
www.allitebooks.com

http://www.allitebooks.org

Procedural Content Generation
for C++ Game Development

Get to know techniques and approaches to procedurally
generate game content in C++ using Simple and Fast
Multimedia Library

Dale Green

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Procedural Content Generation for C++ Game
Development

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2016

Production reference: 1210116

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-671-3

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Dale Green

Reviewer
Glen De Cauwsemaecker

Commissioning Editor
Neil Alexander

Acquisition Editor
Indrajit Das

Content Development Editor
Priyanka Mehta

Technical Editor
Vishal Mewada

Copy Editor
Vedangi Narvekar

Project Coordinator
Izzat Contractor

Proofreader
Safis Editing

Indexer
Priya Sane

Graphics
Kirk D'Penha

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Dale Green is a young software developer who started his professional
programming career in VB.NET, writing bespoke solutions to automate business
tasks. This included the writing and maintenance of an e-commerce site that sold
products on big online marketplaces such as Amazon and Rakuten.

Prior to this, he's been creating computer games since his early high school days.
Through self-teaching, Dale has worked with a number of game development tools
such as GameMaker, Unity, and Unreal before finding home in C++/DirectX/
OpenGL after undertaking a degree in the subject.

Currently studying computer games programming BSc (Hons) at the University
of Huddersfield, he is on track to graduate with a first-class degree. Alongside
his studies, he is a teaching assistant who helps deliver course content to fellow
undergraduates. He undertook a year of self-employment to publish his first
commercial title on Steam, Samphi, through his indie studio, Greeny Games Studio.

As a hobby, Dale also operates the indie game news website named Indie Gamers
UK and enjoys playing with new technologies and languages.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgment

First and foremost, I'd like to thank my family for their support throughout the
project. Their encouragement and support kept me focused, determined, and most
importantly, kept my cup filled with tea. Thanks, Mum!

Also thanks to Frank the kitty for trying to help. I assume that's what he was trying
to do as he liked to walk on the keyboard so much! In the middle of a sentence, if
you find "wwwwwwwwwwwwwwwwwwww", direct your complaints to him.

Thanks to Dino Kadric for his help and support with the earlier chapters.
His guidance and feedback helped tremendously.

I'd also like to thank the editors at Packt who've made the whole process as
comfortable as possible. They were always there to offer help and support when
needed. I'd especially like to thank Priyanka Mehta and Indrajit Das.

Most importantly, I'd like to dedicate the book to my amazing gran, Joey Wheeler.
Despite not knowing what a computer is, she calls my phone "the machine", she's
read every word as I wrote them, including the code! Her enthusiasm towards the
project rivaled my own, and her support really kept the ball rolling when things got
tough. Thanks, granny!

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Glen De Cauwsemaecker is an open source hacker, traveler, and young
entrepreneur who has been playing with technology most of his life. He loves to
learn, teach, explore, and make things. Open source, free education, and a global
world is what he stands for. He has worked for Fishing Cactus (Belgium), Code
Combat (Remote), AirPair (Remote), Exient (UK/Remote). He currently works as
a freelancer and entrepreneur on independent and open source projects.

I would like to thank the author of this book for all the hard work
that he put into it. It's a great book that's written with passion and
it's a gift to the community. I would also like to thank my girlfriend
for her support.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface	 xi
Chapter 1: An Introduction to Procedural Generation	 1

Procedural generation versus random generation	 2
Procedural generation	 2
Random generation	 2

Introducing randomness	 2
Pseudorandom number generation	 3
Why computers can't generate truly random numbers	 4
Generating random numbers in C++	 4
Generating random numbers within a range	 6

Seeds	 7
Defining seeds	 7
Using seeds	 8
Generating random seeds during the runtime	 9
Controlled randomness is the key to generating random numbers	 10

The use of procedural generation in games	 10
Saving space	 10
Map generation	 11

Texture creation	 12
Animation	 12
Sound	 13

Benefits of procedural generation	 13
Larger games can be created	 13
Procedural generation can be used to lower budgets	 14
An increase in gameplay variety	 14
An increase in replayability	 14

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

The drawbacks of procedural generation	 15
More taxing on the hardware	 15
Worlds can feel repetitive	 15
You sacrifice quality control	 15
You may generate an unplayable world	 16
It is hard to script set game events	 16

A brief history of rogue-like games	 16
How we'll implement procedural generation	 17

Populating environments	 17
Creating unique game objects	 17

Creating unique art	 17
Audio manipulation	 18

Behavior and mechanics	 18
Dungeon generation	 18

Component-based design	 18
The complete game	 19
Exercises	 19
Summary	 20

Chapter 2: Project Setup and Breakdown	 21
Choosing an IDE	 21

Microsoft Visual Studio	 22
Code::Blocks	 22
Other IDEs	 23
Build systems	 23

Breaking down the game template	 24
Download templates	 24
The class diagram	 24
The object hierarchy	 25
Level data	 25
Collision	 27
Input	 27

Simple and Fast Multimedia Library (SFML)	 28
Defining SFML	 28
Why we'll be using SFML	 28
Learning SFML	 29
Alternatives	 29

Polymorphism	 30
Inheritance	 30
Virtual functions	 31
Pure virtual functions	 32

Table of Contents

[iii]

Pointers and object slicing	 33
The roguelike template setup	 36

Downloading SFML	 37
Linking SFML	 37
Running the project	 39
Adding an item	 40
Updating and drawing	 40

Exercises	 42
Summary	 42

Chapter 3: Using RNG with C++ Data Types	 43
Setting the game seed	 43
Setting Boolean values randomly	 45

Generating a number between 0 and 1	 45
Choosing if an item spawns	 47

Random number distribution	 48
Giving the player random stats	 50
Accessing random elements of a collection	 52
Spawning a random item	 53
Generating random characters	 55
Repeating loops	 58
Spawning a random number of items	 60
Exercises	 61
Summary	 62

Chapter 4: Procedurally Populating Game Environments	 63
Potential obstacles	 64

Keeping within the bounds of a level	 64
Avoiding overlapping objects	 64
Creating meaningful levels	 64

Level tiles	 65
Defining the spawn area	 66

Calculating the level bounds	 66
Checking the underlying game grid	 67

Selecting a suitable game tile	 68
Randomly selecting a tile	 69
Checking whether a tile is suitable	 69
Converting to absolute position	 70

Spawning items at a random location	 70
Expanding the spawning system	 73
Using enumerators to denote an object type	 74
Optional parameters	 74

Table of Contents

[iv]

The complete spawn functions	 75
Updating the spawn code	 78
Randomly spawning enemies	 79

Spawning random tiles	 82
Adding a new game tile	 82
Choosing a random tile	 83
Implementing the SpawnRandomTiles function	 84

Exercises	 85
Summary	 85

Chapter 5: Creating Unique and Randomized Game Objects	 87
Creating a random player character	 87

Choosing a player class	 88
An overview of sprites and textures	 89
Setting an appropriate sprite	 89
Buffing the player stats	 94
Random character traits	 95
Returning the player traits array	 97
Setting trait sprites	 98

Procedurally generating an enemy class	 101
Procedural items	 103

Random Gem and Heart classes	 103
Random gold class	 104

The random potion class	 106
Creating a random potion	 106
Determining potion pickups	 109

Exercises	 111
Summary	 111

Chapter 6: Procedurally Generating Art	 113
How procedural generation is used with art	 113

Using sprite effects and modifiers	 114
Combining multiple textures	 114
Creating textures from scratch	 114
Creating complex animations	 115

The benefits of procedurally generated art	 115
Versatility	 116
Cheap to produce	 116
It requires little storage	 116

Table of Contents

[v]

The drawbacks of procedurally generated art	 116
Lack of control	 117
Repeatability	 117
Performance heavy	 117

Using SFML sprite modifiers	 117
How colors work in SFML	 118
Creating sprites of a random color	 119

Selecting a preset color at random	 119
Generating a color at random	 121

Creating sprites of a random size	 123
Saving modified sprites	 124

Passing a texture into an image	 124
Drawing to a RenderTexture class	 125
Saving an image to a file	 126

Creating enemy sprites procedurally	 127
Breaking sprites into components	 127
The draw setup	 128
Randomly selecting sprite components	 129
Loading the default armor textures	 131
Choosing the armor tier	 132
Rendering the armor textures	 133
Rendering the final textures	 134
Overriding the default draw behavior	 135
Debugging and testing	 136

Editing the game tiles	 137
Exercises	 140
Summary	 140

Chapter 7: Procedurally Modifying Audio	 141
An introduction to SFML audio	 142

sf::Sound versus sf::Music	 142
sf::SoundBuffer	 142

Selecting a random main track	 143
Adding sound effects	 144
Editing sound effects	 147
Playing a sound function	 148

The audio listener	 148
Creating a fluctuation in a pitch	 150

Table of Contents

[vi]

3D sound – spatialization	 152
The audio listener	 152
The minimum distance	 153
Attenuation	 154
The position of the sound	 155

Fixed positions	 155
Moving positions	 156

Exercises	 158
Summary	 159

Chapter 8: Procedural Behavior and Mechanics	 161
An introduction to pathfinding	 162

What is a pathfinding algorithm?	 162
Dijkstra's algorithm	 163

The A* algorithm	 164
A breakdown of A*	 165

Representing a level as nodes	 165
The open and closed list	 166
The H, G, and F costs	 166

The H value	 167
The G value	 167
The F value	 167

The Manhattan distance	 167
Parenting nodes	 168
The pseudo-algorithm	 169

Coding the A* pathfinding algorithm	 170
The Tile datatype	 171
Creating supporting functions	 171

The Level class	 171
The Enemy class	 172

Variable declarations	 173
Precalculating the H values	 174
Defining the main loop	 175
Finding the adjacent nodes	 176
Calculating the G and F costs	 180

Calculating the G and F cost	 181
Checking for superior paths	 181
Creating the final path	 184

Implementing A* in the game	 185
Enabling the enemy to follow a path	 185
Calling the pathfinding behavior	 187
Viewing our path	 188

Table of Contents

[vii]

Procedurally generated level goals	 190
The variable and function declarations	 190
Generating a random goal	 191
Checking whether a goal is complete	 195
Drawing the goal on the screen	 197

Exercises	 199
Summary	 199

Chapter 9: Procedural Dungeon Generation	 201
The benefits of procedural level design	 201

Replayability	 202
A reduction in development time	 202
Larger game worlds	 202

Considerations	 202
A lack of control	 203
Required computing power	 203
Suitability	 203

An overview of dungeon generation overview	 204
Generating rooms	 204
Generating a maze	 205
Connecting rooms and mazes	 206

The recursive backtracker	 206
Procedurally generating a dungeon	 207

Changing how we view the maze	 207
Updating the Game and Level classes	 209
Generating a maze	 211

Preparing before the generation of a maze	 211
Carving passages	 213

Adding rooms	 217
Choosing the tile textures	 220

The if/else approach	 220
Bitwise tile maps	 220
Calculating the tile values	 221
Mapping the tile value to textures	 222
Calculating tile textures	 223
Creating unique floor themes	 226
Adding entry and exit points	 229
Setting a player's spawn location	 231
Undoing the debug changes	 234

Exercises	 235
Summary	 236

Table of Contents

[viii]

Chapter 10: Component-Based Architecture	 237
Understanding component-based architecture	 238

Problems with a traditional inheritance-based approach	 238
Convoluted inheritance structures	 238
Circular dependencies	 239

Benefits of component-based architecture	 239
Avoiding complex inheritance structures	 240
Code is broken into highly reusable chunks	 240
Highly maintainable and scalable	 240

The disadvantages of component-based architecture	 241
Code can become too fragmented	 241
Unnecessary overhead	 241
Complex to use	 241

An overview	 241
Designing the component system	 242
C++ templates	 243

Using templates	 243
Template declarations	 244
Using templates	 245
Template specialization	 246

Function overloading	 247
Creating a base component	 248
Component functions	 248

Attaching a component	 249
Retuning a component	 250

Creating a transform component	 252
Encapsulating transform behavior	 252
Adding a transform component to the player	 253
Using the transform component	 254
Updating the game code	 254

Creating a SpriteComponent	 255
Encapsulating sprite behavior	 256
Adding a sprite component to the player class	 258
The updated drawing pipeline	 259
Updating the game code	 259

Creating an audio component	 260
Defining the behavior of an audio component	 260
Adding an audio component to the player class	 262
Using the audio component	 262

Exercises	 263
Summary	 263

Table of Contents

[ix]

Chapter 11: Epilogue	 265
Project breakdown	 265

Procedurally populating environments	 265
Creating unique and random game objects	 266
Procedurally generating art	 266
Procedurally modifying audio	 266
Procedural behavior and mechanics	 267
Procedural dungeon generation	 267
Component-based architecture	 268

The pros and cons of procedural generation	 268
Pros	 268
Cons	 269

Summary	 269
Index	 271

Preface

[xi]

Preface
Computer games are a vast medium with dozens of genres that have developed over
the past three to four decades. Games are bigger and more immersive than ever, and
gamers' expectations have never been higher. While linear games, ones that have a
set story and fixed progression, are still commonplace, more and more dynamic and
open-ended games are being developed.

Advances in computer hardware and video game technologies are giving a much
more literal meaning to the phrase "game world". Game maps are constantly
increasing in size and flexibility, and it's thanks to technologies such as procedural
generation that it's possible. Two gamers who buy the same game may have very
different experiences as content is generated on the fly.

In this book, we're going to introduce ourselves to procedural generation, learning
the skills needed to generate content on the fly to create dynamic and unpredictable
game systems and mechanics.

Provided with this book is a game template for a rogue-like C++ game. When we
get the project compiled and set up in Chapter 2, Project Setup and Breakdown, you'll
see that it's currently just an empty shell. However, as we work our way through the
book, you'll be introduced to the concepts behind procedurally generated content
through real-world examples. We will then implement these examples in the
empty project.

Preface

[xii]

What this book covers
Chapter 1, An Introduction to Procedural Generation, introduces us to the vast topic that
it procedural generation. I've always felt a crucial part of really learning something
is understanding why it's done the way it is. Its great knowing how something is
done, but knowing its origin and why it's the way it is creates a much more complete
picture and a deeper understanding. In this chapter, we'll go right back to the birth
of procedural generation and its journey into modern computer games.

Chapter 2, Project Setup and Breakdown, explains how to set up the provided rogue-like
game project in your chosen IDE with detailed instructions for both Visual Studio
and Code::Blocks. It's written in C++/SFML, and we'll be extending it throughout
this book. We'll also cover common issues that you may face and run the project for
the first time.

Chapter 3, Using RNG with C++ Data Types, explores random number generation
(RNG), including the problems surrounding it and how we can use it with C++ data
types to achieve random results during runtime. RNG lies at the heart of procedural
generation and is how we emulate computers acting randomly and achieve dynamic
results with our algorithms.

Chapter 4, Procedurally Populating Environments, helps us develop our level further
by spawning items and enemies in random locations around the map. Procedurally
generated environments is a staple in procedurally generated games, and spawning
game objects at random locations is a big step toward achieving this.

Chapter 5, Creating Unique, Randomized Objects, explores ways in which we can
create unique and randomized game objects. Certain items will be procedurally
generated during runtime, which means that there will be a vast number of possible
combinations. We'll cover the skills and techniques that were used to achieve this in
the earlier chapters. We'll pull it all together and build a procedural system!

Chapter 6, Procedurally Generating Art, steps up our procedural efforts by moving
away from the simple setting up of member variables randomly to the creation of
procedural art and graphics. We'll procedurally create textures for our enemies and
alter the level sprites to give each floor of our dungeon a unique feel.

Chapter 7, Procedurally Modifying Audio, looks at the nearest cousin of art, audio,
using similar techniques to create variance in our sounds. We'll also use SFML's
audio functions to create specialized 3D sound, bringing more depth to our levels.

Preface

[xiii]

Chapter 8, Procedural Behavior and Mechanics, uses everything that we've learned so
far to create complex procedural behavior and mechanics in the form of pathfinding
and unique level goals. We'll give our enemies the intelligence to traverse levels and
chase the player. We'll also create unique level goals with unique rewards for the
player to carry out.

Chapter 9, Procedural Dungeon Generation, finishes our work on the game project.
We're going to implement what is perhaps the most icon feature of roguelike
games: procedurally generated levels. All the way through the book, we've been
working with the same fixed level. So, it's about time we started generating them
procedurally! We'll also create some variance between levels and implement the
goal generator that we created in the previous chapter.

Chapter 10, Component-Based Architecture, takes a look at component-based design,
since our work on our template project is now complete. Procedural generation is
all about flexibility. So, it makes sense that we'd want to work with the most flexible
architecture that we can. Component-based architecture can achieve this, and having
a good understanding of this design approach will help you progress and build
larger systems in the future.

Chapter 11, Epilogue, takes a retrospective look at the project and the topics that we
covered as we finish our procedural journey. For each area of procedural generation
that we've used, we'll also identify some jumping-off points should you wish to
explore the topic in depth.

What you need for this book
Throughout the course of writing this book, I used Visual Studio Community 2015
for Windows Desktop. It's a great IDE with all the tools that we need to create a C++
game for Windows. It's available for free from Microsoft, so I highly recommend that
you download it and use it throughout the course of the book.

Don't worry if you've never used it before; we'll cover the project setup in detail so
that you'll become accustomed to the parts of the IDE that we'll be using. I'll also
provide the setup instructions for Code::Blocks. If you opt not to use an IDE, you'll
need access to a C++ compiler so that you can run the project that we'll be working
on in the book.

Preface

[xiv]

Who this book is for
This book is aimed at those who have knowledge of game development in C++ and
are looking to incorporating procedural generation into their games. It will assume a
fairly solid understanding of the fundamentals of programming, such as data types,
return types, method calls, and so on. An understanding of the concepts behind
game development is also assumed as we won't be looking at the underlying engine.

A game template is provided, and we'll use SFML to extend it throughout the course
of the book. No prior experience with SFML is assumed. After completing the book,
you will have a solid understanding of what procedurally generated content is, how
it is used in games, and the collection of practical skills that will be applied to a
real game.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
" We called std::srand() and set a new seed, but each time we run the program,
we're setting the same seed again "

A block of code is set as follows:

Stirng myStringLiteral = "hello";
string myString = { 'h', 'e', 'l', 'l', 'o', '\0' };

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

// If the enemy is dead remove it.
if (enemy.IsDead())
{
 enemyIterator = m_enemies.erase(enemyIterator);

 // If we have an active goal decrement killGoal.
 if (m_activeGoal)
 {
 --m_killGoal;
 }
}

Preface

[xv]

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
" In Code::Blocks, add the following to the project's Build Options and Search
Directories tab."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Extra Exercises
At the end of each chapter, there are a number of review questions and further
exercises that can be completed. While not crucial to the book, it's advised that you
complete them so that you can gauge your understanding of the topics covered and
gain more experience.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xvi]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub.com/
sites/default/files/downloads/6713OT_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/sites/default/files/downloads/6713OT_ColoredImages.pdf
http://www.packtpub.com/sites/default/files/downloads/6713OT_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

An Introduction to Procedural
Generation

When you load an image on a PC, a song on an iPod, or a book on a Kindle, you load
it from storage. That image, song, and book already exists as a whole, and whenever
you want to access it, you grab the whole previously created thing. In the case of
music or a video, you can stream it in chunks, but it still already exists as a whole in
storage. Let's compare this to buying a ready-made desk from a furniture store. You
get the entire desk as one single thing and that's that; you have a desk.

Now, let's imagine that instead of buying a complete desk, you buy one that's
flat-packed. Instead of getting a pre-built desk, you get all the pieces that you need
to build one, and instructions on how to do so. When you get home, you can follow
those instructions, and you will have a desk. If you feel so inclined, you can even
deviate from the instructions and create a unique desk that is different from that of
everyone else.

Let's use this analogy in the context of game development by substituting the
purchasing of a desk with the loading of a level. In the first case, we loaded the
level as a whole, as it was pre-built. However, in the second example, we got all the
pieces that we need to build a level and put them together ourselves in whatever
order we choose.

This process of something being created via an algorithm or procedure, as
opposed to already existing, is called procedural generation. The desk was created
procedurally as you followed an algorithm to put its pieces together. The same goes
for the game level. This can be extended to almost anything. For example, music,
images, games, and text can all be procedurally generated.

An Introduction to Procedural Generation

[2]

In this chapter, we will cover the following topics:

•	 Procedural generation versus random generation
•	 Generating pseudorandom numbers in C++
•	 Seeds
•	 The benefits and drawbacks of procedural generation
•	 A brief history of rogue-like games
•	 How to implement procedural generation

Procedural generation versus random
generation
I'd like to make a distinction before we go any further. In this book, we're going to
talk a lot about procedural generation and random generation. These terms are often
used interchangeably, but they are not the same thing. Therefore, let's take a moment
to define them.

Procedural generation
Procedural generation is the process of creating content using an algorithm. This in
itself has no element of randomness. If the functions, expressions, algorithms, and
inputs that are used to generate the content remain the same, then you'll always get
the same results. This is due to the fact that computers are deterministic, which is
something that we'll cover shortly. Procedural generation is not inherently random.

Random generation
Randomness is induced when we give these algorithms different inputs or alter their
expressions. This variance is what creates the variety of the output. When someone
says something was procedurally generated, they usually mean procedurally
generated utilizing randomness.

Introducing randomness
Computers are deterministic machines. This means that if you give them the same
input, and perform the same operations, you'll get the same output every time.
With respect to the desk example, everyone gets the same pieces, follows the
same instructions, and so builds the same desk.

Chapter 1

[3]

Again, using the context of games, if everyone gets the same assets and algorithms
to put them together, we will all get the same game and experience. Sometimes,
this is the goal. However, in our case, we want to create game systems that are
unpredictable and dynamic. Therefore, we need to introduce an element of
randomness to procedural generation.

Pseudorandom number generation
Random number generation is simply the process of picking a number at random.
This is pretty straightforward for us, but it is a much tougher task for a computer.
In fact, it's impossible for a computer to generate a truly random number without
special hardware. You'll understand why this is so in a moment.

The next best thing is pseudorandom number generation. The word pseudo literally
means not genuine. Therefore, pseudorandom number generation can be thought
of as a fake random number generation. The numbers appear to be random but
are actually the result of complex equations and algorithms that could in fact be
calculated in advance.

Bear in mind that not all pseudorandom number generators are built equally. For
applications such as trivial simulations and games, fairly linear algorithms can be
used and are perfectly suitable. However, pseudorandom number generation is
also used in applications such as cryptography, and will use much more complex
algorithms so that the outcome cannot be determined via patterns created from
earlier outputs.

The pseudorandom number generators that we use as developers fall firmly into the
first category and are perfectly suitable. Luckily for us, C++ offers a number of ways
in which trivial pseudorandom numbers can be generated. Throughout the course of
this book, we will use std::rand() and std::srand(), both of which standard C++
functions that are included in <cstdlib> library.

Learning how to read and extract information from documentation is a
skill that I feel is often overlooked. With a multitude of great forums at
hand it's easy to go straight to Google for a solution to your problem, but
first, always read the documentation. http://www.cplusplus.com is
a great C++ reference, and SFML is fully documented at http://www.
sfml-dev.org/documentation/.

http://www.cplusplus.com
http://www.sfml-dev.org/documentation/
http://www.sfml-dev.org/documentation/

An Introduction to Procedural Generation

[4]

Why computers can't generate truly random
numbers
We now know that computers can't generate random numbers, and that we generate
pseudorandom numbers instead. Let's have a look at why this is so.

The reason behind this is the same as the reason why two computers will reach
the same output given the same input and operation; computers are deterministic.
Everything that a computer produces is the result of an algorithm or equation. They
are nothing more than highly sophisticated calculators. Therefore, you can't ask them
to act unpredictably.

True random numbers can be generated, but you need to utilize systems outside
the machine. For example, at https://www.random.org/ you can generate truly
random numbers using atmospheric noise. There are other systems that are akin to
this, but unless you are generating random numbers for something important such
as security purposes, trivial pseudorandom number generation will suffice.

Generating random numbers in C++
Let's start coding by writing a small program to generate some pseudorandom
numbers. To do this, we will use the std::rand() function. It generates a
pseudorandom integer in the range between 0 to RAND_MAX. The RAND_MAX variable
is a constant defined in <cstdlib>. Its value will vary depending on the library
that you are using. On a standard library implementation, it's guaranteed to be at
least 32767.

If you're already familiar with this topic, feel free to skip ahead to the
sub-chapter named Seeds.

You can download the code for this program from the Packt website at http://www.
packtpub.com/support. It will be present in the Examples folder, and the project
name is random_numbers:

// Random number generation
// This program will generate a random number each time we press
enter.

#include <iostream>

using namespace std;

int main()

https://www.random.org/
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

[5]

{
 while (true)
 {
 cout << "Press enter to generate a random number:";
 cin.get();

 // Generate a random integer.
 int randomInteger = rand();

 cout << randomInteger << endl << endl;
 }

 return 0;
}

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

This is a very simple console application that makes a call to std::rand() every
time we press the Enter key. This returns us the pseudorandom number, and we
pass it to std::cout to display it. That's how easy it is!

www.allitebooks.com

http://www.packtpub.com
http://www.packtpub.com/support
http://www.allitebooks.org

An Introduction to Procedural Generation

[6]

Generating random numbers within a range
The previous code generated numbers between 0 and RAND_MAX. That's great, but
we'll usually want more control over this in order to generate numbers within a
certain range. To do this, we are going to use the modulo operator.

In C++, the modulo operator is the % symbol. This varies between
languages, but is generally either % or Mod.

The modulo operator returns the remainder of the division between two numbers.
So, 9 mod 2 is 1, as 2 goes into 9 four times with 1 left over. We can use this to create
a range for the pseudorandom number generation. Let's generate a number between
0 and 249.

To do this, we need to make the following change:

// Generate a random integer.
int randomInteger = rand();
int randomInteger = rand() % 250;

Run the program a few times now, and you'll see that all the results are limited to
the range that we just defined. So now we can generate a number between 0 and n,
but what if we don't want our range to start from 0? To do this, we need to make one
more change to the line that generates a number:

// Generate a random integer.
int randomInteger = rand() % 250;
int randomInteger = rand() % 201 + 50;

Remember that the number we used in the mod calculation will generate a number
between 0 and n-1, and the number we add afterwards will increase the range by
that amount. So here, we generate a number between 0 and 200 and then increase
the range by 50 to get a number between 50 and 250.

If you're not fully comfortable with the math behind what we're
doing here, head over to Khan Academy. It's a fantastic resource
for learning and has lots of great mathematics-related material.

Run the program and note the first five numbers that are generated. In my case, they
are 91, 226, 153, 219, and 124. Now, run it again. You'll notice that something strange
happens; we received the exact same numbers.

Chapter 1

[7]

They were generated in a pseudorandom manner, right? Maybe it was just a fluke.
Let's run it again and see what we get. You will get the same result again. To
understand what's happening here, we need to take a look at seeds.

Seeds
We just created a program to generate pseudorandom numbers, but every time
we run it we get the same results. We know that these numbers are the results of
complex equations and algorithms, so why are they the same? It's because each time
we run the program, we're starting with the same seed.

Defining seeds
A seed provides a starting point for an algorithm. So, in the previous example, yes
we're using complex algorithms to generate numbers, but we're kicking off the
algorithm at the same point each time. No matter how complex the algorithm is,
if you start at the same point, and perform the same operations, you're going to get
the same results.

Imagine that we have three people, and each person is about to walk the same path
by 5 steps. If they all start from the same square, they will end at the same square:

Now, in the next diagram, we give these three people unique starting positions.
Even though they are doing the same actions as before, and are on the same path,
their results are different because they started from different locations:

In this analogy, the path is the algorithm, and the starting square is the seed.
By changing the seed we can get different results from the same actions.

An Introduction to Procedural Generation

[8]

You will have most likely used seeds before and not even known it. Games that
procedurally generate worlds, such as Minecraft and Lego Worlds, give you the
option to set a seed manually before generating a world. If your friend generates a
world that looks great, they can grab their seed and give it to you. When you input
that seed yourself, you kick off the algorithm at the same place that your friends did
and you end up with the same worlds.

Using seeds
Now that we know what seeds are, let's fix the previous example so that we don't
keep generating the same numbers. To do this, we will use the std::srand()
function. It's similar to std::rand(), but it takes an argument. This argument is
used to set the seed for an algorithm. We'll add the call to std::srand() before we
enter the while loop.

You only need to set the seed once per run of the application.
Once std::srand() has been called, all the subsequent calls to
std::rand() will be based upon the updated initial seed.

The updated code should look like this:

// Random number generation
// This program will generate a random number each time we press
enter.

#include <iostream>

using namespace std;

int main()
{
 // Here we will call srand() to set the seed for future rand() calls.
 srand(100);

 while (true)
 {
 cout << "Press enter to generate a random number:";
 cin.get();

 // Generate a random integer.
 int randomInteger = rand() % 201 + 50;

Chapter 1

[9]

 cout << randomInteger << endl << endl;
 }

 return 0;
}

Now when we run this code we get different results! I got 214, 60, 239, 71, and 233.
Don't worry if your numbers don't match mine exactly; they are both CPU- and
vendor-specific. So, what will happen if we run the program again? We changed
the seed. So we should get different numbers again, right?

Not quite. We called std::srand() and set a new seed, but each time we run the
program we're setting the same seed again. We're kicking the algorithm off at the
same position each time, so we're seeing the same results. What we really want to do
is randomly generate a seed during runtime so that the algorithm always starts at a
new position.

Generating random seeds during the runtime
There are many ways to achieve this, and your use case will determine which
method is suitable. For us, as game developers, something relatively trivial such
as the current system time will usually suffice.

This does mean that if you run the program at the exact same time you'll get the
same results, but that's almost never going to be a problem for our use. C++ provides
us with a nice function to get the current time, time(), which is located in <ctime>.

Let's update the program one last time and pass time() as a parameter in
std::srand() so that we generate unique numbers with every run:

// Here we will call srand() to set the seed for future rand() calls.
srand(100);
srand(time(nullptr));

Now, every time we run the program, we get unique numbers! You may have
noticed that if you run the program multiple times in succession, the first number
is always very similar to the last run. That's because between the runs time doesn't
change a lot. This means that the starting points are close to each other and
the results reflect this.

An Introduction to Procedural Generation

[10]

Controlled randomness is the key to
generating random numbers
The process of generating random numbers is a huge component in creating systems
that procedurally generate game content. There are lots of ways in which random
data is generated, such as noise maps and other external systems, but in this book,
we'll stick to these simple C++ functions.

We want systems that are predictable enough to give us control over them as
developers, but they should be dynamic enough to create variations for the player.
This balance can be hard to achieve, and sometimes games get it wrong. Later in
this chapter, we'll look at some of the things that you have to watch out for when
incorporating procedural generation into a game project to avoid this.

The use of procedural generation in
games
Now we know what procedural generation is, and that it's the element of
randomness we add that lets us create dynamic systems, let's take a look at some
examples of how it is used in games. There are countless ways in which it can be
utilized; the following are just a few major implementations.

Saving space
Necessity, as the saying goes, is the mother of invention. As developers of today
we're spoiled with the hardware that we have at our disposal. Even the most baseline
machines that you'll get today will have a hard drive of 500 GB in size and up as
standard. This is quite a luxury considering that just a couple of decades ago that
would be MB and not GB.

Game distribution was also a very different game back then. Today, we either buy
games on a physical disk, with Blu-ray disks offering a whopping 25 GB per layer,
or download them off the Internet, where there are no size restrictions at all. Keeping
this in mind, now consider the fact that the size of most Nintendo Entertainment
System (NES) games was a mere 128 to 384 KB! These storage restrictions meant
that game developers had to fit lots of content into a small space, and procedural
generation was a great way to do this.

Chapter 1

[11]

Since building large levels and storing them wasn't possible in the past, games
were designed to build their levels and resources algorithmically. You'd put all the
resources needed on your storage media, and have the software assemble the level at
the player's end.

Hopefully now, the earlier desk analogy makes more sense. It's just like how flat-
packed furniture is easier to transport, and it can then be built at home. As hardware
has developed, this has become less of a problem, but it was a great solution for early
developers who had storage concerns.

Map generation
One of the most prominent uses of procedural generation in modern video games
is the generation of game maps and terrain. The extent to which this can be used is
vast, and ranges from generating simple 2D maps to full 3D worlds and terrain.

When procedurally generating 3D terrain, noise maps, such as the ones generated by
Perlin noise, are used to represent random distribution by producing an image with
areas of both high and low concentration. This data, the variance in concentration
and intensity, can then be used in many ways. When generating a terrain, it's
commonly used to determine the height at any given position.

The procedural generation of complex 3D terrain is beyond the scope of this book.
However, we will generate 2D dungeons later in this book.

If you do want to explore 3D terrain generation, read up on terms such as
"fractal terrain generation", "height maps", and "noise generation". These
will put you on the correct path.

An Introduction to Procedural Generation

[12]

Texture creation
Another prominent example of procedural generation is the creation of textures.
Similar to terrain generation, the procedural generation of textures uses noise
to create variance. This can then be used to create varying textures. Different
patterns and equations are also used to create a more controlled noise that forms
recognizable patterns.

Generating textures procedurally like this means that you can potentially have an
unlimited number of possible textures without any overhead on storage. From a
limited pool of initial resources, endless combinations can be generated, an example
of which can be seen in the following image:

Perlin noise is just one example of the many algorithms that are commonly used in
procedural generation. The study of these algorithms is beyond the scope of this
book, but if you want to further explore the use of procedural generation, it would be
a good place to start.

Animation
Traditionally, game animations are created by animators, and then exported as
an animation file that is ready for use in the game. This file will store the various
movements that each part of a model will go through during animation. It then
gets applied to the game character during runtime. The player's current state will
determine which animation should be playing. For example, when you press A to
jump, the player will change to a jumping state, and the jumping animation will be
triggered. This system works great, but it is very rigid. Each step, jump, and roll
is identical.

Chapter 1

[13]

However, procedural generation can be used to create real-time, dynamic animation.
By taking the current position of the character's skeleton and calculating the multiple
forces that are being imparted upon it, a new position can be calculated. The most
prominent example of procedural animation is ragdoll physics.

Sound
Although less common than the previous examples, procedural generation is also
used to create game sounds. This will commonly be in the form of manipulating
existing sounds. For example, sound can be spatialized, meaning it appears to be
coming from a specific position when heard by the user.

At a stretch, short, one-shot sound effects may be synthesized, but due to the little
benefit that it brings as compared to the amount of work needed to implement it,
it's seldom used. It's simply much easier to load premade sounds.

Sfxr is a small program that generates random sound effects from scratch.
Its source is available. So, if sound synthesis interests you, it will serve
as a good starting point. You can find the project at https://github.
com/grimfang4/sfxr.

Benefits of procedural generation
We've looked at some of the key ways in which procedural generation is used in
games. So now let's take a look at some of its most important benefits.

Larger games can be created
If your game world is hand-built, it's going to have size restrictions for a number
of reasons. Every object needs to be placed manually, every texture/model needs
to be handcrafted, and so on. All of this takes time and money. Even the largest
handcrafted game's world sizes, such as those seen in The The Witcher 3: Wild Hunt
and Grand Theft Auto V, pale in comparison to what procedurally generated worlds
can achieve.

If a game utilizes procedural generation correctly, then theoretically, there is no
limit to the world size. For example, No Man's Sky is a science-fiction game set in
an infinite, procedurally generated galaxy. When you start to get really big maps
however, hardware becomes a limiting factor. Areas that have been generated
need to be saved to the disk in order to revisit them, and this quickly adds up. For
example, to generate the biggest world possible in Minecraft, you will need around
409 petabytes of storage for the level data!

https://github.com/grimfang4/sfxr
https://github.com/grimfang4/sfxr

An Introduction to Procedural Generation

[14]

Procedural generation can be used to lower
budgets
Making games is expensive. Really expensive. In fact, most AAA games cost tens,
if not hundreds, of millions of dollars to make. With budgets that are this high, any
option to save money is welcome. Procedural generation can do just that.

Let's say that we are working on a title that needs 100 brick textures. Traditionally,
you'd have one of your artists create each brick. While they will have top quality,
this will cost both time and money. Alternately, by utilizing procedural generation
techniques, you can have an artist create a handful of resources and use them to
generate however many resources you need to use.

This is just one example, and the same goes for modeling, design, and so on. There
are pros and cons of using procedural generation in this way, but it's a valid option.

An increase in gameplay variety
If your game world is handmade, the experience that players have is going to be
fixed. Everyone will collect the same items, the terrain will be the same, and as a
result, the overall experience will be the same. The defining feature of procedurally
generated games is that experiences differ. There is a sense of unknown to the game,
and every time you play, there will be something new waiting that you haven't
encountered yet.

An increase in replayability
Let's continue from the last point. If a game is linear, without any procedural
generation, the challenge is gone after you've played the game once. You know the
plot, you know where the enemies will be, and unless it has an amazing story or
mechanics, there's not much reason why you'd want to play the game again.

However, if your game utilizes procedural generation, then the challenge is fresh
each time the game is run. The game is always evolving; the environments are
always new. If you look at the games that have the greatest replayability, they tend
to be the ones that give the player the greatest amount of control. Most of these
games will utilize some form of procedural generation to do so.

Chapter 1

[15]

The drawbacks of procedural generation
As with anything, there are two sides to a story. Procedural generation brings a
myriad of possibilities and enhancements to games, but there are considerations
to be taken when implementing it.

More taxing on the hardware
As we now know, procedural generation is the creation of content through running
algorithms. These algorithms can be intense and require a lot of computing power.
If you develop a game that makes heavy use of procedural generation, you need to
ensure that a regular consumer PC or console is able to meet its demands.

For example, if you choose to generate trees procedurally in an open world game,
there's going to be a big load on the CPU and GPU whenever that area needs to
be generated. Lesser PCs might not have the power to do so, and therefore, they
may stutter.

Worlds can feel repetitive
Another potential drawback is the fact that worlds can feel repetitive. If you allow
your game system to generate incredibly large worlds, but use few and basic
algorithms to do so, you'll inevitably have a lot of repetitive areas being generated.
Patterns and repeating areas will be very easy to spot, and this will diminish from
your game greatly.

You sacrifice quality control
Computers may be faster at crunching numbers than us humans, but there's one
thing that we're vastly superior at, and that's creativity. No matter how amazing the
procedural algorithm is, you lose the human touch. The little changes and subtleties
that a seasoned designer can bring to a project are sacrificed.

It also means that you can't guarantee the same gameplay quality to all players.
Some players may generate a really great map that facilitates gameplay, while
others may generate a map that actively prohibits it.

An Introduction to Procedural Generation

[16]

You may generate an unplayable world
In extreme cases of the previous point, a level that is completely unplayable may be
generated. The risk of this happening depends on how well your procedural content
is generated, but it should always be considered.

When generating a 3D terrain map, you may accidently generate a terrain that is
too high for the player to climb, or blocks off an area that needs to be accessible.
The same goes for a 2D map. Later in this book we'll be generating dungeon rooms
randomly. So for example, we need to ensure that each room has a valid entrance
and exit.

It is hard to script set game events
Continuing with the previous point, procedural generation is uncertain. If the entire
world around you is generated exclusively procedurally and randomly, then it
makes it almost impossible to script fixed game events.

Game events are pre-scripted events, and the nature of procedural generation is to
create unscripted worlds. Getting the two to work together is a tough challenge. For
this reason, games tend to use a mix of procedural generation and premade game
development. With this, you get the fixed game events and moments that are needed
to drive a narrative, and in between all of this, you create a unique and open world
for the player to explore and interact with at their own whim.

A brief history of rogue-like games
Since we're going to implement what we are learning in a rogue-like, let's just take
a second to look at their history. It's always great to understand the origins of the
things that you are doing!

Rogue is a dungeon crawling game that was first developed by Michael Toy and
Glenn Wichman and initially released in 1980. Every level of the dungeon was
randomly generated along with the positions of the object within. Rogue defined the
dungeon crawling genre and was the inspiration for many titles that followed. This
is why we call games of this type roguelikes, because they are literally like Rogue!

Procedural generation has been a key element in roguelikes since their conception.
This is why I chose the genre to introduce the topic. Together, we will recreate the
iconic features that define the genre, and approach procedural generation with a
very practical and hands-on approach.

Chapter 1

[17]

How we'll implement procedural
generation
At the very start of the book I gave a brief overview of each chapter and what we will
be covering in it. Now that we've covered what procedural generation is, let's take a
look specifically at some of the ways in which we'll be implementing it as we work
towards creating our own roguelike game. This list is not exhaustive.

Populating environments
When we load the game for the first time our objects will be in fixed locations. We're
going to start our efforts by fixing this, implementing what we've learned in this
chapter about random number generation to spawn our objects at random locations.

At the end of this chapter there are a few optional exercises that include generating
numbers within a collection of different ranges. I suggest completing them if you're
not comfortable with it already, as we'll be relying on it to achieve this.

Creating unique game objects
One of my personal favorite aspects of procedural generation is the creation of
unique objects and items. Knowing that there is a wide variety of items in a game is
awesome. Knowing that the items don't even exist yet, and that the possibilities are
limitless, is even better!

We'll start simply by initializing our object's member variables randomly, and move
up to giving our objects unique sprites and properties. We'll also look at creating
dynamic classes that can create highly unique objects from a single base class.

Creating unique art
Generating textures and materials from scratch using procedural generation is a very
large subject. There are lots of ways by which this can be achieved. Traditionally, we
use things such as Perlin noise as their basis function and then build upon it with
patterns and colors. We're not going to go into this topic to this extent. Instead, we're
going to use the built-in image processing features of Simple and Fast Multimedia
Library (SFML) to create unique textures during the runtime.

Starting with a simple approach, we'll change image properties such as size, color,
and scale to create a variation in the existing assets. We'll then use render textures
to combine multiple sprite components on the fly to create unique assets for
our enemies.

An Introduction to Procedural Generation

[18]

Audio manipulation
As with graphics, SFML offers a number of functions that allow us to modify sounds.
Therefore, we'll use these to alter the pitch and volume of our sound effects to create
variance. We'll then use advanced functions to create 3D spatialized sound, bringing
depth to the scene through our audio.

Behavior and mechanics
It's not just the static items and resources that can be generated procedurally. To
add more variance to our gameplay, we'll use some procedural techniques to create
dynamic gameplay mechanics. Specifically, we'll create a system that will generate
a random goal for the player, and present them with a random reward should that
goal be achieved.

We'll also give our enemies some basic Artificial Intelligence (AI) in the form of
A Star (A*)pathfinding, allowing them to chase a player through the level.

Dungeon generation
Towards the end of the book, once we're comfortable using Random Number
Generator (RNG) with procedural systems, and with our game project, we are going
to implement the defining feature of roguelikes; randomly generated dungeons.

I've mentioned a few times that procedural generation can be used to create
theoretically never-ending game worlds. So, we're going to do just that. We'll
implement a system where every room that we visit is generated randomly, and
we'll give each floor a distinct feel using the graphics manipulation techniques we'll
learn in later chapters.

Component-based design
Procedural generation is all about creating dynamic systems, objects, and data.
Therefore, it makes sense that we want the most flexible game framework that we
can have so that it incorporates this well. One of the ways to achieve this is through
component-based design. Therefore, to end our work, we're going to take a quick
look at it, breaking our project down into a more component-based approach.

