- = -
» o &
w *
i’z i
- = =

Procedural Content Generation
for C++ Game Development

Get to know techniques and approaches to procedurally
generate game content in C++ using Simple and Fast
Multimedia Library

.alitebooks.col

http://www.allitebooks.org

Procedural Content Generation
for C++ Game Development

Get to know techniques and approaches to procedurally
generate game content in C++ using Simple and Fast
Multimedia Library

Dale Green

PUBLISHING
BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

Procedural Content Generation for C++ Game
Development

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2016
Production reference: 1210116

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78588-671-3

www . packtpub.com

[vww allitebooks.cond

www.packtpub.com
http://www.allitebooks.org

Credits

Author Project Coordinator

Dale Green |zzat Contractor
Reviewer Proofreader

Glen De Cauwsemaecker Safis Editing
Commissioning Editor Indexer

Neil Alexander Priya Sane
Acquisition Editor Graphics

Indrajit Das Kirk D'Penha
Content Development Editor Production Coordinator

Priyanka Mehta Shantanu N. Zagade
Technical Editor Cover Work

Vishal Mewada Shantanu N. Zagade
Copy Editor

Vedangi Narvekar

[vww allitebooks.cond

http://www.allitebooks.org

About the Author

Dale Green is a young software developer who started his professional
programming career in VB.NET, writing bespoke solutions to automate business
tasks. This included the writing and maintenance of an e-commerce site that sold
products on big online marketplaces such as Amazon and Rakuten.

Prior to this, he's been creating computer games since his early high school days.
Through self-teaching, Dale has worked with a number of game development tools
such as GameMaker, Unity, and Unreal before finding home in C++/DirectX/
OpenGL after undertaking a degree in the subject.

Currently studying computer games programming BSc (Hons) at the University

of Huddersfield, he is on track to graduate with a first-class degree. Alongside

his studies, he is a teaching assistant who helps deliver course content to fellow
undergraduates. He undertook a year of self-employment to publish his first
commercial title on Steam, Samphi, through his indie studio, Greeny Games Studio.

As a hobby, Dale also operates the indie game news website named Indie Gamers
UK and enjoys playing with new technologies and languages.

[vww allitebooks.cond

http://www.allitebooks.org

Acknowledgment

First and foremost, I'd like to thank my family for their support throughout the
project. Their encouragement and support kept me focused, determined, and most
importantly, kept my cup filled with tea. Thanks, Mum!

Also thanks to Frank the kitty for trying to help. I assume that's what he was trying
to do as he liked to walk on the keyboard so much! In the middle of a sentence, if
you find "wwwwwwwwwwwwwwwwwwww'", direct your complaints to him.

Thanks to Dino Kadric for his help and support with the earlier chapters.
His guidance and feedback helped tremendously.

I'd also like to thank the editors at Packt who've made the whole process as
comfortable as possible. They were always there to offer help and support when
needed. I'd especially like to thank Priyanka Mehta and Indrajit Das.

Most importantly, I'd like to dedicate the book to my amazing gran, Joey Wheeler.
Despite not knowing what a computer is, she calls my phone "the machine", she's
read every word as I wrote them, including the code! Her enthusiasm towards the
project rivaled my own, and her support really kept the ball rolling when things got
tough. Thanks, granny!

[vww allitebooks.cond

http://www.allitebooks.org

About the Reviewer

Glen De Cauwsemaecker is an open source hacker, traveler, and young
entrepreneur who has been playing with technology most of his life. He loves to
learn, teach, explore, and make things. Open source, free education, and a global
world is what he stands for. He has worked for Fishing Cactus (Belgium), Code
Combat (Remote), AirPair (Remote), Exient (UK/Remote). He currently works as
a freelancer and entrepreneur on independent and open source projects.

I would like to thank the author of this book for all the hard work
that he put into it. It's a great book that's written with passion and
it's a gift to the community. I would also like to thank my girlfriend
for her support.

[vww allitebooks.cond

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www. PacktPub. com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub. com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at servicee@packtpub. com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print, and bookmark content

¢ On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

[vww allitebooks.cond

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.allitebooks.org

vww allitebooks.conl

http://www.allitebooks.org

Table of Contents

Preface Xi
Chapter 1: An Introduction to Procedural Generation 1
Procedural generation versus random generation 2
Procedural generation 2
Random generation 2
Introducing randomness 2
Pseudorandom number generation 3
Why computers can't generate truly random numbers 4
Generating random numbers in C++ 4
Generating random numbers within a range 6
Seeds 7
Defining seeds 7
Using seeds 8
Generating random seeds during the runtime 9
Controlled randomness is the key to generating random numbers 10
The use of procedural generation in games 10
Saving space 10
Map generation 11
Texture creation 12
Animation 12
Sound 13
Benefits of procedural generation 13
Larger games can be created 13
Procedural generation can be used to lower budgets 14
An increase in gameplay variety 14
An increase in replayability 14

[il

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

The drawbacks of procedural generation 15
More taxing on the hardware 15
Worlds can feel repetitive 15
You sacrifice quality control 15
You may generate an unplayable world 16
It is hard to script set game events 16

