
Processing
for Android

Create Mobile, Sensor-Aware, and
VR Applications Using Processing
—
Andrés Colubri

www.allitebooks.com

http://www.allitebooks.org

Processing for
Android

Create Mobile, Sensor-Aware, and
VR Applications Using Processing

Andrés Colubri

Processing for Android: Create Mobile, Sensor-Aware, and VR Applications
Using Processing

Andrés Colubri
Cambridge, Massachusetts, USA

ISBN-13 (pbk): 978-1-4842-2718-3		 ISBN-13 (electronic): 978-1-4842-2719-0
https://doi.org/10.1007/978-1-4842-2719-0

Library of Congress Control Number: 2017958640

Copyright © 2017 by Andrés Colubri

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Technical Reviewer: Anthony Tripoldi
Coordinating Editor: Jessica Vakili
Copy Editor: April Rondeau
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
email orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please email rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in
this book is available to readers on GitHub via the book’s product page, located at
www.apress.com/978-1-4842-2718-3. For more detailed information, please visit
http://www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-2719-0
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/978-1-4842-2718-3
http://www.apress.com/source-code
http://www.allitebooks.org

To Jihyun, for her encouragement to take on new challenges.
To my family, for their support while being far away.

v

Contents at a Glance

About the Author�� xvii

About the Technical Reviewers��� xix

Acknowledgments��� xxi

Preface�� xxiii

■■Part I: First Steps with Processing for Android��������������� 1

■■Chapter 1: Getting Started with Android Mode�������������������������������� 3

■■Chapter 2: The Processing Language�� 17

■■Chapter 3: From Sketch to Play Store��� 41

■■Part II: Drawing and Interaction������������������������������������ 57

■■Chapter 4: Drawing Graphics and Text�� 59

■■Chapter 5: Touchscreen Interaction��� 89

■■Chapter 6: Live Wallpapers�� 111

■■Part III: Sensors��� 141

■■Chapter 7: Reading Sensor Data�� 143

■■Chapter 8: Driving Graphics and Sound with Sensor Data���������� 157

■■Chapter 9: Geolocation�� 181

www.allitebooks.com

http://www.allitebooks.org

■ Contents at a Glance

vi

■■Part IV: Wearables and Watch Faces��������������������������� 211

■■Chapter 10: Wearable Devices��� 213

■■Chapter 11: Visualizing Time��� 227

■■Chapter 12: Visualizing Physical Activity������������������������������������ 243

■■Part V: 3D and VR�� 273

■■Chapter 13: 3D in Processing�� 275

■■Chapter 14: VR Basics��� 303

■■Chapter 15: Drawing in VR�� 331

■■Appendix A: Gradle and Android Studio Integration�������������������� 357

■■Appendix B: Processing Libraries��� 371

Index��� 377

vii

Contents

About the Author�� xvii

About the Technical Reviewers��� xix

Acknowledgments��� xxi

Preface�� xxiii

■■Part I: First Steps with Processing for Android��������������� 1

■■Chapter 1: Getting Started with Android Mode�������������������������������� 3

What Is the Processing Project?��� 3

The Processing Language��� 3

The Processing Development Environment��� 4

Extending Processing��� 7

The Contribution Manager��� 7

Processing for Android��� 8

Installing the Android mode��� 9

Interface of Android Mode��� 10

Running a Sketch on a Device��� 12

Running a Sketch in the Emulator��� 14

Summary�� 16

■■Chapter 2: The Processing Language�� 17

A Programming Sketchbook for Artists and Designers�������������������������� 17

The Setup/Draw Structure of a Processing Sketch�������������������������������� 17

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

Drawing with Code��� 20

Screen Coordinates��� 21

Form�� 23

Color�� 27

Geometric Transformations��� 30

Responding to User Input��� 32

Creating a Vine-Drawing App��� 34

Summary�� 40

■■Chapter 3: From Sketch to Play Store��� 41

Sketching and Debugging�� 41

Getting Information from the Console��� 41

Getting More Information with logcat�� 43

Using the Integrated Debugger�� 44

Reporting Processing Bugs��� 45

Preparing a Sketch for Release�� 45

Adjusting for Device’s DPI��� 45

Using the Emulator�� 48

Setting Icons and Package Name�� 51

Setting Package Name and Version��� 51

Exporting as a Signed Package��� 52

Summary�� 55

■■Part II: Drawing and Interaction������������������������������������ 57

■■Chapter 4: Drawing Graphics and Text�� 59

Renderers in Processing�� 59

Drawing Shapes��� 60

More Shape Types��� 60

Curve Shapes�� 62

■ Contents

ix

Shape Attributes�� 70

Shape Styles�� 72

Shape Contours��� 73

The PShape Class��� 74

Creating PShapes�� 75

Loading Shapes from SVG��� 78

Drawing Images��� 80

Texturing Shapes��� 81

Drawing Text��� 82

Loading and Creating Fonts��� 83

Text Attributes�� 85

Scaling Text��� 86

Summary�� 87

■■Chapter 5: Touchscreen Interaction��� 89

Touch Events in Android��� 89

Basic Touch Events�� 89

Multi-touch Events�� 96

Touch-based Interaction��� 100

Shape Selection��� 101

Scrolling�� 102

Swipe and Pinch�� 105

Using the Keyboard�� 108

Summary�� 109

■■Chapter 6: Live Wallpapers�� 111

Live Wallpapers�� 111

Writing and Installing Live Wallpapers�� 111

Using Multiple Home Screens��� 113

Handling Permissions�� 116

www.allitebooks.com

http://www.allitebooks.org

■ Contents

x

Particle Systems�� 120

Autonomous Agents��� 121

Image Flow Field��� 126

An Image-flow Wallpaper��� 128

Loading, Resizing, and Cropping Images��� 128

Putting Everything Together�� 130

Using Threads�� 134

Controlling the Hue�� 136

Wrapping the Project Up�� 138

Summary�� 139

■■Part III: Sensors��� 141

■■Chapter 7: Reading Sensor Data�� 143

Sensors in Android Devices�� 143

Accelerometer��� 143

Gyroscope�� 144

Magnetometer��� 144

Location��� 144

Accessing Sensors from Processing�� 145

Creating a Sensor Manager��� 145

Adding a Sensor Listener�� 146

Reading Data from the Sensor�� 147

Reading from Other Sensors��� 149

The Ketai Library�� 150

Installing Ketai��� 150

Using Ketai�� 151

Event Handlers in Ketai��� 153

Summary�� 156

■ Contents

xi

■■Chapter 8: Driving Graphics and Sound with Sensor Data���������� 157

Using Ketai to Read Sensor Data�� 157

Measuring Acceleration�� 157

Shake Detection�� 158

Step Counter�� 159

Audio-Visual Mapping of Step Data��� 160

Playing Audio��� 165

Using the Magnetic Sensor�� 169

Creating a Compass App��� 170

The Gyroscope�� 174

Controlling Navigation with the Gyroscope��� 177

Summary�� 180

■■Chapter 9: Geolocation�� 181

Location Data in Android�� 181

Using Location API in Processing��� 182

Location Permissions�� 183

Event Threads and Concurrency�� 186

Location with Ketai�� 190

Using Additional Location Data�� 192

A Street View Collage��� 193

Using Google Street View Image API�� 195

Voronoi Tessellations��� 197

Using an Offscreen Drawing Surface��� 202

Putting Everything Together�� 204

Summary�� 210

www.allitebooks.com

http://www.allitebooks.org

■ Contents

xii

■■Part IV: Wearables and Watch Faces��������������������������� 211

■■Chapter 10: Wearable Devices��� 213

From Activity Trackers to Smartwatches�� 213

Smartwatches��� 214

Running Watch-Face Sketches�� 215

Using a Watch�� 215

Using the Emulator�� 218

Displaying Time��� 220

Counting Steps�� 221

Designing for Smartwatches�� 222

Screen Shape and Insets��� 223

Watch Face Preview Icons��� 225

Summary�� 226

■■Chapter 11: Visualizing Time��� 227

From Sundials to Smartwatches�� 227

Using Time to Control Motion�� 228

Square Versus Round Watch Faces��� 231

Working with a Watch Face Concept�� 235

Elapsed/Remaining Time��� 235

Adding Interaction��� 237

Loading/Displaying Images��� 239

Summary�� 241

■■Chapter 12: Visualizing Physical Activity������������������������������������ 243

Body Sensors��� 243

Step Counter�� 243

Heart Rate�� 244

■ Contents

xiii

Visualizing Physical Activity in Real-time��� 245

Simple Step Counter�� 245

Accessing the Heart-rate Sensor��� 246

Visualizing Step-count Data�� 249

A Beating Heart�� 250

Sensor Debugging��� 253

Growing a Tree as You Exercise�� 257

Generating a Tree with a Particle System�� 258

Incorporating Step-count Data�� 260

Tweaking the Watch Face�� 263

Blooming the Tree�� 264

Summary�� 272

■■Part V: 3D and VR�� 273

■■Chapter 13: 3D in Processing�� 275

The P3D Renderer�� 275

A 3D Hello World�� 275

The Camera��� 277

Immediate Versus Retained Rendering��� 279

3D Transformations�� 281

Combining Transformations��� 282

3D Shapes�� 284

Custom Shapes�� 286

PShape Objects��� 288

Loading OBJ Shapes�� 291

Lighting and Texturing�� 293

Light Sources and Material Properties�� 294

Texture Mapping�� 298

Summary�� 302

www.allitebooks.com

http://www.allitebooks.org

■ Contents

xiv

■■Chapter 14: VR Basics��� 303

Google VR��� 303

Cardboard and Daydream�� 303

Hardware Requirements�� 304

VR in Processing�� 304

Stereo Rendering��� 306

Monoscopic Rendering�� 308

VR Interaction��� 309

Eye and World Coordinates�� 310

The Line of Sight�� 312

Selecting a Shape with Screen Coordinates�� 315

Bounding Box Selection��� 318

Movement in VR��� 322

Automatic Movement��� 324

Free-range Movement��� 326

Summary�� 329

■■Chapter 15: Drawing in VR�� 331

Creating a Successful VR Experience��� 331

Drawing in VR�� 332

Initial Sketches�� 333

A Simple VR UI�� 334

Drawing in 3D��� 339

Flying Around��� 347

Final Tweaks and Packaging�� 352

Intro Text�� 353

Icons and Package Export��� 354

Summary�� 356

■ Contents

xv

■■Appendix A: Gradle and Android Studio Integration�������������������� 357

Google’s Tools for Android Development�� 357

Exporting a Sketch as a Gradle Project��� 359

Importing into Android Studio�� 361

Adding a Processing Sketch to a Layout��� 366

■■Appendix B: Processing Libraries��� 371

Extending Processing with Libraries�� 371

Data��� 373

GUI��� 373

Hardware/Sensors��� 374

Geometry/Utilities�� 374

Sound and Video�� 374

Writing New Libraries��� 375

Index��� 377

www.allitebooks.com

http://www.allitebooks.org

xvii

About the Author

Andrés Colubri is a programmer, scientist, and artist, and long-time contributor to
the Processing project. He originally obtained a doctoral degree in mathematics at the
Universidad Nacional del Sur in Bahía Blanca, Argentina, and was a Burroughs Wellcome
postdoctoral fellow at the University of Chicago, where he studied the protein folding
problem. Later on, he completed an MFA from the Design Media Arts department at the
University of California, Los Angeles. Andrés uses Processing to carry out research at the
intersection between interaction, visualization, and computing. He currently works at the
Broad Institute of Harvard and MIT, developing new methods and tools for analysis of
biomedical data. http://andrescolubri.net/

http://andrescolubri.net/

xix

About the Technical
Reviewers

Jose Luis Garcia del Castillo is an architect, computational designer, and educator.
He advocates for a future where programming and code are tools as natural to designers
as paper and pencil. In his work, he explores creative opportunities at the intersection
of design, technology, fabrication, data and art. His current research focuses on the
development of digital frameworks that help democratize access to robotic technologies
for designers and artists.

Jose Luis is a registered architect, and holds a Master in Architectural Technological
Innovation from Universidad de Sevilla and a Master of Design Studies in Technology
from the Harvard University Graduate School of Design. He has worked as a structural
consultant for several international firms, such as OMA, Mecanoo, and Cesar Pelli,
as well as data visualization architect at Fathom Information Design. He is also the
co-founder of ParametricCamp, an international organization whose mission is to spread
the knowledge of computational design among designers and architects.

Jose Luis currently pursues his Doctor of Design degree at the Material Processing
and Systems group at the Harvard Graduate School of Design, works as Research
Engineer in the Generative Design Team at Autodesk Inc., and teaches computational
creativity in the Arts+Design Department at Northeastern University.

Anthony Tripaldi started programming in 2004, with a background in design and
animation. By 2007 he went all in on Flash as the future of the web. Once realizing his
devastating mistake, he pivoted, making Android apps and interactive installations with
Processing for clients of all types. Once the ad industry had taken its toll, he found his way
into Google Creative Lab, where he helped lead the creation of Android Experiments, a
platform for artists and engineers alike to celebrate creativity on Android.

Gottfried Haider, born 1985 in Vienna, works as an artist, educator and software
tool-maker. He received a degree in Digital Arts at University of Applied Arts Vienna in
2009. After receiving a Fulbright Scholarship in 2010, he pursued a MFA in Design Media
Arts at University of California Los Angeles, which he finished in 2013. His artwork has
been displayed in various venues and publications internationally.

www.allitebooks.com

http://www.allitebooks.org

xxi

Acknowledgments

During the past few months, I have learned that writing a book demands a significant
personal effort, but, at the same time, it is the unequivocal confluence of the work, ideas,
dreams, and passions of countless individuals. Since it would be impossible to track all
the threads coming into the junction represented by this book, I will acknowledge the
invaluable contributions of those who are most directly related to this project, knowing I
will leave out many others.

I would like to start by extending my most earnest gratitude to Ben Fry, Casey Reas,
and Daniel Shiffman, without whom this book would not have been possible. Their
tireless work with Processing has enabled people from all over the world to use code in
art and design, and made it possible for those coming from the sciences and engineering
(like myself) to discover the possibilities of visual literacy within technology. Very special
recognition goes to Jonathan Feinberg, who together with Ben, wrote the initial version of
the Android mode the book is based upon, as well as to Pardis Sabeti, for supporting and
encouraging my Processing work with her tireless enthusiasm. I also want to thank all the
members of the Processing Foundation for putting forward a framework that promotes
learning, diversity, and inclusion in the creative coding community and that empowers
work such as mine.

Daniel Sauter and Jesus Duran made very important contributions to the Processing
for Android project early on with their Ketai library, and also by organizing the Mobile
Processing Conference at the School of Art and Design at the University of Illinois at
Chicago, to which I was invited as speaker and workshop instructor in all editions from
2011 to 2013. These events were key to sustaining the initial momentum of the project
into the present, and so my deepest recognition goes to them.

I would like to make a very special mention of all the Google Summer of Code
students who worked on various Processing for Android projects during the past
years: Sara Di Bartolomeo and Rupak Daas (GSoC 2017), Mohammad Umair (GSoC
2015), and Imil Ziyaztdinov (2014). Their contributions were absolutely crucial to the
continued improvement and growth of Processing for Android. I am also very grateful
for the existence of the GSoC program, which allowed these extraordinary coding and
mentorship experiences with students of diverse backgrounds and origins.

Many thanks to Daniel Murphy, Shayan Amir-hosseini, Richard The, and Jen
Kurtzman from Google Creative Lab in New York, who supported the renewed efforts
behind the Processing for Android project during 2016, which led to this book.

As I mentioned at the beginning, a book like this is the result of the work of many
people, but among them the technical reviewers played a critical role in ensuring that
the book is correct, well structured, and easy to understand by its final audience. My
reviewers, to whom I am deeply indebted, are Anthony Tripaldi, Kate Hollenbach, Jose
Luis García del Castillo y López, and Gottfried Haider.

■ Acknowledgments

xxii

Likewise, I am very grateful to the Apress editors, Natalie Pao, Jessica Vakili, and
James Markham, who, with their hard work and professionalism (and their patience with
a novice writer), accompanied me along the way from draft idea to published book.

I would like to acknowledge Neil Zhao and Dean Kessey (on behalf of her late
mother, Dr. Masumi Hayashi) for graciously allowing me to use reproductions of their
work in the book.

Last, but not least, I thank the entire Processing community for their endless
creativity, enthusiasm, and appreciation, which has been one of my most important
motivations over the years.

www.allitebooks.com

http://www.allitebooks.org

xxiii

Preface

By Ben Fry
The Android version of Processing got its start when I received an email from Andy
Rubin back in February 2009. He was interested in having Processing be more tightly
integrated with Android. The discussion led to initial funding, which helped us work on
building an Android version of the project during the year or two that followed. For one
of the test applications, I used some code developed by Casey Reas (the co-founder of the
Processing project), and we were elated to see the first version of it up and running on the
G1, the very first widely available Android device.

I was especially excited, and still am, about the Android platform as an incredible
canvas to work from. You have mobile devices with a range of ways to communicate
with the outside world (mobile network, wi-fi, Bluetooth, etc.), higher-performance
CPUs than even the desktop machines we first used to develop Processing in 2001 (not
to mention GPU performance better than the SGI workstations we were using around
the same time), and a broad range of sensors—accelerometer, magnetometer, GPS, and
gyroscope—that opened an amazing number of possibilities for applications and ideas.
It’s the platform I wish we’d had when we first started the project, with its focus on all the
interesting use cases that come from openness and having the right set of tools and APIs
to go along with it.

I’m especially excited, for instance, about possibilities like completely reinventing
the mobile phone interface, because all those pieces are available to be customized,
and you’re just a few activities or fragments away from an entirely different end-user
experience. Since the Handspring (later Palm) Treo, mobile phone interfaces really
haven’t changed much—a grid of applications as a home screen, and a phone “app”
that essentially emulates the interface of a touch-tone phone. The Treo’s interface dates
to 2008 and built on the Palm Pilot interface from 1997, which itself referenced other
organizer tools and too many icon-driven interfaces to mention from decades prior. The
touch-tone phone, meanwhile, dates to at least 1968. Suffice to say, we’re still working
with a set of forms, interactions, and metaphors that have been heavily repurposed over
the years, and I’m drawn to the idea of people experimenting with alternative interfaces
and having the ability to rethink how those elements might work. Innovation comes from
getting people the right tools to play with ideas, and while a new phone interface may not
necessarily be around the corner, there’s so much to be learned during the process itself.

This idea of experimentation and exploration is at the core of the Processing project.
Projects are called “sketches” to keep people in the mindset of writing a small amount
of code to get started, not overthinking it too much until they understand their problem
better. This is not unlike scribbling something in a sketchbook and flipping to a new
page—perhaps even tearing out the previous page and throwing it out. This approach is a
little backward, as typical software engineering practice encourages figuring out structure

■ Preface

xxiv

first and filling in the details over time. However, we found that our iterative approach
was helpful not just for our professional work, but also for teaching beginners how to get
started. We built Processing in a way that allowed people to write a few lines of code that
would make something happen—no knowledge of classes, threads, animation loops,
or double-buffering necessary. Over time, as the user’s experience grew and their ideas
became more ambitious, they could learn the details of these more complex concepts.
Interestingly, this mirrored things that we, as more seasoned developers, also wanted:
why write a lot of the same boilerplate to do the same things? Why get RSI retyping the
same handler and utility functions? Could we give people a toolbox that was useful
enough on its own that starting a project didn’t mean collecting the initial set of libraries
that were required just to get things done?

A related idea was simply how one gets started. Most integrated development
environments (IDEs) require a lot of background—even training—to use. Even though
I had 20 years of coding experience, a friend had to sit me down to explain how to use
Eclipse to set up a project. With Processing, it’s a matter of downloading the software,
writing a single line of code, and hitting the Run button. This gets even more important
with a platform like Android, and we set out to make the Android version of Processing
just as simple. We wanted users to be able to download the software, write a little code (or
open an example), plug in their phone (or tablet, or who-knows-what), and hit the Run
button to see something show up on the device. Once that works, it should be all set, and
hopefully you’re having enough fun that you lose the rest of the afternoon hacking away
at your idea.

This book covers a wide range of ideas on how the Android platform can be used and
how Processing can be a helpful bridge to creating everything from quick experiments to
professionally developed applications. It’s exciting to have Andrés writing it, as we want
to see even more people building and playing with the platform, and also because you
couldn’t have a better expert in how Processing itself works. Andrés first started working
as a core committer to the Processing project when we folded his popular OpenGL and
Video libraries into the main project, which over the years led to his overseeing the 3D
and Video portions of Processing. His experience with 3D got him deeply involved in
the internals of how OpenGL works on Android, and his work there was the basis for his
rebuilding the desktop version to move from the old-style fixed-function pipeline used
in GL to the brave new world of shaders and highly multicore GPUs. It was through this
experience, combined with his being an avid Android user, that Andrés became a core
maintainer for the Android portion of the Processing project. He has helped shepherd
it ever since, including everything from ongoing development to mentoring Google
Summer of Code projects to, finally, writing this book. Suffice to say, you’re in good
hands.

I hope you’ll enjoy this book, and we can’t wait to see what you build with
Processing!

www.allitebooks.com

http://www.allitebooks.org

PART I

First Steps with
Processing for Android

3© Andrés Colubri 2017
A. Colubri, Processing for Android, https://doi.org/10.1007/978-1-4842-2719-0_1

CHAPTER 1

Getting Started with
Android Mode

In this chapter, we will introduce the Processing software and Android mode, the
community project behind them, and how we can begin using the mode to create apps
for Android devices.

What Is the Processing Project?
The Processing project is a community initiative focused on sharing knowledge, fostering
education, and promoting diversity in code-based art and design. The Processing
software is a central part of this initiative, now guided by the Processing Foundation
(https://processingfoundation.org/). The Processing software was created in 2001
by Casey Reas and Ben Fry at the MIT Media Lab as a teaching and production tool in
computational arts and design, and has been evolving continuously since then. It is
available for download at https://processing.org/, and its source code is released
under free software licenses (GPL and LGPL). From now on, I will simply refer to
Processing when talking about the Processing software.

Processing consists of two complementary pieces: the language and the development
environment. Together, they form a “software sketchbook” designed to allow the expression
of visual ideas quickly with code, while also providing enough room to let those ideas develop
into full-blown projects. Processing has been used to create many beautiful and inspiring
works in generative art, data visualization, and interactive installations, some of which are
included in a curated list on the Processing site (https://processing.org/exhibition/).

The Processing Language
The Processing language comprises a set of functions for handling screen drawing, data
input/output, and user interaction. A small team of volunteers behind the Processing
project (https://processing.org/people/) has carefully constructed this set of
functions, technically called an Application Program Interface or API, to simplify
the development of graphical and interactive applications by means of a simple and
consistent naming convention, unambiguous behavior, and a well-defined scope.

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-2719-0_1
https://processingfoundation.org/
https://processing.org/
https://processing.org/exhibition/
https://processing.org/people/
http://www.allitebooks.org

Chapter 1 ■ Getting Started with Android Mode

4

While originally implemented in Java, the Processing API is currently available in many
programming languages, including Python, JavaScript, and R. However, it is the Java
implementation of this API, together with some simplifications to the Java language, what
defines the Processing language. Despite this distinction, throughout the book I will use
the terms Processing language and API interchangeably, since in the context of Android,
we will essentially be using the Java implementation of the Processing API.

In active development since 2001, the Processing language now encompasses around
300 items between not only functions, but also classes and constants (https://processing.
org/reference/). One defining feature of this language is that it offers the possibility to
create a program capable of displaying interactive graphics using very little code. As I
mentioned, it also includes a number of simplifications with respect to the Java language,
with the purpose of making it easier to teach to people who are not familiar with computer
code. The following program exemplifies these features of the Processing language:

color bg = 150;

void setup() {
 size(200, 200);
}

void draw() {
 background(bg);
 ellipse(mouseX, mouseY, 100, 100);
}

The output of this program is a window of 200 by 200 pixels that contains a white
circle that follows the movement of the mouse; the window has a gray background. The
functions setup() and draw() are present in almost any Processing program and drive its
“drawing loop.” All the initialization of the program should take place in setup(), which is
executed just once when the program starts up. The draw() function, which contains all
the drawing instructions, is then called continuously several times per second (by default,
60 times) so that the graphical output of the program can be animated through time.