Chapter 1

[19]

The complete game
These are the major systems changes that we'll implement. There will be lots
in-between, but these examples will cover the major mechanics and skills that
we will be using. When we reach the end of the book, you will have a fully
working roguelike with an endless dungeon that is randomly generated, randomly
generated items that spawn in random locations, procedural textures throughout the
dungeon levels, and random enemies, all implemented with a flexible component-
based architecture.

You will not only learn the skills needed to implement procedural generation in your
own games, but also see how they all work in the context of one-another. Isolated
exercises are great, but nothing beats working on a real-world example.

Exercises
To enable you to test your knowledge of this chapter's content, here are a few
exercises that you should work on. They are not imperative to the rest of the book,
but working on them will help you access your strengths and weaknesses in the
material covered.

1.	 Using the std::rand() function with the modulo operator (%), for
updating random_numbers.cpp to generate numbers that fall within
the following ranges:

°° 0 to 1000
°° 150 to 600
°° 198 to 246

2.	 Come up with a new way of generating a random seed during the runtime.
There are lots of ways to do this. So be creative! In my solution, the first
numbers were always similar. Find out whether you can generate a random
seed that mitigates that.

3.	 Have a look at your game collection and find out whether you can identify
where procedural generation has been used.

4.	 Which of the following are examples of procedural generation?

°° Loading a song
°° Ragdoll physics
°° Creating unique objects during the runtime

An Introduction to Procedural Generation

[20]

Summary
In this chapter, we learned that procedural generation is the creation of content by
using algorithms. This concept can be applied to all digital media and is used in
games to create dynamic systems and environments. Procedural generation brings
larger games, variety, and dynamism; all at the cost of lesser control, and potentially
lesser performance as it is taxing on hardware. Some examples of the most popular
uses of procedural generation in modern gaming include terrain generation, texture
creation, and procedural animation.

In the next chapter, we will take a look at the project that has been supplied with the
book. As we learn to create procedural systems, we will be implementing them in a
real game project, with the ultimate goal of creating a roguelike game, a genre that
heavily utilizes procedural generation. We will review the game template, the SFML
modules that we will be using, and get the project setup. Then, we will compile it on
your system.

If you are familiar with C++ game development and have used SFML before, you
may already be familiar with the concepts presented in the next chapter. If that's
the case, feel free to skim through the chapter to get right into the programming in
Chapter 3, Using RNG with C++ Data Types.

[21]

Project Setup and Breakdown
Before we get into the implementation of procedural generation for ourselves, we're
going to take a quick tour through the game template that has been provided with
the book. Moving forward, the focus will be on the procedural systems that we
create, not the underlying template and engine. Given that, it will be beneficial to
familiarize ourselves with the templates and engine before we start.

We'll also take a look at Simple Fast Multimedia Library (SFML), the framework
that we'll work with.

In this chapter, we'll cover the following topics:

•	 Choosing an Integrated Development Environment (IDE)
•	 A breakdown of the provided game template
•	 An overview of SFML
•	 Polymorphism
•	 Project setup and first compile
•	 Object pipeline

Choosing an IDE
Before we do anything, you're going to need a solid C++ IDE. You may already have
one that you prefer to use. If you do have one, that's fine. But if you don't, here's a
quick summary of two of my favorites.

Project Setup and Breakdown

[22]

Microsoft Visual Studio
Microsoft Visual Studio is an industry-standard IDE from Microsoft. It supports a
wide range of languages, and provides a large variety of testing and compatibility
tools. It's also tied in with a number of Microsoft services, making it the top choice
for development on Windows PCs. The pros and cons to using Microsoft Visual
Studio are as follows:

Pros:

•	 It has a number of free versions available
•	 A wide range of languages are supported by Microsoft Visual Studio
•	 It is widely supported by Microsoft
•	 It has a highly customizable environment with dockable windows
•	 It has intelligent code completion features
•	 It is integrated with a number of Microsoft features

Cons:

•	 Its full version is very expensive
•	 Its free version is limited
•	 Works only on Windows PC

Microsoft Visual Studio and a wide range of other Microsoft technologies
are available to students for free for the duration of their studies. To find
out more about this, visit https://www.dreamspark.com/Student/.

Code::Blocks
The Code::Blocks IDE is a free, open source, and cross-platform IDE for development
in C, C++, and Fortran programming languages. It's built around a plugin
architecture, meaning it can be highly customized by installing various add-ons
to create an IDE that best suits your needs.

Pros:

•	 It is available for free
•	 It is available for all Operating Systems
•	 It is highly customizable through the installation of add-ons

https://www.dreamspark.com/Student/

Chapter 2

[23]

•	 It supports multiple containers
•	 It has intelligent code completion features

Cons:

•	 It has fewer features and tools as compared to what Microsoft Visual
Studio offers

Both IDEs have the required features that will allow us to create a game in C++.
Therefore, it all boils down to personal preferences. I'll suggest Visual Studio, and it's
the one that I'll use throughout the book.

Other IDEs
Visual Studio and Code::Blocks are just two examples of the many IDEs that are
available. If you don't prefer either, the following are a number of alternate cross-
platform IDEs. All of them are capable of developing C++ code:

•	 NetBeans (Windows, Mac OS X, and Linux)
•	 Eclipse (Windows, Mac OS X, and Linux)
•	 Code Lite (Windows, Mac OS X, and Linux)

Build systems
An alternative to using an IDE is compiling via a build system. These systems
decouple the build process from the IDE or code editor that you're using, giving you
more control over the process. Build systems allow you to automate various aspects
of the build process. It may be something simple, such as incrementing a build
number, or advanced, such as automated unit tests.

There are a number of build systems available, including the following:

•	 Make
•	 CMake
•	 MSBuild
•	 Gradle

We won't cover the setup or use of these systems in the book. So, head to each
systems' respective site for documentation and instructions for use.

Project Setup and Breakdown

[24]

For more information on build systems and the benefits that they provide,
visit http://www.cs.virginia.edu/~dww4s/articles/build_
systems.html#make.

Breaking down the game template
The best way to learn is by practicing. Examples are great, but there's nothing like
getting stuck in and working on a real game. The game template provided will
allow us to implement the systems that we're going to learn about in a real game as
opposed to them being a collection of isolated exercises.

Familiarizing yourself with this template will not only help make the code examples
throughout the book clearer, but also make the exercises at the end of each chapter
easier. It will also allow you to use what you're learning to implement your own
systems in the project once we're done with it.

Download templates
Before you start, download the game template so that you have the source code
available as you run through some of the key points. The template is available for
download on the official Packt Publishing website at http://www.packtpub.com/
support.

We'll set it up shortly, but for now, let's take a quick look at some of its key features.

The class diagram
Included with the project download is an image of the complete class diagram
for our solution. If at any point you have any questions about the structure of the
template, refer to the diagram.

Class diagrams are a great way of seeing the complete structure of your software.
As your game gets bigger and bigger, it will inevitably get more convoluted as
inheritance structures grow larger. If you have the tools available to do so, it's a great
idea to view a class diagram regularly and keep on top of its structure. It will help
you identify where your structure needs work, and where doesn't.

http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 2

[25]

Creating diagrams in Microsoft Visual Studio is restricted to the
Professional edition or higher. However, there are various free tools
available, such as Doxygen at http://www.stack.nl/~dimitri/
doxygen/index.html and ArgoUML at http://argouml.tigris.
org/, which create UML diagrams from source code.

The object hierarchy
All objects in the template follow a set inheritance hierarchy. At the base of all
classes is the Object class. This provides a sprite, a position, an Update()
virtual function, and a Draw() virtual function.

All classes extend from this base class, implementing their own behaviors by
overriding these virtual functions. In our main game class we create containers for
the main base classes, grouping all items and enemies into single collections that we
can iterate over easily:

std::vector<std::unique_ptr<Item>> m_items;
std::vector<std::unique_ptr<Enemy>> m_enemies;

A vector of base class pointers allows us to take advantage of polymorphism
and store all the classes that inherit from the same parent classes in a single data
structure. Don't worry if you're unfamiliar with polymorphism. Towards the end of
the chapter we'll take a look at both polymorphism and the object pipeline to add an
object to the game.

We're using the std::unique_ptr C++11 smart pointer over raw
pointers. For more information on smart pointers and their benefits, visit
https://msdn.microsoft.com/en-us/library/hh279674.aspx.

Level data
The game template that is provided is a roguelike template. Given this, the level
is described as a grid. The best way to represent a grid in this context is with a 2D
array, and to store all the information that we need, we'll use a custom data type
named Tile, as follows:

/**
 * A struct that defines the data values our tiles need.
 */
struct Tile {

www.allitebooks.com

http://www.stack.nl/~dimitri/doxygen/index.html
http://www.stack.nl/~dimitri/doxygen/index.html
http://argouml.tigris.org/
http://argouml.tigris.org/
https://msdn.microsoft.com/en-us/library/hh279674.aspx
http://www.allitebooks.org

Project Setup and Breakdown

[26]

TILE type; // The type of tile this is.

int columnIndex; // The column index of the tile.

int rowIndex; // The row index of the tile.

sf::Sprite sprite; // The tile sprite.

int H; // Heuristic / movement cost to goal.

int G; // Movement cost. (Total of entire path)

int F; // Estimated cost for full path. (G + H)

Tile* parentNode; // Node to reach this node.
};

This struct allows us to have a single 2D array of the Tile type, which can store
all the information that each tile needs. This approach is incredibly common
when creating a game of this type. The array is found in the Level class, which is
instantiated at the beginning of the game. It encapsulates all the data pertaining to
the level.

For now, level data is stored in a simple text file which is parsed during the runtime
by performing a simple lookup on an enumerator that defines all the tile types. We
will work on an example of this towards the end of the chapter.

The following screenshot shows how the level data is saved:

Chapter 2

[27]

Collision
Collisions are based on the ID of the tile that you're currently standing on. Every
time a player starts to move, the position that they will be in after a successful move
is calculated. This position is then used to calculate the grid tile that they are placed
on. This tile is then used to determine what action should be performed; the action
can involve performing a blocking movement, picking up an item, or taking damage.

This type of collision can lead to the bullet through paper problem, but
given the game's speed, this isn't an issue in our case. If you're unaware
of what this problem is, look it up online; it may catch you out in later
projects!

Input
Input is handled through a custom static Input class. It works much like the Input
class that is provided with SFML, but it combines a number of possible inputs into a
single call. For example, when checking whether the left key is pressed, it will check
the A key, Left arrow key, left D-Pad, and analog stick. If this was to be done using
the standard Input class, you would have to check all four individually. The Input
class provided streamlines this.

A public enum of keycodes is defined in input.h and contains the following values
that are used to poll input:

/**
 * An enum denoting all possible input keys.
 */
enum class KEY
{
 KEY_LEFT,
 KEY_RIGHT,
 KEY_UP,
 KEY_DOWN,
 KEY_ATTACK,
 KEY_ESC
};

To check the input, we simply call Inputs IsKeyPressed(KEY keycode) statically,
passing one of the aforementioned valid keycodes.

Project Setup and Breakdown

[28]

Simple and Fast Multimedia Library
(SFML)
Whilst you will have experience with C++, you may not have any prior experience
with SFML. That's fine, the book doesn't assume any, so now let's take a brief tour
through it

Defining SFML
SFML, short for Simple and Fast Multimedia Library, is a software development
library that provides easy access to multiple system components. It's written in C++
and is split into the following succinct modules:

•	 System
•	 Windows
•	 Graphics
•	 Audio
•	 Network

With this architecture you can easily pick and choose how you want to use SFML,
ranging from a simple window manager to use OpenGL, to a complete multimedia
library that is capable of making full video games and multimedia software.

Why we'll be using SFML
SFML is both free, open-source, and has a vibrant community. With active forums
and a selection of great tutorials on the official site, there are plenty of resources
available for those who wish to learn. Another compelling reason to use SFML is
that it's written in C++ and has bindings for many other languages, meaning you can
pretty much code in any language that takes your fancy. There is probably a binding
available for the language that you wish to use!

The single most attractive feature of SFML is that it is a multiplatform library. An
app written in SFML can compile and run on most common operating systems,
including Windows, Linux, and Mac OS X, with the Android and iOS versions
coming soon in the market at the time of writing this book.

Chapter 2

[29]

For your app to be cross-compatible across various platforms, remember
that you also have to ensure that your native code or the other libraries
used, if any, are also cross-compatible.

Learning SFML
During the course of the book, we'll look at the features and functions of SFML that
we'll use to implement our procedural systems, but nothing more. We won't be
taking an in-depth look at the library, as that would require a whole book. Luckily,
there are a few great books that are published by Packt Publishing dedicated to
just that:

•	 SFML Game Development at https://www.packtpub.com/game-
development/sfml-game-development

•	 SFML Essentials at https://www.packtpub.com/game-development/sfml-
essentials

•	 SFML Blueprints at https://www.packtpub.com/game-development/
sfml-blueprints

If you want to learn more about SFML, then these books are a great place to start.
There is also a selection of great tutorials on the official SFML site along with active
forums. Visit http://www.sfml-dev.org/learn.php for more information.

Alternatives
While SFML is a great option for cross-platform game development, it's not the only
one. There are a number of great libraries available, each with their own approaches
and styles. Therefore, though we'll use SFML for this project, it's advised that you
shop around for your next one. You may just run into your new favorite library.

Here are a few suggestions for future reference:

•	 SDL2 at https://www.libsdl.org/download-2.0.php
•	 Allegro at http://liballeg.org/
•	 MonoGame at http://www.monogame.net/downloads/

https://www.packtpub.com/game-development/sfml-game-development
https://www.packtpub.com/game-development/sfml-game-development
https://www.packtpub.com/game-development/sfml-essentials
https://www.packtpub.com/game-development/sfml-essentials
https://www.packtpub.com/game-development/sfml-blueprints
https://www.packtpub.com/game-development/sfml-blueprints
http://www.sfml-dev.org/learn.php
https://www.libsdl.org/download-2.0.php
http://liballeg.org/
http://www.monogame.net/downloads/

Project Setup and Breakdown

[30]

Polymorphism
Before we get started with the game template, we're going to take a look at
polymorphism. It's an important feature of object-orientated programming that we
will be taking advantage of in many of the procedural systems that we will create.
Therefore, it's important that you have a solid understanding of not only what it is,
but also the techniques that are used to achieve it and the potential pitfalls.

If you already have a strong understanding of polymorphism, feel free to
skip this section or head to https://msdn.microsoft.com/en-us/
library/z165t2xk(v=vs.90).aspx for a more in-depth discussion
of the topic.

Polymorphism is the ability to access different objects through an individually
implemented common interface. That's a very formal definition. So, let's break
that down into the individual techniques and features that are used to achieve it.
It's worth noting that while polymorphism is the standard approach in the games
industry, it's still a choice among other schools of programming.

Inheritance
Inheritance is perhaps the key component in achieving polymorphism. Inheritance is
extending an existing class by inheriting its variables and functions, and then adding
your own.

Let's take a look at a typical game example. Let's assume that we have a game with
three different weapons: a sword, a wand, and an axe. These classes will share some
common variables such as attack strength, durability, and attack speed. It would be
a waste to create three individual classes and add this information to each, so instead
we will create a parent class that includes all the shared information. Then, the
children will inherit these values and use them the way they want.

Inheritance creates an "is a" relationship. This means that since Axe is inherited from
Weapon, Axe is a Weapon. This concept of creating a common interface in a parent
class and implementing it in unique ways via child classes is the key to achieving
polymorphism.

By interface, I mean the collection of functions and variables that the
parent class passes to its children.

https://msdn.microsoft.com/en-us/library/z165t2xk(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/z165t2xk(v=vs.90).aspx

Chapter 2

[31]

The following diagram illustrates this scenario in the form of a simple class diagram:

The highlighted Attack() functions in the individual weapons are all inherited from
the single Attack() function defined in the Weapon class.

To maintain proper encapsulation and scope, it's important that our
variables and functions are given the correct visibility modifiers. If
you're unsure about this or you could do with a quick reminder, head to
https://msdn.microsoft.com/en-us/library/kktasw36.aspx.

Virtual functions
Continuing with the generic weapon example, we now have a parent class that
provides a number of functions and variables that all child classes will inherit. In
order to be able to denote our own behavior that is different from that of the parent
class, we need to be able to override the parent functions. This is achieved through
the use of virtual functions.

https://msdn.microsoft.com/en-us/library/kktasw36.aspx

Project Setup and Breakdown

[32]

Virtual functions are functions that can be overridden by implementing classes. In
order for this to be possible, the parent class must mark the function as virtual. This
is done by simply prefixing the virtual keyword to a function declaration like this:

Virtual void Attack();

In a child class, we can then override that function by providing our own definition,
provided the signatures of the two functions are identical. This override is done
automatically, however, C++11 introduced the override keyword to specifically
denote where a function will override the function of a parent. The override
keyword is optional, but it's considered good practice and it is recommended.
It is used as follows:

Void Attack() override;

C++11 also introduced the final keyword. This keyword is used to designate virtual
functions that cannot be overridden in a derived class. It can also be applied to
classes that cannot be inherited. You can use the final keyword as follows:

Void Attack() final;

In this case, the Attack() function could not be overridden by inheriting classes.

Pure virtual functions
Virtual functions that we just covered allow a function to be optionally overridden by
an inheriting class. The override is optional, as the parent class will provide a default
implementation if one is not found in the child class.

A pure virtual function however does not provide a default implementation. Hence,
it must be implemented by inheriting classes. Furthermore, if a class contains a pure
virtual function, it becomes abstract. This means that it cannot be instantiated, only
inheriting classes, providing they provide an implementation for the pure virtual
function, can be. If a class inherits from an abstract class and does not provide an
implementation for pure virtual functions, then that class becomes abstract too.

The syntax that is used to declare a pure virtual function is as follows:

Virtual void Attack() = 0;

In the example of the Weapon parent class, which is inherited by Sword, Axe
and Wand, it would make sense to make Weapon an abstract class. We will never
instantiate a Weapon object; its sole purpose is to provide a common interface to its
children. Since each child class needs to have an Attack() function, it then makes
sense to make the Attack() function in Weapon pure virtual, as we know that every
child will implement it.

Chapter 2

[33]

Pointers and object slicing
The last part of the polymorphism puzzle is the use of pointers. Consider the
following two lines of code:

Weapon myWeapon = Sword();
Std::unique_ptr<Weapon> myWeapon = std::make_unique<Sword>();

In the first line, we are not using pointers; in the second one, we are. It is a seemingly
small difference, but it produces extremely different results. To properly demonstrate
this, we're going to look at a small program that defines a number of weapons.

If the Weapon class contains a pure virtual function, the first line of the
preceding code won't be compiled since it will be abstract and cannot be
instantiated.

You can download the code for this program from the Packt Publishing website.
It will be in the Examples folder, and the project name is polymorphism_example:

#include <iostream>

// We're using namespace std here to avoid having to fully qualify
everything with std::
using namespace std;

int main()
{

 // Here we define a base Weapon struct.
 // It provides a single data type, and a method to return it.
 struct Weapon
 {
 string itemType = "Generic Weapon";

 virtual string GetItemType()
 {
 return itemType;
 }
 };

 // Here we inherit from the generic Weapon struct to make a specific
Sword struct.

Project Setup and Breakdown

[34]

 // We override the GetItemType() function to change the itemType
variable before returning it.
 struct Sword : public Weapon
 {
 string GetItemType() override
 {
 itemType = "Sword";
 return itemType;
 }
 };

 Weapon myWeapon = Sword();

 // output the type of item that weapon is then wait.
 cout << myWeapon.GetItemType().c_str() << endl;
 std::cin.get();

 return 0;
}

In this code we created a base struct Weapon. We then inherit from it to create
a specific implementation named Sword. The base Weapon struct defines the
GetItemType() function and Sword overrides it to change and then return the item
type. This is a pretty straightforward case of inheritance and polymorphism, but
there are some important things that we need to know that could otherwise trip
us up.

As the code currently stands, the Weapon object is instantiated in the following way:

Weapon myWeapon = Sword()

Let's run the code and see what we get:

Chapter 2

[35]

Even though we assigned myWeapon a Sword object, it's a Weapon object. What's
happening here? The problem is that myWeapon is given a fixed type of weapon.
When we try to assign it a Sword object, it gets passed to the copy constructor of
Weapon and gets sliced, leaving just a Weapon object. As a result, when we call the
GetItemType() function, we call the function in Weapon.

For a more in-depth explanation of object slicing, head to
http://www.bogotobogo.com/cplusplus/slicing.php.

To avoid this and make good use of polymorphism, we need to work with pointers.
Let's make the following change to the code:

 // Create our weapon object.
 Weapon myWeapon = Sword();
 std::unique_ptr<Weapon> myWeapon = std::make_unique<Sword>();

Smart pointers such as unique_ptr require the include <memory>. So
don't forget to add this to the top of the file.

Since we've now changed myWeapon to a pointer, we also need to change
the following:

// Output the type of item that weapon is then wait.
cout << myWeapon.GetItemType().c_str() << endl;
cout << myWeapon->GetItemType().c_str() << endl;

http://www.bogotobogo.com/cplusplus/slicing.php

Project Setup and Breakdown

[36]

When working with pointers, we need to use the -> operator to access its variables
and functions. Now, let's rerun the code and see what the output is:

This time, we called the overridden function in the Sword struct as intended, and it
boils down to the way we defined myWeapon.

Since myWeapon is now a pointer to a Weapon object, we avoid object slicing. Since
Sword is derived from Weapon, pointing to a Sword in memory isn't a problem. They
share a common interface, so we achieve this overriding behavior. Returning to the
initial definition, polymorphism is the ability to access different objects through an
individually implemented common interface.

The roguelike template setup
A template is provided with this book for a roguelike game that was created
specifically for the book. It's been designed to receive the work that we'll cover,
and at the end of the book, you'll have a fully functional roguelike game that
implements everything that you will have learned. Now that we've brushed up on
our understanding of polymorphism, let's get the template setup. The first step is to
download and link SFML.

The project, as provided, is linked with SMFL 32-bit windows libraries.
This should suit most systems. If this is compatible with your system, you
can skip the following steps.

Chapter 2

[37]

Downloading SFML
SFML is available in a number of different precompiled packages. For example, the
latest release at the time of writing this book has 12 packages available for Windows
alone, so it's important that you download the correct one for your system. The
following steps will help you to download and setup SFML:

1.	 Visit at http://www.sfml-dev.org/download.php to find the SFML
download page. Unless you specifically need to target a 64-bit machine,
choose the 32-bit libraries. A 32-bit program will work fine on a 64-bit
machine.

2.	 Next, you need to choose the right package for your compiler. If you're using
Microsoft Visual Studio, you just need to choose the year that matches your
version, and if you're using Code::Blocks, or any other IDE for that matter,
choose the version of GNU Compiler Collection (GCC) that you're using.

3.	 Once you've identified the correct version for your system, download it and
extract the contents of the .zip file to where you want SFML to be saved.
This location has nothing to do with your project; they don't need to share
a directory.

You can build SFML on your own to create a custom package if
you wish or need to do so. For instructions on how to do so, visit
https://github.com/SFML/SFML.

Linking SFML
There are two ways to link SFML: static and dynamic libraries. A static library is the
one that is compiled into your executable. This means that your executable is bigger,
but you don't have to worry about getting the library during the runtime. Dynamic
libraries do not get linked into the executable, which results in a smaller executable,
but creates dependencies.

For more information on the difference between static and
dynamic libraries, visit http://www.learncpp.com/cpp-
tutorial/a1-static-and-dynamic-libraries/.

http://www.sfml-dev.org/download.php
https://github.com/SFML/SFML
http://www.learncpp.com/cpp-tutorial/a1-static-and-dynamic-libraries/
http://www.learncpp.com/cpp-tutorial/a1-static-and-dynamic-libraries/

Project Setup and Breakdown

[38]

We're going to link dynamically, which means that to run the game, you will need
the .dll files.

To do so, first copy the DLL files that the game will need from the SFML source to the
project's executable location. Copy all the files from <sfml-install-path/bin> to
<project-location/Debug>.

Next, we have to tell the compiler where the SFML headers are and the linker where
the out libraries are. Headers are .hpp files, and libraries are .lib files. This step
slightly differs depending on which IDE you're using.

In Microsoft Visual Studio, add the following to the project's properties:

•	 The path to the SFML headers (<sfml-install-path>/include) to C/C++ |
General | Additional Include Directories

•	 The path to the SFML libraries (<sfml-install-path>/lib) to Linker |
General | Additional Library Directories

In Code::Blocks, add the following to the project's Build Options and Search
Directories tab:

•	 The path to the SFML headers (<sfml-install-path>/include) to the
Compiler search directories

•	 The path to the SFML libraries (<sfml-install-path>/lib) to the Linker
search directories

These paths are the same in both the Debug and Release configurations.
Therefore, they can be set globally for the project.

The final step is to link our project to the SFML libraries that are being used. SFML
is made up of five modules, but we won't use all of them. We're using System,
Windows, Graphics, and Audio. Therefore, we only need to link to these libraries.
Unlike the previous step, the project configuration is important. There are separate
libraries for the Debug and Release configurations. Therefore, you need to ensure
that you link the correct ones.

In the Debug configuration, we need to add the following libraries:

•	 sfml-system-d.lib

•	 sfml-window-d.lib

•	 sfml-graphics-d.lib

•	 sfml-audio-d.lib

Chapter 2

[39]

Now, do the same for the Release configuration. However, drop the –d from each.
For example, we add sfml-system-d.lib in the Debug configuration, and we add
sfml-system.lib in the Release configuration.

To add these to Microsoft Visual Studio, they must be added to the project's
properties by navigating to Linker | Input | Additional Dependencies.

To add these to Code::Blocks, they must be added to the Link Libraries list in the
project's build options under the Linker Settings tab.

If you have any queries regarding this setup, visit http://www.sfml-
dev.org/learn.php for a complete breakdown along with images.

Running the project
Now that SFML is linked to our project, we should be ready to perform the first
build. The following screenshot shows our currently empty roguelike game:

http://www.sfml-dev.org/learn.php
http://www.sfml-dev.org/learn.php

Project Setup and Breakdown

[40]

As the project currently stands, we have a runnable application that spawns a player
in a fixed room. The first task involves adding an item.

Adding an item
All items that we create need to inherit from the base Item class because all game
items are stored in a single vector of the std::unique_ptr<Item> type. With this
data structure we can take advantage of polymorphism, and store all the item
subclasses in a single structure; through this, we can update and draw each item.

To add to this vector, simply instantiate a new item via a unique pointer. Then, add it
to the vector using the .push_back() method. Since we're using unique pointers, we
have to use std::move() to do so.

If you're unclear about why we have to use std::move here, look up for
unique pointers on the Internet.

In the Game::PopulateLevel function, let's add a gem item, as follows:

// Create a gem object.
std::unique_ptr<Gem> gem = std::make_unique<Gem>();

// Set the gem position.
gem->SetPosition(sf::Vector2f(m_screenCenter.x + 50.f, m_
screenCenter.y));

// Add the gem to our collection of all objects.
m_items.push_back(std::move(gem));

All that we have to do is create a new object via a unique pointer, give it a
position, and then add it to the list of all the items in the level using the
std::move function. Easy!

Updating and drawing
Once an item is added to the vector of all the objects, it will be automatically
updated:

// Update all items.
UpdateItems(playerPosition);

Chapter 2

[41]

This function iterates over all the items, checking whether they have been collected;
if this is not the case, it updates them. The Update() function of each object has a
single parameter named timeDelta. This is a float that contains the time that has
passed since the last update. It's used in the main outer game loop to keep the game
logic fixed at 60 fps.

To know more about the main game loop, visit http://
gafferongames.com/game-physics/fix-your-timestep/, which
is a great article on the subject.

Items are drawn in a similar way; their container is simply iterated over in the
Game::Draw function. This loop is as follows:

// Have all objects draw themselves.
for (const auto& item : m_items)
{
 item->Draw(m_window, timeDelta);
}

The m_window variable is a pointer to the render window. Hence, we pass it to each
object so that it can use it to draw itself.

Now, if you run the game, you will see the gem in the room along with the gold,
as shown in the following screenshot:

http://gafferongames.com/game-physics/fix-your-timestep/
http://gafferongames.com/game-physics/fix-your-timestep/

Project Setup and Breakdown

[42]

Exercises
To help you test your knowledge of this chapter's content, here are a few exercises
that you should work on. They are not imperative to the rest of the book, but
working on them will help you assess your strengths and weakness on the
material covered.

1.	 Create a name for your game and change the text of the main window to
reflect this change.

2.	 Consider the following code:
class A
{
public:
 int x;
protected:
 int y;
private:
 int z;
};

class B : protected A
{

};

What is the visibility of x, y, and z in class B?

3.	 Add more items to the level.

Summary
In this chapter, we made preparations that are needed in order to start coding the
game and create the procedural systems. We looked at the software and libraries that
we will use, and the game template that we'll extend. We also took a crash course in
polymorphism and the techniques that we will use to achieve it.

We're now ready to start creating our own procedural systems. The groundwork that
we just covered isn't terribly exciting, but it is crucial to understanding the work that
we're going to cover when moving forward. In the next chapter we're going to use
what we learned about random number generation with C++ data types to spawn
random items, and give our player random stats.

[43]

Using RNG with
C++ Data Types

In Chapter 1, An Introduction to Procedural Generation, we learned the fact that
pseudorandom number generation is at the heart of random procedural generation.
Remember, a procedural system is not random by nature, we need to induce
randomness. To start our journey, we're going to look at a range of different C++
data types, and use Random Number Generator (RNG) to give them random values
at runtime. This ability to use core C++ data types in a random, yet still controlled,
way will be the basis for all our future systems.

In this chapter we'll cover the following topics:

•	 Setting the game seed
•	 Enumerators
•	 Setting Boolean values randomly
•	 Accessing random elements in an array
•	 Generating random strings
•	 Random number distribution

Setting the game seed
Before we do anything we're going to need to set the game seed. Without it we'll get
the same results each time our game is run. As we've learned, this simply requires
us to make a call to the std::srand() function passing a random parameter to be
used as the seed. We'll use the current system time as our seed, it's random enough
for our purposes.

Using RNG with C++ Data Types

[44]

Where we make the call to the std::srand() function is arbitrary so long as it's
called before any call to the std::rand() function. The file main.cpp contains the
function main(), the entry point of the application. It's here that our game object is
created and the main game loop entered, so we'll make our call to the std::srand()
function here.

Our updated main() function should now look like this:

// Entry point of the application.
int main()
{
 // Set a random seed.
 std:: srand(static_cast<unsigned int>(time(nullptr)));

 // Create the main game object.
 Game game;

 // Create a Boolean that we can store out result it.
 bool result;

 // Initialize and run the game object.
 result = game.Initialize();

 if (result)
 {
 game.Run();
 }

 // Shutdown and release the game object.
 game.Shutdown();

 // Exit the application.
 return 0;
}

Each time we run the game now we will have a random seed set, so our calls to the
std::rand() yield unique results.

If you want your game to be consistent between runs you can use a
hard-coded value as the seed. Just don't forget to change it back or
you'll wonder why things aren't random later down the line!

Chapter 3

[45]

Setting Boolean values randomly
Perhaps the simplest of all data types is the humble bool. With only two states, true
and false, it shouldn't be too hard to set randomly! When represented as integers,
the two states have the following properties:

•	 False = 0 or lower
•	 True = 1 or higher

Given this, to randomly assign a bool we simply need to generate either the number
0 or 1.

Generating a number between 0 and 1
In Chapter 1, An Introduction to Procedural Generation, we covered the generation of
random numbers within a specific range. Well we're now going to put that to use.
Using the std::rand() function we will generate a number between 0 and 1:

std::rand() % 2;

Remember, std::rand() generates a number between 0 and RAND_MAX
function. We then calculate the remainder of that result divided by 2. This
leaves just the range 0 and 1.

A bool does not have to be set with the true or false keyword. You can assign an
integer to a bool and its state will be determined by the integer's value using the rule
stated previously. Any number less than 1 is false, and any number above 0 is true.
That means we can feed our result straight into a bool:

bool myBool = std::rand() % 2;

Putting this together, we can create a simple console application that outputs either
true or false randomly each time the user presses Enter.

You can download the code for this program from the Packt Publishing website.
It will be in the Examples folder, and the project name is random_boolean:

#include <iostream>

using namespace std;

int main()
{
 // Loop forever.
 while (true)

Using RNG with C++ Data Types

[46]

{
 // Generate a number between 0 and 1.
 bool myBool = rand() % 2;
 if (myBool)
 {
 cout << "true";
 }
 else
 {
 cout << "false";
 }
 return 0;
}

This code results in the following output:

Each time we hit Enter we get a random Boolean value. Even this simple case of
random generation can enable us to start building our procedural roguelike game.
Let's apply it straight away to the creation of items when the room is created.

Remember, nowhere in this small example application do we set the seed
randomly. As a result, this program will generate the same sequence of
values each time it is run.

Chapter 3

[47]

Choosing if an item spawns
Currently, when we start the game a gem and gold item are always spawned.
Let's use this random bool assignment to decide whether or not the two objects
are created. To accomplish this we'll encapsulate their spawn code inside an
if statement, the parameter to which will be the result of our random Boolean
assignment.

The Game::PopulateLevel method is where out items are spawned. We'll replace
the current code with the following:

// Populate the level with items.
void Game::PopulateLevel()
{
 // A Boolean variable used to determine if an object should be
spawned.bool canSpawn;

 // Spawn gold.
 canSpawn = std::rand() % 2;
 if (canSpawn)
 {
 std::unique_ptr<Gold> gold = std::make_unique<Gold>();
 gold->SetPosition(sf::Vector2f(m_screenCenter.x - 50.f, m_
screenCenter.y));
 m_items.push_back(std::move(gold));
 }

 // Spawn a gem.
 canSpawn = std::rand() % 2;
 if (canSpawn)
 {
 std::unique_ptr<Gem> gem = std::make_unique<Gem>();
 gem->SetPosition(sf::Vector2f(m_screenCenter.x + 50.f, m_
screenCenter.y));
 m_items.push_back(std::move(gem));
 }
}

Using RNG with C++ Data Types

[48]

Now, each time we run the game, it's random whether or not the gem and gold
are spawned.

A simple change, but the first step in creating a procedurally generated game. There
is no single algorithm or function that makes a game procedural. It's a collection of
small techniques such as this that make systems non-predictable and determined
at runtime.

Random number distribution
Let's build upon what we know about random number generation to distribute
numbers randomly. We'll achieve this by first generating n numbers between 0 and
100. If we add these together we get a random total where each of our individual
numbers represents a percentage of that. We can then take that percentage of our
goal number to get a random portion. The following code demonstrates this and
will make it clearer.

Chapter 3

[49]

You can download the code for this program from the Packt website. It will be in the
Examples folder, and the project name is random_distribution:

#include <iostream>

using namespace std;

// Entry method of the application.
int main()
{
 // Create and initialize our variables.
 int upperLimit = 0;

 // Output instructions.
 cout << "Enter a number, and we'll split it into three random
smaller numbers:" << endl;
 cin >> upperLimit;
 cout << endl;

 float number1Bias = rand() % 101;
 float number2Bias = rand() % 101;
 float number3Bias = rand() % 101;

 float total = number1Bias + number2Bias + number3Bias;

 // Output the numbers.
 cout << upperLimit * (number1Bias / total) << endl;
 cout << upperLimit * (number2Bias / total) << endl;
 cout << upperLimit * (number3Bias / total) << endl;

 // Pause so we can see output.
 cin.get();
 cin.get();

 // Exit function.
 return 0;
}

Using RNG with C++ Data Types

[50]

This method ensures that each segment of the number is completely random.
There is a slight rounding error to be taken into account, but that's not a problem
for our application.

Let's waste no time and apply this new skill to the game!

Giving the player random stats
A classic way in which this random distribution of numbers can be used is to give a
player random stats. Traditionally, a character in a game is given n stat points, and
it's up to the player to distribute them. Since we're making a procedural game, we'll
instead distribute them randomly to create procedurally generated character stats.

To do this we need to hook up the previous code with the assignment of our
player's stat variables. Our player stats are currently fixed, and assigned in the
following way:

m_attack = 10;
m_defense = 10;
m_strength = 10;
m_dexterity = 10;
m_stamina = 10;

Let's replace that with the following to randomly distribute the stats. We'll also
add a variable to the player so we can change how many stat points the player
has to distribute.

Chapter 3

[51]

To start, add the following variable to the player, and don't forget to add it to our
initializer list:

int m_statPoints;

Now let's use this to give our player random stats:

// Randomly distribute other stat.
m_statPoints = 50;

float attackBias = std::rand() % 101;
float defenseBias = std::rand() % 101;
float strengthBias = std::rand() % 101;
float dexterityBias = std::rand() % 101;
float staminaBias = std::rand() % 101;

float total = attackBias + defenseBias + strengthBias + dexterityBias
+ staminaBias;

m_attack += m_statPoints * (attackBias / total);
m_defense += m_statPoints * (defenseBias / total);
m_strength += m_statPoints * (strengthBias / total);
m_dexterity += m_statPoints * (dexterityBias / total);
m_stamina += m_statPoints * (staminaBias / total);

Each time we now load the game our player has their stat points allocated randomly.
This approach of randomly distributing of a set amount could be used in many
other ways, such as sharing loot between players and allocating damage between
multiple entities.

Using RNG with C++ Data Types

[52]

Accessing random elements of a
collection
When we have collections of similar objects, they are often stored in structures such
as arrays and vectors. Usually when working with these structures we access specific
elements, and it's their uniformness and order that make them useful.

To access a specific element we simply supply its index in the collection. Therefore,
to access a random element of the array we just supply a random index, which is a
simple case of generating a random number.

Let's have a look at an example of this. In the following example we create a vector
of strings which we populate with animal names. Each time we press enter we
access a random element of the vector by generating a number between 0 and the
vectors size.

You can download the code for this program from the Packt website. It will be in the
Examples folder, and the project name is random_element:

#include <iostream>
#include <vector>

using namespace std;

// Entry method of the application.
int main()
{
 // Create and populate an array of animals.
 vector<string> animals = { "Dog", "Cat", "Bird", "Fox", "Lizard" };

 // Output the instructions.
 cout << "Press enter for the name of a random animal!" << endl;

 // Loop forever.
 while (true)
 {
 // Wait for user input.
 cin.get();

 // Generate a random index.
 int randomIndex;
 randomIndex = rand() % animals.size();

Chapter 3

[53]

 // Output the name of the randomly selected animal.
 cout << animals[randomIndex].c_str();
 }

 // Exit function.
 return 0;
}

The output of is as follows:

Accessing random elements of a collection is a great tool for creating procedural
systems. Anywhere in your game where there is a single object, you can create an
array or vector of alternates, and choose one at random at runtime. With this alone
you could create a highly randomized game where each run is unique.

Spawning a random item
Currently, when we load our game, set items are spawned. We need to add an
element of randomness to do this, and something as simple as a switch statement
is all that's needed. Where we can, we always want to add options to create random
and procedurally generated content.

To randomly spawn our items, we need to generate a random number between 0
and the number of items we have, and then use that in a switch statement. As stated
previously, there isn't one approach to procedural generation, so there will be other
methods to doing this.

Using RNG with C++ Data Types

[54]

Let's add in the number generation and switch statements to choose which item to
spawn. The updated Game::PopulateLevel function should look as follows:

// Populate the level with items.
void Game::PopulateLevel()
{
 // A Boolean variable used to determine if an object should be
spawned.
 bool canSpawn;

 // Spawn an item.
 canSpawn = std::rand() % 2;
 if (canSpawn)
 {
 int itemIndex = std::rand() % 2;
 std::unique_ptr<Item> item;
 switch (itemIndex)
 {
 case 0:
 item = std::make_unique<Gold>();
 break;

 case 1:
 item = std::make_unique<Gem>();
 break;
 }
 item->SetPosition(sf::Vector2f(m_screenCenter.x, m_
screenCenter.y));
 m_items.push_back(std::move(item));
 }
}

Chapter 3

[55]

Now we can see that when we run the game, if an object can be spawned it will be
either the gold item or the gem. We have a bunch of items in the game, and in the
next chapter we'll be extending this system to include them all, populating our entire
level from a single function:

Generating random characters
Since we've covered generating random strings from a set wordlist, let's look at
generating random characters. The char data type is a single, one byte character.

A string is actually just a null-terminated sequence of characters, so the following
lines of code produce the exact same result:

Stirng myStringLiteral = "hello";
string myString = { 'h', 'e', 'l', 'l', 'o', '\0' };

Likewise, the following code is semantically correct:

char myCharArray[6] = { 'h', 'e', 'l', 'l', 'o', '\0' };
string stringVersion = myCharArray;

Using RNG with C++ Data Types

[56]

Since a char is one byte, it has the possible integer representations of 0 to 255. Each
of these decimal values represents a different character. A lookup table can found in
the ASCII table. For example, the character a has the decimal value 97. We can use
these integers when assigning a char, as follows:

char myChar = 97;

In C++ the maximum decimal value of a char is 255. If you go over this it
will overflow and loop back through the table. For example, setting a char
value equal to 353 will result in the character a. An ASCII table can be
found at http://www.asciitable.com/.

To generate a random char we therefore need to generate a number between 0 and
255, something we're very familiar with now.

You can download the code for this program from the Packt website. It will be in the
Examples folder, and the project name is random_character:

#include <iostream>

using namespace std;

// Entry method of the application.
int main()
{
 // Loop forever.
 while (true)
 {
 // Output instructions.
 cout << "Press enter to generate a random character from the ASCII
standard:" << endl;

 // Pause for user input.
 cin.get();

 // The ASCII characters range from 0 - 127 in decimal.
 int randInt = rand() % 128;

 // To turn that into a char, we can just assign the int.
 char randChar = randInt;

http://www.asciitable.com/

Chapter 3

[57]

 // Output the random char.
 cout << "Random Char: " << randChar << "\n" << endl;
 }

 // Exit function.
 return 0;
}

With this code we're generating a random character from the entire ASCII table.
To generate characters within a more specific range, we simply need to cap the
number range we generate with.

For example, looking at the ASCII table shows us that the lowercase alphabet starts
at 97 and runs until 122. Let's adjust the random number generator to generate
values within this range only:

// The ASCII characters range from 0 - 127 in decimal.
int randInt = rand() % 128;
int randInt = std::rand() % 128;
int randInt = std::rand() % 26 + 97;

Now we can see that the outputs are letters from the lowercase alphabet only,
as shown in the following screenshot:

Using RNG with C++ Data Types

[58]

Repeating loops
Another use of generating random numbers is to loop over certain code an
undetermined number of times. For example, when we spawn our items we make
individual calls to the spawn code. This is fine if we just want to spawn one item
every time, but what about when we want to spawn a random number of items.

We need to make a random amount of calls to our code, which we'll later wrap in
its own function, and this can be achieved using for loops. In a for loop we specify
how many times we want the loop to iterate, so instead of using a fixed value as we
normally would, we can generate a random number to use instead. Each time the
code is run, a new random number will be generated, and the loop will be a different
size each time.