A brief history of rogue-like games 16

How we'll implement procedural generation 17
Populating environments 17
Creating unique game objects 17

Creating unique art 17

Audio manipulation 18
Behavior and mechanics 18
Dungeon generation 18

Component-based design 18

The complete game 19

Exercises 19

Summary 20

Chapter 2: Project Setup and Breakdown 21

Choosing an IDE 21
Microsoft Visual Studio 22
Code::Blocks 22
Other IDEs 23
Build systems 23

Breaking down the game template 24
Download templates 24
The class diagram 24
The object hierarchy 25
Level data 25
Collision 27
Input 27

Simple and Fast Multimedia Library (SFML) 28
Defining SFML 28
Why we'll be using SFML 28
Learning SFML 29
Alternatives 29

Polymorphism 30
Inheritance 30
Virtual functions 31
Pure virtual functions 32

Lii]

Table of Contents

Pointers and object slicing 33
The roguelike template setup 36
Downloading SFML 37
Linking SFML 37
Running the project 39
Adding an item 40
Updating and drawing 40
Exercises 42
Summary 42
Chapter 3: Using RNG with C++ Data Types 43
Setting the game seed 43
Setting Boolean values randomly 45
Generating a number between 0 and 1 45
Choosing if an item spawns 47
Random number distribution 48
Giving the player random stats 50
Accessing random elements of a collection 52
Spawning a random item 53
Generating random characters 55
Repeating loops 58
Spawning a random number of items 60
Exercises 61
Summary 62
Chapter 4: Procedurally Populating Game Environments 63
Potential obstacles 64
Keeping within the bounds of a level 64
Avoiding overlapping objects 64
Creating meaningful levels 64
Level tiles 65
Defining the spawn area 66
Calculating the level bounds 66
Checking the underlying game grid 67
Selecting a suitable game tile 68
Randomly selecting a tile 69
Checking whether a tile is suitable 69
Converting to absolute position 70
Spawning items at a random location 70
Expanding the spawning system 73
Using enumerators to denote an object type 74

Optional parameters 74

[iii]

Table of Contents

The complete spawn functions 75
Updating the spawn code 78
Randomly spawning enemies 79
Spawning random tiles 82
Adding a new game tile 82
Choosing a random tile 83
Implementing the SpawnRandomTiles function 84
Exercises 85
Summary 85
Chapter 5: Creating Unique and Randomized Game Objects 87
Creating a random player character 87
Choosing a player class 88
An overview of sprites and textures 89
Setting an appropriate sprite 89
Buffing the player stats 94
Random character traits 95
Returning the player traits array 97
Setting trait sprites 98
Procedurally generating an enemy class 101
Procedural items 103
Random Gem and Heart classes 103
Random gold class 104
The random potion class 106
Creating a random potion 106
Determining potion pickups 109
Exercises 111
Summary 111
Chapter 6: Procedurally Generating Art 113
How procedural generation is used with art 113
Using sprite effects and modifiers 114
Combining multiple textures 114
Creating textures from scratch 114
Creating complex animations 115
The benefits of procedurally generated art 115
Versatility 116
Cheap to produce 116

It requires little storage 116

[iv]

Table of Contents

The drawbacks of procedurally generated art 116
Lack of control 117
Repeatability 117
Performance heavy 117

Using SFML sprite modifiers 117
How colors work in SFML 118
Creating sprites of a random color 119

Selecting a preset color at random 119
Generating a color at random 121
Creating sprites of a random size 123

Saving modified sprites 124
Passing a texture into an image 124
Drawing to a RenderTexture class 125
Saving an image to a file 126

Creating enemy sprites procedurally 127
Breaking sprites into components 127
The draw setup 128
Randomly selecting sprite components 129
Loading the default armor textures 131
Choosing the armor tier 132
Rendering the armor textures 133
Rendering the final textures 134
Overriding the default draw behavior 135
Debugging and testing 136

Editing the game tiles 137

Exercises 140

Summary 140

Chapter 7: Procedurally Modifying Audio 141

An introduction to SFML audio 142
sf::Sound versus sf::Music 142
sf::SoundBuffer 142

Selecting a random main track 143

Adding sound effects 144

Editing sound effects 147

Playing a sound function 148
The audio listener 148
Creating a fluctuation in a pitch 150

[v]

Table of Contents

3D sound - spatialization 152
The audio listener 152
The minimum distance 153
Attenuation 154
The position of the sound 155

Fixed positions 155
Moving positions 156
Exercises 158
Summary 159
Chapter 8. Procedural Behavior and Mechanics 161

An introduction to pathfinding 162
What is a pathfinding algorithm? 162
Dijkstra's algorithm 163

The A* algorithm 164

A breakdown of A* 165
Representing a level as nodes 165
The open and closed list 166
The H, G, and F costs 166

The H value 167
The G value 167
The F value 167
The Manhattan distance 167
Parenting nodes 168
The pseudo-algorithm 169

Coding the A* pathfinding algorithm 170
The Tile datatype 171
Creating supporting functions 171

