families. These font families contain some of the
commonly used fonts: Courier, Gothic, Times Roman, and so on. But some other commonly used fonts in
Microsoft office, Arial, Comic Sans MS, etc., are not available in the SAP script environment. If you want to
use these Microsoft office fonts in the SAP script environment, you need to import them. Only the true type
fonts (ttf font files) can be imported into the SAP script environment.

Font Families
The SAP-delivered as well as -imported fonts, font sizes, and font styling available in the SAP script
environment can be viewed through transaction code SE73. To view the available (delivered and imported)
fonts, navigate to the opening screen of transaction code SE73 as shown in Figure 1-6.

Figure 1-6. Transaction code SE73 opening screen–SAP script font maintenance

If you select the first Radio button and click the display or change button, all the font families available
in the SAP script environment are listed (see Figure 1-7).

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

13

A preview of the fonts is not available. I have marked the font attribute check box for a font’s being a
proportionate or non-proportionate in Figure 1-7.

Proportionate and Non-proportionate Fonts
With the non-proportionate fonts (also called the mono-spaced fonts), all the characters occupy the same
horizontal space or width. A typical example of non-proportionate font is the courier font family.

With the proportionate fonts, each character occupies different horizontal space or width. For example,
the slender characters like 1 (numeral one) or I (ninth alphabet) occupy less horizontal space when
compared to the elongated characters like 8 or A, B, and so on. The Times Roman font family is a typical
example of a proportionate font.

Figure 1-8 shows the output of three ten-digit numbers using the proportionate and non-proportionate
fonts. The first number consists of all 1s (slender character), the second number consists of all 8s
(elongated character). The third number is the sum of the first two numbers—all 9s (elongated character).
The three numbers are presented in a proportionate font on the left side and in a non-proportionate font
on the right side.

Figure 1-7. SAP script Font Maintenance–fonts/font families available

Figure 1-8. Presentation of numeric data in proportionate and non-proportionate fonts

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

14

As you can observe in Figure 1-8, when the data is presented using proportionate fonts, numeric digits
1 and 8 are substantially misaligned. Whenever presenting currency amounts, inventory quantities or any
numeric data, you should take care as not to use proportionate fonts. The usage of a proportionate font in
the presentation of numeric data will result in skewed appearance (difficult to read and discern) as shown in
Figure 1-8.

System Fonts
On the opening screen of transaction code SE73, when you select the second Radio button and click the
display or change button, the screen for system fonts will appear (see Figure 1-9). The system fonts are a list
of fonts with the available sizes and the available styling: bold and italic. The font size is indicated as deci
points or points multiplied by ten (a point is 1/72 of an inch). So the font size 16 points is indicated as 160,
and so on. When assigning font sizes in the forms and styles environments, a pop-up list of font sizes is not
available; the font sizes have to be entered manually. When entering the font sizes manually, you must be
sure that you only enter the font sizes listed in the system fonts. Similarly, before enabling styling, such as
bold and/or italic, in the forms and styles environment for a font size, you should cross-check that they are
available through the reference to the system fonts. The system font list shown in Figure 1-9 is a partial list of
the font courier.

Figure 1-9. Font maintenance–system fonts

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

15

Printer Fonts, System Bar Codes, and Printer Bar Codes
Under Printer Fonts (the third Radio button on the SE73 opening screen), you can view the font versions
already assigned to print devices. You can also assign font versions to print devices.

Under System Bar Codes (the fourth Radio button on the SE73 opening screen), you can view the bar
codes available. You can create your own bar codes as well.

Under Printer Bar Codes (the fifth Radio button on the SE73 opening screen), you can view the bar
codes already assigned to print devices. You can also assign bar codes to print devices.

Chapter 4 will demonstrate and cover the bar code output.

True Type Font Installation
You can install or import additional fonts in the SAP script environment. The additional fonts to be installed
have to be true type and must have been installed as true type font files in the operating system. The fonts to
be installed must have the operating system font files and font matrix files available.

The installation of fonts from the operating system files into the SAP script environment cuts across
operating systems and output device drivers. It involves the installation of font matrix files into the SAP
script environment.

Installing fonts from the operating system into the SAP script environment is an elaborate process and
involves the execution of operating system commands. You can refer to the SAP online document
“SAP Printing Guide (BC-CCM-PRN)” for a detailed description of how to do it.

Here, I am demonstrating a procedure is to install a non-proportionate ttf file (Arial monospaced for SAP)
from the Microsoft windows operating system into the SAP script environment.

For the non-proportionate font we are installing, we do not intend to use font matrix file.
The font installation procedure generally involves the font versions regular, bold, and italic and bold +

italic to be installed in separate steps. The non-proportionate font Arial monospaced for SAP does not have
an italic version. So you need to perform two steps, one for installation of the regular version of the font and
the second step for installation of the bold version of the font. The procedure involves the assignment of
installed font versions to device types (printer devices).

Installing the Font
To install ttf files from the Microsoft (MS) windows operating system, navigate to the transaction code SE73
opening screen. At the bottom, click the button True Type Font installation. A screen will appear as shown in
Figure 1-10.

Figure 1-10. True type font installation—Regular I

http://dx.doi.org/10.1007/978-1-4842-3183-8_4

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

16

Install the regular version of the non-proportionate ttf Arial monospaced of SAP from the MS windows
operating system. We entered the name of the font to be installed as YARIAL_M (maximum namespace
of eight characters). A font name need not start with Y or Z, but it is a good practice to have installed font
names starting with Y/Z. This is the name by which the font will be referred to in the SAP script environment.
We entered the ttf operating system file name along with the drive, folder location, and file’s secondary name
(ttf). The entry of the file name along with the folder location and the file’s secondary name is necessary.
The name of the font file for regular version is arimon__.TTF. The value C:\WINDOWS\FONTS\arimon__.
TTF has been entered in the field Name of the font file as shown in Figure 1-10. Since the regular version of
the font is being installed, we must ensure that the check box fields Font attribute BOLD and Font attribute
ITALIC are disabled. Next, we should click the execute button or function key F8. An open file dialog box
appeared as shown in Figure 1-11.

Figure 1-12. True type font installation—Regular III: prompt for workbench request

Figure 1-11. True Type Font Installation—Regular II

In the open file dialog box, select the Arial mono spaced for SAP font ttf and click the open button.
A prompt for workbench request appears. Click the Continue button. Figure 1-12 shows the prompt for
workbench request.

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

17

Figure 1-13. True type font installation—Regular IV: Prompt for RTF font info

A dialog box to enter RTF font info should appear. Enter the RTF font info as shown in Figure 1-13 and
click the Continue button.

The RTF info has been entered based on the following guidelines available at the site:

http://msdn.microsoft.com/en-us/library/aa140301(v=office.10).aspx

If the ttf file gets installed successfully, it is reported through a screen like the one shown in Figure 1-14.

Figure 1-14. True type font installation—Regular: Successful installation)

http://msdn.microsoft.com/en-us/library/aa140301(v=office.10).aspx

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

18

We installed the regular version of the font Arial monospaced for SAP. We repeated the same steps to
install the bold version of the same font. The Font name should be the same as for the regular the version (i.e.,
YARIAL_M). The name of the font file for the bold version is arimonbd.TTF, which must be entered in the
field Name of font file along with the folder name, etc. The check box Font attribute BOLD must be enabled.
Figure 1-15 shows the initial screen with values to install the bold version of the Arial monospaced for SAP.

An italic version of this font does not exist. So we will not install the italic and bold + italic versions of this font.
We can confirm the successful installation of the font versions by navigating to the Font Families and

System Font screens from the SE73 opening screen. Figure 1-16 is a screenshot of System Font showing the
YARIAL_M font entries of different font sizes (sizes are in deci points or points multiplied by ten).

Figure 1-15. True type font installation—Bold version

Figure 1-16. System font screen showing installed true type font YARIAL_M

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

19

We will have to assign the installed font versions and font sizes to a device type—that is, a physical
output device of a particular make and model.

Assigning the Font to a Device Type
The device types are assigned to output devices (logical output devices). To know the device types
supported by the application server(s), you can use the transaction code SPAD. On the opening screen of the
transaction code SPAD, select an output device from the pop-up list. In the IDES server we used, the single
output device is LP01. After entering the output device, click the first display button. Figure 1-17 shows the
screen.

We will have to assign the installed font versions and sizes to the device type. (In our case, the device
type is HPLJIIID.)

To assign installed font versions and sizes to the device type, you should navigate to transaction code
SE73. On the opening screen of transaction code SE73, select the Radio button Printer Fonts and click the
change button.

The device type HPLJIIID can be located in the device type list. Double-click the device type HPLJIIID.
The font versions and sizes assigned to the device type HPLJIIID should appear as in Figure 1-18.

Figure 1-17. Transaction code SPAD—output device and device type

Figure 1-18. Screen—assign font version and size to device type

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

20

To assign font versions and sizes to a device type, click the Create button on the application toolbar
(the third button from the left). When you clicking the Create button, a dialog box pops up as in Figure 1-19.

As you can observe from Figure 1-19, we are assigning font version YARIAL_M Regular (installed
earlier), size 280 deci points (28 points) to device type HPLJIIID. The font size has to be specified in deci
points only. We are now assigning the regular version of font YARIAL_M to the device type, so we ensured
that the check boxes Bold and Italic are disabled.

The value in the field Characters per Inch (4.28) has been calculated on the basis of the value ten
characters per inch for a font size of 120 deci points (12 points).

The value in the fields Print control 1 and Print control 2 (SF274) is the next incremental value in the SF
series (Print control 1 and Print control 2 are for portrait and landscape mode, respectively).

As the installed font YARIAL_M is non-proportionate, you must ensure that the check box Proportionate
is disabled. We have not installed the font matrix files, so the check box Font is scalable is disabled.

After filling in the field values in the dialog box of Figure 1-19, click the Continue button. A message
alert will appear, like Device type HPLJIIID has no print control of SF274. Click the Continue button of the
message alert.

Position the cursor on the font YARIAL_M and click the generate button on the application toolbar.
(Third button from the right)

The font version YARIAL_M, regular, size 280 deci points has been assigned to device type HPLJIIID.
Repeat the aforementioned steps to assign the font YARIAL_M, version bold, size 280 deci points to

device type HPLJIIID. Ensure that the check box Bold is enabled and the check box Italic is disabled in the
dialog box as shown in Figure 1-19.

The value in the fields Print control 1 and Print control 2 is the next incremental value in the SF series
(i.e., SF275).

Figure 1-19. Assign font version YARIAL_M regular, size 280 to device type

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

21

We have to create the print controls SF274 and SF275. To create the print controls, you have to be on
the screen SAP script Font Maintenance: Change Printer Fonts for the device type HPLJIIID. This is the same
screen we used to assign font versions and sizes to the device type (the screen in Figure 1-19). Position the
cursor on the print control SF274. Click the application toolbar button Maintain Print Control (second
button from the right). The dialog box for maintaining print controls, shown in Figure 1-20, should pop up.

Copy and paste the value in the field Control Char.Seq. from the COURIER font (i.e., from SF001).
Accept default values for other fields on the screen. Click the Continue button, which creates the print
control SF274.

In a similar manner, we can create the print control SF275.
We have installed the regular and the bold versions of the non-proportionate Arial monospaced for

SAP font from the operating system into SAP script as YARIAL_M. This font does not have an italic version.
We assigned this font, only for size 280 deci points, to the device type HPLJIIID. So, in the SAP script
environment, we can only use the size 280 deci points of this font. If we want to use other sizes of this font, we
will have to perform the assignment process of the font size to the device type, a cumbersome process. If the
font matrix file of the font is installed, this may not be necessary. If the font matrix file of the font is installed
in the SAP script environment, we can enable the check box Font is scalable (Figure 1-19) when assigning the
font to a device type. In this manner, you can avoid assigning different font sizes to a device type.

I will use the installed font YARIAL_M in the demonstrative exercises.

A Note on Naming Convention of Objects in the Book
The maximum namespace for a font name is eight characters. Whenever possible, we will be using a uniform
naming convention for objects created for demonstration and as part of hands-on exercises in the book. In
the present context of naming the imported font, we do not have enough characters to be able to identify the
imported font name as per our naming convention.

As per our naming convention, all objects created for demonstration and as part of hands-on exercises
will start with YCH##, ## indicating the chapter number we are in, like YCH01 . . . for objects created in
Chapter 1, and so on. In most cases, we are also indicating a specific workbench object serial number like
YCH01_01_<prog> for the first program in the chapter 1, YCH01_01_<view> for the first view in Chapter 1, and
so on. Sometimes the namespace does not have enough characters to provide for a serial number. Sometimes
we are only creating one or two objects categories and not specifying a serial number.

I suggest that you create your objects with names starting with the letter Z; the remaining characters in
your object names can be the same as my object names. With this naming convention for your object names,
co-relating your objects with my objects becomes easy. You can upload my objects from the E-resource into
your server. My uploaded objects can serve as reference. Please read the document A Guide to Use E-resource
available in the E_RESOURCE folder for this book (www.apress.com/9781484212345).

Figure 1-20. Create print control SF274

http://dx.doi.org/10.1007/978-1-4842-3183-8_1
http://dx.doi.org/10.1007/978-1-4842-3183-8_1
http://dx.doi.org/10.1007/978-1-4842-3183-8_1
http://www.apress.com/9781484212345

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

22

Form Graphics–Import Graphics
You can incorporate graphics like a company logo into a form. The graphics to be incorporated into a form
must be in the document server of the SAP database. You can import either a BMP (file saved with Microsoft
windows paint) or a TIF graphic file of the operating system into the document server of the SAP database.

I will demonstrate the import of a BMP graphic file (created in Microsoft windows paint) into the
document server. This imported graphic will be incorporated into forms as a company logo subsequently in
our exercises. Before the BMP file is imported, you must ensure that the size of the graphic in the originating
file is such that it can be incorporated as a company logo—approximately between one and two inches
square. When you create a graphic in Microsoft windows paint, your actual graphic image may be lying in
the top left corner, but by default, the white background of the graphic occupies a full page. Ensure that
you remove the white background. We are using a simple graphic file which will serve the purpose of a
demonstration. For the graphic import being demonstrated here, the originating BMP file looks like the one
in Figure 1-21:

Having identified the BMP file, let us go about importing it into the document server of the SAP
database.

To import a graphic into the document server of the SAP database, we navigate to the opening screen
of transaction code SE78. We click the Stored on Document Server node and then click the Graphics General
Graphics subnode. Select the BMAP Bitmap Images folder. The screen should looked like the one in Figure 1-22.

Figure 1-21. Import graphics—originating BMP file opened in MS windows paint

Figure 1-22. Import graphics—transaction code SE78 opening screen

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

23

Click the import button on the application toolbar, the first button from the left. The dialog box for
graphic file selection, etc. appears as shown in Figure 1-23.

In the dialog box, enable the Color Bitmap image check box; enter a Name and a Description for the
graphic. The name of the graphic need not start with Y/Z, but it is a good practice to do so. The graphic
name was entered as YCH01_COMPANY_LOGO, following our naming convention. The default values were
accepted for the Print Attributes. To make a selection of the BMP graphic file, press function key F4 in the
field File name. The file selection dialog box appears. Select the BMP graphic file with the folder as:
C:\temp\GRAPHIC_LOGO.bmp. After all the fields are entered, the screen appears as in Figure 1-24.

Figure 1-23. Import graphics—dialog box to select graphic file, etc

Figure 1-24. Import graphics—dialog box with all the values entered

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

24

Click the Continue button of the dialog box. If the graphic BMP file is successfully imported, a status
message appears on the status bar as shown in Figure 1-25.

This was the procedure to import a graphic BMP file into the document server of the SAP database.
A preview of the imported graphic is available by clicking the preview button on the application toolbar
(the first button from the right). Figure 1-26 shows a preview of our imported graphic.

We will be using the data of the IDES server. The IDES server contains data of multiple company codes.
The image imported into the SAP document server signifies this. You can use any other image of your choice.

The imported graphics are client independent; they can be accessed in clients other than the one where
they were imported. No package needs to be assigned to the imported graphics.

The imported graphics can be deleted—the button on the application toolbar is available to perform
the operation.

Figure 1-25. Import graphics—graphic BMP file successfully imported

Figure 1-26. Imported graphics preview

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

25

We will use this imported graphic in our exercises. The BMP file is also available in the E-resource if you
want to use it.

Forms: Searching and Classification
Before proceeding to elaborate descriptions of form elements, I would like to touch upon the following two
aspects of the form:

•	 Form classifications and sub classifications

•	 Searching for specific forms

The SAP-delivered ready-to-use forms residing in client 000 are assigned to classifications and
subclassifications based on functional modules and submodules with which the form is associated. For
example, the SAP ready-to-use form for purchase order is assigned to classification Materials Management
and subclassification Purchasing. The name (technical name) of this form is MEDRUCK. Another example
is the SAP ready-to-use form for delivery note, which is assigned to classification Sales Distribution,
subclassification Shipping, and sub-subclassification Delivery notes, picking lists. The name (technical) of
this form is RVDELNOTE.

The classifications (highest-level nodes), subclassifications (second and lesser levels of nodes), down to
the form (last level of node) constitute a tree-like hierarchical structure. This tree-like hierarchical structure
of forms and classifications is referred as the SAP script Form Tree.

Most SAP-delivered ready-to-use forms are assigned to classification and subclassification. Forms not
assigned to any classification, subclassification nodes are assigned to the unclassified node.

To view the SAP script Form Tree, navigate to the opening screen of transaction code SE71. In the field
Form, press function key F4. The screen shown in Figure 1-27 will appear.

Figure 1-27. SAP script Form Tree

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

26

If we want to locate the form for purchase orders, click the node Materials Management and then click
the subnode Purchasing as shown in Figure 1-28:

The SAP script Form Tree facilitates the location and access to forms, especially by SAP functional
consultants. The SAP script Form Tree is somewhat like an application hierarchy. The name of the
purchasing document form is MEDRUCK. This is the technical name by which ABAP developers will refer to
it, just like any other object name in the ABAP workbench environment.

The unclassified node appears as a kind of subnode under other nodes. This appearance of the
unclassified node as a kind of subnode under other nodes is the same as the unclassified node appearing on
the SAP Script Form Tree opening screen without any node expanded. Its appearance as a subnode facilitates
the user’s ability to view unclassified forms from different nodes and subnodes.

Recalling the relationship of forms with the client code, the forms which will be visible in the SAP script
Form Tree will be all the language versions of forms residing in client 000 as well as all the language versions
of forms residing in the logged-in client.

As part of our hands-on exercises, when we create custom forms—that is, modify copies of SAP-
delivered ready-to-use forms—we can classify them. If we do not classify them, the forms will be assigned to
the unclassified node.

We can create our custom classifications. In fact, we can totally manipulate the SAP script Form Tree to
our requirements: insert, move, edit, and delete nodes and subnodes. The manipulation of the SAP script
Form Tree will be demonstrated following the hands-on exercises when we create and modify forms and
classify them in Chapter 2.

An alternative to locating forms through the SAP script Form Tree is locating forms through a search dialog
box. We can invoke the search dialog box by clicking the fifth button from the left on the application toolbar of
the SAP script Form Tree screen. This application toolbar button (fifth from the left) is marked in Figure 1-27
(technical search function). Figure 1-29 shows the search dialog box referred as Find Forms.

Figure 1-28. SAP script Form Tree—locating the form Purchase Order

http://dx.doi.org/10.1007/978-1-4842-3183-8_2

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

27

Figure 1-29. Find Forms—dialog box

For the value(s) entered in the dialog box of Figure 1-29, all the language versions of forms whose names
start with MED in client 000 and the logged-in client must appear in the list. Figure 1-30 shows part of the
Find Forms list.

Figure 1-30. Result of Find Forms.

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

28

The location and access to forms differed from the location of other objects in the ABAP workbench
environment. Additionally, forms are associated with classifications. This section described two aspects of
forms: location and classification.

Dimensions in SAP Script Environment
In the SAP script environment (forms, styles, and standard texts), you can specify dimensions in the
following units:

•	 Inches (IN)

•	 Centimeters (CM)

•	 Millimeters (MM)

•	 Points–1/
72

 of an inch (PT)

•	 Twips–1/
1440

 of an Inch or 1/
20

 of a point (TW)

•	 Number of lines for vertical measure; example: 10 lines top margin (LN)

•	 Number of columns or characters for horizontal measure; example: 10 characters/
columns left margin (CH)

You need to specify dimensions for page windows; margins, indents, and so on, of paragraph formats
and tab spaces. When specifying dimensions, you can use any of the units from the foregoing list.

A Detail on SAP Script Form Elements–A Tour of the
Form MEDRUCK
A form maps to the layout (what information appears where, in what format) of a specific business
document type: purchase order, sales invoice, and so on.

Most concepts and features of SAP script involve the forms and form elements. Styles contain the
elements paragraph formats and character formats. The standard texts contain the element text elements.
The forms also contain paragraph formats, character formats, and text elements. So if the paragraph formats,
character formats, and text elements are covered in the context of forms, we need not cover them again in the
context of styles and standard texts.

The succeeding sections contain a detailed description of the form elements with illustrative examples.
I explain the form elements mostly through the SAP-delivered ready-to-use form MEDRUCK. The form
MEDRUCK is the most commonly known SAP-delivered ready-to-use form. The form MEDRUCK is for the
generation of purchase orders. Recall that all SAP-delivered ready-to-use forms are located in client 000.

The objective is not for you to completely understand the working of the form MEDRUCK. The objective
is to present the SAP script form elements and their environment in a non-abstract context. By the time you
are through with the tour of the form MEDRUCK, you will have a fair idea of its working.

Before proceeding to the form elements’ descriptions, I will provide an overview of the form’s
application toolbar. On the opening screen of the transaction code SE71—Form Painter: enter the name of
the form as MEDRUCK and the language as DE (German). Click the display button or function key F7.

When you enter a form, you are, by default, on the Administrative Data screen of the form element
header. You can switch to the Basic Settings screen of form element header by clicking its button. You can
switch or navigate to the different elements of the form by clicking the button of the corresponding form
element. Figure 1-31 shows the application toolbar of a form screen.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

29

The first button to the right of the application toolbar represents the form documentation, to navigate to
form element documentation. This button contains only an icon without any text.

To navigate to the form element windows, click the button Windows. The screen will appear as in
Figure 1-32.

When you navigate to the screen of a particular form element, the corresponding button of the form
element disappears on the application toolbar. In Figure 1-32, on the screen of form element windows, two
buttons on the application toolbar are marked (second and third buttons from the left; these two buttons
contain icons without any text).

By clicking the second button from the left on the application toolbar, you navigate to the form element:
text elements. This button appears on the application toolbar only when you are either on the windows
screen or on the page windows screen. The form element text elements is located in the form element
windows (Figure 1-3).

By clicking the third button from the left on the application toolbar (picture of a hat), you navigate back
to the form element header.

The navigation from one form element to another is available through the menu option Goto as well.
The following sections provide detailed descriptions of form elements.

Figure 1-31. Application toolbar of a form

Figure 1-32. Screen for Form element: Window

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

30

Form Element—Header
The first of the form elements is the header. A header contains attribute information like created by, last
changed by, package, and so on (maintained by the system), as well as substantial extra information.
The header is further categorized into the following:

•	 Administrative Data

•	 Basic Settings

Figure 1-33 shows a screenshot of the Administrative Data of the form MEDRUCK.

The form in Figure 1-33 has been opened in display mode in the original language version (i.e., DE).
The message on the status bar is alerting the user of the client 000 to the location of the form.

The field Classification is blank. The form MEDRUCK is assigned a two-level classification, Materials
Management ➤ Purchasing. If a form is assigned a single-level classification, the classification appears in
this field, Forms assigned to multilevel classifications as well as unclassified forms will contain blanks in
the field Classifications. When we create or define custom nodes, subnodes and assign our custom forms
to subnodes, the field Classification of our custom forms contains the immediate subnode text to which the
custom form is assigned. (Refer to the concluding part of the section “Classifying forms” in Chapter 2.)

The Radio buttons at the left bottom of the screen specify the form translations. When you create a
new form, the button marked as Languages for Selection enables you to select languages into which the new
form can be translated or the languages in which the form can be maintained. When you press this button,
a dialog box appears listing all the SAP supported languages with check boxes to enable or disable language
selections for translation.

Figure 1-33. Form element—header: Administrative Data

http://dx.doi.org/10.1007/978-1-4842-3183-8_2

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

31

Other fields on the screen of Figure 1-33 are self-explanatory.
When you click the button Basic Settings, a screen as shown in Figure 1-34 will appear.

Basic Settings consists of several elements.

Set Up Page Area
You can specify the page alignment through Radio buttons: Portrait Format or Landscape Format. You can
specify the page size or dimensions through a pop-up list. In Figure 1-34, the page size DINA4 has been
assigned. DINA4 has the following dimensions: 210MM X 297MM in Portrait Format. DINA4 is the German
name of A4 size stationery. Most common stationery sizes like A3, letter, and so on, are available in the
pop-up list.

Next you can specify the vertical density in terms of lines/inch and horizontal density in terms of
characters/inch. When you specify dimensions in lines and characters within a form, the SAP script
form maintenance system uses the values assigned here to convert the lines and characters into physical
dimensions (inches, centimeters, etc.).

You have to specify the page format which should output first when you generate the business
document. This is entered in the field First page. For the MEDRUCK form, the value assigned is FIRST.
Assigning a value to the field First page is mandatory.

Figure 1-34. Form element—header: Basic Settings.

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

32

Default Values for Text Formatting Area
In this area, you specify the default paragraph which is mandatory. The default paragraph value assigned is
AS. You further specify the tab spaces. The tab space specified is 2 CH (2 characters).

Next you assign font family and font size. The font family assigned is Courier and the font size is 12PT
(or points). The dimension for font size is points. You can specify the styling—Bold, Italic and Underlined—
through the check boxes. For Underlining, you can further specify Spacing, Thickness, and Intensity.

The Basic Settings field values apply to the entire form.

Form Element—Page Formats
Recall from the section “SAP Script–A Brief Description of Its Components,” we decided to refer to the form
element page as page format. Also recall that the form element page format maps to a format of a business
document type. A business document can output in multiple formats.

To navigate to the form element page format, click the button Page. The screen for the form element
page format will look like the screen in Figure 1-35.

In Figure 1-35, the top section under the heading Pages is a listing of page format elements. The form
MEDRUCK has two page formats: FIRST and NEXT. You can select one element of the list by double-clicking
the element. When you initially enter the screen, the first element in the list is selected by default; the
selected element appears in blue with default screen color settings. When you navigate to any of the other
form elements—windows, page windows, paragraph formats and character formats—a similar element list
will appear.

Figure 1-35. Form element—Pages format: FIRST

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

33

The namespace of form elements page formats, windows, and page windows is a maximum of eight
characters.

In Figure 1-35, the page format FIRST has been selected. You provide meaning or short text for every
element. In the lower part of the screen, under the section on the left, Standard Attributes, the particulars
of the selected form element page format appear. The first two fields in the section are Page, containing the
value FIRST, and Meaning, or the short text. This is the name of the page format element—namespace of
eight characters, case insensitive. All form element names are case insensitive. In the next field Next page
is entered in the value NEXT. This is an indication to the SAP script runtime system to output which page
format after the FIRST. Entry in this field is mandatory.

In the area print Attributes, in the field Resource Name, you can optionally enter a paper tray name as
the source of stationery.

In the field Print mode, you can specify through a pop-up list whether you require printing on one side
or both sides of the stationery. Table 1-2 provides pop-up list values with descriptions.

Table 1-2. Page Format—Standard Attributes—Print Mode

Print mode Description

Default: no change of print mode

S SIMPLEX MODE

D DUPLEX MODE (Printing on Both Sides)

T TUMBLE DUPLEX MODE (Printing on Both Sides)

Under the section on the bottom right of the screen Page Counter, you can indicate the how the
page number will be operated upon and output for the page format. The field Mode in this section can be
assigned a value from a pop-up list. A list of available values from the pop-up list along with descriptions and
comments appears in Table 1-3.

Table 1-3. Page Format—Page Counter—Mode

Mode Description Comments

INC Increasing counter by 1 Running number. Page Format NEXT has been assigned this value.

HOLD Not changing counter Do not disturb counter value.

START Setting counter to 1 Initialize at the start of a new business document. Page Format
FIRST has been assigned this value. (Figure 1-28)

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

34

The next field under the section Page Counter is Numbering Type. You can assign a value to the field
from a pop-up list. The field denotes how the page number will output on the business document (decimal
numeral, Roman numeral, letters, etc.). The pop-up list values with the descriptions appear in Table 1-4.

In the field Output Length in the section Page Counter, you can optionally enter the number of columns
to output the page number.

The field Uppercase (check box) in the section Page Counter enables you to make Roman numerals and
letters of page numbers appear in upper case only.

I have described all the fields of the screen of page format FIRST.
Figure 1-36 shows a screenshot of page format NEXT.

In Figure 1-36, note the value of field Next page as NEXT. This value indicates which page format to use
after the first physical page using page format NEXT is full.

The value of field Mode is INC; that is, increment the page counter by 1 every time a physical page is full.

Table 1-4. Page Format—Page Counter—Numbering Type

Numbering Type Description Comments

ARABIC Numbering with Arabic or decimal numerals Numerals 1, 2, 3 . . .

CHARACTER Fixed character

LETTERS Numbering with letters

ROMAN Numbering with Roman numerals Roman numerals I, II…

Figure 1-36. Form element—Page format: NEXT

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

35

Form Elements–Windows and Page Windows
Our discussion in this section will involve both windows and page windows. The two form elements go
together. A page window cannot exist without being assigned to a window. A page window does not have
an identification or name of its own. Practically, a window not assigned to a page window (unused window)
makes no sense. Hypothetically, you can create a window and not assign it a page window, but then this is a
waste.

The form element window is independent of the form element page format. A window is not located
inside a page format. A page window is located inside a page format, and a page window has to be
mandatorily assigned to a window.

For window types constant, variable, and graph, only one page window of a page format can be
assigned to a window. There can be any number of constant, variable, and graph windows in a form.

For window type main, multiple (maximum of 99) page windows of a page format can be assigned to the
main window. There can only be one main window in a form. The name of the main window can be ‘MAIN’ only.

To navigate to the windows screen in the form MEDRUCK, click the button Windows on the application
toolbar.

Figure 1-37 shows a screenshot of the windows of the form MEDRUCK:

As you can observe in Figure 1-37, there are ten windows in the form MEDRUCK. Eight of the ten windows
are visible in the element list in Figure 1-37. Scrolling down will make the rest of the two windows appear.

The list appears in alphabetic ascending order.
A default paragraph can be optionally assigned to a window (bottom of Figure 1-37). This assignment

overrides the default paragraph assignment in the basic settings of the form header.
A meaning or short text is provided for every element.

Figure 1-37. Form element—Window: ADDRESS

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

36

Other fields in Figure 1-37 are self-explanatory.
I am diverting a bit for a while from the form MEDRUCK to explain the relationship between page

formats, windows, and page windows as well as the concept of windows and page windows in the context
of presentation or output of data—especially repetitive data. The term “repetitive data” is explained in the
section “Window Type Main—Operation and Considerations.” I will revert to the form MEDRUCK after I
have discussed the relationship between page formats, windows, and page windows, as well as the concept
of windows and page windows in the context of presentation of data.

Relationship Between Page Formats, Windows, and Page Windows
I will explain the relationship between the form elements page formats, windows, and page windows with a
specific example. Consider a form YCH01_DFRM. Let it consist of the following two page formats:

•	 PAGE_1

•	 PAGE_2

Let it consist of the following two windows:

•	 VRWIND (variable window)

•	 CNWIND (constant window)

A page window is associated with a page format and a window.
For the variable window VRWIND, let two page windows corresponding to each of the page formats,

PAGE_1 and PAGE_2, be assigned to it. Figure 1-38 shows the relationship of the page formats PAGE_1 and
PAGE_2 the variable window VRWIND, and the page windows.

Figure 1-38. Relationship between page formats, variable windows, and page windows

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

37

The dimensions of the two page windows (i.e., left margin, top margin, width, and height) assigned to
the variable window VRWIND have been deliberately made different.

For the constant window CNWIND, let two page windows corresponding to each of the page formats
PAGE_1 and PAGE_2 be assigned to it. Figure 1-39 shows the relationship of the page formats PAGE_1,
PAGE_2, constant window CNWIND, and the page windows.

The dimensions of the two page windows (i.e., left margin, top margin, width, and height) assigned to
the constant window CNWIND are identical.

The relationship between page formats, a graph window, and page windows is identical to the
relationship between page formats, a variable window, and page windows depicted in Figure 1-38.

It is apparent that you can avoid using constant windows.
I will elaborate on the relationship between page formats, the main window, and page windows with

specific examples during coverage of the form element text elements.

Window Type Main—Operation and Considerations
A main window differs considerably from the other window types in operation and behavior. When a new
form is created, the main window gets created by default automatically. The main window is to be used for
data (data for most part means fields) which is repeating within a page and repeating from page to page.
I will refer to this data which is repeating within a page and repeating from page to page as repetitive data.

Figure 1-39. Relationship between page formats, constant windows, and page windows

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

38

To clarify the idea of presentation of repetitive data, let us revert to the business document type
purchase order introduced in the opening section of this chapter. The emphasis now is on the output
of items/materials of the purchase order. The data of items—material code, description, quantity, and
amount—in the purchase order or most business documents constitutes the repetitive data. In terms of SAP
table fields, the repetitive data in the purchase order is MATNR, MAKTX, MENGE, MEINS, and NETWR.
Figure 1-40 reproduces the purchase order introduced in the opening section of this chapter.

Figure 1-40. Purchase order—emphasis on output of items

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

39

The purchase order shown in Figure 1-40 runs for three pages: 1/3, 2/3, and 3/3.
A purchase order or a business document might contain one or n number of items. You assign an area

of a physical page for the item data to be output. This area can accommodate certain number of items in a
single physical page. If the number of items in a purchase order exceeds the number of items which can be
accommodated in a single physical page, the document must extend and continue to output in the next page
and the next page and so on until all the items in a purchase order are output.

The output of repetitive data is implemented in the forms by locating the repetitive data in a page
window assigned to the main window.

When only one page window of a page format is assigned to the main window, the page window
behaves like a stretchable frame. As you continually fill such a page window with data, when the current
page is full, a page break is generated automatically, the output of the data continues in the page window on
the next page. This process continues until the filling of data into page window ceases.

If more than one page window of a page format is assigned to the main window, then the process of
filling data in the page window is as follows: Let us consider the case of two page windows of a page format
assigned to the main window and the same process will apply to the case of more than two page windows of
a page format assigned to the main window.

When two page windows of a page format are assigned to the main window, data filling will take place
in the first page window of a page format assigned to the main window. When the first page window of a
page format assigned to the main window is full, data filling by default will continue in the second page
window of a page format assigned to the main window on the same page. When the second page window
of a page format assigned to the main window is full, an automatic page break occurs, and data filling will
continue in the first page window of a page format assigned to the main window in the next page. This
process continues until data filling ceases. The operation of main window with a single page window and
multiple page windows will be demonstrated in demonstration exercises III and IV.

Window Types Other Than Main Window–Operation and Considerations
For the three window types—constant, variable, and graph—the contents of the page windows assigned
to these window types appear on every physical page which outputs for the page format in which the page
windows exist.

For the window type graph, if the size of the graphic/picture is larger than the page window size,
the graphic/picture will overshoot the boundaries of the page window and occupy the neighboring page
windows.

When a page window is assigned to any of the two window types—constant and variable—and you try
to include more data more than the physical size of this page window can accommodate, the extra data gets
truncated. The size of a page window is essentially its height and width.

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

40

Form Elements–Windows and Page Windows: Tour of Form
MEDRUCK Continued
I will resume the descriptions of form elements through the tour of MEDRUCK in this section. The form
element next in line for description is the page windows.

To view the page windows of the form MEDRUCK, click the button Page Windows on the application
toolbar. The screen will look as shown in Figure 1-41.

The very first field on the screen is the page format (page in SAP terminology). Recall that page windows
are located in page formats. The value in this field is FIRST. The page windows listed in the element list
belong to the page format FIRST. There are eight page windows in the page format FIRST.

The first of the page windows appearing in the element list is the page window assigned to MAIN
window marked as 00. The names of the page windows are the same as the names of their corresponding
windows. As the MAIN window can be assigned to multiple page windows, the page windows assigned to
MAIN window are numbered 00-98 by default.

Under the element list, in the Standard Attributes area, the dimensions left margin, upper margin,
window width, and window height appear.

The page windows horizontal dimensions have been expressed in characters (CH) and vertical
dimensions have been expressed in lines (LN).

Following the page window(s) assigned to MAIN window, the list of remaining page windows appears in
alphabetic ascending order.

You can double-click these page windows and view their Standard Attributes.

Figure 1-41. Form element—Page window: MAIN 00 for page format FIRST

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

41

If you select in the field Page (nee page format) the value equal to NEXT from the pop-up list, page
windows of page format NEXT will appear in the element list. This is shown in Figure 1-42.

There are six page windows in the page format NEXT.
In Figures 1-41 and 1-42, we have viewed the layout of a page format with its page windows in non-

graphical mode. The layout of a page format with its page windows can be viewed with the Graphical Form
Painter. To view a page format with its page windows in graphical mode, make the following menu selection:
Settings ➤ Form Painter. On making this menu selection, the dialog box of User Specific Settings as shown in
Figure 1-43 appears:

Figure 1-42. Form element—Page window: MAIN 00 for Page Format—NEXT

Figure 1-43. Form Painter setting—Graphical/Non-Graphical

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

42

Enable the check box of Graphical Form Painter, and click the Continue button.
The Graphical Form Painter will display the page windows of page format FIRST as shown in Figure 1-44.

All of the white rectangular areas on the right of the screen are page windows of the page format FIRST.
You can select the page format NEXT from the drop-down list at the top left corner of the screen marked

as page format. You can then view the page windows of the page format NEXT in the Graphical Form Painter.
There is no way to close the Graphical Form Painter dialog box on form screen; you can minimize it

though.
The only way to close the Graphical Form Painter dialog box is make the menu selection Settings ➤

Form Painter and disable the Graphical Form Painter check box in the User Specific Settings.
The Graphical Form Painter is a tool to maintain (create, change, position/reposition, and delete)

windows and page windows together in a graphical environment. I will describe the operations in the
Graphical Form Painter when we perform exercises. You can use Graphical Form Painter or operate in
the non-graphical environment; switch from one to the other environment as per your convenience and
requirements.

Figure 1-44. Graphical Form Painter—Page Format: FIRST

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

43

Form Element–Paragraph Formats
The form element paragraph formats are formatting specifications applied to the contents of a form. The
contents of a form are located in the form element text elements. To navigate to the paragraph formats in the
MEDRUCK form, click the paragraph formats button of the application toolbar. The screen will look like the
one in Figure 1-45.

There are 31 paragraph formats in the form MEDRUCK. The first of the paragraph formats, AS, is
displayed. A paragraph format namespace is a maximum of two characters, the name starts with an
alphabet; the second character can be alphanumeric.

As for any other component, you enter meaning or short text.
A paragraph format consists of four subcomponents. Each of these subcomponents is accessible

through four push buttons marked Standard, Font, Tabs, and Outline. The four push buttons appear at the
bottom right of the screen as shown in Figure 1-45. By default, the subcomponent Standard is selected.

A description of each of the four subcomponents follows.

Figure 1-45. Form element—Paragraph Formats AS: subcomponent standard

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

44

Paragraph Format Subcomponent—Standard
Figure 1-45 shows the standard attributes of the subcomponent Standard. In this subcomponent, on the left
side of the screen, you specify

•	 Left margin

•	 Right margin

•	 Indent on the first line of the paragraph

•	 Space before paragraph commences

•	 Space after paragraph ends

On the right side of the screen of standard attributes, you specify paragraph alignment (BLOCK,
CENTER, LEFT, and RIGHT) and line spacing.

There are three check boxes for:

•	 Blank line: suppression

•	 Page protection: ensure that the paragraph does not spill between pages

•	 Next: new paragraph appears on the same page

Paragraph Format Subcomponent—Font
Figure 1-46 shows the screen for the subcomponent Font:

You can select a font from a pop-up list in the field Family (left side of the screen, under the field
Paragraph). The font size is to be entered manually. The dimension for font size is points. A preview of fonts
is unavailable, so, before using or assigning a font family and size, check whether the font family and size is
available in the System Fonts as well as Printer Fonts. No values are assigned to the font fields; it implies that
font family and size assigned in prior setting (i.e., the Basic Settings of the form Header) are applicable (see
Figure 1-34).

In Figure 1-46, on the right side of the screen, you can specify font styling: bold, italic, and underlined.
There are three Radio buttons for each styling: bold, italic, and underlined. You can click the Radio button
On to enable the specific styling, click the Radio button Off to disable the specific styling, and click the Radio
button Retain to retain the prior style settings (i.e., the Basic Settings of the form Header are applicable) (see
Figure 1-34). You can assign underlying attributes like thickness, intensity, and so on, by using the button
appearing alongside the underlined Radio button.

Figure 1-46. Form element—Paragraph format AS: subcomponent Font

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

45

Paragraph Format Subcomponent—Tabs
Figure 1-47 shows the screen for the subcomponent Tabs.

This subcomponent of the paragraph format allows you to establish tab stops; these tab stops override
the tab stops created in the Basic Settings of the form Header.

The tab width or space is the space from the left page window margin. The units can be any of the
horizontal space units: CH, CM, IN, MM, PT, or TW.

If the tab stops in a paragraph format are fewer than in the Basic Settings of the form Header, the tab
stops in the Basic Settings of the form Header are used for the rest of the line.

You can specify alignment of text with the tab stop through a pop-up list in the field marked as
Tab—Alignment in Figure 1-47. In addition to the alignments—left, right and center—you can also specify
alignment with sign and alignment with comma character.

I next describe the last of the paragraph format subcomponents: Outline.

Paragraph Format Subcomponent—Outline
Using the subcomponent Outline of the paragraph format, you can create paragraph names or numbers,
chain paragraph names or numbers, and output chained paragraph names or numbers. You can specify
margins to use, when you output chained paragraph names or numbers. The screen for subcomponent
Outline will look like the one in Figure 1-48.

From here we move on to a description of the form element character formats.

Figure 1-47. Form element—Paragraph format AS: subcomponent Tabs

Figure 1-48. Form element—Paragraph format AS: Subcomponent Outline

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

46

Form Element–Character Formats
The form element character formats are formatting specifications applied to the contents of a form. As
discussed previously, the contents of a form are located in the form element text elements. The form element
paragraph formats is applied to format an entire paragraph. The form element character formats is applied
to format parts or blocks in a paragraph. To navigate to the character formats in the MEDRUCK form, click
the character formats button of the application toolbar. The screen will look like that shown in Figure 1-49.

There are five character formats in the form MEDRUCK. The first of the paragraph formats B is
displayed. A character format namespace is a maximum of two characters, and the name starts with an
alphabet letter; the second character can be alphanumeric.

As for other components, you enter meaning or short text.
A character format consists of two subcomponents. Each of these subcomponents is accessible through

two push buttons marked Standard and Font. The two push buttons appear at the bottom right of the screen
as shown in Figure 1-49. By default, the subcomponent Standard is selected.

A description of each of the two subcomponents follows.

Figure 1-49. Form element—Char.Format B: subccomponent Standard

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

47

Character Format Subcomponent—Standard
Figure 1-49 shows the standard attributes of the subcomponent Standard. In this subcomponent, on the left
side of the screen, you can enable the check box Selection to indicate bar code output. You can then select a
bar code from the pop-up list.

On the right side of the screen of standard attributes, there are four Radio buttons with legends. Table 1-5
lists the legends and descriptions.

We proceed next to the subcomponent Font.

Character Format Subcomponent—Font
Figure 1-50 shows the screen for the subcomponent Font.

The subcomponent Font of element character format is identical to the subcomponent Font of the
element Paragraph format (Figure 1-46). Before using or assigning a font family and size, check whether the
font family and size are available in the System Fonts as well as Printer Fonts. No values have been assigned
to the font fields; it implies that font family and size assigned in the prior setting are effective. The font
assignments of character format override the font assignments of Paragraph format.

From here we move on to a description of the form element text elements.

Table 1-5. Character Format—Standard Attributes

Legend Description

Protected The text assigned to this character format will
output in one line, not spill over between lines

Hidden The text will not output

Superscript The text is output half a line higher

Superscript The text is output half a line Lower

Figure 1-50. Form element—Char.Format B: subcomponent Font

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

48

Form Element—Text Elements
The six form elements described so far (header, page formats, windows, page windows, paragraph formats,
and character formats) involve only the layout and formatting specifications of a form (how and where to
output). The contents of a form are contained in the form element text elements (what to output).

We introduced and elaborated the six form elements mostly in the context of the SAP-delivered
ready-to-use form MEDRUCK. We will also introduce the form element text element in the context of the
form MEDRUCK. Then we will get out of the context of the form MEDRUCK and create simple forms of
our own. While creating our own forms, we will use the concepts of the six form elements described earlier
and demonstrate the various features of the form element text elements. These forms of our own will be
demonstrative in nature; that is, they will demonstrate mostly the features of the form elements. These forms
of our own will not involve full-fledged business scenarios. The forms of our own (custom forms) involving
full-fledged business scenarios will be created and tested in Chapter 2.

First, let us view text elements in the main window of the form MEDRUCK. Recall, the text elements are
located in a window. Also recall that repetitive data (i.e., the item data of purchase orders) is located in the
main window.

Open the German version (language key DE) of the form MEDRUCK in display mode from the opening
screen of the transaction code SE71.

To navigate to the text element screen of the main window of the form MEDRUCK, click the button
Windows on the application toolbar. Scroll down (not if all ten windows are visible) and select the main
window in the element list. Figure 1-51 shows the screen of the main window.

Figure 1-51. Select Window Main, Button to navigate to text elements

http://dx.doi.org/10.1007/978-1-4842-3183-8_2

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

49

Click the button text element on the application toolbar (second button from the left, marked in
Figure 1-51).

The text element screen like the one shown in Figure 1-52 will appear.

You use the text editor to make entries in the text element screen. As shown in Figure 1-52, the text
element screen is divided into two areas or sections: the Tag Area and the Command/Info Area.

The text editor has a menu bar (not shown in Figure 1-52) to carry out various operations.
The text elements can be named or identified. There can be any number of named text elements in a

window. There can be, at the very beginning, one unnamed text element in a window.
The description of each of the text element areas—Tag Area and Command/Info Area—follows.

Text Element—Format Column or Tag Area
In Figure 1-52, one area is marked as the Tag Area. In the SAP documentation the Tag Area is referred to as
format column. A format column can contain a two-character tag indicating the type of entry in the area
marked Command/Info Area. For example, if the format column contains /: (forward slash and a colon), you
can enter any of the repertoire of ABAP-like statements in the Command/Info Area. The repertoire of ABAP-like
statements supported in the text elements of a form is called SAP script control commands. The SAP script
control commands with explanations can be found in the PDF document “BC Style and Form Maintenance,”
part of the supplementary resource to be used with this book (www.apress.com/9781484212345).

Figure 1-52. Form MEDRUCK—Main Window, text element screen

http://www.apress.com/9781484212345

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

50

Table 1-6 lists the format column values with explanations.

The format column values will become clearer as we perform demonstrative and hands-on exercises.

Text Element—Command/Info Area
The Command/Info Area of the text element in Figure 1-52 shows 72 visible columns in a line. But a line can
extend beyond 72 columns to a maximum of 132 columns by making the menu selection Edit ➤Page Left/
Right. The visibility of 72 columns in a single line is the limit of the text editor.

When the format column value is an * (asterisk) or a two-character paragraph name, data or information
will be specified in the command/info area. The data in the command/info area can be string/text literals
and variables. Data specification in the command/info area (literals and variables) can run into multiple
lines. The continuation to the next line is indicated with the tag assigned a value ‘=’ (equal to). The literals are
entered as they are without enclosing single quotes. The variable data or information in the command/info
area is specified by enclosing the variable name in ampersands (&). For instance, &KNA1-KUNNR& specifies
that you want to output the variable KUNNR which is a component of the structure KNA1 declared in the SAP
script print program. This is the way data is received from the SAP script print program into the SAP script
form environment. Several types of variables can be specified in the command/info area of text elements.

Program Symbols

The values of elementary data objects declared with the DATA and TABLES in the SAP script print program
(ABAP program) are transferred to identically named variables in the text element enclosed in ampersands
(&). These variables in the text element enclosed in ampersands deriving their values from identically
named elementary data objects in the print program are called program symbols. The values in the program
symbols are as they are output. For example, let the value of amount of a purchasing document item be
stored or be available in the data object EKPO-NETWR. This data object is declared in the SAP script print
program. The value is stored in packed decimal notation (two decimal digits per byte, etc.). If you specify

Table 1-6. Format Column Values with Explanations

Format Column Value Explanation

* Apply to the contents, default paragraph assigned at form/window level

<para name> Apply to the contents, the paragraph specified (2-character paragraph name)

Continuous text

= Extended line (line extending from previous line(s))

(Raw line

/ Line feed—generate a blank line

/= Line feed and extended line

/(Line feed and raw line

/: Command line—any of the SAP script control commands can be entered in the
command/info area

/* Comment line—text entered in the command/info area will be treated as
comment

/E Text element—text element name or identification will be specified in the
command/info area

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

51

a program symbol or variable in the text element of a form as &EKPO-NETWR&, the value available in this
program symbol is stored in character notation (two bytes per character in Unicode 16). The amount will be
stored as it outputs, that is, with the thousand separators, a decimal character, and a sign. Figure 1-53 shows,
on the left, the data as stored in the data object EKPO-NETWR (SAP script print program), and on the right,
data as stored in the program symbol &EKPO-NETWR&.

Text Symbols

The text symbol can be declared within a text element of the SAP script form with a SAP script control
command DEFINE. The text symbol names need to be enclosed within ampersands. The text symbols
store information equivalent to the ABAP elementary type C. They can assume values not greater than 80
characters. If more than 80 characters have to be stored, they have to be split and stored in multiple text
symbols up to a maximum of 255 characters which can output in a single line. The text symbols in the SAP
script form text element environment are distinct from the text symbols defined in the text elements of an
ABAP program. Following is an example of text symbol definition and assignment:

/: DEFINE &ENTERPRISE_NAME& = 'Apress Publishers'

SAP script control commands unlike ABAP statements are not terminated by a period (.) as in the
control command above. The namespace of a text symbol is a maximum of 34 characters including the
enclosing ampersands.

System Fields Available Within the SAP Script Form Environment
It can be any of the variables available in the SAP script form environment including the system fields
available in ABAP programs with the prefix SY- like SY-DATUM, SY-REPID, and so on.

The System fields in the SAP script form environment are further categorized.

System Symbols

Some system symbols are &DATE&, &TIME&, &MONTH&, &PAGE&, &NAME_OF_MONTH&,
&NEXTPAGE&, &ULINE&, and &VLINE&.

Standard Symbols

The standard symbols can be viewed with the transaction code SE75 SAP script settings ➤ standard
symbols. The standard symbols are language dependent. You can create your own standard symbols and
assign values to them. At runtime the standard symbols are replaced by their values.

General SAP script Fields

Some general SAP script fields are &SAPSCRIPT-SUBRC&, &SAPSCRIPT-FORMPAGES& (total number of
pages in a business document), and &SAPSCRIPT-JOBPAGES&.

Figure 1-53. Data transfer from print program data object to program symbol

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

52

SYST Fields or System Fields in the ABAP Programming Environment

The system fields of the ABAP programming environment with the prefix SY- are available in the SAP script
environment. They must be specified with the prefix SYST- instead of the prefix SY-. The STST fields are set
by the SAP script runtime environment instead of the ABAP runtime environment.

&USR03&—Structure for User Info

The structure USR03 in the SAP script environment contains information from the user address data for
a user-like user id: address, telephone, telefax, language key, etc. The user address data is available in the
DDIC transparent table of the same name (i.e., USR03).

If a data object of the name USR03 is declared in the SAP script print program, then the contents of this
data object is copied to the SAP script symbol &USR03&, else, SAP script runtime system loads the values for
the logged-in user into this symbol from the user address data table USR03.

With the SAP script system fields, there are instances of redundancy, like the application server date
being available in SYST field &SYST-DATUM& as well as in system symbol &DATE&, the application server
time being available in SYST field &SYST-UZEIT& as well as in system symbol &TIME&, and so on.

In the text element screens of the form MEDRUCK described by us until now, the text editor being used
in the screenshots is a non-graphical editor. You can switch to a graphical text editor by using the menu
options Goto ➤ Configure Editor or Goto ➤ Change Editor in the text editor screen.

We will be using the non-graphical text editor only throughout this book.
The non-graphical editor of text elements is a line editor. Copying and pasting operations with this

editor are thus extremely cumbersome and awkward (ctrl+Y, etc.). Whenever you want to perform copying
and pasting operations in the text elements environment, you can switch to the graphical text editor.

I will cover the features of text elements (control commands and formatting features) in detail as we
perform demonstrative examples in the current chapter and business scenario examples in Chapter 2.

I will defer a description of the last of the form element documentation to a later stage, when we create
forms for business scenarios.

Now that I have completed descriptions of the elements of a form in the context of the SAP-delivered
form MEDRUCK, we will create forms and print programs to demonstrate the basics of forms, styles, and
standard texts.

Demonstration I
We will create our first form to demonstrate the following:

•	 Creation of a form with a single page format

•	 Inclusion of a graphic image in a graphic window of the form

•	 Inclusion of literal text in a variable window of the form

•	 Creation and application of paragraph formats and character formats to the literal
text in the variable window

•	 Test print or print preview the form from the SAP script environment

In this demonstration, we are not using the main window.
So, let us proceed to the creation of a form that will demonstrate the foregoing features.

http://dx.doi.org/10.1007/978-1-4842-3183-8_2

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

53

Form Header
We navigated to the SAP script Form Maintenance: Initial Screen—transaction code SE71. We entered
the form name as YCH01_01_FST_FRM (maximum namespace of 16 characters) in the field Form. We
clicked the Create button (you can alternatively press the function key F5). An information alert “Form
YCH01_01_FST_FRM language EN is not available in client ###” appeared. We clicked the Continue button.
The Administration Data screen of the element header appeared. We entered a meaningful text in the field
Meaning. We clicked the Basic Settings button. On this screen, we selected the DINA4 stationery in portrait
mode—210MM width and 297MM height. For the rest, we accepted the defaults proposed by the form
maintenance system.

Page Format
Next, we will create one page format. We clicked the application toolbar button Pages. We are on the Pages
screen. The element list is empty. Once you are on any element screen (Pages, Windows, etc.) if you want
to create a new element, make the following menu selection: Edit ➤ Create Element (Shift+F6). When
this menu selection was made, a dialog box appeared for input of element name (page format name) and
meaning or short text. Figure 1-54 shows the dialog box with the entered values.

We clicked the Continue button and accepted the default values for the fields of the standard attributes.
We did not enter any value in the field Next page. The page format FIRST is created.

Figure 1-54. Create Form YCH01_01_FST_FRM—Page format FIRST

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

54

Figure 1-55. Rough layout of text to appear in variable window

Specifications of the Text in the Variable Window
The text we are planning to locate in the variable window is a short write-up on the description of the
structure of selection tables. The selection tables, if you recall, are data objects created with the SELECTION-
SCREEN statement SELECT-OPTIONS or the data declarative statement RANGES. The paragraph formats
and the character formats that we create will depend on how we want to present the text in the variable
window. We could have selected any random text; we have selected the text related to a description of the
structure of selection tables because readers can relate to it. The appearance of the text should be as shown
in Figure 1-55.

We want the main heading for the text to appear in the font YARIAL_M, size 28 pt, which we uploaded
in the section “True Type Font Installation.” For the main heading of the text to appear in the font YARIAL_M
will require a separate character format, say, C1.

We want the subheadings for each of selection table structure fields SIGN, OPTION, LOW, and HIGH
to appear in the font Courier, size 12 pt, bold and underlined. This will require a separate character format,
say, C2.

We will have one paragraph format, say P1, with all the default values. We will designate this as
the default paragraph. For our running text, we require a paragraph format, say, P2 with five characters
indenting on the first line of the paragraph and one line gap at the end of the paragraph. When we use or
output with the uploaded font YARIAL_M; the characters in one line are almost touching the characters in
the next line. To resolve this and create a small gap between two lines, we will use a paragraph format, say,
P3, with a value equal to 2 in the field Line Spacing. Assigning a value 2 to the field Line Spacing to produce a
gap between lines has been determined by trial and error. The value in all the other fields will be the default
values.

To sum up, we have two character formats and three paragraph formats in the form.

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

55

Paragraph Formats
Let us create paragraph formats. We clicked the application toolbar button paragraph formats. On the
screen of the paragraph formats, we made the menu selection Edit ➤ Create Element. The dialog box for
input of element name (paragraph format name) and meaning or short text appeared. Figure 1-56 shows the
dialog box with the entered values.

We clicked the Continue button. We accepted the default values for the fields of the standard attributes,
fonts, tabs, and so on.

In a similar manner, we set about creating a second paragraph format P2. For the paragraph format
P2, in the Standard Attributes area, we assigned the field Indent 1st line (indent first line in the paragraph) a
value 5 CH (5 characters) and the field Space After a value of 1 LN (1 line). Figure 1-57 shows these entered
values for paragraph format P2.

We created a third paragraph format P3, with default values for all fields except the field Line Spacing.
In the field Line Spacing, we entered the value 2.00 LN (2 lines).

Figure 1-56. Create Form YCH01_01_FST_FRM—Paragr.Format P1

Figure 1-57. Create Form YCH01_01_FST_FRM—Paragraph Formats P1 and P2

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

56

Complete Mandatory Entries in the Form Header
Now that we have created a page format and three paragraph formats, we have to complete the mandatory
entries in the basic settings of the form element header. So we clicked the button for Header (picture of hat)
and clicked the button Basic Settings. In the field First page, we entered the value FIRST (page format); next,
in the field Default paragr., we entered the value P1. These are mandatory fields.

Windows and page windows
Next, let us create windows and page windows. We clicked the button windows on the application toolbar.
We have to create a graphic window and include the graphic image we earlier imported from a BMP file
into the SAP document server. The creation of a graphic window and its corresponding page window and
the inclusion of the graphic image from SAP document server into the page window can be done only with
graphical form painter. To switch to the graphical form painter, we made the following menu selection:
Settings ➤ Form Painter. When the User Specific Settings dialog box appeared, we enabled the check box
for graphical form painter and clicked the Continue button. With graphical form painter, the window of the
graphical form painter appeared. We clicked the mouse right button to invoke the context menu as shown in
Figure 1-58:

We selected the option Create Graphic from the context menu options. With the graphical form painter,
you can create, simultaneously, a graphic window and its corresponding page window and have a graphic
image from the SAP document server incorporated into the page window of the graphic window. When
we selected the option Create Graphic in the context menu, the dialog box Include Graphics appeared.

Figure 1-58. Create Form YCH01_01_FST_FRM—graphical form painter

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

57

We pressed the function key F4 in the field Name of this dialog box. Another dialog box, Find Graphic,
appeared. We entered the pattern YCH* in the field Name and enabled the check box Color Bit Map Image
as shown in Figure 1-59.

We clicked the execute button on the Find Graphic dialog box. A selection list with graphic image
name(s) starting with YCH appeared as shown in Figure 1-60.

Figure 1-59. Create Form YCH01_01_FST_FRM—Include Graphic dialog box

Figure 1-60. Create Form YCH01_01_FST_FRM—include Graphic Selection list

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

58

When the graphic image is selected from the list, the graphical form painter created a graphic window
with the name GRAPH1, and a page window to which the graphic window GRAPH1 was assigned, and
included or incorporated the graphic image inside the page window. Figure 1-61 shows the graphic window
by the name GRAPH1 and its corresponding page window with the graphic image included.

The graphic window has been named GRAPH1 by the graphical form painter. We would like to follow
our own naming patterns/conventions. We are renaming the graphic window GRAPH1 to LOGO. We can
rename windows with the renaming option in the context menu. When the renaming selection was made
from the context menu, a dialog as shown in Figure 1-62 appeared.

The graphic window was renamed as LOGO. We switched back to the non-graphical mode, changed the
meaning or short text (window) and adjusted or rounded the Left margin and Upper margin from 2MM to
5MM (page window). This is shown in Figure 1-63.

Figure 1-61. Create Form YCH01_01_FST_FRM—graphic window, page window with graphic image

Figure 1-62. Create Form YCH01_01_FST_FRM—rename graphic window

Figure 1-63. Create Form YCH01_01_FST_FRM—Graphic window, Page window

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

59

The issue of using graphical form painter or operating in non-graphical mode for maintaining forms
is a matter of personal convenience and choice. In specific contexts, as for the creation of graphic window,
graphical form painter is a must. If you want to be accurate to a fraction of a millimeter for the dimensions of
page windows, it is advisable to do so in non-graphical mode.

For variable, constant, and graphic windows, with the graphical form painter, you can create a window
and its corresponding page window at one go. For variable and constant windows, in the non-graphical
mode, you can create a window and its corresponding page window in two separate steps. You can create
windows and the corresponding page windows with the graphical form painter, but the dimensions of
the page windows might not be accurate to a fraction of a millimeter. You can then adjust or assign exact
dimensions accurate to a fraction of a millimeter in the non-graphical mode.

Of course, you can switch from one mode to the other at any time. It is a good practice to visually view
the final page windows layout of a form in graphical form painter. We will, for most part in the book, use the
non-graphic mode to create windows and page windows and switch to the graphical form painter to create
graphic windows and to visually review the page window layouts.

If you want to view the text element of the window LOGO from the window screen, click the button of
text element (the second button from the left) and a screen like the one shown in Figure 1-64 will appear.

You can observe that the text element screen of window LOGO is in display mode. It contains one line
only. The content of format column is ‘/:’ meaning that the line is a SAP script control command. The control
command is to include or incorporate a graphic image from the SAP document server into the page window
of the graphic window. The control command was generated by the SAP script form maintenance system.

We could have located the graphic image inside a constant or variable or even a main window. The
disadvantage of it is that we would have had to adjust the page window dimensions (the width and the
height) manually as per the graphic image size. In the case of graphic window, the page window dimensions
(the width and the height) were automatically generated as per the size of the graphic image being included
or incorporated. Moreover, in the case of a constant or a variable window, the control command to include
the graphic image would not have been generated. To include a graphic image in a page window assigned
to a constant or variable window, you make the following menu selection on the text element screen: Insert
➤ Graphics. The menu selection will pop up the dialog box Include Graphic and you can search for graphic
image(s) and make a selection. After you make the selection, the control command to include the graphic
image is generated. You can create a graphical window with its corresponding page window and the graphic
image included in it as we have and subsequently change the window to the variable or constant type. You
can perform this part—the change of window type from graphic to a variable or a constant window type—as
an additional exercise.

The context menu in the graphical form painter has other options: Cut, Copy, Paste, Delete, etc.
We next created a variable window and its corresponding page window. We intend to locate text in the

text element of the variable window.

Figure 1-64. Create Form YCH01_01_FST_FRM—Window LOGO: text element

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

60

To create a variable window, we clicked the application toolbar button windows. On the screen of
the windows, make the menu selection Edit ➤ Create Element. The dialog box for input of element name
(window name) and meaning or short text appeared. We entered the window name as VARIABLE and a
meaningful short text. We clicked the Continue button. The window VARIABLE was created.

We have to create a page window which will be assigned to the variable window VARIABLE. To create a
page window, we clicked the application toolbar button page windows. On the screen of the page window,
we made the menu selection Edit ➤ Create Element. A dialog box for assignment of the page window to a
window as shown in Figure 1-65 appeared.

Notice in Figure 1-65 that only the windows available for assignments appear in the list. (The window
LOGO, already assigned, does not appear in the list.) We double-clicked the window VARIABLE to assign
it to the page window. After the assignment of the window, we entered the following values for the page
window dimensions:

Left margin 46MM, Upper margin 5MM, Window width 160MM, Window height 190MM

Figure 1-65. Create Form YCH01_01_FST_FRM—Assign Window VARIABLE to page window

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

61

We have created all the windows and page windows planned in this demonstration. Let us visually view
layout of the page windows in the graphical form painter. Figure 1-66 shows the layout of the page windows
in the graphical form painter.

Character Formats
We need to create two character formats, C1 and C2, each to be applied to the main heading and subheading
of the text, respectively. The procedure to be followed to create character formats is the same one we
followed to create other form elements. We clicked the application toolbar button character formats. We
made the menu selection Edit ➤ Create Element. A dialog box for element name and meaning appeared.

For the character format C1, we assigned the font YARIAL_M, size 28PT. For the character format C2, we
retained the default font Courier, size 12PT, and enabled bold and underline Radio buttons.

Figure 1-67 shows the screen with the two-character format C1 and C2.

Figure 1-66. Create Form YCH01_01_FST_FRM—Page Window layout

Figure 1-67. Create Form YCH01_01_FST_FRM—Character Formats

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

62

Text in Text Element
We will proceed to fill up the text element of the variable window VARIABLE with text. We clicked the button
Windows on the application toolbar, ensured the window VARIABLE was selected, and clicked the button
text elements on application toolbar (second button from the left). The text elements screen appeared.
We entered the following text in the text editor:

P1
P3 Structure of Selection Tables
P1
P1
P2 The structure of a selection table consists of four fields:
= SIGN, OPTION LOW, and HIGH. Each row of a selection table
= constitutes a sub-condition for the complete selection
= criterion. Following is a description of the selection table
= fields:
P1 SIGN
P2 The field SIGN is of data type C and length 1. The field SIGN
= can assume either of the two values:.
P2 I for inclusion
P2 E for exclusion
P1 <C2>OPTION</>
P2 The field OPTION is of data type C and length 2. The field

= OPTION contains the selection operator and can assume the
= following values:
P2 If the field HIGH contains INITIAL value, the field OPTION can
= assume any of these values: EQ, NE, GT, GE, LT, LE, CP, and NP
= (Single values or single pattern values)
P2 If the field HIGH is not INITIAL, the field OPTION can assume any of
= these values: BT and NB. (Range values)
P1 LOW
P2 The data type and length of the field LOW is derived from the data
= object or the type to which the selection table variable is referring.
P1 HIGH
P2 The data type and length of the field HIGH is also derived from the data
= object or the type to which the selection table variable is referring.

The first two columns/characters in every line represent the value in the format column—paragraph
format name (P1/P2/P3) or the equal character (=) to indicate free-flowing text. The text on the right side in
every line represents command/info area; the gap between the format column and command/info area is
for readability. After the application of paragraph formats and the character formats and depending upon
the width of the window, the free-flowing text will word wrap or soft carriage returns will be inserted during
output of the free-flowing text as in any word processor.

You can enter the text manually here, in the text element environment, or you can upload text from an
operating system ITF file into a user clipboard and insert the uploaded text from the user clipboard into
the text element. Following are the steps with menu options: (1) Goto ➤ User Clipboard ➤ User Clipboard
1, 2, 3, 4 or 5; (2) Clipboard ➤ Upload; (3) Ctrl+S (save); (4) Function key F3 (return from clipboard to text
element; and (5) Insert ➤ Clipboard ➤ User Clipboard ➤ Clipboard 1, 2, 3, 4 or 5. You can copy text in
the text element and paste into a clipboard and then download the text from the clipboard to an operating
system file (the reverse process of upload).

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

63

Once, the foregoing text is entered, the character formats have to be applied to the main heading
(Structure of Selection Tables) and the subheadings (SIGN, OPTION, LOW, and HIGH). Let us start the
application of character formats with the main heading. We position the cursor on the first column of the
command/info area and make the menu selection Format ➤ Character as shown in Figure 1-68.

When we make the menu selection, the selection list of character formats appears as shown in Figure 1-69.

Figure 1-68. Create Form YCH01_01_FST_FRM—menu: apply Character format

Figure 1-69. Create Form YCH01_01_FST_FRM—Format: Character pop-up list

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

64

We select the character format C1. When you select and assign a character format, the SAP script form
maintenance system applies the selected character format only to the first word from where the cursor
was positioned when the menu selection was made for character format selection. In our present case the
character format C1 was applied to the first word of the main heading, that is, ‘Structure.’ This is shown on
the left side of Figure 1-70.

In Figure 1-70, <C1> indicates the starting column of application of a character format and </> indicates
the ending column. If we want the character format C1 to be applied to the entire line, then we must shift </>
to the end of the line. This has been done and is shown on the right side of Figure 1-70.

In a like manner, the character format C2 was applied to the four subheadings SIGN, OPTION, LOW,
and HIGH. We exited the text element screen to navigate back to the language-independent area of the form
(Heading, page formats, windows, etc.).

Test or Print Preview Form
We performed the form check with the following menu option: Form ➤ check ➤ Definition. The form check
generated the following alert: No errors found in form YCH01_01_FST_FRM.

We saved the form. While saving the form, a prompt appeared for package assignment. We assigned
the predefined package YCH_BC401. You can assign any other non-local package of your choice. For all the
workbench objects we are creating, we will be assigning the predefined local package $TMP. Only for the
SAP script forms, we are assigning the package YCH_BC401. We will be classifying the SAP script forms at the
end of Chapter 2. Classifying the forms requires them to be assigned a non-local package, hence assignment
of the package YCH_BC401.

We activated the form with the menu selection Form ➤ Activate
We are now in a position to test and output the form. Remember, our form will output only one physical

page. To test and print preview the form, the following menu selection was made: Utilities(M) ➤ Printing
Test. A dialog box appeared for Print; we clicked the button Print Preview. The output of print preview will be
like the one in Figure 1-71.

Figure 1-70. Create Form YCH01_01_FST_FRM—apply character format

http://dx.doi.org/10.1007/978-1-4842-3183-8_2

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

65

If you scroll down, you can view the rest of the text for the subheadings LOW and HIGH.

Recapitulation
We have implemented all the specifications listed at the commencement of this demonstration.
To recapitulate, we performed the following:

•	 Created a form.

•	 Created a single page format.

•	 Created a graphic window with the corresponding page window; included an
imported bit map image from the SAP document server into the graphic window.

•	 Created paragraph formats and character formats to be applied to format the text in
the variable window as per formatting specifications described.

•	 Created a variable window with the corresponding page window and included text in
the variable window text element area.

•	 Saved and activated the form. Print previewed the form from the SAP script form
environment.

Figure 1-71. Form YCH01_01_FST_FRM—output

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

66

This was a demonstration. We did not need a SAP script print program. We did not have variable data to
be output. We could carry out the testing and demonstration from within the SAP script form environment.

Demonstration II
In this demonstrative exercise, we will produce the same output as in demonstration I but with a major
difference in approach. In demonstration I, the text was created directly in the variable window’s text element
area. In the present exercise, we will create the text separately as standard text. The standard text created
with transaction code SO10 can be incorporated in multiple forms. The standard text can be included in
other standard texts as well.

The standard text environment does not support local paragraph formats and character formats. The
standard text can use a style. The paragraph formats and character formats located in a style can be used to
format text maintained in standard texts.

In this demonstrative exercise, we are creating, for the first time, two SAP script components: style and
standard text.

Our demonstration exercise involves the following steps:

 1. We will create a style YCH01_01 (transaction code SE72). We will locate
paragraph formats P1, P2, and P3 and character formats C1 and C2 within this
style. The paragraph formats P1, P2, and P3 and character formats C1 and C2
in the style are identical to the paragraph formats P1, P2, and P3 and character
formats C1 and C2 we created in the form YCH01_FST_FRM.

 2. We will create standard text YCH01_01_SEL_TABLES and enter or upload into it
our text relating to selection tables. We will associate our standard text with the
style YCH01_01. We will use the paragraph formats P1, P2, and P3 and character
formats C1 and C2 in style YCH01_01 to format the standard text.

 3. We will create a form YCH01_02_SEC_FRM with a single page format. We will
create a graphic window LOGO and its corresponding page window and include
within it the imported bmp image from the document server.

 4. We will create a variable window VARIABLE and its corresponding page window
and include within it the formatted standard text with a control command.

 5. We will test print or print preview the form YCH01_02_SEC_FRM from the SAP
script environment.

Let us proceed to performing the five steps.

Create Style YCH01_01
We navigated to the transaction code SE72 opening screen. We entered YCH01_01 (maximum namespace
of eight characters) in the field Style. We clicked the Create button (you can alternatively press the function
key F5). We clicked the button paragraph formats on the application toolbar. We created three paragraph
formats P1, P2, and P3. The method to create paragraph formats in styles is the same as in forms—menu
option Edit ➤ Create Element, and so on. The paragraph formats P1, P2, and P3 created in this style are
identical to the paragraph formats we created in the form YCH01_01_FST_FRM in the demonstration
I exercise.

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

67

Figure 1-72 is a screenshot of the created paragraph formats.

In a similar manner, we created the character formats C1 and C2 identical to the character formats C1
and C2 created in the demonstration I exercise.

Figure 1-73 is a screenshot of the created character formats C1 and C2.

Figure 1-72. Style YCH01_01—Paragraph formats

Figure 1-73. Style YCH01_01—Character Formats

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

68

Next, we need to assign the paragraph format P1 as the default paragraph. So we clicked the button
header (picture of hat, second button from the right) on the application toolbar. We entered the value P1 in
the field Default paragraph on the screen in Figure 1-74.

We saved the style and performed a consistency check and activated the style. Figure 1-74 is a
screenshot of the header screen after the activation of style.

This completes the first step—creation of style YCH0q_01.

Create Standard Text YCH01_01_SEL_TABLES
To create standard text, we used transaction code SO10.

On the opening screen of transaction code SO10, we entered YCH01_01_SEL_TABLES in the field Text
Name and ST in the field Text Id. of this screen. We clicked the Create button. The standard text editor very
similar to the text element screen of a form appeared.

We need to associate our style YCH01_01 with the standard text. For this, we made the following menu
selection: Format ➤ Change Style. A dialog box or a selection list, listing all the styles, appeared. We selected
our style YCH01_01 from the list, shown in Figure 1-75.

Figure 1-74. Style YCH01_01—saved and activated

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

69

Once, we choose a style (YCH01_01) through this process, all the paragraph formats and the character
formats of the style can be applied to the standard text for formatting.

We have to have the text relating to selection tables in the standard text. You can enter the text manually
as in the demonstration I exercise or you can upload it from a downloaded operating system file. The text is
available in the subfolder STANDARD_TEXTS of the Chapter 1 folder of the E-resource (www.apress.com/
9781484212345). The ability to directly download and upload text is available only in the standard text
environment and only through clipboards in the text element environment of a form. I am demonstrating
the uploading of the text file into the standard text. To upload the text file into standard text, we made the
following menu selection, Text ➤ Upload, as shown in Figure 1-76.

Figure 1-75. Standard text YCH01_01_SEL_TABLES—Change Style

Figure 1-76. Standard text YCH01_01_SEL_TABLES—menu selection to upload text file

http://dx.doi.org/10.1007/978-1-4842-3183-8_1
http://www.apress.com/9781484212345
http://www.apress.com/9781484212345

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

70

A dialog box to make a file format selection appeared. We selected the file format ITF as shown in
Figure 1-77.

When you press the Continue button, a file selection dialog box as shown in Figure 1-78 appears.

The screen after the file was uploaded looks like the one in Figure 1-79.

The text was uploaded with paragraph formats and character formats applied to the text for formatting.
We saved the standard text. There was no prompt for package assignment. This concludes the creation

of text that will be incorporated into a variable window of a form to be created.

Figure 1-77. Standard text YCH01_01_SEL_TABLES—file format selection to upload

Figure 1-78. Standard text YCH01_01_SEL_TABLES—file to upload

Figure 1-79. Standard text YCH01_01_SEL_TABLES—file upload

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

71

Create Form YCH01_02_SEC_FRM, Page Format FIRST, Graphic
Window LOGO, etc.
We entered YCH01_02_SEC_FRM in the field Form on the screen of SAP script Form Maintenance
(transaction code SE71). We clicked the Create button. We clicked the Continue button on the information
alert: Form YCH01_02_SEC_FRM language EN is not available in client ###. We entered a meaningful text
in the field Meaning. We clicked the Basic Settings button. On this screen, we selected the DINA4 stationery
in portrait mode—210MM width and 297MM height. For the rest, we accepted the defaults proposed by the
form maintenance system.

We clicked the button Pages (page formats) on the application toolbar. We created a page format FIRST.
We clicked the button paragraph format on the application toolbar. We created a paragraph format P1.

We assigned values to the mandatory fields of the header. Next, we clicked the button for header
(picture of hat) and clicked the button basic settings. In the field First page, we entered the value FIRST, (page
format) next; in the field Default paragr., we entered the value P1.

Switching to graphic form painter, we created a graphic window and its corresponding page window,
like the one we created in the demonstration I exercise, locating the same bit map image YCH01_
COMPANY_LOGO from the document server. We renamed the graphic window as LOGO. For the page
window of the graphic window LOGO, we adjusted the Left margin and Upper margin fields to 5mm.

Create a Variable Window VARIABLE, Page Window and Include
Standard Text
In this step, we first created a variable window VARIABLE. On the application toolbar, we clicked the button
windows and made the following menu selection: Edit ➤ Create Element. In the element dialog box, we
entered the window name as VARIABLE and text. We clicked the Continue button. The window VARIABLE
was created.

We next clicked the button page windows on the application toolbar and made the following menu
selection: Edit ➤ Create Element. We assigned the window VARIABLE to the page window. We entered the
dimensions of this page window as Left margin 46MM , Upper margin 5MM , Window width 160MM, and
Window height 190MM. Switching to the graphic form painter, we visually viewed the layout of the page
windows and confirmed that the layout is as per the specifications.

After the creation of the windows and page windows, the window screen will look like the one Figure 1-80
and the page windows screen like the one in Figure 1-81.

Figure 1-80. Form YCH01_02_SEC_FRM—Windows

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

72

We now have to incorporate the standard text (created earlier in step 2) into the variable window
VARIABLE.

On the windows or page windows screen, we clicked the text element button on the application toolbar.
In the text editor, we made the following menu selection, Insert ➤ text ➤ Standard, as shown in Figure 1-82.

An Insert Text dialog box appeared as shown in Figure 1-83.

Figure 1-81. Form YCH01_02_SEC_FRM—Page Windows

Figure 1-82. Form YCH01_02_SEC_FRM—menu selection to include standard text

Figure 1-83. Form YCH01_02_SEC_FRM—insert Standard text

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

73

After entering the values as shown in Figure 1-83, we clicked the Continue button which generated the
control command to include the standard text as shown in Figure 1-84.

We navigated back to the previous screen. We saved the form. We assigned the package YCH_BC401.
You can assign any other non-local package of your choice.

We performed check with the following menu selection: Form ➤ Check ➤ Definition. The form check
generated the following alert: No errors found in form YCH01_02_SEC_FRM.

We activated the form with the following menu selection: Form ➤ Activate.
This completes step 4.

Test Print Form YCH01_02_SEC_FRM
Our form will output only one physical page. To test and print preview the form, we made the following
menu selection: Utilities(M) ➤ Printing Test. A dialog box appeared for Print; we clicked the button Print
Preview. The output of print preview will be like the one in Figure 1-85.

Figure 1-84. Form YCH01_02_SEC_FRM—control command to include standard text

Figure 1-85. Form YCH01_02_SEC_FRM—output

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

74

The output is identical to the output produced by the form in demonstration I. In demonstration I, we
did not use any style and standard text, whereas we used a style and standard text to produce the output in
the current demonstration.

Recapitulation
Demonstration II set out to produce the same output as demonstration I using style and standard text.
To recall, we performed the following steps:

 1. Created a style, consisting of three paragraph formats and two character formats.

 2. Created standard text and uploaded text from an operating system file.

 3. Created a form.

a. Created a single page format.

b. Created a graphic window with the corresponding page window; included an
imported bit map image from the SAP document server into the graphic window.

c. Created a variable window with the corresponding page window; included
standard text in the variable window.

d. Saved and activated the form.

 4. Print previewed the form from the SAP script form environment.

Again, we did not have variable data to be output. So, we could carry out the testing from within SAP
script form environment.

Demonstration III
Until now, in the first two demonstration exercises, we have not used the main window. The first two
demonstration exercises did not have any variable data and were demonstrated from within the SAP script
form environment. The current exercise will demonstrate the use of main window. The current exercise will
also use a print program. The current exercise will demonstrate the use of the main window with a single
page window. The Demonstration IV exercise will use the main window with two (multiple) page windows.
Recall that the main window can contain a maximum of 99 page windows.

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

75

Suppose; we are required to produce a list of materials from the table MAKT using a SAP script form.
The output layout will be as specified in Table 1-7.

The output should be as shown in Figure 1-86.

Since the output involves a large volume of variable data, we need to have a print program that will
retrieve data and send it to SAP the script form. This demonstration exercise will involve a form and a
corresponding print program.

We need to repetitively output the three fields SRL_NO, MAKT-MATNR, AND MAKT-MAKTX in a page
and from page to page. The three fields constitute the body of the report. Recall that the data that repeats
within a page and repeats from page to page is to be located in the main window.

For the form to generate the list of materials, we will have a single page format; we will locate the list
body in the main window and the list heading along with the list column heading in a variable window.

The variable window will have a corresponding page window in which we will locate list headings. The
main window will contain one page window in which we will locate the data of list body. The page window
of the main window will continually receive one row of data (through a LOOP…ENDLOOP process in the
print program) and output it until the page window is full. At the point the page window is full, a page break
is triggered and output continues in the page window assigned to the main window of a new page. This
process continues until all the data is output.

Table 1-7. List of Materials—Output Layout

Field Description Field Name Column Span Width in Columns

Serial Number DATA: SRL_NO TYPE SY-TABIX 01-05 05

06-06 01

Material Code MAKT-MATNR 07-24 18

25-25 01

Material Description MAKT-MAKTX 26-65 40

Figure 1-86. List of materials—output

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

76

The page windows layout will look like the one in Figure 1-87.

The list heading will use the system symbols &DATE& and &PAGE& to output the ‘as on’ date and page
number, respectively.

Figure 1-87. List of materials—layout of Page Windows

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

77

The print program will use five function modules related to the operation of forms from an ABAP
program. Table 1-8 lists these function modules with explanations.

A description of these function modules can be found in the manual BC Style and Form Maintenance.
You can also refer to the function modules’ documentation.

So, let us proceed to create a form and subsequently, the print program—an ABAP program.
Our demonstration exercise involves the following steps:

 1. Create a form YCH01_03_MLIST1 with a single page format. In the Basic Settings,
assign font Courier size 10PT (points).

 2. Create a variable window HEADING and its corresponding page window. Fill
in the text element LIST_HEADING of this variable window as per the list and
column headings of Figure 1-86.

 3. Create a page window for the main window. Fill in the text element LIST_DATA of
the main window as per the list body of Figure 1-86. Check and activate the form.

Table 1-8. Main Function Modules Used to Operate Forms

Function Module Explanation

OPEN_FORM - Exporting:
<form name> and <language>

Physical location of the existence of a form and setup. Analogous to
open file.

START_FORM - Exporting:
<form name> and <language>

Throughout our exercises, we are calling the function module START_
FORM before the beginning of output of a business document. The
calling of this function module ensures output starts on a new page
and page counter &PAGE& initialized to 1.
When the output of a business document is concluded, we are calling
the function module END_FORM.
In the present scenario, we are producing a list of materials. We will
consider the entire material list as a single business document.
Hence we will call the function module START_FORM once before the
commencement of output of the material list, after calling the function
module OPEN_FORM.
And we will call the function module END_FORM once after the
conclusion of output of the material list, before calling the function
module CLOSE_FORM.

WRITE_FORM – Exporting
<text element name> and
<window name>

Send data from the elementary data objects of the print program
to identically named program symbols in the specified named text
element of specified window.

END_FORM Refer to the note on START_FORM.

CLOSE_FORM A form opened has to be closed for output of form to appear.
Analogous to close file.

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

78

 4. Create an ABAP program YCH01_01_MLIST_ONE_MWINDOW (print program)
to retrieve and load data from the database table MAKT into an internal table.
Call the function modules OPEN_FORM and START_FORM. Set up a LOOP…
ENDLOOP process to fetch data one row at a time from the internal table into
the structure and send the data to main window of the form using the function
module WRITE_FORM. After the ENDLOOP, call the function modules END_
FORM and CLOSE_FORM. Perform program check and program activation.

 5. Test the form YCH01_03_MLIST1 by executing the program YCH01_01_MLIST_
ONE_MWINDOW.

Let us proceed to perform the five steps.

Create Form YCH01_03_MLIST1, Page Format FIRST, etc.
We entered YCH01_03_MLIST1 in the field Form on the screen of SAP script Form Maintenance (transaction
code SE71). We clicked the Create button. We clicked the Continue button on the following information
alert: Form YCH01_03_MLIST1 language EN is not available in client ###. We entered meaningful text in the
field Meaning. We clicked the Basic Settings button. On this screen, we selected the DINA4 stationery in
portrait mode—210MM width and 297MM height—and we changed the font size to 10PT. For the rest, we
accepted the defaults proposed by the form maintenance system.

We clicked the button Pages (page formats) on the application toolbar. We created a page format FIRST
with the following menu selection: Edit ➤ Create Element, etc. In the field Next page, we entered the value
FIRST. This is an indication to the SAP script runtime system as to what page format to output following the
output of the first page. When we test a form from within the SAP script form environment, this field should
be left blank.

We clicked the button paragraph format on the application toolbar. We created a paragraph format P1
with default values.

We must assign values to the mandatory fields of the header. So we clicked the button for header
(picture of hat) and clicked the button Basic Settings. In the field First page, we entered the value FIRST (page
format); next, in the field Default paragr., we entered the value P1.

This completes step 1.

Create Variable Window, Its Corresponding Page Window, Create
Text Element, etc.
To create a variable window, we clicked the button windows on the application toolbar and made the
following menu selection: Edit ➤ Create Element. In the element dialog box, we entered the window name
as HEADING and text. We clicked the Continue button. The window HEADING was created.

Next, we clicked the button page windows on the application toolbar, made the following menu
selection: Edit ➤ Create Element. We assigned the window HEADING to the page window. We entered the
dimensions of this page window as Left margin 5MM, Upper margin 5MM, Window width 150MM, and
Window height 30MM.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

79

Figure 1-88. Form YCH01_03_MLIST1—page window of Window HEADING

After the creation of the page window, the page windows dimension area screen will look like the one in
Figure 1-88:

We clicked the text element button. In the text editor, we entered the name of the text element as
LIST_HEADING; we entered text for the list heading and the list column heading as per the output layout of
Figure 1-86. The text editor screen with the entered values will look like the one in Figure 1-89:

Figure 1-89. Form YCH01_03_MLIST1—text element LIST_HEADING of Window HEADING

&ULINE& is the system symbol to generate a horizontal line. The number in the parenthesis (65)
indicates the number of columns in the horizontal line. (Refer to Table 1-7.)

We navigated back to previous screen. Save the form. This concludes step 2.

Create Page Window for the Main Window, Create Text Element, etc.
To create a page window to be assigned to the main window, we clicked the button page windows on the
application toolbar and made the following menu selection: Edit ➤ Create Element. We assigned the
window main to the page window. We entered the dimensions of this page window as Left margin 5MM,
Upper margin 35MM, Window width 150MM, Window height 255MM. Switching to the graphic form painter,
we visually viewed the layout of the page windows and confirmed that the layout is as per the requirements.

Next, we created the text element LIST_DATA in the main window. We clicked the text element button.
In the text editor we entered the following:

/E LIST_DATA
 * &SRl_NO(Z5)& &MAKT-MATNR(K18)& &MAKT-MAKTX(40)&

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

80

The first line identifies (format area value /E) the text element—LIST_DATA.
The second line has program symbols for the three program variables: SRL_NO, MAKT-MATNR, and

MAKT-MAKTX. This constitutes the list body. One line corresponds to one material. The asterisk (*) in the
format area indicates the usage of the default paragraph format.

The number in the parentheses indicates the width of output in columns. The notation (Z5) is a
formatting option to output the program symbol &SRL_NO& in five columns suppressing leading zeroes.
The letter Z is for suppression of leading zeroes. The complete list of output formatting options available can
be found in the manual BC Style and Form Maintenance.

The notation (K18) is another formatting option to output the program symbol &MAKT-MATNR& in 18
columns suppressing the execution of the conversion routine MATN1 assigned to the domain MATNR. With
the formatting option (K), the field MATNR, will output with leading zeroes. By default the material code
field MATNR outputs with leading zeroes suppressed.

The notation (40) is to output the program symbol &MAKT-MAKTX& in 40 columns.
The text editor screen with the entered values will look like the one in Figure 1-90.

We saved the form. We assigned the package YCH_BC401. You can assign any other non-local package
of your choice. We performed a check with the following menu selection: Form ➤ Check ➤ Definition. The
form check generated the following alert: No errors found in form YCH01_03_MLIST1.

We activated the form with the following menu selection: Form ➤ Activate.
This completes step 3.

Create an ABAP Program YCH01_01_MLIST_ONE_MWINDOW
(Print Program), etc.
We created a program YCH01_01_MLIST_ONE_MWINDOW (transaction code SE38).

The source program follows. The source with the comment lines should convey the new features and
logic of the program.

REPORT YCH01_01_MLIST_ONE_MWINDOW.

* Material List in SAP Script Form (YCH01_03_MLIST1) **

Declare data: structure MAKT, internal table MAKT_TAB, SRL_NO
** *****
** Load internal table MAKT_TAB, sort MAKT_TAB by MATNR *****
** *****
** CALL FUNCTION MODULE OPEN_FORM, CALL FUNCTION MODULE START_FORM *****
** *****
** CALL FUNCTION MODULE WRITE_FORM - list heading in v window *
** *****

Figure 1-90. Form YCH01_03_MLIST1—text element LIST_DATA of Main Window

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

81

** LOOP AT MAKT_TAB INTO MAKT *****
** Assign SY-TABIX to SRL_NO *****
** CALL FUNCTION MODULE WRITE_FORM - list body in main window *
** ENDLOOP *****
** *****
** CALL FUNCTION MODULES END_FORM, CLOSE_FORM *****

TABLES MAKT.
DATA: MAKT_TAB TYPE STANDARD TABLE OF MAKT,
 SRL_NO TYPE SY-TABIX.
START-OF-SELECTION.
SELECT * FROM MAKT INTO TABLE MAKT_TAB UP TO 1000 ROWS WHERE SPRAS = SY-LANGU.
SORT MAKT_TAB BY MATNR.
CALL FUNCTION ‘OPEN_FORM’
 EXPORTING
 FORM = ‘YCH01_03_MLIST1’
 LANGUAGE = SY-LANGU
 .
IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
ENDIF.
CALL FUNCTION ‘START_FORM’
 EXPORTING
 FORM = ‘YCH01_03_MLIST1’
 LANGUAGE = SY-LANGU
 .

IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
ENDIF.

CALL FUNCTION ‘WRITE_FORM’
 EXPORTING
 ELEMENT = ‘LIST_HEADING’
 WINDOW = ‘HEADING’
 .
 IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 ENDIF.
LOOP AT MAKT_TAB INTO MAKT.
 SRL_NO = SY-TABIX.
 CALL FUNCTION ‘WRITE_FORM’
 EXPORTING
 ELEMENT = ‘LIST_DATA’
 WINDOW = ‘MAIN’
 .
 IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

82

 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 ENDIF.
ENDLOOP.
CALL FUNCTION ‘END_FORM’
 .
IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
ENDIF.
CALL FUNCTION ‘CLOSE_FORM’
 .
IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
ENDIF.

In the program, as we are in a training paradigm and testing state, we have restricted the retrieval of data
from the database table MAKT to 1,000 rows. We are also retrieving material descriptions in the logged-in
language (WHERE SPRAS = SY-LANGU) though our list and column headings will always appear in English.

This completes step 4.

Test form YCH01_03_MLIST1, Execute Program YCH01_01_MLIST_
ONE_MWINDOW
We executed the program YCH01_01_MLIST_ONE_MWINDOW; the print dialog box popped up.
We clicked the button Print Preview. The output will look like that in Figure 1-91:

Figure 1-91. Form YCH01_03_MLIST1—Print Preview

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

83

The 1,000 materials are output in 17 pages as shown in Figure 1-91. You can navigate to different pages
with page navigation buttons: first page, previous page, next page, and last page marked in Figure 1-91.

This is the end of demonstration III.

Recapitulation
Demonstration III produced a material description list using a SAP script form. We used the main window
for the first time. The main window used a single page window. We used a print program. Practically
every form will use a print program. All our forthcoming exercises will have a print program. The first two
demonstration exercises were very basic: they used no variable data and could be demonstrated and tested
without a print program. We also introduced five function modules to operate forms from the print program.
We used program symbols and three system symbols. We also used a few output formatting options.

Form Check Text
There are two types of checks you need to perform on a form. One type of check that we have performed
until now is the check for the form definition. You perform this check with the following menu selection:
Form ➤ Check ➤ Definition. When you perform this check, the SAP script form maintenance system
validates the form definition; that is, it checks for default paragraph format assignment and first page format
assignment, for page windows over shooting the page boundaries, etc. We will refer to this check as the
definition check.

The second type of check is performed on text elements. Let us perform the second type of check on the
form YCH01_03_MLIST1 in transaction code SE78. We opened the form in edit mode. You perform this
second type of check with the following menu selection, Form ➤ Check ➤ Texts, as shown in Figure 1-92.

When you perform this check, the SAP script form maintenance system validates the program symbols;
that is, it checks whether the program symbols in text elements are declared or defined as elementary data
objects in the print program. Apart from the program symbols, when you commit an error in specifying
any of the system symbols or text symbols or standard symbols, this is reported as an unknown symbol. For
example, if you entered &SYST-UNAME& by mistake as &SYSS-UNAME&, the same will be reported as an
unknown symbol.

It checks for the existence of paragraph formats and character formats used in the text elements.
It checks for the existence of the included standard texts. It also checks the syntax of control commands.
We will refer to this check as the text check. You can also perform this check from within the text element
environment with the following menu selection: Text ➤ Check.

Figure 1-92. Form Check—Texts

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

84

Let us perform a text check on the form YCH01_03_MLIST1. On the form screen, we made the menu
selection as shown in Figure 1-92. A dialog box appeared for selection of checks as shown in Figure 1-93.

As no standard text is being included in this form, we disabled the second check box in the dialog
box. We clicked the Continue button. This popped up the dialog box to choose Print Programs, shown in
Figure 1-94.

Figure 1-93. Text check for form—Check Options

Figure 1-94. Text check for Form—choose Print Program

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

85

We clicked the button Append Print Program. A dialog box appeared for entering the print program
name or making a selection from a full/filtered selection list. After entering the print program name, we
clicked the copy button. We returned to the dialog box to choose Print Program with the print program entry.
Next, we clicked the row selector of the print program entry. The screen looked like the one in Figure 1-95:

We clicked the copy button of the dialog box to choose Print Program. The SAP script form maintenance
system performed the text check and issued an alert. Our text elements do not contain any errors. The
following alert was issued: The text is syntactically correct.

To demonstrate an erroneous situation in the text elements, we deliberately misspelled two program
symbols &MAKT-MATNR& as &MAT-MATNR& and &MAKT-MAKTX as &MAKT-MAKTS& in the main
window. We then performed the text check. The text check produced error report as shown in Figure 1-96.

Figure 1-95. Text check for form—Print Program selected

Figure 1-96. Text check for form—Window-wise summary of errors

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

86

The error reporting is a window-wise summary. Two errors were reported in the main window. When
we clicked a summary line of a window, a detailed list of errors for the selected window appeared as shown
in Figure 1-97:

This was a description of a text check to be performed on the text elements of a form. A form gets
activated even with errors in the text elements. You should perform the text check before proceeding to
activate a form.

Demonstration IV
In this exercise, as in demonstration III, we will use the main window. But, instead of using the main window
with a single page window as in demonstration III, we will use the main window with two (multiple) page
windows. We will produce the same output of material list with two page windows assigned to the main
window.

If you observe the material list output of demonstration III in Figure 1-91, you will notice lot of empty
space adjoining the material description. We are making a case of producing the material list with better
space utilization. Until now, in all our demonstration exercises, we have used the DINA4 paper in portrait
mode: 210MM by 297MM (the default mode). I now propose to use the DINA4 paper in landscape mode:
297MM by 210MM. We will divide the paper width (297MM) into two areas much like the newspaper
columns. We will output the material list in these two areas, resulting in a better utilization of paper space.

The two areas will map to two page windows assigned to the main window. Figure 1-98 shows a rough
sketch of the output.

The output will commence in the first page window or the left-side area of the page. When this first
page window or the left-side area is full, output will commence in the second page window or the right-side
area of the page. When this second page window or the right-side area is full, a page break will be triggered
and output will commence in the first page window or the left-side area of the new page. This process will
continue until all the data is output.

Figure 1-97. Text check for form—window detail of errors

Figure 1-98. List of Materials—output in two page windows in main window

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

87

For the form to generate the list of materials in the manner shown in Figure 1-96, we will have a
single page format. We will locate the list heading and column heading in two variable windows with their
corresponding page windows. We will locate the list heading in the first of the two variable windows. We will
locate the list column heading in both of the two variable windows

We will locate the list body in the main window. The main window will have two page windows.
The page windows layout will look like the one in Figure 1-99.

Create Form YCH01_04_MLIST2
We entered YCH01_04_MLIST2 in the field Form on the screen of SAP script Form Maintenance (transaction
code SE71). We clicked the Create button. We clicked the Continue button on the following information
alert: Form YCH01_04_MLIST2 language EN is not available in client ###. We entered a meaningful text in
the field Meaning. We clicked the Basic Settings button. On this screen, we changed the font size to 10PT.

We clicked the button Pages (page formats) on the application toolbar. We created a page format FIRST.
We made the following menu selection: Edit ➤ Create Element, etc. In the field Next page, we entered the
value FIRST.

We clicked the button paragraph format on the application toolbar. We created a paragraph format P1
with default values.

We must complete the assignment of values to the mandatory fields of the header. So we clicked the
button for header (picture of hat) and clicked the button Basic Settings. In the field First page, we entered the
value FIRST (page format); next, in the field Default paragr., we entered the value P1.

To create variable windows, we clicked the button windows on the application toolbar and made the
following menu selection: Edit ➤ Create Element. In the element dialog box, we entered the window name
as HEADING1 and text. We clicked the Continue button. The window HEADING1 was created. In a like
manner, we created the second variable window HEADING2.

Figure 1-99. List of materials—layout of Page Windows

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

88

We then clicked the button page windows on the application toolbar and made the following menu
selection: Edit ➤ Create Element. We assigned the window HEADING1 to the page window. We entered the
dimensions of this page window as Left margin 5MM, Upper margin 5MM, Window width 145MM, Window
height 30MM. We created another page window; we assigned this page window to the variable window
HEADING2. The dimensions of this page window will be Left margin 152MM, Upper margin 5MM, Window
width 145MM, Window height 30MM.

We created two page windows to be assigned to the main window. The dimensions of the first page
window assigned to the main window (numbered as 00) was Left margin 5MM, Upper margin 35MM,
Window width 140MM, Window height 168MM. The dimensions of the second page window assigned to
the main window (numbered as 01) was Left margin, 152MM Upper margin, 35MM Window width 140MM,
Window height 168MM.

After the creation of all the page windows, the page windows element list screen will look like the one in
Figure 1-100.

Switching to the graphic form painter, we visually viewed the layout of the page windows and confirmed
that the layout is as per the requirements.

We now have to create the text elements for the three windows: HEADING1, HEADING2, and main. We
started with the variable window HEADING1. We ensured that the variable window HEADING1 is selected
on the windows screen. We clicked the text element button on the application toolbar. The screen after entry
in text editor looked like the one in Figure 1-101.

Figure 1-100. Form YCH01_04_MLIST2element list of Page Windows

Figure 1-101. Form YCH01_04_MLIST2—text element of Window HEADING1

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

89

The four commas (,,,,) in the second line of the text editor screen are to insert tab spaces. You use two
commas to insert a single tab space. Tab space is specified in the basic settings. (Refer to Figure 1-34.) Tab
stops are specified in the Tabs area of paragraph formats. (Refer to Figure 1-47.) We did not specify any tab
stops in the paragraph formats of any of our forms. On our system, by default, when a form is created, tab
space of 1CM is assigned in the basic settings. So, in our present context, using two commas (,,) is inserting
1CM of space and using four commas (,,,,) is inserting 2CM of space.

For the variable window HEADING2, the screen after entry in text editor looked like the one in Figure 1-102.

The text element name LIST_HEADING is identical in both the variable windows HEADING1 and
HEADING2.

For the main window the screen after entry in text editor looked like the one in Figure 1-103.

We saved the form. We assigned the package YCH_BC401. You can assign any other non-local package
of your choice. We performed the definition check with the following menu selection: Form ➤ Check ➤

Definition. The form check generated the following alert: No errors found in form YCH01_04_MLIST2.

Figure 1-102. Form YCH01_04_MLIST2—text element of Window HEADING2

Figure 1-103. Form YCH01_04_MLIST2—text element of Main Window

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

90

Create and Test ABAP Program YCH01_02_MLIST_TWO_
MWINDOWS (Print Program)
We created a program YCH01_02_MLIST_TWO_MWINDOWS (transaction code SE38). This program is very
similar to the program YCH01_01_MLIST_ONE_MWINDOW. When calling the function modules OPEN_
FORM and START_FORM, the formal parameter FORM has to be provided with a value YCH01_04_MLIST2.
This is the name of the form of our current exercise. The source lines for calling these two function modules
will be as follows:

CALL FUNCTION 'OPEN_FORM'
 EXPORTING
 FORM = 'YCH01_04_MLIST2'
 LANGUAGE = SY-LANGU
 .

CALL FUNCTION 'START_FORM'
 EXPORTING
 FORM = 'YCH01_04_MLIST2'
 LANGUAGE = SY-LANGU
 .

Our headings—list heading and list column headings—appears in two variable windows. Hence the
function module WRITE_FORM (before LOOP AT… statement) to output headings is to be invoked twice.
The source lines will be as follows:

CALL FUNCTION 'WRITE_FORM'
 EXPORTING
 ELEMENT = 'LIST_HEADING'
 WINDOW = 'HEADING1'
 .

CALL FUNCTION 'WRITE_FORM'
 EXPORTING
 ELEMENT = 'LIST_HEADING'
 WINDOW = 'HEADING2'
 .

Except for these differences, the rest of the program YCH01_02_MLIST_TWO_MWINDOWS is identical
to the earlier program YCH01_01_MLIST_ONE_MWINDOW. So the full source is not listed here but
available in the E-resource (www.apress.com/9781484212345). We performed syntax check and activated the
program YCH01_02_MLIST_TWO_MWINDOWS.

We reverted to the form screen and performed the text check with the following menu option: Form ➤

Check ➤ Text. The form check generated the following alert: The text is syntactically correct. We activated
the form with the following menu selection: Form ➤ Activate.

http://www.apress.com/9781484212345

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

91

Test Form YCH01_04_MLIST2, Execute Program YCH01_02_MLIST_
TWO_MWINDOWS
When we executed the program YCH01_02_MLIST_TWO_MWINDOWS, the output looked as shown in
Figure 1-104.

As can be observed, with two page windows assigned to the main window, the 1,000 rows output in 13
pages compared to 17 pages with one page window assigned to the main window in demonstration III.

This concludes demonstration IV.

Recapitulation
Demonstration IV produced a material list. From the output of demonstration III, we contrived a scenario
of underutilization of paper space in the output. We set out to improve the paper space utilization in
demonstration IV. Demonstration IV has produced the same output as that of demonstration III in a
different format, resulting in better paper space utilization. In practical terms, it is unlikely that a material list
will be produced using SAP script forms. The objective of demonstrations III and IV was to convey in familiar
terms the output mechanism with single page window assigned to the main window and multiple page
windows assigned to the main window.

Conclusion
This chapter has introduced you to the SAP script as a tool for maintaining business document layouts.

You have learned about the components of SAP script: forms, styles, and standard texts.
You were given a brief description of the elements of a form as well as window types.
I described the relationship of SAP script and client code. I also described the relationship of SAP script

and language key.
You learned how fonts exist in the SAP script environment. I described and demonstrated the import of

operating system font files into the SAP script environment. I also described and demonstrated the import of
a BMP graphic image file into the SAP document server.

Figure 1-104. Program YCH01_02_MLIST_TWO_MWINDOWS—output

Chapter 1 ■ Sap SCript–FormS, StyleS, and Standard textS

92

A detailed description of elements of form was presented through a tour of the SAP-delivered ready-to-
use form MEDRUCK.

We performed four demonstration exercises to highlight some basic core features of forms.
The first demonstration exercise (demonstration I) involved the creation of a form with a single page

format, a graph window, its corresponding page window, and incorporation of an image into the page
window of the graph window. The form also contained a variable window and its corresponding page
window. We created long text in the page window of the variable window. The long text was formatted. The
formatting of the long text in the page window of the variable window required creation of three paragraph
formats and two character formats. We print previewed the form from within the form environment.

In the second demonstration exercise (demonstration II), we created standard text. The standard text
content was the same text we created in the page window of the variable window of demonstration I. As
the standard text was to be formatted, we created a style. The style was assigned to the standard text. The
style contained three paragraph formats and two character formats. These paragraph formats and character
formats are identical to the ones we created in demonstration I. The paragraph formats and character
formats were applied to the standard text. We then created a form with a single page format, a graph window,
its corresponding page window, and incorporation of an image into the page window of the graph window.
The form also contained a variable window and its corresponding page window. We incorporated the
standard text created earlier into the page window of the variable window. Finally, we print previewed the
form from within the form environment. The outputs of demonstration I and demonstration II are identical.
There is only a difference in the approach. In demonstration I, we created the long text within the form itself;
in demonstration II, we created the text as standard text and incorporated the text in the standard text into
the form.

Demonstration III highlighted the location of repetitive data in the main window. We undertook to
produce a list of materials using a SAP script form. The material list fields had to be repetitively output. So
they had to be located in the page window assigned to the main window. We used a single page window
assigned to the main window to output material list fields. We used a variable window with its corresponding
page window to output the material list heading. We created a named text element for the main window as
well as the variable window. This exercise required data to be retrieved and processed, so we had to code a
print program. We used five function modules—OPEN_FORM, START_FORM, WRITE_FORM, END_FORM,
and CLOSE_FORM—for the interaction of the form with the print program.

Demonstration IV highlighted the assignment of two (multiple) page windows to the main window.
I contrived a case where demonstration III did not use paper space optimally. I set about to use the paper
space more optimally than in demonstration III. I planned to output two columns of material list data
on a page much like the newspaper columns. The output of two columns of material list data on a page
required two page widows to be assigned to the main window. The exercise demonstrated in a simple and
effective manner the operation of two or more page windows assigned to the main window. The data of
demonstrations III and IV is identical; the difference was in the presentation of the data.

In Chapter 2, we will create forms, their corresponding print programs, and required workbench objects
for specified business scenarios.

http://dx.doi.org/10.1007/978-1-4842-3183-8_2

93© Sushil Markandeya 2017
S. Markandeya, Pro SAP Scripts, Smartforms, and Data Migration,
https://doi.org/10.1007/978-1-4842-3183-8_2

CHAPTER 2

SAP Script–Hands-on Exercises

Chapter 1 introduced you to SAP script as a tool to maintain business document layouts. It described the
SAP script environment, its components, and the different tools available to maintain the layout of business
documents. I focused for the most part on the form component of SAP script. Creating and maintaining
business document layouts involves working mostly with forms. Chapter 1 also described print programs
(ABAP programs) associated with forms and the transfer of data from the print programs to SAP script forms
and standard texts. You were exposed to the function modules used in the print program to interact with
forms. Demonstration exercises were performed to highlight and convey different concepts of SAP script.
In this chapter, we will apply SAP script features introduced in Chapter 1 to implement business scenarios.
I use the term “hands-on exercises” for the implementation of business scenarios.

We will perform the following five hands-on exercises involving the creation and modifications of forms
in this chapter:

•	 Output vendors’ address labels of a specific company code.

•	 Output custom purchase order.

•	 Output custom purchase order involving invocation of external subroutine from SAP
script text element and invocation of function modules in the external subroutine.

•	 Make a copy of the SAP delivered form MEDRUCK and customize it.

•	 Produce customer-wise sales summary of a specific company code using
SAP script form.

Apart from performing the hands-on exercises of creation and modification of forms, we will create our
own nodes and sub nodes and assign our forms to the subnodes of the SAP script form tree.

Detailed implementation of the hands-on exercises follows.

Hands-on Exercise I–Output Vendors’ Address Labels
of a Specific Company Code
Sometimes, an enterprise communicates with its business partners (customers or vendors) through postal
mail. The enterprise would like to have the address of the business partners printed on address labels or
stickers. The address labels will be stuck on envelopes containing communicating material to be sent to
business partners.