You can download the code for this program from http://www.packtpub.com/
support. It will be in folder Chapter 3, and is called random_loops.cpp:

// Include our dependencies.
#include <iostream>
#include <ctime>

// We include std so we don't have to fully qualify everything.
using namespace std;

void HelloWorld();

// Entry method of the application.
int main()
{
 // First we give the application a random seed.
 srand(time(nullptr));

 // Loop forever.
 while (true)
 {
 // Output the welcome message.
 cout << "Press enter to iterate a random number of times:" <<
endl;

 // Pause for user input.
 cin.get();

http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 3

[59]

 // Generate a random number between 1 and 10.
 int iterations = rand() % 10 + 1;

 // Now loop that number of times.
 for (int i = 0; i < iterations; i++)
 {
 cout << "Iteration " << i << ": ";
 HelloWorld();
 }

 // Output ending message.
 cout << endl << "We made " << iterations << " call(s) to
HelloWorld() that time!" << endl << endl;
 }

 // Exit function.
 return 0;
}

// Outputs the text Hello World!.
void HelloWorld()
{
 cout << "Hello World!" << endl;
}

The output is shown in the following screenshot:

Using RNG with C++ Data Types

[60]

Spawning a random number of items
With our items being spawned in our Game::PopulateLevel function, and the
ability to call a function a random number of times, let's update the code so we
spawn a random number of items when we start the game.

To achieve this, all we need to do is create the same loop as in the previous exercise,
and encapsulate our spawn code within it. Let's update Game::PopulateLevel with
the following:

// Populate the level with items.
void Game::PopulateLevel()
{
 // A Boolean variable used to determine if an object should be
spawned.
 bool canSpawn;

 // Generate a random number between 1 and 10.
 int iterations = std::rand() % 10 + 1;

 // Now loop that number of times.
 for (int i = 0; i < iterations; i++)
 {
 // Spawn an item.
 canSpawn = std::rand() % 2;

 if (canSpawn)
 {
 int itemIndex = std::rand() % 2;
 std::unique_ptr<Item> item;

 switch (itemIndex)
 {
 case 0:
 item = std::make_unique<Gold>();
 break;

 case 1:
 item = std::make_unique<Gem>();
 break;
 }

Chapter 3

[61]

 item->SetPosition(sf::Vector2f(m_screenCenter.x, m_
screenCenter.y));
 m_items.push_back(std::move(item));
 }
 }
}

Now when we run the code, we have a bunch of items that are spawned. They are
currently spawning on-top of one-another, but don't worry, we're fixing that in the
next chapter!

Exercises
To enable you to test your knowledge of this chapter's content, here are a few
exercises that you should work through. They are not imperative to the rest of the
book, but working through them will help you assess your strengths and weaknesses
on the material covered.

1.	 Add more options to the random string generator. Try to create a generator
that uses two random words.

2.	 Amend the random character generation program so we generate the
characters A-Z uppercase, and a-z lowercase.

3.	 The player is currently spawned at a fixed location in the level. Create a set of
possible spawn coordinates, and choose randomly between them at run-time
so the spawn location varies.

Using RNG with C++ Data Types

[62]

Summary
In this chapter we've taken a look at a range of C++ data types, and incorporated
RNG with their use. The ability to use these data types in a random, but controlled
way, is key in implementing random procedural systems. Remember, procedural
generation is just the creation of content as the result of a calculation. This is not
random by nature, we have to induce randomness as we have in this chapter. The
additions we have made to the game are small, but are the first steps in creating
a procedurally generated game. Already when we run our game it will be a little
different each time.

In the next chapter we're going to develop our level further by spawning our
items and enemies in random locations around the map. Procedurally generated
environments are a staple in procedurally generated games, and spawning our
game objects in random locations is a big step towards achieving this.

[63]

Procedurally Populating
Game Environments

Now that we're comfortable using Random Number Generator (RNG) with core
C++ data types, let's have a look at how to create a highly randomized environment.
This will include the random generation and positioning of items, enemies, and
more. We'll also touch upon random map generation in this chapter before tackling
it head-on toward the end of the book.

The way in which objects are spawned will largely depend on the infrastructure
of your level data. With most 2D games, you'll be able to take an approach that is
similar, if not identical, to the one demonstrated in this chapter. However, a 3D
game requires more work because there's an extra dimension to deal with, but the
principles are still valid.

In this chapter, we'll cover the following topics:

•	 Obstacles with procedurally populating an environment
•	 Defining the spawn area
•	 Randomly selecting a game tile
•	 Spawning items at a random location
•	 Procedurally generating changes to an environment

Procedurally Populating Game Environments

[64]

Potential obstacles
Generating game environments randomly isn't as simple as it may first appear. It's
not just a case of generating a random number within the bounds of a level. Though
this might technically work, there is no control there, and the environment that
is generated as a result will have many flaws. Objects may overlap, be located in
unreachable places, or be laid out in a poor order. In order to generate meaningful
and playable levels there needs to be more control.

Keeping within the bounds of a level
I'm sure that at some point we've all played a game where an item spawned beyond
our reach. It's infuriating to have that shiny new item just out of reach, but this
can easily happen when spawning objects randomly around a map. Therefore, it's
important to establish accurate bounds within which the objects can be spawned.

As you can imagine, the complexity of this task will match the complexity of your
environment. Thankfully for us, our level is described as a simple 2D array. Hence,
it's fairly easy to calculate the bounds.

Avoiding overlapping objects
Even if you define your level bounds perfectly, you are still not home and dry.
Environments are generally not empty, and are mostly filled with scenery and other
game objects. It's important to take these objects into account when choosing random
spawn coordinates as to not spawn object within them, again pushing items out of
the reach of the player.

Again, we're not going to have to worry too much about this as we will have simple
levels with no scenery.

Creating meaningful levels
After all is said and done, the level has to make sense. Even if we avoid spawning
items that are beyond the reach of the player, and which don't overlap one another,
it's no good if they all spawn in one far corner.

We need to create suitable parameters within which our RNG operates so we retain a
suitable level of control over the results. It's one of the major pitfalls of procedurally
generated games. Time and time again, you will see a level that just doesn't make
much sense because the algorithm has produced an odd result.

Chapter 4

[65]

Level tiles
Before we start working with a level grid, we need to know how it is set up!
Our level is described as a 2D array of a custom type Tile, a struct defined in
Level.h:

// A struct that defines the data values our tiles need.
struct Tile
{
TILE type; // The type of tile this is.
int columnIndex; // The column index of the tile.
int rowIndex; // The row index of the tile.
sf::Sprite sprite; // The tile sprite.
int H; // Heuristic / movement cost to goal.
int G; // Movement cost. (Total of entire path)
int F; // Estimated cost for full path. (G + H)
Tile* parentNode; // Node to reach this node.
};

Don't worry about the final four values at this point; we'll use them later when we
get to the section on path finding! For now, we just need to know that each tile
struct stores its type, position in the 2D array, and its sprite. All the possible tile
types are defined in an enumerator in Util.h, as follows:

// All possible tiles.
enum class TILE {
 WALL_SINGLE,
 WALL_TOP_END,
 WALL_SIDE_RIGHT_END,
 WALL_BOTTOM_LEFT,
 WALL_BOTTOM_END,
 WALL_SIDE,
 WALL_TOP_LEFT,
 WALL_SIDE_LEFT_T,
 WALL_SIDE_LEFT_END,
 WALL_BOTTOM_RIGHT,
 WALL_TOP,
 WALL_BOTTOM_T,
 WALL_TOP_RIGHT,
 WALL_SIDE_RIGHT_T,
 WALL_TOP_T,
 WALL_INTERSECTION,
 WALL_DOOR_LOCKED,
 WALL_DOOR_UNLOCKED,
 WALL_ENTRANCE,
 FLOOR,

Procedurally Populating Game Environments

[66]

 FLOOR_ALT,
 EMPTY,
 COUNT
};

This gives every tile type a string constant. So, instead of working with vague
numbers, we can work with these values instead. With this sorted, let's get started.

Defining the spawn area
Now we know what obstacles lie ahead, and how the level data is stored, let's take a
look at how we can spawn items at random locations in our roguelike object.

Calculating the level bounds
The first step is to calculate the level bounds. Since we're making a 2D roguelike
object, described in a 2D array, we need to identify the tiles that are suitable to spawn
items on. If this was done for a 3D game, you would also have to take into account
the third axis. Though we could just find the top left point of the map and calculate
the distance to the bottom right, this would almost certainly cause problems.

We mentioned earlier that it's important that items are spawned within valid level
areas. If we take this simple approach, we run the risk of spawning items in the
walls. The following pseudocode shows how this can be achieved:

 for (int i = 0; i < GRID_WIDTH; ++i)
 {
 for (int j = 0; j < GRID_HEIGHT; ++j)
 {
 m_grid[i][j].markAsSpawnable();
 }
 }

The following screenshot shows the spawn area if we use this simple approach in
the game:

Chapter 4

[67]

As we can see, the spawn area that was created exceeds the playable level area,
even though it is technically within the level bounds.

Checking the underlying game grid
The easiest way to do this in our case is by checking the underlying game grid. Since
each floor tile in the level grid has a unique tile type that denotes what kind of tile
it is, we can iterate over the level grid and only mark the tiles with a valid type as
possible spawn locations. The previous pseudocode has been modified and updated
in the following way to make this check:

for (int i = 0; i < GRID_WIDTH; ++i)
{
 for (int j = 0; j < GRID_HEIGHT; ++j)
 {
 if (m_grid[i][j].type == TILE::FLOOR || m_grid[i][j].type ==
TILE::FLOOR_ALT)
 {
 m_grid[i][j].markAsSpawnable();
 }
 }
}

Procedurally Populating Game Environments

[68]

If we ran a check like this, we would end up with the following possible spawn area:

As you can see, this is a much better area to spawn items. The next step is to choose a
point within this area as the spawn location.

Selecting a suitable game tile
Now, to find suitable tiles, we will generate random spawn coordinates. We
know that all tiles with the TILE::FLOOR or TILE::FLOOR_ALT type are floor tiles.
Therefore, we can select a tile at random and deduce if it's suitable for the spawning
of an item.

To avoid having to do these checks ourselves, the project provides the
Level::IsFloor function. It is quite self-explanatory; you can pass it a tile, or the
indices of one, and it will return true if it's a floor tile. We'll use that from now on to
check whether the tiles are valid for spawning an item.

Chapter 4

[69]

Randomly selecting a tile
The first function that we'll look at is choosing a value from an underlying grid.
In our case, the level data is described in a 2D array. Therefore, we simply need to
generate a random column and a row index.

Remember that this range is the number of rows and columns - 1 as all
indices start from 0. If we have a grid with 10 rows and columns, then
they are numbered 0 to 9, and the total is 10.

Here is some pseudocode to generate a random index for a 2D array with 10 rows
and 10 columns:

// Generate random indices.
int randomColumn = std::rand() % 10;
int randomRow = std::rand() % 10;

// Get the tile of the random tile.
Tile* tile = m_level.GetTile(randomColumn, randomRow);

To get the Tile object from the level, we just need to call the Level::GetTile
function and pass the randomly generated indices.

Checking whether a tile is suitable
To check whether a tile is valid, we can use the Level::IsFloor function that we
had a look at earlier. The following pseudocode will achieve this:

// Get the type of the random tile.
Tile* tile = m_level.GetTile(1, 1);

// Check if the tile is a floor tile.
if (m_level.IsFloor(*tile))
{
 // tile is valid
}

Procedurally Populating Game Environments

[70]

Converting to absolute position
Now that we can choose a valid tile in the game grid, we need to convert that
position to an absolute screen position. To convert indices into a position that is
relative to the grid, we simply need to multiply them by the width of a tile in the
game. In our case, the tiles have a size of 50 square pixels. For example, if we're at
location [1][6] in the grid, the position relative to the grid will be 50*300.

Now we just need to add the location of the grid to these values, making them
absolute coordinated relative to our window. The practice of converting a grid
position to an absolute position will come in handy. So let's encapsulate the
behavior in its own function.

In Level.h, add the following code:

/**
 * Returns the position of a tile on the screen.
 */
sf::Vector2f GetActualTileLocation(int columnIndex, int rowIndex);

In Level.cpp, add the following definition of a function:

sf::Vector2f Level::GetActualTileLocation(int columnIndex, int
rowIndex)
{
 sf::Vector2f location;

 location.x = m_origin.x + (columnIndex * TILE_SIZE) + (TILE_SIZE /
2);
 location.y = m_origin.y + (rowIndex * TILE_SIZE) + (TILE_SIZE /
2);

 return location;
}

Spawning items at a random location
Now, let's tie all of this together to spawn items randomly in the map. Here is a quick
overview of the steps that we'll take:

1.	 Select a random tile from the level data.
2.	 Check whether this tile is a floor tile. If not, go to step 1.
3.	 Convert the tile location to the absolute position and give it to the item.

Chapter 4

[71]

The first step is to select a random tile in the level data. Earlier in this chapter,
we covered how we'll achieve this:

// Declare the variables we need.
int columnIndex(0), rowIndex(0);
Tile tileType;

// Generate a random index for the row and column.
columnIndex = std::rand() % GRID_WIDTH;
rowIndex = std::rand() % GRID_HEIGHT;

// Get the tile type.
tileType = m_level.GetTileType(columnIndex, rowIndex);

We now need to check whether the randomly selected tile is suitable for the
spawning of an item. We know that we can do this by checking the type of the tile,
but we need to incorporate this into some kind of loop, so that if the randomly
selected tile is unsuitable, it will try again. To accomplish this, we'll wrap the
random tile selection code inside a while statement, as follows:

// Declare the variables we need.
int columnIndex(0), rowIndex(0);

// Loop until we select a floor tile.
while (!m_level.IsFloor(columnIndex, rowIndex))
{
 // Generate a random index for the row and column.
 columnIndex = std::rand() % GRID_WIDTH;
 rowIndex = std::rand() % GRID_HEIGHT;
}

It's worth noting that having a while loop here will not be suitable for
all game types. In our game, there is more area where an item can be
spawned as compared to the area where it can't be spawned. Therefore,
a valid location can be easily found. If this is not the case and a suitable
spawn location is scarce, then a while loop may hold the game up
indefinitely, as it is looped to find the area. Use the while statements
with extreme caution.

Procedurally Populating Game Environments

[72]

This code now loops until it finds a suitable, but still random, tile where we
can spawn items. This is very useful and will most likely be reused multiple
times. Therefore, we will create a dedicated function for the code named
Level::GetRandomSpawnLocation, as follows:

/**
 * Returns a valid spawn location from the currently loaded level
 */
sf::Vector2f GetRandomSpawnLocation();

Now, add the following code to the body of the new function:

// Returns a valid spawn location from the currently loaded level.
sf::Vector2f Level::GetRandomSpawnLocation()
{
 // Declare the variables we need.
 int rowIndex(0), columnIndex(0);

 // Loop until we select a floor tile.
 while (!m_level.IsFloor(columnIndex, rowIndex))
 {
 // Generate a random index for the row and column.
 columnIndex = std::rand() % GRID_WIDTH;
 rowIndex = std::rand() % GRID_HEIGHT;
 }

 // Convert the tile position to absolute position.
 sf::Vector2f tileLocation(m_level.GetActualTileLocation(columnInd
ex, rowIndex));

 // Create a random offset.
 tileLocation.x += std::rand() % 21 - 10;
 tileLocation.y += std::rand() % 21 - 10;

 return tileLocation;
}

Note that at the end of the function we've added a return statement. When a
suitable tile is found, we fetch the absolute position using the function that
we added earlier, and then return the value. We also add a random offset to the
coordinates of our items so they aren't all fixed to the dead center of the tile that
they lie on.

We now have a function that will return absolute coordinates for a suitable spawn
location in the level. Very handy indeed! The final step is to incorporate this function
in the Game::PopulateLevel spawn function.

Chapter 4

[73]

Currently, we've set the position of the items manually. To make use of the
new function, simply replace the fixed values with the results of a call to the
Level::GetRandomSpawnLocation() function:

 item->SetPosition(sf::Vector2f(m_screenCenter.x, m_
screenCenter.y));
 item->SetPosition(m_level.GetRandomSpawnLocation());
 m_items.push_back(std::move(item));
}

Now, every time we create an item, its location will be generated randomly. If we
run the game now, we will see that the items are spread through the level randomly,
but only on the tiles that are valid and which the player can reach:

Expanding the spawning system
In the last chapter, we covered the use of enumerators; we're going to put that to
good use here. We're going to break the item spawn code into its own dedicated
function. This will give us greater control over how we populate the level. We'll
also expand this system to include all items and enemies!

Procedurally Populating Game Environments

[74]

Using enumerators to denote an object type
The first step in constructing this system is to look at the items. In Util.h, all the
item types are described in the following enumerator:

// Spawnable items.
enum class ITEM {
 HEART,
 GEM,
 GOLD,
 POTION,
 KEY,
 COUNT
};

When deciding what items need to be spawned, we will select random values from
these enumerator values.

Optional parameters
Another technique that we'll utilize in this system is the use of optional parameters.
By default the function will spawn an item at a random location, but we may
sometimes wish to override this behavior with a set location. This is achieved by
using optional parameters.

Consider the following function declaration:

void TestFunction(OBJECT object, sf::Vector2f position);

The TestFunction() function created from this declaration requires spawn
coordinates that need to be passed. We could just pass an sf::Vector value
that is equal to {0.f, 0.f} and ignore these values, but that's a bit messy.

Optional parameters are those that are given a default value in the function
declaration. If these parameters aren't provided in the function call, the default
values are used. Let's rewrite this same function declaration, this time utilizing
optional parameters in the following way:

void TestFunction(OBJECT object, sf::Vector2f position = { -1.f, -1.f
});

Another approach to this is to create two distinct functions. One function
takes parameters and the other one doesn't; you can give them different
names to highlight the difference.

Chapter 4

[75]

Now, the position variable has a default value of {-1.f, -1.f}. So, if no values
are passed with the function call, these defaults will be used. This is the behavior that
we're going to need from the spawning functions. So, with this in mind, let's declare
a new function named Game::SpawnItem, as follows:

/**
 * Spawns a given item in the level.
 */
void SpawnItem(ITEM itemType, sf::Vector2f position = { -1.f, -1.f });

With the default values set, we now need to determine whether they should be
used or not. To check this, we can just evaluate the x and y values of the position
variable. If x and y remain at -1.f, then we know that the user has not overridden
them and wants to generate a value randomly. However, if x and y are not -1.f,
then they have been overridden and we should use them.

I've used -1.f as my default parameter as it's an invalid spawn
coordinate. The default parameter should allow you to easily
determine whether they have been overwritten.

The following lines of code will choose a random spawn location:

// Choose a random, unused spawn location if not overridden.
sf::Vector2f spawnLocation;
if ((position.x >= 0.f) || (position.y >= 0.f))
{
 spawnLocation = position;
}
else
{
 spawnLocation = m_level.GetRandomSpawnLocation();
}

As the position variable is optional, both the following function calls are now valid:

SpawnITem(GOLD);
SpawnITem(GOLD, 100.f, 100.f);

The complete spawn functions
Now, let's put all of this together and create the SpawnItem() function, as follows:

// Spawns a given object type at a random location within the map. Has
the option to explicitly set a spawn location.
void Game::SpawnItem(ITEM itemType, sf::Vector2f position)
{
 std::unique_ptr<Item> item;

www.allitebooks.com

http://www.allitebooks.org

Procedurally Populating Game Environments

[76]

 int objectIndex = 0;

 // Choose a random, unused spawn location.
 sf::Vector2f spawnLocation;

 if ((position.x >= 0.f) || (position.y >= 0.f))
 {
 spawnLocation = position;
 }
 else
 {
 spawnLocation = m_level.GetRandomSpawnLocation();
 }

 // Check which type of object is being spawned.
 switch (itemType)
 {
 case ITEM::POTION:
 item = std::make_unique<Potion>();
 break;

 case ITEM::GEM:
 item = std::make_unique<Gem>();
 break;

 case ITEM::GOLD:
 item = std::make_unique<Gold>();
 break;

 case ITEM::KEY:
 item = std::make_unique<Key>();
 break;

 case ITEM::HEART:
 item = std::make_unique<Heart>();
 break;
 }

 // Set the item position.
 item->SetPosition(spawnLocation);

 // Add the item to the list of all items.
 m_items.push_back(std::move(item));
}

Chapter 4

[77]

To test the new function, we can update the Game::PopulateLevel function in the
following way:

if (canSpawn)
{
 int itemIndex = std::rand() % 2;
 SpawnItem(static_cast<ITEM>(itemIndex));
 std::unique_ptr<Item> item;

 switch (itemIndex)
 {
 case 0:
 item = std::make_unique<Gold>();
 break;

 case 1:
 item = std::make_unique<Gem>();
 break;
 }

 item->SetPosition(sf::Vector2f(m_screenCenter.x, m_screenCenter.y));
 item->SetPosition(m_level.GetRandomSpawnLocation());
 m_items.push_back(std::move(item));
}

This may seem like a lot of work for a seemingly small change that does not affect
the gameplay, but it's an important one. Software should be built in such a way that
it is easily maintainable and scalable. Now that this system is in place, we can spawn
an item with a single function call. Spot on!

Procedurally Populating Game Environments

[78]

A quick run of the game confirms that the code is working as intended, and we've
taken a big step towards an entirely procedurally populated environment, as shown
in the following screenshot:

Updating the spawn code
Now that the Game::SpawnItem function is up and running, let's refactor the
Game::PopulatelLevel function a little. In Game.h, let's declare the following
static const:

static int const MAX_ITEM_SPAWN_COUNT = 50;

Instead of hard-coding the limit of the for loop, we can instead use this constant.
The purpose of this is to remove all hard-coded values from the code. If we hard-
code a value here instead of using a const, every time we want to change the value
we will have to do so manually. This is both time-consuming and prone to errors.
With a const, we can simply change its value, and this will affect every instance in
which it's used.

Chapter 4

[79]

We can also tidy up some variables now that we're comfortable with what the
function is doing, as follows:

// Populate the level with items.
void Game::PopulateLevel()
{
 // Spawn items.
 for (int i = 0; i < MAX_ITEM_SPAWN_COUNT; i++)
 {
 if (std::rand() % 2)
 {
 SpawnItem(static_cast<ITEM>(std::rand() % 2));
 }
 }
}

With this tidied up, we can now extend this approach to spawning enemies into
the level!

Randomly spawning enemies
Now that we can spawn items into the game, let's take this same system and use it to
spawn in enemies! We'll start by defining a Game::SpawnEnemy function, as follows:

/**
 * Spawns a given enemy in the level.
 */
void SpawnEnemy(ENEMY enemyType, sf::Vector2f position = { -1.f, -1.f
});

Also, declare another static const to cap the maximum number of enemies that we
can spawn:

 static int const MAX_ENEMY_SPAWN_COUNT = 20;

With this declared, we can now add the function's definition. It will be much like the
Game::SpawnItem function, only instead of switching through the values in the item
enumerator, we'll create enemies that are defined in the following enumerator:

// Enemy types.
enum class ENEMY {
 SLIME,
 HUMANOID,
 COUNT
};

Procedurally Populating Game Environments

[80]

Let's add this definition:

// Spawns a given number of enemies in the level.
void Game::SpawnEnemy(ENEMY enemyType, sf::Vector2f position)
{
 // Spawn location of enemy.
 sf::Vector2f spawnLocation;

 // Choose a random, unused spawn location.
 if ((position.x >= 0.f) || (position.y >= 0.f))
 {
 spawnLocation = position;
 }
 else
 {
 spawnLocation = m_level.GetRandomSpawnLocation();
 }

 // Create the enemy.
 std::unique_ptr<Enemy> enemy;

 switch (enemyType)
 {
 case ENEMY::SLIME:
 enemy = std::make_unique<Slime>();
 break;
 case ENEMY::HUMANOID:
 enemy = std::make_unique<Humanoid>();
 break;
 }

 // Set spawn location.
 enemy->SetPosition(spawnLocation);

 // Add to list of all enemies.
 m_enemies.push_back(std::move(enemy));
}

Now, to call this function, we need to jump back to the Game::Populate level
function and add another loop to create enemies in a way that is similar to how
we created items:

// Populate the level with items.
void Game::PopulateLevel()
{
 // Spawn items.
 for (int i = 0; i < MAX_ITEM_SPAWN_COUNT; i++)
 {

Chapter 4

[81]

 if (std::rand() % 2)
 {
 SpawnItem(static_cast<ITEM>(std::rand() % 2));
 }
 }

 // Spawn enemies.
 for (int i = 0; i < MAX_ENEMY_SPAWN_COUNT; i++)
 {
 if (std::rand() % 2)
 {
 SpawnEnemy(static_cast<ENEMY>(std::rand() % static_
cast<int>(ENEMY::COUNT)));
 }
 }
}

With this in place, items and enemies will be spawned randomly across the level.
This system is very flexible and easy. To add another item or enemy, we just need
to add it to the relevant enumerator and add a corresponding switch statement.
This is the kind of flexible approach that is needed when generating procedural
content and systems.

Let's run the game and have a look at the populated level:

Procedurally Populating Game Environments

[82]

Spawning random tiles
The spawning of environmental features will be covered briefly here as there's
a whole chapter toward the end of the book that is dedicated to procedurally
generating the game map. This is our end goal. So, to get started, we'll generate
some superficial environmental features that will be ready for the random level
generation later.

Adding a new tile to the game will greatly increase the diversity of levels. One of
the problems with procedural generation is that environments can feel too unnatural
and generic. So this will help avoid that.

Let's add the following declaration to Game.h:

/**
 * Spawns a given number of a certain tile at random locations in the
level.
 */
void SpawnRandomTiles(TILE tileType, int count);

We have two parameters in this function. One allows us to specify a tile index that
we would like to spawn, and the second allows us to specify how many. We could
have skipped the creation of a function and just hard-coded the behavior in the
Game::PopulateLevel function, which would have worked, but couldn't have been
used for anything else.

However, with our approach, we can easily reuse the code, specifying the tile that
needs to be used, and the number of tiles that we wish to spawn. If we use RNG to
determine these values, we gain even more procedural generation and randomness
in the system. When writing procedural systems, always bear this in mind, and
avoid using hard-coded values as much as possible. Always create options, even if
they end up not being used.

Adding a new game tile
The next step is to add the new tile assets in the level object, and the
Level::AddTile()function does just that. In Game::Initialize, we'll
make a call to this function and add a new tile, as follows:

// Add the new tile type to level.
m_level.AddTile("../resources/tiles/spr_tile_floor_alt.png",
TILE::FLOOR_ALT);

Chapter 4

[83]

This function takes two parameters, namely a path to a resource and the
ID parameter value that the tile should have. In this case, we're using the
TILE::FLOOR_ALT value.

Choosing a random tile
If we're going to spawn tiles randomly in the level, we need to first choose a random
floor tile in the game grid. Luckily, we've already written the code to do this; it's in
the Level::GetRandomSpawnLocation() function. Therefore, we can use the code
and add it to the new function. We also created a parameter for the number of tiles
that need to be created. So, we'll wrap up everything inside a for loop to repeat the
process the correct number of times.

Let's give the function a definition, as follows:

// Spawns a given number of a given tile randomly in the level.
void Game::SpawnRandomTiles(TILE tileType, int count)
{
 // Declare the variables we need.
 int rowIndex(0), columnIndex(0), tileIndex(0);

 // Loop the number of tiles we need.
 for (int i = 0; i < count; i++)
 {
 // Declare the variables we need.
 int columnIndex(0), rowIndex(0);

 // Loop until we select a floor tile.
 while (!m_level.IsFloor(columnIndex, rowIndex))
 {
 // Generate a random index for the row and column.
 columnIndex = std::rand() % GRID_WIDTH;
 rowIndex = std::rand() % GRID_HEIGHT;
 }

 // Now we change the selected tile.
 m_level.SetTile(columnIndex, rowIndex, tileType);
 }
}

Once we find a tile that is a valid floor tile, we can update its type to that passed
in the parameter.

Procedurally Populating Game Environments

[84]

Implementing the SpawnRandomTiles
function
The very last step is to make a call to Game::SpawnRandomTiles. This function relies
on the level grid that has already been in place. So, we'll call it at the end of the
Game::Initialize function, as follows:

// Change a selection of random tiles to the cracked tile sprite.
SpawnRandomTiles(TILE::FLOOR_ALT, 15);

I've hard-coded the parameters here, but to make it even more random,
you can generate random numbers that can be used in their place. I've left
this as one of the exercises in this chapter!

All that's left is to now run the game and see our work in action in the following
screenshot. We can see that where the floor used to be a single tile, there are now
randomly distributed broken tiles, and we can control both the sprite and their
amount thanks to the way we architected the function:

Chapter 4

[85]

Exercises
To help you test your knowledge of this chapter's content, here are a few exercises
that you should work on. They are not imperative to the rest of the book, but
working on them will help you access your strengths and weaknesses in the
material covered:

1.	 Add a new item to the game. Then, hook it up to the spawn system so that it
can be randomly spawned with the existing items.

2.	 Add your own tile to the game. Hook this up to the spawn code and
change the underlying level grid so that the player cannot move through it.

3.	 Check whether the number of tiles that we created when calling
Game::SpawnRandomTiles() are hard-coded:
// change a selection of random tiles to the cracked tile sprite
this->SpawnRandomTiles(tileIndex, 15);

Use RNG to generate a count during the runtime instead.

4.	 Now we have our Game::SpawnItem function, update our enemy item drops
to use it.

5.	 Since we now have a function to calculate actual tile location, update our
torch spawn code so we don't do the position calculations ourselves.

Summary
In this chapter, we implemented RNG to procedurally generate a suitable spawn
location in the levels, and we encapsulated this behavior in its own function. We
then used this to spawn items and enemies around the map at random locations.

In the next chapter, we're going to look at creating unique, randomized game objects.
Certain items will be procedurally generated during runtime, meaning there will
be an almost infinite number of possible combinations. We covered the skills and
techniques that are used to achieve this in the earlier chapters, so it's time to pull it
together and build our own procedural system!

[87]

Creating Unique and
Randomized Game Objects

In this chapter, we're going to make our classes more random. We touched on a
similar subject matter in Chapter 3, Using RNG with C++ Data Types, by giving the
player random stats, so we'll continue further down that path and build bigger,
more versatile procedural classes.

Having game items generated randomly is a great way to bring versatility and
replayability to a game. For example, all the weapons in Borderlands are generated
randomly; each chest and loot drop will contain a unique item. It brings an element
of unknown to the game, and each time you find an item there's no knowing what it
could be.

In this chapter, we'll cover the following topics:

•	 Giving objects random sprites
•	 Generating random traits for our player
•	 Assigning stats randomly
•	 Procedurally generating a range of game items

Creating a random player character
In Chapter 3, Using RNG with C++ Data Types, we gave our player random stats.
Let's continue and develop the player object further. We'll give our player a
random class, and use this to set an appropriate sprite and stats. We'll also give
the player random traits that will buff certain stats.

Creating Unique and Randomized Game Objects

[88]

Choosing a player class
Let's start by assigning the player a random class. The first step is to define an
enumerator that will define the possible classes. We'll place this with the rest of
the enumerators in Util.h:

// Player classes.
enum class PLAYER_CLASS {
 WARRIOR,
 MAGE,
 ARCHER,
 THIEF,
 COUNT
};

Now, in the constructor of the player class, we'll select one of these classes at
random. To do this, we need to generate a number from 0 to 3, and use it as an index
in the enumerator. We'll also create a variable to hold the selection in case we wish to
use it later.

We'll start by declaring the variable in Player.h, as follows:

/**
 * The player's class.
 */
PLAYER_CLASS m_class;

We couldn't call this variable just 'class', as it's a keyword in C++. Keep
keywords in mind when naming variables to avoid such clashes

In the constructor, let's generate the random index and set the class as follows:

// Generate a random class.
m_class = static_cast<PLAYER_CLASS>(std::rand() % stat-ic_
cast<int>(PLAYER_CLASS::COUNT));

It's as simple as that. Every time a player is now created, a random class will be
selected, which can be used to implement different behavior and looks.

Chapter 5

[89]

An overview of sprites and textures
Before we start working with objects' sprites, let's just take a moment to look at
how sprites and textures are handled in our game. As you may already know, to
draw objects in SFML we need a sprite and a texture resource. When we want to
change the sprite, we actually just need to change the sf::Texture object to which
sf::sprite is holding a reference. Given this, sprites are stored in the object that
they belong to, and textures are stored in a single, static texture manager class.

Textures are an expensive and heavy resource, so keeping them in all in a single
object, and interacting with them only via references, is ideal. It means that we
don't have to worry about moving them or them making objects heavy. The
TextureManager class is used in the following way:

•	 To add a texture to a game, we statically call
TextureManager::AddTexture and pass the path to the sprite that we want
to load, and the function returns the index of the texture in the manager class.

•	 To get a texture out of the manager, we statically call
TextureManager::GetTexture, passing the ID of the texture that
we want as the only parameter. In return, we get a reference to the
texture if it exists.

What this all means for our game is that instead of storing textures in
objects, we instead store their texture manager IDs. Whenever we want the
actual texture, we just call the TextureManager::GetTexture function,
as previously described.

The texture resource manager class does some other clever stuff
such as avoiding the loading of the same textures twice. I advise you to
take a look at the class and employ the same approach in your own games
to ensure resources are handled correctly.

Setting an appropriate sprite
Now that the player class has a random class generated, let's update the sprite to
reflect this. The player is animated, and therefore has a collection of eight texture IDs
that are defined in an array.

Creating Unique and Randomized Game Objects

[90]

As it currently stands, the player loads the same fixed set of textures:

// Load textures.
m_textureIDs[static_cast<int>(ANIMATION_STATE::WALK_UP)] =
TextureManager::AddTexture("../resources/players/warrior/spr_warrior_
walk_up.png");
m_textureIDs[static_cast<int>(ANIMATION_STATE::WALK_DOWN)] =
TextureManager::AddTexture("../resources/players/warrior/spr_warrior_
walk_down.png");
m_textureIDs[static_cast<int>(ANIMATION_STATE::WALK_RIGHT)] =
TextureManager::AddTexture("../resources/players/warrior/spr_warrior_
walk_right.png");
m_textureIDs[static_cast<int>(ANIMATION_STATE::WALK_LEFT)] =
TextureManager::AddTexture("../resources/players/warrior/spr_warrior_
walk_left.png");
m_textureIDs[static_cast<int>(ANIMATION_STATE::IDLE_UP)] =
TextureManager::AddTexture("../resources/players/warrior/spr_warrior_
idle_up.png");
m_textureIDs[static_cast<int>(ANIMATION_STATE::IDLE_DOWN)] =
TextureManager::AddTexture("../resources/players/warrior/spr_warrior_
idle_down.png");
m_textureIDs[static_cast<int>(ANIMATION_STATE::IDLE_RIGHT)] =
TextureManager::AddTexture("../resources/players/warrior/spr_warrior_
idle_right.png");
m_textureIDs[static_cast<int>(ANIMATION_STATE::IDLE_LEFT)] =
TextureManager::AddTexture("../resources/players/warrior/spr_warrior_
idle_left.png");

Let's update this so that if we generate a warrior we will load the warrior
textures, and if we load a mage we'll load the mage textures, and so on. This
could be achieved by simply using the player's class in a switch statement to
load the appropriate textures.

However, this will create lots of duplicate code:

// Load textures.
switch (m_class)
{
 case PLAYER_CLASS::WARRIOR:
 m_textureIDs[static_cast<int>(ANIMATION_STATE::WALK_LEFT)] =
TextureManager::AddTexture("../resources/players/warrior/spr_warrior_
walk_left.png");
 m_textureIDs[static_cast<int>(ANIMATION_STATE::IDLE_UP)] =
TextureManager::AddTexture("../resources/players/warrior/spr_warrior_
idle_up.png");
 . . .
 break;

 case PLAYER_CLASS::MAGE:

Chapter 5

[91]

 . . .
 m_textureIDs[static_cast<int>(ANIMATION_STATE::WALK_LEFT)] =
TextureManag-er::AddTexture("../resources/players/mage/spr_mage_walk_
left.png");
 m_textureIDs[static_cast<int>(ANIMATION_STATE::IDLE_UP)] =
TextureManag-er::AddTexture("../resources/players/mage/spr_mage_idle_
up.png");
 . . .

For each class type we would have the same code repeated, with the only change
being the name of the class in the resource. Taking this into consideration, we can
approach this from a better angle and generate resource paths during the runtime.

Try implementing this yourself before reading the following code. If you
get stuck, the code is always here, and you may even come up with your
own approach!

We'll declare a string variable that can hold the name of the class, and set this by
performing a switch statement on the player's class once it is set. We can then load
textures using this variable instead of a fixed class name:

std::string className;

// Set class-specific variables.
switch (m_class)
{
case PLAYER_CLASS::WARRIOR:
 className = "warrior";
 break;

case PLAYER_CLASS::MAGE:
 className = "mage";
 break;

case PLAYER_CLASS::ARCHER:
 className = "archer";
 break;

case PLAYER_CLASS::THIEF:
 className = "thief";
 break;
}

// Load textures.
m_textureIDs[static_cast<int>(ANIMATION_STATE::WALK_UP)] =
TextureManager::AddTexture("../resources/players/" + className + "/
spr_" + className + "_walk_up.png");

Creating Unique and Randomized Game Objects

[92]

m_textureIDs[static_cast<int>(ANIMATION_STATE::WALK_DOWN)] =
TextureManager::AddTexture("../resources/players/" + className + "/
spr_" + className + "_walk_down.png");
m_textureIDs[static_cast<int>(ANIMATION_STATE::WALK_RIGHT)] =
TextureManager::AddTexture("../resources/players/" + className + "/
spr_" + className + "_walk_right.png");
m_textureIDs[static_cast<int>(ANIMATION_STATE::WALK_LEFT)] =
TextureManager::AddTexture("../resources/players/" + className + "/
spr_" + className + "_walk_left.png");
m_textureIDs[static_cast<int>(ANIMATION_STATE::IDLE_UP)] =
TextureManager::AddTexture("../resources/players/" + className + "/
spr_" + className + "_idle_up.png");
m_textureIDs[static_cast<int>(ANIMATION_STATE::IDLE_DOWN)] =
TextureManager::AddTexture("../resources/players/" + className + "/
spr_" + className + "_idle_down.png");
m_textureIDs[static_cast<int>(ANIMATION_STATE::IDLE_RIGHT)] =
TextureManager::AddTexture("../resources/players/" + className + "/
spr_" + className + "_idle_right.png");
m_textureIDs[static_cast<int>(ANIMATION_STATE::IDLE_LEFT)] =
TextureManager::AddTexture("../resources/players/" + className + "/
spr_" + className + "_idle_left.png");

Now, every time we load the game, the player will be a random class and have a
matching sprite to show that, as shown in the following screenshot.

Chapter 5

[93]

Now that the player class is set, we can update the UI and player projectile to reflect
it. To do so, we'll need to get the player class from the player. So, let's first add a
simple getter function to the player class. Don't forget the declaration:

// Returns the player's class.
PLAYER_CLASS Player::GetClass() const
{
 return m_class;
}

These are simple changes; instead of having fixed code, we can switch the player's
class and load the correct sprites in each case. Let's start with the projectile. The
sprite for this is set in Game::Initialize, and all that we have to do now is choose
the right sprite for the class:

// Load the correct projectile texture.
//m_projectileTextureID = TextureManager::AddTexture("../resources/
projectiles/spr_sword.png");

switch (m_player.GetClass())
{
case PLAYER_CLASS::ARCHER:
 m_projectileTextureID = TextureManager::AddTexture("../resources/
projectiles/spr_arrow.png");
 break;
case PLAYER_CLASS::MAGE:
 m_projectileTextureID = TextureManager::AddTexture("../resources/
projectiles/spr_magic_ball.png");
 break;
case PLAYER_CLASS::THIEF:
 m_projectileTextureID = TextureManager::AddTexture("../resources/
projectiles/spr_dagger.png");
 break;
case PLAYER_CLASS::WARRIOR:
 m_projectileTextureID = TextureManager::AddTexture("../resources/
projectiles/spr_sword.png");
 break;
}

Now, let's move on to the player UI. At the top-left of the screen we have the player's
stats, and one of these sprites shows the player. Since the class is dynamic, we need
to update this sprite accordingly. This sprite is set in Game::LoadUI, and it will be set
in a way that is similar to how we set the projectile. We'll leave this as an exercise for
you to complete on your own.

Creating Unique and Randomized Game Objects

[94]

Buffing the player stats
Now that the player has a class, another thing that we can do is to buff stats
accordingly. We'll do this by giving certain values an initial value before we
distribute the player's stat points as usual.

We already have a switch statement that we're using to load the appropriate
textures, so we can add the code to this. As usual, we won't hard-code
this value, but we will leave it to the RNG gods, as follows:

// Set class-specific variables.
switch (m_class)
{
case PLAYER_CLASS::WARRIOR:
 m_strength += std::rand() % 6 + 5;
 className = "warrior";
 break;

case PLAYER_CLASS::MAGE:
 m_defense = std::rand() % 6 + 5;
 className = "mage";
 break;

case PLAYER_CLASS::ARCHER:
 m_dexterity = std::rand() % 6 + 5;
 className = "archer";
 break;

case PLAYER_CLASS::THIEF:
 m_stamina = std::rand() % 6 + 5;
 className = "thief";
 break;
}

With this we can make certain classes more likely to have higher stat points in a
given skill, and by using a random number we can induce yet more randomness
and variance in the player objects that we can create.

Chapter 5

[95]

Random character traits
We have five stats in the game, namely Attack, Defense, Strength, Dexterity,
and Stamina. Let's create traits that affect each of these so that each character will
be predisposed to certain stats and therefore certain play styles! This will mean that
players have to change their gameplay to suit every character that they generate.

We need to start by defining these traits, so let's create an enumerator to do so.
We'll declare the following in Util.h:

// Player traits.
enum class PLAYER_TRAIT {
 ATTACK,
 DEFENSE,
 STRENGTH,
 DEXTERITY,
 STAMINA,
 COUNT
};

Now we need to create a variable in the player class that will store the currently
active traits. We'll give the player two traits, so will declare an array of that size.
However, instead of hard-coding the value, we'll create a static const to define the
trait count, as follows:

/**
 * The number of traits that the player can have.
 */
static const int PLAYER_TRAIT_COUNT = 2;

We always want to make code as flexible as possible. Therefore,
working with a static const with an appropriate name is preferred
over a hard-coded value in this case.

Feel free to give the player more traits; simply create a larger array and amend the
code as required as we move forward. Now, let's define the variable that will hold
the traits:

/**
 * An array containing the character's traits.
 */
PLAYER_TRAIT m_traits[PLAYER_TRAIT_COUNT];

Creating Unique and Randomized Game Objects

[96]

To assign traits randomly to a player, we now need to generate two random numbers
and use them as indices from the PLAYER_TRAIT enumerator. We'll encapsulate this
behavior in its own function. That way, we can change the player's traits at will
while the game is running.

Let's declare the following function in the Player class:

/**
 * Chooses 2 random traits for the character.
 */
void SetRandomTraits();

We need this function to generate two indices and then use them in a switch
statement to increase the appropriate stat, much like what we did when
determining the player class. Let's get this added, as follows:

// Chooses random traits for the character.
void Player::SetRandomTraits()
{
 // Generate the traits.
 for (int i = 0; i < PLAYER_TRAIT_COUNT; ++i)
 {
 m_traits[i] = static_cast<PLAYER_TRAIT>(std::rand() % static_
cast<int>(PLAYER_TRAIT::COUNT));
 }

 // Action the traits.
 for (PLAYER_TRAIT trait : m_traits)
 {
 switch (trait)
 {
 case PLAYER_TRAIT::ATTACK: default:
 m_attack += rand() % 6 + 5;
 break;
 case PLAYER_TRAIT::ATTACK: default:
 m_attack += std::rand() % 6 + 5;
 break;
 case PLAYER_TRAIT::DEFENSE:
 m_defense += std::rand() % 6 + 5;
 break;
 case PLAYER_TRAIT::STRENGTH:
 m_strength += std::rand() % 6 + 5;
 break;
 case PLAYER_TRAIT::DEXTERITY:
 m_dexterity += std::rand() % 6 + 5;
 break;

Chapter 5

[97]

 case PLAYER_TRAIT::STAMINA:
 m_stamina += std::rand() % 6 + 5;
 break;
 }
 }
}

While this approach succeeds in generating random traits, it has a big flaw; there is
no check to ensure that two unique traits are generated. We could give a player five
traits, and though it's quite unlikely, we could give them the same one five times.
One of the exercises at the end of the chapter is to amend this, ensuring that only
unique trait indices are generated. I highly suggest giving it a go.