The Level class 171

The Enemy class 172
Variable declarations 173
Precalculating the H values 174
Defining the main loop 175
Finding the adjacent nodes 176
Calculating the G and F costs 180

Calculating the G and F cost 181
Checking for superior paths 181
Creating the final path 184

Implementing A* in the game 185
Enabling the enemy to follow a path 185
Calling the pathfinding behavior 187
Viewing our path 188

[vil

Table of Contents

Procedurally generated level goals 190
The variable and function declarations 190
Generating a random goal 191
Checking whether a goal is complete 195
Drawing the goal on the screen 197

Exercises 199

Summary 199

Chapter 9: Procedural Dungeon Generation 201

The benefits of procedural level design 201
Replayability 202
A reduction in development time 202
Larger game worlds 202

Considerations 202
A lack of control 203
Required computing power 203
Suitability 203

An overview of dungeon generation overview 204
Generating rooms 204
Generating a maze 205
Connecting rooms and mazes 206

The recursive backtracker 206

Procedurally generating a dungeon 207
Changing how we view the maze 207
Updating the Game and Level classes 209
Generating a maze 211

Preparing before the generation of a maze 211
Carving passages 213
Adding rooms 217

Choosing the tile textures 220
The if/else approach 220
Bitwise tile maps 220
Calculating the tile values 221
Mapping the tile value to textures 222
Calculating tile textures 223
Creating unique floor themes 226
Adding entry and exit points 229
Setting a player's spawn location 231
Undoing the debug changes 234

Exercises 235

Summary 236

[vii]

Table of Contents

Chapter 10: Component-Based Architecture 237
Understanding component-based architecture 238
Problems with a traditional inheritance-based approach 238
Convoluted inheritance structures 238
Circular dependencies 239
Benefits of component-based architecture 239
Avoiding complex inheritance structures 240
Code is broken into highly reusable chunks 240
Highly maintainable and scalable 240
The disadvantages of component-based architecture 241
Code can become too fragmented 241
Unnecessary overhead 241
Complex to use 241

An overview 241
Designing the component system 242
C++ templates 243
Using templates 243
Template declarations 244
Using templates 245
Template specialization 246
Function overloading 247
Creating a base component 248
Component functions 248
Attaching a component 249
Retuning a component 250
Creating a transform component 252
Encapsulating transform behavior 252
Adding a transform component to the player 253
Using the transform component 254
Updating the game code 254
Creating a SpriteComponent 255
Encapsulating sprite behavior 256
Adding a sprite component to the player class 258
The updated drawing pipeline 259
Updating the game code 259
Creating an audio component 260
Defining the behavior of an audio component 260
Adding an audio component to the player class 262
Using the audio component 262
Exercises 263

Summary 263

[viii]

Table of Contents

Chapter 11: Epilogue 265
Project breakdown 265
Procedurally populating environments 265
Creating unique and random game objects 266
Procedurally generating art 266
Procedurally modifying audio 266
Procedural behavior and mechanics 267
Procedural dungeon generation 267
Component-based architecture 268
The pros and cons of procedural generation 268
Pros 268
Cons 269
Summary 269

Index 271

[ix]

Preface

Computer games are a vast medium with dozens of genres that have developed over
the past three to four decades. Games are bigger and more immersive than ever, and
gamers' expectations have never been higher. While linear games, ones that have a
set story and fixed progression, are still commonplace, more and more dynamic and
open-ended games are being developed.

Advances in computer hardware and video game technologies are giving a much
more literal meaning to the phrase "game world". Game maps are constantly
increasing in size and flexibility, and it's thanks to technologies such as procedural
generation that it's possible. Two gamers who buy the same game may have very
different experiences as content is generated on the fly.

In this book, we're going to introduce ourselves to procedural generation, learning
the skills needed to generate content on the fly to create dynamic and unpredictable
game systems and mechanics.

Provided with this book is a game template for a rogue-like C++ game. When we
get the project compiled and set up in Chapter 2, Project Setup and Breakdown, you'll
see that it's currently just an empty shell. However, as we work our way through the
book, you'll be introduced to the concepts behind procedurally generated content
through real-world examples. We will then implement these examples in the

empty project.

[xi]

Preface

What this book covers

Chapter 1, An Introduction to Procedural Generation, introduces us to the vast topic that
it procedural generation. I've always felt a crucial part of really learning something
is understanding why it's done the way it is. Its great knowing how something is
done, but knowing its origin and why it's the way it is creates a much more complete
picture and a deeper understanding. In this chapter, we'll go right back to the birth
of procedural generation and its journey into modern computer games.

Chapter 2, Project Setup and Breakdown, explains how to set up the provided rogue-like
game project in your chosen IDE with detailed instructions for both Visual Studio
and Code::Blocks. It's written in C++/SFML, and we'll be extending it throughout
this book. We'll also cover common issues that you may face and run the project for
the first time.

Chapter 3, Using RNG with C++ Data Types, explores random number generation
(RNG), including the problems surrounding it and how we can use it with C++ data
types to achieve random results during runtime. RNG lies at the heart of procedural
generation and is how we emulate computers acting randomly and achieve dynamic
results with our algorithms.