We will produce the address labels for vendors. The address labels will output for a specific company
code. We will create a SAP script form layout to produce the address labels. We will create a print program
and related workbench objects to produce the address labels for vendors.

https://doi.org/10.1007/978-1-4842-3183-8_2
http://dx.doi.org/10.1007/978-1-4842-3183-8_1
http://dx.doi.org/10.1007/978-1-4842-3183-8_1
http://dx.doi.org/10.1007/978-1-4842-3183-8_1

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

94

Output Specification and Layout
We will output vendors’ address labels on DINA4 stationery in landscape mode—297MM width and
210MM height. We will output 15 address labels on a single sheet of DINA4 stationery in landscape mode.
We will locate three address labels in one row and five address labels in one column with appropriate
margins and gaps. Each of the address labels will be 93MM in width 38MM in height. All of our address
label data repeats within a page and repeats from page to page. Hence, for the form to output address
labels, we will only use the main window. Each of the 15 address labels will map to a page window of
the main window. Each page window will contain the address of one vendor. The page windows will be
numbered from 00 to 14. Figure 2-1 shows a rough layout of the address labels or page windows.

Table 2-1 lists the dimensions of the 15 page windows.

Figure 2-1. Layout of vendors’ address labels

Table 2-1. Dimensions of 15 Page Windows

Page Window Number Dimensions

00 Left margin Upper margin Window width Window height
5MM 5MM 93MM 38MM

01 Left margin Upper margin Window width Window height
102MM 5MM 93MM 38MM

02 Left margin Upper margin Window width Window height
199MM 5MM 93MM 38MM

03 Left margin Upper margin Window width Window height
5MM 4MM 93MM 38MM

04 Left margin Upper margin Window width Window height
102MM 46MM 93MM 38MM

05 Left margin Upper margin Window width Window height
199MM 46MM 93MM 38MM

(continued)

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

95

Output Considerations
When outputting the address labels, we will call the function module START_FORM at the beginning of
a page and the function module END_FORM at the end of a page. That is, our document consists of only
one page. We will call the function module START_FORM before commencing to fill the first page window
in a page. We will call the function module END_FORM after filling the last (15th) page window in a page.
The calling of the function module END_FORM after filling the last (15th) page window in a page and the
subsequent calling of the function module START_FORM will ensure a page break for the next vendor
address to be output and that next vendor address will output in the first page window of the next page.

In Chapter 1, I described the operation of multiple page windows located in the main window. To
recapitulate, initially, the first page window will be filled with data. When the first page window is full, the
second page window will be filled with data, and so on, until all the page windows in the page are fully filled up.
When all the page windows of a page are filled up fully, a page break is triggered and this process of data filling
will continue in the first page window of the next page. This process continues until the data is exhausted.

The operation of multiple page windows (15 in our present case) in the main window suits our present
purpose with one exception. Suppose, when we output a vendor address in the first page window, the first
page window does not get filled up fully because the specific vendor address is short and crisp. Then, since
the first page window is not full, the address of second vendor will start outputting in the residual space
of the first page window. This phenomenon could occur for subsequent page windows as well. This is not
desirable. We want every vendor address to output in a fresh page window instead of commencing output in
the residual remaining space of current page window.

The calling of function modules START_FORM and END_FORM at the beginning and end of a page,
respectively, ensures that the first vendor address in a page outputs in the first page window of a page. We
have to ensure that the second vendor address in a page outputs in the second page window (not in the
residual space of the first page window), the third vendor address outputs in the third page window, and so
on until the 15th vendor address outputs in the 15th page window.

Table 2-1. (continued)

Page Window Number Dimensions

06 Left margin Upper margin Window width Window height
5MM 87MM 93MM 38MM

07 Left margin Upper margin Window width Window height
102MM 87MM 93MM 38MM

08 Left margin Upper margin Window width Window height
199MM 87MM 93MM 38MM

09 Left margin Upper margin Window width Window height
5MM 128MM 93MM 38MM

10 Left margin Upper margin Window width Window height
102MM 128MM 93MM 38MM

11 Left margin Upper margin Window width Window height
199MM 128MM 93MM 38MM

12 Left mrgin Upper margin Window width Window height
5MM 169MM 93MM 38MM

13 Left margin Upper margin Window width Window height
102MM 169MM 93 MM 38MM

14 Left margin Upper margin Window width Window height
199MM 169MM 93MM 38MM

http://dx.doi.org/10.1007/978-1-4842-3183-8_1

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

96

In the SAP script text element environment, we can ensure that output commences in a new page
window instead of in the residual space of current page window with the following control command:

NEW-WINDOW

Though the control command does not contain the phrase page window, the semantics of this control
command is to commence output in a new page window instead of in the residual space of the current page
window.

In our present context, we want to issue the control command NEW-WINDOW only for page windows 2
to 15. For this purpose, we will maintain a counter whose value signifies the page window being output in
the SAP script ABAP print program. We will check the contents of this counter in the SAP script text element
environment and issue the control command NEW-WINDOW accordingly. The ABAP program lines and SAP
script text element control commands will look as follows:

ABAP program lines:

DATA: COUNTER(2)TYPE N,
 LFA1_STRU TYPE
 LFA1_TAB......TYPE
.....
LOOP AT LFA1_TAB INTO LFA1_STRU.
.......
 IF COUNTER = 0.
 CALL FUNCTION 'START_FORM'...
 ENDIF.
 COUNTER = COUNTER + 1.
 CALL FUNCTION 'WRITE_FORM'...
.......
 IF COUNTER = 15.
 CALL FUNCTION 'END_FORM'...
 COUNTER = 0.
 ENDIF.
ENDLOOP.
.....

Control commands:

/: IF &COUNTER& <> '01'
/: NEW-WINDOW
/: ENDIF

The variable COUNTER has been declared as type N to make the IF control command comparison
simpler. Recall from Chapter 1 that all the program symbol values in the SAP script text element environment
are character oriented.

Inputs
We need to output vendor addresses. All of the vendor address data is available in the vendor primary table
LFA1 and through the field ADRNR in the table ADRC. As we are outputting vendor addresses of a specific
company code, we need to link the two tables LFA1 and LFB1. We have created a database view (YCH02_
LFA1_LFB1) of these two tables. The Table/Join Conditions tab of the database view will be as follows:

LFB1 LFA1 MANDT = LFB1 MANDT
LFA1 LFA1 LIFNR = LFB1 LIFNR

http://dx.doi.org/10.1007/978-1-4842-3183-8_1

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

97

The View Flds tab of the database view has the fields shown in Table 2-2.

The view YCH02_LFA1_LFB1 is our sole input.

Text element contents in the main window
We need to format the individual vendor addresses according to the postal convention of country of the
individual vendor. The SAP script form’s text element environment provides the wherewithal for formatting
individual vendor addresses according to the postal convention of each individual vendor country.

The respective primary tables (LFA1 and KNA1) maintain business partners’ (vendors and customers)
addresses. These addresses are also maintained in the business address services table ADRC as per the postal
convention of individual business partner’s country (the recipient country). The table ADRC is accessed
through the field ADRNR. The field ADRNR is available in the table structures LFA1 and LFB1.

In the SAP script text element environment, a set of control commands is available to output the
addresses as per postal convention of a country. The set of control commands is as follows:

/: ADDRESS <options & parameters>
/:
/: ENDADDRESS

The set of control commands outputs the addresses as per postal convention of recipient country
as well as provides additional customizing features. Read up on this set of control commands in the PDF
document “Style and Form Maintenance.”

The set of control commands to output the addresses as per postal convention of recipient country
internally uses the function module ADDRESS_INTO_PRINTFORM.

The text element in the main window of the form YCH02_01_ADR_STK will have the following contents:

/E ADDRESS
/: IF &COUNTER& <> '01'
/: NEW-WINDOW
/: ENDIF
/: IF &LFA1_STRU-ADRNR(K)& = ' '
/: ADDRESS PARAGRAPH DP
/: TITLE &LFA1_STRU-ANRED&

Table 2-2. Fields in the Database View YCH02_LFA1_LFB1

Srl. No. Field/Table Srl. No. Field/Table

01 MANDT / LFA1 10 ORT02 / LFA1

02 LIFNR / LFA1 11 PFACH / LFA1

03 BUKRS / LFB1 12 PSTL2 / LFA1

04 LAND1 / LFA1 13 PSTLZ / LFA1

05 NAME1 / LFA1 14 REGIO / LFA1

06 NAME2 / LFA1 15 STRAS / LFA1

07 NAME3 / LFA1 16 ADRNR / LFA1

08 NAME4 / LFA1 17 ANRED / LFA1

09 ORT01 / LFA1

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

98

/: NAME &LFA1_STRU-NAME1&, &LFA1_STRU-NAME2&, &LFA1_STRU-NAME3&
/: STREET &LFA1_STRU-STRAS&
/: POBOX &LFA1_STRU-PFACH& CODE &LFA1_STRU-PSTL2&
/: CITY &LFA1_STRU-ORT01&, &LFA1_STRU-ORT02&
/: POSTCODE &LFA1_STRU-PSTLZ&
/: COUNTRY &LFA1_STRU-LAND1&
/: REGION &LFA1_STRU-REGIO&
/: FROMCOUNTRY &T001-LAND1&
/: ENDADDRESS
/: ELSE
/: ADDRESS PARAGRAPH DP
/: ADDRESSNUMBER &LFA1_STRU-ADRNR(K)&
/: FROMCOUNTRY &T001-LAND1&
/: ENDADDRESS
/: ENDIF

The set of control commands checks the value of the field ADRNR. If this field has a value, the address is
output from the table ADRC; otherwise, the individual address fields from the table LFA1 specified under the
ADDRESS.....ENDADRESS set of control commands are output.

Source program
The print program for the SAP script form YCH02_01_ADR_STK is as follows:

REPORT YCH02_01_PPRG_YCH02_01_ADR_STK.

**
* Address Labels for Vendors of a Specific Company Code **
* Use SAP script Form: YCH02_01_ADR_STK **
**

TYPES: BEGIN OF LFA1_STRU_TP,
 LIFNR TYPE LIFNR,
 ADRNR TYPE ADRNR,
 ANRED TYPE ANRED,
 NAME1 TYPE NAME1_GP,
 NAME2 TYPE NAME2_GP,
 NAME3 TYPE NAME3_GP,
 NAME4 TYPE NAME4_GP,
 STRAS TYPE STRAS_GP,
 PFACH TYPE PFACH,
 PSTL2 TYPE PSTL2,
 ORT01 TYPE ORT01_GP,
 ORT02 TYPE ORT02_GP,
 PSTLZ TYPE PSTLZ,
 LAND1 TYPE LAND1_GP,
 REGIO TYPE REGIO,
 END OF LFA1_STRU_TP.

TABLES: T001.
DATA: LFA1_TAB TYPE STANDARD TABLE OF LFA1_STRU_TP,
 LFA1_STRU TYPE LFA1_STRU_TP,
 COUNTER(2) TYPE N.

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

99

**
PARAMETERS: COMP_CD TYPE KNB1-BUKRS DEFAULT 3000
 VALUE CHECK.
**
START-OF-SELECTION.
SELECT SINGLE * FROM T001 WHERE BUKRS = COMP_CD.

SELECT LIFNR ADRNR ANRED NAME1 NAME2 NAME3 NAME4 STRAS
 PFACH PSTL2 ORT01 ORT02 PSTLZ LAND1 REGIO
 FROM YCH02_LFA1_LFB1
 INTO TABLE LFA1_TAB
 WHERE BUKRS = COMP_CD.
SORT LFA1_TAB BY LIFNR.
**
CALL FUNCTION 'OPEN_FORM'
 EXPORTING
 FORM = 'YCH02_01_ADR_STK'
 LANGUAGE = 'E'
 .
IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
ENDIF.

LOOP AT LFA1_TAB INTO LFA1_STRU.

 COUNTER = COUNTER + 1.

 IF COUNTER = '01'.
 CALL FUNCTION 'START_FORM'
 EXPORTING
 FORM = 'YCH02_01_ADR_STK'
 LANGUAGE = 'E'
 .
 IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 ENDIF.

 ENDIF.

 CALL FUNCTION 'WRITE_FORM'
 EXPORTING
 ELEMENT = 'ADDRESS'
 WINDOW = 'MAIN'
 .
 IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 ENDIF.

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

100

 IF COUNTER = '15'.
 COUNTER = 0.
 CALL FUNCTION 'END_FORM'
 .
 IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 ENDIF.

 ENDIF.

ENDLOOP.
**
CALL FUNCTION 'CLOSE_FORM'
 .
IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
ENDIF.

Creation of Form YCH02_01_ADR_STK and Print Program
YCH02_01_PPRG_YCH02_01_ADR_STK
In transaction code SE71, we created a form YCH02_01_ADR_STK. We made the page orientation as
landscape. The form consisted of a single page format ONLY_PG. The form consisted of single paragraph
format DP. The font family assigned to the paragraph format DP is Courier and the font size is 10 points. In
the basic settings of the form attributes, we assigned the default paragraph as DP and assigned the first page
as ONLY_PG. We also adjusted the Lines/inch to 7.2 and Characters/inch to 12.

We assigned the next page for page format ONLY_PG as ONLY_PG.
The form consists of only the main window. We created 15 page windows as per Table 2-1. In the main

window text element, we entered the control commands shown under ‘Text element contents in the main
window.’

We saved the form and assigned the package YCH_BC401. You can assign this package or any other
non-local package of your choice.

We created an ABAP program YCH02_01_PPRG_YCH02_01_ADR_STK with the lines as shown under
the headings ‘Source program.’ We performed a syntax check and activated this program.

In the transaction code SE71, we performed a form definition check as well as the form texts check on
the form YCH02_01_ADR_STK and activated it.

The form YCH02_01_ADR_STK and the source program YCH02_01_PPRG_YCH02_01_ADR_STK are
available in the E-resource for this book (www.apress.com/9781484212345).

Output
We executed the program YCH02_01_PPRG_YCH02_01_ADR_STK. We executed the program with the
company code value equal to 3000. The output will look as shown in Figures 2-2 and 2-3.

http://www.apress.com/9781484212345

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

101

The output will depend on the number of vendors for the specified company code. In the present case,
the output consists of 36 pages.

Hands-on Exercise Recapitulation
In this hands-on exercise, we used the feature of multiple page windows in the main window to output the
address labels of vendors. The feature of multiple page windows in the main window was introduced in
demonstration IV in Chapter 1.

We wanted to ensure that each vendor address commences output in a new page window instead
of commencing output in the residual space, if any, of the current page window. To implement this
requirement, we introduced the control command NEW-WINDOW.

Figure 2-2. Output of program YCH02_01_PPRG_YCH02_01_ADR_STK—page 1/36)

Figure 2-3. Output of program YCH02_01_PPRG_YCH02_01_ADR_STK—page 35/36

http://dx.doi.org/10.1007/978-1-4842-3183-8_1

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

102

To ensure that the vendor address outputs as per the postal convention of the recipient country, we
introduced the set of control commands ADDRESS.....ENDADDRESS.

We used the five function modules: OPEN_FORM, START_FORM, WRITE_FORM, END_FORM and
CLOSE_FORM. These function modules are invariably used in the print program’s interaction with SAP
script forms.

You are already familiar with the rest of the print program and form features used in the hands-on
exercise.

Hands-on Exercise II—Output Custom Purchase Order
In this hands-on exercise, we will create a form, its corresponding print program, and other required
workbench objects to output standard purchase orders. SAP delivers forms for all commonly used enterprise
business documents. The SAP delivered forms have their corresponding print programs. In Chapter 1, via a
tour of the SAP delivered form for purchasing document MEDRUCK, I introduced the various features and
concepts of forms. In real-life SAP implementation projects, copies are made of SAPdelivered forms in the
Y/Z namespace. The copied forms are then modified and customized as per requirements. A copy of a SAP
delivered form modified and customized as per requirements will use the print program associated with
the original SAP delivered form, so a new print program is not required to be created. The advantages of
this approach of copying and customizing SAP delivered forms is that you do not have to create a form from
scratch and do not have to code its corresponding complex print program.

The present hands-on exercise gives me an occasion and the scope to expose you to the process of
creating from scratch a complex form for a business document that outputs standard purchase orders,
as well as to introduce you to more features of text elements of forms. In one of the succeeding hands-on
exercises, we will copy the SAP delivered form MEDRUCK into Y namespace and customize it as per laid-out
specifications.

Hands-on Exercise–Scope and Limits
The present hands-on exercise will output the standard purchase orders, somewhat similar in looks to the
one produced by the SAP delivered form MEDRUCK. But the form MEDRUCK produces not just purchase
orders but all other purchasing documents like purchase requisitions, request for quotations, and so on. The
objective of this exercise is to allow you to create from scratch a complex form, its associated print program,
and the deployment of the form to output standard purchase orders.

In the present hands-on exercise, it is assumed that the purchase orders submitted for output are new
purchase orders and not the purchase orders for which full or partial deliveries have been made.

The present hands-on exercise assumes that there is only one consignee/delivery address for all the
items of a purchase order and only one delivery date for all the items of a purchase order.

The present hands-on exercise also assumes that there is only one term of delivery for all the items of a
purchase order.

Output and Layout Specification
We will output standard purchase orders on DINA4 stationery in portrait mode—210MM width and 297MM
height. We will output a graphic logo in a graphic window and item data in the main window. The rest of the
data will be output in variable windows.

There will be two page formats for the purchase order: FIRST and NEXT. The first page of a purchase
order will output with the page format FIRST; if a purchase order runs into multiple pages, all the pages
other than the first page of a purchase order will output with the page format NEXT.

The area of purchase order above the item area of page format FIRST will be as shown in Figure 2-4.

http://dx.doi.org/10.1007/978-1-4842-3183-8_1

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

103

The areas bounded by rectangles with rounded corners represent windows with their corresponding
page windows. The windows with their corresponding page windows are numbered for convenience.
There is one graphic window and six variable windows with their corresponding page windows. The
contents of windows and their corresponding page windows will be as follows:

 1. The company logo is located in the LOGO window.

 2. The window SENDER (sender of purchase order) contains the sender’s name
and address, that is, the company code name and address.

 3. The window RECEIVER (receiver of purchase order) contains the receiver’s name
and address, that is, the vendor’s name and address.

 4. The window PO_INF1 contains the following information:

•	 Document type, in our context ‘Purchase order,’ since we restricted our scope
to output normal new purchase orders.

•	 Purchase order number and date.

•	 Contact person and telephone number.

 5. The window PO_INF2 contains vendor code and vendor person responsible.

 6. The window CONSIGNE contains the delivery plant/branch office address.

 7. The window DELI_ETC contains the following information:

•	 Delivery date

•	 Terms of delivery

•	 Terms of payment

•	 Currency

Figure 2-4. Custom purchase order page format FIRST—I

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

104

The area of purchase order containing the item header, item data, total, etc., of page format FIRST will
be as in Figure 2-5.

 8. The window ITEM_HD contains the column heading text for item data: ‘Material
code,’ ‘Description,’ etc.

 9. The window MAIN contains the item data (data which is repeating in a page and
repeating page to page). The item data is being output in two lines. The first line
outputs material code and description. The second line outputs order quantity,
units, price per unit, and net value.

 10. The window TOTAL contains a purchase order’s total net value. For a specific
purchase order, the total net value must output on the last page of a purchase
order

 11. We have not located any information in the window FOOTER. You might choose
to locate some information in this window.

For the second page format NEXT, its windows and page windows layout will be as shown in Figure 2-6:

Figure 2-5. Custom purchase order page format FIRST—II

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

105

The window PO_INF3 contains the purchase order number and date.
The window PAGE contains a running page number along with the total number of pages in a purchase

order. The page number will start from 1 for each purchase order. The total number of pages will be the
number of pages in a purchase order.

As in the SAP delivered form MEDRUCK, the page number is being output from the second page of a
purchase order; the page number information does not appear in the first page of a purchase order.

The other windows and page windows in the page format NEXT are common to the page format FIRST.
The height of page window of the main window in the page format NEXT is greater than its corresponding
page window in the page format FIRST.

This concludes the output specification and layout.

Figure 2-6. Custom purchase order page format NEXT —windows and page windows layout

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

106

Output Considerations
Following are some output considerations:

•	 The hands-on exercise form has been created to support only one language:
English. All the text normally created as literal in the text element environment will
be retrieved from data elements in the print program and transferred to the text
element environment of the form through program symbols. This is a peculiar way
of handling the texts in a form. With one language version of a form, we will be able
to output the purchase order in multiple languages, since we are controlling the text
language through the texts of data elements in the print program. The value of the
field EKKO-SPRAS will determine the language in which the texts are to be fetched
from data elements.

•	 The system on which we are executing our hands-on exercises has only two
languages installed: English and German. So this hands-on exercise print program
has been created to accept only purchase orders in these two languages. (IF EKKO-
SPRAS <> 'D' AND EKKO-SPRAS <> 'E' …..CONTINUE.) If the system on which you
are executing the exercises has more languages installed, you can modify the print
program to accept purchase orders in additional languages.

•	 When outputting the purchase orders, we will call the function module START_
FORM at the beginning of a purchase order and the function module END_FORM
at the end of a purchase order. With the invocation of these function modules at the
commencement and ending of a purchase order, respectively, we are assured of a
page break and page number starting from 1 for every purchase order.

•	 We have only one page window in the main window. This single page window of the
main window receives the item data. This single page window of the main window
has different dimensions in the two page formats FIRST and NEXT. The height of
the page window in the page format NEXT is greater than the height of the page
window in the page format FIRST. When a purchase order begins to output, the main
window page window of the page format FIRST will receive item data continually.
If the item data for all the items is received and the main window page window in
the page format FIRST is not completely filled up, it is a case of a purchase order not
extending to the second page. At the end of outputting all items, the total needs to
be output. After the total is output, the output of the purchase is completed and the
commencement of output of the next purchase order if any will start. This was the
case of a purchase order that runs into one page only.

•	 Let us consider the case of a purchase order that runs into more than one page.
When a purchase order begins to output, the main window page window of the page
format FIRST will receive the item data continually until the main window page
window in the page format FIRST is full. When the main window page window in
page format FIRST is full, a page break will be triggered, and data will continue to
output in the main window page window of the page format NEXT; this process will
go on until all the item data of a purchase order is received and output.

•	 Three addresses are being output: (1) sender or company code name and address;
(2) receiver or vendor name and address; (3) consignee or delivery address. We
want the sender or company code name to output in font type Helve and font size
28 points. This requires applying character format to the company code name
field. To be able to apply character format to the company code name field, we are
not using the ADDRESS…..ENDADDRESS set of control commands to output the

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

107

sender or company code name and address. Using the field ADRNR of table T001,
we are retrieving the address of company code from the table SADR. The retrieved
address from the table SADR is formatted as per the company code country’s postal
convention by calling the function module ADDRESS_INTO_PRINTFORM. This
function module takes input addresses and returns the formatted address as per
the country’s postal convention. This function module is also internally used by the
ADDRESS…..ENDADDRESS set of control commands. The other two addresses, that
is, the receiver or vendor address and consignee or delivery address, are output using
the ADDRESS…..ENDADDRESS set of control commands.

•	 The item header and item data are being output enclosed in boxes as shown
in Figure 2-5. You can produce boxes or frames using the control command
BOX….. The document type ‘Purchase Order’ is output using control command
BOX…..with shading option (grayish background). You can specify the x-axis, y-axis,
width, and height of the box when issuing the control command BOX. You can also
specify the thickness of box or frame boundary line (dimension used is Twip,
1

/1440
 of an inch) and shading effect. The control command BOX by default starts from

the page window assigned to the window in which it is issued. But by specifying
negative x-axis and y-axis values, you can have the box start from a position prior to
the current position. Similarly, by specifying positive x-axis and y-axis values, you
can have the box start from a position ahead of the current position. The box size is
not constrained by page window boundaries and can cut across the page window
boundaries. Two control commands, POSITION and SIZE, go along with the control
command BOX. For a detailed description of these control commands, refer to the
PDF document “BC Style and Form Maintenance.”

•	 The item data is output in two lines: the first line outputting material code and
description and the second line outputting order quantity, units, price per unit,
and net value. We do not want the two lines constituting the detail of an item to
split between two pages but output on the same page. To ensure that the two lines
constituting the detail of an item output on the same page, we are using the control
commands PROTECT…..ENDPROTECT. Whatever lines you locate between the
control commands PROTECT…..ENDPROTECT will output on the same page,
equivalent to RESERVE <lines> ABAP statement used in the context of ABAP
statement WRITE.

•	 We are using the SAP script system symbol &PAGE& to output page numbers
of a purchase order. We are using the general SAP script field &SAPSCRIPT-
FORMPAGES& to output the total number of pages of a purchase order. We are using
SAP script system symbol &nextpage& (&nextpage& value is zero for the last page of
a document) to ascertain the last page of a purchase order and output the total net
value only on the last page of a purchase order.

•	 We are using some of the SAP script text element formatting options like output
length specification, zero suppression, left-side space compression, right
justification, suppression of conversion routine, etc. Refer to the detailed description
of formatting options in the PDF document “BC Style and Form Maintenance.”

•	 We plan to output some of the information of purchase order in a font type and size
other than the default font type Courier 12, etc. So we created a few character formats
to output information in font type and size other than the default.

This concludes the output considerations.

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

108

Data Inputs and Data Input Considerations
The two main sources of data to output the purchase orders with custom form are the tables EKKO,
purchasing document header, and EKPO, purchasing document item.

We will retrieve data from EKKO with the SELECT..... ENDSELECT loop. You can choose to load EKKO
data into an internal table and loop from the internal table. A SELECT-OPTIONS statement is provided to be
able to choose the purchase orders to be output.

The data relating to the company code of a purchase order being processed will be retrieved from the
tableT001—SELECT SINGLE * FROM T001 WHERE BUKRS = EKKO-BUKRS. The address of the company
code is retrieved from the table SADR- SELECT SINGLE * FROM SADR WHERE ADRNR = T001-ADRNR.
The function module ADDRESS_INTO_PRINTFORM will return ten lines of address of the company code
formatted as per the postal convention of the country of the company code which is output in the window
SENDER.

The data relating to the vendor of a purchase order being processed will be retrieved from the vendor
primary table LFA1 - SELECT SINGLE * FROM LFA1 WHERE LIFNR = EKKO-LIFNR.

The set of control commands ADDRESS.....ENDADDRESS will retrieve the vendor address through the
field LFA1-ADRNR and will output the vendor address as per the recipient country’s postal convention
which is being output in the window RECEIVER.

The document type (purchase order) along with the field nomenclatures or labels for purchase order
number and date are retrieved from table T166U as follows:

SELECT SINGLE * FROM T166U WHERE BSTYP = EKKO-BSTYP AND
 BSART = EKKO-BSART AND SPRAS = EKKO-SPRAS AND DRUVO = '1'.

The ‘contact person’ and ‘to telephone’ are retrieved from the table T024 like SELECT SINGLE * FROM
T024 WHERE EKGRP = EKKO-EKGRP.

The terms of payment are retrieved from the table T052 like SELECT SINGLE * FROM T052 WHERE
ZTERM = EKKO-ZTERM. The function module FI_PRINT_ZTERM is used to retrieve the terms-of-payment
text.

We require the material description in our output. For this reason, we are using a database view of the
tables EKPO and MAKT joined by the fields MANDT and MATNR. The name of this view is YCH02_EKPO_
MAKT. This view will contain material descriptions in all the languages. In the print program, at any time,
we will retrieve from this view only the items pertaining to a specific purchase order being currently output.
When the data is retrieved from this view for a specific purchase order, we will retrieve material descriptions
of items of a purchase order being output in the language of the purchase order as follows:

 SELECT * FROM YCH02_EKPO_MAKT INTO TABLE ITEM_TAB
 WHERE EBELN = EKKO-EBELN
 AND BUKRS = EKKO-BUKRS
 AND SPRAS = EKKO-SPRAS. "Load itab from View

The consignee (deliver to plant/branch office address) is retrieved through the view field YCH02_
EKPO_MAKT-ADRNR from the first item record of the purchase order, alternatively through YCH02_EKPO_
MAKT-ADRN2 and again alternatively from table T001W through YCH02_EKPO_MAKT-WERKS. The
consignee data will be retrieved for the first item of a purchase order, assuming that it is the same for all
other items in the purchase order.

The delivery date is retrieved from the table EKET as follows:

SELECT SINGLE * FROM EKET WHERE EBELN = YCH02_EKPO_MAKT-EBELN
 AND EBELP = YCH02_EKPO_MAKT-EBELP.

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

109

Again this will be retrieved for the first item of a purchase order, assuming that it is the same for all other
items in the purchase order.

Table 2-3 provides a list of the tables/views with fields used. A field of a table/view is deemed to be used
when it is appearing in the output or occurs in subsequent WHERE condition(s):

Table 2-3. List of Tables and Views with the Fields

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

110

The nomenclatures or labels for the fields are retrieved from data elements’ long texts using the
function module WCGW_DATA_ELEMENT_TEXT_GET. Most table fields’ existing data element texts do
not suit us; that is, the texts of these existing data elements do not correspond with the texts of the proposed
output. So, for this hands-on exercise, we have created our own data elements and created texts for these
data elements in the two languages: English and German. There are a total of 16 data elements; their English
and German texts are available in the E-resource for this book (www.apress.com/9781484212345). The
German texts available in the E-resource were created using the Google translator.

The nomenclatures or labels for fields as a rule are specified through literals in the text element
environment of the SAP script form. This is the practice in all the SAP delivered forms as well as the forms we
have created until now. By making the nomenclatures or labels for fields as program symbols or variables in
text element environment of the SAP script form, we are making the form itself language independent.

This concludes the data input and data input considerations.

Creation of SAP Script Form, Print Program, and Related Workbench
Objects
To output purchase orders using custom form, we will be creating the following workbench objects:

•	 A database view using the tables EKPO and MAKT.

•	 A SAP script form.

•	 A print program for the SAP script form.

•	 A database view using the tables EKKO and LFA1. This database view will be used in
an elementary search help.

•	 An elementary search help. This elementary search help uses the database view
consisting of tables EKKO and LFA1. This elementary search help is being attached
to the SELECT-OPTIONS field in the print program

A description for how to create these workbench objects follows.

Database View YCH02_EKPO_MAKT
We created a database view YCH02_EKPO_MAKT with the table EKPO as the primary table and table MAKT
as a secondary table. The tables are to be joined through the fields MANDT and MATNR. The database view
consists of fields listed in Table 2-4.

Table 2-4. Fields in the Database View YCH02_EKPO_MAKT

Srl. No. Field/Table Srl. No. Field/Table

01 MANDT / EKPO 08 ADRN2 / EKPO

02 EBELN / EKPO 09 MATNR / EKPO

03 EBELP / EKPO 10 MENGE / EKPO

04 SPRAS / MAKT 11 MEINS / EKPO

05 BURKS / EKPO 12 NETPR / EKPO

06 WERKS / EKPO 13 NETWR / EKPO

07 ADRNR / EKPO 14 MAKTX / MAKT

http://www.apress.com/9781484212345

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

111

We performed the consistency check and activated the database view.

SAP Script Form YCH02_02_PORDER1
We created a form YCH02_02_PORDER1. Within the form, we created a paragraph format DP with default
values. Further, we created a page format FIRST. In the basic settings of the form attributes, we assigned the
default paragraph as DP and assigned the first page as FIRST.

We created page format NEXT. We assigned the next page for page format FIRST as NEXT. And we
assigned the next page for page format NEXT as NEXT.

For page format FIRST, we created windows and their corresponding page windows as per the entries in
Table 2-5.

Table 2-5. Page Format FIRST—Windows and Page Windows

Window & Page
Window

Page Window Dimensions Contents

1.LOGO Left margin : 5.00MM
Upper margin : 5.00MM
Window width : 46.64MM
Window height : 29.81MM

Company Logo
'YCH01_COMPANY_LOGO' OBJECT
GRAPHICS ID
BMAP TYPE BCOL

2.SENDER Left margin : 46.00MM
Upper margin : 5.00MM
Window width : 145.00MM
Window height : 30.00MM

Company code name & address
&ADRS-LINE1&….. &ADRS-LINE9&

3.RECEIVER Left margin : 5.00MM
Upper margin : 35.00MM
Window width : 115.00MM
Window height : 30.00MM

&EKKO-ADRNR(K)& etc.

4.PO_INF1 Left margin : 120.00MM
Upper margin : 35.00MM
Window width : 85.00MM
Window height : 30.00MM

&T166U-DRTYP& &T166U-DRNUM&
&EKKO-EBELN& &EKKO-BEDAT&
&YCH02_EKNAM& &YCH02_EKTEL&
&T024-EKNAM& &T024-EKTEL&

5.PO_INF2 Left margin : 5.00MM
Upper margin : 65.00MM
Window width : 200.00MM
Window height : 20.00MM

&YCH02_LIFNR(30) & &YCH02_VERKF&
&EKKO-LIFNR(K)& &EKKO-VERKF&

6.CONSIGNE Left margin : 5.00MM
Upper margin : 85.00MM
Window width : 115.00MM
Window height : 30.00MM

&YCH02_CONSG&
&YCH02_EKPO_MAKT-ADRNR(K)& or
&YCH02_EKPO_MAKT-ADRN2(K)& or
&SADR-ANRED&….. etc.

7.DELI_ETC Left margin : 120.00MM
Upper margin : 85.00MM
Window width : 85.00MM
Window height : 30.00MM

&YCH02_EINDT& &EKET-EINDT&
&YCH02_INCO1& &EKKO-INCO1&
&YCH02_ZBTXT&
&ZBTXT_STRU&
&WAERS& &EKKO-WAERS&

(continued)

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

112

For page format NEXT, we created windows and their corresponding page windows as per the entries in
Table 2-6.

Table 2-5. (continued)

Window & Page
Window

Page Window Dimensions Contents

8.ITEM_HD Left Mmargin : 5.00MM
Upper margin : 115.00MM
Window width : 200.00MM
Window height : 20.00MM

&YCH02_MATNR& &YCH02_MAKTX&
&YCH02_MENGE(R14)& &YCH02_MEINS(5)&
&YCH02_NETPR(R14)& &NETWR(R15)&

9.MAIN Left margin : 5.00MM
Upper margin : 135.00MM
Window width : 200.00MM
Window height : 137.00MM

&YCH02_EKPO_MAKT-MATNR(18K)&
&YCH02_EKPO_MAKT-MAKTX(40)&
&YCH02_EKPO_MAKT-MENGE(14)&
&YCH02_EKPO_MAKT-MEINS(5)&
&YCH02_EKPO_MAKT-NETPR(14)&
&YCH02_EKPO_MAKT-NETWR(15)&

10.TOTAL Left margin : 5.00MM
Upper margin : 272.00MM
Window width : 200.00MM
Window height : 10.00MM

&YCH02_TOTAL_NET_E& &TOTAL&

11.FOOTER Left margin : 5.00MM
Upper margin : 282.00MM
Window width : 200.00MM
Window height : 10.00MM

Footer text if any

Table 2-6. Page Format NEXT—Windows and Page Windows

Window & Page
Window

Page Window Dimensions Contents

1.RECEIVER Left margin : 5.00MM
Upper margin : 5.00MM
Window width : 115.00MM
Window height : 30.00MM

&EKKO-ADRNR(K)& etc.

2.PO_INF3 Left margin : 120.00 MM
Upper margin : 5.00 MM
Window width : 65.00 MM
Window height : 30.00 MM

&YCH02_LIFNR(30)& &YCH02_VERKF&
&EKKO-LIFNR(K)& &EKKO-VERKF&

3. PAGE Left margin : 185MM
Upper margin : 5.00MM
Window width : 20MM
Window height : 30MM

&YCH02_PAGE&
&PAGE(R2)&/&SAPSCRIPT-FORMPAGES(C2)&

4.ITEM_HD Left margin : 5.00MM
Upper margin : 35.00MM
Window width : 200.00MM
Window height : 20.00MM

&YCH02_MATNR& &YCH02_MAKTX&
&YCH02_MENGE(R14)& &YCH02_MEINS(5)&
&YCH02_NETPR(R14)& &NETWR(R15)&

(continued)

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

113

We created the following character formats.

Window & Page
Window

Page Window Dimensions Contents

5.MAIN Left margin : 5.00MM
Upper margin : 55.00MM
Window width : 200.00MM
Window height : 217.00MM

&YCH02_EKPO_MAKT-MATNR(18K)&
&YCH02_EKPO_MAKT-MAKTX(40)&
&YCH02_EKPO_MAKT-MENGE(14)&
&YCH02_EKPO_MAKT-MEINS(5)&
&YCH02_EKPO_MAKT-NETPR(14)&
&YCH02_EKPO_MAKT-NETWR(15)&

6.TOTAL Left margin : 5.00MM
Upper margin : 272.00MM
Window width : 200.00MM
Window height : 10.00MM

&YCH02_TOTAL_NET_E& &TOTAL&

7.FOOTER Left margin : 5.00MM
Upper margin : 282.00MM
Window width : 200.00 MM
Window height : 10.0MM

Footer text if any

Table 2-6. (continued)

Table 2-7. Character Format List

Character Format

Name

Description Font Type /Family Font Size Bold

CD Helve 14 - For Document Type HELVE 14,0 On

CS For Sender Name in 16 pts HELVE 16,0 On

CT For Sender Name in 28 pts HELVE 28,0 On

HS Helve 8 – For Field Nomenclature HELVE 8,0

We are using the character format CD to output the text of the document type.
Depending on the number of characters in the field company code name, we are employing two

character formats: CS and CT.
We are using the character format HS to output field nomenclature/labels.
The graph window LOGO will contain the following in its text element:

/: BITMAP 'YCH01_COMPANY_LOGO' OBJECT GRAPHICS ID BMAP TYPE BCOL

We created the following in the text element area of the window SENDER:

/E SENDER
/: IF &LENGTH& > '15'
* <CS>&ADRS-LINE0&</>
/: ELSE
*
* <CT>&ADRS-LINE0&</>

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

114

/: ENDIF
* &ADRS-LINE1&
* &ADRS-LINE2&
* &ADRS-LINE3&
* &ADRS-LINE4&
* &ADRS-LINE5&
* &ADRS-LINE6&
* &ADRS-LINE7&
* &ADRS-LINE8&
* &ADRS-LINE9&

We created the following in the text element area of the window RECEIVER:

/: IF &EKKO-ADRNR(K)& = ' '
/: ADDRESS PARAGRAPH DP
/: TITLE &LFA1-ANRED&
/: NAME &LFA1-NAME1&, &LFA1-NAME2&, &LFA1-NAME3&, &LFA1-NAME4&
/: STREET &LFA1-STRAS&
/: POBOX &LFA1-PFACH& CODE &LFA1-PSTL2&
/: CITY &LFA1-ORT01&, &LFA1-ORT02&
/: POSTCODE &LFA1-PSTLZ&
/: COUNTRY &LFA1-LAND1&
/: REGION &LFA1-REGIO&
/: FROMCOUNTRY &T001-LAND1&
/: ENDADDRESS
/: ELSE
/: ADDRESS PARAGRAPH DP
/: ADDRESSNUMBER &EKKO-ADRNR(K)&
/: FROMCOUNTRY &T001-LAND1&
/: ENDADDRESS
/: ENDIF

We created the following in the text element area of the window PO_INF1:

/: BOX FRAME 15 TW
/: BOX HEIGHT '1.5' LN INTENSITY 14
* <CD>&T166U-DRTYP&</>
*
* <HS>&T166U-DRNUM&</>
* &EKKO-EBELN&&' / 'EKKO-BEDAT&
* <HS>&YCH02_EKNAM&&' / 'YCH02_EKTEL&</>
* &T024-EKNAM&&' / 'T024-EKTEL&

Create the following in the text element area of the window PO_INF2:

* <HS>&YCH02_LIFNR(30)&</>,,,,,,,,,,,,,,,,<HS>&YCH02_VERKF&</>
* &EKKO-LIFNR(K)& ,,,,,,,,,,,,,,,,,,&EKKO-VERKF&

The ,, (commas) generate tab or horizontal spaces. The tab setting in the form’s attributes is 1
centimeter. Two commas generate 1 tab space or 1 centimeter.

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

115

We created the following in the text element area of the window CONSIGNE:

* &YCH02_CONSG&
/: IF &YCH02_EKPO_MAKT-ADRNR(K)& = ' ' AND &YCH02_EKPO_MAKT-ADRN2(K)& = ' '
/: ADDRESS DELIVERY PARAGRAPH DP
/: TITLE &SADR-ANRED&
/: NAME &SADR-NAME1&, &SADR-NAME2&, &SADR-NAME3&, &SADR-NAME4&
/: STREET &SADR-STRAS&
/: CITY &SADR-ORT01&, &SADR-ORT02&
/: POSTCODE &SADR-PSTLZ&
/: COUNTRY &SADR-LAND1&
/: REGION &SADR-REGIO&
/: FROMCOUNTRY &LFA1-LAND1&
/: ENDADDRESS
/: ELSE
/: IF &YCH02_EKPO_MAKT-ADRNR(K)& <> ' '
/: ADDRESS DELIVERY PARAGRAPH DP
/: ADDRESSNUMBER &YCH02_EKPO_MAKT-ADRNR(K)&
/: FROMCOUNTRY &LFA1-LAND1&
/: ENDADDRESS
/: ELSE
/: ADDRESS DELIVERY PARAGRAPH DP
/: ADDRESSNUMBER &YCH02_EKPO_MAKT-ADRN2(K)&
/: FROMCOUNTRY &LFA1-LAND1&
/: ENDADDRESS
/: ENDIF
/: ENDIF

We created the following in the text element area of the window DELI_ETC:

* <HS>&YCH02_EINDT&:</> &EKET-EINDT&
* <HS>&YCH02_INCO1&:</> &EKKO-INCO1&
* <HS>&YCH02_ZBTXT&</>
* &ZBTXT_STRU&
*
* <HS>&WAERS&:</> &EKKO-WAERS&

We created the following in the text element area of the window ITEM_HD:

/E ITEM_HEAD
/: BOX HEIGHT 15 MM FRAME 15 TW
/: IF &PAGE(C)& = '1'
/: BOX HEIGHT 156 MM FRAME 20 TW
/: ELSE
/: BOX HEIGHT 236 MM FRAME 20 TW
/: ENDIF
* &YCH02_MATNR& &YCH02_MAKTX&
* &YCH02_MENGE(R14)& &YCH02_MEINS(5)&
= &YCH02_NETPR(R14)& &NETWR(R15)&

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

116

We created the following in the text element area of the window MAIN:

/E ITEM_DATA
/: PROTECT
* &YCH02_EKPO_MAKT-MATNR(18K)& &YCH02_EKPO_MAKT-MAKTX(40)&
* &YCH02_EKPO_MAKT-MENGE(14)&
= &YCH02_EKPO_MAKT-MEINS(5)& &YCH02_EKPO_MAKT-NETPR(14)&
= &YCH02_EKPO_MAKT-NETWR(15)&
/: ENDPROTECT

We created the following in the text element area of the window TOTAL:

/E TOTAL
/: IF &NEXTPAGE(C)& = '0'
* ,,,,,,,,,,,,,, &YCH02_TOTAL_NET_E&,,&TOTAL(15)&
/: ENDIF

We created the following in the text element area of the window PAGE:

* &YCH02_PAGE&
* &PAGE(R2)&/&SAPSCRIPT-FORMPAGES(C2)&

We created the following in the text element area of the window PO_INF3:

*
*
* <HS>&T166U-DRNUM&</>
* &EKKO-EBELN& &' / 'EKKO-BEDAT&

After creating the form elements as described in the preceding pages, we saved the form. We assigned
the package YCH_BC401. You can assign the same or any other non-local package of your choice.

We have un-named, or default, text elements in the following windows: LOGO, RECEIVER, PO_INF1,
PO_INF2, CONSIGNE, DELI_ETC, PO_INF3, and PAGE.

We have named text elements in the following windows: SENDER, ITEM_HEAD, MAIN, and TOTAL.
We do not have multiple named text elements in a window; we have only one named text element in each of
these windows.

In the present context, except for the main window, we need not have named text elements in the
windows. For the main window, we need to continually send repetitive data from the print program through
the function module WRITE_FORM. The function module WRITE_FORM requires the text element name as
a mandatory parameter. Hence we need to have a named text element in the main window.

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

117

Print Program YH02_02_PPRG_YCH02_02_PORDER1 for SAP Script Form
We created an ABAP program YCH02_02_PPRG_YCH02_02_PORDER1. This will be the print program for the
form YCH02_02_PORDER1. The source lines of the print program are as follows:

REPORT YCH02_02_PPRG_YCH02_02_PORDER1.

**
* Print Program of Form: YCH02_02_PORDER1 **
* Purchase Order Output with Custom Form **
**

************ Data Declarations**************
**
TABLES: EKKO, "Purchasing Doc Header
 LFA1, "Vendor Primary
 T001, "Company Code
 SADR, "Address Management - Company Code &
 "Organizational Units
 ADRS, "Address Management - Structure
 T024, "Purchasing Groups
 T166U, "Labels in Purchasing Document Print out
 YCH02_EKPO_MAKT, "View with Purchasing Doc Items &
 "Material Texts
 T001W, "Plant & Branches
 EKET, "Material Delivery Dates
 T052. "Payment Terms

DATA: ITEM_TAB TYPE STANDARD TABLE OF YCH02_EKPO_MAKT.

DATA: LENGTH(2) TYPE N, "Length of Company Code Name
 PCNT TYPE I, "Number of POs output
 TOTAL TYPE BWERT, "Total for a Purchase Order

Data Declarations - to Store Long Texts from Data Elements
**
 YCH02_EKNAM TYPE STRING, "contact person
 YCH02_EKTEL TYPE STRING, "to telephone
 YCH02_LIFNR TYPE STRING, "your vendor no with us
 YCH02_VERKF TYPE STRING, "your person responsible
 YCH02_CONSG TYPE STRING, "please deliver to
 YCH02_EINDT TYPE STRING, "delivery date

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

118

 YCH02_INCO1 TYPE STRING, "terms of delivery
 YCH02_ZBTXT TYPE STRING, "terms of payment
 WAERS TYPE WAERS, "currency code
 YCH02_MATNR TYPE STRING, "material code
 YCH02_MAKTX TYPE STRING, "description
 YCH02_MENGE TYPE STRING, "order quantity
 YCH02_MEINS TYPE STRING, "units
 YCH02_NETPR TYPE STRING, "price per unit
 NETWR TYPE STRING, "net value
 YCH02_PAGE TYPE STRING, "page
 YCH02_TOTAL_NET_E TYPE STRING. "total net excl tax

***** Data Declarations - Payment Terms *****

DATA: BEGIN OF ZBTXT_STRU,
 STR(50),
 END OF ZBTXT_STRU,
 ZBTXT_TAB LIKE STANDARD TABLE OF ZBTXT_STRU.

SELECT-OPTIONS PO_NOS FOR EKKO-EBELN MATCHCODE OBJECT
 YCH02_01_EKKO_LFA1_SH.

********************Fill Selection Table ************

INITIALIZATION.
PO_NOS-SIGN = 'I'.
PO_NOS-OPTION = 'EQ'.
PO_NOS-LOW = '4500004823'.
APPEND PO_NOS TO PO_NOS.

PO_NOS-LOW = '4500009520'.
APPEND PO_NOS TO PO_NOS.

********************Main Program ************

START-OF-SELECTION.

CALL FUNCTION 'OPEN_FORM' "OPEN_FORM (once)
 EXPORTING
 FORM = 'YCH02_02_PORDER1'
 LANGUAGE = 'E'
 .
IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
ENDIF.

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

119

*****Main Loop *****

SELECT * FROM EKKO WHERE EBELN IN PO_NOS.

 IF (EKKO-SPRAS <> 'D' AND EKKO-SPRAS <> 'E')
 OR EKKO-BSTYP <> 'F' OR (EKKO-BSART <>'NB'
 AND EKKO-BSART <> 'PO').
 CONTINUE.
 ENDIF.

 SELECT SINGLE * FROM LFA1 WHERE LIFNR = EKKO-LIFNR.
 "Get Vendor
 IF EKKO-ADRNR = ' '.

 EKKO-ADRNR = LFA1-ADRNR.
 ENDIF.

 SELECT SINGLE * FROM T001
 WHERE BUKRS = EKKO-BUKRS. "Get Company Code

 SELECT SINGLE * FROM T166U WHERE BSTYP = EKKO-BSTYP
 AND BSART = EKKO-BSART
 AND SPRAS = EKKO-SPRAS
 AND DRUVO = '1'.
 "Get Title for Document

 SELECT SINGLE * FROM T024
 WHERE EKGRP = EKKO-EKGRP.
 "Get Purchasing Group
 SELECT SINGLE * FROM T052 WHERE ZTERM = EKKO-ZTERM.
 "Get Payment Terms

*****Retrieve Payment Terms Text *****
 CALL FUNCTION 'FI_PRINT_ZTERM'
 EXPORTING
 I_ZTERM = EKKO-ZTERM
 I_LANGU = EKKO-SPRAS
 I_XT052U = 'X'
 I_T052 = T052
 TABLES
 T_ZTEXT = ZBTXT_TAB
.

 READ TABLE ZBTXT_TAB INTO ZBTXT_STRU INDEX 1.

*****Retrieve Long Texts from Data Elements*****
 PERFORM GET_TEXT_DE USING 'YCH02_EKNAM' EKKO-SPRAS YCH02_EKNAM.
 PERFORM GET_TEXT_DE USING 'YCH02_EKTEL' EKKO-SPRAS YCH02_EKTEL.
 PERFORM GET_TEXT_DE USING 'YCH02_LIFNR' EKKO-SPRAS YCH02_LIFNR.
 PERFORM GET_TEXT_DE USING 'YCH02_VERKF' EKKO-SPRAS YCH02_VERKF.
 PERFORM GET_TEXT_DE USING 'YCH02_CONSG' EKKO-SPRAS YCH02_CONSG.

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

120

 PERFORM GET_TEXT_DE USING 'YCH02_EINDT' EKKO-SPRAS YCH02_EINDT.
 PERFORM GET_TEXT_DE USING 'YCH02_INCO1' EKKO-SPRAS YCH02_INCO1.
 PERFORM GET_TEXT_DE USING 'YCH02_ZBTXT' EKKO-SPRAS YCH02_ZBTXT.
 PERFORM GET_TEXT_DE USING 'WAERS' EKKO-SPRAS WAERS.

 PERFORM GET_TEXT_DE USING 'YCH02_MATNR' EKKO-SPRAS YCH02_MATNR.
 PERFORM GET_TEXT_DE USING 'YCH02_MAKTX' EKKO-SPRAS YCH02_MAKTX.
 PERFORM GET_TEXT_DE USING 'YCH02_MENGE' EKKO-SPRAS YCH02_MENGE.
 PERFORM GET_TEXT_DE USING 'YCH02_MEINS' EKKO-SPRAS YCH02_MEINS.
 PERFORM GET_TEXT_DE USING 'YCH02_NETPR' EKKO-SPRAS YCH02_NETPR.
 PERFORM GET_TEXT_DE USING 'NETWR' EKKO-SPRAS NETWR.
 PERFORM GET_TEXT_DE USING 'YCH02_PAGE' EKKO-SPRAS YCH02_PAGE.
 PERFORM GET_TEXT_DE USING 'YCH02_TOTAL_NET_ETAX' EKKO-SPRAS
 YCH02_TOTAL_NET_E.

 CALL FUNCTION 'START_FORM' "START_FORM (every purchase order)
 EXPORTING
 FORM = 'YCH02_02_PORDER1'
 LANGUAGE = 'E'
 .
 IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 ENDIF.

*****Company Code Name & Address *****
 SELECT SINGLE * FROM SADR WHERE ADRNR = T001-ADRNR.
 "Get Address of Company Cd
 SADR-ANRED = ' '. "No Title for Company Code Name
 CLEAR ADRS.
 MOVE-CORRESPONDING SADR TO ADRS.

 CALL FUNCTION 'ADDRESS_INTO_PRINTFORM'
 EXPORTING
 ADRSWA_IN = ADRS
 IMPORTING
 ADRSWA_OUT = ADRS
 .

 LENGTH = STRLEN(ADRS-LINE0).

 PERFORM WRITE_FRM USING 'SENDER' 'SENDER'.

*****Loop for Items *****
 SELECT * FROM YCH02_EKPO_MAKT
 INTO TABLE ITEM_TAB "Load itab from View
 WHERE EBELN = EKKO-EBELN
 AND BUKRS = EKKO-BUKRS
 AND SPRAS = EKKO-SPRAS.

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

121

 PERFORM WRITE_FRM USING 'ITEM_HD' 'ITEM_HEAD'.

 TOTAL = 0. "Initialize for Purchase order

 LOOP AT ITEM_TAB INTO YCH02_EKPO_MAKT.

 IF SY-TABIX = 1.

 SELECT SINGLE * FROM T001W
 WHERE WERKS = YCH02_EKPO_MAKT-WERKS.
 MOVE-CORRESPONDING T001W TO SADR. "Get Delivery Address

 SELECT SINGLE * FROM EKET "Get Delivery Date
 WHERE EBELN = YCH02_EKPO_MAKT-EBELN
 AND EBELP = YCH02_EKPO_MAKT-EBELP.

 ENDIF.

 PERFORM WRITE_FRM USING 'MAIN' 'ITEM_DATA'.
 TOTAL = TOTAL + YCH02_EKPO_MAKT-NETWR.
 ENDLOOP.

*****Item Loop Over ******
 PERFORM WRITE_FRM USING 'TOTAL' 'TOTAL'.

 CALL FUNCTION 'END_FORM' "ENd_FORM (every purchase order)
 .
 IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 ENDIF.
 PCNT = PCNT + 1.
ENDSELECT.
*****Main Loop Over *****

CALL FUNCTION 'CLOSE_FORM' "CLOSE_FORM (once)
 .
IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
ENDIF.

IF PCNT = 0.
 MESSAGE S000(YCH02_MCLASS) DISPLAY LIKE 'W'."No Data - Output
ENDIF.

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

122

*****Subroutine for WRITE_FORM *****

FORM WRITE_FRM USING VALUE(WINDOW) VALUE(ELEMENT).

 CALL FUNCTION 'WRITE_FORM'
 EXPORTING
 ELEMENT = ELEMENT
 WINDOW = WINDOW
 .
 IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 ENDIF.

ENDFORM.

*Subroutine to Retrieve Long Texts from Data Elements *

FORM GET_TEXT_DE USING VALUE(DE_NAME) VALUE(LANG) RET_TEXT.
DATA: LTEXT TYPE SCRTEXT_L.

 CALL FUNCTION 'WCGW_DATA_ELEMENT_TEXT_GET'
 EXPORTING
 I_DATA_ELEMENT = DE_NAME
 I_LANGUAGE = LANG
 IMPORTING
 E_SCRTEXT_L = LTEXT
 .

RET_TEXT = LTEXT.
ENDFORM.
*****End Program *****

The data objects into which we are retrieving long texts from data elements have been given the same
names as the names of the data elements, that is, YCH02_EKNAM, YCH02_EKTEL…., etc. The TYPE of these
data objects is STRING. New data elements have been created only for the fields where the texts of the fields’
data elements have not corresponded with the proposed output texts. When the texts of fields’ data elements
have corresponded with the proposed output texts, we have retrieved texts from these data elements and not
created new data elements—WAERS, NETWR.

Within the program, we are processing purchasing documents fulfilling the following conditions:

•	 Language key of purchasing documents equal to D or E.

•	 Purchasing document category (field BSTYP) is purchase order. – BSTYP value equal
to F.

•	 Purchasing document types (field BSART) is standard purchase order. – BSART value
equal to NB or PO.

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

123

Purchasing documents not fulfilling these conditions are bypassed.

IF (EKKO-SPRAS <> 'D' AND EKKO-SPRAS <> 'E') OR EKKO-BSTYP <> 'F'
 OR (EKKO-BSART <> 'NB' AND EKKO-BSART <> 'PO').
 CONTINUE.
 ENDIF.

You can incorporate these conditions in WHERE clause itself if you want.
If we make selections of purchasing documents through the search help attached to the SELECT-

OPTIONS field PO_NOS, we are assured of its processing or outputting. But if we enter any random numbers
of purchasing document numbers, they might or might not be processed as some/all of them might not
fulfill one or more of the conditions (i), (ii), and (iii).

The function modules OPEN_FORM, CLOSE_FORM, START_FORM, END_FORM, and WRITE_FORM,
discussed earlier, do not need any explanation here. The program is also using the following function
modules:

FI_PRINT_ZTERM to retrieve text of terms of payment

ADDRESS_INTO_PRINTFORM to convert address to postal convention format of a country

WCGW_DATA_ELEMENT_TEXT_GET to retrieve texts of data elements

In transaction code SE91, we created a message class YCH02_MCLASS, and a message number 000 as
‘No Data Processed for Output’ to report the instance of no data processed and output.

With the comments provided in the program, it is expected that you comprehend the logic and flow of
the print program.

Database View YCH02_EKKO_LFA1
We created a database view YCH02_EKKO_LFA1 with the table EKKO as the primary table and table LFA1
as a secondary table. The tables are to be joined through the fields MANDT and LIFNR. The database view
consists of fields listed in Table 2-8.

Table 2-8. Fields in the Database View YCH02_EKKO_LFA1

Srl. No. Field/Table Srl. No. Field/Table

01 MANDT / EKKO 06 BSTYP / EKKO

02 EBELN / EKKO 07 BSART / EKKO

03 LIFNR / LFA1 08 BEDAT / EKKO

04 SPRAS / EKKO 09 WAERS / EKKO

05 BURKS / EKKO 10 NAME1 / LFA1

The selection condition of the database view YCH02_EKKO_LFA1 will be as follows:

EKKO SPRAS EQ 'D' OR
EKKO SPRAS EQ 'E' AND
EKKO BSTYP EQ 'F' AND
EKKO BSART EQ 'NB' OR
EKKO BSART EQ 'PO'

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

124

These conditions—(i) purchasing documents of language key equal to D or E, (ii) purchasing document
category equal to F, (iii) purchasing document type equal to PO or NB—will ensure that rows fulfilling the
conditions will appear in the search help selection list.

We performed a consistency check and activated the database view.

Elementary Search Help YCH02_01_EKKO_LFA1_SH
We created an elementary search help YCH02_01_EKKO_LFA1_SH using the database view YCH02_EKKO_
LFA. The search help parameters will look like those in Table 2-9:

We performed a consistency check and activated the elementary search help.

Check and Activate Form
In transaction code SE71, we performed a form definition check as well as the form texts check on the form
YCH02_02_PORDER1 and activated it.

The form YCH02_02_PORDER1 and the source program YCH02_02_PPRG_ YCH02_02_PORDER1 are
available for upload from the E-resource file for this book (www.apress.com/9781484212345).

Output
As mentioned previously, we are using the data of the IDES server for the hands-on exercises (as preferably
you should). We have identified two purchase orders which serve our purpose for testing the output:
purchase order numbers 4500004823 and 4500009520. The purchase order number 4500004823 language
key is D and the purchase order number 4500009520 language key is E. This enables us to test the output
in the two languages. The purchase order number 4500009520 has 53 items and is running into four pages,
enabling us to test a multiple-page purchase order. We are filling the selection table PO_NOS with these two
specific purchase order numbers. (Refer to the INITIALIZATION event code in the print program).

We executed the program YCH02_02_PPRG_ YCH02_02_PORDER1. The output of the two purchase
orders is running into five pages: purchase order number 4500004823 (German) outputs in one page and
purchase order number 4500009520 (English) outputs in four pages. The output will look like as shown in
Figures 2-7, 2-8, 2-9, 2-10, 2-11, and 2-12:

Table 2-9. Elementary Search Help YCH02_01_EKKO_LFA1_SH

Search help parameter IMP EXP Lpos Spos

EBELN X 1 1

BUKRS 2

SPRAS 3

BEDAT 2

WAERS 3

LIFNR 4 4

NAME1 5 5

http://www.apress.com/9781484212345

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

125

Figure 2-7. Output of custom purchase order form: PO No. 4500004823—I

Figure 2-8. Output of custom purchase order form: PO No. 4500004823—II

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

126

Figure 2-9. Output of custom purchase order form: PO No. 4500004823—III

Figure 2-10. Output of custom purchase order form: PO No. 4500009520—I

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

127

Figure 2-11. Output of custom purchase order form: PO No. 4500009520—II

Figure 2-12. Output of custom purchase order form: PO No. 4500009520—III

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

128

Hands-on Exercise Recapitulation
In this hands-on exercise, we created a form to output purchase orders. We also created the related print
program and associated workbench objects. The aim was to go through the process of creating and
deploying a form of a business document from scratch.

The material descriptions in the output of purchase orders were retrieved from the database table
MAKT. This is not necessary. The material description of each of the items is available in the field TXZ01 of
the database table EKPO. In fact, the preferred way is to use the field TXZ01.

The output might not be 100% usable in a real-life situation, but it is not far from it.
We retrieved the data to output purchase orders from the print program and the 11 tables. Apart from

the function modules used to interact with the form, the print program also invoked the following function
modules:

ADDRESS_INTO_PRINTFORM To format address as per a country’s postal
convention
WCGW_DATA_ELEMENT_TEXT_GET To retrieve data element texts
FI_PRINT_ZTERM To obtain text of terms of payment

The deployment of the form to produce purchase orders involved the creation of two database views, an
elementary search help, a message class, and a message.

A specialty of this exercise is the maintenance and retrieval of texts used in text elements from
data elements. The maintenance of texts of text elements in data elements has made the form language
independent. Though we have chosen data elements, the texts can be maintained in any place that supports
the maintenance of multiple language short texts like text symbols of ABAP programs. Another alternative is
to locate the texts in SAP script standard symbols—transaction code SE75. But we are using the texts in data
elements in a parallel hands-on exercise in Chapter 4 with smartforms. The smartforms cannot access the
SAP script standard symbols.

In the text element environment of the form, the following new features were used:

•	 The control command BOX

•	 Various output formatting options

•	 The symbols: &PAGE&, &SAPSCRIPT-FORMPAGES& &NEXTPAGE&

•	 The control command IF

•	 Generation of tab spaces by specifying commas

•	 The control commands PROTECT and ENDPROTECT

This concludes the hands-on exercise II.

http://dx.doi.org/10.1007/978-1-4842-3183-8_4

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

129

Hands-on Exercise III—Output Custom Purchase
Order—Use Control Command PERFORM
In real-life SAP implementation projects, for the most part, copies made of SAPdelivered forms into the
Y/Z namespace are modified and customized. When a copy of a SAP delivered form is made into the
Y/Z namespace and the copied form is then modified and customized as per requirements, there is no
access to the print program. In this scenario of copying and customizing a delivered form, you can make
modifications only to the form. If you wanted to include some functionality involving ABAP code, you could
do this through the limited repertoire of ABAP-like control commands in the text element environment of the
form. If you wanted to retrieve some data with SELECT statements or wanted to call a function module, the
set of control commands does not support these statements. The control commands do support execution
of external subroutines through the control command PERFORM….. So if you want to incorporate ABAP
functionality into a copy of a SAP delivered form, you could implement the ABAP functionality in an external
subroutine and invoke this external subroutine from within the text element environment of a form with the
control command PERFORM…..

When you execute the control command PERFORM.., the parameter passing between the text element
environment of the form and the external subroutine is rudimentary and crude. Moreover, variables or
text symbols declared in the text element environment with the control command DEFINE support only
character-oriented types with a maximum length of 80 characters. Hence the returned values from the
external subroutine to the text element environment can only be character-oriented data with a maximum
length of 80 characters. Within the ambit of these constraints, you can incorporate extra ABAP functionality
to the copied versions of SAP delivered forms.

Output, Layout Specification, and Output Considerations
In this hands-on exercise, we will produce a custom purchase order just as we did in the hands-on Exercise
II, with additions involving the invocation of an external subroutine. The custom purchase order being
output in this exercise is identical to the one produced with hands-on exercise II except that, additionally,
we will output the purchase order total amount expressed in text or words. To produce the purchase order
total amount in words, we will have to use the function module SPELL_AMOUNT.

The function module SPELL_AMOUNT takes three main input parameters: (1) the amount to be
converted to text, (2) currency key (ISO currency key), and (3) language key for the language in which the
text is to be returned. The function module returns the text in a data object declared with reference to the
ABAP dictionary structure SPELL: DATA RET_TEXT TYPE SPELL. The text corresponding to the value before
the decimal is returned in the field WORD of the data object declared with reference to ABAP dictionary
structure SPELL. The text corresponding to the value after the decimal is returned in the field DECWORD of
the data object declared with reference to ABAP dictionary structure SPELL. Refer to the documentation of
the function module SPELL_MODULE for further details.

We can call the function module SPELL_AMOUNT from within the print program. But we are not going
to do so. We are going to invoke an external subroutine from the text element environment of the form and
call the function module SPELL_AMOUNT in the external subroutine. I am resorting to this approach to
introduce you to the nitty-gritty of invoking external subroutines from the text element environment of the
form. Also, this is a way to demonstrate the incorporation of ABAP functionality in a copy of a delivered form.
In the next hands-on exercise, we are going to repeat this procedure of invoking an external subroutine from
the text element environment in a copy of the SAP delivered form MEDRUCK.

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

130

We will output the purchase order total amount in words under the purchase order total amount.
We will output the purchase order total amount in words in an additional page window assigned to a new
window (window name is IN_WORDS). Just like the purchase order total amount appearing on the last page
of a purchase order, the purchase order total amount in words must appear on the last page of a purchase
order. So the additional page window must be located in both the page formats: FIRST and NEXT. To be able
to accommodate the additional page window (height 20MM) to output the purchase order total amount
in words, we are reducing the height of page window in the main window (item data) by 20MM in both
the page formats FIRST and NEXT. Except for this additional page window all other page windows of page
formats FIRST and NEXT are the same as in hands-on exercise II. The page format FIRST consists of 12
windows and page windows. The page format NEXT consists of 8 windows and page windows. The modified
and revised layouts of page formats FIRST and NEXT are as shown in Figures 2-13 and 2-14.

Figure 2-13. Custom purchase order page format FIRST—windows and page windows layout

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

131

With the page format layouts decided, we will proceed to the creation of all the required workbench objects.

Creation of SAP Script Form, Print Program, and Related
Workbench Objects
For this exercise, we can use the workbench objects database views, elementary search help, and message
created for hands-on exercise II.

Print Program YCH02_03_PPRG_YCH02_03_PORDER2 for SAP Script Form
We created an ABAP program YCH02_03_PPRG_YCH02_03_PORDER2. All the lines of the print program of
hands-on exercise II were copied into the current program and the following modifications were made:

DATA..
....
YCH02_INWORDS TYPE STRING. "total amount in words
......
WAERS_LT TYPE WAERS,
.......
START-OF-SELECTION.
......
PERFORM GET_TEXT_DE USING 'YCH02_INWORDS' EKKO-SPRAS YCH02_INWORDS.

Figure 2-14. Custom purchase order page format NEXT—windows and page windows layout

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

132

The extra lines incorporated into the copied version of hands-on exercise II are the non-italic lines.
In the text element area of the window IN_WORDS, we defined a text symbol named &WAERS&. In

order to avoid a conflict of names, we have renamed the ABAP program variable WAERS to WAERS_LT from
the previous hands-on exercise.

We saved, performed a syntax check, and activated the program.

SAP Script Form YCH02_03_PORDER3
We copied the form YCH02_02_PORDER1 to YCH02_03_PORDER2.

For page format FIRST, the windows and their corresponding page windows will be as per the entries in
Table 2-10:

Table 2-10. Page Format FIRST—Windows and Page Windows

Window & Page
Window

Page Window Dimensions Window & Page
Window

Page Window Dimensions

1.LOGO Left margin : 5.00MM
Upper margin : 5.00MM
Window width : 46.64MM
Window height : 29.81MM

7.DELI_ETC Left margin : 120.00MM
Upper margin : 85.00MM
Window width : 85.00MM
Window height : 30.00MM

2.SENDER Left margin : 46.00MM
Upper margin : 5.00MM
Window width : 145.00MM
Window height : 30.00MM

8.ITEM_HD Left margin : 5.00MM
Upper margin : 115.00MM
Window width : 200.00MM
Window height : 20.00MM

3.RECEIVER Left margin : 5.00MM
Upper margin : 35.00 MM
Window width : 115.00 MM
Window height : 30.00 MM

9.MAIN Left margin : 5.00MM
Upper margin : 135.00 MM
Window width : 200.00MM
Window height : 117.00MM

4.PO_INF1 Left margin : 120.00MM
Upper margin : 35.00MM
Window width : 85.00MM
Window height : 30.00MM

10.TOTAL Left margin : 5.00MM
Upper margin : 252.00MM
Window width : 200.00MM
Window height : 10.00MM

5.PO_INF2 Left margin : 5.00MM
Upper margin : 65.00MM
Window width : 200.00MM
Window height : 20.00MM

11.IN_WORDS Left margin : 5.00MM
Upper margin : 262.00MM
Window width : 200.00MM
Window height : 20.00MM

6.CONSIGNE Left margin : 5.00MM
Upper margin : 85.00MM
Window width : 115.00MM
Window height : 30.00MM

12.FOOTER Left margin : 5.00MM
Upper margin : 282.00MM
Window width : 200.00MM
Window height : 10.00MM

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

133

For page format NEXT, the windows and their corresponding page windows will be as per the entries in
table 2-11:

In the text element area of the window IN_WORDS, we entered the following:

/: IF &NEXTPAGE(C)& = '0'
/: DEFINE &AMOUNT& = &TOTAL&
/: DEFINE &SPRAS& = &EKKO-SPRAS&
/: DEFINE &WAERS& = &EKKO-WAERS&
/: DEFINE &IN_WORD1& = ' '
/: DEFINE &IN_WORD2& = ' '
/: PERFORM CALL_SPELL_AMOUNT IN PROGRAM YCH02_04_SROUTINE_POOL
/: USING &AMOUNT&
/: USING &SPRAS&
/: USING &WAERS&
/: CHANGING &IN_WORD1&
/: CHANGING &IN_WORD2&
/: ENDPERFORM
* &YCH02_INWORDS& &IN_WORD1&
* &IN_WORD2&
/: ENDIF

Table 2-11. Page Format NEXT—Windows and Page Windows

Window & Page
Window

Page Window Dimensions Window & Page
Window

Page Window Dimensions

1.RECEIVER Left margin : 5.00MM
Upper margin : 5.00MM
Window width : 115.00MM
Window height : 30.00MM

5.MAIN Left margin : 5.00MM
Upper margin : 55.00MM
Window width : 200.00MM
Window height : 197.00MM

2.PO_INF3 Left margin : 120.00MM
Upper margin : 5.00 MM
Window width : 65.00MM
Window height : 30.00MM

6.TOTAL Left margin : 5.00MM
Upper margin : 252.00MM
Window width : 200.00MM
Window height : 10.00MM

3. PAGE Left margin : 185.00MM
Upper margin : 5.00MM
Window width : 20.00MM
Window height : 30.00MM

7. IN_WORDS Left margin : 5.00MM
Upper margin : 262.00MM
Window width : 20.00MM
Window height : 30.00MM

4.ITEM_HD Left margin : 5.00MM
Upper margin : 35.00 MM
Window width : 200.00MM
Window height : 20.00MM

8.FOOTER Left margin : 5.00MM
Upper margin : 282.00MM
Window width : 200.00MM
Window height : 10.00MM

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

134

In this window IN_WORDS, we have deliberately not named the text element. If a name is assigned to
this text element, an explicit execution of the function module WRITE_FORM will be required in the print
program to output the contents in the text element. Recall that the function module WRITE_FORM requires
the window name and the text element name as parameters.

We want the amount in text or words to appear only on the last page of a purchase order, hence the
control command IF for condition testing.

The control command DEFINE is to define text symbols or variables in the text element environment.
The text symbols are character oriented and contain data as it is output. For instance, when we assign the
program symbol &TOTAL& (total amount excluding tax) to the text symbol &AMOUNT&, the text symbol
&AMOUNT& will contain, apart from the numerals, a decimal or period and thousand separators (commas).
We have assigned the program symbols to text symbols as follows:

&AMOUNT& = &TOTAL&,
&WAERS&, = &EKKO-WAERS&
&SPRAS& = &EKKO-SPRAS&

We are passing these assigned text symbols as parameters to the external subroutine when we could
have passed the program symbols directly as parameters to the external subroutine. We are doing so, since
we designed the external subroutine to be generic. We will be using this external subroutine again in our
next hands-on exercise as well. When external subroutines are called from the SAP script text element
environment, parameters are passed as parameter name and parameter value. There is no concept of formal
parameters and actual parameters. In the subsequent text, I describe the parameter passing for external
subroutines called from the SAP script text element environment.

The control command PERFORM must specify the subroutine name along with the program (name) in
which the subroutine is located. You can locate external subroutines either in an executable program or a
subroutine pool. We have located subroutine CALL_SPELL_AMOUNT in the subroutine pool YCH01_04_
SROUTINE_POOL. The parameters passed with the keyword USING are considered input parameters
and the parameters passed with the keyword CHANGING are considered output parameters. The control
command PERFORM must be concluded by the control command ENDPERFORM.

When an external subroutine is invoked from the SAP script text element environment, the parameters
are received in the external subroutines in two internal tables. The first internal table contains input
parameters or the parameters passed by using the keyword USING. The second internal table contains
output parameters or the parameters passed by using the keyword CHANGING. Each row in the internal
tables corresponds to one parameter. The structure of these two internal tables corresponds to the ABAP
dictionary structure ITCSY. The structure ITCSY contains two fields: the first field NAME (type CHAR, length
130) contains the name of the parameter; the second field VALUE (type CHAR, length 255) contains the
value of the parameter. The name of the parameters are stored without the ampersands or &s. In the formal
parameter specification area of the external subroutine, you must specify the tables with the key phrase
TABLES <internal table name> STRUCTURE ITCSY….. The parameter values have to be extracted from the
internal tables with the READ…..WITH KEY statements. Before exiting the external subroutine, you have to
insert the return parameter values in the corresponding rows of the internal table of output parameters.

We saved the form. We assigned the package YCH_BC401. You can assign any other non-local package
of your choice. We performed a form definition check as well as the form texts check on the form YCH02_03_
PORDER2 and activated it.

The form YCH02_03_PORDER2 and the print program YCH02_03_PPRG_ YCH02_03_PORDER2 are
available for upload in the E-resource file for this book (www.apress.com/9781484212345).

http://www.apress.com/9781484212345

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

135

Subroutine Pool YCH02_04_SROUTINE_POOL and Subroutine
CALL_SPELL_AMOUNT
In transaction code SE38, we created a subroutine pool YCH02_04_SROUTINE_POOL. Within this
subroutine pool, we located the subroutine CALL_SPELL_AMOUNT. The lines of the subroutine are as
follows:

REPORT YCH02_04_SROUTINE_POOL.

**
* Sub Routine Pool used with SAP Script Forms: **
* YCH02_03_PORDER2 & YCH02_04_MEDRUCK **
* **
**

FORM CALL_SPELL_AMOUNT TABLES INPUT_TAB STRUCTURE ITCSY
 OUTPUT_TAB STRUCTURE ITCSY.

**
* Input Parameters: AMOUNT, SPRAS, WAERS **
* Output Parameters: IN_WORD1, IN_WORD2 **
**

* Data Declaration

DATA: STR(140) TYPE C,
 STR1(70) TYPE C,
 STR2(70) TYPE C,
 STR_TAB LIKE STANDARD TABLE OF STR1,
 SPELL TYPE SPELL,
 AMT(8) TYPE P DECIMALS 2,
 SPRAS TYPE SY-LANGU,
 LEN TYPE I,
 WAERS TYPE WAERS,
 SAP_WAERS TYPE TCURC-WAERS,
 ISO_WAERS TYPE TCURC-ISOCD.

* Extract Parameters from INPUT_TAB

READ TABLE INPUT_TAB WITH KEY 'AMOUNT'.

DO.
 REPLACE:',' WITH ' ' INTO INPUT_TAB-VALUE.
 IF SY-SUBRC <> 0.
 REPLACE: '.' WITH ' ' INTO INPUT_TAB-VALUE.
 IF SY-SUBRC <> 0.
 EXIT.
 ENDIF.
 ENDIF.
ENDDO.

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

136

CONDENSE INPUT_TAB-VALUE NO-GAPS.
MOVE INPUT_TAB-VALUE TO AMT.
AMT = AMT / 100.

READ TABLE INPUT_TAB WITH KEY 'SPRAS'.
SPRAS = INPUT_TAB-VALUE.

READ TABLE INPUT_TAB WITH KEY 'WAERS'.
WAERS = INPUT_TAB-VALUE.
MOVE WAERS TO SAP_WAERS.

* Convert SAP currency code to ISO currency code
**
CALL FUNCTION 'CURRENCY_CODE_SAP_TO_ISO'
 EXPORTING
 SAP_CODE = SAP_WAERS
 IMPORTING
 ISO_CODE = ISO_WAERS
 EXCEPTIONS
 NOT_FOUND = 1
 OTHERS = 2
 .
IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 EXIT.
ELSE.
 MOVE ISO_WAERS TO WAERS.
ENDIF.

* Call Function Module SPELL_AMOUNT

CALL FUNCTION 'SPELL_AMOUNT'
 EXPORTING
 AMOUNT = AMT
 CURRENCY = WAERS
 FILLER = ' '
 LANGUAGE = SPRAS
 IMPORTING
 IN_WORDS = SPELL
 EXCEPTIONS
 NOT_FOUND = 1
 TOO_LARGE = 2
 OTHERS = 3.

IF SY-SUBRC = 0.

 CONCATENATE SPELL-WORD WAERS SPELL-DECIMAL
 INTO STR SEPARATED BY SPACE.
ELSE.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

137

 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 EXIT.
ENDIF.

* Split STR into Two Lines

CALL FUNCTION 'YCH02_01_SPLIT_STRING'
 EXPORTING
 STRING_TO_SPLIT = STR
 TABLES
 STABLE = STR_TAB
 EXCEPTIONS
 IMPORT_PARAMETER_TYPE_INVALID = 1
 RETURN_TABLE_ELEMENT_NOT_TYPEC = 2
 OTHERS = 3
 .
IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 EXIT.
ENDIF.

* Update Values in OUTPUT_TAB Table

READ TABLE STR_TAB INTO STR1 INDEX 1.

READ TABLE OUTPUT_TAB WITH KEY 'IN_WORD1'.
IF SY-SUBRC = 0.
 OUTPUT_TAB-VALUE = STR1.
 MODIFY OUTPUT_TAB INDEX SY-TABIX.
ENDIF.

READ TABLE STR_TAB INTO STR2 INDEX 2.

READ TABLE OUTPUT_TAB WITH KEY 'IN_WORD2'.
IF SY-SUBRC = 0.
 OUTPUT_TAB-VALUE = STR2.
 MODIFY OUTPUT_TAB INDEX SY-TABIX.
ENDIF.

*BREAK-POINT.
ENDFORM. "CALL_SPELL_AMOUNT

At the entry of the subroutine, input parameters are being extracted: READ TABLE INPUT_TAB WITH
KEY 'AMOUNT', and so on.

The value of the parameter AMOUNT will contain thousand separators (commas) and a decimal. To
convert the AMOUNT value containing thousand separators and a decimal into ABAP pre-defined type
P (packed decimal), the thousand separators and the decimal are removed. The process of removing the
decimal is equivalent to multiplying the number by 100. To restore the value of AMOUNT, it is divided by 100
after removal of thousand separators and the decimal.

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

138

Similarly, the other input parameters are extracted with the statements READ TABLE INPUT_TAB
WITH KEY…..

The function module CURRENCY_CODE_SAP_TO_ISO is called to convert the SAP currency key to the
ISO currency key. The function module SPELL_AMOUNT will convert the amount into text in the language
provided as the input parameter.

The function module YCH02_01_SPLIT_STRING is used to split the single string STR into two strings:
IN_WORD1 and IN_WORD2. The function module YCH02_01_SPLIT_STRING splits a string into multiple
strings without breaking a word. Since the string returned by the function module SPELL_AMOUNT
can exceed 80 characters, we are splitting it into two strings of 70 characters each. We expect the text will
not exceed two lines. (140 characters). The function module YCH02_01_SPLIT_STRING is available in
the E-resource file for this book (www.apress.com/9781484212345). You can create a function group or
pool. You can create the function module YCH02_01_SPLIT_STRING, locate it in your created function
group, and upload into the function module the lines from the E-resource file for this book (www.apress.
com/9781484212345). Activate the function group and the function module. You have to create the messages
associated with the function module YCH02_01_SPLIT_STRING as well.

Message no. 006 Input Parameter has to be TYPE 'C',
Message no. 007 Output Table Element has to be TYPE 'C')

Before exiting the subroutine, the output parameters values are stored in the appropriate rows of the
internal table OUTPUT_TAB with the READ TABLE OUTPUT_TAB WITH KEY…… and MODIFY statements.

The comments in the subroutine program should help you to comprehend the logic and flow of the
subroutine

We saved, performed a syntax check, and activated the program YCH02_04_SROUTINE_POOL.
The program YCH02_04_SROUTINE_POOL is available in the E-resource file for this book (www.apress.
com/9781484212345).

Output
We will choose the same two purchase orders we used for testing the output in our previous hands-on
exercise: purchase order numbers 4500004823 and 4500009520. The purchase order number 4500004823
language key is D and the purchase order number 4500009520 language key is E.

We executed the program YCH02_03_PPRG_ YCH02_03_PORDER2. The output will be the same as in
the previous hands-on exercise except for the additional information of amount being expressed in text. So
we are showing only that part of the output containing the amount in text. The output of the two purchase
orders, the first in German and the second in English, will look as shown in Figures 2-15 and 2-16.

http://www.apress.com/9781484212345
http://www.apress.com/9781484212345
http://www.apress.com/9781484212345
http://www.apress.com/9781484212345
http://www.apress.com/9781484212345

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

139

Figure 2-15. Output of custom purchase order form: PO No. 4500004823

Figure 2-16. Output of custom purchase order form: PO No. 4500009520

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

140

Hands-on Exercise Recapitulation
This hands-on exercise was an extension of the previous hands-on exercise II. We defined the scenario
in which the total amount of the purchase order was required to be output in text or words. To output
the amount in text, we need to call the function module SPELL_AMOUNT. Instead of calling the function
module SPELL_AMOUNT in the print program, we chose to execute an external subroutine from the text
element environment of the form and call the function module SPELL_AMOUNT from within the external
subroutine. I resorted to this round-about manner of implementation because I wanted to demonstrate the
manner of adding ABAP functionality to a form without the access to the print program. This is the way to
incorporate ABAP functionality when you copy, modify, and customize a SAP delivered form as you have no
access to modify the print program associated with a SAP delivered form.

When an external subroutine is executed from the text element environment of the form, the parameter
passing from the text element environment to the external subroutine and back is rudimentary and peculiar.
Exercise III demonstrated this process of parameter passing.

In the next hands-on exercise, we are going to copy, modify, and customize the SAP delivered form
MEDRUCK according to laid-out specifications.

Hands-on Exercise: IV–Copy, Modify, and Customize SAP
Delivered Form MEDRUCK
In this hands-on exercise, we will copy the SAP delivered form MEDRUCK into Y namespace. We will
modify and customize the copied form. The modifications will involve the deletion of a page window and
the creation of new windows and their corresponding page windows. The modification will also involve
incorporation of ABAP functionality by invoking external subroutines from the text element environment of
this form. Remember, we do not have access to the print program. The testing of output using our modified
and customized form involves a new procedure. We will demonstrate this new procedure which will output
purchase orders as per the layout of our copied, modified, and customized form.

In Chapter 1, you made an elaborate tour of the form MEDRUCK and so you will be mostly familiar with
its elements (e.g., page formats, windows, and page windows).

Output Specifications
The output of our copied, modified, and customized form will contain a logo and the sender’s name and
address on the first page of a purchase order.

On the last page of a purchase order, the output will contain the total amount of the purchase order
expressed in text.

The rest of the layout, contents, and functionality of the copied form will be retained.
With this specification of customization stated, let us proceed to copying the form MEDRUCK,

identifying the modifications to be carried out to fulfill the specifications of the customization, carrying out
the identified modifications, and performing testing.

Copy Form MEDRUCK to Y Namespace
To copy a form, we navigate to transaction code SE71 and make the following menu selection: Utilities(M) ➤

Copy from client.
A screen appeared prompting for form to be copied, source client, target form name, etc. Recall, all the

SAP delivered forms reside in client 000 and the destination client of copied form is the logged-in client.
Figure 2-17 shows the screen with the entered values.

http://dx.doi.org/10.1007/978-1-4842-3183-8_1

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

141

Figure 2-17. Copy form MEDRUCK from Client 000 to YCH02_04_MEDRUCK into logged-in client

We clicked the execute button. A prompt appeared for assigning a package. We assigned the package
YCH_BC401. You can assign any other non-local package of your choice. A successful copy generated an
alert as shown in Figure 2-18.

Figure 2-18. Successful copy of form MEDRUCK from client 000 to YCH02_04_MEDRUCK

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

142

The form was copied into all the supported languages. The next step is to identify and carry out the
modifications.

Modifications to the Copied Form YCH02_04_MEDRUCK
To position our logo and to output sender name and address on the first page of a purchase order, we need
space in the page format FIRST.

In the copy of the form MEDRUCK, the window HEADER and its corresponding page window are
meant to output logo and sender name and address. But this is not happening when using the IDES server
data. So we will delete the page window assigned to the window HEADER to create space. We will then
incorporate a graphic window and a variable window and their corresponding page windows into this
vacated space. We will output our logo and sender name and address in the graphic and variable windows,
the same way we did it for our custom purchase order forms in hands-on exercises II and III.

To output the total amount of a purchase order expressed as text on the last page of the purchase
order, we will reduce the height of the page windows assigned to the main window in both the page formats
FIRST and NEXT. We will create a new window IN_WORDS. The reduction in height of the page windows
assigned to the main window in both the page formats FIRST and NEXT will accommodate page windows
to be assigned to the newly created window IN_WORDS. The total amount of a purchase order expressed as
text will appear in the page windows assigned to the window IN_WORDS. This is identical to the manner of
outputting the total amount of a purchase order expressed as text in hands-on exercise III.

First, we will carry out modifications to the language-independent elements of the form.

Modifications to Language-Independent Elements of the Form
YCH02_04_MEDRUCK
We navigated to transaction code SE71. Settings, Page formats, windows, page windows, paragraph
formats and character formats are language-independent elements of a form. To carry out changes to these
language-independent elements of the form YCH02_04_MEDRUCK, we opened the German language
(original language) version of this form in change mode (language key DE).

The horizontal dimensions of page windows are specified in characters (CH) and the vertical
dimensions of page windows are specified in lines (LN). The tap stops are also specified in characters.

Delete Window HEADER, Create Character Format UL
We want to delete the page window assigned to window HEADER. We selected the screen for page windows
by clicking the application toolbar button page windows. We selected the page window assigned to window
HEADER by locating it and double-clicking it. To delete the page window of window HEADER, we made the
following menu selection: Edit ➤ Delete Element. This is shown in Figure 2-19.

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

143

Figure 2-19. Page format: FIRST—delete page window assigned to window HEADER

This will delete the page window assigned to the variable window HEADER.
We created a character format UL with font family Helve and font size 24 points as follows:

UL For Sender Name in 24 pts HELVE 24,0

The character format UL will be applied to the output of company code name.
Next, we proceeded to page format modifications.

Modifications in Page Format FIRST of the Form YCH02_04_MEDRUCK
Next, we have to create the windows LOGO, SENDER, and their corresponding page windows in the
page format FIRST. We switched to the graphic form painter. In the graphic form painter, we created the
windows LOGO, SENDER, and their corresponding page windows in the page format FIRST. This is shown
in Figure 2-20.

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

144

In the graphic form painter, we reduced the height of the page window assigned to the main window
by two lines. We created a variable window IN_WORDS and its page window of height two lines in space
between page windows assigned to windows MAIN and FOOTER. This is shown in Figure 2-21.

The element list of page windows after the creation of the windows LOGO, SENDER, IN_WORDS with
the corresponding page windows marked is shown in Figure 2-22.

Figure 2-20. Page format: FIRST—windows LOGO, SENDER, with page windows

Figure 2-21. Page format: FIRST—window IN_WORDS with page window

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

145

Figure 2-22. Page format: FIRST—page window element list

The dimensions of these page windows is as follows:

Page
Window Left Margin Upper margin Win width Win height
===
LOGO 7 CH 1 LN 46.64 mm 29.01 mm
SENDER 59mm 1 LN 114mm 30 mm
IN_WORDS 7 CH 62 LN 71 CH 2 LN

This completes the modifications in the page format FIRST.

Modifications in Page Format NEXT of the Form YCH02_04_MEDRUCK
The logo and sender name and address appear only on the first page of a purchase order. For this reason,
we need not assign page windows to the windows LOGO and SENDER for the page format NEXT.

The total amount of the purchase order in text must appear on the last page of a purchase order. If a
purchase order outputs in one page only, the first page of the purchase order will also be its last page. There
should be a provision to output the text of total amount of the purchase order in page format FIRST. We have
already created the window IN_WORDS and assigned this window to a page window in the page format
FIRST. This part of the modification is over.

If a purchase order outputs in more than one page, the first page of the purchase order will not be its
last page. There should be a provision to output the text of total amount of the purchase order in page format
NEXT. So, we assigned a page window to the window IN_WORDS in the page format NEXT. The dimensions
of this page window are as follows:

IN_WORDS Left Margin:7 CH Upper margin: 61 LN Win width: 61 CH Win height: 2 CH

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

146

This completes the modifications in the page format NEXT. This also completes the modifications of the
language-independent elements of the form YCH01_04_MEDRUCK.

Modifications to Text Elements (Language Dependent) of the Form
YCH02_04_MEDRUCK
The modifications to the language-independent elements of a form (settings, page formats, windows, page
windows, paragraph formats, and character formats) need to be performed only in the original language
version of the form. In our present context of modifying a SAP delivered form, the original language of the
form is German. We have already performed the modifications to the language-independent elements of the
form YCH02_04_MEDRUCK. We will now carry out modifications to the language-dependent element of the
form, that is, the text elements.

There is one other language-dependent element of a form: documentation. I have elaborated on the
form documentation later in this chapter, in the section “SAP Script Form Documentation.”

In fact, there are no modifications to be carried out to any of the text elements in any of the windows
belonging to the original form. Text elements are to be inserted or created for the windows we created in the
form: LOGO, SENDER, and IN_WORDS.

The creation of text elements is to be carried out individually in each language version of a form. As a
test case, we will create text elements in the two language versions of the form: German and English

We will, first, create text elements in the German-language version of the form. Thus we must ensure
that we are in change mode of the German-language version of the form YCH02_04_MEDRUCK. Only after
we have created the text elements in the German-language version of the form can we commence to create
the text elements in the English-language version of the form. When you carry out modification to the text
elements of a form in a language other than the original language of the form, the form maintenance system
expects the original language version of the form to be in active mode. In our present context, when we are
creating/modifying the text elements in the English-language version of the form, the German-language
version of the form must be in active mode.

Since the text elements have one-to-one association with the windows, I will describe the creation of text
elements window-wise.

Create Text Elements in the German-Language Version of the Form
YCH02_04_MEDRUCK
Entries in the text element area will be created window-wise as shown in the next sections.

Text Element in Window LOGO

We created the graph window LOGO and its page window with the graphical form painter in the German-
language version of the form. The form creation system automatically generated the control command to
insert a graphic image in the text element area of the window LOGO. You can confirm this by navigating to
the text element area of the window LOGO. The control command to insert a graphic image is in display
mode; it cannot be modified. An image can be inserted in any of the window types: graph, constant, variable,
and main. We chose to locate the graphic image or logo in a graph window because, in this way, the form
creation system generated the dimensions of the page window automatically as identical to the size of
the image. But locating the image in a graph window does not allow us to modify the text elements in the
window. If you navigate to the text element area of the window LOGO in the English-language version or
any language other than the German-language version, you will find the text element area empty and not
editable. The text element area, being language dependent, has to be entered and filled individually for each
language version. The text element area is in non-editable because that is how it is for a graph window.

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

147

Figure 2-23. Window LOGO—Change window type from graph to variable

We want the logo to appear on the first page of a purchase order for the German version as well as the
English version. We are assured of the logo being output for the German language; the text element area has
the control command to incorporate an image. But in the English version of the form, the text element area
is empty and non-editable. To be able to insert the control command for incorporation of image in the text
element area of the window LOGO in the English-language version of the form, we are changing the window
type from graph to variable for the window LOGO. This is shown in Figure 2-23.

We can change the window type in this manner after the creation of a window.
In the German-language version of the form, we do not need to change anything in the text element area

of the window LOGO. We only needed to change the window LOGO type from graph to variable, which we
have done.

Text Element in Window SENDER

The following was entered in the text element area of the window SENDER:

/: IF &PAGE(C)& = 1
/: DEFINE &TE_LINE0& = ' '
/: DEFINE &TE_LINE1& = ' '
/: DEFINE &TE_LINE2& = ' '
/: DEFINE &TE_LINE3& = ' '
/: DEFINE &TE_LINE4& = ' '
/: DEFINE &TE_LINE5& = ' '
/: DEFINE &TE_LINE6& = ' '
/: DEFINE &TE_LINE7& = ' '
/: DEFINE &TE_LINE8& = ' '

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

148

/: DEFINE &TE_LINE9& = ' '
/: PERFORM GET_FORMAT_SENDER_ADDRESS IN PROGRAM YCH02_04_SROUTINE_POOL
/: USING &T001-ADRNR(K)&
/: CHANGING &TE_LINE0&
/: CHANGING &TE_LINE1&
/: CHANGING &TE_LINE2&
/: CHANGING &TE_LINE3&
/: CHANGING &TE_LINE4&
/: CHANGING &TE_LINE5&
/: CHANGING &TE_LINE6&
/: CHANGING &TE_LINE7&
/: CHANGING &TE_LINE8&
/: CHANGING &TE_LINE9&
/: ENDPERFORM
* &TE_LINE0&</>
* &TE_LINE1&
* &TE_LINE2&
* &TE_LINE3&
* &TE_LINE4&
* &TE_LINE5&
* &TE_LINE6&
* &TE_LINE7&
* &TE_LINE8&
* &TE_LINE9&
/: ENDIF

We have applied the character format UL to output the text symbol &TE_LINE0& (company
code name).

From within the text element area, we are invoking the external subroutine GET_FORMAT_SENDER_
ADDRESS located in the subroutine pool program YCH02_04_SROUTINE_POOL. We already located the
subroutine CALL_SPELL_AMOUNT in the subroutine pool YCH02_04_SROUTINE_POOL while performing
hands-on exercise III. The subroutine pool now has two subroutines. The source lines of external subroutine
GET_FORMAT_SENDER_ADDRESS in subroutine pool YCH02_04_SROUTINE_POOL are as follows:

FORM GET_FORMAT_SENDER_ADDRESS TABLES
 INPUT_TAB STRUCTURE ITCSY
 OUTPUT_TAB STRUCTURE ITCSY.

* Input Parameters: ADRNR *
* Output Parameters: TE_LINE0, TE_LINE1, TE_LINE2, TE_LINE3,*
* TE_LINE4, TE_LINE5, TE_LINE6, TE_LINE7,*
* TE_LINE8, TE_LINE9 *

* Data Declaration

TABLES: SADR, ADRS. "Address Management - Table & Structure

DATA: ADRNR TYPE ADRNR,
 LENGTH(2) TYPE N,
 LEN(1) TYPE N,
 KEY(128) TYPE C.

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

149

FIELD-SYMBOLS: <FS1>, <FS2>.

* Extract Parameters from INPUT_TAB

READ TABLE INPUT_TAB WITH KEY 'T001-ADRNR'.
IF SY-SUBRC <> 0.
 EXIT.
ENDIF.

ADRNR = INPUT_TAB-VALUE.

* Get Company Code Name & Address to Int. Postal Forma t
**
SELECT SINGLE * FROM SADR "Get Address of Company Cd
 WHERE ADRNR = ADRNR.
SADR-ANRED = ' '. "No Title for Company Code Name
CLEAR ADRS.
MOVE-CORRESPONDING SADR TO ADRS.

CALL FUNCTION 'ADDRESS_INTO_PRINTFORM'
 EXPORTING
 ADRSWA_IN = ADRS
 IMPORTING
 ADRSWA_OUT = ADRS
 .

IF SY-SUBRC <> 0.
 EXIT.
ENDIF.

LENGTH = STRLEN(ADRS-LINE0).

* Update Values in OUTPUT_TAB Table

DO 10 TIMES.
 LEN = SY-INDEX - 1.
 CONCATENATE 'TE_LINE' LEN INTO KEY.
 READ TABLE OUTPUT_TAB WITH KEY KEY.

 IF SY-SUBRC = 0.
 CONCATENATE 'ADRS-LINE' LEN INTO KEY.
 ASSIGN (KEY) TO <FS1>.
 OUTPUT_TAB-VALUE = <FS1>.
 MODIFY OUTPUT_TAB INDEX SY-TABIX.
 ENDIF.

ENDDO.
*BREAK-POINT.
ENDFORM. "GET_FORMAT_SENDER_ADDRESS

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

150

Within the subroutine GET_FORMAT_SENDER_ADDRESS, we are retrieving the name and address
of the company code through the field T001-ADRNR from the table SADR. We are formatting the company
code name and address as per the postal convention of the country of the company code by calling the
function module ADDRESS_INTO_PRINTFORM. We are resorting to this procedure instead of using the
ADDRESS…..ENDADDRESS set of control commands to be able to apply character format to a specific field
of the name and address of the company code. In our custom purchase order hands-on exercises II and III,
the code we have located in the subroutine was located within the print programs. In our present exercise,
we do not have access to the print program, hence the external subroutine. We are applying the character
format UL to output the company code name.

We have used feature of field symbols in the subroutine. You must be sufficiently exposed to the
field symbols to follow their usage in the subroutine. You have already been exposed to the extraction of
parameters and the insertion of return parameter values in an external subroutine called from within the text
element environment of a form.

For the English-language version of this form, in the text element area of the window SENDER, the
same entries have to appear. We can manually enter these same entries when we edit or change the English-
language version of this form. But the preferred way would be to copy these text element entries into any
of the five user clipboards and paste from the user clipboard. To select and copy text element entries into a
user clipboard, it is better to switch to the graphical editor. To switch to graphical editor in the text element
environment, we made the following menu selection: Goto ➤ Change Editor or Goto ➤ Configure Editor.
This is shown in Figure 2-24.

Figure 2-24. Text element environment—menu option to switch to graphic editor

Once we are in the graphic editor, we selected the entire text in the window SENDER as it is shown in
Figure 2-25. To insert the selected text into the user clipboard 1, we made the following menu selection:
Edit ➤ Copy to User Clipboard ➤ User Clipboard 1. This is shown in Figure 2-25:

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

151

The user clipboard 1 now contains the text of the window SENDER. The user clipboards in the text
element environment of forms are just like the non-volatile buffers in the ABAP editor. You can copy, view,
and change the contents of a user clipboard from within the text element environment with the following
menu option: Goto ➤ User Clipboard ➤ Clipboard 1/2/3/4/5. We switched back to the non-graphical editor
by again making the menu selection shown in Figure 2-25. We proceed to the window IN_WORDS next.

Text Element in Window IN_WORDS

The following was entered in the text element area of the window IN_WORDS:

/: IF &NEXTPAGE(C)& = '0'
/: DEFINE &AMOUNT& = &KOMK-FKWRT&
/: DEFINE &SPRAS& = &EKKO-SPRAS&
/: DEFINE &WAERS& = &EKKO-WAERS&
/: DEFINE &IN_WORD1& = ' '
/: DEFINE &IN_WORD2& = ' '
/: PERFORM CALL_SPELL_AMOUNT IN PROGRAM YCH02_04_SROUTINE_POOL
/: USING &AMOUNT&
/: USING &SPRAS&
/: USING &WAERS&
/: CHANGING &IN_WORD1&
/: CHANGING &IN_WORD2&
/: ENDPERFORM
* &IN_WORD1&
* &IN_WORD2&
/: ENDIF

Figure 2-25. Text element environment—menu option to copy text to user clipboard 1

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

152

This is similar and somewhat identical to the set of control commands we used in the window
IN_WORDS of the form of hands-on exercise III. The program symbol &TOTAL& has been replaced with the
program symbol &KOMK-FKWRT&. The variable KOMK-FKWRT has been identified as the one containing
the ‘Total net value excl. tax’ of a purchase order. The variables EKKO-SPRAS has been identified as the one
containing the value of the language key of a purchase order. The variable EKKO-WAERS has been identified
as the one containing the value of currency key of a purchase order.

•	 The identification of the variable KOMK-FKWRT as containing ‘Total net value
excl. tax’ is based on the following exercise: (1) open the English version of the
form YCH02_04_MEDRUCK in display mode; (2) navigate to the text element area
of the window main; (3) search for the string ‘Total net value excl. tax’ – ctrl+F etc.
(Perform this exercise on the side, in another external session, etc.) You will be able
to infer that the program symbol containing total of a purchase order excluding tax is
&KOMK-FKWRT&

•	 The identification of the variables EKKO-SPRAS and EKKO-WAERS as containing the
language key and currency code, respectively, is obvious.

In hands-on exercise III, we were prefixing the amount expressed in text with ‘In Words’. You can do so if
you want. You can either enter the text as literal: ‘in Worten‘ (German) and ‘In Words’ (English). Or, you can use
the long text of the data element YCH02_INWORDS. To retrieve long text from the data element, you will have
to use the function module WCGW_DATA_ELEMENT_TEXT_GET. You can locate another external subroutine
in the subroutine pool program YCH02_04_SROUTINE_POOL to retrieve the long text of the data element.

For the English version of this form, in the text element area of the window IN_WORDS, the same entries
have to appear. We again need to select and copy the text in the window IN_WORDS into one of the user
clipboards. To select text, we switched to the graphical editor by making the menu selection: Goto ➤ Change
Editor or Goto ➤ Configure Editor. We selected the entire text in the window IN_WORDS. To insert the
selected text into the user clipboard 2, we made the following menu selection: Edit ➤ Copy to User Clipboard
➤ User Clipboard 2. This inserted the entire text in the window IN_WORDS into the user clipboard 2.

We saved the form. We performed a form definition check as well as the form texts check on the form
YCH02_04_MEDRUCK. To perform the form text check, we used the print program SAPLMEDRUCK. The
print program SAPLMEDRUCK is a function pool. The form texts check will generate an error and quite a
few warnings. We ignored them. We activated the form. The German-language version (original language)
has to be active to enable changes in other language versions of the form.

This completes the task of the creation of text elements in the German-language version of the form.

Create Text Elements in the English-Language Version of the Form
YCH02_04_MEDRUCK
We need to create the text elements in the English-language version of the form YCH02_04_MEDRUCK for
the windows LOGO, SENDER, and IN_WORDS.

We used transaction code SE71 to open the English-language version of the form YCH02_04_MEDRUCK
in change mode. Before opening the English-language version of this form, it is to be ensured that the
original language version (German) of this form is in active mode.

As text elements are mapped one to one with the windows, we will proceed to create text elements
window-wise.

Text Element in Window LOGO

We inserted the following in the text element area of the window LOGO:

/: BITMAP 'YCH01_COMPANY_LOGO' OBJECT GRAPHICS ID BMAP TYPE BCOL

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

153

Since the text element consists of a single line, it was not considered worthwhile to copy it into a user
clipboard. This is all we need to create in the text element area of the window LOGO.

Text Element in Window SENDER

We had copied the text in the window SENDER while in the German-language version of the form into the
user clipboard 1. We now have to paste or insert the text from the user clipboard 1 into the text element area
of the window SENDER. To paste text from the user clipboard 1, we made the following menu selection in
the text element environment of window SENDER: Insert ➤ User Clipboard ➤ Clipboard 1. This is shown in
Figure 2-26.

This pasted contents of the user clipboard 1 into the text element area of the window SENDER. That is all.

Text Element in Window IN_WORDS

To paste text from the user clipboard 2, we made the following menu selection in the text element
environment of window IN_WORDS: Insert ➤ User Clipboard ➤ Clipboard 2. This pasted contents of the
user clipboard 2 into the text element area of the window IN_WORDS.

We created text elements in the windows LOGO, SENDER, and IN_WORDS for the English-language
version of the form. We performed form check and activated the English-language version of the form.

We now have the German and English versions of the form YCH02_04_MEDRUCK active and ready for
testing. If we decide that our test case for the form will support the two languages, German and English, our
modification and customization of the form YCH02_04_MEDRUCK ends.

Output
We want to test the output of the form YCH02_04_MEDRUCK. The print program of the form YCH02_04_
MEDRUCK is SAPLMEDRUCK, a function pool. We cannot execute this program. Thus I am introducing a
simple procedure to test the output of the form YCH02_04_MEDRUCK. We will test the output of the form
YCH02_04_MEDRUCK with purchase order numbers 4500004823 and 4500009520. These are the same two
purchase orders we used for testing the output in our hands-on exercises II and III. The purchase order
number 4500004823 language key is D and the purchase order number 4500009520 language key is E.

We used the transaction code ME22N—change purchase order—to test the output of the form
YCH02_04_MEDRUCK. Within this transaction code, we can assign to a specific purchase order, a SAP script
form to be used for output. The procedure involves assigning each purchase order a form to be used to output
it, a somewhat cumbersome process if you are outputting purchase orders on a mass scale. In our present
scenario, we are not intending to output large number of purchase orders, so it will serve our purposes.

Figure 2-26. Insert/paste text from user clipboard 1 into text element area of window SENDER

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

154

We navigated to the screen of transaction code ME22N. To select a purchase order, we made the
following menu selection: Purchase Order ->Other Purchase Order. This is shown in Figure 2-27:

This menu selection will pop up a dialog box as shown in Figure 2-28.

There is a selection list facility available. We manually entered purchase order number 4500004823
(German purchase order). We clicked the continue Other Document button. This fetched purchase order
number 4500004823 for editing as shown in Figure 2-29.

Figure 2-27. Transaction code: ME22N—menu item to select a purchase order for editing

Figure 2-28. Transaction code: ME22N—Select Document

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

155

Figure 2-30. Purchase order number: 4500004823—output/messages

We clicked the application toolbar button Messages. A screen like the one shown in Figure 2-30
appeared.

We selected the row as shown in Figure 2-30. If a row does not exist, create a row with the values from
the Figure 2-30. We clicked the application toolbar button Communication Method. The screen as shown in
Figure 2-31 appeared.

Figure 2-29. Purchase order number: 4500004823—change/edit

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

156

As shown at the bottom of Figure 2-31, we assigned the form YCH02_04_MEDRUCK. We navigated to
the previous screen and clicked the save button on the system toolbar. The system will display the status
message ‘Standard PO 4500004823 changed’. Purchase order number 4500004823 will output as per the
layout of the form YCH02_04_MEDRUCK.

We have to execute the transaction code ME22n again for the change to take effect. So, we executed
the transaction code ME22N, selected the purchase order number 4500004823, and clicked the application
toolbar button Print Preview. The output is generated in two pages and will look as shown in Figures 2-32,
2-33, 2-34, and 2-35:

Figure 2-31. Purchase order number: 4500004823—assign form YCH02_04_MEDRUCK

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

157
Figure 2-33. Output with form YCH02_04_MEDRUCK: PO No. 4500004823—II

Figure 2-32. Output with form YCH02_04_MEDRUCK: PO No. 4500004823—I

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

158

This was test output of purchase order number 4500004823 (German). Next, we test output purchase
order number 4500009520 (English).

On the screen of transaction code ME22N, we selected a purchase order number 45000009520 with the
following menu selection: Purchase Order ➤ Other Purchase Order.

After the selection of purchase order number 4500009520, we clicked the application toolbar button
Messages. This will bring up the ‘Output’ screen. On the ‘Output’ screen, we selected the first row and
clicked the application toolbar button Communication Method. This will bring up the second ‘Output’
screen, where we assigned the form YCH02_04_MEDRUCK. We navigated to previous screen and saved the
purchase order.

The system will display the status message ‘Standard PO 4500009520 changed’. Purchase order number:
4500000520 will output as per the layout of the form YCH02_04_MEDRUCK.

We executed the transaction code ME22n again for the change to take effect. We selected purchase
order number 4500009520 and clicked the application toolbar button Print Preview. The output is generated
in ten pages and will look as shown in Figures 2-36, 2-37, and 2-38.

Figure 2-34. Output with form YCH02_04_MEDRUCK: PO No. 4500004823—III

Figure 2-35. Output with form YCH02_04_MEDRUCK: PO No. 4500004823—IV

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

159

Figure 2-37. Output with form YCH02_04_MEDRUCK: PO No. 4500009520—10/10

Figure 2-36. Output with form YCH02_04_MEDRUCK: PO No. 4500009520—1/10

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

160

Hands-on Exercise Recapitulation
In this hands-on exercise, we copied a SAP delivered form MEDRUCK to Y namespace. We carried out
modification and customization of the copied form as per laid-out specifications. We did not create a
form from scratch. Whatever ABAP functionality we wanted to incorporate, we incorporated through the
invocation of external subroutines. We did not code a print program. We tackled, for the first time, issues
related to maintaining multiple language versions of a form. The modifications to language-independent
elements of a form are to be carried in the original language version of the form. The modifications to
language-dependent elements of a form are to be carried individually in each language version of the form.
In real-life SAP projects, this is the de facto manner of deploying forms, since SAP provides forms for every
standard business document.