With this function written, we now just need to make a call to it in the constructor of
our player:

// Set random traits.
SetRandomTraits();

Every time a player is now created, they will have two randomly selected traits. The
final step is to draw the player traits in the UI. For that, we're going to need to get the
traits from the player and modify the stat sprites.

Returning the player traits array
The traits are stored in an array, and C++ does not allow us to return an entire array
from a function. To get around this, we need to do some funky stuff. So, let's quickly
branch off and take a look at how we can tackle this problem.

To start, the following function needs to be declared in Player.h, as follows:

/**
 * Gets the players current traits.
 * @return The players two current traits.
 */
PLAYER_TRAIT* GetTraits();

We'll give it the following definition:

// Return the players traits.
PLAYER_TRAIT* Player::GetTraits()
{
 return &m_traits[0];
}

Creating Unique and Randomized Game Objects

[98]

Be aware that this function means that the player trait variables
can be altered.

An array is simply a collection of values that are stored sequentially in the memory.
The following diagram shows how this looks:

Taking this into consideration, if we return the address of the first element, we
can then find the rest of the value by reading the following memory sequentially.
To demonstrate this, have a look at the following two lines, which work in the
same way:

m_traits[2] = 1;
GetTraits()[2] = 1;

So, while we don't return the full array, we do return the first element, and that's all
we need. We can now access the array in the same way as we normally would.

Setting trait sprites
All that's left now is to draw the traits in the main Game class. We have already
drawn the player's stats at the bottom of the window. So, to indicate the one that
has been buffed by a trait, we can make the sprite bigger and switch to its alternate
texture. Stat sprites are loaded and initialized in the Game::LoadUI function.

Before we start, we need to know how many traits the player has. So, let's add a
quick GetTraitCount() function in the player object to give us this information;
don't forget to add the declaration to Player.h also:

// Returns the number of traits the player has.
int Player::GetTraitCount()
{
 return PLAYER_TRAIT_COUNT;
}

Chapter 5

[99]

Now, in Game::LoadUI, once we have loaded the stat sprites, we can make a call to
this function and construct a loop to iterate that number of times, as follows:

// Set player traits.
int traitCount = m_player.GetTraitCount();

for (int i = 0; i < traitCount; ++i)
{

}

Now, we need to check each trait, and set its sprite scale to 1.2f to make it slightly
bigger than its neighbors. We'll also switch to its alternate texture with a white
background. This has already been set up in the project, so all that we need to do is
make the switch in the following way:

for (int i = 0; i < traitCount; ++i)
{
 switch (m_player.GetTraits()[i])
 {
 case PLAYER_TRAIT::ATTACK:
 m_attackStatSprite->setTexture(TextureManager::GetTexture(m_
attackStatTextureIDs[1]));
 m_attackStatSprite->setScale(sf::Vector2f(1.2f, 1.2f));
 break;

 case PLAYER_TRAIT::DEFENSE:
 m_defenseStatSprite->setTexture(TextureManager::GetTexture(m_
defenseStatTextureIDs[1]));
 m_defenseStatSprite->setScale(sf::Vector2f(1.2f, 1.2f));
 break;

 case PLAYER_TRAIT::STRENGTH:
 m_strengthStatSprite->setTexture(TextureManager::GetTexture(m_
strengthStatTextureIDs[1]));
 m_strengthStatSprite->setScale(sf::Vector2f(1.2f, 1.2f));
 break;

 case PLAYER_TRAIT::DEXTERITY:
 m_dexterityStatSprite->setTexture(TextureManager::GetTexture(m_
dexterityStatTextureIDs[1]));

Creating Unique and Randomized Game Objects

[100]

 m_dexterityStatSprite->setScale(sf::Vector2f(1.2f, 1.2f));
 break;

 case PLAYER_TRAIT::STAMINA:
 m_staminaStatSprite->setTexture(TextureManager::GetTexture(m_
staminaStatTextureIDs[1]));
 m_staminaStatSprite->setScale(sf::Vector2f(1.2f, 1.2f));
 break;
 }
}

Now if we run the game, we can clearly see which sprites are currently been buffed
by traits, as shown in the following screenshot. We hooked up their behavior earlier.
So we know that these icons are having an effect on the character's stats:

Chapter 5

[101]

Procedurally generating an enemy class
Now that the player is well and truly generated procedurally, let's apply some of
this to the enemies. We currently have two main enemy classes, namely Slime and
Humanoid. Slime is a simple slime enemy, but our humanoid class is here for us to
expand upon. Currently, the class loads the sprites of a skeleton, but let's make it
so that it can be a number of humanoid-like enemies; in our case, it will be either a
goblin or a skeleton.

We could have made individual classes for these enemies, but since most of their
code will be the same, it doesn't make sense. Instead, we have this ambiguous
humanoid class that can take the form of a humanoid enemy. All that we need to
do is change the sprite, and the way we distribute stats if we want them to play
differently. From this we can create a great number of different enemies from a
single class. We'll use this same approach on potions soon!

For now, we'll start by defining an enumerator in Util.h to denote the different
types of humanoid enemies:

// Enemy humanoid types.
enum class HUMANOID {
 GOBLIN,
 SKELETON,
 COUNT
};

Now, if we cast our minds back to the player constructor, we generated a class and
performed a switch on that variable to perform class-dependent behavior. We'll
use the exact same approach here. We'll generate a random enemy type from the
enumerator that we just defined, and then set the sprites and stats accordingly.

In Humanoid::Humanoid, let's select a random humanoid type and create a string to
hold the name of the enemy, as follows:

// Default constructor.
Humanoid::Humanoid()
{
 // Generate a humanoid type. (Skeleton or Goblin).
 HUMANOID humanoidType = static_cast<HUMANOID>(std::rand() %
static_cast<int>(HUMANOID::COUNT));
 std::string enemyName;

Creating Unique and Randomized Game Objects

[102]

 // Set enemy specific variables.
 switch (humanoidType)
 {
 case HUMANOID::GOBLIN:
 enemyName = "goblin";
 break;

 case HUMANOID::SKELETON:
 enemyName = "skeleton";
 break;
 }
 // Load textures.
 m_textureIDs[static_cast<int>(ANIMATION_STATE::WALK_UP)] =
TextureManager::AddTexture("../resources/enemies/" + enemyName + "/
spr_" + enemyName + "_walk_up.png");
 m_textureIDs[static_cast<int>(ANIMATION_STATE::WALK_DOWN)] =
TextureManager::AddTexture("../resources/enemies/" + enemyName + "/
spr_" + enemyName + "_walk_down.png");
 m_textureIDs[static_cast<int>(ANIMATION_STATE::WALK_RIGHT)] =
TextureManager::AddTexture("../resources/enemies/" + enemyName + "/
spr_" + enemyName + "_walk_right.png");
 m_textureIDs[static_cast<int>(ANIMATION_STATE::WALK_LEFT)] =
TextureManager::AddTexture("../resources/enemies/" + enemyName + "/
spr_" + enemyName + "_walk_left.png");
 m_textureIDs[static_cast<int>(ANIMATION_STATE::IDLE_UP)] =
TextureManager::AddTexture("../resources/enemies/" + enemyName + "/
spr_" + enemyName + "_idle_up.png");
 m_textureIDs[static_cast<int>(ANIMATION_STATE::IDLE_DOWN)] =
TextureManager::AddTexture("../resources/enemies/" + enemyName + "/
spr_" + enemyName + "_idle_down.png");
 m_textureIDs[static_cast<int>(ANIMATION_STATE::IDLE_RIGHT)] =
TextureManager::AddTexture("../resources/enemies/" + enemyName + "/
spr_" + enemyName + "_idle_right.png");
 m_textureIDs[static_cast<int>(ANIMATION_STATE::IDLE_LEFT)] =
TextureManager::AddTexture("../resources/enemies/" + enemyName + "/
spr_" + enemyName + "_idle_left.png");

 // Set initial sprite.
 SetSprite(TextureManager::GetTexture(m_textureIDs[static_
cast<int>(ANIMATION_STATE::WALK_UP)]), false, 8, 12.f);
}

Chapter 5

[103]

With this done, if you run the game now, you will see that there are both goblin
and skeleton enemies that are spawning from a single class, as shown in the
following screenshot:

Procedural items
Now that the player and enemies have been taken care of, let's turn our attention to
items. We have a number of classes that can have their member variables assigned
randomly. We'll set up the potion class the way we set up the humanoid class, where
we created a number of distinct objects from a single class.

Random Gem and Heart classes
We'll start with the smallest classes, namely Heart and Gem. These are very simple
classes that have a single variable that is currently hard-coded. Let's update this so
that their values are randomly generated every time they are created. Since we want
this to happen each time an object is created, we'll place it in the items' constructors.

In Gem::Gem, we'll make the following change:

// Set the value of the gem.
m_scoreValue = 50;
m_scoreValue = std::rand() % 100;

Creating Unique and Randomized Game Objects

[104]

In Heart::Heart, we'll make the following change:

// Set health value.
m_health = 15;
m_health = std::rand() % 11 + 10;

If we run the game now, and have a quick look around, you will see that these items
provide different score and health values. Perfect!

Random gold class
With the last two items, we simply generated a random value. With the gold item,
we're going to take this a little further. We will use this random value to determine
the sprite that the object should have.

To do so, we will split the total gold value range into three bands. We will define a
lower range, an upper range, and that leaves everything else for the middle range.
For example, if we were to generate a gold value between 0 and 10, we could have
the following:

•	 Anything less than 3 is small
•	 Anything over 7 is large
•	 Anything else is medium

Chapter 5

[105]

By doing this, we can set a sprite that matches the gold value. We'll put this code in
the constructor, because it's code that should be called every time we create a gold
object, and we'll never need to call its behavior manually:

// Default constructor.
Gold::Gold()
{
 // Randomly generate the value of the pickup.
 this->goldValue = std::rand() % 21 + 5;

 // Choose a sprite based on the gold value.
 int textureID;
 if (this->goldValue < 9)
 {
 textureID = TextureManager::AddTexture("../resources/loot/
gold/spr_pickup_gold_small.png");
 }
 else if (this->goldValue >= 16)
 {
 textureID = TextureManager::AddTexture("../resources/loot/
gold/spr_pickup_gold_large.png");
 }
 else
 {
 textureID = TextureManager::AddTexture("../resources/loot/
gold/spr_pickup_gold_medium.png");
 }

 // Set the sprite.
 this->SetSprite(TextureManager::GetTexture(textureID), false, 8,
12.f);

 // Set the item type.
 m_type = ITEM::GOLD;
}

Creating Unique and Randomized Game Objects

[106]

You can see that we generate a random gold value, then simply use a couple of if
statements to define our ranges. Let's run the game again and check out the gold
objects. You will see that their sprites vary, and with that, so does the amount of
gold that they are worth when picked up:

The random potion class
For the biggest class update, we'll turn our attention to the potion class. This class
currently has a fixed sprite and doesn't give the player anything. With the humanoid
class, we can generate a random type and essentially create two different enemies
from a single class. We're going to use this same approach for the potions.

Creating a random potion
To start, let's define an enumerator in Util.h that denotes all potion types. We'll
create one for each stat, as follows:

// Potions.
enum class POTION {
 ATTACK,
 DEFENSE,
 STRENGTH,
 DEXTERITY,
 STAMINA,
 COUNT
};

Chapter 5

[107]

To save a lot of typing, the potion class already has the member variables and the
getter functions for each possible stat, we just need to use them. One thing that we
will add is a variable to hold the potion type, and a function to return it. We'll need
this information when picking the object up!

Let's declare the following in Potion.h:

public:
 /**
 * Gets the potion type.
 * @return The potion type.
 */
 POTION GetPotionType() const;

private:
 /**
 * The potion type.
 */
 POTION m_potionType;

GetPotionType is a simple getter function, so before moving forward let's quickly
give it a body:

// Gets the potion type.
POTION Potion::GetPotionType() const
{
 return m_potionType;
}

If we look at the initializer list for Potion, you'll notice it sets all of the stat
variables to 0. From this point we can select a random type and set its sprite and
corresponding stat, leaving the rest at their default value of 0 as we won't use them.

To start we'll generate a random value to denote its type, and create a variable that
we'll use to store the sprite path. The following code needs to go in Potion::Potion:

// The string for the sprite path.
std::string spriteFilePath;

// Set the potion type.
m_potionType = static_cast<POTION>(std::rand() % static_
cast<int>(POTION::COUNT));

Creating Unique and Randomized Game Objects

[108]

With a type selected, we can switch this value, set the appropriate stat, and give
spriteFilePath the appropriate resource path, as follows:

// Set stat modifiers, sprite file path, and item name.
switch (m_potionType)
{
case POTION::ATTACK:
 m_dexterity = std::rand() % 11 + 5;
 spriteFilePath = "../resources/loot/potions/spr_potion_attack.png";
 break;

case POTION::DEFENSE:
 m_dexterity = std::rand() % 11 + 5;
 spriteFilePath = "../resources/loot/potions/spr_potion_defense.png";
 break;

case POTION::STRENGTH:
 m_strength = std::rand() % 11 + 5;
 spriteFilePath = "../resources/loot/potions/spr_potion_strength.
png";
 break;

case POTION::DEXTERITY:
 m_dexterity = std::rand() % 11 + 5;
 spriteFilePath = "../resources/loot/potions/spr_potion_dexterity.
png";
 break;

case POTION::STAMINA:
 m_stamina = std::rand() % 11 + 5;
 spriteFilePath = "../resources/loot/potions/spr_potion_stamina.png";
 break;
}

Finally, we just need to set the item sprite and type in the following way, and we're
done. Note that this type is different from the potion type:

// Load and set sprite.
SetSprite(TextureManager::GetTexture(TextureManager::AddTexture(sprite
FilePath)), false, 8, 12.f);

// Set the item type.
m_type = ITEM::POTION;

Chapter 5

[109]

If we run our game now, and kill a couple of enemies until we get a potion drop, we
should see that the potion type changes. From a single class we've created 5 potions,
created at runtime, that give buffs also generated at runtime:

Determining potion pickups
Now that we have a single class that has five different potential buffs, we need to
determine the potion that we're picking up. This is where the Potion::GetType
function comes in handy. When we come in contact with a potion object, we can
check what type of potion it is and use that to determine which stats getter function
that we will call.

For example, if we pick up a potion and its type is POTION::ATTACK, then we know
that we need to call the Potion::GetAttack function. The item pickup code lies in
the Game::UpdateItems function. In this function, we check for collisions with the
object and check what type of item it is.

When we have determined that we have picked up a potion, we need to call the
Potion::GetPotionType function, but we have a problem. Since we are utilizing
polymorphism to store all the items in a single collection, the type of the potion item
at this point is Item. To get access to the Potion::GetPotionType function, we need
to cast the item using dynamic_cast:

Creating Unique and Randomized Game Objects

[110]

If you are unsure about why we're using dynamic_cast here and
static_cast elsewhere, read up on the different types of casts.

Let's get this case added to the pickup code in Game::UpdateItems:

case ITEM::POTION:
{
 // Cast to position and get type.
 Potion& potion = dynamic_cast<Potion&>(item);
 POTION potionType = potion.GetPotionType();
}
break;
}

We've now identified that we've picked up a potion and cast that item to a potion
object. Next, we can check the type of the potion and call the appropriate getter
function to get the potion value. Finally, we'll update the corresponding stat in the
player, as follows:

switch (potionType)
{
case POTION::ATTACK:
 m_player.SetAttack(m_player.GetAttack() + potion.GetAttack());
 break;

case POTION::DEFENSE:
 m_player.SetDefense(m_player.GetDefense() + potion.GetDefense());
 break;

case POTION::STRENGTH:
 m_player.SetStrength(m_player.GetStrength() + potion.GetStrength());
 break;

case POTION::DEXTERITY:
 m_player.SetDexterity(m_player.GetDexterity() + potion.
GetDexterity());
 break;

case POTION::STAMINA:
 m_player.SetStamina(m_player.GetStamina() + potion.GetStamina());
 break;
}

Chapter 5

[111]

With this the potion system is complete. From a single class we've created five
distinct potions, and all the values have been generated randomly.

Exercises
To help you test your knowledge of this chapter's content, the following are a few
exercises that you should work on. They are not imperative to the rest of the book,
but working on them will help you assess your strengths and weaknesses in the
material covered:

1.	 Add your own trait to the player class. There is a spare trait resource
included in the project that you can use.

2.	 When generating player traits, we identified that it was possible
to give the player the same trait multiple times. Improve the
Player::SetRandomTraits function so that that's no longer possible.

3.	 The stats that we have given to the player and enemies aren't hooked up to
how much damage they deal or take. Hook these stats up so that they affect
the player and enemy to a greater extent.

Summary
In this chapter, we looked at how to make game objects unique and random, giving
them random properties, sprites, and variations. With this approach, the range of
possible items that a game can generate is almost endless. When we have multiple
classes that differ only slightly, we can design ambiguous classes that are highly
flexible and greatly increase variety.

In the next chapter, we're going to step up our procedural efforts. We'll move away
from the simple setting of member variables randomly, and we'll experiment with
the creation of procedural art and graphics. We'll create textures procedurally for
enemies, and alter the level sprites to give a unique feel to each floor of the dungeon.

[113]

Procedurally Generating Art
A game's art is one of its defining features. It's usually what first attracts us, and it
is one of the driving forces behind keeping us hooked; great aesthetics go a long
way. Given that, we want to ensure that this is an area that is as rich, diverse,
and immersive as possible.

However, art is financially expensive and time-consuming to produce. Not only
that, it's also expensive at the hardware level! Game textures can hit 4K in size, and
creating a thousand 4K textures and storing them on traditional game media is no
easy task. Thankfully, a wide range of procedural generation techniques can be
employed when creating art to help combat some of these issues.

In this chapter, we'll cover the following topics:

•	 How procedural generation is used with art
•	 The benefits and drawbacks of procedurally generated art
•	 Using SFML sprite modifiers
•	 Saving modified sprites
•	 Programmatically creating sprites

How procedural generation is used
with art
Game art is a great candidate for procedural generation. It's expensive to create
manually, both in terms of developer investment and on a hardware level, and is
open to be manipulated programmatically. However, like everything, it has a range
of benefits and drawbacks. So, let's take a look at them before we get started.

Procedurally Generating Art

[114]

Using sprite effects and modifiers
Perhaps the simplest way in which procedural generation can be used with game art
is through the manipulation of existing sprites and models using built-in functions.
For example, most game engines and frameworks will offer some functionality to
edit graphics, such as the color, alpha, and scale modifiers.

Combining these functions with Random Number Generator (RNG) is an easy and
quick way to start producing randomized game art. For example, Simple and Fast
Multimedia Library (SFML) offers the functionality to change both the color and
size of a sprite. Even if we just use these functions, we can generate a wide range of
different textures during runtime. This is shown in the following screenshot:

Combining multiple textures
A step up from the simple modification of existing textures is the combining of
multiple textures to create new ones. Throw in some RNG, and you can create a large
number of sprites with very little effort. We'll use this technique in this chapter to
give our enemies random armor!

We'll start with a base enemy sprite, randomly choose some armor, and draw it on
top of the original image to create a random sprite! More on that later, but for now,
here's what it will look like:

Creating textures from scratch
The most complex way of creating procedural textures is by using algorithms to
create them from scratch. Algorithms such as Perlin noise can be used to create
a natural looking texture base which can then be used to create a wide range of
procedural textures using techniques such as image multiplication.

Chapter 6

[115]

For example, a base Perlin noise texture, a white noise texture, and a flat color can be
combined to create a procedural texture, as follows:

With this approach, changes in the algorithm that generates the first two textures will
result in a different final texture. This technique can be employed to create endless
unique textures for a game without creating storage problems.

This type of procedural image creation is beyond the scope of the book.
If you wish to delve into this further, read up on texture synthesis and
algorithms such as Perlin noise.

Creating complex animations
The growth of computing power has also given rise to procedural animation.
Traditionally, an animated game asset, such as a character, would be animated in a
3D animation package by an animator. This animation routine would then be loaded
during runtime by the game engine and applied to a given model to make it move.

As computers are now able to perform more calculations that ever, procedural
animation is becoming more popular. Ragdoll bodies are used in lots of game now,
which is a great example of procedural animation. Instead of a set animation routine
being played, information about the body, such as its weight, velocity, and rigidity,
is used to calculate what position the body should be in to create realistic and
dynamic movement.

The benefits of procedurally generated
art
The procedural generation of game art brings with it a range of benefits to us as
developers and the people who play our games. From its versatility, to being
cost-effective and a time-saver, let's take a look at a few of these benefits.

Procedurally Generating Art

[116]

Versatility
The main benefit of procedurally generating game art is versatility. Game art is
expensive to produce, and as a result imposes limits on what can feasibly be created
for a given project. It would be nice to have an artist create thousands of textures for
our games, but it's not feasible. Instead, we can create a handful resources, employ
procedural techniques to turn these resources into thousands of individual possible
textures, and bring variety and diversity to games.

Cheap to produce
Expanding on the previous point, since we do not have to pay artists to manually
create all of these textures, procedural generation saves us both time and money. In
the example that we're going to work on in this chapter, we're going to provide our
enemies with random armor. There will be three types of armor, each with three
tiers, and the combination of which armor the enemy has will also be random. The
number of possible combinations there is huge, and having an artist create them
manually would be costly.

It requires little storage
Continuing with the example of giving our enemies armor, even if we could get an
artist to produce all the sprites manually, how are they going to be stored? While
this is less of an issue for online games, as there's usually no imposed limit on the
game and download size, games that ship on traditional media, such as a disk, have
to use the space wisely. Textures are an expensive resource in this regard. Therefore,
creating a handful of resources and programmatically creating a texture from them
alleviates these issues.

The drawbacks of procedurally generated
art
With the good comes the bad, and procedurally generated art is no exception.
Though it is flexible and saves space, it does come with a few drawbacks.

Chapter 6

[117]

Lack of control
One of the first drawbacks is application agnostic, and is a drawback of procedural
generation as a whole; the loss of control that comes with it. If you're generating art
procedurally you lose the touch that a skilled artist can give it. The content can lack
character and feel very rigid due to being the result of a deterministic process, not a
creative one. A good procedural algorithm can mitigate this to a certain extent, but
it's hard to generate content that feels and looks as natural as a talented artist
would make it.

Repeatability
Another potential problem with procedurally generating art is that things may
appear very repeated and unnatural. Content will be produced through an
algorithm, and variation in the output is a result of the variance in the terms used.
Given that, each algorithm has a spectrum of content that can be produced. If the
operating range of the algorithm is too small, textures will be repeated and may feel
unnatural and reused, despite procedural generation being used to mitigate that very
thing! It's all in the quality of the algorithm and how it's used.

Performance heavy
Procedurally creating art usually involves lots of reading and copying textures,
which are generally expensive operations, especially if you're working with high-
resolution textures. Using the enemy armor example as a use case, if we were to
create the sprites manually, we would just have to load the texture, which is a single
operation. If we create a sprite procedurally, we have to load each component, edit
them, and re-render them to create a new texture.

Using SFML sprite modifiers
Now that we've identified a number of strengths and weaknesses of procedurally
generating art, get started! The first naïve approach that we'll look at is simply using
sprite modifiers such as color and alpha to alter the existing sprites. With this
method we'll be using the built-in sprite modifiers that SFML offers. Most engines
and frameworks will have functions that are similar to these, and if not, you can just
make them yourself!

Procedurally Generating Art

[118]

How colors work in SFML
Let's start with the simplest way of procedurally generating a sprite, generating a
unique color for it during runtime. A color in SFML is simply a set of four uint8
values, with one for each color channel and one for an alpha:

sf::Color::Color (
Uint8 red,
Uint8 green,
Uint8 blue,
Uint8 alpha = 255
)

Every sf::Sprite in SFML has a sf::Color member variable. This color value is
multiplied with the color values of the pixels in the texture to arrive at the final color.
The following image demonstrates this:

In the preceding image, we can see the original image on the far left. Also, we can see
the resulting images when the sprite has various colors set.

For the best results, it's best to start with a monochromatic gray base
texture so that the color modulation arrives at the correct color.

The sf::Color type also has an alpha value, which is used to determine the opacity
of the object. The lower the alpha channel, the more transparent the object. With
this value, you can change how opaque an object is, as shown in the following
screenshot:

Chapter 6

[119]

With this understanding of how SFML deals with color, let's put it into action by
generating a random sprite for the slime character, setting both its color and alpha
pragmatically.

To learn more about how SFML deals with color, read the SFML
documentation that is found at http://www.sfml-dev.org/learn.
php. For more in-depth information, head to the OpenGL documentation,
in the the graphics API SFML uses.

Creating sprites of a random color
In SFML, sprite objects have a member function called setColor(). This function
takes an sf::Color object and sets it as the value to be multiplied with the sprite's
texture when drawn. We know that sf::Color is essentially just four uint8 values,
with each having a range of 0 to 255. Given that, to generate a random color, we can
either generate random values for these color channels, or randomly select one of the
built-in pre-defined colors of SFML.

The slime enemy is a great candidate for this, as it will look great in many colors
and the base sprite is a dull gray color. Multiplying a color with this sprite will work
well. When we set the slime sprite, we'll give it a random color using both methods.
Let's start with selecting a pre-defined color.

Selecting a preset color at random
SFML comes with the following pre-defined colors:

sf::Color black = sf::Color::Black;
sf::Color white = sf::Color::White;
sf::Color red = sf::Color::Red;
sf::Color green = sf::Color::Green;
sf::Color blue = sf::Color::Blue;
sf::Color yellow = sf::Color::Yellow;
sf::Color magenta = sf::Color::Magenta;
sf::Color cyan = sf::Color::Cyan;
sf::Color transparent = sf::Color::Transparent;

These are defined in Color.hpp and cover the most popular colors. The first problem
is that we need some way of selecting one at random. To do this, we can create an
enumerator of matching color values, generate a random index, and then use that to
match the enumerator value with the matching predefined color. This will become
clearer as we look at the code.

http://www.sfml-dev.org/learn.php

Procedurally Generating Art

[120]

We'll start by adding the following enumerator definition to the Util.h file:

// Colors provided by SFML.
enum class COLOR {
 BLACK,
 WHITE,
 RED,
 GREEN,
 BLUE,
 YELLOW,
 MAGENTA,
 CYAN,
 TRANSPARENT,
 COUNT
};

For each of the predefined colors, we've added a corresponding value to the enum,
ensuring that it ends with COUNT. With this defined, we just need to calculate a
number between 0 and COLOR::COUNT and then use it in a switch statement. It's a
method that we've used a few times now so we should be familiar with it.

Jumping to the constructor of the slime enemy, we'll start by generating a
random index:

int colorIndex = std::rand() % static_cast<int>(COLOR::COUNT);

Now, we will simply switch the colorIndex value and set the corresponding color:

switch (colorIndex)
{
case static_cast<int>(COLOR::BLACK):
 m_sprite.setColor(sf::Color::Black);
 break;

case static_cast<int>(COLOR::BLUE):
 m_sprite.setColor(sf::Color::Blue);
 break;

This should be continued for each value of the enumerator that we defined. Now,
you will see that every slime enemy that is spawned into the game has a different
predefined color:

Chapter 6

[121]

Generating a color at random
The second option, which gives us much more control, is to generate our own
colors at random. This method gives us a much wider range of possibilities,
as well as provides us access to the alpha channel; however, we lose some control.
When selecting from predefined colors, we know that we'll always end up with a
pleasant-looking color, which is something that we can't guarantee when generating
our own values for each channel. Regardless of this, let's look at how we'll do it.

We know that sf:color has four channels (r, g, b, and a), and each value lies
between 0 and 255. To generate a random color, we need to generate values for the r,
g, and b channels; a is for the alpha channel, and it will allow us to alter the opacity
of the sprite.

To start, we'll define the variables and generate a random value for the r, g, and b
channels, as follows:

int r, g, b, a;

r = std::rand() % 256;
g = std::rand() % 256;
b = std::rand() % 256;

Procedurally Generating Art

[122]

For the alpha channel, we want to be a bit more precise with the number generation.
An alpha value of 0 would be way too low; we'd barely see the sprite. For this
reason, we'll generate a number in the range of 100 to 255, as follows:

a = std::rand() % 156 + 100;

Now that we have these values, we need to create an sf::color object, passing the
r, g, b, and a values in the color constructor:

sf::Color color(r, g, b, a);

The final step is to make a call to sf::sprite::setColor(), passing the new
color. The complete code is as follows and should reside in the constructor of
the slime enemy:

// Choose the random sprite color and set it.
int r, g, b, a;

r = std::rand() % 256;
g = std::rand() % 256;
b = std::rand() % 256;
a = std::rand() % 156 + 100;
sf::Color color(r, g, b, 255);

m_sprite.setColor(color);

Now, if we run the game, we should get three very different colored slimes,
each with a varying degree of opacity, as shown in the following screenshot:

Chapter 6

[123]

Creating sprites of a random size
The final sprite modifier that we'll play with is scale. Using the
sf::Sprite::setScale() function, we can set both the horizontal and vertical scale
of the sprite. The default scale is 1, so if we scale using a value of 2, the sprite will
be twice as big. Likewise, if we set a scale of 0.5, it will be half as big. Given this, we
need to generate floats that are just either side of 1. A range of 0.5 to 1.5 should give
us enough variance in size!

So, we need to generate a float, but the std::rand() function will only generate an
integer value. Don't worry! There is a simple trick that we can use to get a float out of
it! We simply need to generate a number between 5 and 15 and then divide it by ten
to get the float value:

float scale;
scale = (std::rand() % 11 + 5) / 10.f;

Now that the random scale value is generated, we now just need to call me
sf::sprite::setScale() function and use the scale variable as the scaling
value. The complete code is as follows:

// Generate a random scale between 0.5 and 1.5 and set it.
float scale;
scale = (std::rand() % 11 + 5) / 10.f;

m_sprite.setScale(sf::Vector2f(scale, scale));

On running the game, you will now see that the slime enemies have different colors
and they vary in size too:

Procedurally Generating Art

[124]

Saving modified sprites
In our game we're going to be generating new sprites each time the game is run. We
want each run to be unique, so once we've generated a sprite and used it we can let it
go. However sometimes, you might want to keep hold of a sprite. For example, you
might want to create a randomized NPC and keep the same character throughout the
entire game.

The two data types that we've used to create images so far are sf::Sprite and
sf::Texture. These classes let us interact with images through a set of predefined
member functions. It's great for standard drawing and simple image manipulation,
but we don't get access to the raw image information. This is where sf::Image
comes into play!

Passing a texture into an image
Sf::Image is a class that is used to load, manipulate, and save images. Unlike the
other data types, sf::Image provides us with the raw image data, allowing us to
interact with every pixel in the image. We'll use more of this functionality later, but
for now, we're interested in the sf::Image::saveToFile function.

With this function, we can save an image in a file; we just need to our the texture into
that image. Luckily, there's a function to do just that! The sf::Texture class has a
function named copyToImage that copies the raw image data from a texture into an
image. So, we should be able to copy the texture to an image and save it, right? Well,
let's try it.

In Slime::Slime, let's add the following debug code after we've modified the sprite:

// Save the sprite to file.
sf::Image img = m_sprite.getTexture()->copyToImage();
img.saveToFile("../resources/test.png");

If you take a look at the file that we created and compare it to the original image,
you will see something odd:

Chapter 6

[125]

The modifications that we make to the sprite do not edit the texture. Instead,
modifications are made every time we draw the object. When we output the texture
like this, we simply output the same sprite that we put in! To save the changes that
were made through sprite modifications, we need to utilize the sf::RenderTexture
class as well.

Drawing to a RenderTexture class
Since sprite modifications aren't applied to the texture, we need to somehow capture
the sprite once it has been rendered. Again, SFML comes to the rescue with its
sf::RenderTexture class. This class allows us to render into a texture as opposed
to the screen, solving the issue of modifications not been applied to the texture.

To start, we need to create an sf::RenderTexture object. For this, we need to know
the size of the area that we'll be drawing to, and there's something that we need to
keep in mind here. We're making changes to the size of the object. So, if we just get
the size of the texture, it will either be too big or too small. Instead, we need to get
the size of the texture and multiply it by the same scale value that we apply to
the sprite.

Let's get some code written to make things clearer. We'll start by creating the
sf::RenderTarget object, as follows:

// Create a RenderTarget.
sf::RenderTexture texture;

int textureWidth(m_sprite.getTexture()->getSize().x);
int textureHeight(m_sprite.getTexture()->getSize().y);
texture.create(textureWidth * scale, textureHeight * scale);

As you can see, we will get the size of the texture and multiply it by the same scale
that we modified the sprite by.

Finally, we will draw the object to the render view, as follows:

// Draw the sprite to our RenderTexture.
texture.draw(m_sprite);

Procedurally Generating Art

[126]

Saving an image to a file
From this point onwards, the code is the same as our first attempt, but with a
slight modification. Because the sprite is animated, we change both its origin
and the textureRect properties to cut it into subsections in order to animate the
character. This needs reverting in order to see the entire texture. Also, when we call
sf::Texture::copyToImage, the sprite gets flipped vertically. Before we save the
file, we need to flip it back.

Here is the complete code example that is used to save the modified slime texture:

// Create a RenderTarget.
sf::RenderTexture texture;

int textureWidth(m_sprite.getTexture()->getSize().x);
int textureHeight(m_sprite.getTexture()->getSize().y);
texture.create(textureWidth * scale, textureHeight * scale);

// Revert changes the animation made.
m_sprite.setOrigin(sf::Vector2f(0.f, 0.f));
m_sprite.setTextureRect(sf::IntRect(0, 0, textureWidth,
textureHeight));

// Draw the sprite to our RenderTexture.
texture.draw(m_sprite);

// Copy the texture to an image and flip it.
sf::Image img = texture.getTexture().copyToImage();
img.flipVertically();

// Save the sprite to file.
img.saveToFile("../resources/test.png");

Don't forget to delete this code when you're done as it is expensive to save
files and it messes up the animation!

Now, if you run the game and take a look at the file, you will see the modifications
that we made:

Chapter 6

[127]

Creating enemy sprites procedurally
Having the ability to render to sf::RenderTexture and store the results opens up
a world of possibilities. One of these is combining multiple sprites to create new,
more versatile ones. We can draw to an sf::RenderTexture class multiple times,
and the sprites will overlap. This is an incredibly useful technique that can be used to
generate a vast amount of sprite variations without all the work. This is shown in the
following screenshot:

Using this approach, we'll create random armor for our enemies. We'll have three
pieces of armor; head, torso, and legs. For each of these, we'll also have three
variations; bronze, silver, and gold. This alone gives us a large number of possible
combinations. Then, let's consider that we need this for each character, of which
we have two, and each character has eight sprites. That's an enormous number of
textures. It's totally out of the question to create all of them manually.

Breaking sprites into components
The armor sprites that we will create are going to be laid right on top of the default
enemy animations. The most important thing to consider here is that their sizes and
position will line up when drawn on top of one another.

When creating an sf::RenderTexture class, we define a size. Everything drawn
to it will then be positioned relative to the top left corner of this area. If our sprites
have different sizes, when we start drawing, they will be misaligned. The following
examples have had their backgrounds darkened so that we can see this. In the
first example, the sprites have been cropped, and we can see that this makes them
misaligned when laid over one another:

Procedurally Generating Art

[128]

In the second example, the sprites are of the same size and are both positioned
relative to the sprite over which they will be drawn. As a result, they will line
up nicely:

We're going to create armor for each enemy, so for each enemy animation, we need
to create a matching armor sprite. This has already been done to save time, and you'll
notice that there's only gray versions of these sprites. To save yet more time, we'll
change the colors using the sprite modifiers.

Here's an example of an armor overlay sprite on the skeleton walking sprite strip:

The draw setup
Before we write any code regarding generating armor, we need change the way the
Humanoid class handles its textures. Since the textures that we'll create are unique
to each instance of the class and will only be used once, there's no use filling the
Texture manager with them. Instead, we'll create an array of our own textures and
override the default draw behavior to use the new ones!

We'll start by defining an array of textures in Humanoid.h, as follows:

 /**
 * An array of modified textures.
 */
 sf::Texture m_textures[static_cast<int>(ANIMATION_STATE::COUNT)];

Chapter 6

[129]

Now, in the Humanoid constructor, we need to fill this array with the default enemy
textures. This is because we're going to override the default draw behavior to use
the array of modified sprites over the default ones. A modified sprite is only created
when armor is generated. Therefore, we need to ensure that we have the default
sprites to fall back to. We will fill up the array with default sprites and then override
them if we generate armor.

Add the following code to Humanoid::Humanoid. Then, our prep work is done and
we can get started:

// Copy textures.
for (int i = 0; i < static_cast<int>(ANIMATION_STATE::COUNT); ++i)
{
 m_textures[i] = TextureManager::GetTexture(m_textureIDs[i]);
}

Randomly selecting sprite components
We have three possible pieces of armor that our enemies can have; head, torso, and
legs, and we want our enemies to have a mix of these types. So, let's give each of
them a 1 in 5 chance of been spawned on the enemy. This means that enemies with
more gear are less likely to spawn, which is just what we want; a fully kitted out
skeleton should be a rare spawn!

Don't forget about the balance of game mechanics. When creating
procedural systems, it's easy to focus on the tech and let the balance take
a backseat. Always keep this in mind when designing your systems. You
can visit http://www.paranoidproductions.com/, which contains
lots of great information on this subject.

Let's get started by creating a function for all this behavior to go in. The armor is
designed to fit over both the goblin and the skeleton sprites. Therefore, we can place
it in the Humanoid class and generate armor for both variants!

Let's declare the Humanoid::GenerateArmor function, as follows:

private:
 /**
 * Generates random armor for the humanoid.
 */
void GenerateArmor();

http://www.paranoidproductions.com/

Procedurally Generating Art

[130]

The first thing that we need to do is create the sf::RenderTexture objects that we'll
draw to. We're going to use two textures for each sprite: one for the armor and one
for the final image. We'll draw the armor first and then draw that over the default
enemy sprites to create the final textures.

Let's give the new function a body and set up the objects:

// Randomly generates armor.
void Humanoid::GenerateArmor()
{
 // Create arrays of textures.
 const int textureCount = static_cast<int>(ANIMATION_STATE::COUNT);
 sf::RenderTexture armorTextures[textureCount];
 sf::RenderTexture finalTextures[textureCount];
 sf::Image renderImage;
 // Setup all render textures.
 for (int i = 0; i < static_cast<int>(ANIMATION_STATE::COUNT); ++i)
 {
 sf::Vector2u textureSize = m_textures[i].getSize();
 armorTextures[i].create(textureSize.x, textureSize.y);
 finalTextures[i].create(textureSize.x, textureSize.y);
 }

We can now add the code to choose which pieces of armor our enemy will have.
We said we'd give each item a 20 percent chance of spawning. Hence, we need to
generate a number from 0 to 4 (inclusive). There's a 20 percent chance that the result
of this will be 0. Therefore, we can use this to determine whether that item of armor
should spawn:

// Create variables to determine what armor be created.
int hasHelmet(0), hasTorso(0), hasLegs(0);

hasHelmet = std::rand() % 5;
hasTorso = std::rand() % 5;
hasLegs = std::rand() % 5;

// Spawn helmet.
if (hasHelmet == 0)
{
}

// spawn torso.
if (hasTorso == 0)
{
}

// spawn legs.
if (hasLegs == 0)
{
}

Chapter 6

[131]

Now that we randomly choose the pieces of armor, if any, that our enemy will have,
we can turn our attention to creating different armor tiers by editing the sprites.
There is a lot of code that is required to achieve this. So from this point onwards,
we'll focus only on the helmet option.

Loading the default armor textures
To begin, we need to load the default armor textures. Each enemy has eight possible
animation states, meaning we will need to load all the eight helmet counterparts.
We'll do this in a way that is similar to how we load the default sprites in the
constructor, creating an array of textures and using the enumerator of animation
states as the index, as follows:

// Spawn helmet.
if (hasHelmet == 0)
{
 // Load the default helmet textures.
 int defaultHelmetTextureIDs[static_cast<int>(ANIMATION_
STATE::COUNT)];

 defaultHelmetTextureIDs[static_cast<int>(ANIMATION_STATE::WALK_UP)]
= TextureManager::AddTexture("../resources/armor/helmet/spr_helmet_
walk_front.png");
 defaultHelmetTextureIDs[static_cast<int>(ANIMATION_STATE::WALK_
DOWN)] = TextureManager::AddTexture("../resources/armor/helmet/spr_
helmet_walk_front.png");
 defaultHelmetTextureIDs[static_cast<int>(ANIMATION_STATE::WALK_
RIGHT)] = TextureManager::AddTexture("../resources/armor/helmet/spr_
helmet_walk_side.png");
 defaultHelmetTextureIDs[static_cast<int>(ANIMATION_STATE::WALK_
LEFT)] = TextureManager::AddTexture("../resources/armor/helmet/spr_
helmet_walk_side.png");
 defaultHelmetTextureIDs[static_cast<int>(ANIMATION_STATE::IDLE_UP)]
= TextureManager::AddTexture("../resources/armor/helmet/spr_helmet_
idle_front.png");
 defaultHelmetTextureIDs[static_cast<int>(ANIMATION_STATE::IDLE_
DOWN)] = TextureManager::AddTexture("../resources/armor/helmet/spr_
helmet_idle_front.png");
 defaultHelmetTextureIDs[static_cast<int>(ANIMATION_STATE::IDLE_
RIGHT)] = TextureManager::AddTexture("../resources/armor/helmet/spr_
helmet_idle_side.png");
 defaultHelmetTextureIDs[static_cast<int>(ANIMATION_STATE::IDLE_
LEFT)] = TextureManager::AddTexture("../resources/armor/helmet/spr_
helmet_idle_side.png");

With the default sprites loaded, we can now choose which armor tier they belong to,
and therefore, what color we need to apply to them.

Procedurally Generating Art

[132]

Choosing the armor tier
There will be three tiers of armor for each type, namely gold, silver, and bronze. So,
we need to decide which tier to use. We could take a naive approach and generate a
number from 0 and 2, but that's not ideal. Each tier would have the same chance of
spawning, which is 33 percent.

Let's be a bit cannier with how we select the armor tier, making silver rarer than
bronze, and gold rarer still. To do this, we'll still use the std::rand() function, but
we'll be smarter in how we use the result. First, we need to decide the possibilities of
each spawning. Let's say that we want 50 percent of it to be bronze, 35 percent of it to
be silver, and 15 percent of it to be gold.