Chapter 4, Procedurally Populating Environments, helps us develop our level further
by spawning items and enemies in random locations around the map. Procedurally
generated environments is a staple in procedurally generated games, and spawning
game objects at random locations is a big step toward achieving this.

Chapter 5, Creating Unique, Randomized Objects, explores ways in which we can
create unique and randomized game objects. Certain items will be procedurally
generated during runtime, which means that there will be a vast number of possible
combinations. We'll cover the skills and techniques that were used to achieve this in
the earlier chapters. We'll pull it all together and build a procedural system!

Chapter 6, Procedurally Generating Art, steps up our procedural efforts by moving
away from the simple setting up of member variables randomly to the creation of
procedural art and graphics. We'll procedurally create textures for our enemies and
alter the level sprites to give each floor of our dungeon a unique feel.

Chapter 7, Procedurally Modifying Audio, looks at the nearest cousin of art, audio,
using similar techniques to create variance in our sounds. We'll also use SFML's
audio functions to create specialized 3D sound, bringing more depth to our levels.

[xii]

Preface

Chapter 8, Procedural Behavior and Mechanics, uses everything that we've learned so
far to create complex procedural behavior and mechanics in the form of pathfinding
and unique level goals. We'll give our enemies the intelligence to traverse levels and
chase the player. We'll also create unique level goals with unique rewards for the
player to carry out.

Chapter 9, Procedural Dungeon Generation, finishes our work on the game project.
We're going to implement what is perhaps the most icon feature of roguelike
games: procedurally generated levels. All the way through the book, we've been
working with the same fixed level. So, it's about time we started generating them
procedurally! We'll also create some variance between levels and implement the
goal generator that we created in the previous chapter.

Chapter 10, Component-Based Architecture, takes a look at component-based design,
since our work on our template project is now complete. Procedural generation is

all about flexibility. So, it makes sense that we'd want to work with the most flexible
architecture that we can. Component-based architecture can achieve this, and having
a good understanding of this design approach will help you progress and build
larger systems in the future.

Chapter 11, Epilogue, takes a retrospective look at the project and the topics that we
covered as we finish our procedural journey. For each area of procedural generation
that we've used, we'll also identify some jumping-off points should you wish to
explore the topic in depth.

What you need for this book

Throughout the course of writing this book, I used Visual Studio Community 2015
for Windows Desktop. It's a great IDE with all the tools that we need to create a C++
game for Windows. It's available for free from Microsoft, so I highly recommend that
you download it and use it throughout the course of the book.

Don't worry if you've never used it before; we'll cover the project setup in detail so
that you'll become accustomed to the parts of the IDE that we'll be using. I'll also
provide the setup instructions for Code::Blocks. If you opt not to use an IDE, you'll
need access to a C++ compiler so that you can run the project that we'll be working
on in the book.

[xiii]

Preface

Who this book is for

This book is aimed at those who have knowledge of game development in C++ and
are looking to incorporating procedural generation into their games. It will assume a
fairly solid understanding of the fundamentals of programming, such as data types,
return types, method calls, and so on. An understanding of the concepts behind
game development is also assumed as we won't be looking at the underlying engine.

A game template is provided, and we'll use SEML to extend it throughout the course
of the book. No prior experience with SFML is assumed. After completing the book,

you will have a solid understanding of what procedurally generated content is, how
it is used in games, and the collection of practical skills that will be applied to a

real game.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"We called std: :srand () and set a new seed, but each time we run the program,
we're setting the same seed again "

A block of code is set as follows:

Stirng myStringLiteral = "hello";
string myString = { 'h', 'e', '1', '1l', 'o', '\0' };

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

// If the enemy is dead remove it.
if (enemy.IsDead())

{

enemylterator = m_enemies.erase(enemylterator) ;

// If we have an active goal decrement killGoal.
if (m_activeGoal)

{

--m killGoal;

}

[xiv]

Preface

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:

" In Code::Blocks, add the following to the project's Build Options and Search
Directories tab."

% Warnings or important notes appear in a box like this.
i

!

Q Tips and tricks appear like this.

Extra Exercises

At the end of each chapter, there are a number of review questions and further
exercises that can be completed. While not crucial to the book, it's advised that you
complete them so that you can gauge your understanding of the topics covered and
gain more experience.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub. com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http://www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http: //www.packtpub. com/support
and register to have the files e-mailed directly to you.

[xv]

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub. com/
sites/default/files/downloads/67130T ColoredImages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit -errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[xvi]

http://www.packtpub.com/sites/default/files/downloads/6713OT_ColoredImages.pdf
http://www.packtpub.com/sites/default/files/downloads/6713OT_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

An Introduction to Procedural
Generation

When you load an image on a PC, a song on an iPod, or a book on a Kindle, you load
it from storage. That image, song, and book already exists as a whole, and whenever
you want to access it, you grab the whole previously created thing. In the case of
music or a video, you can stream it in chunks, but it still already exists as a whole in
storage. Let's compare this to buying a ready-made desk from a furniture store. You
get the entire desk as one single thing and that's that; you have a desk.