However, if you are familiar with Java, you have probably noticed that this code
is not a valid Java program. For example, there is no explicit definition of a main class
encapsulating all the code, nor additional instructions required in Java to initialize
the “windowing toolkit” that handles the display and the user input. This program, as
it is, needs to be run inside the Processing development environment, which applies
a “preprocessing” step to the Processing code in order to convert it into a valid Java
program. However, this transformation occurs behind the scenes, and the Processing user
does not need to worry about it at all.

The Processing Development Environment
The Processing development environment (PDE) is the application that provides us with
a simplified code editor to write, debug, and run Processing programs, called sketches
(Figure 1-1). The PDE also incorporates an uncluttered user interface to handle all the
sketches created with it and to add libraries and other external components that extend
the core functionality of the PDE, such as p5.js, Python, or Android modes.

https://processing.org/reference/
https://processing.org/reference/

Chapter 1 ■ Getting Started with Android Mode

5

The simplicity and ease of use of the PDE and the Processing language are the
key elements of this “code sketchbook.” A stumbling block for many people wanting to
start working with code is the complexity of a modern development environment, like
Eclipse or IntelliJ, in terms of a lengthy installation and an overwhelming user interface.
In contrast, the PDE addresses these issues by providing an easy install process and a
minimal interface, while the simple structure of a Processing sketch enables users to
obtain visual feedback rapidly. Processing’s aim is to support an iterative development
process analogous to sketching with pen and paper, where one can start with a simple
idea and refine it through successive sketches.

Figure 1-1.  The Processing development environment showing a running sketch in
Java mode

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Getting Started with Android Mode

6

■■ Note  The Processing API can be used outside of the PDE; for example, in a more
advanced integrated development environment, or IDE, such as Eclipse, NetBeans, or IntelliJ.
All of Processing’s drawing, data, and interaction APIs are available when writing a program
with any of these IDEs; however, the simplifications that the Processing language has with
respect to Java will be lost.

We can download the latest version of Processing from the main website (https://
processing.org/download). As pointed out in the previous paragraph, installation is fairly
straightforward, only requiring the unpacking of the .zip (on Windows and Mac) or .tgz (on Linux)
package that contains the PDE and all other core files. We should be able to then run the PDE
without any additional steps from any location inside the Home or Applications folders.

The PDE organizes user sketches in a sketchbook folder. Each sketch is stored in a
subfolder inside the sketchbook, which in turn contains one or more source-code files
with the .pde extension. By default, Processing creates the sketchbook folder inside the
Documents folder located in the user’s account (for instance, /Users/andres/Documents/
Processing on Mac), but this location can be changed by selecting the desired sketchbook
folder in the Preferences window, available under the Processing menu on Mac and File
menu on Windows and Linux (Figure 1-2). Notice the sketchbook location at the top.

Figure 1-2.  The Preferences window on Mac

https://processing.org/download
https://processing.org/download

Chapter 1 ■ Getting Started with Android Mode

7

Extending Processing
As I mentioned at the beginning, the Processing project is not only the PDE or the
language, but also, and very importantly, the community built around the use of the
software and the goals of sharing, teaching, and inclusiveness. Thanks to Processing’s
open nature and modular architecture, many people have contributed improvements
and extensions to the “core” software. These contributions fall within one of the following
four categories:

Libraries: Modules (comprising one or more Java code
files built into a jar package, and additional documentation
and example files) that make it possible to access new
functionality in the sketches. E.g., OpenCV library for
computer vision (which is PC/Mac only), or Ketai for Android
sensors (covered in Chapters 7 and 8).

Programming Modes: Alternative code editors and related
PDE customizations that allow the use of an entire different
language within the PDE. E.g., Android mode. We will see in
the next sections of this chapter how to install Android mode.

Tools: Applications that can only run from Processing
and provide specific functionality to aid in writing code,
debugging, and testing the sketch. E.g., the color picker
(discussed in Chapter 2).

Examples: Packages of contributed code sketches that can be
used as learning material or reference. E.g., the sketches from
the book Learning Processing by Daniel Shiffman (http://
learningprocessing.com/).

The extension of Processing through contributed libraries, modes, tools, and
examples has enabled its growth into application domains that were not part of the
original software, such as mobile apps, computer vision, and physical computing, while
keeping the core functionality simple and accessible for new programmers.

The Contribution Manager
By default, Processing includes one default mode, Java, where we can write and run
sketches on Windows, Mac, and Linux computers using the Java implementation of the
Processing language. Processing also bundles several “core” libraries, some of which
are OpenGL (for drawing hardware-accelerated 2D and 3D scenes), pdf (to export
graphics as pdf files), and data (which allows the handling of data files in formats such
as CSV and JSON).

To install additional contributions, we can use the Contribution Manager (CM),
which makes the process seamless. A screenshot of the CM is shown in Figure 1-3. The
CM has five tabs, the first four for each type of contribution—libraries, modes, tools, and
examples—and the fifth for updates. All the contributions that are registered by their
authors in a central repository are accessible through the CM and can also be updated
through the CM when new versions become available.

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-2719-0_7
http://dx.doi.org/10.1007/978-1-4842-2719-0_8
http://dx.doi.org/10.1007/978-1-4842-2719-0_2
http://learningprocessing.com/
http://learningprocessing.com/
http://www.allitebooks.org

Chapter 1 ■ Getting Started with Android Mode

8

■■ Note  Contributions that were not registered by their authors and hence are not
available through the CM, can still be installed manually. We would need to download the
package containing the library, mode, tool, or examples, typically in zip format, and extract
it into the sketchbook folder. There are separate subfolders for libraries, modes, tools, and
examples. See https://processing.org/reference/libraries/ for more info.

Processing for Android
Processing for Android, not unlike the Processing software itself, is several things. Primarily,
it is a community effort that started in 2009 with the purpose of supporting the development
of Android apps using Processing, as well as translating some of the concepts of the project
to the context of mobile apps: iterative sketching, simplicity, and accessibility.

From a software point of view, Processing for Android is composed of the
processing-android library and the custom PDE programming mode itself. The library
is the package that contains all the functions of the Processing API, but reimplemented
for the Android platform. Android mode provides a customized version of the PDE that
allows us to write Processing code and run it on an Android device or in the emulator.
Android mode includes the processing-android library, which we need for our Processing
code to run without errors. However, these distinctions are not critical at this point, since
Processing will let us install and use Android mode without our having to worry about the
processing-android library. This library would become more important for those among
you who may be planning to use Processing for Android in more advanced applications.

Figure 1-3.  The Contribution Manager in Processing, showing the Modes tab

https://processing.org/reference/libraries/

Chapter 1 ■ Getting Started with Android Mode

9

■■ Note T he processing-android library can be imported from an IDE like Android Studio,
allowing the use of all the Processing functionality in a regular Android app. This advanced
use is covered in Appendix A.

Installing the Android mode
Once we have installed Processing on our computer, we should be able to open the
PDE by running the Processing application, and then we can install the most recent
release of Android mode through the CM. The mode also requires the Android Software
Development Kit (SDK) in order to work. The Android SDK is the set of libraries, tools,
documentation, and other supporting files provided by Google to develop and debug
Android apps. So, to install Android mode and, if needed, the SDK, follow these steps:

	 1.	 Open the CM by clicking the “Add Mode…” option that
appears in the drop-down menu in the upper-right corner of
the PDE (Figure 1-4).

Figure 1-4.  Opening the Contribution Manager to add a new mode

	 2.	 Select the entry for Android mode in the Modes tab, then click
the Install button.

	 3.	 After installation is complete, close the CM and switch
to Android mode using the same drop-down menu from
Figure 1-4.

If a valid SDK is detected on the computer, Processing will
ask if we want to use it or download a new one (Figure 1-5).
Because the SDK is very large (up to several GBs), it can be
a good idea to use the one that is already installed to save
disk space. However, if that SDK is also used by another
development tool, such as Android Studio, it may get updated
outside Processing, which may lead to incompatibilities with
the mode.

If no valid Android SDK is detected, Processing will ask to
either manually locate an SDK or automatically download one
(Figure 1-5).

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Getting Started with Android Mode

10

■■ Note  Version 4.0 of Android mode requires Android version 8.0 (Oreo), corresponding
to API level 26 (https://source.android.com/source/build-numbers). The mode’s
automatic SDK download will retrieve this version from the Google servers.

Pre-releases of Android mode, as well as older, unsupported versions, are no longer
available through the CM, but rather are deposited on the GitHub releases page
(https://github.com/processing/processing-android/releases) and can be installed
manually by downloading the corresponding file and extracting it into the Modes folder in
Processing’s sketchbook.

Interface of Android Mode
The editor in Android mode is very similar to that of Java mode. The toolbar contains the
Play and Stop buttons to launch a sketch and to stop its execution (on the device or in the
emulator). Code autocompletion in the editor is available as well. However, version 4.0 of
Android mode does not offer an integrated debugger. The main menu contains a number

Figure 1-5.  Choosing between using an existing SDK or downloading a new one
automatically (top), and between locating an SDK manually or downloading one
automatically (bottom)

https://source.android.com/source/build-numbers
https://github.com/processing/processing-android/releases

Chapter 1 ■ Getting Started with Android Mode

11

of Android-specific options as well (Figure 1-6). The File menu has options to export the
current sketch as a package ready for upload to the Google Play Store or as a project that
can be opened with Android Studio. The Sketch menu contains separate options to run
the sketch on a device or in the emulator, as well as a separate Android menu containing
several options, among them the type of output to target with the sketch—regular app,
wallpaper, watch face, or VR app—and a list of Android devices currently connected to
the computer. All of these options will be covered in subsequent chapters.

Figure 1-6.  Android-specific options in the interface of Android mode

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Getting Started with Android Mode

12

Running a Sketch on a Device
Once we have written some sketch code with the PDE, we can run it on an Android
phone, tablet, or watch. We need to first make sure that “USB Debugging” is turned on
for our device. The process to do so varies by device and by which version of the Android
OS is installed on it. In most cases, this setting is located in the Developer Options, under
System Setting. On Android 4.2 and higher, the Developer Options are hidden by default,
but we can enable them by following these instructions:

	 1.	 Open the Settings app.

	 2.	 Scroll to the bottom and select “About Phone.”

	 3.	 Scroll to the bottom and tap “Build Number” seven times.

	 4.	 Return to the previous screen to find Developer Options near
the bottom.

After turning USB Debugging on (which we need to do only once), we have to
connect the device to the computer through the USB port. Processing will then try to
recognize it and add it to the list of available devices in the Android menu.

■■ Note  Version 4.0 of Android mode only supports devices that are running Android 4.2
(Jelly Bean, API level 17) or newer.

Let’s use the code in Listing 1-1 as our first Processing for Android sketch! It is not
important to understand each line of code in it, as we will go over the Processing API in
detail in the following chapters. This code simply draws a black square on the half of the
screen that receives a touch press.

Listing 1-1.  Our First Processing for Android Sketch

void setup() {
 fill(0);
}

void draw() {
 background(204);
 if (mousePressed) {
 if (mouseX < width/2) rect(0, 0, width/2, height);
 else rect(width/2, 0, width/2, height);
 }
}

It is possible to have multiple devices connected simultaneously to the computer,
but only one can be selected in the Devices menu as the “active” device, which is where
our sketch will be installed and run. Figure 1-7 shows our first sketch already loaded in
the PDE, along with the selected device to run it on.

Chapter 1 ■ Getting Started with Android Mode

13

Figure 1-7.  Selecting the device to run the sketch on

After we have picked the active device, we can hit the Run button or select “Run on
Device” under the Sketch menu. We should see some messages scrolling down the PDE’s
console while Processing compiles the sketch, packages it as a debug app, and installs
it on the device. One important detail is that the computer needs to be connected to the
Internet the first time a sketch is run. Processing uses a tool called Gradle to build the app
from the sketch’s source code. Android mode comes with a “Gradle wrapper,” so we don’t
need to install Gradle manually, but the wrapper will automatically download the rest of
the Gradle tool the first time it is invoked. We can be offline when running sketches after
the first time. If everything goes well, the sketch should launch and show up on the screen
of the device, as depicted in Figure 1-8.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Getting Started with Android Mode

14

■■ Note  If we are running Windows, we need to install a special USB driver to connect to
the device (https://developer.android.com/studio/run/oem-usb.html). If we
downloaded the Android SDK automatically in Processing, then the latest Google USB drivers
for Nexus devices will be inside the sketchbook folder, under the android\sdk subfolder;
e.g., C:\Users\andres\Documents\Processing\android\sdk\extras\google\usb_driver.

If we are running Linux, we may need to install some additional packages (https://
developer.android.com/studio/run/device.html). Also, make sure that the USB
connection is not configured as “Charge Only.”

Running a Sketch in the Emulator
If we do not have a device on which to run our sketch, we can use the emulator. The
emulator is a program that creates a software replica of a physical device. This replica is
called an Android Virtual Device (AVD), and even though it is generally slower than a real
device, it can be useful for testing a sketch on hardware we don’t currently have.

The first time we run a sketch in the emulator, Processing will download the
system image containing all the information needed to create the AVD on our computer
(Figure 1-9). However, it will initially ask if we want to use the “ARM” or the “x86” images.
The reason for this is that Android devices use ARM CPUs, while desktop computers
have x86 processors. When working with an AVD with an ARM image, the emulator will
convert ARM instructions into x86 instructions one by one, which is slow. But if we use

Figure 1-8.  Running a sketch on a connected phone

https://developer.android.com/studio/run/oem-usb.html
https://developer.android.com/studio/run/device.html
https://developer.android.com/studio/run/device.html

Chapter 1 ■ Getting Started with Android Mode

15

the x86 image, the CPU in our computer will be able to simulate the AVD’s CPU much
more directly and quickly. One drawback of using x86 images is that we must install
additional software on Mac or Windows called HAXM. Since Processing downloaded
HAXM together with the SDK, it will install it for us in case we decide to use x86 images.

Figure 1-9.  System image download dialog in Android mode

We also have to keep in mind that HAXM is only compatible with Intel processors, so
the emulator won’t work with x86 images if our computer has an AMD CPU. Linux has its
own AVD acceleration system and does not require HAXM, so we can use x86 images on a
Linux computer with an AMD CPU. We would need to perform some extra configuration
steps though, which are described here: https://developer.android.com/studio/run/
emulator-acceleration.html#vm-linux.

After finishing the download, which can take several minutes, depending on the
Internet connection (the system images for the emulator are around 900 MB in size),
Processing will boot up the emulator and then launch the sketch in it. Once our Listing 1-1
is running in the emulator, it should look like Figure 1-10.

www.allitebooks.com

https://developer.android.com/studio/run/emulator-acceleration.html#vm-linux
https://developer.android.com/studio/run/emulator-acceleration.html#vm-linux
http://www.allitebooks.org

Chapter 1 ■ Getting Started with Android Mode

16

Summary
In this first chapter, we have learned what the Processing project and software are, and
how we can use Processing to create apps via the Android programming mode. As we
saw, some of the main features of the Processing software are its minimal interface and
the simple structure of a code project, which is called a sketch. These features allow us
to start writing and testing our own sketches, either on a device or in the emulator,
very quickly.

Figure 1-10.  Running our sketch in the emulator

17© Andrés Colubri 2017
A. Colubri, Processing for Android, https://doi.org/10.1007/978-1-4842-2719-0_2

CHAPTER 2

The Processing Language

If you are not familiar with the Processing language, read this chapter for an introduction
to the creation of 2D shapes, use of geometry transformations and color, and how to
handle touchscreen input. The chapter ends with a step-by-step example of a drawing
sketch, which we will use in Chapter 3 to learn how to export and upload an app created
with Processing to the Google Play Store.

A Programming Sketchbook for Artists and
Designers
As we learned in the previous chapter, the Processing language, in conjunction with the
PDE, makes it easier for users who are new to programming to start creating interactive
graphics. The language has been designed to be minimal and simple for learning and yet
expressive enough to create code-based projects in diverse fields: generative art, data
visualization, sound art, film, performance, and so on. It includes around 200 functions
across different categories—drawing, interaction, typography, and so forth—as well as
several classes that help with the handling of form, color, and data.

We can also see Processing as a “coding sketchbook,” analogous to a paper
sketchbook that we use to quickly draft and refine ideas. An important part of this
analogy is that, as with the paper sketchbook, Processing gives us the ability to obtain
visual feedback from the code as quickly as possible. The next section describes the basic
structure in Processing that allows us to easily generate animated output on the screen.

The Setup/Draw Structure of a Processing Sketch
In most cases, we need our Processing sketches to run continuously in order to animate
graphics on the screen and keep track of user input. We can implement such interactive
sketches using a basic code structure where we first carry out all initialization operations
inside a setup() function and then run a draw() function every time Processing needs to
render a new frame.

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-2719-0_2
http://dx.doi.org/10.1007/978-1-4842-2719-0_3
http://www.allitebooks.org

Chapter 2 ■ The Processing Language

18

■■ Note  All the code examples in this chapter can be run in either Java or Android modes
since they don’t rely on any features of the Processing language specific to either one. Also,
because a requirement for this book is some level of knowledge of a programming language,
we will not go over the basic concepts of programming (e.g., conditions, loops, comments).

With this structure, we can create an animation that is updated a fixed number of
times per second, 60 by default. In each call of the draw() function, we need to not only
draw the visual elements that form our composition, but also perform all the calculations
needed to update the composition. For example, in Listing 2-1, we draw a vertical line
moving horizontally across the screen from left to right using the function line(x, 0, x,
height). The horizontal position of the line is contained in the variable x, which we
update in every frame with x = (x + 1) % width. In this line of code, we increment x by
1 and then calculate the result modulo the screen width. Since “a modulo b” is defined as
the remainder of the integer division of a by b (for example 9 % 4 is 1), the result can only
be a number between 0 and b - 1. Hence, x in our sketch cannot be smaller than 0 nor
greater than the width - 1, which is exactly what we need: x increments 1 unit at a time
and wraps back to 0 after reaching the right edge. The output of this sketch is shown in
Figure 2-1.

Listing 2-1.  A Sketch That Draws a Vertical Line Moving Horizontally Across the Screen

int x = 0;

void setup() {
 size(600, 200);
 strokeWeight(2);
 stroke(255);
}

void draw() {
 background(50);
 line(x, 0, x, height);
 x = (x + 1) % width;
}

Figure 2-1.  Output of the animated line sketch

Chapter 2 ■ The Processing Language

19

Processing calls the draw() function at a default frame rate of 60 frames per second;
however, we can change this default using the function frameRate(int fps). For
instance, if we add frameRate(1) in setup(),the sketch will draw 1 frame per second.

Sometimes, we may need to stop Processing from running its animation after a
number of frames. We can use the noLoop() and loop() functions to stop and resume the
animation, respectively. Processing has a Boolean (logical) variable named looping that
is true or false depending on whether or not the sketch is running the animation loop. We
can add simple keystroke-detection functionality to our previous code to stop/resume the
sketch, which is implemented in Listing 2-2.

Listing 2-2.  Pausing/Resuming the Animation Loop

int x = 0;

void setup() {
 size(600, 200);
 strokeWeight(2);
 stroke(255);
}

void draw() {
 background(50);
 line(x, 0, x, height);
 x = (x + 1) % width;
}

void keyPressed() {
 if (looping) {
 noLoop();
 } else {
 loop();
 }
}

In addition to these interactive sketches, we can also create static sketches without
setup/draw, which are typically useful if we only want to generate a fixed composition
that does not need to be updated. Processing runs the code in these sketches only one
time. Listing 2-3 contains a simple static sketch that draws the white circle seen in
Figure 2-2.

Listing 2-3.  Static Sketch Without setup() and draw() Functions

size(400, 400);
ellipse(200, 200, 150, 150);

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ The Processing Language

20

Drawing with Code
The examples from the previous section point to some important concepts in code-based
drawing. First, we need to specify the coordinates of the elements we want to draw on
the screen; second, there are functions, such as line(), that allow us to draw various
graphical primitives or shapes by setting the appropriate numerical values that define the
shapes; and third, we can set the visual “style” of these shapes (e.g., stroke color
and weight).

In Processing, we can draw shapes of different kinds (points, lines, polygons) and
with certain attributes (stroke weight and color, fill color, and so on). These attributes
can be thought of as “style parameters” that, once set, affect everything drawn after. For
example, each circle in Listing 2-4 has a different fill color, but if we comment out the
second fill() call, the first and second circles will be red, since the fill color set at the
beginning affects the first two ellipse calls. Figure 2-3 shows the output of this sketch in
these situations.

Listing 2-4.  Setting Style Attributes

size(460, 200);
strokeWeight(5);
fill(255, 0, 0);
stroke(0, 255, 0);
ellipse(100, 100, 200, 200);
fill(255, 0, 200); // Comment this line out to make second circle red
stroke(0);
ellipse(250, 100, 100, 100);
fill(0, 200, 200);
ellipse(380, 100, 160, 160);

Figure 2-3.  Effect of the calling order of style functions

Figure 2-2.  Output of the static sketch

Chapter 2 ■ The Processing Language

21

Screen Coordinates
Processing draws its graphical output into a rectangular grid of pixels, numbered from
0 to width – 1 along the horizontal direction (the x-axis) and 0 to height – 1 along the
vertical direction (the y-axis), as illustrated in Figure 2-4. This grid will be contained in a
separate output window when running the code in Java mode, or centered in the device’s
screen when using Android mode.

Figure 2-4.  Diagram of the screen’s pixels

Figure 2-5.  Pixels covered by a stroked rectangle in Processing

When drawing with Processing, we need to keep in mind that x coordinates run from
left to right, while y coordinates run from top to bottom. So, the pixel (0, 0) represents the
upper-left corner of the screen, and the pixel (width-1, height-1) represents the lower-
right corner. The arguments of most of the 2D drawing functions in Processing refer to the
pixel coordinates of the screen. For example, the following sample code would produce
the output seen in Figure 2-5 (where each square represents a single pixel, for clarity).

stroke(200, 0, 0);
fill(100, 200, 100);
rect(2, 1, width – 1, height - 2);

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ The Processing Language

22

We should size the shapes we draw with Processing according to the constraints of our
screen size. In general, it is recommended to use the width and height internal variables
when referring to the size of the screen instead of the actual values; in this way, we can
readjust the size without having to modify the drawing code, as is done in Listing 2-5.

Listing 2-5.  Using screen coordinates.

Size(800, 800);
stroke(0);
fill(180);
background(97);
line(width/2, 0, width/2, height);
line(0, height/2, width, height/2);
rect(0, 0, 200, 200);
rect(width – 200, 0, 199, 200);
rect(width – 200, height – 200, 199, 199);
rect(0, height – 200, 199, 199);
rect(200, 200, width – 400, height – 400);

In this code, some rectangles have an unusual width/height of 199. This is so the
stroke lines on the outer border of the screen are visible since, as we just saw, the x
coordinates of the last row/column of pixels are height-1/width-1. The sketch’s output,
with all the outer strokes falling on the edge pixels, is shown in Figure 2-6, as it would
appear on a Nexus 5X phone. You will also notice that this output only occupies a screen-
centered 800 × 800 square, since that’s the size we specified in the code. We will see later
in this chapter how to use the entire screen, and in Chapter 4 we will see how to scale our
graphics per the device’s resolution.

Figure 2-6.  Output of code Listing 2-5, on a Nexus 5X phone

http://dx.doi.org/10.1007/978-1-4842-2719-0_4

Chapter 2 ■ The Processing Language

23

Form
All visual forms we can generate with Processing are drawn as two- or three-dimensional
shapes. Typically, we construct these shapes by explicitly specifying all the vertices that
define their boundaries inside the beginShape() and endShape() functions, as shown in
Listing 2-6 (the output of which is presented in Figure 2-7).

Listing 2-6.  Using beginShape() and endShape()

size(600, 300);

beginShape(QUADS);
vertex(5, 250);
vertex(590, 250);
vertex(590, 290);
vertex(5, 290);
endShape();

beginShape();
vertex(30, 25);
vertex(90, 90);
vertex(210, 10);
vertex(160, 120);
vertex(210, 270);
vertex(110, 180);
vertex(10, 270);
vertex(60, 150);
endShape(CLOSE);

beginShape(TRIANGLES);
vertex(50, 30);
vertex(90, 75);
vertex(110, 30);
endShape();

ellipse(470, 80, 70, 70);

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ The Processing Language

24

Even though we did not use beginShape/endShape in our first examples, where we
created primitive shapes with the built-in functions ellipse() and rect(), these are
nothing more than shorthand calls for their corresponding beginShape/endShape calls.
We can, in fact, create other types of primitive shapes using beginShape(int kind),
where the kind argument indicates the desired primitive. For example, in Listing 2-7 we
construct a regular polygon with a group of triangles than fan out from a central vertex.