These percentages seem good and are nice to work with as they total 100. To
replicate their chances, we need to generate a number from 1 to 100, and we can use
it to get the desired percentages:

•	 There is a 50 percent chance that we will generate a number between 1 and
50 as it represents half of the total possible range (50/100)

•	 There is a 35 percent chance that we'll generate a number in the range of 51 to
85, as this range includes 35 values out of the possible 100 (35/100)

•	 Finally, there is a 15 percent chance that we'll generate a number in the range
of 86 to 100, as this range includes 15 values out of the possible 100 (15/100)

Let's add the following code to our function, continuing from the previous code to
load the default textures:

// Generate random number to determine tier.
sf::Color tierColor;
int tierValue = std::rand() % 100 + 1;

// Select which tier armor should be created.
if (tierValue < 51)
{
 tierColor = sf::Color(110, 55, 28, 255); // Bronze.
}
else if (tierValue < 86)
{
 tierColor = sf::Color(209, 208, 201, 255); // Silver.
}
else
{
 tierColor = sf::Color(229, 192, 21, 255); // Gold.
}

Chapter 6

[133]

We used std::rand() % 100 + 1, and not std::rand() % 100.
While they both technically do the same thing, the first generates a
number from 1 to 100, while the later generates a number from 0 to 99.
The first makes it simpler for us to work with.

We create a simple if statement that defines each of the ranges that we identified
earlier. However, by the time we come to the if statement of gold, there is no need
as we've already defined the other ranges. Therefore, we now know that anything
that's left falls in the range of 86 to 100. We can therefore simply use an else
statement, saving us an evaluation.

At this stage we've randomly selected a helmet, loaded the default sprites,
and chosen a tier.

Rendering the armor textures
The next step is to edit the armor textures and overly them on the default enemy
textures. Currently, we only have a gray sprite for each armor type. We need to
use the sprite modification skills that we learned earlier in the chapter to create the
bronze and gold versions. We can keep the gray as silver!

The pipeline required to do this is as follows:

•	 Load the default helmet texture
•	 Edit the color using the tierColor variable that we set earlier
•	 Draw the modified armor texture in the armorTextures array

We need to do this for every animation that the enemy has. So, we will encapsulate
armorTextures array within a for loop, iterating over each value of the
ANIMATION_STATE enumerator, as follows:

// Render helmet to armor texture.
for (int i = 0; i < static_cast<int>(ANIMATION_STATE::COUNT); ++i)
{
 // Load the default helmet texture and set its color.
 sf::Sprite tempSprite;
 tempSprite.setTexture(TextureManager::GetTexture(defaultHelmetTextu
reIDs[i]));
 tempSprite.setColor(tierColor);

 // Flip the texture vertically.
 sf::Vector2u size = armorTextures[i].getTexture().getSize();

Procedurally Generating Art

[134]

 tempSprite.setTextureRect(sf::IntRect(0, size.y, size.x, -size.y));

 // Draw the texture.
 armorTextures[i].draw(tempSprite);
}}

The armorTextures array now contains all the helmet sprites, and their color has
been set to a random tier value. We now need to do the exact same thing for the torso
and legs, drawing the same armorTextures array again so that we can build up the
armor texture. This is left as an exercise for you at the end of the chapter. For now,
let's look at how to put this together to create the final texture.

Rendering the final textures
Now that the armor textures are created, we will need to render them on top of the
default enemy textures to create the final images. We created copies of all the default
textures in the constructor, so all that we need to do is draw our newly created armor
textures on top them and save that as the final texture. One thing to remember is
that the sf::Texture::copyToImage function flips an image vertically. Hence,
right before we save the final version, we need to flip it back.

Let's add this final bit of code. This code needs to go after all the armor has been
generated, so will be the final block of code in the Humanoid::GenerateArmor
function:

// Create the final render texture.
for (int i = 0; i < static_cast<int>(ANIMATION_STATE::COUNT); ++i)
{
 sf::Sprite baseSprite, armorSprite;

 // Draw the default texture.
 baseSprite.setTexture(m_textures[i]);
 finalTextures[i].draw(baseSprite);

 // Draw armor on top.
 armorSprite.setTexture(armorTextures[i].getTexture());
 finalTextures[i].draw(armorSprite);

 // Flip the texture vertically.
 sf::Image img = finalTextures[i].getTexture().copyToImage();
 img.flipVertically();

 // Store the resulting texture.
 m_textures[i].loadFromImage(img);
}

Chapter 6

[135]

With this function now complete, all that's left is to make a call to it at the end of
our constructor:

 . . .
 // Copy textures.
 for (int i = 0; i < static_cast<int>(ANIMATION_STATE::COUNT); ++i)
 {
 m_textures[i] = TextureManager::GetTexture(m_textureIDs[i]);
 }

 // Generate armor.
 GenerateArmor();
}

Overriding the default draw behavior
The animation code for our objects lies in the base class Object. When the texture
needs to be updated, it goes to the m_textureIDs variable and fetches the correct
texture from the TextureManager class. Since we have created our own textures and
stored them in the new m_textures array, we need to override this default behavior
to provide our own textures.

To start with we need to override the update function by adding the following
declaration to Humanoid.h:

/**
* Overrides the update event of enemy.
* @param timeDelta The time that has elapsed since the last update.
*/
void Update(float timeDelta) override;

We still need to call the parent's implementation, as that's where the animation logic
lies. However, as soon as that's done, we need to jump in and provide our own
texture before it's drawn. Luckily, that's very easy to do:

// Overrides the update event of enemy.
void Humanoid::Update(float timeDelta)
{
 // Call parent functionality.
 Enemy::Update(timeDelta);

 // Update the texture with our custom textures.
 m_sprite.setTexture(m_textures[m_currentTextureIndex]);
}

Procedurally Generating Art

[136]

Debugging and testing
Before we run the game, let's add a little bit of debug code to see our work in action.
Previously, we covered how to save textures to image files. So, let's use that here to
save all the procedural sprites that we will create.

Let's update the loop that creates the final textures using the following code:

// Save the texture to disk.
if ((hasHelmet == 0) || (hasTorso == 0) || (hasLegs == 0))
{
 std::stringstream stream;
 stream << "../resources/test_" << i << ".png";
 img.saveToFile(stream.str());
}

All that this code does is save the textures to the resource folder if a piece of armor is
generated. If you run the game a few times, remember that there is only a 20 percent
chance that each skeleton will call this code, and head to the resources folder, you
will see the following sprites:

These are the procedural sprites! In my case, it's a skeleton with a random piece of
armor of a random tier that we didn't have to draw. We drew the constituent parts,
did some programmatic editing, and put them together programmatically!

Well, after all that, it's time to test the code. If all is well, when you run the game, you
should see some skeletons and goblins with helmets! Remember that each enemy
only has a 20 percent change of having a helmet. You may have to run the game a
few times to see it if you get unlucky:

Chapter 6

[137]

Before moving forward, you can remove the debug code that we just added to save
sprites. This was purely for debugging purposes. One of the exercises at the end of
this chapter is to complete the code and add the same behavior for the torso and leg
armor options, but feel free to take this further. Experiment!

Editing the game tiles
The final system that we're going to look at is going to lay the groundwork for
something that is coming later in the book. We're going to create a system to make
each floor of the dungeon a unique environment, implementing what we know
about sprite modification on the game tiles.

The goal of the game is to progress through as many floors as you can, getting the
highest possible score. In Chapter 9, Procedural Dungeon Generation, we're going to
look at how to generate dungeons procedurally, and after every five floors, we'll
change the theme. Let's create the function that we will use later in the book to
accomplish this.

Procedurally Generating Art

[138]

The best way to solve this is to add a function to the Level object that sets the color
of all the tile sprites. This will be a public function as we'll be calling it from the main
game class.

Let's start by defining the sf::color function in the Level header, as follows:

public:
 /**
 * Sets the overlay color of the level tiles.
 * @param tileColor The new tile overlay color
 */
 void SetColor(sf::Color tileColor);

The definition for this function is very simple. It simply iterates over all the sprites in
the grid, setting their color to the parameter that was passed:

// Sets the overlay color of the level tiles.
void Level::SetColor(sf::Color tileColor)
{
 for (int i = 0; i < GRID_WIDTH; ++i)
 {
 for (int j = 0; j < GRID_HEIGHT; ++j)
 {
 m_grid[i][j].sprite.setColor(tileColor);
 }
 }
}

With this in place, we're actually done. That's all there is to it! We'll use this
function later in this chapter, but let's just test it while we're here. We initialize
the Level object in Game.cpp, so once we've loaded the textures, we can call the
Level::SetColor function and set the theme of the level.

Chapter 6

[139]

Let's update the Game::Initialize function with the following test code:

// Set the color of the tiles
m_level.SetColor(sf::Color::Magenta);

With this, we can see what the levels will look like once we implement the function
properly later.. Let's run the game and see what happens:

The Level tiles now have an ambient color applied to all the sprites that make up
the environment, allowing us to create a unique look and feel for our levels. Like I
previously mentioned, we'll use this system later when we generate random levels
programmatically. For now, we can remove the debug code and sit tight knowing
that the system is ready for use!

Procedurally Generating Art

[140]

Exercises
To help you test your knowledge of this chapter's content, here are a few exercises
that you should work through. They are not imperative to the rest of the book, but
working through them will help you to assess your strengths and weaknesses in the
material covered:

1.	 Give the goblin enemy a slightly random color and scale every time one
is spawned.

2.	 Finish the code to generate armor procedurally for the humanoid by
completing the condition for the torso and leg armor.

3.	 Try to generate armor in a more succinct manner. We're using two textures;
maybe there's a way to use only one. See if you can improve the function.

Summary
In this chapter, we learned how to generate game art procedurally. We took a naïve
approach to start, simply using RNG with built-in sprite modifiers, and moved on to
algorithmically generating our own images. Generating procedural art is a vast topic,
and you could write a book on the subject. Hopefully, this chapter has introduced
you to the topic nicely.

In the next chapter, we're going to look at art's cousin, audio. With our art now
procedurally generated we'll use similar techniques to create variance in sounds.
We'll also use SFML's audio functions to create specialized 3D sound and thus bring
more depth to the levels.

[141]

Procedurally Modifying Audio
Now that our game art has received procedural treatment, let's turn our attention
to its neighbor, sound. Great sound is imperative for a good game. Think about
how iconic the sound of Super Mario's jump is, or the sound of chomping ghosts in
Packman! A great soundtrack and accompanying game sounds help players immerse
themselves in the worlds that we create as game developers. It's an area that needs to
be done correctly, and there needs to be enough diversity here so that your players
don't get sick of hearing the same sound effects over and over again.

We could manually create lots of variants of sound effects, but that's not the
procedural way! Instead, we'll alter sounds randomly at runtime to create a slightly
different sound each time it's played. Then, we'll utilize SFML's audio functions to
create spatialized 3D sounds, thus adding more depth and immersion to the game.

Procedurally generating audio from scratch is a very complex task. Our work in
this area will be somewhat brief, and really limited to procedurally modifying
existing sounds as opposed to their outright creation. Still, this will serve as a
good introduction to taking a procedural approach toward audio.

In this chapter, we'll cover the following topics:

•	 SFML audio
•	 The difference between sf::sound and sf::music
•	 Altering existing sound effects
•	 Creating spatialized 3D sound

Procedurally Modifying Audio

[142]

An introduction to SFML audio
SFML has its own module dedicated to audio, which provides a number of useful
functions that we can use to modify sounds. There are two main sound types in
SFML: sf::Sound and sf::Music. We'll cover the difference between these two
types in detail shortly. It also provides a number of functions to edit the properties
of sounds, such as pitch and volume. We'll use these to give our sound effects
some variance.

sf::Sound versus sf::Music
Before we start working with audio, we need to look at the difference between
sf::Sound and sf::Music:

•	 Sf::Sound is intended for shorter sound clips such as picking up an object or
footsteps. The sound is loaded in its entirety into the memory, and it is ready
to be played with no latency.

•	 Sf::Music is intended for longer, bigger sound files and is not loaded into
the memory; it is streamed as it is used.

This might seem like a slight difference, but it's very important to use the correct
type. For example, if we were to load a game's music into an sf::Sound object, the
game would use a lot of memory!

sf::SoundBuffer
When creating a sprite in SFML, we create an sf::Sprite object, which contains
information such as the scale and position. The texture itself is stored in an
sf::Texture object to which the sprite object holds a reference. The sf::Sound class
works in the same way, with an sf::SoundBuffer object holding the actual sound
and sf::Sound simply holding a reference to it.

The following code shows how a sound is loaded:

sf::SoundBuffer buffer;
buffer.loadFromFile("sound.wav");

sf::Sound sound;
sound.setBuffer(buffer);
sound.play();

Chapter 7

[143]

The sf::SoundBuffer object must remain active for the same amount of time as the
sf::Sound object does. If sf::SoundBuffer goes out of scope before the sf::Sound
object that holds a reference to it, we will get an error, as it will try to play a sound
that no longer exists.

Also, since we only hold a reference to the sound buffer, it can be used in multiple
sound objects. To play a sound, we just make a call to sf::Sound::play, and this
runs the sound in a separate thread.

Selecting a random main track
Currently, the game has no sounds or music. We have been running the game
frequently throughout the course of the book, and hearing the same track over and
over can get very tedious. So, we've waited until now to put it in. It's a very simple
process to add sounds. So, we'll cover this process in its entirety.

To start, we'll add a main music track that will underpin the game. However, instead
of having a fixed track, we will add multiple possibilities and randomly choose one
during startup.

Let's start by defining all the possibilities in an enumerator in the usual way. Add the
following code to Util.h:

// Music tracks.
enum class MUSIC_TRACK {
 ALT_1,
 ALT_2,
 ALT_3,
 ALT_4,
 COUNT
};

As the enum shows, we're going to have four possible tracks. These are already
included in the /resources/music/ folder. So, all that we have to do is select one
track at random and load it at the start of the game. Since we want this music to
start straightaway, we will insert the code that accomplishes this in our Game
classes constructor.

We've selected a random value from an enumerator a few times now, so it should be
familiar. We'll generate a number between 1 and MUSIC_TRACK_COUNT (inclusive),
however, instead of casting it to the enumerator type as we normally do, we're going
to leave it as an integer. The reason behind this will soon become apparent.

Procedurally Modifying Audio

[144]

For now, let's add the following code to Game::Game:

// Setup the main game music.
int trackIndex = std::rand() % static_cast<int>(MUSIC_TRACK::COUNT) +
1;

Now, the reason why we didn't cast to the enum type is because we can be clever
when it comes to how we load sounds. We have four music tracks to choose from,
and they have the following names:

•	 msc_main_track_1.wav

•	 msc_main_track_2.wav

•	 msc_main_track_3.wav

•	 msc_main_track_4.wav

Note that the only thing that's different in their names is their number. We've already
generated a number between 1 to 4. So, instead of creating a switch statement,
we can simply use this index to load the correct track, as follows:

// Load the music track.
m_music.openFromFile("../resources/music/msc_main_track_" + std::to_
string(trackIndex) + ".wav");

Now, when we call m_music.play(), the sound will be streamed. Let's finish by
calling this function:

m_music.play();

If we run the game now, we will hear one of the four randomly selected
tracks playing!

Adding sound effects
Now that we have the game's main music, let's add some sounds effects to the mix!
We've covered sf::Sound,sf::SoundBuffer, and how to play sounds, so we're
ready to jump right in.

We're going to have a few sound effects in our game. One for the death of an enemy,
one for us being hit, one for each pickup, and one for the sound of torches that we'll
be playing with later.

We'll start by defining the sf::Sound variables for each sound in Game.h:

/**
 * Torch sound.
 */

Chapter 7

[145]

sf::Sound m_fireSound;

/**
 * Gem pickup sound.
 */
sf::Sound m_gemPickupSound;

/**
 * Coin pickup sound.
 */
sf::Sound m_coinPickupSound;

/**
* Key collect sound.
*/
sf::Sound m_keyPickupSound;

/**
 * Enemy die sound.
 */
sf::Sound m_enemyDieSound;

/**
 * Player hit sound.
 */
sf::Sound m_playerHitSound;

Now, let's initialize these sounds in Game::Initialize, as follows:

// Load all game sounds.
int soundBufferId;

// Load torch sound.
soundBufferId = SoundBufferManager::AddSoundBuffer("../resources/
sounds/snd_fire.wav");
m_fireSound.setBuffer(SoundBufferManager::GetSoundBuffer(soundBuffer
Id));
m_fireSound.setLoop(true);
m_fireSound.play();

// Load enemy die sound.
soundBufferId = SoundBufferManager::AddSoundBuffer("../resources/
sounds/snd_enemy_dead.wav");

Procedurally Modifying Audio

[146]

m_enemyDieSound.setBuffer(SoundBufferManager::GetSoundBuffer(soundBuf
ferId));

// Load gem pickup sound.
soundBufferId = SoundBufferManager::AddSoundBuffer("../resources/
sounds/snd_gem_pickup.wav");
m_gemPickupSound.setBuffer(SoundBufferManager::GetSoundBuffer(soundBu
fferId));

// Load coin pickup sound.
soundBufferId = SoundBufferManager::AddSoundBuffer("../resources/
sounds/snd_coin_pickup.wav");
m_coinPickupSound.setBuffer(SoundBufferManager::GetSoundBuffer(soundB
ufferId));

// Load key pickup sound.
soundBufferId = SoundBufferManager::AddSoundBuffer("../resources/
sounds/snd_key_pickup.wav");
m_keyPickupSound.setBuffer(SoundBufferManager::GetSoundBuffer(soundBu
fferId));

// Load player hit sound.
soundBufferId = SoundBufferManager::AddSoundBuffer("../resources/
sounds/snd_player_hit.wav");
m_playerHitSound.setBuffer(SoundBufferManager::GetSoundBuffer(soundBu
fferId));

With the sounds initialized, we just call sf::Sound::play to play the sound when
we need it. We handle item pickups in the Game::UpdateItems function. Therefore,
we'll put this code there:

// check what type of object it was
switch (m_items[i]->GetType())
{
 case ITEM_GOLD:
 {
 // Get the amount of gold.
 int goldValue = dynamic_cast<Gold&>(item).GetGoldValue();

 // Add to the gold total.
 m_goldTotal += goldValue;

 // Check if we have an active level goal regarding gold.
 if (m_activeGoal)
 {
 m_goldGoal -= goldValue;

Chapter 7

[147]

 }

 // Play gold collect sound effect
 m_coinPickupSound.play();
 }
 break;

 case ITEM_GEM:
 {
 // Get the score of the gem.
 int scoreValue = dynamic_cast<Gem&>(item).GetScoreValue();

 // Add to the score total
 m_scoreTotal += scoreValue;

 // Check if we have an active level goal.
 if (m_activeGoal)
 --m_gemGoal;

 // Play the gem pickup sound
 m_gemPickupSound.play();
 }
 break;
}

This code covers just the gold and gem pickups. The same thing needs to be done
for all the other pickups and cases where we need to play sounds, such as when an
enemy dies and a player takes damage.

Editing sound effects
With the sound effects added, we can now alter them to create variety. SFML offers a
number of ways in which we can manipulate sounds, which includes the following:

•	 Pitch
•	 Volume
•	 Position

We'll start with the simplest: the pitch. Then, we'll cover both the volume and
position by creating spatialized sounds. These values will be set randomly each time
we play a sound effect. Before we get into it, let's create a function to encapsulate the
modification and playing of sounds. This will save us from having repeated code
throughout the class.

Procedurally Modifying Audio

[148]

Playing a sound function
Collisions with enemies and items are processed in the main game class. So, it's here
that we will place the function to play sound effects. Add the following function
declaration to Game.h:

/**
 * Plays the given sound effect, with randomized parameters./
 */
void PlaySound(sf::Sound& sound, sf::Vector2f position = { 0.f, 0.f
});

This function takes two parameters: we take the sound that we want to play as
a reference, to avoid an expensive copy, and we also include a parameter for the
position where we want to play the sound. Note that we've given the position
parameter a default value of { 0.f, 0.f }. Therefore, it can be ignored should
we wish to do so. We'll cover exactly what this parameter does when we create
spatialized sounds.

Let's give this class a basic body for now to simply play the sound passed via
the parameter:

// Plays the given sound effect, with randomized parameters.
void Game::PlaySound(sf::Sound& sound, sf::Vector2f position)
{
 // Play the sound.
 sound.play();
}

Note that if the game was any bigger and we had a large range of many sounds, it
would be worthwhile to encapsulate the behavior to play sounds in the same class
in which we manage them. This would ensure that all the interactions with sounds
happened through a common class and would keep our code organized.

The audio listener
SFML comes with a static listener class. This class acts as the ear in the level
and as such, there is only one listener in a scene. Since this is a static class, we
never instantiate it, and we interact with it through its static functions such as
sf::Listener::setPosition.

By "ear in the level", I mean that all the sounds in the level are heard at this location.
This is how we create 3D sounds. For example, if the source of a sound was to the
right of the listener, it would be heard more in the right speaker. Take a look at the
following diagram:

Chapter 7

[149]

In this diagram the blue circle represents the position of the audio listener, and the
red circle represents the position of the sound. You can see that since the source of
the sound is to the right of the listener, we can use this to determine that the sound
should be heard more from the right speaker as compared to the left one. This is how
spatialized sound is created, and we'll look at this in detail later in the chapter.

For occasions where we don't want sound to be spatialized, SFML gives us the sf::
Sound::setRelativeToListener function. This is a self-explanatory function; the
position of the sound is relative to that of the listener as opposed to being absolute
within the scene. We set this to true and give the sound a position of {0.f, 0.f,
0.f}, positioning it right on top of the listener.

With regards to the previous diagram, this means that the blue audio listener will
be placed directly at the top of the red sound source, which means that it is not
spatialized. This is the behavior that we want for the pickup sounds. For each
sound, we need to make a call to this function, passing true as the parameter.

Let's update the code to change this:

// Load gem pickup sound.
soundBufferId = SoundBufferManager::AddSoundBuffer("../resources/
sounds/snd_gem_pickup.wav");
m_gemPickupSound.setBuffer(SoundBufferManager::GetSoundBuffer(soundBu
fferId));
m_gemPickupSound.setRelativeToListener(true);
// Load coin pickup sound.
soundBufferId = SoundBufferManager::AddSoundBuffer("../resources/
sounds/snd_coin_pickup.wav");

Procedurally Modifying Audio

[150]

m_coinPickupSound.setBuffer(SoundBufferManager::GetSoundBuffer(soundB
ufferId));
m_coinPickupSound.setRelativeToListener(true);

// Load key pickup sound.
soundBufferId = SoundBufferManager::AddSoundBuffer("../resources/
sounds/snd_key_pickup.wav");
m_keyPickupSound.setBuffer(SoundBufferManager::GetSoundBuffer(soundBu
fferId));
m_keyPickupSound.setRelativeToListener(true);

// Load player hit sound.
soundBufferId = SoundBufferManager::AddSoundBuffer("../resources/
sounds/snd_player_hit.wav");
m_playerHitSound.setBuffer(SoundBufferManager::GetSoundBuffer(soundBu
fferId));
m_playerHitSound.setRelativeToListener(true);

Sounds that originate from the same location as the player require this. For example,
an item is only picked up once the enemy occupies the same space. You will never
pick up an item from a distance so the sound will never be spatialized.

Creating a fluctuation in a pitch
Pitch is the perceived frequency at which a sound is heard. SFML offers a way
to increase or decrease the pitch of a sound, and it achieves this by increasing/
decreasing its playback speed respectively. Play it back faster, and it'll sound
higher. The default value of this is 1, so generating a number that's lesser or
greater than 1 will give us a fluctuation in pitch.

We'll add this behavior to our new Game::PlaySound function. To start, we'll generate
a number between 0.95 and 1.05, set the pitch, and play the sound, as follows:

// Plays the given sound effect, with randomized parameters.
void Game::PlaySound(sf::Sound& sound, sf::Vector2f position)
{
 // Generate and set a random pitch.
 float pitch = (rand() % 11 + 95) / 100.f;
 sound.setPitch(pitch);

 // Play the sound.
 sound.play();
}

Chapter 7

[151]

Now, whenever we want a sound to have this fluctuation in pitch, we need to play it
through this function as opposed to directly playing it. This applies to all the pickup
sounds. So, let's implement this change:

// check what type of object it was
switch (m_items[i]->GetType())
{
 case ITEM_GOLD:
 {
 // Get the amount of gold.
 int goldValue = dynamic_cast<Gold&>(item).GetGoldValue();

 // Add to the gold total.
 m_goldTotal += goldValue;

 // Check if we have an active level goal regarding gold.
 if (m_activeGoal)
 {
 m_goldGoal -= goldValue;
 }

 // Play gold collect sound effect
 PlaySound(m_coinPickupSound);
 }
 break;

 case ITEM_GEM:
 {
 // Get the score of the gem.
 int scoreValue = dynamic_cast<Gem&>(item).GetScoreValue();

 // Add to the score total
 m_scoreTotal += scoreValue;

 // Check if we have an active level goal.
 if (m_activeGoal)
 {
 --m_gemGoal;
 }

 // Play the gem pickup sound
 PlaySound(m_gemPickupSound);
 }
 break;
}

Procedurally Modifying Audio

[152]

If we now play the game and pick up some items, we can hear that the pickup sound
is slightly different each time, bringing some variance to the sound effects. If you
want the sounds that are played when a key is picked up, an enemy dies, and a
player is hit, to have their pitch fluctuated too, ensure that they are also played via
this function as opposed to them being directly played.

3D sound – spatialization
Now let's look at ways to create some 3D audio to bring depth to a game scene.
When we walk past a torch, we want to hear it move past us, and we want to be able
to hear our enemies coming at us from a direction. Spatialization allows us to do this,
and SFML has great features to help us achieve that.

The audio listener
We've already defined what the audio listener is and how it is used to create
spatialized audio. As the first step toward achieving this, we need to set the position
of the listener after each update, ensuring that all the sounds in the level are heard
from the player's perspective.

At the start of each game's update, we recalculate the player's position. Right after
this we can update the position of the listener class to this new location. Remember
that sf::Listener is a static class and we don't instantiate it. All that we need to do
is make a static call to sf::Listener::setPosition.

Let's append this to the Game::Update function, as follows:

// Update the player.
m_player.Update(timeDelta, m_level);

// Store the player position as it's used many times.
sf::Vector2f playerPosition = m_player.GetPosition();

// Move the audio listener to the players location.
sf::Listener::setPosition(playerPosition.x, playerPosition.y, 0.f);

// If the player is attacking create a projectile.
if (m_player.IsAttacking())
{

Moving forward, we can now be sure that the listener is in the correct position in
order for us to create a 3D sound.

Chapter 7

[153]

The minimum distance
The minimum distance is the closest the player can be to the source of a sound before
it's heard at full volume. Imagine it as a circle surrounding the sound source. The
radius of this circle is MinDistance, as shown in the following diagram:

In our case, the minimum distance of the sounds will not change throughout
the course of the game, which means that we can set their values once in the
Game::Initialize function when we load the sounds. The value that we use here is
a matter of preference, but I found a minimum distance of 80.f works well. Let's get
these values set.

Make the following modifications to the Game::Initialize function:

// Load torch sound.
soundBufferId = SoundBufferManager::AddSoundBuffer("../resources/
sounds/snd_fire.wav");
m_fireSound.setBuffer(SoundBufferManager::GetSoundBuffer(soundBuffer
Id));
m_fireSound.setLoop(true);
m_fireSound.setMinDistance(80.f);
m_fireSound.play();

// Load enemy die sound.
soundBufferId = SoundBufferManager::AddSoundBuffer("../resources/
sounds/snd_enemy_dead.wav");
m_enemyDieSound.setBuffer(SoundBufferManager::GetSoundBuffer(soundBuf
ferId));
m_enemyDieSound.setMinDistance(80.f);

Procedurally Modifying Audio

[154]

Attenuation
Attenuation basically means "to lessen" or "to make something smaller". In the
context of audio, it's the rate at which the sound gets quieter as we move away from
the source. This comes into effect when we are outside the minimum distance and is
used to calculate the volume of the sound.

In the following diagram, the gradient represents the volume of the sound.
The image to the left shows a high attenuation and the sound drops off very
fast, while the image to the right shows a low attenuation and the sound drops
off more smoothly:

Now, let's give our two sounds an attenuation value like we did with the minimum
distance. Again, the value used here is up to you, but I found out that an attenuation
value of 5.f, which is just slightly above the default, created a nice fadeout.

Make the following modifications to the Game::Initialize function:

// Load torch sound.
soundBufferId = SoundBufferManager::AddSoundBuffer("../resources/
sounds/snd_fire.wav");
m_fireSound.setBuffer(SoundBufferManager::GetSoundBuffer(soundBuffer
Id));
m_fireSound.setLoop(true);
m_fireSound.setAttenuation(5.f);
m_fireSound.setMinDistance(80.f);
m_fireSound.play();

// Load enemy die sound.
soundBufferId = SoundBufferManager::AddSoundBuffer("../resources/
sounds/snd_enemy_dead.wav");
m_enemyDieSound.setBuffer(SoundBufferManager::GetSoundBuffer(soundBuf
ferId));
m_enemyDieSound.setAttenuation(5.f);
m_enemyDieSound.setMinDistance(80.f);

Chapter 7

[155]

If we run the game now, we will see that as we approach the torches, they get louder,
and as we walk away, they get quieter. However, they aren't 3D. For that, we need to
update the source of the sound!

The position of the sound
The position of the sound is simply its position in the scene. It's this position, and
the position of the listener, that are used to create the 3D effect and determine which
speaker the sound should play out of.

To use spatialization your sounds need to be Mono (have a single
channel). The ones provided with this project are, but if you're adding
your own, you need to keep this in mind! Sounds with more than one
channel already explicitly decide how to use the speakers.

Now that we have the attenuation and minimum distance set, we can now set
the correct position of the sound so that we can hear the 3D effects. We have two
sounds in the game that are going to be 3D: the sound of the torches and the sound
of enemies when they are killed. As we have multiple torches in the level we have a
bit of work to do here. We'll start with the simpler one of the two: the sound of the
enemies when they're killed.

Fixed positions
First, we need to update the Game::PlaySound function. Currently, it only generates
a random pitch, but we need it to set the position too. You may remember that we
made the position parameter optional by giving it a default value of {0.f, 0.f }.
When we pass a position and override the default, it means that we want to utilize
a 3D sound. When we leave it blank, it means that we don't want to do so and the
sound will be relative to the listener. Therefore, {0.f, 0.f, 0.f} is just what
we need.

Let's hook up the position parameter in Game::PlaySound and use it to set the
position of the sound, as follows:

// Plays the given sound effect, with randomized parameters.
void Game::PlaySound(sf::Sound& sound, sf::Vector2f position)
{
 // Generate and set a random pitch.
 float pitch = (rand() % 11 + 95) / 100.f;
 sound.setPitch(pitch);

Procedurally Modifying Audio

[156]

 // Set the position of the sound.
 sound.setPosition(position.x, position.y, 0.f);

 // Play the sound.
 sound.play();
}

The position of the sound operates in three dimensions, but since we're working with
2D sounds we can leave the Z value as 0.f. Now, when we identify that an enemy
has been killed, we simply make a call to this function and pass the correct sound
and location of the enemy, as that's where the sound is coming from, as follows:

// 1 in 5 change of spawning potion.
else if ((std::rand() % 5) == 1)
{
 position.x += std::rand() % 31 - 15;
 position.y += std::rand() % 31 - 15;
 SpawnItem(ITEM::POTION, position);
}

// Play enemy kill sound.
PlaySound(m_enemyDieSound, enemy.GetPosition());

// Delete enemy.
enemyIterator = m_enemies.erase(enemyIterator);

It's time to run the game again and listen to our handiwork. As we kill the enemies,
we can hear that the further away they are, the fainter the sound is. Also, if we kill
an enemy to the right, we here it coming from that direction! To wrap up our work
with sound, let's apply the same technique to the torches to really give the level some
depth when it comes to its audio.

The clarity of the 3D sound will depend on your setup. For example,
while headphones will allow you to easily hear sounds that are
created in different directions, laptop speakers might not be so clear.

Moving positions
The last area that we'll add a 3D sound to is the torches in the level. As we walk
around the level, it would be great to hear torches faintly in the distance, or near us
in our headphones as we walk past them. However, there's a slight problem. We
know that the spatialization of sound is achieved when the sound and the listener
are away from one another. But what if we have a sound that needs to come from
multiple locations? We could have a sound for each torch, but that's a waste. Instead,
we'll calculate which torch is closet to the player and use that as the source.

Chapter 7

[157]

As part of our main update function, we need to look at all the torches and
determine which one is the nearest to the player. As the player walks around the
level, the source will switch, giving us the impression that each torch is giving off its
own sound, while we have only a single source in reality.

We already have a function to find the distance between two objects, namely
Game::DistanceBetweenPoints. Given this, we can iterate over all the torches and
use this function to get the distance to the player. Let's update the Game::Update
function to include this calculation, as follows:

// Update all projectiles.
UpdateProjectiles(timeDelta);

// Find which torch is nearest the player.
auto torches = m_level.GetTorches();

// If there are torches.
if (!torches->empty())
{
 // Store the first torch as the current closest.
 std::shared_ptr<Torch> nearestTorch = torches->front();
 float lowestDistanceToPlayer = DistanceBetweenPoints(playerPositi
on, nearestTorch->GetPosition());

 for (std::shared_ptr<Torch> torch : *torches)
 {
 // Get the distance to the player.
 float distanceToPlayer = DistanceBetweenPoints(playerPosition,
torch->GetPosition());
 if (distanceToPlayer < lowestDistanceToPlayer)
 {
 lowestDistanceToPlayer = distanceToPlayer;
 nearestTorch = torch;
 }
 }
}

// Check if the player has moved grid square.
Tile* playerCurrentTile = m_level.GetTile(playerPosition);

As you can see, for each torch in the level, we calculate how far away it is from the
player. If it's closer than the last one that we checked, we mark it as the closest. When
this code is finished, we end up with the nearest torch stored in the shared pointer
named nearestTorch.

Procedurally Modifying Audio

[158]

With the closest torch identified, we can use its position as the position of the fire's
sound. Now, for the rest of the sounds, we've been using the new Game::PlaySound
function, but that's not suitable here. Our fire sound is already looping, we don't
need to restart it. We just need to set its position, so we'll do it directly.

Let's update that code once more:

 // Get the distance to the player.
 float distanceToPlayer = DistanceBetweenPoints(playerPosition,
torch->GetPosition());
 if (distanceToPlayer < lowestDistanceToPlayer)
 {
 lowestDistanceToPlayer = distanceToPlayer;
 nearestTorch = torch;
 }
 }

 m_fireSound.setPosition(nearestTorch->GetPosition().x,
nearestTorch->GetPosition().y, 0.0f);
}

// Check if the player has moved grid square.
Tile* playerCurrentTile = m_level.GetTile(playerPosition);

Let's run the project for the last time! We should now hear a random music track,
some of our sound effects will be played with a fluctuating pitch, and the sounds of
the torches and the enemies dying will be spatialized.

Exercises
To help you test your understanding of this chapter's content, here are a few
exercises that you should work on. They are not imperative to the rest of the book,
but working on them will help you assess your strengths and weaknesses in the
material covered:

1.	 Add more tracks to the list of main tracks.
2.	 Add a sound that is spatialized for the door when it opens in the level.

When a player collects the key for the level, hearing the door sliding open
in the background will help them find it.

3.	 Add some atmospheric sound effects to the level; the sound effects should
be spatialized and must play at random intervals. We have not covered
anything like that so far so it should be a challenge.

Chapter 7

[159]

Summary
In this chapter, we used SFML's built-in audio modifiers to make alterations to
our sound effects. We also utilized the modifiers to create spatialized 3D sounds,
bringing more depth to our game scene.

In the next chapter, we're going to use everything that we learned so far to create
complex procedural behavior and mechanics in the form of pathfinding and unique
level goals. We'll give our enemies the intelligence to traverse levels and chase the
player, and we'll create a unique level goal with unique rewards for the player.

[161]

Procedural Behavior and
Mechanics

Until now, the focus of our efforts has been the procedural creation of resources.
Let's branch out using what we've learned and procedurally create behavior and
game mechanics. While the creation of procedural game behavior may sound exotic,
you run into it in every game that you play; artificial intelligence (AI). AI in games
is calculating behavior at runtime based on current factors. This definitely counts as
procedural generation! Previously, when approaching large topics, I've commented
that a whole book could be dedicated to the subject. Well, with AI, you'd need an
entire library. For our project, we're going to have a look at pathfinding; allowing
enemies to intelligently chase the player around our levels.

Another aspect that we'll look at is the procedural generation of mechanics,
specifically the generation of unique game goals. A great example of where this can
be applied is game quests. How many times have you come across a quest that said,
Kill X of this animal and bring me Y of its fur? Probably around a thousand! We can use
procedural generation to add some variety here. We can generate random goals for
each room/floor of our dungeon that aren't so static.

In this chapter, we'll cover the following topics:

•	 The A* pathfinding algorithm
•	 Generating unique game tasks

Procedural Behavior and Mechanics

[162]

An introduction to pathfinding
We're going to start by tackling the biggest job: implementing a pathfinding
algorithm so that the enemies can move intelligently around the map. Before we do
so, let's take a look at pathfinding algorithms as a whole, what they do, and how
they do it! This context will help you make the task ahead clearer and show you the
wealth of choices that we have.

What is a pathfinding algorithm?
A pathfinding algorithm is an algorithm that calculates the best path from one
position to another. A good algorithm will take into account the terrain and several
other factors to ensure that the movement is intelligent and won't result in any
weird behavior. Remember the last time you were playing a game and an NPC kept
walking into the wall? This is the weird behavior that pathfinding errors produce.
Every time an enemy runs around an object to get you in a game, it's the result
of such an algorithm, and they're essential in the creation of a gameplay that's
challenging and which feels natural.

For example, in the following diagram, the green circle is an NPC that has to get the
red circle:

Chapter 8

[163]

In this example, the NPC can't go directly towards the goal point as it would get
stuck walking into the wall. Instead, we need to take the wall into account and
move around it, as shown in the following diagram:

You can see that the NPC here intelligently avoided the wall while still reaching the
goal as efficiently as possible. This is the essence of pathfinding, and it is what we'll
implement in our game in the first part of this chapter. Let's take a look at what's
going on behind the arrows.

Dijkstra's algorithm
As with anything, there are a number of ways in which pathfinding can be
implemented, and a number of common algorithms can be used to do so. Different
algorithms have different characteristics, and while their finished product may
appear similar, they achieve it in different ways. The most common pathfinding
algorithm in games is A*, an extension of Dijkstra's algorithm.

Dijkstra's algorithm was created by Edsger Dijkstra in 1959. It is a best-first search
algorithm, that is, it visits the node with the least value first in an effort to produce
the shortest path possible. From its starting point, it radiates out, checking every
node in turn until it finds its goal. As you can imagine, this is both expensive and it
can take a long time to find the end node.

Procedural Behavior and Mechanics

[164]

The following diagram shows how, to find the end node, Dijkstra's algorithm has to
search most of the available nodes:

The A* algorithm
A* is an extension of Dijkstra's algorithm. Its aim is to decrease the time it takes to
find the end node by introducing a heuristic to help guide the search. A heuristic
(or heuristic technique) is simply a way of approaching a problem using a practical
method that isn't perfect, but it's sufficient. For example, trial and error is a
fundamental heuristic. While it's not perfect, you'll reach the solution to a
problem using trial and error.

In terms of A*, our heuristic is taking into account the distance that has already
been travelled to guide the search towards the end node. Take another look at
the preceding diagram that shows Dijkstra's algorithm. Now, look at the same
pathfinding problem that's solved by A* in the following diagram:

Chapter 8

[165]

It's clear that the A* implementation tended towards the target location and thus
found the goal node quickly. Also, look at how many nodes each algorithm had to
look at to find the goal. Dijkstra's algorithm practically visited every node, while in
A*, thanks to the heuristic, significantly fewer nodes were visited.

A breakdown of A*
Before we start coding our own A* implementation, it will do us good to break down
the algorithm into its key areas and take an isolated look at each.

Representing a level as nodes
Perhaps the most important area of understanding when we look at A* is how the
algorithm will view our level. While we see tiles, the pathfinding algorithm sees only
nodes. In this context, a node just represents a valid location that an entity can move
to within the level.

How nodes are defined differs from game to game. For example, in our game, the
level is already described as a 2D array of tiles. Therefore, each tile in that grid will
act as a node. In 3D games however, we don't have this grid so navigation meshes
are used to create a surface that can be represented as nodes.

Valve has a great article on their developer wiki page regarding
navigation meshes. So head to https://developer.
valvesoftware.com/wiki/Navigation_Meshes if you
want to learn more about this subject.

The following image shows how the level is split into the 2D array of tiles that it is at
heart. Each of these tiles will be used as a node in the A* algorithm. The tiles that are
valid locations for players to move to (floor tiles) are marked in green, and the tiles
that should be avoided (walls, obstacles, and so on) are marked in orange.

https://developer.valvesoftware.com/wiki/Navigation_Meshes
https://developer.valvesoftware.com/wiki/Navigation_Meshes

Procedural Behavior and Mechanics

[166]

The resulting green is the valid region of nodes that the algorithm will try and find a
path through.

The open and closed list
Once the nodes have been identified, they are stored into the following two lists:

•	 The open list: This list contains all the nodes that are waiting to be the
subject of the algorithm. This will make more sense when we get into some
code, but the algorithm operates on one node a time, and the open list is the
queue for this.

•	 The closed list: This list simply contains all the nodes that have already been
through the algorithm. Once a node gets added to this list, it's ignored until
the algorithm is complete.

The H, G, and F costs
When reading about the A* pathfinding algorithm, there are 3 letters that you're
going to come across: H, G, and F. These are crucial values in the algorithm, but they
aren't very descriptive. So let's take a moment to look at what each value is and the
role that it plays in calculating a path.

Chapter 8

[167]

The H value
The H value, often referred to as the heuristic, is the estimated cost to reach the
goal node from the current position. Every node in the level has an H value,
which is calculated at the start of the pathfinding algorithm, and then used in later
calculations. This value helps guide the search towards the target node instead of
equally spreading out in all directions. How this value is calculated is up to the
specific implementation, but a common method is called the Manhattan distance.
We'll cover what this exactly is shortly.

The G value
The G value is the current movement cost from the start node to this node. The way
this is calculated is again implementation-specific. However, as with the H value, a
common method and the one that we'll be using is the Manhattan distance. As the
algorithm iterates, every time a link between two nodes is made, the movement cost
of that individual movement is added to that of the entire path so far. In this way,
as the paths build, each node knows how long the entire path before it is.

The F value
The F value is simply the sum of the H and G values. This value is used to determine
which node the algorithm uses next. The lower this value, the lower the estimated
complete path is. Thus, the algorithm prioritizes these nodes. This behavior is what
makes Dijkstra's algorithm, and therefore A*, a best-first search algorithm.

The Manhattan distance
At the heart of a pathfinding algorithm lies calculating the distance between two
points. As mentioned previously, exactly how this is done is implementation-specific,
but there is a common and cheap method known as Manhattan distance (also known
as taxicab geometry), which is what we'll be using.

It's formally defined as the distance between two points calculated by taking the sum
of the absolute difference of their Cartesian coordinates.

That's quite a mouthful, but it's actually pretty simple. Cartesian coordinates are
simply a way of expressing a position relative to two fixed perpendicular axes (even
if this seems unfamiliar, we've all covered this at school), and absolute simply means
that we ignore the sign of a number.

Procedural Behavior and Mechanics

[168]

Take a look at the following graph:

We have two points on the graph: A(-4,4) and B(5,-3). The following pseudocode
calculates the Manhattan distance between the two:

// Calculate the absolute difference in X.
diffX = abs(-4 – 5) = 9;

// Calculate the absolute difference in Y.
diffY = abs(4 - -3) = 7;

// Add them to get the Manhattan distance.
manhattenDistance = 9 + 7 = 16;

It's as simple as that!