Now, let's imagine that instead of buying a complete desk, you buy one that's
flat-packed. Instead of getting a pre-built desk, you get all the pieces that you need
to build one, and instructions on how to do so. When you get home, you can follow
those instructions, and you will have a desk. If you feel so inclined, you can even
deviate from the instructions and create a unique desk that is different from that of
everyone else.

Let's use this analogy in the context of game development by substituting the
purchasing of a desk with the loading of a level. In the first case, we loaded the
level as a whole, as it was pre-built. However, in the second example, we got all the
pieces that we need to build a level and put them together ourselves in whatever
order we choose.

This process of something being created via an algorithm or procedure, as

opposed to already existing, is called procedural generation. The desk was created
procedurally as you followed an algorithm to put its pieces together. The same goes
for the game level. This can be extended to almost anything. For example, music,
images, games, and text can all be procedurally generated.

[11]

An Introduction to Procedural Generation

In this chapter, we will cover the following topics:

* Procedural generation versus random generation

* Generating pseudorandom numbers in C++

* Seeds

* The benefits and drawbacks of procedural generation
* A brief history of rogue-like games

* How to implement procedural generation

Procedural generation versus random
generation

I'd like to make a distinction before we go any further. In this book, we're going to
talk a lot about procedural generation and random generation. These terms are often
used interchangeably, but they are not the same thing. Therefore, let's take a moment
to define them.

Procedural generation

Procedural generation is the process of creating content using an algorithm. This in
itself has no element of randomness. If the functions, expressions, algorithms, and
inputs that are used to generate the content remain the same, then you'll always get
the same results. This is due to the fact that computers are deterministic, which is
something that we'll cover shortly. Procedural generation is not inherently random.

Random generation

Randomness is induced when we give these algorithms different inputs or alter their
expressions. This variance is what creates the variety of the output. When someone
says something was procedurally generated, they usually mean procedurally
generated utilizing randomness.

Introducing randomness

Computers are deterministic machines. This means that if you give them the same
input, and perform the same operations, you'll get the same output every time.
With respect to the desk example, everyone gets the same pieces, follows the

same instructions, and so builds the same desk.

[2]

Chapter 1

Again, using the context of games, if everyone gets the same assets and algorithms
to put them together, we will all get the same game and experience. Sometimes,
this is the goal. However, in our case, we want to create game systems that are
unpredictable and dynamic. Therefore, we need to introduce an element of
randomness to procedural generation.

Pseudorandom number generation

Random number generation is simply the process of picking a number at random.
This is pretty straightforward for us, but it is a much tougher task for a computer.
In fact, it's impossible for a computer to generate a truly random number without
special hardware. You'll understand why this is so in a moment.

The next best thing is pseudorandom number generation. The word pseudo literally
means not genuine. Therefore, pseudorandom number generation can be thought
of as a fake random number generation. The numbers appear to be random but

are actually the result of complex equations and algorithms that could in fact be
calculated in advance.

Bear in mind that not all pseudorandom number generators are built equally. For
applications such as trivial simulations and games, fairly linear algorithms can be
used and are perfectly suitable. However, pseudorandom number generation is
also used in applications such as cryptography, and will use much more complex
algorithms so that the outcome cannot be determined via patterns created from
earlier outputs.

The pseudorandom number generators that we use as developers fall firmly into the
first category and are perfectly suitable. Luckily for us, C++ offers a number of ways
in which trivial pseudorandom numbers can be generated. Throughout the course of
this book, we will use std: :rand () and std: :srand (), both of which standard C++
functions that are included in <cstdlibs library.

Learning how to read and extract information from documentation is a
N skill that I feel is often overlooked. With a multitude of great forums at
~ hand it's easy to go straight to Google for a solution to your problem, but
Q first, always read the documentation. http://www.cplusplus.comis
a great C++ reference, and SFML is fully documented at http://www.
sfml-dev.org/documentation/.

[31]

http://www.cplusplus.com
http://www.sfml-dev.org/documentation/
http://www.sfml-dev.org/documentation/

An Introduction to Procedural Generation

Why computers can't generate truly random
numbers

We now know that computers can't generate random numbers, and that we generate
pseudorandom numbers instead. Let's have a look at why this is so.

The reason behind this is the same as the reason why two computers will reach

the same output given the same input and operation; computers are deterministic.
Everything that a computer produces is the result of an algorithm or equation. They
are nothing more than highly sophisticated calculators. Therefore, you can't ask them
to act unpredictably.

True random numbers can be generated, but you need to utilize systems outside
the machine. For example, at https://www.random.org/ you can generate truly
random numbers using atmospheric noise. There are other systems that are akin to
this, but unless you are generating random numbers for something important such
as security purposes, trivial pseudorandom number generation will suffice.

Generating random numbers in C++

Let's start coding by writing a small program to generate some pseudorandom
numbers. To do this, we will use the std: :rand () function. It generates a
pseudorandom integer in the range between 0 to RAND_MAX. The RAND MAX variable
is a constant defined in <cstdlibs. Its value will vary depending on the library
that you are using. On a standard library implementation, it's guaranteed to be at
least 32767.

a1

~ If you're already familiar with this topic, feel free to skip ahead to the
sub-chapter named Seeds.