Listing 2-7.  Creating a Triangle Fan

size(300, 300);
int numTriangles = 10;
beginShape(TRIANGLE_FAN);
vertex(width/2, height/2);
for (int i = 0; i <= numTriangles; i++) {
 float a = map(i, 0, numTriangles, 0, TWO_PI);
 float x = width/2 + 100 * cos(a);
 float y = height/2 + 100 * sin(a);
 vertex(x, y);
}
endShape();

In this example, we use a for loop to iterate over the number of divisions of the
triangle fan. Processing, as an extension of the Java language, inherits all the control
structures from Java, which we need for algorithmic drawing. Also, notice the use of
the function map(), which is part of the Processing API. This function is very useful and
allows us to convert a numeric value within a range to the corresponding value in a
different range. In this case, the index i varies between 0 and numTriangles, and we want
to transform it into an angle between 0 and 2π.

Figure 2-7.  Composition created with several shapes

Chapter 2 ■ The Processing Language

25

Other kinds of primitive shapes are TRIANGLE_STRIP, QUAD_STRIP, LINES, and
POINTS, which are all fully documented in Processing’s reference material. For instance,
QUAD_STRIP becomes handy when one needs to create a rectangular grid or a hollowed-
out circle, like we do in Listing 2-8.

Listing 2-8.  Creating a Quad Strip

size(300, 300);
beginShape(QUAD_STRIP);
int numQuads = 10;
for (int i = 0; i <= numQuads; i++) {
 float a = map(i, 0, numQuads, 0, TWO_PI);
 float x0 = width/2 + 100 * cos(a);
 float y0 = height/2 + 100 * sin(a);
 float x1 = width/2 + 130 * cos(a);
 float y1 = height/2 + 130 * sin(a);
 vertex(x0, y0);
 vertex(x1, y1);
}
endShape();

By adjusting the value of the numQuads variable, we can obtain geometries of
increasing detail, as seen in Figure 2-9.

Figure 2-9.  Quad strip example with different values for numQuads

Figure 2-8.  Outputs of the triangle fan example for different numbers of vertices

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ The Processing Language

26

However, we often need to create more complex shapes, such as curves. Even though
we could calculate the vertices along the curves manually, Processing provides a number
of functions that do precisely that for us, specifically for Catmull-Rom splines and
quadratic and cubic Bezier curves. The bezierVertex() function, for instance, allows us
to define a point on a cubic Bezier curve. It requires the anchor point the curve must pass
through as well as the control points defining the starting and ending directions. When
starting a Bezier curve, the first anchor is set with a regular vertex() call, as shown in
Figure 2-10.

Figure 2-10.  Parameters of the bezierVertex() function

We can combine several Bezier curves into a single shape in order to generate more
complex figures, as shown in Listing 2-9.

Listing 2-9.  Creating Multi-lobed Shape with Bezier Curves

size(300, 300);
int numLobes = 4;
float radAnchor = 50;
float radControl = 150;
float centerX = width/2;
float centerY = height/2;
beginShape();
for (int i = 0; i < numLobes; i++) {
 float a = map(i, 0, numLobes, 0, TWO_PI);
 float a1 = map(i + 1, 0, numLobes, 0, TWO_PI);
 float cx0 = centerX + radControl * cos(a);
 float cy0 = centerY + radControl * sin(a);

Chapter 2 ■ The Processing Language

27

 float cx1 = centerX + radControl * cos(a1);
 float cy1 = centerY + radControl * sin(a1);
 float x0 = centerX + radAnchor * cos(a);
 float y0 = centerY + radAnchor * sin(a);
 float x1 = centerX + radAnchor * cos(a1);
 float y1 = centerY + radAnchor * sin(a1);
 vertex(x0, y0);
 bezierVertex(cx0, cy0, cx1, cy1, x1, y1);
}
endShape();

By playing with the parameters in this sketch (number of lobes, radius of the anchor
points, radius of the control points), we can obtain an entire family of shapes, some of
which we can see in Figure 2-11.

Figure 2-11.  Family of multi-lobed shapes created with Bezier curves

Color
Color is another important component of visual design, and Processing provides
numerous functions to set the color of shape interiors (the fill color) and edges (the stroke
color), in addition to the background color of the entire output screen.

By default, we can set colors using RGB (red, green, and blue) values between 0 and
255, as illustrated in the code of Listing 2-10 and its output in Figure 2-12.

Listing 2-10.  Setting Fill and Stroke Colors Using RGB Values

size(600, 300);
strokeWeight(5);
fill(214, 87, 58);
stroke(53, 124, 115);
rect(10, 10, 180, 280);
stroke(115, 48, 128);
fill(252, 215, 51);
rect(210, 10, 180, 280);
stroke(224, 155, 73);
fill(17, 76, 131);
rect(410, 10, 180, 280);

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ The Processing Language

28

Even though we can create almost any imaginable color using RGB values, it can be
hard to find the right combination of numbers for the color we need. Processing includes
a handy Color Selector tool to help us to pick a color interactively, which we can then
copy into our sketches as RGB values. The Color Selector is available, along with any
other installed tools, under the Tools menu in the PDE (Figure 2-13).

Figure 2-13.  Color Selector tool

Figure 2-12.  Output of setting stroke and fill RGB colors

We can also specify colors in the HSB (Hue, Saturation, and Brightness) space. HSB
mode can be set with the colorMode() function, which also allows us to set the ranges for
each component. In code Listing 2-11, we draw a color wheel by mapping the position
around a circle to the color hue.

Chapter 2 ■ The Processing Language

29

Listing 2-11.  Drawing a Color Wheel Using HSB Values

size(300, 300);
colorMode(HSB, TWO_PI, 1, 1);
float centerX = width/2;
float centerY = height/2;
float maxRad = width/2;
strokeWeight(2);
stroke(0, 0, 1);
for (int i = 0; i < 6; i++) {
 float r0 = map(i, 0, 6, 0, 1);
 float r1 = map(i + 1, 0, 6, 0, 1);
 beginShape(QUADS);
 for (int j = 0; j <= 10; j++) {
 float a0 = map(j, 0, 10, 0, TWO_PI);
 float a1 = map(j + 1, 0, 10, 0, TWO_PI);
 float x0 = centerX + maxRad * r0 * cos(a0);
 float y0 = centerY + maxRad * r0 * sin(a0);
 float x1 = centerX + maxRad * r1 * cos(a0);
 float y1 = centerY + maxRad * r1 * sin(a0);
 float x2 = centerX + maxRad * r1 * cos(a1);
 float y2 = centerY + maxRad * r1 * sin(a1);
 float x3 = centerX + maxRad * r0 * cos(a1);
 float y3 = centerY + maxRad * r0 * sin(a1);
 fill(a0, r0, 1);
 vertex(x0, y0);
 vertex(x1, y1);
 vertex(x2, y2);
 vertex(x3, y3);
 }
 endShape();
}

Let’s note a few important things in this example. First, we set the range for the hue
to 2π in order to make the transformation between indices and color more direct. Second,
we use QUADS instead of QUAD_STRIP. We would not be able to set separate colors for each
quad in a strip, because they all share a common edge with the previous and next quad.
Instead, in a QUADS shape, each quad is defined independently of the others and so can
have different style attributes. Our final color wheel is shown in Figure 2-14.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ The Processing Language

30

Figure 2-15.  The three types of geometric transformations

Figure 2-14.  Output of HSB color wheel example

■■ Note  We can also specify colors in hexadecimal (hex) format, which is very common
in web development; i.e., fill(#FF0000) or stroke(#FFFFFF).

Geometric Transformations
So far, we have seen how to construct shapes and pick their colors. In addition, we need
to be able to move them around and change their size by applying translations, rotations,
and scaling transformations (Figure 2-15).

Chapter 2 ■ The Processing Language

31

Figure 2-16.  Geometric transformations cannot be exchanged

While the ideas of translation, rotation, and scaling are intuitive, it is difficult to
anticipate the effect of several consecutive transformations. It can help us when thinking
about transformations to imagine that a transformation only affects the coordinates after
it has been applied. For instance, if we apply a translation of 20 units along the x-axis and
30 units along the y-axis, then a subsequent rotation will occur around the point (20, 30).
Conversely, if the rotation is applied first, the axes will then be rotated, and a translation
will occur along the rotated axes. Therefore, if we draw a shape at the end of this chain of
transformations, its final position may be different depending on the order in which they
were done (Figure 2-16).

We can save the current transformation “state” with the pushMatrix() function
and restore it with the corresponding popMatrix() function. We must always use these
two functions in pairs. They allow us to create complex relative movements by setting
transformations only to specific subsets of the shapes. For example, Listing 2-12
generates an animation of an ellipse and a square rotating around a larger square
placed at the center of the screen, with the smaller square also rotating around its own
center. Figure 2-17 shows a snapshot of this animation.

Listing 2-12.  Using pushMatrix() and popMatrix()

float angle;

void setup() {
 size(400, 400);
 rectMode(CENTER);
 noStroke();
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ The Processing Language

32

void draw() {
 background(170);
 translate(width/2, height/2);
 rotate(angle);
 rect(0, 0, 100, 100);
 pushMatrix();
 translate(150, 0);
 rotate(2 * angle);
 scale(0.5);
 rect(0, 0, 100, 100);
 popMatrix();
 translate(0, 180);
 ellipse(0, 0, 30, 30);
 angle += 0.01;
}

Figure 2-17.  Using pushMatrix() and popMatrix() to keep transformations separate

Responding to User Input
Keyboard input and touchscreen input allow us to enter information into the sketch to
control its behavior. Since the user can touch the screen or press a key at any moment,
not necessarily when Processing is drawing a frame, we need a way to retrieve this
information no matter what stage of drawing we are in within our sketch.

Processing provides several built-in variables and functions to handle user input.
The variables mouseX and mouseY give us the current position of the mouse when working
in Java mode. These variables are still available in Android mode, although mobile
devices do not usually have a mouse. In this case, they just represent the position of the
first touch point on the screen (Processing also supports multi-touch interaction, which

Chapter 2 ■ The Processing Language

33

is covered in Chapter 5). Both mouseX and mouseY are complemented by mousePressed,
which indicates whether the mouse/touchscreen is being pressed. Using these variables,
we can create a simple drawing sketch with very little code, like the one in Listing 2-13.
Its output on a phone would look like Figure 2-18. Since the width and height set via
the size() function are smaller than the screen resolution, we see the output area
surrounded by a light background we cannot draw on. However, we can use the entire
screen if, instead of initializing the sketch with size(width, height), we use the
fullScreen() function. This also has the advantage of hiding the status bar at the top of
the screen and the navigation bar at the bottom.

Listing 2-13.  A Free-hand Drawing Sketch Using Circles

void setup() {
 size(1000, 500);
 noStroke();
 fill(255, 100);
}

void draw() {
 if (mousePressed) {
 ellipse(mouseX, mouseY, 50, 50);
 }
}

Figure 2-18.  Drawing with ellipses

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-2719-0_5
http://www.allitebooks.org

Chapter 2 ■ The Processing Language

34

While mouseX/Y stores the current position of the mouse/touch, Processing also
provides the variables pmouseX and pmouseY, which store the previous position. By
connecting the pmouseX/Y coordinates with the ones in mouseX/Y, we can draw continuous
lines that follow the movement of the pointer. Listing 2-14 illustrates this technique, and it
also uses fullScreen() so we can draw on the entire screen surface, as seen in Figure 2-19.

Listing 2-14.  Another Free-hand Drawing Sketch

void setup() {
 fullScreen();
}

void draw() {
 if (mousePressed) {
 line(pmouseX, pmouseY, mouseX, mouseY);
 }
}

Creating a Vine-Drawing App
Our goal in this final section is to code a drawing app that incorporates algorithmic
shapes into the hand-drawn lines. One possibility is to augment the scaffold provided
by the lines with shapes that resemble growing vegetation, vines, leaves, and flowers.
The Bezier curves we learned about earlier could be used to generate organic-looking
shapes. Some sketching with pen and paper (Figure 2-20) may also help us try out some
visual ideas.

Figure 2-19.  Output of our simple drawing sketch, in full-screen mode

Chapter 2 ■ The Processing Language

35

Figure 2-20.  Sketches for the vine-drawing app

We can build on our previous sketches. One thing we were missing before is some
degree of “randomness” in both form and color. The random(float a, float b) function
in Processing allows us to select random numbers between a and b, which we can then use
in the leaf/flower shapes constructed via the bezierVertex() function. In Listing 2-15, we
apply the random function to introduce variation in the color and number of lobes of our
shapes, and Figure 2-21 shows the output of this sketch for three separate runs.

Listing 2-15.  Generating Randomized Flowers/Leaves with Bezier Curves

void setup() {
 size(600, 200);
 frameRate(1);
}

void draw() {
 background(180);
 drawFlower(100, 100);
 drawFlower(300, 100);
 drawFlower(500, 100);
}

void drawFlower(float posx, float posy) {
 pushMatrix();
 translate(posx, posy);
 fill(random(255), random(255), random(255), 200);
 beginShape();
 int n = int(random(4, 10));
 for (int i = 0; i < n; i++) {
 float a = map(i, 0, n, 0, TWO_PI);
 float a1 = map(i + 1, 0, n, 0, TWO_PI);
 float r = random(10, 100);

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ The Processing Language

36

 float x = r * cos(a);
 float y = r * sin(a);
 float x1 = r * cos(a1);
 float y1 = r * sin(a1);
 vertex(0, 0);
 bezierVertex(x, y, x1, y1, 0, 0);
 }
 endShape();
 popMatrix();
}

Figure 2-21.  Output of the flower/leaf sketch

In addition to the flowers/leaves, we can add some additional elements; for instance,
a growing spiral branch that finishes in a fruit. Spirals have a parametric formula
(https://www.khanacademy.org/tag/parametric-equations) of the form x(t) = r(t)
cos(a(t)), y(t) = r(t) sin(a(t)), where the parameter t goes from 0 to 1 and controls
the growth of the curve. After tweaking the radial function, I reached a satisfactory growth
behavior with r(t) = 1/t, so we can start with the code in Listing 2-16 to draw a single
spiral (Figure 2-22).

Listing 2-16.  Drawing a Spiral Using Parametric Equations

size(300, 300);
noFill();
translate(width/2, height/2);
beginShape();
float maxt = 10;
float maxr = 150;
for (float t = 1; t < maxt; t += 0.1) {
 float r = maxr/t;
 float x = r * cos(t);
 float y = r * sin(t);
 vertex(x, y);
}
endShape();

https://www.khanacademy.org/tag/parametric-equations

Chapter 2 ■ The Processing Language

37

The number of turns is controlled by the maximum value of the parameter t, while
the maximum radius determines how much the spiral extends outward. These two
parameters will give us some visual variation with the aid of the random() function, as
we did before. One issue is that we will need the stem of the spiral to be aligned with the
direction of the line drawing. We can orient the spiral along a desired angle by rotating
by the angle plus 180 degrees (π). This is what we do in Listing 2-17, with three different
spirals generated by it shown in Figure 2-23.

Listing 2-17.  Adding Random Variability to Our Spiral-Generation Algorithm

void setup() {
 size(600, 200);
 frameRate(1);
}

void draw() {
 background(180);
 drawSpiral(100, 100, 0);
 drawSpiral(300, 100, QUARTER_PI);
 drawSpiral(500, 100, PI);
}

void drawSpiral(float posx, float posy, float angle) {
 pushMatrix();
 translate(posx, posy);
 rotate(angle + PI);
 noFill();
 beginShape();
 float maxt = random(5, 20);
 float maxr = random(50, 80);
 float x0 = maxr * cos(1);
 float y0 = maxr * sin(1);
 for (float t = 1; t < maxt; t += 0.1) {
 float r = maxr/t;
 float x = r * cos(t) - x0;
 float y = r * sin(t) - y0;
 vertex(x, y);
 }
 endShape();
 popMatrix();
}

Figure 2-22.  Output of our spiral parametric equation sketch

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ The Processing Language

38

We can now put all these elements together in a simple drawing app that adds leaves,
vines, and fruit to the hand-drawn line (Listing 2-18). Leaves and vines are randomly
added when the mouse/touchscreen is pressed. We can control the amount of detail by
setting the probability of drawing a new leave or vine in each frame. By using a value of
0.05, in average we will be adding a new element every 20 frames that have a press event.
The angle of the connection of the spiral vines to the last line segment is calculated by
constructing a PVector object from the difference between the current and previous
mouse/touch positions. PVector is a built-in class that handles 2D and 3D vectors. This
class contains several utility functions, one of which gives us the heading angle of the
vector; that is, the angle of the vector along the x-axis. Figure 2-24 shows a drawing made
with this app.

Listing 2-18.  Full Vine-Drawing Sketch

void setup() {
 fullScreen();
 noFill();
 colorMode(HSB, 360, 99, 99);
 strokeWeight(2);
 stroke(210);
 background(0, 0, 99);
}

void draw() {
 if (mousePressed) {
 line(pmouseX, pmouseY, mouseX, mouseY);
 if (random(1) < 0.05) {
 PVector dir = new PVector(mouseX - pmouseX, mouseY - pmouseY);
 float a = dir.heading();
 drawSpiral(mouseX, mouseY, a);
 }
 if (random(1) < 0.05) {
 drawFlower(mouseX, mouseY);
 }
 }
}

Figure 2-23.  Output of the randomized spirals sketch

Chapter 2 ■ The Processing Language

39

void keyPressed() {
 background(0, 0, 99);
}

void drawFlower(float xc, float yc) {
 pushMatrix();
 pushStyle();
 noStroke();
 translate(xc, yc);
 fill(random(60, 79), random(50, 60), 85, 190);
 beginShape();
 int numLobes = int(random(4, 10));
 for (int i = 0; i <= numLobes; i++) {
 float a = map(i, 0, numLobes, 0, TWO_PI);
 float a1 = map(i + 1, 0, numLobes, 0, TWO_PI);
 float r = random(10, 50);
 float x = r * cos(a);
 float y = r * sin(a);
 float x1 = r * cos(a1);
 float y1 = r * sin(a1);
 vertex(0, 0);
 vertex(0, 0);
 bezierVertex(x, y, x1, y1, 0, 0);
 }
 endShape();
 popStyle();
 popMatrix();
}

void drawSpiral(float xc, float yc, float a) {
 pushMatrix();
 pushStyle();
 translate(xc, yc);
 rotate(PI + a);
 noFill();
 beginShape();
 float maxt = random(5, 10);
 float maxr = random(20, 70);
 float sign = (random(1) < 0.5) ? -1 : +1;
 float x0 = maxr * cos(sign);
 float y0 = maxr * sin(sign);
 for (float t = 1; t < maxt; t += 0.5) {
 float r = maxr/t;
 float x = r * cos(sign * t) - x0;
 float y = r * sin(sign * t) - y0;
 vertex(x, y);
 }
 endShape();

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ The Processing Language

40

Figure 2-24.  Output of the vine-drawing sketch

 noStroke();
 fill(random(310, 360), 80, 80);
 float x1 = (maxr/maxt) * cos(sign * maxt) - x0;
 float y1 = (maxr/maxt) * sin(sign * maxt) - y0;
 float r = random(5, 10);
 ellipse(x1, y1, r, r);
 popStyle();
 popMatrix();
}

Summary
We now have a general overview of the Processing language and would be able to use
some of its functions and variables to draw shapes, set colors, apply transformations, and
handle user interaction through the mouse or touchscreen. Even though we covered only
a small fraction of all the functionality available in Processing, what we saw here should
give us enough material with which to explore algorithmic drawing, make our own
interactive sketches, and run them as Android apps.

41© Andrés Colubri 2017
A. Colubri, Processing for Android, https://doi.org/10.1007/978-1-4842-2719-0_3

CHAPTER 3

From Sketch to Play Store

In this chapter, we will go over the steps involved in the creation of a complete Processing
for Android project, from sketching and debugging to exporting the project as a signed
app ready for upload to the Google Play Store. We will use the drawing sketch from the
previous chapter as our example.

Sketching and Debugging
In the previous chapters, we emphasized the importance of “code sketching,” where
immediate visual output and quick iteration are central elements to the development of
Processing projects. Another crucial component is the identification and resolution of
errors or “bugs” in the code, a process called debugging.

Debugging can take as much time as writing the code itself. What makes debugging
challenging is that some bugs are the result of faulty logic or incorrect calculations, and
because there are no typos or any other syntactical errors in the code, Processing is able
to run the sketch. Unfortunately, there is no foolproof technique for eliminating all bugs
in a program, but Processing provides some utilities to help us.

Getting Information from the Console
The simplest way to debug a program is by printing the values of variables and messages
at various points of the program’s execution flow. Processing’s API includes the
text-printing functions print() and println(), which output to the console area in the
PDE. The only difference between these two functions is that println() adds a new line
break at the end, while print() does not. Listing 3-1 shows a sketch that uses println()
to indicate the occurrence of an event (a mouse press, in this case) and the value of a
built-in variable.

Listing 3-1.  Using println() in a Sketch to Show Information on the Console

void setup() {
 fullScreen();
}

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-2719-0_3
http://www.allitebooks.org

Chapter 3 ■ From Sketch to Play Store

42

void draw() {
 println("frame #", frameCount);
}

void mousePressed() {
 println("Press event");
}

Processing’s console shows anything that is printed with these functions, and
also any warning or error messages indicating a problem in the execution of the
sketch (Figure 3-1).

Figure 3-1.  PDE’s console outlined with red

The main problem with printing messages to the console for debugging is that it
requires adding these additional function calls for each variable we want to keep track of.
Once we are done with debugging, we need remove or comment out all these calls, which
can become cumbersome for large sketches.

Chapter 3 ■ From Sketch to Play Store

43

■■ Note  Comments in Processing work exactly the same way as in Java: we can comment
out a single line of code using two consecutive forward slashes, //, and an entire block of
text with /* at the beginning of the block and */ at the end. We can also use the “Comment/
Uncomment” option under the Edit menu in the PDE.

Getting More Information with logcat
We can obtain a lot of useful information from the Processing console, but sometimes this
won’t be enough to find out what is wrong with our sketch. The Android SDK includes
several command-line tools that can help us with debugging. The most important SDK
tool is adb (Android Debug Bridge), which makes communication possible between the
computer we are using for development and the device or emulator. In fact, Processing
uses adb under the hood to query what devices are available and to push the sketch to the
device or emulator when running it from the PDE.

We can also use adb manually—for example, to get more-detailed debug messages.
To do so, we need to open a terminal console, and once in it we have to change to the
directory where the Android SDK is installed. If the SDK was automatically installed by
Processing, it should be located inside the sketchbook folder in the android sub-folder.
Within that folder, the SDK tools are found in sdk/platform-tools. Once there, we can
run the adb tool with the logcat option, which prints out the log with all the messages.
For instance, Figure 3-2 shows the sequence of commands we would need on Mac to run
logcat.

Figure 3-2.  Terminal session on Mac displaying the commands to run logcat

By default, logcat prints all messages generated by the Android device or
emulator—not only those from the sketch we are debugging, but also those from all
other processes currently running—so we might get too many messages. The print
messages from Processing can be displayed if using logcat with the –I option. Logcat
has additional options to only show error messages (-E) or warnings (-W). The full list of
options is available on the Google’s developer site (https://developer.android.com/
studio/command-line/logcat.html).

www.allitebooks.com

https://developer.android.com/studio/command-line/logcat.htmlCode inline
https://developer.android.com/studio/command-line/logcat.htmlCode inline
http://www.allitebooks.org

Chapter 3 ■ From Sketch to Play Store

44

Using the Integrated Debugger
Java mode in Processing 3.0 introduced an integrated debugger that makes it easier for
us to keep track of the internal state of a running sketch. Even though the debugger is not
available in Android mode, we can still use it to debug Android sketches. If a Processing
sketch does not rely on Android-specific functionality, it should be compatible with both
Android and Java modes, since the code API is (almost) identical for the two modes. In
that case, we can momentarily switch to Java mode to take advantage of its debugger and
then come back to Android mode to continue working on the device or emulator.