We tested our copied, modified, and customized form by assigning our form to individual purchase
orders and generating a print preview. In Chapter 4, we will demonstrate a better method for testing SAP
delivered forms—copied, modified, and customized to customer requirements. This method involves a
concept called business document output determination.

Form YCH02_04_MEDRUCK vis-à-vis Form YCH02_03_PORDER2
The form YCH02_04_MEDRUCK, a copy of the SAP delivered form MEDRUCK, has been designed to
produce purchasing documents and not just the purchase order of every kind of business enterprise—it
is a generic form. The form YCH02_03_PORDER2 (or YCH02_02_PORDER1) is a custom form designed
to produce just new standard purchase order with scope and limits described in the section “Hands-on
Exercise—Scope and Limits.” The objective of creating the custom form YCH02_03_PORDER2 was to expose
you to the nitty-gritty of creating a form from scratch. The objective was to incorporate enough functional
aspects to make the exercise fairly realistic. Even as we incorporated functional aspects, we have tried not
to make the functional aspects too complex as to shift the main focus from the form complexities to the
functional complexities.

Figure 2-38. Output with form YCH02_04_MEDRUCK: PO No. 4500009520—10/10

http://dx.doi.org/10.1007/978-1-4842-3183-8_4

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

161

In our custom form YCH02_03_PORDER2, the field EKPO-EBELP, the item number, is not appearing in the
output. The field EKPO-EBELP is an important reference field and must appear in the purchasing document
output. In our custom form, we are picking up the material description texts from the table MAKT. The material
description texts in the purchasing document language are contained in the table EKPO itself. The field name
is TXZ01. The form YCH_02_04_MEDRUCK is using this field to output material description texts.

The form YCH_02_04_MEDRUCK is checking and outputting the delivery status of each item. Our custom
form is assuming the standard purchase being output to be new purchase orders without any deliveries.

The form YCH_02_04_MEDRUCK is using more than 70 database tables. You can check this out in
the global data area of the print program SAPLMEDRUCK. We are using just 11 database tables in the
print program of our custom form YCH02_03_PORDER2. I am trying to get across the fact that there is a
substantial difference between a generic form and a custom form.

Hands-on Exercise V—Output Customer-wise Sales
Summary of a Company Code—Use SAP Script Form
To round off the hands-on exercises in this chapter, we will create a SAP script form and its corresponding
print program which will produce a report much like a report produced by the features of classical
reporting or ALV functionalities. We will create a form as a layout of a customer-wise sales summary and
its corresponding print program. A report produced by a SAP script form should use the extra formatting
features like different fonts and different font styling in different parts of the output, enclose outputs in box-
like frames, impart shading effect, and so on. The usage of the extra formatting features of SAP script forms
will warrant the deployment of SAP script forms over that of classical reporting or ALV functionalities.

Output Specification and Layout
Let us assume that a customer-wise sales summary is required with the following specifications:

•	 The column headings and the body of the report should be enclosed in box-like
frames.

•	 The column headings and the body of the report should appear in shaded
backgrounds

•	 The column headings of the report should appear in bold font

Figure 2-39 shows a rough layout of the report.

Figure 2-39. Customer-wise sales summary—rough layout

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

162

The number of Xs indicates the number of column positions for the field. The column headings and
the body of the report will appear in a gray shaded background (not shown in this rough layout). The field
names are marked. Most of the marked fields originate from tables. In the next section, “Data Inputs,” the
originating tables of the fields will be identified. Some of the marked fields do not originate from tables:
PAGE is a SAP script system symbol, SY-TABIX is a system field, and TOTAL is a variable declared in the
ABAP print program.

The output will be generated with data from the IDES server. The IDES server contains data for a
number of company codes; each company code operates in a specific currency. So it becomes necessary to
process and generate the customer-wise sales summary of a specified company code at a time separately.
The print program can provide for input of company code for which the customer-wise sales summary is to
be generated through a PARAMETERS statement.

We will proceed to the identification of inputs and the processing of input involved in producing an
output as shown in Figure 2-39.

Data Inputs
To produce the output of Figure 2-39, we will be required to access the following tables and their fields:

Table 2-13. Fields in the Database View YCH02_VBRK_KNA1

Srl. No. Field/Table Srl. No. Field/Table

01 MANDT / VBRK 05 BUKRS / VBRK

02 VBELN / VBRK 06 NETWR / VBRK

03 KUNNR / KNA1 07 KURRF / VBRK

04 NAME1 / KNA1

We are creating a database view YCH02_VBRK_KNA1 consisting of the tables VBRK and KNA1. The join
conditions will be as follows:

KNA1 VBRK MANDT = KNA1 MANDT
VBRK VBRK KUNAG = KNA1 KUNNR

The View Flds tab of the database view has the following fields, shown in Table 2-13:

Table 2-12. Tables and Their Fields Required to Output Customer-wise Sales Summary

Srl. No. Table Field Field Description

01 T001 – Company code data BUTXT Company Code Name

02 WAERS Currency Key of Company Code

03 KNA1 Customer primary KUNNR Customer Code/Number

04 NAME1 Customer Name

05 VBRK-Billing document, header BUKRS Company Code

06 NETWR Total Net Amount

07 KURRF Exchange rate

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

163

The currency of each billing document can be different. We have to convert the amount NETWR
of individual billing documents into the currency of the company code by multiplying the amount field
NETWR with the exchange rate field KURRF With the converted amounts; we have to summarize the data
customer-wise. We are using the COLLECT statement to generate customer-wise summarized sales data.

SAP Script Form YCH02_05_SALESSUM
In transaction code SE71, we created the form YCH02_05_SALESSUM.

We will output customer-wise sales summary on DINA4 stationery in portrait mode—210 MM width
and 297MM height.

We created a page format ONLY_PG with the default values. We assigned the next page for page format
ONLY_PG as ONLY_PG. We created a paragraph format OP with default values. In the basic settings of the
form attributes, we assigned the default paragraph as OP and assigned the first page as ONLY_PG.

We created a character format BL. We accepted all default values, including the font family as Courier
and font size as 12 points. We enabled the bold Radio button. The character format BL will be applied to the
column headings of the report to make them appear in bold lettering.

For the only page format ONLY_PG, we created the windows and their corresponding page windows
as per the entries in Table 2-14. The horizontal dimensions of the page windows have been specified in
characters (CH) and the vertical dimensions of the page windows have been specified in lines (LN).

Table 2-14. Page Format ONLY_PG—Windows and Page Windows

Window & Page Window Page Window Dimensions

1.HEADING Left margin : 5 CH
Upper margin : 1 LN
Window width : 73 CH
Window height : 7 LN

2.MAIN Left margin : 5 CH
Upper margin : 7 LN
Window width : 73 CH
Window height : 57 LN

3.GTOTAL Left margin : 5 CH
Upper margin : 64 LN
Window width : 73 CH
Window height : 2 LN

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

164

The entries in the text elements window-wise will be as shown in the next sections.

Text Element in Window HEADING
The following was entered in the text element area of the window HEADING:

* Customer Wise Sales Summary-Company Code: &T001-BUKRS&/&T001-BUTXT&
* Currency: &T001-WAERS&,,,,,,,,,,,,,,,,,,,,,,,,,, Page:&PAGE(C3)&
/: POSITION YORIGIN 4 LN
/: BOX HEIGHT 61 LN FRAME 14 TW INTENSITY 8
/: BOX HEIGHT 3 LN FRAME 21 TW INTENSITY 16
*
* <BL> Srl. Customer N a m e</>
= <BL> Amount</>
* <BL> No. Code</>

Text Element in Window MAIN
The following was entered in the text element area of the window MAIN:

/E ITEM_DATA
* &SRL_NO(Z5)& &CUST_SUMM_STRU-KUNNR(K10)& &CUST_SUMM_STRU-NAME1(35)&
= &CUST_SUMM_STRU-NETWR(R17)&

The data to the main window has to be sent repeatedly with an explicit call of function module
WRITE_FORM, hence naming of the text element with the /E ITEM_DATA in the main window.

Text Element in Window TOTAL
The following was entered in the text element area of the window TOTAL:

/: IF &NEXTPAGE(C)& = '0'
*
* ,,,,,,,,,,,,,,,,,,,,,, Total: &TOTAL(17)&
/: ENDIF

After creation of the form elements as described, we saved the form. We assigned the package
YCH_BC401. You can assign the same or any other non-local package of your choice.

We have un-named or default text elements in the following windows: HEADING and TOTAL. We have a
named text elements in the main window.

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

165

Print Program YCH02_05_PPRG_YCH02_05_SALESUM for SAP Script
Form YCH02_05_SALESUM
We created an ABAP program YCH02_05_PPRG_YCH02_05_SALESUM. This will be the print program for the
form YCH02_05_SALESUM. The source lines of the print program are as follows:

REPORT YCH02_05_PPRG_YCH02_05_SALESUM.

**
* Print Program for Form: YCH02_05_SALESUM **
* Customer Wise Sales Summary of a Company Code **
**

TYPES: BEGIN OF CUST_SUMM_TP,
 KUNNR TYPE KUNNR,
 NAME1 TYPE NAME1_GP,
 KURRF TYPE KURRF,
 NETWR TYPE NETWR,
 END OF CUST_SUMM_TP.

TABLES: T001.

DATA: CUST_SUMM_TAB TYPE STANDARD TABLE OF CUST_SUMM_TP,
 CUST_SUMM_STRU TYPE CUST_SUMM_TP,
 SRL_NO TYPE SY-TABIX,
 TOTAL TYPE NETWR.

**
PARAMETERS COMP_CD TYPE VBRK-BUKRS DEFAULT 3000 VALUE CHECK.

START-OF-SELECTION.

SELECT SINGLE * FROM T001 WHERE BUKRS = COMP_CD.

SELECT KUNNR NAME1 KURRF NETWR FROM YCH02_VBRK_KNA1 INTO
 CUST_SUMM_STRU WHERE BUKRS = COMP_CD.

 CUST_SUMM_STRU-NETWR = CUST_SUMM_STRU-NETWR * CUST_SUMM_STRU-KURRF.
 CUST_SUMM_STRU-KURRF = 0.

 COLLECT CUST_SUMM_STRU INTO CUST_SUMM_TAB.
ENDSELECT.

IF LINES(CUST_SUMM_TAB) = 0.
 MESSAGE S001(YCH02_MCLASS) DISPLAY LIKE 'E'. "No Data
 EXIT.
ENDIF.

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

166

SORT CUST_SUMM_TAB BY KUNNR.

CALL FUNCTION 'OPEN_FORM'
 EXPORTING
 FORM = 'YCH02_05_SALESUM'
 LANGUAGE = 'E'
 .
IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
ENDIF.

CALL FUNCTION 'START_FORM'
 EXPORTING
 FORM = 'YCH02_05_SALESUM'
 LANGUAGE = 'E'
 .
IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
ENDIF.

LOOP AT CUST_SUMM_TAB INTO CUST_SUMM_STRU.
 SRL_NO = SY-TABIX.
 TOTAL = TOTAL + CUST_SUMM_STRU-NETWR.

 CALL FUNCTION 'WRITE_FORM'
 EXPORTING
 ELEMENT = 'ITEM_DATA'
 WINDOW = 'MAIN'
 .
 IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 ENDIF.

ENDLOOP.

CALL FUNCTION 'END_FORM'
 .
IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
ENDIF.

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

167

Figure 2-40. Customer-wise sales summary: company code 30000—1/2

CALL FUNCTION 'CLOSE_FORM'
 .
IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
ENDIF.
*****End Program *****

We saved, performed a syntax, check and activated the program.

Check and Activate Form
In transaction code SE71, we performed a form definition check as well as the form texts check on the form
YCH02_05_SALESUM and activated it.

The form YCH02_05_SALESUM and the source program YCH02_05_PPRG_YCH02_05_SALESUM are
available for upload in the E-resource file for this book (www.apress.com/9781484212345).

Output
We executed the program YCH02_05_PPRG_YCH02_05_SALESUM. We executed it with the company code
3000. The company code 3000 has substantial billing document data. The output will look as shown in
Figures 2-40, 2-41, and 2-42.

http://www.apress.com/9781484212345

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

168

Hands-on Exercise Recapitulation
In this hands-on exercise, we created a form and a print program and required workbench objects to
produce not a business document but a report—customer-wise sales summary of a specific company code.
The source of data of the report was the tables VBRK (billing document header), KNA1 (customer primary),
and T001 (company code). The form consisted of a variable window with the corresponding page window
to output the report heading. The body of the report was located in the page window assigned to the main
window. A second variable window with its page window was used to output the total. The report column
heading was produced in bold lettering. The report column heading and body was enclosed in a box-like
frame with background shading.

Figure 2-41. Customer-wise sales summary: company code 30000—2/2

Figure 2-42. Customer-wise sales summary: company code 30000—2/2 total

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

169

While processing data for the report, we did not filter out or skip billing document data not relating to
actual sales like pro forma invoices, etc. (VBTYP = 'U', etc.). In the training and teaching paradigm we are
in, this can be overlooked. If you are very particular, you can incorporate the condition to skip the data not
relating to actual sales in the WHERE condition of SELECT statement as follows:

SELECT KUNNR NAME1 KURRF NETWR FROM YCH02_VBRK_KNA1 INTO
 CUST_SUMM_STRU WHERE BUKRS = COMP_CD
 AND VBTYP NE 'U' AND.....

Classifying Forms
In Chapter 1, in the section “Forms: Searching and classification,” I mentioned that the SAP delivered ready-
to-use forms residing in client 000 are assigned to classifications and subclassifications based on functional
modules and submodules with which the form is associated. These classifications and subclassifications
are presented as nodes and subnodes in a tree-like hierarchical structure. At the leaf level (lowest level, no
further subnodes) the SAP script forms are assigned. These classifications and subclassifications are to be
used by SAP functional consultants to locate a particular form. The tree-like hierarchical structure is called
the form tree.

All the nine forms we created until now have been located under the unclassified forms node by default.
We will now re-locate these nine forms from the unclassified node to nodes and subnodes which we will
now create.

We can totally manipulate the form tree to our requirements: insert, edit, move, and delete nodes and
subnodes. In the present instance, we will create a node at the highest level named ‘My Node.’ Under this
node, we will create two subnodes: ‘Demonstration Exercises’ and ‘Hands-on Exercises.’ Under the subnode
‘Demonstration Exercises,’ we will re-locate the four forms we created in Chapter 1. Under the subnode
‘Hands-on Exercises,’ we will re-locate the five forms we created in Chapter 2. Figure 2-43 shows our part of
the proposed form tree.

Figure 2-43. Proposed part of own form tree

http://dx.doi.org/10.1007/978-1-4842-3183-8_1
http://dx.doi.org/10.1007/978-1-4842-3183-8_1
http://dx.doi.org/10.1007/978-1-4842-3183-8_2

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

170

We have termed the subnodes under the two sub nodes “Demonstration Exercises” and “Hands-on
Exercises” as sub-subnodes. Let us go about creating our nodes, subnodes, and sub-subnodes.
A prerequisite to locating forms under nodes other than the unclassified node is that they should have
been assigned non-local packages. When we created the forms in Chapter 1 and this chapter, we assigned
the package YCH_BC401 to all the forms to enable us to re-locate our forms under nodes other than an
unclassified node.

To manipulate the form tree, we can navigate from the opening screen of transaction code SE71—menu
selection: Utilities(M) ➤ Classify Multiple Forms. Alternatively, we can navigate from the change screen of
a specific form—menu selection: Forms ➤ Classify. We made the following menu selection, Utilities(M) ➤
Classify Multiple Forms, from the opening screen of SE71 screen. The system popped up the following alert:

Figure 2-45. Form tree—menu selection to create node

Figure 2-44. Alert—classify multiple forms

We selected the English language. The form tree screen appeared. On the form tree screen, we made the
following menu selection: Edit ➤ Insert Node ➤. Add to same level as shown in Figure 2-45.

http://dx.doi.org/10.1007/978-1-4842-3183-8_1

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

171

When this menu selection was made, the dialog box shown in Figure 2-46 appeared.

We selected the Radio button with nomenclature Structure nodes from SAP script form tree and clicked
the Continue button. A dialog box to input the node text or node name appeared as shown in Figure 2-47.

After entering the node text, we clicked the Continue button on the dialog box. The node named My
Node was created. Next, we selected this node and made the menu selection Edit ➤ Insert Node ➤ Insert as
a subnode. Figure 2-48 shows the menu selection.

Figure 2-46. Form tree—create node: select node type

Figure 2-47. Form tree—create node: enter node text

Figure 2-48. Form tree—menu selection to create subnode

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

172

With this menu selection, the dialog box as shown in Figure 2-46 appeared. We again selected the
Radio button with nomenclature Structure nodes from SAP script form tree and clicked the Continue button.
A dialog box to input the node text or node name appeared as shown in Figure 2-49:

We clicked the Continue button after entering the node text on the dialog box. The subnode named
Demonstration Exercises was created. In a similar manner, we created the second subnode, Hands-on
Exercises. The screen after the creation of the two subnodes (Demonstration Exercises and Hands-on
Exercises) will look as shown in Figure 2-50.

Next, we have to create the sub-subnodes corresponding to each of the four forms under the subnode
Demonstration Exercises. And we have to create sub-subnodes corresponding to each of five forms under
the subnode Hands-on Exercises. First, we will create sub-subnodes under the subnode Demonstration
Exercises. So we positioned the cursor on the subnode Demonstration Exercises and made the menu
selection Edit ➤ Insert Node ➤ Insert as subnode. When we made this menu selection, a Permitted node
types dialog box appeared, as in Figure 2-51.

Figure 2-49. Form tree—create sub node: enter subnode text

Figure 2-50. Form tree—a node, two subnodes created

Figure 2-51. Form tree—create a node type: form nodes from SAP script form tree

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

173

We selected the first Radio button, as we want this node to be assigned a form (lowest level of form tree)
We clicked the Continue button. A dialog box for input of form name appeared. We entered the name of the
form as YCH02_01_FST_FRM. Figure 2-52 illustrates.

We clicked the Continue button. The sub-subnode was created. In a similar manner, we created three
more sub-subnodes under the subnode Demonstration Exercises corresponding to the forms YCH01_02_
SEC_FRM, YCH01_03_MLIST1 and YCH01_04_MLIST2. The screen after the creation of these four sub-
subnodes will look as shown in Figure 2-53.

We shifted the node My Node up. We used the third button from the right on the application toolbar
to select the node. We used the first button from the right to move the node after selection. Against the
sub-subnode, the short text/description of the form appears. The name of the form appears to the right of
the short text. The name of the form is termed the “technical name.” The fourth button from the left on the
application toolbar acts as a toggle to make the technical name appear or disappear.

In a similar manner, we created five sub-subnodes under the subnode Hands-on Exercises. The five
sub-subnodes correspond to the forms YCH02_01_ADR_STK, YCH02_02_PORDER1, YCH02_03_PORDER2,
YCH02_04_MEDRUCK, and YCH02_05_SALESSUM.

The screen after the creation of the nine sub-subnodes will look as shown in Figure 2-54.

Figure 2-52. Form tree—create a node type: form nodes from SAP script form tree and assign form name

Figure 2-53. Form tree—four sub-subnodes created

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

174

We saved the changes to the form tree and navigated back to the opening screen of transaction code
SE71. We have accomplished what we set out to do: manipulate the form tree to incorporate nodes and
subnodes as per Figure 2-43.

This was a demonstration of the manipulation of the form tree.
When you open a SAP delivered form (like MEDRUCK) using transaction code SE71, the field

classification on the form’s Administrative data screen contains blanks. When you open a custom-created
or -customized version of a copy of a SAP delivered form which has been classified, the field classification
on the form’s Administrative data screen contains the immediate higher-level subnode to which the
form has been assigned. You can verify this. We assigned the form YCH02_04_MEDRUCK to the subnode
Hands-on Exercises. The subnode Hands-on Exercises is assigned to the node My Node. When you view the
Administrative settings screen of the form YCH02_04_MEDRUCK, the field classification contains the value of
the immediate higher-level subnode, that is, Hands-on Exercises. Figure 2-55 illustrates.

Figure 2-54. Form tree—nine sub-subnodes created

Figure 2-55. Form YCH_02_04_MEDRUCK—Value in the field: Classification

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

175

This concludes the brief on form tree.

SAP Script Form Documentation
The SAP script documentation is a language-dependent element or component of SAP script forms. The
other language-dependent element of SAP script forms was text element. Being language dependent, the
documentation has to be entered and maintained individually for each language version of the form. In the
documentation area, the developer can provide detailed technical documentation for a form.

The SAP script form maintenance system by default generates or creates skeletal template
documentation as the form is created and modified. This template documentation consists of subheadings
for the form, each of the page formats, windows, and named text elements. The name of the form and its
elements, page formats, windows, and named text elements appear in the first line of the subheading and
are not editable The short texts entered during the creation of the form and its elements, page formats, and
windows appear in the second line of the subheadings of the template documentation and are editable.
There are no subheadings for the form elements paragraph formats and character formats in the template
documentation. The developer can add text under the generated template subheadings and can insert and
add further subheadings and text.

To reach the documentation area of a form from the opening screen of the SE71 transaction, select
the last Radio button and click the change or display button. To reach the documentation area of a form
from within the form screen, make the following menu selection: Goto ➤ Forms Documentation. The
documentation area is identical to the text element area of a form.

We created documentation for the form YCH02_02_PORDER1. It is not comprehensive but will serve
as a demonstration. Figure 2-56 shows the initial part of the documentation. The subheadings for the form,
page formats FIRST and NEXT, and window CONSIGNE are marked in the Figure 2-56.

Figure 2-56. Form YCH02_02_PORDER1—documentation

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

176

When you delete a form element like a page format or a window or a text element, the form element
documentation text along with the subheading gets deleted in the original language version of the form.
But the deletion of a form element like a page format or a window or a text element does not delete the form
element documentation text along with the subheading in the language versions of form other than the
original language version. In the language versions other than the original language version of the form, only
after deletion of the documentation text under the subheading is deleted does the subheading get deleted.

You can delete all of the entered documentation text in a specific language version of a form with the
following menu selection: Utilities(M) ➤ Documentation ➤ Delete.

You can print or print preview the documentation of a specific language version of a form with the
following menu selection: Utilities(M) ➤ Documentation ➤ Print.

You can try out the following menu selection: Utilities(M) ➤ Documentation ➤ Clean Up.
You can look up the documentation of the copy of SAP delivered form YCH02_04_MEDRUCK. A major

portion of the documentation text is contained under the main window subheading.

SAP Script Tidbits
Following are some miscellaneous tidbits of SAP script forms:

•	 You can download forms, styles, and standard texts to the application server or
presentation server files. These downloaded files can be ported to or uploaded
into other systems. The downloading of forms, styles, and standard texts to files
and subsequent uploading of these files to other systems is enabled with the ABAP
program RSTXSCRP. We have used this program to download our forms, styles, and
standard texts to make them part of our E-resource file for this book (www.apress.
com/9781484212345). You can try out this program to upload our forms, styles, and
standard texts.

•	 You can enter into debugging mode for the control commands issued in the SAP
script text element environment. To enter into debugging mode, make the following
menu selection on the opening screen of transaction code SE71: Utilities(M) ➤
Activate Debugger.

•	 You can compare forms and compare clients with menu selections on the opening
screen of transaction code SE71: Utilities(M) ➤ Compare Forms, Utilities(M) ➤
Compare Clients.

•	 You can change forms from one page size to another, provided the sizes are
somewhat similar like DINA4 and Letter. To change forms from one page size to
another, make the following menu selection on the opening screen of transaction
code SE71: Utilities(M) ➤ Page Format.

•	 You can try out more of the menu options available in the text element environment
of a form. We described mostly the menu options required to carry out the tasks
related to the demonstration and hands-on exercises.

•	 You can read up and try out the output formatting options as well as control
commands not used in our exercises from the PDF document “Style and Form
Maintenance.”

http://www.apress.com/9781484212345
http://www.apress.com/9781484212345

Chapter 2 ■ Sap SCript–handS-on exerCiSeS

177

Conclusion
For the most part, this chapter consisted of implementations of specific business scenarios using the SAP
script concepts and features introduced and described in Chapter 1. I called the implementation of the
business scenarios hands-on exercises. We performed five hands-on exercises in this chapter.

In the first hands-on exercise, we created a form, a print program, and other required workbench
objects to produce vendors’ address labels for a specific company code.

In the second hands-on exercise, we created a form, a print program, and other required workbench
objects to output standard purchase orders. The speciality or peculiarity of the form was that it can generate
multiple language outputs with a single language version of the form. This was implemented through all text
in the text element area of the form originating from the data element text.

In the third hands-on exercise, we extended the form of the second hands-on exercise to demonstrate
how to incorporate ABAP program functionality by calling an external subroutine from within the form’s text
element environment.

The fourth hands-on exercise modified and customized a copy of the SAP delivered form MEDRUCK
to output purchasing documents. The modifications and customizations were carried out as per laid-out
specifications. The output was tested by assigning individual forms to purchasing documents in transaction
code ME22N.

The fifth hands-on exercise involved a form to output a customer-wise sales summary of a specific
company code. The hands-on exercise demonstrated that a list normally produced with reporting features
like ABAP WRITE statement and ALV functionalities can also be produced using a form and a print program.

We concluded the chapter with the following:

•	 A description of manipulating the SAP script form tree.

•	 A description of the form element documentation. The form element documentation
is language dependent like the form element text element.

•	 SAP script form miscellaneous tidbits

http://dx.doi.org/10.1007/978-1-4842-3183-8_1

179© Sushil Markandeya 2017
S. Markandeya, Pro SAP Scripts, Smartforms, and Data Migration,
https://doi.org/10.1007/978-1-4842-3183-8_3

CHAPTER 3

Smartforms—Forms, Styles,
and Text Modules

Smartforms, like SAP script, is also a tool for the presentation of business data. Smartforms is a kind of
enhancement of SAP script and has more facilities and features than SAP script. But since Smartforms,
like SAP script, is used to achieve the same ends——create and maintain business document layouts—I
will describe the features of Smartforms vis-à-vis the SAP script. I will assume that you are familiar and
conversant with the SAP script features: that you have perused the first two chapters of this book and
performed all the demonstration and hands-on exercises in those chapters.

Smartforms, like the SAP script, has the same three components.

•	 Forms

•	 Styles

•	 Text modules (equivalent of standard texts in SAP scripts)

As in case of SAP scripts, we are going to focus primarily on the form component of Smartforms.
We will be performing the same demonstration and hands-on exercises we performed in Chapters 1

and 2 in the coverage of SAP scripts. As I will be describing the Smartforms forms features on a basis parallel
to the SAP script forms features, I will start off by (1) highlighting the major similarities and differences
of SAP script forms and Smartforms forms, (2) describing the extra features and facilities in Smartforms
compared to those of SAP script, and (3) listing the objects created in in SAP script environment which are
also available for use in Smartforms environment.

SAP in its documentation uses the term Smart Forms. I am using the term Smartforms. Let both these
terms be considered as synonymous.

SAP script and Smartforms—Similarities and Differences
The SAP script form element header is similar to the Smartforms form element form attributes. The
Smartforms form element form attributes does not have the ability to specify page orientation: portrait/
landscape.

The SAP script form element page (which we referred as page format) is identical to the Smartforms form
element page. In this chapter and in Chapter 4, I will refer to the Smartforms form element page as page format.
The Smartforms form element page format has the ability to specify page orientation: portrait/landscape.

The SAP script form element text element is identical to the Smartforms form element text. In fact, you
can operate the same text editor in Smartforms forms as the text editor you operated in SAP script forms. The
control commands of SAP script form environment are not available in the Smartforms form environment.
In some places the Smartforms form element text is referred to as text element. I will refer to the Smartforms
form element text as text.

https://doi.org/10.1007/978-1-4842-3183-8_3
http://dx.doi.org/10.1007/978-1-4842-3183-8_1
http://dx.doi.org/10.1007/978-1-4842-3183-8_2
http://dx.doi.org/10.1007/978-1-4842-3183-8_4

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

180

Equivalent to the SAP script form element documentation is the Smartforms form element form
information. The Smartforms form element form information is generated totally by the Smartforms
form maintenance system, there is no facility for the developer to modify or change the form information
generated by the Smartforms form maintenance system.

A Smartforms form cannot have paragraph formats and character formats defined within it. The
paragraph formats and character formats can only be defined within Smartforms styles. Smartforms styles
can be assigned at different levels of a form like at the level of a form, text, and so on. The paragraph formats
and character formats of assigned Smartforms styles can be applied to texts of a Smartforms form.

The SAP script form elements windows and page windows are combined into one element in the
Smartforms forms and are called windows. The element window in a Smartforms form is equivalent to the
element page window in a SAP script form. So the element window of a form in Smartforms is a physical area
of a page format defined by a left margin, an upper margin, a window width, and a window height.

The formatting facilities in SAP script form element text elements are available in the Smartforms form
text environment (zero suppression: (Z), space compression: (C), right-justification (R), etc.). You can find a
complete list of formatting options in the table Formatting Options for Fields of the manual BC-SRV-SCR.

The main window in a SAP script form can have multiple page windows. We used this feature very
effectively to output repetitive data down and across as well as across and down as demonstrated in
demonstration IV in Chapter 1 and hands-on exercise I in Chapter 2. The ability in the main window to
output repetitive data across is not available in the Smartforms forms. You can output repetitive data only
down and not across in the main window of Smartforms forms. This is because the Smartforms forms do not
contain an element equivalent of windows of SAP script forms.

A Smartforms form has lot more elements, which will introduced and described in detail at a later stage.
When a Smartforms form is activated, a function module is generated. This generated function module

has to be called from an ABAP program which we will call the driver program in the context of Smartforms
(called an application program in the manual BC-SRV-SCR). The ABAP program was called print program in
the context of SAP script. Since the Smartforms form’s interaction with the driver program is via calling the
generated function module, the Smartforms form has a parameter interface similar to a function module
parameter interface. So a Smartforms form can receive data from the driver program of all data types:
elementary, structured, and internal tables. Recall, a SAP script form could receive only elementary data
from the print program.

There is no facility of classification and subclassification of Smartforms forms from within the forms
environment, so there is no organization of Smartforms forms into a forms tree to facilitate location of forms
by functional consultants.

The Smartforms forms and styles, unlike the SAP script form and styles, and like all workbench objects, is
cross client. The Smartforms forms and styles have no relationship with the client.

You cannot open different language versions of Smartforms form or style as you could for SAP script
forms and styles. To open a specific language version of a Smartforms form or style, you should be logged into
the language.

Extra Features and Facilities in Smartforms over SAP Script
A form of Smartforms is represented as a graphical tree. Elements of a form are organized in a tree-like
hierarchical structure with nodes and subnodes. Form elements (i.e., tree nodes and subnodes) can be cut,
copied, pasted, dragged, and dropped like in any graphic environment.

You can impart color to texts. When you select font family, font size, and so on, in the Smartforms style
environment, you can assign color to a font. A maximum of 64 colors is available. A preview of fonts is also
available.

A Smartforms form has a global definition area. In this global definition area, you can declare your own
types as you do in an ABAP program with the TYPES statement. You can also declare, in the global definition
area, data objects of all types: elementary, structured, internal tables, etc. These data objects declared in the
global definition area of a form can be used anywhere within the form. Since internal tables can be declared

http://dx.doi.org/10.1007/978-1-4842-3183-8_1
http://dx.doi.org/10.1007/978-1-4842-3183-8_2

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

181

in the global definition area of a form and internal tables can be parameters of a form, there are facilities or
constructs to process internal tables—LOOP AT…..within a form. You can also define field-symbols in the
global definition area of a form and use them anywhere in a form. You can locate subroutines (form routines)
in the global definition area of a form and invoke them from anywhere in a form.

Within a Smartforms form, you can create nodes for incorporation of ABAP code. This ABAP code goes
beyond the control commands in a SAP script form environment. For example, you could not call a function
module from within a SAP script form. But you can call/invoke function modules from within a Smartforms
form. You cannot use a SELECT statement within a SAP script form. But you can use a SELECT statement
within a Smartforms form, and so on.

You output variables in the Smartforms form environment in the same manner you outputted variables
in the SAP script form environment: by enclosing the variable in ampersands (&). In the SAP script form
environment, you could refer to the variables only by enclosing them in ampersands—called program
symbol, text symbol and so on. The value of a variable enclosed in ampersands is the value as it is output,
not as it is internally stored. In the Smartforms form environment, you will refer to variables in nodes of
ABAP code without enclosing them in ampersands and the value is the value as it is internally stored (as in a
normal ABAP program).

Before a Smartforms form commences processing, the Smartforms runtime system jumps to the
INITIALIZATION event of the form. In this INITIALIZATION event, you can locate substantial ABAP code
including code for retrieving data: SELECT…..statements.

The Smartforms form has the elements tables and templates to output repetitive data in a formalized
manner.

The Smartforms form can be used with ABAP web dynpro to input data.
You can generate XML output with a Smartforms form.

SAP Script Objects Available in Smartforms Environment
The following objects created and maintained in the SAP script environment are available in the Smartforms
environment:

The BMP/TIFF operating system graphic files imported into the SAP document server using transaction
code SE78 are available for incorporation in the Smartforms environment.

The font families, with their sizes, styling, etc., assigned to the installed printer devices in the SAP script
environment are available in the Smartforms environment. That is, SAP delivered font families as well as the
font families installed through transaction code SE73 and assigned to installed printer devices are available
in the Smartforms environment.

The bar codes, SAP delivered, as well as the bar codes installed through transaction code SE73 and
assigned to installed printer devices are available in the Smartforms environment.

Texts (long texts) are maintained as text modules in the Smartforms environment. The text module
is parallel or equivalent to the standard texts in SAP scripts. A text module can be incorporated into other
text modules and Smartforms forms. You can also incorporate the SAP script component standard texts
maintained with transaction code SO10 into text modules and Smartforms forms.

Smartforms Form Elements and Smartforms Form
Environment
Our discussions and descriptions will focus on the form element of Smartforms. The two other Smartforms
elements—styles and text modules—do not need to be explained elaborately. As and when we create styles
and text modules, I will describe them and the descriptions accompanying their creation will suffice. I
followed a similar approach when covering SAP scripts in Chapter 1.

Mostly, we will refer to the Smartforms form as just form.

http://dx.doi.org/10.1007/978-1-4842-3183-8_1

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

182

As we mentioned earlier, the form and its elements appear as nodes and subnodes of a hierarchical tree.
I will introduce and explain the form elements and form environment through a copy of the SAP

delivered purchasing document form YSM_SMB40_MMPO_A (original form name /SMB40/MMPO_A). I am
resorting to the use of a copy of the original since the original will not permit the operation of context menus.
The objective is not for you to completely understand the working of the form YSM_SMB40_MMPO_A. The
objective is to present the form elements and environment in a non-abstract context. By the time you are
through with the tour of the form YSM_SMB40_MMPO_A, you will have a fair idea of its operation.

When you open this form in edit mode, the initial screen presented to the developer will look like the
one in Figure 3-1.

As you can see, the form tree appears on the left. Attributes or information related to the selected form
tree node appears on the right. Attributes or information related to the selected form tree node might be
contained in more than one tab screen. A detailed description of the different areas of this screen follows.

As you can see in Figure 3-1, there are two main nodes in the hierarchical Smartforms form tree: (1)
Global Settings and (2) Pages and Windows. An elaborate description of these two nodes along with the
associated environment follows.

Application Toolbar
Following is a description of the application toolbar:

•	 The first button from the left is the universal button to toggle between change and
display modes.

•	 The second button from the left is the universal button for syntax check.

•	 The third button from the left is the universal button to activate .

•	 The fourth button from the left is for testing a form from within the form
environment.

•	 The fifth button from the left is to expand a node/subnode.

Figure 3-1. Form YSM_SMB40_MMPO_A—Initial Screen

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

183

•	 The sixth button from the left is to collapse a node/subnode.

•	 The second button from the right is to make the field list appear/disappear. The field
list contains all the fields declared in the global definitions, fields from form interface
parameters and the Smartforms system fields. The field list appears in the bottom left
corner.

•	 The first button from the right is to make the form painter appear/disappear. The
form painter appears to the right of the form tree. The form painter is similar to the
graphic form painter in SAP script.

•	 Apart from these application toolbar buttons, additional functionalities are available
through menu options. These menu options will be introduced at appropriate
junctures.

Menu Bar and Menu Options
Figures 3-2 and 3-3 shows the four main menu options and suboptions:

Figure 3-2. Smartforms form—menu options: Form and Edit

Figure 3-3. Smartforms form—menu options: Utilities(M) and Environment

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

184

Following is a description of the menu bar options and suboptions:

•	 The first of the menu bar options in Figure 3-2 is Form. You can (i) open another
form; (ii) toggle between change and display mode of the form; (iii) check the form
(validation); (iv) activate the form; (v) test the form; (vi) save the form; and (vii) exit
the form screen.

•	 The second of the menu bar options in Figure 3-2 is Edit. You can (i) create, cut copy,
paste, and delete nodes; (ii) create, cut copy, paste, and delete subtree; (iii) undo
operations; (iv) redo operations; (v) search for a string; (vi) issue next search; and
(vii) cancel creation or editing of a form.

•	 The third of the menu bar options in Figure 3-3 is Utilities(M). You can (i) perform
settings (described in the following pages); (ii) make the form painter appear
or disappear; (iii) make the field list appear or disappear; (iv) navigate to form
information (form documentation); (v) upload from a presentation server file into
the form; (vi) download the form to presentation server file; (vii) download subtree
to presentation server file; (vii) return to the active version of the form; and (viii)
activate the form without a check.

•	 The fourth of the menu bar options in Figure 3-3 is Environment. It has only one
suboption: display the name of the function module of the activated form.

Node: Global Settings
Marked in Figure 3-1 are node and subnodes not related directly to form layout. Node and subnodes not
related directly to form layout means that the node and subnodes do not constitute a page format or part
of a page format. The main node not related to form layout is Global Settings. Under Global Settings are
subnodes: Form Attributes, Form Interface, and Global Definitions. Each of the subnodes has tab screens.
Figure 3-4 shows a graphic representation of the node Global Settings and its subnodes with their tab
screens: the subnodes are marked 1, 2, etc., and the tab screens are marked 1.1, 1.2, etc.

Figure 3-4. Form node: Global Settings—subnodes and tab screens

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

185

A description of the nodes, subnodes, and their tab screens of the main node Global Settings follows.

Form Attributes
The first of the subnode Form Attributes under the node Global Settings is similar to Form Header of SAP
scripts. The subnode Form Attributes has two tab screens: General Attributes and Output Options. Figure 3-1
is in fact a screenshot of the tab screen General Attributes. Figure 3-5 shows the tab screen Output Options:

You can assign a style to a form as shown in Figure 3-5. If no style is assigned to a form, the Smartforms
form maintenance system assigns the style SYSTEM to the form by default.

Form Interface
The second of the subnodes, Form Interfaces, under Global Settings is similar to a function module
parameter interface. It has four tab screens: Import, Export, Tables, and Exceptions. There are no changing
parameters as in function modules. You have to specify your parameters which will be received by the form
from the ABAP driver program. There are predefined system import parameters, all optional. You can enter
your own parameters and exceptions (Defined). Figure 3-6 shows the tab screen Import.

Figure 3-5. Form Attributes——tab screen: Output Options

Figure 3-6. Form Interface—tab screen: Import

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

186

Mostly, the parameters (i.e., Import, Export, and Tables) are defined by referring to ABAP dictionary
objects. The parameters can also be defined by referring to the predefined generic types or to the fixed
length ABAP elementary types—D, F, I, and T—or referring to the ABAP elementary type STRING.

There are no Export parameters for the form YSM_SMB40_MMPO_A. Thus we are skipping the tab
screen Export.

In the tab screen Tables, you enter the internal table parameters. The internal table parameters are
specified in the same way as in function modules. Internal tables can be defined by referring to a structure
with the keyword LIKE. Internal tables can be defined by referring to predefined generic types like ANY
TABLE, etc. As in function modules, the Tables parameter automatically generates a header line—that is,
a structure of the same name as the Tables parameter. Figure 3-7 shows the tab screen Tables of the form
YSM_SMB40_MMPO_A.

We are skipping the tab screen Exceptions as it is identical to the function module exceptions. There are
predefined exceptions; you can enter your own exceptions and raise these exceptions.

Global Definitions
The third subnode under Global Settings is Global Definitions. Under Global Definitions, there are six tab
screens: Global Data, Types, Field Symbols, Initialization, Form Routines, and Currency/Quant. Fields. I will
describe each of these tab screens in turn.

Global Data

Data objects can be declared in the Global Data area. The data declared in the Global Data area can be used
anywhere within the form. The data declared can refer to ABAP dictionary objects, types declared in the
Types screen tab Types (next tab screen), ABAP elementary types of fixed length, and ABAP type STRING
and predefined generic types. Figure 3-8 shows the tab screen Global Data of the form YSM_SMB40_
MMPO_A.

Figure 3-7. Form Interface—tab screen: Tables

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

187

Types

In this tab screen area, you can declare your own types using the keyword TYPES as in an ABAP program.
Subsequently, you can declare data in the form referring to the types in this area. Figure 3-9 shows the tab
screen Types of the form YSM_SMB40_MMPO_A.

Field Symbols

You can define field symbols under this tab screen. When a large volume of data is to be processed using the
looping process in a form, it is advisable to use an assigned field symbol. You can use the variation LOOP
AT….. ASSIGNING…..instead of LOOP AT…..INTO..... Instead of fetching rows into a structure, row by row,
the LOOP AT….. ASSIGNING…..directly accesses rows in an internal table, thereby improving performance
for large volumes of data. You can use field symbols in contexts other than the LOOP AT….. ASSIGNING…..as
per requirements. Figure 3-10 shows the tab screen Field Symbols of the form YSM_SMB40_MMPO_A.

Figure 3-8. Global Definitions—tab screen: Global Data

Figure 3-9. Global Definitions—tab screen: Types

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

188

Initialization

Initialization is an event. When a form is invoked (by the driver program) through its corresponding function
module, control jumps to the event Initialization, the ABAP program lines located in this event will be
executed before the formatting of the document as per the form layout starts. The Initialization event takes
input and output parameters. Any reference to variables in the ABAP program lines of the Initialization
event must have been specified in the Global Data or Form Interface. The Smartforms system fields can be
directly referred without specifying them in the input, output parameters. Figure 3-11 shows the tab screen
Initialization of the form YSM_SMB40_MMPO_A.

Figure 3-10. Global Definitions—tab screen: Field Symbols

Figure 3-11. Global Definitions—tab screen: Initialization

Figure 3-11 has three marked buttons: Syntax Check, Pattern, and Pretty Printer. The function of these
buttons is the same as their function in ABAP editor environment. These buttons exist wherever ABAP
program lines are to be maintained in the form environment. These buttons exist in the tab screen Types
(Figure 3-9). The Syntax Check button exists on most node screens, subnode screens, and tab screens to
perform validity checks.

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

189

As you can observe, type has been declared in the ABAP program lines in the Initialization event (last
visible ABAP program line). This type declaration is local to the Initialization event; it can be referred to
declare variables only within the Initialization event.

Form Routines

You can locate subroutines within the tab screen Form Routines. Each of the subroutines starts with the
FORM statement and ends with the ENDFORM statement, just as in ABAP programs. The parameter passing
and specification is identical to the parameter passing and specification in ABAP programs. The subroutines
located within the tab screen Form Routines can be called from anywhere in the form with the PERFORM
statement.

The buttons Syntax Check, Pattern, and Pretty Printer also appear on this tab screen. The form YSM_
SMB40_MMPO_A does not contain any subroutines in the tab screen Form Routines. Hence, we are skipping
a screenshot of this tab screen. In Chapter 4 hands-on exercise II, you are required to locate subroutines in
the tab screen Form Routines; you will then have the opportunity to see the operation and usage of Form
Routines.

Currency Quant. Fields

When you define variables in the forms Global Data tab screen of ABAP dictionary types CURR (currency
amounts) QUAN (inventory quantities), you need to specify their corresponding ABAP dictionary types
CUKY (currency key) and UNIT (unit of measure key). The specification of fields of ABAP dictionary type
CUKY for the type CURR variables and the type UNIT for the type QUAN variables is entered in the tab
screen Currency/Quant. Fields.

There are no entries in this tab screen of the form YSM_SMB40_MMPO_A.
This concludes the descriptions of the tab screens of the subnode Global Definitions as well as the node

Global Settings. We designated the node Global Settings as the node not directly related to form layout. Every
form will consist of the node Global Settings with subnodes Form Attributes, Form Interface, and Global
Definitions

Node: Pages and Windows
The node Pages and Windows contains, as its name suggests, the form’s page formats, windows, and other
form layout elements. All the subnodes and the subnodes under the subnodes under the node Pages and
Windows are being termed “form layout elements.” The form layout elements appear as subnodes to the
main node Pages and Windows. This node is directly related to the layout of a form (i.e., which information
will appear where in what format).

Under the main node Pages and Windows, you can create page format nodes. A form must have a
minimum of one page format and can have any number of page formats.

Under a page format node you can create nodes of windows, graphics, and addresses.
Under a window, you can create nodes of texts, tables, templates, flow logics, and folders.
Under an address, you can create nodes of tables, templates, flow logic, and folders.

http://dx.doi.org/10.1007/978-1-4842-3183-8_4

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

190

Figure 3-12 shows a rough graphic representation of the node Pages and Windows and its subnodes.

Figure 3-12 is a rough representation of the different layout elements under the node Pages and
Windows. One of the layout elements, folder, is not represented in Figure 3-12. The layout elements tables,
templates, and loops contain, apart from the element text, additional layout elements not represented in
Figure 3-12.

Each of nodes and subnodes in the main node Pages and Windows has tab screens. The number of tab
screens depends on the layout element type.

Following is a detailed description of form layout elements.

Layout Element: Page Format
The Smartforms form layout element page is identical to the SAP script form element page. In Chapters 1
and 2, we referred to the form element page as page format (our own terminology) to distinguish it from the
physical pages of a business document. We will refer to the Smartforms form layout element page as page
format. Each page format of a form maps to a format of a business document.

When you enter in create mode of a form for the first time, the Smartforms form maintenance system
creates a page format by default. It assigns a name to this page format starting with the character ‘%’. In
fact, whenever you create a new subnode or a form layout element, the Smartforms form maintenance
system assigns it a default name starting with the character ‘%’. The Smartforms form maintenance system
also enters a default short description for a newly created form layout element. While creating forms of
demonstration and hands-on exercises, we are always changing the default names and their corresponding
short descriptions.

In the SAP script form environment, you were designating one page format as the first page of the
business document. In the Smartforms form environment, the page format physically positioned at the top
of the tree will be implicitly considered the first page of the business document. So you should be sure to
position the page format you want to be used as the first page of a business document at the top of the tree.

Portrait or Landscape is specified in the page format. The page orientation in the SAP script form
environment was specified in the form element header.

As in SAP script form page formats, you specify in the Smartforms form page formats, the next page in
page formats.

Figure 3-12. Form node: Pages and Windows—subnodes

http://dx.doi.org/10.1007/978-1-4842-3183-8_1
http://dx.doi.org/10.1007/978-1-4842-3183-8_2

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

191

You can provide for a background picture or graphic (a kind of watermark) for a page format.
It is mandatory to have a minimum of one page format in a form. You can have any number of page

formats in a form.
Other aspects of page format are identical to the page format in the SAP script form environment.
The form YSM_SMB40_MMPO_A contains two page formats: FIRST and NEXT. Figures 3-13 and 3-14

show the tab screens General Attributes and Output Options of the page format FIRST of this form.

You add nodes and subnodes to the form tree mostly with the context menu, or equivalent
functionalities available in the main menu. You can cut, copy, paste, and delete nodes and subnodes from
the context menu.

A page format can consist of the following form layout elements immediately under it:

•	 Windows

•	 Graphics

•	 Addresses

Figure 3-13. Page Format: FIRST—tab screen: General Attributes

Figure 3-14. Page Format: FIRST—tab screen: Output Options

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

192

When you select a page format node and invoke the context menu, you can create another page format
at the same hierarchical level or create one of the layout elements: Window/Graphic/Address at the next
lower hierarchical level. Figure 3-15 illustrates.

The order of the form elements Windows, Graphics, and Addresses in the form tree is immaterial. The
output is generated in the order in which the Windows, Graphics, and Addresses appear in the graphic
form painter: left to right and top to bottom. But, it is a good practice to ensure that the order of Windows,
Graphics, and Addresses in the form tree are in the same order as they will appear in the output.

The description of the form layout elements Window, Graphic, and Address follows.

Layout Element: Window
The window layout element of a form is the same as the page window in a SAP script form—that is, a physical
area in a page format. A Smartforms form window must necessarily have the following dimensions: left
margin, width, upper margin, and height. Windows can be of four types: main, secondary, copies, and final.

There can be only one main window in a form. A main window can have different heights in different
page formats, but the width of the main window should be the same in all the page formats. Data repeating
in a page and page to page must be located in the main window.

A secondary window is identical to the page window located in a variable window of a SAP script form.
In all our exercises, we will have the opportunity to use the main window and the secondary windows.

The copies window and the final window will be elaborated upon at the end of this chapter.
A window has three tab screens: General Attributes, Output Options, and Conditions. In the tab screens

General Attributes, you select the window type as shown in Figure 3-16.

Figure 3-15. Context menu at the level of Page Format

Figure 3-16. Form layout element window—tab screen: General Attributes

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

193

In the tab screen Output Options, you specify the dimensions of the window: Left margin, Width,
Upper margin, and Height. You can further specify whether you want a framed outline for the window and
a shaded background. This is equivalent to the control command BOX in the SAP script form’s text element
environment. Figure 3-17 shows the tab screen Output Options.

In the tab screen Conditions, you specify conditions; the output in the window will be generated only if
the conditions specified is true. Figure 3-18 shows a screenshot of the screen tab Conditions.

Figure 3-17. Form layout element window—tab screen: Output Options

Figure 3-18. Form layout element window—tab screen: Conditions

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

194

At the bottom of Figure 3-18 are marked check boxes for And Additional Event. The contents of the
window will output only if the conditions are true. For instance, if you enable the first check box Only on First
Page, the contents of the window will output only on the first page of a business document. The tab screen
Conditions is available for most form layout elements further in the tree hierarchy.

You can enter or create multiple conditions. The logical operator AND will be operative between the
multiple conditions. The logical operator AND will be operative between the entered conditions and the
Additional event conditions (check boxes). If you want the logical operator OR to be operative between
any of the entered conditions, you should click the button marked Insert OR (second button from right) in
Figure 3-18.

The windows can be created and maintained in the graphical form painter as in SAP scripts. We will
create and maintain windows in the non-graphical environment—that is, use the context menu of the form
tree. But we will use the graphical form painter to visually verify the creation of windows. We followed this
procedure in our exercises of the SAP script forms: creating and maintaining the windows and page windows
in the non-graphical environment and visually verifying them in the graphical form painter.

To navigate to the graphical form painter, you use the application toolbar Form Painter, the first button
from the right. Figurer 3-19 shows a screenshot of the graphical form painter.

Figure 3-19. Graphical Form Painter

Most of the time you want maximum space in the graphical form painter. So it amounts to a toggle
between the tab screens and the graphical form painter, though you can adjust boundary lines and have
form tree, the tab screens, and the graphical form painter appearing together.

Layout Element: Graphic
You can incorporate graphic images from the SAP document server into forms using the form element
graphic. The graphic in the Smartforms form is equivalent to the graph window and its page window in SAP
script forms. The form layout element graphic is at the same hierarchical level as the window or address,
directly under page formats. The graphic image can be fetched from the selection list (function key F4, etc.)
the same way as it is in SAP script. Figure 3-20 shows a screenshot of the tab screen General Attributes of
graphic LOGO.

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

195

The tab screens Output Options and Conditions of the layout element graphic are identical to those of
the windows. The width and height dimensions of the graphic are generated automatically based on the size
of the image.

The layout element graphics can be created in the graphical form painter as well. (Refer to the context
menu in Figure 3-19.)

Layout Element: Address
The Smartforms form layout element address is equivalent to the control commands set ADDRESS…..
ENDADDRESS in the text element area of the SAP script form. You have to provide the address number;
the address will be formatted as per the postal convention of the recipient country. Figure 3-21 shows a
screenshot of the tab screen General Attributes of address SENDER_COMPANY_ADDRESS.

Figure 3-20. Form layout element graphic—tab screen: General Attributes

Figure 3-21. Form layout element address—tab screen: General Attributes

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

196

The tab screens Output Options and Conditions of address are identical to those of the windows. The
dimensions of the address can be adjusted in the tab screen Output Options.

The layout element address can be created in the graphical form painter as well. (Refer to the context
menu in Figure 3-19.)

Layout Element: Text
The form element text in a Smartforms form is same as the element text element in a SAP script form. Though
it is referred to sometimes as text element as well, we will refer to it as text. A text node can be created under a
window. When you select a window node, invoke the context menu and select Create option; the screen will
look like the one in Figure 3-22.

In Figure 3-22, If you click to create any one of the form layout elements—window or graphic or
address—the layout element node will be created at the same hierarchical level as the selected window
node. If you click to create any one of the form layout elements—text or table or template or flow logic or
folder—the layout element node will be created under the window node.

The form element text will be located under windows. In the form YSM_SMB40_MMPO_A, we selected
the window PAGE, under the window PAGE, we selected the text PAGE. (The window name is same as the
text name) Figure 3-23 shows a screenshot of the tab screen General Attributes for the text PAGE.

Figure 3-22. Create layout elements within a Window—context menu

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

197

As shown in Figure 3-23, you can select a Text Type from the drop-down list: Text Element or Text
Module or Include Text or Dynamic Text.

When you select the Text Type as Text Element (default), the text can be entered in the layout element
text the same way you entered text in the text element of SAP script forms. You can enter literal text, you can
enter variables; the variables have to be enclosed within &s (ampersands) as in the SAP script form’s text
element environment. The variables can be declarations in the Global Data area or variables of the Form
Interface or Smartforms system fields. The text in layout element text named PAGE in Figure 3-23 is

Page &SFSY-PAGE& of
 &SFSY-JOBPAGES&
 &SFSY-DATE&
 &SFSY-TIME&
 version &L_TEXT(C)&

In this text, the variables with the prefix SFSY- are Smartforms system fields. All the output formatting
options of SAP script, like zero suppression, space compression, justification, and so on, are available in the
Smartforms. In fact, the Type Text in Smartforms is identical to the text element in SAP script except for the
non-availability of SAP script control commands.

When you select the Text Type as Text Module, you can incorporate a Smartforms Text module
(equivalent to the standard text of SAP script) in the layout element text.

When you select the Text Type as Include Text, you can incorporate the standard text of SAP script in the
layout element text.

When you select Text Type as Dynamic Text, you can incorporate the standard text of SAP script in the
layout element text. The name of the standard text is to be specified at runtime, which is why you call the
selection as the Dynamic Text.

To the right side of the Text Type selection, you can indicate how the text starts from the drop-down
list of options: New Paragraph, New Line, or Append directly. You can enter text in the bottom right white
area, but you can enter text using a full screen editor as well. On the left side, next to the form tree, there
are buttons to navigate to full screen editor and validate the contents of the layout element text. Figure 3-24
shows these features.

Figure 3-23. Form layout element text—tab screen: General Attributes I

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

198

The buttons to navigate to full screen editor and validate text were not visible in Figure 3-23, as the
screen was scrolled horizontally to the right. The validation of text would involve, for example, the validation
of the variables. The variables should be either valid Smartforms system fields or locatable in the Global
Definitions area the Form Interface. The validation button is available in most elements of a Smartforms
form.

You can assign a paragraph format to text by first selecting the text and then selecting the desired
paragraph format from a drop-down list. The paragraph formats available in the style assigned to the layout
element or node are available in the drop-down list. Styles can be assigned at different hierarchical levels
of the form tree. The style assigned at the lowest node level of the form hierarchy is operative in that node.
A style can be assigned in the tab screen Output Options. For example, assume the style YCH_03_FORM is
assigned in the Form Attributes (highest level in the form tree hierarchy). The style YCH_03_TEXT is assigned
in the text PAGE. Then the style YCH_03_TEXT will be operative on the text of PAGE.

Figure 3-25 shows the paragraph formats drop-down list.

Figure 3-25. Form layout element text—tab screen: General Attributes III

Figure 3-24. Form layout element text—tab screen: General Attributes II

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

199

The character formats are applied to texts in an identical manner as paragraph formats. Figure 3-26
shows the character formats drop-down list.

You can enter text in the white area provided or use the full screen editor. We navigated to the full screen
editor. The full screen editor will look like the one in Figure 3-27.

The screen in Figure 3-27 is identical to the line editor of the SAP script form’s text element. We can
switch to a full screen Microsoft Word like text editor with the menu option: Goto ➤ Change Editor. We are
not using this full screen Microsoft Word like text editor. While performing exercises in this chapter and the
next, we will use the full screen line editor to enter text. To apply paragraph formats and character formats to
text, we will use the General Attributes screen (non-full screen) because we can select the text on this screen
more easily than in the line editor. Also, the drop-down lists of paragraph formats and character formats are
more easily available on this screen so we will use it to copy/cut and paste text.

The buttons under the tabs over the white text area are self-explanatory.
The next tab screen, Web Properties, is used to set properties when the Smartforms form is used to input

data in the ABAP web dynpro environment. We are skipping this tab screen for now.
The tab screen Output Options of the layout element text facilitates the provision of a frame and shading

to the text just as it does in the layout elements windows, address, and graphic.

Figure 3-26. Form layout element text—tab screen: General Attributes IV

Figure 3-27. Form layout element text—full screen: line editor

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

200

The tab screen Conditions is identical to the tab screen Conditions in the layout elements windows,
address, and graphic. The text output can be made conditional by specifying conditions.

Layout Element: Table
The layout element table is provided in the Smartforms form environment to output repetitive data like
the items of a business document. Almost every business document contains repetitive item data. Note
that the repetitive data cannot be output without the layout element table. We can output repetitive
data in the Smartforms form environment in the same way we outputted it in the SAP script text element
environment. The layout element table provides features to output repetitive data in the desired manner
in a formalized way.

Hypothetically, you can locate the layout element table in any type of window, but in practical terms,
you will locate the element table in the main window.

The layout element table will have a data source: an internal table. A LOOP AT…..INTO/ASSIGNING…..
process will operate on the internal table. A structure (INTO) must be specified where one row of data will be
fetched from the internal table into the structure. Alternatively, a field symbol (ASSIGNING) defined in the
global settings node can be specified for serial direct access of a row of the source internal table.

Recall the item data output of hands-on exercise II in Chapter 2. The material number and material
description were being output in the first line. The ordered quantity, unit of measure, price, and amount
were output in the second line. There were two line formats, or, in Smartforms parlance, two line types. If
you plan to have header and footer in the layout element table, you may specify line types for header and
footer as well.

So the data pertaining to an item may be output in more than one line; that is, one set of literals or
variables being output in first line and another set of literals or variables being output in the second line. The
layout element table will then consist of two line types. The layout element table must consist of a minimum
of one line type and can consist of any number of line types.

Each field—literal or variable in a line type—to be output is contained in a layout element called a cell. If
the contents of a cell exceed the cell width, output is not truncated but continues on the next line. The layout
element cell is like a cell of an Excel spreadsheet. Grid lines can be provided to cells to enhance the output
appearance.

The layout element cell will contain within it the layout element text.
With the layout element table, column headings can be output (optional). The column headings are

specified in an area designated Header. The column headings appearance on first page and/or every page
can be controlled with conditional check boxes provided for this purpose.

The item information or the table body is specified in an area designated Main Area.
With the layout element table, a footer can be output (optional). The footer is specified in an area

designated Footer. The appearance of the footer at the end of table/last page and/or every page can be
controlled with conditional check boxes provided for this purpose. Vertical space has to be explicitly
specified for the footer. If the footer content exceeds the vertical space provided, excess footer output gets
truncated. Typical footer information could be “grand total” and/or “running total.”

Figure 3-28 shows a graphical representation of the layout element table with its elements or
subcomponents.

http://dx.doi.org/10.1007/978-1-4842-3183-8_2

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

201

The indication of optional in Figure 3-28 means that it is not mandatory to locate cells in the header or
footer.

The Layout Element Table in the Form YSM_SMB40_MMPO_A

The form YSM_SMB40_MMPO_A, a copy of the original SAP supplied form /SMB40/MMPO_A, was created
with an older version of Smartforms. This older version of the Smartforms

•	 Did not have an explicit main area. All layout elements under a table and not under
either a header or footer are deemed to be implicitly under the main area.

•	 Did not have the layout element cells. The layout element text was directly under a
table, header, and footer. The text directly under a table was considered under the
main area (i.e., data repeating in a page and page to page).

Layout element table– tab screen table

Having described the layout element table in general, I will continue with a tour of the form YSM_SMB40_
MMPO_A in the context of the layout element table.

The layout element table consists of the five tab screens: Table, Data, Events, Output Options, and
Conditions. Figure 3-29 shows the first tab screen Table.

Figure 3-28. Form layout element table—subcomponents

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

202

Figure 3-29 marks the tree node Main window. Under the node Main window, the layout element table
named TABLE_DATA is located. Directly under the layout element table TABLE_DATA are layout elements
(texts) EBELP (item number), MATNR (material number/code), MENGE (ordered quantity), MEINS (unit of
measure), NETPR (price), and NETWR (amount).

The line types are marked in Figure 3-29. The line types are created on a screen navigated by clicking
the button Details (marked in Figure 3-29).

Also marked in the figure is the button Select Grid Pattern, which is used to select the output grid
pattern: grid with only row separators, grid with only column separators, grid with row and column
separators, and so on.

The form YSM_SMB40_MMPO_A outputs the repetitive item data in the layout element table as follows:
fields EBELP (item number), MATNR (material number/code), MENGE (ordered quantity), MEINS (unit of
measure), NETPR (price), and NETWR (amount) are output in one line. This is a total of six fields. It outputs
the field TXZ01 (material description) in the next line under the first line field MATNR (material number/
code). It outputs more fields in additional lines like cash discount as per payment terms, etc. I will restrict
the discussion to two lines but the concept can be extended to more than two lines.

Since each output line contains different fields, each line constitutes a separate format; these separate
line formats are called the line types in the Smartforms environment. The format of the two lines of output
described for each item will look as shown in Figure 3-30.

The line types are created and maintained by clicking the button Details. Figure 3-31 shows the screen
to create and maintain line types.

Figure 3-31 marks the Line Type Id (names): TABLE_HEADER, TABLE_POS, ITEM_DISCOUNT, and
so on. Each row with its columns constitutes one line type. Next to the line type names is a Radio button to
indicate whether it is a default line type. If you do not specify line type in the table line, the default line type is
adopted.

Figure 3-29. Form layout element table—tab screen: Table I

Figure 3-30. Output item information in two lines

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

203

Next to the Default Radio button is a check box to enable page protection (marked as No Page Break in
Figure 3-31). If the check box is enabled and if the text outputs in more than one line, the multiple lines will
output in the same page (i.e., it won’t split between pages).

In each line type, you specify the width of each field in the line type. In one column, you specify a
number or the width of the field and in the next column you specify the units—CM/MM/CH, etc. For each
field, you want to output, you repeat this process. This is marked as Dimension & Unit in Figure 3-31. The
sum of the widths of the fields must be equal to the Table Width.

The first line of output in Figure 3-30 uses the line type TABLE_POS. The line type TABLE_POS has six
fields, shown in Figure 3-32.

In Figure 3-32, the width of first field is not visible. On our system, only the width of five fields is visible.
The screen was scrolled to the right. The width of the six fields in line type TABLE_POS is as follows:

1.50 CM
6.75 CM
3 00CM
1.25 CM
3.50 CM
3.50 CM

Figure 3-31. Form layout element table—tab screen: Table II

Figure 3-32. Form layout element table—line type TABLE_POS

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

204

The second line of output in Figure 3-30 uses the line type TABLE_TEXT. The line type TABLE_TEXT has
only one field, TXZ01 (material description). The field TXZ01 must output aligned under the field MATNR
of first line. For this reason the line type TABLE_TEXT contains two fields. The first field’s width is the same
as the width of the field MATNR. This will be like a dummy field without any contents. Figure 3-33 shows the
line type TABLE_TEXT.

The width of the two fields in line type TABLE_TEXT is 1.50CM and 18.00CM

Layout Element Table Tab Screen Data

In the tab screen Data, you specify the source of data to the layout element table. Figure 3-34 shows a
screenshot of the tab screen Data.

Figure 3-33. Form layout element table—line type TABLE_TEXT

Figure 3-34. Form layout element table—tab screen: Data

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

205

As shown in Figure 3-34, the tab screen Data is equivalent to the LOOP AT…..statement in an ABAP
program. There is a provision to fetch data into a structure row by row (INTO) or access row by row directly
(ASSIGNING). There is a provision to filter rows fulfilling conditions (WHERE). There is a provision to start
processing from a specific row and conclude processing at a specific row. Figure 3-34 marks these provisions.

There is also a provision for specifying sort fields. You can trigger events: Sort Begin and Sort End.
Figure 3-34 marks these. The Begin Sort event is triggered when the first row of a specific value of sort
field is fetched. The End Sort event is triggered when the last row of a specific value of sort field is fetched.
These events can be used to produce multiple-level summary outputs like using internal table control level
processing in ABAP programs.

Layout Element Table: Tab Screen Events

The tab screen Events in the layout element table exists in the older version of Smartforms. In the latest
version of Smartforms, the tab screen Events is replaced by the tab screen Calculations. The tab screen
Calculations will be explained in hands-on exercise II in Chapter 4.

In the tab screen Events in the layout element table, you can specify when the header and footer output
must appear. You can also reserve vertical space for the footer. Figure 3-35 shows a screenshot of the tab
screen Events of the layout element table.

The tab screens Output Options and Conditions of layout element table are identical to layout elements
described earlier.

Figure 3-35. Form layout element table——tab screen: Events

http://dx.doi.org/10.1007/978-1-4842-3183-8_4

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

206

Description of Layout Element Table in the Form YSM_SMB40_MMPO_
A—Text

In the form YSM_SMB40_MMPO_A, the column headings for the item data produced of the layout element
table TABLE_DATA (under the main window) are generated by the text in secondary window WINHEADER.
You can check this out.

Layout Element: Text Located in Table

We have already described the layout element text located directly under a window. The layout element text
is identical to the element text element in SAP script forms. When using the current version of Smartforms,
the layout element text under a table is located in the layout element cell (see Figure 3-28). I will describe the
layout element text located inside a cell under a table in hands-on exercise II in Chapter 4.

But, as mentioned earlier, the form YSM_SMB40_MMPO_A was created with an older version of
Smartforms. With this older version of Smartforms, the layout element cell is nonexistent. The text inside the
table is located in the header, the footer, and directly under the table.

Here I am describing the text directly under the table TABLE_DATA. The text directly under the table
TABLE_DATA is the repetitive item data: EBELP, MATNR, MENGE, MEINS, NETPR, NETWR, TXZ01, etc.
Each of these texts is to be associated with a line type.

A layout element text is associated with a line type in the tab screen Output Options. Figure 3-36 shows a
screenshot of the tab screen Output Options of text EBELP.

The area Output Table (bottom of the screen) in the tab screen Output Options appears only for text
located inside a table.

The text EBELP is the first field in the output; hence the check box New line is enabled. The text EBELP
is assigned the line type TABLE_POS.

The text MATNR is the second field to be output. The text MATNR must output on the same line as the
text EBELP. Figure 3-37 shows a screenshot of the tab screen Output Options of text MATNR.

Figure 3-36. Form layout element text EBELP—tab screen: Output Options

http://dx.doi.org/10.1007/978-1-4842-3183-8_4

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

207

The text MATNR is the second field in the output; hence the check box New line is disabled. The text
MATNR is implicitly assigned the line type TABLE_POS. You can explicitly assign a line type only when the
check box New line is enabled.

The remaining four texts, MENGE, MEINS, NETPR, and NETWR, are to output on the same line; hence
their Output Table area will be identical to that of text MATNR.

The text TXZ01 must output in next line; it is to be assigned the line type TABLE_TEXT and must output
directly under the text MATNR. Figure 3-38 shows a screenshot of the tab screen Output Options of text
TXZ01.

Figure 3-38. Form layout element text TXZ01—tab screen: Output Options

Figure 3-37. Form layout element text MATNR—tab screen: Output Options

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

208

The text TXZ01 is the only field in the output; hence the check box New line is enabled. The text TXZ01
is assigned the line type TABLE_TEXT.

As shown in Figure 3-38, the field Skip cells contains a value 1. This is because the text TXZ01 must
output aligned with text MATNR of the previous line. This is a provision to skip cells to create desired gaps in
the output.

The layout element text located inside the layout element table had additional aspects than the text
located directly under a window and so warranted a separate description.

Recapitulation—Layout Element Table

I have elaborately covered the layout element table as it has a plethora of features.
The layout element table is used to output item data of business documents (i.e., data repeating in a

page and repeating page to page). The layout element table is to be located primarily in the main window.
The layout element table has line types, and each line type corresponds to a format or formats of field

layouts to be output in a line.
The layout element table has a source of internal table data. There is a provision to restrict the retrieved

data—WHERE conditions, etc. Data is retrieved or accessed one row at a time LOOP AT…..INTO or LOOP
AT…..ASSIGNING.

The layout element table has a provision to output a header and footer of item data.
The layout element table has grid options to select from: grid with only row separators, grid with only

column separators, grid with row and column separators, etc.

Layout Element: Template
The layout element template is similar to the layout element table. In the layout element table, the number
of rows to be output is determined at runtime. With the layout element template, the number of rows to be
output is fixed or predetermined.

The layout element template consists of three tab screens: Template, Output Options, and Conditions.
In the form YSM_SMB40_MMPO_A, under the secondary window INFO, the template TEM_INFO is located.
Figure 3-39 shows the tab screen Template of the layout element template TEM_INFO.

Figure 3-39. Form layout element template TEM_INFO—tab screen: Template

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

209

As marked in Figure 3-39, a line type is assigned to rows in the output while defining a line type. In the
template TEM_INFO, the line type LINE1 has been assigned to all 13 lines (1–13) of output, the template
TEM_INFO, has only one line type LINE1. You have to specify the height of the line type. For the template
TEM_INFO, the height is specified as 1LN (1 line). The line type LINE1 has two field widths: 6CM and
5.5CM, respectively.

In the template TEM_INFO, all the particulars of a purchasing document (document number, document
date, document currency, payment terms, etc.), a total of 13 fields, are output. Each field is output in one
line. Each field is output with its corresponding label text as follows:

Document Number: 12345
Document Date : 25/06/2015
Vendor : 4321
Currency : USD

The texts with the prefix TLE_ (TLE_EBELN, etc.) indicate the text label of the field; texts with the prefix
VAL_ (VAL_EBELN, etc.) indicate the value of the field. There are a total of 13 texts with the prefix TLE_ and
13 texts with the prefix VAL_.

Figure 3-40 shows a screenshot of the tab screen Output Options of text TLE_EBELN.

In the area Output structure at the bottom of the Figure 3-40, Line and Column are marked. The value of
1 in Line indicates that this text will appear in the first row of the template. The value of 1 in Column indicates
that this text will appear in the first column of the template.

Figure 3-41 shows a screenshot of the tab screen Output Options of text VAL_EBELN.

Figure 3-40. Form layout element text TLE_EBELN—tab screen: Output Options

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

210

The value of 1 in Line indicates that this text will appear in the first row of the template. The value of 2 in
Column indicates that this text will appear in the second column of the template.

The values of Line and Column for the text TLE_BEDAT will be 2 and 1, respectively (second row first
column).

The values of Line and Column for the text VAL_BEDAT will be 2 and 2, respectively (Second row second
column).

The pattern will continue for the remaining texts.
The Line and Column on the tab screen Output Options appear only for texts located inside a template.

Layout Element: Flow Logic —Alternative
The layout element alternative is created through the context menu option Flow Logic. In the layout element
alternative, you can specify condition(s). If the condition(s) is true, you can specify one course of action or
output; if the condition(s) is false, you can specify an alternative course of action or output. The form YSM_
SMB40_MMPO_A does not contain the layout element alternative.

We will be using the layout element alternative in hands-on exercise II in Chapter 4.

Layout Element: Flow Logic—Loop
The layout element loop is created through the context menu option Flow Logic With the layout element
loop, you can establish fetching or accessing of one row of data from an internal table. The retrieval of data
can be restricted in the same manner as in the layout element table. Figure 3-42 shows tab screen Data of
layout element loop LP_PR_COND.

Figure 3-41. Form layout element text VAL_EBELN—tab screen: Output Options

http://dx.doi.org/10.1007/978-1-4842-3183-8_4

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

211

The layout element loop will, for the most part, be located in the main window. The layout element loop
LP_PR_COND is located inside the layout element table TABLE_DATA.

As in the layout element table, there is a provision for specifying sort fields. They operate the same way
as in the layout element table.

In the tab screen Calculations, you can sum, average, and count just like the aggregate functions of
open SQL.

Layout Element: Flow Logic—Program Lines
You can create tree nodes to locate ABAP program lines. The ABAP program lines constitute the layout
element program lines created through the context menu option Flow Logic.

You should take care in locating the node of the layout element program lines. Suppose you want to
calculate a certain figure and subsequently output it in a layout element text. Then, the node of layout
element program lines to calculate the figure must precede the node for layout element text to output the
figure.

Figure 3-43 shows the tab screen General Attributes of the layout element program lines CHECK_
CURRENCY_KEY.

Figure 3-42. Form layout element loop LP_PR_COND—tab screen: Data

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

212

The layout element program lines are like subroutines. The layout element program lines have input and
output parameters. All references to variables of form interface, global definitions, and field symbols within
the program lines have to be entered in the input/output parameters of the program lines. It would have
been more appropriate to enter the L_NETPR and L_NETWR as output parameters. The Smartforms system
fields with the prefix SFSY- can be referred to directly in the program lines.

You can use the ABAP statement for static breakpoints: BREAK-POINT in the program lines. You should
ensure that the static breakpoints are disabled or deleted after debugging process is over.

The program line CHECK_CURRENCY_KEY shown in Figure 3-43 determines the output of the
currency fields NETPR and NETWR. The program line CHECK_CURRENCY_KEY has four input parameters:
ZEKKO, <FS> (these two are visible in Figure 3-43), L_NETPR, and L_NETWR (these two become visible
when you scroll down the input parameters).

Layout Element: Flow Logic—Command
The layout element command created through the context menu option Flow Logic can be used to branch
to a new page from within the main window and can be used to reset paragraph numbers and issue print
control.

The form YSM_SMB40_MMPO_A does not use the layout element command. We do not plan to use
the layout element command in any of our demonstration or hands-on exercises. You can try it out as an
exercise.

Layout Element: Folder
The layout element folder, strictly speaking, is not a layout element. For this reason, we did not show it in
Figure 3-12, a rough representation of the node page and windows and its subnodes. The layout element
folder is a grouping of layout elements within a window. You group layout elements within a folder. The
layout elements under a folder are secondary to this folder.

You group layout elements under a folder to achieve ends. To illustrate this point, we navigated to the
texts in the header area of the table TABLE_DATA of the form YSM_SMB40_MMPO_A, shown in Figure 3-44.

Figure 3-43. Form layout element program lines CHECK_CURRENCY_KEY—tab screen: General Attributes

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

213

Figure 3-44 shows the tab screen Conditions of the folder FOLDER_HEADER_TEXS. This folder node
consists of many texts: HD_TXT_FD01….. Sixteen texts are visible in the Figure 3-44. On the tab screen
Conditions in the area And Additional Events, the check box Only on First Page is enabled. It means that
all the texts—HD_TXT_FD01….. will output only on the first page of a business document. So instead of
specifying the condition on each of the texts (more than 16), the texts have been located inside a folder and
the condition specified in the folder. The condition specified in the folder will apply to all the layout elements
in the folder.

This was one instance of utility of the folder. In Chapter 4, we will use the folder to implement page
protection. A single item information in a purchasing document or a purchase order outputs in multiple
lines (item number, material number ordered quantity, unit of measure, price amount in one line and
material description in the next line, etc.). When we output single item information in multiple lines, we
desire that the information of one item must not split between pages. We implemented this requirement
with the PROTECT…..ENDPROTECT control commands in the SAP script text element environment in
Chapter 2.

In the Smartforms environment, page protection can be provided in the paragraph format of styles. But
the page protection at the paragraph format level does not serve our purpose as each item information line
is a new paragraph. This is where we can use the folder to implement page protection. All the texts inside a
window, table, etc., requiring page protection can be located in a folder. On the tab screen Output Options of
this folder, the check box Page Protection is enabled. This will provide page protection for all the text in the
folder. I will demonstrate the use of folder to implement page protection in hands-on exercises II and III in
Chapter 4.

Recapitulation—Node: Pages and Windows
We termed the subnodes under the node pages and windows as layout elements. Under the node pages and
windows, what we are calling a page format is same as a page format in SAP script forms.

Under a page format, you can locate windows. The windows are equivalent to page windows in SAP
script forms, physical areas of page formats, defined by a left margin, upper margin, width, and height. There
are four types of windows supported in Smartforms form: main, secondary, final, and copies. The main
window is equivalent to a page window of the main window in SAP script forms. The secondary window is
equivalent to a page window of the variable window in SAP script forms.

Figure 3-44. Form layout element folder FOLDER_HEADER_TEXS—tab screen: Conditions

http://dx.doi.org/10.1007/978-1-4842-3183-8_4
http://dx.doi.org/10.1007/978-1-4842-3183-8_2
http://dx.doi.org/10.1007/978-1-4842-3183-8_4

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

214

Under a page format, you can locate graphics. The graphics are equivalent to the graphics in SAP
script form.

Under a page format, you can locate addresses. The addresses is equivalent to the control commands
ADDRESS……ENDADDRESS in SAP script forms

Under a window, you can locate texts. The texts are same as the text elements in SAP script forms
Under a window, you can also locate tables, templates, and flow logic. The components of flow logic are

alternative, loop, program lines, and command.
Under an address, you can also locate tables, templates, and flow logic.
You can find out which successor nodes can be created for a particular node under the heading

“Successors of Node Pages and Windows” in the manual BC-SRV-SCR.

Smartforms Form Environment—Settings and Field List
Before I wind up the descriptions of Smartforms form elements and the Smartforms form environment, I will
briefly touch upon the settings available in the Smartforms form environment and a complete list of fields in
the Smartforms form environment: fields of form interface; fields defined in the global data; fields assigned
to field symbols and the system fields (prefix SFSY-).

To perform settings in the Smartforms form environment, you make the menu selection Unilities(M) ➤
Settings in the Form Builder screen. A dialog box for settings as shown in Figure 3-45 will appear.

As shown in Figure 3-45, there are tab screens: General, Form Painter, Table Painter, and Editor. You can
explore these tab screens as an exercise.

You can view the entire collection of fields existing for a form and select fields. These fields will be
(1) the fields of form interface, (2) fields defined in the global data, and (3) fields assigned to field symbols
and the system fields (prefix SFSY-). To view the fields, you click the second button from the right on the
application toolbar. The button acts as a toggle; clicking it will make field appear and disappear. Figure 3-46
shows the field list.

Figure 3-45. Form Builder—Settings

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

215

Figure 3-46 shows the nodes Table interface, Global Data, Field Symbols, and System Fields. The nodes
above the node Table interface are Import Interface and Export Interface. The nodes Import Interface and
Export Interface are not visible in Figure 3-46 as the screen has been scrolled down. Each of these nodes
can be expanded, etc. In Figure 3-46, the node System Field has been expanded to show all the fields with
prefix SFSY-.

Smartforms Form and ABAP Driver Program
As with the SAP script forms, Smartforms forms are used to design the layout of business document types
that include formatted long text. The main data originating from the database tables that is to appear in the
business document will not be retrieved and processed within the Smartforms environment. Subsidiary
data originating from database tables that is to appear in the business document may be retrieved within the
Smartforms form environment. In the INITIALIZATION event and Program Lines of the Smartforms form,
you can use the SELECT statement. The main data originating from the database tables that is to appear in
the business document will mostly be retrieved and processed in an ABAP program. When a Smartforms
form is activated, a function module is generated. From the ABAP program retrieving the main data, you will
call the function module of the Smartforms form. Hence an ABAP program is associated with a Smartforms
form. We are terming the ABAP program associated with a Smartforms form “the driver program.”

Data is sent by the driver program and received by the SAP script form in “form parameters.”

Generating Business Documents Using
Smartforms—Architecture
In this section I will describe the basic architecture of the generation of a business document using
Smartforms.

Figure 3-47 depicts the architecture for generating business documents using Smartforms.

Figure 3-46. Smartforms form list of fields

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

216

In Figure 3-47, the process steps are marked (1), (2), (3), (4), (5), and (6). Following is a description of
these process steps:

 1. The process step marked (1) in the Figure 1-4 involves retrieving all the data
required to produce the business documents. For example, if your business
document type is purchase orders, then some of the main database tables from
which data will have to be retrieved are

LFA1 Vendor Name and address
T005T Country Texts
EKKO Purchasing Document Header Information
EKPO Purchasing Document Item Information

The process step marked (1) in Figure 1-4 involves the retrieval of data from
database tables and database views by the driver program. The data retrieval
could involve retrieval of specific and selective business documents through a
SELECT-OPTIONS input statement or equivalent in the driver program.

 2. Once the data is retrieved, it may be ordered or sorted by the driver program.
The driver program will call the function module of the Smartforms form. When
calling the function module, data will be passed from the driver program to the
form through the function module interface parameters.

 3. The process step marked (3) in Figure 3-47 involves the receipt of data to be
output by the Smartforms form from the driver program. Within the form,
additional data from database tables and database views could be optionally
retrieved. In the Smartforms form, the business document type layout is
specified—t is, which information is to be output on which area of which page.

 4. A form is assigned a style at the level of the form. It can also be assigned styles
at other lower levels: text, etc. The paragraph formats and character formats of
these styles are applied to the information or content for formatting. Similarly,
text modules being incorporated into the form will use paragraph formats
and character formats created in styles assigned to text modules and apply
the paragraph formats and character formats of styles to these texts in the text
modules. The process step marked (4) in Figure 3-47 reflects this.

Figure 3-47. Generating business documents using Smartforms—architecture

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

217

 5. The text modules to be incorporated into a business document can be specified
while designing or creating the form. The text modules are then static to the form.
Optionally, the text modules to be incorporated into a business document can be
specified at runtime (dynamic). This is shown in process step (5) in Figure 1-4.

 6. The generation of the business document occurs in the process step marked (6)
in Figure 3-47.

Throughout the book, we will be using the non-graphical text editor only.
The non-graphical editor of text elements is a line editor. Copying and pasting operations with this

editor are extremely cumbersome and awkward. (ctrl+y, etc.) Whenever you want to perform copying and
pasting operations in the text elements environment, you can switch to the graphical text editor.

The features of text elements (control commands and formatting features) will be covered in detail as we
perform demonstration examples in thid chapter and business scenario examples in Chapter 4.

I will defer a description of the last of the form element documentation to a later stage, when we create
forms for business scenarios.

Now that I have completed the descriptions of the elements of a form in the context of the SAP delivered
form MEDRUCK, we will create forms and print programs to demonstrate the basics of forms, styles, and
standard texts.

Demonstration I
We will create our first Smartforms style and form involving the following:

•	 Creation of a style consisting of paragraph formats and character format. The style is
to be assigned to the form

•	 Creation of a form with a single page format

•	 Creation of an element graphic and inclusion of a graphic image in the element
graphic of the form

•	 Creation of a secondary window and inclusion of literal long text in the secondary
window of the form

•	 Application of assigned style’s paragraph formats and character formats to the literal
long text in the secondary window

•	 Saving, checking, and activation of the form

•	 Test print or print preview the form from within the Smartforms environment

In this demonstration, we are not using the main window.
So, let us proceed to the creation of a style and a form which will involve the activities just listed.

Recapitulation of Specifications of Text in Secondary Window
Before we proceed to the creation of a style, I will recapitulate the output form of the text to be located in the
secondary window of the form.

The text we are planning to locate in the secondary window is the short write-up on the description of
the structure of selection tables. We used this text in demonstrations I and II in Chapter 1. The paragraph
formats and the character formats that we create in the style will depend on the presentation of the text in the
secondary window. To reproduce the appearance of the text of Chapter 1 follow the steps in Figure 3-48.

http://dx.doi.org/10.1007/978-1-4842-3183-8_4
http://dx.doi.org/10.1007/978-1-4842-3183-8_1
http://dx.doi.org/10.1007/978-1-4842-3183-8_1

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

218

As the Smartforms supports colors, we will use color for the main heading and subheadings.
We want the main heading for the text to appear in the font family YARIAL_M, font size 28 pt and font

color green. For the main heading of the text to appear with these attributes will require a separate character
format, say, C1.

We want the subheadings for each of selection table structure fields SIGN, OPTION, LOW, and HIGH
to appear in the font family Courier, font size 12 pt, font style bold, underlined, and font color blue. This will
require a separate character format, say, C2.

We will have one paragraph format, say, P1, with the default values. We will designate this as the
standard or default paragraph. For our running text, we require a paragraph format, say, P2, with five
characters indenting on the first line of the paragraph and one line gap at the end of the paragraph. When
we use or output with the uploaded font YARIAL_M, the characters in one line are almost touching the
characters in the next line. To resolve this and create a small gap between two lines, we will use a paragraph
format, say, P3, with a value equal to 2 in the field Line Spacing. Assigning a value 2 to the field Line Spacing
to produce a gap between lines has been determined by trial and error. The values in all the other fields will
be the default values.

To sum up, we will have to create two character formats—C1, C2—and three paragraph formats—P1,
P2, and P3—in the style.

Create Style
We navigated to the Smartforms SAP Smart Form: Initial Screen——transaction code SMARTFORMS.
We ensured that the Radio button Style is enabled. We entered the style name as YCH03_01 (maximum
namespace of 30 characters) in the field Style. We could have used a longer name, but we are sticking to the
namespace of styles in the SAP script environment. We clicked the Create button (you can alternatively press
the function key F5). The screen as shown in Figure 3-49 appeared.

Figure 3-48. Rough layout of text to appear in secondary window

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

219

The style, its elements, or its components are represented as nodes and subnodes of a tree.
In Figure 3-49 the nodes Header Data, Paragraph Formats, and Character Formats are marked. You can

create any number of paragraph formats as subnodes under the node Paragraph Formats. You can create
any number of character formats as subnodes under the node Character Formats.

Also marked in Figure 3-49 are the area of font preview, a color palette for color selection, and
the assignment of a standard paragraph which was termed “the default paragraph” in the SAP script
environment.

We changed the default description (meaning/short text). We started off by creating three paragraph
formats. To create paragraph formats, we selected the node paragraph formats and invoked the context
menu by pressing the mouse right button as shown in Figure 3-50.

Figure 3-49. Style YCH03_01—Header Data, tab screen: Standard Settings

Figure 3-50. Style YCH03_01—context menu to create paragraph formats

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

220

The style maintenance system popped up a dialog box for entering the paragraph format name as
shown in Figure 3-51.

We entered the name as P1 and accepted all the default values for Paragraph Format P1.
While creating Paragraph Formats P2 and P3, we are operating only the tab indents and spacing.
To create another paragraph format, P2, we followed the same procedure as for the Paragraph Format

P1. For Paragraph Format P2, we entered the following values for the fields in the tab indents and spacing:

Space After 1 LN
Indent First Line 5 CH

These are marked as shown in Figure 3-52.

We created Paragraph Format P3. In Paragraph Format P3, we assigned a value 2 to the field Line
spacing in the tab indents and spacing.

This completes the creation of the three paragraph formats—P1, P2 and P3. We clicked the node Header
Data, Standard Settings tab. We assigned the paragraph format P1 as the Standard Paragraph.

Next, we will proceed to the creation of the two character formats.
To create character formats, we selected the node Character Formats and invoked the context menu by

pressing the mouse right button. Figure 3-53 shows a screenshot of character formats C1, tab Font.

Figure 3-51. Style YCH03_01—create Paragraph Format P1

Figure 3-52. Style YCH03_01—Paragraph Format P2

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

221

As shown in Figure 3-53, we assigned the font family YARIAL_M, font size 28 points, and font color
green to the Character Format C1. Character Format C1 will be applied to the main heading of the text in the
secondary window.

In a like manner, we created Character Format C2. Character Format C2 has font family Courier
(default), font size 12 points (default), and font color blue. Character Format C2 has font style bold and
underlined. Figure 3-54 shows the entered values for Character Format C2.

Figure 3-53. Style YCH03_01—Character Format C1

Figure 3-54. Style YCH03_01—Character Format C2

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

222

We have completed the creation of the three the paragraph formats—P1, P2, P3—and two character
formats—C, C2.

We saved, performed a check, and activated the style YCH03_01.

Create Form—Form Attributes and Page Format
We navigated to the Smartforms SAP Smart Form: Initial Screen—transaction code SMARTFORMS. We
ensured that the Radio button Form was enabled. We entered the form name as YCH03_01_FST_FRM
(maximum namespace of 30 characters) in the field Form. We clicked the Create button (you can
alternatively press the function key F5). The form maintenance system automatically enters text in the field
Meaning and creates a page format and the main window. The General Attributes tab of the Form Attributes
screen appeared. We changed the default text in the field Meaning. The screen appeared as in Figure 3-55.

We clicked the Output Options tab. On the Output Options tab screen, we assigned our style YCH03_01.
For the other fields on the Output Options tab, we accepted the default values. Figure 3-56 shows the Output
Options tab screen.

Figure 3-55. Create Form YCH03_01_FST_FRM—form Attributes, General Attributes screen

Figure 3-56. Create Form YCH03_01_FST_FRM—form Attributes, Output Options screen

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

223

We clicked the node of page format. We changed the name of the automatically created page format to
FIRST and changed the default text in the field Meaning. The General Attributes tab of page format FIRST
appeared as in Figure 3-57.

We are accepting the default values for the page format FIRST. You can view the other two tabs of the
page format FIRST: Output Options and Background Picture.

Create Form—Graphic and Secondary Window
Next, let us create a graphic and a secondary window. To create a graphic, we selected the node of the page
format FIRST and invoked the context menu by pressing the mouse right button as shown in Figure 3-58.

Figure 3-57. Create Form YCH03_01_FST_FRM—page format FIRST: General Attributes screen

Figure 3-58. Create Form YCH03_01_FST_FRM—context menu to create graphic

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

224

We made the menu selection Create ➤ Graphic. The screen to enter graphic particulars appeared like
that in Figure 3-59.

We entered values in the General Attributes tab screen. We entered the value YCH01_COMPANY_LOGO
the field Name. This is the BMP image file we imported into the SAP document server in Chapter 1. You can
use the function key F4 to locate it. You can use some other imported image of your choice if you desire so.
Next, we changed the graphic name to LOGO; we changed the contents of the field Meaning.to LOGO. The
screen with the entered values should look like that in Figure 3-60.

We clicked the Output Options tab. We adjusted the Left margin to 5MM and the Upper margin to 5MM.
The Output Options tab screen should look like that in Figure 3-61.

Figure 3-59. Create Form YCH03_01_FST_FRM—Create Graphic screen

Figure 3-60. Create Form YCH03_01_FST_FRM—create graphic: General Attributes screen

http://dx.doi.org/10.1007/978-1-4842-3183-8_1

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

225

To create a secondary window, we clicked the graphic node LOGO and invoked the context menu by
pressing the mouse right button as shown in Figure 3-62.

We made the menu selection Create ➤ Window. The screen to enter window particulars appeared. We
want the window to be a secondary window which is the default. We changed the name of the window to
VARIABLE (we are retaining the name from the SAP script exercise) and we changed the contents of the field
Meaning. We clicked on the tab Output Options. On the Output Options tab screen, we entered Left margin
as 46MM, Width as 160MM, Upper margin as 5MM, and Height as 190MM. The screen with the entered
values should look like that in Figure 3-63.

Figure 3-61. Create Form YCH03_01_FST_FRM—create graphic: Output Options screen

Figure 3-62. Create Form YCH03_01_FST_FRM—context menu to Create Window

Figure 3-63. Create Form YCH03_01_FST_FRM—create window: Output Options screen

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

226

We have not located anything in the main window, so we can delete the main window. We have retained
the main window with the following dimensions: Left margin 5MM, Width 160MM, Upper margin 200MM,
Height 5MM.

We have created a graphic and a secondary window as planned in this demonstration. Let us visually
view the layout of the page format FIRST in the form painter. To view the layout of the page format FIRST in
the form painter, click the application toolbar button Form Painter (first button from the right). Figure 3-64
shows the layout of the page format FIRST in the form painter.

The issue of using graphical form painter or operating in non-graphical mode for maintaining forms is
purely a matter of personal convenience and choice. If you need to define elements with exact dimensions, I
recommend usage of non-graphical mode of operation.

This completes the creation of a page format, a graphic, and a secondary window of the form
YCH03_01_FST_FRM.

Create Form—Text
We need to create the element text in the secondary window VARIABLE. To create a text in the secondary
window VARIABLE, we clicked the secondary window node VARIABLE and invoked the context menu by
pressing the mouse right button as shown in Figure 3-65.

Figure 3-64. Create Form YCH03_01_FST_FRM—layout in the Form Painter

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

227

We made the menu selection Create ➤ Text as shown in Figure 3-65. When we did so, a screen as shown
in Figure 3-66 appeared.

We changed the name of the text to ST_TEXT and entered suitable description in the field Meaning as
shown in Figure 3-66.

You can enter text in the area marked Space to Enter Text in the Figure 3-66.
Also marked in Figure 3-66 is a button Click for Full Screen to navigate to a full screen for text entry. This

will be a screen similar in looks to the text element screen of SAP script. In the full screen mode, there is an
option as in SAP script to operate in graphical or non-graphical text editor. We will be operating all the while
in full screen mode for text entry. We will be operating for most part in non-graphical text editor. When we
are required to select copying and pasting of text, we will operate in graphical mode of text editor.

Figure 3-65. Create Form YCH03_01_FST_FRM—Create Text in the secondary window VARIABLE

Figure 3-66. Create Form YCH03_01_FST_FRM—screen to Create Text in window VARIABLE

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

228

For now, we clicked on the button marked Click for Full Screen to navigate to the full screen editor.
You can enter the text manually by referring to it in Chapter 1. We are uploading the text from an operating
system folder file into a user clipboard. The text is, of course, available in the Chapter 1 and Chapter 3 folders
of the E-resource file for this book (www.apress.com/9781484212345). The Smartforms text environment also
provides five user clipboards. In fact, these user clipboards are the same as the SAP script user clipboards.

To upload text into a user clipboard, we first need to navigate to the screen of a user clipboard. To
navigate to the user clipboard 5, we made the following menu selection in the text environment: Goto ➤
User Clipboard ➤ Clipboard 5. The screen looked like the one in Figure 3-67.

Once we were on the screen of user clipboard 5, we made the following menu selection to upload text
into user clipboard 5: Clipboard ➤ Upload. The screen looked like that in Figure 3-68.

The menu selection popped up the dialog box to select the file format as shown in Figure 3-69.

Figure 3-67. Create Form YCH03_01_FST_FRM—menu selection to navigate to user clipboard

Figure 3-68. Create Form YCH03_01_FST_FRM—menu selection to upload text into user clipboard

http://dx.doi.org/10.1007/978-1-4842-3183-8_1
http://dx.doi.org/10.1007/978-1-4842-3183-8_1
http://dx.doi.org/10.1007/978-1-4842-3183-8_3
http://www.apress.com/9781484212345

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

229

We selected the ITF format. The text was downloaded into E-resource file in ITF format. The file
selection dialog appeared. We made the selection as D:\TEMP\YCH01_01_SEL_TABLES. You will have to
provide your folder location. The text was uploaded from the file into user clipboard 5 and the screen looked
like that in Figure 3-70.

Figure 3-69. Create Form YCH03_01_FST_FRM—select Upload text format

Figure 3-70. Create Form YCH03_01_FST_FRM—text uploaded into clipboard 5

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

230

We navigated from the user clipboard screen back (function key F3) to the text screen. We now have to
insert the text from user clipboard 5 into the text area. We made the following menu selection to insert text
from the user clipboard 5: Insert ➤ Clipboard ➤ User Clipboard ➤ Clipboard 5. Figure 3-71 illustrates.

The text from user clipboard 5 was inserted into text area. We exited the full screen editor. The screen
after exiting the full screen editor looked like that in Figure 3-72.

At this point we have completed the all the tasks we had set out to perform at the outset of this
demonstration exercise.

We created a style consisting of paragraph formats and character format. We created a form with a single
page format. We created an element graphic and included a graphic image in the element graphic of the
form. We created a secondary window and included text in the secondary window of the form.

We saved, performed a check, and activated the form. We will test print or print preview the form from
within the Smartforms environment.

Figure 3-71. Create Form YCH03_01_FST_FRM—Insert text from user clipboard 5

Figure 3-72. Create Form YCH03_01_FST_FRM—text inserted from user clipboard 5

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

231

Test or Print Preview Form
We are now in a position to test and output the form. Recall that our form will output only one physical page.
Also recall that our activated form is a function module. To test and print preview the form, we made the
following menu selection: Form ➤ Test. The form maintenance system navigated to the Function Builder:
Initial Screen—transaction code SE37, shown in Figure 3-73.

We clicked the Execute button on the application toolbar (third button from the left). The Test Function
Module: Initial Screen appeared as shown in Figure 3-74.

We clicked the Execute button on the application toolbar again (first button from the left). The print
dialog box appeared. We clicked the Print Preview button. The output appeared as shown in Figure 3-75.

Figure 3-73. Form YCH03_01_FST_FRM—test print/Print Preview I

Figure 3-74. Form YCH03_01_FST_FRM—test print/Print Preview II

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

232

If you scroll down, you can view the rest of the text for the subheadings LOW and HIGH. The output is
identical to the one we produced in demonstration I in Chapter 1, except for the color of the heading and
subheadings.

Recapitulation
We have implemented all the specifications listed at the commencement of this demonstration. We
performed the following tasks:

 1. Created a style.

 2. Created paragraph formats and character formats in the style to be applied
to format the text in the secondary window as per formatting specifications
described.

 3. Created a form

 4. Created a single page format.

 5. Created a graphic; included an imported bit map image from the SAP document
server into the graphic

 6. Created a secondary window and included text in the secondary window.

 7. Saved and activated the form. Print previewed the form from the Smartforms
form environment.

Figure 3-75. Form YCH03_01_FST_FRM—output

http://dx.doi.org/10.1007/978-1-4842-3183-8_1

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

233

This was a demonstration. We did not need a driver program. We did not have variable data to be
output. We could carry out the testing and demonstration from within Smartforms form environment.

Demonstration II
In this demonstration exercise, we will produce the same output as in demonstration I, but with a major
difference in approach. In demonstration I, we created the text directly in the secondary window’s text area.
In the present exercise, we will create the text separately as a text module. The text module is a component of
Smartforms. A text module created in the transaction code SMARTFORMS can be incorporated into multiple
forms. A text module can be included in other text modules as well.

To format the text module we will use the style we created in demonstration I.
Our demonstration exercise involves the following steps:

 1. We will create text module YCH03_01_SEL_TABLES and upload into it our text
relating to selection tables. We will associate our text module with the style
YCH03_01. We will use the paragraph formats P1, P2, and P3 and character
formats C1 and C2 in style YCH03_01 to format the text module.

 2. We will create a form YCH03_02_SEC_FRM with a single page format FIRST. We
will create a graphic LOGO; include within it the imported bmp image from the
SAP document server.

 3. We will create a secondary window VARIABLE and include within it the
formatted text module with a control command.

 4. We will test print or print preview the form YCH03_02_SEC_FRM from the
Smartforms environment.

Since this demonstration exercise is for most identical reputation of the demonstration I in this chapter,
our descriptions will be somewhat brief and not elaborate. Let us proceed to performing the four steps.

Create Text Module YCH03_01_SEL_TABLES
To create a text module, we used the transaction code SMARTFORMS. We ensured that the third Radio button
was enabled. We entered YCH03_01_SEL_TABLES in the field Text Module. We clicked the Create button. A
text module editor very similar to the text screen of a form appeared.

We need to associate the style YCH03_01 with the text module. To assign the style to the text module,
we clicked the Management tab. On the Management tab, we assigned the style YCH03_01 to the field Style
Name as shown in Figure 3-76.

Figure 3-76. Text Module YCH03_01_SEL_TABLE—assign style

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

234

We are inserting the text from user clipboard 5 into the text module. The text was uploaded from an
operating system file into user clipboard 5 in the previous exercise. Recall that the user clipboards are
non-volatile buffers. To insert the text from user clipboard 5 into text module, we made the following menu
selection, Insert ➤ Clipboard ➤ User Clipboard ➤ Clipboard 5, as shown in Figure 3-77.

The screen after the text is loaded from user clipboard 5 will be as shown in Figure 3-78.

The text has been uploaded with paragraph formats and character formats applied to the text for
formatting.

We saved the text module. This concludes the creation of text in the text module which will be
incorporated into a secondary window of a form to be created.

Create Form YCH03_02_SEC_FRM—Page Format FIRST and Graphic
Window LOGO
To create a Smartforms form, we entered YCH03_02_SEC_FRM in the field Form on the screen of
Smartforms (transaction code SMARTFORMS). We clicked the Create button. The form maintenance system
automatically enters text in the field Meaning and creates a page format and the main window. The General
Attributes tab of the Form Attributes screen appeared. We changed the default text in the field Meaning. For
the rest, we accepted the defaults proposed by the form maintenance system.

We clicked the Output Options tab. On the Output Options tab screen, we assigned our style YCH03_01.
For the other fields on the Output Options tab, we accepted the default values.

Figure 3-77. Text Module YCH03_01_SEL_TABLES—menu selection to insert text

Figure 3-78. Text Module YCH01_01_SEL_TABLES—text inserted

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

235

We clicked the node of page format. We changed the name of the automatically created page format to
FIRST and changed the default text in the field Meaning.

We created a graphic element LOGO and incorporated the graphic image YCH01_COMPANY_LOGO
from the SAP document server into it. This is a repetition of the process described in the demonstration I of
this chapter. We clicked the Output Options tab. We adjusted the left margin to 5MM and the upper margin to
5MM. This completes step 2—that is, the commencement of creation of the form, a single page format in it,
and the creation of a graphic element with our image incorporated into it.

Create Form—Create a Secondary Window VARIABLE and Include
Text Module
To create a secondary window, we clicked the graphic node LOGO and invoked the context menu by
pressing the mouse right button. We made the following menu selection: Create ➤ Window.

The screen to enter window particulars appeared. We want the window to be a secondary window
which is the default. We changed the name of the window to VARIABLE (we are retaining the name from the
SAP script exercise); we changed the contents of the field Meaning. We clicked the tab Output Options. On
the Output Options tab screen, we entered Left margin as 46MM, Width as 160MM, Upper margin as 5MM,
and Height as 190 MM. All this is again a repetition of what we did in demonstration I in this chapter.

We have not located anything in the main window, so we can delete the main window. We have retained
the main window with the following dimensions: Left margin 5MM, Width 160MM, Upper margin 200MM,
Height 5MM.

We have created a graphic and a secondary window as planned in this demonstration. Let us visually
view layout of the page format FIRST in the form painter. To view the layout of the page format FIRST in
the form painter, click the application toolbar button Form Painter (first button from the right). Figure 3-79
shows the layout of the page format FIRST in the form painter.

To include the text from the text module YCH03_01_SEL_TABLES in the secondary window, we have
to create the element text under the secondary window VARIABLE. We selected the node of the secondary
window VARIABLE and invoked the context menu by clicking the mouse right button. We selected the
following context menu: Create ➤ Text.

Figure 3-79. Create Form YCH03_02_SEC_FRM—layout in the Form Painter

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

236

On the text screen, we changed the name of the text to ST_TEXT and entered suitable description in
the field Meaning. To incorporate a text module in the text area, we have to select Text Module from the
dropdown list in the field Text Type on the tab General Attributes. Figure 3-80 illustrates.

The form maintenance system prompts with a confirmatory alert as shown in Figure 3-81.

We clicked the Yes button. The screen changed to input the name and language of the text module as
shown in Figure 3-82.

Figure 3-80. Create Form YCH03_02_SEC_FRM—text type selection to incorporate text module

Figure 3-81. Create Form YCH03_02_SEC_FRM—confirmation to change text node

Figure 3-82. Create Form YCH03_02_SEC_FRM—incorporate text module

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

237

We entered the Name of text module as YCH03_01_SEL_TABLES. The Language field was left blank. The
Smartforms form maintenance system will adopt the logged in language as the language of the text module.

The name of the text module can be selected from a list—function key F4, etc. The text of the text module
YCH03_01_SEL_TABLES created in step 1 was incorporated into the element text of the secondary window
VARIABLE. The incorporated text cannot be changed—it is not editable. In Figure 3-82, a button is marked
as the Copy button. If you click this Copy button, the incorporated text becomes editable.

We performed a check on the form and activated the form.
This completes step 3.

Test Print Form YCH03_02_SEC_FRM
Our form will output only one physical page. To test and print preview the form, we made the following
menu selection: Form ➤ Test. The form maintenance system navigated to the Function Builder: Initial
Screen—transaction code SE37. We clicked the Execute button on the screen of the function builder. The
text function module screen appeared. We clicked the Execute button on this screen. The print dialog box
appeared. We clicked the Print Preview button. The output appeared as shown in Figure 3-83.

The output is identical to the output produced by the form of demonstration I in this chapter. In
demonstration I, we did not use any text module, whereas we used a text module to produce the output in
the current demonstration.

Figure 3-83. Form YCH03_02_SEC_FRM—output

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

238

Recapitulation
Demonstration II set out to produce the same output as demonstration I in this chapter using text module.
We performed the following steps:

 1. Created text module; inserted text from user clipboard 5.

 2. Created a form.

 3. Created a single page format.

 4. Created a graphic; included an imported bit map image from the SAP document
server into the graphic.

 5. Created a secondary window; included text from the text module in the
secondary window

 6. Saved and activated the form.

 7. Print previewed the form from the Smartforms form environment.

Again, we did not have variable data to be output. So, we could carry out the testing from within
Smartforms form environment.

Demonstration III
The first two demonstration exercises did not operate the main window and did not have any variable data
and were demonstrated from within the Smartforms form environment. This exercise will demonstrate the
use of main window and will contain variable data to output. Thus, the current exercise will also use a driver
program.

We are required to produce a list of materials from the table MAKT using a Smartforms form. The
output layout should be as shown in Table 3-1 (reproduction from Table 1-7).

Table 3-1. List of Materials—Output Layout

Field Description Field Name Column Span Width in Columns

Serial Number DATA: SRL_NO TYPE SY-TABIX 01-05 05

06-06 01

Material Code MAKT-MATNR 07-24 18

25-25 01

Material Description MAKT-MAKTX 26-65 40

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

239

The output should be like that in Figure 3-84.

Since the output involves a large volume of variable data, we need to have a driver program that will
retrieve data from a source, load it into an internal table, and send the internal to the Smartforms form. This
demonstration exercise will involve a style, a form, and a corresponding driver program.

We need to repetitively output the three fields SRL_NO, MAKT-MATNR, AND MAKT-MAKTX in a page
and from page to page. The three fields constitute the body of the report. Recall that the data that repeats
within a page and repeats from page to page is to be located in the main window.

For the form to generate the list of materials, we will have a single page format; we will locate the list
body in the main window and the list heading along with the list column heading in a secondary window.

In the secondary window, we will locate list headings. In the main window we will locate the data of list
body. The main window will continually receive one row of data (through a LOOP…ENDLOOP process in the
within the form) and output it until the main window is full. At the point that the main window is full, a page
break is triggered and output continues in the main window of a new page. This process continues until all
the data is output.

The layout of windows will look like that in Figure 3-85.

Figure 3-84. List of materials—output

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

240

The list heading will use the symbols &SYST-DATE& and &SFSY-PAGE& to output the ‘as on’ date and
page number, respectively.

This is a repetition of demonstration III performed in the SAP script environment. The operation of
main window in the Smartforms form environment is being demonstrated in this exercise.

We will load an internal table with data from the database table MAKT. The internal table will be passed
as a TABLES parameter while calling the function module of the Smartforms form. The rest of the processing
(setting up loop, etc.) will be carried out within the Smartforms form.

Apart from operating the main window, we will be deploying the following features of Smartforms for
the first time:

•	 Using the TYPES statement in the Global Definitions area to declare custom types
and then referring to the declared custom types to define data.

•	 Defining data in the Global Definitions area.