You can download the code for this program from the Packt website at http: //www.
packtpub.com/support. It will be present in the Examples folder, and the project
name is random numbers:

// Random number generation

// This program will generate a random number each time we press
enter.

#include <iostream>

using namespace std;

int main()

[4]

https://www.random.org/
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

<< "Press enter to generate a random number:";

while (true)
{
cout
cin.get () ;

// Generate a random integer.

int randomInteger = rand() ;

cout << randomInteger << endl << endl;

return O0;

Downloading the example code

You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visithttp://www.packtpub.com/support and register to have
the files e-mailed directly to you.

This is a very simple console application that makes a call to std: :rand () every
time we press the Enter key. This returns us the pseudorandom number, and we

pass it to std: : cout to display it. That's how easy it is!

enter

enter

enter

enter

enter

enter

generate

generate

generate

generate

generate

generate

randomn

randomn

randomn

randon

randomn

randon

Command Prompt

numbher

numnber:

number:

nunher:

number:

nunher:

Yy

[51]

[vww allitebooks.cond

http://www.packtpub.com
http://www.packtpub.com/support
http://www.allitebooks.org

An Introduction to Procedural Generation

Generating random numbers within a range

The previous code generated numbers between 0 and RAND Max. That's great, but
we'll usually want more control over this in order to generate numbers within a
certain range. To do this, we are going to use the modulo operator.

1
‘Q In C++, the modulo operator is the % symbol. This varies between

languages, but is generally either % or Mod.

The modulo operator returns the remainder of the division between two numbers.
So, 9mod 2is 1, as 2 goes into 9 four times with 1 left over. We can use this to create
a range for the pseudorandom number generation. Let's generate a number between
0 and 249.

To do this, we need to make the following change:

// Generate a random integer.
int—randominteger—=randt+

int randomInteger = rand() % 250;

Run the program a few times now, and you'll see that all the results are limited to
the range that we just defined. So now we can generate a number between 0 and n,
but what if we don't want our range to start from 0? To do this, we need to make one
more change to the line that generates a number:

// Generate a random integer.

int randomInteger = rand() % 201 + 50;

Remember that the number we used in the mod calculation will generate a number
between 0 and n-1, and the number we add afterwards will increase the range by
that amount. So here, we generate a number between 0 and 200 and then increase
the range by 50 to get a number between 50 and 250.

M If you're not fully comfortable with the math behind what we're
Q doing here, head over to Khan Academy. It's a fantastic resource
for learning and has lots of great mathematics-related material.

Run the program and note the first five numbers that are generated. In my case, they
are 91, 226, 153, 219, and 124. Now, run it again. You'll notice that something strange
happens; we received the exact same numbers.

[6]

Chapter 1

They were generated in a pseudorandom manner, right? Maybe it was just a fluke.
Let's run it again and see what we get. You will get the same result again. To
understand what's happening here, we need to take a look at seeds.

Seeds

We just created a program to generate pseudorandom numbers, but every time

we run it we get the same results. We know that these numbers are the results of
complex equations and algorithms, so why are they the same? It's because each time
we run the program, we're starting with the same seed.

Defining seeds

A seed provides a starting point for an algorithm. So, in the previous example, yes
we're using complex algorithms to generate numbers, but we're kicking off the
algorithm at the same point each time. No matter how complex the algorithm is,

if you start at the same point, and perform the same operations, you're going to get
the same results.

Imagine that we have three people, and each person is about to walk the same path
by 5 steps. If they all start from the same square, they will end at the same square:

Now, in the next diagram, we give these three people unique starting positions.
Even though they are doing the same actions as before, and are on the same path,
their results are different because they started from different locations:

S S S P R =
1 %"'2'".."'3 """ P E'% 7 8 9

In this analogy, the path is the algorithm, and the starting square is the seed.
By changing the seed we can get different results from the same actions.

[71

An Introduction to Procedural Generation

You will have most likely used seeds before and not even known it. Games that
procedurally generate worlds, such as Minecraft and Lego Worlds, give you the
option to set a seed manually before generating a world. If your friend generates a
world that looks great, they can grab their seed and give it to you. When you input
that seed yourself, you kick off the algorithm at the same place that your friends did
and you end up with the same worlds.

Using seeds

Now that we know what seeds are, let's fix the previous example so that we don't
keep generating the same numbers. To do this, we will use the std: : srand ()
function. It's similar to std: : rand (), but it takes an argument. This argument is
used to set the seed for an algorithm. We'll add the call to std: : srand () before we
enter the while loop.

M You only need to set the seed once per run of the application.
Q Once std: :srand () has been called, all the subsequent calls to
std: :rand () will be based upon the updated initial seed.

The updated code should look like this:

// Random number generation
// This program will generate a random number each time we press
enter.

#include <iostream>
using namespace std;

int main ()

{
// Here we will call srand() to set the seed for future rand() calls.
srand (100) ;

while (true)
cout << "Press enter to generate a random number:";
cin.get () ;

// Generate a random integer.