Parenting nodes
Another crucial aspect of pathfinding is the idea of parenting nodes. A* works by
building up a chain of nodes. Once the goal node is found, we work back through
this chain to get the final path. When the shortest path between two nodes is
identified, node A will be assigned as the parent of node B.

Chapter 8

[169]

For example, the following screenshot shows a situation where the skeleton enemy
has found a valid path to the player:

Let's imagine a situation where a path between two nodes is found. For example, the
path between nodes 6 and 7. Then, the first node is set as the parent of the second
node, in this case, node 6 is set as the parent of node 7. In this way, each node knows
where it came from. When the algorithm finds the goal node (in our example, it's
node 2), we can use this parent hierarchy to work our way from the goal node to the
start node, giving us the final shortest path. In this case, the shortest path between
the skeleton and the player is 6, 7, 5, 2.

The pseudo-algorithm
To wrap up the breakdown of the algorithm, let's look at a pseudo-implementation:

1.	 Compute the H values beforehand, if possible.
2.	 Add the start node to the open list.
3.	 Find the node with the lowest F value in the open list.
4.	 Remove that node from the open list and add it to the closed list.

Procedural Behavior and Mechanics

[170]

5.	 For all adjacent nodes, perform the following steps:

°° If the node is the goal node, set its parent to the current node and
store the final path.

°° If the node is in the closed list, ignore it and go to step 3.
°° If the node is not in the closed list and the open list, set its parent to

the current node and calculate its G and F value.
°° If the node is not in the closed list but is in the open list, check

whether the path between it and the current node is quicker than its
current path.

This is a simplified look at the A* algorithm. Hopefully, this breakdown has given
context to some of these steps. Let's get it coded!

Coding the A* pathfinding algorithm
With an understanding of the fundamentals of A*, let's start implementing it in our
game. This will allow the enemies to follow our player around the level regardless of
its topology.

With a complex algorithm such as this, having a visual representation of what's
happening is really helpful. Wherever it's appropriate, we will take a look at a
visual representation of what's happening using the following example:

Chapter 8

[171]

The Tile datatype
Let's start by taking a quick look at the Tile struct that was defined in Level.h.
As we've seen, a node contains quite a few values. In the implementation, it's the
level tiles that will act as nodes. As such, all the information that's required by a node
is defined in its type:

// The level tile/node type.
struct Tile {
 TILE type; // The type of tile this is.
 int columnIndex; // The column index of the tile.
 int rowIndex; // The row index of the tile.
 sf::Sprite sprite; // The tile sprite.
 int H; // Heuristic / movement cost to goal.
 int G; // Movement cost. (Total of entire path).
 int F; // Estimated cost for full path. (G + H).
 Tile* parentNode; // Node to reach this node.
};

For the rest of the chapter, a node is synonymous with a tile. So don't worry if they're
used interchangeably. However, remember that this will not be the case in every A*
implementation, as what you use as nodes will depend on the game.

Creating supporting functions
Before we implement the algorithm itself, we need to create some supporting
functions and variables that the algorithm will require. Note that these are specific
to the implementation and are not a part of the A* algorithm.

The Level class
The first class that we need to do some groundwork in is the Level class. We're
going to need a function that resets all the variables in the nodes/tiles, as we need
these values to be reset back to their defaults every time we run the algorithm.

Add the following function declaration to Level.h:

public:
/**
* Resets the A* data of all level tiles.
*/
void ResetNodes();

Procedural Behavior and Mechanics

[172]

Also, add the following definition in Level.cpp:

// Resets the A* data of all tiles.
void Level::ResetNodes()
{
 for (int i = 0; i < GRID_WIDTH; ++i)
 {
 for (int j = 0; j < GRID_HEIGHT; ++j)
 {
 m_grid[i][j].parentNode = nullptr;
 m_grid[i][j].H = 0;
 m_grid[i][j].G = 0;
 m_grid[i][j].F = 0;
 }
 }
}

You can see that all that we're doing here is iterating over each tile in the level grid
and resetting all the variables that we'll use in the A* calculations.

The Enemy class
Next, we need to create a function that will run the algorithm in the Enemy class.
Add the following function declaration in Enemy.h:

public:
/**
* Recalculates the target position of the enemy.
*/
void UpdatePathfinding(Level& level, sf::Vector2fplayerPosition);

You can see that this function takes a reference to the level, the main player position,
and is public. We need the function to be public so that we can call it from the main
game class. This is for efficiency and it will become clearer why later. We will pass a
reference to the level object, as the enemy will need to access the level information,
and the player location is needed to calculate the target position.

We also need to add the following variables in Enemy.h:

private:
/**
* The target positions of the enemy.

Chapter 8

[173]

*/
std::vector<sf::Vector2f> m_targetPositions;

/**
* The current target of the enemy.
*/
sf::Vector2f m_currentTarget;

With this work done, we can add the empty function definition for
Enemy::UpdatePathFinding in Enemy.cpp:

// Updates the target position of the enemy.
void Enemy::UpdatePathfinding(Level& level, sf::Vector2f
 playerPosition)
{
 // . . .

All code from this point onwards will be appended to this function.
There's quite a bit to it!

Variable declarations
The first step in the function is going to be the declarations of all the variables
that we'll use:

 // Create all variables.
 std::vector<Tile*> openList;
 std::vector<Tile*> closedList;
 std::vector<Tile*> pathList;
 std::vector<Tile*>::iterator position;
 Tile* currentNode;

The openList and closedList variables are used to manage the nodes. Nodes
in the openList variable are waiting to be checked, and nodes in the closedList
variable have already been checked and should be ignored from now on. This will be
explained in detail when we come across them in the implementation. The pathList
variable will store all the nodes in the final path.

The position variable is an iterator that will be used to find and remove values from
our vectors. Finally, the currentNode variable is used to keep track of the node that
we're currently working with.

Procedural Behavior and Mechanics

[174]

The next step is to reset all the nodes. Every time we run the function, we need
the nodes to have their default values. To achieve this we'll make a call to the
Level::ResetNodes function that we just created, as follows:

// Reset all nodes.
level.ResetNodes();

The final step in the setup will be to identify the start and end nodes, marking the
start and end of the path that we're looking for. The start node is going to be the
position of the enemy. The end node, which is our goal, is the position of the player:

// Store the start and goal nodes.
Tile* startNode = level.GetTile(m_position);
Tile* goalNode = level.GetTile(playerPosition);

The Level::GetTile function returns the tile at a given location, so we can use this
to get the nodes. Once we've identified these, we're going to perform a quick check
to ensure that they are not the same nodes. If they are, there is no valid path between
them and we can simply clear the current path and exit the function, as follows:

// Check we have a valid path to find. If not we can just end the
 function as there's no path to find.
if (startNode == goalNode)
{
 // Clear the vector of target positions.
 m_targetPositions.clear();

 // Exit the function.
 return;
}

At this point, we have declared all the variables that we'll be using, reset all the
nodes to their default values, and identified that we're working with a valid path.
It's time to jump into the bulk of the algorithm!

Precalculating the H values
The next step in our A* algorithm implementation is to calculate the H value for
every node in the level. Remember that the H value is the estimated cost of the
path from the start node to the goal node.

Chapter 8

[175]

We're going to use the Manhattan distance for this. So, for every tile in the level,
we need to calculate this distance to the goal node, as follows:

// Pre-compute our H cost (estimated cost to goal) for each node.
for (int i = 0; i < level.GetSize().x; ++i)
{
 for (int j = 0; j < level.GetSize().y; ++j)
 {
 int rowOffset, heightOffset;
 Tile* node = level.GetTile(i, j);

 heightOffset = abs(node->rowIndex - goalNode->rowIndex);
 rowOffset = abs(node->columnIndex - goalNode->
 columnIndex);

 node->H = heightOffset + rowOffset;
 }
}

Defining the main loop
We're now going to define the main loop in which the algorithm actually takes place,
but before we do so, we need to quickly add the start node to the list of
open nodes, as follows:

// Add the start node to the open list.
openList.push_back(startNode);

The open list is a list of all the nodes that the algorithm has left to check. While this
list has values in it, the algorithm should run. Therefore, we'll define this behavior to
create the main loop, as follows:

// While we have values to check in the open list.
while (!openList.empty())
{

The next step in the algorithm is to decide which node we're going to operate
on next. You may remember that the F value is used for this purpose. The open
list contains all the nodes that are waiting to be checked. So we need to iterate over
this vector and find the node with the lowest F (the estimated cost of the complete
path) value:

// Find the node in the open list with the lowest F value and mark
 it as current.

Procedural Behavior and Mechanics

[176]

int lowestF = INT_MAX;

for (Tile* tile : openList)
{
 if (tile->F < lowestF)
 {
 lowestF = tile->F;
 currentNode = tile;
 }
}

This code is pretty straightforward. We initially set lowestF to INT_MAX, a macro that
contains the maximum value of an int, as we can be sure that no F value will come
anywhere near that. When we identify a node with a smaller F value, we update the
lowestF value and mark that node as the node that needs to be operated on next.

Once we have identified the node with the lowest F value, we remove it from
openList and add it to the closedList vector to ensure that we don't operate
on the same node again, as follows:

// Remove the current node from the open list and add it to the
 closed list.
position = std::find(openList.begin(), openList.end(),
 currentNode);
if (position != openList.end())
 openList.erase(position);

closedList.push_back(currentNode);

This is where the iterator variable comes into play. An iterator is simply an object with
the ability to iterate through a range of elements. To remove an item from a vector,
we make a call to std::find(), passing the start of the vector, the end, and the value
that we are looking for. If the value is found, std::find() will return an iterator to
that element. If the value is not found, it returns an iterator that refers to an imaginary
element, which will follow the last element in the vector. Then, we call erase in
openList, passing this iterator value to get to the right element.

Finding the adjacent nodes
Now that the next node is selected and assigned to the currentNode variable, it's
time to identify all the adjacent nodes. This is another area that will differ depending
on each specific implementation.

Chapter 8

[177]

In our case, the level is defined as a 2D grid. Therefore, it's easy for us to get the
surrounding nodes:

You can see from the preceding diagram how the column and row indices, i and
j respectively, range from -1 to 1 surrounding the middle tile. We can use this to
get the nodes around us that we want to check. We're only interested in valid floor
nodes, so while we're fetching them, we can perform these checks.

Let's implement this in the function, as follows:

// Find all valid adjacent nodes.
std::vector<Tile*> adjacentTiles;

Tile* node;

// Top.
node = level.GetTile(currentNode->columnIndex, currentNode->
 rowIndex - 1);
if ((node != nullptr) && (level.IsFloor(*node)))
{
 adjacentTiles.push_back(level.GetTile(currentNode->
 columnIndex, currentNode->rowIndex - 1));
}

Procedural Behavior and Mechanics

[178]

// Right.
node = level.GetTile(currentNode->columnIndex + 1, currentNode->
 rowIndex);
if ((node != nullptr) && (level.IsFloor(*node)))
{
 adjacentTiles.push_back(level.GetTile(currentNode->columnIndex
 + 1, currentNode->rowIndex));
}

// Bottom.
node = level.GetTile(currentNode->columnIndex, currentNode->
 rowIndex + 1);
if ((node != nullptr) && (level.IsFloor(*node)))
{
 adjacentTiles.push_back(level.GetTile(currentNode->
 columnIndex, currentNode->rowIndex + 1));
}

// Left.
node = level.GetTile(currentNode->columnIndex - 1, currentNode->
 rowIndex);
if ((node != nullptr) && (level.IsFloor(*node)))
{
 adjacentTiles.push_back(level.GetTile(currentNode->columnIndex
 - 1, currentNode->rowIndex));
}

In this code, we got the 4 nodes around us, ensuring that they're both valid and are
floor tiles. Only then are they added to the list of adjacent nodes that need to be
checked. With these identified, we now need to loop over each node. A for loop
will allow us to do this:

// For all adjacent nodes.
for (Tile* node : adjacentTiles)
{

The algorithm is over when we reach the goal node. Therefore, every time we select
an adjacent node, we can check whether we've done so. With the goal node stored in
a variable, this is a simple check:

// If the node is our goal node.
if (node == goalNode)
{

Chapter 8

[179]

Since we select nodes by the lowest F value, the first time we reach the goal node, we
know that we will have travelled the shortest possible path. Before we move on to
finding this path, we first need to make the parent of the goal node the current node:

// Parent the goal node to current.
node->parentNode = currentNode;

Next we have to construct a list of all the nodes that made up the path, from the start
node to the goal node. There is no set way to do this, but we'll use a while statement.
While the node has a parent, add the node to the list and then set the
node to its parent. Let's add the code for this:

// Store the current path.
while (node->parentNode != nullptr)
{
 pathList.push_back(node);
 node = node->parentNode;
}

In this way, we build a complete path from the goal node to the start node.
Note that the resulting path is backwards, but we'll sort this out later!

Now, the final step is to exit the main loop. We're currently nested within a while
loop and a for loop. To exit this, we need to empty the open list and call break.
The break component kicks us out of the for loop, and with the open list now
empty, we exit the while loop too:

 // Empty the open list and break out of our for loop.
 openList.clear();
 break;
}
else
{

Now that this is done, we have found the goal node, stored the path of nodes
from the start to the goal, and exited the main loop. This was all the result of finding
the goal node. We now need to turn our attention to the case where we didn't find
the goal node.

Procedural Behavior and Mechanics

[180]

Calculating the G and F costs
If a node is in the closed list then it's already been the subject of the algorithm. All the
adjacent nodes have been checked and had their G and F values calculated. If this is
the case, we can simply ignore the node:

// If the node is not in the closed list.
position = std::find(closedList.begin(), closedList.end(), node);
if (position == closedList.end())
{

After insuring that the node is not in the closed list, we next check the open list:

// If the node is not in the open list.
position = std::find(openList.begin(), openList.end(), node);
if (position == openList.end())
{

Unlike the previous check, if our node is in the open list, we do not ignore it. If the
node is not in the open list, then it's the first time that the algorithm has encountered
it. If this is the case, we need to perform the following actions:

1.	 Add the node to the open list.
2.	 Set parent to currentNode (it's the last node when checking the F values).
3.	 Calculate its G value.
4.	 Calculate its F value.

We'll start by adding it to the open list and setting its parent node; these are quick
and easy tasks:

// Add the node to the open list.
openList.push_back(node);

// Set the parent of the node to the current node.
node->parentNode = currentNode;

Chapter 8

[181]

Calculating the G and F cost
You may remember that the G cost is the total cost of movement from the start node
to this node. In our grid, we can move in all the four directions, we don't move
diagonally, so each movement costs 10. This value is specific to the implementation
and not the algorithm. It's the cost of movement between two nodes, and 10 is
simply a nice value to work with.

We are not using diagonals only for the sake of an easier
presentation. One of the exercises at the end of the chapter is to add
diagonal movement and I highly suggest that you give it a go!

Since we know that the movement cost between the nodes is 10, we now need to add
the G cost of currenNode to it to arrive at the final value. The G cost of currentNode
is the cost of that path far, so adding the last movement cost to it gives the new node
the total cost of the path from the start node to itself:

// Calculate G (total movement cost so far) cost.
node->G = currentNode->G + 10;

Finally, we need to calculate the F cost of the node, which is simply the sum of its G
and H costs. We just calculated the G cost, and we precalculated the H costs at the
start of the algorithm. All that is needed is a simple addition:

// Calculate the F (total movement cost + heuristic) cost.
node->F = node->G + node->H;

Checking for superior paths
The final step of the algorithm is the condition where we check whether the node
is already in the open list, and it is. If this is the case, we've already generated its
G and F values. We now however need to check whether they are the lowest
possible values.

Procedural Behavior and Mechanics

[182]

In the following image, node 7 is the parent to node 8, and node 8 is the parent to
node 5:

This has resulted in a movement cost of 30 from node 7 – 8 – 5. However, this is
not the shortest path. The movement cost from 7 to 5, assuming that we allowed
diagonal movement, is 14. If we drop 8 from the path, the total movement cost is
24, which is lower than its current value of 30. When this is the case, we make 7 the
parent of 5 instead of 8. Since we don't use diagonal movements, this exact example
won't apply unless you add them yourself.

Chapter 8

[183]

Hopefully however, it demonstrates that we're looking for superior paths as shown
the following image:

We can see here that the movement cost of node 5 is lower and it is parented to 7.
This has created a diagonal path that is shorter than the previous one.

Let's append some code to the function to include this behavior:

}
else
{
 // Check if this path is quicker that the other.
 int tempG = currentNode->G + 10;

 // Check if tempG is faster than the other. I.e, whether it's
 faster to go A->C->B that A->C.
 if (tempG < node->G)
 {
 // Re-parent node to this one.
 node->parentNode = currentNode;
 }
}}}}}

Procedural Behavior and Mechanics

[184]

Creating the final path
The final part of the A* implementation is to turn the list of nodes into a valid
path that the enemy can follow. In the work that we did to prepare for the A*
implementation, we added the following variable to the Enemy class:

/**
* The target positions of the enemy.
*/
std::vector<sf::Vector2f> m_targetPositions;

This vector is going to hold a list of target locations that we'll get from the nodes in
the final path. However, before we do so, we need to ensure that we clear it. This is
done so that every time the pathfinding algorithm is run, the player has a fresh set of
coordinates to move to. Let's clear the vector. Again, this code is just appended to the
Enemy::UpdatePathFinding function, as follows:

// Clear the vector of target positions.
m_targetPositions.clear();

Now, to convert the tiles into target locations we will iterate over the vector of the
final nodes, get their actual positions, and add them to the m_targetPositions
vector, as follows:

// Store the node locations as the enemies target locations.
for (Tile* tile : pathList)
{
 m_targetPositions.push_back(level.GetActualTileLocation(tile->
 columnIndex, tile->rowIndex));
}

There's one last thing that we need to do and which is easy to overlook. When we
find the goal node and create the final path list, we store them from the goal node
back to the start node. This means that the final path is backwards. The final step
in the Enemy::UpdatePathFinding function is to reverse the m_targetPositions
vector to correct this and add the final closing brackets:

// Store the node locations as the enemies target locations.
for (Tile* tile : pathList)
{
 m_targetPositions.push_back(level.GetActualTileLocation(tile->
 columnIndex, tile->rowIndex));
}

Chapter 8

[185]

// Reverse the target position as we read them from goal to origin and
we need them the other way around.
std::reverse(m_targetPositions.begin(), m_targetPositions.end());

That's it! We're done. The A* algorithm is complete. The base enemy class has a
function that will create a vector of target locations and take the enemy to the player
in the quickest path possible. The next step is to enable the enemy to follow this path!

If you want to explore pathfinding further, head over to https://
qiao.github.io/PathFinding.js/visual/. It's a fantastic app
that visualizes a range of popular pathfinding algorithms.

Implementing A* in the game
Now that we have the function that can calculate the shortest path, we need to
incorporate this behavior into the game.

Enabling the enemy to follow a path
We now need to make the enemies follow the vector of target locations that the
pathfinding algorithm generates. We need the enemy to constantly follow this path,
so we'll override its base classes' Update function, as it's called during every game's
tick. The code that will do this is fairly simple; if there is a location in the vector,
move towards it at a fixed pace. When the position is reached, we simply remove it
from the vector. When the vector is empty, we know that the enemy has reached
its goal.

We'll start by adding the function declaration to Enemy.h:

public:
/**
 * Overrides the default Update function in Enemy
 */
void Update(float timeDelta) override;

Now we can add the code to follow the path. Like we just said, if there is a value
in the vector of the target positions, move towards it at a fixed pace. We do this by
creating and normalizing a movement vector.

https://qiao.github.io/PathFinding.js/visual/
https://qiao.github.io/PathFinding.js/visual/

Procedural Behavior and Mechanics

[186]

We won't cover the mathematics behind this movement. So, if you
want to read more about it, check out http://www.fundza.
com/vectors/normalize/ for an overview.

The following code is used for the creation and normalization of a movement vector:

// Updates the enemy.
void Enemy::Update(float timeDelta)
{
 // Move towards current target location.
 if (!m_targetPositions.empty())
 {
 sf::Vector2f targetLocation = m_targetPositions.front();
 m_velocity = sf::Vector2f(targetLocation.x - m_position.x,
 targetLocation.y - m_position.y);

 if (abs(m_velocity.x) < 10.f && abs(m_velocity.y) < 10.f)
 {
 m_targetPositions.erase(m_targetPositions.begin());
 }
 else
 {
 float length = sqrt(m_velocity.x * m_velocity.x +
 m_velocity.y * m_velocity.y);
 m_velocity.x /= length;
 m_velocity.y /= length;

 m_position.x += m_velocity.x * (m_speed * timeDelta);
 m_position.y += m_velocity.y * (m_speed * timeDelta);

 m_sprite.setPosition(m_position);
 }
 }

 // Call character update.
 Entity::Update(timeDelta);
}

You can also see that at the end of the function we call Entity::Update. The
animation code lies in this function. We need to ensure that it still gets called!

http://www.fundza.com/vectors/normalize/
http://www.fundza.com/vectors/normalize/

Chapter 8

[187]

Calling the pathfinding behavior
The final step in incorporating pathfinding into the game is to call the
Enemy::UpdatePathFinding function when we want to generate a new path.
The enemies are updated with each game update, but we don't want to update
the path that frequently.

Although A* is an efficient algorithm, we still want to call it as seldom as possible.
The path will only change when the player moves to a new tile, so there's no point
in updating the pathfinding until this happens. In order to achieve this, we need to
be able to tell which tile the player was on during the last update, and which tile the
player is on this update. Let's add the following variable to Game.h and ensure that
we give it a default value in the class initializer:

/**
 * The last tile that the player was on.
 */
Tile* m_playerPreviousTile;

In the Game::Update function, we can now check whether the player has moved to
a tile, and if that's the case, call the Enemy::UpdatePathFinding function of all the
enemies in the level, as follows:

// Check if the player has moved grid square.
Tile* playerCurrentTile = m_level.GetTile(playerPosition);

if (m_playerPreviousTile != playerCurrentTile)
{
 // Store the new tile.
 m_playerPreviousTile = playerCurrentTile;

 // Update path finding for all enemies if within range of the
 player.
 for (const auto& enemy : m_enemies)
 {
 if (DistanceBetweenPoints(enemy->GetPosition(),
 playerPosition) < 300.f)
 enemy->UpdatePathfinding(m_level, playerPosition);
 }
}

Procedural Behavior and Mechanics

[188]

That's it! We can now test the game. We should see the enemies following
us around the level instead of standing like stationary objects as shown in the
following screenshot:

Viewing our path
We have the code working, which is great, but let's add some debug code so that
we can see the path that the enemy is generating. I'm not going to cover this code in
detail, as it's just for the purpose of demonstration. It basically just draws a sprite at
each point in the target location's vector.

In Enemy.h, we'll declare the following variables and function:

public:
/**
 * Override the default draw function.
 */
void Draw(sf::RenderWindow& window, float timeDelta) override;

private:
/**
 * Debug sprite for path
 */
sf::Sprite m_pathSprite;

/**
 * Debug font for the path
 */

Chapter 8

[189]

sf::Font m_font;

/**
 * Debug text for the path
 */
sf::Text m_text;

In Enemy::Enemy, we'll set up the debug sprites and font, as follows:

// Set the sprite.
int textureID = TextureManager::AddTexture("../resources/spr_path.
png");
m_pathSprite.setTexture(TextureManager::GetTexture(textureID));

// Set the sprite origin.
sf::Vector2u spriteSize = m_pathSprite.getTexture()->getSize();
m_pathSprite.setOrigin(sf::Vector2f(static_cast<float>(spriteSize.
 x / 2), static_cast<float>(spriteSize.y / 2)));

// Set the font.
m_font.loadFromFile("../resources/fonts/04B_03__.TTF");

// Set the text.
m_text.setFont(m_font);
m_text.setCharacterSize(12);

Also, we'll add a body for the new draw function named Enemy::Draw:

// Override the default draw function.
void Enemy::Draw(sf::RenderWindow& window, float timeDelta)
{
 Object::Draw(window, timeDelta);

 // DEBUG Draw the current path
 for (int i = 0; i < m_targetPositions.size(); i++)
 {
 // draw the path sprite
 m_pathSprite.setPosition(m_targetPositions[i]);
 window.draw(m_pathSprite);

 // set the path index
 std::ostringstream ss;
 ss << i;
 std::string str(ss.str());
 m_text.setString(str);
 m_text.setPosition(m_targetPositions[i]);
 window.draw(m_text);
 }
}

Procedural Behavior and Mechanics

[190]

This code will show us the paths that the enemies' A* algorithm find, helping
us visualize what the A* algorithm is doing. Let's run the game and take a look.
Remember that you need to delete this debug code when you're done as it's
going to have an impact on the performance. The following screenshot shows
our enemies' paths:

Procedurally generated level goals
The final system that we're going to build in this chapter is one that will generate
randomized level goals. In each level, we have to find the key, find the exit, and kill
all enemies that get in our way. Let's add more gameplay and challenge by adding
random goals that the player can also complete. Every time a level is entered,
we'll potentially give the player an optional task that, if completed, will yield a
random reward.

The variable and function declarations
The first step in creating this system is to declare the variables and functions that we're
going to need. We'll encapsulate the behavior to generate a goal in its own function.
For starters, we need to declare the following private function in Game.h:

private:
/**
 * Generates a level goal.
 */
void GenerateLevelGoal();

Chapter 8

[191]

Given the type of goals that we want to generate (killing enemies, collecting gold,
and collecting gems), we need variables to hold these values. Let's also declare the
following private variables in Game.h:

private:
/**
 * The value of gold remaining for the current goal.
 */
int m_goldGoal;

/**
 * The value of gems remaining for the current goal.
 */
int m_gemGoal;

/**
 * The number of kills remaining for the current goal.
 */
int m_killGoal;

Finally, we're going to want to be able to tell whether we have an active goal or not
and draw the goal to the screen. We'll declare a Boolean value to track whether we
have a goal, and a string object to store the description of the current goal:

/**
 * A string describing the current level goal.
 */
sf::String m_goalString;

/**
 * A boolean denoting if a goal is currently active.
 */
bool m_activeGoal;

Generating a random goal
Now we can generate the random goal. We have three types available, namely
gold, gems, and enemies. So for a start, we need to choose which of these goals
we're going to create.

Procedural Behavior and Mechanics

[192]

Let's give Game::GenerateLevelGoal a body in Game.cpp by adding the
following code:

// Generates a random level goal.
void Game::GenerateLevelGoal()
{
 std::ostringstream ss;

 // Reset our goal variables.
 m_killGoal = 0;
 m_goldGoal = 0;
 m_gemGoal = 0;

 // Choose which type of goal is to be generated.
 int goalType = rand() % 3;

 switch (goalType)
 {
 case 0: // Kill X Enemies
 break;

 case 1: // Collect X Gold
 break;

 case 2: // Collect X Gems
 break;
 }
}

We started by defining a stream object that we'll use later, and resetting the
goal variables to 0. This is done to ensure that the goals start fresh every time this
function is called. Then, we generate a number between 0 and 2 and use it in a
switch statement.

For each case we need to generate a random number as the goal value and set it to
the appropriate variable. We also need to construct a string that describes the goal
and store it in the m_goalString variable, as follows:

switch (goalType)
{
case 0: // Kill X Enemies
 m_killGoal = rand() % 6 + 5;

Chapter 8

[193]

 // Create the string describing the goal.
 ss << "Current Goal: Kill " << m_killGoal << " enemies" << "!"
 << std::endl;
 break;

case 1: // Collect X Gold
 m_goldGoal = rand() % 51 + 50;

 // Create the string describing the goal.
 ss << "Current Goal: Collect " << m_goldGoal << " gold" << "!"
 << std::endl;
 break;

case 2: // Collect X Gems
 m_gemGoal = rand() % 6 + 5;

 // Create the string describing the goal.
 ss << "Current Goal: Collect " << m_gemGoal << " gems" << "!"
 << std::endl;
 break;
}

// Store our string.
m_goalString = ss.str();

With this complete, our goals are essentially created. We now need to activate the
goal by setting the m_activeGoal variable to true:

 // Set the goal as active.
 m_activeGoal = true;
}

The complete function looks like this:

// Generates a random level goal.
void Game::GenerateLevelGoal()
{
 std::ostringstream ss;

 // Choose which type of goal is to be generated.
 int goalType = rand() % 3;

Procedural Behavior and Mechanics

[194]

 switch (goalType)
 {
 case 0: // Kill X Enemies
 m_killGoal = rand() % 6 + 5;

 // Create the string describing the goal.
 ss << "Current Goal: Kill " << m_killGoal << " enemies" <<
 "!" << std::endl;
 break;

 case 1: // Collect X Gold
 m_goldGoal = rand() % 51 + 50;

 // Create the string describing the goal.
 ss << "Current Goal: Collect " << m_goldGoal << " gold" <<
 "!" << std::endl;
 break;

 case 2: // Collect X Gems
 m_gemGoal = rand() % 6 + 5;

 // Create the string describing the goal.
 ss << "Current Goal: Collect " << m_gemGoal << " gems" <<
 "!" << std::endl;
 break;
 }

// Store our string.
m_goalString = ss.str();

 // Set the goal as active.
 m_activeGoal = true;
}

We'll hook up this function properly in the next chapter when we turn our attention
to the level, but for now, we can test it by making a call to it in Game::Game. Add the
following debug code so that we can test the function:

// DEBUG: Generate a level goal.
GenerateLevelGoal();

Chapter 8

[195]

Checking whether a goal is complete
We can now generate a random level goal at the call of a function. We now need
to hook gameplay into these goals so that we can tell when one of them has been
accomplished. Whenever we process an action that is related to a goal, we need to
check whether we have an active goal and respond accordingly.

Starting with the kill count, when we determine that an enemy has been killed,
we check whether we have an active goal, and if this is the case, we decrement
the m_killGoal variable, as follows:

// If the enemy is dead remove it.
if (enemy.IsDead())
{
 enemyIterator = m_enemies.erase(enemyIterator);

 // If we have an active goal decrement killGoal.
 if (m_activeGoal)
 {
 --m_killGoal;
 }
}

The same approach is taken for other level goals. In the object pickup code, when
we have picked up either gold or a gem, we'll check whether we have an active level
goal, and if this is the case, we decrement the appropriate values, as follows:

switch (m_items[i]->GetType())
{
case GAME_OBJECT::GOLD:
{
 // cast the item to a gold type
 Gold& gold = dynamic_cast<Gold&>(*m_items[i]);

 . . .

 // Check if we have an active level goal.
 if (m_activeGoal)
 {
 m_goldGoal -= gold.GetGoldValue();
 }
}
break;

Procedural Behavior and Mechanics

[196]

case GAME_OBJECT::GEM:
{
 // cast the item to a gem type
 Gem& gem = dynamic_cast<Gem&>(*m_items[i]);

 . . .

 // Check if we have an active level goal.
 if (m_activeGoal)
 {
 --m_gemGoal;
 }
}
break;

. . .

With this complete, the actions in the game are now hooked up to the goal counters.
Next, we need to actually check whether we've achieved the goal. We'll put this code
right at the end of Game::Update so that we can ensure that all the other actions have
been executed.

Checking whether we've achieved our goal is simple. First, we check whether we
have an active goal. Then, we check whether all the counter variables are less than or
equal to 0. If that's the case then we know that we've decremented the appropriate
counter to 0. With this approach the other values will dip to negative values, but we
won't be collecting enough loot for that to be a problem. Let's add this code at the
end of Game::Update:

// Check if we have completed an active goal.
if (m_activeGoal)
{
 if ((m_gemGoal <= 0) &&
 (m_goldGoal <= 0) &&
 (m_killGoal <= 0))
 {
 m_scoreTotal += std::rand() % 1001 + 1000;
 m_activeGoal = false;
 }
}

With this complete, the majority of the goal system is set up. You can see that if we
determine that a goal is active, and all counters are 0 or lower, we reward the player.
We also set the m_activeGoal variable to false to show that the goal has now
been achieved.

Chapter 8

[197]

Drawing the goal on the screen
The final step now is to draw our goal on screen! We have a bool variable that
denotes when we have an active goal, and when we generate that goal, we store
its descriptor in a string variable. Drawing it is as simple as making a call to
Game::DrawText and passing the description, but we'll only do this when the
m_activeGoal variable is true.

It's time to finish this system by adding the following to Game::Draw:

// Draw the level goal if active.
if (m_activeGoal)
{
 DrawString(m_goalString, sf::Vector2f(m_window.getSize().x /
 2, m_window.getSize().y - 75), 30);
}

Now, if you run the game, you will see that a unique goal is shown every time:

We could call it a day here, but we can do better! Since the string that defines the
level goal is stored only once, when we create it, it doesn't update itself as we work
towards achieving it. Let's fix this! If we jump back to Game::Update and find where
we check whether we achieved our goal, we can make some modifications here to
achieve this.

Procedural Behavior and Mechanics

[198]

Currently, we check whether we've achieved the active goal, but we only do
something if we have achieved it. This is our opportunity to update the string.
All we have to do it determine which type of goal is set, which we can do by
checking the values of our goal variables, and rebuild the string in the same
way we do in Game::GenerateLevelGoal:

// Check if we have completed an active goal.
if (m_activeGoal)
{
 if ((m_gemGoal <= 0) &&
 (m_goldGoal <= 0) &&
 (m_killGoal <= 0))
 {
 m_scoreTotal += std::rand() % 1001 + 1000;
 m_activeGoal = false;
 }
 else
 {
 std::ostringstream ss;

 if (m_goldGoal > 0)
 ss << "Current Goal: Collect " << m_goldGoal << "
 gold" << "!" << std::endl;
 else if (m_gemGoal > 0)
 ss << "Current Goal: Collect " << m_gemGoal << " gem"
 << "!" << std::endl;
 else if (m_killGoal > 0)
 ss << "Current Goal: Kill " << m_killGoal << "
 enemies" << "!" << std::endl;

 m_goalString = ss.str();
 }
}

Now, when we have an active goal, the string on the screen is updated as we work
towards it!

Chapter 8

[199]

Exercises
To help you test your knowledge of this chapter's content, here are a few
exercises that you should work on. They are not imperative to the rest of the book,
but working on them will help you assess your strengths and weaknesses in the
material covered:

1.	 When calculating pathfinding, we currently do not allow diagonal
movement. Update the algorithm so that this is now allowed. To get you
started, when calculating the G cost, you'll need to determine whether we
moved diagonally or straight.

2.	 Currently, the enemies will chase us throughout the entire level. Amend the
function so that the enemy will only chase the player if they are within
a certain distance.

3.	 Currently our enemies move at a fixed speed and don't take into account the
speed variable that we generated in an earlier chapter. Incorporate the speed
variable in the game so that the enemies move at their correct speeds.

Summary
In this chapter, we extended our efforts to procedural behavior and mechanics as
opposed to just resources. Specifically, we implemented A* pathfinding algorithm
to give the enemies some intelligence and natural movement around our levels and
created random level goals. Hopefully, this has been a good demonstration of the
fact that procedural generation isn't limited to just resources; it can be put to use for
every aspect of a game.

In the next chapter, we're going to implement what is perhaps the most iconic feature
of roguelike games: procedurally generated levels. Up until now we've been working
with the same fixed level, so it's about time we started generating them procedurally!
We'll also create some variance between the levels and implement the goal generator
that we just created!

[201]

Procedural Dungeon
Generation

Perhaps the most iconic and defining feature of roguelike games is their procedurally
generated levels. This is one of the main features that contributes to the replayability
that the genre is renowned for having. It keeps the game fresh and challenging and
the players on their toes.

Throughout the course of this book, we've progressed from the simple generation of
single numbers to the implementation of complex procedural behavior, such as path
finding. It's time for our pièce de résistance: procedurally generating our levels. In
addition to this, we'll also work on making levels more distinct using the functions
that we created in Chapter 6, Procedurally Generating Art.

In this chapter, we'll cover the following topics:

•	 The benefits of procedurally designing levels
•	 Maze generation
•	 Room generation
•	 Tile mapping

The benefits of procedural level design
The procedural generation of game levels and environments brings with it a
myriad of benefits, not only for players but also for developers. It's always good to
understand the positives and negatives of a technology before we use it. So, let's take
a look at some of the biggest benefits that it brings to games before we implement it.

Procedural Dungeon Generation

[202]

Replayability
The most obvious benefit of procedurally generated levels is their variety and the
replayability that they bring to a game. With each run, the environment changes.
This means that players cannot learn the locations of items, enemies, and this
keeps the challenge alive and fresh, giving players reasons to play the game
again and again.

A reduction in development time
Another benefit that is common in all implementations of procedural generation is
the time that it saves in development. In our roguelike game, we're going to have an
endless number of unique levels. If we were creating our levels manually this would
simply not be possible. We would be limited to perhaps a hundred levels at the most.

Utilizing procedural generation like this takes this workload off the developers,
saving both time and money, and increases the scope of what's possible.

Larger game worlds
Remember that procedural generation in itself is in no way random. We induce
randomness by using random values and terms in our algorithms and calculations.
Given that, we can use procedural generation within a level design to share levels
without actually having to store them.

Lots of games that generate worlds randomly will allow you to input a world seed.
With this value, two people on two different machines can generate the same level.
With this approach, you can generate a theoretically never-ending level, ensuring
that all players generate the same one. Also, you'll only have to store the world seed
instead of potentially hundreds of megabytes of world data.

Considerations
As with everything, there are two sides of the same coin. Therefore, despite the
benefits that procedural level generation brings, there are some considerations
and compromises that need to be made.

Chapter 9

[203]

A lack of control
A lack of control is a common pitfall of procedural generation in general, but it's
perhaps never more prevalent than when generating levels. Game levels are the
arena in which our stories are told and our game mechanics are experimented with.
Given that, they are usually handcrafted by dedicated level designers. Leaving this
job to an algorithm results in a significant loss of control.

Games with simple mechanics and stories will generally fair okay, but if you have
complex mechanics or a story that you want to tell in a particular way, procedural
level generation may require you to relinquish more control than you can afford. An
algorithm can never replicate the little touches that a seasoned professional brings.

Required computing power
Another consideration that needs to be taken into account is the computing power
that is required. In our case, it's not that bad. We only have a 2D array of a small size
that needs to be generated. However, if you're generating 3D terrain on a large scale,
this cost becomes more significant and needs to be factored.

Imagine a situation where we are required to work with a level grid of 1000 by 1000.
Every time we generate a level there will be a significant number of calculations that
will need to be performed, and we need to ensure that all our players' hardware can
cope! With steady increases in the computing power this is becoming less of an issue.
In fact, this is the reason why games are becoming very complex and dynamic. We
have the hardware that is required to achieve it, but we still need to be conscious of
the limits.

Suitability
The final consideration is simply whether your game will benefit from procedural
generation. Just because it might be technically possible to implement it in a title, it
doesn't mean that it belongs there. If you don't require lots of levels and you have
complex mechanics and systems, then it's probably not worth implementing it.
You're better off spending this time in handcrafting a selection of levels that you
know will work really well.

This is a good point to bear in mind in general. Don't get carried away with the
technicalities of the game and how amazing the code is. The bottom line is that
your game needs to be fun and engaging. Always prioritize gameplay.

Procedural Dungeon Generation

[204]

An overview of dungeon generation
overview
Dungeon generation is a vast topic with a wide range of possible implementations,
with each implementation having its own characteristics. However, underneath
the nuances of different algorithms, dungeon generation generally involves the
generation of rooms and a maze and the integration of the two, as shown in the
following diagram:

Procedurally generating dungeons is not that different from the work that we did on
path finding. It's all about viewing a level as nodes and manipulating them. Before
we implement it we'll break it down into the three main stages that were identified
previously, namely the generation of rooms, the generation of a maze, and the
integration of all together.

Generating rooms
Dungeons are a series of interconnected rooms, and their generation is the first step
in many systems. There is no complex algorithm behind this; we simply choose a
room size and place a number of them in the level. The characteristics of this level
will be determined by factors such as the number of rooms, their size, and how they
are placed, as shown in the following diagram:

Chapter 9

[205]

Generating a maze
Another important step in dungeon generation is to generate a maze throughout the
playable area, turning the level into a series of connected hallways. These can then
either join the existing rooms, or have rooms carved into them to create open areas.
There are a number of algorithms that are used to generated mazes like this, and
we'll use the popular recursive backtracker algorithm. Don't worry, we'll have a
look at this algorithm in detail shortly! The following screenshot shows an example
of such a maze:

Procedural Dungeon Generation

[206]

Connecting rooms and mazes
If you choose to generate rooms first and then create a maze to connect them, the final
step is to integrate them. Currently, the maze will run right past all the rooms, but
thankfully, it's an easy task to join them. We need to just look around each room and
add a connecting block to a valid adjacent path, as shown in the following diagram:

In our implementation, we're actually going to do this the other way around. We'll
generate a maze and then carve open areas into it. This method creates more open
and maze-like areas, whereas the first method creates interconnected closed rooms.

The recursive backtracker
The recursive backtracker, as the name suggests, involves recursively calling a
function that carves passages between two tiles in the game grid. By choosing
random directions to carve this path, the algorithm carves its way through the level
as far as possible before resolving its recursions, working back to the start node.

The following is pseudocode for one such algorithm:

1.	 Choose random direction and make a connection to the adjacent node
if it has not yet been visited. This node becomes the current node
(a recursive call).

2.	 If all the adjacent cells in each direction have already been visited, go back to
the last cell (return from the previous recursive call).

3.	 If you're back at the start node, the algorithm is complete.

Chapter 9

[207]

As we can see, there's really not much to it! The only pitfall is that you need to have
the entire maze in memory. For large mazes this method can be inefficient or maybe
not possible at all! However, for our implementation, it will work perfectly.

Procedurally generating a dungeon
It's time to put this theory into practice and implement procedural dungeon
generation in our game for real. We'll move the Level class from loading its data
from a text file to generating it at runtime, and we'll also cover the application of the
correct sprites to the tiles in the random level.

As we identified, one way of approaching this is to generate a maze over the entire
play area and then generate rooms to carve out some larger open areas. This method
not only generates tighter, more intertwined levels, but also saves us the step of
having to connect mazes to rooms, leaving us with just two steps to generate
great levels:

Changing how we view the maze
Before we write any code, we're going to make a change to the project so that we
can easily see the entire level. Currently, the view is zoomed, and we have the light
blocking the level. We want to be able to see the entire maze as we work on the
algorithm. So let's make some changes.

Procedural Dungeon Generation

[208]

The first thing that we'll do is disable the main game view and instead draw
everything using the UI view. The Game view draws draws everything twice
as large as the original size, while the UI view draws things with a scale of 1:1.
By disabling the change to the Game view, we'll see more of the level.

Update the following code:

case GAME_STATE::PLAYING:
{
 // Set the main game view.
 //m_window.setView(m_views[static_cast<int>(VIEW::MAIN)]);

All that we've done here is comment out the line that sets the main game's view.
Let's now do the same for the code responsible for drawing the light in the level:

// Draw level light.
//for (const sf::Sprite& sprite : m_lightGrid)
//{
// m_window.draw(sprite);
//}

These two changes drastically change how the level now appears and will help us
see the maze as we work:

Chapter 9

[209]

Updating the Game and Level classes
Before we start implementing the maze generator, we need to define some
functions that we'll be using. For starters, our level is currently loaded from the
Level::LoadLevelFromFile function. We need to create an appropriate function for
the new code. Let's remove the Level::LoadLevelFromFile function and add the
following code in its place in Level.h:

public:
/**
 * Generates a random level.
 */
void GenerateLevel();

We're going to need a similar function in the Game class, which will encapsulate
all the code to generate a random level, so ensure that you add the same function
declaration to Game.h also. We have a couple of functions that are related to
generating a level, and all of these can be encapsulated in this function.
We need to add the following:

•	 A call to Level::GenerateLevel: This enables the placement of key in
the level

•	 A call to Game::PopulateLevel: This helps in the generation of a random
level goal

Notice one of these items is to add a key to the level. The item already exists in our
solution, as does all supporting code, and as we'll soon be able to generate levels at
random we can now spawn one in the level.