•	 Using the LOOP AT….. node to retrieve and process data one row at a time.

•	 Creating a node to locate ABAP code (program lines) .

So, let us proceed to create a style, a form, and, subsequently, the driver program.
Our demonstration exercise involves the following steps:

 1. We plan to output the material list in font family courier and font size 10 points.
This will involve creation and usage of a custom style instead of ready-to-use style
SYSTEM. Hence we will create a style YCH03_02.

 2. Create a form YCH03_03_MLIST1 with a single page format FIRST. Declare TYPES
and define data in the Global Definitions. The form will consist of one interface
TABLES parameter containing the data to be output.

Figure 3-85. List of materials—layout of windows

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

241

 3. Create a secondary window HEADING of dimensions as specified in Figure 3-85.
Fill in the text area of LIST_HEADING in the secondary window as per the list
and column headings of Figure 3-84. Create a node of Program Lines to assign
the system field SFSY-PAGE to global variable PAGE.

 4. Adjust the dimensions of the main window as specified in Figure 3-85. Create a
loop element to retrieve and output data from TABLES form interface parameter.
Fill in the text area of LIST_DATA in the main window as per the list body of
Figure 3-84. Create a node of Program Lines to increment the global variable
SRL_NO. Check and activate the form.

 5. Create an ABAP program YCH03_01_MLIST1 (driver program) to retrieve and
load data from the database table MAKT into an internal table. Call the function
module corresponding to the Smartforms form. Perform program check and
program activation.

 6. Test the form YCH03_03_MLIST1 by executing the program YCH03_01_MLIST1.

Let us proceed to perform the six steps.

Create Style YCH03_02
We entered YCH03_02 in the field Style on the screen of SAP Smart Forms: Initial Screen (transaction code
SMARTFORMS) We ensured that the Radio button Style was enabled. We clicked the Create button. We
entered a meaningful text in the field Description. On the Standard Settings tab screen, in the font area, we
accepted the default font family as Courier. We entered the font size as 10 points.

We created a paragraph format, P1, with default values. We assigned Paragraph Format P1 as the
standard paragraph on the Standard Settings tab screen. We saved the style, performed a check, and
activated the style.

We created this style to output our material list in font size 10 points instead of the default font size 12
points.

Create Form YCH03_03_MLIST1, Page Format FIRST, etc.
The screenshots appearing in the figures in this exercise were produced after full creation and activation of
the form and not as the form elements were created one by one.

We entered YCH03_03_MLIST1 in the field Form on the screen of SAP Smart Forms: Initial Screen
(transaction code SMARTFORMS). We clicked the Create button. We entered a meaningful text in the field
Meaning. On the Output Options tab of form attributes screen, we assigned the style YCH03_02. We accepted
the default stationery DINA4. Figure 3-86 illustrates

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

242

We clicked page format node, changed the name of the page format to FIRST, and changed the text in
field meaning. We selected the default portrait mode210MM width and 297MM height. We assigned the
value FIRST to the field next page.

We clicked the Form Interface node (under Global Settings); next we clicked the Tables tab. We created a
TABLES parameter named MAKT_TAB like the structure of database table MAKT. Figure 3-87 illustrates.

We clicked the Global Definitions node (under Global Settings); next we clicked the Types tab. We
created custom types using the TYPES statement as shown in Figure 3-88.

Figure 3-86. Create Form YCH03_03_MLIST1—assign style

Figure 3-87. Create Form YCH03_03_MLIST1—form interface, tables parameter

Figure 3-88. Create Form YCH03_03_MLIST1—Global Definitions, declare custom types

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

243

As shown in Figure 3-84, the material list output contains a serial number. We are generating the serial
number within Smartforms by incrementing the variable SRL_NO in an ABAP code node. The variable SRL_
NO used as a serial number has been declared in the tab Global Data of the Global Definitions screen. The
variable SRL_NO has been declared referring to the type SRL_NO_TP.

We could have used the Smartforms system field SFSY-PAGE to output the page number in the list. We
are using a variable PAGE declared in the tab Global Data of the Global Definitions screen. The variable
PAGE has been declared referring to the type PAGE_TP. The use of the global variable PAGE to output page
number was for demonstration purposes.

Under the Global Definitions screen, we clicked the Global Data tab. We declared the global variables
required as shown in Figure 3-89.

The variables SRL_NO and PAGE have already been explained. The structure MAKT will serve the
purpose of holding one row of data in LOOP AT node.

Create Secondary Window, Create Text, etc.
To create a secondary window, we clicked the page format node FIRST and invoked the context menu by
pressing the mouse right button. We selected the menu option Create ➤ Window.

The screen to enter window particulars appeared. We want the window to be a secondary window
which is the default. We changed the name of the window to HEADING; we changed the contents of the
field Meaning. We clicked the tab Output Options. On the Output Options tab screen, we entered Left margin
as 5MM, Width as 150MM, Upper margin as 5MM, and Height as 30MM. Figure 3-90 shows the secondary
window HEADING Output Options tab screen.

Figure 3-89. Create Form YCH03_03_MLIST1—Global Definitions, define global data

Figure 3-90. Create Form YCH03_03_MLIST1—secondary window HEADING

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

244

To create a text node, we clicked the window HEADING node and invoked the context menu by pressing
the mouse right button. We selected the menu option Create ➤ Text. When the screen for text appeared, we
changed the name of the text to LIST_HEADING. We also changed the contents of the field Meaning. We
clicked the full screen Text Editor button and created text as shown in Figure 3-91.

The variable PAGE has to be assigned the value of the Smartforms system field SFSY-PAGE. The
assignment has to be done prior to the output of the list heading. To assign SFSY-PAGE to PAGE, we created
an ABAP Program Lines node over the text node LIST_HEADING. To create an ABAP Program Lines node,
we clicked the window HEADING node and invoked the context menu. We selected the following menu
option: Create ➤ Flow Logic ➤ Program Lines. The screen for the program lines appeared. We changed the
name of the node as well as the value in the field Meaning. The screen after entering the program lines will
look like the one in Figure 3-92.

The node of ABAP Program Lines is like a subroutine. Whatever globally defined variables and/or
form interface variables are used in the ABAP code have to be specified in the Input Parameters and Output
Parameters area. See markings in Figure 3-92.

Figure 3-91. Create Form YCH03_03_MLIST1—text in LIST_HEADING

Figure 3-92. Create Form YCH03_03_MLIST1—ABAP Program Lines in window HEADING

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

245

We created the form YCH03_03_MLIST1 with a single page format FIRST. We assigned the style
YCH03_02 to this form, We created the secondary window HEADING. We created the text LIST_HEADING
in this window and incorporated the required text. We created an ABAP Program Lines node just above the
text node TEXT_HEADING. We assigned the variable PAGE to the Smartforms system field SFSY-PAGE in the
ABAP Program Lines node.

Adjust Dimensions of Main Window, Create Text in Main Window, etc.
The main window is already created by default. We need to adjust its dimensions as per our specifications
in Figure 3-85. We entered the dimensions of the main window as follows: Left margin 5MM, Upper margin
35MM, Width 150MM, Height 255MM on the Output Options tab screen of the main widow. Switching to the
graphic Form Painter, we visually viewed the layout of the windows and confirmed that the layout is as per
the requirements. Figure 3-93 shows the layout of the windows.

We closed the graphic Form Painter. We need to create a loop element node under the main window.
The loop element under the main window retrieves one row at a time from the interface TABLES parameter
MAKT_TAB into the structure MAKT. To create a loop element node, we clicked the main window node,
invoked the context menu, and made the following menu selection: Create ➤ Flow Logic ➤ Loop. The
screen for the loop element appeared. We changed the name of the element to LOOP and entered text in the
field Meaning. We ensured that the check box for Internal Table was enabled entered the internal table name
as MAKT_TAB, and ensured that the INTO was selected from the drop-down list and entered MAKT in the
field adjoining the INTO. Figure 3-94 illustrates.

Figure 3-93. Create Form YCH03_03_MLIST1—windows layout

Figure 3-94. Create Form YCH03_03_MLIST1—Element loop node in main window

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

246

We needed to create a text node in the main window under the loop element node. We clicked loop
element node LOOP and invoked the context menu by pressing the mouse right button. We selected the
menu option: Create ➤ Text. When the screen for text appeared, we changed the name of the text to LIST_
DATA. We also changed the contents of the field Meaning. We clicked the full screen Text Editor button and
created text as shown in Figure 3-95.

We have to create a node to incorporate the ABAP Program Lines that will increment the global variable
SRL_NO. This node containing ABAP Program Lines must precede the text node which outputs the material
data. To create an ABAP Program Lines node, we clicked the loop element LOOP node and invoked the
context menu. We chose the following menu option: Create ➤ Flow Logic ➤ Program Lines. The screen for
the Program Lines appeared. We changed the name of the node as well as the value in the field Meaning. The
screen after entering the Program Lines will look like the one in Figure 3-96:

The ABAP Program Lines node has one output parameter: SRL_NO.
We saved the form. We performed check the form. We activated the form.

Create an ABAP Program YCH03_01_MLIST1 (Driver Program), etc.
We created a program YCH03_01_MLIST1 (transaction code SE38). The program is a very simple one. It
loads the internal table MAKT_TAB with data and calls the function module corresponding to the form
YCH03_03_MLIST1.

Figure 3-95. Create Form YCH03_03_MLIST1—text in LIST_DATA

Figure 3-96. Create Form YCH03_03_MLIST1—ABAP Program Lines in main window

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

247

The source program is listed in the code that follows.

REPORT YCH03_01_MLIST1.

* Material List in Smartforms Form (YCH03_03_MLIST1) **
* F.M.: /1BCDWB/SF00000143 **

DATA: MAKT_TAB TYPE STANDARD TABLE OF MAKT.

START-OF-SELECTION.

SELECT * FROM MAKT INTO TABLE MAKT_TAB UP TO 1000 ROWS
 WHERE SPRAS = SY-LANGU.

SORT MAKT_TAB BY MATNR.

CALL FUNCTION '/1BCDWB/SF00000143' "change the FM name as
 "per the generated name
 TABLES
 MAKT_TAB = MAKT_TAB
 EXCEPTIONS
 FORMATTING_ERROR = 1
 INTERNAL_ERROR = 2
 SEND_ERROR = 3
 USER_CANCELED = 4
 OTHERS = 5
 .
IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
ENDIF.

In the program, being in a training paradigm and testing state, we restricted the data from the database
table MAKT to 1,000 rows. We are retrieving only material descriptions in the logged-in language (WHERE
SPRAS = SY-LANGU), though our list and column headings will always appear in English.

Test Form YCH03_03_MLIST1, Execute Program YCH03_01_MLIST1
We executed the program YCH03_01_MLIST1; the print dialog box popped up. We clicked the button Print
Preview. The output will look as shown in Figure 3-97.

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

248

The 1,000 materials are output in 17 pages as shown in Figure 3-97. The output is identical to the one
produced by demonstration III in Chapter 1. You can scroll down and navigate to other pages of the list.

You can observe that the ABAP program used to output the material list in this exercise is relatively
smaller and simpler when compared to its counterpart of SAP script print program.

Recapitulation
Demonstration III produced a material list using a Smartforms form. We output large volume of variable
data and so used the main window for the first time in Smartforms. The main window in Smartforms
operates the same way it operates in SAP script. We also used the following for the first time in Smartforms:

•	 Types tab of the Global Definitions node

•	 Global Data tab of the Global Definitions node

•	 The use of Program Lines node

•	 The use of loop node

Demonstration IV
In this exercise, as in demonstration III, we will use the main window. This exercise is a parallel of
demonstration IV in Chapter 1. I will reproduce here the output generated by demonstration IV of Chapter 1.

Figure 3-97. Form YCH03_03_MLIST1—Output Print Preview

http://dx.doi.org/10.1007/978-1-4842-3183-8_1
http://dx.doi.org/10.1007/978-1-4842-3183-8_1
http://dx.doi.org/10.1007/978-1-4842-3183-8_1

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

249

The variable windows HEADING1 and HEADING2 in demonstration IV in Chapter 1 will exactly map to
secondary windows of the same names. The list body will be located in the main window.

In Chapter 1, demonstration IV produced a material list in a newspaper columnar manner. The page was
divided into two halves: left half of the page and right half of the page. The material list commenced in the left half
of the page. When the left half of the page was full, the list continued in the right half of the page. When the right
half of the page was full, a page break was triggered and list continued in the left half of a new page. This process
of listing in the left half of the page and then the right half of the page continued until all the data was output.
We produced the list by setting the page to landscape mode. This approach of listing resulted in effective paper
utilization and reduced the size of the list from 17 pages in demonstration III to 13 pages in demonstration IV.

The process of producing the material list in the newspaper columnar manner (described in the
preceding paragraph) relied on multiple page windows being assigned to the main window in the SAP script
form. When using Smartforms, we do not have the two form elements windows and page windows. We only
have windows which are equivalent to page windows in SAP script. The page windows in SAP script and the
windows in Smartforms are similar elements, physical areas on a page format defined by a left margin, an
upper margin, a width, and a height. A Smartforms form as SAP script form can have only one main window.

We cannot produce the material list using Smartforms in the facile and easy manner we produced it
using the SAP script in Chapter 1. This is one of the instances in which a more recent tool does not carry all
the good features of an older previous tool.

In this demonstration exercise we reproduced the output of demonstration IV in Chapter 1, but the
reproduction of this output will involve a bit of tweaked programming as you will see.

Figure 3-98—reproduced from Chapter 1—shows a rough sketch of the output to be generated.

In demonstration IV in Chapter 1, we were outputting 78 items in a page, the first 39 items appearing
in the left half of the page and 40—78 items appearing in the right half of the page. The 40th item appeared
alongside the right of the first item, the 41st item appeared alongside on the right of the second item, and so
on, until the 78th item appeared alongside the right of 39th item. Figure 3-99 illustrates.

Figure 3-98. List of mterials—Output in newspaper column manner in main window

Figure 3-99. List of materials—depiction of data appearance in output

http://dx.doi.org/10.1007/978-1-4842-3183-8_1
http://dx.doi.org/10.1007/978-1-4842-3183-8_1
http://dx.doi.org/10.1007/978-1-4842-3183-8_1
http://dx.doi.org/10.1007/978-1-4842-3183-8_1
http://dx.doi.org/10.1007/978-1-4842-3183-8_1
http://dx.doi.org/10.1007/978-1-4842-3183-8_1

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

250

Since in Smartforms, there is no concept of multiple page windows in the main window and multiple
main windows cannot exist, we will have to organize data in an internal table in the driver program itself as
it is to appear as output. We will have an internal table, say, MAKT_TAB, with a structure containing two sets
of variables—first set of variables to output in the left half of the page and second set of variables to output in
the right half of the page. The structure of the internal table will consist of the following fields:

SRL_NO1
MATNR1
MAKTX1

SRL_NO2
MATNR2
MAKTX2

In the present exercise, the variablesSRL_NO1, MATNR1, and MAKTX1 will output in the left half of the
page and the variables SRL_NO2, MATNR2, and MAKTX2 will output in the right half of the page.

The first row in the internal table MAKT_TAB must contain the data for the item serial number 1 in the
set of variables or fields SRL_NO1, MATNR1, MAKTX1 and must contain data for the item serial number 40
in the set of variables SRL_NO2, MATNR2, and MAKTX2.

Similarly, the second row in the internal table MAKT_TAB must contain the data for the item serial
number 2 in the set of variables SRL_NO1, MATNR, and MAKTX1 and must contain data for the item serial
number 41 in the set of variables SRL_NO2, MATNR2, and MAKTX2.

This pattern must continue. These two sets of variables, SRL_NO1, MATNR, MAKTX1 and SRL_NO2,
MATNR2, MAKTX2, have to be located in the same line of the main window.

To sum up, the Smartforms form to output a material list in the manner it was done in demonstration
IV of Chapter 1 will have a single page format. It will contain two secondary windows—HEADING1
and HEADING2. These two secondary windows are identical to the variable windows HEADING1 and
HEADING2 of the SAP script form YCH01_04_MLIST1. It will have the main window to output the list body.
In light of the foregoing descriptions, the layout of the windows of the Smartforms form YCH03_04_MLIST1
should be like that in Figure 3-100.

Figure 3-100. List of materials in landscape mode—layout of windows

http://dx.doi.org/10.1007/978-1-4842-3183-8_1

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

251

Observe that the main window width is specified in characters (CH). The six program symbols—SRL_
NO1, MATNR1, MAKTX1, SRL_NO2, MATNR2, and MAKTX2—to appear in the text area are shown as well in
Figure 3-100. They are specified without the prefix of the structure (MAKT-).

Let us proceed to create the form YCH03_04_MLIST2, the driver program YCH03_02_MLIST2, and
associated workbench objects.

Create ABAP Dictionary Structure YCH03_2REC_MAKT_STRU
We created an ABAP dictionary structure YCH03_2REC_MAKT_STRU with fields and their respective data
elements as specified in the Table 3-2.

We performed a check and activated the structure.

Create Form YCH03_04_MLIST2
We created the form YCH03_04_MLIST2 in transaction code SMARTFORMS. We changed the name of the
page format to FIRST, etc. On the Output Options tab of the Form Attributes screen, we assigned the style
YCH03_02. We accepted the default values for all the other fields.

We clicked Form Interface node and Tables tab and entered one parameter as shown in Figure 3-101.

We clicked the Global Definitions node, Global Data tab, and entered one variable as shown in
Figure 3-102.

Table 3-2. Fields of ABAP Dictionary Structure YCH03_2REC_MAT_STRU

Field Name Data Element Name Type Length

SRL_NO1 SYTABIX INT4 4

MATNR1 MATNR CHAR 18

MAKTX1 MAKTX CHAR 40

SRL_NO2 SYTABIX INT4 4

MATNR2 MATNR CHAR 18

MAKTX2 MAKTX CHAR 40

Figure 3-101. Form YCH03_04_MLIST2—Form Interface, Tables Parameter

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

252

We clicked the page format FIRST node and invoked the context menu to create the secondary window
HEADING1 with the following dimensions: Left margin 5MM, Width 140MM, Uppermargin 5MM, and
Height 30MM.

We created the secondary window HEADING2, with the following dimensions: Left margin 152MM,
width 140MM, Upper margin 5MM, and Height 30MM.

We adjusted the dimensions in the main window as Left margin 5MM, Width 135CH, Upper margin
35MM, and Height 168MM. The main window width is specified in characters (CH).

The layout of the windows in Form Painter should look like that in Figure 3-103.

We will now locate text in each of the windows HEADING1, HEADING2, and main.
We started with the window HEADING1. We created a text node by clicking the window node

HEADING1, invoking the context menu and making the following menu selection: Create ➤ Text. We
switched to full screen text editor and entered the text as shown in Figure 3-104.

Figure 3-102. Form YCH03_04_MLIST2—Global Definitions, global data

Figure 3-103. Form YCH03_04_MLIST2—layout of windows in Form Painter

Figure 3-104. Form YCH03_04_MLIST2—text in window HEADING1

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

253

In a similar manner, we created a text node under the window node HEADING2, Figure 3-105 shows the
text entered in window HEADING2.

We need to create a loop element node under the main window. The loop element under the main
window will retrieve one row at a time from the interface TABLES parameter MAKT_TAB into the structure
STRU. To create a loop element node, we clicked the main window node, invoked the context menu, and
made the following menu selection: Create ➤ Flow Logic ➤ Loop. The screen for the loop element appeared.
We changed the name of the element to LOOP and entered text in the field Meaning. We ensured that the
check box for Internal Table was enabled, entered the internal table name as MAKT_TAB, ensured that the
INTO was selected from the drop-down list, and entered STRU in the field adjoining the INTO. Figure 3-106
illustrates.

Finally, we created a text node in the main window under the LOOP node; Figure 3-107 shows the text
entered.

Figure 3-105. Form YCH03_04_MLIST2—text in window HEADING2

Figure 3-106. Form YCH03_04_MLIST2—LOOP in main window

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

254

This completes the form creation process.
The form consists of the following:

•	 One parameter of type Tables in the Form Interface: MAKT_TAB (internal table).

•	 One entry in the Global Data: STRU to hold data of one row fetched from the internal
table MAKT_TAB through the loop element.

•	 One page format FIRST.

•	 Two secondary windows HEADING1 and HEADING2:

	9 Text within the secondary windows HEADING1 and HEADING2.

•	 Main Window:

	9 A loop element LOOP within the main window

	9 Text within the loop element LOOP.

We saved the form, performed a check, and activated the form.

Create and Test ABAP Program YCH03_02_MLIST2 (Driver Program)
We created a program YCH03_02_MLIST2 (transaction code SE38).

In the first stage, data is loaded from the database table MAKT into the internal table MAKT_TAB1. A
loop is set up with the internal table MAKT_TAB1. A serial number is generated for each row; each row is
identified as appearing on the left half of the page or right half of the page. Rows identified as appearing on
the right half of the page are appended to the internal table MAKT_TAB2 and are marked for deletion from
the table MAKT_TAB1.

At the end of the loop processing of internal table MAKT_TAB1, rows marked for deletion in the internal
table MAKT_TAB1 are deleted. The internal table MAKT_TAB1 will contain rows that will appear on the left
half of the page and the internal table MAKT_TAB2 will contain rows that will appear on the right half of the
page.

In the second stage, the two internal tables—MAKT_TAB1 and MAKT_TAB2—are merged into resultant
internal table MAKT_TAB. The resultant internal table has the fields SRL_NO1, MATNR1, and MAKTX1
assigned values from the first internal table MAKT_TAB1. The resultant internal table has the fields
SRL_NO2, MATNR2, and MAKTX2 assigned values from the second internal table MAKT_TAB2.

The fields SRL_NO1, MATNR1, and MAKTX1 will appear on the left half of the page and the SRL_NO2,
MATNR2, and MAKTX2 will appear on the right half of the page.

Figure 3-107. Form YCH03_04_MLIST2—text in loop element LOOP

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

255

The source list is as follows:

REPORT YCH03_02_MLIST2.

* Material List in Smartforms Form (YCH03_04_MLIST2) **
* F.M.: /1BCDWB/SF00000147 **

TYPES: BEGIN OF MAKT_STRU_TP.
 INCLUDE STRUCTURE MAKT.
TYPES: SRL_NO TYPE SY-TABIX,
 END OF MAKT_STRU_TP.

CONSTANTS: THIRTY_NINE TYPE I VALUE 39.
 "no of items in each half of page

DATA: MAKT_TAB1 TYPE STANDARD TABLE OF MAKT_STRU_TP
 WITH HEADER LINE,
 MAKT_TAB2 TYPE STANDARD TABLE OF MAKT_STRU_TP
 WITH HEADER LINE,
 MAKT_TAB TYPE STANDARD TABLE OF
 YCH03_2REC_MAKT_STRU
 WITH HEADER LINE.

DATA: QT1 TYPE I,
 RM1 TYPE I,
 RM2 TYPE I,
 OVER1(1) TYPE C,
 OVER2(1) TYPE C.

START-OF-SELECTION.

***** first stage **

SELECT * FROM MAKT INTO CORRESPONDING FIELDS OF TABLE
 MAKT_TAB1 UP TO 1000 ROWS WHERE SPRAS = SY-LANGU.

SORT MAKT_TAB1 BY MATNR.

LOOP AT MAKT_TAB1 INTO MAKT_TAB1.

 MAKT_TAB1-SRL_NO = SY-TABIX.
 QT1 = SY-TABIX DIV THIRTY_NINE.
 RM1 = SY-TABIX MOD THIRTY_NINE.
 RM2 = QT1 MOD 2.

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

256

 IF (RM1 > 0 AND RM2 = 0) OR (RM1 = 0 AND RM2 > 0).
 "rows on left half of page

 MODIFY MAKT_TAB1.
 CONTINUE.

 ELSEIF (RM1 > 0 AND RM2 > 0) OR (RM1 = 0 AND RM2 = 0).
 "rows on right half of page

 APPEND MAKT_TAB1 TO MAKT_TAB2.
 MAKT_TAB1-SRL_NO = 9999999.
 MODIFY MAKT_TAB1.
 ENDIF.

ENDLOOP.

DELETE MAKT_TAB1 WHERE SRL_NO = 9999999.

***** second stage **

DO.
 CLEAR MAKT_TAB.

 IF OVER1 = ' '.
 READ TABLE MAKT_TAB1 INDEX SY-INDEX.
 IF SY-SUBRC = 0.
 MAKT_TAB-SRL_NO1 = MAKT_TAB1-SRL_NO.
 MAKT_TAB-MATNR1 = MAKT_TAB1-MATNR.
 MAKT_TAB-MAKTX1 = MAKT_TAB1-MAKTX.
 ELSE.
 OVER1 = 'X'.
 ENDIF.
 ENDIF.

 IF OVER2 = ' '.
 READ TABLE MAKT_TAB2 INDEX SY-INDEX.
 IF SY-SUBRC = 0.
 MAKT_TAB-SRL_NO2 = MAKT_TAB2-SRL_NO.
 MAKT_TAB-MATNR2 = MAKT_TAB2-MATNR.
 MAKT_TAB-MAKTX2 = MAKT_TAB2-MAKTX.
 ELSE.
 OVER2 = 'X'.
 ENDIF.
 ENDIF.

 IF OVER1 = 'X' AND OVER2 = 'X'.
 EXIT.
 ENDIF.

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

257

 APPEND MAKT_TAB.
ENDDO.

**
CALL FUNCTION '/1BCDWB/SF00000147' "change the name as per the
 "name generated by the form
 TABLES
 MAKT_TAB = MAKT_TAB
 EXCEPTIONS
 FORMATTING_ERROR = 1
 INTERNAL_ERROR = 2
 SEND_ERROR = 3
 USER_CANCELED = 4
 OTHERS = 5
 .
 IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 ENDIF.
**

Test Form YCH03_04_MLIST2, Execute Program YCH03_02_MLIST2
When we executed the program YCH03_02_MLIST2, the output looked as shown in Figure 3-108.

Figure 3-108. Program YCH03_02_MLIST2—output

Chapter 3 ■ SmartformS—formS, StyleS, and text moduleS

258

This output is identical to the one produced by demonstration IV in Chapter 1.

Recapitulation
If you were to compare demonstration IV in this chapter with demonstration IV in Chapter 1, you would
realize that it is a better option to use a SAP script form than a Smartforms form when you need to output
repetitive data both down and across the page. The output of repetitive data both down and across the page
is facilitated by the support of multiple page windows assignation to the main window in SAP script forms,
a facility unavailable in Smartforms forms. We managed to reproduce the output of demonstration IV in
chapter 1 in this chapter, but it involved considerable tweaked programming, which is totally avoidable if
you implement the output using SAP script forms.

Conclusion
This chapter has introduced you to Smartforms as a further tool for maintaining business document layouts.

You have learned about the components of Smartforms: forms, styles, and text modules.
A detailed description of the elements of form was presented via a tour of a copy of the SAP delivered

ready-to-use form /SMB40/MMPO_A.
We performed four demonstration exercises to highlight some basic core features of forms.
The first demonstration exercise (demonstration I) involved the creation of a form with a single page

format, a graphic element, and incorporation of an image into the graphic element. The form also contained
a secondary window. We created long text in the secondary window. The long text was formatted. The
formatting of the long text in the secondary window required application of three paragraph formats and
two character formats. We created the three paragraph formats and two character formats in a Smartforms
style. We assigned the style to the form. We print previewed the form from within the form environment.

In the second demonstrative exercise (demonstration II) we created a text module. The text module
content was the same text we created in the secondary window of demonstration I. The style we created in
demonstration I was assigned to the text module. We then created a form with a single page format and a
graphic element and incorporated an image into the graphic element. The form also contained a secondary
window. We incorporated the text module created earlier into the secondary window. Finally, we print
previewed the form from within the form environment. The output of demonstration I and demonstration
II is identical. There is only a difference in the approach. In demonstration I, we created the long text within
the form itself; in demonstration II, we created the text as a text module and incorporated the text of the text
module into the form.

The third demonstration exercise (demonstration III) produced the material list using a Smartforms
form. The material list fields had to be repetitively output, so they had to be located in the main window. We
used a secondary window to output the material list heading. This exercise used the following extra features
of Smartforms forms for the first time:

•	 Definition and use of Types under Global Definitions node

•	 Declaration and use of Global Data under Global Definitions node

•	 Use of loop element to retrieve and process row-wise data within the form

•	 Execution of ABAP program lines in a window

The fourth demonstration exercise (demonstration IV) attempted to reproduce the output of
demonstration IV in Chapter 1. With this exercise, we realized that the SAP script is a better option to output
repetitive data across the page.

In Chapter 4, we will create forms, their corresponding driver programs, and required workbench
objects for specified business scenarios.

http://dx.doi.org/10.1007/978-1-4842-3183-8_1
http://dx.doi.org/10.1007/978-1-4842-3183-8_1
http://dx.doi.org/10.1007/978-1-4842-3183-8_1
http://dx.doi.org/10.1007/978-1-4842-3183-8_1
http://dx.doi.org/10.1007/978-1-4842-3183-8_4

259© Sushil Markandeya 2017
S. Markandeya, Pro SAP Scripts, Smartforms, and Data Migration,
https://doi.org/10.1007/978-1-4842-3183-8_4

CHAPTER 4

Smartforms–Hands-on Exercises

Chapter 3 introduced you to Smartforms as an enhanced tool, compared to SAP script, to maintain business
document layouts. Chapter 3 described the Smartforms environment, its components, and the different
tools available to maintain the layout of business documents. As with SAP scripts in Chapter 1, in Chapter 3
we focused for the most part on the form component of Smartforms. Creating and maintaining business
document layouts involves working mostly with forms. Chapter 3 also described driver programs (ABAP
programs) associated with forms and the transfer of data from the driver programs to Smartforms forms
through the form parameters. Demonstration exercises were performed to highlight and convey different
concepts of Smartforms. In the present chapter, we will apply the Smartforms features introduced in
Chapter 3 to implement business scenarios. As in Chapter 2, we are terming the implementation of business
scenarios as “hands-on exercises.”

We will perform the following five hands-on exercises involving creation and modifications of forms in
this chapter:

•	 Output vendors’ address labels of a specific company code.

•	 Output purchase orders with a custom form.

•	 Make a copy of SAP delivered form /SMB40/MMPO_A for purchase orders and
customize it.

•	 Output material bar code labels.

•	 Produce customer wise sales summary of a specific company code using Smartforms
form.

A detailed implementation of the hands-on exercises follows.

Hands-on Exercise I—Output Vendors’ Address Labels
of a Specific Company Code
The first of the hands-on exercise involves the production of the address labels for vendors. The address
labels will output for a specific company code. We will create a Smartforms form layout to produce the
address labels. We will create a driver program and related workbench objects to produce the address labels
for vendors.

https://doi.org/10.1007/978-1-4842-3183-8_4
http://dx.doi.org/10.1007/978-1-4842-3183-8_3
http://dx.doi.org/10.1007/978-1-4842-3183-8_3
http://dx.doi.org/10.1007/978-1-4842-3183-8_1
http://dx.doi.org/10.1007/978-1-4842-3183-8_3
http://dx.doi.org/10.1007/978-1-4842-3183-8_3
http://dx.doi.org/10.1007/978-1-4842-3183-8_3
http://dx.doi.org/10.1007/978-1-4842-3183-8_2

Chapter 4 ■ SmartformS–handS-on exerCiSeS

260

Output Specification and Layout
We will output vendors’ address labels of a specific company code. We will output vendors’ address labels on
DINA4 stationery in landscape mode—297MM width and 210MM height. We will output 15 address labels
on a single sheet of DINA4 stationery in landscape mode. We will locate three address labels in one row
and five address labels in one column with appropriate margins and gaps. Each of the address labels will
be 93MM wide and 9 lines high. All of our address label data repeats within a page and repeats from page
to page. Hence, for the form to output address labels, we will only use the main window. We will not be able
to repeat vendor address data across a page as we were able to do in SAP script with multiple page windows
assigned to the main window. There is no concept of SAP script window in Smartforms.

We are reproducing the output of hands-on exercise I, Chapter 2. We are employing Smartforms instead
of SAP script now.

We will output the vendor address labels using the font Courier, font size 10 points.
Figure 4-1 shows a rough layout of the address labels as they will output in a page (reproduced from

Figure 2-1, Chapter 2).

Output Considerations
We will locate the vendor address data in the Smartforms element table. The sole line type of this element
table will consist of five cells (columns) with the widths shown in Table 4-1.

Figure 4-1. Layout of vendors’ address labels

Table 4-1. Line Type of Element Table to Output Three Vendors in a Row

Cell 1 93MM (data)

Cell 2 04 MM (gap)

Cell 3 93 MM (data)

Cell 4 04MM (gap)

Cell 5 93MM (data)

http://dx.doi.org/10.1007/978-1-4842-3183-8_2
http://dx.doi.org/10.1007/978-1-4842-3183-8_2

Chapter 4 ■ SmartformS–handS-on exerCiSeS

261

The cells with width 93MM will contain vendor address data; the cells with width 4MM are meant to
create a horizontal gap between vendors’ address data. Three vendor addresses will output across in a page
and 5 vendor addresses will output down in a page, making a total of 15 vendor addresses to output in a page
as shown in Figure 4-1.

The output of cells down the page will be the outcome of the operation of the element table in the main
window. The repetition of data across the page will be implemented with some special data declaration and
programming in the driver program and the Smartforms form.

For repetition of data across a page, I will resort to the procedure similar to the one we used in
demonstration exercise IV in Chapter 3.

To be able to pass an internal table to Smartforms with the data of three vendors in one row, in our driver
program or application program, we will declare an internal table with the structure or fields shown in Table 4-2.

We have created an ABAP dictionary structure YCH04_LFA1_ADRNR_STRU consisting of the nine fields
in Table 4-2.

Through the value of the fields ADRNR1, ADRNR2, and ADRNR3, the vendor addresses will be retrieved
from the database table ADRC. The retrieved vendor address numbers along with the titles (ANRED1,
ANRED2, and ANRED3) and language keys (SPRAS1, SPRAS2, and SPRAS3) are passed on to the function
module ADDRESS_INTO_PRINTFORM. The function module will return the vendor addresses formatted
in the postal convention of the recipient country. The vendor addresses will be returned in nine lines. Recall
that the maximum number of address lines returned is ten. The number of lines in which the address is to be
returned is specified in the field ANZZL of the structure ADRS.

We can insert the form element address in the cell numbers 1, 3, and 5 and provide the address numbers
through fields ADRNR1, ADRNR2, and ADRNR3, respectively, to these cells of the element table. Within the
element address, the vendor addresses are generated in the postal convention of the recipient country. The
function module ADDRESS_INTO_PRINTFORM is used internally. With this approach, the blank lines if any in
the address are suppressed in the output and a vendor address might occupy less space than the nine lines we
assigned as vertical space to each vendor. Each vendor address must necessarily occupy nine lines of vertical
space as per our output specifications. To ensure that each vendor address uniformly occupies nine lines of
vertical space, we are retrieving the vendor address from the database table ADRC using the fields ADRNR1/
ADRNR2/ADRNR3, calling the function module ADDRESS_INTO_PRINTFORM explicitly to generate and return
the nine lines of vendor addresses in the postal convention of the recipient country. The nine lines of vendor
address returned fields are output by inserting the nine address field lines in the element text located in the cells.

One row in the internal table will contain title, address number, and language key data of three vendors
mapping to the three data cells (cell numbers 1, 3, and 5 in Table 4-1) located in the line type of the element table.

Table 4-2. Internal Table Structure Containing Three Vendors Data in One Row

Field Name Description

ANRED1 Title. This field is unavailable in database table ADRC, so should be picked from
database table LFA1

ADRNR1 Address Number, to retrieve address from database table ADRC

SPRAS1 Language Key of Vendor

ANRED2

ADRNR2

SPRAS2

ANRED3

ADRNR3

SPRAS3

http://dx.doi.org/10.1007/978-1-4842-3183-8_3

Chapter 4 ■ SmartformS–handS-on exerCiSeS

262

To load the internal table with data of three vendors in one row, we will first load an internal table with
data of one vendor in one row from the database view YCH02_LFA1_LFB1. We will then transfer the data
from the internal table containing data of one vendor per row into the internal table that will contain data
of three vendors per row. The database view YCH02_LFA1_LFB1 was created with the database tables LFA1
and LFB1 in Chapter 2. The company code field BUKRS is picked from the database table LFB1.

The ABAP program lines to fetch data from the database view YCH02_LFA1_LFB and load into an
internal table with a structure consisting of fields for three vendors will be as follows:

TYPES: BEGIN OF INTER_STRU_TP, "one vendor per row
 LIFNR TYPE LIFNR,
 ANRED TYPE ANRED,
 ADRNR TYPE ADRNR,
 SPRAS TYPE SPRAS,
 END OF INTER_STRU_TP.

TABLES: T001.

DATA: LFA1_TAB TYPE STANDARD TABLE OF YCH04_LFA1_ADRNR_STRU,
 LFA1_STRU TYPE YCH04_LFA1_ADRNR_STRU, "ABAP dictionary
 "structure:three
 "vendors per row
 INTER_TAB TYPE STANDARD TABLE OF INTER_STRU_TP,
 INTER_STRU TYPE INTER_STRU_TP,
 COUNTER(1) TYPE N.

**
PARAMETERS: COMP_CD TYPE KNB1-BUKRS DEFAULT 3000 VALUE CHECK.

**
START-OF-SELECTION.

SELECT SINGLE * FROM T001 WHERE BUKRS = COMP_CD.

SELECT LIFNR ANRED ADRNR SPRAS FROM YCH02_LFA1_LFB1
 INTO TABLE INTER_TAB
 WHERE BUKRS = COMP_CD.

IF LINES(INTER_TAB) = 0.
 MESSAGE S001(YCH02_MCLASS) DISPLAY LIKE 'E'."No Data Retrieved
 EXIT.
ENDIF.

SORT INTER_TAB BY LIFNR.

LOOP AT INTER_TAB INTO INTER_STRU.
 COUNTER = COUNTER + 1.
 CASE COUNTER.
 WHEN 1.
 LFA1_STRU-ANRED1 = INTER_STRU-ANRED.
 LFA1_STRU-ADRNR1 = INTER_STRU-ADRNR.
 LFA1_STRU-SPRAS1 = INTER_STRU-SPRAS.
 WHEN 2.

http://dx.doi.org/10.1007/978-1-4842-3183-8_2

Chapter 4 ■ SmartformS–handS-on exerCiSeS

263

 LFA1_STRU-ANRED2 = INTER_STRU-ANRED.
 LFA1_STRU-ADRNR2 = INTER_STRU-ADRNR.
 LFA1_STRU-SPRAS2 = INTER_STRU-SPRAS.
 WHEN 3.
 LFA1_STRU-ANRED3 = INTER_STRU-ANRED.
 LFA1_STRU-ADRNR3 = INTER_STRU-ADRNR.
 LFA1_STRU-SPRAS3 = INTER_STRU-SPRAS.
 ENDCASE.
 IF COUNTER = 3.
 APPEND LFA1_STRU TO LFA1_TAB.
 COUNTER = 0.
 CLEAR LFA1_STRU.
 ENDIF.
ENDLOOP.
.....

At the end of LOOP AT……ENDLOOP processing, the internal table LFA1_TAB will contain three
vendors’ data in one row. The field LIFNR—vendor number—is being fetched from the database view to be
able to sort the data vendor number wise.

All that remains to be done in the driver program is to call the function module of the form to output
vendor address labels.

Inputs
This is a repeat from a Chapter 2 hands-on exercise: The vendor address data is available in the vendor
primary table LFA1 and through the field ADRNR in the table ADRC. As we are outputting vendor addresses
of a specific company code, we need to link the two tables LFA1 and LFB1. We are using database view
YCH02_LFA1_LFB1 created in Chapter 2. The Table/Join Conditions tab of the database view will be as
follows:

LFB1 LFA1 MANDT = LFB1 MANDT
LFA1 LFA1 LIFNR = LFB1 LIFNR

The View Flds tab of the database view has the fields shown in Table 4-3.

Table 4-3. Fields in the Database View YCH02_LFA1_LFB1

Srl. No. Field/Table Srl. No. Field/Table

01 MANDT / LFA1 10 ORT02 / LFA1

02 LIFNR / LFA1 11 PFACH / LFA1

03 BUKRS / LFB1 12 PSTL2 / LFA1

04 LAND1 / LFA1 13 PSTLZ / LFA1

05 NAME1 / LFA1 14 REGIO / LFA1

06 NAME2 / LFA1 15 STRAS / LFA1

07 NAME3 / LFA1 16 ADRNR / LFA1

08 NAME4 / LFA1 17 ANRED / LFA1

09 ORT01 / LFA1

http://dx.doi.org/10.1007/978-1-4842-3183-8_2
http://dx.doi.org/10.1007/978-1-4842-3183-8_2

Chapter 4 ■ SmartformS–handS-on exerCiSeS

264

The view YCH02_LFA1_LFB1 is our sole input.

Creation of Style YCH04_01, Form YCH04_01_ADR_STK and Driver
Program YCH04_01_DPRG_YCH04_01_ADR_STK
As we plan to output vendor address labels in font Courier, font size 10, we created a style YCH04_01 using
transaction code SMARTFORMS. In the style YCH04_01, for the standard paragraph SP, we assigned the
font Courier, font size 10. For the rest, we accepted the default values. Figure 4-2 shows a screenshot of the
paragraph SP, style YCH04_01.

Next, in transaction code SMARTFORMS, we created the form YCH04_01_ADR_STK. We assigned
the style YCH04_01 in the Output Options tab of the Form Attributes node. We made the page orientation
landscape. The form consisted of a single page format ONLY_PG.

We assigned the next page for page format ONLY_PG as ONLY_PG.
The form will contain one import parameter and one table parameter. The Sending country key is to

be provided to the function module ADDRESS_INTO_PRINTFORM, returning the address in the format
of the recipient country’s postal convention. The field T001-LAND1 is required from the driver program.
I have named the import parameter LAND1. The table parameter is the internal table containing the data
of three vendors in a single row. I have named the table parameter LFA1_ADRNR_TAB. Figures 4-3 and 4-4
are screenshots of the tabs Import and Tables of the node Form Interface.

Figure 4-2. Style: YCH04_01—standard paragraph SP

Figure 4-3. Form Interface: tab—Import

Chapter 4 ■ SmartformS–handS-on exerCiSeS

265

To operate the function module ADDRESS_INTO_PRINTFORM returning the address in the format of
the recipient country’s postal convention, we need the structures ADRS and ADRC. Hence the structures
have been defined in the Global Data tab of the Global Definitions node as shown in Figure 4-5.

The function module ADDRESS_INTO_PRINTFORM is to be called with three different values:
ADRNR1, ADRNR2, and ADRNR3 Address numbers). We located a subroutine in the Form Routines tab of
the Global Definitions node. This subroutine will accept different values of address numbers and call the
function module ADDRESS_INTO_PRINTFORM. Figure 4-6 shows the Form Routines tab.

Figure 4-4. Form Interface: tab—Tables

Figure 4-5. Global Definitions: tab—Global Data

Figure 4-6. Global Definitions: tab—Form Routines

Chapter 4 ■ SmartformS–handS-on exerCiSeS

266

The complete source lines of the subroutine are reproduced here.

FORM FORMAT_ADDRESS USING VALUE(ANRED) VALUE(ADRNR) VALUE(SPRAS)
 VALUE(LAND) ADRC LIKE ADRC ADRS LIKE ADRS.

 CLEAR: ADRC, ADRS.
 SELECT SINGLE * FROM ADRC INTO ADRC
 WHERE ADDRNUMBER = ADRNR.
 MOVE-CORRESPONDING ADRC TO ADRS.

 ADRS-ANRED = ANRED.
 ADRS-STRAS = ADRC-STREET.
 ADRS-PFACH = ADRC-PO_BOX.
 ADRS-PFORT = ADRC-PO_BOX_LOC.
 ADRS-LAND1 = ADRC-COUNTRY.
 ADRS-PSTLZ = ADRC-POST_CODE1.
 ADRS-PSTL2 = ADRC-POST_CODE2.
 ADRS-ORT01 = ADRC-CITY1.
 ADRS-ORT02 = ADRC-CITY2.
 ADRS-REGIO = ADRC-REGION.
 ADRS-SPRAS = SPRAS.
 ADRS-INLND = LAND.
 ADRS-ANZZL = 9.

 CALL FUNCTION 'ADDRESS_INTO_PRINTFORM'
 EXPORTING
 ADRSWA_IN = ADRS
 IMPORTING
 ADRSWA_OUT = ADRS
 .
ENDFORM.

The function module ADDRESS_INTO_PRINTFORM will return the vendor address formatted in the
postal convention of the recipient country in the following fields: ADRS-LINE0, ADRS-LINE1, ADRS-LINE2,
ADRS-LINE3, ADRS-LINE4, ADRS-LINE5, ADRS-LINE6, ADRS-LINE7, and ADRS-LINE8 (ADRS-LINE0…..
ADRS-LINE8).

The form consists of only the main window. We provided for 5MM margin space on the left and right,
3MM on top, and 2MM at the bottom. Figure 4-7 shows a screenshot of the tab Output Options of main
window.

Chapter 4 ■ SmartformS–handS-on exerCiSeS

267

Under Main Window, we created an element table named LFA1_TAB. To create the element table, we
selected the node of Main Window, invoked the context menu, and made the following selection: Create ➤
Table. We created a single line type for the element table named LINE1. The line type LINE1 consists of five
cells as per Table 4-1. Figure 4-8 shows the line type LINE1.

Figure 4-7. Main Window tab—Output Options

Figure 4-8. Table element—LFA1_TABLE, Line Type: LINE1

We navigated to the line type screen from the default Table Painter screen by clicking the Details button.
We can navigate back to the Table Painter screen by clicking the button Table Painter. The element table
consists of five tabs: Table, Data, Calculations, Output Options, and Conditions.

After creating the line type, we clicked the Data tab. In the Data tab, we entered the internal table to be
used by the element table (i.e., the tables parameter in Form Interface: LFA1_ADRNR_TAB). Since the tables
parameter implicitly provides you with a header line, we have specified the same name, LFA1_ADRNR_TAB,
as the work area. Figure 4-9 is a screenshot of the tab Data.

Chapter 4 ■ SmartformS–handS-on exerCiSeS

268

Next, we clicked to expand the element table node LFA1_TABLE. We do not need either a header or
footer for the element table. Hence, we clicked the node Main Area. To create the Table Line, we selected the
node Main Area, invoked the context menu, and made the following selection: Create ➤ Table Line. Under
the node Main Area, we created a Table Line with the name LINE1 to which we assigned the line type LINE1.
Figure 4-10 illustrates.

Figure 4-9. Table element—LFA1_TABLE: tab Data

Figure 4-10. Table element—LFA1_TABLE, line type LINE1

The node LINE1 will consist of the five cells we created in the line type LINE1. We changed the cell
names from their default names to ADDRESS1, ADDRESS2, and ADDRESS3 for cell numbers 1, 3, and 5,
respectively. We changed the cell names from their default names to GAP1 and GAP2 for cell numbers 2
and 4, respectively. Figure 4-11 illustrates.

Chapter 4 ■ SmartformS–handS-on exerCiSeS

269

We need to create the element text in the cells ADDRESS1, ADDRESS2, and ADDRESS3 and locate the
address output variables ADRS-LINE0…..ADRS-LINE8 in the element text of each of these nodes.

But before we output the variables, ADRS-LINE0…..ADRS-LINE8 in the element text of each of
these cells, we need to execute the function module ADDRESS_INTO_PRINTFORM. So, under the cells
ADDRESS1, ADDRESS2, and ADDRESS3, just before the node of element text, we need to create nodes
for the execution of ABAP Program Lines. We will be invoking the subroutine FORMAT_ADDRESS in the
Program Lines. We earlier located the subroutine FORMAT_ADDRESS in the Form Routines tab under
the node Global Definitions. We are calling the function module ADDRESS_INTO_PRINTFORM in the
subroutine FORMAT_ADDRESS for the vendor address to be formatted as per the recipient country’s
postal convention and return it.

To create the Program Lines, we selected the node ADDRESS1, invoked the context menu, and made
the following selection: Create ➤ Flow Logic ➤Program Lines. Figure 4-12 shows the Program Lines node
CODE1 that we created under the cell ADDRESS1.

Figure 4-11. Line type—LINE1, cells: ADDRESS1, GAP1, ADDESS2, GAP2, and ADDRESS3

Figure 4-12. Program Lines under the cell ADDRESS1

Chapter 4 ■ SmartformS–handS-on exerCiSeS

270

The input parameters are structure LFA1_ADRNR_TAB and field LAND1. The output parameters are
structures ADRS and ADRC. The subroutine invoking statement is as follows:

PERFORM FORMAT_ADDRESS USING LFA1_ADNR_TAB-ANRED1
 LFA1_ADNR_TAB-ADRNR1 LFA1_ADNR_TAB-SPRAS1
 LAND1 ADRC ADRS.

Under the cell ADDRESS1, next to the ABAP program lines node CODE1, we created the element text
named ADDRESS_TX1. To create the element text, we selected the node CODE1, invoked the context menu,
and made the following selection: Create ➤ Text. Navigating to the full screen editor of the element text
ADDRESS_TX1, we entered the lines to output the vendor address. Figure 4-13 illustrates.

A similar exercise is to be carried out under the cells ADDRESS2 and ADDRESS3.
Under the cell ADDRESS2, we created a node CODE2 of Program Lines. In the node CODE2, we entered

the subroutine invoking statement.

PERFORM FORMAT_ADDRESS USING LFA1_ADNR_TAB-ANRED2
 LFA1_ADNR_TAB-ADRNR2 LFA1_ADNR_TAB-SPRAS2
 LAND1 ADRC ADRS.

Under the cell ADDRESS2, next to the Program Lines node CODE2, we created the element text named
ADDRESS_TX2. Navigating to the full screen editor of the element text ADDRESS_TX2, we entered the same
lines that we entered as shown in Figure 4-13.

For the cell ADDRESS3, we carried out the same activities as described for the cell ADDRESS2 described
previously.

We saved the form. We performed a check and activated the form.
We created an ABAP program YCH04_01_PPRG_YCH04_01_ADR_STK with the lines as shown under

‘Source program’. We performed syntax check and activated this program.

Figure 4-13. Text in the cell: ADDRESS1

Chapter 4 ■ SmartformS–handS-on exerCiSeS

271

Following is the complete source program:

REPORT YCH04_01_DPRG_YCH04_01_ADR_STK.

**
* Address Labels for Vendors of a Specific Company Code **
**

TYPES: BEGIN OF INTER_STRU_TP,
 LIFNR TYPE LIFNR,
 ANRED TYPE ANRED,
 ADRNR TYPE ADRNR,
 SPRAS TYPE SPRAS,
 END OF INTER_STRU_TP.

TABLES: T001.

DATA: LFA1_TAB TYPE STANDARD TABLE OF YCH04_LFA1_ADRNR_STRU,
 LFA1_STRU TYPE YCH04_LFA1_ADRNR_STRU, "ABAP dictionary
 "structure
 INTER_TAB TYPE STANDARD TABLE OF INTER_STRU_TP,
 INTER_STRU TYPE INTER_STRU_TP,
 COUNTER(1) TYPE N.

**
PARAMETERS: COMP_CD TYPE KNB1-BUKRS DEFAULT 3000 VALUE CHECK.

**
START-OF-SELECTION.

SELECT SINGLE * FROM T001 WHERE BUKRS = COMP_CD.

SELECT LIFNR ANRED ADRNR SPRAS FROM YCH02_LFA1_LFB1
 INTO TABLE INTER_TAB
 WHERE BUKRS = COMP_CD.

IF LINES(INTER_TAB) = 0.
 MESSAGE S001(YCH02_MCLASS) DISPLAY LIKE 'E'."No Data Retrieved
 EXIT.
ENDIF.

SORT INTER_TAB BY LIFNR.

LOOP AT INTER_TAB INTO INTER_STRU.
 COUNTER = COUNTER + 1.
 CASE COUNTER.
 WHEN 1.
 LFA1_STRU-ANRED1 = INTER_STRU-ANRED.
 LFA1_STRU-ADRNR1 = INTER_STRU-ADRNR.
 LFA1_STRU-SPRAS1 = INTER_STRU-SPRAS.

Chapter 4 ■ SmartformS–handS-on exerCiSeS

272

 WHEN 2.
 LFA1_STRU-ANRED2 = INTER_STRU-ANRED.
 LFA1_STRU-ADRNR2 = INTER_STRU-ADRNR.
 LFA1_STRU-SPRAS2 = INTER_STRU-SPRAS.
 WHEN 3.
 LFA1_STRU-ANRED3 = INTER_STRU-ANRED.
 LFA1_STRU-ADRNR3 = INTER_STRU-ADRNR.
 LFA1_STRU-SPRAS3 = INTER_STRU-SPRAS.
 ENDCASE.
 IF COUNTER = 3.
 APPEND LFA1_STRU TO LFA1_TAB.
 COUNTER = 0.
 CLEAR LFA1_STRU.
 ENDIF.
ENDLOOP.

IF COUNTER > 0.
 APPEND LFA1_STRU TO LFA1_TAB.
ENDIF.
**
CALL FUNCTION '/1BCDWB/SF00000149' "change the FM name as
 "per the generated name

 EXPORTING
 LAND1 = T001-LAND1
 TABLES
 LFA1_ADRNR_TAB = LFA1_TAB
 EXCEPTIONS
 FORMATTING_ERROR = 1
 INTERNAL_ERROR = 2
 SEND_ERROR = 3
 USER_CANCELED = 4
 OTHERS = 5.
IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
ENDIF.

The style YCH04_01, the form YCH04_01_ADR_STK, and the source program YCH04_01_PPRG_
YCH04_01_ADR_STK are available for upload in the E-resource file for this book (www.apress.com/
9781484212345).

Output
We executed the program YCH04_01_DPRG_YCH04_01_ADR_STK. We executed the program with the
company code value equal to 3000. The output will look like that in Figures 4-14 and 4-15.

http://www.apress.com/9781484212345
http://www.apress.com/9781484212345

Chapter 4 ■ SmartformS–handS-on exerCiSeS

273

The output from our server consists of 36 pages. The output is identical to the one produced by
hands-on exercise I in Chapter 2.

Hands-on Exercise Recapitulation
In this hands-on exercise, using Smartforms, we reproduced the output of hands-on exercise I in Chapter 2.

We deployed the element table in Smartforms for the first time. The element table has three nodes:
Header, Main Area, and Footer. In this hand-on exercise, we had the opportunity to use only the node Main
Area. In the upcoming exercise, we will have the opportunity to use the other two nodes: Header and Footer.
We defined only one line type in the element table. In the upcoming exercise, we will define multiple line
types for the element table.

Figure 4-14. Output of program YCH04_01_DPRG_YCH04_01_ADR_STK—page 1/36

Figure 4-15. Output of program YCH04_01_DPRG_YCH04_01_ADR_STK—page 36/36

http://dx.doi.org/10.1007/978-1-4842-3183-8_2
http://dx.doi.org/10.1007/978-1-4842-3183-8_2

Chapter 4 ■ SmartformS–handS-on exerCiSeS

274

In this exercise, instead of using the element table, we could have used the element template. The
element template will then have to be located under the element loop. The element template could have a
single row consisting of the same five cells we located in the line type of the element table. In the element
template, we can specify the height of a cell. With the specification of the height of a cell (nine lines in this
case), we could locate the element address (instead of element text) under the cell. The Smartforms runtime
system will then internally format the address as per the postal convention of recipient country instead of
our doing so explicitly by calling the function module ADDRESS_INTO_PRINTFORM.

In demonstration exercise IV in Chapter 3, we realized that we could not produce repetitive information
across a page like we can in SAP script. If repetitive information is to be produced across a page, using SAP
script is a better option.

Hands-on exercise II—Output Purchase Orders Using
Custom Form
In this hands-on exercise, we will create a form, its corresponding driver program, and other required
workbench objects to output standard purchase orders. To repeat what we stated in Chapter 2, SAP
delivers forms for all commonly used enterprise business documents. The SAP delivered forms have their
corresponding driver programs. The various features and concepts of Smartforms forms were introduced
in Chapter 3 via a tour of the SAP delivered form for purchase orders /SMB40/MMPO_A. In real-life SAP
implementation projects, copies are made of SAP delivered forms into the Y/Z namespace. The copied
forms are then modified and customized as per requirements. A copy of SAP delivered form modified and
customized as per requirements will use the driver program associated with the original SAP delivered
form, so it is not necessary to create a new driver program. The advantages of this approach of copying and
customizing SAP delivered forms is that you do not have to create a form from scratch and do not have to
code its corresponding complex driver program.

In the present hands-on exercise, we are creating a form to output standard purchase orders, as it gives
an occasion and scope to expose you to the process of creating a complex form for a business document
from scratch as well as to introduce more features of forms. In one of the succeeding hands-on exercises,
we will copy SAP delivered form /SMB40/MMPO_A into Y namespace and customize it as per laid-out
specifications.

Hands-on Exercise—Scope and Limits
The present hands-on exercise will output just the standard purchase orders.

In the present hands-on exercise, it is assumed that the purchase orders submitted for output are new
purchase orders and not the purchase orders for which full or partial deliveries have been made.

The present hands-on exercise assumes that there is only one consignee/delivery address for all the
items of a purchase order, that there is only one delivery date for all the items of a purchase order, and
thatthere is only one term of delivery for all the items of a purchase order.

The objective of this exercise is to give you a feel of creating a complex form and its associated driver
program from scratch and deploying the form to output standard purchase orders.

The same scope and limits existed in the hands-on exercises II and III in Chapter 2. In the present
hands-on exercise, we are going to reproduce the output of hands-on exercise III in Chapter 2. That
hands-on exercise II produced purchase orders using a custom form. Hands-on exercise III in Chapter 2
also produced purchase orders using a custom form and introduced you to the process of calling an external
subroutine from within the SAP script environment. The process of calling an external subroutine from
within the SAP script environment is fairly involved and complex, so we felt that it warranted a separate
hands-on exercise. In Chapter 2, we performed two hands-on exercises to produce purchase orders using
a custom form. Since the issue of calling an external subroutine from Smartforms does not exist, we will
perform only one hands-on exercise to produce purchase orders using a custom form here.

http://dx.doi.org/10.1007/978-1-4842-3183-8_3
http://dx.doi.org/10.1007/978-1-4842-3183-8_2
http://dx.doi.org/10.1007/978-1-4842-3183-8_3
http://dx.doi.org/10.1007/978-1-4842-3183-8_2
http://dx.doi.org/10.1007/978-1-4842-3183-8_2
http://dx.doi.org/10.1007/978-1-4842-3183-8_2
http://dx.doi.org/10.1007/978-1-4842-3183-8_2

Chapter 4 ■ SmartformS–handS-on exerCiSeS

275

Output and Layout Specification
We will output standard purchase orders on DINA4 stationery in portrait mode—210MM width and 297MM
height. We will output a graphic logo in the element graphic. We will output item data in the main window.
The rest of all the data will be output in secondary windows.

There will be two page formats for the purchase order named FIRST and NEXT. The first page of a
purchase order will output with the page format FIRST; if a purchase order runs into multiple pages, all the
pages other than the first page of a purchase order will output with the page format NEXT.

The area of purchase order above the item area of page format FIRST will be like that in Figure 4-16.
The areas bounded by rectangles with rounded corners represent windows. The windows are numbered

for convenience. There is one element graphic and six secondary windows. The contents of a graphic and
windows will be as follows:

 1. The company logo is located in the graphic LOGO.

 2. The window SENDER (sender of purchase order) contains the senders’ name
and address, that is, the company code name and address.

 3. The window RECEIVER (receiver of purchase order) contains the receivers’
name and address, that is, the vendor’s name and address.

 4. The window PO_INF1 contains the following information:

•	 Document type, in our context ‘Purchase order’, since we restricted our scope to
output normal new purchase orders.

Figure 4-16. Custom purchase order page format FIRST—I

Chapter 4 ■ SmartformS–handS-on exerCiSeS

276

•	 Purchase order number and date.

•	 Contact person and to telephone.

 5. The window PO_INF2 contains vendor code and vendor person responsible.

 6. The window CONSIGNE contains the delivery plant/branch office address.

 7. The window DELI_ETC contains the following information:

•	 Delivery date

•	 Terms of delivery

•	 Terms of payment

•	 Currency

The area of the purchase order containing item header, item data, total, and so on of page format FIRST
will be like that in Figure 4-17.

Figure 4-17. Custom purchase order page format FIRST—II

 8. We are using the element table to output the item data in the main window. In
the main window, the element table will contain the column heading for item
data, item data (Data which is repeating in a page and repeating page to page)
and footer to output the total and the total expressed in text. The item data is
being output in two lines. The first line outputs item number, material code and
description. The second line outputs order quantity, units, price per unit and net
value. The header, main area and the footer of the element table are marked in
Figure 4-16.

 9. We have not located any information in the window FOOTER. You might choose
to locate some information in this window.

For the second page format NEXT, the layout of windows will be as shown in Figure 4-18.

Chapter 4 ■ SmartformS–handS-on exerCiSeS

277

The window PO_INF3 contains the purchase order number and date.
The window PAGE contains a running page number along with the total number of pages in a purchase

order. The page number will start from 1 for each purchase order. The total number of pages will be the
number of pages in a purchase order.

The page number is being output from the second page of a purchase order, the page number
information does not appear on the first page of a purchase order.

The other windows in the page format NEXT are common to the page format FIRST. The height of the
main window in the page format NEXT is greater than its corresponding window in the page format FIRST.

Output Considerations
•	 The hands-on exercise form has been created to support only one language: English.

All the text normally created as literal in the text environment will be retrieved from
data elements in the INITIALIZATION event of the form and transferred to the
text environment of the form through program symbols. This is a peculiar way of
handling the texts in a form. With one language version of a form, we will be able
to output the purchase order in multiple languages, since we are controlling the
language text through the texts of data elements. The value of the field EKKO-SPRAS
will determine the language in which the texts are to be fetched from data elements.

•	 The system on which we are executing our hands-on exercises has only two
languages installed: English and German. So this hands-on exercise driver
program has been created to accept only purchase orders in these two languages
(IF EKKO-SPRRAS <> ‘D’ AND EKKO-SPRRAS <> ‘E’ …..CONTINUE). If the system
on which you are executing the exercises has more languages installed, you can
modify the driver program to accept purchase orders of additional languages.

•	 When outputting the purchase orders, we will call the form function module from
the driver program for each document or purchase order.

Figure 4-18. Custom purchase order page format NEXT—windows layout

Chapter 4 ■ SmartformS–handS-on exerCiSeS

278

•	 At the end of outputting of all items, the ‘Total’ needs to be output in terms of
number as well as text. After the ‘Total’ is output, the output of the purchase is
completed and the commencement of output of the next purchase order if any
will start.

•	 Three addresses are being output. These are (1) sender or company code name
and address, (2) receiver or vendor name and address, and (3) consignee or
delivery address. We want the sender or company code name to output in font
type Helve and font size 28 points. This requires applying character format to the
company code name field. To be able to apply character format to the company
code name field, we have not located the senders’ data in the element address but
in a secondary window.

•	 We will output the item header and item data and item footer (located in the
element table) with grid lines. The element table provides facilities to output with
different grid line options. The facility to output the contents of the element table
with different grid line options will be described when we create the table element
in the form.

•	 The item data is output in two lines: the first line outputting item number, material
code, and description and the second line outputting order quantity, unit, price
per unit, and net value. We do not want the two lines constituting the detail of an
item to split between two pages but output on the same page, that is, provide page
protection for the two lines of item data. Thus, we will locate the element texts
corresponding to the two lines of item data to the element folder. We will enable the
check box Page Protection in the Output Options tab of the element folder.

•	 Since we want the total to be output only at the end, we will enable the check box
Only After End of Main Window in the Conditions tab of the element texts of the total.

•	 We plan to output some of the information of purchase order in font type and size
other than the default font type Courier 12, etc. Thus we created a few character
formats in the style YCH04_03. The style YCH04_03 is assigned to the form to output
custom purchase orders. This is to enable output of information in font type and size
other than the default.

Data Inputs and Data Input Considerations
The two main sources of data to output the purchase orders with a custom form are the tables EKKO
(purchasing document header) and EKPO (purchasing document item).

We will retrieve data from EKKO with the SELECT..... ENDSELECT loop. You can choose to load EKKO
data into an internal table and loop from the internal table. A SELECT-OPTIONS statement is provided to be
able to choose the purchase orders to be output.

The data relating to the company code of a purchase order being processed will be retrieved from the
tableT001.

SELECT SINGLE * FROM T001 WHERE BUKRS = EKKO-BUKRS.

The address of the company code is retrieved from the table SADR.

SELECT SINGLE * FROM SADR WHERE ADRNR = T001-ADRNR.

Chapter 4 ■ SmartformS–handS-on exerCiSeS

279

The function module ADDRESS_INTO_PRINTFORM will return ten lines of address of the company
code formatted as per the postal convention of the country of the company code which is output in the
window SENDER.

The data relating to the vendor of a purchase order being processed will be retrieved from the vendor
primary table LFA1-SELECT SINGLE * FROM LFA1 WHERE LIFNR = EKKO-LIFNR.

The supply of vendor address number through the field LFA1-ADRNR to the element address named
RECEIVER will output the vendor address as per the recipient country’s postal convention in the window
RECEIVER.

The document type (purchase Order) along with the field nomenclatures or labels for purchase order
number and date are retrieved from table T166U as follows:

SELECT SINGLE * FROM T166U WHERE BSTYP = EKKO-BSTYP AND
 BSART = EKKO-BSART AND SPRAS = EKKO-SPRAS AND DRUVO = '1'.

The ‘contact person’ and ‘to telephone’ are retrieved from table T024 as follows:

SELECT SINGLE * FROM T024 WHERE EKGRP = EKKO-EKGRP.

The terms of payment are retrieved from the table T052 as follows:

SELECT SINGLE * FROM T052 WHERE ZTERM = EKKO-ZTERM.

The function module FI_PRINT_ZTERM is used to retrieve the terms of payment text.
The relevant item data (specific fields) is being fetched from the database table EKPO into an internal

table declared referring to the ABAP dictionary structure YCH04_ITEM_STRU. Only the items belonging to
the specific purchase order being output at a time are fetched into the internal table. The function module of
the form will receive header data and its corresponding item data of one purchase order as Form Parameters.

We are using the field TXZ01 in the database table EKPO to output the material descriptions.
The consignee (deliver to plant/branch office address) is retrieved through the view field EKPO -ADRNR

from first item record of the purchase order, alternatively through EKPO -ADRN2 again alternatively from
table T001W through EKPO -WERKS. The consignee data will be retrieved for the first item of a purchase
order, assuming that it is the same for all other items in the purchase order.

The delivery date is retrieved from the table EKET as follows:

SELECT SINGLE * FROM EKET WHERE EBELN = EKPO -EBELN AND EBELP = EKPO -EBELP.

Again this will be retrieved for the first item of a purchase order, assuming that it is the same for all other
items in the purchase order.

Table 4-4 is a list of the tables with fields used. A field of a table is deemed to be used when it is
appearing in the output or occurs in subsequent WHERE condition(s).

Chapter 4 ■ SmartformS–handS-on exerCiSeS

280

The nomenclatures or labels for the fields are retrieved from data elements’ long texts using the
function module WCGW_DATA_ELEMENT_TEXT_GET. Most table fields’ existing data element texts do
not suit us; that is, the texts of these existing data elements do not correspond with the texts of proposed
output. So, for this hands-on exercise, we will use the data elements created in Chapter 2. Recall that the
data elements in Chapter 2 were created with texts in two languages: English and German. There were a total
of 16 data elements; their English and German texts are available for your use in the E-resource file for this
book (www.apress.com/9781484212345). We are using one additional data element, YCH04_EBELP, for the
field EBELP—item number. We did not output this field in hands-on exercises II and III in Chapter 2.

Table 4-4. List of Tables with the Fields

http://dx.doi.org/10.1007/978-1-4842-3183-8_2
http://dx.doi.org/10.1007/978-1-4842-3183-8_2
http://www.apress.com/9781484212345
http://dx.doi.org/10.1007/978-1-4842-3183-8_2

Chapter 4 ■ SmartformS–handS-on exerCiSeS

281

The nomenclatures or labels for fields as a rule is specified through literals in text environment of the
Smartforms form. This is the practice in all the SAP delivered forms as well as the forms we have created up
to now in Smartforms. By making the nomenclatures or labels for fields as program symbols or variables in
text form, we are making the form itself language independent.

Creation of Smartforms Form, Driver Program, and Related
Workbench Objects
To output purchase orders using a custom form, we will be creating the following workbench objects:

•	 An ABAP dictionary structure with the relevant fields of database table EKPO.

•	 A style containing character formats to enable output in different fonts and font
sizes, etc.

•	 A Smartforms form

•	 A driver program for the Smartforms form

•	 A database view involving the tables EKKO and LFA1 (created in Chapter 2). This
database view will be used in an elementary search help.

•	 An elementary search help (created in Chapter 2. This elementary search help uses
the database view consisting of tables EKKO and LFA1. This elementary search help
is being attached to the SELECT-OPTIONS field in the driver program

A description of the creation of these workbench objects follows.

ABAP Dictionary Structure YCH04_ITEM_STRU
We created an ABAP dictionary structure YCH04_ITEM_STRU containing relevant fields of the database
table EKPO. We refer to the structure to declare the internal table. This internal table will be loaded with item
data of a specific purchase order being output. The structure consists of the fields listed in Table 4-5.

Table 4-5. Fields in the Structure YCH04_ITEM_STRU

Srl. No. Field Name Data Element Srl. No. Field Name Data Element

01 EBELN EBELN 07 NETPR BPREI

02 EBELP EBELP 08 NETWR BWERT

03 MATNR MATNR 09 ADRNR ADRNR_MM

04 WERKS EWERK 10 ADRN2 ADRN2

05 MENGE BSTMG 11 TXZ01 TXZ01

06 MEINS MEINS

http://dx.doi.org/10.1007/978-1-4842-3183-8_2
http://dx.doi.org/10.1007/978-1-4842-3183-8_2

Chapter 4 ■ SmartformS–handS-on exerCiSeS

282

For the currency amount fields NETPR and NETWR, we filled the columns Reference table and Ref.
field as EKKO and WAERS. For the inventory quantity fields MENGE, we filled the columns Reference table
and Ref. field as YCH04_ITEM_STRU and MEINS. We performed the consistency check and activated the
structure.

Smartforms Style YCH04_02
With the transaction code SMARTFORMS, we created a style YCH04_02. We created a paragraph format SP
with the default values. We assigned the paragraph format SP as the standard paragraph. We created four
character formats as listed in Table 4-6.

We performed a check and activated the style YCH_04_02.

Smartforms Form YCH04_02_PORDER1
We created a form YCH04_02_PORDER1 and assigned the style YCH04_02 to the form.

Smartforms will contain three parameters in the Form Interface area. The first parameter will be an
import parameter—type EKKO—for receiving, from the driver program, the header information of the
purchase order being output. The second parameter will be an import parameter —type T001—for receiving,
from the driver program, the address number information to be used to output the sender address. The third
parameter will be a Tables parameter—like YCH04_ITEM_STRU—for receiving, from the driver program, the
item information of the purchase order being output.

The driver program will retrieve the header, item information of a purchase order, and address number
of company code and then call the function module of the form. The rest of the information required to be
output is retrieved in the Initialization event of the form itself.

Table 4-6. Character Format List in Style YCH04_02

Character Format
Name

Description Font Type/Family Font Size Bold Color

CD Helve 14 - For Document Type HELVE 14,0 On

CS For Sender Name in 16 pts HELVE 16,0 On Green

CT For Sender Name in 28 pts HELVE 28,0 On Green

HS Helve 8 – For Field
Nomenclatures

HELVE 8,0

Chapter 4 ■ SmartformS–handS-on exerCiSeS

283

Node: Form Interface

We entered the import (EKKO and T001) and tables (IIEM_TAB) parameters in the Form Interface area of the
form as shown in Figures 4-19 and 4-20.

Figure 4-20. Form Interface—Tables parameter: ITEM_TAB

Figure 4-19. Form Interface—Import parameters: EKKO, T001

Node: Global Definitions

Since so much of data other than the header and item data of a purchase order to be output is being
retrieved within the form, we need to declare data items in the Global Data tab of the Global Definitions
node. Table 4-7 lists the data items created in the Global Data tab of the Global Definitions node.

Chapter 4 ■ SmartformS–handS-on exerCiSeS

284

In the Types tab of the Global Definitions node, we entered the following:

TYPES: BEGIN OF ZBTXT_STRU_TP,
 STR(50),
 END OF ZBTXT_STRU_TP,
 ZBTXT_TAB_TP TYPE STANDARD TABLE OF ZBTXT_STRU_TP.

As all of the text and data other than the header and item data of a purchase order to be output is to
be retrieved in the Initialization event within the form, there will be considerable code in the Initialization
event tab of Global Definitions node. The source lines in the Initialization event are as follows:

DATA: STR(14) TYPE C.
TOTAL = 0. "Initialize for Purchase order

 SELECT SINGLE * FROM LFA1
 WHERE LIFNR = EKKO-LIFNR. "Get Vendor

 IF EKKO-ADRNR = ' '.
 VADRNR = LFA1-ADRNR.
 ELSE.
 VADRNR = EKKO-ADRNR.

Table 4-7. Data Items in the Global Data Tab

Name TYPE Reference Name TYPE Reference

LFA1 TYPE LFA1 YCH02_ZBTXT TYPE STRING

VADRNR TYPE LFA1-ADRNR WAERS_LT TYPE STRING

SADR TYPE SADR YCH02_MATNR TYPE STRING

ADRS TYPE ADRS YCH02_MAKTX TYPE STRING

T024 TYPE T024 YCH02_MENGE TYPE STRING

T166U TYPE T166U YCH02_MEINS TYPE STRING

YCH04_ITEM_STRU TYPE YCH04_ITEM_STRU YCH02_NETPR TYPE STRING

T001W TYPE T001W NETWR TYPE CHAR15

EKET TYPE EKET YCH02_PAGE TYPE STRING

T052 TYPE T052 YCH02_TOTAL_
NET_E

TYPE STRING

LENGTH TYPE N YCH02_INWORDS TYPE STRING

YCH02_EKNAM TYPE STRING YCH04_EBELP TYPE STRING

YCH02_EKTEL TYPE STRING ZBTXT_STRU TYPE ZBTXT_STRU_TP

YCH02_LIFNR TYPE STRING ZBTXT_TAB TYPE ZBTXT_TAB_TP

YCH02_VERKF TYPE STRING STR2 TYPE CHAR70

YCH02_CONSG TYPE STRING STR1 TYPE CHAR70

YCH02_EINDT TYPE STRING TOTAL TYPE NETWR

YCH02_INCO1 TYPE STRING PAGE TYPE NUM02

Chapter 4 ■ SmartformS–handS-on exerCiSeS

285

 ENDIF.
**
 SELECT SINGLE * FROM T166U WHERE BSTYP = EKKO-BSTYP AND
 BSART = EKKO-BSART AND SPRAS = EKKO-SPRAS AND
 DRUVO = '1'. "Get Title for Document

 SELECT SINGLE * FROM T024
 WHERE EKGRP = EKKO-EKGRP. "Get Purchasing Group
 SELECT SINGLE * FROM T052
 WHERE ZTERM = EKKO-ZTERM. "Get Payment Terms

*****Retrieve Long Texts from Data Elements*****
 PERFORM GET_TEXT_DE USING 'YCH02_EKNAM' EKKO-SPRAS YCH02_EKNAM.
 PERFORM GET_TEXT_DE USING 'YCH02_EKTEL' EKKO-SPRAS YCH02_EKTEL.
 PERFORM GET_TEXT_DE USING 'YCH02_LIFNR' EKKO-SPRAS YCH02_LIFNR.
 PERFORM GET_TEXT_DE USING 'YCH02_VERKF' EKKO-SPRAS YCH02_VERKF.
 PERFORM GET_TEXT_DE USING 'YCH02_CONSG' EKKO-SPRAS YCH02_CONSG.
 PERFORM GET_TEXT_DE USING 'YCH02_EINDT' EKKO-SPRAS YCH02_EINDT.
 PERFORM GET_TEXT_DE USING 'YCH02_INCO1' EKKO-SPRAS YCH02_INCO1.
 PERFORM GET_TEXT_DE USING 'YCH02_ZBTXT' EKKO-SPRAS YCH02_ZBTXT.
 PERFORM GET_TEXT_DE USING 'WAERS' EKKO-SPRAS WAERS_LT.

 PERFORM GET_TEXT_DE USING 'YCH04_EBELP' EKKO-SPRAS YCH04_EBELP.

 PERFORM GET_TEXT_DE USING 'YCH02_MATNR' EKKO-SPRAS YCH02_MATNR.
 PERFORM GET_TEXT_DE USING 'YCH02_MAKTX' EKKO-SPRAS YCH02_MAKTX.
 PERFORM GET_TEXT_DE USING 'YCH02_MENGE' EKKO-SPRAS YCH02_MENGE.
 PERFORM GET_TEXT_DE USING 'YCH02_MEINS' EKKO-SPRAS YCH02_MEINS.
 PERFORM GET_TEXT_DE USING 'YCH02_NETPR' EKKO-SPRAS YCH02_NETPR.
 PERFORM GET_TEXT_DE USING 'NETWR' EKKO-SPRAS NETWR.
 WRITE NETWR TO STR RIGHT-JUSTIFIED.
 NETWR = STR. " right justify text

 PERFORM GET_TEXT_DE USING 'YCH02_PAGE' EKKO-SPRAS YCH02_PAGE.
 PERFORM GET_TEXT_DE USING 'YCH02_TOTAL_NET_ETAX' EKKO-SPRAS YCH02_TOTAL_NET_E.
 PERFORM GET_TEXT_DE USING 'YCH02_INWORDS' EKKO-SPRAS
 YCH02_INWORDS.

*****Retrieve Payment Terms Text *****
 CALL FUNCTION 'FI_PRINT_ZTERM'
 EXPORTING
 I_ZTERM = EKKO-ZTERM
 I_LANGU = EKKO-SPRAS
 I_XT052U = 'X'
 I_T052 = T052
 TABLES
 T_ZTEXT = ZBTXT_TAB
.
 READ TABLE ZBTXT_TAB INTO ZBTXT_STRU INDEX 1.

Chapter 4 ■ SmartformS–handS-on exerCiSeS

286

*****Company Code Name & Address *****
 SELECT SINGLE * FROM SADR WHERE ADRNR = T001-ADRNR.
 "Get Address of Company Cd
 SADR-ANRED = ' '. "No Title for Company Code Name
 CLEAR ADRS.
 MOVE-CORRESPONDING SADR TO ADRS.

 CALL FUNCTION 'ADDRESS_INTO_PRINTFORM'
 EXPORTING
 ADRSWA_IN = ADRS
 IMPORTING
 ADRSWA_OUT = ADRS
 .

 LENGTH = STRLEN(ADRS-LINE0).

The input parameters to the Initialization event are EKKO and T001.
Table 4-8 lists the output parameters to the Initialization event.

Table 4-8. Output Parameters—Initialization Event

Srl. No. Parameter Srl. No. Parameter

01 TOTAL 16 YCH02_MAKTX

02 LFA1 17 YCH02_MENGE

03 T166U 18 YCH02_MEINS

04 T024 19 YCH02_NETPR

05 YCH02_EKNAM 20 NETWR

06 T052 21 YCH02_PAGE

07 YCH02_EKTEL 22 YCH02_TOTAL_NET_E

08 YCH02_LIFNR 23 YCH02_INWORDS

09 YCH02_VERKF 24 ZBTXT_TAB

10 YCH02_CONSG 25 ZBTXT_STRU

11 YCH02_EINDT 26 SADR

12 YCH02_INCO1 27 ADRS

13 YCH02_ZBTXT 28 LENGTH

14 WAERS_LT 29 YCH04_EBELP

15 YCH02_MATNR 30 VADRNR

Chapter 4 ■ SmartformS–handS-on exerCiSeS

287

There are two subroutines: (1) retrieve text from data elements and (2) convert the total currency
amount into text. We have located the two subroutines in the Form Routines tab of the Global Definitions
node. The source lines are as follows:

*****Subroutine to Retrieve Long Texts from Data Elements *****

FORM GET_TEXT_DE USING VALUE(DE_NAME) VALUE(LANG) RET_TEXT.
DATA: LTEXT TYPE SCRTEXT_L.

 CALL FUNCTION 'WCGW_DATA_ELEMENT_TEXT_GET'
 EXPORTING
 I_DATA_ELEMENT = DE_NAME
 I_LANGUAGE = LANG
 IMPORTING
 E_SCRTEXT_L = LTEXT
 .

RET_TEXT = LTEXT.
ENDFORM.

***** Convert TOTAL into Text *****

FORM CONV_TOTAL_INTO_TEXT USING VALUE(AMOUNT) VALUE(SPRAS)
 VALUE(WAERS) STRING1 STRING2.

DATA: STR(140) TYPE C,
 STR_TAB TYPE STANDARD TABLE OF CHAR70,
 SPELL TYPE SPELL,
 LEN TYPE I,
 SAP_WAERS TYPE TCURC-WAERS,
 CURR_CD TYPE TCURC-WAERS,
 ISO_WAERS TYPE TCURC-ISOCD.

SAP_WAERS = WAERS.
* Convert SAP currency code to ISO currency code
**
CALL FUNCTION 'CURRENCY_CODE_SAP_TO_ISO'
 EXPORTING
 SAP_CODE = SAP_WAERS
 IMPORTING
 ISO_CODE = ISO_WAERS
 EXCEPTIONS
 NOT_FOUND = 1
 OTHERS = 2
 .
IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 EXIT.

Chapter 4 ■ SmartformS–handS-on exerCiSeS

288

ENDIF.
CURR_CD = ISO_WAERS.
* Call Function Module SPELL_AMOUNT

CALL FUNCTION 'SPELL_AMOUNT'
 EXPORTING
 AMOUNT = AMOUNT
 CURRENCY = CURR_CD
 FILLER = ' '
 LANGUAGE = SPRAS
 IMPORTING
 IN_WORDS = SPELL
 EXCEPTIONS
 NOT_FOUND = 1
 TOO_LARGE = 2
 OTHERS = 3.

IF SY-SUBRC = 0.

 CONCATENATE SPELL-WORD ISO_WAERS SPELL-DECIMAL
 INTO STR SEPARATED BY SPACE.
ELSE.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 EXIT.
ENDIF.

* Split STR into Two Lines

CALL FUNCTION 'YCH02_01_SPLIT_STRING'
 EXPORTING
 STRING_TO_SPLIT = STR
 TABLES
 STABLE = STR_TAB
 EXCEPTIONS
 IMPORT_PARAMETER_TYPE_INVALID = 1
 RETURN_TABLE_ELEMENT_NOT_TYPEC = 2
 OTHERS = 3.
IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 EXIT.
ENDIF.

READ TABLE STR_TAB INTO STRING1 INDEX 1.

READ TABLE STR_TAB INTO STRING2 INDEX 2.

Chapter 4 ■ SmartformS–handS-on exerCiSeS

289

For fields of ABAP dictionary types CURR (currency amounts) and QUAN (inventory quantities) defined
in the Global Data tab, we have to specify the corresponding ABAP dictionary types CUKY (currency key)
and UNIT (unit of measure) This is specified in the Currency/Quant. Fields tab of Global Definitions node.

In the Global Data tab, we declared three fields of type CURR: TOTAL, YCH04_ITEM_STRU-NETPR,
and YCH04_ITEM_STRU-NETWR one field of type QUAN: YCH04_ITEM_STRU-MENGE.

Figure 4-21 shows the corresponding type CUKY fields and UNIT field specified in the Currency/Quant.
Fields tab.

Table 4-9. Page Format FIRST—Layout of Windows

Window Name Dimensions Contents

1. LOGO Left margin: 5.00MM
Upper margin: 5.00MM
Window width: 46.64MM
Window height: 29.81MM

Company Logo
‘YCH01_COMPANY_LOGO’ OBJECT GRAPHICS
ID
BMAP TYPE BCOL

2. SENDER Left margin: 46.00MM
Upper margin: 5.00MM
Window width: 145.00MM
Window height: 30.00MM

Company code name & address
&ADRS-LINE1&….. &ADRS-LINE9&

3. RECEIVER Left margin: 5.00MM
Upper margin: 35.00MM
Window width: 115.00MM
Window height: 30.00MM

&EKKO-ADRNR(K)&, etc.

(continued)

Figure 4-21. Global Definitions—Currency/Quant. fields tab

These were all the entries created in Form Interface and the Global Definitions nodes. We next proceed
to the creations in Pages and Windows nodes.

Node: Pages and Windows

We renamed the default page format created by the Smartforms maintenance system as FIRST.
We created the page format NEXT. We assigned the next page for page format FIRST as NEXT. And we

assigned the next page for page format NEXT as NEXT.
For page format FIRST, we created windows as per the entries in Table 4-9.

Chapter 4 ■ SmartformS–handS-on exerCiSeS

290

Table 4-9. (continued)

Window Name Dimensions Contents

4. PO_INF1 Left margin: 120.00MM
Upper margin: 35.00MM
Window width: 85.00MM
Window height: 30.00MM

&T166U-DRTYP& &T166U-DRNUM&
&EKKO-EBELN& &EKKO-BEDAT&
&YCH02_EKNAM& &YCH02_EKTEL&
&T024-EKNAM& &T024-EKTEL&

5. PO_INF2 Left margin: 5.00MM
Upper margin: 65.00MM
Window width: 200.00MM
Window height: 20.00MM

&YCH02_LIFNR(30) & &YCH02_VERKF&
&EKKO-LIFNR(K)& &EKKO-VERKF&

6. CONSIGNE Left margin: 5.00MM
Upper margin: 85.00MM
Window width: 115.00MM
Window height: 30.00MM

&YCH02_CONSG&
&YCH02_EKPO_MAKT-ADRNR(K)& or
&YCH02_EKPO_MAKT-ADRN2(K)& or
&SADR-ANRED&….. etc.

7. DELI_ETC Left margin: 120.00MM
Upper margin: 85.00MM
Window width: 85.00MM
Window height: 30.00MM

&YCH02_EINDT& &EKET-EINDT&
&YCH02_INCO1& &EKKO-INCO1&
&YCH02_ZBTXT&
&ZBTXT_STRU&
&WAERS& &EKKO-WAERS&

8. MAIN Left margin: 5.00MM
Upper margin: 120.00MM
Window width: 200.00MM
Window height: 160.00MM

&YCH04_EBELP&
&YCH02_MATNR& &YCH02_MAKTX&
&YCH02_MENGE(R14)& &YCH02_MEINS(5)&
&YCH02_NETPR(R14)& &NETWR(R15)&

&YCH04_ITEM_STRU-EBELP(4)&
&YCH04_ITEM_STRU-MATNR(18K)&
&YCH04_ITEM_STRU-TXZ01(40)&
&YCH04_ITEM_STRU-MENGE(14)&
&YCH04_ITEM_STRU-MEINS(5)&
&YCH04_ITEM_STRU -NETPR(14)&
&YCH04_ITEM_STRU-NETWR(15)&

&YCH02_TOTAL_NET_E& &TOTAL&
&YCH02_IN_WORDS& &STR1& &STR2&

9. FOOTER Left margin: 5.00MM
Upper margin: 282.00MM
Window width: 200.00MM
Window height: 10.00MM

Footer text if any

For page format NEXT, we created windows as per the entries in Table 4-10.

Chapter 4 ■ SmartformS–handS-on exerCiSeS

291

The page formats FIRST and NEXT, when viewed in the Form Painter, will look as in
Figures 4-22 and 4-23.

Table 4-10. Page Format NEXT—Layout of Windows

Window Name Dimensions Contents

1. RECEIVER Left margin: 5.00MM
Upper margin: 5.00MM
Window width: 115.00MM
Window height: 30.00MM

&EKKO-ADRNR(K)& etc.

2. PO_INF3 Left margin: 120.00MM
Upper margin: 5.00 MM
Window width: 65.00MM
Window height: 30.00MM

&YCH02_LIFNR(30)& &YCH02_VERKF&
&EKKO-LIFNR(K)& &EKKO-VERKF&

3. PAGE Left margin: 185MM
Upper margin: 5.00MM
Window width: 20MM
Window height: 30MM

&YCH02_PAGE&
&PAGE(R2)&/&SAPSCRIPT-
FORMPAGES(C2)&

4. MAIN Left margin: 5.00MM
Upper margin: 35.00MM
Window width: 200.00MM
Window height: 245.00MM

&YCH04_EBELP&
&YCH02_MATNR& &YCH02_MAKTX&
&YCH02_MENGE(R14)& &YCH02_
MEINS(5)&
&YCH02_NETPR(R14)& &NETWR(R15)&

&YCH04_ITEM_STRU-EBELP(4)&
&YCH04_ITEM_STRU-TXZ01(18K)&
&YCH04_ITEM_STRU-MAKTX(40)&
&YCH04_ITEM_STRU-MENGE(14)&
&YCH04_ITEM_STRU-MEINS(5)&
&YCH04_ITEM_STRU -NETPR(14)&
&YCH04_ITEM_STRU-NETWR(15)&

&YCH02_TOTAL_NET_E& &TOTAL&
&YCH02_IN_WORDS& &STR1& &STR2&

5. FOOTER Left margin: 5.00MM Upper margin:
282.00MM
Window width: 200.00MM
Window height: 10.00MM

Footer text if any

Chapter 4 ■ SmartformS–handS-on exerCiSeS

292

Figure 4-22. Page Format FIRST—view in Form Painter

Figure 4-23. Page Format NEXT—view in Form Painter

Chapter 4 ■ SmartformS–handS-on exerCiSeS

293

We will start creating further elements in the windows of the two page formats.

Node: Page Format FIRST

We inserted the element graphic named LOGO_GRAPHIC in the secondary window named LOGO. We
could have located the element graphic directly on the page format FIRST instead of creating the secondary
window LOGO and locating the element graphic in the window as we have done. Figure 4-24 is a screenshot
of the General Attributes tab of the graphic element LOGO_GRAPHIC.

Figure 4-24. Graphic Element LOGO_GRAPHIC in window LOGO—tab: General Attributes

The image from the SAP document server named YCH01_COMPANY_LOGO is assigned to the field
Name. The image YCH01_COMPANY_LOGO was imported into the SAP document server in Chapter 1.

Since, we want the sender’s name in larger font than the other address lines of the sender, we could
not insert the element address directly into the window SENDER. As in Chapter 2, we are retrieving the
company code address from the database table SADR, calling the function module ADDRESS_INTO_
PRINTFORM to convert and return the address formatted as per the postal convention of the company
code country. We are determining the length of the company code name. The code for the retrieval of
company code address, its formatting, and determining the length of company code name are located in
the Initialization event of the form.

Depending on the length of company code name, we want to apply different character formats to the
output of company code name. If the company code name is greater than 15 characters, we are applying the
character format CS—smaller font size, 16 points; if the length of the company code name is 15 characters or
less, we are applying the character format CT—larger font size, 28 points.

The process of testing a condition and applying a different character format to the output, depending on
the testing condition, is implemented with the element alternative. The element alternative is created with
the following context menu option: Create ➤ Flow Logic ➤ Alternative.

In the window SENDER, we created the element alternative named CONDITION1. Figure 4-25
illustrates.

http://dx.doi.org/10.1007/978-1-4842-3183-8_1
http://dx.doi.org/10.1007/978-1-4842-3183-8_2

Chapter 4 ■ SmartformS–handS-on exerCiSeS

294

The condition we created is LENGTH > 15. Nodes are generated for the true condition and false
condition. In the true condition node, we created the element text named SENDER_TX1 to output the
company code name with character format CS—smaller font size.

In the false condition node, we created the element text named SENDER_TX2 to output the company
code name with character format CT—larger font size.

Figures 4-26 and 4-27 show screenshots of SENDER_TX1 and SENDER_TX2.

The rest of the nine address lines of company code are located in the element text named SENDER_TX,
next to the node FALSE.

We inserted the element address named RECEIVER_ADDRESS in the secondary window named
RECEIVER. We could have located the element address directly on the page format FIRST instead of creating
the secondary window RECEIVER and locating the element address in the window as we have done.
Figure 4-28 is a screenshot of the General Attributes tab of the element address named RECEIVER_ADDRESS:

Figure 4-25. Element Alternative—Node Conditions

Figure 4-26. Element Alternative—text: SENDER_TX1

Figure 4-27. Element Alternative—text: SENDER_TX2

Chapter 4 ■ SmartformS–handS-on exerCiSeS

295

The value of the VADRNR specified in the field Address Number is derived in the Initialization event.
In the secondary window PO_INF1, we located two text elements: PO_INF11_TX and PO_INF12_TX.

Figures 4-29 and 4-30 are screenshots of these text elements.

Figure 4-28. Element address RECEIVER_ADDRESS—tab: General Attributes

Figure 4-29. Window PO_INF1—text: PO_INF11_TX

Figure 4-30. Window PO_INF1—text: PO_INF12_TX

Chapter 4 ■ SmartformS–handS-on exerCiSeS

296

The text in PO_INF11_TX is <CD>&T166U-DRTYP&.</>
The text in PO_INF12_TX is as follows:

*
* <HS> &T166U-DRNUM&</>
* &EKKO-EBELN&&' / 'EKKO-BEDAT&
* <HS> &YCH02_EKNAM&&' / 'YCH02_EKTEL&</>
* &T024-EKNAM&&' / 'T024-EKTEL&

In the secondary window PO_INF2, we located one text element: PO_INF2_TX. Figure 4-31 is a
screenshot of the element text.

The text in PO_INF2_TX is as follows:

* <HS> &YCH02_LIFNR(30)&,,</>,,,,,,,,,,,,,,<HS>&YCH02_VERKF&</>
* &EKKO-LIFNR(K)& ,,,,,,,,,,,,,,,,,,&EKKO-VERKF&

As per our specification, we are assuming that the consignee and delivery date are the same for all the
items. We are deriving the consignee address and delivery date from the first item of a purchase order. In the
window CONSIGNE, we created a node of program lines named GET_CONSIGNEE_CODE and located the
following ABAP program lines:

READ TABLE ITEM_TAB INTO YCH04_ITEM_STRU INDEX 1.

SELECT SINGLE * FROM EKET WHERE
 EBELN = YCH04_ITEM_STRU-EBELN AND
 EBELP = YCH04_ITEM_STRU-EBELP."Get Dlvry. Date
CLEAR: SADR, ADRS.
 SELECT SINGLE * FROM T001W
 WHERE WERKS = YCH04_ITEM_STRU-WERKS.
 MOVE-CORRESPONDING T001W TO SADR."Get Consignee/Delivery Address
 MOVE-CORRESPONDING SADR TO ADRS.

CALL FUNCTION 'ADDRESS_INTO_PRINTFORM'
 EXPORTING
 ADRSWA_IN = ADRS
 IMPORTING
 ADRSWA_OUT = ADRS.

Figure 4-31. Window PO_INF2—text: PO_INF2_TX

Chapter 4 ■ SmartformS–handS-on exerCiSeS

297

The input parameter to the code is item_tab.
The output parameters to the code are T001W, ADRS, YCH04_ITEM_STRU, and EKET SADR.
The consignee address is derived and output as follows:

•	 If ADRNR is a valid address number, the address is derived and formatted by
supplying ADRNR to the element address named CONSIGNEE_ADDRESS1.

•	 If ADRNR is not a valid address number and ADRN2 is a valid address number, the
address is derived and formatted by supplying ADRN2 to the element address named
CONSIGNEE_ADDRESS2.

•	 If neither ADRNR nor ADRN2 is a valid address number, the address is derived from
the plant code YCH04_ITEM_STRU-WERKS; the foregoing ABAP code drives the
address, etc.

We have located the element alternative named CONSIGNEE_CONDITION1 in the window
CONSIGNE. We specified in this element alternative, the following condition: YCH04_ITEM_STRU-
ADRNR NE ‘ ’. Figure 4-32 illustrates.

Under the node true, we inserted the element address named CONSIGNEE_ADDRESS1 to which the
address number YCH04_ITEM_STRU-ADRNR was supplied. Figure 4-33 illustrates.

Figure 4-32. Window CONSIGNE—element alternative: CONSIGNEE_CONDITION1

Figure 4-33. Window CONSIGNE—element address: CONSIGNEE_ADDRESS1

Chapter 4 ■ SmartformS–handS-on exerCiSeS

298

Under the node FALSE, we inserted the element address named CONSIGNEE_ADDRESS2 to which the
address number YCH04_ITEM_STRU-ADRN2 was supplied. In the Conditions tab of the element address we
inserted the following condition: YCH04_ITEM_STRU-ADRN2 NE ‘ ’. Figure 4-34 illustrates.

Next to element alternative, we created a text node named CONSIGNEE_TX. This text node contains
the ten lines of address derived from the plant code YCH04_ITEM_STRU-WERKS—ADRS-LINE0…..ADRS-
LINE9. In the Conditions tab of the element text named CONSIGNEE_TX, we inserted the compound
condition: YCH04_ITEM_STRU-ADRNR EQ ‘ ’ AND YCH04_ITEM_STRU-ADRN2 EQ ‘ ’. Figure 4-35
illustrates.

We could have implemented the output of consignee address without the deployment of the element
alternative. But, we wanted to demonstrate the use of the element alternative once more.

Figure 4-34. Window CONSIGNE—element address: CONSIGNEE_ADDRESS2

Figure 4-35. Window CONSIGNE—element text: CONSIGNEE_TX, Conditions tab

Chapter 4 ■ SmartformS–handS-on exerCiSeS

299

In the window DELI_ETC, we created the element text named DELI_ETC_TX. We entered the following
text in the element text named DELI_ETC_TX:

* <HS>&YCH02_EINDT&</><HS>:</> &EKET-EINDT&
* <HS>&YCH02_INCO1&</><HS>:</> &EKKO-INCO1&
* <HS>&YCH02_ZBTXT&</>
* &ZBTXT_STRU-STR&
*
* <HS>&WAERS_LT&</><HS>:</> &EKKO-WAERS&

We plan to output the item information of the purchase order in the element table. We plan to output
(a) the item column headings in the header area of the element table, (b) the item data in the main area of
the element table, and (c) the purchase order total amount expressed in numbers and text in the footer area
of the element table (refer to Figure 4-17).

We need to identify the line types to be created in the element table. To output the item number,
material number, or code and description, we need one line type named, say, LINE1. To output the ordered
quantity, unit of measure, price per unit, and net value we need one line type named, say, LINE2.

We can adopt these line types, LINE1 and LINE2, for the column headings of item data as well.
We need one line type to output the total amount with its nomenclature named as FLINE1 and one line

type to output the total amount expressed in numbers and text named as FLINE2.
To sum up, we will create four line types in the element table.
We created the element table named TABLE_ITEMS in the main window. We specified the Table Width

to be the same as Main Window width: 200MM.
In the element table TABLE_ITEMS, we navigated to the screen of line types by clicking the button

Details. On the screen of line types, we created the four line types: LINE1, LINE2, FLINE1, and FLINE2.
Figure 4-36 shows a screenshot of line types LINE1 and LINE2:

Figure 4-36. Table TABLE_ITEMS—line types: LINE1, LINE2

As shown in Figure 4-36, line type LINE1 will accommodate the fields EBELP, MATNR, and TXZ01. It
will correspond to the first line of item data. Line type LINE2 will accommodate the fields MENGE, MEINS,
NETPR, and NETWR. It will correspond to the second line of item data.

We specified dimensions of all of line type cells in millimeters (MM).
We will use the line types LINE1 and LINE2 to output the column headings in the header as well as the

item data of the element table.
Figure 4-37 is a screenshot of line types FLINE1 and FLINE2:

Chapter 4 ■ SmartformS–handS-on exerCiSeS

300

Having created the requisite line types, we proceeded to create table lines under the nodes header, main
area, and footer of the element table TABLE_ITEMS.

The header text or column headings of item data nust appear on each page of a purchase order. The default
settings will ensure this. The Output Options tab of the node header contains check boxes: At Start of Table and At
Page Break. These two check boxes enable you to control the appearance of column headings of item data.

Starting with the node header, we created the table line HROW1 to which we assigned the line type
LINE1. The table line HROW1 will consist of three cells. Next, again under the node header, next to HROW1,
we created the table line HROW2 to which we assigned the line type LINE2. The table line HROW2 will
consist of five cells inclusive of the first cell to create a gap.

Under the table line HROW1, we renamed the cells EBELPH, MATNRH, and MAKTXH. Under the table
line HROW2, we renamed the cells GAP, MENGEH, MEINSH, NETPRH, and NETWRH.

Under each of cells EBELPH, MATNRH, and MAKTXH, we created the elements text named EBELPH_
TX, MATNRH_TX, and MAKTXH_TX. We located the variables &YCH04_EBELP&, &YCH02_MATNR&, and
&YCH02_MAKTX& in the respective texts.

Under each of cells MENGEH, MEINSH, NETPRH, and NETWRH, we created the elements text named
MENGEH_TX, MEINSH_TX, NETPRH_TX, and NETWRH_TX. We located the variables &YCH02_MENGE&,
&YCH02_MEINS&, &YCH02_NETPR&, and &YCH02_NETWR& in the respective texts. Figure 4-38 is a
screenshot of the tree structure of the node header of element table TABLE_ITEMS.

Figure 4-37. Table TABLE_ITEMS—line types: FLINE1, FLINE2

Figure 4-38. Table TABLE_ITEMS—tree structure of node: Header

Chapter 4 ■ SmartformS–handS-on exerCiSeS

301

This completes the tasks in the header of the element table TABLE_ITEMS.
Under the node main area, we created the table line ROW1 to which we assigned the line type LINE1.

The table line ROW1 will consist of three cells. Again, under the node main area, we created the table line
ROW2 to which we assigned the line type LINE2. The table line ROW2 will consist of five cells inclusive of the
first cell to create a gap.

Under the table line ROW1, we renamed the cells EBELP, MATNR, and MAKTX. Under the table line
ROW2, we renamed the cells MENGE, MEINS, NETPR, and NETWR.

Under each of cells EBELP, MATNR, and MAKTX, we created the elements text named EBELP_TX,
MATNR_TX, and MAKTX_TX. We located the variables &YCH04_ITEM_STRU-EBELP(5)&, &YCH04_ITEM_
STRU-MATNR(K18)&, and &YCH04_ITEM_STRU-TXZ01(40)& in the respective texts.

Under each of cells MENGE, MEINS, NETPR, and NETWR, we created the elements text named
MENGE_TX, MEINS_TX, NETPR_TX, and NETWR_TX. We located the variables &YCH04_ITEM_STRU-
MENGE(14)&, &YCH04_ITEM_STRU-MEINS(5)&, &YCH04_ITEM_STRU-NETPR(14)&, and &YCH04_
ITEM_STRU-NETWR(15)& in the respective texts.

To sum or total the net value of individual items, we created a node of program lines named TOTAL_
CODE under the text node NETWR_TX. The TOTAL_CODE input parameter is YCH04_ITEM_STRU-NETWR
and the output parameter is TOTAL. We entered the following ABAP statement:

TOTAL = TOTAL + YCH04_ITEM_STRU-NETWR.

Figure 4-39 is a screenshot of the tree structure of the node main area of element table TABLE_ITEMS.

Figure 4-39. Table TABLE_ITEMS—tree structure of node: Main Area

This completes the tasks in the main area of the element table TABLE_ITEMS.
We selected the node footer of the element table TABLE_ITEMS. We reserved five lines for output of the

table footer. We enabled the check box End of Table to indicate that the footer be output only at the end of the
item data, that is, the end of the table. Figure 4-40 shows the footer node.

Chapter 4 ■ SmartformS–handS-on exerCiSeS

302

Under the node footer, we created the table line FROW1 to which we assigned the line type FLINE1. The
table line FROW1 will consist of two cells. Next, again under the node footer, we created the table line FROW2
to which we assigned the line type FLINE2. The table line FROW2 will consist of two cells.

Under the table line FROW1, we renamed the cells TOTAL and TOTAL_AMT. Under the table line
FROW2, we renamed the cells IN_WORDS and IN_WORDS_TEXT.

Under each of cells TOTAL and TOTAL_AMT, we created the elements text named TOTAL_TX and
TOTAL_AMT_TX. We entered the text ,,,,,,,,,,&YCH02_TOTAL_NET_E& and &TOTAL(17)& in the texts
TOTAL_TX and TOTAL_AMT_TX, respectively.

Under the table line FROW2, we renamed the cells IN_WORDS and IN_WORDS_TEXT.
Under the cell IN_WORDS, we created the element text named IN_WORDS_TX. We entered the text

&YCH02_INWORDS& in the text IN_WORDS_TX.
Under the cell IN_WORDS_TEXT, we created the element program lines named CONV_TEXT_CODE.

We entered the following ABAP program lines in the node CONV_TEXT_CODE:

PERFORM CONV_TOTAL_INTO_TEXT USING TOTAL EKKO-SPRAS EKKO-WAERS
 STR1 STR2.

Input parameters are TOTAL, EKKO-SPRAS and EKKO-WAERS.
Output parameters are STR1 and STR2.
This is an invocation of the subroutine CONV_TOTAL_INTO_TEXT located in the form routines to

convert total amount into text.
Under the cell IN_WORDS_TEXT, we created the element text named IN_WORDS_TEXT_TX. We

entered the following text in the text IN_WORDS_TEXT_TX:

&STR1&
&STR2&

Figure 4-41 is a screenshot of the tree structure of the node Footer of element table TABLE_ITEMS.

Figure 4-40. Table TABLE_ITEMS—Footer settings

Chapter 4 ■ SmartformS–handS-on exerCiSeS

303

This completes the tasks in the footer of the element table TABLE_ITEMS as well as in the page format
FIRST.

Node: Page Format NEXT

In the page format NEXT, there are two windows—PO_INF3 and PAGE—which differ from the page format
FIRST. We need to create or insert elements into these two windows only. The other windows in the page
format NEXT which are common to the windows in page format FIRST will already contain elements we
created earlier.

In the window PO_INF3, we created the element text named PO_INF3_TX. We entered the following
text in the element text named PO_INF3_TX:

*
*
* <HS>&T166U-DRNUM&</>
* &EKKO-EBELN& &' / 'EKKO-BEDAT&

In the window PAGE, we created the element program lines named ASSIGN_PAGE. We entered the
following single line in the element program lines named ASSIGN_PAGE:

PAGE = SFSY-PAGE.

In the window PAGE, under the node ASSIGN_PAGE we created the element text named PAGE_TX. We
entered the following text in the element text named PAGE_TX:

* &YCH02_PAGE&
* &PAGE(Z)&/&SFSY-FORMPAGES(CZ2)&

The field PAGE is defined in Global Data area as type NUM02. The field PAGE was assigned the value of
SFSY-PAGE for output alignment purpose.

After creating the form elements as described in the preceding pages, we saved, performed a
consistency check, and activated the form.

Figure 4-41. Table TABLE_ITEMS—tree structure of node: Footer

Chapter 4 ■ SmartformS–handS-on exerCiSeS

304

Driver Program YH04_02_DPRG_YCH04_02_PORDER for Smartforms Form:
YCH04_02_PORDER
We created an ABAP program YCH04_02_DPRG_YCH04_02_PORDER. This will be the driver program for
the form YCH04_02_PORDER. The source lines of the driver program is as follows:

REPORT YCH04_02_DPRG_YCH04_02_PORDER.

* Driver Program - Custom Purchase Order (Form:YCH04_02_PORDER) *

TABLES: EKKO, "Purchasing Doc Header
 T001. "Company Code

DATA: ITEM_TAB TYPE STANDARD TABLE OF YCH04_ITEM_STRU, "PO Items
 FORM_NAME TYPE TDSFNAME VALUE 'YCH04_02_PORDER', "Form Name
 FM_NAME TYPE RS38L_FNAM, "Function Module Name
 CONTROLS TYPE SSFCTRLOP, "Parameter to Form
 PCNT TYPE I. "Counter for Number of POS Output

SELECT-OPTIONS PO_NOS FOR EKKO-EBELN MATCHCODE OBJECT
 YCH02_01_EKKO_LFA1_SH.

********************Fill Selection Table ************

INITIALIZATION.
PO_NOS-SIGN = 'I'.
PO_NOS-OPTION = 'EQ'.
PO_NOS-LOW = '4500004823'.
APPEND PO_NOS TO PO_NOS.

PO_NOS-LOW = '4500009520'.
APPEND PO_NOS TO PO_NOS.

START-OF-SELECTION.

CONTROLS-NO_OPEN = 'X'.
CONTROLS-NO_CLOSE = 'X'.
CONTROLS-NO_DIALOG = ' '.
CONTROLS-PREVIEW = 'X'.