°

int randomInteger = rand() % 201 + 50;

[8]

Chapter 1

cout << randomInteger << endl << endl;

}

return O0;

}

Now when we run this code we get different results! I got 214, 60, 239, 71, and 233.
Don't worry if your numbers don't match mine exactly; they are both CPU- and
vendor-specific. So, what will happen if we run the program again? We changed
the seed. So we should get different numbers again, right?

Not quite. We called std: :srand () and set a new seed, but each time we run the
program we're setting the same seed again. We're kicking the algorithm off at the
same position each time, so we're seeing the same results. What we really want to do
is randomly generate a seed during runtime so that the algorithm always starts at a
new position.

Generating random seeds during the runtime

There are many ways to achieve this, and your use case will determine which
method is suitable. For us, as game developers, something relatively trivial such
as the current system time will usually suffice.

This does mean that if you run the program at the exact same time you'll get the
same results, but that's almost never going to be a problem for our use. C++ provides
us with a nice function to get the current time, time (), which is located in <ctimes>.

Let's update the program one last time and pass time () as a parameter in
std::srand () so that we generate unique numbers with every run:

// Here we will call srand() to set the seed for future rand() calls.

srandtoo)+

srand (time (nullptr)) ;

Now, every time we run the program, we get unique numbers! You may have
noticed that if you run the program multiple times in succession, the first number
is always very similar to the last run. That's because between the runs time doesn't
change a lot. This means that the starting points are close to each other and

the results reflect this.

[o]

An Introduction to Procedural Generation

Controlled randomness is the key to
generating random numbers

The process of generating random numbers is a huge component in creating systems
that procedurally generate game content. There are lots of ways in which random
data is generated, such as noise maps and other external systems, but in this book,
we'll stick to these simple C++ functions.

We want systems that are predictable enough to give us control over them as
developers, but they should be dynamic enough to create variations for the player.
This balance can be hard to achieve, and sometimes games get it wrong. Later in
this chapter, we'll look at some of the things that you have to watch out for when
incorporating procedural generation into a game project to avoid this.

The use of procedural generation in
games

Now we know what procedural generation is, and that it's the element of
randomness we add that lets us create dynamic systems, let's take a look at some
examples of how it is used in games. There are countless ways in which it can be
utilized; the following are just a few major implementations.

Saving space

Necessity, as the saying goes, is the mother of invention. As developers of today
we're spoiled with the hardware that we have at our disposal. Even the most baseline
machines that you'll get today will have a hard drive of 500 GB in size and up as

standard. This is quite a luxury considering that just a couple of decades ago that
would be MB and not GB.

Game distribution was also a very different game back then. Today, we either buy
games on a physical disk, with Blu-ray disks offering a whopping 25 GB per layer,

or download them off the Internet, where there are no size restrictions at all. Keeping
this in mind, now consider the fact that the size of most Nintendo Entertainment
System (NES) games was a mere 128 to 384 KB! These storage restrictions meant
that game developers had to fit lots of content into a small space, and procedural
generation was a great way to do this.

[10]

Chapter 1

Since building large levels and storing them wasn't possible in the past, games

were designed to build their levels and resources algorithmically. You'd put all the
resources needed on your storage media, and have the software assemble the level at
the player's end.

Hopefully now, the earlier desk analogy makes more sense. It's just like how flat-
packed furniture is easier to transport, and it can then be built at home. As hardware
has developed, this has become less of a problem, but it was a great solution for early
developers who had storage concerns.

Map generation

One of the most prominent uses of procedural generation in modern video games
is the generation of game maps and terrain. The extent to which this can be used is
vast, and ranges from generating simple 2D maps to full 3D worlds and terrain.

When procedurally generating 3D terrain, noise maps, such as the ones generated by
Perlin noise, are used to represent random distribution by producing an image with
areas of both high and low concentration. This data, the variance in concentration
and intensity, can then be used in many ways. When generating a terrain, it's
commonly used to determine the height at any given position.

The procedural generation of complex 3D terrain is beyond the scope of this book.
However, we will generate 2D dungeons later in this book.

M If you do want to explore 3D terrain generation, read up on terms such as
Q "fractal terrain generation", "height maps", and "noise generation". These
will put you on the correct path.

[11]

An Introduction to Procedural Generation

Texture creation

Another prominent example of procedural generation is the creation of textures.
Similar to terrain generation, the procedural generation of textures uses noise

to create variance. This can then be used to create varying textures. Different
patterns and equations are also used to create a more controlled noise that forms
recognizable patterns.

Generating textures procedurally like this means that you can potentially have an
unlimited number of possible textures without any overhead on storage. From a
limited pool of initial resources, endless combinations can be generated, an example
of which can be seen in the following image:

Perlin noise is just one example of the many algorithms that are commonly used in
procedural generation. The study of these algorithms is beyond the scope of this
book, but if you want to further explore the use of procedural generation, it would be
a good place to start.

Animation

Traditionally, game animations are created by animators, and then exported as

an animation file that is ready for use in the game. This file will store the various
movements that each part of a model will go through during animation. It then
gets applied to the game character during runtime. The player's current state will
determine which animation should be playing. For example, when you press A to
jump, the player will change to a jumping state, and the jumping animation will be
triggered. This system works great, but it is very rigid. Each step, jump, and roll

is identical.