Let's add this function to Game.cpp:

// Generates a new level.
void Game::GenerateLevel()
{
 // Generate a new level.
 m_level.GenerateLevel();

 // Add a key to the level.
 SpawnItem(ITEM::KEY);

 // Populate the level with items.
 PopulateLevel();

 // 1 in 3 change of creating a level goal.
 if (((std::rand() % 3) == 0) && (!m_activeGoal))
 {
 GenerateLevelGoal();
 }
}

Procedural Dungeon Generation

[210]

We created the Goal::GenerateLevelGoal function in Chapter 8, Procedural Behavior
and Mechanics. So, this is where we actually implement it. Each time a new level is
generated, we create a 1 in 3 chance that a goal will be generated if there isn't one
that's currently active.

Since we now have the function that will generate our levels at random, and have
added the key, let's quickly add the code to generate a new level when the player
reaches the door. We already have the if statement ready, we just need to add
the behavior:

. . .

if (playerTile.type == TILE::WALL_DOOR_UNLOCKED)
{
	 // Clear all current items.
	 m_items.clear();

	 // Clear all current enemies.
	 m_enemies.clear();

	 // Generate a new room.
	 GenerateLevel();

	 // Set the key as not collected.
	 m_keyUiSprite->setColor(sf::Color(255, 255, 255, 60));
}

. . .

Now that this is completed, all we have left to do is call our Game::GenerateLevel
function instead of our depreciated Level::LoadLevelFromFile, and remove
the code to set the players location and the call to Game::PopulateLevel. Our
new Game::GenerateLevel function will take care of all of that. Let's update the
following code in Game::Initialize:

// Load the level.
//m_level.LoadLevelFromFile("../resources/data/level_data.txt");

// Set the position of the player.
//m_player.SetPosition(sf::Vector2f(1155.f, 940.f));

// Populate level.
//PopulateLevel();

Chapter 9

[211]

// Generate a level.
GenerateLevel();

Now that the code is updated, we can now turn our attention towards the dungeon
generation algorithm.

Generating a maze
The first stage of creating a random dungeon is to generate a maze throughout the
entire play area. We've covered the recursive backtracker method that we're going
to use. However, we need to do some preparation beforehand.

Preparing before the generation of a maze
The recursive backtracking algorithm works by forging passages between two nodes.
Given this, we need the maze to be in a position where all the nodes in the grid are
surrounded by walls, that is, something that looks like this:

The shaded squares represent wall tiles, and the blank squares represent floor
space. You will see in the left grid that each floor tile is surrounded on all sides by a
wall. The right tile shows what the grid would look like once the algorithm is run,
breaking through these walls to create paths. Our task is to make the grid look like
the one on the left!

When you look at the grid to the left, you will see that all the shaded tiles have odd
indices; only the tiles that have an even column and a row index are blank. This
makes it easy to create this grid. We need to loop through all the tiles, and if both the
indices are even, we leave it blank. Otherwise, we convert it into a wall tile.

Procedural Dungeon Generation

[212]

Let's start defining the Level::GenerateLevel function by implementing this:

// Generates a random level.
void Level::GenerateLevel()
{
 // Create the initial grid pattern.
 for (int i = 0; i < GRID_WIDTH; ++i)
 {
 for (int j = 0; j < GRID_HEIGHT; ++j)
 {
 if ((i % 2 != 0) && (j % 2 != 0))
 {
 // Odd tiles, nothing.
 m_grid[i][j].type = TILE::EMPTY;
 }
 else
 {
 m_grid[i][j].type = TILE::WALL_TOP;
 m_grid[i][j].sprite.setTexture(TextureManager::GetText
ure(m_textureIDs[static_cast<int>(TILE::WALL_TOP)]));
 }
 // Set the position.
 m_grid[i][j].sprite.setPosition(m_origin.x + (TILE_SIZE *
i), m_origin.y + (TILE_SIZE * j));
 }
 }
}

Before we run our game we need to quickly disable any code that uses the level
grid. This includes our call to Game::PopulateLevel and the placement of the key
in Game::GenerateLevel. It also includes the call to Game::SpawnRandomTiles in
Game::Initialize. These functions rely on the level grid been setup, and it isn't yet!
Without disabling these the game will hang as it looks for floor tiles! We'll turn them
back on when we're done.

If you run the game now, you will see that we have a grid that looks like the image to
the left. The first step is complete!

Chapter 9

[213]

The following screenshot shows the result when we run the game now:

Carving passages
Now that the checkerboard pattern is created, it's time to implement the main
body of the algorithm. Here's a reminder of how the recursive backtracker
algorithm works:

1.	 Choose a random direction and make a connection to the adjacent
node if it has not yet been visited. This node becomes the current node
(a recursive call).

2.	 If all adjacent cells in each direction have already been visited, go back to the
last cell (return from the previous recursive call).

3.	 If you're back at the start node, the algorithm is complete.

We know that this algorithm is recursive, so let's start by declaring the function that
will contain the algorithm. Since this function will create paths between two nodes,
we'll call it CreatePath:

private:
/**
 * Creates a path between two nodes in the recursive backtracker
algorithm.
 */
void CreatePath(int columnIndex, int rowIndex);

Procedural Dungeon Generation

[214]

Starting with the first point in the algorithm breakdown, we need to identify the
node that we're working with and choose a random direction. Getting the correct
node is easy, and to choose a random direction, we'll use an array. We can define an
array of sf::vector2i that defines all the possible directions. For example, {-2, 0}
will indicate a movement to the tile to the left, as we'll decrement the column index
by 2.

Remember, we have to move two tiles at a time due to the checkerboard pattern.
The tile that is directly adjacent to us is a wall so we need to move one step further
to reach the tile that we want to work on. We then need to shuffle the array of
directions so that the algorithm doesn't tend towards any one in particular. If we
didn't do this for example, it would always check north first, resulting in lots of
north-running passages!

Let's start defining the Level::CreatePath function by adding the following to
Level.cpp:

// Create a path between two tiles in the level grid.
void Level::CreatePath(int columnIndex, int rowIndex)
{
 // Store the current tile.
 Tile* currentTile = &m_grid[columnIndex][rowIndex];

 // Create a list of possible directions and sort randomly.
 sf::Vector2i directions[] = { { 0, -2 }, { 2, 0 }, { 0, 2 }, { -2, 0
} };
 std::random_shuffle(std::begin(directions), std::end(directions));

Next, we iterate over these directions and check whether we can find any valid tiles
that have not yet been visited. A tile is valid if it exists in the grid, and you can tell
whether it's been visited yet or not depending on whether it's empty.

Let's add this functionality by appending the following code to the open
function's definition:

// For each direction.
for (int i = 0; i < 4; ++i)
{
 // Get the new tile position.
 int dx = currentTile->columnIndex + directions[i].x;
 int dy = currentTile->rowIndex + directions[i].y;

 // If the tile is valid.
 if (TileIsValid(dx, dy))
 {

Chapter 9

[215]

 // Store the tile.
 Tile* tile = &m_grid[dx][dy];

 // If the tile has not yet been visited.
 if (tile->type == TILE::EMPTY)
 {

If the code reaches this point we know that we're looking at a new tile as it's both
valid and currently empty. To create a path to it we need to knock down the wall
between us and change both the wall and our new tile with floor tiles. We now call
Level::CreatPath once more, passing the indices of the new tile as the parameters.
It's here that the recursion happens and the algorithm progresses forward.

Let's finish the function's definition with the following bit of code to achieve this:

 // Mark the tile as floor.
 tile->type = TILE::FLOOR;
 tile->sprite.setTexture(TextureManager::GetTexture(m_
textureIDs[static_cast<int>(TILE::FLOOR)]));

 // Knock that wall down.
 int ddx = currentTile->columnIndex + (directions[i].x / 2);
 int ddy = currentTile->rowIndex + (directions[i].y / 2);

 Tile* wall = &m_grid[ddx][ddy];
 wall->type = TILE::FLOOR;
 wall->sprite.setTexture(TextureManager::GetTexture(m_
textureIDs[static_cast<int>(TILE::FLOOR)]));

 // Recursively call the function with the new tile.
 CreatePath(dx, dy);
}}}}

Let's clarify exactly what's happening here. Every time an empty tile is identified,
a recursive call to Level::CarvePath is made, and that tile's indices are passed.
As it does this, it works its way through the level, nesting deeper and deeper
into recursion.

When all the directions have been checked and there is no valid tile, the current
call from Level::CreatePath will return, allowing the previous call to check
its remaining directions. As this process continues the algorithm works its way
back through the path until it reaches the start node, at which point nodes have
been visited.

Procedural Dungeon Generation

[216]

Hopefully, the comments in the function make it clear which part is doing what.
Now that this is complete we can now call it from the Level::GenerateLevel
function right after we set up the grid:

// Generates a random level.
void Level::GenerateLevel()
{
 // Create the initial grid pattern.
 for (int i = 0; i < GRID_WIDTH; ++i)
 {

 // Make the first call to CarvePassage, starting the recursive
backtracker algorithm.
 CreatePath(1, 1);
}

Let's compile the project once again and see what we have:

We have the maze! For some games, this will be enough, but we don't want all the
single tile paths. We're want more open areas so that we can fight the enemies! You'll
also see that the tile sprites are looking very weird. Don't worry about it now; we'll
fix it as soon as we add the rooms!

Chapter 9

[217]

Adding rooms
Previously, we learned that adding rooms was a simple task. We now get to see this
firsthand. Our goal is to add some open areas, and the simplest way to do this is to
pick some random locations and convert the surrounding tiles to floor tiles. To keep
the Level class neat, we'll encompass this behavior in its own function. Add the
following function declaration to Level.h:

private:

/**
 * Adds a given number of randomly sized rooms to the level to create
some open space.
 */
void CreateRooms(int roomCount);

In our ongoing efforts to write versatile and scalable code, we added a parameter to
denote how many rooms we want to create so that we can vary it at will.

Let's jump right into defining the function. To start, we're going to need a loop to
iterate once for each room that we wish to add. Add the following method definition
in Level.cpp:

// Adds a given number of randomly sized rooms to the level to create
some open space.
void Level::CreateRooms(int roomCount)
{
 for (int i = 0; i < roomCount; ++i)
 {

Now we can create our rooms. The first task is to decide how big we want them to
be. After playing with the algorithm I found that having a greater number of smaller
rooms works well. As always, we'll throw in some RNG here by having the rooms'
size fall within a random range:

// Generate a room size.
int roomWidth = std::rand() % 2 + 1;
int roomHeight = std::rand() % 2 + 1;

This will generate rooms with a width and height of either 1 or 2. I know that this
sounds small, but trust me. It works really well!

Procedural Dungeon Generation

[218]

Next we need to choose a place in the level for this room to be placed. We'll pick
a random point and build the room around it. For this we need to generate a
random tile index and then create nested for loops to iterate over the 2D array,
thus describing the room:

// Choose a random starting location.
int startI = std::rand() % (GRID_WIDTH - 2) + 1;
int startY = std::rand() % (GRID_HEIGHT - 2) + 1;

for (int j = -1; j < roomWidth; ++j)
{
 for (int z = -1; z < roomHeight; ++z)
 {

When generating the start position, you can see that we've been careful not to
include the outer edge in either direction. These are the level's retaining walls
and should be left alone.

The last part of the function now simply involves turning the room tiles into
floor tiles. First, we check whether we haven't gone out of bounds by making
a call to Level::TileIsValid. We then ensure that the new title does not lie on
the outer edge of the grid; the outer rows/columns should all be walls to contain
the level. If both of these criteria are met, we can make it a floor block by using the
following code:

int newI = startI + j;
int newY = startY + z;

// Check if the tile is valid.
if (TileIsValid(newI, newY))
{
 // Check if the tile is not on an outer wall.
 if ((newI != 0) && (newI != (GRID_WIDTH - 1)) && (newY != 0) &&
(newY != (GRID_HEIGHT - 1)))
 {
 m_grid[newI][newY].type = TILE::FLOOR;
 m_grid[newI][newY].sprite.setTexture(TextureManager::GetTexture
(m_textureIDs[static_cast<int>(TILE::FLOOR)]));
 }
}}}}}

Chapter 9

[219]

It's time to make a call to this function. Currently in Level::GenerateLevel we set
our grid up and then make the first call to Level::CreatePath to start the recursive
algorithm. When this first initial call is returned, we know that the maze has been
fully generated. It's at this stage that we'll create the rooms.

Let's append a call to the new Level::CreateRooms function right after the first call
to Level::CreatePath:

. . .

// Make the first call to CarvePassage, starting the recursive
backtracker algorithm.
CreatePath(1, 1);

// Add some rooms to the level to create some open space.
CreateRooms(10);

It's time for another build so that we can see our work. Hopefully now we have a
random maze running through the level as well as a number of larger open areas
where we can allow players to fight more freely:

Procedural Dungeon Generation

[220]

Choosing the tile textures
Until now we've been loading a prebuilt level from a text file. This level file already
knew which textures needed to be used and where they should be used, but since
we're now generating them procedurally, that's not the case. We need to decide
which tiles should have which sprites.

The if/else approach
A common way of approaching this is simply to create a monstrous if/else
statement. In principle, it's a simple task; define each tile through a series of if
statements and set the right tile. However, in reality, you end up with a complex
mess of code that is very difficult to read.

Imagine a situation where you have a tile set of fifty possible variants. The amount
of code required to choose which tile goes where would be crazy. Thankfully, there's
a much simpler solution to the problem, and it is one of my favorite examples of an
elegant solution to a problem.

Bitwise tile maps
In our game, we concern ourselves with four directions, namely up, down, left, and
right. Given that, when we need to calculate tile textures we only need to check in
these four directions:

In the preceding diagram, you can see that the tiles marked with 0s are those that
are used to determine the texture given to tile X. This is where the elegant solution
comes into play. If we read the tiles into a binary number, starting from the top tile
and counting from the least significant digit, we get the 4 digit binary number, 0000.
If the tile is a wall we set the corresponding bit to 1. If the tile is floor we leave it as 0.

Chapter 9

[221]

If we apply this to the four possible tile locations that surround the tile X, we can
calculate values for each tile:

Hopefully, this diagram makes things clearer. Starting from the top tile and reading
clockwise, we feed the values of the tiles into a bit integer from the least significant
digit to the most. This gives each tile surrounding the main tile a distinct value, and
we can visualize this through the following image:

Calculating the tile values
When deciding upon the tile texture that we need, we evaluate which tiles surround
the target tile, and where we have a wall we store its value that we identified in the
previous image. A real example will help you visualize this process. Let's suppose
that we need to find the correct texture for tile X:

Procedural Dungeon Generation

[222]

In this scenario, the tile value will be calculated in the following way:

1 + 4 = 5

Using this method, each possible tile orientation for X is represented through a
unique value ranging from 0 to 15. It's so elegant and simple!

Mapping the tile value to textures
The final piece of this puzzle is mapping these values to textures. In Util.h, you will
see that the following enumerator defines the all types:

// Tiles.
enum class TILE {
 WALL_SINGLE,
 WALL_TOP_END,
 WALL_SIDE_RIGHT_END,
 WALL_BOTTOM_LEFT,
 WALL_BOTTOM_END,
 WALL_SIDE,
 WALL_TOP_LEFT,
 WALL_SIDE_LEFT_T,
 WALL_SIDE_LEFT_END,
 WALL_BOTTOM_RIGHT,
 WALL_TOP,
 WALL_BOTTOM_T,
 WALL_TOP_RIGHT,
 WALL_SIDE_RIGHT_T,
 WALL_TOP_T,
 WALL_INTERSECTION,
 WALL_DOOR_LOCKED,
 WALL_DOOR_UNLOCKED,
 WALL_ENTRANCE,
 FLOOR,
 FLOOR_ALT,
 EMPTY,
 COUNT
};

Chapter 9

[223]

While the order of these tiles may seem somewhat random, they are actually in a
very specific order. Enumerators start counting from 0. Therefore, we can see that the
first value, WALL_SINGLE, has a value of 0. Going back to our chart, we can see that
this is correct, as that's the texture that we'll need when there is nothing surrounding
the tile.

Taking another random example, the WALL_TOP value has a value of 10. If we look
at the grid, this will mean that the tiles only to the right and left of the target tile
are walls. 2 + 8 = 10. That's correct! For all possible tiles, I worked out their bitmask
values and ensured that their enumerator values matched up.

Calculating tile textures
Let's get this implemented in the project. First, we'll declare a function that we can
encapsulate this behavior in our Level header:

/**
 * Calculates the correct texture for each tile in the level.
 */
void CalculateTextures();

For the function's body, we want to start by iterating over all the tiles,
identifying which of them are walls. It's these tiles that need their sprites
calculating correct texture:

// Calculates the correct texture for each tile in the level.
void Level::CalculateTextures()
{
 // For each tile in the grid.
 for (int i = 0; i < GRID_WIDTH; ++i)
 {
 for (int j = 0; j < GRID_HEIGHT; ++j)
 {
 // Check that the tile is a wall block.
 if (IsWall(i, j))
 {
 // Calculate bit mask.

Procedural Dungeon Generation

[224]

 int value = 0;

 // Store the current type as default.
 TILE type = m_grid[i][j].type;

Now we look at those tiles around us, using the values we calculated earlier, to come
up with a final value for the tile. We check each tile in procession, again starting from
the top, going clockwise, and increasing the value by the appropriate amount if there
is a wall there:

// Top.
if (IsWall(i, j - 1))
{
 value += 1;
}

// Right.
if (IsWall(i + 1, j))
{
 value += 2;
}

// Bottom.
if (IsWall(i, j + 1))
{
 value += 4;
}

// Left.
if (IsWall(i - 1, j))
{
 value += 8;
}

All that's left at this stage is to assign the correct texture and ID to the tile. We
previously covered how we set up the enumerator, denoting the tile types to line up
directly with this value, so we can simply use the texture value as the tile type and
the index of the texture:

// Set the new type.
m_grid[i][j].type = static_cast<TILE>(value);
m_grid[i][j].sprite.setTexture(TextureManager::GetTexture(m_
textureIDs[value]));
}}}}

Chapter 9

[225]

With this the function is complete. The final step is to ensure that we add a call to
it in the Level::GenerateLevel function right after we've generated the rooms,
as follows:

 . . .
 // Add some rooms to the level to create some open space.
 CreateRooms(10);

 // Finally, give each tile the correct texture.
 CalculateTextures();
}

Let's not waste any time and get our game built:

How great does that look! Run it a few times and see all the different mazes that are
generated. We generate a maze, carve some larger areas, and resolve the textures.
Procedurally generated dungeons. While this is great, we can do better. Our mazes
lack character and individuality. So let's introduce some aesthetic variance to
the environment.

Procedural Dungeon Generation

[226]

Creating unique floor themes
In Chapter 6, Procedurally Generating Art, we spent some time looking at procedurally
generating sprites. We also created a function named Level::SetColor, which
allows us to set an overlay color for all the tiles in the level. Let's put this to use
and create a unique feel for each floor of the dungeon.

Let's create distinct floors that each have a unique aesthetic. Every 5 levels we can
generate a new random color and apply it to our level. Our Level class already has
the following variables:

/**
 * The floor number that the player is currently on.
 */
int m_floorNumber;

/**
 * The room number that the player is currently in.
 */
int m_roomNumber;

We can use these to track how many rooms we have generated and when we should
change the effect. To start, we have to keep track of which floor and room we're on.
At the end of the Level::GenerateLevel function, we'll start by incrementing the
m_roomNumber variable. When it's 5, we can increment m_floorNumber and generate
a new color overlay; don't forget to reset the room counter:

 . . .

 // Calculate the correct texture for each tile.
 CalculateTextures();

 // Increment our room/floor count and generate new effect if
necessary.
 m_roomNumber++;

 // Move to next floor.
 if (m_roomNumber == 5)
 {
 m_roomNumber = 0;
 m_floorNumber++;
 }
}

Chapter 9

[227]

As we learned in Chapter 6, Procedurally Generating Art, to generate a new color we
need to generate three random values that lie between 0 and 255. These values are
the red, green, and blue channels that make up the color. The fourth value is alpha
and denotes the transparency of the sprite.

It's important to bear in mind that if we generate color values that are closer to 0,
we'll get a white color, and if we go too far on the other end, the color will be too
dark. For this reason, we aren't going to generate a number anywhere in the range of
0 to 255, but cap this slightly so that we always get a workable color. The alpha value
will be set to 255 every time, as we don't want any of the tiles to be transparent.

We'll generate a random color and then make a call to Level::SetColor, passing the
newly generated value to it. This will give the level a unique aesthetics:

// Increment our room/floor count and generate new effect if
necessary.
m_roomNumber++;

if (m_roomNumber == 5)
{
 // Move to next floor.
 m_roomNumber = 0;
 m_floorNumber++;

 // Generate a random color and apply it to the level tiles.
 sf::Uint8 r = std::rand() % 101 + 100;
 sf::Uint8 g = std::rand() % 101 + 100;
 sf::Uint8 b = std::rand() % 101 + 100;

 SetColor(sf::Color(r, g, b, 255));
}

This is the second time we wanted to generate a random color. Given
this, it might be a good candidate to receive its own function. As a short
exercise, abstract this code into its own function and update the game
code accordingly.

Procedural Dungeon Generation

[228]

Before we can run our game and see the results, we need to make one more change.
Currently, a random level color will only be set when we move the floors for the
first time. We need to execute the same code when our level is first generated. We
can do this in the constructor of the level. Let's simply append the following code to
Level::Level, as follows:

. . .

// Store the column and row information for each node.
for (int i = 0; i < GRID_WIDTH; ++i)
{
 for (int j = 0; j < GRID_HEIGHT; ++j)
 {
 auto cell = &m_grid[i][j];
 cell->columnIndex = i;
 cell->rowIndex = j;
 }
}

// Generate a random color and apply it to the level tiles.
sf::Uint8 r = std::rand() % 101 + 100;
sf::Uint8 g = std::rand() % 101 + 100;
sf::Uint8 b = std::rand() % 101 + 100;

SetColor(sf::Color(r, g, b, 255));

Now we're ready to run the game once more. We can see that when our level is a
random color, and when we make our way through 5 levels we know this color
will change!

Chapter 9

[229]

Let's run the game and see this in action:

Adding entry and exit points
Since we're no longer loading our level from pre-defined level data, we need to
calculate a valid entry and exit point for each room. Since the whole level is a maze,
we can generate an entry point right at the bottom of maze and make it the player's
goal to find the exit at the top of the level. The multiple passages and dead ends will
keep the player searching!

We already have these tiles defined in our wall enumerator, so it's a simple case of
finding locations for them in the level. As always, we'll start by declaring a function
in which this behavior will lie. It's always a good idea to encapsulate chunks of
code that perform a single task in a function. This not only makes behavior and
responsibility clear, but also makes code more reusable.

Let's declare the following function in Level.h:

private:
/**
 * Generates an entry and exit point for the given level.
 */
void GenerateEntryExit();

Procedural Dungeon Generation

[230]

Now, for the method body, we want to start by identifying suitable indices for the
start and end tiles. Since we'll place the tiles on the top and bottom rows, we only
have to generate a single index, namely the column. The rows' indices will be 0 and
GRID_HEIGHT-1 respectively.

To do this, we'll select a column index at random and check whether the location
is suitable for entry node. For the entry node, we need to ensure that there's no tile
above. Likewise, for the exit node, we need to ensure that there's nothing below us:

// Generates an entry and exit point for the given level.
void Level::GenerateEntryExit()
{
 // Calculates new start and end locations within the level.
 int startI, endI;
 startI = endI = -1;

 while (startI == -1)
 {
 int index = std::rand() % GRID_WIDTH;

 if (m_grid[index][GRID_HEIGHT - 1].type == TILE::WALL_TOP)
 {
 startI = index;
 }
 }

 while (endI == -1)
 {
 int index = std::rand() % GRID_HEIGHT;

 if (m_grid[index][0].type == TILE::WALL_TOP)
 {
 endI = index;
 }
}

Using the while loops like this needs to be approached with extreme
caution. If a valid tile did not exist, the program will hang and crash. In
this case, we can be sure that there's always a valid tile due to the way the
algorithm works.

Chapter 9

[231]

Now that we have the start and end nodes identified, all that's left is to set the nodes
as the correct type of tiles. The entry node needs to be set to TILE::WALL_ENTRANCE,
and the exit node has to be set to TILE::WALL_DOOR_LOCKED, as follows:

 // Set the tile textures for the entrance and exit tiles.
 SetTile(startI, GRID_HEIGHT - 1, TILE::WALL_ENTRANCE);
 SetTile(endI, 0, TILE::WALL_DOOR_LOCKED);
}

Now that this function is finished, we just need to make a call to it once a level is
generated. We'll do this at the end of the Level::GenreateLevel function right
after we calculate the textures:

 . . .

 // Generate a random color and apply it to the level tiles.
 sf::Uint8 r = std::rand() % 101 + 100;
 sf::Uint8 g = std::rand() % 101 + 100;
 sf::Uint8 b = std::rand() % 101 + 100;

 SetColor(sf::Color(r, g, b, 255));
 }

 // Add entrance and exit tiles to the level.
 GenerateEntryExit();
}

Setting a player's spawn location
Now we have identified the entrance and exit nodes, we need to move our player
accordingly. The code to generate a start node lies in the level class, so we're going to
need to add a function that will return this start location. We could just generate the
entrance and exit nodes in the game class, but this would be poor design. It's much
better to place the code where it belongs and create getter and setter methods to
access it.

However, before we can return the spawn location we actually have to
calculate it! To do so, we need to know where the entry node is. Once the
Level::GenerateEntryExit function has returned that information is lost. We
could iterate over the bottom row of the tiles to find it, but that would be inefficient.
Instead, we'll create a variable in Level class to hold this information and calculate
the spawn location in Level::GenerateEntryExit.

Procedural Dungeon Generation

[232]

Let's start by declaring these variables in Level.h, as follows:

/**
 * The spawn location for the current level.
 */
sf::Vector2f m_spawnLocation;

Now, we know that the entrance to each level is going to be somewhere in the
bottom row. This means that to calculate the spawn location we simply need to find
the absolute position of the tile immediately above that. The Level class already has
a function to get the absolute location of a tile, so it's as simple as making a single call
to that function and passing the correct tile.

While we're here we need to sneak in a little bit of similar code. We need to store the
location of the new exit so that the Level::UnlockDoor function knows which tile
to change. The Level class already has a variable for this information, so it's a simple
one-liner code that we'll sneak in.

Let's append this behavior to the end of the Level::GenerateEntryExit function,
as follows:

 // Set the tile textures for the entrance and exit tiles.
 SetTile(startI, GRID_HEIGHT - 1, TILE::WALL_ENTRANCE);
 SetTile(endI, 0, TILE::WALL_DOOR_LOCKED);

 // Save the location of the exit door.
 m_doorTileIndices = sf::Vector2i(endI, 0);

 // Calculate the spawn location.
 m_spawnLocation = GetActualTileLocation(startI, GRID_HEIGHT - 2);
}

Now all that we need is a dead simple getter function to return the spawn location
of the player, don't forget the declaration:

// Returns the spawn location for the current level.
sf::Vector2f Level::SpawnLocation()
{
 return m_spawnLocation;
}

Chapter 9

[233]

Now it's time to apply this spawn location to a player. Game::GenerateLevel is the
function where we generate a level so we'll set the player's location here. After the
call to Level::GenerateLevel we can fetch the spawn location, knowing that it will
be updated, and use this value as the position for the player.

We can also now uncomment the code to spawn a key, our call to
Game::PopulateLevel, and our call to Game::SpawnRandomTiles. With
our level now setup these function will work as intended. Let's get that code
uncommented, and update Game::GenerateLevel with the following:

// Generates a new level.
void Game::GenerateLevel()
{
 // Generate a new level.
 m_level.GenerateLevel();

 // Add a key to the level.
 SpawnItem(ITEM::KEY);

 // Populate the level with items.
 PopulateLevel();

 // 1 in 3 change of creating a level goal.
 if (((std::rand() % 3) == 0) && (!m_activeGoal))
 {
 GenerateLevelGoal();
 }

 // Moves the player to the start.
 m_player.SetPosition(m_level.SpawnLocation());
}

Procedural Dungeon Generation

[234]

Time to test the code. Now when we run the game, we should see not only a great
looking maze, but also an entrance at the bottom with our player directly above it,
and an exit at the top of the level:

Undoing the debug changes
The work on our dungeon generation is now complete! Let's quickly revert
the debug changes that we made to the code. We need to uncomment the line
that enables the game view and the lighting code; both of these lines are in the
Game::Draw function:

. . .

case GAME_STATE::Playing:
{
 // Set the main game view.
 //m_window.setView(m_views[static_cast<int>(VIEW::MAIN)]);

 // Set the main game view.
 m_window.setView(m_views[static_cast<int>(VIEW::MAIN)]);

Chapter 9

[235]

 // Draw level light.
 //for (const sf::Sprite& sprite : m_lightGrid)
 //{
 // m_window.draw(sprite);
 //}

 // Draw level light.
 for (const sf::Sprite& sprite : m_lightGrid)
 {
 m_window.draw(sprite);
 }

Instead of adding or removing the debug code like this, you could create
a dev mode that can be toggled and is available in the DEBUG mode.

Exercises
To help you test your knowledge of this chapter's content, here are a few exercises
that you should work on. They are not imperative to the rest of the book, but
working on them will help you assess your strengths and weaknesses in the
material covered:

1.	 There are many different algorithms available that could be used to generate
mazes, such as the randomized Prim's algorithm and Kruskal's algorithm.
Choose one of these algorithms and have a go at replacing the recursive
backtracking implementation with your own implementation.

2.	 We worked with quite a small level size. Try increasing it and varying the
characteristics of the levels that are generated. Increase the number of rooms,
their size, and so on.

3.	 You may have noticed that our torches are missing! Since we no longer load
the level from a level file, we need to add them ourselves. Torches should
be placed on tiles of the TILE::WALL_TOP type. Have a go at creating this
function yourself. If you get stuck, you can always look at the next chapter's
code for a hint on where to start.

Procedural Dungeon Generation

[236]

Summary
In this chapter we learned how our game, which previously loaded predefined
level data from a text file, can generate its own level data during runtime. This
brings a great level of replayability to the game, ensuring gameplay stays fresh and
challenging. We also used a function that we defined in the earlier chapters to bring
more character to our levels; we used sprite effects to create a distinct feeling for each
floor. Practically all aspects of our game are procedurally generated now, and we
have a fully-fledged roguelike project under our belt.

Now that our work on the template project is complete, we'll be using the final
chapter to take a look at component-based design. Procedural generation is all
about flexibility. Therefore, it makes sense that we'd want to work with the most
flexible architecture. Component-based architecture can achieve this. Having a good
understanding of this design approach will help you progress and build larger, more
flexible systems.

[237]

Component-Based
Architecture

Procedural game systems are incredibly versatile by nature. Therefore, the
frameworks and infrastructures that they're implemented into need to share the
same properties. Component-based systems, such as the Unity game engine, excel at
this, and typically offer more versatility over traditional inheritance-based systems.

When building a large, dynamic system such as a game engine, a tradition
inheritance-based approach will present problems. Inheritance structures become
messy and objects become larger as they are required to do more. As a result,
behavior becomes less encapsulated. A component-based approach solves these
issues, so to finish our work we'll branch off a little to take a look at what a
component-based system is, why it works hand in hand with procedural
generation, and how we can improve the existing engine to benefit from it.

In this chapter, we'll cover the following topics:

•	 Problems with a traditional inheritance approach
•	 The pros and cons of a component-based approach
•	 Understanding component-based architecture
•	 Implementing a component-based system

If you are unfamiliar with the Unity engine, head to https://
unity3d.com/ and check it out. It's one of the industry's
leading game engines and uses a component-based approach.
The best part is that it's completely free!

https://unity3d.com/
https://unity3d.com/

Component-Based Architecture

[238]

Understanding component-based
architecture
Component-based architecture, also known as component-based design and
modular programming, is an approach to software design that aims to break down
behavior into succinct, reusable components. We already do this to a certain extent
with object-orientated design, but component-based architecture takes this further.
For example, if an object such as a sprite or a 3D model needs a certain behavior, it
will be defined through a component that the object will own, as opposed to being
inherited from a base class.

Problems with a traditional inheritance-based
approach
Before we get into the pros and cons of a component-based approach, let's look at the
problems that a traditional inheritance-based approach brings. It's these problems
that we'll aim to fix.

Convoluted inheritance structures
Let's suppose that we have a simple player object that requires a 3D model and to
be effected by our game physics. Let's look at an inheritance structure that may be
needed to create this object:

You can see from this diagram that even this simple scenario can result in a complex
inheritance structure. If you now replace this simple example with an entire game
engine, you can imagine how complex and unmanageable the inheritance structure
would be.

Chapter 10

[239]

This is a major downfall of traditional inheritance-based design; as your system
grows larger, objects get more convoluted and entangled in the inheritance tree.
This complexity does not help us when we're trying to create a procedural system.
We want a system that is as flexible as possible.

Circular dependencies
Another problem that can arise with complex inheritance structures is that of circular
dependencies. This is where class A depends on class B, which in turn depends on
class A, and so on. The following diagram should make this clearer:

While circular dependencies can be avoided through proper program structure,
it becomes increasingly harder as the system grows larger. As the inheritance tree
grows, so do the dependencies, and it can cause real problems within a system. By
removing complex inheritance, we also remove the risk of messy dependencies.

Benefits of component-based architecture
As developers, we're always making trade-offs. It's imperative to know both the pros
and cons of an approach so that we can make informed decisions regarding whether
it belongs in a solution. Since we've identified some flaws with an inheritance-based
approach, and aim to solve them with a component-based approach, let's familiarize
ourselves with a few of its pros and cons.

Component-Based Architecture

[240]

Avoiding complex inheritance structures
We identified a hypothetical game situation earlier and looked at what a typical
inheritance-based approach might look like. Let's take a look at the same example
if we take a component-based approach:

It's clear that this solution is much simpler and neater than its inheritance-based
equivalent. Instead of obtaining its behavior from parents and thus creating a chain
of dependencies, it's instead broken into succinct components that can simply be
attached to an object.

Code is broken into highly reusable chunks
Another benefit of component-based architecture is the high reuse value of code once
it's encapsulated in a component. Once encapsulated, behavior can be easily given to
objects by simply attaching the component. This not only avoids duplicate code, but
also makes it easy to build complex objects by combining multiple components. This
is where it lends itself to procedural generation. We can procedurally put objects
together like Lego with these reusable components.

Highly maintainable and scalable
As a result of the code being reusable, it also makes it very easy to maintain. If a set
of objects all obtain their behavior from a single source, then only one edit is needed
and it will affect them all.

Component-based systems are also easier to scale. Since our components are succinct
individual modules and don't have complex dependencies, we can add them at will.
If we want new behavior, we don't have to worry about questions such as Where it
will go?, What will it depend on?, What will it inherit from?, and so on. We simply build
the new component and use it where we need to.

Chapter 10

[241]

The disadvantages of component-based
architecture
Now it's time to have a look at the opposing side of the argument. Although
component-based design does bring with it a range of great benefits, there are
things that you need to consider.

Code can become too fragmented
To a certain extent this is the goal of component-based design: to break code into
manageable chunks. But this can be taken too far. If objects and functionality are
broken down too far, then we end up with the code base scattered into hundreds of
tiny components, making it a mess. Always keep this in mind. Yes, we do want to
break our code into manageable and reusable components; just don't go crazy
with it!

Unnecessary overhead
Expanding on the previous point, if code is broken down into too many small
components, then we'll see an increase in useless overhead. If a project contains
many components, we'll frequently find ourselves dipping in and out of them to
perform tasks. While adding a component might make code easier to manage and
maintain, it also introduces overhead when it's used.

Complex to use
The final disadvantage of components is simply their use, as it can be more complex
than a traditional object model. Instead of accessing a member function directly, we
have to go through the component that they belong to. If we have 20 components in
an object, then we have to remember where the variables are and which component
we need to use. While it's not rocket science, it's certainly more complex than having
a single object that directly owns all the behavior and data.

An overview
Hopefully, it's now clear how component-based design aids procedural design more
than a traditional inheritance-based approach. Procedural generation is all about
flexibility, and when systems grow to a certain size an inheritance-based system
can struggle to provide that. By allowing us to break code into reusable objects,
component-based design keeps code flexible and without dependencies so that
we can move components wherever we want.

Component-Based Architecture

[242]

Designing the component system
A component-based system can be implemented in many ways. So, before we write
any code, let's look at some possibilities. The goal is to break reusable behavior into
succinct components and be able to add and remove them from the existing objects
with ease. All objects share a common base class named object so we'll add the
facility to add components to and remove them from this class. We can then ensure
that it will be propagated to all the subsequent classes in the project.

There are a number of ways to implement a component-based approach, and there
is no single right answer. For example, we could create a function to add or remove
each component individually. Here's an example:

bool	 AttachSpriteComponent(SpriteComponent spriteCompontent);
bool	 AttachInputComponent(InputComponent inputComponent);

While this will make things straightforward, we will have a lot of duplicate code in
the class. Also, every time we add a component, we will have to create two matching
functions: one to get the component and one to set it. That's a bit cumbersome!

Another approach involves simply making the component values public. So, instead
of interacting with the components through functions, we can directly access them
through the object that they belong to:

Object object;
object.spriteComponent = SpriteComponent();

Even though this is an attractive option, as it would make life a thousand times
simpler for us, it's almost never a good idea to make variables public like this.
Having to make variables public to make code work usually indicates a flaw in
the architecture of the system. If you ever find that this is the case, the cause of the
problem should be sorted.

If we look at an existing component-based game engine such as Unity, we can
see how they approach this problem. The following code demonstrates how
to get a component from an object in Unity. This is taken directly from the
Unity documentation:

// Disable the spring on the HingeJoint component.
HingeJoint hinge = GetComponent<HingeJoint>();
hinge.useSpring = false;

Chapter 10

[243]

We can see that a single function named GetComponent is defined, and a type is
supplied to return the corresponding component. We could create a similar system
using enumerators to denote the type, allowing users to specify a component type
via a parameter and then using that in a switch statement to return the correct
variable.Let's assume that we created an AttachComponent function to add a
component to an object using the following declaration:

void AttachComponent(COMPONENT_TYPE type, Component component);

In the function definition, we have something that looks like this:

void Object::AttachComponent(COMPONENT_TYPE type, Component component)
{
 switch (type)
 {
 case SOME_TYPE:
 m_someTypeVariable = component;
 break;
. . .

This would work fine if the user passed a matching type and component, but
there's nothing about this that will guarantee that. For example, a user can specify
a movement component but actually pass an audio component, and that would be
bad! We'll actually solve this through the use of templates!

C++ templates
C++ templates allow us to define functions and classes that work with generic
types. This allows a function or a class to accept any type, and it only has to be
written once. This is what we want. We want to define a single get/set function
for components, and we'll template them to make them generic and flexible.

Let's take a look at a practical example of templates to get a better idea of how they
actually work.

Using templates
Let's suppose that we require a function to add two numbers, and we want to
support a range of types. To achieve this, we could declare a function for each
type that we want to support, as follows:

int Add(int value1, int value2)
{
	 return value1 + value2;
}

Component-Based Architecture

[244]

double Add(double value1, double value2)
{
 return value1, value2;
}

Looking at these two functions, the only thing that is different about them is their
return and parameter types. How great would it be if we could say "Don't worry
about the type, I'll give you it later" and just have one function? Enter templates!

Template declarations
C++ templates allow us to define functions with generic types and specify the type
later as we call the function. It's an incredibly useful feature that creates flexible
and reusable code instead of having multiple function definitions that are almost
identical. If you use templates, the previous example requires only one function:

template<typename T>
T Add(T value1, T value2)
{
 T value;
 Value = value1 + value2;
 return value;
}

Template parameters can use either the typename or the class keywords.
Both of these keywords are entirely interchangeable and do the same
thing. However, they can be used as a hint to denote the parameter type.
Use class if a parameter is a class, and use typename with all the other
types (int, char*, and so on).

The following syntax is used to declare a template:

template<template-parameters> function-declaration;

In the declaration, we create a template parameter named T. This gives us an
ambiguous data type that can be used within the function declaration until an
actual type is set later when the template is called. The generic T type can be used
just like normal types: specifying the return types, creating variables, and setting the
parameter types.

The name of your template parameters can be anything that you like,
although it's most commonly TYPE or T.

Chapter 10

[245]

Templates can also have multiple types defined. For example, let's say that a function
needs to take two different data types. We can use the following template:

template<typename T1, typename T2>
bool AreEqual(T1 value1, T2 value2)
{
 return value1==value2;
}

Finally, templates can also be used with normal data types and they don't have
to be ambiguous:

template<typename T, int I>
T IntegerMultiply(T value1)
{
 return value1 / value2;
}

Using templates
With the templates defined, let's have a look at how to use them. We've given the
templates ambiguous types, so one way to call them is to explicitly tell the template
what type we want to work with. This is done by passing a type in the <> brackets
after the function/class call:

float floatValue = Add<float>(1.f, 2.f);
bool isEqual = AreEqual<double, int>(5.0, 5);
int intValue = IntegerMultiply<float, 2>(1.f);

The first two are straightforward; we assigned a type for each template parameter.
However, the last one is slightly different. Since the second type is fixed, there's no
need to specify it in angle brackets. Instead, we can use it like a normal parameter,
passing the value that we want to use. This leaves us with just one parameter in the
parentheses: the generic type value.

Something important that needs to be noted is that the value of template parameters
is determined at compile time. This means that for each different instantiation of
a template, a unique function is created. In the last example, the value of the int is
passed as a template function, which means that a function that is hard-coded to
multiply by the value 2 is created.

Let's suppose that we called IntegerMultiple twice:

int intValue = IntegerMultiply<float, 2>(1.f);
int intValue = IntegerMultiply<float, 10>(1.f);

Component-Based Architecture

[246]

Even though we've called the same template, the complier will create two different
versions of IntegerMultiply. One version will always multiply by 2, and the
other version will always multiply by 10. For this reason, the second template's
parameters, the integers, have to be constant expressions. The following code will
result in a compilation error:

int a = 10;
int intValue = IntegerMultiply<float, a>(1.f);

These functions can also be called without the type being explicitly denoted in
angle brackets when the type can be resolved by the compiler. For this to happen
there needs to be no ambiguity regarding the type. For example, the following
calls are fine:

float floatValue = Add(1.f, 2.f);
bool isEqual = AreEqual(5.0, 5);

In these calls, each ambiguous type in the template is given a single type. The
compiler can therefore deduce the type of T automatically. However, consider a
scenario where different parameters are passed:

float floatValue = Add(1.f, 2);

T now has two possible values, which means that the compiler cannot deduce the
type and will result in an error.

Template specialization
Now that we have an understanding of how templates work in general, let's have a
look at template specialization. We already know that we can define a template with
generic types and define them later when we call the function. That's fine if all the
possible implementations share the same behavior, but what if we want different
behavior depending on the type?