We turn the debugger on by pressing the button with the butterfly icon on the left of
the menu bar, next to the mode selector, or by selecting “Enable Debugger” in the Debug
menu. Once it is enabled, we can access several additional options in the PDE to use
when the sketch is running. For example, we can add checkpoints to any line in the code
of our sketch. A checkpoint signals where the execution of the sketch should stop to allow
us to inspect the value of all variables in the sketch, both user-defined and built-in ones.

We can create a new checkpoint by double-clicking on the line number in the left
margin of the code editor. A diamond sign will indicate that the line has been flagged with
a checkpoint. When we run a sketch containing one or more checkpoints, Processing
will stop execution when it reaches each checkpoint, at which moment we can inspect
the value of the variables using the variable-inspector window (Figure 3-3). We resume
execution by pressing the Continue button on the toolbar. We can also step line by line by
pressing the Step button to see how each variable changes its value after each line.

Figure 3-3.  Debugging session with the integrated debugger in Java mode

Chapter 3 ■ From Sketch to Play Store

45

All this functionality in the integrated debugger could help us identify bugs in the
code without adding print instructions, although fixing a tricky bug is always challenging
and can take a long time even with the debugger. In the end, it comes down to
understanding the logic of the code in the sketch and its possible consequences and edge
cases based on information we get from the debugger or print instructions. In this way,
we can narrow down the portion of the code containing the bug.

Reporting Processing Bugs
Sometimes an unexpected or erroneous behavior in a Processing sketch may be the result
of not a bug in the sketch itself, but rather one in Processing’s core. If you have a strong
suspicion that you have found a Processing bug, you can report it on the GitHub page
of the project. If it is a bug affecting Android mode, open a new issue in the processing-
android repository at https://github.com/processing/processing-android/
issues and include as much information as possible to reproduce the bug and help the
developers examine the issue and eventually fix it.

Preparing a Sketch for Release
After debugging a sketch in the PDE, we may want to package it for public release through
Google Play Store. When working from the PDE, Processing creates a debug app package
that can only be installed on our own device for testing purposes. Creating an app
suitable for general distribution requires some additional steps and considerations to
ensure it can be uploaded to the Play Store.

Adjusting for Device’s DPI
To ready our sketch for public release, we must first make sure that it can be run on
(most) of the Android devices in use. When writing and debugging sketches, it is often the
case that we work with one or only a few different devices, so it may be hard to anticipate
issues on hardware we do not have access to. A common situation is that the graphics
look either too big or too small when running Processing sketches on different devices.
Both resolution (number of pixels) and physical screen size can vary quite substantially
across phones, tablets, and watches, so graphic elements designed with one resolution
in mind and viewed on a screen of a particular size will likely look wrong on another
device. Since Android is designed to support various combinations of screen sizes and
resolutions, we need a way in Processing to adapt the visual design of our sketch so it
looks as intended across different devices.

The ratio of the resolution to the screen size gives us what is called the DPI (dots per
inch, which in the context of computer screens is equivalent to pixels per inch, or PPI).
The DPI is the basic magnitude to compare across devices. It is important to keep in
mind that a higher DPI does not necessarily mean a higher resolution, since two different
devices with the same resolution may have different screen sizes. For example, the Galaxy
Nexus (4.65" diagonal) has a 720 × 1280 pixels resolution, while the Nexus 7 (7" diagonal)
has an 800 × 1280 pixels resolution. The DPIs of these devices are respectively 316 and
216, even though the resolution of the Galaxy Nexus is actually slightly lower than that of
the Nexus 7.

www.allitebooks.com

https://github.com/processing/processing-android/issues
https://github.com/processing/processing-android/issues
http://www.allitebooks.org

Chapter 3 ■ From Sketch to Play Store

46

Android classifies devices in “density buckets” according to the following six
generalized densities (a specific device will fall into one of these categories depending on
which one is closest to its actual DPI):

•	 ldpi (low) ~120 dpi

•	 mdpi (medium) ~160 dpi

•	 hdpi (high) ~240 dpi

•	 xhdpi (extra-high) ~320 dpi

•	 xxhdpi (extra-extra-high) ~480 dpi

•	 xxxhdpi (extra-extra-extra-high) ~640 dpi

The generalized density levels are important in Processing when generating the app
icons, as we will see later in this chapter, but not so much when writing our code. To make
sure that the visual elements in our sketch scale properly across different devices, there
is another parameter from Android that Processing makes available through its API. This
is the display density, a number that represents how much bigger (or smaller) the pixel in
our device is when compared with a reference 160 dpi screen (for example, a 320 × 480,
3.5" screen). Thus, on a 160 dpi screen, this density value will be 1; on a 120 dpi screen, it
would be .75, etc.

■■ Note  Google’s API Guide on Multiple Screen Support gives detailed information about
density independence on Android: https://developer.android.com/guide/practices/
screens_support.html.

The display density is available in Processing as the constant named
displayDensity, which we can use from anywhere in our code. The simplest way of
adjusting the output to the device’s DPI is to multiply the size of all of the graphical
elements in the sketch by displayDensity, which is the approach shown in Listing 3-2.
As we can see in Figure 3-4, the size of the circles drawn by the sketch is the same across
devices with different DPIs. Also, this example uses fullScreen() to initialize the size of
the output of our sketch to the entire screen, regardless of its resolution.

Listing 3-2.  Using displayDensity to Adjust Our Sketch to Different Screen Sizes and
Resolutions

void setup() {
 fullScreen();
 noStroke();
}

void draw() {
 background(0);
 float r = 50 * displayDensity;
 int maxi = int(width/r);

https://developer.android.com/guide/practices/screens_support.htmlSet note style
https://developer.android.com/guide/practices/screens_support.htmlSet note style

Chapter 3 ■ From Sketch to Play Store

47

 int maxj = int(height/r);
 for (int i = 0; i <= maxi; i++) {
 float x = map(i, 0, maxi, 0, width);
 for (int j = 0; j <= maxj; j++) {
 float y = map(j, 0, maxj, 0, height);
 ellipse(x, y, r, r);
 }
 }
}

Figure 3-4.  From left to right: output of our sketch on a Samsung Galaxy Tab 4 (7 ", 1280 ×
800 px, 216 dpi), Nexus 5X (5.2", 1920 × 800 px, 424 dpi), and a Moto E (4.3", 960 × 540 px,
256 dpi)

We can return now to our vine-drawing sketch from the previous chapter and add
displayDensity in the parts of the code where we need to scale the graphics. More
specifically, any variable or value that represents the size of shapes or position of vertices
on the screen should be multiplied by displayDensity. Listing 3-3 shows these changes
applied to the original drawing sketch.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ From Sketch to Play Store

48

Listing 3-3.  Adding displayDensity to the Vine-drawing Sketch from Chapter 2

void drawFlower(float xc, float yc) {
 pushMatrix();
 pushStyle();
 noStroke();
 translate(xc, yc);
 fill(random(60, 79), random(50, 60), 85, 190);
 beginShape();
 int numLobes = int(random(4, 10));
 for (int i = 0; i <= numLobes; i++) {
 float a = map(i, 0, numLobes, 0, TWO_PI);
 float a1 = map(i + 1, 0, numLobes, 0, TWO_PI);
 float r = random(10, 50) * displayDensity;
 ...
}

void drawSpiral(float xc, float yc, float a) {
 pushMatrix();
 pushStyle();
 translate(xc, yc);
 rotate(PI + a);
 noFill();
 beginShape();
 float maxr = random(20, 70) * displayDensity;
 ...
 fill(random(310, 360), 80, 80);
 float x1 = (maxr/maxt) * cos(sign * maxt) - x0;
 float y1 = (maxr/maxt) * sin(sign * maxt) - y0;
 float r = random(5, 10) * displayDensity;
 ellipse(x1, y1, r, r);
 popStyle();
 popMatrix();
}

Using the Emulator
We briefly discussed the emulator in the first chapter. Even when we have our own device,
the emulator can be useful because it allows us to test hardware configurations we do
not have access to. Processing creates a default Android Virtual Device (AVD) to run in
the emulator, but one with a resolution of only 480 × 800 pixels to ensure a reasonable
performance across different computers. We can create other AVDs with different
properties by using the command-line tool avdmanager, which is included in the Android
SDK. We have to keep in mind that the emulator will likely run slower than an actual
device would, especially if you are using high-resolution AVDs or ones with other
high-end capabilities.

http://dx.doi.org/10.1007/978-1-4842-2719-0_2

Chapter 3 ■ From Sketch to Play Store

49

Since avdmanager is a command-line tool, we first need to open a terminal console
and change to the tools directory, where avdmanager and the emulator launcher are
located inside the SDK folder. Figure 3-5 shows the sequence of steps to create a new AVD
using the device definition for a Nexus 5X phone and then launch it with the emulator.

Figure 3-5.  Creating and launching a new AVD from the command line using the
avdmanager and emulator tools

In the line running the avdmanager command, we provided four arguments:

•	 -n n5x: The name of the AVD, which could be any name we
wish to use

•	 -k "system-images;android-26;google_apis;x86": The SDK
package to use for the AVD; to find out which SDK packages are
available in our SDK, we need to look at the system-images
sub-folder inside the SDK folder.

•	 -d: "Nexus 5X": A device definition containing the hardware
parameters of the device we want to emulate. We can list all the
available device definitions by running the command
'./avdmanager list devices'.

•	 -p ~/Documents/Processing/android/avd/n5x: The folder
where we will store this AVD; in this case, we are using android/
avd/n5x inside the sketchbook folder since this is the default
location the Android mode uses for default AVDs.

The next line in Figure 3-5 actually launches the emulator, but before doing that we
need to set up the AVD’s “skin” by telling the emulator the actual dimensions it should
render the phone screen at. Currently, the avdmanager does not have an option to set
the device skin, but we can add it manually to the AVD’s configuration file, which in
this example is located inside ~/Documents/Processing/android/avd/n5x and named
config.ini. We can open this file with any text editor and then add the line skin.
name=widthxheight at the end, using the width and height of the device, although we can
also use other values of our preference, as shown in Figure 3-6.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ From Sketch to Play Store

50

Once we have added the skin resolution to the config.ini file of our AVD, we can
run the emulator line shown earlier, which includes the following arguments:

•	 -avd n5x: The name of the AVD we want to launch

•	 -gpu auto: Enables the emulator to use hardware acceleration on
the computer to render the AVD’s screen faster, if it is available.
Otherwise, it will use a slower software renderer.

•	 -port 5566: Sets the TCP port number to connect the console
and adb with the emulator.

To use our new AVD in place of Processing’s default one, we should launch it
manually, as we did in this example, and then Processing will install our sketches in
it instead of in the default AVD. However, we need to make sure to use the right port
parameter, because Processing will only be able to communicate with phone emulators
running on port 5566 and watch emulators on port 5576.

Figure 3-6.  Adding a skin resolution to the AVD’s config.ini file

Chapter 3 ■ From Sketch to Play Store

51

■■ Note  Google’s Android developer site includes pages on avdmanager (https://
developer.android.com/studio/command-line/avdmanager.html) and running the
emulator from the command line (https://developer.android.com/studio/run/
emulator-commandline.html). There, we can find more information about these tools.

Setting Icons and Package Name
Android apps require icons of various sizes to be displayed at different pixel densities in
the App Launcher menu. Processing uses a set of default generic icons when running a
sketch from the PDE, but these icons should not be used for a public release.

In order to add our own icons to the project, we need to create the following files:
icon-36, icon-48, icon-72, icon-96, icon-144, and icon-192 in .PNG format for the ldpi
(36 × 36), mdpi (48 × 48), hdpi (72 × 27), xhdpi (96 × 96), xxhdpi (144 × 144), and xxxhdpi
(192 × 192) resolutions. Once we have these files, we place them in the sketch’s folder
before exporting the signed package.

For the vine-drawing app from the previous chapter, we will use the set of icons
shown in Figure 3-7.

Figure 3-7.  Set of icons for the vine-drawing app

Google has published a set of guidelines and resources for icon creation that follows
the company’s material UI style, available at https://www.google.com/design/spec/
style/icons.html

Setting Package Name and Version
Apps in the Google App Store are uniquely identified by a package name, which is a string
of text that looks something like com.example.helloworld. This package name follows
the Java package-naming convention, where the app name (helloworld) is last,
preceded by the website of the company or person developing the app in reverse order
(com.example).

www.allitebooks.com

https://developer.android.com/studio/command-line/avdmanager.html
https://developer.android.com/studio/command-line/avdmanager.html
https://developer.android.com/studio/run/emulator-commandline.html
https://developer.android.com/studio/run/emulator-commandline.html
https://www.google.com/design/spec/style/icons.html
https://www.google.com/design/spec/style/icons.html
http://www.allitebooks.org

Chapter 3 ■ From Sketch to Play Store

52

Processing constructs this package name automatically by prepending
processing.test to the sketch name. We can change the default package name by
editing the manifest.xml file that Processing generates in the sketch folder after we run
it for the first time from the PDE (either on a device or in the emulator). We can also set
the version code and version name. For example, in the following manifest file generated
by Processing, the package name is com.example.vines_draw, the version code 10, and
version name 0.5.4:

<?xml version="1.0" encoding="UTF-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="10" android:versionName="0.5.4"
 package="com.example.vines_draw">
 <uses-sdk android:minSdkVersion="17" android:targetSdkVersion="25"/>
 <application android:icon="@drawable/icon"
 android:label="Vines Draw">
 <activity android:name=".MainActivity"
 android:theme=
 "@style/Theme.AppCompat.Light.NoActionBar.FullScreen">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>
</manifest>

Note that our app’s package name must be unique, since there cannot be two apps
on the Google Play Store with the same package name. Also, we should set the application
name by using the android:label attribute in the application tag. Android will use this
label as the visible title of the app in the launcher and other parts of the UI.

Exporting as a Signed Package
Android Mode simplifies the publishing of our sketch by signing and aligning the app so
we can upload it to the Google Play Developer Console very easily. The signing process
involves creating a public-key certificate that contains the public key of a public/private
key pair, so that when the app package is signed, it embeds a unique fingerprint that
associates the package with its author. This ensures that any future updates of the app
are authentic and come from the o riginal author (https://developer.android.com/
studio/publish/appsigning.html). The alignment is required to optimize data storage
inside the package, which reduces the amount of RAM consumed when running the
application. While Processing will do the signing and alignment for us, we still need
to create a Google Play Developer account to use the Play Console, which requires
paying a one-time fee of $25, at the time of this writing (https://support.google.com/
googleplay/androiddeveloper/answer/6112435). From Processing, all we need to do is
select the “Export Signed Package” option under the File menu (Figure 3-8).

https://developer.android.com/studio/publish/appsigning.html
https://developer.android.com/studio/publish/appsigning.html
https://support.google.com/googleplay/androiddeveloper/answer/6112435
https://support.google.com/googleplay/androiddeveloper/answer/6112435

Chapter 3 ■ From Sketch to Play Store

53

After selecting this option, Processing will ask to create a new keystore to save the
release key to sign the app package. The keystore requires a password and additional
information about the keystore issuer (name, organization, city, state, country), although
those are optional. The Keystore Manager window that allows us to enter all this
information is displayed in Figure 3-9.

Figure 3-8.  “Export Signed Package” option in the PDE’s File menu

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ From Sketch to Play Store

54

Figure 3-9.  Entering the information needed to create a keystore in Processing

Remember this password, as you will have to use it every time you export a new
signed package. Even though you could reset it and create a new key, you should keep
in mind that you cannot change keys once an app is uploaded to the Play Store—any
subsequent updates to the app need to be signed by the same key as the original, or else it
will be denied, and you will have to create a new package with a new key.

The signed (and aligned) package will be saved in the build subfolder inside the
sketch’s folder, under the name [Sketch name in lowercase]_release_signed_
aligned.apk. Once we have this package, we can follow the instructions from Google
to complete the app-publishing process: https://support.google.com/googleplay/
android-developer/answer/113469.

If we follow all these steps with our vine-drawing sketch, we should be able to
generate a signed package that is ready to upload to the Play Store. We can also install it
manually on our device using the adb tool (see Figure 3-10).

https://support.google.com/googleplay/android-developer/answer/113469
https://support.google.com/googleplay/android-developer/answer/113469

Chapter 3 ■ From Sketch to Play Store

55

Summary
This chapter covered a number of technical topics, including debugging our code using
Processing’s console, the integrated debugger, or the logcat option in adb; scaling the
output of our sketches according to the device’s DPI; and exporting our sketch as a signed
package ready for upload to the Play Store. With these tools, we are ready to share our
creations with Android users around the world!

If we install the final app package either manually or through the Play Store, we
should see it in the app launcher with the icon we created for it (Figure 3-11).

Figure 3-10.  Installing a signed package from the command line using adb

Figure 3-11.  The vine-drawing app installed on our device

www.allitebooks.com

http://www.allitebooks.org

PART II

Drawing and Interaction

59© Andrés Colubri 2017
A. Colubri, Processing for Android, https://doi.org/10.1007/978-1-4842-2719-0_4

CHAPTER 4

Drawing Graphics and Text

In this chapter, we will delve deeper into the Processing API for drawing shapes, images,
and text, using several code examples to illustrate the different functions in the API. We will
also learn how to use the P2D renderer and the PShape class for better 2D performance.

Renderers in Processing
In the previous chapters, we learned the basic structure of a Processing sketch, which
consists of a setup() and a draw() function, with the former containing the sketch
initialization and the latter the code that updates the screen in each frame. As part of the
initialization, we need to indicate the size of the output area with the size() function,
as shown in Listing 4-1. We also saw that the fullScreen() function allows us to use the
entire area of the device’s screen, irrespective of its resolution.

Both the size() and fullScreen() functions accept a “renderer” option. The renderer
is the module in Processing that transforms the drawing commands in our sketch into a
final image on the device’s screen. The Processing renderer does this by communicating
with the graphics hardware through an API provided by the Android system (https://
source.android.com/devices/graphics/).

The default renderer (JAVA2D), enabled when no additional option is given to
size() or fullScreen(), uses Android’s Canvas API and offers high-quality 2D rendering.
However, performance can be limited, especially when drawing many shapes and other
graphic elements. The other two renderers, P2D and P3D, use the graphics processing
unit (GPU) through the OpenGL API, which results in higher performance, but at the
expense of increased battery consumption. We can select the renderer by calling size()
or fullScreen() with the appropriate parameter; for example, size(w, h) or size(w,
h, JAVA2D) will result in the sketch using the default renderer, while size(w, h, P2D) or
fullScreen(P2D) will enable the P2D renderer, as we do in Listing 4-1. The output of this
sketch is the same whether we use JAVA2D or P2D, but later in this chapter we will see
some specific advantages of using P2D. We will cover the use of the P3D renderer to draw
3D graphics in Chapter 13.

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-2719-0_4
https://source.android.com/devices/graphics/
https://source.android.com/devices/graphics/
http://dx.doi.org/10.1007/978-1-4842-2719-0_13
http://www.allitebooks.org

Chapter 4 ■ Drawing Graphics and Text

60

Listing 4-1.  Using Full-screen Output with the P2D Renderer

void setup() {
 fullScreen(P2D);
 background(255);
 noFill();
 rectMode(CENTER);
}

void draw() {
 float w = 2*(width/2-mouseX);
 rect(width/2, height/2, w, w/width * height);
}

Drawing Shapes
Chapter 2 gave us an overview of some important elements of the drawing API in
Processing. We saw how primitive shapes are drawn using functions like ellipse() or
rect(), while arbitrary shapes can be created vertex by vertex with the beginShape(),
vertex(), and endShape() functions. In this section, we will go deeper into the shape-
drawing API and will learn how to store shapes into objects for faster rendering using the
PShape class and by loading vector graphics into a PShape object.

More Shape Types
Let’s start by reviewing all the possible shape types that we have at our disposal.
Essentially, depending on the type we specify in beginShape(), the vertices will be
connected in different ways to construct the desired geometry, as shown in Figure 4-2.

Figure 4-1.  Output of the full-screen P2D sketch

http://dx.doi.org/10.1007/978-1-4842-2719-0_2

Chapter 4 ■ Drawing Graphics and Text

61

The number and order of the vertices are very important when constructing a shape
with beginShape/endShape. Figure 4-2 depicts how each vertex is incorporated into the
shape, depending on the type. If we provide the vertices in a different order—for example,
if we switch vertices 2 and 3 in a shape of type QUADS—then the resulting shape will look
distorted. Also, each type (except for points and polygon) requires a specific number of
vertices to construct an individual shape; for instance, 3 × N to draw N triangles, 4 × N to
draw N quads, and so on. We must become familiar with these rules if we want to create
complex shapes. Consider, for example, how the same disposition of vertices can lead to
very different visual results under each shape type, as shown in Listing 4-2.

Listing 4-2.  Drawing Different Shapes of Different Types Using beginShape() and
endShape()

int[] types = {POINTS, LINES, TRIANGLES,
 TRIANGLE_STRIP, TRIANGLE_FAN,
 QUADS, QUAD_STRIP, POLYGON};
int selected = 0;

void setup() {
 size(300, 300);
 strokeWeight(2);
}

void draw() {
 background(150);
 beginShape(types[selected]);
 for (int i = 0; i <= 10; i++) {
 float a = map(i, 0, 10, 0, TWO_PI);
 float x0 = width/2 + 100 * cos(a);
 float y0 = height/2 + 100 * sin(a);

Figure 4-2.  All the shape types available in Processing

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ Drawing Graphics and Text

62

 float x1 = width/2 + 130 * cos(a);
 float y1 = height/2 + 130 * sin(a);
 vertex(x0, y0);
 vertex(x1, y1);
 }
 endShape();
}

void mousePressed() {
 selected = (selected + 1) % types.length;
 println("Drawing shape", selected);
}

■■ Note  The POLYGON type is the default argument of beginShape(), so if we don’t provide
any explicit type, we will be creating a polygonal shape. Also, polygons can be open or closed,
and this can be controlled with endShape(mode), with mode being either OPEN or CLOSE.

Curve Shapes
The vertex() function we have been using so far allows us to add vertices to our shape
that are then connected according to the type parameter we selected in beginShape().
This method is general enough to generate almost any shape we can think of, even curved
ones. In such a case, we could compute the position of the vertices along a mathematical
curve, then add those vertices to a polygonal shape. For example, in Listing 4-3 we use
polar coordinates to generate a random, organic-looking shape.

Figure 4-3.  Outputs for different shape types

Chapter 4 ■ Drawing Graphics and Text

63

Listing 4-3.  Creating a Curved “Organic” Shape with Polar Coordinates

size(480, 480);
translate(width/2, height/2);
int numPoints = 100;
int degree = 5;
beginShape();
float[] coeffs = new float[degree];
for (int d = 0; d < degree; d++) {
 coeffs[d] = random(0, 1);
}
float phase = random(0, TWO_PI);
for (int i = 0; i <= numPoints; i++) {
 float theta = map(i, 0, numPoints, 0, TWO_PI);
 float rho = 5;
 for (int d = 1; d <= degree; d++) {
 rho += coeffs[d - 1] * sin(d*theta+phase);
 }
 float x = 30 * rho * cos(theta);
 float y = 30 * rho * sin(theta);
 vertex(x, y);
}
endShape();

In this example, we used the variable numPoints to set the number of points to add
to the shape. The higher this number is, the smoother the curve will look at the end. We
could use Catmull-Rom splines and Bezier curves instead, with both giving us more
intuitive control of the curve, as we will see next.

We add a Catmull-Rom spline inside a shape by repeatedly calling the
curveVertex() function, once for each vertex the spline needs to go through, and by
setting its control points. These control points determine the direction of the spline at
its endpoints. A convenient aspect of Catmull-Rom splines is that they pass through all
the control points, but the relationship between these points and the direction at the
endpoints is not easy to visualize.

Figure 4-4.  Three shapes created by our “organic shape” example

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ Drawing Graphics and Text

64

Let’s look at the details of using splines. To make the code more readable, we will use
the PVector class in Processing, which allows us to store 2D and 3D positions and carry
out basic vector algebra. A PVector object has three float fields—x, y, z—and a number of
methods to compute things like vector addition, subtraction, length, and heading angle.
The Processing reference has a section detailing how to use this functionality (https://
processing.org/reference/PVector.html), as well as a tutorial (https://processing.
org/tutorials/pvector/). In Listing 4-4, we use an array of PVector objects to store all
the points the spline passes through.