[12]

Chapter 1

However, procedural generation can be used to create real-time, dynamic animation.
By taking the current position of the character's skeleton and calculating the multiple
forces that are being imparted upon it, a new position can be calculated. The most
prominent example of procedural animation is ragdoll physics.

Sound

Although less common than the previous examples, procedural generation is also
used to create game sounds. This will commonly be in the form of manipulating
existing sounds. For example, sound can be spatialized, meaning it appears to be
coming from a specific position when heard by the user.

At a stretch, short, one-shot sound effects may be synthesized, but due to the little
benefit that it brings as compared to the amount of work needed to implement it,
it's seldom used. It's simply much easier to load premade sounds.

. Sfxris a small program that generates random sound effects from scratch.
Its source is available. So, if sound synthesis interests you, it will serve
= as a good starting point. You can find the project at https://github.
com/grimfang4/sfxr.

Benefits of procedural generation

We've looked at some of the key ways in which procedural generation is used in
games. So now let's take a look at some of its most important benefits.

Larger games can be created

If your game world is hand-built, it's going to have size restrictions for a number
of reasons. Every object needs to be placed manually, every texture/model needs
to be handcrafted, and so on. All of this takes time and money. Even the largest
handcrafted game's world sizes, such as those seen in The The Witcher 3: Wild Hunt
and Grand Theft Auto V, pale in comparison to what procedurally generated worlds
can achieve.

If a game utilizes procedural generation correctly, then theoretically, there is no
limit to the world size. For example, No Man's Sky is a science-fiction game set in
an infinite, procedurally generated galaxy. When you start to get really big maps
however, hardware becomes a limiting factor. Areas that have been generated
need to be saved to the disk in order to revisit them, and this quickly adds up. For
example, to generate the biggest world possible in Minecraft, you will need around
409 petabytes of storage for the level data!

[13]

https://github.com/grimfang4/sfxr
https://github.com/grimfang4/sfxr

An Introduction to Procedural Generation

Procedural generation can be used to lower
budgets

Making games is expensive. Really expensive. In fact, most AAA games cost tens,
if not hundreds, of millions of dollars to make. With budgets that are this high, any
option to save money is welcome. Procedural generation can do just that.

Let's say that we are working on a title that needs 100 brick textures. Traditionally,
you'd have one of your artists create each brick. While they will have top quality,
this will cost both time and money. Alternately, by utilizing procedural generation
techniques, you can have an artist create a handful of resources and use them to
generate however many resources you need to use.

This is just one example, and the same goes for modeling, design, and so on. There
are pros and cons of using procedural generation in this way, but it's a valid option.

An increase in gameplay variety

If your game world is handmade, the experience that players have is going to be
fixed. Everyone will collect the same items, the terrain will be the same, and as a
result, the overall experience will be the same. The defining feature of procedurally
generated games is that experiences differ. There is a sense of unknown to the game,
and every time you play, there will be something new waiting that you haven't
encountered yet.

An increase in replayability

Let's continue from the last point. If a game is linear, without any procedural
generation, the challenge is gone after you've played the game once. You know the
plot, you know where the enemies will be, and unless it has an amazing story or
mechanics, there's not much reason why you'd want to play the game again.

However, if your game utilizes procedural generation, then the challenge is fresh
each time the game is run. The game is always evolving; the environments are
always new. If you look at the games that have the greatest replayability, they tend
to be the ones that give the player the greatest amount of control. Most of these
games will utilize some form of procedural generation to do so.

[14]

Chapter 1

The drawbacks of procedural generation

As with anything, there are two sides to a story. Procedural generation brings a
myriad of possibilities and enhancements to games, but there are considerations
to be taken when implementing it.

More taxing on the hardware

As we now know, procedural generation is the creation of content through running
algorithms. These algorithms can be intense and require a lot of computing power.

If you develop a game that makes heavy use of procedural generation, you need to

ensure that a regular consumer PC or console is able to meet its demands.

For example, if you choose to generate trees procedurally in an open world game,
there's going to be a big load on the CPU and GPU whenever that area needs to
be generated. Lesser PCs might not have the power to do so, and therefore, they
may stutter.

Worlds can feel repetitive

Another potential drawback is the fact that worlds can feel repetitive. If you allow
your game system to generate incredibly large worlds, but use few and basic
algorithms to do so, you'll inevitably have a lot of repetitive areas being generated.
Patterns and repeating areas will be very easy to spot, and this will diminish from
your game greatly.

You sacrifice quality control

Computers may be faster at crunching numbers than us humans, but there's one
thing that we're vastly superior at, and that's creativity. No matter how amazing the
procedural algorithm is, you lose the human touch. The little changes and subtleties
that a seasoned designer can bring to a project are sacrificed.

It also means that you can't guarantee the same gameplay quality to all players.
Some players may generate a really great map that facilitates gameplay, while
others may generate a map that actively prohibits it.

[15]

An Introduction to Procedural Generation

You may generate an unplayable world

In extreme cases of the previous point, a level that is comple