Let's suppose that we want to use the Add function with a string type. We want to
pass in two words, but we want to put in a space between them when this is the case.
The default template function doesn't facilitate this so we have to specialize it for this
case. To specialize a template we simply create a declaration where we replace the
ambiguous type with a fixed one, which is std::string in our case:

template<>
std::string Add<std::string>(std::string value1, std::string value2)
{

Chapter 10

[247]

 std::string result;
 result = value1 + " " + value2;
 return result;
}

Now, when the template function is called and the std::string type is specified, it
will use this definition and not the generic one. With this, we can still use templates
but provide specific implementations for certain types. Very handy.

If you wish to learn more about C++ templates, visit http://www.
cplusplus.com/doc/tutorial/templates/. This is a great site in
general, and it has some awesome information on this topic.

Function overloading
Somewhat similar to templates, function overloading is another way in which we
can make code and classes more versatile. We've already used overloaded functions
during the course of the book, but they were provided with the code base. So, let's
take a quick look at them.

When we define functions, we set fixed parameter types. Here's an example:

void DoStuff(T parameter);

With this definition, we can only pass a parameter of the T type. What if we want
a choice of parameters? What if we want to be able to pass parameters of type T or
type Y. Well, we can redefine the function, setting the same return type and name,
but with unique parameters:

void DoStuff(T parameter);
void DoStuff(Y parameter);

We now have two function declarations with different parameters. When we
call DoStuff, we'll have the option of which parameter to pass. Also, with
function overloading, each declaration gets its own body, just like with template
specialization. While similar on the surface, function overloads and template
specializations work in different ways, though that's beyond the scope of this book.
For now, all that we need is a basic understanding of them and we can get started!

As with templates, for further reading on function overloading, visit
http://www.cplusplus.com/doc/tutorial/functions2/.

http://www.cplusplus.com/doc/tutorial/templates/
http://www.cplusplus.com/doc/tutorial/templates/
http://www.cplusplus.com/doc/tutorial/functions2/
http://www.cplusplus.com/doc/tutorial/functions2/

Component-Based Architecture

[248]

Creating a base component
With the theory covered, let's implement this into our project. The overwhelming
message of this chapter has so far has been to use components to avoid messy
inheritance, but we still need some inheritance as we need to use polymorphism!

Each object will be able to hold a range of components so we'll store them in a single
generic container. In order for us to do this we need to make use of polymorphism,
ensuring that all components inherit from a common base class. That base class is
what we're going to implement now.

Let's add a new class to the project and call it Component. We'll leave it to you to
implement the .cpp:

#ifndef COMPONENT_H
#define COMPONENT_H

class Component
{
public:

 /**
 * Default Constructor.
 */
 Component();

 /**
 * Create a virtual function so the class is polymorphic.
 */
 virtual void Update(float timeDelta) {};
};
#endif

Note that we've added a virtual update function here as a class must have at least
one virtual function in order to be polymorphic. With the Component base class
created, we can now add the functions to get and set components, and they will
reside in the base Object class so that they are available to all objects.

Component functions
If we think about the behavior that we want, we need to be able to give an object a
component of any given type. We also need to be able to fetch that same component
later. We'll call these functions AttachComponent and GetComponent.

Chapter 10

[249]

Earlier in the chapter, we identified how we can use templates to create a function
with generic types and give them real values when we need them. We'll use
templates and polymorphism to create these two functions.

Attaching a component
The first function that we're going to write will be used to attach a component of a
given type to the Object class. Since we've already identified that we're going to
store all components in a single generic container, this function will be a relatively
simple template. The only thing that we need to be aware of is that we should not
add the same component twice!

Let's start by defining the container, as that's where we'll store the objects. Since we
need to take advantage of polymorphism, we can't store actual objects. So instead,
we're going to use shared pointers so that we can pass them around with ease.

Let's start by defining the generic container in Object.h. Don't forget to #include
our new Component class so that Object can see it:

private:
/**
 * A collection of all components the object has attached.
 */
std::vector<std::shared_ptr<Component>> m_components;

Now it's time for the actual AttachComponent method. We could take a naïve
approach and just append the new component to the generic container. The
problem here is that we could add multiples of the same component type, and that's
not something that we want. Before we add the component to the collection, we'll
first check whether a component of the same type already exists, and for that, we'll
use the std::dynamic_pointer_cast function.

This function lets us cast between pointers and returns a null pointer if it fails. It's
very handy, and when combined with templates, we can create a single function
that will accept any component type, create one, check whether one of the same type
already exists, and if it does, it will overwrite it. We'll define this template function
inline in the header. Let's add the following code to Object.h:

/**
 * Attaches a component to the object.
 */
template <typename T>
std::shared_ptr<T> AttachComponent()
{

Component-Based Architecture

[250]

 // First we'll create the component.
 std::shared_ptr<T> newComponent = std::make_shared<T>();

 // Check that we don't already have a component of this type.
 for (std::shared_ptr<Component>& exisitingComponent : m_
components)
 {
 if (std::dynamic_pointer_cast<T>(exisitingComponent))
 {
 // If we do replace it.
 exisitingComponent = newComponent;
 return newComponent;
 }
 }

 // The component is the first of its type so add it.
 m_components.push_back(newComponent);

 // Return the new component.
 return newComponent;
};

Using templates, we can operate with the generic T type, which allows us to perform
the cast to check whether the types match. If they do match, we overwrite the old
component with the new one; if not, we simply add it to our collection. We also
return the new component when we're done in case the user wants it straightaway.

That's all there is to it, and the beauty of using templates like this is how scalable the
system is. It doesn't matter if we add 1,000 components; this function will be able to
attach them to any object.

Retuning a component
The next template that we need to create is for a function that's used to return a given
component. Again, let's think about where we'll need the generic type. The function
will need to return the component type, so that needs to be generic, and we also need
to find the correct component type. So, we'll use the generic type in the pointer cast
like we did with the previous function.

Chapter 10

[251]

Let's get this template defined in the header of Object:

/**
* Gets a component from the object.
*/
template <typename T>
std::shared_ptr<T> GetComponent()
{
 // Check that we don't already have a component of this type.
 for (std::shared_ptr<Component> exisitingComponent : m_components)
 {
 if (std::dynamic_pointer_cast<T>(exisitingComponent))
 {
 return std::dynamic_pointer_cast<T>(exisitingComponent);
 }
 }

 return nullptr;
};

With this, we have the ability to add any component to any object and return the
correct type. The best part is that two simple functions provide all this functionality!
How awesome are templates!

If you want to test this code before we move on you can do. At the end of the
Game::Initialize function, add the following lines:

m_player.AttachComponent<Component>();
m_player.AttachComponent<Component>();

std::shared_ptr<Component> component = m_player.
GetComponent<Component>();

If you use breakpoints and look at the values at runtime, you'll see that this code
does the following things:

•	 It adds a new Component object to the generic container
•	 It tries to add a second Component object; so it instead overwrites the

current one
•	 It realizes that we want the component with the type Component; so it

returns it

Component-Based Architecture

[252]

Creating a transform component
With the ability to attach and return components, let's get our first component built
and added. We'll start with a simple one first. Currently, all objects have a position
by default that's provided by the Object base class. Let's break this behavior into its
own component.

Encapsulating transform behavior
Since we're converting an inheritance-based approach to a component-based one,
the first task is to take the transform behavior out of the Object class. Currently, that
consists of a single position variable and a function to both get and set that value.

Let's create a new class named TransformComponent and move this behavior into it,
as follows:

#ifndef TRANSFORMCOMPONENT_H
#define TRANSFORMCOMPONENT_H

#include "Component.h"

class TransformComponent : public Component
{
public:
 TransformComponent();
 void SetPosition(sf::Vector2f position);
 sf::Vector2f& GetPosition();

private:
 sf::Vector2f m_position;
};
#endif

We'll also take the function definitions from Object.cpp file and place them in
TransformComponent.cpp, as follows:

#include "PCH.h"
#include "TransformComponent.h"

TransformComponent::TransformComponent() :
m_position({ 0.f, 0.f })
{
}

Chapter 10

[253]

void TransformComponent::SetPosition(sf::Vector2f position)
{
 m_position = position;
}

sf::Vector2f& TransformComponent::GetPosition()
{
 return m_position;
}

We now have a component that will provide a position to an object. The last thing
that we need to do is include the header for this component in the Object class so
that all the extending classes can see it. Let's add the following code to Object.h:

. . .

#ifndef OBJECT_H
#define OBJECT_H

#include "Component.h"
#include "TransformComponent.h"

class Object
{
public:

. . .

It's time to add this component to the objects! This is a large task, and it's one that
will be left for you to complete in your own time, but to demonstrate how it's done,
we'll quickly add the component to the player class.

Adding a transform component to the player
Since we placed the two functions to attach and get components in the base Object
class, we can call AttachComponent directly from within the player. We'll do this in
the constructor as we'll need the component set up before we get to any logic. Let's
head to Player::Player and add the following code to it:

// Add a transform component.
AttachComponent<TransformComponent>();

Component-Based Architecture

[254]

That's all there is to it! The player now has all the data and functionality that we
added to the transform component, and when we want to use it, we can simply go
through this new component. You may remember that we identified overhead as one
of the potential downsides of component-based design. We can see now how moving
the behavior into a component has introduced overhead.

Using the transform component
The final part to this puzzle will be looking at how we use the new component.
Previously, if we wanted to get the position of the player, all we had to do was
use the following code:

// Get the position.
sf::Vector2f playerPos = m_position;

// Set the position.
m_position = sf::Vector2f(100.f, 100.f);

Since these values now belong to the transform component, we need to make a
slight change and access those values through the component instead, as follows:

// Get the transform component.
auto transformComponent = GetComponent<TransformComponent>();

// Get the position.
sf::Vector2f position = transformComponent->GetPosition();

// Set the position.
transformComponent->SetPosition(sf::Vector2f(100.f, 100.f));

Since these functions are public, we can call them anywhere. For example, if we
were in the game class and wanted the position of the player object, we would do
something like this:

sf::Vector2f position = m_player.GetComponent<TransformComponent>()-
>GetPosition();

Updating the game code
With the architecture in place, and an understanding of how the transform
component works, it's time to update the game code to make use of the new
component. This will require a number of changes. For this reason, we won't be
running through them in the chapter; it's left as a task for you!

Chapter 10

[255]

Every object that has a position will need a transform component adding, and
the places where these position variables are used will now need to be accessed via
the component. If at any point you get stuck, refer to the previous code examples.
If you do run through the project and make these changes yourself, make sure
that you give the project a run once you're done to ensure that everything is still
running smoothly:

Although things may look the same, we know that the underlying system is now
much more flexible, maintainable, and saleable. Let's create more components!

Creating a SpriteComponent
The next component that we're going to make is a SpriteComponent. This will
provide an object with either a static or an animated sprite. It's a behavior that
is commonly reused through many objects so is a great candidate to be moved into
a component.

Component-Based Architecture

[256]

Encapsulating sprite behavior
Currently, all the animation-related behavior is inherited from the base Object class.
The following code consists of all the sprite- and animation-related functions and
variables that we'll pull from Object into its own class:

public:
 virtual void Draw(sf::RenderWindow &window, float timeDelta);
 bool SetSprite(sf::Texture& texture, bool isSmooth, int frames =
1, int frameSpeed = 0);
 sf::Sprite& GetSprite();
 int GetFrameCount() const;
 bool IsAnimated();
 void SetAnimated(bool isAnimated);

protected:

 sf::Sprite m_sprite;

private:

 void NextFrame();

private:

 int m_animationSpeed;
 bool m_isAnimated;
 int m_frameCount;
 int m_currentFrame;
 int m_frameWidth;
 int m_frameHeight;

Currently, every object that we create has these variables and functions but doesn't
necessarily need them which is a waste. With our component, we can give an object
this behavior without worrying about inheritance.

Let's start by creating a new class in the project and call it SpriteComponent,
ensuring that it extends the base Component class.

Keeping a clean project is important. Create folders and organize
your classes into logical groups!

Chapter 10

[257]

Now, we can add all the functions and variables that we pulled out of Object:

#ifndef SPRITECOMPONENT_H
#define SPRITECOMPONENT_H

#include <SFML/Graphics.hpp>
#include "Component.h"

class SpriteComponent : public Component
{
public:
 SpriteComponent();

 virtual void Draw(sf::RenderWindow &window, float timeDelta);
 bool SetSprite(sf::Texture& texture, bool isSmooth, int frames =
1, int frameSpeed = 0);
 sf::Sprite& GetSprite();
 int GetFrameCount() const;
 bool IsAnimated();
 void SetAnimated(bool isAnimated);

private:

 void NextFrame();

private:
sf::Sprite m_sprite;
 int m_animationSpeed;
 bool m_isAnimated;
 int m_frameCount;
 int m_currentFrame;
 int m_frameWidth;
 int m_frameHeight;
};
#endif

We've made some slight changes here regarding the public/protected/private
modifiers that we use. Previously, with things being inheritance-based, a number
of functions and variables were given the protected keyword, exposing them to
child classes. Since we're moving away from inheritance, all of these have now
been moved to private.

Component-Based Architecture

[258]

We now just need to initialize the variables in the initializer list of the constructor,
and add the function's definitions in SpriteComponenet.cpp. Again, these can just
be picked up from the Object class and moved over. Also, don't forget to include the
class in Object.h:

. . .

#ifndef OBJECT_H
#define OBJECT_H

#include "Component.h"
#include "TransformComponent.h"
#include "SpriteComponent.h"

class Object
{
public:

. . .

With the class complete and the header included, we can now implement
the component!

Adding a sprite component to the player class
Let's continue using the player class to demonstrate, giving the class a sprite
component. We decided earlier that the best place for this is within the constructor.
So, let's add the following code to Player::Player right after we create the
transform component:

 . . .

 // Add a transform component.
 AttachComponent<TransformComponent>();

 // Add a sprite component.
 AttachComponent<SpriteComponent>();
}

Chapter 10

[259]

The updated drawing pipeline
Now that our objects are able to receive sprite components, we need to update
the drawing pipeline so that they can be used. Currently, we loop through all the
objects in the main game loop, drawing each in turn. However, the object itself isn't
responsible for drawing now, the sprite component is (if it has one, that is). In
the main draw loop, instead of iterating over all the objects and calling their Draw
function directly, we need to check whether they have a sprite component attached,
and if they do, call the Draw function of the component. The GetComponent function
returns a nullprt if no component is found making this easy to check:

. . .

// Draw all objects.
for (const auto& item : m_items)
{
 //item->Draw(m_window, timeDelta);

 auto spriteComponent = item->GetComponent<SpriteComponent>();

 if (spriteComponent)
 {
 spriteComponent->Draw(m_window, timeDelta);
 }
}

. . .

With the drawing pipeline updated, let's quickly look at how to use the component.

Updating the game code
Here comes the big job again! On every occasion where a sprite is used, we need
to update the code to go through the sprite component instead. As with the last
component, this brings many changes to the code so is another task for you to
complete in your own time.

It's is also suggested at the end of the chapter that you try to split this component
into multiple types: one for static sprites and another for animated sprites. This
will keep the code even more encapsulated and efficient as currently this component
provides animation even if it isn't needed.

Component-Based Architecture

[260]

If you do undertake this, hopefully nothing has imploded and you still are able
to compile without issues. If all is well, we will see nothing new, but that's a
good thing!

Creating an audio component
The final component that we're going to create is an audio component. Now, this is
the first component that we'll create from scratch. However, our experience with the
two previous components should make this one easy to implement.

Defining the behavior of an audio component
This is slightly different from our past components. Instead of encapsulating existing
behavior, we need to define it. We're going to create a simple audio component, and
the only behavior that we're going to have is the ability to play a single sound effect.
For this, we'll require a single variable to hold the sound object, a function to set a
sound buffer, and a function to play the sound.

In the function that will be used to set the sound buffer, we're going to make use of
function overloading. If we think about how we may want to use this function, we
might either want to pass an already created sound buffer into the component or
pass a path to one and create it before we use it. We covered function overloading
earlier in the chapter, and this is a textbook case of its use. We define the same
function name and return type but varying parameter types.

Chapter 10

[261]

Let's add this new AudioComponent class to the project, as follows:

#ifndef AUDIOCOMPONENT_H
#define AUDIOCOMPONENT_H

#include "SFML/Audio.hpp"
#include "Component.h"

class AudioComponent
{
public:
 AudioComponent();

 void Play();
 bool SetSoundBuffer(sf::SoundBuffer& buffer);
 bool SetSoundBuffer(std::string filePath);

private:
 sf::Sound m_sound;
};
#endif

Again, we'll leave it as an exercise for you to complete this class and provide
definitions for the functions. With the class complete let's not forget that we have
to include the class in the Object.h file so that all the objects can see and use it:

. . .

#ifndef OBJECT_H
#define OBJECT_H

#include "Component.h"
#include "TransformComponent.h"
#include "SpriteComponent.h"
#include "AudioComponent.h"

class Object

. . .

Component-Based Architecture

[262]

Adding an audio component to the player
class
The final step is to actually hook up our components to the object. We've covered
doing this before and it's simply a case of adding a call to the AttachComponent
function, specifying AudioComponent as the type. To demonstrate this on the player,
let's add an audio component along with the sprite and transform components:

 . . .

 // Add a transform component.
 AttachComponent<TransformComponent>();

 // Add a sprite component.
 AttachComponent<SpriteComponent>();

 // Add an audio component.
 AttachComponent<AudioComponent>();
}

Using the audio component
Using the audio component is very simple. We give it a sound buffer, which is either
a pre-constructed one, or the path to a file that needs to be loaded, and then call
the AudioComponent::Play function. Let's give the player their own attack sound
instead of it been held in the main game class. After we give the player the audio
component, let's set up the sound that it will use:

 . . .

 // Add an audio component.
 AttachComponent<AudioComponent>();

 // Set the player's attack sound.
 GetComponent<AudioComponent>()->SetSoundBuffer("../resources/
sounds/snd_player_hit.wav");
}

In the main class, where we detect the collision with the player, we now play the
sound via this component instead directly:

. . .

// Check for collision with player.
if (enemyTile == playerTile)
{

Chapter 10

[263]

 if (m_player.CanTakeDamage())
 {
 m_player.Damage(10);
 //PlaySound(m_playerHitSound);
 m_player.GetComponent<AudioComponent>()->Play();
 }
}

. . .

You can see just how easy it was to add this behavior to an object, and it's not much
work to add it to as many objects as we want! If we want to make a change, we just
need to change the component class, and it affects all the child classes. Brilliant!

Exercises
To help you test your knowledge of this chapter's content, here are a few exercises
that you should work on. They are not imperative to the rest of the book, but
working on them will help you assess your strengths and weaknesses in the
material covered:

1.	 Move the game input from a fixed, static class to a component.
2.	 Split SpriteComponent into two individual components; one that provides

a static sprite, and one that provides an animated sprite.
3.	 Create a component that encapsulates a certain behavior and use it in

your game.

Summary
In this chapter we took a good look at component-based architecture, including
the major benefits that it brings when creating procedural systems and how it can
be achieved through the use of templates. The approach outlined in this chapter
is just one of many possible implementations so I encourage you to experiment
with different methods. Its plug-and-play nature makes it very flexible, which
is an important trait that we look for when creating procedural systems.

In the next chapter, we're going to take a retrospective look at the project and the
topics that we covered as we reach the end of the book. For each area of procedural
generation that we've used, we'll also identify some jumping-off points should you
wish to explore the topic in more depth.

[265]

Epilogue
With our game finished, and after a quick foray into component based design,
our introduction to procedural content generation is complete. We started simply
with the generation and use of random numbers, and worked our way right
up to creating complex procedural behaviors and content. We've touched upon
many subjects, and hopefully working through this book has helped define what
procedural generation is, and given some solid examples of how to approach and
implement it in your games.

Before you close the book for the final time, let's take a quick look back at the project,
identifying how and where we implemented procedural generation. We'll then
reiterate its pros and cons one last time before finishing our work.

Project breakdown
Our game project started as a blank roguelike template with limited functionality,
but with our work, we turned it into a fully fledged procedural roguelike game. Let's
run through the project to identify how we used procedural generation to do so.

We'll also identify some further possible exercises for each chapter if you wish
to explore the topic in detail. The goal of this book was to introduce you to the
fundamentals of the topic, so hopefully you can hit the ground running as you
take this further.

Procedurally populating environments
We started by spawning game items randomly around the level. This involved the
generation of random numbers within a given range and using those as tile indices
and enumerator values. This was the first time we used random numbers and
enumerators to select random values and items, which is a technique that we
relied heavily on throughout the course of the book.

Epilogue

[266]

If you wished to take this further, you could have a look at how to bias the spawn
location of items or limit it to certain areas of the map. So, for example, you can
bias the spawn location in such a way that all the gems will tend to spawn to
the right-hand side of the level, and all the gold to the left-hand side. While not
immediately beneficial to our project, you can imagine how it might be useful in
other situations. You may want all your enemies to spawn at a certain part of the
level, or a certain item to spawn in a given area of the map. Gaining more control
over your game levels will be very beneficial.

Creating unique and random game objects
With our items now spread around the levels, we turned our attention to making
them more random and unique. Instead of hardcoding item variables we generated
them during runtime, making the objects more varied. We used this technique to
create multiple object types from a single class, such as all potions coming from the
same class.

To extend this further in the project, why not try adding some random armor
and/or weapons? They can be dropped by the enemies and have random sprites
and statistics. You can take the same approach that we took with potions and
create an ambiguous class that can generate a vast range of possibilities.

Procedurally generating art
In this chapter, we had a look at how to create art procedurally. We started with a
simple approach by using SFML's built-in sprite modification functions and moved
on to a more complex approach in which we rendered multiple sprite components
together to create new, unique ones, giving the enemies random armor.

If you want to learn more, you should have a look at how to create art completely
from scratch. There are algorithms, such as Perlin and Simplex noise, that generate
2D noise. These algorithms can be used as a base for a procedural texture. Start
looking at such algorithms and take it from there.

Procedurally modifying audio
Procedurally generating audio is a complex task. Therefore, the work that we did in
this chapter was somewhat brief and really limited to modifying the existing sound
procedurally as opposed to their outright creation. As with art, SFML provides a
range of functions to edit sounds, such as pitch and volume, which were used to give
simple sounds some variance. We then created spatialized 3D sound using SFML's
built-in audio functions, giving our game some depth.

Chapter 11

[267]

Sound can be generated entirely procedurally, but it's a complex and difficult process
and as such, it isn't very popular as compared to other procedural implementations.
However, if you want to look into this further, you could perhaps start by creating
single sounds and learn how a computer produces them. From here, it's a case of
learning how to put these sounds together to create something appealing, and then
generating a procedural algorithm to do so. It's not for the faint-hearted, that's
for sure!

Procedural behavior and mechanics
Progressing from the simple use of random numbers and selecting values from
enumerators, we implemented a much more sophisticated and meaty procedural
system, giving the enemies a basic AI in the form of pathfinding. We implemented
A* pathfinding, enabling the enemies to chase the player around the maze. We also
created a system to generate random level goals, so now our player is periodically
presented with a unique goal in return for a unique reward.

The game mechanics that we generated are rather simple, so why not have a go
at generating some more complex ones yourself? You can give players an actual
task that has to be completed in order to continue playing the game. Otherwise, if
it was the AI work that captured your interest, you could build upon it, making
the enemies smarter and more of a challenge. Maybe if they lose line of sight of the
player they will stop chasing, or they try predict player movement to block you off
instead of simply following.

Procedural dungeon generation
For our pièce de résistance, we implemented procedural dungeon generation.
Until this point levels were loaded from a text file, but we implemented a recursive
backtracker algorithm to generate a maze and then added rooms to that maze to
create more open areas. Thus, levels are now procedurally generated, and we can
generate a new one with a single function call.

There are lots of ways to approach procedural dungeon generation, and a number
of different algorithms that can be utilized for this. If this area interests you there's
plenty of room to explore. Take a look at some alternate algorithms and experiment
with the implementation. Try to generate some rooms with different characteristics,
or add some environmental and aesthetic features to give a level more character.

Epilogue

[268]

A great resource for further reading is http://weblog.jamisbuck.
org/. The blog is a goldmine for everything related to maze generation
and covers a number of algorithms. You should definitely check it out.

Component-based architecture
Procedural content generation revolves around flexibility and as such, I felt that
touching upon component-based design would be a good way to end our work.
Through component-based design, we can create a flexible code base whose
inherent flexibility will make it easier to implement procedural systems.

We ran through the fundamentals of component-based design in this chapter and
looked at a couple of isolated examples. A good exercise is to run through the
project, moving it over to an entirely component-based approach. This will really get
you familiar with the concept, and you'll be ready to use it in your next project.

The pros and cons of procedural
generation
For the last time, let's have a look at the major pros and cons of using procedural
generation in our games.

Pros
•	 It creates dynamic content
•	 It can save on memory usage
•	 It saves development time and money
•	 It creates a large variety of options
•	 It increases replayability

http://weblog.jamisbuck.org/
http://weblog.jamisbuck.org/

Chapter 11

[269]

Cons
•	 You relinquish control*
•	 It can be taxing on hardware
•	 It can feel repetitive
•	 It's hard to script set game events
•	 It may generate unusable content

* The amount of control that you will relinquish depends upon the quality
of your algorithm. At the end of the day, you're the one that writes the
algorithm. Therefore, you can make it do what you want.

Summary
I hope that you found the content in this book useful. The goal was to introduce you
to the vast topic that procedural generation is, and I felt that working with a real
game was the best way to do that. We covered the key areas of development and
identified ways to use procedural generation in each aspects. Hopefully, you now
have enough knowledge to use it in your own games, and can undertake further
reading to learn more about the areas that interest you the most.

Remember, procedural generation isn't just one thing or one approach. It's the
dynamic generation of content. There's no one right way to implement it, so
experiment. Find new ways to create content dynamically and play with it.
There's no wrong answer.

Happy programming!

[271]

Index
Symbol
3D sound

attenuation 154, 155
audio listener 152
defining 152
minimum distance 153
sound position 155

A
A*

enemy, enabling to follow path 185, 186
implementing, in game 185
pathfinding behavior, calling 187
path, viewing 188-190

A* algorithm
closed list 166
defining 164
F value 167
G value 167
H, G, and F costs 166
H value 167
implementing 165
level, representing as nodes 165
Manhattan distance 167, 168
open list 166
parenting nodes 168
pseudo-algorithm 169

algorithms
Kruskal 235
Prim 235

Allegro
URL 29

A* pathfinding algorithm
adjacent nodes, finding 176-179

coding 170
final path, creating 184
G and F costs, calculating 180
H values, precalculating 174
main loop, defining 175, 176
superior paths, checking 181-183
supporting functions, creating 171
Tile datatype 171
variable declarations 173, 174

art
generating procedurally 266
procedural generation, used with 113

Artificial Intelligence (AI) 18, 161
ASCII table

URL 56
audio

modifying procedurally 266, 267
audio component

adding, to player class 262
behavior, defining 260
creating 260
using 262, 263

audio manipulation
about 18
behavior and mechanics 18
Dungeon generation 18

B
base component

creating 248
Boolean values

number between 0 and 1, generating 45, 46
setting randomly 45
spawned item, selecting 47, 48

[272]

breakpoints
using 251

build systems
about 23
reference link 24

C
class diagram 24
class keyword 244
closed list 166
Code::Blocks IDE

about 22
cons 23
pros 22

collision 27
color

generating, at random 121
complex animations

creating 115
component-based architecture

about 238, 268
benefits 239, 240
disadvantages 241
overview 241

component-based design 18
Component functions

about 248
component, attaching 249, 250
component, returning 250, 251

component system
designing 242

C++ reference
URL 3

cryptography 3
C++ templates

about 243
declarations 244
template specialization 246
URL 247
using 243, 245

custom package, SFML
reference link 37

D
deterministic machines 2
Doxygen

URL 25
DreamSpark

URL 22
dungeon generation

defining 204
maze, generating 205
rooms and mazes, connecting 206
rooms, generating 204

dynamic libraries 37

E
enemy class

generating 101-103
enemy sprites

armor textures, rendering 134
armor tier, selecting 132, 133
creating procedurally 127
debugging 136, 137
default armor textures, loading 131
default draw behavior, overriding 135
draw setup 128
final textures, rendering 134
sprite components, selecting 129-131
sprites, breaking into components 127, 128
testing 136, 137

environment
populating procedurally 265, 266

F
function overloading

defining 247
URL 247

G
game seed

setting 43, 44
game template

breaking down 24
downloading 24

[273]

game tiles
editing 137-139

G and F costs
calculating 180, 181

GNU Compiler Collection (GCC) 37

H
heuristic 164

I
IDE

about 21
selecting 21, 23

inheritance 30, 31
Integrated Development

Environment. See IDE
items, spawning randomly

about 70-73
enemies, spawning randomly 79-81
enumerators, using 74
optional parameters 74, 75
spawn code, updating 78, 79
spawn functions 75-77
spawning system, expanding 73

L
level data 25, 26
level tiles 65, 66
loops

repeating 58, 59

M
main game loop

reference link 41
Manhattan distance 167
maze generation

passages, carving 213-216
preparing for 211

Microsoft Visual Studio
about 22
cons 22
pros 22

modified sprites
image, saving to file 126
RenderTexture class, drawing 125
saving 124
texture, passing into image 124, 125

modifiers
using 114

modulo operator 6
multiple textures

combining 114

N
navigation meshes

URL 165
Nintendo Entertainment System (NES) 10

O
object hierarchy 25
object slicing

about 33-36
reference link 35

open list 166

P
pathfinding algorithm

about 162, 163
defining 162
URL 185

pointers 33-36
polymorphism

about 30
reference link 30

potential obstacles
about 64
keeping, within the bound of level 64
meaningful levels, creating 64
overlapping objects, avoiding 64

preset color
selecting 119, 120

procedural behavior and mechanics
defining 267

[274]

procedural dungeon generation
about 207
defining 267, 268
Game and Level class, updating 209-211
maze, generating 211
maze view, changing 207
rooms, adding 217-219
URL 268

procedural generation
about 1
benefits 13, 14
cons 268, 269
defining 2
drawbacks 15, 16
environments, populating 17
implementing 17
pros 268
unique game objects, creating 17
used, with art 113
using, in games 10
versus random generation 2

procedural generation usage
map generation 11
space, saving 10

procedural items
about 103
Random Gem and Heart classes 103, 104
Random gold class 104-106

procedural level design
benefits 201, 202
considerations 202, 203

procedurally generated art
benefits 115
drawbacks 116

procedurally generated level goals
active goal, checking 195, 196
defining 190
function declaration 190, 191
goal, drawing on screen 197, 198
random goal, generating 191-194
variable declaration 190, 191

pure virtual functions 32

R
random characters

generating 55-57
random elements

accessing, of collection 52, 53
random generation

defining 2
versus procedural generation 2

random item
spawning 53-55

random main track
selecting 143, 144

random stats
giving, to player 50, 51

randomness
defining 2
pseudorandom number generation 3
random numbers, generating in C++ 4, 5
random numbers,

generating within range 6, 7
truly random numbers, generating 4

random number distribution
defining 48, 49

Random Number
Generator (RNG) 18, 63, 114

random number of items
spawning 60, 61

random numbers
URL 4

random player character
array, returning 97, 98
creating 87
player class, selecting 88
player stats, buffing 94
random character traits 95, 97
sprites and textures 89
sprite, setting 89-92
trait sprites, setting 98-100

random potion class
defining 106
potion pickups, determining 109-111
random potion, creating 106-109

[275]

random tiles, spawning
about 82
new game tile, adding 82
random tile, selecting 83

recursive backtracker
about 206, 207
algorithm 205

roguelikes
about 16
history 16

roguelike template setup
about 36
item, adding 40
item, drawing 41
item, updating 41
project, running 39, 40

S
SDL2

URL 29
seeds

about 7
defining 7, 8
random numbers, generating 10
random seeds, generating during runtime 9
using 8, 9

SFML
about 21, 28
alternatives 29
colors, working 118, 119
defining 28
downloading 37
download link 37
learning 29
linking 37, 38
need for 28
reference link 29
URL 3, 119

SFML audio
defining 142
sf::Sound, versus sf::Music 142
sf::Sound, versus sf::SoundBuffer 142

SFML Blueprints
reference link 29

SFML Essentials
reference link 29

SFML Game Development
reference link 29

SFML sprite modifiers
using 117

Sfxr
about 13
URL 13

smart pointers
reference link 25

sound effects
adding 144-147
audio listener 148-150
editing 147
fluctuation, creating in pitch 150-152
sound function, playing 148

sound position
fixed positions 155, 156
moving positions 156-158

spawn area
defining 66
level bounds, calculating 66, 67
underlying game grid, checking 67, 68

SpawnRandomTiles function
implementing 84

sprite component
adding, to player class 258
creating 255
game code, updating 259
reference 129
sprite behavior, encapsulating 256-258
updated drawing pipeline 259

sprite effects
using 114

sprites
creating, of random color 119
creating, of random size 123

static libraries 37
static libraries, versus dynamic libraries

reference link 37

[276]

suitable game tile
checking 69
converting, to absolute position 70
selecting 68
selecting randomly 69

supporting functions
creating 171
Enemy class 172
Level class 171

T
texture creation

about 12
animation 12
sound 13

textures
creating, from scratch 114

tile textures
Bitwise tile maps 220, 221
calculating 223-225
debug changes, undoing 234, 235
entry and exit points, adding 229-231
if/else approach 220
selecting 220
spawn location, setting 231-233
tile values, calculating 221
tile values, mapping to 222, 223
unique floor themes, creating 226-228

traditional inheritance-based approach
challenges 238, 239
circular dependencies 239
convoluted inheritance structures 238

transform component
adding, to player 253
creating 252
game code, updating 254, 255
transform behavior, encapsulating 252, 253
using 254

typename keyword 244

U
unique and random game objects

creating 266
unique art

creating 17
Unity engine

URL 237

V
vectors

references 186
versatility 116
virtual functions 31, 32

Thank you for buying
Procedural Content Generation
for C++ Game Development

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Learning C++ by Creating Games
with UE4
ISBN: 978-1-78439-657-2 Paperback: 342 pages

Learn C++ programming with a fun, real-world
application that allows you to create your own
games!

1.	 Be a top programmer by being able to visualize
programming concepts; how data is saved in
computer memory, and how a program flows.

2.	 Keep track of player inventory, create monsters,
and keep those monsters at bay with basic spell
casting by using your C++ programming skills
within Unreal Engine 4.

Getting Started with C++
Audio Programming for Game
Development
ISBN: 978-1-84969-909-9 Paperback: 116 pages

A hands-on guide to audio programming in game
development with the FMOD audio library
and toolkit

1.	 Add audio to your game using FMOD and
wrap it in your own code.

2.	 Understand the core concepts of audio
programming and work with audio at different
levels of abstraction.

3.	 Work with a technology that is widely
considered to be the industry standard in
audio middleware.

 Please check www.PacktPub.com for information on our titles

SFML Blueprints
ISBN: 978-1-78439-847-7 Paperback: 298 pages

Sharpen your game development skills and improve
your C++ and SFML knowledge with five exciting
projects

1.	 Master game components and their interaction
by creating a hands-on multiplayer game.

2.	 Customize your game by adding sounds,
animations, physics, and a nice user interface
to create a unique game.

3.	 A project-based book starting with simpler
projects and moving into increasingly complex
projects to make you proficient in game
development.

CryENGINE Game Programming
with C++, C#, and Lua
ISBN: 978-1-84969-590-9 Paperback: 276 pages

Get to grips with the essential tools for developing
games with the awesome and powerful CryENGINE

1.	 Dive into the various CryENGINE subsystems
to quickly learn how to master the engine.

2.	 Create your very own game using C++, C#,
or Lua in CryENGINE.

3.	 Understand the structure and design of
the engine.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	Acknowledgment
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: An Introduction to Procedural Generation

	Procedural generation versus random generation
	Procedural generation
	Random generation

	Introducing randomness
	Pseudorandom number generation
	Why computers can't generate truly random numbers
	Generating random numbers in C++
	Generating random numbers within a range

	Seeds
	Defining seeds
	Using seeds
	Generating random seeds during the runtime
	Controlled randomness is the key to generating random numbers

	The use of procedural generation in games
	Saving space
	Map generation

	Texture creation
	Animation
	Sound

	Benefits of procedural generation
	Larger games can be created
	Procedural generation can be used to lower budgets
	An increase in gameplay variety
	An increase in replayability

	The drawbacks of procedural generation
	More taxing on the hardware
	Worlds can feel repetitive
	You sacrifice quality control
	You may generate an unplayable world
	It is hard to script set game events

	A brief history of rogue-like games
	How we'll implement procedural generation
	Populating environments
	Creating unique game objects

	Creating unique art
	Audio manipulation
	Behavior and mechanics
	Dungeon generation

	Component-based design
	The complete game
	Exercises
	Summary

	Chapter 2: Project Setup and Breakdown

	Choosing an IDE
	Microsoft Visual Studio
	Code::Blocks
	Other IDEs
	Build systems

	Breaking down the game template
	Download templates
	The class diagram
	The object hierarchy
	Level data
	Collision
	Input

	Simple and Fast Multimedia Library (SFML)
	Defining SFML
	Why we'll be using SFML
	Learning SFML
	Alternatives

	Polymorphism
	Inheritance
	Virtual functions
	Pure virtual functions
	Pointers and object slicing

	The roguelike template setup
	Downloading SFML
	Linking SFML
	Running the project
	Adding an item
	Updating and drawing

	Exercises
	Summary

	Chapter 3: Using RNG with
C++ Data Types

	Setting the game seed
	Setting Boolean values randomly
	Generating a number between 0 and 1
	Choosing if an item spawns

	Random number distribution
	Giving the player random stats
	Accessing random elements of a collection
	Spawning a random item
	Generating random characters
	Repeating loops
	Spawning a random number of items
	Exercises
	Summary

	Chapter 4: Procedurally Populating Game Environments

	Potential obstacles
	Keeping within the bounds of a level
	Avoiding overlapping objects
	Creating meaningful levels

	Level tiles
	Defining the spawn area
	Calculating the level bounds
	Checking the underlying game grid

	Selecting a suitable game tile
	Randomly selecting a tile
	Checking whether a tile is suitable
	Converting to absolute position

	Spawning items at a random location
	Expanding the spawning system
	Using enumerators to denote an object type
	Optional parameters
	The complete spawn functions
	Updating the spawn code
	Randomly spawning enemies

	Spawning random tiles
	Adding a new game tile
	Choosing a random tile
	Implementing the SpawnRandomTiles function

	Exercises
	Summary

	Chapter 5: Creating Unique and Randomized Game Objects

	Creating a random player character
	Choosing a player class
	An overview of sprites and textures
	Setting an appropriate sprite
	Buffing the player stats
	Random character traits
	Returning the player traits array
	Setting trait sprites

	Procedurally generating an enemy class
	Procedural items
	Random Gem and Heart classes
	Random gold class

	The random potion class
	Creating a random potion
	Determining potion pickups

	Exercises
	Summary

	Chapter 6: Procedurally Generating Art

	How procedural generation is used
with art
	Using sprite effects and modifiers
	Combining multiple textures
	Creating textures from scratch
	Creating complex animations

	The benefits of procedurally generated art
	Versatility
	Cheap to produce
	It requires little storage

	The drawbacks of procedurally generated art
	Lack of control
	Repeatability
	Performance heavy

	Using SFML sprite modifiers
	How colors work in SFML
	Creating sprites of a random color
	Selecting a preset color at random
	Generating a color at random

	Creating sprites of a random size

	Saving modified sprites
	Passing a texture into an image
	Drawing to a RenderTexture class
	Saving an image to a file

	Creating enemy sprites procedurally
	Breaking sprites into components
	The draw setup
	Randomly selecting sprite components
	Loading the default armor textures
	Choosing the armor tier
	Rendering the armor textures
	Rendering the final textures
	Overriding the default draw behavior
	Debugging and testing

	Editing the game tiles
	Exercises
	Summary

	Chapter 7: Procedurally Modifying Audio

	An introduction to SFML audio
	sf::Sound versus sf::Music
	sf::SoundBuffer

	Selecting a random main track
	Adding sound effects
	Editing sound effects
	Playing a sound function
	The audio listener
	Creating a fluctuation in a pitch

	3D sound – spatialization
	The audio listener
	The minimum distance
	Attenuation
	The position of the sound
	Fixed positions
	Moving positions

	Exercises
	Summary

	Chapter 8: Procedural Behavior and Mechanics

	An introduction to pathfinding
	What is a pathfinding algorithm?
	Dijkstra's algorithm
	The A* algorithm

	A breakdown of A*
	Representing a level as nodes
	The open and closed list
	The H, G, and F costs
	The H value
	The G value
	The F value

	The Manhattan distance
	Parenting nodes
	The pseudo-algorithm

	Coding the A* pathfinding algorithm
	The Tile datatype
	Creating supporting functions
	The Level class
	The Enemy class

	Variable declarations
	Precalculating the H values
	Defining the main loop
	Finding the adjacent nodes
	Calculating the G and F costs
	Calculating the G and F cost

	Checking for superior paths
	Creating the final path

	Implementing A* in the game
	Enabling the enemy to follow a path
	Calling the pathfinding behavior
	Viewing our path

	Procedurally generated level goals
	The variable and function declarations
	Generating a random goal
	Checking whether a goal is complete
	Drawing the goal on the screen

	Exercises
	Summary

	Chapter 9: Procedural Dungeon Generation

	The benefits of procedural level design
	Replayability
	A reduction in development time
	Larger game worlds

	Considerations
	A lack of control
	Required computing power
	Suitability

	An overview of dungeon generation overview
	Generating rooms
	Generating a maze
	Connecting rooms and mazes

	The recursive backtracker
	Procedurally generating a dungeon
	Changing how we view the maze
	Updating the Game and Level classes
	Generating a maze
	Preparing before the generation of a maze
	Carving passages

	Adding rooms

	Choosing the tile textures
	The if/else approach
	Bitwise tile maps
	Calculating the tile values
	Mapping the tile value to textures
	Calculating tile textures
	Creating unique floor themes
	Adding entry and exit points
	Setting a player's spawn location
	Undoing the debug changes

	Exercises
	Summary

	Chapter 10: Component-Based Architecture

	Understanding component-based architecture
	Problems with a traditional inheritance-based approach
	Convoluted inheritance structures
	Circular dependencies

	Benefits of component-based architecture
	Avoiding complex inheritance structures
	Code is broken into highly reusable chunks
	Highly maintainable and scalable

	The disadvantages of component-based architecture
	Code can become too fragmented
	Unnecessary overhead
	Complex to use

	An overview

	Designing the component system
	C++ templates
	Using templates
	Template declarations
	Using templates
	Template specialization

	Function overloading
	Creating a base component
	Component functions
	Attaching a component
	Retuning a component

	Creating a transform component
	Encapsulating transform behavior
	Adding a transform component to the player
	Using the transform component
	Updating the game code

	Creating a SpriteComponent
	Encapsulating sprite behaviour
	Adding a sprite component to the player class
	The updated drawing pipeline
	Updating the game code

	Creating an audio component
	Defining the behavior of an audio component
	Adding an audio component to the player class
	Using the audio component

	Exercises
	Summary

	Chapter 11
: Epilogue
	Project breakdown
	Procedurally populating environments
	Creating unique and random game objects
	Procedurally generating art
	Procedurally modifying audio
	Procedural behavior and mechanics
	Procedural dungeon generation
	Component-based architecture

	The pros and cons of procedural generation
	Pros
	Cons

	Summary

	Index