 CALL FUNCTION 'SSF_OPEN'
 EXPORTING
 CONTROL_PARAMETERS = CONTROLS
 EXCEPTIONS
 FORMATTING_ERROR = 1
 INTERNAL_ERROR = 2
 SEND_ERROR = 3

Chapter 4 ■ SmartformS–handS-on exerCiSeS

305

 USER_CANCELED = 4
 OTHERS = 5.
 IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 ENDIF.
**

CALL FUNCTION 'SSF_FUNCTION_MODULE_NAME'
 EXPORTING
 FORMNAME = FORM_NAME
 IMPORTING
 FM_NAME = FM_NAME
 EXCEPTIONS
 NO_FORM = 1
 NO_FUNCTION_MODULE = 2
 OTHERS = 3.
IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
ENDIF.

*****Main Loop *****

SELECT * FROM EKKO WHERE EBELN IN PO_NOS.

 IF (EKKO-SPRAS <> 'D' AND EKKO-SPRAS <> 'E') OR
 EKKO-BSTYP <> 'F' OR (EKKO-BSART <>'NB'
 AND EKKO-BSART <> 'PO').
 CONTINUE.
 ENDIF.

 SELECT SINGLE * FROM T001
 WHERE BUKRS = EKKO-BUKRS. "Get Company Code

 SELECT EBELN EBELP MATNR WERKS MENGE MEINS NETPR NETWR ADRNR
 ADRN2 TXZ01 FROM EKPO
 INTO TABLE ITEM_TAB "Load itab from EKPO
 WHERE EBELN = EKKO-EBELN AND BUKRS = EKKO-BUKRS.

 CALL FUNCTION FM_NAME
 EXPORTING
 CONTROL_PARAMETERS = CONTROLS
 EKKO = EKKO
 T001 = T001
 TABLES
 ITEM_TAB = ITEM_TAB
 EXCEPTIONS
 FORMATTING_ERROR = 1

Chapter 4 ■ SmartformS–handS-on exerCiSeS

306

 INTERNAL_ERROR = 2
 SEND_ERROR = 3
 USER_CANCELED = 4
 OTHERS = 5.
 IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 ENDIF.

 PCNT = PCNT + 1.

ENDSELECT.
**

IF PCNT = 0.
 MESSAGE S000(YCH02_MCLASS) DISPLAY LIKE 'W'."No Data Processed
ELSE.

 CALL FUNCTION 'SSF_CLOSE'
 EXCEPTIONS
 FORMATTING_ERROR = 1
 INTERNAL_ERROR = 2
 SEND_ERROR = 3
 OTHERS = 4.
 IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 ENDIF.
ENDIF.

We are not calling the function module corresponding to the Smartforms form directly. We are calling
the function module SSF_FUNCTION_MODULE_NAME and supplying it the name of the form in the field
FORM_NAME; the function module returns the name of the function module corresponding to the form in
the field FM_NAME. We are then using the field FM_NAME to call the function module corresponding to the
form. Henceforth, this will be the practice in all our subsequent hands-on exercises.

The function modules SSF_OPEN and SSF_CLOSE are used to open and close the spool file explicitly.
When you call the function module corresponding to a Smartforms form without the formal parameter
CONTROL_PARAMETERS, the spool file is opened implicitly. Correspondingly, when you exit the function
module of a Smartforms form, the spool file is closed implicitly. In our current driver program, we are calling
the function module corresponding to a Smartforms form repeatedly in a loop. We do not want separate
spool files to be created for each purchase order output. Hence we are issuing explicit opening and closing of
spool files through the function modules SSF_OPEN (once before the looping commences) and SSF_CLOSE
(once after the loop processing is over), respectively. When you set the fields NO_OPEN and NO_CLOSE
of the structure CONTROLS to 'X' (formal parameter CONTROL_PARAMETERS), the implicit opening and
closing of the spool file is suppressed.

Chapter 4 ■ SmartformS–handS-on exerCiSeS

307

Within the program, we are processing purchasing documents fulfilling the following conditions:

•	 Language key of purchasing documents equal to D or E.

•	 Purchasing document category (field BSTYP) is purchase order. – BSTYP value equal
to F.

•	 Purchasing document types (field BSART) is standard purchase order. – BSART value
equal to NB or PO.

Purchasing documents not fulfilling these conditions are bypassed.

IF (EKKO-SPRAS <> 'D' AND EKKO-SPRAS <> 'E') OR EKKO-BSTYP <> 'F'
 OR (EKKO-BSART <>'NB' AND EKKO-BSART <> 'PO').
 CONTINUE.
 ENDIF.

You can incorporate these conditions in WHERE clause itself if you desire to do so.
If we select purchasing documents through the search help attached to the SELECT-OPTIONS field

PO_NOS, we are assured of its processing or outputting. But if we enter any random numbers of purchasing
documents, they might or might not be processed as some/all of them might not fulfill one or more of the
conditions (i), (ii), and (iii).

In Chapter 2, we had created a message class/id YCH02_MCLASS and a message number 000 as ‘No
Data Processed for Output’ to report the instance of no data processed and output. We are using the same
message class and message number to report no data situation.

When you read the comments provided in the driver program, I expect that you will be able to
comprehend the logic and flow of the driver program.

Database View YCH02_EKKO_LFA1
We created a database view YCH02_EKKO_LFA1 with the table EKKO as the primary table and table LFA1
as a secondary table in Chapter 2; we are using the same in the present hands-on exercise. We are using the
database view YCH02_EKKO_LFA1 in the search help YCH02_01_EKKO_LFA1_SH.

Elementary Search Help YCH02_01_EKKO_LFA1_SH
We created an elementary search help YCH02_01_EKKO_LFA1_SH using the database view YCH02_
EKKO_LFA in Chapter 2; we are using the same in the present hands-on exercise. We attached search help
YCH02_01_EKKO_LFA1_SH to the SELECT-OPTIONS variable PO_NOS.

Output
We are using the same two purchase orders we used in Chapter 2 for testing the output. The identified
purchase order numbers are 4500004823 and 4500009520. The purchase order number 4500004823 language
key is D and the purchase order number 4500009520 language key is E. This enables us to test the output
in the two languages. The purchase order number 4500009520 has 53 items and is running to four pages,
enabling us to test a multiple-page purchase order. We are filling the selection table PO_NOS with these two
specific purchase order numbers (refer to the INITIALIZATION event code in the driver program).

We executed the program YCH04_02_DPRG_ YCH04_02_PORDER. The output of the two purchase
orders is running to five pages, the purchase order number 4500004823 (German) outputs in one page and
the purchase order number 4500009520 (English) outputs in four pages. The output will look like that in
Figures 4-42, 4-43, 4-44, 4-45, and 4-46.

http://dx.doi.org/10.1007/978-1-4842-3183-8_2
http://dx.doi.org/10.1007/978-1-4842-3183-8_2
http://dx.doi.org/10.1007/978-1-4842-3183-8_2
http://dx.doi.org/10.1007/978-1-4842-3183-8_2

Chapter 4 ■ SmartformS–handS-on exerCiSeS

308

Figure 4-42. Output of custom purchase order form: PO No. 4500004823—I

Figure 4-43. Output of custom purchase order form: PO No. 4500004823—II

Chapter 4 ■ SmartformS–handS-on exerCiSeS

309

Figure 4-44. Output of custom purchase order form: PO No. 4500009520—I

Chapter 4 ■ SmartformS–handS-on exerCiSeS

310

Figure 4-46. Output of custom purchase order form: PO No. 4500009520—III

Figure 4-45. Output of custom purchase order form: PO No. 4500009520—II

Chapter 4 ■ SmartformS–handS-on exerCiSeS

311

Hands-on Exercise Recapitulation
In this hands-on exercise, we created from scratch a Smartforms form to output purchase orders deployed it.

We produced almost the same output as the one we produced in hands-on exercise III in Chapter 2.
The item data along with the column headings and footer was output with grid lines, imparting an appealing
visual appearance.

Only the main data to output purchase orders was retrieved in the driver program; the rest of the data
was retrieved in the initialization event of the form. Apart from the function module of the form, the driver
program also invoked the following function modules:

•	 SSF_OPEN: To open a spool file

•	 SSF_FUNCTION_MODULE_NAME: To take a form name as input parameter and
return corresponding function module name

•	 SSF_CLOSE: To close a spool file

A specialty of this exercise is the maintenance and retrieval of texts in the form from ABAP dictionary
data elements. Otherwise the text is entered in the form as literal text. The maintenance of texts of the form
in data elements instead of being entered as literal text has made the form language independent.

We used all the three nodes of the element table: header, main area, and footer.

Hands-on Exercise III–Copy, Modify, and Customize SAP
Delivered Form /SMB40/MMPO_A, etc.
This hands-on exercise involves copying the SAP delivered purchase order Smartforms form /SMB40/
MMPO_A into Y namespace. Next, we are carrying out modifications and customizations to the copied form
and testing the output of the copied form. Testing the output of the copied form involves performing output
settings. The output settings required to test the output of the copied Smartforms form is being introduced
in this hands-on exercise. Apart from the output settings, we need to modify SAP driver programs to be able
to support output through Smartform forms. By default, the SAP driver programs support output through
SAP script forms. Obviously, the SAP driver programs need to be copied into Y/Z namespace to enable their
modification. Hence this hands-on exercise has two stages.

Stage I enables purchase order output with SAP delivered Smartforms form /SMB40/MMPO_A. This
will involve copying the default SAP driver program SAPFM06P and the include program FM06PE02 into
YCH04_ SAPFM06P and YCH04_ FM06PE02, respectively, and modifying these programs so that they
support output with Smartforms form, and performing global output settings so that the purchase orders
output as per the layout of the SAP delivered Smartforms form /SMB40/MMPO_A—print preview in
transaction code ME22N.

Stage II enables purchase order output with a modified and customized version of a copy of the SAP
delivered Smartforms form. This will involve copying the SAP delivered Smartforms form /SMB40/MMPO_A
into Y namespace (YCH04_03_SMB40_MMPO_A), carrying out modifications and customization in the
copied form YCH04_03_SMB40_MMPO_A as per laid-down specifications, and performing global output
settings so that the purchase orders output as per the layout of the modified and customized Smartforms
form YCH04_03_SMB40_MMPO_A—print preview in transaction code ME22N.

A description of each of the two stages of the hands-on exercise follows.

http://dx.doi.org/10.1007/978-1-4842-3183-8_2

Chapter 4 ■ SmartformS–handS-on exerCiSeS

312

A Note on the SAP Delivered Smartforms Form /SMB40/MMPO_A
The SAP delivered SAP script form MEDRUCK is designed to generate output of all purchase related
documents—requisitions, request for quotations, purchase orders, etc. That is why it is called the form for
purchasing documents. With Smartforms, there is a separate form for each of the purchasing documents:
requisitions, request for quotations, purchase orders, etc. The SAP delivered Smartforms form /SMB40/
MMPO_A generates output for purchase orders.

The SAP delivered Smartforms form /SMB40/MMPO_A in our version of IDES server has an error in the
window SENDER. The window SENDER has the element text named SENDER. The element text SENDER has
been assigned Text Type as Text Module. No Text Module name has been assigned which is resulting in the
error. To overcome the error, we have copied the form /SMB40/MMPO_A into YSM_SMB40_MMPO_A and
assigned the element text named SENDER the Text Type as Text Element instead of Text Module. We activated
the form: YSM_SMB40_MMPO_A. The layout of windows in the two page formats (FIRST and NEXT) of the
form YSM_SMB40_MMPO_A is identical. The only difference is that they are using different logo graph images.

When invoking the function module of the form, the formal exporting parameters ZXEKKO and
ZXPEKKO may be named differently on your IDES server. Also, the tables parameters L_XEKPO, L_XEKPA,
L_XPEKPO, L_XEKET, L_XTKOMV, L_XEKKN, L_XEKEK, and L_XKOMK may be named differently on your
IDES server. Refer to the Form Interface for the names of these parameters.

Stage I: Enable Purchase Order Output with Smartforms Form
YSM_SMB40_MMPO_A,
The purchasing document print program SAPFM06P by default does not carry functionality to output purchasing
documents using Smartforms forms. The functionality of invoking forms in fact is incorporated into the include
program FM06PE02. So we need to copy the two programs SAPFM06P and FM06PE02 into Y namespace and
carry out modifications to the copied programs to incorporate the functionality of calling Smartforms forms.

We copied the programs SAPFM06P to YCH04_ SAPFM06P and FM06PE02 to YCH04_ FM06PE02,
respectively.

In the program YCH04_ SAPFM06P, we changed only one line: INCLUDE FM06PE02 to INCLUDE
YCH04_ FM06PE02. We saved and activated the program YCH04_ SAPFM06P.

In the include program YCH04_ FM06PE02, we incorporated the following lines as data declarations:

* Extra data defined for smartforms **

DATA: FUNC_NAME TYPE RS38L_FNAM, "Extra for smartforms
 OUTPUT TYPE SSFCOMPOP, "Extra for smartforms
 DIALOG TYPE SSFCTRLOP, "Extra for smartforms
 XKOMK TYPE STANDARD TABLE OF KOMK."Extra for smartforms

In the include program YCH04_ FM06PE02, we inserted the following lines following the first invocation
of the function module ME_READ_PO_FOR_PRINTING:

*************modification for smartforms*******
 IF TNAPR-SFORM NE ' '. "Extra for smartforms
 CALL FUNCTION 'SSF_FUNCTION_MODULE_NAME' "Extra for smartforms
 EXPORTING "Extra for smartforms
 FORMNAME = TNAPR-SFORM "Extra for smartforms
 IMPORTING "Extra for smartforms
 FM_NAME = FUNC_NAME "Extra for smartforms
 EXCEPTIONS "Extra for smartforms

Chapter 4 ■ SmartformS–handS-on exerCiSeS

313

 NO_FORM = 1 "Extra for smartforms
 NO_FUNCTION_MODULE = 2 "Extra for smartforms
 OTHERS = 3. "Extra for smartforms

 IF SY-SUBRC EQ 0. "Extra for smartforms
 DIALOG-NO_DIALOG = 'X'. "Extra for smartforms
 DIALOG-PREVIEW = 'X'. "Extra for smartforms
 DIALOG-LANGU = L_DOC-XEKKO-SPRAS. "Extra for smartforms
 OUTPUT-TDDEST = 'LP01'. "Extra for smartforms
* OUTPUT-BCS_LANGU = L_DOC-XEKKO-SPRAS. "Extra for smartforms
 OUTPUT-TDNOPREV = ' '. "Extra for smartforms
 OUTPUT-TDNOPRINT = ' '. "Extra for smartforms
 OUTPUT-TDIMMED = 'X'. "Extra for smartforms
 OUTPUT-TDNEWID = 'X'. "Extra for smartforms
 CALL FUNCTION FUNC_NAME "Extra for smartforms
 EXPORTING "Extra for smartforms
 CONTROL_PARAMETERS = DIALOG "Extra for smartforms
 OUTPUT_OPTIONS = OUTPUT "Extra for smartforms
 USER_SETTINGS = ' ' "Extra for smartforms
 ZXEKKO = L_DOC-XEKKO "Extra for smartforms
 ZXPEKKO = L_DOC-XPEKKO "Extra for smartforms
 TABLES "Extra for smartforms
 L_XEKPO = L_DOC-XEKPO "Extra for smartforms
 L_XEKPA = L_DOC-XEKPA "Extra for smartforms
 L_XPEKPO = L_DOC-XPEKPO "Extra for smartforms
 L_XEKET = L_DOC-XEKET "Extra for smartforms
 L_XTKOMV = L_DOC-XTKOMV "Extra for smartforms
 L_XEKKN = L_DOC-XEKKN "Extra for smartforms
 L_XEKEK = L_DOC-XEKEK "Extra for smartforms
 L_XKOMK = XKOMK "Extra for smartforms
 EXCEPTIONS "Extra for smartforms
 FORMATTING_ERROR = 1 "Extra for smartforms
 INTERNAL_ERROR = 2 "Extra for smartforms
 SEND_ERROR = 3 "Extra for smartforms
 USER_CANCELED = 4 "Extra for smartforms
 OTHERS = 5. "Extra for smartforms
 ELSE. "Extra for smartforms
 CALL FUNCTION 'ME_PRINT_PO' "Extra for smartforms
 EXPORTING "Extra for smartforms
 IX_NAST = L_NAST "Extra for smartforms
 IX_DRUVO = L_DRUVO "Extra for smartforms
 DOC = L_DOC "Extra for smartforms
 IX_SCREEN = ENT_SCREEN "Extra for smartforms
 IX_FROM_MEMORY = L_FROM_MEMORY "Extra for smartforms
 IX_TOA_DARA = TOA_DARA "Extra for smartforms
 IX_ARC_PARAMS = ARC_PARAMS "Extra for smartforms
 IX_FONAM = TNAPR-FONAM "Extra for smartforms
 IMPORTING "Extra for smartforms
 EX_RETCO = ENT_RETCO. "Extra for smartforms
 ENDIF. "Extra for smartforms
ELSE. "Extra for smartforms

*****modification for smartforms over*******

Chapter 4 ■ SmartformS–handS-on exerCiSeS

314

We saved and activated the include program YCH04_ FM06PE02. The full source lines of programs
YCH04_ SAPFM06P and YCH04_ FM06PE02 are available in the E-resource file for this book (www.apress.
com/9781484212345).

To output the purchase orders as per the Smartforms form, we have to perform output settings and
indicate to the SAP runtime system that a specific Smartforms form is to be used to output the purchase
orders. By default, the SAP runtime uses SAP delivered standard SAP script forms to output business
documents (located in client 000).

In Chapter 2, we demonstrated how to output a particular purchasing document using a modified
and customized copy of a SAP delivered SAP script form. We copied the SAP delivered SAP script form for
purchasing document MEDRUCK into Y namespace. We modified and customized the copied version of
the form as per laid-down specifications. We then used the transaction code ME22N—Change Purchasing
Document. We selected one specific purchasing document. In the selected purchasing document, we
carried out the output settings and part of the output settings was assigning the modified and customized
SAP script form to the selected purchasing document. The selected purchasing document then output as per
the modified and customized form layout assigned to it. It worked for one individual selected purchasing
document. This process of carrying out output settings in individual purchasing documents served our
testing objective in Chapter 2, but in the real-life scenario, this is generally not the manner in which business
documents are output or generated using the layout of a modified and customized form.

If it was required to output more than one purchasing document using the same modified and
customized copy of a SAP delivered SAP script form, then it was necessary that the output settings be
performed in each of the individual purchasing documents. A better way of ensuring that all purchasing
documents output as per the layout of one SAP script or Smartforms form is to carry output settings in
a global environment. The output settings are carried in the global environment using the transaction
code NACE. The transaction code NACE is termed the transaction code for output determination. In the
transaction code NACE, the output settings are to be carried out for all the business documents (purchasing
documents, billing documents, delivery notes, etc.) to be generated by an enterprise. In the transaction
code NACE, you can specify for each business document, the print or driver program to be used, and
the SAP script or Smartforms form to be used to generate the business document. In the transaction
code NACE, you can further specify how a generated business document will reach the business partner
(customer/vendor)—hard copy printout, fax or mail, or EDI or Idoc, etc. We are confining our descriptions of
transaction code NACE settings to purchasing order hard copy printout.

When you execute the transaction code NACE, the screen in Figure 4-47 appears.

http://www.apress.com/9781484212345
http://www.apress.com/9781484212345
http://dx.doi.org/10.1007/978-1-4842-3183-8_2
http://dx.doi.org/10.1007/978-1-4842-3183-8_2

Chapter 4 ■ SmartformS–handS-on exerCiSeS

315

As marked in Figure 4-47, we have selected the purchase order. We next clicked the application toolbar
button: Output Types. The screen shown in Figure 4-48 appeared.

As shown in Figure 4-48, we selected the Output Type NEU and doubled-clicked the node marked
Processing routines. We toggled for the screen to be in change or edit mode. A screen as shown in Figure 4-49
appeared.

Figure 4-47. Transaction code NACE—Conditions for Output Control

Figure 4-48. Transaction code NACE: Output Types Overview

Chapter 4 ■ SmartformS–handS-on exerCiSeS

316

Against the entry Print output (first row), we entered under the column program, the driver program
YCH04_SAPFM06P. We entered under the column PDF/SmartForm Form the form name YSM_SMB40_
MMPO_A. We saved the changes. The system popped the dialog box of customizing request as shown in
Figure 4-50.

We clicked the Continue button. This concludes the output settings for purchase orders to output using
Smartforms form.

As in Chapter 2, we will perform the output testing with the two identified purchase order numbers:
4500004823 (German) and 4500009520 (English), respectively. To test the effect of purchase order output
settings in transaction code NACE, we executed the transaction code ME22N—Change Purchase Order. We
selected the menu option Purchase Order ➤ Other Purchase order. We entered the purchase order number
4500004823 in the dialog box Select Document as shown in Figure 4-51.

Figure 4-49. Transaction code NACE—“Processing routines”: Overview

Figure 4-50. Transaction code NACE—Customizing request on saving

http://dx.doi.org/10.1007/978-1-4842-3183-8_2

Chapter 4 ■ SmartformS–handS-on exerCiSeS

317

We clicked the Continue button and clicked the Print Preview button on the application toolbar. The
purchase order number 4500004823 outputted in one page. Figures 4-52 and 4-53 are screenshots of the
Print Preview:

Figure 4-51. Transaction code ME22N—Select Document

Figure 4-52. Purchase order number 4500004823—Print Preview I

Chapter 4 ■ SmartformS–handS-on exerCiSeS

318

In a like manner, we produced the print preview of the purchase order number 4500009520.
The output of purchase order number 4500009520 runs for 12 pages as shown in Figures 4-54, 4-55,
4-56, and 4-57.

Figure 4-53. Purchase order number 4500004823—Print Preview II

Chapter 4 ■ SmartformS–handS-on exerCiSeS

319

Figure 4-54. Purchase order number 4500009520—Print Preview I

Figure 4-55. Purchase order number 4500009520—Print Preview II

Chapter 4 ■ SmartformS–handS-on exerCiSeS

320

Figure 4-56. Purchase order number 4500009520—Print Preview III

Figure 4-57. Purchase order number 4500009520—Print Preview IV

Chapter 4 ■ SmartformS–handS-on exerCiSeS

321

We have completed the first stage of our hands-on exercise, modified copies of driver programs, and
performed output settings in the transaction code NACE as to enable output of purchase orders as per the
layout of specified SAP delivered Smartforms form. We tested the effect of driver program modifications
and settings in transaction code NACE by executing transaction code ME22N and producing print preview
outputs of identified purchase orders.

We have covered the very basic aspects of transaction code NACE, the aspects that enabled us to
output purchase orders using the Smartforms form. An elaborate description of transaction code NACE is
functional module topic beyond the scope of this book.

Stage II: Enable Purchase Order Output with a Modified and
Customized Copy of Smartforms Form /SMB40/MMPO_A
In this second stage of the hands-on exercise, we will modify and customize a copy of the SAP delivered
Smartforms form /SMB40/MMPO_A and perform output settings in the transaction code NACE as to output
purchase orders as per the layout of copied and modified version of the SAP delivered Smartforms form
/SMB40/MMPO_A.

Output Specifications
To repeat what I stated in chapter 2, in real-life SAP implementation projects, for the most part, copies made
of SAP delivered Smartforms forms into the Y/Z namespace are modified and customized. Creation of a form
from scratch is to be avoided as much as possible.

In this second stage of the present hands-on exercise, we are modifying and customizing the copied
version of the SAP delivered purchase order form /SMB40/MMPO_A minimally as the focus is on the
process of enabling output of purchase orders using a Smartforms form.

We are performing the following changes to the copied version of the SAP delivered purchase order
form /SMB40/MMPO_A:

•	 We are reducing the bottom margin from 4.7CM to 1.7CM. We are increasing the
height of the main window from 9.8CM to 12.3CM. We have increased the gap
between the windows main and NOTE from 0.1CM to 0.6CM.

•	 The output will contain, on the last page of a purchase order, the total amount of the
purchase order expressed in text. The output of the total amount of the purchase
order expressed in text on the last page of a purchase order will appear as part of the
footer of the element table TABLE_DATA.

The complete page formats, the layout of windows other than main and NOTE, and the entire contents
and functionality of the copied form /SMB40/MMPO_A, have been retained.

Copy Form YSM_SMB40_MMPO_A to Y Namespace and Modify as per
Specifications
On the opening screen of transaction code SMARTFORMS, we selected the menu option Smart Forms ➤
Copy. We copied the SAP delivered purchase order form YSM_SMB40_MMPO_A into YCH04_SMB40_
MMPO_A.

We opened the copied form YCH04_SMB40_MMPO_A in change or edit mode.
We shifted the window NOTE down as to render the bottom margin 1.7CM. The dimensions of the

window NOTE will be as follows: Left margin—0.5CM, Upper margin—25.9CM, Window width—19.5CM,
and Window height—3.0CM.

http://dx.doi.org/10.1007/978-1-4842-3183-8_2

Chapter 4 ■ SmartformS–handS-on exerCiSeS

322

We increased the height of main window from 9.8CM to 12.3CM. The dimensions of the main window
will be as follows: Left margin—0.5CM, Upper margin—13.0CM, Window width—19.5CM, and Window
height—12.3CM.

We want to output the total amount of the purchase order expressed in text in the footer of the element
table TABLE _DATA. We will perform the conversion from numbers/digits to text in a subroutine located
in the Form Routines tab of the Global Definitions node. This is identical to the manner we performed this
functionality in the previous hands-on exercise form YCH04_02_PORDER. We have retained the name of
the subroutine as CONV_TOTAL_INTO_TEXT. You can copy the subroutine lines from the form YCH04_02_
PORDER into the present form. The subroutine CONV_TOTAL_INTO_TEXT returns text in two variables of
type C length 70. So we need to define two variables of type C, length 70 in the Global Data tab of the node
Global Definitions. Figure 4-58 illustrates.

Next, we clicked the main window node. We clicked the node of the element table named TABLE
_DATA. We clicked the footer node of the element table named TABLE _DATA. In the footer node, next to the
last node TOT_VAL2, we created a node CONV_TO_TEXT with the following context menu option: Create ➤
Flow Logic ➤ Program Lines. We inserted the following lines in this node:

PERFORM CONV_TOTAL_INTO_TEXT USING G_TOTAL ZXEKKO-SPRAS ZXEKKO-WAERS
 STR1 STR2.

Next, we created a node IN_TEXT next to the node CONV_TO_TEXT with the following context menu
option: Create ➤ Text. In the text editor of the node IN_TEXT, we inserted the following:

ST &STR1&
ST &STR2&

Figure 4-59 illustrates.

Figure 4-59. Form YCH04_03_SMB40_MMPO_A—text in IN_TEXT

Figure 4-58. Form YCH04_03_SMB40_MMPO_A—global data inserted

Chapter 4 ■ SmartformS–handS-on exerCiSeS

323

We have performed the modifications to output the total amount of a purchase order expressed in text
as per laid-out specifications. We performed a consistency check and activated the form YCH04_03_SMB40_
MMPO_A.

On the screen Processing routines of transaction code NACE, we assigned the form YCH04_03_SMB40_
MMPO_A under the column PDF/SmartForms Form for the row Print output as shown in Figure 4-60.

The driver program will remain as YCH04_SAPFM06P. We saved the assignment in transaction
code NACE.

Output
We chose the same two purchase orders which we used earlier, purchase order numbers 4500004823 and
4500009520, for testing. The purchase order number 4500004823 language key is D and the purchase order
number 4500009520 language key is E.

We executed the transaction code ME22N—Change Purchase Order. We selected the menu option
Purchase Order ➤ Other Purchase order. We entered the purchase order number 4500004823 in the dialog
box Select Document. We clicked the Continue button and the Print Preview button on the application
toolbar. The purchase order number 4500004823 outputted in one page. Figures 4-61 and 4-62 are
screenshots of the Print Preview.

Figure 4-60. Transaction code NACE—assignment of form YCH04_03_SMB40_MMPO_A

Chapter 4 ■ SmartformS–handS-on exerCiSeS

324

This purchase order outputs in one page. As you can see in Figure 4-62, the total of the purchase order
expressed in text is output.

Figure 4-61. Output with Form YCH04_03_SMB40_MMPO_A: PO No. 4500004823

Figure 4-62. Output with Form YCH04_03_SMB40_MMPO_A: PO No. 4500004823

Chapter 4 ■ SmartformS–handS-on exerCiSeS

325

In a similar manner, we produced the print preview of the purchase order number 4500009520.
The output of purchase order number 4500009520 runs for ten pages as shown in Figures 4-63, 4-64,
4-65, and 4-66.

Figure 4-63. Output with Form YCH04_03_SMB40_MMPO_A: PO No. 4500009520—I

Chapter 4 ■ SmartformS–handS-on exerCiSeS

326

Figure 4-64. Output with Form YCH04_03_SMB40_MMPO_A: PO No. 4500009520—II

Figure 4-65. Output with Form YCH04_03_SMB40_MMPO_A: PO No. 4500009520—III

Chapter 4 ■ SmartformS–handS-on exerCiSeS

327

This purchase order outputs in ten pages. As you can see in Figure 4-66, the total of the purchase order
expressed in text is output.

Hands-on Exercise Recapitulation
We generated the output twice in this hands-on exercise. We generated the output, first, with SAP delivered
form YSM_SMB40_MMPO_A and next with a modified and customized version of the original form:
YCH04_03_SMB40_MMPO_A. The focus in this hands-on exercise was on the modification of the driver
program so that it incorporates the functionality of using Smartforms form, the output settings in transaction
code NACE,

The form YCH04_03_SMB40_MMPO_A and the style it uses along with modified versions of driver
programs YCH04_ SAPFM06P and YCH04_ FM06PE02 are available in the E-resource file for this book
(www.apress.com/9781484212345).

Smartforms System Fields: SFSY-PAGE and SFSY-FORMPAGES
In the SAP script forms environment, we used the system symbol &PAGE& and the general SAP script field
&SAPSCRIPT-FORMPAGES&. The system symbol &PAGE& contained the current page number of the
current document being output. The general SAP script field &SAPSCRIPT-FORMPAGDS& contained the
total number of pages in current document being output.

The equivalent of SAP script system symbol &PAGE& in Smartforms is SFSY-PAGE. The equivalent of
general SAP script field &SAPSCRIPT-FORMPAGES& in Smartforms is SFSY-FORMPAGES.

In the SAP script forms environment, using the system symbol &PAGE& and the field &SAPSCRIPT-
FORMPAGES&, you can determine whether you are at the stage of outputting the last page or the second to
last page of a document.

In the Smartforms environment, using the system fields SFSY-PAGE and SFSY-FORMPAGES&, you
cannot determine in the program lines whether you are at the stage of outputting the last page or the second
to last page of a document.

When the value of the system field SFSY-FORMPAGES is interrogated in the Program Lines node,
through a static breakpoint, the ABAP runtime system will show the value of SFSY-FORMPAGES same as the
value of current page (i.e., SFSY-PAGE). This statement applies to the secondary, main, and copy windows.
In the final window, the value of SFSY-FORMPAGES is equal to the total number of pages in the document
being output. And the value of SFSY-FORMPAGES outputs correctly, in whichever window type you locate it
for output.

Figure 4-66. Output with Form YCH04_03_SMB40_MMPO_A: PO No. 4500009520—IV

http://www.apress.com/9781484212345

Chapter 4 ■ SmartformS–handS-on exerCiSeS

328

In Smartforms, the processing and output proceed in the following order:

 1. Processing of secondary, main, and copy windows.

 2. Processing of the final window.

 3. Composition and output.

For the most part, our document output is driven by the data in the main window. This is because most
business documents contain items—data repeating in a page and repeating page to page—to be located in
the main window.

In the Smartforms form environment, we can assign a page format dynamically or at runtime. And,
within the main window, using the fields SFSY-PAGE and SFSY-FORMPAGES, we are unable to determine
whether we are on the last or second to last page of a document. So, from the main window, if we want to
assign at runtime a page format dependent on the number of pages in a document (i.e., value of the system
field SFSY-FORMPAGES), we are unable to do so.

Three Page Formats and Runtime Assignment of Page Format with
Command Node
In the E-resource file for this book (www.apress.com/9781484212345), one additional form YCH04_03_
SMB40_MMPO_A _EXT is available. It is an extension of the form YCH04_03_SMB40_MMPO_A. The form
YCH04_03_SMB40_MMPO_A _EXT demonstrates the following:

•	 Use of three page formats in a form

•	 Runtime assignment of page format using the command node

The form YCH04_03_SMB40_MMPO_A _EXT has three page formats: FIRST, NEXT, and LAST. The
output of the window NOTE is to appear on the last page of a purchase order. When a purchase order
consists of a single page, the output of the window NOTE must appear on the first physical page (page
format FIRST). When a purchase order consists of two pages, the output of the window NOTE must appear
on the second physical page (page format LAST). When a purchase order consists of more than two pages,
the output of the window NOTE need not appear on the intermediate pages (page format NEXT). Since the
output of the window NOTE is not to appear on the intermediate pages (page format NEXT), the vertical
space occupied by the window NOTE can be assigned to the main window in the page format NEXT.

In our present scenario, if a purchase order outputs only to one page (page format: FIRST), it does not
involve runtime assignment of page format.

If a purchase order outputs in two pages, the first page of the purchase order will output in page format
FIRST. By default, the second page of the purchase order will output with page format NEXT through static
assignment in the Next Page. But, we want the second page of the purchase order to output with page
format LAST. So before the commencement of processing the second page of the purchase order, we must
dynamically assign the page format LAST for output of the purchase order’s second page.

If a purchase order outputs in more than two pages, the first page of the purchase order will output in
page format FIRST. By default, the subsequent page(s) of the purchase order will output with page format
NEXT through static assignment in the Next Page. But, we want the last page of the purchase order to output
with page format LAST. So before the commencement of processing the last page of the purchase order, we
must dynamically assign the page format LAST for output of the purchase order’s last page.

In effect, we must know during processing that we are about to commence the output of last page of a
purchase order, and dynamically assign the page format LAST for output of the last page of a purchase order.

Since we cannot determine the total number of pages in a purchase order through the system field
SFSY-FORMPAGES in the main window, we have resorted to using the number of items being output
on different page formats to determine when we are about to commence the output of the last page of a
purchase order.

http://www.apress.com/9781484212345

Chapter 4 ■ SmartformS–handS-on exerCiSeS

329

We are outputting eight items in the page formats FIRST and LAST. We are outputting ten items in the
page format NEXT. We are maintaining two counters, ICOUNT and LICOUNT. The counter ICOUNT is a
running counter and contains the number of the current item of a purchase order being output. The counter
ICOUNT will start from 1 for every purchase order. The counter LICOUNT contains the total number of
items in a purchase order excluding the number of items on the last page of the purchase order.

In our processing, when the counter ICOUNT is equal to the counter LICOUNT, we are about to
commence the processing of the last page of a purchase order.

We are using two more variables, FPAGES and TLINES. You can go through the code in the Initialization
tab of the Global Definitions node of the form. The code starts with the comment line: ***** Calculate
Form Pages Etc. *****

If font types and sizes change or the main window sizes change, then the number of items being output
in different page formats have to be reexamined and reworked.

We created in the main window, under the loop element EKPO_LOOP, a command node GO_TO_
LAST_PAGE with the context menu option: Create ➤ Flow Logic ➤ Command. In the Conditions tab of
the command node, we entered the condition ICOUNT = LICOUNT. In the General Attributes tab of the
command node GO_TO_LAST_PAGE, we enabled the check box Go to New Page and assigned the page
format LAST_PAGE. In effect, if a purchase order is outputting to more than two pages, before output of the
last physical page of the purchase order commences, the page format LAST_PAGE will be assigned to output
the last page of the purchase order. This was a case of utilizing space more optimally.

You can upload the form YCH04_03_SMB40_MMPO_A _EXT from the E-resource file for this book
(www.apress.com/9781484212345), perform the required settings in transaction code NACE, and generate
the print preview. You can observe the output of the print preview.

Forms: /BPR3PF/MMPO_L, /BPR3PF/MMPO_A, and Driver
Program /BPR3PF/FM06P
SAP also provides the following for output of purchase orders:

•	 Smartforms forms: /BPR3PF/MMPO_L (letter-size stationery) and /BPR3PF/
MMPO_A (A4 size stationery)

•	 Driver program: /BPR3PF/FM06P

•	 Transaction code for purchase order output settings: M/34

As for the purchase orders, SAP provides Smartforms forms and driver programs for other business
documents.

The forms and the driver program mentioned previously do not come as part of the normal SAP
installation. They are available as an add-on from http://service.sap.com/. To install the add-on, an
authorization is required.

You might not be able to install the add-on into an IDES server. We have not described the above-
mentioned forms and driver program for this reason.

Hands-on Exercise: IV–Generate Material Bar Code Labels
In this hands-on exercise, we will output material bar code labels using a Smartforms form similar to the
vendor address labels we output in hands-on exercise I in this chapter. Along with the material bar code,
we will output also the material number/code and the material description. We will create a new custom
bar code. The bar codes like fonts are maintained in transaction code SE73. In the Smartforms form
environment, bar code output is implemented by assigning a character format of a style to the variable to
be output as a bar code. The character formats of a style to be used to output variables as bar codes are to be
assigned the bar codes (just like fonts) maintained in transaction code SE73. We will start off by specifying
the output layout of material bar code labels.

http://www.apress.com/9781484212345
http://service.sap.com/

Chapter 4 ■ SmartformS–handS-on exerCiSeS

330

Output Specification, Major Tasks, etc.
The output of the material bar code labels will look like that in Figure 4-67.

Figure 4-67. Rough layout of material bar code label output

The bar codes of materials must appear along with their respective numbers/codes and descriptions as
shown in Figure 4-67.

The material number or code is being output as bar code as well as simple material number, and it is
being output twice across the page.

Our data originates in the database table MAKT. We will retrieve data of the logged-in language only
from the database table MAKT. We will use the letter-size stationery in landscape mode: 279X215MM.
We will output 12 materials’ data in one page, two across (Figure 4-67) and six down. To repeat data twice
across a page, we will load in the driver program, an internal table having a structure with two sets of fields:
MATNR1, MAKTX1, MATNR2, and MAKTX2. This is similar to the manner we loaded an internal table to
output address labels of vendors in hands-on exercise I in this chapter. We have created an ABAP dictionary
structure YCH04_MATR_STRU consisting of the four fields MATNR1, MAKTX1, MATNR2, and MAKTX2. The
ABAP dictionary structure YCH04_MATR_STRU will be referred to to declare data in the driver program and
the Form Interface.

The present hands-on exercise will involve the following major tasks:

 1. Creation of a custom bar code—transaction code SE73.

 2. Assignment of the created custom bar code to a device type
(print device)—transaction code SE73.

 3. Creation of a style with a bar code character format—transaction code
SMARTFORMS.

 4. Creation of a Smartforms form to output material bar code labels—transaction
code SMARTFORMS.

 5. Creation of a driver program—transaction code SE38.

 6. Execution of the driver program to test or print preview (output) the material bar
code labels.

The driver program will retrieve the data in the requisite internal table and invoke the function module
of the Smartforms form.

A description of each of these tasks follows.

Creation of Custom Bar Code YCH_04BC, Assignment to a Print Device
To create a custom bar code, we navigated to the opening screen of transaction code SE73. We selected the Radio
button System Bar Codes and clicked the Change button. A screen like the one shown in Figure 4-68 appeared.

Chapter 4 ■ SmartformS–handS-on exerCiSeS

331

To create a new custom bar code, we clicked the Create button on the application toolbar. The system
prompted with options to create bar codes with new or old technology as shown in Figure 4-69.

Figure 4-68. Change System Bar Codes

Figure 4-69. Choose Bar Code Technology

We selected the option to create bar code with new technology. The system prompted for bar code
name and text as shown in Figure 4-70.

Figure 4-70. Create New System Bar Code

Chapter 4 ■ SmartformS–handS-on exerCiSeS

332

We entered the bar code name YCH_04BC and an appropriate short text as shown in Figure 4-70. We
clicked the Continue button. A prompt to choose a bar code symbology appeared as in Figure 4-71.

We selected the Interleaved 2of5 and clicked the Continue button. A prompt to choose bar code
alignment appeared as shown in Figure 4-72.

Figure 4-71. Choose bar code symbology

Figure 4-72. Choose bar code alignment

Chapter 4 ■ SmartformS–handS-on exerCiSeS

333

We selected the normal alignment and clicked the Continue button. A prompt appeared to enter the bar
code parameters appeared as shown in Figure 4-73.

Figure 4-73. Bar code parameters

We accepted the proposed default values for all the fields except Linear Height. We changed the default
Linear Height value from 250 to 350 since we wanted a bar code slightly higher. We clicked the Continue
button. Prompts for Save Bar Code definition and Workbench request appeared as shown in Figure 4-74.

Figure 4-74. Save Bar Code definition and Workbench request

The created bar code YCH_04BC appeared in the list as shown in Figure 4-75.

Chapter 4 ■ SmartformS–handS-on exerCiSeS

334

We need to assign the custom bar code YCH_04BC to a device type (print device). To determine device
types available on the application server, refer to the section “Assigning the Font to a Device Type” in
Chapter 1. To assign a bar code to a device type, we selected the Radio button Printer Bar Codes and clicked
the Change button on the opening screen of transaction code SE73. We located the print device HPLJIIID
and clicked the Create button on the application toolbar. The Font Maintenance Create dialog box appeared.
We entered the bar code name YCH_04BC in the field Bar Code. We entered the values SBP12 and SBS12 in
the fields: Bar code prefix and Bar code suffix, respectively. Figure 4-76 illustrates.

Figure 4-75. Bar code YCH_04BC created

Figure 4-76. Font Maintenance: Create

We created Bar code prefix SBP12 and Bar code suffix SBS12 using the application toolbar button: Maint.
Print Control. For a description of the process of the creation of print controls, refer to section titled ‘True
Type Font Installation” in Chapter 1.

http://dx.doi.org/10.1007/978-1-4842-3183-8_1
http://dx.doi.org/10.1007/978-1-4842-3183-8_1

Chapter 4 ■ SmartformS–handS-on exerCiSeS

335

Creation of Style YCH04_04
We navigated to transaction code SMARTFORMS. We clicked the Radio button Style, entered the name of the
style as YCH04_04, and clicked the Create button. We created a paragraph format SP with the default values.
We assigned the paragraph format SP as the standard paragraph in the header data of the style.

We next created a character format BC. In the Standard Settings tab of character format BC, in the Bar
Code area, we selected from the drop-down list, the custom bar code YCH_04BC as shown in Figure 4-77.

Figure 4-77. Style: YCH04_04Character Format: BC

We saved and activated style YCH04_04.
This concludes the creation of style YCH04_04. We will use the character format BC in the form

YCH04_04_MATERIAL_BCODES to output material number/code as bar code.

Creation of Form YCH04_04_MATERIAL_BCODES
We navigated to transaction code SMARTFORMS. We clicked the Radio button Form, entered the name of
the form as YCH04_04_MATERIAL_BCODES, and clicked the Create button.

In the Output Options tab of the node Form Attributes, we assigned the page LETTER and the style
YCH04_04. Figure 4-78 illustrates.

Chapter 4 ■ SmartformS–handS-on exerCiSeS

336

We intend to output the material bar code labels in the Smartforms form from an internal table which
will be loaded in the driver program. The internal table will have a structure consisting of the four fields:
MATNR1, MAKTX1, MATNR2, and MAKTX2. The form will have just one Tables parameter. Figure 4-79
shows the definition of the Tables parameter MATR_TAB in the Tables tab of the Form Interface node.

Figure 4-78. Form: YCH04_04_MATERIAL_BCODESForm Attributes

Figure 4-79. Form: YCH04_04_MATERIAL_BCODESTables parameter: MATR_TAB

Figure 4-80. Form: YCH04_04_MATERIAL_BCODESPage Format: ONLY_PAGE

The Tables parameter is referring to the ABAP dictionary structure YCH04_MATR_STRU. A structure of
the same name as the Tables parameter name, that is, a header line, gets created by default.

We renamed the default created page format as ONLY_PAGE and set the page alignment as landscape.
Figure 4-80 illustrates.

Chapter 4 ■ SmartformS–handS-on exerCiSeS

337

As all of the information to be outputtedmaterial number as bar code, material number, and material
description is repetitive, we will use only the main window. The dimensions of the main window are as
follows:

•	 Left margin: 5MM

•	 Upper margin: 5MM

•	 Window width: 269MM

•	 Window height: 205MM

We created the form element loop named LOOP_MAIN_DATA under the main window. The form
element loop operates just like the LOOP AT…..ENDLOOP construct in an ABAP program; it serially fetches
one row at a time from an internal table into a structure. Figure 4-81 shows the element loop named LOOP_
MAIN_DATA.

Figure 4-81. Form: YCH04_04_MATERIAL_BCODESLoop: LOOP_MAIN_DATA

Under the element loop named LOOP_MAIN_DATA, we created the form element template named
ROW_TEMPLATE. The element template named ROW_TEMPLATE consists of just one row. A template row
can consist of multiple lines.

A template like a table has the ability to define line types. We have defined three line types for the
template ROW_TEMPLATE. The first line type named CODE_BAR_CODE’s height is four lines and consists
of seven cells as listed in Table 4-11.

Table 4-11. Line Type CODE_BAR_CODE of Element Template ROW_TEMPLATE

Cell Dimensions Data/Field

Cell 1 10MM Gap

Cell 2 56MM Bar code MATNR1

Cell 3 63MM MATNR1

Cell 4 13MM Gap

Cell 5 56MM Bar code MATNR2

Cell 6 63MM MATNR2

Cell 7 08MM Gap

Chapter 4 ■ SmartformS–handS-on exerCiSeS

338

The height of the bar code is determining the height of the line type CODE_BAR_CODE as four lines. We
fixed this height after trial-and-error attempts.

The second line type named DESCRIPTION is two lines in height and consists of four cells as listed in
Table 4-12:

The third line type named LGAP height is two lines and consists of just one cell of width 269MM
Figures 4-82, 4-83, and 4-84 are screenshots of the three line types: CODE_BAR_CODE, DESCRIPTION,

and LGAP.

Table 4-12. Line Type DESCRIPTION of Element Template ROW_TEMPLATE

Cell Dimensions Data/Field

Cell 1 10MM Gap

Cell 2 127MM MAKTX1

Cell 3 5MM Gap

Cell 4 127MM MAKTX2

Figure 4-82. Template: ROW_TEMPLATEline types: CODE_BAR_CODE & DESCRIPTION1

Figure 4-83. Template: ROW_TEMPLATEline types: CODE_BAR_CODE & DESCRIPTION2)

Chapter 4 ■ SmartformS–handS-on exerCiSeS

339

We have to create the element texts in the template ROW_TEMPLATE. Each of the element texts in the
template has to be assigned or identified with a line type and cell of the template. The line types are identified
by numbers 1, 2, etc. In our present context, the line type CODE_BAR_CODE is identified as 1, the line type
DESCRIPTION is identified as 2, and the line type LGAP is identified as 3. In a similar manner, the cells in the
line types are identified as 1, 2, etc.

A text in a template is assigned a line type and a cell in the Output structure area of the Output Options
tab of the text.

We created the text BAR_CODE_TEXT1 for the first material number in the row to output as bar code. In
the Output structure area of the Output Options tab of the text BAR_CODE_TEXT1, we assigned 1 to the field
Line (Line type CODE_BAR_CODE) and 2 to the field Column (cell number 2). Figure 4-85 illustrates.

Figure 4-84. Template: ROW_TEMPLATEline type: LGAP

Figure 4-85. Text: BAR_CODE_TEXT1line type and cell assignment

Chapter 4 ■ SmartformS–handS-on exerCiSeS

340

In the text editor of the text BAR_CODE_TEXT1, we entered the text as shown in Figure 4-86.

The height of line type is four lines. We inserted three blank lines and entered the program symbol
&MATR_TAB-MATNR1(K18)& on the fourth or the last line. The bar code apparently outputs from bottom
to top. If we do not insert three blank lines, the bar code output is being truncated from the top. This was
determined by trial and error. We have assigned the character format BC to the program symbol as shown
in Figure 4-86. To ensure that a blank material code does not output as bar code, we have entered in the
Conditions tab of texts BAR_CODE_TEXT1 and BAR_CODE_TEXT2 the following conditions: MATR_TAB-
MATNR1 NE INITIAL and MATR_TAB-MATNR2 NE INITIAL.

We created the text CODE_TEXT1 for the first material number in the row to output. In the Output
structure area of the Output Options tab of the text CODE_TEXT1, we assigned 1 to the field Line (line type
CODE_BAR_CODE) and 3 to the field Column (cell number 3). In the text editor of the text CODE_TEXT1, we
entered the following text:

&MATR_TAB-MATNR1(K18)&

We created the text BAR_CODE_TEXT2 for the second material number in the row to output as bar
code. In the Output structure area of the Output Options tab of the text BAR_CODE_TEXT2, we assigned 1 to
the field Line (line type CODE_BAR_CODE) and 5 to the field Column (cell number 5) In the text editor of the
text BAR_CODE_TEXT2, we entered the text <BC>&MATR_TAB-MATNR2(K18)&</> on the fourth line; the
first three lines left blanks as shown in Figure 4-86.

We created the text CODE_TEXT2 for the second material number in the row to output. In the Output
structure area of the Output Options tab of the text CODE_TEXT2, we assigned 1 to the field Line (line type
CODE_BAR_CODE) and 7 to the field Column (cell number 7). In the text editor of the text CODE_TEXT2, we
entered the following text:

&MATR_TAB-MATNR2(K18)&

We created the text DESCRIPTION1 for the first material description in the row to output. In the Output
structure area of the Output Options tab of the text DESCRIPTION1, we assigned 2 to the field Line (line type
DESCRIPTION) and 2 to the field Column (cell number 2) As per our naming pattern, we should have named
this text DESCRIPTION_TEXT1. By mischance, we have named the text DESCRIPTION1. In the text editor of
the text DESCRIPTION1, we entered the following text:

&MATR_TAB-MAKTX1&

Figure 4-86. Text: BAR_CODE_TEXT1

Chapter 4 ■ SmartformS–handS-on exerCiSeS

341

We created the text DESCRIPTION_TEXT2 for the second material description in the row to output. In
the Output structure area of the Output Options tab of the text DESCRIPTION_TEXT2, we assigned 2 to the
field Line (line type DESCRIPTION) and 4 to the field Column (cell number 4). In the text editor of the text
DESCRIPTION_TEXT2, we entered the following text:

&MATR_TAB-MAKTX2&

We created the text LINE_GAP to generate two lines gap. In the Output structure area of the Output
Options tab of the text LINE_GAP, we assigned 3 to the field Line (line type LGAP) and 1 to the field Column
(cell number 1). We did not enter anything in the text editor of the text LINE_GAP.

We saved, performed a consistency check, and activated the form.

Creation of Driver Program YCH04_04_DPRG_YCH04_04_MBCODES
We created and activated an ABAP program YCH04_04_DPRG_YCH04_04_MBCODES. This will be the driver
program for the form YCH04_04_MATERIAL_BCODES. The source lines of the driver program are as follows:

REPORT YCH04_04_DPRG_YCH04_04_MBCODES.

**
* Driver Program for Form: YCH04_04_MATERIAL_BCODES **
* Material Bar Code Label Print **
**
TABLES MAKT.

DATA: MATR_TAB TYPE STANDARD TABLE OF YCH04_MATR_STRU
 WITH HEADER LINE,
 REM TYPE I,
 FORM_NAME TYPE TDSFNAME "Form Name
 VALUE 'YCH04_04_MATERIAL_BCODES',
 FM_NAME TYPE RS38L_FNAM. "Function Module Name

**
START-OF-SELECTION.

SELECT * FROM MAKT INTO MAKT UP TO 1000 ROWS
 WHERE SPRAS = SY-LANGU ORDER BY MATNR.

 REM = SY-DBCNT MOD 2.

 IF REM <> 0.
 MATR_TAB-MATNR1 = MAKT-MATNR.
 MATR_TAB-MAKTX1 = MAKT-MAKTX.
 ELSE.
 MATR_TAB-MATNR2 = MAKT-MATNR.
 MATR_TAB-MAKTX2 = MAKT-MAKTX.
 APPEND MATR_TAB TO MATR_TAB.
 CLEAR MATR_TAB.
 ENDIF.

Chapter 4 ■ SmartformS–handS-on exerCiSeS

342

ENDSELECT.
**
IF MATR_TAB IS NOT INITIAL.
 APPEND MATR_TAB TO MATR_TAB.
ENDIF.

IF LINES(MATR_TAB) = 0.
 MESSAGE S001(YCH02_MCLASS) DISPLAY LIKE 'E'.
 "No Data Retrieved
 EXIT.
ENDIF.

CALL FUNCTION 'SSF_FUNCTION_MODULE_NAME'
 EXPORTING
 FORMNAME = FORM_NAME
 IMPORTING
 FM_NAME = FM_NAME
 EXCEPTIONS
 NO_FORM = 1
 NO_FUNCTION_MODULE = 2
 OTHERS = 3.
IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
ENDIF.

 CALL FUNCTION FM_NAME
* EXPORTING
 TABLES
 MATR_TAB = MATR_TAB
 EXCEPTIONS
 FORMATTING_ERROR = 1
 INTERNAL_ERROR = 2
 SEND_ERROR = 3
 USER_CANCELED = 4
 OTHERS = 5.
 IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 ENDIF.

Execution of Driver Program—Output
We executed the program YCH04_04_DPRG_YCH04_04_MBCODES. We fetched a thousand rows for output.
The output will look like that in Figures 4-87, 4-88, and 4-89.

Chapter 4 ■ SmartformS–handS-on exerCiSeS

343

Figure 4-87. Material bar code labels output—page 1/84, first eight materials

Figure 4-88. Material bar code labels output—page 1/84, last four materials

Figure 4-89. Material bar code labels output—page 84/84

Chapter 4 ■ SmartformS–handS-on exerCiSeS

344

Hands-on Exercise Recapitulation
In this hands-on exercise, we demonstrated the output of material number/code as bar code. We started
off by creating a custom bar code in SAP new bar code technology. We assigned the custom bar code to a
device type. The tasks of creating the custom bar code and assigning it to a device type were carried out in
transaction code SE73.

We defined a scenario to output material bar code labels. In the scenario to output the material bar
code labels, we planned to output the material number as bar code, along with material number and
material description. We planned to use the letter stationery in landscape mode: 279 X 215MM, to output
the material bar code labels. We planned to output 2 labels across and 6 labels down in a page, a total of 12
labels in a page.

In the Smartforms environment, we created a style. Within the style, we created a character format. To
the character format, we assigned the custom bar code created earlier. We activated the style.

We next created in the Smartforms environment a form. We assigned to the form, the style created
earlier. We assigned to the form, the letter stationery. We entered in the Tables tab of the Form Interface,
a single internal table parameter to receive the material data to be output. We renamed the default page
format and enabled the page alignment as landscape.

As all of our information to be output was repetitive, we operated only the main window in the form. In
the main window, we created the element loop. Within the element loop, we created the element template
with one row. The element template consisted of three line types. We created element texts and assigned
them the line types and cells. We entered in the element text, the program symbols to output material
number as bar code material number and material description. We assigned to the program symbols to
output material number as bar code, the character format.

We saved and activated the form.
We created a driver program. In the driver program, we loaded the internal table with four fields:

MATNR1, MAKTX1, MATNR2, and MAKTX2. In the driver program, we invoked the function module of the
form. We activated the driver program.

We executed the driver program and produced the output of material bar code labels.
We could have demonstrated the output of bar codes using the new bar code technology in SAP script

environment. The demonstration of output of bar codes using the new bar code technology in SAP script
environment requires uploading SAP Service Marketplace, a facility not available to the IDES user. You can
peruse bar code technology specifics on the Internet.

Hands-on Exercise V—Output Customer-wise Sales
Summary of a Company code—Use Smartforms Form
As in Chapter 2, as a round-off to the hands-on exercises in this chapter, we will create a Smartforms form
and its corresponding driver program which will produce a report much like a report produced by the
features of classical reporting or ALV functionalities. We will create a form as layout of a customer-wise
sales summary and its corresponding driver program. A report produced by a Smartforms form should use
the extra formatting features like different fonts and different font styling in different parts of the output,
enclosing outputs in box-like frames, imparting shading effect, etc. A requirement to use the extra formatting
features of Smartforms forms will warrant the deployment of Smartforms forms over that of classical
reporting or the ALV functionalities.

http://dx.doi.org/10.1007/978-1-4842-3183-8_2

Chapter 4 ■ SmartformS–handS-on exerCiSeS

345

Output Specification and Layout
Reproducing from Chapter 2, assume that a customer-wise sales summary is required with the following
specifications:

•	 The column headings and the body of the report should be enclosed in box-like
frames.

•	 The column headings and the body of the report should appear in shaded
backgrounds.

•	 The column headings of the report should appear in bold font.

Figure 4-90 shows a rough layout of the report similar to the one in Chapter 2.
The number of Xs indicates the number of column positions for the field. The column headings and

the body of the report will appear in a gray shaded background (not shown in this rough layout). The field
names are marked. Most of the marked fields originate from tables. In the next section “Data Inputs,”, the
originating tables of the fields will be identified. Some of the marked fields do not originate from tables:
SFSY-PAGE is a Smartforms system field; SRL_NO and GTOTAL are variables defined in the Smartforms form
Global Data tab of the Global Definitions node.

The output will be generated with data from the IDES server. The IDES server contains data of a
number of company codes; each company code operates in a specific currency. So it becomes necessary to
process and generate the customer-wise sales summary of one specified company code at a time. The driver
program can provide for the input of a company code for which the customer-wise sales summary is to be
generated through a PARAMETERS statement, and so on.

We will proceed to the identification of inputs and the processing of input involved in producing an
output of Figure 4-90.

Data Inputs
To produce the output of Figure 4-90, we will be required to access the following tables and their fields, as
shown in Table 4-13.

Figure 4-90. Customer-wise sales summary—rough layout

http://dx.doi.org/10.1007/978-1-4842-3183-8_2
http://dx.doi.org/10.1007/978-1-4842-3183-8_2

Chapter 4 ■ SmartformS–handS-on exerCiSeS

346

The database view YCH02_VBRK_KNA1 consisting of the tables VBRK and KNA1 created in Chapter 2
will be used again.

The currency of each billing document can be different. We have to convert the amount NETWR
of individual billing documents into the currency of the company code by multiplying the amount field
NETWR with the exchange rate field KURRF With the converted amounts; we have to summarize the data
customer-wise. We are using the COLLECT statement to generate customer-wise summarized sales data.

Create ABAP Dictionary Structure YCH04_SALES_SUMM_STRU
We created an ABAP dictionary structure YCH04_SALES_SUMM_STRU with the following fields: KUNNR,
NAME1, KURRF, NETWR, and WAERK. The structure will be used to define or declare data in the ABAP
driver program as well as in the Smartforms form environment. Figure 4-91 shows a screenshot of the
structure.

Table 4-13. Tables and Their Fields Required to Output Customer-wise Sales Summary

Srl. No. Table Field Field Description

01 T001—Company code data BUTXT Company Code Name

02 WAERS Currency Key of Company Code

03 KNA1 Customer primary KUNNR Customer Code/Number

04 NAME1 Customer Name

05 VBRK-Billing document, header BUKRS Company Code

06 NETWR Total Net Amount

07 KURRF Exchange rate

Figure 4-91. ABAP dictionary structure: YCH04_SALES_SUMM_STRU

Create Smartforms Style YCH04_05 and Form YCH04_05_SALESSUM
In transaction code SMARTFORMS, we created the style YCH04_05. We created a paragraph format SP with
default values. We assigned the paragraph format SP as the standard paragraph of the style YCH04_05.

We next created a character format BL in the style YCH04_05. We accepted the default values of the font
family as Courier and font size as 12 points. We assigned the Font Style as Bold. The character format BL will
be applied to the column heading of the report to make column heads appear in bold lettering.

http://dx.doi.org/10.1007/978-1-4842-3183-8_2

Chapter 4 ■ SmartformS–handS-on exerCiSeS

347

We performed a consistency check and activated the style YCH04_05.
In transaction code SMARTFORMS, we created the form YCH04_05_SALESSUM.
We assigned the DINA4 stationery to the form. We assigned the style YCH04_05 to the form.
We entered in Import tab of the Form Interface node, an import parameter T001 as shown in Figure 4-92.

We entered in the Tables tab of the Form Interface node, an internal table parameter SALES_
SUMMARY_TAB as shown in Figure 4-93.

Figure 4-92. Form YCH04_05_SALESSUM—Import tab, Form Interface

Figure 4-93. Form YCH04_05_SALESSUM—Tables tab, Form Interface

Figure 4-94. Form YCH04_05_SALESSUM—Global Data tab, Global Definitions

We entered in the Global Data tab of the Global Definitions node, the variables SRL_NO, GTOTAL, and
SALES_SUMMARY_STRU as shown in Figure 4-94.

Chapter 4 ■ SmartformS–handS-on exerCiSeS

348

We will increment and output the variable SRL_NO as a serial number in the report, as the ABAP system
field SY-TABIX will not work in the Smartforms environment. We will build the grand total in the variable
GTOTAL and output it at the end of the loop processing. We will fetch a row of data from the internal table
parameter SALES_SUMMARY_TAB into the structure SALES_SUMMARY_STRU. Strictly, this is unnecessary.
We could have used the header line SALES_SUMMARY_STRU. We are avoiding the use of a header line.

We entered in the Currency/Quant. Fields tab of the Global Definitions node, the variable GTOTAL and
the currency key field as SALES_SUMMARY_STRU-WAERK as shown in Figure 4-95.

Figure 4-95. Form YCH04_05_SALESSUM—Currency/Quant. Fields tab, Global Definitions

Table 4-14. Page Format ONLY_PG—Windows

Window Window Dimensions

1. RHEADING Left margin: 5 CH
Upper margin: 1 LN
Window width: 73 CH
Window height: 3 LN

2. CHEADING Left margin: 5 CH
Upper margin: 4 LN
Window width: 73 CH
Window height: 3 LN

3. MAIN Left margin: 5 CH
Upper margin: 7 LN
Window width: 73 CH
Window height: 57 LN

4. GTOTAL Left margin: 5 CH
Upper margin: 64 LN
Window width: 73 CH
Window height: 2 LN

We renamed the implicitly created page format to ONLY_PG with the default values. We assigned the
next page for page format ONLY_PG as ONLY_PG. We enabled the Radio button Landscape Format to output
the report in landscape mode: 297 X 210MM.

For the only page format ONLY_PG, we created the windows as per the entries in Table 4-14. The
horizontal dimensions of the windows have been specified in characters (CH) and the vertical dimensions of
the windows have been specified in lines (LN).

Chapter 4 ■ SmartformS–handS-on exerCiSeS

349

Further creations in the windows will be as follows.

Window RHEADING
We created the element text in the window RHEADING and named it as RHEADING_TEXT. The following
was entered in the text RHEADING_TEXT:

* Customer Wise Sales Summary-Company Code: &T001-BUKRS&/&T001-BUTXT&
* Currency: &T001-WAERS& ,,,,,,,,,,
= Page:&SFSY-PAGE(3)&

Window CHEADING
As per our output specifications, the column headings must be enclosed in a box-like frame with a shaded
background. This is achieved by settings in Output Options tab of the window CHEADINGS as shown in
Figure 4-96.

Figure 4-96. Form YCH04_05_SALESSUM—window CHEADING: tab Output Options

We created the element text in the window CHEADING and named it as CHEADING_TEXT. The
following was entered in the text CHEADING_TEXT:

*
* <BL> Srl. Customer N a m e</>
= <BL> Amount</>
* <BL> No. Code</>

Window MAIN
The data in the main window has to output repeatedly; hence, we created the element loop named LOOP_
ITEM_DATA. Figure 4-97 illustrates.

Chapter 4 ■ SmartformS–handS-on exerCiSeS

350

To increment the serial number field SRL_NO and build the grand total field GTOTAL, we created under
the element loop LOOP_ITEM_DATA, a node of ABAP Program Lines. We named this node of ABAP Program
Lines SRL_NO_GTOTAL_CODE as shown in Figure 4-98.

Figure 4-97. Form YCH04_05_SALESSUM—loop: LOOP_ITEM_DATA

Figure 4-98. Form YCH04_05_SALESSUM—ABAP Program Lines: SRL_NO_GTOTAL_CODE

We created under the element loop, next to the node SRL_NO_GTOTAL_CODE, the element text named
ITEM_DATA. The following was entered in the element text named as ITEM_DATA:

* &SRL_NO(Z5)& &SALES_SUMMARY_STRU-KUNNR(K10)&
 & SALES_SUMMARY _STRU-NAME1(35)&& SALES_SUMMARY_STRU-NETWR(R17)&

Window GTOTAL
We created the element text in the window GTOTAL and named it GTOTAL_TEXT. The following was
entered in the text GTOTAL_TEXT:

* ,,,,,,,,,,,,,,,,,,,,,, Total: >OTAL(17)&

We want the grand total to output once all the data is output in the main window. Hence, in the
Conditions tab of the element text named GTOTAL_TEXT, we enabled the check box Only After End of Main
Window.

After creation of the all the requisite form elements as described, we saved and activated the form.

Chapter 4 ■ SmartformS–handS-on exerCiSeS

351

Driver Program YCH04_05_DPRG_YCH04_05_SALESUM for
Smartforms Form YCH04_05_SALESUM
We created an ABAP program YCH04_05_DPRG_YCH04_05_SALESUM. This will be the driver program for
the form YCH04_05_SALESUM. The source lines of the driver program are as follows:

REPORT YCH04_05_DPRG_YCH04_05_SALESUM.

**
* Driver Program for Form: YCH04_05_SALESUM **
* Customer Wise Sales Summary of a Company Code **
**

TABLES: T001.

DATA: CUST_SUMM_TAB TYPE STANDARD TABLE OF
 YCH04_SALES_SUMM_STRU,
 CUST_SUMM_STRU TYPE YCH04_SALES_SUMM_STRU,
 FORM_NAME TYPE TDSFNAME VALUE
 'YCH04_05_SALESUM', "Form Name
 FM_NAME TYPE RS38L_FNAM. "Function Module Name
**
PARAMETERS COMP_CD TYPE VBRK-BUKRS DEFAULT 3000 VALUE CHECK.

START-OF-SELECTION.

SELECT SINGLE * FROM T001 WHERE BUKRS = COMP_CD.

SELECT KUNNR NAME1 KURRF NETWR WAERK FROM YCH02_VBRK_KNA1 INTO
 CUST_SUMM_STRU WHERE BUKRS = COMP_CD.

 CUST_SUMM_STRU-NETWR =
 CUST_SUMM_STRU-NETWR * CUST_SUMM_STRU-KURRF.
 CUST_SUMM_STRU-KURRF = 0.

 COLLECT CUST_SUMM_STRU INTO CUST_SUMM_TAB.
ENDSELECT.

IF LINES(CUST_SUMM_TAB) = 0.
 MESSAGE S001(YCH02_MCLASS) DISPLAY LIKE 'E'.
 "No Data Retrieved
 EXIT.
ENDIF.

Chapter 4 ■ SmartformS–handS-on exerCiSeS

352

SORT CUST_SUMM_TAB BY KUNNR.

CALL FUNCTION 'SSF_FUNCTION_MODULE_NAME'
 EXPORTING
 FORMNAME = FORM_NAME
 IMPORTING
 FM_NAME = FM_NAME
 EXCEPTIONS
 NO_FORM = 1
 NO_FUNCTION_MODULE = 2
 OTHERS = 3.
IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
ENDIF.

 CALL FUNCTION FM_NAME
 EXPORTING
* CONTROL_PARAMETERS = CONTROLS
* EKKO = EKKO
 T001 = T001
 TABLES
 SALES_SUMMARY_TAB = CUST_SUMM_TAB
 EXCEPTIONS
 FORMATTING_ERROR = 1
 INTERNAL_ERROR = 2
 SEND_ERROR = 3
 USER_CANCELED = 4
 OTHERS = 5.
 IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 ENDIF.

We saved, performed a syntax check, and activated the program.

Chapter 4 ■ SmartformS–handS-on exerCiSeS

353

Output
We executed the program YCH04_05_DPRG_YCH04_05_SALESUM. We executed with the company code
3000. The company code 3000 has substantial billing document data. The output will look like that in
figures 4-99, 4-100 and 4-101.

Figure 4-99. Customer-wise sales summary: Company Code 30000—1/2

Chapter 4 ■ SmartformS–handS-on exerCiSeS

354

Hands-on Exercise Recapitulation
In this hands-on exercise, we created a form, a driver program, and required workbench objects to produce
not a business document but a report—customer-wise sales summary of a specific company code. The
source of data for the report was the tables VBRK (billing document header), KNA1 (Customer Primary),
and T001 (company code). The form consisted of two secondary windows to output the report and column
headings. The body of the report was located in the main window. A third secondary window was used
to output the grand total. The report column heading was produced in bold lettering. The report column
heading and body was enclosed in a box-like frame with background shading.

Figure 4-101. Customer-wise sales summary: Company Code 30000—2/2 total

Figure 4-100. Customer-wise sales summary: Company Code 30000—2/2

Chapter 4 ■ SmartformS–handS-on exerCiSeS

355

While processing data for the report, we have ignored to filter out or skip billing document data not
relating to actual sales like pro forma invoice, etc. (VBTYP = 'U', etc.). In the training and teaching paradigm
we are in, this can be overlooked. If you are very particular, you can incorporate the condition to skip the
data not relating to actual sales in the WHERE condition of the SELECT statement as follows:

SELECT KUNNR NAME1 KURRF NETWR FROM YCH02_VBRK_KNA1 INTO
 CUST_SUMM_STRU WHERE BUKRS = COMP_CD
 AND VBTYP NE 'U' AND.....

Smartforms Tidbits
Following are some miscellaneous tidbits of Smartforms forms.

Smartforms Opening Screen Menu Options
A brief on the menu options on the opening screen of Smartforms follows:

•	 Copy, rename, and delete—forms, styles, and text modules:

•	 To copy forms, select the menu option Smart Forms ➤ Copy. The copied form will be
in inactive mode.

•	 To delete forms, select the menu option Smart Forms ➤ Delete.

•	 To rename forms, select the menu option Smart Forms ➤ Rename. The renamed
form will appear in active mode, though no function module is generated. When you
generate the function module for the renamed form, the function module name will
be different than the function module name prior to renaming.

•	 On parallel basis, menu options are available to copy, delete, and rename styles and
text modules. The menu options to copy, delete, and rename styles will appear on
selection of the Radio button Styles. The menu options to copy, delete, and rename
text modules will appear on selection of the Radio button Text Modules.

•	 Reassign package.

•	 To reassign a package to a form, style, or text module, select the menu option Goto ➤
Object Directory Entry.

•	 Settings:

•	 To make default settings in the Smartforms environment, select the menu option
Utilities(M) ➤ Settings.

•	 Download forms, styles, or text modules:

•	 To download forms, styles, or text modules to presentation server files, select the
menu option Utilities(M) ➤ Download Form/ Download Style/ Download Text
Module on the Smartforms opening screen. You have to select the appropriate Radio
button to download forms, styles, or text modules. The downloaded forms, styles,
or text modules can be uploaded into the same or other SAP systems, providing
portability to the Smartforms components.

•	 You can also download forms, styles, or text modules when you have opened these
elements in change or display mode.

Chapter 4 ■ SmartformS–handS-on exerCiSeS

356

•	 Upload forms, styles, or text modules:

•	 The uploading of the downloaded files into SAP systems is enabled with the menu
option Utilities(M) ➤ Upload Form/ Upload Style/Upload Text Module on the
Smartforms opening screen. The uploaded objects will be in inactive mode. We have
used the menu options to download our forms, styles, and text modules to make them
part of our E-resource file for this book (www.apress.com/9781484212345). You can
try out the menu options to upload our forms, styles, and text modules into your SAP
systems.

•	 You can also upload forms, styles, or text modules when you have opened these
elements in change mode.

•	 Download subtree:

•	 Within a form opened in change or display mode, you can download a node of the
Smartforms form by double-clicking the node for node selection and making the
menu selection Utilities(M) ➤ Download Subtree.

•	 Upload subtree:

•	 Within a form opened in change mode, you can upload a node of the Smartforms
form by making the menu selection Utilities(M) ➤ Upload. This will load the node
into the clipboard. You have to perform a paste operation for the clipboard contents
to be copied to the form tree.

•	 Migration—SAP script forms and styles to Smartforms

•	 You can migrate SAP script styles to Smartforms styles by selecting the menu option
Utilities(M) ➤ Convert SAPscript Style.

•	 You can migrate SAP script forms to Smartforms forms by selecting the menu
option Utilities(M) ➤ Migration ➤ Import SAPscript Form. The SAP script control
commands in the text area of the migrating SAP script form are treated as comments
in the destination Smartforms form.

•	 Final and copy windows.

•	 In all our demonstration and hands-on exercises, we used only two window types:
secondary and main. The Smartforms supports two more window types: (1) final
window and (2) copy window. These window types are used in special contexts. A
brief description of these windows types follows.

Final Window
The final window output is processed after the conclusion of the processing of secondary main and copy
windows.

In a scenario, assume that you are totaling the amounts of individual items of a document within
the element loop or table of the Smartforms form environment to derive the total amount of a document.
Further, in this scenario, suppose you want the total amount of the document to appear on the document’s
first page. Normally, all the items are not processed when you are on the first page of the document. If you
locate the output of total amount of the document in a secondary or main window, the total amount will
output incorrectly as all the items in the document might not have been processed. But, if you locate the
output of total amount of the document in a final window, the total amount will output correctly.

http://www.apress.com/9781484212345

Chapter 4 ■ SmartformS–handS-on exerCiSeS

357

The value of the Smartforms system field SFSY-FORMPAGES, when interrogated through a static
breakpoint in the Program Lines node located in the final window, will display the total number of pages in
the document.

The value of the Smartforms system field SFSY-FORMPAGES, when interrogated through a static
breakpoint in the Program Lines node located in a window other than the final window, will display the
current page of the document.

Copy Window
The copy window can be deployed in the context of generating multiple copies of documents.

Suppose you are generating multiple, say, two, copies of a document, say, purchase order—PO. The first
of the two copies is designated as the internal copy. The second of the two copies is designated as the vendor
copy (meant for the business partner).

You want some data, text to appear on the internal copy and not appear on the vendor copy. And you
want some data, text to appear on the vendor copy and not appear on the internal copy.

The Smartforms provides the facility of copy windows to manage the scenario described. When you
designate a window as a copy window, in the General Attributes tab, the Output to area under the Window
type appears. With the Radio buttons provided in the Output to area, you specify and control the output of
copy windows in the multiple copies of a document.

You can also use the Smartforms system fields SFSY-COPYCOUNT and SFSY-COPYCOUNT0 to control
the output of copy windows.

The Smartforms system field SFSY-COPYCOUNT contains 1 for the original copy and 2, 3… for
subsequent copies.

The Smartforms system field SFSY-COPYCOUNT0 contains 0 for the original copy and 1, 2… for
subsequent copies.

Conclusion
This chapter consisted for most part of implementations of specific business scenarios using the Smartforms
concepts and features introduced and described in Chapter 3. I called the implementation of the business
scenarios hands-on exercises. We performed five hands-on exercises in this chapter.

In the first hands-on exercise, we created a form, a driver program, and other required workbench
objects to produce vendors’ address labels of a specific company code.

In the second hands-on exercise, we created a form, a driver program, and other required workbench
objects to output standard purchase orders. The specialty or peculiarity of the form was that it can generate
multiple language outputs with a single language version of the form. This was implemented through all text
in the text area of the form originating from the ABAP dictionary data element text.

In the third hands-on exercise, we modified and customized a copy of the SAP delivered form /SMB40/
MMPO_A to output purchase orders. The modifications and customizations were carried out as per laid-out
specifications. The hands-on exercise involved the copying of SAP delivered driver programs FM06PE02 and
SAPFM06P into Y namespace and modifying them. The hands-on exercise involved the output settings in
transaction code NACE. The output was tested in transaction code ME22N.

The fourth hands-on exercise output material bar code labels. The hands-on exercise involved the
creation of custom bar codes in transaction code SE73. The custom bar codes created were deployed
through character format in a style.

The fifth hands-on exercise involved a form to output a customer-wise sales summary of a specific
company code. The hands-on exercise demonstrated that a list normally produced with reporting features
like ABAP WRITE statement and ALV functionalities can also be produced using a Smartforms form and a
driver program.

We concluded the chapter with Smartforms miscellaneous tidbits.

http://dx.doi.org/10.1007/978-1-4842-3183-8_3

359© Sushil Markandeya 2017
S. Markandeya, Pro SAP Scripts, Smartforms, and Data Migration,
https://doi.org/10.1007/978-1-4842-3183-8_5

CHAPTER 5

Migration Using Batch Input
Session and Call Transaction
Methods

There are situations in which a large volume of data is required to be imported into the SAP system from
non-SAP systems on a one-time basis as well as on a periodic or routine basis.

When SAP is implemented in an enterprise for the very first time, the enterprise could already be
using some software to run its business. We will call this software existing in an enterprise before the SAP
implementation as the legacy system. The legacy system will be maintaining data such as customer data,
vendor data, material data, accounts data, and so on. The customer, vendor, material, accounts, etc., data
is the so-called master data. Each category of master data—customer, vendor, etc.—consists of thousands
or tens of thousands of rows. The master data already existing in the legacy system can be transferred
into the SAP system as part of SAP implementation. Otherwise, the master data will have to be created
manually from scratch in the SAP system—a laborious and error-prone exercise. Subsequently, post-SAP
implementation, new customers, vendors, and materials will be created manually in SAP system. The master
data is transferred from the legacy system into the SAP system only once during the SAP implementation
phase—a case of one-time exercise of transferring data from a non-SAP system into the SAP system.

An enterprise might be using SAP for some of its business processes and might be using some other
software for some other of its business processes. For example, in India, some banks use the software Finacle
for their front-end operations and SAP for their back-end operations. Some of the data generated by the
front-end software Finacle can be used by the back-end software SAP. The back-end software SAP might not
use the data generated by the front-end software Finacle in the exact form in which it is generated. The data
generated by the front-end software Finacle probably would have to be converted and summarized before
transferring it to the back-end software SAP. The necessary programs/software can be written
(a one-time exercise) to convert and summarize the front-end data which is to be transferred to the back-end
SAP. The data transfer will have to be on a periodic basis—daily or weekly, etc. Thus, through the means of
data transfer from the front-end software Finacle to the back-end software SAP, manual entry of transferred
data in the SAP software is avoided. This is an instance of data transfer from a non-SAP system into the SAP
system on a periodic or routine basis.

These were scenarios of data transfer from a non-SAP system into the SAP system as a one-time exercise
as well as a periodic or routine exercise.

We will henceforth also call the data transfer from a non-SAP system into the SAP system as data
migration.

https://doi.org/10.1007/978-1-4842-3183-8_5

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

360

Data Migration–Issues and Considerations
When data is transferred from a non-SAP system (source) into the SAP system (destination), there could be
issues. Some common issues are listed here.

•	 The form of the data in the source can be different from the form in which it is
expected to be stored in the destination. To cite a random example: suppose the
customer name is stored in the source as 3x40. That is, each line of customer name
has 40 characters and there are a maximum of three lines of customer name. In the
destination, the customer name is stored as 4x35. That is, each line of customer
name has 35 characters and there are a maximum of four lines of customer name.
In such a case as described in the foregoing lines, string manipulation needs to be
performed to the source data to convert it into a form expected in the destination.
This is an issue of conversion of source data to the form expected in the destination.
There might be more fields requiring such conversions. In the exercises we perform
in this chapter and the next, we will not be addressing this issue. We are assuming
that the source data has already been converted to the form expected in the
destination.

•	 Certain data types in the destination are not supported in the source. For example,
the ABAP type P—packed decimal —might not be supported in the source.
Generally, the variations in the types supported at the source and destination are
overcome by converting all of the source data into character (Unicode) type. The
character (Unicode) type is universally supported. In all of our exercises, all of the
source data will always be character oriented.

Mostly, master data like customers, vendors, materials, etc., do not contain
mandatory numeric fields in the SAP system. But if you are migrating transaction
data like billing documents and purchasing documents, the data will consist of
mandatory numeric fields like quantities and currency amounts. In our exercises,
we will specify the numeric source fields as character oriented. The character-
oriented numeric data can consist of numerals (0-9), a sign (+/-), and a decimal
(.). During the assignment of source fields to the destination fields, the character-
oriented numeric source data will automatically get converted to destination type.

•	 When you are migrating data, mandatory foreign key fields are involved. For
example, if you are migrating customers, you need to provide valid values for
company code, account group, reconciliation account, sales organization, distribution
channel, and division. All of these fields are foreign key fields in the customer
database tables. Hence, values should have been created for these fields in the
respective primary database tables. Values are created for these fields in the primary
database tables through the process of functional module configuration.

The rows in the primary database tables for fields, company code, account group,
and reconciliation account, are created through the configuration of the finance
(FI) functional module.

The rows in the primary database tables for fields, sales organization, distribution
channel, and division are created through the configuration of the sales and
distribution (SD) functional module.

Thus, before migrating data of customers, you must ensure that the functional
modules FI and SD are configured.

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

361

Before migration of any data, you must ensure that the appropriate functional
modules are fully configured.

•	 When any new data is created manually in the SAP system, like, for example,
customer data using the transaction code XD01, rigorous checks and validations
are performed. When data is migrated from legacy systems into SAP systems, the
migratory data must undergo the same checks and validations as when data is
manually created in the SAP system. The SAP data migration tools and facilities
provide for such checks and validations; you do not have to write ABAP code to
perform such checks and validations.

Data Migration–A Brief on Tools and Facilities Available
SAP provides the following methods for data migration from non-SAP systems into the SAP system:

•	 Direct input.

SAP provides a separate program for migration of each of business objects like customers, vendors,
materials, accounting documents, purchasing documents, and so on. The direct input programs use function
modules to perform the requisite validation of input legacy data. To view the direct input programs available,
you can navigate to the transaction code SXDA and use the following menu option: Goto ➤ DX Program
Library.

We will be migrating data using the direct input method under the Legacy System Migration Workbench
(LSMW) in Chapter 6.

•	 Batch input or batch data communication (BDC)

With the batch input method, you initially perform recording of a transaction. Recording a transaction
generally involves the manual creation of a sample business object like a customer, vendor, material,
purchasing document, etc., with the appropriate transaction code. For instance, if you want a recording of
customer creation, you will use the transaction code XD01 to create one sample customer. Some transaction
codes, especially those involving controls of the control framework—CFW—are not accessible for recording.

Once the recording of the creation of a business object is over, you can generate an ABAP program from
that recording. The generated ABAP program contains statements that simulate the screens of the created
business object data. The generated ABAP program can then be appropriately modified to carry out data
migration of the business object. In effect you are creating your own ABAP program for migration of data
of a specific business object. Most of the code of the ABAP program is generated from the recording of the
transaction.

When the modified version of the generated ABAP program is run with the converted data from the
legacy system, data is not inserted into the SAP functional module tables. Instead, the converted data from
the legacy system is inserted into queue or session database tables. You can then run a background session
using transaction code SM35 to transfer the data from the queue or session database tables into the SAP
functional module database tables. The running of the session produces a detailed log of data transfer from
the queue or session database tables into the SAP functional module database tables.

A detailed description of the data flow is contained in the hands-on exercise of data migration using the
batch input method in this chapter.

•	 Call transaction

The modified version of the generated ABAP program from the recording of a business object has the
option to use the batch input method or the call transaction method. The same program can be run using
either of the methods: batch input or call transaction. With the call transaction method, data is inserted
directly from the converted data of the legacy system into the SAP functional module database tables. By
default, no log is produced during the run of the program using the call transaction method.

http://dx.doi.org/10.1007/978-1-4842-3183-8_6

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

362

This chapter contains a detailed description of the data flow in the hands-on exercise of data migration
using the call transaction method.

•	 Call dialog (obsolete, not covered)

In addition to the methods, SAP provides two data migration workbenches.

•	 Data Transfer Workbench—transaction code: SXDA

•	 Legacy System Migration Workbench transaction code: LSMW

The two workbenches provide a single point or a screen from where you can perform all the required
operations to migrate data.

The Data Transfer Workbench has been superseded by the LSMW workbench. The LSMW workbench
provides the following four methods for data migration:

•	 Standard batch/direct input

•	 Batch input recording

•	 Business object method (BAPI)

•	 IDoc (intermediate document)

The LSMW provides an easy-to-use user interface to perform the requisite steps for data migration.
When you perform data migration with LSMW, it could be possible that no program development will be
required. When no program development is required, a non-programmer can perform the setup for data
migration with LSMW. I will cover all the four methods of LSMW in Chapters 6 and 7.

In this chapter, using hands-on exercises, I will demonstrate data migration using the batch input
method and the call transaction method.

Recording a Transaction, BDCDATA Table, and the Include
Program BDCRECX1
Before we venture to perform the hands-on exercises, we must understand the processing of recording
a transaction, the data definitions, and functionalities incorporated in the ABAP include program:
BDCRECX1.

When a recording is performed of a transaction code, the recording captures all the data entered
on the screens and the operations performed on the screens. When an ABAP program is generated
from the recording, the generated ABAP program invokes the include program BDCRECX1. The ABAP
program generated from the recording is a screen simulation of the data entered and operations
performed on the screen.

Mostly a recording is performed for one specimen entity. The program generated from recording will
then support the creation of one entity. The generated program from the recording needs to be modified to
read data of multiple entities from text file(s) residing on the application or presentation server and pass on
the data from text file(s) to the creation of entities in the SAP database tables.

Descriptions of transaction recording and the include program BDCRECX1 follow.

http://dx.doi.org/10.1007/978-1-4842-3183-8_6
http://dx.doi.org/10.1007/978-1-4842-3183-8_7

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

363

Recording a Transaction, BDCDATA Table
When we generate an ABAP program from the recording of any transaction code, the generated program
invokes the include program BDCRECX1. The program BDCRECX1 is using the ABAP dictionary structure
BDCDATA to declare an internal table of the same name as the ABAP dictionary structure. The ABAP
dictionary structure BDCDATA consists of the following fields:

PROGRAM
DYNPRO
DYNBEGIN
FNAM
FVAL

I will refer to the internal table declared by referring to the ABAP dictionary structure BDCDATA as
BDCDATA table. The BDCDATA table at runtime contains rows of the screen simulation of entered data and
operations performed.

The BDCDATA table is filled up with rows for each entity (a customer, a vendor, a document number,
etc.). The BDCDATA table is filled up in the following manner: for any row in the BDCDATA table, either the
first three fields are filled up or the last two (fourth and fifth) fields are filled up. That is, when the first three
fields contain values, the last two fields must be blank; when the last two fields contain values, the first three
fields must be blank.

In the SAP environment, for most of the master and transaction data, there are multiple screens. When
a new screen commences, the field PROGRAM is filled with the name of the dynpro program, the field
DYNPRO is filled with the screen number and the field DYNBEGIN is filled with the value ‘X’ indicating the
commencement of a new screen. The last two fields, FNAM and FVAL, should be blank. For every screen
navigated to, a row with values in the first three fields will be created in the BDCDATA table.

Within a screen, for data entered in a field/every operation, the field FNAM is filled with the field name/
operation name and the field FVAL is filled with the value entered in the field/function code. The first three
fields—PROGRAM, DYNPRO, and DYNBEGIN—should be blank. For every screen field into which data is
entered or an operation like the positioning of a cursor is performed, a row with values entered in the last
two fields will be created in the BDCDATA table.

To illustrate how the BDCDATA table is filled as a simulation of screen operations, we have performed
a recording of the transaction code FI01. The transaction code FI01 creates bank master data in the single
database table BNKA. With the transaction code FI01 in recording mode, we will fill the following fields of
the database table BNKA:

•	 BANKS Bank country (key)

•	 BANKL Bank key

•	 BANKA Bank name

•	 PROVZ Region (Province or state code)

•	 STRAS Street

•	 ORT01 City

•	 BRNCH Bank Branch

The transaction code FI01 contains two screens and serves our present purpose of the demonstration of
recording with minimum number of multiple screens.

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

364

To record a transaction, we use the transaction code SHDB. The opening screen of transaction code
SHDB should look like the one in Figure 5-1.

To create a new recording, we clicked the New recording button. Clicking the New recording button
popped up the dialog box shown in Figure 5-2.

Figure 5-1. Transaction recorder—opening screen

Figure 5-2. Transaction recorder—create recording

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

365

We entered the Recording name as YCH05_FI01, the Transaction code as FI01, and the Update mode as
local and accepted the rest as default values. The Update mode and other items on this dialog box will be
elaborated upon when we perform the hands-on exercise: data migration using the batch input method. To
perform recording, we clicked on the Continue button. The Create Bank: Initial Screen appeared. Figure 5-3
shows the Create Bank: Initial Screen with entered data.

By pressing the <enter > key, we navigated to the next (final) screen. The final screen—Figure 5-4 shows
Create Bank: Detail Screen with entered data.

Figure 5-3. Create Bank: Initial Screen with data

Figure 5-4. Create Bank: Detail Screen with data

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

366

We clicked the save button. The control returned to the Transaction Recorder screen as shown in
Figure 5-5.

On the extreme left, the row or line numbers of recording appear. The rows are numbered 1 to 14.

 1. In row number 2, the fields are filled as follows: PROGRAM = SAPMF02B,
DYNPRO = 0100 and DYNBEGIN = X. This is the commencement of the first
screen—number 0100.

In row numbers 3 to 6, the fields FNAM and FVAL are filled as follows:

 2. Row number 3, FNAM = BDC_CURSOR and FVAL = BNKA-BANKL. That is,
positioning of the cursor on the screen field BNKA-BANKL.

 3. Row number 4, FNAM = BDC_OKCODE and FVAL = /00. /00 is the function code
for navigation to next screen.

 4. Row number 5, FNAM = BNKA-BANKS and FVAL = IN. (Bank country key)

 5. Row number 6, FNAM = BNKA-BANKL and FVAL = 987987987. (Bank key)

In row number 7, the fields are filled as follows: PROGRAM = SAPMF02B,
DYNPRO = 0110, and DYNBEGIN = X. This is the commencement of the second
or the last screen—number 0110.

In row numbers 8 to 14, the fields FNAM and FVAL are filled as follows:

 6. Row number 8, FNAM = BDC_CURSOR and FVAL = BNKA-BRNCH. That is,
positioning of the cursor on the screen field BNKA-BRNCH.

 7. Row number 9, FNAM = BDC_OKCODE and FVAL = UPDA. UPDA is the function
code for saving data.

Figure 5-5. Transaction Recorder: Change Recording YCH05_FI01

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

367

 8. Row number 10, FNAM = BNKA-BANKA and FVAL = State Bank of India
(bank name).

 9. Row number 11, FNAM = BNKA-PROVZ and FVAL = 30
(region or province/state code).

 10. Row number 12, FNAM = BNKA-STRAS and FVAL = 555, Nehru Place (street).

 11. Row number 13, FNAM = BNKA-ORT01 and FVAL = Delhi (city).

 12. Row number 14, FNAM = BNKA-BRNCH and FVAL = Nehru Place Branch
(bank branch).

Table 5-1 shows what the contents of the BDC_DATA table will be upon the recording operation of
transaction code FI01 described in the preceding lines.

We can save the recording and generate an ABAP program from the recording. We are not saving the
recording and or generating an ABAP program for now. We will save the recordings and generate ABAP
programs from the recording when we perform the hands-on exercises. Recordings are client dependent.

The recording lines can be modified. You can insert and delete lines of recording; buttons are available
on the application tool bar to enable insertion and deletion of recording lines.

You can delete complete recordings.
You can export the recording lines to a presentation server text file. Conversely, you can import the

contents of a presentation server text file into a recording. Buttons are available on the application toolbar to
enable the export and import operations.

You can generate a function module instead of an executable ABAP program from the recording. You
will generate a function module from the recording if you expect to call a modified version of the generated
function module from a number of ABAP programs.

In a single recording, you can include multiple transactions or transaction codes. When you include
multiple transactions in a single recording and generate an ABAP program, you can run the ABAP program
using the batch input method only. The call transaction method does not support multiple transactions. We
are not demonstrating multiple transactions in a recording.

Table 5-1. BDCDATA Table Contents on Recoding of Transaction Code: FI01

Row No. PROGRAM DYNPRO DYNBEGIN FNAM FVAL

2 SAPMF02B 0100 X

3 BDC_CURSOR BNKA-BANKL

4 BDC_OKCODE /00

5 BNKA-BANKS IN

6 BNKA-BANKL 987987987

7 SAPMF02B 0110 X

8 BDC_CURSOR BNKA-BRNCH

9 BDC_OKCODE =UPDA

10 BNKA-BANKA State Bank of India

11 BNKA-PROVZ 30

12 BNKA-STRAS 555, Nehru Place

13 BNKA-ORT01 Delhi

14 BNKA-BRNCH Nehru Place Branch

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

368

Include Program BDCRECX1
This section provides an overview of the include program BDCRECX1. When you generate an ABAP program
from the saved recording of a transaction, the generated ABAP program invokes the include program
BDCRECX1.

In the data declaration area of the program BDCRECX1, the BDCDATA table has been declared as
follows:

--
* data definition
--
* Batchinputdata of single transaction
DATA: BDCDATA LIKE BDCDATA OCCURS 0 WITH HEADER LINE.

The program BDCRECX1 contains, at the very beginning, selection screen statements to input various
runtime options. As we mentioned earlier, the same ABAP program generated from recording a transaction,
with suitable modifications, can be run using either the batch input method or the call transaction method.
A Radio button selection determines which of the methods is to be used during the runtime. Two Radio
buttons are provided using selection screen statements for enabling runtime method selection. The
selection screen statements for the Radio buttons in the program BDCRECX1 are as follows:

SELECTION-SCREEN BEGIN OF LINE.
 PARAMETERS SESSION RADIOBUTTON GROUP CTU. "create session
 SELECTION-SCREEN COMMENT 3(20) TEXT-S07 FOR FIELD SESSION.
 selection-screen position 45.
 PARAMETERS CTU RADIOBUTTON GROUP CTU. "call transaction
 SELECTION-SCREEN COMMENT 48(20) TEXT-S08 FOR FIELD CTU.
SELECTION-SCREEN END OF LINE.

Other selection screen statements in the program BDCRECX1 will be discussed during performance of
the hands-on exercises.

There are two subroutines, BDC_DYNPRO and BDC_FIELD, in the program BDCRECX1. These two
subroutines will be continually invoked or called from the generated program from recording a transaction.

The first subroutine, BDC_DYNPRO, fills the first three fields—PROGRAM, DYNPRO, and DYNBEGIN—
of the BDCDATA table structure with the supplied parameter values. It appends a row to the BDCDATA table
with the assigned values. The subroutine BDC_DYNPRO lines are as follows:

* Start new screen *

FORM BDC_DYNPRO USING PROGRAM DYNPRO.
 CLEAR BDCDATA.
 BDCDATA-PROGRAM = PROGRAM.
 BDCDATA-DYNPRO = DYNPRO.
 BDCDATA-DYNBEGIN = 'X'.
 APPEND BDCDATA.
ENDFORM.

The second subroutine, BDC_FIELD, fills the last two fields—FNAM and FVAL—of the BDCDATA table
structure with the supplied parameter values. It appends a row to the BDCDATA table with the assigned
values. The subroutine BDC_FIELD lines are as follows:

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

369

* Insert field *

FORM BDC_FIELD USING FNAM FVAL.
 IF FVAL <> NODATA.
 CLEAR BDCDATA.
 BDCDATA-FNAM = FNAM.
 BDCDATA-FVAL = FVAL.
 APPEND BDCDATA.
 ENDIF.
ENDFORM.

If you run the program using the batch input method, before you create data for a new session, you
need to open this new session once (analogous to the opening of a new file). The program BDCRECX1
provides a subroutine OPEN_GROUP to perform this task of opening a new session. The function module
BDC_OPEN_GROUP is called to open a new session. Program lines of subroutine OPEN_GROUP in the
program BDCRECX1 are as follows:

* create batchinput session *
* (not for call transaction using...) *

FORM OPEN_GROUP.
 IF SESSION = 'X'.
 SKIP.
 WRITE: /(20) 'Create group'(I01), GROUP.
 SKIP.
* open batchinput group
 CALL FUNCTION 'BDC_OPEN_GROUP'
 EXPORTING CLIENT = SY-MANDT
 GROUP = GROUP
 USER = USER
 KEEP = KEEP
 HOLDDATE = HOLDDATE.
 WRITE: /(30) 'BDC_OPEN_GROUP'(I02),
 (12) 'returncode:'(I05),
 SY-SUBRC.
 ENDIF.
ENDFORM.

When you run the program using the batch input method, an opened session must be closed in the end
(analogous to the closing of a file). The function module BDC_CLOSE_GROUP is called to close an opened
session. Program lines of the subroutine CLOSE_GROUP in the program BDCRECX1 are as follows:

* end batchinput session *
* (call transaction using...: error session) *

FORM CLOSE_GROUP.
 IF SESSION = 'X'.
* close batchinput group
 CALL FUNCTION 'BDC_CLOSE_GROUP'.

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

370

 WRITE: /(30) 'BDC_CLOSE_GROUP'(I04),
 (12) 'returncode:'(I05),
 SY-SUBRC.
 ELSE.
 IF E_GROUP_OPENED = 'X'.
 CALL FUNCTION 'BDC_CLOSE_GROUP'.
 WRITE: /.
 WRITE: /(30) 'Fehlermappe wurde erzeugt'(I06).
 E_GROUP_OPENED = ' '.
 ENDIF.
 ENDIF.
ENDFORM.

Once the table BDCDATA is filled with the screen simulation of one entity—a customer or a vendor or
a material or a document, etc.—the data has to be transferred from the BDCDATA table to either the queue/
session database tables or the functional module database tables depending on which method you are using
while running the program: the batch input or the call transaction.

If the batch input method is being used when running the program, the function module BDC_INSERT
is called to transfer the data from the BDCDATA table to the queue/session database tables. If the call
transaction method is being used when running the program, the ABAP statement CALL TRANSACTION…..
is used to transfer the data from the BDCDATA table to the functional module database tables.

The tasks of determining what method is being used to run the program, the calling of the function
module BDC_INSERT, or using the ABAP statement CALL TRANSACTION…… are performed in the
subroutine BDC_TRANSACTION of the program BDCRECX1. Partial lines of the subroutine BDC_
TRANSACTION are as follows:

--
* Start new transaction according to parameters *
--
FORM BDC_TRANSACTION USING TCODE.
 DATA: L_MSTRING(480).
 DATA: L_SUBRC LIKE SY-SUBRC.
* batch input session
 IF SESSION = 'X'.
 CALL FUNCTION 'BDC_INSERT'
 EXPORTING TCODE = TCODE
 TABLES DYNPROTAB = BDCDATA.
 IF SMALLLOG <> 'X'.
 WRITE: / 'BDC_INSERT'(I03),
 TCODE,
 'returncode:'(I05),
 SY-SUBRC,
 'RECORD:',
 SY-INDEX.
 ENDIF.
* call transaction using
 ELSE.
 REFRESH MESSTAB.
 CALL TRANSACTION TCODE USING BDCDATA
 MODE CTUMODE
 UPDATE CUPDATE
 MESSAGES INTO MESSTAB.

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

371

 L_SUBRC = SY-SUBRC.
.....
.....
 CALL FUNCTION 'BDC_INSERT'
 EXPORTING TCODE = TCODE
 TABLES DYNPROTAB = BDCDATA.
 ENDIF.
 ENDIF.
 REFRESH BDCDATA.
ENDFORM.

This was an overview of the include program BDCRECX1 invoked by the generated program from the
transaction recording. An overview of the include program BDCRECX1 touched upon the following:

•	 Selection screen statements

•	 Data declaration

•	 Subroutine BDC_DYNPRO

•	 Subroutine BDC_FIELD

•	 Subroutine OPEN_GROUP

•	 Subroutine CLOSE_GROUP

•	 Subroutine BDC_TRANSACTION

SAP provides the means for any transaction to be recorded; an ABAP program generated which can be
modified to suit specific requirements. So, a custom program for the migration of any data can be created
with little effort, as the core of the program is generated by the system from the recording of the transaction.

Transaction recording does not support OOPS screen controls in the SAP enjoy transactions.

Determine Program Name, Screen Numbers, Screen Field
Names
In the SAP environment, on any screen, you can determine the technical information such as the dynpro
program name, screen number, field name, etc. You can determine the technical information of a specific
screen field by first positioning the cursor on the screen field and pressing the function key F1. Pressing the
function key F1 will pop up the help text dialog box of the field. The help text for most part is the text created
in the data element assigned to the screen field. On the help text dialog box of a field (titled the Performance
Assistant), buttons appear at the top. Clicking the fourth button from the left will fetch the dialog box
detailing the technical information of the screen field.

As an example, we navigated to the opening screen of transaction code XD01—create customer. On
the opening screen of transaction code XD01, we positioned the cursor on the first field Account group and
pressed the function key F1 which popped up the Performance Assistant screen as shown in Figure 5-6:

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

372

Clicking the fourth button from the left on the Performance Assistant screen fetched the Technical
Information screen as shown in Figure 5-7:

Figure 5-7. Transaction code XD01: technical information of field account group

Figure 5-6. Transaction code XD01 opening screen: function key F1 on the first field

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

373

From Figure 5-7, you can deduce that the dynpro program name is SAPMF02D, the screen number
is 0100, GUI status is STRT, the screen field name is RF02D-KTOKD, etc. The fields on the screen number
0100 originate from more than one database table; hence have been grouped into the structure RF02D. The
structure RF02D is not a database table. On subsequent screens of transaction code XD01, all the fields on
one screen originate from one database table. Hence the field structure names are the same as database
table names from where the fields originate. You can check this out for any of the fields: Name, Street, etc.,
on the next screen by clicking the function key F1 on any of these fields and next clicking the Technical
Information button on the Performance Assistant screen. For instance, the screen field name for Street will be
KNA1-STRAS.

In this manner, you can gather technical information of fields, one field at a time. You are able to
co-relate field labels on the screen with the field names or technical names. The field names or technical
names are available in the recording as well as in the generated program from the recording. When you are
determining technical information as described in the preceding lines, do not save data, recording, and
generate program from recording.

In our hands-on exercises, we will modify and use the modified generated program. The generated
program will contain screen simulation statements. We will not manually write screen simulation
statements. If we were manually writing screen simulation statements, then the technical information of
fields would need to be determined by pressing function key F1, and so on.

Up to now, we have described the tools and facilities available in the SAP environment for data
migration. The hands-on exercises follow.

Hands-on Exercise I: Migrate Vendor Data Using Batch Input Method
We will start off the hands-on exercise by describing its specification and scope.

Specification and Scope
The hands-on exercise will transfer data from text files into the vendor master functional module database
tables using the batch input method. It is assumed that input data in the form of text files is in the required
form, and conversions, etc., have been effected. The input data in the form of text files will reside on the
presentation server. In the next hands-on exercise, we will locate the input data in the form of text files on
the application server.

We do not have a large volume of vendor input data. For our purposes, we need to have only a small
amount of representative vendor input data which can be used to demonstrate the efficacy of SAP tools and
facilities available for data migration. We will use a text editor to create representative vendor input data on
the presentation server. In a real-life scenario, data will never be created using a text editor. The data will be
extracted from the legacy database systems into text files.

Data migration presupposes you/one or more of the team have some background knowledge of
database tables and screens associated with specific data migration being undertaken—in our present
case, the vendors. The focus in the hands-on exercise will be on the deployment of data migration tools
and facilities. We will restrict ourselves to inserting data into all of the mandatory fields and only a few
nonmandatory fields.

The following transaction codes are used to create vendors:

•	 Vendor—Central XK01 Material Management and Accounts Payable
perspectives

•	 Vendor—Purchasing MK01 Material Management perspective

•	 Vendor—Accounting FK01 Accounts Payable perspective

We will employ the transaction code XK01, Vendor—Central, for hands-on exercise I.

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

374

The following convention is used for transactions codes involving data maintenance:

•	 Transaction codes ending with 01 for creation of data

•	 Transaction codes ending with 02 for changes to existing data

•	 Transaction codes ending with 03 to display existing data

The recording will involve data entry on screen numbers: 100, 110, 130, 210, 215, 220, and 310. The
recording will involve navigating the screen numbers: 100, 110, 120, 130, 210, 215, 220, 310, and 320.

The input data: text files will reside on the presentation server. The input will consist of two text files:
(1) main data and (2) bank data. The two text files will be related through the vendor number—which of the
bank(s) belongs to which vendor.

Table 5-2 lists the selected fields for which values will be entered, along with the table names and screen
numbers. The order of the fields is the order in which they are encountered on the screens when you enter
data while recording the transaction code XK01.

Table 5-2. Fields Which Will Assume Values and the Corresponding Tables.

Srl. No. Field Name Field Description Table Name Screen Number Remarks

1 LIFNR Vendor (Number) LFA1 0100 Mandatory

2 BUKRS Company Code LFB1 0100 Mandatory

3 EKORG Purchasing Organization LFM1 0100 Mandatory

4 KTOKK Account Group LFA1 0100 Mandatory

5 ANRED Title LFA1 0110

6 NAME1 Name LFA1 0110 Mandatory

7 SORTL Search term LFA1 0110 Mandatory

8 STRAS Street LFA1 0110 Mandatory

9 ORT01 City LFA1 0110

10 PSTLZ Postal Code LFA1 0110

11 LAND1 Country (Key) LFA1 0110 Mandatory

12 SPRAS Language Key LFA1 0110 Mandatory

13 BANKS Ctry (Bank Country Key) LFBK 0130

14 BANKL Bank Key LFBK 0130 Mandatory if
Bank Country
Key entered

15 BANKN Bank Account LFBK 0130 Mandatory if
Bank Country
Key entered

16 AKONT Recon. Account LFB1 0210 Mandatory

17 FDGRV Cash mgmnt. group LFB1 0210 Mandatory

18 ZTERM Payt. Terms LFB1 0215

19 MAHNA Dunn. Procedure LFB5 0220

20 WAERS Order currency LFM1 0310 Mandatory

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

375

Multiple Rows on a Screen—Case of Table Control
Enterprises transact with their business partners using electronic fund transfer technologies. To use
electronic fund transfer technologies, enterprises will require information of the bank of their business
partners. A business partner can transact electronically using more than one bank—multiple banks. There
has to be a provision to create multiple banks’ data for a business partner. The transaction code XK01
provides for the creation of multiple banks’ data for a vendor on screen number 0130. As you know your
dynpro programming, the creation of multiple rows on a screen is achieved with the table control.

For business documents (purchasing, billing, etc.), there can be multiple line items for a document,
again a case of multiple rows on a screen. Multiple line items of business documents are maintained using
the table control.

The table control screens involve specific coding in the data migration program. This will be
demonstrated when we modify the program generated from the recording of transaction code XK01.

Value Assignment to Fields
We are specifying how the 20 fields listed in Table 5-2 will assume values.

As our main objective is to demonstrate the use the tools and facilities of data migration, we will locate
the bare minimum data in the text files. We will assume that all the vendors being migrated have the same
constant values for each of the following 11 fields shown in Table 5-3.

Before you adopt these values for your hands-on exercise, check the validity of these field values on
your system. If you are operating on an IDES server and logged into client 800, the foregoing values should
be all right.

We are resorting to assigning constant values to the fields listed in the Table 5-3 to minimize and
simplify the data in the text files.

The values for the five fields shown in Table 5-4 will originate from the text file—main data.

Table 5-3. Fields with Constant Values

Srl. No. Field Name Field Description Value

1 BUKRS Company Code 0001

2 EKORG Purchasing Organization 0001

3 KTOKK Account Group 0001

4 ANRED Title Company

5 LAND1 Country Key IN

6 SPRAS Language Key EN

7 AKONT Reconciliation Account 160000

8 FDGRV Cash Management Group A1

9 ZTERM Payment Terms 0001

10 MAHNA Dunning Procedure 0001

11 WAERS Order Currency INR

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

376

The values for the three fields shown in Table 5-5 will originate from the text file—bank data.

Note, the field LIFNR in the bank data is only for connecting the bank data with the main data—which
banks belong to which vendor?

We are still left with one field SORTL, for which we have not specified what value it will assume. We will
pick the first word of the field NAME1 (vendor name) and assign it to the field SORTL—SPLIT statement, etc.

The contents of the field SORTL (search term) are to provide the end user with an additional means
to search for vendors in large volume of data. Assigning it, the first word from the field NAME1 in practical
terms, is not a good proposition. We are assigning the field SORTL, the first word from the field NAME1, in
the present learning paradigm only to demonstrate a case of the value of a field being derived from the value
of another field.

This was a detailed specification of how the selected 20 fields will assume values during the data
migration.

Data Flow When Running Program Using Batch Input Method
When a modified version of the generated ABAP program from recording of XK01 is executed using the
batch input method, the diagram in Figure 5-8 traces the data flow from the text files on the presentation
server into the queue or session database tables.