Listing 4-4.  Creating Catmull-Rom Splines with curveVertex()

size(480, 480);

PVector[] points = new PVector[11];
for (int i = 0; i <= 10; i++) {
 if (i < 10) {
 float a = map(i, 0, 10, 0, TWO_PI);
 float r = random(100, 200);
 points[i] = new PVector(r * cos(a), r * sin(a));
 } else {
 points[10] = points[0].copy();
 }
}

translate(width/2, height/2);
fill(255);
beginShape();
for (int i = 0; i <= 10; i++) {
 if (i == 0 || i == 10) curveVertex(points[i].x, points[i].y);
 curveVertex(points[i].x, points[i].y);
}
endShape();

fill(0);
for (int i = 0; i <= 10; i++) {
 ellipse(points[i].x, points[i].y, 10, 10);
}

We first create an array of PVector objects where we store the positions along the
curve. Since we are creating a closed shape, the last PVector is a copy of the first. Then,
we just add the positions stored in the PVector array to the polygon shape as curve
vertices. The line if (i == 0 || i == 10) curveVertex(points[i].x, points[i].y);
adds the additional vertices corresponding to the control points, which are set to be the
same as the first and last points in the curve. Even though the splines give us a smooth
curve passing through all our points, we might get a sharp corner at the first point, as we
can see in Figure 4-5.

https://processing.org/reference/PVector.html
https://processing.org/reference/PVector.html
https://processing.org/tutorials/pvector/
https://processing.org/tutorials/pvector/

Chapter 4 ■ Drawing Graphics and Text

65

Bezier curves, on the other hand, allow for a more intuitive manipulation of the
shape thanks to the control points that can be used to adjust the curvature between each
pair of vertices along the curve. We applied Bezier curves in Chapter 2 to create shapes
resembling flowers and leaves, and we can use them in many other situations. Similar to
our earlier random blob, we can create a randomized shape using Bezier curves. We need
to smoothly join pieces of Bezier curves; each one requires two control points and two
vertices. Figure 4-6 shows how the vertices and control points of adjacent Bezier curves
should be shared to ensure the overall curve does not contain sharp corners.

As with the splines, we can generate the points through which the Bezier curve will
pass by moving around the entire perimeter of the shape at equally spaced intervals, then
constructing the tangent directions along which we will place the control points to be
shared among consecutive curves. This is what we have done in Listing 4-5.

Figure 4-5.  Output of the Catmull-Rom spline example

Figure 4-6.  Smoothly joining Bezier curves

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-2719-0_2
http://www.allitebooks.org

Chapter 4 ■ Drawing Graphics and Text

66

Listing 4-5.  Creating a Bezier Curve with Consecutive Vertices

size(480, 480);

PVector[] points = new PVector[11];
PVector[] directions = new PVector[11];
for (int i = 0; i <= 10; i++) {
 if (i < 10) {
 float a = map(i, 0, 10, 0, TWO_PI);
 float r = random(100, 200);
 points[i] = new PVector(r * cos(a), r * sin(a));
 directions[i] = PVector.fromAngle(points[i].heading() +
 random(0, QUARTER_PI));
 directions[i].mult(60);
 } else {
 points[10] = points[0].copy();
 directions[10] = directions[0].copy();
 }
}

translate(width/2, height/2);
strokeWeight(2);
fill(255);
beginShape();
for (int i = 0; i < 10; i++) {
 vertex(points[i].x, points[i].y);
 PVector CP1 = PVector.add(points[i], directions[i]);
 PVector CP2 = PVector.sub(points[i+1], directions[i+1]);
 bezierVertex(CP1.x, CP1.y, CP2.x, CP2.y, points[i+1].x, points[i+1].y);
}
endShape();

Notice the use of PVector’s fromAngle() method to generate a direction vector by
rotating the position vector by a random amount between 0 and 90 degrees (QUARTER_PI)
and then scaling it by a constant factor (60). Again, the position and direction of the final
vector need to be copied from the first one so the shape is properly closed. Once all these
vectors are computed and stored in the arrays, we just create the shape with the vertex()
and bezierVertex() functions.

We can also add some extra code to our example to draw the vertices and control
points. All we need to do is iterate over the points and directions arrays and then use
ellipses and lines to show them in relation to the shape. Listing 4-6 contains this extra
code, which we would paste at the end of the sketch from Listing 4-5 to get the output
shown in Figure 4-7.

Chapter 4 ■ Drawing Graphics and Text

67

Listing 4-6.  Drawing the Control Points and Tangent Directions to a Bezier Curve

strokeWeight(1);
for (int i = 0; i <= 10; i++) {
 PVector prevCP = PVector.sub(points[i], directions[i]);
 PVector nextCP = PVector.add(points[i], directions[i]);
 stroke(0);
 line(prevCP.x, prevCP.y, nextCP.x, nextCP.y);
 noStroke();
 fill(190, 30, 45);
 ellipse(points[i].x, points[i].y, 10, 10);
 fill(28, 117, 188);
 ellipse(prevCP.x, prevCP.y, 7, 7);
 ellipse(nextCP.x, nextCP.y, 7, 7);
}

It is possible to combine curve/Bezier vertices with regular vertices in the same
shape. Let’s use what we just learned to draw a simple seascape, making waves with
Bezier curves. I sketched out this idea in Figure 4-8.

Figure 4-7.  Shape obtained by joining Bezier consecutive curves, with their control points

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ Drawing Graphics and Text

68

Since we will be drawing several shapes with the same code but different parameters,
it can be convenient to store each shape inside a separate object. For this purpose, we will
define a class holding a single wavy line, which we can then use to create several waves in
the setup() function, as shown in Listing 4-7.

Listing 4-7.  Seascape Sketch, Using Objects to Draw Several Shapes

void setup() {
 fullScreen();
 orientation(LANDSCAPE);
 colorMode(HSB, 360, 100,100);
 waves = new WavyLine[10];
 for (int i = 0; i < 10; i++) {
 float y = map(i, 0, 9, height * 0.85, height * 0.025);
 color c = color(225, map(i, 0, 10, 30, 100), 90);
 waves[i] = new WavyLine(y, c);
 }
}

void draw() {
 background(219, 240, 255);
 for (int i = waves.length - 1; i >= 0; i--) {
 waves[i].display();
 }
}

class WavyLine {
 int numDiv;
 color fillColor;
 PVector[] positions;
 PVector[] directions;

Figure 4-8.  Pen and paper sketch of a seascape using Bezier curves

Chapter 4 ■ Drawing Graphics and Text

69

 WavyLine(float y, color c) {
 numDiv = int(8 * displayDensity);
 positions = new PVector[numDiv];
 directions = new PVector[numDiv];

 fillColor = c;
 for (int i = 0; i < numDiv; i++) {
 float x = 0;
 if (0 < i) {
 if (i == numDiv - 1) x = width;
 else x = random(i/float(numDiv) * width * 1.2,
 (i+1)/float(numDiv) * width * 0.8);
 }
 positions[i] = new PVector(x, y + random(-20, 20));
 directions[i] = PVector.fromAngle(random(-0.5 * HALF_PI,
 +0.5 * HALF_PI));
 directions[i].mult(20 * displayDensity);
 }
 }

 void display() {
 noStroke();
 fill(fillColor);
 beginShape();
 for (int i = 0; i < numDiv - 1; i++) {
 vertex(positions[i].x, positions[i].y);
 PVector cp1 = PVector.add(positions[i], directions[i]);
 PVector cp2 = PVector.sub(positions[i+1], directions[i+1]);
 bezierVertex(cp1.x, cp1.y, cp2.x, cp2.y,
 positions[i+1].x, positions[i+1].y);
 }
 vertex(width, height);
 vertex(0, height);
 endShape();
 }
}

In this example, we use the built-in displayDensity variable, which we already
discussed in chapter 3, to make sure that the number of Bezier curve subdivisions and the
length of the tangent vectors defined by the control points are scaled proportionally to the
screen’s DPI, so we can obtain a consistent output across different devices (Figure 4-9).

A few additional things we should note in this example are the orientation(LANDSCAPE)
call in setup() to force the sketch to run in landscape orientation and the use of the HSB color
space to implement the gradient from lighter to darker hues of blue more easily.

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-2719-0_3
http://www.allitebooks.org

Chapter 4 ■ Drawing Graphics and Text

70

Shape Attributes
Processing allows us to set several attributes that determine the final appearance of
shapes. We have been using the fill and stroke colors attributes, but there are several
more. For example, we can set not only the color of a stroke line, but also its weight
(how thick it is), endings caps, and joins connecting consecutive line segments, as
demonstrated in Listing 4-8.

Listing 4-8.  Setting Stroke Attributes

size(800, 480);
float x = width/2;
float y = height/2;
stroke(0, 150);
strokeWeight(10);
strokeJoin(ROUND);
strokeCap(ROUND);
beginShape(LINES);
for (int i = 0; i < 100; i++) {
 float px = x;
 float py = y;
 float nx = x + (random(0, 1) > 0.5? -1: +1) * 50;
 float ny = y + (random(0, 1) > 0.5? -1: +1) * 50;
 if (0 <= nx && nx < width && 0 <= ny && ny < height) {
 vertex(px, py);
 vertex(nx, ny);
 x = nx;
 y = ny;
 }
}
endShape();

Figure 4-9.  Final result of the seascape sketch

Chapter 4 ■ Drawing Graphics and Text

71

Try this sketch with different values for the stroke joins (MITER, BEVEL, ROUND), caps
(SQUARE, PROJECT, ROUND), and weight, and compare with the output shown in Figure 4-10.

Even though these attributes are typically defined for the entire shape (i.e., they are
applied to all the vertices in the shape), the P2D and P3D renderers allow you to define
per-vertex attributes. For instance, the fill color can be set for each vertex separately,
and then Processing will interpolate the color at intermediate positions. The output of
the sketch in Listing 4-9 is similar to the HSB color wheel in Chapter 2, but here we do
not need to set the intermediate colors since the P2D renderer does it automatically
(Figure 4-11).

Listing 4-9.  Using Color Interpolation in the P2D Renderer

size(300, 300, P2D);
colorMode(HSB, 360, 100, 100);
background(0, 0, 100);
translate(width/2, height/2);
noStroke();
beginShape(TRIANGLE_FAN);
 fill(TWO_PI, 0, 100);
 vertex(0, 0);
 for (int i = 0; i <= 10; i++) {
 float a = map(i, 0, 10, 0, 360);
 float x = 150 * cos(radians(a));
 float y = 150 * sin(radians(a));
 fill(a, 100, 100);
 vertex(x, y);
 }
endShape();

Figure 4-10.  Output of sketch demonstrating stroke attributes

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-2719-0_2
http://www.allitebooks.org

Chapter 4 ■ Drawing Graphics and Text

72

Shape Styles
All the shape attributes that we can set with Processing determine the current “style.” As
we saw before, fill color, stroke color, weight, caps, and joins are all style attributes. As our
sketches grow in complexity, especially with objects that set their own attributes when
they are drawn, it can be easy to lose track of the current style.

Processing includes two functions, pushStyle() and popStyle(), that can be handy
for managing the style of our shapes, especially in situations where we change many style
attributes at different points of the execution of our sketch. pushStyle() saves the current
values of all the style attributes, while popStyle() restores all the style attributes to the
values we saved with the last call to pushStyle(). If we set a completely new style between
consecutive pushStyle() and popStyle() calls, we can be certain that two different styles
will not get mixed up. Listing 4-10 provides a simple example of this technique.

Listing 4-10.  Saving and Restoring Styles with pushStyle() and popStyle()

Circle[] circles = new Circle[100];

void setup() {
 size(800, 800);
 for (int i = 0; i < circles.length; i++) {
 circles[i] = new Circle();
 }
}

void draw() {
 translate(width/2, height/2);
 rotate(frameCount * 0.01);
 for (int i = 0; i < circles.length; i++) {
 circles[i].display();
 }
}

Figure 4-11.  Color wheel obtained by interpolation of the fill color

Chapter 4 ■ Drawing Graphics and Text

73

class Circle {
 float x, y, r, w;
 color fc, sc;
 Circle() {
 x = random(-width/2, width/2);
 y = random(-height/2, height/2);
 r = random(10, 100);
 w = random(2, 10);
 fc = color(random(255), random(255), random(255));
 sc = color(random(255), random(255), random(255));
 }
 void display() {
 pushStyle();
 stroke(sc);
 strokeWeight(w);
 fill(fc);
 ellipse(x, y, r, r);
 popStyle();
 }
}

Shape Contours
Another useful feature in the Processing API is subtractive drawing using contours. All
vertices that are enclosed between the beginContour() and endContour() functions
define a negative shape that is removed from the larger shape, as shown in Listing 4-11,
which generates the output seen in Figure 4-12.

Listing 4-11.  Making Holes Inside a Shape with beginContour() and endContour()

void setup() {
 size(300, 300);
}

void draw() {
 background(190);
 translate(width/2, height/2);
 float r = width/2;
 beginShape();
 circleVertices(0, 0, r, 0, TWO_PI);
 makeContour(0, 0, r/4);
 makeContour(-r/2, -r/2, r/4);
 makeContour(+r/2, -r/2, r/4);
 makeContour(-r/2, +r/2, r/4);
 makeContour(+r/2, +r/2, r/4);
 endShape();
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ Drawing Graphics and Text

74

void makeContour(float xc, float yc, float r) {
 beginContour();
 circleVertices(xc, yc, r, TWO_PI, 0);
 endContour();
}

void circleVertices(float xc, float yc, float r, float a0, float a1) {
 for (int i = 0; i <= 30; i++) {
 float a = map(i, 0, 30, a0, a1);
 vertex(xc + r * cos(a), yc + r * sin(a));
 }
}

■■ Note  Contours can only be used with shapes of kind POLYGON. Also, the “winding” or
direction of the vertices in the contour (clockwise or counterclockwise) must be opposite
that of the containing shape.

The PShape Class
As we’ve seen so far, drawing shapes involves calling beginShape(), vertex(), and
endShape() repeatedly in each frame. We can pre-calculate coordinates and put them
inside a custom class like we did in the seascape example; however, Processing already
offers a built-in class to hold shape data, appropriately called PShape. This class not
only helps us keep the code more organized and readable, but also allows us to read
shapes from vector graphics files (SVGs) and, when using the P2D renderer, increase the
performance of our sketch.

Figure 4-12.  Shape with holes created with beginContour/endContour

Chapter 4 ■ Drawing Graphics and Text

75

Creating PShapes
An PShape object can be created with a call to the createShape() function, and we can
pass the appropriate parameters to it in three different ways:

	 1.	 If no arguments are provided, createShape() returns an
empty PShape, which we can use to construct a custom shape
using beginShape(), vertex(), and endShape().

	 2.	 Providing a primitive type (ELLIPSE, RECT, etc.) and the
additional parameters needed to initialize the primitive shape.

	 3.	 Specifying a single GROUP argument, which results in a PShape
that can be used to contain other shapes, either custom or
primitive.

Once we have created and properly initialized the PShape object, we can draw it as
many times as we want using the shape() function, as shown in Listing 4-12 and Figure 4-13.

Listing 4-12.  Creating and Drawing PShape Objects

size(650, 200, P2D);
PShape circle = createShape(ELLIPSE, 100, 100, 100, 100);
PShape poly = createShape();
poly.beginShape(QUADS);
poly.vertex(200, 50);
poly.vertex(300, 50);
poly.vertex(300, 150);
poly.vertex(200, 150);
poly.endShape();
PShape group = createShape(GROUP);
group.addChild(circle);
group.addChild(poly);
shape(circle);
shape(poly);
translate(300, 0);
shape(group);

Figure 4-13.  Primitive, custom, and group PShape objects

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ Drawing Graphics and Text

76

We can use all the shape-drawing functionality we learned in the first sections of this
chapter to create custom shapes; the only difference is that we need to call the functions
on the corresponding PShape object.

Group shapes are useful when we need to deal with a very large piece of geometry
that does not change while the sketch is running. Without PShape, the vertices are copied
to the GPU memory in each frame, which can slow down the framerate. However, if we
pack all these vertices inside a PShape and use the P2D renderer, this copy happens just
once, which results in better performance. This is particularly important for mobile
devices, which are constrained by the use of battery power. As an example of this, let’s
consider the framerate of the CubicGridImmediate (no PShape) and CubicGridRetained
(PShape) built-in examples under Demos|Performance in the mode examples. Both
sketches create exactly the same geometry, a 3D grid of semi-transparent cubes; however,
the first sketch barely exceeds 10 frames per second (fps), while the second will run at 60
fps on most devices.

Even though the PShape geometry must be, in principle, static to enable these
performance improvements, it is still possible to modify vertex color and position to a
certain extent without losing speed. If our modifications are only applied to a subset of
children shapes inside a larger group, performance should remain high. Let’s look at this
scenario in Listing 4-13, which generates the output depicted in Figure 4-14.

Listing 4-13.  Modifying Attributes of Child Shapes After Creation

PShape grid, sel;

void setup() {
 fullScreen(P2D);
 orientation(LANDSCAPE);
 grid = createShape(GROUP);
 for (int j = 0; j < 4; j++) {
 float y0 = map(j, 0, 4, 0, height);
 float y1 = map(j+1, 0, 4, 0, height);
 for (int i = 0; i < 8; i++) {
 float x0 = map(i, 0, 8, 0, width);
 float x1 = map(i+1, 0, 8, 0, width);
 PShape sh = createShape(RECT, x0, y0, x1 - x0, y1 - y0, 30);
 grid.addChild(sh);
 }
 }
}

void draw() {
 background(180);
 shape(grid);
}

Chapter 4 ■ Drawing Graphics and Text

77

void mousePressed() {
 int i = int(float(mouseX) / width * 8);
 int j = int(float(mouseY) / height * 4);
 int idx = j * 8 + i;
 sel = grid.getChild(idx);
 sel.setFill(color(#FA2D45));
}

void mouseReleased() {
 sel.setFill(color(#C252FF));
}

Here, only one child shape is modified at a time, getting a new fill color. Only the
updated information is transferred to the GPU, keeping performance steady. However,
this gain will diminish as more shapes are modified simultaneously, until performance
becomes equivalent to drawing without any PShape objects.

■■ Note  Most of the attributes of a PShape object can be modified after creating it. All the
available setter functions can be found in the online reference at https://processing.
org/reference/PShape.html.

Figure 4-14.  Modifying the fill color of a child shape inside a group

www.allitebooks.com

https://processing.org/reference/PShape.html
https://processing.org/reference/PShape.html
http://www.allitebooks.org

Chapter 4 ■ Drawing Graphics and Text

78

Loading Shapes from SVG
We can also use a PShape object to load geometry stored in a file by using the
loadShape() function. This function accepts the formats SVG and OBJ, the latter
supported in the P3D renderer. SVG stands for scalable vector graphics, and a file in SVG
format contains the specifications for a shape or group of shapes in a way that is very
similar to how Processing handles geometry: as a list of vertices, splines, or Bezier curves.

In order to load an SVG file in our sketch, we first need to place it inside the data
directory of the sketch. When we run the sketch on the device or emulator, all the contents
of the data folder will be properly packaged so they can be accessed from the app.

■■ Note  The data directory can be created manually inside the sketch’s folder. It is also
created automatically if one drags a media file into the PDE.

Once the SVG is loaded into a PShape object, we can apply transformations on it,
like translations or rotations, or even change its style attributes, as we do in Listing 4-14,
where we load three SVG files into separate shapes (Figure 4-15).

Listing 4-14.  Load SVG Files into PShape Objects

size(450, 200, P2D);
PShape cc = loadShape("cc.svg");
PShape moz = loadShape("mozilla.svg");
PShape ruby = loadShape("ruby.svg");
translate(30, 50);
cc.setFill(color(170, 116, 0));
cc.setStroke(color(255, 155, 0));
shape(cc);
translate(cc.width + 30, 0);
shape(moz);
translate(moz.width + 30, 0);
shape(ruby);

Figure 4-15.  Loading, modifying, and displaying SVGs

Chapter 4 ■ Drawing Graphics and Text

79

SVG files can be useful for drawing complex geometry that would be hard to generate
through code alone. Another advantage of complex SVGs is that they can be organized in
a hierarchical fashion, with children shapes inside groups, allowing the manipulation of
the subshapes individually. Let’s look at an example that draws a world map SVG that also
contains the names of countries (Listing 4-15). Running it should result in Figure 4-16.

Listing 4-15.  Selecting a Child Shape by Name and Setting Its Attributes

PShape world;

void setup() {
 size(950, 620, P2D);
 world = loadShape("World-map.svg");
 for (PShape child: world.getChildren()) {
 if (child.getName().equals("algeria")) child.setFill(color(255, 0, 0));
 }
}

void draw() {
 background(255);
 shape(world);
}

Note how we iterate over all the children shapes, which can be retrieved as an array
of PShape objects from the containing group using the getChildren() function.

Figure 4-16.  Loading a map from an SVG file and selecting a country by its name attribute

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ Drawing Graphics and Text

80

Drawing Images
Loading and displaying image files in our apps is a basic feature that Processing makes
very easy. Processing supports GIF, JPG, TGA, and PNG image formats and includes
a built-in class, PImage, to handle images inside a sketch. PImage encapsulates all the
information of an image, including width, height, and individual pixels. Loading and
displaying an image can be accomplished with two functions, loadImage() and image(),
as shown in Listing 4-16.

Listing 4-16.  Loading and Displaying an Image

fullScreen();
PImage img = loadImage("paine.jpg");
image(img, 0, 0, width, height);

The image() function accepts up to four parameters: the x and y coordinates of the
image on the screen, and the width and height at which to display the image. These width
and height parameters do not need to be the same as the original resolution of the image,
which can be obtained from the PImage.width and PImage.height variables in the
PImage object. Calling image() without width and height arguments results in the image
being drawn at its source resolution, which would be equivalent to calling image(img, 0,
0, img.width, img.height).

We can apply a tint to the entire image using the tint() function and remove it
afterward with noTint() (otherwise, all images displayed subsequently will have the
same tint, as tint is another style attribute). Listing 4-17 exemplifies the use of tint()
and noTint(), with its output shown in Figure 4-17.

Listing 4-17.  Tinting an Image

PImage img;
void setup() {
 size(800, 533);
 img = loadImage("paine.jpg");
}

void draw() {
 image(img, 0, 0, width/2, height/2);
 tint(255, 0, 0);
 image(img, width/2, 0, width/2, height/2);
 tint(0, 255, 0);
 image(img, 0, height/2, width/2, height/2);
 tint(0, 0, 255);
 image(img, width/2, height/2, width/2, height/2);
 noTint();
}

Chapter 4 ■ Drawing Graphics and Text

81

■■ Note  When loading images or any other media files, such as SVGs, it is important to do
so inside the setup() function, which is only called on app start. Otherwise, the images will
be loaded repeatedly in each frame, slowing down the app to the point of making it unusable.

Texturing Shapes
We can also use image files to texture shapes (only in the P2D/P3D renderers). Texturing
essentially means wrapping an image around the shape so the shape is no longer
drawn with a flat color. This process requires that we specify which parts of the image
correspond to each vertex of the shape. Texturing can be quite involved, especially when
dealing with irregular shapes in 3D. Listing 4-18 illustrates the simplest case—texturing a
rectangular shape.

Figure 4-17.  Output of displaying an image with three different tints and no tinting

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ Drawing Graphics and Text

82

Listing 4-18.  Texturing a Rectangle with an Image Loaded from a File

PImage img;
size(800, 533, P2D);
img = loadImage("paine.jpg");
beginShape();
texture(img);
vertex(100, 0, 0, 0);
vertex(width – 100, 0, img.width, 0);
vertex(width, height, img.width, img.height);
vertex(0, height, 0, img.height);
endShape();

As we see in this example, we need to provide two additional arguments to the
vertex() function. These parameters in the vertex(x, y, u, v) call correspond to
UV coordinates for texture mapping and indicate that pixel (u, v) in the image will go
to the vertex (x, y) in the shape. The renderer will determine all the other pixel-vertex
correspondences based on this information. In the case of our simple texturing code, the
result is shown in Figure 4-18.