Table 5-5. Fields with Values Originating from Text File—Bank Data

Srl. No. Field Name Field Description

LIFNR Vendor (to relate with the Main Data)

1 BANKS Bank Country Key

2 BANKL Bank Key

3 BANKN Bank Account

Table 5-4. Fields with Values Originating from Text File—Main Data

Srl. No. Field Name Field Description

1 LIFNR Vendor (Code or Number)

2 NAME1 Vendor Name

3 STRAS Street

4 ORT01 City

5 PSTLZ Postal Code

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

377

To start with, data will be fetched from the two text files (main and bank) residing on the presentation
server into two internal tables: internal table-main and internal table-bank. The function module GUI_
UPLOAD is used to transfer data from text files into the internal tables.

The internal table—main will contain one row for one vendor. A loop (LOOP AT…..) is set up for the
internal table-main. Within this main loop, as new screens are navigated, the subroutine BDC_DYNPRO
is invoked with the following parameters: PROGRAM and DYNPRO. Within a screen the subroutine BDC_
FIELD is invoked with the following parameters: FNAM and FVAL. Data will be passed from the structure of
the internal table-main or through literals to the parameter FVAL. When the subroutines BDC_DYNPRO and
BDC_FIELD are invoked, the BDCDATA table is being filled up.

Within this main loop, a nested loop with internal table-bank is set up to fetch data of banks belonging
to the vendor fetched in the main loop. (WHERE…..) The subroutine BDC_FIELD is invoked with the
parameters FNAM and FVAL to pass data from the structure of internal table-bank to the parameter FVAL.
When the subroutines BDC_DYNPRO and BDC_FIELD are invoked, the BDCDATA table is being filled up

Once the BDC_DATA table has been filled for a vendor, the data from BDCDATA table is transferred
to the queue or session database tables by invoking the subroutine BDC_TRANSACTION. The subroutine
BDC_TRANSACTION calls the function module BDC_INSERT to transfer data from the BDCDATA table to
the queue or session database tables.

The process is repeated as the next vendor is fetched in the main loop from the internal table-main. The
process repeats until the main loop is exhausted.

Subsequently, when the created session is executed, data is extracted from the queue database tables
and inserted into the functional module database tables. Checks and validations are carried out before the
data is inserted into the functional module database tables.

When a batch input session is run, the mode of database update is synchronous only. During the
processing, no transaction is started until the previous transaction has been written to the database tables.

This was a trace of the data as it traverses from the text files on the presentation server to their
destination, the queue database tables, when you execute the program using the batch input method.

Figure 5-8. Data flow diagram: execution of program using batch input method

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

378

Task List
Following is a list of tasks to be performed for the migration of data from the text files on the presentation
server into vendor database tables.

 (1) Perform recording of vendor creation—transaction code XK01. Save the
recording.

 (2) Generate an ABAP program from saved recording.

 (3) Perform the following modifications to a copy of the generated program:

 (a) Declare two internal tables to receive data from the two text files. The first
internal table, to be called the main table, will receive the main data from
the corresponding text file. The second internal table, to be called the bank
table, will receive the bank data from the corresponding text file.

 (b) Provide selection screen statements with appropriate selection list (F4
facility) to input the two text files’ names along with folder location on the
presentation server.

 (c) Provide statements to transfer data from the text files into the internal tables
(main table and bank table)—use the function module GUI_UPLOAD.

 (d) Set up nested loops (LOOP AT…..) to fetch data from the main and bank
tables. From the structure fields of the main table, the bank table, and literal
assignments, data is to be passed to the subroutine BDC_FIELD.

 (e) Perform program check and activate the modified program.

 (4) Prepare text data files.

 (5) Run the program with the batch input option (default) for creation of a batch.

 (6) Run the batch input session in foreground mode with transaction code SM35

 (7) Check and verify migration of vendor data from the text files using transaction
code XK02 or XK03

 (8) Repeat steps 4, 5, 6, and 7, running the batch input session in background mode
instead of foreground mode

What follows is a detailed description of the listed tasks.

Perform Recording of Vendor Creation Using Transaction Code XK01
and Save It
We will create a recording of transaction code XK01, thereby manually creating a new vendor. We will enter
values for the fields listed in Table 5-2.

To record transaction XK01, we navigated to transaction code SHDB. We clicked the New recording
button. The Create Recording dialog box popped up. We entered the Recording (recording name) as YCH05_
XK01_A and the Transaction code as XK01.

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

379

We selected the option Local for the field Update mode and the option No CATT for the field CATT mode.
Check box options in the Recording parameters area correspond to some of the fields in ABAP

dictionary structure CTU_PARAMS. When you use the ABAP statement CALL TRANSACTION, you can
supply the parameters related to the check box options in the Recording parameters area using the key
phrase OPTIONS FROM followed by an internal table declared referring to the ABAP dictionary structure
CTU_PARAMS.

When you call the function module BDC_INSERT, you can supply the export parameter CTUPARAMS
related to the check boxes in the Recording parameters area. This export parameter is again an internal table
declared referring to the ABAP dictionary structure CTU_PARAMS.

For further elaboration of check box options in the Recording parameters area, you can refer to the
documentation of the ABAP statement CALL TRANSACTION or the function module BDC_INSERT.

For now, for the check boxes in the Recording parameters area, the proposed defaults will serve our
purpose. By default, the check box Default size is enabled.

Figure 5-9 shows the Create Recording dialog box with the entered values.

We clicked the Continue button. The control navigated to Create Vendor: Initial Screen. During the
creation of a vendor with recording, do not perform any extraneous steps. Do not perform any corrections/
revisions during the data creation. Do not navigate to previous screens. The extraneous steps will generate
unnecessary extra ABAP statements during program generation. You use function key F4 to make selection
from lists though. Enter data during recording smoothly.

Figure 5-9. Create Recording: transaction code XK01

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

380

Preferably, use the tab key to navigate to the next field and the <enter> key to navigate to the next
screen.

Figure 5-10 shows the Create Vendor: Initial Screen (screen number 0100) with entered values for the
four fields Vendor, Company Code, Purchasing Organization, and Account group.

The vendor (vendor code or number) can be configured for external assignment; that is, the vendor has
to be entered manually. The vendor can be configured for internal assignment; that is, the vendor will be
auto-generated by the system.

In the case of vendors configured for external assignment, further configuration is made for specific
range of vendor values to be allowed.

The specific configuration depends on the combination of values for the fields Company Code and
Purchasing Organization.

For the combination of values we have entered, 0001, 0001, the vendor is configured for external
assignment. We are using the 910XX series for the creation of a vendor in recording mode.

We pressed the <enter> key to navigate to the next screen. On the Create Vendor: Address Screen
(screen number 0110), we entered values for the eight fields: Title, Name, Search term, Street, City, Postal
Code, Country (key), and Language Key. Figure 5-11 shows the screen with entered values.

Figure 5-10. Create vendor with recording—Create Vendor: Initial Screen

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

381

We navigated to the next screen, that is, screen number 0120, by pressing the <enter> key. We are not
entering any values on screen number 0120, so we pressed the <enter> key again to navigate to screen
number 0130, Create Vendor: Payment transactions. On screen number 0130, you can enter multiple bank
particulars through the table control.

We entered one set of values for the three fields: Ctry, Bank Key, and Bank Account. Figure 5-12 shows
the screen with entered values.

Figure 5-11. Create vendor with recording—Create Vendor: Address

Figure 5-12. Create vendor with recording—Create Vendor: Payment transactions

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

382

The values for the fields Ctry (country key) and Bank Key can be selected from lists—function key F4,
etc. The value for the field Bank Account can be any number (length of six or more).

Enter only one set of values, that is, only one row. We navigated to the next screen which is screen
number 0210, Create Vendor: Accounting information Accounting by pressing the <enter> key twice.

We entered values for the two fields: Recon.account and Cash Mgmnt group. Figure 5-13 shows the
screen with entered values.

Figure 5-13. Create vendor with recording—Create Vendor: Accounting information Accounting

We navigated to the next screen, which is screen number 0215, Create Vendor: Payment transactions
Accounting, by pressing the <enter> key.

We entered a value for the field: Payt Terms. Figure 5-14 shows the screen with the entered value.
We navigated to the next screen, which is screen number 0220, Create Vendor: Correspondence

Accounting, by pressing the <enter> key.

Figure 5-14. Create vendor with recording—Create Vendor: Payment transactions Accounting

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

383

We entered value for the field: Dunn.Procedure. Figure 5-15 shows the screen with the entered value.

We navigated to the next screen, which is screen number 0310, Create Vendor: Purchasing data, by
pressing the <enter> key.

We entered value for the field: Order currency. Figure 5-16 shows the screen with the entered value.

We navigated to the next screen, which is screen number 0320, Create Vendor: Partner functions, by
pressing the <enter> key.

This is the last screen. We do not have to enter any data on this screen. We pressed the <enter> key
which popped up the dialog box to save the data as shown in Figure 5-17:

Figure 5-15. Create vendor with recording—Create Vendor: Correspondence Accounting

Figure 5-16. Create vendor with recording – Create Vendor: Purchasing data

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

384

We clicked the Yes button. The vendor data entered was saved. The control navigated back to the screen
of Transaction Recorder. We clicked the save button to save the recording. The Transaction Recorder screen
after saving will look as shown in Figure 5-18.

Figure 5-17. Create vendor with recording—Create Vendor: Partner functions

Figure 5-18. Transaction recorder: vendor created with recording and recording saved

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

385

Now that we created and saved a recording of transaction code XK01, the next step is to generate an
ABAP program from the saved recording.

Generate an ABAP Program from Saved Recording
After saving the recording, we navigated back to the previous screen, Transaction Recorder: Recording
Overview, by pressing the function key F3. We want to generate an ABAP program from the recording
YCH05_XK01_A of vendor creation. So, we selected the recording YCH05_XK01_A through the row selector
and then, clicked the Program button on the application toolbar. Clicking the Program button popped up
the dialog box titled Generate Program for Recording. We entered the Program Name as YCH05_XK01_
PROGRAM_GENERATED. We clicked the Radio button Transfer from recording in the Field contents area. We
did not enter anything in the Test data area; we do not want test data to be generated. Figure 5-19 shows the
Generate Program for Recording dialog box with the entered values.

We clicked the Continue button and the program attributes screen popped up. We entered a suitable
program title and selected the program type as executable (default) (illustrated in Figure 5-20).

Figure 5-19. Generate program for recording YCH05_XK01_A

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

386

We clicked the Source code button. The system prompted for the package. We assigned, as always,
the $TMP package. The ABAP editor displayed the source lines of the generated program YCH05_XK01_
PROGRAM_GENERATED.

You can scroll up and down the program lines for an overview of the generated program. A broad
discussion of the program follows.

Initially, following the REPORT statement, the statement to invoke the BDCRECX1 include program is
located. The next two statements are the START-OF-SELECTION statement and a statement to invoke the
subroutine OPEN_GROUP to open a session. If we set up a loop, the statement to invoke the subroutine
OPEN_GROUP must be outside the loop. A session is opened just once, not repeatedly.

The statements following the statement to invoke the subroutine OPEN_GROUP are the ones simulating
the data entry and screen operations. Whenever a new screen commences, the subroutine BDC_DYNPRO
is invoked. Within a screen, whenever data is entered or operations performed, the subroutine BDC_FIELD
is invoked. Whatever values we entered for fields from the keyboard are passed as literals to the FVAL
parameter of the subroutine BDC_FIELD – ‘91001’ for RF02K-LIFNR, ‘0001’ for RF02K-BUKRS, and so on.

Figure 5-21 shows the initial segment of the generated program YCH05_XK01_PROGRAM_
GENERATED.

Figure 5-20. Generated program from Recording YCH05_XK01_A: attributes screen

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

387

Figure 5-22 shows the segment of the generated program YCH05_XK01_ PROGRAM_GENERATED
when data was entered for the fields in the table control, that is, screen number 130.

Figure 5-21. Program YCH05_XK01_ PROGRAM_GENERATED: Initial Segment

Figure 5-22. Program YCH05_XK01_ PROGRAM_GENERATED: segment related to table control

When data is entered for fields in a table control, the index of the field is indicated like BANKS(01), etc.
The index is the visible row number of the data in the table control. Since, in the present context, we entered
one set of field values or one bank for the vendor, the variables BANKS, BANKL, and BANKN carry the index
01. If we had entered two or more banks for the vendor, there would have been two or more sets of generated
statements.

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

388

Figure 5-23 shows the bottom segment of the generated program YCH05_XK01_PROGRAM_
GENERATED.

Figure 5-23 lists the lines related to data entered and operations performed on screen numbers
0310 and 0320. On screen number 0310 we entered the Order Currency. On screen number 0320 we
did not enter any data but just pressed the <enter> key. When we pressed the <enter> key on screen
number 0320 (the last data entry screen of vendor creation), the system prompted whether data is to be
saved, aborted, etc. The prompt dialog box displays through the program SAPLSP01 and screen number
0300 marked in Figure 5-23.

When the last screen, screen number 0320, has been navigated, the BDCDATA table is filled with the
screen simulation of an entity—one vendor. The subroutine BDC_TRANSACTION is invoked to transfer data
of one vendor from BDCDATA table to the queue database tables.

The last statement is to invoke the subroutine CLOSE_GROUP to close an opened session. If we set up
a loop, the statement to invoke the subroutine CLOSE_GROUP must be outside the loop. A session is closed
just once, not repeatedly.

The full ABAP program YCH05_XK01_PROGRAM_GENERATED is available in the E-resource file for
this book (www.apress.com/9781484212345).

This was an overview of the program generated from the recording of the transaction code XK01—
create vendor. The next step is to carry out modifications to a copy of the generated program.

Perform Modifications to a Copy of the Generated Program
On the opening screen of the ABAP editor, we made a copy of the generated program YCH05_XK01_
PROGRAM_GENERATED into YCH05_XK01_PROGRAM_BATCH_INPUT. After copying, we activated the
program text elements. We have resorted to carrying out modifications to a copy of the generated program
instead of the generated program as a procedure.

Detailed descriptions of modifications to the program YCH05_XK01_PROGRAM_BATCH_INPUT
follow.

Figure 5-23. Program YCH05_XK01_ PROGRAM_GENERATED: bottom segment

http://www.apress.com/9781484212345

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

389

Declare Two Internal Tables to Receive Data from Text Files
We located the data declaration statements at the very beginning, following the REPORT statement. The
program lines to declare two internal tables which will receive data from the text files residing on the
presentation server with the requisite structures are as follows:

DATA: BEGIN OF MAIN_STRU,
 LIFNR TYPE LIFNR,
 NAME1 TYPE NAME1_GP,
 STRAS TYPE STRAS_GP,
 ORT01 TYPE ORT01_GP,
 PSTLZ TYPE PSTLZ,
 END OF MAIN_STRU,

 BEGIN OF BANK_STRU,
 LIFNR TYPE LIFNR,
 BANKS TYPE BANKS,
 BANKL TYPE BANKL,
 BANKN TYPE BANKN,
 END OF BANK_STRU,

 MAIN_TAB LIKE STANDARD TABLE OF MAIN_STRU,
 BANK_TAB LIKE STANDARD TABLE OF BANK_STRU,

 MAIN_FL TYPE IBIPPARMS-PATH, "F4-select file from
 "presentation server
 BANK_FL TYPE IBIPPARMS-PATH.

When a user presses function key F4 on the text file PARAMETERS statement and makes a file selection,
the function module F4_FILENAME returns the selected file name as ABAP dictionary type IBIPPARMS-
PATH. Hence the declarations MAIN_FL and BANK_FL.

SELECTION-SCREEN Statements (with F4 Facility) to Input Text File Names
We located the SELECTION-SCREEN statements following the data declaration statements. The program
lines to input text file names with facility to make file selections using function key F4 are as follows:

PARAMETERS: MFILE TYPE STRING,
 BFILE TYPE STRING.

AT SELECTION-SCREEN ON VALUE-REQUEST FOR MFILE.

CALL FUNCTION 'F4_FILENAME'
 IMPORTING
 FILE_NAME = MAIN_FL.

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

390

MFILE = MAIN_FL.

AT SELECTION-SCREEN ON VALUE-REQUEST FOR BFILE.

CALL FUNCTION 'F4_FILENAME'
 IMPORTING
 FILE_NAME = BANK_FL.

BFILE = BANK_FL.

The event AT SELECTION-SCREEN ON VALUE-REQUEST was triggered for both MFILE and BFILE. In
the event AT SELECTION-SCREEN ON VALUE-REQUEST, we invoked the function module F4_FILENAME
to enable the end user to make a file selection from the presentation server with function key F4.

The assignments MFILE = MAIN_FL and BFILE = BANK_FL are because the function module F4_
FILENAME accepts the export parameter FILE_NAME as ABAP dictionary type IBIPPARMS-PATH and the
function module GUI_UPLOAD accepts the import parameter FILENAME as the elementary type STRING.

We created selection texts for PARAMETERS variables MFILE and BFILE as follows:

•	 Text File: Main

•	 Text File: Bank

Transfer Data from Text Files into Internal Tables
We located the statements to transfer data from text files to internal tables following the START-OF-
SELECTION statement. The program lines to transfer data from text files to internal tables and no data alert
are as follows:

**
CALL FUNCTION 'GUI_UPLOAD'
 EXPORTING
 FILENAME = MFILE
 TABLES
 DATA_TAB = MAIN_TAB.

CALL FUNCTION 'GUI_UPLOAD'
 EXPORTING
 FILENAME = BFILE
 TABLES
 DATA_TAB = BANK_TAB.

IF LINES(MAIN_TAB) = 0.
 MESSAGE S001(YCH02_MCLASS) DISPLAY LIKE 'E'. "No Data Retrieved
 EXIT.
ENDIF.

Set Up Loops to Fetch Data from the Internal Tables, Pass Data, etc.
We will set up two loops—the main loop and the bank loop. The bank loop will be nested under the main
loop. The bank loop will operate with a condition—WHERE LIFNR = MAIN_STRU-LIFNR. That is, fetch only
rows from the BANK_TAB belonging to the vendor fetched in the main loop.

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

391

The main loop statement is to be located following the statement PERFORM OPEN_GROUP. The main
loop ending statement must precede the last program statement PERFORM CLOSE_GROUP.

The main loop structure should look as follows:

perform open_group.
LOOP AT MAIN_TAB INTO MAIN_STRU. "main loop
......
.....
ENDLOOP.
perform close_group.

In the copy of the generated program we are modifying, the subroutine BDC_FIELD is invoked by
passing both the parameters FNAM (field name) and FVAL (field value) as literals.

The values for the following fields are originating from the internal table-main:

LIFNR
NAME1
STRAS
ORT01
PSTLZ

Also, we are deriving the value of field SORTL by assigning it the first word from the field NAME1. The
derivation of value for SORTL from the value of NAME1 involved declaration of data items like the following:

DATA:
.....
 SORTL TYPE STRING,
 GSTRING TYPE STRING.

We need to modify the statements which pass values for these fields through the FVAL parameters
from literals to variables when invoking the subroutine BDC_FIELD. The modified lines which pass the field
values as variables (MAIN_STRU-NAME1, SORTL, MAIN_STRU-STRAS, etc.) are listed.

perform bdc_field using 'LFA1-NAME1'
 MAIN_STRU-NAME1. "'OBELIX AND COMPANY'.

SPLIT MAIN_STRU-NAME1 AT ' ' INTO SORTL GSTRING.

perform bdc_field using 'LFA1-SORTL'
 SORTL. "'OBELIX'.
perform bdc_field using 'LFA1-STRAS'
 MAIN_STRU-STRAS. "'456, M.G. ROAD'.
perform bdc_field using 'LFA1-ORT01'
 MAIN_STRU-ORT01. "'NEW DELHI'.
perform bdc_field using 'LFA1-PSTLZ'
 MAIN_STRU-PSTLZ. "'110102'.

The original literal values in the statements have been retained as side comments to make changes
apparent.

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

392

We need to set up the inner nested loop for passing the bank data of a vendor. A vendor can have nil or
n number of banks. The index of the bank data variables BANKS, BANKL, and BANKN has to be a variable
instead of a literal. In the lines of the generated program, when invoking the subroutine BDC_FIELD, the
parameter FNAM is passed as a literal like ‘LFBK-BANKS(01)’. We will construct this string—concatenate,
etc.—at runtime and assign it to a string variable. We will then pass this string variable as the FNAM
parameter when invoking the subroutine BDC_FIELD for the bank variables.

We need to declare a variable which can be operated as an index for the bank variables. We have
declared the variable INDX to be operated as index. We declared it as type N so it can used in a concatenate
statement directly. We have specified its length as two—can support a maximum of 99 banks for a vendor.

DATA:

 INDX(2) TYPE N. "bank data index

We located the nested loop statement: LOOP AT BANK_TAB INTO BANK_STRU WHERE LIFNR =
MAIN_STRU-LIFNR just before the statement PERFORM BDC_FIELD USING 'LFBK-BANKS(01) '…..The
initial positioning of cursor on the first field, first row should not be part of looping process.

The ENDLOOP statement was located after the statements relating to last reference to the screen
number 0130 as you can see in the forthcoming program lines.

Before the nested loop commences, we initialized the index variable INDX, INDX = 0. Immediately after
the commencement of the nested loop we are incrementing the index variable INDX: INDX = INDX + 1.

 1. We are concatenating 'LFBK-BANKS(' INDX ')' INTO GSTRING. We are passing
the variable GSTRING as the FNAM parameter when invoking the subroutine
BDC_FIELD.

 2. We are passing the BANK_STRU-BANKS as the FVAL parameter when invoking
the subroutine BDC_FIELD.

Steps (1) and (2) were performed for the variable BANKS. Steps (1) and (2) were repeated for variables
BANKL and BANKN.

The modified program lines relating to the nested loop are as follows:

INDX = 0.

LOOP AT BANK_TAB INTO BANK_STRU WHERE
 LIFNR = MAIN_STRU-LIFNR. "inner bank loop
INDX = INDX + 1.

CONCATENATE 'LFBK-BANKS(' INDX ')' INTO GSTRING.
perform bdc_field using GSTRING "'LFBK-BANKS(01)'
 BANK_STRU-BANKS. "'US'.

CONCATENATE 'LFBK-BANKL(' INDX ')' INTO GSTRING.
perform bdc_field using GSTRING "'LFBK-BANKL(01)'
 BANK_STRU-BANKL. "'123123123'.

CONCATENATE 'LFBK-BANKN(' INDX ')' INTO GSTRING.
perform bdc_field using GSTRING "'LFBK-BANKN(01)'
 BANK_STRU-BANKN. "'1234567'.

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

393

perform bdc_dynpro using 'SAPMF02K' '0130'.
perform bdc_field using 'BDC_CURSOR'
 'LFBK-BANKS(01)'.
perform bdc_field using 'BDC_OKCODE'
 '=ENTR'.
ENDLOOP.

The original literal values in the statements have been retained as side comments to make changes
apparent.

This was the incorporation of nested loop modifications to pass the parameters FNAM and FVAL as
variables in the nested loop. This was all that was needed to enable the creation of bank data for a vendor.
This also concludes modifications to the program YCH05_XK01_PROGRAM_BATCH_INPUT.

The complete source lines of program YCH05_XK01_PROGRAM_BATCH_INPUT are available in the
E-resource file for this book (www.apress.com/9781484212345).

Syntax Check and Program Activation
We performed a syntax check and activated the program YCH05_XK01_PROGRAM_BATCH_INPUT.
The program YCH05_XK01_PROGRAM_BATCH_INPUT is ready for execution.

Prepare Text Data Files
As I mentioned earlier, we will migrate only representative vendor data to demonstrate the working of data
migration tools and facilities available in the SAP environment. We are locating the migrating source data,
the text files, on the presentation server. We are operating in the Microsoft windows operating system. We
created a separate folder TEMP on drive D (D:\TEMP) of our presentation server. You can also locate the text
files in a separate folder on the presentation server. There will be two text files, the first text file containing
the main data of fields listed in Table 5-4 and the second text file containing the bank data of fields listed in
Table 5-5. The data in the two text files are linked by the vendor number or code.

We have adopted free-flowing text layout for our text files; that is, there will be no field separators, no
field names, etc. Each line in the text file will represent one row.

For the first text file containing the main data, the layout will be as shown in Table 5-6.

Table 5-6. Layout of Text File—Main Data

Srl. No. Character Positions Field Description Field Name

1 First 10 characters Vendor Number or Code LIFNR

2 Next 35 characters Vendor Name NAME1

3 Next 35 characters Street STRAS

4 Next 35 characters City ORT01

5 Last 10 characters Postal Code PSTLZ

http://www.apress.com/9781484212345

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

394

For the second text file containing the bank data, the layout will be as shown in Table 5-7.

If the data in a field has fewer characters than the allotted characters, the extra characters must appear
as trailing blanks. Like, for example, the field city is allotted 35 characters. Suppose, for a vendor, city data is
only 10 characters. Then the city data in this context must be entered with 25 trailing blanks—blanks on the
right.

We have taken care to declare the internal table structures in the program to correspond exactly with
these layouts. The data from these two text files will be loaded into two internal tables using the function
module GUI_UPLOAD.

We are using the 902XX series for the migration of vendors.
Using notepad editor, we created main data for three vendors: 0000090201, 0000090202, and

0000090203, shown in Figure 5-24.

Entering the leading zeroes for vendor number in the text files is not necessary; the ALPHA routine
inserts leading zeroes automatically. We are following, all through this book, the convention of specifying the
leading zeroes in our text files.

In a like manner, we created bank data for two vendors: 0000090202 and 0000090203. We created one
bank for the vendor 0000090202 and two banks for vendor 0000090203. Vendor 0000090201 has no bank
data. In effect, we are testing three cases: a vendor with no bank data, a vendor with one bank, and a vendor
with more than one bank but not more than the number of visible rows in the table control area. The case of
testing the number of banks for a vendor greater than the number of visible rows in the table control area is
being deferred for now. Figure 5-25 shows the bank data in the text file.

Table 5-7. Layout of Text File—Bank Data

Srl. No. Character Positions Field Description Field Name

1 First 10 characters Vendor Number or Code LIFNR

2 Next 3 characters Country Key BANKS

3 Next 15 characters Bank Key BANKL

4 Last 18 characters Bank Account BANKN

Figure 5-24. Vendors Main Data—text file

Figure 5-25. Vendors Bank Data—text file

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

395

Recall that the combination of the values of country key (US) and bank key (123123123) must exist in
the bank master. Before using a combination, you should check for its existence in the bank master. If you
are using IDES server and logged into client 800, we recommend you use the same combination of country
key and bank key we have used here. The bank key value 123123123 is easy to remember.

We have used the same value of country key and bank key in our bank data. This is to make matters
simple in our present context of emphasizing demonstrativeness. The bank data for vendors resides in
the database table LFBK. The primary key of this database table is client, country key (BANKS), bank key
(BANKL), and bank account (BANKN). In our bank data we used the same values for the two fields BANKS
and BANKL and varied only the value of the last field BANKN.

In real-life scenarios, text data is not prepared in the manner we have done so in the present hands-on
exercise.

This completes the preparation of input text files residing on the presentation server.

Run the Program with the Batch Input Option (Default) for Creation
of a Batch Input Session
Now that we have modified a copy of the generated program from recording as per laid-down specifications
and created the input text files on the presentation server, we are ready to run and test the program YCH05_
XK01_PROGRAM_BATCH_INPUT.

One of the pitfalls which could occur is that the data in the text files is skewed or misaligned—the
trailing blanks are fewer or more than required in field(s). Another of the pitfalls could be that the structure
of internal tables receiving data from text files is not properly declared. To detect the occurrences of such
fallacies, if any, we can set a dynamic break point just after the internal tables receiving data from the text
files are loaded, and view the data of internal tables in the debugger.

We navigated to the opening screen of transaction code SE38 and entered the program name as YCH05_
XK01_PROGRAM_BATCH_INPUT. We clicked the Change button. We set a dynamic breakpoint on the
statement PERFORM OPEN_GROUP, just after the internal tables are loaded from text files. After setting the
breakpoint, we clicked the execute button. A selection screen as shown in Figure 5-26 appeared.

Figure 5-26. Program YCH05_XK01_PROGRAM_BATCH_INPUT—selection screen

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

396

The same program can be run using either the batch input/Generate session method or the call
transaction method. If you enable left-side Radio buttons at the top, the batch input/Generate session method
will be used. If you enable right-side Radio buttons at the top, the call transaction method will be used. This
is indicated in Figure 5-26. Our present hands-on exercise pertains to migrating vendor data using the batch
input/Generate session method and so we will execute this present program using only the batch input/
Generate session method.

For now, we will elaborate on the items under Generate session on the selection screen. The items
under call transaction on the selection screen will be elaborated upon when we perform the next hands-
on exercise. In the next hands-on exercise, vendor data migration will be performed the using the call
transaction method.

In the Session name, we have to enter the name of the session and maximum length of 12 characters;
it need not start with letter Y or Z. There can be multiple sessions of the same name, since a session’s
uniqueness is through its name, date, and time of its creation. We entered the session name as YCH05_XK01.

We have to enter the user name. The user name entered here will have authorization to run the created
session. The system proposes the logged user as a default.

If a batch session runs successfully without any errors, the batch session by default gets deleted
automatically. If a batch session runs encountering errors, the batch session is retained. If a batch session
runs successfully without any errors, and you want the batch session to be retained, you can enable the
check box Keep session. If you want the batch session to be run beyond a specific date, you can enter the date
in the Lock date. The session will remain locked until the date entered in the Lock date. We are not retaining
the session; hence we did not enable the check bo: Keep session. We do not want to lock the session either, so
we are leaving the Lock date blank.

The system uses by default the no data indicator ‘/’ for fields with no data.
When you run a session, by default, an elaborate log is created. If you desire a short log, you can enable

the check box Short log.
The inputs prompts described until now, as well as the input prompts under Call transaction, are

through the selection screen statements in the include program BDCRECX1. Our own selection screen
statements are for input of text file names located on the presentation server.

To select Text File: Main, we pressed the function key F4. A dialog box to select a file from the
presentation server popped up. We navigated to presentation folder D:\TEMP as shown in Figure 5-27.

Figure 5-27. Dialog box to select a file from presentation Server

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

397

We selected the file MAIN_DATA. In a similar manner, we selected the file BANK_DATA. Figure 5-28
shows the screen with all the input values.

We clicked the execute button. The system popped up the ABAP Debugger dialog box just before the
execution of the statement PERFORM OPEN_GROUP. We will view the contents of the internal table MAIN_
TAB. So we clicked the Table button, under the application toolbar, and entered the internal table name as
MAIN_TAB. The contents of the internal table MAIN_TAB were displayed as shown in Figure 5-29.

Figure 5-28. Program YCH05_XK01_PROGRAM_BATCH_INPUT—inputs

Figure 5-29. Contents of Internal Table MAIN_TAB—data misaligned

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

398

We had deliberately entered two fewer trailing blanks in the vendor name for the first vendor
0000090201 to demonstrate the occurrence of misaligned data as marked in Figure 5-29.

It is no use executing the program further. So we exited the program by entering /NSE38 (transaction
code SE38) in the command box. We rectified the misaligned data in the text file.

We again entered the program name as YCH05_XK01_PROGRAM_BATCH_INPUT. We clicked the
Change button. We retained the dynamic breakpoint on the statement PERFORM OPEN_GROUP set earlier.
We clicked the execute button and entered all the values on the selection screen as in Figure 5-28. We clicked
the execute button. The system again popped up the ABAP Debugger dialog box. To view the contents of
the internal table MAIN_TAB, we clicked the Table button, under the application toolbar, and entered the
internal table name as MAIN_TAB. The contents of the internal table MAIN_TAB are displayed as shown in
Figure 5-30.

The data for three fields LIFNR, NAME1, and STRAS is aligned and okay. To view the data of the two

other fields ORT01 and PSTLZ, you can use the scroll buttons on the application tool bar. We
scrolled right and the screen was as shown in Figure 5-31, displaying fields STRAS and ORT01.

We scrolled right on the screen of Figure 5-31. The fields ORT01 and PSTLZ were displayed as shown in
Figure 5-32.

Figure 5-30. Internal table MAIN_TAB, fields: LIFNR NAME1 STRAS—data aligned

Figure 5-31. Internal table MAIN_TAB, fields: STRAS ORT01—data aligned

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

399

The data in the internal table MAIN_TAB is okay.
To view the data of the internal table BANK_TAB, we entered in the internal table BANK_TAB.

Figure 5-33 shows the contents of the internal table BANK_TAB:

The data in the internal table BANK_TAB is okay. So we clicked the Run button on the ABAP Debugger
dialog box. You can alternatively press function key F8.

It is a good practice to run the program in debugging mode, when you are executing a newly created
data migration program for the very first time. Any mistakes committed in input data preparation and data
declarations to receive input data can be detected and rectified.

The data is inserted into the queue database tables. The validation of data does not occur when data is
inserted into the queue database tables and a session is created. The validation of data occurs only when the
session is run and data is transferred from the queue database tables into the functional module database tables.

An output as shown in Figure 5-34 appeared.

Figure 5-32. Internal table MAIN_TAB, Fields: ORT01 PSTLZ—data aligned

Figure 5-33. Internal table BANK_TAB, Fields: BANKS BANKL BANKN—data aligned

Figure 5-34. Output—Execution of program YCH05_XK01_PROGRAM_BATCH_INPUT

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

400

The output is through the WRITE statements in the subroutine BDC_TRANSACTION located in the
include program BDCRECX1. The return codes are SY-SUBRC values and relate to success or failure of
session creation.

The next step is to run the created session.

Run the Batch Input Session in Foreground with Transaction
Code SM35
To run the batch input session created in the previous step, we navigated to the Batch Input Session Overview
screen using transaction code SM35. This is shown in Figure 5-35.

We filtered out session names starting with YCH05 by entering YCH05* in the field Sess. In our present
context, there is only one session starting with YCH05. There is additional facility to view sessions by session
status through the eight tabs: New, Incorrect, Processed, etc.

Session attributes like Status, Created By, Date, Time, etc., appear as different columns of the session.
Our session has the Status as new (create icon).

You can also delete sessions.
To run a session, we selected the session through the row selector as shown in Figure 5-35; then we

clicked the Process button on the application bar. Clicking the Process button popped up the Process Session
dialog box as shown in Figure 5-36.

Figure 5-35. Batch input session overview—session names starting with YCH05

Figure 5-36. Process Session YCH05_XK01

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

401

The Process Session dialog box consists of the Processing Mode area on the left and the Additional
Functions area on the right.

Under the Processing Mode area, three alternative options are available through Radio buttons.

•	 Process/foreground. When you run a session with this option, screens will appear as
when you create a vendor manually. When we created a vendor manually, data was
entered from the keyboard. When you run a session with Process/foreground option,
the data passed as FVAL parameter to the subroutine BDC_FIELD will appear on the
screen fields. You can edit this data. You will run a session with Process/foreground
option mostly to test your program with small amount of data. We will run the
session now initially with Process/foreground option. Subsequently, with another set
of data, we will run the session with Background option.

•	 Display errors only. With this option, only error screens, if any, will be displayed. You
can edit the data on the error screens.

•	 Background. With this option, the session will run in background. No screens will be
displayed.

The Target host is to be entered if you want your session to be executed in background on specific
application server. If we do not enter any value, the runtime system will select the next free system.

Under the Additional Functions area, the following options are available through check boxes:

•	 Extended log. This check box is to control the inclusion of message types I and S in
the log, when you run a session using either of the first two Radio button options in
the Processing Mode area: Process/foreground or Display errors only. If you enable
this check box, all message types I are not written to the log and only the last of the
message type S, if happens to be the last message, is written to the log.

•	 Expert mode. This is applicable only when you run a session using either of the
first two Radio buttons options in the Processing Mode area: Process/foreground
or Display errors only. If you enable this check box, you suppress the repeated
appearance of the error message: ‘Batch input data not available for this screen’.

•	 Dynpro standard size. Enabling the check box resets the screen to the standard size
during batch input processing.

•	 Cancel if Log Error Occurs. Enabling the check box will halt the processing of the
batch input session if an error occurs in a transaction.

•	 Simulate Background Mode. Some transactions behave differently in the background
and in foreground. If you are running the session in the foreground and want the
background behavior, you will enable this check box.

By default, the check box Dynpro standard size is enabled.
We executed the session in this step using the Process/foreground option. We clicked the Process button

of the Process Session dialog box. The Create Vendor: Initial Screen (screen number 100) appeared with the
data as shown in Figure 5-37.

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

402

The data pertains to the first row of MAIN_TAB, vendor = 0000090201.
There is a dialog box marked as Navigate—Next Screen in Figure 5-37; this dialog box will appear

on every screen to navigate to the next screen or next entity if any. The screens will appear in the same
manner as when we created the vendor manually under the recording mode of transaction code XK01. The
difference is that under the recording mode, we entered the data from the keyboard, whereas in the present
situation, whatever FVAL values we passed to the subroutine BDC_FIELD are appearing on the screen fields.

Since the vendor creation screens are familiar, we are not incorporating screenshots of other screens
except for screen number 130—Payment transactions. The bank data of vendors is entered on this screen.
We want to demonstrate and display the Payment transactions for (a) a vendor with no banks, (b) a vendor
with one bank, and (c) a vendor with more than one bank. Figure 5-38 shows the Payment transactions for
vendor 0000090201.

We navigated to the last screen: Partner functions. When we clicked the button to navigate next, the
dialog box Last data screen reached popped up, prompting us to save the data: yes/no, etc. We clicked the yes
button. The data of vendor 0000090201 was saved.

Next, the Create Vendor: Initial Screen appeared for vendor 0090202 as shown in Figure 5-39.

Figure 5-37. Vendor 0000090201—Create Vendor: Initial Screen

Figure 5-38. Vendor 0000090201—Create Vendor: Payment transactions

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

403

We navigated to the Payment transactions screen, the bank data of vendor 0000090202. Vendor
0000090202 has one bank as shown in Figure 5-40.

We navigated to the last screen: Partner functions. We clicked the button to navigate next; the dialog box
Last data screen reached popped up, prompting us to save the data: yes/no, etc. We clicked the yes button.
The data of vendor 0000090202 was saved.

Next, the Create Vendor: Initial Screen appeared for vendor 0090203 as shown in Figure 5-41.

We navigated to the Payment transactions screen, the bank data of vendor 0000090203. Vendor
0000090203 has two banks as shown in Figure 5-42.

Figure 5-39. Vendor 0000090202—Create Vendor: Initial Screen

Figure 5-40. Vendor 0000090202—Create Vendor: Payment transactions

Figure 5-41. Vendor 0000090203—Create Vendor: Initial Screen

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

404

We navigated to the last screen: Partner functions. We clicked the button to navigate next; the dialog box
Last data screen reached popped up, prompting us to save the data: yes/no, etc. We clicked the yes button.
The data of vendor 0000090202 was saved.

Next, the dialog box as shown in Figure 5-43 appeared.

We clicked the Session overview button to get us back to the Batch Input: Session Overview screen as
shown in Figure 5-44.

Figure 5-43. Processing of batch input session completed

Figure 5-42. Vendor 0000090203—Create Vendor: Payment transactions

Figure 5-44. Batch Input: Session Overview

Since the session run was successful, without errors, the session was deleted by default as is apparent
from Figure 5-44.

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

405

Check and Verify Migration of Vendor Data—Transaction Code XK02
or XK03, etc.
A simple way to cross-verify that vendor data was migrated is to execute one of the transaction codes: XK02
or XK03—Change Vendor or Display Vendor. We executed, in the present instance, the transaction code
XK02 - Change Vendor. On the opening screen of transaction code XK02; we pressed the function key F4
on the field Vendor. The filter dialog box which popped up was using the tab Vendor by Company Code as
default. We entered the pattern 9020* in the field Vendor, the fifth field from the top. We clicked the Continue
button. All the vendors starting with 9020 appeared in the list as shown in Figure 5-45.

Vendors 0000090201, 0000090202, and 0000090203 are appearing in the list of Figure 5-45. We selected
each of the vendors in turn and navigated through all the screens for each of the vendors as to perform an
individual field-wise cross-check of values.

This concludes the performance of steps 1 to 7 of the hands-on exercise.

Prepare Text Files; Run Program with the Batch Input Option
to Create a Session; Run Session in Background and Verify
Migration of Data
We will prepare a new set of text data in the files on the presentation server main and bank. With the new set
of data, we will run the program YCH05_XK01_PROGRAM_BATCH_INPUT using the batch input option to
create a session. We will run the session in the background instead of the foreground as in the previous step.
In real-life scenarios, for a substantial amount of data, sessions are always run in background. Sessions are
run in the foreground for program testing purposes or for a small amount of erroneous data which can be
corrected manually on the screens.

Using notepad editor, we created again a new set of main data for three vendors: 0000090204,
0000090205, and 0000090206, as shown in Figure 5-46.

Figure 5-45. Vendor List—Vendor Numbers with Pattern: 9020*

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

406

We created a new set of bank data for all three vendors: 0000090204, 0000090205, and 0000090206.
Figure 5-47 shows the bank data in the text file.

Vendor 0000090204 has an invalid bank account—A204002. The bank account cannot contain non-
numeric data. This is deliberately created to demonstrate how erroneous data is handled.

After the text files were prepared, we executed the program YCH05_XK01_PROGRAM_BATCH_INPUT.
Figure 5-48 shows the selection screen with values filled.

We enabled the check box Keep session. Except for this, the inputs are the same as in the previous step.
We clicked the execute button.

Figure 5-46. Vendors’ Main Data—text file

Figure 5-47. Vendors’ Bank Data—text file

Figure 5-48. Program YCH05_XK01_PROGRAM_BATCH_INPUT—inputs

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

407

An output as shown in Figure 5-49 appeared.

To run the batch input session created in the previous step, we navigated to the Batch Input Session
Overview screen using transaction code SM35.

We filtered out session names starting with YCH05—in our present context, there is only one session
starting with YCH05. To run the session, we selected the session through the row selector and then clicked
the Process button on the application bar. Clicking the Process button popped up the Process Session dialog
box as shown in Figure 5-50.

On the Process Session dialog box, we clicked the Background option. We clicked the Process button of
the Process Session dialog box.

It took some time for the session to run. You can refresh the Batch Input: Session Overview screen by
pressing the <enter> key with the pattern YCH05* in the field: Sess.

Our session ended up with the status Errors as shown in Figure 5-51.

Figure 5-49. Output—execution of program YCH05_XK01_PROGRAM_BATCH_INPUT

Figure 5-50. Batch input session overview—process session YCH05_XK01

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

408

Sessions ending with errors are retained even though you might not have enabled the check box Keep
session on the selection screen of Figure 5-48.

To determine the error(s) in the run session, we selected the error session through the row selector
and clicked the Log button on the application toolbar. Clicking the Log button fetched the Batch input: Log
Overview screen as shown in Figure 5-52.

We selected the session through the row selector as shown in Figure 5-52. We clicked the Display button
on the application toolbar to display the log. Figure 5-53 shows the log.

Figure 5-51. Processed session YCH05_XK01—Session Status: Errors

Figure 5-52. Batch Input: Log Overview—Session YCH05_XK01

Figure 5-53. Batch Input: Log for Session YCH05_XK01

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

409

The bank account (Bank Acct. No.) for the first vendor 0000090204 in the text file contained non-
numeric data which is disallowed in the field BANKN. Vendor 0000090204 was not created because of
the error in bank data. The next two vendors, 0000090205 and 0000090206, were created. The text in the
log describes this elaborately and at the end summarizes the transactions read, transactions created,
transactions with errors, etc.

To cross-verify whether the vendor data was migrated, we again executed transaction code XK02—
Change Vendor. On the opening screen of transaction code XK02, we pressed the function key F4 on the field
Vendor. The filter dialog box which popped up was using the tab Vendor by Company Code as default. We
entered the pattern 9020* in the field Vendor, the fifth field from the top. We clicked the Continue button. All
the vendors starting with the digits 9020 appeared in the list. A total of five vendors appeared in the list, three
vendors created in the previous step and two vendors, 0000090205 and 0000090206, created in the current
step. The list should appear as shown in Figure 5-54.

We selected each of the vendors, 0000090205 and 0000090206, in turn and navigated through all the
screens for each of these vendors to perform an individual field-wise cross-check of values.

Sessions are, for the most part, run in the background.
This concludes the process of creating a new set of data in text files, creating a session by running the

program YCH05_XK01_PROGRAM_BATCH_INPUT, running the created session in background, examining
the log of the run session, and finally cross-verifying the migrated data with transaction code XK02.

Issue of Number of Rows Greater Than Visible Number of Rows in
Table Control Area
The program YCH05_XK01_PROGRAM_BATCH_INPUT will perform successfully the migration of vendor
data as long as the number of banks for a vendor is not greater than the number of visible rows in the table
control area of the bank data. Recall from the dynpro programming concepts that the index of a variable
in the table control area indicates the visible row number. When you attempt to insert a row with an index
greater than the number of visible rows, an error will occur.

If you were creating bank data manually, in the recording mode or otherwise, you filled up the visible
area with data and wanted to create more rows; you would scroll down either one row or a complete page
to make room for new row(s) in the visible area of the table control. You will have to simulate the scrolling
operation in the program: BDC_OKCODE being assigned the function code or function key code of scrolling
operation.

Figure 5-54. Vendor list—Vendor numbers with pattern: 9020*

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

410

For a scrolling operation to be simulated, you need to know the following:

 1. The number of visible rows in the table control area:

The number of visible rows in the table control area will depend, among other
things, upon the dynpro or screen size.

When recording the transaction XK01, on the Create Recording dialog box, in the
Recording parameters area, we ensured that the check box Default size is enabled.

When running the session, on the Process Session dialog box, in the Additional
Functions area, we ensured that the check box Dynpro standard size is enabled.

The objective was to make sure that we operated in the same screen size when
recording and running a session—the standard size. You can visually determine
the number of visible rows in the table control area of vendor’s bank data. On the
system we are working on, the number of visible rows in the table control area of
vendor’s bank data is five.

 2. The function code or function key code of scrolling operation:

We have to decide, initially, the scrolling operation to be performed to make room
for more rows in visible area of the table control area: whether scroll down one row
or scroll down one page. We have decided to scroll down one page—Next page.

Having decided the scrolling operation to be performed, we have to determine
the function code or function key code to scroll down one page—Next page. We
determined the function code and function key code to scroll down one page
through the screen technical information of the screen number 0130, dynpro
program SAPMF02K.

To determine the function code and function key code to scroll down one page,
we performed a dummy recording for transaction XK01. The recording was a
dummy in the sense that we did not save the data, did not save this recording
or generated a program, etc. During the dummy recording of transaction XK01,
while on the screen number 0130, that is the screen with table control of bank
data, we positioned the cursor on any of the fields in the table control area,
clicked function key F1, and then clicked the Technical Information button on
the Performance Assistant dialog box. In the GUI Data area of the Technical
Information dialog box, the Status was specified as 130V. We double-clicked
the Status specified as 130V. In the Status 130V, we expanded the node Function
Keys. From the expansion of the node Function Keys, we could determine the
following:

•	 Function key assignment for Next page: shift+F11

•	 Function code for Next page: P+

Alternatively, you can determine the function code for Next page by creating banks more than the
number of visible rows in the table control area during the dummy recording of transaction XK01. The
recording will simulate the scrolling operation as you create banks more than the number of visible rows in
the table control area. The function code for scrolling will appear in the recording. But you cannot determine
the function key assignment from the recording.

Between the two methods of determining the function codes for scrolling, we recommend the first one:
through the function key assignment in the GUI status.

We advise that you do not straight away adopt the values of visible rows in the table control area and the
function code for scrolling mentioned here. You should visually examine on your system, the screen number

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

411

0130 to determine the visible rows in the table control area. You should perform the steps described in the
preceding paragraphs to determine the function code and the function key assignment from the GUI status
of screen number 0130. The function code and function key assignment depend on the operating system on
which you are running the presentation server. We are running our presentation server under the windows
operating system.

Now that we know the number of visible rows in the table control area of the vendor’s bank data as well
as function code and the function key assignment for Next page, we can proceed to incorporate ABAP code
in the nested inner loop of our data migration program. This incorporation of ABAP code in the nested inner
loop of our data migration program will enable the creation of banks for a vendor exceeding the number of
visible rows in the table control area.

We copied the data migration program YCH05_XK01_PROGRAM_BATCH_INPUT to YCH05_XK01_
PROGRAM_BI_TB_SC. We incorporated extra ABAP code in the nested inner loop of the copied program
YCH05_XK01_PROGRAM_BI_TB_SC.

We incorporated the following ABAP code in the nested inner loop of the program YCH05_XK01_
PROGRAM_BI_TB_SC:

CONCATENATE 'LFBK-BANKN(' INDX ')' INTO GSTRING.
perform bdc_field using GSTRING "'LFBK-BANKN(01)'
 BANK_STRU-BANKN. "'1234567'.

***** start of incorporated code *****

IF INDX = ROWS_IN_TB. " no of rows visible in table control
 INDX = 0. " reached, trigger next page scroll

 CONCATENATE 'LFBK-BANKN(' ROWS_IN_TB ')' INTO GSTRING.
 perform bdc_field using 'BDC_CURSOR'
 GSTRING. "'LFBK-BANKN(05)'.

 perform bdc_field using 'BDC_OKCODE'
 '/23'. " '=P+'. " P+ function
 " code for next page

ENDIF.

***** end of incorporated code *****

perform bdc_dynpro using 'SAPMF02K' '0130'.

perform bdc_field using 'BDC_CURSOR'
 'LFBK-BANKS(01)'.
perform bdc_field using 'BDC_OKCODE'
 '=ENTR'.
ENDLOOP.

perform bdc_dynpro using 'SAPMF02K' '0210'.

We commenced the extra incorporated code with the following comment line:

***** start of incorporated code *****

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

412

We concluded the extra incorporated code with the following comment line:

***** end of incorporated code *****

We included the program extra lines above and below the incorporated code as to clearly indicate the
location of the incorporated code. The location of the incorporated code is significant for the scrolling to
operate. We located the incorporated code between the following two ABAP statements:

perform bdc_field using GSTRING "'LFBK-BANKN(01)'
 BANK_STRU-BANKN. "'1234567'.

perform bdc_dynpro using 'SAPMF02K' '0130'.

We arrived at the location of the incorporated code by trial and error.
We declared the data object ROWS_IN_TB as a constant with value 5—the number of rows in visible

area of the table control on our system. You can alternatively make it a runtime input parameter variable.
We are checking the value of INDX—current row number in the visible area. If the value of INDX is equal to
ROWS_IN_TB, scroll Next page is being performed and current row number in the visible area INDX is being
initialized. We are using the key combination shift+F11 to scroll Next page. The code for the key combination
shift+F11 in the windows operating system is 23 ('/23'). We could have used the function code P+ ('=P+') to
scroll Next page.

The program YCH05_XK01_PROGRAM_BI_TB_SC is available in the E-resource file for this book
(www.apress.com/9781484212345).

We tested the program YCH05_XK01_PROGRAM_BI_TB_SC with data of vendors as follows:

•	 Vendor with 12 banks 2 scroll Next page

•	 Vendor with 7 banks 1 scroll Next page

•	 Vendor with 2 banks no scroll

•	 Vendor with 1 bank no scroll

•	 Vendor with no bank 723 no scroll

This test data is available as text files in the E-resource file for this book (www.apress.
com/9781484212345). You can use this test data, but before you use it, ensure that the vendor codes in text
file do not exist on your system.

We have covered the issue of the number of banks for vendors exceeding the number of visible rows in
the table control area under a separate subheading. The technical aspects to this were considerable and so
warranted a description under a separate subheading.

This concludes tackling the issue of the number of rows being greater than the visible number of rows in
the table control area.

This also concludes the hands-on exercise of data migration using the batch input method.

Recapitulation—Hands-on Exercise I: Migrate Vendor Data Using
Batch Input Method
We specified the scope of the hands-on exercise as migrating vendor data using the batch input method.

The source data would reside on the presentation server. We decided to prepare representative vendor
data—3/4 vendors. The main focus of the hands-on exercise is the deployment of SAP data migration tools.

We identified the fields that will be assigned values—all mandatory fields and a few non-mandatory
fields.

http://www.apress.com/9781484212345
http://www.apress.com/9781484212345
http://www.apress.com/9781484212345

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

413

We identified the fields that will be assigned constants; that is, all the vendors will share the same values
for a field.

We identified the fields that will assume different values for each vendor. These fields will be assigned
values from text files.

We identified a field that will derive its value from another field.
We determined that there will be two text files, one text file designated as containing main data and the

second designated as containing bank data. The two text files were to be located on the presentation server.
A data flow diagram traced the flow of data when the data migration program would be run using the

batch input method.
We prepared a task list listing the tasks to be carried out for the migration of data from the text files on

presentation to the queue tables.
The first of the tasks involved the creation of a recording. Using transaction code SHDB, we created

a recording of transaction code XK01—create vendor centrally. We saved the recording and generated an
ABAP program from the recording of transaction code XK01.

The following modifications were carried out to the program generated from the recording:

•	 We declared two internal tables, main table and bank table, to be loaded with data
from text files—main and bank. We declared the corresponding structures for the
two internal tables. We declared other required variables.

•	 We coded selection screen statements to input text file names, with facility for the
end user to make file selections from the presentation server.

•	 We used the function module GUI_UPLOAD to transfer data from the text files to the
respective internal tables.

•	 We set up loops to fetch data from the internal tables into the structures. We set up
the outer loop to fetch data from the main table and the nested loop to fetch data
from the bank table.

•	 The appropriate data was passed from the table structure fields to the subroutine
BDC_FIELD through the FVAL parameters. The bank variable names with their
indexes were built as strings. The strings were passed to the subroutine BDC_FIELD
through the FNAM parameters.

•	 One field SORTL was derived from the field NAME1. The requisite code was written
to derive the field SORTL.

We performed a check on the modified program and activated it.
We prepared representative data of three vendors in the text files.
Initially, we executed the program in debugging mode. In the debugger, we checked the contents of the

internal table to ascertain the correctness of the input data format, internal table structures declarations, etc.
After we ascertained the correctness of the input data format, internal table structures declarations, etc.,

we executed the program using the batch input option.
We createda session. Navigating to transaction code SM35, we ran the session in the foreground. All

the screens appeared with the data which was passed on to the fields as FVAL parameter to the subroutine
BDC_FIELD. Each of the vendors was saved.

We cross-verified the migration of data of three vendors using the transaction code XK02—change
vendors.

We prepared new data of three vendors in the text files.
We executed the program using again the batch input option. The program used the newly created data.
We created a session. Navigating to transaction code SM35, we ran the created session in the

background. The session was retained because there was erroneous input data for the first vendor. This was
a deliberate action to create error status for a run session. We viewed and checked the log.

We cross-verified the migration of data of three vendors using transaction code XK02—change vendors.

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

414

We tackled the issue of the number of rows being greater than the visible number of rows in the table
control area of bank data of a vendor.

Hands-on Exercise II: Migrate Vendor Data Using Call
Transaction Method
Hands-on exercise II will migrate the vendor data using the call transaction method. We can use the program
from the previous hands-on exercise: YCH05_XK01_PROGRAM_BI_TB_SC. As I stated earlier, the program
generated from a recording of a transaction supports two methods of data migration: the batch input and the
call transaction methods.

We will be migrating vendor data using the call transaction method the same way we performed data
migration using the batch input method. Only the 20 fields listed in Table 5-2 will assume values. The 11
fields listed in Table 5-3 will assume constant values—the same values for the field for all vendors. The data
of the five fields listed in Table 5-4 will originate from the text file—main data. The data of the three fields
listed in Table 5-5 will originate from the text file—bank data. The field SORTL was assigned the first word of
the field NAME1 (vendor name).

We are planning to incorporate two extra features in this hands-on exercise, so will use a new program.
We are making a copy of the earlier program YCH05_XK01_PROGRAM_BI_TB_SC (source) into YCH05_
XK01_PROGRAM_CALL_TRAN (destination). After the copying process, we activated the text elements in
the destination program.

Extra Features in the Program
We are planning to incorporate the following two extra features in the program YCH05_XK01_PROGRAM_
CALL_TRAN:

•	 Locate the text files on the application server. This will require that we use the ABAP
statements OPEN DATASET, READ DATASET, and CLOSE DATASET to retrieve data
from text files. In the previous hands-on exercise, with the text files located on the
presentation server, we used the function module GUI_UPLOAD to retrieve and
transfer data from the text files.

•	 Create a log as a text file on the application server. We plan to locate the ABAP
statements for creation of the log file on the application server in a copy of the
include program BDCRECX1. Since we cannot modify the include program
BDCRECX1, we are making a copy of it into YCH05_BDCRECX1. We will incorporate
ABAP statements for creation of the log file on the application server in the include
program YCH05_BDCRECX1. In the main program YCH05_XK01_PROGRAM_
CALL_TRAN, the statement INCLUDE BDCRECX1 will be replaced by the following
statement: INCLUDE YCH05_BDCRECX1.

We will incorporate the two program features in two stages. In the first stage, we will incorporate the
feature of locating the text files on the application server and test this incorporated feature. In the second
stage, we will further incorporate the feature of creating a log file on the application server and test this
incorporated feature.

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

415

Migrate Data of Text Files on Application Server Using Call
Transaction Method
A detailed description of the implementation of location of text files on the application server, migrating data
from the text files using the call transaction method, follows.

Locate Text Files on Application Server
To start with, we are detailing the process we are adopting to locate text files on the application server.

If you are working on an IDES server installed on a desktop or a laptop, as I am, all three components of
the three-tier architecture—the database server, the application server, and the presentation server—reside
on the same physical system/machine. So you have access to the text files residing on the application server
at the operating system level. But we will pretend that we do not have access to the text files residing on
the application server at the operating system level. We will access the text files residing on the application
server from within the SAP system as a logged-in user. We will continue to create and maintain the text files
on the presentation server. We will copy the text files created and maintained on the presentation server
on to the application server from within the SAP system. To copy and view the text files on the application
server, we will use the transaction code USS_FAS. The transaction code USS_FAS enables you to view the
folders and files on the application server, copy files from presentation server to the application server, view
contents of files on the application server, etc.

We created a new set of main and bank data on the presentation server.
Using notepad editor, we created the new set of main data for three vendors: 0000090207, 0000090208,

and 0000090209. Figure 5-55 provides an illustration.

We created a new set of bank data for all three vendors: 0000090207, 0000090208, and 0000090209.
Figure 5-56 shows the bank data in the text file.

Figure 5-55. Vendors’ Main Data—text file

Figure 5-56. Vendors’ bank data—text file

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

416

Vendor 0000090207 has an invalid bank account—A207001. As in the earlier hands-on exercise, this is
deliberately created to demonstrate how erroneous data is handled.

To copy files from the presentation server to the application server from within the SAP system,
we navigated to the opening screen of transaction code USS_FAS. We selected text file—main from the
presentation server using the Select button and entered the file name on application server as YCH05_
MAIN_DATA. Figure 5-57 illustrates.

We have deliberately provided a prefix YCH05_ to the file name to make it distinct on the application
server. We have deliberately not provided any directory or folder for the file on the application server. The
file will be copied on the default directory DIR_TEMP (logical name).

We clicked the copy button. If the copying process is successful, a message appears on the Status bar as
shown in Figure 5-58.

If the destination file exists, it is overwritten without an alert.
If you want to look up the file YCH05_MAIN_DATA in the default directory DIR_TEMP (logical name)

click the File System button on the screen shown in Figure 5-58. The directories (with logical names) will
appear as in Figure 5-59.

Figure 5-57. Copy main data—from presentation server to application server

Figure 5-58. Successful copy of main data—from presentation server to application server

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

417

Double-click the directory DIR_TEMP. The files appear as an ALV list. Our copied file name starts with
the alphabet Y. To make the copied file appear at the beginning of the list, we selected the file name column,

clicked the (sort descending) button. The files list appeared with the file YCH05_MAIN_DATA at the
top of the list as in Figure 5-60.

We double-clicked the line of the file YCH05_MAIN_DATA; Figure 5-61 displays the contents of the file.

Figure 5-59. Directories with logical names on application server

Figure 5-60. Partial list of files in the directory DIR_TEMP

Figure 5-61. Contents of file YCH05_MAIN_DATA

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

418

We performed the steps resulting in Figures 5-59, 5-60, and 5-61 to cross-verify that the file on the
presentation server was copied to the application server.

We navigated to the opening screen of transaction code USS_FAS to copy the bank data file (D:\TEMP\
BANK_DATA.TXT) from the presentation server to the application server (YCH05_BANK_DATA). Figure 5-62
illustrates.

You can cross-verify the copying of the bank data file from the presentation server to the application
server by repeating the steps we performed to cross-verify the copying of the main data file from the
presentation server to the application server.

This completes the process of copying the files from the presentation server to the application server.

Data Flow in Call Transaction Method
This is a description of the data flow when you execute a modified version of the generated ABAP program
from a recording of XK01 using the call transaction method. The diagram in Figure 5-63 traces the data flow
from the text files on the application server into the functional module database tables.

Figure 5-62. Successful copy of bank data—from presentation server to application server

Figure 5-63. Data flow diagram: execution of program using call transaction method

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

419

To start with, data will be fetched from the two text files (main and bank) residing on the application
server into two internal tables: internal table-main and internal table-bank. One DO loop is set up to
continually read one line of data at a time (READ DATASET…..), from the main text file into the structure
of internal table-main; append the data from the structure to the internal table-main. A second DO loop
is set up to continually read one line of data at a time (READ DATASET…..), from the bank text file into the
structure of internal table-bank; append the data from the structure to the internal table-bank.

The internal table-main will contain one row for one vendor. A loop (LOOP AT…..) is set up for the
internal table-main. Within this main loop, as new screens are navigated, the subroutine BDC_DYNPRO
is invoked with the parameters PROGRAM and DYNPRO. Within a screen the subroutine BDC_FIELD is
invoked with the parameters FNAM and FVAL. Data will be passed from the structure of the internal table-
main or through literals to the parameter FVAL. When the subroutines BDC_DYNPRO and BDC_FIELD are
invoked, the BDCDATA table is being filled up.

Within this main loop, a nested loop with internal table-bank is set up to fetch data of banks belonging
to the vendor fetched in the main loop. (WHERE…..) The subroutine BDC_FIELD is invoked with the
parameters FNAM and FVAL to pass data from the structure of internal table-bank to the parameter FVAL.
When the subroutines BDC_DYNPRO and BDC_FIELD are invoked, the BDCDATA table is being filled up

Once the BDC_DATA table has been filled for a vendor, the data from BDCDATA table is transferred to
the functional module database tables by invoking the subroutine BDC_TRANSACTION. The subroutine
BDC_TRANSACTION contains the ABAP statement CALL TRANSACTION to transfer data from the
BDCDATA table to the functional module database tables.

The process is repeated as the next vendor is fetched in the main loop from the internal table-main. The
process repeats until the main loop is exhausted.

When you execute the program using the call transaction method, the mode of database update can
be either synchronous or asynchronous. The mode of database update is supplied at runtime through a
selection screen parameter variable. The system executes a database commit immediately before and after
the CALL TRANSACTION USING….statement.

This was a trace of the data as it traverses from the text files on the application server to their final
destination, the functional module database tables, when you execute the program using the call transaction
method.

Modifications to Program to Support Input Text Files on Application
Server, etc.
We copied the include program BDCRECX1 into YCH05_BDCRECX1. We activated the program YCH05_
BDCRECX1. We will be carrying out modifications to the program YCH05_BDCRECX1 to create a log file on
the application server as part of the second stage of the hands-on exercise.

The program YCH05_XK01_PROGRAM_CALL_TRAN being a copy of the program YCH05_XK01_
PROGRAM_BI_TB_SC supports text files only on the presentation server. Suitable modifications are to be
carried out so that it supports text files only on the application server

The following lines describe the modifications to be carried out the program YCH05_XK01_PROGRAM_
CALL_TRAN to support text files on the application server.

The function module F4_FILENAME works only for the end user making a file selection from the
presentation server. In our present context, text files being located on the application server, all the program
lines related to the context of text files being located on the presentation server have to be deleted or
commented.

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

420

In the data declaration area, the following statements are not required, so are commented:

DATA:.....
* MAIN_FL TYPE IBIPPARMS-PATH, "to select file from
 "presentation server
* BANK_FL TYPE IBIPPARMS-PATH,

The INCLUDE statement is modified as follows:

include ych05_bdcrecx1.

The DEFAULT clause has been incorporated into the PARAMETERS statements to input text file names.

PARAMETERS: MFILE TYPE STRING DEFAULT 'YCH05_MAIN_DATA',
 BFILE TYPE STRING DEFAULT 'YCH05_BANK_DATA'.

The event AT SELECTION-SCREEN ON VALUE-REQUEST was triggered to enable the end user to make
a file selection from the presentation server. In the present context, the triggering of this event is irrelevant,
as files are located on the application server. The statements relating to the triggering of the event AT
SELECTION-SCREEN ON VALUE-REQUEST are commented, as follows:

*AT SELECTION-SCREEN ON VALUE-REQUEST FOR MFILE.
*
*CALL FUNCTION 'F4_FILENAME'
* IMPORTING
* FILE_NAME = MAIN_FL.
*
*MFILE = MAIN_FL.
*
**
*AT SELECTION-SCREEN ON VALUE-REQUEST FOR BFILE.
*
*CALL FUNCTION 'F4_FILENAME'
* IMPORTING
* FILE_NAME = BANK_FL.
*
*BFILE = BANK_FL.
*

The statement to transfer data from the text file on the presentation server to the internal table MAIN_TAB

CALL FUNCTION 'GUI_UPLOAD'
 EXPORTING
 FILENAME = MFILE
 FILETYPE = 'ASC'
 TABLES
 DATA_TAB = MAIN_TAB
 .

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

421

is replaced with the following statements:

PERFORM OPEN_DATASET USING MFILE.

DO.
 READ DATASET MFILE INTO MAIN_STRU.
 IF SY-SUBRC NE 0.
 EXIT.
 ENDIF.
 APPEND MAIN_STRU TO MAIN_TAB.
ENDDO.

PERFORM CLOSE_DATASET USING MFILE.

The statement to transfer data from the text file on the presentation server to the internal table BANK_
TAB

CALL FUNCTION 'GUI_UPLOAD'
 EXPORTING
 FILENAME = BFILE
 FILETYPE = 'ASC'
 TABLES
 DATA_TAB = BANK_TAB
 .

is replaced with the following statements:

PERFORM OPEN_DATASET USING BFILE.

DO.
 READ DATASET BFILE INTO BANK_STRU.
 IF SY-SUBRC NE 0.
 EXIT.
 ENDIF.
 APPEND BANK_STRU TO BANK_TAB.
ENDDO.

PERFORM CLOSE_DATASET USING BFILE.

The program YCH05_XK01_PROGRAM_CALL_TRAN with modifications carried out supports text files
on the application server only. The complete source lines of program YCH05_XK01_PROGRAM_CALL_
TRAN are available in the E-resource file for this book (www.apress.com/9781484212345).

We saved and activated the program YCH05_XK01_PROGRAM_CALL_TRAN.

Execute Program—Verify Data Migrated
We will execute the program YCH05_XK01_PROGRAM_CALL_TRAN using the call transaction method.

When the program YCH05_XK01_PROGRAM_CALL_TRAN is executed, the selection screen as shown
in Figure 5-64 appears.

http://www.apress.com/9781484212345

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

422

When the program is executed using the call transaction method, four options of Processing Mode are
available.

•	 A—Display all screens, equivalent to Process/foreground option when running a
session

•	 E—Display errors equivalent to Display errors only option when running a session

•	 N—Background processing equivalent to background option when running a session

•	 P—Background processing debugging possible

Figure 5-65 shows the Processing mode list of options.

For now, we selected the option Background processing.

Figure 5-64. Program YCH05_XK01_PROGRAM_CALL_TRAN—selection screen

Figure 5-65. Selection screen—processing modes

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

423

Figure 5-66 shows the Update mode list of options:

Table 5-8 gives a brief description of the three options available for the field Update Mode

You can refer to SAP documentation for a more elaborate description of update modes.
We entered YCH05_XK01 in the Error sessn. A session is automatically created for error data. A user

has to be entered who has the authorization to run the session of error data. By default the logged-in user is
proposed. We accepted the default logged-in user. The Keep session and Lock date have the same meaning
when you execute the program using batch input or Generate session method.

Figure 5-67 shows the selection with the entered values.

Figure 5-66. Selection screen—update modes

Table 5-8. Update Modes

Update Mode Description

L – Local The database update does not occur in a separate process, but occurs in the
process of calling program itself.

S – Synchronous With this mode of update, the called transaction receives completion message
including errors if any from update module.

A – Asynchronous The transaction passes the updates to the SAP update service. It results in a faster
execution of the program. This mode of update is not advisable with a large
amount of data, as the calling program receives no completion message from
update module. The calling program is not able to determine the success or failure
of database update.

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

424

When we clicked the execute button, the output as shown in Figure 5-68 was generated:

This output is the outcome of the WRITE statements located in the include program YCH05_
BDCRECX1 following the ABAP statements CALL TRANSACTION...... (Subroutine BDC_TRANSACTION)
and CALL FUNCTION BDC_CLOSE_GROUP (Subroutine CLOSE_GROUP).

The ABAP statement CALL TRANSACTION.....returns resultant information of system messages such as
message id, message numbers, and so on into an internal table of ABAP dictionary structure BDCMSGCOLL.
The internal table of ABAP dictionary structure BDCMSGCOLL is declared as MESSTAB in the include
program YCH05_BDCRECX1. The information relating to messages such as message id, message numbers,
and so on is extracted from the internal table MESSTAB. The message texts are retrieved using the message
id and message numbers from the database tables; variable information is inserted into placeholders of the
message texts and the resultant string output with the WRITE statements.

The first vendor (vendor number 0000090207) generated an error condition as the field BANKN
contained non-numeric data. This is reported in the first two lines of the output of Figure 5-68.

The second and third vendors (vendor numbers: 0000090208, 0000090209) were created successfully.
This is also reported in the output of Figure 5-68.

Since an error condition was generated by the first vendor, a session is created with the error data and
this is reported on the last line of the output of Figure 5-68.

To cross-verify whether the vendor data was migrated, we again executed transaction code XK02—
Change Vendor. On the opening screen of transaction code XK02, we pressed the function key F4. The filter
dialog box which popped up was using the tab Vendor by Company Code as default. We entered the pattern

Figure 5-67. Selection screen—input values entered

Figure 5-68. Program YCH05_XK01_PROGRAM_CALL_TRAN—output

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

425

9020* in the field Vendor, the fifth field from the top. We clicked the Continue button. All the vendors starting
with the digits 9020 appeared in the list. A total of seven vendors appeared in the list: five vendors created in
the previous hands-on exercise and two vendors, 0000090208 and 0000090209, created in the current hands-
on exercise. The list should appear as shown in Figure 5-69.

We selected each of the vendors 0000090208 and 0000090209 in turn and navigated through all the
screens for each of these vendors to perform an individual field-wise cross-check of values.

The error condition in one of the vendors created a session with the error data. We navigated to the
transaction code SM35 and entered YCH05* in the field Sess. Session names starting with YCH05 are listed.
The first entry in the list, selected with the row selector, is the session with error data. Figure 5-70 illustrates.

Note that this is a new session and as such will not have a log. When you execute the program using
the call transaction method, no log is created. In the next or second stage of this hands-on exercise, we will
create a log as a text file on the application server.

You can run the session with error data in the foreground and rectify the error(s) manually.

Figure 5-69. Vendor list—vendor numbers with pattern: 9020*

Figure 5-70. Execute program YCH05_XK01_PROGRAM_CALL_TRAN—error session

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

426

This concludes the first stage of the hands-on exercise: migrate vendor data of text files on application
server using the call transaction method.

Migrate Data of Text Files on Application Server Using Call
Transaction Method, Create Log File on Application Server
We will now incorporate functionalities in the ABAP programs YCH05_XK01_PROGRAM_CALL_TRAN
and YCH05_BDCRECX1 so that a log file as a text file is created on the application server. We will locate
the log file on the default folder DIR_TEMP (logical name) on the application server. We will use the ABAP
statements OPEN_DATASET, TRANSFER, and CLOSE DATASET to create the log file on the application
server.

We have to decide on the contents of the log file. If you observe the contents of Figure 5-68, the output
generated when you execute the data migration program using the call transaction method consists of the
basic information of what occurred during the program execution. A vendor which is successfully created
is reported. An error condition in the creation of the vendor is also reported. The output of Figure 5-68
is generated with WRITE statements in the subroutine BDC_TRANSACTION of the include program
YCH05_BDCRECX1. As our focus is more on the methodology of creating a log file on the application server
than its contents, we will include the same information in the log file as is being output using the WRITE
statements in the subroutine BDC_TRANSACTION of the include program YCH05_BDCRECX1. Next to
the WRITE statements related to the call transaction method, we will incorporate TRANSFER statements.
The TRANSFER statements will write to the log file, the same information being output with the WRITE
statements. At the very beginning of the log file, we will incorporate the following information, SY-UNAME—
user name, SY-DATUM—system date, SY-UZEIT—system time, along with the related text.

The next step is to describe the modifications to be carried out in the programs YCH05_XK01_
PROGRAM_CALL_TRAN and YCH05_BDCRECX1 to enable creation of log file on the application server.

Modifications to the Include Program YCH05_BDCRECX1
We will start off by describing the modifications to the include program YCH05_BDCRECX1. The
modifications involve two subroutines: BDC_TRANSACTION and CLOSE_GROUP.

Firsty, I will describe the modifications in the subroutine BDC_TRANSACTION.
Individual Information needs to be combined or concatenated and the concatenated information is to

be written to the log file. Some of the information to be written to the log file is not character oriented but
numeric—type I, etc. The numeric data needs to be assigned to character-oriented data items as to enable
concatenation. Hence we need to define character-oriented data to which numeric data is to be assigned.

In Figure 5-71, the program lines with the gray background represent the lines that have been changed
or inserted in the subroutine BDC_TRANSACTION of the include program YCH05_BDCRECX1.

The program lines that have been modified or inserted carry the side comment log file C/I. The letter C
indicates that the program line was changed and the letter I indicates that the program line was inserted.

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

427

The original version of the subroutine BDC_TRANSACTION was receiving only one parameter TCODE.
Six additional parameters are being received in the modified version. Extra data declarations are made in the
modified version. An assignment is made to convert numeric data to character-oriented data in the modified
version. Figure 5-71 marks the modifications.

Because of the constraints of vertical space, all the modifications could not be represented in a
single figure. Hence Figures 5-72 and 5-73 are a continuation of modifications to the subroutine BDC_
TRANSACTION.

Figure 5-71. Modifications to subroutine: BDC_TRANSACTION—I

Figure 5-72. Modifications to subroutine: BDC_TRANSACTION—II

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

428

For error records (i.e., L_SUBRC <> 0), the information company code, vendor, purchasing organization,
etc., were not appearing in the output. We are incorporating this information in the output as well as the log
file with the statements IF L_SUBRC <> 0……ENDIF as shown in Figure 5-72.

In the program lines with gray background in Figure 5-72, the individual fields were concatenated into a
single field, and this single field is being output with the WRITE statement and written to the log file with the
TRANSFER statement. You could use the WRITE TO…..statement instead of the CONCATENATE statement.

In Figure 5-73, the TRANSFER statements have been inserted to write to the log file.
This concludes the modifications to the subroutine BDC_TRANSACTION.
The modifications to the subroutine CLOSE_GROUP involve the following:

•	 Providing the log file as a single parameter to the subroutine. The original version of
the subroutine did not have any parameter.

•	 If an error condition arises during the data migration, a session with error data
is created. The creation of a session with error data is reported with the WRITE
statement and appears as the last line of the output. The reporting of the creation of
a session with error data should also be written to the log file with the TRANSFER
statement. Figure 5-74 shows the modifications to the subroutine CLOSE_GROUP.

Modifications to the Main Program YCH05_XK01_PROGRAM_CALL_TRAN
We are carrying out modifications to the program YCH05_XK01_PROGRAM_CALL_TRAN directly. You can, if
you so desire, make a copy of the program YCH05_XK01_PROGRAM_CALL_TRAN and carry out modifications
to the copy of the program YCH05_XK01_PROGRAM_CALL_TRAN. You can have two programs: (1) YCH05_
XK01_PROGRAM_CALL_TRAN, not containing the feature of log file creation and (2) a modified copy of
program YCH05_XK01_PROGRAM_CALL_TRAN, containing the extra feature of log file creation.

Figure 5-73. Modifications to subroutine: BDC_TRANSACTION—III

Figure 5-74. Modifications to subroutine: CLOSE_GROUP

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

429

The following modifications were carried out to the program YCH05_XK01_PROGRAM_CALL_TRAN to
incorporate the feature of log file creation.

Literal values were being assigned to the fields RF02K-BUKRS (company code), RF02K-EKORG (purch.
organization), and RF02K-KTOKK (account group)—subroutine BDC_FIELD. The values of these three
fields now have to be incorporated into the log file as well—subroutine BDC_TRANSACTION. So, instead
of specifying the same literal parameters when invoking the two subroutines BDC_FIELD and BDC_
TRANSACTION, we have declared them as constants and used these constants as parameters when invoking
the two subroutines.

The program lines to declare constants are as follows:

* constants defined to create log file ***********
* being passed as parameters in two subroutines *
* (1) BDC_FIELD (2) BDC_TRANSACTION *
**
CONSTANTS: BUKRS TYPE BUKRS VALUE '0001',
 EKORG TYPE EKORG VALUE '0001',
 KTOKK TYPE KTOKK VALUE '0001'.

The three constants BUKRS, EKORG, and KTOKK have been assigned the same value '0001'. You could
argue that we can manage with the declaration of just one constant instead of three. The objective is that,
when invoking subroutines, the parameters being passed must be apparent in terms of being assigned to
which fields.

To be able to report correctly, the processed vendor/row number in the output as well as the log file, the
variable ROW_NO was defined as follows:

INDX(2) TYPE N, "bank data index
ROW_NO(6) TYPE N. " log file I

An additional entry with the PARAMETERS statement to input the log file name is as follows:

PARAMETERS.....
 LFILE TYPE STRING DEFAULT 'YCH05_LOG'. " log file I

To open the log file on the application server, write the information related to user, date, and time to the
log file. The following program lines will be positioned preceding the statement: PERFORM OPEN_GROUP:

****** inserted for log file start ******
OPEN DATASET LFILE
 FOR OUTPUT
 IN TEXT MODE
 ENCODING DEFAULT WITH SMART LINEFEED.
**
CONCATENATE 'User: '(S02) SY-UNAME ' Date:'(L01)
 SY-DATUM+6(2) '/' SY-DATUM+4(2) '/'
 SY-DATUM+0(4) ' Time:'(L02) SY-UZEIT+0(2)
 ':' SY-UZEIT+2(2) ':' SY-UZEIT+4(2) INTO GSTRING.

TRANSFER GSTRING TO LFILE.

GSTRING = '|'.
TRANSFER GSTRING TO LFILE.
***** inserted for log file end

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

430

To maintain the row number being processed, the statement to increment the variable ROW_NO will
follow the statement LOOP AT MAIN_TAB INTO MAIN_STRU as follows:

ROW_NO = ROW_NO + 1. "log file I

The subroutine BDC_FIELD for the fields BUKRS, EKORG, and KTOKK will be invoked with FVAL
parameter as the respective declared constant instead of a literal.

perform bdc_field using 'RF02K-BUKRS'
 BUKRS. "'0001' / log file C.
+perform bdc_field using 'RF02K-EKORG'
 EKORG. "'0001' / log file C.
perform bdc_field using 'RF02K-KTOKK'
 KTOKK. "'0001' / log file C.

The subroutine BDC_TRANSACTION will be invoked with six additional parameters.

perform bdc_transaction using 'XK01'
 ROW_NO " parameters to create
 " log file/log file C
 MAIN_STRU-LIFNR
 BUKRS
 EKORG
 KTOKK
 LFILE.

The subroutine CLOSE_GROUP will be invoked with a parameter, the log file name.

perform close_group using lfile. " log file C

To close the log file on the application server, the last line of the program is as follows:

CLOSE DATASET LFILE. " log file I

This concludes the modifications to the program YCH05_XK01_PROGRAM_CALL_TRAN to incorporate
the feature of log file creation on the application server.

We activated the program YCH05_XK01_PROGRAM_CALL_TRAN.
The programs YCH05_BDCRECX1 and YCH05_XK01_PROGRAM_CALL_TRAN are available in the

E-resource file for this book (www.apress.com/9781484212345).

Prepare Text Files; Copy Text Files to Application Server, etc.
We created new set of main and bank data on the presentation server.

Using notepad editor, we created the new set of main data for three vendors: 0000090201, 0000090232,
and 0000090233. Figure 5-75 illustrates.

http://www.apress.com/9781484212345

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

431

Vendor 0000090201 already exists. We deliberately created this already existing vendor in the input to
demonstrate the handling of erroneous data.

We created a new set of bank data for all three vendors: 0000090201, 0000090232, and 0000090233.
Figure 5-76 shows the bank data in the text file.

To copy files from the presentation server to the application server from within the SAP system,
we navigated to the opening screen of transaction code USS_FAS. We selected text file-main from the
presentation server using the Select button and entered the file name on application server as YCH05_
MAIN_DATA. We clicked the Copy button. The file was successfully copied from the presentation server on
to the application server. Figure 5-77 illustrates.

In a similar manner, we selected text file-bank from the presentation server using the Select button and
entered the file name on application server as YCH05_BANK_DATA. We clicked the Copy button. The file
was successfully copied from the presentation server on to the application server. Figure 5-78 illustrates.

Figure 5-75. Vendors’ main data—text file

Figure 5-76. Vendors’ bank data—text file

Figure 5-77. Successful copy of main data—from presentation server to application server

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

432

We cross-verified by checking the contents of files YCH05_MAIN_DATA and YCH05_BANK_DATA.

Execute Program—Verify Data Migrated and Log File Created
We would like to mention that asynchronous update mode is not recommended for processing a larger
amount of data. This is especially so when you are performing error reporting, as we are, in the current
hands-on exercise. This is because the called transaction receives no completion message from the update
module in the asynchronous mode of updating. The calling data transfer program, in turn, cannot determine
whether or not a called transaction ended with a successful update of the database.

We next executed the program YCH05_XK01_PROGRAM_CALL_TRAN.
Figure 5-79 shows the selection screen with the filled in values.

When we clicked the execute button, the output as shown in Figure 5-80 was generated:

Figure 5-78. Successful copy of bank data—from presentation server to application server

Figure 5-79. Selection screen—with entered values

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

433

The first vendor (vendor number 0000090201) generated an error condition: Vendor 90201 already
exists….. This is reported in the first three lines of the output of Figure 5-80.

The second and third vendors (vendor numbers: 0000090232, 0000090233) were created successfully.
This is also reported in the output of Figure 5-80.

Since an error condition was generated by the first vendor, a session is created with the error data and
this is reported on the last line of the output of Figure 5-80.

To cross-verify whether the vendor data was migrated, we again executed transaction code XK02—
Change Vendor. On the opening screen of transaction code XK02, we pressed the function key F4 on the
field Vendor. The filter dialog box which popped up was using the tab Vendors by Country/Company Code as
default. We entered the pattern 9023* in the field Vendor, the fifth field from the top. We clicked the Continue
button. All the vendors starting with the digits 9023 appeared in the list. A total of two vendors appeared in
the list. The list should appear as shown in Figure 5-81.

We selected each of the vendors 0000090232 and 0000090233 in turn and navigated through all the
screens for each of these vendors to perform an individual field-wise cross-check of values.

The crux of this part of the hands-on exercise was the creation of the log file on the application server.
So let us check out the successful creation of the log file on the application server.

Figure 5-80. Program YCH05_XK01_PROGRAM_CALL_TRAN—output

Figure 5-81. Vendor list—vendor numbers with pattern: 9023*

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

434

To view the log file created on the application server, we navigated to the opening screen of transaction
code USS_FAS. We clicked the File System button and double-clicked the folder DIR_TEMP (logical name).
The files in the folder DIR_TEMP are displayed. We clicked the file name column and further clicked the

 (sort descending) button. The file names starting with YCH05 appeared at the beginning of the list
shown in Figure 5-82.

We double-clicked the row of log file YCH05_LOG. The contents of log file YCH05_LOG was displayed
as shown in Figure 5-83.

At the very beginning of the log file, we displayed logged-in user, date, and time. The rest of the log file
contents are same as what was output with the WRITE statements (Figure 5-80).

The error condition in one of the vendors created a session with the error data. We navigated to
transaction code SM35 and entered YCH05* in the field Sess. Session names starting with YCH05 are listed.
The first entry in the list; selected with the row selector is the session with error data. Figure 5-84 illustrates.

Figure 5-82. Log file YCH05_LOG created on application server

Figure 5-83. Contents of log file YCH05_LOG

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

435

This concludes the second stage of the hands-on exercise: migrate vendor data using call transaction
method. The second stage of the hands-on exercise involved the creation of a log file on application server.

This also concludes the hands-on exercise: migrate vendor data using call transaction method.

Recapitulation—Hands-on Exercise II: Migrate Vendor Data Using
Call Transaction Method
This hands-on exercise also performed migration of vendor data using the call transaction method instead
of the batch input method. The program we executed for migration of vendor data using batch input method
could have been executed for migration of vendor data using call transaction method without any changes.
But we changed our specifications of the present hands-on exercise. We specified that

 1. the text data files reside on the application server

 2. a log file as a text file be created on the application server

All other specifications remained the same as in hands-on exercise I.
We implemented hands-on exercise II in two stages; the first stage implemented item (1). The second

stage was an extension to implement item (2).
The source data was created on the presentation server using a text editor and copied on the application

server with the transaction code USS_FAS.
A data flow diagram traced the flow of data when the data migration program would be run using the

call transaction method.
The implementation of (1) locating input text files on the application server and (2) creating a log file

on the application server involved the modification of the main as well as the include program BDCRECX1.
We copied the program (main) YCH05_XK01_PROGRAM_BI_TB_SC of the previous hands-on exercise into
YCH05_XK01_PROGRAM_CALL_TRAN. This became the main program for the current hands-on exercise.
We copied the include program BDCRECX1 into YCH05_BDCRECX1 and activated it. In the main program,
we changed the statement INCLUDE BDCRECX1 to INCLUDE YCH05_BDCRECX1.

The implementation of locating the input text files on the application server involved modifications
to the main program only. We modified the selection screen statements in the main program to input text
file names located on the application server. We modified the main program to fetch data from text files on
the application server into the internal tables—OPEN DATASET, READ DATASET, CLOSE DATASET, etc. We
activated the main program.

Figure 5-84. Execution of program YCH05_XK01_PROGRAM_CALL_TRAN—error session

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

436

We executed the program choosing the call transaction method. The execution of the program
produced an output that reported which vendors were created and which vendors were generating errors.
The program output was produced by the WRITE statements located in the subroutine BDC_TRANSACTION
of the include program YCH05_BDCRECX1.

As we had intentionally created an erroneous vendor in the input data, a session with erroneous data
was created which we viewed in transaction code SM35. We cross-verified the creation of non-erroneous
vendors in transaction code XK02. This concluded the first stage of implementation—locating the input text
files on the application server.

The second stage of implementation—create a log file on the application server—involved
modifications to both the main program and the include program. We decided that the log file will have
almost the same contents as the output being produced by the program when it is executed choosing the call
transaction method.

We incorporated TRANSFER statements following WRITE statements associated with the call
transaction method to write to the log file. The TRANSFER statements were incorporated in the subroutines
BDC_TRANSACTION and CLOSE_GROUP. Additional parameters were required to be received by these
subroutines.

Appropriate data declarations were created in the main program. The log file on the application server
is to be opened in output mode. Hence the main program contained the statements OPEN DATASET….. and
CLOSE DATASET….. statements. The subroutine invocation statements CALL BDC_TRANSACTION and
CALL CLOSE_GROUP in the main program had to be modified to pass additional parameters.

After carrying out the modifications to the main and include programs for the creation of log files, we
activated the programs.

New source data was created on the presentation server using a text editor and copied to the application
server with transaction code USS_FAS.

We executed the program choosing the call transaction method. The execution of the program
produced output which reported the vendors created successfully as well as the vendors generating errors.

As we had intentionally created an erroneous vendor in the input data, a session with erroneous data
was created which we viewed in transaction code SM35. We cross-verified the creation of non-erroneous
vendors in transaction code XK02. Finally, we displayed the log file using transaction code USS_FAS.
This concluded the second stage of hands-on exercise implementation—the creation of a log file on the
application server.

Batch Input vis-à-vis Call Transaction Methods
The batch input and the call transaction methods are referred to as classical methods for data migration.
If a BAPI method—create from data or IDoc type—is available for an entity, it should be the preferred mode
for the data migration of the entity.

Table 5-9 presents a comparison of the batch input and the call transaction methods. The comparison is
not comprehensive and lists only items related to our coverage in hands-on exercises I and II.

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

437

Conclusion
We commenced the chapter with a description of the requirement for importing data from non-SAP systems
into the SAP systems—scenarios for data import. We termed the non-SAP system a “legacy system,” the data
of the legacy system as “legacy data,” and the import of legacy data into the SAP systems as “data migration.”

Some commonly occurring issues and considerations associated with data migration were listed. A
universal issue is the support of different data types on different systems and certain data types supported on
one system and not supported on another. The character type or text-oriented type is supported universally.
We decided that all of the input data in our data migration exercises will be character type or text oriented.

I introduced the different data migration methods and workbenches available in the SAP system.
I detailed the concept of recording a transaction and the generation of an ABAP program from a

recorded transaction. As an illustration, we recorded transaction code FI01—create bank master. The
generated ABAP program from recording simulated the process of data entered and operations performed
on the screen. The generated ABAP program invoked the SAP-supplied include program BDCRECX1. The
include program BDCRECX1 was overviewed, especially its subroutines BDC_OPEN_GROUP, BDC_CLOSE_
GROUP, BDC_TRANSACTION, BDC_DYNPRO, BDC_FIELD, etc. I described the manner in which the
internal table BDCDATA is filled up.

The generated program from the recording of a specific transaction can be modified suitably to accept
data from text files residing either on the presentation server or the application server and migrate it to the
SAP system. So, a custom program can be created for migration of any data. The core of the custom program
is generated from the recording of the transaction.

Table 5-9. Batch Input vs. Call Transaction

batch input call transaction

There are two stages of processing: the first stage,
when input data is written to the session database
tables; the second stage when data is extracted from
the session database tables, validated, and written
to the SAP functional module database
tables—running a session, etc. Because of the two
stages, the processing time when compared to the
call transaction method will be more.

The input data is validated and written to the SAP
functional module database tables.
Because of the single processing stage, the
processing time when compared to the batch input
method will be less.

There is a built-in error trapping and recovery
mechanism in the running of a session—SM35 to
view the error log, run the erroneous transactions
again.

The error handling mechanism is not built-in and
has to be incorporated into the data migration
program by the developer.

If the data being migrated is large—tens of
thousands of entities—and the expected erroneous
data is high—3% or higher—then, between the two
classical data migration methods, the batch input is
to be preferred.

If the expected erroneous data is on the low side—
less than 3%—then, between the two classical data
migration methods, the call transaction is to be
preferred.

Multiple transactions can be recorded in one
session.

Only one transaction can be called with the ABAP
statement: CALL TRANSACTION….

The update mode is synchronous only. The update mode can be specified at runtime.

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

438

If you wish to write screen simulation ABAP statements, you will require technical information such
as the dynpro program name, screen number, field name, and so on. SAP provides the means to determine
the technical information on any screen. To determine a field name on a screen, position the cursor on the
screen field and press the function key F1. The Performance Assistant dialog box pops up. When you click the
Technical Information button of the Performance Assistant dialog box, all the technical information related to
screen including the field name is displayed.

After an exposure to the data migration tools, we proceeded to the first hands-on exercise: migrate
vendor data using the batch input method. The execution of the program using the batch input method
generates a session.

Initially, I described the specification and scope of the hands-on exercise. A vendor can consist of
multiple banks. I also described the maintenance of multiple rows on a screen and the related programming
to tackle multiple rows on a screen. The source data would reside on the presentation server. The source
data would consist of two text files. A list of fields that would assume values was prepared. Because our
primary focus was on the demonstration of deployment of data migration tools, I decided to assign values
to the all mandatory fields and very few non-mandatory fields. For the fields to be assigned values, we
determined which fields would be assigned constant values, which fields would be assigned values from text
files, which fields would be derived from values of other fields, etc.

A data flow diagram traced the flow of data when executing a program using the batch input method.
I listed the tasks to be carried out to perform the hands-on exercise. I described and implemented

each of the task listed. The data migration program was executed twice with two sets of data. The first time
data migration program was executed, we processed the session in the foreground. The second time data
migration program was executed, we processed the session in the background.

While performing the first hands-on exercise, I introduced a few transaction codes:

•	 SHDB—transaction recorder

•	 SM35—batch input sessions

•	 XK02—change vendor

We concluded the first hands-on exercise by tackling the issue when the number of banks for vendors
exceeds the number of visible rows in the table control area.

Our second hands-on exercise was to migrate vendor data using the call transaction method. The
program we created for the first hands-on exercise could very well have been used for migration of vendor
data using the call transaction method. But I decided to change the specifications of the second hands-
on exercise. I specified that (1) the input text files would reside on the application server instead of the
presentation server and (2) we would create a log file on the application server since no log is created with
the call transaction method by default. Except for these two features, the specifications of the second hands-
on exercise were identical to the specifications of the first hands-on exercise.

We made a copy of the program we had created for the first hands-on exercise and made modifications
in the copy to incorporate the features of our specifications. We incorporated the features in two stages.

In the first stage, we incorporated the feature of input text files residing on the application server into
the program. We created a new set of data on the presentation server and copied this created data to the
application server using transaction code USS_FAS. We executed the program using the call transaction
method. We cross-verified the migration of vendor data.

In the second stage of the hands-on exercise, we had to incorporate the feature of creating a log file
on the application server. We had to decide on the contents of the log file. When we execute the program
using the call transaction method, an output is produced which provides details of each vendor created
successfully/unsuccessfully. This output is produced by the WRITE statements in the subroutines BDC_
TRANSCTION and BDC_CLOSE of the include program BDCRECX1. We decided that we could include

Chapter 5 ■ Migration Using BatCh inpUt session and Call transaCtion Methods

439

the same information as was output with WRITE statements in our log file. This required the modification
of the program BDCRECX1. We made a copy of the program BDCRECX1 and carried out the requisite
modifications. We again created a new set of data on the presentation server and copied this created data to
the application server using transaction code USS_FAS. We executed the program using the call transaction
method. We cross-verified the migration of vendor data as well as the creation and contents of log file.

The program of the first hands-on exercise accepts input data from the presentation server and can be
executed using either the batch input or the call transaction method. If the program is executed using the
call transaction method, no log is produced.

The program of the second hands-on exercise accepts input data from the application serverand can
be executed using either the batch input or the call transaction method. If the program is executed using the
call transaction method, a log file is produced on the application server.

In Chapter 6, we will continue with the data migration hands-on exercises deploying LSMW.

http://dx.doi.org/10.1007/978-1-4842-3183-8_6

441© Sushil Markandeya 2017
S. Markandeya, Pro SAP Scripts, Smartforms, and Data Migration,
https://doi.org/10.1007/978-1-4842-3183-8_6

CHAPTER 6

Data Migration Using Legacy
System Migration Workbench
LSMW–I

In Chapter 5, we performed migration of external data into the SAP system using custom-created ABAP
programs, the core of these custom=created programs being generated by the system from the recording of
transactions. We, as developers, had complete access and control over the custom-created programs.

In this chapter and the next, for migration of external data into SAP system, we are shifting to the legacy
system migration workbench – LSMW. In the LSMW environment, a ready-to-use SAP supplied programs
can be deployed for migration of external data into the SAP system for a host of common business objects
like customers, vendors, materials, purchasing documents, billing documents, and so on.

In the LSMW environment, in addition to the ready-to-use SAP supplied programs, the feature of
recording of transactions (with constraints) is also available. Recording can be utilized in the LSMW
environment for migration of external data into the SAP system. But in the LSMW environment, you, as a
developer, do not have access to modifications to the program generated from the recording.

If your data migration requirements map to any of the SAP supplied programs inside the LSMW
environment, you can perform the migration of external data into the SAP system using the LSMW. If you
require recording of a transaction without the necessity of the developer’s access to the generated program,
you can use the transaction recording feature of LSMW to perform the migration of external data into the
SAP system. If your data migration requirements do not map to the SAP supplied programs inside the LSMW
environment, or if you require access and control over the generated program from recording, you have to
perforce resort to the data migration methods described in Chapter 5.

Depending on your requirements, you can choose the program to transfer external data into SAP
systems. Three categories or types of programs are available: (1) Standard Batch/Direct Input, (2) Business
Object (BAPI), and (3) IDoc (Intermediate Document).

Apart from these three types of programs, you can create and deploy custom data transfer using
transaction recording with no control, as a developer, over the generated program from the recording.

The three types of programs along with the recording option are termed Object Types.
In the LSMW environment, you create a series of configuration steps. Once the configuration steps are

created, you can execute the configured steps as you execute an ABAP program.
The first of the configuration step consists of the selection of one of the three program types—(1)

Standard Batch/Direct Input, (2) Business Object (BAPI), or (3) IDoc (Intermediate Document)—or,
alternative to the three program types, a recorded transaction. If data is being migrated using one of the
three program types, then, the first configuration step also involves the selection of a business object to
be migrated like customers, vendors, materials, purchasing documents, billing documents, and so on.

https://doi.org/10.1007/978-1-4842-3183-8_6
http://dx.doi.org/10.1007/978-1-4842-3183-8_5
http://dx.doi.org/10.1007/978-1-4842-3183-8_5

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

442

Once a program type and business object or recorded transaction has been specified, within the LSMW
environment, you can specify further configuration steps like the following:

•	 The specification of input structures.

•	 The layout of input structures—fields in the input structures.

•	 The mapping of input structures to destination structures.

•	 Specification of how the destination fields will assume values: assignment to input
fields, assignment to a constant value, deriving the destination fields from other
fields, and so on. This configuration step allows ABAP code.

•	 Specification of input text files.

•	 Assignment of input text files to input structures.

The configuration steps will be mostly created once, like a program. The configuration steps are
followed by execution steps:

•	 Read input text files data.

•	 Optionally, display the read data.

•	 Convert data. The convert data step involves the destination fields assuming values
as per the configuring step—specification of how the destination fields will assume
values.

•	 Optionally, display the converted data.

•	 Create session or create IDocs.

•	 Run direct input program or session or transfer IDocs.

If for a business object, the external data is to be migrated into the SAP system on a periodic basis, then
the execution steps are to be performed repeatedly.

The configuration steps together with the execution steps will be called the process steps.
In the LSMW, for a business object, from a single screen, a series of configuration steps are performed

mostly once. Then, from the same screen, a series of execution steps are performed every time external
data is required to be migrated into the SAP system for the business object. If requirements or scenario
does not need ABAP programming, the data migration configuration steps can be created by non-technical
personnel.

LSMW—Project Structure and an Overview of the Opening
Screen
You can navigate to the LSMW environment by using the transaction code LSMW. The opening screen of
LSMW will appear as shown in Figure 6-1.

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

443

The opening screen of LSMW has the Project Selection area as shown in Figure 6-1. The Project Selection
area prompts for Project, Subproject, and Object. The structure and nature are elaborated under the following
subheading: Project structure.

Project Structure
The Project, Subproject, and Object provide you with a hierarchical structure in which you can organize your
objects created in the LSMW environment as per your requirements.

The Project is the first level of the hierarchical structure. A Project can contain under it, any number of
Subprojects.

The Subproject is at the second level of the hierarchical structure. A Subproject can contain under it, any
number of Objects.

The Object is at the last level of the hierarchical structure. An Object will map to a business object
of which you want to migrate data, such as customer, vendor, material, purchasing document, billing
document, and so on.

Apart from the Subprojects under a Project and Objects under Subprojects, a Project can contain
optionally under it Recordings, Fixed Values, Translations, and User-Defined Routines. The Recordings,
Fixed Values, Translations, and User-Defined Routines can be used across all Objects in a Project

You can create a new Project, a new Subproject, and a new Object. You can create a new Subproject and
a new Object under an existing Project. You can create a new Object under an existing Project and Subproject.
You can retrieve an existing Project, Subproject, and Object.

As an illustration, we are presenting the proposed hierarchical structure of our hands-on exercises to be
performed in this chapter and Chapter 7. In the proposed hierarchical structure of our hands-on exercises,
we will create a Project named YCH06_DM. Under the Project YCH06_DM, we will locate two Subprojects:

 1. YCH06_VN—to migrate data of vendors

 2. YCH07_PO—to migrate data of purchase orders

Under the Subproject YCH06_VN, we will locate two Objects:

 1.1. YCH06_DI—to migrate data of vendors using the Standard Batch/Direct Input

 1.2. YCH06_RC—to migrate data of vendors using the Batch Input Recording

Under the Subproject YCH07_PO, we will locate two Objects:

 2.1. YCH07_IDOC—to migrate data of purchase orders using the IDoc (Intermediate
Document)

 2.2. YCH07_BAPI—to migrate data of purchase orders using the Business Object (BAPI)

Figure 6-1. LSMW—opening screen

http://dx.doi.org/10.1007/978-1-4842-3183-8_7

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

444

Figure 6-2 shows a diagrammatic representation of the proposed hierarchical structure of our hands-on
exercises.

We next present an overview of some of the application toolbar buttons and menu options available on
the opening screen of the LSMW environment.

LSMW Opening Screen Overview—Some Application Toolbar
Buttons and Menu Options
In the LSMW environment, the names of Projects, Subprojects, and Objects can start with an alphabet letter
(need not start with Y or Z) and the rest of the characters can be alphanumeric with embedded underscores
and hyphens, a maximum of 15 characters.

When you click the application toolbar button All Objects on the LSMW opening screen (Figure 6-1),
Projects, Subprojects, and Objects of all the users appear as a pop-up list and you can select from this list.

When you click the application toolbar button My Objects on the LSMW opening screen (Figure 6-1),
Projects, Subprojects, and Objects of the logged-in user appear as a pop-up list and you can select an item
from the list.

When you click the application toolbar button All Project Objects on the LSMW opening screen
(Figure 6-1), Projects, Subprojects, and Objects of the specified values/pattern/all (of all users) appear in a
tree form with modes, subnodes, etc.

We clicked the application toolbar button All Project Objects without any values in the three fields
Projects, Subprojects, and Objects (all Projects of all users). A screen like the one in Figure 6-3 appeared.

Figure 6-2. LSMW environment—hierarchical structure of Projects, Subprojects, and Objects

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

445

All the Projects of all the users appear in tree form in Figure 6-3. The node of the Project BC420-00 has
been fully expanded in Figure 6-3. You can perform the operations of create, delete, copy, and rename on
any of the Projects and the objects under a Project.

In an IDES server, the BC420…..series of Projects meant for training are preloaded.
This was just to provide you with a preview of the All Project Objects screen.
You can maintain project documentation by clicking the button Project Documentation on the

application toolbar.
Figure 6-4 shows the suboptions under the menu options Goto, Extras, and Settings.

Figure 6-3. LSMW Environment—All Project Objects screen

Figure 6-4. LSMW Environment—menu options: Goto, Extras, and Settings

When you select the menu option Goto ➤ Administration (Figure 6-4), all the Projects, Subprojects,
and Objects of all users appear in a tree form with modes, subnodes, etc. You can perform the operations of
create, delete, copy, and rename on any of the Projects and the objects under a Project. This menu option is
similar to the application toolbar button All Project Objects except that you cannot retrieve specific value/
pattern Projects.

When you select the menu option Goto ➤ Recordings (Figure 6-4) you can perform recordings of
transactions. We will perform a recording of a transaction in hands-on exercise II in this chapter.

When you select the menu option Extras ➤ Generate Change Request (Figure 6-4) you can create a
change request for the entire project for transportation to another system.

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

446

When you select the menu option Extras ➤ Export Project (Figure 6-4) you can download a Project or
its specific constituents as a file on the presentation server. We will demonstrate the export of a Project or its
specific constituents at the end of this chapter and Chapter 7.

When you select the menu option Extras ➤ Import Project (Figure 6-4) you can upload a previously
downloaded Project or Project constituents from a file on the presentation server. We will demonstrate the
import of a Project or Project constituents at the end of this chapter and Chapter 7.

When you select the menu option Settings ➤ IDoc Inbound Processing, you can perform settings of
IDoc inbound processing. We will perform settings of IDoc inbound processing in hands-on exercise III in
Chapter 7.

A Brief on the LSMW Hands-on Exercises
We will be performing four hands-on exercises in this chapter and Chapter 7. We will be performing the
four hands-on exercises employing each of the Object Types in the LSMW environment: (1) Standard Batch/
Direct Input, (2) Batch Input Recording, (3) Business Object (BAPI), and (4) IDoc (Intermediate Document).

The four hands-on exercises will involve transfer of vendor data and purchase order data. Two hands-
on exercises will transfer vendor data using different Object Types. Two other hands-on exercises will transfer
purchase order data using different Object Types.

We will perform the first hands-on exercise involving vendor data employing the Object Type: Standard
Batch/Direct Input. The scope and specifications of this hands-on exercise will be for the most part identical
to those of the hands-on exercises we performed in Chapter 5.

We will perform the second hands-on exercise involving vendor data employing the Object Type:
Batch Input Recording. The scope and specifications of this hands-on exercise will also be for the most part
identical to those of the hands-on exercises we performed in Chapter 5.

The first and the second hands-on exercises will serve the purpose of comparing data migration
deploying LSMW vis-à-vis data migration deploying a custom program created from a generated program of
transaction recording.

We will perform the third hands-on exercise involving purchase order data employing the Object Type:
IDoc (Intermediate Document). Finally, we will perform the fourth hands-on exercise involving purchase
order data employing the Object Type: Business Object (BAPI).

In the performance of the four hands-on exercises, we will have employed most of the features of LSMW.

Hands-on Exercise I—Migration of Vendor Data Using
Standard Batch/Direct Input Method
We will transfer the data of vendors residing in input text files on the application server into the SAP
functional module database tables deploying the Standard Batch/Direct Input method of LSMW. We will
perform the data transfer with representative data of a three or four vendors. We will perform the data
transfer for a few fields—all of the mandatory fields and very few non-mandatory fields. Of the fields
designated for data transfer, most of the fields will be assigned the same constant value for all the vendors
being transferred. We will locate in the input text files only the minimal data that varies from vendor to
vendor. We will locate the input text data in two files. The first of the input files designated the main data will
contain values for the following fields:

•	 LIFNR Vendor/Vendor Number

•	 NAME1 Name

•	 STRAS Street

•	 ORT01 City

•	 PSTLZ Postal Code

http://dx.doi.org/10.1007/978-1-4842-3183-8_7
http://dx.doi.org/10.1007/978-1-4842-3183-8_7
http://dx.doi.org/10.1007/978-1-4842-3183-8_7
http://dx.doi.org/10.1007/978-1-4842-3183-8_7
http://dx.doi.org/10.1007/978-1-4842-3183-8_5
http://dx.doi.org/10.1007/978-1-4842-3183-8_5

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

447

The second of the input files designated the bank data, with a provision for multiple banks for a vendor,
will contain values for the following fields:

•	 LIFNR Vendor/Vendor Number

•	 BANKS Country Key

•	 BANKL Bank Key

•	 BANKN Bank Account

The vendor number in the bank file is to connect the two files—which banks belong to which vendor.
The Standard Batch/Direct Input method of LSMW for vendors creates a batch input session as in

hands-on exercise I in Chapter 5. The data is stored in the queue database tables when a batch input session
is created. The created batch input session has to be executed subsequently, when data is extracted from
queue database tables and transferred to the functional module database tables.

The Standard Batch/Direct Input method of LSMW for some business object-like materials does not
create a batch input session but directly transfers data to the application database tables as in hands-on
exercise II in Chapter 5.

All the foregoing descriptions must sound familiar. In fact, they are a brief recapitulation of specification
and scope from Chapter 5. After all, we are performing the same task—transferring data of vendors from text
files to the SAP systems. Only our methodology of transfer has changed from custom programs to LSMW.

A detailed description of specification, scope, and LSMW process steps follows.

Specification and Scope
The hands-on exercise will transfer data from text files into the vendor master functional module database tables
using the Standard Batch/Direct input method of LSMW. It is assumed that input data in the form of text files is in
the required form and conversions have been effected. The input data in the form of text files will reside on and be
accessed from the application server. The input will consist of two text files: (1) main data and (2) bank data. The
two text files will be related through the vendor number—which of the bank(s) belongs to which vendor. We will
maintain the text data with notepad editor on the presentation server and copy the text files from the presentation
server to the application server using the transaction code USS_FAS, the same way we did it in chapter 5.