Drawing Text
Text is another basic element of graphics programming. Processing offers several
functions to draw text in our sketches and control its appearance by using different
fonts and adjusting attributes such as size and alignment. We will look at some of these
functions in the next few sections.

Figure 4-18.  Textured 2D shape

Chapter 4 ■ Drawing Graphics and Text

83

Loading and Creating Fonts
The first step in drawing text in a Processing sketch is to load a bitmap font. The font will
be stored in a PFont variable, and we can switch between different PFont variables in the
same sketch if we want to draw with different fonts at different times. The built-in font-
creator tool (available under “Tools|Create Font…”) allows us to create a new bitmap font
from the fonts available on the PC or Mac computer on which we are running Processing.
The interface of this tool is shown in Figure 4-19. Once we have selected the font, desired
size, and filename, we hit OK, and the tool will generate a font file, with a .vlw extension,
inside the data directory of our sketch, ready to use.

To load our new font and set it as the current one, we use the loadFont() and
textFont() functions, respectively. Once we have set the desired font, we can draw text
anywhere on the screen using the text() function. All these functions are demonstrated
in Listing 4-19.

Listing 4-19.  Loading a bitmap font generated with the font creator tool

size(450, 100);
PFont font = loadFont("SansSerif-32.vlw");
textFont(font);
fill(120);
text("On Exactitude in Science", 40, 60);

Figure 4-19.  Font-creator tool in the PDE

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ Drawing Graphics and Text

84

The x and y arguments in the text(str, x, y) call let us set the screen location of
the text. They represent, with the default text alignment options, the position of the lower-
left corner of the first character. Figure 4-20 shows the output of our text-drawing sketch.

One disadvantage of creating a .vwl font file and then loading it into the sketch is
that, since the font is created beforehand, it must contain all possible characters. This
wastes memory, especially if we end up using only a few of them. Alternatively, we can
create the font on the fly with the createFont(name, size) function, which accepts
either a systemwide font name or the filename of a TrueType (.ttf) or OpenType (.otf) font
located in the sketch’s data folder, as well as a font size. Only the characters actually used
in the sketch will be created and stored in memory. This is shown in Listing 4-20.

Listing 4-20.  Creating a Font on the Fly

size(450, 100);
PFont font = createFont("SansSerif", 32);
textFont(font);
fill(120);
text("On Exactitude in Science", 40, 60);

■■ Note  Android provides three systemwide fonts available to any app: serif, sans-serif,
and monospaced. Each one has four variants: normal, bold, italic, and bold italic, so, for
example, the font names for the sans-serif fonts are SansSerif, SansSerif-Bold, SansSerif-
Italic, and SansSerif-BoldItalic.

If we don’t provide any other arguments to text(), the text string will continuously
extend to the right until falling off of the screen or, if the string includes a line-break
character (\n), going to the next line. We can set a rectangular area with four parameters,
x, y, w, and h, and Processing will automatically accommodate the text within that rectangle
by breaking it up into several lines if needed, as shown in Listing 4-21 and Figure 4-21.

Listing 4-21.  Placing Text Inside a Rectangular Area

size(900, 300);
PFont font = createFont("Monospaced", 32);
textFont(font);
fill(120);
text("...In that Empire, the Art of Cartography attained such Perfection " +
 "that the map of a single Province occupied the entirety of a City, " +
 "and the map of the Empire, the entirety of a Province.", 20, 20,
 width - 40, height - 40);

Figure 4-20.  Text output in Processing

Chapter 4 ■ Drawing Graphics and Text

85

Text Attributes
In addition to the font’s name and size, we can control text alignment (LEFT, RIGHT,
CENTER, BOTTOM, TOP) and the leading between lines of text (Listing 4-22). Figure 4-22
shows the result of setting these attributes. Even though in this example we set the
alignment for only the horizontal direction, we can also set the vertical alignment by
providing a second argument to textAlign()—CENTER, BOTTOM, or TOP.

Listing 4-22.  Setting Text Alignment and Leading

size(900, 300);
PFont titleFont = createFont("Serif", 32);
PFont textFont = createFont("Serif", 28);
textFont(titleFont);
textAlign(CENTER);
fill(120);
text("On Exactitude in Science", width/2, 60);
textFont(textFont);
textAlign(RIGHT);
textLeading(60);
text("...In that Empire, the Art of Cartography attained such Perfection " +
 "that the map of a single Province occupied the entirety of a City, " +
 "and the map of the Empire, the entirety of a Province.",
 20, 100, width - 40, height - 20);

Figure 4-21.  Text output in Processing fitted inside a rectangular area

Figure 4-22.  Drawing text with different fonts and attributes

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ Drawing Graphics and Text

86

Scaling Text
In Chapter 3, we saw how to scale the graphics in our sketch according to the device’s DPI
using the displayDensity variable. This technique allows us to maintain a consistent
visual output across devices with different resolutions and screen sizes, and we can use it
when drawing text as well. All we need to do is multiply the font size by displayDensity,
as shown in Listing 4-23. We see in Figure 4-23 that the size of the text on the screen
remains the same on three devices with different DPIs. An additional function we
introduce in this example is loadStrings(), which reads a text file in the data folder and
returns an array of strings containing all the lines of text in the file.

Listing 4-23.  Scaling Font Size by the Display Density

fullScreen();
orientation(PORTRAIT);
PFont titleFont = createFont("Serif-Bold", 25 * displayDensity);
PFont bodyFont = createFont("Serif", 18 * displayDensity);
PFont footFont = createFont("Serif-Italic", 15 * displayDensity);
String[] lines = loadStrings("borges.txt");
String title = lines[0];
String body = lines[1];
String footer = lines[2];
textFont(titleFont);
textAlign(CENTER, CENTER);
fill(120);
text(title, 10, 10, width - 20, height * 0.1 - 20);
textFont(bodyFont);
text(body, 10, height * 0.1, width - 20, height * 0.8);
textAlign(RIGHT, BOTTOM);
textFont(footFont);
text(footer, 10, height * 0.9 + 10, width - 20, height * 0.1 - 20);

http://dx.doi.org/10.1007/978-1-4842-2719-0_3

Chapter 4 ■ Drawing Graphics and Text

87

Summary
This was a long chapter, but we covered a lot of important concepts and techniques!
Building on the introduction to the Processing language we saw in Chapter 2, we’ve now
learned the details of drawing shapes using various types of geometry, splines, and Bezier
curves; adjusting their appearance with different attributes; and optimizing the code with
the PShape class. In addition to all of that, we have also learned how to draw images and
text in our sketches. By putting these resources into practice, we should be able to create
virtually any visual composition we can think of and turn it into an Android app.

Figure 4-23.  From left to right, text output on a Samsung Galaxy Tab 4 (7”, 1280 × 800 px,
216 dpi), Nexus 5X (5.2”, 1920 × 800 px, 424 dpi), and a Moto E (4.3”, 960 × 540 px, 256 dpi)

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-2719-0_2
http://www.allitebooks.org

89© Andrés Colubri 2017
A. Colubri, Processing for Android, https://doi.org/10.1007/978-1-4842-2719-0_5

CHAPTER 5

Touchscreen Interaction

This chapter will provide detailed coverage of the touchscreen support in Processing for
Android. We will learn how to capture single and multi-touch events in our sketch, how to
process these events to implement touch-based interactions such as selection, scrolling,
swipe, and pinch, as well as how to use the virtual keyboard.

Touch Events in Android
With this chapter, we have reached a topic that is quite specific to mobile devices. Since
the introduction of the iPhone in 2007, the touchscreen has become the main mechanism
of interaction with smartphones, tablets, and wearable devices. Older phones often
included a physical keyboard, but today those are very rare, and keyboard input is
implemented through virtual or software keyboards.

Touchscreen interaction is very immediate and intuitive, and useful in applications
that involve gesturing as a central part of the experience (e.g., note-taking and drawing
apps). The physicality of touch makes it the ideal interaction for creative applications on
mobile devices.

The Android system provides full support for touchscreen interaction, ranging
from single-touch events, multi-touch gestures triggered with the fingers, to pen
stylus input. Because of its generality, the touch API in Android can be hard to use, so
Processing for Android wraps this complexity with a simpler API that, while it may not
cover all touchscreen functions, makes it possible to create a wide range of touch-based
interactions.

Basic Touch Events
Since its earliest versions, Java mode in Processing has included variables and functions
to handle interaction with the mouse. All of these variables and functions are also
available in Android mode, and they work very similarly to their original Java-mode
counterparts, at least for single-touch events. The difference, of course, is that the events
are triggered by our fingers pressing the touchscreen instead of by the movement of a
mouse. We have used some of this mouse API in previous chapters—in particular, the
mouseX and mouseY variables—to track the position of the touch point. Listing 5-1 shows a
basic example of this API where we control the position of some shapes (Figure 5-1).

https://doi.org/10.1007/978-1-4842-2719-0_5

Chapter 5 ■ Touchscreen Interaction

90

Listing 5-1.  Simple Touch Event Using the Mouse Variables

void setup() {
 fullScreen();
 strokeWeight(20);
 fill(#3B91FF);
}

void draw() {
 background(#FFD53B);
 stroke(#3B91FF);
 line(0, 0, mouseX, mouseY);
 line(width, 0, mouseX, mouseY);
 line(width, height, mouseX, mouseY);
 line(0, height, mouseX, mouseY);
 noStroke();
 ellipse(mouseX, mouseY, 200, 200);
}

An important difference with an actual mouse is the existence of a “pressed” state:
we can move the mouse without pressing any button, and when we do press it, a “drag”
event is triggered until we release the button. With a touchscreen, the “mouse” is always
in the “pressed” state while it is moving. This difference invalidates a typical mouse-based
interaction, hovering, which occurs when we move the mouse inside a pre-defined area
of the screen but without pressing any button.

Figure 5-1.  Simple use of mouseX and mouseY variables to track touch position

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ Touchscreen Interaction

91

We can perform specific tasks exactly when a touch starts/ends, or when a
touch point changes position. The functions mousePressed(), mousedDragged(), and
mouseReleased() are called automatically by Processing whenever any of these events
take place, so we can implement our event-handling functionality in them. For example,
in Listing 5-2, we draw a growing ellipse at the mouse position for as long as we drag the
finger across the screen. Also, notice the use of displayDensity to scale the initial radius
of the ellipse and its regular increments while dragging so that it appears the same size
irrespective of the device’s DPI.

Listing 5-2.  Detecting Press, Drag, and Release “Mouse” Events

boolean drawing = false;
float radius;

void setup() {
 fullScreen();
 noStroke();
 fill(100, 100);
}

void draw() {
 background(255);
 if (drawing) {
 ellipse(mouseX, mouseY, radius, radius);
 }
}

void mousePressed() {
 drawing = true;
 radius = 70 * displayDensity;
}

void mouseReleased() {
 drawing = false;
}

void mouseDragged() {
 radius += 0.5 * displayDensity;
}

We can build on top of this simple example by keeping a list of all the ellipses created
so far and assigning random RGB colors to them. For this purpose, we create a class to
store the ellipses’ position, size, and color, as shown in Listing 5-3.

Chapter 5 ■ Touchscreen Interaction

92

Listing 5-3.  Drawing Multiple Growing Ellipses with Mouse Events

ArrayList<Circle> circles;
Circle newCircle;

void setup() {
 fullScreen();
 circles = new ArrayList<Circle>();
 noStroke();
}

void draw() {
 background(255);
 for (Circle c: circles) {
 c.draw();
 }
 if (newCircle != null) newCircle.draw();
}

void mousePressed() {
 newCircle = new Circle(mouseX, mouseY);
}

void mouseReleased() {
 circles.add(newCircle);
 newCircle = null;
}

void mouseDragged() {
 newCircle.setPosition(mouseX, mouseY);
 newCircle.grow();
}

class Circle {
 color c;
 float x, y, r;
 Circle(float x, float y) {
 this.x = x;
 this.y = y;
 r = 70 * displayDensity;
 c = color(random(255), random(255), random(255), 100);
 }
 void grow() {
 r += 0.5 * displayDensity;
 }
 void setPosition(float x, float y) {
 this.x = x;
 this.y = y;
 }

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ Touchscreen Interaction

93

 void draw() {
 fill(c);
 ellipse(x, y, r, r);
 }
}

In addition to the mouseX/Y variables, Processing also stores the previous position
of the touch pointer in the pmouseX/Y variables. Using these variables, we can code a
simple drawing sketch where we connect the previous and current mouse positions with
a line segment, drawing a continuous path as long as the user keeps pressing the screen.
We can determine if the user is pressing the screen with the built-in Boolean variable
mousePressed. This sketch is shown in Listing 5-4, and a drawing made with it in Figure 5-2.

Listing 5-4.  Simple Drawing Sketch Using Current and Previous Mouse Positions

void setup() {
 fullScreen();
 strokeWeight(10);
 stroke(100, 100);
}

void draw() {
 if (mousePressed) line(pmouseX, pmouseY, mouseX, mouseY);
}

Figure 5-2.  Generating a line drawing with our sketch

Chapter 5 ■ Touchscreen Interaction

94

The difference between the previous and current touch positions tells us how fast we
are swiping the finger across the screen. The faster we swipe, the larger this difference will be,
so we could use it to drive the motion of an object, like the circles we had in Listing 5-3.
For example, the velocity of the circles could be proportional to the swipe speed. Let’s
implement this idea by adding a pair of velocity variables (vx for the x direction and vy for y)
and a setVelocity() method to the Circle class, as shown in Listing 5-5.

Listing 5-5.  Using the Difference Between Current and Previous Mouse Positions to
Calculate the Velocity of Graphical Elements in Our Sketch

ArrayList<Circle> circles;
Circle newCircle;

void setup() {
 fullScreen();
 circles = new ArrayList<Circle>();
 noStroke();
}

void draw() {
 background(255);
 for (Circle c: circles) {
 c.draw();
 }
 if (newCircle != null) newCircle.draw();
}

void mousePressed() {
 newCircle = new Circle(mouseX, mouseY);
}

void mouseReleased() {
 newCircle.setVelocity(mouseX - pmouseX, mouseY - pmouseY);
 circles.add(newCircle);
 newCircle = null;
}

void mouseDragged() {
 newCircle.setPosition(mouseX, mouseY);
 newCircle.grow();
}

class Circle {
 color c;
 float x, y, r, vx, vy;
 Circle(float x, float y) {
 this.x = x;
 this.y = y;

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ Touchscreen Interaction

95

 r = 70 * displayDensity;
 c = color(random(255), random(255), random(255), 100);
 }
 void grow() {
 r += 0.5 * displayDensity;
 }
 void setPosition(float x, float y) {
 this.x = x;
 this.y = y;
 }
 void setVelocity(float vx, float vy) {
 this.vx = vx;
 this.vy = vy;
 }
 void draw() {
 x += vx;
 y += vy;
 if (x < 0 || x > width) vx = -vx;
 if (y < 0 || y > height) vy = -vy;
 fill(c);
 ellipse(x, y, r, r);
 }
}

Whereas in the original version of this sketch the circles stopped moving
immediately after we released the touch, they now continue their displacement along
the swipe direction with a velocity proportional to the speed of the swipe, since we keep
adding vx and vy to their current positions. Also, with the if (x < 0 || x > width)
vx = -vx; and if (y < 0 || y > height) vy = -vy; lines we implement a very simple
collision-detection algorithm, where if a circle moves past the edges of the screen, its
velocity gets inverted so that its movement reverses toward the interior of the screen. In
other words, the circle bounces against the edges of the screen.

As a final addition to this example, we will implement a Clear button. Since we keep
adding circles every time we touch the screen, it eventually becomes cluttered. A button
is just a rectangular area on the screen that triggers some action when pressed, which in
this case would be removing all the circles we have added since the beginning. In fact,
we don’t need much additional code to implement this button. Listing 5-6 shows what
we need to incorporate in draw() and mouseReleased() to draw and trigger the button
(Figure 5-3).

Listing 5-6.  Implementation of a Simple Clear Button

ArrayList<Circle> circles;
Circle newCircle;
float buttonHeight = 200 * displayDensity;
...
void draw() {
 background(255);

Chapter 5 ■ Touchscreen Interaction

96

 for (Circle c: circles) {
 c.draw();
 }
 if (newCircle != null) newCircle.draw();
 fill(100, 180);
 rect(0, height - buttonHeight, width, buttonHeight);
 fill(80);
 �text("Touch this area to clear", 0, height - buttonHeight, width,
buttonHeight);

}
...
void mouseReleased() {
 newCircle.setVelocity(mouseX - pmouseX, mouseY - pmouseY);
 circles.add(newCircle);
 newCircle = null;
 if (height - buttonHeight < mouseY) circles.clear();
}
...

This example shows us how far we can go with single-touch events and how to use
them to control movement and interaction in our app. We can extend these techniques to
much more complex situations with more interface actions and object behaviors.

Multi-touch Events
We have learned how to handle single-touch events using the mouse API inherited from
Processing Java. However, touchscreens on Android devices can track several touch
points at once, with a maximum determined by the capabilities of the screen. Some
devices could track up to ten touch points simultaneously.

Figure 5-3.  Outcome of the circle-drawing sketch, complete with a Clear button

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ Touchscreen Interaction

97

Processing includes the touches array to provide information about the touch
points. Each element in this array contains a unique numerical identifier that allows us
to track a pointer across successive frames and retrieve its current x and y coordinates, as
well as the pressure and area of the pointer. The capacitive touchscreens on phones and
tablets are capable of measuring not only the position of the touch point, but also how
much pressure we apply to the screen. The area is an approximate measure of the size of
the pointer, which is related to the pressure, since the harder we press our finger against
the screen, the larger the contact area should be.

Every time a new touch point is detected, Processing will trigger the startTouch()
function. Conversely, endTouch() will be called when a touch point is released. Similar
to the mouseDragged() function for single-touch events, the touchMoved() function will
be called every time any of the current touch points changes position. Also, analogous
to mousePressed, there is a touchPressed logical variable that stores true or false
depending on whether there is at least one touch point detected. All these functions are
demonstrated in Listing 5-7, with its output in Figure 5-4 showing multiple touch points.

■■ Note P ressure and area are given as normalized values between 0 and 1 and need to be
scaled according to the screen resolution (for the pressure) and the touchscreen calibration
(for the area).

Listing 5-7.  Accessing Properties of Multiple Touch Points

void setup() {
 fullScreen();
 noStroke();
 colorMode(HSB, 350, 100, 100);
 textFont(createFont("SansSerif", displayDensity * 24));
}

void draw() {
 background(30, 0, 100);
 fill(30, 0, 20);
 text("Number of touch points: " + touches.length, 20, displayDensity * 50);
 for (int i = 0; i < touches.length; i++) {
 float s = displayDensity * map(touches[i].area, 0, 1, 30, 300);
 fill(30, map(touches[i].pressure, 0.6, 1.6, 0, 100), 70, 200);
 ellipse(touches[i].x, touches[i].y, s, s);
 }
}

void touchStarted() {
 println("Touch started");
}

Chapter 5 ■ Touchscreen Interaction

98

void touchEnded() {
 println("Touch ended");
}

void touchMoved() {
 println("Touch moved");
}

The mapping used to convert the normalized area and pressure values is device-
specific. In this case, the size range goes from 0 to 1, which is the range observed in a
Nexus 5X; however, other devices might have a different range. The situation is similar for
the pressure, ranging from 0.6 to 1.6 on that same Nexus device.

Each touch point in the touches array has a unique ID that we can use to track
its motion. The index of the touch point in the touches array must not be used as its
identifier, since it may not be the same from one frame to the next (for example, a touch
point could be element 0 in one frame and element 3 in the next). The touch ID, on the
other hand, is unique for each touch point since it is pressed until finally released.

In the next example, Listing 5-8, we will use the touch ID to create a multi-touch
painting sketch. Each finger will control a brush that draws a circle with an HSB color that
is determined by the index of the touch point. The idea is to store these brush objects in
a hash map, which is a data structure also known as a dictionary (https://developer.
android.com/reference/java/util/HashMap.html) that we can use to associate values
(in this case, brushes) to unique keys (touch IDs).

In this code, we add a new brush to the hash table when a touch is detected in the
touchStarted() function, and we remove an existing brush when its key (ID) is not found
in the touches array when touchEnded() is called. We update all brushes every time a
movement triggers the touchMoved() function. A typical output of this sketch is shown in
Figure 5-5.

Figure 5-4.  Output of simple multi-touch example

www.allitebooks.com

https://developer.android.com/reference/java/util/HashMap.html
https://developer.android.com/reference/java/util/HashMap.html
http://www.allitebooks.org

Chapter 5 ■ Touchscreen Interaction

99

Listing 5-8.  Painting with Multiple Brushes

import java.util.*;

HashMap<Integer, Brush> brushes;

void setup() {
 fullScreen();
 brushes = new HashMap<Integer, Brush>();
 noStroke();
 colorMode(HSB, 360, 100, 100);
 background(0, 0, 100);
}

void draw() {
 for (Brush b: brushes.values()) b.draw();
}

void touchStarted() {
 for (int i = 0; i < touches.length; i++) {
 if (!brushes.containsKey(touches[i].id)) {
 brushes.put(touches[i].id, new Brush(i));
 }
 }
}

void touchEnded() {
 Set<Integer> ids = new HashSet<Integer>(brushes.keySet());
 for (int id: ids) {
 boolean found = false;
 for (int i = 0; i < touches.length; i++) {
 if (touches[i].id == id) found = true;
 }
 if (!found) brushes.remove(id);
 }
}

void touchMoved() {
 for (int i = 0; i < touches.length; i++) {
 Brush b = brushes.get(touches[i].id);
 b.update(touches[i].x, touches[i].y, touches[i].area);
 }
}

class Brush {
 color c;
 float x, y, s;
 Brush(int index) {
 c = color(map(index, 0, 10, 0, 360), 60, 75, 100);
 }

Chapter 5 ■ Touchscreen Interaction

100

 void update(float x, float y, float s) {
 this.x = x;
 this.y = y;
 this.s = map(s, 0, 1, 50, 500);
 }
 void draw() {
 fill(c);
 ellipse(x, y, s, s);
 }
}

There are a couple of important things to pay attention to. First, we can be sure that
touchStarted() and touchEnded() will be called only when a new touch point has gone
down or up, respectively. So, all we need to do in these functions is identify which one is
the incoming pointer and which is the outgoing pointer. In the case of a touch release,
we iterate over all the current keys in the hash table until we find the one that does not
correspond to a valid ID in the touches array. Since we are modifying the hash table as we
iterate over its keys, we need to create a copy of the original set of keys with Set<Integer>
ids = new HashSet<Integer>(brushes.keySet()); and only then perform the search
and delete operation.

Touch-based Interaction
Creating an intuitive and engaging interface for a mobile app is not easy; it requires an
understanding of user interface (UI) principles, practice, and a lot of iteration. Processing
for Android does not provide any built-in UI functionality beyond the low-level single-
and multiple-touch handling functions, so we have a lot of freedom to define how our
app will manage interaction with the user. We will review a few basic techniques in this
section, which we could apply in many different situations.

Figure 5-5.  Multi-touch painting

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ Touchscreen Interaction

101

Shape Selection
Back in Chapter 4, we reviewed the use of PShape objects to store complex SVG shapes
and increase the framerate with P2D or P3D renderers. Since SVG shapes are composed of
subshapes that we may want to select individually with a touch, it is useful to know how to
perform a test to determine if a touch point falls inside a PShape object. If we are dealing
with a primitive shape, such as a rectangle or a circle, we can write a simple test specific
for that shape; however, with irregular shapes, such as countries on a map, we need a
more general approach. The PShape class has a function called getTessellation() that
returns a new shape that is exactly the same as the source shape but is composed only of
triangles (this collection of triangles determines what is called the “tessellation” of the
more complex shape). Since it is easy to determine whether a point falls inside a triangle
(http://blackpawn.com/texts/pointinpoly/default.html), we can check if the mouse
or touch position falls inside any of the triangles of the tessellation, and, if it does, we can
conclude that the larger shape has been selected. This is what we do in Listing 5-9, with its
result shown in Figure 5-6.

Listing 5-9.  Selecting a Child Shape Inside a Group Shape with Touch Events

PShape world, country;

void setup() {
 fullScreen(P2D);
 orientation(LANDSCAPE);
 world = loadShape("World-map.svg");
 world.scale(width / world.width);
}

void draw() {
 background(255);
 if (mousePressed) {
 if (country != null) country.setFill(color(0));
 for (PShape child: world.getChildren()) {
 if (child.getVertexCount() == 0) continue;
 PShape tess = child.getTessellation();
 boolean inside = false;
 for (int i = 0; i < tess.getVertexCount(); i += 3) {
 PVector v0 = tess.getVertex(i);
 PVector v1 = tess.getVertex(i + 1);
 PVector v2 = tess.getVertex(i + 2);
 if (insideTriangle(new PVector(mouseX, mouseY), v0, v1, v2)) {
 inside = true;
 country = child;
 break;
 }
 }
 if (inside) {
 country.setFill(color(255, 0, 0));
 break;

http://dx.doi.org/10.1007/978-1-4842-2719-0_4
http://blackpawn.com/texts/pointinpoly/default.html

Chapter 5 ■ Touchscreen Interaction

102

 }
 }
 }
 shape(world);
}

boolean insideTriangle(PVector pt, PVector v1, PVector v2, PVector v3) {
 boolean b1, b2, b3;
 b1 = sign(pt, v1, v2) < 0.0f;
 b2 = sign(pt, v2, v3) < 0.0f;
 b3 = sign(pt, v3, v1) < 0.0f;
 return ((b1 == b2) && (b2 == b3));
}

float sign (PVector p1, PVector p2, PVector p3) {
 return (p1.x - p3.x) * (p2.y - p3.y) - (p2.x - p3.x) * (p1.y - p3.y);
}

Scrolling
Scrolling is another basic mode of interaction with mobile devices. Due to their small
screen sizes relative to laptops and other computers, information often cannot be displayed
all at once on one single page. A (horizontal or vertical) scroll bar controlled by touch
displacement along the edges of the screen is the most common scrolling functionality.

Figure 5-6.  Selecting a country inside an SVG shape with touch events

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ Touchscreen Interaction

103

The code example in Listing 5-10 includes a very simple vertical scrollbar class
that keeps track of the displacement along the y axis in order to translate the graphical
elements so the ones that should be visible are shown. The key part of this scrollbar
implementation is to calculate the total height of all the elements and use that to
determine how far down we can scroll with the bar until we reach the last element. The
update() method in this class takes the amount of mouse/touch dragging and updates
the variable translateY, which contains the vertical translation.

Listing 5-10.  Implementing a Scrolling Bar

ScrollBar scrollbar;
int numItems = 20;

void setup() {
 fullScreen(P2D);
 orientation(PORTRAIT);
 scrollbar = new ScrollBar(0.2 * height * numItems, 0.1 * width);
 noStroke();
}

void draw() {
 background(255);
 pushMatrix();
 translate(0, scrollbar.translateY);
 for (int i = 0; i < numItems; i++) {
 fill(map(i, 0, numItems - 1, 220, 0));
 rect(20, i * 0.2 * height + 20, width - 40, 0.2 * height - 20);
 }
 popMatrix();
 scrollbar.draw();
}

public void mousePressed() {
 scrollbar.open();
}

public void mouseDragged() {
 scrollbar.update(mouseY - pmouseY);
}

void mouseReleased() {
 scrollbar.close();
}

class ScrollBar {
 float totalHeight;
 float translateY;
 float opacity;
 float barWidth;

Chapter 5 ■ Touchscreen Interaction

104

 ScrollBar(float h, float w) {
 totalHeight = h;
 barWidth = w;
 translateY = 0;
 opacity = 0;
 }

 void open() {
 opacity = 150;
 }

 void close() {
 opacity = 0;
 }

 void update(float dy) {
 if (totalHeight + translateY + dy > height) {
 translateY += dy;
 if (translateY > 0) translateY = 0;
 }
 }

 void draw() {
 if (0 < opacity) {
 float frac = (height / totalHeight);
 float x = width - 1.5 * barWidth;
 float y = PApplet.map(translateY / totalHeight, -1, 0, height, 0);
 float w = barWidth;
 float h = frac * height;
 pushStyle();
 fill(150, opacity);
 rect(x, y, w, h, 0.2 * w);
 popStyle();
 }
 }
}

The condition totalHeight + translateY + dy > height makes sure that we don’t
scroll past the last element in our list, and translateY > 0 helps us avoid scrolling up past
the top of the screen. We can use this class in any sketch so long as we can provide the total
height of the elements we wish to display. Figure 5-7 shows our scrolling bar in action.

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ Touchscreen Interaction

105

Swipe and Pinch
The swipe and pinch gestures are two of the most characteristic touchscreen interactions
on smartphones and tablets. We typically use the swipe or fling to flip between
consecutive elements, such as pages or images, and the pinch or scale is the default
gesture to zoom in and out on an image or part of the screen.

Although Processing for Android does not trigger calls similar to mousePressed() or
touchMoved() when a swipe or a pinch takes place, we can use the Android API inside our
Processing sketch to add support for these events. The official Android Developers site from
Google has a very detailed section on how to use touch gestures (https://developer.
android.com/training/gestures/index.html) via several gesture-detection classes.

Android offers a GestureDetector that needs to be combined with a listener class
that contains a special “event handling” method that is called when a swipe or scaling
event is detected. In order to use this functionality, we need to add a few imports
from the Android SDK and then write the implementation for the gesture listener.
The other important element when integrating event handling from Processing for
Android is to pass the events objects from Processing to the gesture handler in the
surfaceTouchEvent() function. This function is called every time there is a new touch
event, but it also needs to call the parent implementation so Processing can carry out
the default event handling (updating the mouse and touches variables and so forth).
All of this is shown in Listing 5-11, where we do swipe detection, with its output shown
in Figure 5-8.

Figure 5-7.  Scrolling through a pre-defined list of elements

https://developer.android.com/training/gestures/index.html
https://developer.android.com/training/gestures/index.html

Chapter 5 ■ Touchscreen Interaction

106

Listing 5-11.  Swipe Detection Using the Android API in Processing

import android.os.Looper;
import android.view.MotionEvent;
import android.view.GestureDetector;
import android.view.GestureDetector.OnGestureListener;

GestureDetector detector;
PVector swipe = new PVector();

void setup() {
 fullScreen();
 Looper.prepare();
 detector = new GestureDetector(surface.getActivity(),
 new SwipeListener());
 strokeWeight(20);
}

boolean surfaceTouchEvent(MotionEvent event) {
 detector.onTouchEvent(event);
 return super.surfaceTouchEvent(event);
}

void draw() {
 background(210);
 translate(width/2, height/2);
 drawArrow();
}

void drawArrow() {
 float x = swipe.x;
 float y = swipe.y;
 line(0, 0, x, y);
 swipe.rotate(QUARTER_PI/2);
 swipe.mult(0.85);
 line(x, y, swipe.x, swipe.y);
 swipe.rotate(-QUARTER_PI);
 line(x, y, swipe.x, swipe.y);
 swipe.rotate(QUARTER_PI/2);
 swipe.mult(1/0.85);
}

class SwipeListener extends GestureDetector.SimpleOnGestureListener {
 boolean onFling(MotionEvent event1, MotionEvent event2,
 float velocityX, float velocityY) {
 swipe.set(velocityX, velocityY);
 swipe.normalize();
 swipe.mult(min(width/2, height/2));
 return true;
 }
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ Touchscreen Interaction

107

Notice the call to Looper.prepare() in setup(). Android’s Looper is a class that allows
the main thread in an app to receive messages from other threads (https://developer.
android.com/reference/android/os/Looper.html). In this particular case, we need the
Looper to read the gesture events from our sketch.

We can implement the scale detector in a similar way, and in Listing 5-12 we apply it
to zoom in and out on an image.

Listing 5-12.  Zooming In and Out with a Scale Detector

import android.os.Looper;
import android.view.MotionEvent;
import android.view.ScaleGestureDetector;
import android.view.ScaleGestureDetector.SimpleOnScaleGestureListener;

ScaleGestureDetector detector;
PImage img;
float scaleFactor = 1;

void setup() {
 fullScreen();
 img = loadImage("jelly.jpg");
 Looper.prepare();
 detector = new ScaleGestureDetector(surface.getActivity(),
 new ScaleListener());
 imageMode(CENTER);
}

boolean surfaceTouchEvent(MotionEvent event) {
 detector.onTouchEvent(event);
 return super.surfaceTouchEvent(event);
}

Figure 5-8.  Detecting swipe direction

https://developer.android.com/reference/android/os/Looper.html
https://developer.android.com/reference/android/os/Looper.html

Chapter 5 ■ Touchscreen Interaction

108

void draw() {
 background(180);
 translate(width/2, height/2);
 scale(scaleFactor);
 image(img, 0, 0);
}

class ScaleListener extends ScaleGestureDetector.
SimpleOnScaleGestureListener {
 public boolean onScale(ScaleGestureDetector detector) {
 scaleFactor *= detector.getScaleFactor();
 scaleFactor = constrain(scaleFactor, 0.1, 5);
 return true;
 }
}

Using the Keyboard
We conclude this chapter by describing some of the functions available in Processing
for key input. Even though the keyboard and mouse are often distinct input devices on
laptops and desktop computers, the touchscreen has largely absorbed the function of the
keyboard by means of the “soft” or virtual keyboard.

Processing Java has several functions to handle keyboard events, and variables to
inspect the last pressed key, as described in the online language reference (https://
processing.org/reference/) and tutorials (https://processing.org/tutorials/
interactivity/). All of these functions (with the exception of keyTyped) are available in
Android mode as well.

If the device has a physical keyboard, there is nothing special to do in order to
use the keyboard API, but in the case of virtual keyboards, we need to open it first, and
close it once the user is done typing. Android mode adds two functions to do this,
openKeyboard() and closeKeyboard(). The final example in this chapter, Listing 5-13,
exemplifies their use, together with some of the other functions in the keyboard API.

Listing 5-13.  Typing Text with the Virtual Keyboard

String text = "touch the screen to type something";
boolean keyboard = false;

void setup() {
 fullScreen();
 textFont(createFont("Monospaced", 25 * displayDensity));
 textAlign(CENTER);
 fill(100);
}

void draw() {
 background(200);
 text(text, 0, 20, width, height - 40);
}

www.allitebooks.com

https://processing.org/reference/
https://processing.org/reference/
https://processing.org/tutorials/interactivity/
https://processing.org/tutorials/interactivity/
http://www.allitebooks.org

Chapter 5 ■ Touchscreen Interaction

109

void keyReleased() {
 if (key == DELETE || key == BACKSPACE) {
 text = text.substring(text.length() - 1);
 } else {
 text += key;
 }
}

void mouseReleased() {
 if (!keyboard) {;
 text = "";
 openKeyboard();
 keyboard = true;
 } else {
 closeKeyboard();
 keyboard = false;
 }
}

Summary
We have learned how to handle single- and multiple-touch events in Processing, and
from there we moved on to examining different interaction techniques commonly used
on mobile devices (selection, scroll, swipe, pinch, and zoom). With all of these tools at
our disposal, we can implement user interfaces with the interaction type that best suits
the needs of our users.

111© Andrés Colubri 2017
A. Colubri, Processing for Android, https://doi.org/10.1007/978-1-4842-2719-0_6

CHAPTER 6

Live Wallpapers

After going through the details of drawing and interaction with Processing for Android,
we will conclude the second part of the book with this chapter on live wallpapers. We will
learn how to load images from the camera to create a gallery wallpaper, and then how to
use particle systems to implement an animated background for our phone or tablet.

Live Wallpapers
Live wallpapers are a special type of Android application that run as the background
of the home and lock screens. They were introduced back in version 2.1 of Android,
so the majority of today’s devices support them. We can apply any of the drawing and
interaction techniques we have seen so far to a live wallpaper. This enables us to create
dynamic backgrounds for our devices while accessing sensor and network data and
reacting to user input.

We can take any sketch from previous chapters and run it as a live wallpaper, but
to design and implement a successful wallpaper, we have to take into consideration the
specific characteristics and limitations of wallpaper apps, which we will discuss in the
next sections.

Writing and Installing Live Wallpapers
Processing for Android lets us run our sketches as a live wallpaper very easily: all we
need to do is select the “Wallpaper” option under the Android menu in the PDE. Once
the sketch is installed as a wallpaper, it won’t start running immediately. It needs to be
selected through Android’s wallpaper selector. To do so, long-press on any free area in
the home screen and then choose the “Set Wallpaper” option in the pop-up menu that
appears next, which might look different than the following screenshot depending on the
Android or UI skin being used. The wallpaper will run first in a preview mode, where we
can confirm the selection or continue browsing through the available wallpapers. Once
selected, the wallpaper will be restarted to run in the background of the home screens,
behind the launcher icons. Figure 6-1 shows these stages.

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-2719-0_6
http://www.allitebooks.org

Chapter 6 ■ Live Wallpapers

112

Let’s consider a couple of important aspects of live wallpapers. First, they cover the
entire area of the screen, so we should initialize them with the fullScreen() function.
Second, live wallpapers run continuously in the background, and thus they can drain the
battery quickly. Because of this, it is a good idea to not use very heavy calculations in the
sketches intended to be run as wallpapers. This recommendation is valid for all mobile
apps in general, but even more so for wallpapers. A simple “trick” to decrease the battery
use of a live wallpaper is to set a lower framerate via the frameRate() function. Using
30 or 25 instead of the default of 60 will keep the animation reasonably smooth without
redrawing the screen at a very high rate and consuming more battery power.

The code in Listing 6-1 generates a grid of ellipses of variable sizes, and we use both
fullScreen()—to ensure the wallpaper covers the entire screen—and frameRate(25),
since the screen does not need be updated any faster.

Listing 6-1.  Simple Live Wallpaper

void setup() {
 fullScreen();
 frameRate(25);
 noStroke();
 fill(#FF03F3);
}

Figure 6-1.  Selecting the wallpaper option in the PDE (left), opening the wallpaper
selector on the device (center), live wallpaper running in the home screen (right)

Chapter 6 ■ Live Wallpapers

113

void draw() {
 background(#6268FF);
 float maxRad = 50 * displayDensity;
 for (int i = 0; i < width/maxRad; i++) {
 float x = map(i, 0, int(width/maxRad) - 1, 0, width);
 for (int j = 0; j < height/maxRad; j++) {
 float y = map(j, 0, int(height/maxRad) - 1, 0, height);
 float t = millis() / 1000.0;
 float r = maxRad * cos(t + 0.1 * PI * i * j);
 ellipse(x, y, r, r);
 }
 }
}

To run a live wallpaper, we first need to open it in the selector. In fact, the selector
shows us a preview instance of the wallpaper, which we can either set as the background
or cancel in order to preview another one. Right after we set the wallpaper, the preview
instance is shut down by the system, and a non-preview one is launched immediately. We
can verify if the wallpaper is running in preview mode by calling the previewWallpaper()
function, which returns true or false accordingly. This check gives us the opportunity
to perform special customizations during the preview mode, such as loading fewer
resources because the wallpaper will not run for long or showing a representative output
of the wallpaper.

Using Multiple Home Screens
Before taking on more-advanced wallpaper examples, we will learn about a few
important features of live wallpapers through a simpler application that shows a
background image. We already saw how to load and display images in Processing. The
same approach works for wallpapers: just copy an image file to the sketch’s data folder,
load it with loadImage(), and display it with image() so it covers the entire screen of the
device, as shown in Listing 6-2.

Listing 6-2.  Loading and Displaying an Image in Full-screen Mode

PImage pic;
fullScreen();
pic = loadImage("paine.jpg");
image(pic, 0, 0, width, height);

A problem with this code is that the image will look distorted if it does not have
the same proportions as the screen. Also, the wallpaper is always displayed in portrait
mode, so a picture taken in landscape orientation will appear stretched along the vertical
direction. We could set the height in the image() function so that the width-to-height
ratio of the displayed image is the same as its original ratio, like in Listing 6-3.

www.allitebooks.com

http://www.allitebooks.org

Chapter 6 ■ Live Wallpapers

114

Listing 6-3.  Keeping the Image Ratio

PImage pic;
fullScreen();
pic = loadImage("paine.jpg");
imageMode(CENTER);
float r = float(pic.width) / float(pic.height);
float h = width/r;
image(pic, width/2, height/2, width, h);

Here we set the image mode to CENTER, so the x and y arguments of the image()
function are taken to be the center of the image, which makes it easy to center it on the
screen. Since we are drawing it to be the width of the screen, we need to use a height of
width/r, with r being the original width/height ratio of the image.

■■ Note  The width and height variables in a PImage object are integer numbers, so we
need to convert them into float numbers, using float(x) to obtain a correct ratio value with
a decimal point, like 1.6 (the result of float(1280) / float(800)) or 0.561 (which is float(2576)
/ float(4592)).

However, with this approach we might end up wasting a lot of the screen space,
especially if the image is very wide. Android offers a functionality that can help in
this situation: multiple home screens. The user can move through these screens by
swiping left and right, and the wallpaper will correspondingly shift to either side by the
proper amount, which is determined based on the number of home screens and the
width of those screens. Processing exposes this information through two functions:
wallpaperHomeCount() and wallpaperOffset(). This first returns the current number
of home screens (which could change during the lifetime of the wallpaper, as the user
adds or removes home screens), while the second returns a float between 0 and 1 that
corresponds to the horizontal displacement along the home screens: 0 when we are at the
first screen, and 1 at the last. Listing 6-4 shows how we can use these functions to create
the image-scroll interaction.

Listing 6-4.  Image Scrolling Across Home Screens

PImage pic;
float ratio;

void setup() {
 fullScreen();
 pic = loadImage("paine.jpg");
 ratio = float(pic.width)/float(pic.height);
}

Chapter 6 ■ Live Wallpapers

115

void draw() {
 background(0);
 float w = wallpaperHomeCount() * width;
 float h = w/ratio;
 float x = map(wallpaperOffset(), 0, 1, 0, -(wallpaperHomeCount()-1) *
width);
 image(pic, x, 0, w, h);
}

We use wallpaperHomeCount() * width as the display width of the image, spanning
all the screens, and we translate the image to the left by the displacement x as the user
swipes to the right. In this way, the correct portion of the image is displayed on the
current screen, smoothly transitioning since wallpaperOffset() varies continuously
between 0 and 1 (Figure 6-2).

Figure 6-2.  Interpretation of the offset function in live wallpapers

■■ Note  We may notice choppy animation when swiping across screens, especially on
devices with high-resolution screens. This is likely the result of the default renderer not
being able to draw in full-screen mode at smooth framerates. A solution is to switch to the
P2D renderer, which uses the GPU for hardware-accelerated rendering.

www.allitebooks.com

http://www.allitebooks.org

Chapter 6 ■ Live Wallpapers

116

Handling Permissions
We have learned to load an image and display it as a wallpaper across multiple home
screens. We can build upon this technique to create a photo gallery wallpaper that
browses through the photos that have been taken with the camera on the phone or tablet.
But to load these photos, our sketch needs to access the external storage of the device,
and permission for reading the external storage must be explicitly granted by the user.
Although we will now look at permission requests in a wallpaper example, the functions
can be used in any type of sketch.

Permissions are, in fact, a very important aspect of Android development since
mobile devices handle several different kinds of personal data (contacts, location,
messages), and unauthorized access of such data could lead to privacy breaches. The
Android Operating System makes sure that every app is authorized to access only specific
data and features in the device. Regular permissions (for instance, Wi-Fi and Bluetooth
access) are granted once the user installs the app for the first time, while critical or
“dangerous” permissions (such as access to camera, location, microphone, storage, and
body sensors) need to be granted (on devices with Android 6.0 or newer) when the user
opens the app (https://developer.android.com/guide/topics/permissions/
index.html).

Any permissions required by our sketch, either regular or dangerous, have to be
added to the sketch from the PDE by using the Android Permissions Selector, which is
available from the “Sketch Permissions” option under the Android menu (see Figure 6-3).

Figure 6-3.  “Sketch Permissions” option (left) and Android Permission Selector dialog
(right)

https://developer.android.com/guide/topics/permissions/index.html
https://developer.android.com/guide/topics/permissions/index.html

Chapter 6 ■ Live Wallpapers

117

For normal permissions, all we need to do is select them with the Permissions
Selector. However, for dangerous permissions, we also have to request them explicitly
in the sketch code with the requestPermission() function. This function takes two
arguments—the name of the permission to request (for example, android.permission.
READ_EXTERNAL_STORAGE) and the name of a callback function in our sketch that will
be called as soon as the user has granted (or denied) the permission. The callback
function must have a Boolean argument, which is where it will receive the result of the
permission request. This mechanism is illustrated in Listing 6-5, where the background
color turns green when the permission is granted. The callback function is not necessarily
called from setup(), because the Android system could show the permissions dialog
when the sketch is already in the draw() function. So, we should be prepared to
handle the lack of an expected permission in draw(). For this purpose, we can use the
hasPermission() function to check whether the permission passed as an argument, i.e.:
hasPermission(“android.permission.READ_EXTERNAL_STORAGE”), has been granted
or not, and run the appropriate code in each case.

Listing 6-5.  Requesting a Dangerous Permission

color bckColor = #EA6411;

void setup() {
 fullScreen();
 requestPermission("android.permission.READ_EXTERNAL_STORAGE",
 "handlePermission");
}

void draw() {
 background(bckColor);
}

void handlePermission(boolean granted) {
 if (granted) bckColor = #58EA11;
}

■■ Note A list of all permissions for each version of Android is available at https://
developer.android.com/reference/android/Manifest.permission.html.

www.allitebooks.com

https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/reference/android/Manifest.permission.html
http://www.allitebooks.org

Chapter 6 ■ Live Wallpapers

118

Returning to our image-gallery wallpaper sketch, besides requesting permission
to read the external storage, it also needs to list all the photos stored in the external
storage. This functionality is not part of the Processing API, but we can access
the Android API from our sketch and import the Android packages that allow us
to perform these more advanced tasks. In the case of listing files from the DCIM
folder where pictures and videos taken with the camera are stored, we can use the
getExternalStoragePublicDirectory() method from the android.os.Environment
package (https://developer.android.com/reference/android/os/Environment.html).
All we need to do to access this package is import it at the beginning of our sketch.

We now have all the pieces required for our image-gallery wallpaper, which is shown
in Listing 6-6. We will now discuss the new code introduced in this example.

Listing 6-6.  Image-Gallery Wallpaper

import android.os.Environment;

PImage defImage, currImage;
ArrayList<String> imageNames = new ArrayList<String>();
int lastChange;
int swapInterval = 10;

void setup() {
 fullScreen();
 defImage = loadImage("default.jpg");
 if (!wallpaperPreview()) {
 requestPermission("android.permission.READ_EXTERNAL_STORAGE",
 "scanForImages");
 }
 loadRandomImage();
}

void draw() {
 background(0);
 float ratio = float(currImage.width)/float(currImage.height);
 float w = wallpaperHomeCount() * width;
 float h = w/ratio;
 if (h < height) {
 h = height;
 w = ratio * h;
 }
 �float x = map(wallpaperOffset(), 0, 1, 0, -(wallpaperHomeCount()-1) *
width);

 float y = (height - h)/2;
 image(currImage, x, y, w, h);
 int t = millis();
 if (swapInterval * 1000 < t - lastChange) {
 loadRandomImage();

https://developer.android.com/reference/android/os/Environment.html

Chapter 6 ■ Live Wallpapers

119

 lastChange = t;
 }
}

void loadRandomImage() {
 if (imageNames.size() == 0) {
 currImage = defImage;
 } else {
 int i = int(random(1) * imageNames.size());
 String fn = imageNames.get(i);
 currImage = loadImage(fn);
 }
}

void scanForImages(boolean grantedPermission) {
 if (grantedPermission) {
 File dcimDir = Environment.getExternalStoragePublicDirectory(
 Environment.DIRECTORY_DCIM);
 String[] subDirs = dcimDir.list();
 if (subDirs == null) return;
 for (String d: subDirs) {
 if (d.charAt(0) == '.') continue;
 File fullPath = new File (dcimDir, d);
 File[] listFiles = fullPath.listFiles();
 for (File f: listFiles) {
 String filename = f.getAbsolutePath().toLowerCase();
 if (filename.endsWith(".jpg")) imageNames.add(filename);
 }
 }
 }
}

The logic of this code is simple: we have current and default PImage variables
(currImage and defImage) and a list of image file names (imageNames). This list
is initialized in the scanForImages() function when the READ_EXTERNAL_STORAGE
permission is granted. In this function, we obtain the File object representing the DCIM
folder with getExternalStoragePublicDirectory(), which we then use to iterate over
all its sub-folders, and finally we list the contents of each sub-folder. Files with the .jpg
extension are added to the list. The loadRandomImage() is called every ten seconds and
picks a random file name from the list to load a new PImage into currImage. If the list is
empty, which will be the case if the permission is not granted, the sketch just uses the
default image that we should have added to the data folder before running the sketch.