Other specifications of this hands-on exercise are identical to those of hands-on exercise I in Chapter 5.
We will assume that all the vendors being migrated have the same constant values for each of the

following 11 fields (see Table 6-1, reproduced from Table 5-3 in Chapter 5):

Table 6-1. Fields with Constant Values

Srl. No. Field Name Field Description Value

1 BUKRS Company Code 0001

2 EKORG Purchasing Organization 0001

3 KTOKK Account Group 0001

4 ANRED Title Company

5 LAND1 Country Key IN

6 SPRAS Language Key EN

7 AKONT Reconciliation Account 160000

8 FDGRV Cash Management Group A1

9 ZTERM Payment Terms 0001

10 MAHNA Dunning Procedure 0001

11 WAERS Order Currency INR

http://dx.doi.org/10.1007/978-1-4842-3183-8_5
http://dx.doi.org/10.1007/978-1-4842-3183-8_5
http://dx.doi.org/10.1007/978-1-4842-3183-8_5
http://dx.doi.org/10.1007/978-1-4842-3183-8_5
http://dx.doi.org/10.1007/978-1-4842-3183-8_5
http://dx.doi.org/10.1007/978-1-4842-3183-8_5

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

448

 ■ Caution before you adopt these values, check the validity of these values on your system. if you are
operating on an iDes server and logged into client 800, the above values should be all right.

The values for the following five fields will originate from the text file main data (see Table 6-2,
reproduced from Table 5-4 in Chapter 5):

The values for the following three fields will originate from the text file bank data (see Table 6-3,
reproduced from Table 5-5 in Chapter 5):

Recall, the field LIFNR in the bank data is for connecting the bank data with the main data, which banks
belong to which vendor?

We will pick the first word of the field NAME1 (vendor name) and assign it to the field SORTL—SPLIT
statement, etc.

There will be a total of 20 fields which will assume values—11 fields from Table 6-1, 5 fields from
Table 6-2, 3 fields from Table 6-3, and 1 field, SORTL, being derived from another field, NAME1. (Refer to
Table 5-2 in Chapter 5.)

Having described the specifications and scope of the hands-on exercise, we will proceed to the creation
of a Project, a Subproject, and an Object. Following the creation of a Project, a Subproject, and an Object we
will create and execute LSMW process steps.

Create Project, Subproject, and Object
To create a Project, a Subproject, and an Object, we navigated to the opening screen of transaction code
LSMW, entered Project name as YCH06_DM, entered Subproject name as YCH06_VN, and entered Object
name as YCH06_DI as shown in Figure 6-5.

Table 6-2. Fields with Values Originating from Text File Main Data

Srl. No. Field Name Field Description

1 LIFNR Vendor (Code or Number)

2 NAME1 Vendor Name

3 STRAS Street

4 ORT01 City

5 PSTLZ Postal Code

Table 6-3. Fields with Values Originating from Text File Bank Data

Srl. No. Field Name Field Description

LIFNR Vendor (To relate with the Main Data)

1 BANKS Bank Country Key

2 BANKL Bank Key

3 BANKN Bank Account

http://dx.doi.org/10.1007/978-1-4842-3183-8_5
http://dx.doi.org/10.1007/978-1-4842-3183-8_5
http://dx.doi.org/10.1007/978-1-4842-3183-8_5

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

449

We clicked the Create button on the application toolbar. The system successively popped up dialog
boxes for descriptions of Project, Subproject, and Object as shown in Figures 6-6, 6-7, and 6-8.

Figure 6-5. LSMW—Create Project, Subproject, and Object

Figure 6-6. LSMW—description for Project

Figure 6-7. LSMW—description for Subproject

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

450

After the entry of descriptions of Project, Subproject, and Object, the screen will look like that in
Figure 6-9.

It is to be noted that the creation of Project, Subproject, and Object does not involve assignment to
a package, unlike all workbench objects. The Project, Subproject, and Object have no relationship with a
client—they are client independent.

After the initial creation of the Project, Subproject, and Object, we have to navigate to the process
steps (consisting of configuration steps and execution steps). To navigate to the process steps, we clicked
the Execute button on the application toolbar. The screen with the process steps as shown on Figure 6-10
appeared.

Figure 6-9. LSMW—Project, Subproject, and Object created

Figure 6-8. LSMW—description for Object

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

451

The 20 numbered process steps appearing in Figure 6-10 apply to all Object Types: (1) Standard Batch/
Direct Input, (2) Batch Input Recording, (3) Business Object (BAPI), and (4) IDoc (Intermediate Document).
When you choose a specific Object Type in process step 1, the number of process steps will be reduced as
applicable to the specific selected Object Type.

We will execute the process steps one after another. We will start off by executing process step 1 by
selecting the Radio button and clicking the Execute button.

Process Step 1—Maintain Object Attributes
When you navigate to any of the process step screens, the screen, by default, is in display mode. You use the
Display/Change toggle button on the application toolbar to enable changes on the screen.

On the process step 1 screen, in the Attributes area, we entered and specified the following:

•	 Suitable description already entered during creation of the Object.

•	 The Owner as the logged-in user, which is the default. We can assign any other valid
user name.

•	 The data transfer Radio button: Once Only.

The Radio button nomenclature: Once Only is a trifle misleading, it does not
mean that if you enable this Radio button, you can execute the LSMW process
steps only once. You can, with this Radio button enabled, execute the process
steps any number of times. Normally, you would repeat the process steps every
time you want to mass transfer new data of an entity or a business object. When
you want to mass transfer new data of an entity or a business object repeatedly,
you would execute all the process steps the first time around. From second time
onward, you would only execute the process step starting from process step
9—Read Data.

If you enable the Periodic Radio button option, the LSMW system generates an
extra process step appearing as the last process step.

Figure 6-10. LSMW—process steps before executing process step 1

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

452

The last process step—Frame Program (/SAPDMC/SAP_LSMW_INTERFACE)—is
usually executed within the LSMW to specify runtime parameters for the frame
program to be saved as a variant(s). The frame program can then be scheduled to
run periodically in the background (from outside the LSMW environment) with a
specific saved variant. The frame program expects input data on the application
server only. The frame program executes the process steps one by one,
commencing from the process step 9—Read Data. We are not demonstrating the
enablement of the Periodic Radio button the creation and saving of variant(s),
and a scheduled background execution of the frame program.

•	 The file names you are going to specify are not System Specific—check box disabled.
With the System Specific option check box enabled, separate file names for separate
SAP systems can be specified in process step 7—Specify Files

Figure 6-11 shows the Attributes area of the screen, with our entries and specifications.

In the Object Type and Import Method area of the process step 1 screen, you select Object Type (Radio
button) and Object (from a function key F4 list). We selected the Object Type as Standard Batch/Direct Input
and popped up the Object list. Figure 6-12 illustrates.

Figure 6-11. Process step 1: Attributes area

Figure 6-12. Process step 1—Object Type and Import Method area: Standard Batch/Direct Input Object list

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

453

We selected from the Object list the following entry: 0040—vendor master. We selected the method as
001 standard. Figure 6-13 shows the screen with these assignments.

When we saved and exited the screen of process step 1, the process steps screen looked like that in
Figure 6-14.

You can observe that the number of process steps stand reduced from 20 earlier to 14 after the
execution of process step 1.

Process Step 2—Maintain Source Structures
We navigated to the screen of process step 2. On the screen of process step 2, you specify the input or source
structures. On the screen of process step 2, we first switched to change mode. Figure 6-15 shows the screen
of process step 2.

Figure 6-13. Process step 1: Object Type and Import Method area

Figure 6-14. LSMW—Process steps after executing process step 1

Figure 6-15. Process step 2—Maintain Source Structure

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

454

In our proposed input, we are locating data in two text files—main and bank—which will map to two
source structures. The bank structure is subservient to the main structure, since one vendor can have more
than one bank.

To create the source structure main, we clicked the Create button. A dialog box to enter the name and
description of the structure popped up. Figure 6-16 shows the dialog box with entered values.

Next, we positioned the cursor on the MAIN_STRU and clicked the Create button. A dialog box as
shown in Figure 6-17 appeared.

As the structure bank is to be under the MAIN_STRU structure, we selected the Radio button Lower
Level. Figure 6-18 shows the dialog box with entered values of name and description of the bank structure.

Figure 6-16. Process step 2—Create Source Structure: MAIN_STRU

Figure 6-17. Process step 2—Create Source Structure: under MAIN_STRU

Figure 6-18. Process step 2—Create Source Structure: BANK_STRU under MAIN_STRU

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

455

Figure 6-19 shows the final source structures.

We saved and returned to the screen with the process steps.

Process Step 3—Maintain Source Fields
We executed process step 3. Process step 3 enables you to insert fields into the source structures. We
switched the screen to change mode. We will, in the first stage, insert fields into source structure MAIN_
STRU. To insert fields into source structure MAIN_STRU, we positioned the cursor on the MAIN_STRU and
clicked the Create button. A screen prompting for field name, field description, field length, and field type
appeared. We entered the field name as LIFNR, a suitable field description, field length as 10, and field type
as C. Figure 6-20 shows the screen with entered values.

Figure 6-19. Process step 2—Create Source Structure: BANK_STRU under MAIN_STRU created

Figure 6-20. Process step 3—Create Source Field: LIFNR under MAIN_STRU

We could have used a different field name, but LIFNR was convenient and it is preferable to use SAP
database field names. We clicked the Continue button on the dialog box.

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

456

Identifying Field Content is applicable when you locate data of more than one structure in an input file.
You enter the name of the structure in this field.

If you enable the check box Selection Parameter for “Import/Convert Data,” the SELECT-OPTIONS
prompt of the field will appear on the opening screens of importing and converting data—process steps 9
and 11.

To continue creating fields, we positioned the cursor on the field LIFNR, again clicked the Create button
on the application toolbar, and filled the popped-up dialog box with the field NAME1 as shown in Figure 6-21:

In a similar manner, we inserted the three fields STRAS, ORT01, and PSTLZ into the source structure
MAIN_STRU. Figure 6-21 shows the source structure MAIN_STRU with the five inserted fields: LIFNR,
NAME1, STRAS, ORT01, and PSTLZ.

Figure 6-21. Process step 3—Create Source Field: NAME1 under MAIN_STRU

Figure 6-22. Process step 3—Create Source Field: all fields under MAIN_STRU created

The order of the fields in the source structure must be identical to the order in which data is located in
the text files. The lengths of fields specified in the source structure must match the length of data in text files.
We are using text files with one line for one vendor, with no field separators, and so on.

For each line in the main text file, the first 10 characters are designated for LIFNR, the next 35 characters
are designated for NAME1, the next 35 are designated for STRAS, the next 35 are designated for ORT01, and
the rest of the characters in the line (maximum of 10) are designated for PSTLZ.

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

457

For each line in the bank text file, the first 10 characters are designated for LIFNR, the next 3 characters
are designated for BANKS, the next 15 are designated for BANKL, and the rest of the characters in the line
(maximum of 18) are designated for BANKN.

The layout and the mode of text files are same as those we used in the hands-on exercises in Chapter 5.
We inserted the fields LIFNR, BANKS, BANKL, and BANKN into the source structure BANK_STRU.

Figure 6-23 shows all the fields in the source structures MAIN_STRU and BANK_STRU.

We saved and returned to the process steps screen.

Process Step 4—Maintain Structure Relations
We executed process step 4 and switched the screen to change mode. In process step 4, you relate the
destination structures to the source structures. In Figure 6-24, the destination structures appear on the left
and source structure assigned to the destination structures appear on the extreme right.

Figure 6-23. Process step 3—Create Source Field: all fields under MAIN_STRU and BANK_STRU

Figure 6-24. Process step 4—Maintain Structure Relations

http://dx.doi.org/10.1007/978-1-4842-3183-8_5

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

458

First, we will focus on the organization of destination structures. At the very top of the destination
structures tree is the super structure BGR00 marked in Figure 6-24. The structure BLF00 is located under the
super structure BGR00, also marked in Figure 6-24. The structure BLF00 has fields originating from multiple
database tables corresponding to the opening screen of transaction code XK01. Next to the structure BLF00
are located the database table structures BLFA1, BLFB1, BLFBK, BLFB5, BLFM1, and so on. These database
table structures are also marked in Figure 6-24. The database table structures LFA1, LFB1, etc., are renamed
with the prefix B in the destination structures’ organization.

The assignment of source structures to the destination structures is related to the next process step
(i.e., process step 5). In process step 5, you assign values to fields. Recall, as per the scope and specifications,
we are assigning values only to 20 fields (refer to Tables 6-1, 6-2, 6-3, etc.) The 20 fields assuming values
originate from the five database tables: LFA1, LFB1, LFBK, LFB5, and LFM1 (refer to Table 5-2 in Chapter 5)

In process step 5, only the fields of those destination structures appear which have been assigned a
source structure in process step 4. To illustrate this point, as per our specifications, we have to assign a
constant value (0001) to the field dunning procedure—MAHNA from the database table LFB5. To be able
to implement this in process step 5, we should assign the destination structure BLFB5 any of the source
structures: MAIN_STRU or BANK_STRU. It does not matter which source structure you assign if the assigned
values are not originating from the source field. If the assigned values are originating from the source
field, the appropriate source structure must be assigned to the destination structure. You must assign
source structure MAIN_STRU to the destination structure BLFA1 and source structure BANK_STRU to the
destination structure BLFBK.

The 20 fields to which we propose to assign values originate from the five database tables: LFA1, LFB1,
LFBK, LFB5, and LFM1. Thus we have made the assignments to destination structures as per Table 6-4.

Table 6-4. Source Structure Assignment to Destination Structures

Srl. No. Destination Structure Source Structure Remarks

1 BGR00 MAIN_STRU Super Structure

2 BLF00 MAIN_STRU Structure with Fields from Multiple
Database Tables

3 BLFA1 MAIN_STRU Database Table Structure

4 BLFB1 MAIN_STRU Database Table Structure

5 BLFBK BANK_STRU Database Table Structure

6 BLFB5 MAIN_STRU Database Table Structure

7 BLFM1 MAIN_STRU Database Table Structure

The super structures BGR00 has also been assigned a source structure. In the absence of this
assignment of source structure to the super structure, no fields will appear for assignment of values in
process step 5.

Figure 6-24 shows the assignment of source structures to destination structures as per Table 6-4.
This completes process step 4. We saved and returned to the process steps screen.

Process Step 5—Maintain Field Mapping and Conversion Rules
From the screen of process steps, we executed process step 5 and switched the screen to change mode.

http://dx.doi.org/10.1007/978-1-4842-3183-8_5

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

459

In process step 5, you assign values to the destination fields. The destination fields can be assigned
constants and fields of source structure, derived from other fields, and so on. Interfaces are available to
make assignments. Whatever assignments made through interfaces will result in the generation of ABAP
assignment statements by the LSMW system. Process step 5 is just one of the two areas in the LSMW
environment where you can locate ABAP statements. Figure 6-25 shows the screen of process step 5 with tree
nodes expanded.

At the head of the tree is the node of the super structure BGR00. Under the superstructure BGR00,
the constituent structures BLF00, BLFA1, and so on appear with their fields. The first structure, BLF00,
corresponds to the opening screen of transaction code XK01, except that it has one extra field. The extra field
is the very first field, TCODE—transaction code. You have to assign the value XK01 to this field.

Let us go about assigning values to destination fields starting with BLF00-TCODE. In Figure 6-26, you
can observe the application toolbar buttons available to perform assignments to destination fields. Two
of application toolbar buttons we will employ most frequently, Source Field and Constant, are marked in
Figure 6-26.

Figure 6-25. Process step 5—Maintain Field Mapping and Conversion Rules

Figure 6-26. Process step 5—value for BLF00-TCODE

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

460

To assign the literal or constant 'XK01' to the destination field BLF00-TCODE, we first positioned the
cursor on the destination field BLF00-TCODE and then clicked the application toolbar button Constant. A
dialog box popped up prompting for the constant value. We entered the constant value XK01 as shown in
Figure 6-26.

We clicked the Continue button on the popped-up dialog box.
Next, we will make an assignment to the destination field BLF00-LIFNR. The value of the destination

field BLF00-LIFNR originates from source field MAIN_STRU-LIFNR. We positioned the cursor on the
destination field BLF00-LIFNR and then clicked the application toolbar button Source Field. A selection list
popped up listing all the fields of the source structure MAIN_STRU. We selected the field LIFNR from the
selection list as shown in Figure 6-27.

The rest of the destination fields in the structure BLF00—BUKRS, EKORG, and KTOKK—have to be
assigned constant values as per Table 6-1. We used the same procedure we used for the destination field
BLF00-TCODE to assign values to the destination fields BLF00-BUKRS, BLF00-EKORG, and BLF00-KTOKK.

The screen after assignment to all the destination fields of structure BLF00 will look like that in
Figure 6-28.

Figure 6-27. Process step 5—BLF00-LIFNR: Assign Source Field

Figure 6-28. Process step 5—assignment to fields of structure BLF00

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

461

As you can observe in Figure 6-28, ABAP assignment statements have been generated from the
assignments we made through the application toolbar buttons Source Field and Constant:

BLF00-TCODE = 'XK01'.
BLF00-LIFNR = MAIN_STRU-LIFNR.
.....

If you double-click any of these assignments on the Field Mapping and Conversion Rules screen, you
will navigate to the ABAP line editor screen (not the ABAP text editor). You could have manually entered the
ABAP assignment statements in the ABAP line editor by clicking the application toolbar button Rule and
selecting ABAP Code from the list of options.

In the manner in which we assigned values to the destination fields of structure BLF00, we assigned
values to the designated destination fields of the structure BLFA1. The screen after assignment to all the
designated destination fields of structure BLFA1 will look like that in Figures 6-29 and 6-30.

Figure 6-29. Process step 5—assignment to fields of structure BLFA1

Figure 6-30. Process step 5—assignment to fields of structure BLFA1—continued

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

462

We have not assigned value to the designated destination field SORTL in the structure BLFA1. The value
of destination field BLFA1-SORTL is to be derived as the first word from the destination field BLFA1-NAME1.
We will implement the derivation of the field in process step 6. After performing process step 6, we will
return to process step 5 and make an assignment to destination field BLFA1-SORTL.

We assigned values to the designated destination fields of the structure BLFB1. The screen after
assignment to all the designated destination fields of structure BLFB1 will look like that in Figure 6-31.

We deliberately assigned an invalid value 0000016000 instead of the valid value 0000160000 to the
destination field BLFB1-AKONT to highlight the effect of the assignment of invalid values to destination
fields (refer to Table 6-1).

Whenever a destination field is a foreign key field, function key F4 facility is expected when a constant is
to be assigned to the destination field. The function key F4 facility is not always available when a constant is
to be assigned to a destination field that is also a foreign key field.

We assigned values to the designated destination fields of the structure BLFBK. The screen after
assignment to all the designated destination fields of structure BLFBK will look like that in Figure 6-32.

We assigned values to the designated destination fields of the structures BLFB5 and BLFM1. The screen
after assignment to all the designated destination fields of structures BLFB5 and BLFM1will look like that in
Figure 6-33.

Figure 6-31. Process step 5—assignment to fields of structure BLFB1

Figure 6-32. Process step 5—assignment to fields of structure BLFBK

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

463

We performed a validity check ctrl+F2 or sixth button from the left on the application toolbar. We saved
the changes and returned to the process steps screen.

Process step 5 is not yet complete. The destination field BFA1-SORTL is still to be assigned a value. The
destination field BFA1-SORTL will be assigned a value by invoking a User-Defined Routine to be created
in process step 6. After performing process step 6, we will return to process step 5 and assign value to the
destination field BFA1-SORTL, thereby completing process step 5.

Process Step 6—Maintain Fixed Values, Translations, and
User-Defined Routines
Process step 6 is optional. If you do not have Fixed Values, Translations, and User-Defined Routines to be
created for the Project, you can skip process step 6.

The Fixed Values, Translations, and User-Defined Routines, together termed “Reusable Rules,” are
located under a Project.

Whatever Reusable Rules you create are available for use across all the Objects in the Project.
The Fixed Values are akin to definitions of constants in an ABAP program. The defined Fixed Values can

be accessed in all the Objects of a Project.
The Translations transform input strings to output strings on 1:1 translation basis and/or interval

translation basis. The defined Translations can be invoked from all the Objects of a Project.
The subroutines defined under User-Defined Routines can be invoked from all the Objects of a Project.
We are creating a User-Defined Routine which will derive the value of the destination field BLFA1-

SORTL. The User-Defined Routine to be created will receive one input parameter as the field BLFA1-NAME1.
It will extract the first word from the input parameter BLFA1-NAME1 and return the extracted first word of
BLFA1-NAME1 in the output parameter BLFA1-SORTL.

Though this proposed User-Defined Routine appears a little trivial, it serves the purpose of
demonstration. So let us proceed to the creation of the proposed User-Defined Routine.

From the screen of process steps, we executed process step 6 and switched the screen to change mode.
A screen like the one shown in Figure 6-34 appeared.

Figure 6-33. Process step 5—assignment to fields of structure BLFB5 and BLFM1

Figure 6-34. Process step 6—Maintain Fixed Values, Translations, and User-Defined Routines

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

464

We positioned the cursor on the node User-Defined Routine and clicked the Create button. A dialog box
prompting for input of User-Defined Routine name and description appeared. We entered the name of the
User-Defined Routine as GET_SORTL and a suitable description. Figure 6-35 shows the dialog box with the
entered values.

When we clicked the Continue button, another dialog box appeared prompting for the number of input
and output parameters. Figure 6-36 shows the dialog box with the entered values of the number of input and
output parameters.

When we clicked the Continue button, the tree with the User-Defined Routine node looked like the
screen in Figure 6-37.

Figure 6-35. Process step 6—Create User-Defined Routines

Figure 6-36. Process step 6—provide number of parameters to User-Defined Routine

Figure 6-37. Process step 6—User-Defined Routine GET_SORTL definition

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

465

We double-clicked the GET_SORTL node and the ABAP line editor with subroutine template code
appeared.

form ur_GET_SORTL
 using p_in
 changing p_out.
* ...
endform.

The LSMW system has appended the prefix ur_ to the node name GET_SORTL for the name of the
subroutine. When invoking the subroutine, we must use the name: ur_GET_SORTL. You can change the
formal parameter names p_in and p_out if you so desire. We added the following lines to the template code:

DATA BUF TYPE STRING.
SPLIT p_in AT ' ' INTO p_out BUF.

Figure 6-38 shows the subroutine with added lines to the original template lines.

We saved the ABAP source lines and performed a syntax check.
This completes the creation of the User-Defined Routine UR_GET_SORTL to derive the destination field

BLFA1-SORTL.
We navigated back to the process steps screen.

Process Step 5—Revisited
From the screen of process steps, we executed process step 5 and switched the screen to change mode.

In this revisit of process step 5, we want to assign value to the destination field BLFA1-SORTL by
invoking User-Defined Routine UR_GET_SORTL. To invoke User-Defined Routine UR_GET_SORTL, we
positioned the cursor on the destination field BLFA1-SORTL and clicked the application toolbar button Rule.
A dialog box to select a rule appeared as shown in Figure 6-39.

Figure 6-38. Process step 6—User-Defined Routine UR_GET_SORTL code

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

466

We selected the rule ABAP Code (fourth Radio button from the bottom) on the dialog box and clicked
the Continue button. The screen of the ABAP line editor appeared. We entered the ABAP statement to invoke
User-Defined Routine UR_GET_SORTL as shown in Figure 6-40.

We saved and performed the syntax check of ABAP source lines. We exited the ABAP line editor and
navigated back to the screen of process step 5. On the screen of process step 5, we performed the validity
check and saved the changes to the screen of process step 5.

We could have located the following two ABAP statements:

DATA BUF TYPE STRING.
SPLIT BLFA1-NAME1 AT ' ' INTO BLFA1-SORTL BUF.

In place of the subroutine we invoked statement PERFORM UR_GET_SORTL…..saving ourselves the
effort of defining a User-Defined Routine. The objective was to demonstrate the definition of User-Defined
Routine.

In the dialog box of Figure 6-39, we could have selected the third rule from the bottom User-Defined
Routine (Reusable) and generated the ABAP code to invoke User-Defined Routine UR_GET_SORTL.

Figure 6-39. Process step 5—create code to invoke User-Defined Routine UR_GET_SORTL

Figure 6-40. Process step 5—code to invoke User-Defined Routine UR_GET_SORTL

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

467

We could have double-clicked the destination field BLFA1-SORTL and navigated to the ABAP line editor
screen instead of clicking the application toolbar button Rule, etc.

These were alternative modes to generate or create ABAP program lines for the invocation of User-Defined
Routine UR_GET_SORTL.

Now that we assigned value to the field BLFA1-SORTL, process step 5 is concluded. We navigated back
to the process steps screen.

Process Step 7—Specify Files
From the screen of process steps, we executed the process step 7 and switched the screen to change mode.

In process step 7, we specify the input text files. You can specify input text files on the presentation
server (PC—Frontend) and the application server. As per our specifications, we are locating the two input
text files on the application server.

The initial screen to specify input text files appears as shown in Figure 6-41.

Figure 6-41. Process step 7—specify files

To specify input text files, we positioned the cursor on the node Legacy Data on the R/3 Server and
clicked the Create button. A dialog box as shown in Figure 6-42 appeared.

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

468

We entered File as YCH05_MAIN_DATA, a suitable description. If the input text files are located on
the presentation server, function key F4 facility is available to make a file selection from a dialog box listing
folders and files on the presentation server. If the input text files are located on the application server,
function key F4 facility is unavailable; you have to manually enter the file name and so must take care to do
so correctly.

The options for the remaining entries on the dialog box of Figure 6-42 are self-explanatory. For the
remaining, the defaults will serve our purpose. We clicked the Continue button on the dialog box of
Figure 6-42.

In a similar manner, we specified the second of our input text files, YCH05_BANK_DATA. After the
specification of the two input text files, the screen will look like that in Figure 6-43.

Figure 6-42. Process step 7—Specify file YCH05_MAIN_DATA

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

469

We saved the changes on the screen of process step 7.
In Figure 6-43, you can observe the node Imported Data. Under the node Imported Data is a file whose

name is a concatenation of the names of Project, Subproject, and Object with embedded underscores and
ending with the following postfix: .lsmw.read. The number of characters in the file name must not exceed
45 characters. If the number of characters exceeds 45 characters, you must rename the file to ensure that the
number of characters in the file name <= 45 characters. The LSMW system retrieves and stores the data of all
the input text files together in this file.

In Figure 6-43, you can also observe the node Converted Data. Under the node Converted Data is a
file whose name is again a concatenation of the names of Project, Subproject, and Object with embedded
underscores and ending with the following postfix: .lsmw.conv. The number of characters in the file name
must not exceed 45 characters. If the number of characters in the file name exceeds 45 characters, rename
the file to ensure that the number of characters in the file name <= 45 characters. The LSMW system stores
all the data to be migrated—that is, all the data assigned values as per specifications of process step 5 in
this file.

In Figure 6-41, at the very bottom, is a node with the label Wildcard Value. You can enter wildcard file
values, patterns in this field. By default, by specifying explicit file names in this process step, you are fixing
the file names (input files, .lsmw.read file, and .lsmw.conv) and they cannot be specified or changed at
runtime. If you enter values in the field Wildcard Value, input prompts will appear, as follows:

•	 In process step 9 (Read Data) for input files and .lsmw.read file

•	 In process step 11 (Convert Data) for .lsmw.read and .lsmw.conv files

This feature enables multiple users to use the same LSMW Object. Each user of the LSMW Object can
operate his or her own input files, .lsmw.read file and .lsmw.conv file, and not overwrite on others, .lsmw.
read file and .lsmw.conv file.

This concludes process step 7. We navigated back to the process steps screen.

Process Step 8—Assign Files
From the screen of process steps, we executed process step 8 and switched the screen to change mode.

In process step 8, we co-relate or assign the input text files specified in process step 7 to the source
structure defined in process step 2.

Figure 6-43. Process step 7—Files YCH05_MAIN_DATA, YCH05_BANK_DATA specified

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

470

To assign input text files to source structures, we positioned the cursor on the node MAIN_STRU and
clicked the button Assignment on the application toolbar. A list of the input files specified in process step 7
appeared as shown in Figure 6-44.

We selected the input file YCH05_MAIN_DATA from the list.
In a similar manner, we assigned the input file YCH05_BANK_DATA to the source structure BANK_

STRU. Figure 6-45 shows the screen after the assignment of two input files to the two source structures.

We saved the changes on the screen of process step 8.
This concludes process step 8. We navigated back to the process steps screen.

Data Creation on Presentation Server, Copy to Application Server
I am going to digress a bit from the process steps of LSMW to describe the creation of input text files on the
presentation server, copying the created input text files to the application server. This procedure has already
been described in hands-on exercise II in Chapter 5.

Figure 6-46 shows the main data of three vendors: 0000090236, 0000090237, and 0000090238.

Figure 6-44. Process step 8—Assign files to source structures

Figure 6-45. Process step 8—files assigned to source structures

http://dx.doi.org/10.1007/978-1-4842-3183-8_5

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

471

Figure 6-47 shows the bank data of three vendors: 0000090236, 0000090237, and 0000090238. Vendor
0000090236 has one bank account, vendor 0000090237 has two bank accounts, and vendor 0000090238 has
three bank accounts, respectively.

Figure 6-48 shows the successful copying of the main file on the presentation server to YCH05_MAIN_
DATA on the application server using transaction code USS_FAS.

Figure 6-49 shows the successful copying of the bank file on the presentation server to YCH05_BANK_
DATA on the application server.

Figure 6-47. Vendors’ bank data—text file

Figure 6-48. Successful copy of main data—from presentation server to application server

Figure 6-46. Vendors’ main data—text file

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

472

We retained the input text file names YCH05_MAIN_DATA and YCH05_BANK_DATA from Chapter 5.
You can use some other file names if you so desire.

This concludes the creation of input text files on the presentation server, copying the created input text
files to the application server. We will resume the performance of LSMW process steps.

Process Step 9—Read Data
Process steps 1–8 constituted what we termed “the configuration steps” in the initial sections of this chapter.
If you are migrating data on a periodic or regular basis, process steps 1–8 need not be performed repeatedly
unless something has changed in the configuration, like, for example, the input text file name(s). Even if
some things changed, like the input text file name(s), the process steps pertaining to the changes need to be
performed again.

Process steps 9 onward, termed “execution steps” in the initial sections of this chapter, need to be
repeated for periodic migration of data for the business object with the configured steps.

From the screen of process steps, we executed process step 9.
In process step 9, we fetched data from user created input text files and assembled it together for an

entity–vendor, and stored it in the file with the following postfix: .lsmw.read.
When you execute process step 9, a dialog box appears as shown in Figure 6-50.

You can filter data to be read based on a range of transactions or row numbers. The check boxes Value
Fields and Data Value indicate how numeric decimal type data and date type data are stored.

We clicked the Execute button. The execution produced an output of statistics of input text data read
and written or imported as shown in Figure 6-51.

Figure 6-49. Successful copy of bank data—from presentation server to application server

Figure 6-50. Process step 9–Import Data input screen

http://dx.doi.org/10.1007/978-1-4842-3183-8_5

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

473

The number of rows or transactions read into MAIN_STRU is three for the three vendors.
The number of rows read into BANK_STRU is six–one row for the first vendor, two rows for the second

vendor, and three rows for the third vendor.
The number of rows read into each of the source structures MAIN_STRU and BANK_STRU is indicated

in the output report of Figure 6-51.
The number of rows written to the file with the postfix .lsmw.read must be identical to the number

of rows read. If a mismatch occurs between the number of rows read and the number of rows written, it
warrants an investigation of the data in the input text files.

This concludes process step 9. We navigated back to the process steps screen.

Process Step 10–Display Read Data
This process step is optional. The process step displays the data imported into the file with the postfix: .lsmw.
read from the input text files. The process step provides a visual means of verifying that data was imported
correctly. Data in the imported file is assembled entity or vendor-wise.

When you execute process step 10, a dialog box appears as shown in Figure 6-52.

Figure 6-51. Process step 9–Import Data output screen

Figure 6-52. Process step 10–Display Read Data: filter dialog box

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

474

You can filter data to be displayed based on a range of line or row numbers. We clicked the Execute
button to display all of the imported data. The output as shown in Figure 6-53 appeared.

As you can observe in Figure 6-53, all of a vendor’s data appears together, the main data followed by the
bank data under it. If you want to view a particular line, you click that particular line.

We clicked the main data line and subsequently the first bank data line of the second vendor:
0000090237.

Figure 6-54 detaild the main data and Figure 6-55 details the first bank data for vendor 0000090237.

Figure 6-53. Process step 10–display Imported Data

Figure 6-54. Process step 10–display Imported Data: main mata of vendor 0000090237

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

475

It is a good practice to view random, sample data when the volume of data is large.
This concludes the optional process step 10. We navigated back to the process steps screen.

Process Step 11–Convert Data
From the screen of process steps, we executed process step 11.

In process step 11, we assigned data to the destination fields as per the specifications in process step 5
and wrote to the file with the postfix: .lsmw.conv.

When you execute process step 11, a dialog appears as shown in Figure 6-56.

You can filter data to be converted based on a range of line or row numbers. We clicked the Execute
button to convert all of the input data. The execution produced an output of statistics of converted data
written as shown in Figure 6-57.

Figure 6-55. Process step 10–display Imported Data: First bank data of vendor 0000090237

Figure 6-56. Process step 11–Convert Data input screen

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

476

Data is read from the input data file–file with postfix .lsmw.read–and written to the converted data file–
file with postfix .lsmw.conv–in the following manner:

•	 For the entire data, one row will be written for the super structure BGR00 to the
converted data file

•	 For each transaction or vendor:

	¸ In case of destination fields not part of table control, a row will be written to the
converted data file for each of the destination structures with designated fields
(i.e., structures whose field(s) have been assigned value(s)). In our hands-on
exercise, the destination structures with designated fields are BLF00, BLFA1,
BLFB1, BLFB5, and BLFM1. Hence five rows will be written to the converted
data file for each transaction or vendor.

	¸ In case of destination fields being part of table control, a row will be written
to the converted data file for each row in the input data file. In this hands-on
exercise, the destination structure being part of table control is BLFBK.

In the present case, the data in the input file, the file with the postfix .lsmw.read, consists of three
vendors and six banks. Data will be written to the converted file–file with the postfix .lsmw.conv–as follows:

•	 1 row for the super structure BGR00.

•	 3 x 5 = 15 rows for the three vendors: one row for each vendor for each of the five
structures BLF00, BLFA1, BLFB1, BLFB5, and BLFM1–destination fields not part of
table control.

•	 6 rows corresponding to the 6 rows of banks–destination fields part of table control.

The total number of rows written to the converted file–file with the postfix .lsmw.conv–will be:
1 + 15 + 6 = 22 rows.

The rows written to the converted file appear as on the line Records Written in Figure 6-57. The audit or
cross-check must be performed to ensure that all of the data from the input file is converted and written to
the converted file.

This concludes process step 11. We navigated back to the process steps screen.

Figure 6-57. Process step 11–Convert Data output screen

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

477

Process Step 12–Display Converted Data
This process step is also optional. The process step displays the data assigned to the destination fields
and written to the file with the following postfix: .lsmw.conv. The process step provides a visual means of
verifying that data was converted correctly.

When you execute process step 12, a dialog appears as shown in Figure 6-58.

You can filter data to be displayed based on a range of line or row numbers. We clicked the Execute
button to display all of the converted data. The output as shown in Figure 6-59 appeared.

The destination fields of an entity–vendor appear together. Each line is an assemblage of fields of a
structure: BLF00, BLFA1, and so on. You click a line for a detailed display of that line as shown in Figure 6-60.

Figure 6-59. Process step 12—display Converted Data

Figure 6-58. Process step 12—Display Converted Data: filter dialog box

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

478

This concludes the optional process step 12. We navigated back to the process steps screen.

Process Step 13–Create Batch Input Session
From the screen of process steps, we executed process step 13.

In process step 13, you create a batch input session from the converted data, that is, the data in the file
with the following postfix: .lsmw.conv.

When you execute process step 13, a dialog box appears as shown in Figure 6-61.

Figure 6-60. Process step 12–display Converted Data: BLFA1, vendor 0000090236

Figure 6-61. Process step 13–create batch input session

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

479

On the dialog of Figure 6-61, if you enable the check box Check file only, the batch input file is checked
and no session is created.

On the dialog of Figure 6-61, in the Info Messages area,

•	 If you enable the Radio button Dialog Box, each info message appears as a dialog
box; you have to keep pressing <enter> key to continue.

•	 If you enable the Radio button Log, info messages will be gathered and output at the
end of processing.

•	 If you enable the Radio button No Information Message, info messages will be
suppressed.

We clicked the Execute button and an output of info messages as shown in Figure 6-62 appeared.

As you can observe in Figure 6-62, a session of the same name as the Object name YCH06_DI was
created.

This concludes process step 13. We navigated back to the process steps screen.

Process Step 14—Run Batch Input Session
From the screen of process steps, we executed process step 14.

In process step 14, you run the batch input session created in process step 13.
When you execute process step 14, you navigate to the session overview screen as shown in Figure 6-63.

Figure 6-63. Process step 14—batch input session overview screen

Figure 6-62. Process step 13–Batch Input session created

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

480

We selected the session and executed it in background. The execution of the session generated errors.
We opened the log for the session as shown in Figure 6-64.

The error was generated because of invalid value in the destination field LFB1-AKONT. The error is
highlighted in the log. This was a deliberate exercise on our part as to see the effect of erroneous data and its
rectification.

We need to assign a correct or valid value to the destination field LFB1-AKONT in process step
5—Maintain Field Mapping and Conversion Rules—and after correction, perform the execution steps again.

We navigated back to the screen of process steps. From the screen of process steps, we executed process
step 5 and switched the screen to change mode.

On the screen of process step 5, we double-clicked the destination field BLFB1-AKONT and rectified the
ABAP program assignment statement as shown in Figure 6-65.

We saved and performed the syntax check on the ABAP source lines. We exited the ABAP line editor and
navigated back to the screen of process step 5. On the screen of process step 5, we performed the validity
check and saved the changes to the screen of process step 5.

We navigated back to the screen of process steps.
As there was no error in the input text files, we need not reexecute process step 9—Read Data. We

reexecuted the following process steps:

•	 Process step 11—Convert Data

•	 Process step 13—Create Batch Input Session

•	 Process step 14—Run Batch Input Session in background

Figure 6-64. Process Step 14—batch input session run log

Figure 6-65. Process step 5—correction to value assignment of BLFB1-AKONT

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

481

The created session executed successfully without errors. Vendors 0000090236, 0000090237, and
0000090238 were created successfully.

This concludes process step 14.

Vendor Data Creation—Cross-Verification
We cross-checked the creation of the vendors by executing transaction code XK02. Figure 6-66 marks the
created vendors.

We selected each of the vendors in turn and navigated through all the screens to cross-check the
migration of all the data correctly.

Figure 6-67 shows the Payment transactions (bank data) screen of vendor 0000090238.

We successfully performed the migration of vendor data deploying the Standard Batch/Direct Input
method of LSMW.

We have not tried out the condition where the number of banks for a vendor exceeds the visible rows
in the bank data table control area. You can try out this condition by creating the appropriate data and
performing the execution steps.

This concludes the cross-verification of vendor data created and hands-on exercise I.

Figure 6-67. Vendor 0000090238—Payment transactions screen

Figure 6-66. Vendor list—vendor numbers with pattern: 9023*

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

482

Hands-on Exercise I—Recapitulation
The hands-on exercise set out to transfer the data of vendors from text files residing on the application server
into the SAP functional module database tables from the LSMW environment.

We started off by describing the scope and specifications of the hands-on exercise.
The input mode, destination fields to be assigned values, is the same as hands-on exercise II in

Chapter 5. In fact, the whole of the scope and specifications of this hands-on exercise is identical to that
of hands-on exercise II in Chapter 5 except for the creation of a log file on the application server. Only
the paradigm has changed—instead of deploying a custom program, a ready-to-use program of LSMW
environment is being deployed.

We initially created a Project YCH06_DM, a Subproject YCH06_VN, and an Object YCH06_DI. In the
LSMW environment, you perform or execute a series of steps called the process steps.

Process step 1 mainly involved specifying the Object Type and Object. We specified the Object Type as
Standard Batch/Direct Input and the Object as 0040—vendor master.

The next three process steps involved specification of source structures, fields in the source structures,
and relationships between source and destination structures.

In process step 5, we specified how the destination fields would assume values. We specified the
assumption of values for all the destination fields except BLFA1-SORTL. The destination field BLFA1-SORTL
is to be assigned a value by invoking a User-Defined Routine. The User-Defined Routines are created by
performing process step 6.

In process step 6, you can create Fixed Values, Translations, and User-Defined Routines. We created a
User-Defined Routine UR_GET_SORTL to derive the value of the field BLFA1-SORTL from the field BLFA1-
NAME1.

We reverted to process step 5 to assign value to the destination field BLFA1-SORTL by invoking a
User-Defined Routine UR_GET_SORTL.

In process step 7, we specified the input text files. We assigned the input text files to the source
structures in process step 8.

We created representative input text data files of three vendors on the presentation server using the
notepad editor. We copied the input text data files from on the presentation server to the application server
in the transaction code USS_FAS.

We executed process step 9, where data is retrieved from the input text files and written to the file with
the postfix .lsmw.read. In process step 10, we viewed the data from the file with the postfix .lsmw.read.

We executed process step 11, where the designated destination fields, which are assigned values as
per specifications in process step 5, are written to the file with the postfix .lsmw.conv. In process step 12, we
viewed the data from the file with the postfix .lsmw.conv.

Process steps 13 created a session.
In process step 14, we executed the created session in the background. The execution of the session

generated errors (we had deliberately assigned an invalid value to the field BLFB1-AKONT). In process step
5, we had assigned a valid value to the field BLFB1-AKONT. We repeated process steps 11, 13, and 14. The
session executed successfully. We verified the migration of vendor data from text files into SAP functional
module database tables in transaction code XK02.

In the custom programs (from Chapter 5) vis-à-vis the LSMW system, no ABAP program lines were
written

•	 For data declarations—internal tables, structures, etc.

•	 To retrieve data from input text files.

•	 To set up of nested loops.

•	 To take care of number of rows in the table control area exceeding the number of
visible rows.

http://dx.doi.org/10.1007/978-1-4842-3183-8_5
http://dx.doi.org/10.1007/978-1-4842-3183-8_5
http://dx.doi.org/10.1007/978-1-4842-3183-8_5

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

483

If, for a business object, a program exists in the LSMW system, then the LSMW should be the preferred
mode of data migration.

Hands-on Exercise II—Migration of Vendor Data Using
Batch Input Recording Method
We will again transfer the data of vendors residing in input text files on the application server into the SAP
functional module database tables deploying the Batch Input Recording method of LSMW. The specification
and scope of hands-on exercise II is identical to that of hands-on exercise I in this chapter. We will perform
the data transfer for 20 fields, 19 of them listed in Tables 6-1, 6-2, 6-3, and SORTL. Of the 20 fields designated
for data transfer, 11 fields will be assigned the same constant value for all the vendors being transferred (see
Table 6-1). In the two input text files, we will locate the fields listed in Tables 6-2 and 6-3, respectively. The
field SORTL will be derived from the field NAME1.

The Batch Input Recording method of LSMW creates a batch input session. When this session is
created, data is stored in the queue database tables. The created batch input session has to be executed
subsequently, when data is extracted from queue database tables and transferred to the functional module
database tables.

The first task is to create a new Object YCH06_RC under the existing Project and Subproject: YCH06_DM,
YCH06_VN. The next task is to create a recording of transaction code XK01 in the LSMW followed by the
LSMW process steps. A detailed description of the creation the new Object YCH06_RC and a recording of
transaction code XK01 and LSMW process steps follows.

Create Object YCH06_RC and Recording YCH06_XK01 of Transaction
Code XK01
We navigated to the opening screen of transaction code LSMW. To create the new Object YCH06_RC under
the existing Project and Subproject—YCH06_DM and YCH06_VN, we entered the names of the Project,
Subproject, and Object in the respective fields, clicked the Create button, and entered a suitable description
for the Object. The screen after the creation of the Object YCH06_RC will look like that in Figure 6-68.

In the LSMW environment, a recording is always created under a Project; a recording cannot exist
independent of a Project. A recording is available in all the Objects of a Project.

To create a recording, you select the menu option Goto ➤ Recordings as shown in Figure 6-68. When
we made this menu selection, a dialog box popped up prompting for Recording (name), Description, and
Owner. Figure 6-69 shows the screen with the entered values.

Figure 6-68. LSMW—Object created under Project, Subproject: menu option for recordings

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

484

We clicked the Continue button. Another dialog box popped up prompting for the transaction code. We
entered the transaction code XK01 as shown in Figure 6-70.

We clicked the Continue button. The control transferred to the Create Vendor: Initial Screen. Figure 6-71
shows the screen with the entered values.

Figure 6-70. LSMW—create recording for transaction code XK01

Figure 6-71. LSMW—create a vendor under recording; Initial Screen

Figure 6-69. LSMW—create recording

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

485

Figure 6-72 shows the Create Vendor: Address screen with the entered values.

Figure 6-73 shows the Create Vendor: Payment transactions screen with the entered values.

We created three bank accounts for the vendor.
Figure 6-74 shows the Create Vendor: Accounting information accounting screen with the entered

values.

Figure 6-72. LSMW—create a vendor under recording; Address screen

Figure 6-73. LSMW—create a vendor under recording; Payment transactions screen

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

486

Figure 6-75 shows the Create Vendor: Payment transactions Accounting screen with the entered values.

Figure 6-76 shows the Create Vendor: Correspondence Accounting screen with the entered values.

Figure 6-74. LSMW—create a vendor under recording; Accounting information Accounting screen

Figure 6-75. LSMW—create a vendor under recording; Payment transactions Accounting screen

Figure 6-76. LSMW—create a vendor under recording; Correspondence Accounting screen

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

487

Figure 6-77 shows the Create Vendor: Purchasing data screen with the entered values.

Figure 6-78 shows the Create Vendor: Partner functions screen.

We saved the vendor data and navigated back to the Create Recording screen. The recording tree with
the nodes will appear as shown in Figure 6-79.

Figure 6-78. LSMW—create a vendor under recording: Partner functions screen

Figure 6-77. LSMW—create a vendor under recording: Purchasing data screen

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

488

We deliberately created three bank accounts for the vendor marked in Figure 6-79.
You can edit the recording—insert and delete lines, edit existing lines, etc., the same way you could

edit a recording in transaction code SHDB. For illustrative purposes, we deleted the field LFA1-PSTLZ from
the recording tree. The field LFA1-PSTLZ is no more a node in the recording tree and will not appear as a
destination field.

If you require all the fields that appear as nodes in the recording tree to be designated destination fields,
you click the Default All button on the application toolbar. We clicked the Default All button to enable all the
fields in the recording tree to be designated as destination fields. When the fields in the recording tree are
designated to appear as destination fields, they are characterized by the appearance of field names on the
extreme right side of the field nodes as marked and shown in Figure 6-80.

If you want to designate fields as destination fields on an individual or a single field basis, position the
cursor on the field you desire to be designated a destination field and then click the Default button on the
application toolbar.

If you want to annul the designation of fields as destination fields, you position the cursor on the field
you desire to and click the Reset button on the application toolbar.

Figure 6-79. LSMW—recording of transaction code XK01 created: bank fields

Figure 6-80. LSMW—recording of transaction code XK01 after clicking default all button

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

489

We earlier deleted the field LFA1-PSTLZ from the recording tree so that it does not appear as a
destination field. An alternative way of making the field LFA1-PSTLZ not appear as a destination field is not
to delete it but to annul the designation as destination field—position cursor on the field LFA1-PSTLZ and
click the Reset button on the application toolbar.

We navigated back to the screen Recordings of Project ‘YCH06_DM’: Overview as shown in Figure 6-81.

The following should be borne in mind in regard to LSMW recordings vis-à-vis the recordings created
with transaction code SHDB:

•	 The LSMW recordings and the recordings created with transaction code SHDB exist
in segregated environments and there is no way to migrate these recordings from
one environment to another.

•	 The BDC_CURSOR and the BDC_OKCODE fields cannot be modified in the LSMW
recording.

•	 There is no developer access to the program generated from LSMW recordings.

We navigated back to the LSMW opening screen and clicked the Execute button to get to the LSMW
process steps screen.

We will commence executing the process steps. Since the process steps are similar and mostly identical
to the process steps in hands-on exercise I, I will be less elaborate in describing them.

We started by executing process step 1 by selecting the Radio button and clicking the Execute button.

Process Step 1—Maintain Object Attributes
We clicked the Display/Change toggle button on the application toolbar to enable changes on the screen.

On the process step 1 screen, in the Attributes area, we accepted the default values.
In the Object Type and Import Method area, we selected the second Radio button (Object Type) Batch

Input Recording. We clicked the field Recording and selected the recording YCH06_XK01 created earlier—
function key F4, etc. We clicked the Save button on the screen of process step 1.

Figure 6-81. LSMW—recording of Project ‘YCH06_DM’: Overview

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

490

Figure 6-82 shows the Object Attributes screen with the entries and selections.

We navigated back to the LSMW process steps screen.

Process Step 2—Maintain Source Structures
We navigated to the screen of process step 2. On the screen of process step 2 we switched to change mode.
We then created the input structure MAIN_STRU and under it, the input structure BANK_STRU as in hands-
on exercise I.

Figure 6-83 shows the source structures.

Figure 6-82. Process step 1—Maintain Object Attributes

Figure 6-83. Process step 2—create source structure: BANK_STRU under MAIN_STRU ceated

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

491

We saved and returned to the screen with the process steps.

Process Step 3—Maintain Source Fields
We executed process step 3 and switched the screen to change mode. We must insert fields into the source
structures MAIN_STRU and BANK_STRU. The fields in these source structures are identical to the fields
in the source structures of hands-on exercise I. There is a provision to copy fields from a source structure
of another Object in another Project. We will utilize this facility instead of inserting fields in the source
structures all over again. To copy fields from a source structure of another Object in another Project into
MAIN_STRU, we positioned the cursor on MAIN_STRU and clicked the Copy button (fifth button from the
left on the application toolbar). A dialog box appeared on clicking the Copy button as shown in Figure 6-84.

You can copy fields from

•	 A text file with field names separated by tabs

•	 Another Object in another Project—the option we are employing

•	 ABAP dictionary structure

•	 Data file with field names in the first line

On the dialog box of Figure 6-84, we clicked the second Radio button and then clicked the Continue
button. Another dialog box popped up prompting for Project, Subproject, Object, and source structure
name. Figure 6-85 shows the dialog box with entered values (YCH06_DM, YCH06_VN, YCH06_DU, and
MAIN_STRU).

Figure 6-84. Process step 3—Copy Source Fields I

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

492

When we clicked the Continue button on the dialog box of Figure 6-85, the fields got copied into the
source structure MAIN_STRU. In a similar manner, we copied the fields of source structure BANK_STRU
in Object YCH06_DI in Subproject YCH06_VN and under Project YCH06_DM into BANK_STRU. After
copying the fields into the source structures MAIN_STRU and BANK_STRU, the screen will look like that
in Figure 6-86.

This concludes process step 3. We saved and returned to the process steps screen.

Process Step 4—Maintain Structure Relations
We executed process step 4 and switched the screen to change mode.

Recollect the organization of destination structures in hands-on exercise I. At the very top of the
destination structures tree was the super structure BGR00. The structure BLF00 was located under the super
structure BGR00 The structure BLF00 had fields originating from multiple database tables corresponding
to the opening screen of transaction code XK01. Next to the structure BLF00 are located the database

Figure 6-85. Process step 3—Copy Source Fields II

Figure 6-86. Process step 3—create source field: all fields under MAIN_STRU and BANK_STRU

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

493

table structures BLFA1, BLFB1, BLFBK, BLFB5, BLFM1, and so on. In the present hands-on exercise II, the
destination consists of only one structure, YCH06_XK01. Under this single destination structure YCH06_
XK01, all the destination fields are located. Recall, we assigned values to 20 fields of non-table control area
during recording and deleted one field PSTLZ from the recording subsequently. Figure 6-87 shows the single
destination structure YCH06_XK01.

As you can observe in Figure 6-87, the single destination structure YCH06_XK01 has been assigned the
source structure MAIN_STRU.

Perhaps we should have located all of the input data, main and bank, in one input file instead of two
input files. We will discuss this issue further when performing process step 5. For now, we accepted the
default assignment of source structure MAIN_STRU to sole destination structure YCH06_XK01.

This completes process step 4. We saved and returned to the process steps screen.

Process Step 5—Maintain Field Mapping and Conversion Rules
From the screen of LSMW process steps, we executed process step 5 and switched the screen to change
mode. To recall, in process step 5, you assign values to the destination fields

Figure 6-88 shows the single destination structure with all the destination fields.

Figure 6-87. Process step 4—Maintain Structure Relations

Figure 6-88. Process step 5—Maintain Field Mapping and Conversion Rules

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

494

Only fields for which data was entered during recording will appear in the destination structure. In
Figure 6-88, the destination fields are marked with numbers 1–25. The nine fields of three banks are also
marked in the Figure 6-88.

While recording, we had created data for three banks for the vendor. Corresponding to the data for three
banks, the LSMW system incorporated nine fields in the sole destination structure YCH06_XK01 as follows:

BANKS_01
BANKS_02
BANKS_03
BANKL_01
BANKL_02
BANKL_03
BANKN_01
BANKN_02
BANKN_03

If we had created data for two banks for the vendor during recording, the LSMW system would have
incorporated six fields in the destination structure.

And if we had not created any data for banks for the vendor during recording, the destination structure
would not have consisted of any fields related to bank data.

As it is, with the creation of three banks for the vendor during recording, this configuration will
support a maximum of three banks for a vendor. Beyond three banks, no fields can be assigned values.
The configuration will support only a maximum of that many banks for a vendor as were created during
recording.

Also, if you have created data of one or more bank(s) for the vendor during recoding, the LSMW system
is generating an error condition during data migration if no bank data is submitted for a vendor.

The bank data of the vendors is being captured on the screen in a table control. From the discussions,
it is apparent that if table control is featured in a data migration, it is not advisable to deploy the Batch Input
Recording method of LSMW. We are featuring the table control in this hands-on exercise to highlight the
issue.

The bank source data is row-wise–each row consists of the data of one bank account of a vendor. In the
destination structure, all the banks’ data (maximum of three) is contained in the same structure. Suppose,
for a specific vendor, say vendor number 1234, there are two banks. Corresponding to the two banks, there
will two rows in the source data belonging to vendor number 1234. For vendor number 1234, when source
data is to be assigned to destination

•	 The first row of source data must get assigned to the destination fields BANKS_01,
BANKL_01, and BANKN_01.

•	 The second row of source data must get assigned to the destination fields BANKS_02,
BANKL_02, and BANKN_02.

•	 The destination fields BANKS_03, BANKL_03, and BANKN_03 are to be assigned ‘/’–
the no data indicator.

We could have made the source structure identical to the destination structure with all the 25 fields in
one structure, MAIN_STRU, and eliminated the second structure, BANK_STRU. But we wanted to retain the
input text files we used all through–in the hands-on exercises of Chapter 5 and hands-on exercise I of this
chapter.

We propose to create User-Defined Routines in process step 6, for the assignment of one or more rows
(maximum of three) of bank data of a vendor in the source to the destination fields in a single row.

http://dx.doi.org/10.1007/978-1-4842-3183-8_5

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

495

Except for the bank data fields, the assignments to other destination fields are a repetition of
assignments in hands-on exercise I. Figure 6-89 shows the assignments to destination field nos. 1–4.

Figure 6-90 shows the assignments to destination field nos. 5, 6, 8, 9, 10, and 11.

The assignment to destination field no. 7 (SORTL) is by the invocation of the User-Defined Routine
UR_GET_SORTL created during hands-on exercise I. Figure 6-91 shows the assignment to destination field
no. 7 (SORTL).

Figure 6-89. Process step 5—assignment to destination field Nos. 1-4

Figure 6-90. Process step 5—assignment to destination field nos. 5, 6, 8, 9, 10, and 11

Figure 6-91. Process step 5—assignment to destination field no. 7

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

496

Figure 6-92 shows the assignments to destination field nos. 21-25.

We performed a validity check (ctrl+F2 or sixth button from the left on the application toolbar). We
saved the changes and returned to the process steps screen.

Process step 5 is still incomplete. The nine destination fields—BANKS_01, BANKS_02, BANKS_03,
BANKL_01, BANKL_02, BANKL_03, BANKN_01, BANKN_02, and BANKN_03—are still to be assigned
values. These destination fields will be assigned values by invoking User-Defined Routines to be created in
process step 6. After performing process step 6, we will return to process step 5 and assign value to the nine
destination fields, thereby completing process step 5.

Process Step 6—Maintain Fixed Values, Translations, and
User-Defined Routines
In process step 6, we are creating two User-Defined Routines for the assignment of one or more rows
(maximum of three) of bank data of a vendor in the source to the destination fields in a single row.

The first User-Defined Routine UR_GET_BANK_FLD_VAL will receive three input parameters as

•	 The field YCH06_XK01-LIFNR

•	 SUFFIX containing suffix value: 01 or 02 or 03

•	 FNAME containing field name: BANKS or BANKL or BANKN

The first User-Defined Routine will return, in RET_VAL, the value to be assigned to the bank field.
The second User-Defined Routine UR_GET_BANKS will be invoked by the first User-Defined Routine and

receive three input parameters as

•	 WBANK_TAB—the internal table containing bank data of a vendor

•	 SUFFIX containing suffix value: 01 or 02 or 03

•	 FIELD containing field name: BANKS or BANKL or BANKN

The second User-Defined Routine will return, in BANKS, the value to be assigned to the bank field.
From the screen of the LSMW process steps, we navigated to the screen of process step 6. We toggled the

screen of process step 6 to change mode.
We created two User-Defined Routine nodes, GET_BANK_FLD_VAL and GET_BANKS, as shown in

Figure 6-93.

Figure 6-92. Process step 5—assignment to destination field nos. 21-25

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

497

We double-clicked the GET_BANK_FLD_VAL node. The ABAP program lines in the User-Defined
Routine UR_GET_BANK_FLD_VAL are as follows:

form ur_GET_BANK_FLD_VAL
 using LIFNR SUFFIX FNAME
 changing RET_VAL.

STATICS: BANK_TAB TYPE YCH06_BANK_TAB,
 WBANK_TAB TYPE YCH06_BANK_TAB,
 ONCE(1) TYPE C.
DATA BANK_STRU TYPE YCH06_BANK_STRU.

IF ONCE = ' '.
 ONCE = 'X'.
 OPEN DATASET 'YCH05_BANK_DATA' FOR INPUT IN TEXT MODE
 ENCODING DEFAULT.

 DO.
 READ DATASET 'YCH05_BANK_DATA' INTO BANK_STRU.
 IF SY-SUBRC NE 0.
 EXIT.
 ENDIF.
 APPEND BANK_STRU TO BANK_TAB.
 ENDDO.
ENDIF.
IF FNAME = 'BANKS' AND SUFFIX = '01'.
 REFRESH WBANK_TAB.
 LOOP AT BANK_TAB INTO BANK_STRU.
 IF BANK_STRU-LIFNR <> LIFNR.
 CONTINUE.
 ENDIF.
 APPEND BANK_STRU TO WBANK_TAB.
 ENDLOOP.
ENDIF.

Figure 6-93. Process step 6—User-Defined Routines GET_BANK_FLD_VAL and GET_BANKS

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

498

PERFORM UR_GET_BANKS TABLES WBANK_TAB USING SUFFIX FNAME
 CHANGING RET_VAL.
endform.

We saved the ABAP source lines and performed a syntax check. We navigated back to the screen of
process step 6.

We double-clicked the GET_BANKS node. The ABAP program lines in the User-Defined Routine
UR_GET_BANKS are as follows:

form UR_GET_BANKS
 TABLES WBANK_TAB TYPE YCH06_BANK_TAB
 using SUFFIX FIELD
 changing BANKS.

 STATICS: BANK_STRU1 TYPE YCH06_BANK_STRU,
 SUBRC TYPE SY-SUBRC.
 CLEAR BANK_STRU1.
 READ TABLE WBANK_TAB INTO BANK_STRU1 INDEX SUFFIX.
 SUBRC = SY-SUBRC.
 IF SUBRC NE 0.
 BANKS = '/'.
 ELSE.
 CASE FIELD.
 WHEN 'BANKS'.
 BANKS = BANK_STRU1-BANKS.
 WHEN 'BANKL'.
 BANKS = BANK_STRU1-BANKL.
 WHEN 'BANKN'.
 BANKS = BANK_STRU1-BANKN.
 ENDCASE.
 ENDIF.

endform.

We saved the ABAP source lines and performed a syntax check. We navigated back to the screen of
process step 6.

This completes the creation of the User-Defined Routines UR_GET_BANK_FLD_VAL and UR_GET_BANKS.
We navigated back to the process steps screen.

Process Step 5—Revisited
From the screen of process steps, we executed the process step 5 and switched the screen to change mode.

In this revisit of process step 5, we want to assign value to the nine destination fields YCH06_XK01-
BANKS_01, YCH06_XK01-BANKL_01, YCH06_XK01-BANKN_01…..by invocation of User-Defined Routine
UR_GET_BANK_FLD_VAL. To invoke User-Defined Routine UR_GET_BANK_FLD_VAL, we double-clicked
the BANKS_01 node and entered the following lines in the ABAP line editor:

DATA RETVAL1 TYPE STRING.
PERFORM ur_GET_BANK_FLD_VAL
 USING YCH06_XK01-LIFNR '01' 'BANKS'
 CHANGING RETVAL1.
YCH06_XK01-BANKS_01 = RETVAL1.

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

499

Note that the second parameter '01' is the suffix of the node BANKS_01; the third parameter 'BANKS' is
the name of the field in the database table LFBK.

We saved, performed a syntax check, and navigated back to the screen of process step 5.
In a similar manner, we inserted ABAP code in the eight nodes of BANKL_01, BANKN_01, BANKS_02,

BANKL_02, BANKN_02, BANKS_03, BANKL_03, and BANKN_03 with appropriate second and third
parameter values when invoking the User-Defined Routine UR_GET_BANK_FLD_VAL.

Each time we inserted ABAP code under a node, we saved and performed a syntax check.
The assignment to destination fields of bank data involved a lot of extra work. We could have saved

ourselves all the extra work by locating the source data in one structure instead of in two structures.
Now that we assigned values to the nine fields relating to bank data, process step 5 is concluded. We

saved and performed a validity check. We navigated back to the process steps screen.

Process Step 7—Specify Files
From the screen of process steps, we executed the process step 7 and switched the screen to change mode.

In process step 7, we specified the two input text files located on the application server.
The screen with the two input text files specified will appear as shown in Figure 6-94.

We saved the changes on the screen of process step 7. This concludes process step 7. We navigated back
to the process steps screen.

Process Step 8—Assign Files
From the screen of process steps, we executed the process step 8 and switched the screen to change mode.

We assigned the two input text files specified in process step 7 to the respective source structures
created in process step 2. This is shown in Figure 6-95.

Figure 6-94. Process step 7—files YCH05_MAIN_DATA, YCH05_BANK_DATA specified

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

500

We saved the changes on the screen of process step 8. This concludes the process step 8. We navigated
back to the process steps screen.

Data Creation on Presentation Server, Copy to Application Server
We created the main and bank data on the presentation server using the notepad editor.

Figure 6-96 shows the main data of four vendors: 0000090241, 0000090242, 0000090243, and
0000090244:

Figure 6-97 shows the bank data of three vendors: 0000090242, 0000090243, and 0000090244. Vendor
0000090242, has one bank account, vendor 0000090243 has two bank accounts, and vendor 0000090244 has
three bank accounts, respectively. No bank data was created for vendor 0000090241.

The main file and bank file on the presentation server were copied to YCH05_MAIN_DATA and YCH05_
BANK_DATA, respectively, on the application server using transaction code USS_FAS.

With the test data made available on the application server, we will execute process step 9 from the
LSMW process steps screen.

Figure 6-95. Process step 8—files assigned to source structures

Figure 6-96. Vendors’ main data—text file

Figure 6-97. Vendors’ bank data—text file

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

501

Process Step 9—Read Data
Recall, that in process step 9, data is fetched from input text files and assembled together for an entity–
vendor and stored in the file with the following postfix: .lsmw.read.

On the screen of process step 9, we clicked the Execute button and then clicked the execute button
on the dialog box that appeared. The execution produced an output of statistics of input text data read and
imported or written as shown in Figure 6-98.

This concludes the process step 9. We navigated back to the process steps screen.
We executed process step 10. It is good practice to check or sample-check the imported data. We did not

incorporate screenshots of the display of imported data.

Process Step 11—Convert Data
From the screen of process steps, we executed process step 11.

In the of process step 11, data is assigned to the destination fields as per the specifications in process
step 5 and written to the file with the postfix: .lsmw.conv.

On the screen of process step 11, we clicked the Execute button and then clicked the Execute button
on the dialog box that appeared. The execution produced an output of statistics of converted data written as
shown in Figure 6-99.

Figure 6-98. Process step 9—Import Data output screen

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

502

There is a single destination structure containing all the destination fields. Hence the number of records
written to the file with the postfix .lsmw.conv will be the number of transactions or vendors read—in the
present context: four. This is indicated in the last line, Records Written, in the output of Figure 6-99.

This concludes process step 11. We navigated back to the process steps screen.
We executed process step 12—Display Converted Data. It is good practice to check or sample-check the

converted data. We did not incorporate screenshots of the display of converted data.

Process Step 13—Create Batch Input Session
From the screen of process steps, we executed process step 13.

In process step 13, we will create a batch input session from the converted data, that is, the data in the
file with the postfix .lsmw.conv.

When you execute process step 13, a dialog appears as shown in Figure 6-100.

Figure 6-99. Process step 11—Convert Data output screen

Figure 6-100. Process step 13—create batch input session

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

503

If the volume of data is very large, you can split the data into multiple batch input folders by specifying a
number in the field Display Trans. per BI Folder.

We clicked the Execute button and an output of info message as shown in Figure 6-101 appeared.

This concludes process step 13. We navigated back to the process steps screen.

Process Step 14—Run Batch Input Session
From the screen of process steps, we executed process step 14.

In process step 14, we will execute the batch input session created in process step 13.
When you execute process step 14, you navigate to the session overview screen. We selected the session

YCH06_RC and clicked the Process button on the application toolbar.
Process Session YCH06_RC popped up. We selected the Processing Mode as Background and clicked the

Process button on the dialog box as shown in Figure 6-102.

Figure 6-101. Process step 13—batch input folder created

Figure 6-102. Process step 14—batch input session overview screen

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

504

The execution of the session generated errors. We opened the log for the session as shown in
Figure 6-103.

The error marked in Figure 6-103 was generated because of non-availability of bank data for vendor
0000090241 on screen number 210. In the LSMW environment, when employing the Batch Input Recording
method, if you created data in the table control area during recording, at least one row of table control data
needs to be provided to each entity during data migration. The three vendors, 0000090242, 0000090243, and
0000090244, were created successfully.

This concludes process step 14.

Vendor Data Creation—Cross-Verification
We crossed-checked the creation of the vendors by executing transaction code XK02. Figure 6-104 shows the
created vendors.

Figure 6-103. Process step 14—batch input session run log

Figure 6-104. Vendor list—vendor numbers with pattern: 9024*

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

505

We selected each of the vendors in turn and navigated through all the screens to cross-check the
migration of all the data correctly.

Figure 6-105 shows the Payment transactions (bank data) screen of vendor 0000090242 with one bank
account.

Figure 6-106 shows the Payment transactions (bank data) screen of vendor 0000090243 with two bank
accounts.

Figure 6-107 shows the Payment transactions (bank data) screen of vendor 0000090244 with three bank
accounts.

We have successfully performed the migration of vendor data deploying the Batch Input Recording
method of LSMW.

In Chapter 5, with a custom program to migrate vendor data, we as developers had total control over
the program. We set up an internal table inner loop to handle the bank data. The internal table inner
loop enabled us to handle and allow zero or n number of banks to be created for a vendor. In the LSMW
environment, with the Batch Input Recording method, we as developers have no control over the program

Figure 6-105. Vendor 0000090242—Payment transactions screen: one bank account

Figure 6-106. Vendor 0000090243—Payment transactions screen: two bank accounts

Figure 6-107. Vendor 0000090244—Payment transactions screen: three bank accounts

http://dx.doi.org/10.1007/978-1-4842-3183-8_5

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

506

generated from a recording. The single destination structure contains fields for as many banks only as were
created during recoding and affords no scope for a repetitive looping process. If data migration involves
table control, it is not advisable to deploy the Batch Input Recording method of LSMW.

This concludes the cross-verification of vendor data created and hands-on exercise II.

Hands-on Exercise II Recapitulation
The hands-on exercise set out again, as in hands-on exercise I in this chapter, to transfer the data of vendors
from text files residing on the application server into the SAP functional module database tables from the
LSMW environment.

The scope and specifications of this hands-on exercise are identical to that of hands-on exercise
I. Instead of deploying a ready-to-use program of LSMW environment, we created a recording of the
transaction code XK01 and deployed the recording for migration of vendor data.

We created a new Object YCH06_RC under the existing Project YCH06_DM and Subproject YCH06_VN.
A recording is created under a Project from the opening screen of LSMW. We created a recording YCH06_
XK01 of transaction code XK01.

In process step 1, we selected the Object Type as Batch Input Recording and assigned the recording
YCH06_XK01 to the field Recording.

Process step 2 in this exercise is identical to process step 2 in hands-on exercise I in this chapter.
In process step 3, instead of creating the fields in the source structures afresh, we copied the fields of

source structures from the Object YCH06_DI.
In process step 4, we observed that a single destination structure is created under the recording unlike

multiple destination structures in hands-on exercise I in this chapter.
In process step 5, we assigned values to all the destination fields in the non-table control area, except

BLFA1-SORTL, the same way we did in hands-on exercise I in this chapter. We assigned value to the
destination field BLFA1-SORTL by invoking a User-Defined Routine UR_GET_SORTL created earlier in
hands-on exercise I of this chapter.

For destination fields in the table control area (i.e., the bank data), data from one or more rows in the
source is to be assigned to multiple fields in a single destination structure. To implement the assignment
from one or more rows in the source to multiple fields in a single destination structure, we created User-
Defined Routines in process step 6.

In process step 6—Fixed Values, Translations, and User-Defined Routines, we created two User-Defined
Routines: UR_GET_BANK_FLD_VAL and UR_GET_BANKS. The second routine UR_GET_BANKS is being
invoked from the first routine, UR_GET_BANK_FLD_VAL. The two routines implement the assignment from
one or more rows in the source to multiple fields in a single destination structure.

We reverted to process step 5 to assign values to the nine destination fields, YCH06_XK01-BANKS_01,
YCH06_XK01-BANKL_01….., by invoking a User-Defined Routine UR_GET_BANK_FLD_VAL with
appropriate parameters.

We created representative input text data files of four vendors on the presentation server using the
notepad editor. We copied the input text data files from the presentation server to the application server in
transaction code USS_FAS. We created one bank account for the second vendor, two bank accounts for the
third vendor, and three bank accounts for the fourth vendor. We did not create any bank data for the first
vendor.

Process steps 7 to 13 are identical to those in hands-on exercise I of this chapter and thus have not been
elaborated upon.

In process step 14, we executed the session created in process step 13, in the background. The execution
of the session generated errors; the first vendor did not get created for lack of bank data. The other three
vendors were created successfully. We verified the migration of vendor data from text files into SAP
functional module database tables in transaction code XK02.

If, for a business object, no table controls exist on the screens or table control data is not to be migrated,
the Batch Input Recording method of LSMW can be opted for data migration.

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

507

Process Steps Screen—Menu Options
This is a brief on the major menu options available on the LSMW process step screen.

The available menu options on the LSMW process step screen will look like those in Figure 6-108.

•	 The LSMW system maintains a log of all changes made to process steps of an Object
under a Subproject and Project. The log of the changes made to the process steps,
the Action Log, contains user name, date, time, etc. To view the Action Log, you make
the following menu selection: LSMW Workbench ➤ Action Log. Figure 6-109 shows
a screenshot of the Action Log.While executing the process steps from the LSMW
process steps screen, you have observed, all through, that numbers appear against
the process steps. The numbers appearing against the process steps can be made
to appear or disappear by choice by making the following menu selection: Edit ➤
Numbering On/Off.

•	 The Action Log maintained by the LSMW system for the changes made to the process
steps can be initialized by making the following menu selection: Extras ➤ Reset
Action Log.

Figure 6-108. Menu options—LSMW process steps screen

Figure 6-109. LSMW Action Log

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

508

•	 You can view complete details of destination structures, the fields of destination
structures, source fields if any assigned to the fields of destination structures, etc.,
with the following menu selection: Extras ➤ Object Overview. The Object Overview
can be displayed in either table or list mode. Figure 6-110 is a screenshot of the
Object Overview in table mode.

•	 With the menu selection Extras ➤ User Menu, it is easy to make selections in a list
of process steps through check boxes. With this facility, only the selected process
steps can be made available for execution. This facility to provide only some selected
process steps available for execution could be required in some scenarios.

For illustrative purposes, let us assume that the data of vendors needs to be migrated repeatedly on a
periodic basis. We had earlier categorized the first 8 out of the 14 process steps in our hands-on exercises I
and II as configuring steps and the last 6 steps as execution steps. After the first time, when you performed
the configuring steps, most likely there will be no changes in the configurations. Let us assume that there are
no changes to the original configuring steps on the subsequent occasions of vendor data migration. In this
scenario, the configuring steps need to be performed once only. Rather, the configuring steps should not
appear at all subsequent to first occasion of data migration.

With the menu selection Extras ➤ User Menu, a dialog box pops up to make the selection of process
steps as shown in Figure 6-111.

Figure 6-110. LSMW Object Overview

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

509

In Figure 6-111, the process steps Generate Read Program, Display Read Program, Generate Conversion
Program, and Display Conversion Program were already in a disabled state. These process steps are meant to
be executed to explicitly generate the programs.

As marked in Figure 6-111, we disabled the check boxes for the first eight process steps—the configuring
steps. Disabling the check boxes for the configuring steps produced a process step screen as shown in
Figure 6-112.

The vendor data is categorized as master data. In practical terms, master data is mostly migrated on
a one-time basis. It was just to illustrate the setup of process steps—making them appear or disappear on
choice—that we assumed that data of vendors needed to be migrated on a periodic basis.

This concludes the process step screen—menu options.

Figure 6-112. Process step screen—without configuring steps

Figure 6-111. User Menu—process step selections

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

510

Project, Project Components Export and Import
You can export or download a complete LSMW Project or its component(s) down to a leaf node to a file on
the presentation server. Conversely, you can import or upload a complete LSMW Project or its component(s)
down to a leaf node from a previous export to a file on the presentation server.

The process of export and import enables you to transport LSMW projects and its parts or components
from one SAP system to another SAP system.

We will demonstrate the export of a complete LSMW Project as well as one of its components. We will
also demonstrate the import of a LSMW Project’s component.

First, we will export our LSMW Project YCH06_DM. To perform exports from the LSMW opening screen,
you make the menu selection Extras ➤ Project Export. A dialog box pops up prompting for the name of the
Project. Figure 6-113 shows the dialog box with the name of the Project entered.

We clicked the Continue button. The complete Project with its components is presented in a tree form.
We expanded all the nodes of the Project tree as shown in Figure 6-114.

Figure 6-113. LSMW—project, project component(s) export

Figure 6-114. LSMW—project, project component(s) export: selection

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

511

You can position the cursor on a node; use the Select/Deselect button (first button from the left) on the
application bar to toggle between selection and deselection of the node. When a node is selected, the
selection button appears against the selected node on the extreme right as shown in Figure 6-118. If a
node is selected, the subnodes under it, if any, are also selected by default.

When the screen of Figure 6-118 appears for the first time, the node corresponding to the Project
and all the subnodes under it are selected by default. We want to export the complete Project; the default
selection serves our present purpose, so we clicked the Export button on the application toolbar (the first
button from the right). The dialog box to make folder selection and input the file name appeared as shown
in Figure 6-115.

By default, the system proposes the name of the Project with the prefix LSMW_DM0_ (DM0 is our
system id) as the file name. You can change the file name if you desire. We selected the folder, accepted the
proposed file name, and clicked the Open button. The system issued an info message of successful export as
shown in Figure 6-116.

Figure 6-115. LSMW—project export: select folder and input file name

Figure 6-116. LSMW—project exported

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

512

Next, we want to demonstrate the export of a component of our LSMW Project YCH06_DM. To perform
exports, from the LSMW opening screen, we made the menu selection Extras ➤ Project Export. The dialog
box for the name of the Project appeared. We entered the name of the Project as YCH06_DM and clicked the
Continue button.

The complete Project with its components is presented in a tree form with all the nodes selected by
default. We will export only the node GET_SORTL corresponding to the User-Defined Routines UR_GET_
SORTL. We positioned the cursor on the Project node YCh06_DM and deselected all the nodes. We next
positioned the cursor on the node GET_SORTL and selected it. Figure 6-117 illustrates.

We clicked the Export button on the application toolbar. The dialog box to make folder selection and
input the file name appeared. We selected the folder and changed the file name to LSMW_DM0_YCH06_
DM_SORTL since we do not want to overwrite the earlier export file LSMW_DM0_YCH06_DM. We clicked
the Open button. The system issued an info message of successful export as shown in Figure 6-118.

Figure 6-117. Project YCH06_DM—export User-Defined Routines node GET_SORTL

Figure 6-118. Project YCH06_DM—User-Defined Routines node GET_SORTL exported

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

513

We have successfully exported the complete Project YCH06_DM as well as a component
GET_SORTL of it.

Finally, I want to demonstrate the import of a component into our LSMW Project YCH06_DM.
To start with, we will delete the User-Defined Routines node GET_SORTL in our LSMW Project YCH06_

DM. We will then import the User-Defined Routines node GET_SORTL from export file LSMW_DM0_YCH06_
DM_SORTL to restore the Project YCH06_DM to predeletion status.

To delete a node from a Project, we made the following menu selection from the LSMW opening screen:
Goto ➤ Administration. The system navigated to the screen with Projects of all users. We scrolled down to
our Project YCH06_DM. We expanded all the nodes of the Project YCH06_DM. We positioned the cursor on
the User-Defined Routines node GET_SORTL and clicked the Delete button on the application toolbar. The
system popped a warning alert as shown in Figure 6-119.

We clicked the Yes button. The User-Defined Routines node GET_SORTL was deleted. Figure 6-120
reflects the deletion.

Figure 6-119. User-Defined Routines node GET_SORTL—delete confirmation

Figure 6-120. User-Defined Routines Node GET_SORTL—deleted

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

514

We will restore the User-Defined Routines node GET_SORTL by an import. We can import the User-Defined
Routines node GET_SORTL from either of the following files:

•	 LSMW_DM0_YCH06_DM Full Project export

•	 LSMW_DM0_YCH06_DM_SORTL Project component GET_SORTL export

We will import from the file LSMW_DM0_YCH06_DM. To perform an import from the LSMW opening
screen, we made the menu selection Extras ➤ Project Import. The dialog box to make folder and file
selection appeared. We made the folder and file selection as shown in Figure 6-121.

We clicked the Open button on the dialog box of Figure 6-121. A warning alert appeared that objects
already existing in the target system will be overwritten as shown in the Figure 6-122.

Figure 6-121. Import project—select folder and file

Figure 6-122. Import project—warning alert

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

515

We clicked the Continue button. The components or nodes from the export file were displayed in a tree
form. We selected the node GET_SORTL as shown in the Figure 6-123.

There is a provision to import nodes with a different name: Import Under Another Name. We clicked the
Import button on the application toolbar. The system issued an info message of successful import as shown
in Figure 6-124.

To cross-verify the import of the User-Defined Routines node GET_SORTL into the Project, we made the
following menu selection from the LSMW opening screen: Goto ➤ Administration. The system navigated to
the screen with Projects of all users. We scrolled down to our Project YCH06_DM. We expanded all the nodes
of the Project YCH06_DM. The User-Defined Routines node GET_SORTL has been imported as shown in
Figure 6-125.

Figure 6-123. Import project—select components or nodes

Figure 6-124. User-Defined Routines Node GET_SORTL imported—info message

Figure 6-125. User-Defined Routines node GET_SORTL imported into project

Chapter 6 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–i

516

We demonstrated an export of a full Project, an export of a component of a Project, and an import of a
component of a Project.

This concludes the demonstration of export and import of a Project.

Conclusion
In this chapter, we introduced a new paradigm for migration of external data into SAP system—LSMW. In
the LSMW environment, ready-to-use SAP supplied programs are available for the migration of external data
into the SAP system for a host of common business objects. And apart from the ready-to-use SAP supplied
programs, transactions recording feature is available.

The ready-to-use SAP supplied programs are categorized into program types such as (1) Standard
Batch/Direct Input, (2) Business Object (BAPI), and (3) IDoc (Intermediate Document).

In the LSMW, you perform a series of process steps to migrate data that might involve little or even no
coding of ABAP program lines.

We presented an overview of the LSMW opening screen. We introduced the hierarchical structure of
objects created in the LSMW environment—a Project with Subprojects under it, a Subproject with Objects
under it. Apart from Subprojects a Project can contain Recordings, Fixed Values, Translations, and User-Defined
Routines. We described the hierarchical structure of proposed hands-on exercises to be performed in this
chapter and in Chapter 7.

After the introduction to LSMW, an overview of its opening screen, we set about performing hands-on
exercise I. We proposed to transfer vendor data from text files on the application server to the SAP functional
module database tables. I described the scope and specifications of hands-on exercise I. The scope and
specifications of the hands-on exercise I is mostly similar to the scope and specifications of hands-on
exercise II in Chapter 5. We created a Project YCH06_DM, a Subproject YCH06_VN under the Project, and
an Object YCH06_DI under the Subproject. We performed the first eight process steps which we termed
“configuring steps.” The LSMW Object Type we chose for data transfer was Standard Batch/Direct Input. The
Object Type: Standard Batch/Direct Input for vendors creates a session. We created representative data. We
performed the last six process steps which we termed “execution steps.” The performance of execution steps
transferred the data from text files on the application server to the SAP functional module database tables.
We crossverified the successful transfer of vendor data in transaction code XK02.

In hands-on exercise II, we again proposed to transfer vendor data from text files on the application
server to the SAP functional module database tables. But the LSMW Object Type we chose for data transfer
was Batch Input Recording. The Object Type: Batch Input Recording creates a session. The scope and
specifications of hands-on exercise II are same as the scope and specifications of hands-on exercise I in
this chapter. We created an Object YCH06_RC under the already created Project YCH06_DM and Subproject
YCH06_VN. From the LSMW opening screen, we created a recording YCH01_XK01 of transaction code
XK01. We performed the first eight process steps which we termed “configuring steps.” On the screen of
process step 1—Maintain Object Attributes—we clicked in the field Recording and selected the recording
YCH06_XK01. We created representative data. We performed the last six process steps which we termed
“execution steps.” The performance of execution steps transferred the data from text files on the application
server to the SAP functional module database tables. We cross-verified the successful transfer of vendor data
in transaction code XK02. The Batch Input Recording method creates a single destination structure which
makes table control data handling awkward.

I concluded the chapter with a description of menu options available on the process steps screen and
demonstrations of the export and import of a Project and its components.

In Chapter 7, I will continue with further LSMW hands-on exercises deploying the remaining two
LSMW Object Types: Business Object (BAPI) and IDoc (Intermediate Document).

http://dx.doi.org/10.1007/978-1-4842-3183-8_7
http://dx.doi.org/10.1007/978-1-4842-3183-8_5
http://dx.doi.org/10.1007/978-1-4842-3183-8_7

517© Sushil Markandeya 2017
S. Markandeya, Pro SAP Scripts, Smartforms, and Data Migration,
https://doi.org/10.1007/978-1-4842-3183-8_7

CHAPTER 7

Data Migration Using Legacy
System Migration Workbench
LSMW–II

In Chapter 6, we performed migration of external data into SAP system in the legacy system migration
workshop LSMW environment. We performed two hands-on exercises employing LSMW Object Types: (1)
Standard Batch/Direct Input and (2) Batch Input Recording.

In this chapter, we will perform two hands-on exercises employing the remaining two LSMW Object
Types: (a) IDoc (Intermediate Document) and (b) Business Object (BAPI). Thus, we would have employed all
of the four Object Types provided in the LSMW environment.

We located the two hands-on exercises (corresponding to two Objects) of Chapter 6 in the Project
YCH06_DM and the Subproject YCH06_VN. We will locate the two hands-on exercises (corresponding to
two Objects) to be performed in this chapter in the Project YCH06_DM, which we created in Chapter 6. We
will create a new Subproject YCH07_PO and locate the two hands-on exercises—Objects: YCH07_IDOC and
YCH07_BAPI—to be performed in this chapter in this Subproject. (Refer to the Figure 6-2 in Chapter 6.)

Before we undertake the performance of the hands-on exercises of this chapter, we must cover
someprerequisite topics. The prerequisite topics follow.

Hands-on Exercises in This Chapter—Issues and
Considerations
We will be performing two hands-on exercises in the present chapter involving transfer of purchase order
data from operating system text files into the SAP functional module database tables. A purchase order is a
business document and its data is categorized as transaction data. Until now, in all the hands-on exercises
of Chapters 5 and 6, we were transferring vendor data. The vendor data is categorized as master data distinct
from transaction data.

Most business documents (purchase orders, sales orders, billing documents, etc.) have multiple items
in a business document. The data of multiple items in a business document will be invariably captured on
the data entry screen using a table control. The data entry screens of most business documents contain
multiple table controls.

https://doi.org/10.1007/978-1-4842-3183-8_7
http://dx.doi.org/10.1007/978-1-4842-3183-8_6
http://dx.doi.org/10.1007/978-1-4842-3183-8_6
http://dx.doi.org/10.1007/978-1-4842-3183-8_6
http://dx.doi.org/10.1007/978-1-4842-3183-8_6
http://dx.doi.org/10.1007/978-1-4842-3183-8_5
http://dx.doi.org/10.1007/978-1-4842-3183-8_6

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

518

We are taking into account the following when migrating the data of purchase orders:

•	 When data of purchase orders is created, some fields are assigned default values
depending on entry of values in some other fields. For example, when you enter a
vendor number/code, the company code, currency key and language key are picked
from the vendor database tables and assigned as default values to the corresponding
fields of the purchase order. Also, the net prices for materials are assigned values
from info records by default. The info records contain past net prices maintained
material-wise, material group-wise, vendor-wise, etc.

•	 Further, when data of a purchase order is created, values of some field are calculated
from fields of same/other database tables. For example, you need to enter for
materials, only the delivery quantities; the ordered quantities for materials are
calculated from the delivery quantities.

•	 Also, while migrating, the transaction data, the structure and form of the input data
will depend on the data model of the transaction data in the SAP database tables. We
will be describing the data model of purchase order database tables.

•	 The assignment of default values to some fields and the calculation for some
other fields make the data migration of transaction data require technofunctional
knowledge of the process of a higher degree than when migrating master data
like vendors. We will highlight some of the technofunctional issues during the
performance of the two hands-on exercises.

•	 The two hands-on exercises in this chapter employing the Object Types—IDoc
BAPI—generate IDocs. To be able to generate the IDocs, you need to create IDoc
Inbound Settings. The IDoc and related communication technology are substantial
topics and cannot be dealt with in this book. Excellent books dealing with IDoc
and related communication technology are available. We are describing only the
IDoc Inbound Settings required to perform the hand-on exercises, with sketchy
explanations. We are providing a brief on the IDocs.

This concludes the issues and considerations of hands-on exercises.

Purchase Order Database Tables
A purchase order is generated when an order is placed for supply of goods or services with a vendor or
supplier. In the SAP environment, a purchase order would contain the following minimal information:

•	 Document or purchase order number

•	 Document or purchase order date

•	 Vendor or supplier

•	 Purchasing organization

•	 Purchasing group

•	 Materials ordered with delivery dates, delivery quantities, net prices, plants where
delivery to be made, etc.

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

519

In the hands-on exercises for data migration of purchase orders, our main focus will be on the
deployment of LSMW, but I will be highlighting a few technofunctional issues. Because our main focus is
on deployment of LSMW, I will be assigning values to representative, minimal, mostly mandatory fields,
involving the following three database tables:

•	 EKKO purchasing document—header

•	 EKPO purchasing document—item

•	 EKET purchasing document—scheduling agreement schedule lines

The database tables are designated as purchasing document tables since they contain, apart from the
purchase order data, data of other documents related to purchasing: requisition, request for quotation, etc. A
description of the three database tables follows.

Database Table EKKO
The database Table EKKO contains the document header information. We will be concerned with the fields
in the database table EKKO (see Table 7-1).

Table 7-1. Fields of Interest in Database Table EKKO

Srl. No. Field Name Field Description Remarks

1 EBELN (PK) Purchasing Document Number Primary Key Field

2 BEDAT Purchasing Document Date

3 BSTYP Purchasing Document Category = F—for Purchase Order

4 BSART Purchasing Document Type = NB—Standard PO

5 LIFNR Vendor Number/Code

6 EKORG Purchasing Organization

7 EKGRP Purchasing Group

8 BUKRS Company Code Derived—Assigned from Vendor
Database Table LFB1

9 WAERS Currency Key Derived—Assigned from Vendor
Database Table LFA1

10 SPRAS Language Key Derived—Assigned from Vendor
Database Table LFA1

We are not specifying the client code field MANDT. It is implicit.
For our hands-on exercises, we will create only data of standard purchase orders, which entails that the

fields BSTYP = ‘F’ and BSART = 'NB' (field nos. 3 and 4).
In Table 7-1, fields are marked as derived—BUKRS, WAERS, and SPRAS. There are more fields being

assigned derived values than appearing in Table 7-1. By default, these fields are assigned derived values. You
might, in some cases, want to override the derived values with data from input text files.

Database Table EKPO
The database table EKPO contains the material ordered information. We will be concerned with the
following fields in the database table EKPO (see Table 7-2).

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

520

The tables EKKO and EKPO are linked through the field EBELN—purchasing document number, which
materials belong to which purchasing document?

The field EBELP is a kind of serial number within a purchasing document and is used as a reference to a
material ordered.

The considerations we described for derived fields in the database table EKKO hold good for the
database table EKPO as well.

Database Table EKET
The database table EKET contains the material delivery schedule information. A single material in a
purchase order can have multiple delivery dates; hence, a separate database table for material delivery
schedule. We will be concerned with the following fields in the database table EKET (see Table 7-3).

Table 7-2. Fields of Interest in Database Table EKPO

Srl. No. Field Name Field Description Remarks

1 EBELN (PK, FK) Purchasing Document Number Primary and Foreign Key Field

2 EBELP (PK) Item Number of Purchasing
Document

Primary Key Field

3 MATNR Material Number/Code

4 MENGE Purchase Order Quantity Calculated from Rows in
Database Table EKET

5 MEINS Purchase Order Unit of Measure Derived—Assigned from
Material Database Table MARA

6 NETPR Net Price in Purchasing Document Derived—Assigned from Info
Records

7 MATKL Material Group

8 WERKS Plant to which Material to be
Delivered

9 NETWR Net Order Value in PO Currency Calculated as (MENGE * NETPR)

Table 7-3. Fields of Interest in Database Table EKET

Srl. No. Field Name Field Description Remarks

1 EBELN (PK, FK) Purchasing Document Number Primary and Foreign
Key Field

2 EBELP (PK, FK) Item Number of Purchasing Document Primary and Foreign
Key Field

3 ETENR (PK) Delivery Schedule Line Counter or Number Primary Key Field

4 MENGE Scheduled Quantity

5 EINDT Item Delivery Date

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

521

The tables EKPO and EKET are linked through the fields EBELN and EBELP, which delivery schedule
line numbers belongs to which purchasing item number of which purchasing document?

The field ETENR is a kind of count or serial number within a purchasing document and is used as a
reference.

The field MENGE is occurring in both the database tables EKPO and EKET. The field MENGE in the
database table EKET represents quantity to be delivered on a specified date of an item number; there can be
multiple delivery dates with specified quantities for an item number in a purchase order. The field MENGE
in the database table EKPO represents quantity ordered for an item number in a purchase order. The value
in the field MENGE in the database table EKPO for an item number in a particular purchase order will be
sum of the values in the field MENGE in the database table EKET for the item number in the purchase order.

Notice, in Table 7-3, that the field EBELN is foreign key in the database table EKET. The check table for
the field EBELN in the database table EKET is EKKO.

Notice, in Table 7-3, that the field EBELP is foreign key in the database table EKET. The check table for
the field EBELP in the database table EKET is EKPO.

Figure 7-1 is a screenshot of the foreign key relationship between the database tables EKET and EKPO.

The database table EKET is linked to the database table EKPO through the field EBELP. The database
table EKET is also linked to the database table EKKO through the field EBELN; you can view this relationship
as an exercise.

Database Tables of Purchasing Documents–ER Diagram and Data
Storage
I would like to highlight the hierarchical order of the database tables EKKO, EKPO, and EKET. The database
table EKPO is secondary to EKKO. The database table EKET is secondary to EKPO and EKKO. Figure 7-2
shows an ER diagram or data model of the database tables EKKO, EKPO, and EKET.

Figure 7-1. Foreign key relationship: EKET–EKPO

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

522

To give you some idea of how input data that is fed is stored in the purchasing document database
tables, consider the following input data: a purchase order with a single material number 101-110,
scheduled quantity 200 to be delivered on a date and scheduled quantity 300 to be delivered on another
date–two delivery dates. The input data follows:

BSTYP - Purchasing Document Category : F
BSART - Purchasing Document Type : NB
EBELN - Purchasing Document Number : 1234
BEDAT - Purchasing Document Date : 20161226
LIFNR - Vendor Number : 1000
EKORG – Purchasing Organization : 1000
EKGRP – Purchasing Group : 026

EBELP – Item Number of Purchasing Document : 0010
MATNR – Material Number : 101-110
.....
ETENR – Delivery Schedule Line Number : 0001 and 0002
MENGE – Schedule Quantity : 200 and 300
EINDT – Item Delivery Date : 20170202 and 20170217

Data storage in the database table EKKO will be as follows:

EBELN : 1234
BEDAT : 20161226
LIFNR : 1000
EKORG : 1000
EKGRP : 026
BUKRS : 1000 (derived from LFB1)
SPRAS : D (derived from LFA1)
WAERS : EUR (derived from LFA1)
.....

Figure 7-2. ER diagram–database tables EKKO, EKPO, and EKET

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

523

Data storage in the database table EKPO will be as follows:

EBELP MATNR MEINS MENGE
--
0010 101-110 PC (derived from MARA) 500 (derived – 200 + 300 from EKET)

Data storage in the database table EKET will be as follows:

EBELP ETENR MENGE EINDT
--
0010 0001 200 20170202
0010 0002 300 20170217

This concludes the description of purchase order database tables.

A Brief on IDocs
The IDoc is a substantial topic; adetailed description of its nitty-gritty would occupy more than a couple
of chapters. We are briefly outlining its basics so that you get a fair idea of its features in the context of the
hands-on exercises in this chapter.

IDoc–A Data Container
The term “IDoc” is short for Intermediate Document. An IDoc is just a super structure (often called a data
container) used to exchange data between two processes which can understand the syntax and semantics
of the exchanged data. A super structure means a complex structure containing embedded structures and
internal tables (called segments) within the super structure. The IDoc super structure can contain within it
the complete data of one entity like a customer or a vendor or a purchase order. Different versions of IDoc
can be maintained and backward compatibility is assured.

An IDoc created initially is called a basic IDoc type. A basic IDoc type can be enhanced or extended and
is called an extended IDoc type. The basic IDoc type and the extended IDoc type together are called an IDoc
type. If no extended IDoc type exists, the basic IDoc type and IDoc type are synonymous.

The IDoc is a loose term; it means different things in different contexts. In one context, it means the
super structure or the object you create using transaction code WE30–basic and extended IDoc types. In
another context, the term “IDoc” refers to a specific IDoc number. When an IDoc is generated, it is assigned
a number just like a document number. Each IDoc bearing a number will contain information of one entity–
customer, vendor, purchase order, etc. An IDoc number can be viewed as an instance of the IDoc type.

A Message Type can be assigned to one or more IDoc types and vice versa. A specific Message Type is
associated with or attached to specific programs and function modules. The specific programs and function
modules associated with a specific combination of an IDoc and a Message Type contain all the specific
functionalities required to exchange data between processes.

In addition to the specific programs and function modules associated with a specific combination of an
IDoc type and a Message Type, there are generic programs and function modules available to help in various
stages of IDoc processing.

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

524

IDoc–Deployment Scenarios
There are two very typical scenarios of IDoc deployment.

•	 Master data distribution: It involves control and maintenance of master data on a
central system within an enterprise. The master data being maintained on a central
system is distributed to other systems in the enterprise. A specific master data is
to be distributed only to particular units within the enterprise dealing with that
data. Further, the units of the enterprise receiving the data, might receive only be a
subset or specific items of data–fields they are concerned with. The master data in
an enterprise is distributed by deploying IDocs. A typical example of master data
distribution is material master distribution.

•	 Message control: When business documents such as purchase orders, sales orders,
billing documents, and so on (transactional data) are generated in an enterprise,
they can be sent to the business partners–customers or vendors or banks deploying
the IDocs.

A deployment of IDocs that does not fit into the master data distribution or message control scenarios
can be called a custom scenario.

IDocs–Storage in Database Tables
In the most common IDoc scenario, the IDoc is being deployed to transfer data from one system–source
to other system(s)–recipient(s). Data is extracted from the SAP functional module database tables in the
source system and IDocs are generated from the extracted data. Information of each entity of the extracted
data–customer, vendor, purchase order, etc.–is stored in a separate IDoc which is assigned a number, just
like a document number. The part of the IDocs containing the extracted data from SAP functional module
database tables is called data records.

Communication or control information, called control records, is incorporated into the IDocs
containing data records. The control information is generated from communication settings.

The success or failure at each stage of IDoc processing is carried along with the IDocs and is called IDoc
status records.

To sum up, IDocs contain control records, data records, and status records. The IDocs are stored in the
SAP database tables. The IDoc control records are stored in the database table EDIDC, the IDoc data records
are stored in the database table EDID4, and the IDoc status records are stored in the database table EDIDS.

When IDoc data records are stored in the SAP database tables, mostly, there will be multiple data
records bearing the same IDoc number for a single entity, because the database table structures must be flat
structures.

IDocs–Outbound and Inbound Processing
The IDocs with the control, data, and status information generated at the source system are called outbound
IDocs. Figure 7-3 depicts roughly the generation and dispatch of outbound IDocs.

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

525

The symbol used to represent the outbound IDocs in Figure 7-3 is to depict the generation of multiple
IDocs and does not represent hard copy of IDocs. Recall, the IDocs are stored in the database tables: EDIDC,
EDID4, and EDIDS. In Figures 7-4 and 7-5, the same symbol is used to represent multiple IDocs.

The outbound IDocs are transmitted to the recipient system(s) and when they reach the recipient
system(s) are called the inbound IDocs. From the inbound IDocs at each recipient system, data is transferred
or posted to the SAP functional module database tables. At a recipient system, Figure 7-4 roughly depicts the
receipt and posting of inbound IDocs to the SAP functional module database tables.

Figure 7-3. Outbound IDocs–generation and dispatch

Figure 7-4. Inbound IDocs at a recipient system–receipt and posting

Figure 7-5. Hands-on exercises context–inbound IDocs generation and posting

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

526

In the LSMW scenario of our hands-on exercises, IDocs will be generated from the data of converted
input text files (.lsmw.conv file) and in subsequent processing, transferred or posted to the purchasing
document database tables–EKKO, EKPO, and EKET. There is no transfer of data from the sender to the
recipient. Rather, the sender and recipient systems are same. There are no outbound IDocs. Inbound IDocs
are generated from the data of converted input text files (.lsmw.conv file, created in LSMW process step 11)
and subsequently posted to the purchasing document database tables–EKKO, EKPO, and EKET. Figure 7-5
depicts roughly, in the context of the hands-on exercises, the generation and posting of inbound IDocs.

IDocs–ALE Technology, SAP Ready-to-Use IDocs
Application Linking and Enabling (ALE) is a SAP proprietary technology used along with IDocs for data
distribution between loosely coupled SAP and SAP or non-SAP systems.

ALE settings for data distribution deploying IDocs would normally involve the creation of logical
systems, RFC destinations, partner numbers, partner profiles, and a distribution model. Since we are logged
into an IDES server, we can use a preexisting partner number and only change the partner profile of the
preexisting partner number. Also, since we are not distributing data as such, but transferring data from
the operating system text files into the SAP database tables (Figure 7-5) through IDocs, we are saved from
creating a distribution model.

You can create your own custom IDoc types with the related functionalities. But, more frequently, you
will deploy SAP provided ready-to-use IDoc types. SAP provides ready-to-use IDoc types for most master
and transaction data. Table 7-4 lists just a few of the SAP provided ready-to-use IDoc types along with the
Message Types.

The notation CREMAS01…..CREMAS05 in Table 7-4 indicates five different IDoc types or versions
assigned to a single Message Type, CREMAS.

In the hands-on exercises, to transfer data of purchase orders from text files into the functional module
database tables, we will be deploying the Message Type PORDCR and the IDoc type PORDCR05.

IDoc Components–A Look at the IDoc Type PORDCR05
An IDoc type is a super structure having structures and internal tables embedded with it. The structures and
internal table structures within the IDoc type are called segments. The components of a segment are segment
types, segment definitions, and fields. Different versions of a segment can be maintained. The different
versions of a segment are contained in a segment type. The segments are assigned to an IDoc type through
the segment types. Figure 7-6 is a diagrammatic representation of components of segments: segment types,
segment definitions, and fields.

Table 7-4. SAP Ready-to-Use IDoc Types and Message Types

Srl. No. IDoc Types Message Type Description

1 CREMAS01…..
CREMAS05

CREMAS Vendor Master Data Distribution

2 DEBMAS01…..
DEBMAS05

DEBMAS Customer Master Data Distribution

3 MATMAS01…..
MATMAS04

MATMAS Material Master

4 PORDCR01….
PORDCR05

PORDCR Create Purchase Order

5 SISINV01 SISINV SIS Billing Document

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

527

As you can observe in Figure 7-6, the segments are somewhat like the ABAP dictionary (flat) structures.
The attributes of fields like type, length, etc., in the segments are controlled through the data elements and
domains. The process of creation of an IDoc type starts with the creation of domains and data elements, next
the creation of segment types and segment definitions, and finally the creation of the IDoc type.

Fields within a segment can only be of ABAP dictionary types: CHAR, CLNT, CUKY, DATS, LANG,
NUMC, and TIMS–all character-oriented types. The length of a segment is not to exceed 1,000 bytes.

The IDoc type being deployed in our hands-on exercises is PORCR05. Let us view the components:
segment types, segment definitions, and fields of the IDoc type PORDCR05. To view the components of an
IDoc type, we navigated to the opening screen of transaction code WE30 as shown in Figure 7-7.

We entered the value PORDCR05 in the field Obj. Name and clicked the Display button on the
application toolbar. A screen with the segments in the IDoc type PORDCR05 appeared as shown in
Figure 7-8.

Figure 7-6. Segment types, segment definitions, and fields

Figure 7-7. Develop IDoc Types: Initial Screen

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

528

The first segment is E1PORDCR. Under the segment E1PORDCR, other segments E1BPEKKOC,
E1BPEKKOA, etc. (total of 16 segments) are located.

In the context of our hands-on exercises, we are concerned with the three segments E1BPEKKOC
(second segment), E1BPEKPOC (fifth), and E1BPEKET. (Seventh) These three segments map to the database
tables EKKO, EKPO, and EKET.

We double-clicked the segment E1BPEKKOC. A screen as shown in Figure 7-9 appeared.

Figure 7-8. Segments of IDoc type PORDCR05

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

529

The Parent segment (parent segment type) and the Hier.level (hierarchical level) of the segment type
E1BPEKKOC are marked in Figure 7-9. To view the fields of the segment, we double-clicked the segment type
E1BPEKKOC on the screen of Figure 7-9. Figure 7-10 presents a screen showing the fields of the segment
definition.

Figure 7-9. Segment type E1BPEKKOC–attributes

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

530

The segment field names are different from the corresponding cryptic field names in the database table
structure. For example, the field BEDAT of the database table structure EKKO bears the name DOC_DATE
in the segment. In all forthcoming descriptions, I will specify, as far as possible, the field names of database
table structures along their corresponding segment field names.

Returning to the screen of Figure 7-8, which displays the segment types in IDoc type PORDCR05, we
double-clicked the segment E1BPEKPOC. A screen as shown in Figure 7-11 appeared.

Since, for a specific purchase order, multiple items can exist, the field Maximum number on the screen
of the Figure 7-11 contains the value 999,999,999–making this object in the IDoc type an internal table.

Figure 7-10. Segment definition E1BPEKKOC000–fields

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

531

The Parent segment (parent segment type) and the Hier.level (hierarchical level) of the segment type
E1BPEKPOC are same as the segment type E1BPEKKOC. To view the fields of the segment, we double-clicked
the segment type E1BPEKPOC on the screen of Figure 7-11. Figure 7-12 shows a screen displaying the fields
of the segment definition.

Figure 7-12. Segment definition E1BPEKPOC004–fields

Figure 7-11. Segment type E1BPEKPOC—Attributes

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

532

We returned to the screen in Figure 7-8 displaying the segment types in the IDoc type PORDCR05. We
double-clicked the segment E1BPEKET. A screen as shown in Figure 7-13 appeared.

Since, for a specific purchase order, multiple items can exist with multiple delivery dates for an item, the
field Maximum number on the screen of the Figure 7-13 contains the value 999,999,999–making this object
in the IDoc type an internal table.

The Parent segment (parent segment type) and the Hier.level (hierarchical level) of the segment type
E1BPEKET are same as those of the segment type E1BPEKKOC. To view the fields of the segment, we double-
clicked the segment type E1BPEKET on the screen of Figure 7-13. Figure 7-14 displays a screen showing the
fields of the segment definition.

Figure 7-13. Segment type E1BPEKET–attributes

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

533

The segment definition E1BPEKET001 does not contain the field PO_NUMBER.
We have viewed the relevant components of the IDoc type PORDCR05.
The IDoc type PORDCR05 is assigned to Message Type PORDCR. The Message Type is maintained in

transaction code WE81.
The IDoc type assignments to Message Types are maintained in transaction code WE82. Figure 7-15

shows the assignment of IDoc type PORDCR05 to Message Type PORDCR.

Figure 7-15. IDoc type PORDCR05 assigned to Message Type PORDCR

Figure 7-14. Segment definition E1BPEKET001–fields

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

534

Hands-on exercise III employs the LSMW Object Type: IDoc (Intermediate Document). Hands-on
exercise III will transfer the data of purchase orders from text files into the functional module database tables
deploying the Message Type PORDCR and the IDoc type PORDCR05.

Hands-on exercise IV employs the LSMW Object Type: BAPI method. Hands-on exercise IV will transfer
the data of purchase orders from text files into the functional module database tables also deploying the
same Message Type PORDCR and the IDoc type PORDCR05 as in hands-on exercise III.

We are not elaborating on the BAPI method except to mention that the BAPI methods are implemented
using RFC enabled function modules.

The LSMW process steps for hands-on exercises III and IV are identical. In a real-life scenario, the issue
will arise whether to deploy the Object Type: IDoc or deploy Object Type: BAPI which internally uses IDocs
only. For now, you are in the learning paradigm, so, I am demonstrating the deployment of both the Object
Types: IDoc and BAPI.

The performance of the hands-on exercises follows.

Hands-on Exercise III–Migration of Purchase Order Data
Using IDoc
In this hands-on exercise, we will transfer the data of purchase orders residing in input text files on
the presentation server into the SAP functional module database tables deploying the method IDoc
(Intermediate Document) of LSMW. We will perform the data transfer with representative data of a two or
three purchase orders. We will perform the data transfer providing values for a few representative fields,
mostly mandatory fields.

The method IDoc of LSMW for purchase orders generates IDocs. When deploying the method IDoc to
create purchase orders, we will use the Message Type PORDCR and the IDoc Basic Type PORDCR05. We will
perform the Settings for IDoc Inbound Processing before proceeding to the LSMW process steps.

A description of specification and scope; IDoc Inbound Settings; creation of Subproject, Object; and
LSMW process steps follows.

Specification and Scope
The hands-on exercise will transfer data from two input text files into the purchase orders functional module
database tables using the method IDoc of LSMW. It is assumed that input data in the form of text files is in
the required form and conversions, etc., have been effected. The input data in the form of text files will reside
on and be accessed from the presentation server. The input will consist of the two text files: (1) PO (purchase
order) header data and (2) PO items data. The two text files will be related through the purchase order
number. We will maintain the text data with notepad editor on the presentation server.

Destination fields in the context of LSMW are the fields which are assigned values in process step
5–Maintain Field Mapping and Conversion Rules. Destination fields in the overall context are the database
table fields which are assigned values. The destination fields in the context of LSMW belong to the different
structures called the segments of IDocs. The names of the destination fields in the segments are different from
their corresponding cryptic names in the database table structures. Depending on context, we will refer to
the segment fields or the database table structure fields or both.

We will be assigning values only to minimum number of specified fields in the following database table
structures with their corresponding segment structures.

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

535

The fields belonging to the three structures listed in Table 7-5 will only be assigned values.

Table 7-5. Structures Whose Fields Will Assume Values

Srl. No. Database Table Structure Database Table Structure
Description

IDoc Segment Structure

1 EKKO Purchasing Document Header E1BPEKKOC

2 EKPO Purchasing Document Item E1BPEKPOC

3 EKET Purchasing Document
Scheduling Agreement Schedule
Lines

E1BPEKET

Table 7-6. Fields Which Will Be Assigned Values

Srl. No. Field Name
(Database Table)

Field Name
(IDoc Segment)

Field Description

1 EKKO-EBELN E1BPEKKOC-PO_NUMBER Purchasing Document Number

2 EKKO-BEDAT E1BPEKKOC-DOC_DATE Purchasing Document Date

3 EKKO-BSTYP E1BPEKKOC-DOC_CAT Purchasing Document Category

4 EKKO-BSART E1BPEKKOC-DOC_TYPE Purchasing Document Type

5 EKKO-LIFNR E1BPEKKOC-VENDOR Vendor Number/Code

6 EKKO-EKORG E1BPEKKOC-PURCH_ORG Purchasing Organization

7 EKKO-EKGRP E1BPEKKOC-PUR_GRP Purchasing Group

8 EKPO-EBELN E1BPEKPOC-PO_NUMBER Purchasing Document Number

9 EKPO-MATNR E1BPEKPOC-PUR_MAT Material Number/Code

10 EKPO-EBELP E1BPEKPOC-PO_ITEM Item Number of Purchasing
Document

11 EKPO-NETPR E1BPEKPOC-NET_PRICE Net Price Purchasing Document

12 EKPO-MATKL E1BPEKPOC-MAT_GRP Material Group

13 EKPO-WERKS E1BPEKPOC-PLANT Plant to which Material to be
Delivered

14 EKET-EBELN E1BPEKET-PO_NUMBER Purchasing Document Number

15 EKET-EBELP E1BPEKET-PO_ITEM Item Number of Purchasing
Document

16 EKET-ETENR E1BPEKET-SERIAL_NO Delivery Schedule Line Counter
or Number

17 EKET-MENGE E1BPEKET-QUANTITY Scheduled Quantity

18 EKET-EINDT E1BPEKET-DELIV_DATE Item Delivery Date

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

536

The field EBELN is repeating in database table structures EKKO and EKPO for relationship. The fields
EBELN and EBELP are repeating in database table structures EKPO and EKET for relationship.

We will now specify the manner in which the destination or segment fields will assume values.
The fields of segment E1BPEKKOC will assume the same constant values for all the purchase orders

being migrated.

 ■ Caution before you adopt the values for field numbers 2 and 3, check the validity of these values on
your system. if you are operating on an iDes server and logged into client 800, the foregoing values should
be all right.

The values for the fields of segment E1BPEKKOC in Table 7-8 will originate from the text file–PO
header data.

The field EBELN is autogenerated on the system we are working upon. With autogeneration,
whatever value provided for field PO_NUMBER from the input does not get assigned to the field EBELN
in the database tables. The field PO_NUMBER has been incorporated into the PO header data for LSMW
processing–connecting the PO items data with it, which items belong to which PO?

Table 7-7. Fields with Constant Values

Srl. No. Field Name
(Database Table)

Field Name
(IDoc Segment)

Field Description Value

1 EKKO-BEDAT E1BPEKKOC-DOC_DATE Purchasing Document
Date

SY-DATUM

2 EKKO-BSTYP E1BPEKKOC-DOC_CAT Purchasing Document
Category

F

3 EKKO-BSART E1BPEKKOC-DOC_TYPE Purchasing Document
Type

NB

Table 7-8. Fields with Values Originating from Text File–PO Header Data

Srl. No. Field Name
(Database Table)

Field Name
(IDoc Segment)

Field Description

1 EKKO-EBELN E1BPEKKOC-PO_NUMBER Purchasing Document Number

2 EKKO-LIFNR E1BPEKKOC-VENDOR Vendor Number/Code

3 EKKO-EKORG E1BPEKKOC-PURCH_ORG Purchasing Organization

4 EKKO-EKGRP E1BPEKKOC-PUR_GROUP Purchasing Group

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

537

We are combining the fields to be assigned values for segments E1BPEKPOC and E1BPEKET into one input
text file–PO items data. We are doing this deliberately, to demonstrate that while configuring the input data, we
must bear in mind the data model of database tables: EKKO, EKPO, and EKET. Table 7-9 lists the fields.

The field PO_NUMBER in the PO items data is for connecting the PO items data with the PO header
data, which items belong to which PO?

Having described the specifications and scope of the hands-on exercise, we will first perform the
Settings for IDoc Inbound Processing. Next, we will create Subproject YCH_07_PO under the existing
Project YCH06_DM. We will then proceed to create the Object YCH07_PO_IDOC under the Project and
Sub-Project YCH06_DM/YCH_07_PO. After creating the Object YCH07_PO_IDOC, create and execute
LSMW process steps.

Perform IDoc Inbound Settings
The IDoc Inbound Settings is attached to a Project in the LSMW. The different Objects under a Project can use
the same IDoc Inbound Settings. Different Projects will have different IDoc Inbound Settings.

We navigated to the LSMW opening screen, entered the Project name as YCH06_DM. To perform the
IDoc Inbound Settings, we made the following menu selection: Settings ➤ IDoc Inbound Settings. A screen
as shown in Figure 7-16 appeared.

Table 7-9. Fields with Values Originating from Text File–PO Items Data

Srl. No. Field Name
(Database Table)

Field Name
(IDoc Segment)

Field Description

1 EKPO-EBELN E1BPEKPOC-PO_NUMBER Purchasing Document Number

2 EKPO-MATNR E1BPEKPOC-PUR_MAT Material Number/Code

3 EKPO-EBELP E1BPEKPOC-PO_ITEM Item Number of Purchasing Document

4 EKPO-NETPR E1BPEKPOC-NET_PRICE Net Price in Purchasing Document

5 EKPO-MATKL E1BPEKPOC-MAT_GRP Material Group

6 EKPO-WERKS E1BPEKPOC-PLANT Plant to which Material to be Delivered

7 EKET-ETENR E1BPEKET-SERIAL_NO Delivery Schedule Line Counter or
Number

8 EKET-MENGE E1BPEKET-QUANTITY Scheduled Quantity

9 EKET-EINDT E1BPEKET-DELIV_DATE Item Delivery Date

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

538

We will have to enter the three mandatory fields: File port, Partn.Type, and Partner No.
The File port is required only if the EDI subsystem is operative. In our hands-on exercise execution, the

EDI subsystem is inoperative. But, we have to provide the File port as it is a mandatory field on the screen of
Figure 7-16. When the EDI subsystem is operative, inbound IDocs are generated as operating system files.
The inbound IDocs generated as operating system files must reside in a folder. The value in the field File port
on the screen of Figure 7-16 specifies the folder. To specify a File port, we clicked the button Maintain Ports
on the screen of Figure 7-16. A screen as shown in Figure 7-17 appeared.

Figure 7-16. LSMW–Settings for IDoc Inbound Processing

Figure 7-17. Ports in IDoc Processing

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

539

We positioned the cursor on the node File and clicked the Create button. A screen to create a new File
port appeared. We made the appropriate selections and entries as shown in Figure 7-18.

We entered the Port name as YCH07_FP. We accepted the following defaults: Radio button IDoc record
types SAP Release 4.x and check box Unicode format. We selected the Radio button Physical Directory. We
assigned value to the field Directory by pressing function key F4 and making a selection from the list. We
assigned a value to the field Function module by pressing function key F4 and making a selection from
the list. The assigned function module generates the IDoc file names. The creation of a File port can be
performed from transaction code WE21 as well.

We saved the screen and navigated back to the IDoc Inbound Processing screen. We clicked the button
Maintain Partner Numbers. A screen as shown in Figure 7-19 appeared.

Figure 7-18. Creating a file port

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

540

We expanded the node Partner Type LS–Logical Systems and selected the preexisting Partner No.
XI_00_800 as shown in Figure 7-20.

Figure 7-19. Partner profiles

Figure 7-20. Partner profile–Partner No. XI_00_800

In the bottom left corner of Figure 7-20, the selected Partner No. XI_00_800 is marked. In the bottom
right half of Figure 7-20, the Outbound parmtrs. and the Inbound parmtrs. appear. The Outbound parmtrs.
and the Inbound parmtrs, essentially, consist of the IDoc Message Types assigned to the Partner No.
XI_00_800 for generation of outbound and inbound IDocs, respectively.

Since, in our scenario, inbound IDocs are to be generated, we must ensure that the IDoc Message Type
PORDCR is assigned to the Inbound parmtrs. of the Partner No. XI_00_800. On the IDES system, we are
operating upon, we have to assign IDoc Message Type PORDCR to the Inbound parmtrs. of the Partner No.

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

541

XI_00_800. To assign an IDoc Message Type to the Inbound parmtrs. of a Partner No., we clicked the Insert

button available under the Inbound parmtrs., not visible in Figure 7-20. Figure 7-21 shows the screen for
the assignment of an IDoc Message Type to Partner No. with the entered values and selections.

We saved the screen and navigated back to the Partner Profiles screen of Partner No. XI_00_800. We
scrolled down to confirm the assignment of IDoc Message Type PORDCR to the Inbound parmtrs. of the
Partner No. XI_00_800 as shown in Figure 7-22.

Figure 7-21. Partner No. XI_00_800–Inbound parameters

Figure 7-22. Partner No. XI_00_800–inbound parameters: Message Type PORDCR

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

542

The Partner Profiles can be maintained with transaction code WE20 as well.
If you are working in client 800 of the IDES server, you can use the Partner No. B3TCLNT800 instead of

XI_00_800. A Partner No. is associated with a client. The names of Partner No. in the IDES server contain the
client as the last three characters. If you are not working on the IDES server, you will have to create a Partner
No. along with its underlying components.

From the screen of Partner Profiles, we navigated back to the Settings of IDoc Inbound Processing. We
entered the values for the three fields: File port as YCH07_FP, Partn.Type as LS, and Partner No. as XI_00_800
and saved the screen as shown in Figure 7-23.

We clicked the button Activate IDoc Inbound Processing. A confirmation alert dialog box appeared as
shown in Figure 7-24.

Figure 7-23. LSMW–Settings performed for IDoc Inbound Processing

Figure 7-24. LSMW–Confirm Activate IDoc Inbound

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

543

We clicked the Yes button on the dialog box.
This concludes the Settings for IDoc Inbound Processing. We navigated to the opening screen of LSMW.

Create Subproject YCH07_PO
To create the Subproject YCH07_PO under the existing Project YCH06_DM, we entered YCH06_DM in the
field Project on the opening screen of LSMW and clicked the button All Project Objects of the application
toolbar. The hierarchical tree with nodes and subnodes of the Project YCH06_DM appeared as shown in
Figure 7-25.

We positioned the cursor on Project node YCH06_DM and clicked the Create button on the application
toolbar. A dialog box for entry of Subproject name and description appeared. Figure 7-26 shows the dialog
box with the entered values.

We clicked the Continue button on the Create Subproject dialog box. The Subproject YCH07_PO was
created as shown in Figure 7-27.

Figure 7-25. Project YCH06_DM – Hierarchical Tree

Figure 7-26. Create Subproject YCH07_PO under Project YCH06_DM

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

544

We saved the screen and navigated back to the LSMW opening screen.
This concludes the creation of Subproject YCH07_PO under the Project YCH06_DM.

Create Object YCH07_IDOC
To create the Object YCH07_IDOC under the Project/Subproject YCH06_DM/YCH07_PO, on the opening
screen of LSMW, we entered the Project name as YCH06_DM, entered the Subproject name as YCH07_PO,
and entered the Object name as YCH07_IDOC. We positioned the cursor on the Object field and clicked the
Create button on the application toolbar. The dialog box to enter a description of the Object popped up. We
entered a suitable description as shown in Figure 7-28.

We clicked the Continue button and the Object YCH07_IDOC was created in the Project YCH06_DM and
the Subproject YCH07_PO. Next, we have to perform the process steps.

To perform the process steps, we clicked the Execute button on the application toolbar of LSMW
opening screen.

Our descriptions of process steps 1 to 12 will be brief, since they were described elaborately in the
hands-on exercises I and II in Chapter 6.

We started off by executing process step 1 by selecting the Radio button and clicking the Execute button.

Figure 7-27. Subproject YCH07_PO under Project YCH06_DM created

Figure 7-28. LSMW–create Object YCH07_IDOC

http://dx.doi.org/10.1007/978-1-4842-3183-8_6

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

545

Process Step 1–Maintain Object Attributes
We clicked the Display/Change toggle button on the application toolbar to enable changes on the screen.

On the process step 1 screen, in the Attributes area, we entered and specified the following:

•	 Suitable description already entered during creation of the Object appears.

•	 The Owner as the logged-in user, which is the default. We can assign any other valid
user name.

•	 The data transfer Radio button: Once Only.

•	 The file names you are going to specify are not System Specific–check box disabled.

In the Object Type and Import Method area of the process step 1 screen, we clicked the Object Type
Radio button as IDoc. We positioned the cursor in the field Message Type, and pressed the function key F4.
Next, we pressed the keys ctrl + F to invoke the search dialog box. We entered the word “Purchase” in the
search dialog box as shown in Figure 7-29.

We clicked the Continue button on the search dialog box. A list of entries with the word “purchase” was
returned as shown in Figure 7-30.

Figure 7-29. Select Message Type –search dialog box

Figure 7-30. Select Message Type–list with word “purchase”

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

546

We selected, from the Select Message Type list, the entry PORDCR–Create Purchase Order. Similarly,
we assigned as PORDCR05 to the field Basic Type. Figure 7-31 shows the screen with all the entries and
assignments.

Then we saved and exited the screen of process step 1.
You can observe that the number of process steps is 16 after the execution of process step 1.

Process Step 2–Maintain Source Structures
We navigated to the screen of process step 2. On the screen of process step 2, we switched to change mode.
We created the two source structures–POHEADER and POITEMS–corresponding to our two input text files
as shown in Figure 7-32.

Figure 7-31. Process step 1: all entries and assignments

Figure 7-32. Process step 2–Maintain Source Structures

We saved and returned to the screen with the process steps.

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

547

Process Step 3–Maintain Source Fields
We executed process step 3 and switched the screen to change mode. We inserted the fields in the two
source structures POHEADER and POITEMS as shown in Figure 7-33.

The order of the fields in the source structure must be identical to the order in which data is located in
the text files. We are using text files with one line for one row of data, with comma (,) as a field separator.

We saved and returned to the process steps screen.

Process Step 4–Maintain Structure Relations
We executed process step 4 and switched the screen to change mode.

Our destination structures are the segments (structures) including the super structure segment
E1PORDCR (see Figure 7-34).

Figure 7-33. Process step 3–create source field: all fields under two source structures created

Figure 7-34. Process step 4–Maintain Structure Relations

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

548

The 18 fields to which we propose to assign values originate from the three segments: E1BPEKKOC,
E1BPEKPOC, and E1BPEKET. The fields in the segment E1BPEKKOC map to the source structure
POHEADER; the fields in the segments E1BPEKPOC and E1BPEKET map to the source structure POITEMS

Figure 7-34 shows the assignment of source structures to destination segments or structures.
The selection of segments E1BPEKKOA and E1BPEKPOA in the Structure Relations are redundant; the

redundant selections are being maintained to demonstrate that whatever segments are selected in process
step 4 will appear in the reviews of IDocs.

This completes process step 4. We saved and returned to the process steps screen.

Process Step 5–Maintain Field Mapping and Conversion Rules
From the screen of process steps, we executed process step 5 and, switched the screen to change mode.

Figure 7-35 shows the field mapping for the six fields, DOC_DATE, DOC_TYPE, DOC_CAT, PURCH_
ORG, PUR_GROUP, and VENDOR, of the segment E1BPEKKOC. Recall that the field E1BPEKKOC-PO_
NUMBER–purchasing document number–is autogenerated.

Figure 7-36 shows the field mapping for the three fields PO_ITEM, PUR_MAT, and MAT_GRP of the
segment E1BPEKPOC.

Figure 7-35. Process step 5–assignment to fields of segment E1BPEKKOC

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

549

Figure 7-37 shows the field mapping for the two fields PLANT and NET_PRICE of the segment
E1BPEKPOC.

Figure 7-38 shows the field mapping for four fields PO_ITEM, SERIAL_NO, DELV_DATE, and
QUANTITY of the segment E1BPEKET.

We performed a validity check, ctrl+F2 or sixth button from the left on the application toolbar. We saved
the changes and returned to the process steps screen.

Figure 7-36. Process step 5–assignment to fields of segment E1BPEKPOC–I

Figure 7-37. Process step 5–assignment to fields of segment E1BPEKPOC–II

Figure 7-38. Process step 5–assignment to fields of segment E1BPEKET

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

550

Process Step 7–Specify Files
From the screen of process steps, we executed process step 7 and switched the screen to change mode.

As the input text files are to be located on the presentation server, we positioned the cursor on the node
Legacy Data on the PC (Frontend) and clicked the Create button on the application toolbar. The dialog box to
input file entries appeared. We selected the file PO_HEADER.txt from the folder D:TEMP, entered a suitable
description, and selected comma (,) as field separator in the Delimiter area. Figure 7-39 illustrates.

We clicked the Continue button on the dialog box. The file PO_HEADER.txt got specified. In a similar
manner we specified the second files: PO_ITEM.txt. Figure 7-40 shows the screen with both the two files
specified.

Figure 7-39. Process step 7–specify file: PO_HEADER.txt

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

551

We saved the changes on the screen of process step 7.
This concludes process step 7. We navigated back to the process steps screen.

Process Step 8–Assign Files
From the screen of process steps, we executed process step 8 and switched the screen to change mode.

We assigned the input text files to the respective source structures.
Figure 7-41 shows the screen after the assignment of two input files to the two source structures.

We saved the changes on the screen of process step 8.
This concludes process step 8. We navigated back to the process steps screen.

Data Creation on Presentation Server
We are digressing from the process steps of LSMW to describe the creation of input text files on the
presentation server.

We created in the input file, two purchase orders. The first purchase order –101 contains two materials,
and both the materials have a single delivery date. For PO 101, one row must be created in the database table
EKKO and two rows each must be created in the database tables EKPO and EKET, respectively. The second
purchase order–102 has one material, with two delivery dates. For PO 102, one row each must be created in
the database tables EKKO and EKPO, respectively, and two rows must be created in the database table EKET.

Figure 7-40. Process step 7–files PO_HEADER and PO_ITEM

Figure 7-41. Process step 8–files assigned to Source Structures

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

552

We can use the same input data (i.e., PO 101 and PO 102) repeatedly as these do not get assigned to the
destination EBELN. EBELN is autogenerated.

Figure 7-42 shows the PO header data of two purchase orders, 101 and 102.

The PO header data consists of four fields: EBELN, LIFNR, EKORG, and EKGRP. We are using
comma (,) as a field separator. We have entered the data of the field LIFNR with leading zeroes although it
is not necessary. The values for the field EBELN (101 and 102) serve the purpose of linking the items and
deliveries to the purchasing documents. The purchasing document numbers will be autogenerated in the
database tables.

Confirm the validity of values for the fields LIFNR, EKORG, and EKGRP on your system. If you are
logged into client 800 or its equivalent of IDES server, the adoption of values being provided here should be
all right.

Figure 7-43 shows the PO items (and delivery) data of two purchase orders, 101 and 102.
The po items data consists of nine fields: EBELN, MATNR, EBELP, ETENR, MENGE, NETPR, MATKL,

WERK, and EINDT. We deliberately provided zero value to the field NETPR in the first, third, and fourth rows
(double comma). We are using comma (,) as a field separator.

Confirm the validity of values for the fields MATNR, MATKL, and WERK on your system. If you are
logged into client 800 or its equivalent of IDES server, the adoption of values being provided here should be
all right.

This concludes the creation of input text files on the presentation server. We will resume the
performance of LSMW process steps.

Process Step 9–Read Data
From the screen of process steps, we executed process step 9.

In process step 9, data is fetched from user created input text files and assembled together for an entity–
purchase order and stored in the file with the postfix: .lsmw.read.

The execution of process step 9 produced an output of statistics of input text data read and written or
imported as shown in Figure 7-44.

Figure 7-43. PO items data–text file

Figure 7-42. PO header data–text file

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

553

The output report of Figure 7-44 indicates the number of rows read into each of the source structures
POHEADER and POITEMS.

This concludes process step 9. We navigated back to the process steps screen.

Process Step 10—Display Read Data
The execution of process step 10 produced an output of the input text data read and written or imported as
shown in Figure 7-45.

You can click any of the lines to view the detail on a single screen.
This concludes the optional process step 10. We navigated back to the process steps screen.

Process Step 11—Convert Data
From the screen of process steps, we executed process step 11.

Recall, in process step 11, data is assigned to the destination fields as per the specifications in process
step 5 and written to the file with the following postfix: .lsmw.conv.

Figure 7-44. Process step 9—Import Data output screen

Figure 7-45. Process step 10—display imported data

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

554

The execution of process step 11 produced an output of statistics of converted data as shown in Figure 7-46.

Data is read from the input data file—file with postfix .lsmw.read—and written to the converted data
file—file with postfix .lsmw.conv.

The rows written to the converted file appear as the line Records Written in Figure 7-46. The number
of rows written to the converted file, 20, will become apparent when you execute the next process
step—process step 12.

This concludes process step 11. We navigated back to the process steps screen.

Process Step 12—Display Converted Data
The execution of process step 12 produced an output of the converted data as shown in Figure 7-47.

Figure 7-46. Process step 11—Convert Data output screen

Figure 7-47. Process step 12—Display Converted Data

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

555

In process step 4—Maintain Structure Relations—we assigned source structure to five segments
(destination structures): E1BPEKKOC, E1BPEKKOA, E1BPEKPOC, E1BPEKPOA, and E1BPEKET.

Since, in a purchase order, there will be one row for each of the segments E1BPEKKOC and
E1BPEKKOA, it will work out to four rows for two purchase orders.

Since, for every item in a purchase order, there will be one row for each of the segments E1BPEKPOC,
E1BPEKPOA, E1BPEKET, for four deliveries, this will work out to 12 rows.

Process step 11 is generating two additional rows for each entity or purchase order in segments EDI_
DC40 and E1PORDCR. For two purchase orders, this will work out to four rows. The total number of rows in
the converted data will be 4 + 12 + 4 = 20, as shown in Figure 7-47.

This concludes the optional process step 12. We navigated back to the process steps screen.

Process Step 13—Start IDoc Generation
From the screen of process steps, we executed process step 13. Process step 13 generates IDocs from the
converted data—file with secondary name .lsmw.conv. When we executed process step 13, a prompt
appeared for input of converted data file and proposing a default converted data file as shown in Figure 7-48.

We clicked the Execute button and an output of an info message as shown in Figure 7-49 appeared.

Corresponding to our two purchase orders, two IDocs are generated.
This concludes process step 13. We navigated back to the process steps screen.

Process Step 14—Start IDoc Processing
From the screen of process steps, we executed process step 14. Process step 14 transfers data from the IDocs
to the Application documents—in our case the purchase order database tables EKKO, EKPO, and EKET.

Figure 7-48. Process step 13—generate IDocs

Figure 7-49. Process step 13—IDocs generated

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

556

When you execute process step 14, an elaborate selection screen for input appears. The values from the
creation of the latest IDocs for the fields Created on, Created at, Message Type, and so on, are picked up and
appear as default values on the selection screen as shown in Figure 7-50.

We accepted the default values and clicked the Execute button.
When all the IDocs were processed, the system navigated to the screen shown in Figure 7-51.

The screen in Figure 7-51 lists the IDocs processed. IDoc 743749 has been successfully posted and
purchase order created—status code 53, as shown in Figure 7-51. We can view the details of each IDoc (e.g.,
control info, data, and status info) by double-clicking an IDoc. Let us view the details of the erroneous and
unposted IDoc 743750 corresponding to purchase order 102 with two (multiple) delivery dates for the single
item in it. We double-clicked IDoc 743750 and the screen shown in Figure 7-52 appeared.

Figure 7-50. Process step 14—IDocs processing

Figure 7-51. Process dtep 14—IDocs processed

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

557

On the top lefthand corner of Figure 7-52, the nodes Control record, Data Records, and Status records
appear. We expanded node Status records in Figure 7-52. The statuses which the IDoc 743750 attained—50,
64, 62, 51—are marked in the figure. IDoc 743750 did not get posted as Item 00010 already exists.

In the database table EKPO, for a specific purchase order, the field EBELP cannot be assigned duplicate
values since the fields EBELN and EBELP constitute the primary key fields.

In the database table EKET, for a specific purchase order, the field EBELP can be assigned duplicate,
triplicate, etc. values (multiple delivery dates of an item) since the fields EBELN, EBELP, and ETENR
constitute the primary key fields.

Since we have two deliveries dates for the single item in PO 102 and we have combined the data of items
and delivery into one input file, the field EBELP of the database table EKPO is being assigned duplicate value
which is generating an error. The input data of PO 102 was rejected.

For now, for PO 102, we will provide data of two delivery dates with two item numbers, 0010 and 0015.
This will create two rows in the database table EKPO and two rows in the database table EKET. This is
contrary to our specifications: in a specific purchase order, for an item with multiple delivery dates, only one
row is to be created in the database table EKPO and multiple rows are to be created in the database table
EKET.

In hands-on exercise IV, we will rectify the situation by providing the item data and delivery dates data
in two separate input files instead of combining them into one input file.

We changed the last line in PO items (and delivery) data from the existing
102,101-110,0010,0002,300,,001,1000,20170202 to 102,101-110,0015,0002,300,,001,1000,20170217.
With the change in input, we again performed the following process steps:

9. Read Data

11. Convert Data

13. Start IDoc Generation

14. Start IDoc Processing

When all the IDocs were processed, the system navigated to the screen shown in Figure 7-53.

Figure 7-52. Process step 14—IDoc 743750 details

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

558

IDocs 743751 and 743752 have been successfully posted snf PO created—status code 53, as shown
in Figure 7-53. Let us view the details of IDoc 743752 corresponding to PO 102. We double-clicked IDoc
number 743750 and the screen shown in Figure 7-54 appeared.

In Figure 7-54, we expanded the node Data records and the subnode E1PORDCR under it. The
redundant segments—segments whose fields were not assigned any values—E1BPEKKOA and E1BPEKPOA
are marked in Figure 7-54. We had incorporated the redundant segments to demonstrate that whatever
segments you make assignments to in process step 4—Maintain Structure Relations—will appear in the IDoc
reviews.

We selected the segment E1BPEKKOC. The field values of the selected segments appear in the bottom
right corner of Figure 7-54.

The first time we had submitted the data of input PO 101 and PO 102, the input of PO 101 was accepted
and the input of errorprone PO 102 was rejected, and so one purchase order was successfully created.

After correction to the input text file of PO 102, we submitted the input data of POs 101 and 102. The
input data of POs 101 and 102 was accepted, thereby resulting in the successful creation of two purchase
orders. In total, three purchase orders were created in the two submissions of input data.

This concludes process step 14. We navigated back to the process steps screen.

Figure 7-54. Process step 14—IDoc 743752 details

Figure 7-53. Process step 14—IDocs processed after correction of input data, etc.

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

559

Process Step 15—Create IDoc Overview
From the screen of process steps, we executed process step 15. In process step 15, we can view the IDocs
created and processed. When you execute process step 15, the elaborate selection screen exactly like the one
in process step 14 for input appears. The values from creation of latest IDocs for the fields Created on, Created
at, Message Type, etc., are picked up and appear as default values on the selection screen. When you click the
Execute button on the selection screen, the IDocs fulfilling field values on the selection screen are listed.

We entered 26.12.2016 in the field Created on and clicked Execute button. A list containing the four
IDocs created in the current hands-on exercise appeared as shown in Figure 7-55.

You can view details of each IDoc like control info, data, and status info by double-clicking an IDoc as in
process step 14.

The IDocs list produced in this process step contains more columns than the IDocs list produced in
process step 14.

Process Step 16—Start IDoc Follow-Up
Process step 16 is to resubmit error IDocs again for processing. When the process step is executed, a screen
as shown in Figure 7-56 appeared.

Figure 7-55. Process step 15—selected IDocs list

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

560

The screen in Figure 7-56 offers of the ability to select a scenario of error IDocs to be resubmitted for
processing.

There are whole lot of facilities to make corrections to error IDocs, submit corrected IDocs for
processing, etc. The description of these facilities is beyond the scope of this book.

This concludes the process step 16, the last process step.

Purchase Orders Created—Cross-Verification with Input Data
We will now verify the three purchase orders that were created as per the input data. To verify the creation of
purchase orders, we navigated to the opening screen of transaction code ME22N—Change Purchase Order.
On the opening screen of transaction code ME22N, we made the menu selection Purchase Orders ➤ Other
Purchase Order as shown in Figure 7-57.

Figure 7-57. Transaction code ME22N—menu selection

Figure 7-56. Process step 16—Start IDoc Follow-Up

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

561

The menu selection popped up a dialog box as shown in Figure 7-58.

We pressed function key F4 for a selection list. The dialog box to filter purchasing documents appeared
as shown in Figure 7-59.

We want to view a list containing only the purchase orders created through the current hands-on
exercise. We are able to filter out the purchase orders created in the current hands-on exercise by entering in
the field Document Date the value of 26.12.2016 as shown in Figure 7-59. We clicked the Continue button on
the filter dialog box. A list containing the three purchase orders with Document Date as 26.12.2016 appeared
as shown in Figure 7-60.

Figure 7-58. Select Document—purchase order

Figure 7-59. Select Document—purchase order: filter dialog box

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

562

The POs 4500017096 and 4500017097 have identical data; each of them contains two materials, with a
single delivery date for each of materials. Viewing any one of them for verification will suffice.

From the list, we selected PO 4500017097, which contains two materials, with a single delivery date for
each of the materials. Figure 7-61 shows thhe PO 4500017097 details screen.

As you can observe in Figure 7-61, the header data has been created as per our input data.

Document Type and Category: Standard PO

Vendor: 3021

Doc. Date: 26.12.2016

If you click the button at the top left corner, you can view the two additional fields of the header
data (tab—Org. Data) as shown in Figure 7-62.

Figure 7-60. Selected purchase orders—document date = 26.12.2016

Figure 7-61. Selected PO 4500017097—detail

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

563

As you can see in Figure 7-62, the additional header data has been created as per our input data.

Purch. Org.: 3000

Purch. Group: 001

The item data for the two materials except for net price has been created as per our input data.

Itm: 10 and 20

Material: ISA-0023 and ISA-1016

PO Quantity: 10 PC and 70 PC

Net Price: 370.00 and 125.00 [not as per input data]

If you scroll to the right, you can view the two additional fields Matl. Group and Plnt. of the item data as
shown in Figure 7-63.

The additional item data has been created as per our input data.

Matl Group (Material Group): 060 and 060 (Furnitures)

Plnt (Plant): 3200 and 3200 (Atlanta)

Figure 7-64 shows the delivery data for the two materials.

Figure 7-62. Purchase Order 4500017097—tab: Org. Data

Figure 7-63. Purchase Order 4500017097—item data: Matl. Group and Plnt

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

564

The delivery data for the two materials has been created as per our input data.

Itm: 10 and 20

Delivery Date: 02.02.2017 and 02.02.2017

Sch. Qty: 10 PC and 70 PC

Having verified the creation of PO 4500017097 as per the input data except net price, we next fetched
the details of PO 4500017098, which contains only one material, with two delivery dates for the material.
Figure 7-65 shows the PO 4500017098 details screen.

As you can see in Figure 7-65, the header data has been created as per our input data.

Document Type and Category: Standard PO

Vendor: 1000

Doc. Date: 26.12.2016

Figure 7-64. Purchase Order 4500017097—item 20 delivery date

Figure 7-65. Selected PO 4500017098—detail

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

565

If you click on the button at the top left corner, you can view the two additional fields of the header
data (tab—Org. Data) as follows:

Purch. Org.: 1000

Purch. Group: 026

The item data for the single material (101-110 split into two items) except for net price has been created
as per our input data.

Itm: 10 and 15

Material: 101-110 and 101-110

PO Quantity: 200 PC and 300 PC

Net Price: 5.05 and 5.05 [not as per input data]

If you scroll to the right, you can view the two additional fields of the item data as follows:

Matl Group (Material Group): 001 and 001 (Metal processing)

Plnt (Plant): 1000 and 1000 (Werk Hamburg)

Figure 7-66 shows the delivery data for the single material.

The delivery data for the single material has been created as per our input data.

Itm: 10 and 15

Delivery Date: 02.02.2017 and 17.02.2017

Sch. Qty: 200 PC and 300 PC

Figure 7-66. Purchase Order 4500017098—item 15 delivery date

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

566

We have verified that the two purchase orders were created as per the input data and specifications
except for the following:

•	 The net price destination field E1BPEKPOC-NET_PRICE is not getting assigned a
value from the input data, but instead is being assigned a value from info records.

•	 Multiple delivery dates for a material is getting created only if you have as many
items as number of delivery dates.

We will rectify these deficiencies in the next hands-on exercise.
This concludes the cross-verification of purchase orders created with input data.

Hands-on Exercise III—Recapitulation
The hands-on exercise set out to transfer the data of purchase orders from two text files residing on the
presentation server into the SAP functional module database tables from the LSMW environment deploying
the Object Type as IDoc.

We started off by describing the scope and specifications of the hands-on exercise. We identified
the database tables whose fields will assume values. We further identified which of the fields will assume
constant values and which of the fields will be assigned values from input files, etc.

We performed the Settings for IDoc Inbound Processing.
We initially created the Subproject YCH07_PO under the existing Project YCH06_DM.
We then created the Object YCH07_IDOC under the Project YCH06_DM and Subproject YCH07_PO.
In process step 1, we specified the Object Type as IDoc and the Message Type as PORDCR and Basic Type

PORDCR05. Inbound IDocs would be generated from the converted data,
The next three process steps, as usual, involved specification of source structures, fields in the source

structures, and relationships between source and destination segments (structures).
In process step 5, we assigned values to destination segment fields.
We skipped process step 6—Fixed Values, Translations, and User-Defined Routines.
In process step 7, we specified the input text files and assigned the input text files to the source

structures in process step 8.
We created representative input text data files of two purchase orders on the presentation server using

the note pad editor.
We executed process step 9 for reading of input data and writing the input data to the file with the

postfix .lsmw.read. In process step 10, we viewed the data from the file with the postfix .lsmw.read.
We executed process step 11 for conversion of data, writing the converted data to the file with the postfix

.lsmw.conv. In process step 12, we viewed the data from the file with the postfix .lsmw.conv.
Process step 13 generated inbound IDocs.
In process step 14, the generated inbound IDocs were processed or posted to the application—

transferred to the SAP functional module database tables. Process step 14 also provided for a review of just
processed IDocs.

Process step 15 provided for a review of IDocs. Process step 16 provided for the resubmission of IDocs
with errors for posting. We did not perform process step 16.

We performed a visual cross-verification that the purchase orders were created as per the input data
(with certain exceptions) using transaction code ME22N.

This concludes hands-on exercise III.

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

567

Hands-on Exercise IV—Migration of Purchase Order Data
Using Business Object Method
In this hands-on exercise, we will transfer the data of purchase orders residing in input text files on the
presentation server into the SAP functional module database tables deploying the BAPI method of LSMW.
We will perform the data transfer with representative data of two or three purchase orders. We will perform
the data transfer providing values for the 18 fields as in hands-on exercise III.

The BAPI method of LSMW for purchase orders creates IDocs as in hands-on exercise III of this chapter.
The BAPI method to create purchase orders uses the same Message Type/IDoc Basic Type as in hands-on
exercise IIIPORDCR/PORDCR05. So, the LSMW process steps in the current hands-on exercise are identical
to those process steps of hands-on exercise III. The Settings for IDoc Inbound Processing performed in
hands-on exercise III will serve us in the current hands-on exercise as well.

Deficiencies of Hands-on Exercise III—Rectification
We will rectify the deficiencies of hands-on exercise III. In hands-on exercise III, the net price—destination
field E1BPELPOC-NET_PRICE—was not getting assigned the value we were supplying from the input text
file PO items data. By default, the destination field E1BPELPOC-NET_PRICE is assigned a value from info
records. If you want the default value assignment from the info records to the destination field E1BPELPOC-
NET_PRICE to be overruled, you have to set the destination field E1BPEKPOC-PO_PRICE to X.

Again, in hands-on exercise III, we were unable to create properly multiple delivery dates for an item. For
instance, a purchase order has an item A with quantity 500 pieces. Item A is to be delivered in two lots. The
first lot quantity 300 pieces is to be delivered on a specified date and the second lot quantity 200 pieces is to be
delivered on another specified date. For the scenario described, the database table EKPO must contain one
row for the item A, with the total quantity of 500 pieces. The database table EKET must contain two rows for the
item A, with the corresponding quantities of 300 pieces and 200 pieces to be delivered on different dates.

In hands-on exercise III, the problem was the manner in which we were providing the input data of
items and item deliveries. The destination field E1BPEKPOC-PO_ITEM cannot receive duplicate values for
a purchase order. The destination field E1BPEKET-PO_ITEM can receive duplicate values for a purchase
order—multiple delivery dates. We had combined the data of fields of the segments E1BPEKPOC and
E1BPEKET into single input file, thus creating the possibility of providing duplicate values for the destination
field E1BPEKPOC-PO_ITEM.

In the present hands-on exercise, we will provide the data for fields of the segments E1BPEKPOC and
E1BPEKET from two separate input files. The values for the destination fields E1BPEKPOC-PO_ITEM and
E1BPEKET-PO_ITEM will be received from two different input structure fields instead of a single input
structure field as in hands-on exercise III.

So, in the current hands-on exercise, we will locate the input data in three text files instead of the two
input text files in hands-on exercise III. The first input file will be designated the PO header data. The second
input file will be designated the PO items data. The third input file will be designated the PO delivery data.

A detailed description of specification, scope, and LSMW process steps follows.

Specification and Scope
The hands-on exercise will transfer data from three text files into the purchase orders’ functional module
database tables using the BAPI method of LSMW. It is assumed that input data in the form of text files is in
the required form and conversions have been effected. The input data in the form of text files will reside on
and be accessed from the presentation server. The input will consist of the three text files: (1) PO header
data, (2) PO items data, and (3) PO delivery data. The three text files will be related through the purchase
order number. We will maintain the text data with notepad editor on the presentation server.

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

568

Other specifications of the current hands-on exercise are identical to those of hands-on exercise III in
this chapter.

The following fields (see Table 7-10) will assume the same constant values for all the purchase orders
being migrated.

 ■ Caution before you adopt the values for field numbers 2 and 3, check the validity of these values on
your system. if you are operating on an iDes server and logged into client 800, the foregoing values should
be all right.

The values for the fields in Tablle 7-11 will originate from the text file PO header data.

Table 7-10. Fields with Constant Values

Srl. No. Field Name
(Database Table)

Field Name
(IDoc Segment)

Field Description Value

1 EKKO-BEDAT E1BPEKKOC-DOC_DATE Purchasing Document
Date

SY-DATUM

2 EKKO-BSTYP E1BPEKKOC-DOC_CAT Purchasing Document
Category

F

3 EKKO-BSART E1BPEKKOC-DOC_TYPE Purchasing Document
Type

NB

4 E1BPEKPOC-PO_PRICE Indicator – Adopt Price X

Table 7-11. Fields with Values Originating from Text File—PO Header Data

Srl. No. Field Name
(Database Table)

Field Name
(IDoc Segment)

Field Description

1 EKKO-EBELN E1BPEKKOC-PO_NUMBER Purchasing Document Number

2 EKKO-LIFNR E1BPEKKOC-VENDOR Vendor Number/Code

3 EKKO-EKORG E1BPEKKOC-PURCH_ORG Purchasing Organization

4 EKKO-EKGRP E1BPEKKOC-PUR_GROUP Purchasing Group

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

569

The values for the fields in Table 7-12 will originate from the text file PO items data.

Recall, the field EBELN in the PO items data is for connecting the PO items data with the PO header
data, which items belong to which PO?

The values for the fields in Table 7-13 will originate from the text file PO delivery data.

The fields EBELN and EBELP in the PO delivery data are for connecting the PO delivery data with the
PO items data, which of the scheduled line numbers belongs to which PO and item number?

There will be a total of 19 fields which will assume values—four fields from Table 7-10, four fields from
Table 7-11, six fields from Table 7-12, and five fields from Table 7-13.

Having described the specifications and scope of the hands-on exercise, we will proceed to the creation
of the Object YCH07_PO_BAPI under the Project and Subproject YCH06_DM/YCH_07_PO. After the creation
of the Object YCH07_PO_BAPI, we will look at the LSMW process steps.

Create Object YCH07_BAPI
To create the Object YCH07_BAPI under the Project/Subproject YCH06_DM/YCH07_PO, we navigated to the
opening screen of transaction code LSMW, entered the Project name as YCH06_DM, entered the Subproject
name as YCH07_PO, and entered the Object name as YCH07_BAPI. We positioned the cursor on the Object
field and clicked the Create button on the application toolbar. The dialog box to enter a description of the
Object popped up. We entered a suitable description as shown in Figure 7-67.

Table 7-12. Fields with Values Originating from Text File—PO Items Data

Srl. No. Field Name
(Database Table)

Field Name
(IDoc Segment)

Field Description

1 EKPO-EBELN E1BPEKPOC-PO_NUMBER Purchasing Document Number

2 EKPO-MATNR E1BPEKPOC-PUR_MAT Material Number/Code

3 EKPO-EBELP E1BPEKPOC-PO_ITEM Item Number of Purchasing
Document

4 EKPO-NETPR E1BPEKPOC-NET_PRICE Net Price in Purchasing Document

5 EKPO-MATKL E1BPEKPOC-MAT_GRP Material Group

6 EKPO-WERKS E1BPEKPOC-PLANT Plant to which Material to be
Delivered

Table 7-13. Fields with Values Originating from Text File—PO Delivery Data

Srl. No. Field Name
(Database Table)

Field Name
(IDoc Segment)

Field Description

1 EKET-EBELN E1BPEKET-PO_NUMBER Purchasing Document Number

2 EKET-EBELP E1BPEKET-PO_ITEM Item Number of Purchasing Document

3 EKET-ETENR E1BPEKET-SERIAL_NO Delivery Schedule Line Counter or
Number

4 EKET-MENGE E1BPEKET-QUANTITY Scheduled Quantity

5 EKET-EINDT E1BPEKET-DELIV_DATE Item Delivery Date

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

570

We clicked the Continue button and the Object YCH07_BAPI was created in the Project YCH06_DM and
the Subproject YCH07_PO. Next, we have to perform the process steps.

To perform the process steps, we clicked the Execute button on the application toolbar on the LSMW
opening screen.

We started off by executing process step 1 by selecting the Radio button and clicking the Execute button.

Process Step 1—Maintain Object Attributes
We clicked the Display/Change toggle button on the application toolbar to enable changes on the screen.

On process step 1 screen, in the Attributes area, we entered and specified the following:

•	 Suitable description, which was already entered during creation of the Object.

•	 The Owner as the logged-in user, which is the default. We can assign any other valid
user name.

•	 The data transfer Radio button: Once Only.

•	 The file names you are going to specify are not System Specific—check box disabled.

In the Object Type and Import Method area of the process step 1 screen, we clicked the Object Type
Radio button as Business Object Method (BAPI). We positioned the cursor in the field Business Object and
pressed function key F4. Next, we pressed the keys ctrl + F to invoke the search dialog box. We entered the
word “Purchase” in the search dialog box as shown in the Figure 7-68.

Figure 7-67. LSMW—Create Object YCH07_BAPI

Figure 7-68. Select business object—search dialog box

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

571

We clicked the Continue button on the search dialog box. A list of entries with the word “Purchase” was
returned as shown in Figure 7-69.

From the Business Object list, we selected the entry BUS2012 —Purchase Order. We selected the method
as CREATEFROMDATA. Figure 7-70 shows the screen with all the entries and assignments.

Figure 7-69. Select business object—list with word “purchase”

Figure 7-70. Process step 1: all entries and assignments

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

572

From Figure 7-70, you can observe the IDoc Message Type assigned as PORDCR and the IDoc Basic
Type assigned as PORDCR05. These values of the IDoc Message Type and the IDoc Basic Type are same as
in hands-on exercise III. The BAPI method for creation or transfer of purchase orders uses the same IDoc
Message Type and the IDoc Basic Type as the IDoc method.

We saved the screen and exited the screen of process step 1 to navigate back to the screen with process
steps.

You can observe that the number of process steps is 16 after the execution of process step 1.

Process Step 2—Maintain Source Structures
We navigated to the screen of process step 2. On the screen of process step 2, we switched to change mode.
We created the three source structures—POHEADER, POITEMS, and PODELV—corresponding to our three
input text files as shown in Figure 7-71.

We saved and returned to the screen with process steps.

Process Step 3—Maintain Source Fields
We executed process step 3. We switched the screen to change mode. We inserted the fields in the three
source structures—POHEADER, POITEMS, and PODELV—as shown in Figure 7-72.

Figure 7-71. Process step 2—Maintain Source Structure

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

573

The order of the fields in the source structure must be identical to the order in which data is located in
the text files. We are using text files with one line for one row of data, with comma (,) as a field separator.

We saved and returned to the process steps screen.

Process Step 4—Maintain Structure Relations
We executed process step 4 and switched the screen to change mode.

Our destination structures are the segments (structures) including the super structure segment
E1PORDCR (see Figure 7-73).

Figure 7-72. Process step 3—create source field: all fields under three source structures created

Figure 7-73. Process step 4—Maintain Structure Relations

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

574

The 19 fields to which we propose to assign values originate from the three segments: E1BPEKKOC,
E1BPEKPOC, and E1BPEKET. The fields in the segment E1BPEKKOC map to the source structure
POHEADER, the fields in the segment E1BPEKPOC map to the source structure POITEMS, and the fields in
the segment E1BPEKET map to the source structure PODELV, respectively.

Figure 7-73 shows the assignment of source structures to destination segments or structures.
This completes process step 4. We saved and returned to the process steps screen.

Process Step 5—Maintain Field Mapping and Conversion Rules
From the screen of process steps, we executed process step 5 and switched the screen to change mode.

Figure 7-74 shows the field mapping for the six fields DOC_DATE, DOC_TYPE, DOC_CAT, PURCH_
ORG, PUR_GROUP, and VENDOR of the segment E1BPEKKOC. Recall that the field E1BPEKKOC-PO_
NUMBER purchasing document number is autogenerated.

Figure 7-75 shows the field mapping for the three fields PO_ITEM, PUR_MAT, and MAT_GRP of the
segment E1BPEKPOC.

Figure 7-74. Process step 5—assignment to fields of segment E1BPEKKOC

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

575

Figure 7-76 shows the field mapping for the two fields PLANT and NET_PRICE of the segment
E1BPEKPOC.

Figure 7-77 shows the field mapping for the field PO_PRICE of the segment E1BPEKPOC.

Figure 7-75. Process step 5—assignment to fields of segment E1BPEKPOC - I

Figure 7-76. Process step 5—assignment to fields of segment E1BPEKPOC—II

Figure 7-77. Process step 5—assignment to fields of segment E1BPEKPOC—III

Figure 7-78 shows the field mapping for four fields PO_ITEM, SERIAL_NO, DELV_DATE, and
QUANTITY of the segment E1BPEKET.

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

576

We performed a validity check (ctrl + F2 or sixth button from the left on the application toolbar). We
saved the changes and returned to the process steps screen.

Process Step 7—Specify Files
From the screen of process steps, we executed process step 7 and switched the screen to change mode.

As the input text files are to be located on the presentation server, we positioned the cursor on the node
Legacy Data on the PC (Frontend) and clicked the Create button on the application toolbar. The dialog box
input file entries appeared. We selected the file PO_BAPI_HEADER.txt from the folder D:\TEMP, a suitable
description, and selected comma as field separator in the Delimiter area. Figure 7-79 illustrates.

Figure 7-78. Process step 5—assignment to fields of segment E1BPEKET

Figure 7-79. Process step 7—specify file: PO_BAPI_HEADER.txt

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

577

We clicked the Continue button on the dialog box. The file PO_BAPI_HEADER.txt got specified. In a
similar manner we specified the two other files: PO_BAPI_ITEM.txt and PO_BAPI_DELV.txt. Figure 7-80

shows the screen with all the three files specified.
We saved the changes on the screen of process step 7.
This concludes the process step 7. We navigated back to the process steps screen.

Process Step 8—Assign Files
From the screen of process steps, we executed process step 8 and switched the screen to change mode.

We assigned the input text files to the respective source structures.
Figure 7-81 shows the screen after the assignment of three input files to the three source structures.

We saved the changes on the screen of process step 8.
This concludes process step 8. We navigated back to the process steps screen.

Figure 7-80. Process step 7—files PO_BAPI_HEADER, PO_BAPI_ITEM, PO_BAPI_DELV

Figure 7-81. Process step 8—files assigned to source structures

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

578

Data Creation on Presentation Server
I will digress from the process steps of LSMW to describe the creation of input text files on the presentation
server.

In terms of contents, we are using the same input data we used in hands-on exercise III. We are
able to use the same data we used in hands-on exercise III because the purchasing document number is
autogenerated. We have split the data of the PO items file of hands-on exercise III into two files: (1) PO items
file and (2) PO delivery file.

So, we have the input data located in three files instead of the two files in hands-on exercise III. We are
using a different set of input files for hands-on exercises III and IV.

Figure 7-82 shows the PO header data of two purchase orders, 101 and 102.

The PO header data consists of four fields: EBELN, LIFNR, EKORG, and EKGRP. We are using comma
(,) as a field separator. We have entered the data of the field LIFNR with leading zeroes, although it is not
necessary. The values for the field EBELN (101 and 102) serve the purpose of linking the items and deliveries
to the purchasing documents. The purchasing document numbers will be autogenerated in the database
tables. The PO header data is the same as we used in hands-on exercise III.

Figure 7-83 shows the PO items data of two purchase orders, 101 and 102.

The PO items data consists of six fields: EBELN, MATNR, EBELP, NETPR, MAKTL, and WERK. We are
using the comma (,) as a field separator.

Figure 7-84 shows the PO delivery data of two purchase orders, 101 and 102.

Figure 7-82. PO header data—text file

Figure 7-83. PO items data—text file

Figure 7-84. PO delivery data—text file

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

579

The PO delivery data consists of five fields: EBELN, EBELP, ETENR, MENGE, and EINDT. We are using
the comma (,) as a field separator. PO 102 consists of a single item, item number 0010. This single item is
delivered on two dates.

The data in the PO items and PO delivery files is the same as the data in the PO items file of hands-on
exercise III.

This concludes the creation of input text files on the presentation server. We will resume performance of
LSMW process steps.

Process Step 9—Read Data
From the screen of process steps, we executed process step 9.

In process step 9, data is fetched from the user-created input text files and assembled together for an
entity–purchase order and stored in the file with the following postfix: .lsmw.read.

The execution of process step 9 produced an output of statistics of input text data read and written or
imported as shown in Figure 7-85.

The number of rows read into each of the source structures POHEADER, POITEMS, and PODELV is
indicated in the output report of Figure 7-85.

This concludes process step 9. We navigated back to the process steps screen.

Process Step 10—Display Read Data
The execution of process step 10 produced an output of the input text data read and written or imported as
shown in Figure 7-86.

Figure 7-85. Process step 9—import data Output Screen

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

580

You can click any of the lines to view the detail on a single screen.
This concludes the optional process step 10. We navigated back to the process steps screen.

Process Step 11—Convert Data
From the screen of process steps, we executed process step 11.

Recall that in process step 11, data is assigned to the destination fields as per the specifications in
process step 5 and written to the file with the following postfix: .lsmw.conv.

The execution of process step 11 produced an output of statistics of converted as shown in Figure 7-87.

Data is read from the input data file—file with postfix .lsmw.read—and written to the converted data
file—file with postfix .lsmw.conv.

The rows written to the converted file appear as the Records Written line in Figure 7-87. The number of
rows written to the converted file—13—will become apparent when you execute process step 12.

This concludes process step 11. We navigated back to the process steps screen.

Figure 7-86. Process step 10—display imported data

Figure 7-87. Process step 11—Convert Data output screen

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

581

Process Step 12—Display Converted Data
The execution of process step 12 produced an output of the converted data as shown in Figure 7-88.

We are assigning values to the fields of three segments (destination structures) E1BPEKKOC,
E1BPEKPOC, and E1BPEKET. These segments map to our source structures POHEADER, POITEMS, and
PODELV, Hence, the nine rows from imported data will appear as nine rows in the converted data. Process
step 11 is generating two additional rows for each entity or purchase order in segments EDI_DC40 and
E1PORDCR. For two purchase orders, this will result in four rows. The total number of rows in the converted
data will be 9 + 4 = 13 as shown in Figure 7-88.

This concludes the optional process step 12. We navigated back to the process steps screen.

Process Step 13—Start IDoc Generation
From the screen of process steps, we executed process step 13. Process step 13 generates IDocs from the
converted data—file with secondary name .lsmw.conv. When we executed process step 13, a prompt
appeared for input of converted data file and proposing a default converted data file as shown in Figure 7-89.

Figure 7-88. Process step 12—Display Converted Data

Figure 7-89. Process step 13—Generate IDocs

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

582

We clicked the Execute button and an output of an info message as shown in Figure 7-90 appeared.

Corresponding to our two purchase orders, two IDocs are generated.
This concludes process step 13. We navigated back to the process steps screen.

Process Step 14—Start IDoc Processing
From the screen of process steps, we executed process step 14. Process step 14 transfers data from the IDocs
to the Application documents—in our case the purchase order database tables: EKKO, EKPO, and EKET.

When you execute process step 14, an elaborate selection screen for input appears. The values from
creation of latest IDocs for the fields Created on, Created at, Message Type, etc. are picked up and appear as
default values on the selection screen as shown in Figure 7-91.

The status bar in Figure 7-91 is displaying the message of two IDocs, 750745 and 750746, being
processed.

Figure 7-90. Process step 13—IDocs generated

Figure 7-91. Process step 14—IDocs processing

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

583

When all the IDocs were processed, the system navigated to the screen shown in Figure 7-92.

The screen in Figure 7-92 lists the IDocs processed. Both our IDocs have been successfully posted—
status code 53, as shown in Figure 7-92. We can view details of each IDoc (e.g., control info, data, status info)
by double-clicking an IDoc. We double-clicked IDoc number 750745 and the screen shown in Figure 7-93
appeared.

On the top left-hand corner of Figure 7-93, the nodes Control Record, Data Records, and Status Records
appear. We expanded node Status Records in Figure 7-93. The statuses which the IDoc 750745 attained, 50,
64, 62, and 53, are marked in the figure. IDoc 750745 was posted as standard PO number 4500017101, which
is also marked in the figure. If you click the node Data Records, the segments E1BPEKKOC, E1BPEKPOC, and
E1BPEKET will appear as subnodes. If you click a segment subnode, each field name and its contents will
appear under the head Content of selected segment at the bottom right corner of Figure 7-93.

This concludes process step 14. We navigated back to the process steps screen.

Figure 7-92. Process step 14—IDocs posted to application documents

Figure 7-93. Process step 14—IDoc number 750745 details

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

584

Process Step 15—Create IDoc Overview
From the screen of process steps, we executed process step 15. In process step 15, we can view the IDocs
created and processed. When you execute process step 15, the elaborate selection screen appears, exactly
like the one in process step 14 for input. The values from the creation of the latest IDocs for the fields Created
on, Created at, Message Type, etc. are picked up and appear as default values on the selection screen. When
you click the Execute button on the selection screen, the IDocs fulfilling field values on the selection screen
are listed.

We entered 28.12.2016 in the field Created on and clicked Execute button. A list containing the two
IDocs created and posted in the current hands-on exercise appeared as shown in Figure 7-94.

You can view details of each IDoc (e.g., control info, data, and status info) by double-clicking an IDoc as
in process step 14.

This concludes process step 15.

Process Step 16—Start IDoc Follow-Up
Process step 16 is to resubmit error IDocs again for processing. Since we did not encounter any IDocs with
error status, we are not required to perform this process step. When the process step is executed, a screen as
shown in Figure 7-95 appears.

Figure 7-94. Process step 15—selected IDocs list

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

585

The screen in Figure 7-95 offers of the ability to select a scenario of error IDocs to be resubmitted for
processing.

This concludes process step 16, the last process step.

Purchase Orders Created—Cross-Verification with Input Data
We will now verify that the purchase orders were created as per the input data. To verify the creation of
purchase orders, we navigated to the opening screen of transaction code ME22N—Change Purchase Order.
On the opening screen of transaction code ME22N, we made the following menu selection: Purchase
Orders ➤ Other Purchase Order. The menu selection popped up a dialog box as shown in Figure 7-96.

Figure 7-95. Process step 16—Start IDoc Follow-Up

Figure 7-96. Select Document—purchase order

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

586

We pressed function key F4 for a selection list. The dialog box to filter purchasing documents appeared
as shown in Figure 7-97.

We want to view a list containing only the purchase orders created through the current hands-on
exercise. We are able to filter out the purchase orders created in the current hands-on exercise by entering in
field Document Date the value of 28.12.2016 as shown in Figure 7-97. We clicked the Continue button on the
filter dialog box. A list containing the two purchase orders with Document Date as 28.12.2016 appeared as
shown in Figure 7-98.

From the list, we selected purchase order 4500017101, which contains two materials, with a single
delivery date for each of materials. The purchase order 4500017101 details screen is shown in Figure 7-99.

Figure 7-97. Select document—purchase order: filter dialog box

Figure 7-98. Selected purchase orders—document date = 28.12.2016

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

587

As you can observe in Figure 7-99, the header data has been created as per our input data.

Document Type and Category: Standard PO

Vendor: 3021

Doc. Date: 28.12.2016

If you click the button at the top left corner, you can view the two additional fields of the header
data (tab—Org. Data) as follows:

Purch. Org.: 3000

Purch. Group: 001

The item data for the two materials has been created as per our input data.

Itm: 10 and 20

Material: ISA-0023 and ISA-1016

PO Quantity: 10 PC and 70 PC

Net Price: 380.00 and 130.00

If you scroll to the right, you can view the two additional fields of the item data as follows:

Matl Group (Material Group): 060 and 060 (Furnitures)

Plnt (Plant): 3200 and 3200 (Atlanta)

The delivery data for the two materials has been created as per our input data.

Itm: 10 and 20

Delivery Date: 10.02.2017 and 05.02.2017

Sch. Qty: 10 PC and 70 PC

Figure 7-99. Selected purchase order 4500017101—detail

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

588

Having verified the creation of PO 4500017101 as per the input data, we next fetched the details of PO
4500017102, which contains only one material, with two delivery dates for the material. Figure 7-100 shows
the PO 4500017102 details screen.

As you can observe in Figure 7-100, the header data has been created as per our input data.

Document Type and Category: Standard PO

Vendor: 1000

Doc. Date: 28.12.2016

If you click the button at the top left corner, you can view the two additional fields of the header
data (tab—Org. Data) as follows:

Purch. Org.: 1000

Purch. Group: 026

The item data for the single material has been created as per our input data.

Itm: 10

Material: 101-110

PO Quantity: 500 PC

Net Price: 5.05

If you scroll to the right, you can view the two additional fields of the item data as follows:

Matl Group (Material Group): 001 (Metal processing)

Plnt (Plant): 1000 (Werk Hamburg)

The delivery data for the single material has been created as per our input data.

Itm: 10

Delivery Date: 05.02.2017 and 20.02.2017

Sch. Qty: 200 PC and 300 PC

Figure 7-100. Selected purchase order 4500017102—detail

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

589

We have verified that the two purchase orders were created as per the input data and as per our
specifications. We have rectified the two deficiencies of hands-on exercise III:

•	 The net price destination field E1BPEKPOC-NET_PRICE was not getting assigned a
value from the input data; instead, it was being assigned a value from info records.
We enabled the assignment to the field E1BPEKPOC-NET_PRICE to a value from
input data by setting the field E1BPEKPOC-PO_PRICE to X.

•	 Multiple delivery dates for an item are being created properly. We enabled the
creation of multiple delivery dates for an item by providing the item data and item
delivery data from two separate inputs files.

This concludes the cross-verification of purchase orders created with input data.

Hands-on Exercise IV—Recapitulation
The hands-on exercise set out to transfer the data of purchase orders from three text files residing on the
presentation server into the SAP functional module database tables from the LSMW environment deploying
the Object Type as the BAPI method.

We started off by describing the scope and specifications of the hands-on exercise. Which of the fields
will assume constant values? Which of the fields will be assigned values from input files, etc.?

We initially created the Object YCH07_BAPI under the existing Project YCH06_DM and Subproject
YCH07_PO.

In process step 1, we specified the Object Type as the BAPI method and the Business Object as BUS2012
and the Method as CREATEFROMDATA. The LSMW system assigned the IDoc Message Type PORDCR and
IDoc Basic Type PORDCR05. The IDoc Message Type PORDCR and IDoc Basic Type PORDCR05 are same
as in that the hands-on exercise III. Inbound IDocs would be generated from the converted data. The IDoc
Inbound Settings performed for File port, Partner Type, and Partner No. in hands-on exercise III were used
again in the current hands-on exercise.

The next three process steps, as usual, involved specification of source structures, fields in the source
structures, and relationships between source and destination segments (structures).

In process step 5, we assigned of values to destination segment fields.
We skipped process step 6, Fixed Values, Translations, and User-Defined Routines.
In process step 7, we specified the input text files and assigned the input text files to the source

structures in process step 8.
We created representative input text data files of two purchase orders on the presentation server using

the notepad editor.
We executed process step 9 for reading of input data and writing the input data to the file with the

postfix .lsmw.read. In process step 10, we viewed the data from the file with the postfix .lsmw.read.
We executed process step 11 for conversion of data, writing the converted data to the file with the postfix

.lsmw.conv. In process step 12, we viewed the data from the file with the postfix .lsmw.conv.
Process step 13 generated inbound IDocs.
In process step 14, the generated inbound IDocs were processed or posted to the application—

transferred to the SAP functional module database tables. Process step 14 also provided for a review of just
processed IDocs.

Process step 15 provided for a review of IDocs. Process step 16 provided for resubmission of IDocs with
errors for posting. We did not perform process step 16; we did not generate IDocs with errors.

We performed a visual cross-verification that the purchase orders were created as per the input data
using transaction code ME22N.

This concludes hands-on exercise IV.

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

590

Project Components Export
At the end of Chapter 6, we demonstrated the export and import of LSMW Project components to and from
files on the presentation server, respectively.

We exported the complete Project YCH06_DM, as it existed at the end of Chapter 6, to a file on the
presentation server. Project YCH06_DM, at the end of Chapter 6, consisted of the following:

•	 User-Defined Routines—GET_BANKS, GET_BANK_FLD_VAL and GET_SORTL

•	 Recording—YCH06_XK01

•	 Subproject—YCH06_VN with Objects YCH06_DI and YCH06_RC

The Project CH06_DM was exported to the file LSMW_DM0_YCH06_DM on the presentation server.
In this chapter, we added the Subproject YCH07_PO to the Project YCH06_DM. We further incorporated

the Objects YCH07_IDOC and YCH07_BAPI to the the Subproject YCH07_PO.
We will now export whatever LSMW Project components we created in the current chapter to a separate

file on the presentation server.
To export LSMW Project components, we entered the Project name as YCH06_DM on the opening

screen of LSMW and made the following menu selection Extras ➤ Export Project. A dialog box appeared
with the Project name as shown in Figure 7-101.

We clicked the Continue button. The complete Project with its components is presented in a tree form.
We expanded all the nodes of the Project tree. We deselected all the nodes except YCH07_PO as shown in
Figure 7-102.

We clicked the Export button on the application toolbar—the first button from the right. The dialog box
to make folder selection and input the file name appeared as shown in Figure 7-103.

Figure 7-101. LSMW—project component(s) export

Figure 7-102. LSMW—project, project components export: selection

http://dx.doi.org/10.1007/978-1-4842-3183-8_6
http://dx.doi.org/10.1007/978-1-4842-3183-8_6
http://dx.doi.org/10.1007/978-1-4842-3183-8_6

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

591

By default, the system proposes the name of the Project with the prefix LSMW_DM0_ (DM0 is our
system id) as the file name. We selected the folder D:\TMP, changed the proposed file name to LSMW_DM0_
YCH06_DM_PO, and clicked the Open button. The system issued an info message of successful export as
shown in Figure 7-104.

We have successfully exported the Subproject component YCH07_PO of the Project YCH06_DM.
The file LSMW_DM0_YCH06_DM contains the exported Project components created in Chapter 6.

The file LSMW_DM0_YCH06_DM_PO contains the exported Project components created in this chapter.
We located the Project components export files in the folder D:\TMP. Figure 7-105 shows the two files.

Figure 7-104. LSMW—project components exported

Figure 7-105. Project components export files

Figure 7-103. LSMW—project export: select folder and input file name

http://dx.doi.org/10.1007/978-1-4842-3183-8_6

Chapter 7 ■ Data Migration Using LegaCy systeM Migration WorkbenCh LsMW–ii

592

The files LSMW_DM0_YCH06_DM and LSMW_DM0_YCH06_DM_PO are available in the E-resource
file for this book (www.apress.com/9781484212345).

This concludes Project components export.

Conclusion
In this chapter, we continued the performance of hands-on exercises of data migration in the LSMW
environment, which we had commenced in Chapter 6. All through Chapters 5 and 6, we transferred the
vendor data categorized as master data in the hands-on exercises. We decided to use a different type of data
for migration in this chapter. We decided to employ the purchase order data, categorized as transaction data,
for migration.

The proposed transfer of purchase order data involved issues and considerations which I described. We
identified the database tables whose fields would assume values in the data migration of purchase orders. I
described the data model or the ER diagram of the identified purchase order database tables.

It was proposed to transfer the purchase order data deploying each of the LSMW Object Types—IDoc
and BAPI—as separate hands-on exercise. The deployment of both the LSMW Object Types, IDoc and BAPI,
generates IDocs. Hence, we provided a brief description of IDocs in the context of the hands-on exercises.

To be able to generate the IDocs, we needed to perform the IDoc Inbound Settings from the LSMW
environment.

We created the Subproject YCH07_PO under the Project YCH06_DM.
For the first hands-on exercise of this chapter designated as hands-on exercise III, we created the Object

YCH07_IDOC under the Project YCH06_DM and Subproject YCH07_PO. In process step 1, we selected the
Object Type as IDoc and assigned Message Type as PORDCR and Basic Type as PORDCR05. We performed
process steps 2 to 12, which were identical to the process steps 2 to 12 we performed in the hands-on
exercises in Chapter 6. Process step 13 generated the IDocs and process step 14 posted the IDocs to the
functional module database tables. Process step 15 provided for a review of selected IDocs. Process step 16
provided for a resubmission of selected IDocs with errors.

For the second hands-on exercise of the chapter, designated hands-on exercise IV, we created the Object
YCH07_BAPI under the Project YCH06_DM and Subproject YCH07_PO. In process step 1, we selected the
Object Type as BAPI, and assigned Business Object as BUS2012 and Method as CREATEFROMDATA. We
performed process steps 2 to 14, which were identical to process steps 2 to 14 we performed in hands-on
exercise III,

We concluded the chapter with the export of components in the Project YCH06_DM created in this
chapter.

We have covered the LSMW in two chaptersChapters 6 and 7. While performing the hands-on exercises
in Chapters 6 and 7, we covered most of the LSMW features. Some notable features not covered were:

•	 In process step 1—Maintain Object Attributes—we did not demonstrate enabling
the Periodic Radio button option. With the enabling of the Periodic Radio button,
you can specify and save runtime parameters as variant(s) for the frame program.
The frame program can then be scheduled to run periodically (outside the LSMW
environment) in the background with a specific saved variant.

•	 In process step 6—Maintain Fixed Values, Translations, and User-Defined Routines—
we did not cover Fixed Values and Translations.

•	 In process step 7—Specify Files—we did not cover the feature Wildcard Values, which
enables the runtime specification of input files .lsmw.read file and .lsmw.conv file.

http://www.apress.com/9781484212345
http://dx.doi.org/10.1007/978-1-4842-3183-8_6
http://dx.doi.org/10.1007/978-1-4842-3183-8_5
http://dx.doi.org/10.1007/978-1-4842-3183-8_6
http://dx.doi.org/10.1007/978-1-4842-3183-8_6
http://dx.doi.org/10.1007/978-1-4842-3183-8_6
http://dx.doi.org/10.1007/978-1-4842-3183-8_7
http://dx.doi.org/10.1007/978-1-4842-3183-8_6
http://dx.doi.org/10.1007/978-1-4842-3183-8_7

593© Sushil Markandeya 2017
S. Markandeya, Pro SAP Scripts, Smartforms, and Data Migration,
https://doi.org/10.1007/978-1-4842-3183-8

��������� A
ABAP List Viewer (ALV), 1
ABAP print programs, 6, 80
Address layout element, 195
Append Print Program, 85
Application Linking and Enabling (ALE), 526
Application server, 470–472, 500

copy bank data file, 418
copy files to, 430–432
create log file on, 426
directories, 416–417
presentation server, copy files from, 416

��������� B
Bank loop, 390
Batch input method, 361, 369–370

vs. call transaction, 437
vendor data migration (see Vendor data

migration, batch input method)
Batch input recording method

application server, 500
assign input text files, 499–500
Attributes area, 489
bank data, 494
batch input session

create, 502
run, 503–504

convert data, 501
create new object, 483
create recording, 483
create vendor under recording

Accounting information
accounting, 485–486

Address screen, 485
Correspondence Accounting, 486
initial screen, 485
Partner functions, 487
Payment transactions Accounting, 486
Payment transactions screen, 485
Purchasing data, 487

data creation on presentation server, 500
field mapping and conversion rules, 493–496
fixed values, translations, and user defined

routines, 496, 498
input text files, 499
read data, 501
recording of transaction code

XK01, 484, 488
revisit process, 498–499
SHDB transaction code, 489
source fields, 491–492
source structures, 490
structure relations, 492–493
vendor data creation

(cross-verification), 504–505
Batch input session

batch input recording method, 502–504
create vendor, 401–403
generate session method, 396
internal table, 397–399
Keep session, 396
log overview, 408
name of, 396
output, 399
overview, 400, 404, 407
pitfalls, 395
Process session, 401
select file from server, 396
Standard Batch/Direct Input

method, 478–480
BDCDATA table, transaction recording

BDCRECX1 program, 363
BNKA database table, 363
Create Bank, 365
create new, 364
dynpro program, 363
FI01 transaction code, 367
modify, export and delete, 367
row numbers, 366–367
SHDB transaction code, 364
update mode, 365

Business documents, 7–8, 517

Index

https://doi.org/10.1007/978-1-4842-3183-8

■ INDEX

594

Business document, Smartforms architecture
architecture, 216
create form

form attributes and page format, 222–223
graphic and secondary window, 223–226
text, 226–230

create style, 218–220, 222
main window

ABAP program, 246–247
ABAP Program Lines, 244
create form, 242
create style, 241
execute program, 247–248
Global Data, 243
layout, 245
list of materials, 238–240
loop element, 245–246
secondary window, 243
text, 244

material list in newspaper columnar manner
ABAP dictionary structure, 251
depiction of data appearance, 249
form, 251–254
internal table, 254
landscape mode, 250
main window, 249
output, 257

steps, 216
test and output form, 231–232
text in secondary window, 217–218
text module

create, 233–234
create secondary window, 235–237
graphic element LOGO, 235
output, 237
page format, 235

Business Object Method (BAPI) purchase order. See
Purchase orders

��������� C
Call transaction method, 361. See also Vendor data

migration
ABAP statement, 424
application server (see Application server)
batch input vs., 437
change vendor, 424
create log file, 426
data flow, 418–419
extra features, 414
log file, 432–435
modifications

to include program, 426–428
to main program, 428–430

overview, 435–436

presentation server, 419–420
processing mode, 422
selection screen, 421–422
update mode, 423

Character formats, 2, 5, 8, 61
MEDRUCK form subcomponent

font, 47
standard attributes, 47

Check text, form
Append Print Program, 85
choose print programs, 84
error report, 85–86
for definition, 83
options, 84
on text elements, 83
validate program symbols, 83

Command/info area
program symbols, 50–51
text symbols, 51

Constant window (CNWIND), 37
Control records, 524
Currency Quant. Fields, 189
Customer-wise sales

ABAP program, 165
company code 3000, 167–168
fields, 162
IDES server, 162
layout, 161
page format, 163
specifications, 161
text element, 164

Custom purchase order
ABAP program, 117, 123
character format list, 113
check and activate form, 124
consignee data, 108
CONSIGNE window, 115
control command, 107
control command PERFORM

ABAP program, 131–132
layout, 130–131
output, 138–139
page format and page windows, 132–133
SPELL_AMOUNT, 129
subroutine pool, 135
text element, 133–134

corresponding page windows, 103
create database view, 110–111
database view, 123
EKET table, 108
EKKO tables, 108
elementary search help, 124
executing language, 106
font type and size, 107
formatting options, 107

■ INDEX

595

form MEDRUCK, 102
function modules, 106, 128
IDES server output of, 124–127
item data, 107
list of tables/views with fields, 109–110
nomenclatures/labels for fields, 110
page formats, 102, 104–105
page window in main window, 106
page windows and page format, 111–113
SAP delivered forms, 102
SAP script system symbol, 107
sender/company code, 106
support language, 106
text elements, 113–116, 128

��������� D
Data container. See Intermediate Document (IDoc)
Data migration

batch input method, 361
call transaction method, 361
character type, 360
direct input programs, 361
foreign key, 360
functional module, 360
generate ABAP program, 361
LSMW workbench, 362
master data, 360

Data model, 521
Data storage, 521–523
Distribution model, 526
Documentation, 5, 175–176

��������� E
English-language version, text element in window

IN_WORDS, 153
LOGO, 152
SENDER, 153

Enterprise, 359
ER diagram, 521–523

��������� F
Field symbols, 187–188
Finacle software, 359
Fixed values, translations, and user defined

routines. See Reusable Rules
Flow Logic layout element

ABAP program lines, 211–212
alternative, 210
command, 212
loop, 210–211

Folder layout element, 212
Fonts

non-proportionate fonts, 13–14
printer, 15
proportionate, 13–14
SE73, 12
system, 14
True type (see True type font installation)

Format column, 49–50
Format conversion, 11
Form elements

character formats, 5
diagrammatic representation, 6
documentation, 5
header, 3
pages/page formats, 3–4
page windows, 4
paragraph formats, 5
text elements, 5
Windows, 4

Forms
graphics

BMP graphic file, 22
IDES server, 24
import, 24
SAPscript Form Tree, 25–26, 28
transaction code SE78, 22

header, 3
miscellaneous tidbits, 176
painter, 10

Form tree
alert, classify multiple, 170
create node, 170
create subnode, 171
node type, 173
sub-subnode, 173

��������� G, H
Generate session method, 396
German-language version, text element in window

IN_WORDS, 151–152
LOGO, 146–147
SENDER, 147–148, 150–151

Global definition, 180
Currency Quant. Fields, 189
field symbols, 187–188
Form Routines, 189
Global Data, 186–187
initialization, 188
types, 187

Graphic layout element, 194–195

��������� I, J, K
IDoc. See Intermediate Document (IDoc)
Inbound IDocs, 525

■ INDEX

596

Include program BDCRECX1
batch input method, 369–370
BDC_TRANSACTION, 370–371
radio buttons, 368
subroutines, 368

Intermediate Document (IDoc), 441
basic type, 523
control records, 524
database tables, storage, 524
extended type, 523
loose term, 523
master data distribution, 524
message control, 524
message type, 523
number, 523
outbound and inbound processing, 524–525
purchase orders, migrating data of

assign input files, 551
convert data, 553–554
create IDoc overview, 559
create object, 544
create subproject, 543–544
cross-verification with input data, 560–565
display convert data, 554
display read data, 553
field mapping and conversion rules,

548–549
field with assigned values, 535–536
field with constant values, 536
generate IDocs, 555
IDoc Inbound Settings, 537–542
LSMW, 534
object attributes, 545–546
presentation server, 551–552
processing of IDocs, 555–558
read data, 552
segment structures, 534
source fields, 547
source structures, 546
specify input files, 550
start IDoc follow-up, 559–560
structure relations, 547–548
text file–PO data, 536–537

segments
definitions, 526, 527, 530, 532–533
fields, 527
of IDoc type PORDCR05, 528
message types, 533–534
types, 527, 529–530, 532

status records, 524
super structure, 523

��������� L
Language key, 9
Legacy system, 359

Legacy system migration
workbench (LSMW), 362

action log, 507
application toolbar button, 444–445
categories/types of programs, 441
configuration steps, 441–442
exporting rules, 510–512, 590–591
import project, 514–515
menu options, 445
object, 443–444
object overview, 508
opening screen, 442
project, 443–444
recording of transactions, 441
steps screen, 507
subproject, 443–444
User Defined Routines, 512–516
User Menu, 508–509

Logged-in client, 8

��������� M
Main window with two page

windows
ABAP program, 90
create form, 87
create text elements, 88
create variable windows, 87
execute program, 91
layout, 87
output, 86
save, 89
uses DINA4 paper, 86

Master data, 359
Master data distribution, 524
Material bar code labels

custom
alignment, 332
change system, 330–331
create new system, 331
Font Maintenance Create

dialog, 334
parameters, 333
save, 333
symbology, 332
technology, 331

driver program, 341
form

blank lines, 340
element loop, 337
element texts, 339
internal table, 336
line types, 337–338
main window, 337
Output Options tab, 335
page format, 336

■ INDEX

597

layout, 330
major tasks, 330
output, 342–343
style, 335

MEDRUCK form
application toolbar, 28
character formats (see Character formats)
copy of, 140, 142
create character format UL, 143
delete window HEADER, 142–143
English-language version (see English-language

version, text element in window)
German-language version (see German-

language version, text element in
window)

Graphical Form Painter, 42
graphic window, 56, 58–59
header

Administrative Data, 30
Basic Settings, 31
default paragraph value, 32
DINA4 page size, 31

main window
page window of page format, 39
purchase order, 38–39
window types, 39

mandatory entries, 56
menu selection, 53
modifications

copied form, 142
language-independent elements, 142
in page format, 143, 145–146
text elements, 146

output, 64–65, 153–155, 157–160
page formats, 36

mode, 33–34
NEXT, 34
numbering type, 34
print mode, 33

page window, 56, 58–59, 61
paragraph format, 43, 54–55

subcomponent font, 44
subcomponent outline, 45
subcomponent standard, 44
subcomponent tabs, 45

ready-to-use, 28
save, 64
selection tables, 54
settings, 53
specifications, 140
text elements (see Text elements)
text in text element

character formats, 63–64
menu options, 62
text editor, 62

windows, 29
windows and page windows, 35–37, 40–42

Message control, 524

��������� N
Naming convention, 21
Non-proportionate fonts, 13–14

��������� O
Outbound IDocs, 525
Output customer-wise sales

ABAP dictionary structure, 346
BL character format, 346
CHEADING window, 349
driver program, 351–352
global definitions, 347–348
GTOTAL window, 350
IDES server, 345
interface form, 347
layout, 345
main window, 349
output, 353–354
page format, 348–349
RHEADING window, 349
specifications, 345
tables and fields, 346

Output purchase orders
ABAP dictionary structure, 281–282
data inputs, 278–281
DINA4 stationery, 275
EKKO tables, 278
EKPO tables, 279
form interface, 283
global definitions

data items, 283–284
Global Data tab, 289
initialization event, 284, 286–287
subroutines, 287, 289

list of tables with fields, 280
output

addresses, 278
font type and size, 278
form, 308, 310
grid lines, 278
item data, 278
support languages, 277

page format FIRST
area, 275
conditions, 294
consignee address, 296–298
element address, 294–295
element table, 299, 301–303
element text, 294

■ INDEX

598

Form Painter view, 292
graphic and windows, 275–276
LOGO_GRAPHIC, 293
secondary window, 295–296
SENDER window, 293–294
windows layout, 289–290

page format NEXT
database view, 307
driver program for Smartforms form, 304,

306–307
elementary search help, 307
field PAGE, 303
Form Painter view, 292
layout, 276, 277
window PAGE, 303
windows layout, 291

Smartforms form, 282
Output vendors’ address labels

Courier font, 264
database view, 263–264
element table, 260
execute program, 272
form interface, 264
global definitions, 265
internal table, 261–263
layout of, 260
main window, 266, 268–269
program lines node, 269–270
source program, 271–272

��������� P, Q
Page format layout, 191–192

context menu, 192
elements, 191
SAP script, 190
Smartforms form maintenance system, 190

Page formats, 32
Pages and windows, 4

address, 195
Flow Logic (see Flow Logic layout element)
folder, 212
form layout elements, 189
graphic, 194–195
page format, 189–192
table (see Table layout element)
template, 208–210
text, 196–199

Pages/page formats, 3–4
Paragraph formats, 2, 5, 8

MEDRUCK form, 43
subcomponent

font, 44
outline, 45

standard, 44
tabs, 45

Presentation server, 470–472, 500
Printer Bar Codes, 15
Printer fonts, 15
Print program

create ABAP program, 80
create form, 78
create text element, 79
create variable window, 78
execute program, 82–83
fields, 75
function modules, 77
header, 78
main window, 75, 79–80
page format, 78
page window, 75–76, 78
paragraph format, 78

Program symbols, 50–51
Proportionate fonts, 13–14
Purchase orders

business object method
assign input files, 577
convert data, 580
create IDoc overview, 584
create object, 569
cross-verification with input

data, 585–589
display converted data, 581
display read data, 580
field mapping and conversion rules,

574–575
fields with constant values, 568
generate IDocs, 581
object attributes, 570, 572
presentation server, 578
processing of IDocs, 582–583
read data, 579
source fields, 572–573
source structures, 572
specify input files, 576–577
start IDoc follow-up, 584–585
structure relations, 573
text file PO data, 568–569

create, 518
database table, 518

data storage, 522
EKET, 520–521
EKKO, 519
EKPO, 519
ER diagram/data model, 521

foreign key (EKET–EKPO), 521
IDoc (see Intermediate

Document (IDoc))
minimal information, 518

Output purchase orders (cont.)

■ INDEX

599

��������� R
Ready-to-use forms, 8
Reusable Rules, 463, 496, 498

��������� S
SAP

business data, 1
business document, 1–2
forms component, 2
script, 2
script architecture, 7–8
script environment, 28
standard texts component, 2
styles component, 2

SAP delivered Smartforms form/SMB40/MMPO_A
ME_READ_PO_FOR_PRINTING, 312, 314
modify and customized copy

output, 323, 325, 327
output specifications, 321–322

NACE transaction code, 314–316
purchase order number, 317–319, 321

SAP script
comparison with Smartforms, 179–180
environment, 181
form environment, 181
page format, 190

SAPscript Form Tree, 25–26, 28
Screen numbers and fields

dynpro program, 373
field values, 375–376
migrate vendor data, 374
multiple rows on, 375
Performance Assistant, 371–372
SELECTION-SCREEN statements, 389–390
technical information, 372–373

Smartforms form
ABAP code, 181
comparison with SAP script, 179–180
copy window, 357
driver program, 215
environment, 181
final window, 356–357
form element, 181
form environment

list of fields, 215
settings, 214

form maintenance system, 190
global definition, 180
page formats, 328–329
screen menu options, 356

copy forms, 355
downloads/upload, 355–356
migrate SAP script, 356

reassign package, 355
rename forms, 355
settings, 355
text modules, 355

SFSY-FORMPAGES, 327
SFSY-PAGE, 327
text modules, 181

Smartforms form tree
application toolbar, 182–183
global definitions

Currency Quant. Fields, 189
field symbols, 187–188
Form Routines, 189
Global Data, 186–187
initialization, 188
types, 187

Global Settings
form attributes, 185
form interface, 185–186
subnodes and tab screens, 184

menu bar and menu options, 183–184
pages and windows (see Pages and

windows)
Standard Batch/Direct Input method

assign input text files, 470
attributes area

nomenclature, 451
object type and import method, 452
step, frame program, 452

batch input session
create, 478–479
run, 479–480

constant values, 447, 448
converted data, 469
copying to application server, 470–472
create project, subproject, and object, 448–451
data creation on presentation server, 470–472
data transfer, 446
destination fields, 459–462
display convert data, 475–476
display read data, 473, 474
field mapping and conversion rules, 458–463
filter data, 477
fixed values, translations, and user defined

routines, 463–465
import data screen, 472–473
imported data, 469
input files, 446
input text files, 467–468
revisit process, 465–466
source fields, 455–456
source structures, 453–455
source structure to destination

structures, 458
structure relations, 457–458

■ INDEX

600

text file
bank data, 448
main data, 448

vendor data creation (cross-verification), 481
Wildcard Value, 469

Standard texts, 2, 6, 8, 66
Style and standard text

create form, 71
create standard text, 68, 70
create style, 66, 68
create window VARIABLE, 71
graphic window LOGO, 71
output, 73–74
page format, 71
standard text, 73
steps, 66
transaction code SO10, 68

Style elements, 6
Super structure, 523
System Bar Codes, 15
System fonts, 14

��������� T, U
Table layout element

cell, 200
column headings, 200
footer, 200
form YSM_SMB40_MMPO_A

line types, 202–203
older version of Smartforms, 201
repetitive item data, 202
select grid pattern, 202

line types, 200
repetitive data, 200
subcomponents, 201
tab screen Data, 204
tab screen Events, 205
text located in table, 206–207

Tag area, 49–50
Template layout element, 208–210
Text elements, 5

MEDRUCK form
command/info area, 50–51
format column/tag area, 49–50
general SAPscript fields, 51
six form elements, 48
standard symbols, 51
structure for user info, 52
system fields, 52
system symbols, 51
window main, 48–49

Text files
internal tables, 389

SELECTION-SCREEN statements, 389–390
START-OF-SELECTION statement, 390

Text layout element
create, 196
dynamic text, 197
full screen editor, 199
general attributes, 196
include text, 197
paragraph format, 198
tab screen, 199
text element, 197
text module, 197

Text symbols, 51
Transaction recording

BDCDATA table (see BDCDATA table,
transaction recording)

include program (see Include program
BDCRECX1)

Transactions codes
SAP script, 9
SE71, 10
SE74, 11
SE75, 11

True type font installation
HPLJIIID device types, 19
non-proportionate, 15
operating system, 15
regular version, 16, 18
RTF info, 17
SF series, 20
SPAD, 19
ttf files, 15–16
YARIAL_M font, 18
YARIAL_M regular, 20

��������� V
Variable window (VRWIND), 36
Vendor data migration

application server (see Application server)
batch input method
accounting information accounting, 382
batch input session, 395–402, 404

bank loop, 390
change vendor, 405
configuration, 380–381
correspondence accounting, 382–383
create recording, 379
create vendors, 373
data flow, 376, 377
ENDLOOP statement, 392
generate ABAP program, 385–388
GUIi status, 410
incorporated code, 411
initial screen, 379–380

Standard Batch/Direct Input method (cont.)

■ INDEX

601

input data, 373–374
internal tables, 389
list fields, 374
main loop, 391
nested loop, 392–393
overview, 412–413
partner functions, 383–384
payment transactions, 381
payment transactions accounting, 382
purchasing data, 383
recording parameters, 379
Scrolling operation, 410
START-OF-SELECTION statement, 390
test data, 412
text data files, 393–395
transaction recorder, 384
using notepad editor, 405–406
vendor database tables, 378

call transaction method
ABAP statement, 424
change vendor, 424
create log file, 426
data flow, 418–419
log file, 432–435
modifications to include program, 426–428
modifications to main program, 428–430
overview, 435–436
presentation server, 419–420

processing mode, 422
selection screen, 421–422
update mode, 423

extra features, 414
Vendors’ address labels

ABAP program lines, 96
ADRC table, 97
database view, 96–97
dimensions of page

windows, 94–95
DINA4 stationery, 94
function module, 95
layout of, 94
multiple page windows, 95
output, 100–101
print program, 98
set of control commands, 97–98
transaction code SE71, 100

��������� W, X, Y, Z
Wildcard Value, 469
Window layout element

conditions, 193
general attributes, 193
graphical form painter, 194
output options, 193

Windows, 4

	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: SAP Script–Forms, Styles, and Standard Texts
	SAP Script–A Brief Description of Its Components
	An Overview of SAP Script Form Elements
	Form Header
	Pages or Page Formats
	Windows and Page Windows
	Paragraph Formats
	Character Formats
	Text Elements
	Documentation
	Form Elements–A Diagrammatic Representation

	Style Elements and Standard Text

	SAP Script Form and ABAP Print Programs
	Generating Business Documents Using SAP Script—Architecture
	SAP Script Relationship with Client Code
	SAP Script Relationship with Language Key
	Navigation and Transaction Codes
	Transaction Code SE74—Format Conversion
	Transaction Code SE75–SAP script Settings

	Fonts in SAP Script Environment
	Font Families
	Proportionate and Non-proportionate Fonts
	System Fonts
	Printer Fonts, System Bar Codes, and Printer Bar Codes
	True Type Font Installation
	Installing the Font
	Assigning the Font to a Device Type

	A Note on Naming Convention of Objects in the Book
	Form Graphics–Import Graphics
	Forms: Searching and Classification
	Dimensions in SAP Script Environment
	A Detail on SAP Script Form Elements–A Tour of the Form MEDRUCK
	Form Element—Header
	Set Up Page Area
	Default Values for Text Formatting Area

	Form Element—Page Formats
	Form Elements–Windows and Page Windows
	Relationship Between Page Formats, Windows, and Page Windows
	Window Type Main—Operation and Considerations
	Window Types Other Than Main Window–Operation and Considerations

	Form Elements–Windows and Page Windows: Tour of Form MEDRUCK Continued
	Form Element–Paragraph Formats
	Paragraph Format Subcomponent—Standard
	Paragraph Format Subcomponent—Font
	Paragraph Format Subcomponent—Tabs
	Paragraph Format Subcomponent—Outline

	Form Element–Character Formats
	Character Format Subcomponent—Standard
	Character Format Subcomponent—Font

	Form Element—Text Elements
	Text Element—Format Column or Tag Area
	Text Element—Command/Info Area
	Program Symbols
	Text Symbols

	System Fields Available Within the SAP Script Form Environment
	System Symbols
	Standard Symbols
	General SAP script Fields
	SYST Fields or System Fields in the ABAP Programming Environment
	&USR03&—Structure for User Info

	Demonstration I
	Form Header
	Page Format
	Specifications of the Text in the Variable Window
	Paragraph Formats
	Complete Mandatory Entries in the Form Header
	Windows and page windows
	Character Formats
	Text in Text Element
	Test or Print Preview Form
	Recapitulation

	Demonstration II
	Create Style YCH01_01
	Create Standard Text YCH01_01_SEL_TABLES
	Create Form YCH01_02_SEC_FRM, Page Format FIRST, Graphic Window LOGO, etc.
	Create a Variable Window VARIABLE, Page Window and Include Standard Text
	Test Print Form YCH01_02_SEC_FRM
	Recapitulation

	Demonstration III
	Create Form YCH01_03_MLIST1, Page Format FIRST, etc.
	Create Variable Window, Its Corresponding Page Window, Create Text Element, etc.
	Create Page Window for the Main Window, Create Text Element, etc.
	Create an ABAP Program YCH01_01_MLIST_ONE_MWINDOW (Print Program), etc.
	Test form YCH01_03_MLIST1, Execute Program YCH01_01_MLIST_ONE_MWINDOW
	Recapitulation

	Form Check Text
	Demonstration IV
	Create Form YCH01_04_MLIST2
	Create and Test ABAP Program YCH01_02_MLIST_TWO_ MWINDOWS (Print Program)
	Test Form YCH01_04_MLIST2, Execute Program YCH01_02_MLIST_TWO_MWINDOWS
	Recapitulation

	Conclusion

	Chapter 2: SAP Script–Hands-on Exercises
	Hands-on Exercise I–Output Vendors’ Address Labels of a Specific Company Code
	Output Specification and Layout
	Output Considerations
	Inputs
	Text element contents in the main window
	Source program
	Creation of Form YCH02_01_ADR_STK and Print Program YCH02_01_PPRG_YCH02_01_ADR_STK
	Output
	Hands-on Exercise Recapitulation

	Hands-on Exercise II—Output Custom Purchase Order
	Hands-on Exercise–Scope and Limits
	Output and Layout Specification
	Output Considerations
	Data Inputs and Data Input Considerations
	Creation of SAP Script Form, Print Program, and Related Workbench Objects
	Database View YCH02_EKPO_MAKT
	SAP Script Form YCH02_02_PORDER1
	Print Program YH02_02_PPRG_YCH02_02_PORDER1 for SAP Script Form
	Database View YCH02_EKKO_LFA1
	Elementary Search Help YCH02_01_EKKO_LFA1_SH
	Check and Activate Form

	Output
	Hands-on Exercise Recapitulation

	Hands-on Exercise III—Output Custom Purchase Order—Use Control Command PERFORM
	Output, Layout Specification, and Output Considerations
	Creation of SAP Script Form, Print Program, and Related Workbench Objects
	Print Program YCH02_03_PPRG_YCH02_03_PORDER2 for SAP Script Form
	SAP Script Form YCH02_03_PORDER3
	Subroutine Pool YCH02_04_SROUTINE_POOL and Subroutine CALL_SPELL_AMOUNT

	Output
	Hands-on Exercise Recapitulation

	Hands-on Exercise: IV–Copy, Modify, and Customize SAP Delivered Form MEDRUCK
	Output Specifications
	Copy Form MEDRUCK to Y Namespace
	Modifications to the Copied Form YCH02_04_MEDRUCK
	Modifications to Language-Independent Elements of the Form YCH02_04_MEDRUCK
	Delete Window HEADER, Create Character Format UL
	Modifications in Page Format FIRST of the Form YCH02_04_MEDRUCK
	Modifications in Page Format NEXT of the Form YCH02_04_MEDRUCK
	Modifications to Text Elements (Language Dependent) of the Form YCH02_04_MEDRUCK
	Create Text Elements in the German-Language Version of the Form YCH02_04_MEDRUCK
	Text Element in Window LOGO
	Text Element in Window SENDER
	Text Element in Window IN_WORDS

	Create Text Elements in the English-Language Version of the Form YCH02_04_MEDRUCK
	Text Element in Window LOGO
	Text Element in Window SENDER
	Text Element in Window IN_WORDS

	Output
	Hands-on Exercise Recapitulation
	Form YCH02_04_MEDRUCK vis-à-vis Form YCH02_03_PORDER2

	Hands-on Exercise V—Output Customer-wise Sales Summary of a Company Code—Use SAP Script Form
	Output Specification and Layout
	Data Inputs
	SAP Script Form YCH02_05_SALESSUM
	Text Element in Window HEADING
	Text Element in Window MAIN
	Text Element in Window TOTAL

	Print Program YCH02_05_PPRG_YCH02_05_SALESUM for SAP Script Form YCH02_05_SALESUM
	Check and Activate Form
	Output
	Hands-on Exercise Recapitulation

	Classifying Forms
	SAP Script Form Documentation
	SAP Script Tidbits
	Conclusion

	Chapter 3: Smartforms—Forms, Styles, and Text Modules
	SAP script and Smartforms—Similarities and Differences
	Extra Features and Facilities in Smartforms over SAP Script
	SAP Script Objects Available in Smartforms Environment
	Smartforms Form Elements and Smartforms Form Environment
	Application Toolbar
	Menu Bar and Menu Options
	Node: Global Settings
	Form Attributes
	Form Interface
	Global Definitions
	Global Data
	Types
	Field Symbols
	Initialization
	Form Routines
	Currency Quant. Fields

	Node: Pages and Windows
	Layout Element: Page Format
	Layout Element: Window
	Layout Element: Graphic
	Layout Element: Address
	Layout Element: Text
	Layout Element: Table
	The Layout Element Table in the Form YSM_SMB40_MMPO_A
	Layout Element Table Tab Screen Data
	Layout Element Table: Tab Screen Events
	Description of Layout Element Table in the Form YSM_SMB40_MMPO_ A—Text
	Layout Element: Text Located in Table
	Recapitulation—Layout Element Table

	Layout Element: Template
	Layout Element: Flow Logic —Alternative
	Layout Element: Flow Logic—Loop
	Layout Element: Flow Logic—Program Lines
	Layout Element: Flow Logic—Command
	Layout Element: Folder

	Recapitulation—Node: Pages and Windows
	Smartforms Form Environment—Settings and Field List

	Smartforms Form and ABAP Driver Program
	Generating Business Documents Using Smartforms—Architecture
	Demonstration I
	Recapitulation of Specifications of Text in Secondary Window
	Create Style
	Create Form—Form Attributes and Page Format
	Create Form—Graphic and Secondary Window
	Create Form—Text
	Test or Print Preview Form
	Recapitulation

	Demonstration II
	Create Text Module YCH03_01_SEL_TABLES
	Create Form YCH03_02_SEC_FRM—Page Format FIRST and Graphic Window LOGO
	Create Form—Create a Secondary Window VARIABLE and Include Text Module
	Test Print Form YCH03_02_SEC_FRM
	Recapitulation

	Demonstration III
	Create Style YCH03_02
	Create Form YCH03_03_MLIST1, Page Format FIRST, etc.
	Create Secondary Window, Create Text, etc.
	Adjust Dimensions of Main Window, Create Text in Main Window, etc.
	Create an ABAP Program YCH03_01_MLIST1 (Driver Program), etc.
	Test Form YCH03_03_MLIST1, Execute Program YCH03_01_MLIST1
	Recapitulation

	Demonstration IV
	Create ABAP Dictionary Structure YCH03_2REC_MAKT_STRU
	Create Form YCH03_04_MLIST2
	Create and Test ABAP Program YCH03_02_MLIST2 (Driver Program)
	Test Form YCH03_04_MLIST2, Execute Program YCH03_02_MLIST2
	Recapitulation

	Conclusion

	Chapter 4: Smartforms–Hands-on Exercises
	Hands-on Exercise I—Output Vendors’ Address Labels of a Specific Company Code
	Output Specification and Layout
	Output Considerations
	Inputs
	Creation of Style YCH04_01, Form YCH04_01_ADR_STK and Driver Program YCH04_01_DPRG_YCH04_01_ADR_STK
	Output
	Hands-on Exercise Recapitulation

	Hands-on exercise II—Output Purchase Orders Using Custom Form
	Hands-on Exercise—Scope and Limits
	Output and Layout Specification
	Output Considerations
	Data Inputs and Data Input Considerations
	Creation of Smartforms Form, Driver Program, and Related Workbench Objects
	ABAP Dictionary Structure YCH04_ITEM_STRU
	Smartforms Style YCH04_02
	Smartforms Form YCH04_02_PORDER1
	Node: Form Interface
	Node: Global Definitions
	Node: Pages and Windows
	Node: Page Format FIRST
	Node: Page Format NEXT

	Driver Program YH04_02_DPRG_YCH04_02_PORDER for Smartforms Form: YCH04_02_PORDER
	Database View YCH02_EKKO_LFA1
	Elementary Search Help YCH02_01_EKKO_LFA1_SH

	Output
	Hands-on Exercise Recapitulation

	Hands-on Exercise III–Copy, Modify, and Customize SAP Delivered Form /SMB40/MMPO_A, etc.
	A Note on the SAP Delivered Smartforms Form /SMB40/MMPO_A
	Stage I: Enable Purchase Order Output with Smartforms Form YSM_SMB40_MMPO_A,
	Stage II: Enable Purchase Order Output with a Modified and Customized Copy of Smartforms Form /SMB40/MMPO_A
	Output Specifications
	Copy Form YSM_SMB40_MMPO_A to Y Namespace and Modify as per Specifications
	Output

	Hands-on Exercise Recapitulation
	Smartforms System Fields: SFSY-PAGE and SFSY-FORMPAGES
	Three Page Formats and Runtime Assignment of Page Format with Command Node
	Forms: /BPR3PF/MMPO_L, /BPR3PF/MMPO_A, and Driver Program /BPR3PF/FM06P

	Hands-on Exercise: IV–Generate Material Bar Code Labels
	Output Specification, Major Tasks, etc.
	Creation of Custom Bar Code YCH_04BC, Assignment to a Print Device
	Creation of Style YCH04_04
	Creation of Form YCH04_04_MATERIAL_BCODES
	Creation of Driver Program YCH04_04_DPRG_YCH04_04_MBCODES
	Execution of Driver Program—Output
	Hands-on Exercise Recapitulation

	Hands-on Exercise V—Output Customer-wise Sales Summary of a Company code—Use Smartforms Form
	Output Specification and Layout
	Data Inputs
	Create ABAP Dictionary Structure YCH04_SALES_SUMM_STRU
	Create Smartforms Style YCH04_05 and Form YCH04_05_SALESSUM
	Window RHEADING
	Window CHEADING
	Window MAIN
	Window GTOTAL

	Driver Program YCH04_05_DPRG_YCH04_05_SALESUM for Smartforms Form YCH04_05_SALESUM
	Output
	Hands-on Exercise Recapitulation

	Smartforms Tidbits
	Smartforms Opening Screen Menu Options
	Final Window
	Copy Window

	Conclusion

	Chapter 5: Migration Using Batch Input Session and Call Transaction Methods
	Data Migration–Issues and Considerations
	Data Migration–A Brief on Tools and Facilities Available
	Recording a Transaction, BDCDATA Table, and the Include Program BDCRECX1
	Recording a Transaction, BDCDATA Table
	Include Program BDCRECX1

	Determine Program Name, Screen Numbers, Screen Field Names
	Hands-on Exercise I: Migrate Vendor Data Using Batch Input Method
	Specification and Scope
	Multiple Rows on a Screen—Case of Table Control
	Value Assignment to Fields

	Data Flow When Running Program Using Batch Input Method
	Task List
	Perform Recording of Vendor Creation Using Transaction Code XK01 and Save It
	Generate an ABAP Program from Saved Recording
	Perform Modifications to a Copy of the Generated Program
	Declare Two Internal Tables to Receive Data from Text Files
	SELECTION-SCREEN Statements (with F4 Facility) to Input Text File Names
	Transfer Data from Text Files into Internal Tables
	Set Up Loops to Fetch Data from the Internal Tables, Pass Data, etc.
	Syntax Check and Program Activation
	Prepare Text Data Files

	Run the Program with the Batch Input Option (Default) for Creation of a Batch Input Session
	Run the Batch Input Session in Foreground with Transaction Code SM35
	Check and Verify Migration of Vendor Data—Transaction Code XK02 or XK03, etc.
	Prepare Text Files; Run Program with the Batch Input Option to Create a Session; Run Session in Background and Verify Migration of Data
	Issue of Number of Rows Greater Than Visible Number of Rows in Table Control Area
	Recapitulation—Hands-on Exercise I: Migrate Vendor Data Using Batch Input Method

	Hands-on Exercise II: Migrate Vendor Data Using Call Transaction Method
	Extra Features in the Program
	Migrate Data of Text Files on Application Server Using Call Transaction Method
	Locate Text Files on Application Server
	Data Flow in Call Transaction Method
	Modifications to Program to Support Input Text Files on Application Server, etc.
	Execute Program—Verify Data Migrated

	Migrate Data of Text Files on Application Server Using Call Transaction Method, Create Log File on Application Server
	Modifications to the Include Program YCH05_BDCRECX1
	Modifications to the Main Program YCH05_XK01_PROGRAM_CALL_TRAN
	Prepare Text Files; Copy Text Files to Application Server, etc.
	Execute Program—Verify Data Migrated and Log File Created

	Recapitulation—Hands-on Exercise II: Migrate Vendor Data Using Call Transaction Method

	Batch Input vis-à-vis Call Transaction Methods
	Conclusion

	Chapter 6: Data Migration Using Legacy System Migration Workbench LSMW–I
	LSMW—Project Structure and an Overview of the Opening Screen
	Project Structure
	LSMW Opening Screen Overview—Some Application Toolbar Buttons and Menu Options

	A Brief on the LSMW Hands-on Exercises
	Hands-on Exercise I—Migration of Vendor Data Using Standard Batch/Direct Input Method
	Specification and Scope
	Create Project, Subproject, and Object
	Process Step 1—Maintain Object Attributes
	Process Step 2—Maintain Source Structures
	Process Step 3—Maintain Source Fields
	Process Step 4—Maintain Structure Relations
	Process Step 5—Maintain Field Mapping and Conversion Rules
	Process Step 6—Maintain Fixed Values, Translations, and User-Defined Routines
	Process Step 5—Revisited
	Process Step 7—Specify Files
	Process Step 8—Assign Files
	Data Creation on Presentation Server, Copy to Application Server
	Process Step 9—Read Data
	Process Step 10–Display Read Data
	Process Step 11–Convert Data
	Process Step 12–Display Converted Data
	Process Step 13–Create Batch Input Session
	Process Step 14—Run Batch Input Session
	Vendor Data Creation—Cross-Verification
	Hands-on Exercise I—Recapitulation

	Hands-on Exercise II—Migration of Vendor Data Using Batch Input Recording Method
	Create Object YCH06_RC and Recording YCH06_XK01 of Transaction Code XK01
	Process Step 1—Maintain Object Attributes
	Process Step 2—Maintain Source Structures
	Process Step 3—Maintain Source Fields
	Process Step 4—Maintain Structure Relations
	Process Step 5—Maintain Field Mapping and Conversion Rules
	Process Step 6—Maintain Fixed Values, Translations, and User-Defined Routines
	Process Step 5—Revisited
	Process Step 7—Specify Files
	Process Step 8—Assign Files
	Data Creation on Presentation Server, Copy to Application Server
	Process Step 9—Read Data
	Process Step 11—Convert Data
	Process Step 13—Create Batch Input Session
	Process Step 14—Run Batch Input Session
	Vendor Data Creation—Cross-Verification
	Hands-on Exercise II Recapitulation
	Process Steps Screen—Menu Options
	Project, Project Components Export and Import

	Conclusion

	Chapter 7: Data Migration Using Legacy System Migration Workbench LSMW–II
	Hands-on Exercises in This Chapter—Issues and Considerations
	Purchase Order Database Tables
	Database Table EKKO
	Database Table EKPO
	Database Table EKET
	Database Tables of Purchasing Documents–ER Diagram and Data Storage

	A Brief on IDocs
	IDoc–A Data Container
	IDoc–Deployment Scenarios
	IDocs–Storage in Database Tables
	IDocs–Outbound and Inbound Processing
	IDocs–ALE Technology, SAP Ready-to-Use IDocs
	IDoc Components–A Look at the IDoc Type PORDCR05

	Hands-on Exercise III–Migration of Purchase Order Data Using IDoc
	Specification and Scope
	Perform IDoc Inbound Settings
	Create Subproject YCH07_PO
	Create Object YCH07_IDOC
	Process Step 1–Maintain Object Attributes
	Process Step 2–Maintain Source Structures
	Process Step 3–Maintain Source Fields
	Process Step 4–Maintain Structure Relations
	Process Step 5–Maintain Field Mapping and Conversion Rules
	Process Step 7–Specify Files
	Process Step 8–Assign Files
	Data Creation on Presentation Server
	Process Step 9–Read Data
	Process Step 10—Display Read Data
	Process Step 11—Convert Data
	Process Step 12—Display Converted Data
	Process Step 13—Start IDoc Generation
	Process Step 14—Start IDoc Processing
	Process Step 15—Create IDoc Overview
	Process Step 16—Start IDoc Follow-Up
	Purchase Orders Created—Cross-Verification with Input Data
	Hands-on Exercise III—Recapitulation

	Hands-on Exercise IV—Migration of Purchase Order Data Using Business Object Method
	Deficiencies of Hands-on Exercise III—Rectification
	Specification and Scope
	Create Object YCH07_BAPI
	Process Step 1—Maintain Object Attributes
	Process Step 2—Maintain Source Structures
	Process Step 3—Maintain Source Fields
	Process Step 4—Maintain Structure Relations
	Process Step 5—Maintain Field Mapping and Conversion Rules
	Process Step 7—Specify Files
	Process Step 8—Assign Files
	Data Creation on Presentation Server
	Process Step 9—Read Data
	Process Step 10—Display Read Data
	Process Step 11—Convert Data
	Process Step 12—Display Converted Data
	Process Step 13—Start IDoc Generation
	Process Step 14—Start IDoc Processing
	Process Step 15—Create IDoc Overview
	Process Step 16—Start IDoc Follow-Up
	Purchase Orders Created—Cross-Verification with Input Data
	Hands-on Exercise IV—Recapitulation

	Project Components Export
	Conclusion

	Index