As we discussed at the beginning of this chapter, we don’t want to present the user
with the permission dialog when just previewing the wallpaper, which is why we only call
requestPermission() if we are not in preview mode. The preview will show the default
image, so that the user will still be able to see an image while previewing the wallpaper.

www.allitebooks.com

http://www.allitebooks.org

Chapter 6 ■ Live Wallpapers

120

Particle Systems
App developers often use live wallpapers to create animated graphics that offer an
alternative to static background images. However, these graphics cannot be too
overpowering, since they might distract the user from the relevant information presented
on the device’s screen (calls, messages, alerts from other apps).

How can we create a visually interesting wallpaper that is not distracting? A possible
concept is a fluid simulation where a swarm of particles move “organically” in the
background and leave some kind of trace behind. The organic movement would help to
keep the wallpaper subdued, but still attractive, with the added component of random
variation. We could also incorporate touch interaction to drive the particle movements in
some form, since the touch API we saw in the previous chapter is available for wallpapers.
With these ideas in mind, this may be a good moment to find visual inspiration in existing
works, from paintings to code-based projects (Figure 6-4).

Figure 6-4.  From top to bottom: “Starry Night,” by Vincent van Gogh (1889), Plate
from “Processing Images and Video for An Impressionist Effect” by Peter Litwinowicz
(1997), Drawing Machine #10 by Ale Gonzalez (https://www.openprocessing.org/
sketch/34320).

We can now start sketching out some ideas with pen and paper (Figure 6-5). One
idea: individual particles move between touch points following a curved path. The
question is, how can we simulate these smooth paths? In the next section, we will go over
some techniques that would allow us to implement a system like this.

https://www.openprocessing.org/sketch/34320
https://www.openprocessing.org/sketch/34320

Chapter 6 ■ Live Wallpapers

121

Autonomous Agents
The problem of creating natural-feeling particle systems has been investigated for many
years. The book The Nature of Code by Daniel Shiffman (available online at http://
natureofcode.com/) gives excellent coverage of the topic (in particular, chapters 4 and 6).
Particle systems allow us to simulate the emerging behavior of large swarms of individual
entities, each one following a simple (or more complex) movement rule.

A swarm where the particles have some degree of autonomous behavior, determined
by forces acting upon them, could be useful in our project since we don’t need to specify
the exact movement of each particle, only the overall forces. Craig Reynolds (http://
www.red3d.com/cwr/steer/) proposed algorithms that generate steering behaviors.
In one such algorithm, called flow field following, a field of target velocities (a “flow
field”) can direct the particles’ movements toward specific locations without it looking
forced or artificial. In this algorithm, each particle has a dynamic state determined by
its acceleration, velocity, and position, and a force acts upon the particle based on the
difference between the current velocity and a target velocity defined at each point of the
screen space, as illustrated in Figure 6-6.

Figure 6-5.  Some pen and paper sketches for the particle-system wallpaper

Figure 6-6.  Diagram of the steering force (red) that is applied on a particle moving on a
flow field of velocities (blue)

www.allitebooks.com

http://natureofcode.com/
http://natureofcode.com/
http://dx.doi.org/10.1007/978-1-4842-2719-0_4
http://dx.doi.org/10.1007/978-1-4842-2719-0_6
http://www.red3d.com/cwr/steer/
http://www.red3d.com/cwr/steer/
http://www.allitebooks.org

Chapter 6 ■ Live Wallpapers

122

For this method to work properly, we need to provide a flow field of velocities that
drives the particles’ motion. We were considering touch interaction as a potential source of
this motion. For example, every time the pointer changes position, we could compute the
vector that measures the change in the pointer’s position, namely (mouseX - pmouseX,
mouseY – pmouseY), as the “velocity” at position (mouseX, mouseY). Let’s implement this
approach in Listing 6-7. In this example, we will use two classes to organize the code—one
to store each particle and the other to hold the entire field. We can run it either in Java
mode or as a regular app on our device or in the emulator. The output should look more or
less like what is shown in Figure 6-7.

Listing 6-7.  Particle System with Flow Field Calculated from Touch or Mouse Events

ArrayList<Particle> particles;
Field field;

void setup() {
 size(1200, 600);
 field = new Field();
 particles = new ArrayList<Particle>();
}

void draw() {
 background(255);
 field.display();
 for (int i = particles.size() - 1; i >= 0; i--) {
 Particle p = particles.get(i);
 p.update(field);
 p.display();
 if (p.dead()) particles.remove(i);
 }
}

void mouseDragged() {
 field.update(mouseX, mouseY, mouseX - pmouseX, mouseY - pmouseY);
 particles.add(new Particle(mouseX, mouseY));
}

class Particle {
 PVector position;
 PVector velocity;
 PVector acceleration;
 float size;
 int life;
 float maxAccel;
 float maxSpeed;
 int maxLife;

Chapter 6 ■ Live Wallpapers

123

 Particle(float x, float y) {
 position = new PVector(x, y);
 size = random(15, 25);
 velocity = new PVector(0, 0);
 acceleration = new PVector(0, 0);
 maxSpeed = random(2, 5);
 maxAccel = random(0.1, 0.5);
 maxLife = int(random(100, 200));
 }

 boolean dead() {
 return maxLife < life;
 }

 public void setPosition(float x, float y) {
 position.set(x, y);
 }

 void update(Field flow) {
 PVector desired = flow.lookup(int(position.x), int(position.y));
 acceleration.x = maxSpeed * desired.x - velocity.x;
 acceleration.y = maxSpeed * desired.y - velocity.y;
 acceleration.limit(maxAccel);
 velocity.add(acceleration);
 velocity.limit(maxSpeed);
 position.add(velocity);
 life++;
 }

 void display() {
 noStroke();
 fill(180, 150);
 ellipse(position.x, position.y, size, size);
 }
}

class Field {
 PVector[][] field;

 Field() {
 field = new PVector[width][height];
 for (int i = 0; i < width; i++) {
 for (int j = 0; j < height; j++) {
 field[i][j] = new PVector(0, 0);
 }
 }
 }

www.allitebooks.com

http://www.allitebooks.org

Chapter 6 ■ Live Wallpapers

124

 void update(int x, int y, float vx, float vy) {
 for (int i = max(0, x - 20); i < min(x + 20, width); i++) {
 for (int j = max(0, y - 20); j < min(y + 20, height); j++) {
 PVector v = field[i][j];
 v.set(vx, vy);
 v.normalize();
 }
 }
 }

 PVector lookup(int x, int y) {
 return field[x][y];
 }

 void display() {
 int resolution = 20;
 int cols = width / resolution;
 int rows = height / resolution;
 for (int i = 1; i < cols; i++) {
 for (int j = 1; j < rows; j++) {
 int x = i * resolution;
 int y = j * resolution;
 PVector v = lookup(x, y);
 pushMatrix();
 translate(x, y);
 stroke(28, 117, 188);
 strokeWeight(2);
 rotate(v.heading());
 float len = v.mag() * (resolution - 2);
 if (0 < len) {
 float arrowsize = 8;
 line(0, 0, len, 0);
 line(len, 0, len-arrowsize, +arrowsize/2);
 line(len, 0, len-arrowsize, -arrowsize/2);
 }
 popMatrix();
 }
 }
 }
}

Chapter 6 ■ Live Wallpapers

125

Figure 6-7.  Particle movement steered by a flow field derived from changes in touch
position

There are several things happening in this code, so let’s review it step by step. In the
draw() function, we first display the flow field, and then iterate over the list of particles to
update their positions based on the current field. We display them and eventually remove
those marked as “dead.” Notice that we iterate the list in reverse order, because we are
removing elements from it as we iterate. If we do a normal forward loop, we could end up
stepping over the end of the list (because its size when we started the loop is smaller than
its size at the end), causing a runtime error. In mouseDragged(), we update the field at the
current pointer position, using the difference between the current and last positions, and
also add a new particle.

The Particle class keeps track of the dynamic state of the particle, including
its position, velocity, and acceleration, as well as its “lifetime.” Every time we call the
update() method, we obtain the desired velocity from the flow field at the particle’s
current position and then compute the acceleration resulting from the steering force,
which, following Reynolds’ formula, is the difference between the desired and current
velocities. The maxSpeed factor allows us to have variation in the movement of the
particles, since it’s determined randomly in the Particle constructor and results in some
particles moving faster and others slower.

The Field class has an array of PVector objects, with width×height elements,
containing the value of the flow field at each pixel of the screen. The field is initially zero
everywhere, but we use the update() method to set it to the values derived from the
touch or mouse events. Note that in this method, we don’t set the field vector only at the
(x, y) position, but rather in a rectangle centered around (x, y), because otherwise the
changes in the vector field would affect just a very small area—not enough to steer the
particles across the screen. Finally, the display() method also needs some attention,
since we cannot draw the field vectors for all pixels on the screen. We use a larger grid
so we can draw one vector per each rectangle of size resolution. The methods in the
PVector class, such as heading(), become handy here to draw the vectors as little arrows,
which helps to visualize the direction of the flow.

www.allitebooks.com

http://www.allitebooks.org

Chapter 6 ■ Live Wallpapers

126

Although this example is a simple application of steering behaviors that we can
refine in many different ways, one problem is that it requires constant touch input to
keep the system evolving. While this is okay for a regular app, depending so much on
touch interaction in a wallpaper can be problematic because touches on the home screen
are primarily used to drive the interactions with the UI. A drag to create a movement in
the particles could be mistaken for a swipe to change the home screen, and vice versa.
We will see in the next section how to generate a flow field that does not require touch
interaction.

Image Flow Field
There are several ways we can generate a smooth flow field that gives enough visual
variability to our particle system. One possibility is to use a field generated with Perlin
noise (mrl.nyu.edu/~perlin/doc/oscar.html), which is a synthetically-generated
random noise that changes smoothly and results in more organic-looking patterns.
Another possibility is to use images. As it turns out, we can convert the color information
at each pixel position in an image to compute a velocity vector for our flow field.

More specifically, if we compute the brightness of a color with the brightness()
function, we obtain a number between 0 (black) and 1 (white), which we can use as the
angle of our velocity vector with respect to the x axis. This results in a smooth velocity
flow field that follows the image’s features (edges, swirls of color, etc.). We can use the
fromAngle(theta) function in Processing’s PVector class to easily calculate the vectors.
Another piece of functionality that is very important when generating our velocity field
from an image is the ability to access the individual pixels in an image. We can do this
with the pixels array that any PImage object has available once we call the loadPixels()
function. We combine all of this in Listing 6-8, which loads an image and generates the
associated flow field, shown in Figure 6-8.

Listing 6-8.  Code That Generates a Flow Field from an Image

PImage img;

void setup() {
 fullScreen();
 img = loadImage("jupiter.jpg");
 img.loadPixels();
}

void draw() {
 image(img, 0, 0, width, height);
 int resolution = 30;
 int cols = width / resolution;
 int rows = height / resolution;
 for (int i = 1; i < cols; i++) {
 for (int j = 1; j < rows; j++) {
 int x = i * resolution;
 int y = j * resolution;

Chapter 6 ■ Live Wallpapers

127

 int ix = int(map(x, 0, width, 0, img.width - 1));
 int iy = int(map(y, 0, height, 0, img.height - 1));
 int idx = ix + iy * img.width;
 int c = img.pixels[idx];
 float theta = map(brightness(c), 0, 255, 0, TWO_PI);
 PVector v = PVector.fromAngle(theta);
 drawArrow(x, y, v, resolution-2);
 }
 }
}

void drawArrow(float x, float y, PVector v, float l) {
 pushMatrix();
 float arrowsize = 8;
 translate(x, y);
 strokeWeight(2);
 stroke(28, 117, 188);
 rotate(v.heading());
 float len = v.mag() * l;
 line(0, 0, len, 0);
 line(len, 0, len-arrowsize, +arrowsize/2);
 line(len, 0, len-arrowsize, -arrowsize/2);
 popMatrix();
}

Figure 6-8.  Flow field generated from an image

www.allitebooks.com

http://www.allitebooks.org

Chapter 6 ■ Live Wallpapers

128

In this example, we need to access the individual pixels in the image. We do this by first
calling the method loadPixels() in setup(), which initializes the pixels array we use later
in draw(). This is a one-dimensional array where each row of pixels from the image is stored
one after another, so that pixel (ix, iy) corresponds to element idx in the array, as illustrated
in Figure 6-9. However, there is another transformation in the code, since we are stretching
the image to cover the entire screen. So, we first need to map the screen coordinates (x, y)
to pixel indices (ix, iy) by using the map() function. Then, we can apply the correspondence
between the indices of the pixels in the image and the indices in the array.

An Image-flow Wallpaper
We now know how to generate a smooth vector field from any image. We could add a
fixed list of images to our sketch and cycle through them to produce variable motion
patterns. But better still, we can apply the technique we learned with the photo gallery
example to load pictures taken with the device’s camera and use them as the source of
our flow fields. This will add unique and endless variability to our wallpaper. However,
there are still some important details to solve in order to implement this wallpaper, which
we will consider in the following sections.

Loading, Resizing, and Cropping Images
One problem we might face is that the device’s camera, especially for recent Android phones,
can take pictures at very high resolutions. When we load these pictures into a PImage object
and then load the pixels array with loadPixels(), we might run out of memory (wallpapers
have fewer resources allocated to them to avoid affecting other apps in the system). However,
we don’t need an image at full high resolution in order to compute the flow field. We can,
in fact, load a picture into a temporary bitmap object and then resize and crop it to the
desired size before loading it into the PImage object in our sketch. In Listing 6-9, we add the
croppedBitmap() function to the image gallery example from Listing 6-6.

Figure 6-9.  Correspondence between pixels in an image and elements in the pixels array

Chapter 6 ■ Live Wallpapers

129

Listing 6-9.  Cropping and Loading Images

import android.os.Environment;
import java.io.FileOutputStream;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
...
void loadRandomImage() {
 if (imageNames.size() == 0) {
 currImage = defImage;
 } else {
 int i = int(random(1) * imageNames.size());
 String sourceFn = imageNames.get(i);
 try {
 File destFile = sketchFile("cropped.jpg");
 Bitmap bitmap = croppedBitmap(sourceFn);
 OutputStream fout = new FileOutputStream(destFile);
 bitmap.compress(Bitmap.CompressFormat.JPEG, 85, fout);
 currImage = loadImage("cropped.jpg");
 } catch (Exception ex) {
 println("An error while cropping has occurred");
 currImage = defImage;
 }
 }
}
...
Bitmap croppedBitmap(String sourceFile) {
 BitmapFactory.Options options = new BitmapFactory.Options();
 options.inJustDecodeBounds = false;
 options.inSampleSize = 4;
 Bitmap src = BitmapFactory.decodeFile(sourceFile, options);
 int srcW = options.outWidth;
 int srcH = options.outHeight;
 float ratio = float(width)/float(height);
 float srcRatio = float(srcW)/float(srcH);
 int cropX, cropY, cropW, cropH;
 if (ratio < srcRatio) {
 cropH = srcH;
 cropW = int(ratio * cropH);
 } else {
 cropW = srcW;
 cropH = int(cropW / ratio);
 }
 cropX = (srcW - cropW)/2;
 cropY = (srcH - cropH)/2;
 return Bitmap.createBitmap(src, cropX, cropY, cropW, cropH);
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 6 ■ Live Wallpapers

130

Here, after selecting the image file, we apply the resize/cropping, where we make use
of the Bitmap class to decode an image while at the same time downsampling it (in this
case, reducing its original width and height by a factor of four), and then we determine
the crop area so that a correctly proportioned area of the image is shown in full-screen
mode. We save the cropped image to a new file inside the sketch’s folder, called cropped.
jpg, which we then load with loadImage() as before. We should be able to see the
pixelation of the images shown in the background.

Putting Everything Together
After going through the preceding sections to create a flow field from an image (Listing 6-8)
and crop and load images from the external storage (Listing 6-9), we are ready to put
together our image-flow wallpaper. We can follow the structure of the touch-based
particle system, with separate Particle and Field classes, to arrive at Listing 6-10.

Listing 6-10.  Image-flow Wallpaper

import android.os.Environment;
import java.io.FileOutputStream;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;

int maxParticles = 200;
int swapInterval = 10;
Field field;
ArrayList<Particle> particles;
ArrayList<String> imageNames = new ArrayList<String>();
int lastChange;

void setup() {
 fullScreen(P2D);
 frameRate(25);
 field = new Field();
 if (!wallpaperPreview()) {
 requestPermission("android.permission.READ_EXTERNAL_STORAGE",
 "scanForImages");
 }
 particles = new ArrayList<Particle>();
 for (int i = 0; i < maxParticles; i++) {
 particles.add(new Particle(random(width), random(height)));
 }
 loadRandomImage();
 background(255);
}

Chapter 6 ■ Live Wallpapers

131

void draw() {
 for (Particle b: particles) {
 b.update(field);
 b.display();
 }
 int t = millis();
 if (swapInterval * 1000 < t - lastChange) {
 loadRandomImage();
 lastChange = t;
 }
}

void loadRandomImage() {
 if (imageNames.size() == 0) {
 field.update("default.jpg");
 } else {
 int i = int(random(1) * imageNames.size());
 String sourceFn = imageNames.get(i);
 try {
 File destFile = sketchFile("cropped.jpg");
 Bitmap bitmap = croppedBitmap(sourceFn);
 OutputStream fout = new FileOutputStream(destFile);
 bitmap.compress(Bitmap.CompressFormat.JPEG, 85, fout);
 field.update("cropped.jpg");
 } catch (Exception ex) {
 println("An error while cropping has occurred");
 field.update("default.jpg");
 }
 }
}

void scanForImages(boolean grantedPermission) {
 if (grantedPermission) {
 File dcimDir = Environment.getExternalStoragePublicDirectory(
 Environment.DIRECTORY_DCIM);
 String[] subDirs = dcimDir.list();
 if (subDirs == null) return;
 for (String d: subDirs) {
 if (d.charAt(0) == '.') continue;
 File fullPath = new File (dcimDir, d);
 File[] listFiles = fullPath.listFiles();
 for (File f: listFiles) {
 String filename = f.getAbsolutePath().toLowerCase();
 if (filename.endsWith(".jpg")) imageNames.add(filename);
 }
 }
 }
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 6 ■ Live Wallpapers

132

Bitmap croppedBitmap(String sourceFile) {
 BitmapFactory.Options options = new BitmapFactory.Options();
 options.inJustDecodeBounds = false;
 options.inSampleSize = 4;
 Bitmap src = BitmapFactory.decodeFile(sourceFile, options);
 int srcW = options.outWidth;
 int srcH = options.outHeight;
 float ratio = float(width)/float(height);
 float srcRatio = float(srcW)/float(srcH);
 int cropX, cropY, cropW, cropH;
 if (ratio < srcRatio) {
 cropH = srcH;
 cropW = int(ratio * cropH);
 } else {
 cropW = srcW;
 cropH = int(cropW / ratio);
 }
 cropX = (srcW - cropW)/2;
 cropY = (srcH - cropH)/2;
 return Bitmap.createBitmap(src, cropX, cropY, cropW, cropH);
}

class Field {
 PImage flowImage;

 void update(String fn) {
 flowImage = loadImage(fn);
 flowImage.loadPixels();
 }

 PVector lookupVector(PVector v) {
 if (flowImage == null) return PVector.random2D();
 color c = flowImage.pixels[getPixelIndex(v.x, v.y)];
 float theta = map(brightness(c), 0, 255, 0, TWO_PI);
 return PVector.fromAngle(theta);
 }

 color lookupColor(PVector v) {
 if (flowImage == null) return color(0, 0, 100, 0);
 return flowImage.pixels[getPixelIndex(v.x, v.y)];
 }

Chapter 6 ■ Live Wallpapers

133

 int getPixelIndex(float x, float y) {
 int ix = int(map(x, 0, width, 0, flowImage.width - 1));
 int iy = int(map(y, 0, height, 0, flowImage.height - 1));
 �return constrain(ix + iy * flowImage.width, 0, flowImage.pixels.length

- 1);
 }
}

class Particle {
 PVector position;
 PVector velocity;
 PVector acceleration;
 float size;
 color color;
 int life;
 float maxAccel;
 float maxSpeed;
 int maxLife;

 Particle(float x, float y) {
 position = new PVector(x, y);
 size = random(2, 4) * displayDensity;
 velocity = new PVector(0, 0);
 acceleration = new PVector(0, 0);
 maxSpeed = random(2, 5);
 maxAccel = random(0.1, 0.5);
 maxLife = int(random(5, 20));
 }

 void update(Field flow) {
 if (life == 0) {
 color = flow.lookupColor(position);
 } else if (life > frameRate * maxLife) {
 position.x = random(width);
 position.y = random(height);
 life = 0;
 color = flow.lookupColor(position);
 }

 PVector desired = flow.lookupVector(position);
 acceleration.x = maxSpeed * desired.x - velocity.x;
 acceleration.y = maxSpeed * desired.y - velocity.y;
 acceleration.limit(maxAccel);
 velocity.add(acceleration);
 velocity.limit(maxSpeed);
 position.add(velocity);

www.allitebooks.com

http://www.allitebooks.org

Chapter 6 ■ Live Wallpapers

134

 if (position.x < -size) position.x = width + size;
 if (position.y < -size) position.y = height + size;
 if (position.x > width + size) position.x = -size;
 if (position.y > height + size) position.y = -size;

 life++;
 }

 void display() {
 float theta = velocity.heading();
 noStroke();
 pushMatrix();
 translate(position.x,position.y);
 rotate(theta);
 fill(color);
 beginShape(QUADS);
 vertex(-2*size, -size);
 vertex(+2*size, -size);
 vertex(+2*size, +size);
 vertex(-2*size, +size);
 endShape();
 popMatrix();
 }
}

The Field class contains the PImage object holding the image to derive the flow
field from, the update() method to set a new image by passing in its file name, and two
look-up methods, lookupVector() and lookupColor(), which return the field vector and
the image color at the given position, respectively. It is important to notice the use of the
getPixelIndex() method, used internally by the class to convert a screen position
(x, y) into a valid pixel index, irrespective of the resolution of the current flow image.

The Particle class is very similar to that seen in Listing 6-7, with a few key additions:
at the beginning of each update, we compute the particle color at the beginning of its
“lifetime” and restart its position when the life variable reaches the maximum value; at
the end of the update, we check if the particle is outside of the screen, and, if so, we wrap
it around so it emerges from the opposite side of the screen to ensure that our particles
don’t wander away.

Using Threads
As explained in the online reference, Processing sketches follow a specific sequence of
steps: setup() first, followed by draw() over and over and over again in a loop. A thread
is also a series of steps with a beginning, a middle, and an end. A Processing sketch is a
single thread, often referred to as the “Animation" thread” (https://processing.org/
reference/thread_.html). While a single thread is enough in most situations, sometimes
we need a separate thread to perform extra calculations. For example, a problem with
our image-flow wallpaper is that it pauses for a short while when a new image is resized

https://processing.org/reference/thread_.html
https://processing.org/reference/thread_.html

Chapter 6 ■ Live Wallpapers

135

and loaded. The reason is that the resizing/loading process currently happens in the
Animation thread, blocking the rendering of the subsequent frames, hence the delay. The
solution is to run the loadRandomImage() function in a separate thread so the image can
be resized and loaded in parallel without obstructing the rendering. This can be done by
replacing the call to loadRandomImage() in draw() with thread("loadRandomImage").

Because threads run independently of each other, we might face the problem
of multiple threads calling the update() method in the Field class concurrently, or
particles looking up field data from the Animation thread while it is being updated by
another thread. This concurrent access can lead to unexpected errors if not handled
properly. A solution is to mark all the methods in the Field class that access flowImage as
“synchronized.” Synchronized methods cannot be called from one thread while they are
being called from another. The changes in the wallpaper code required to use threads and
handle concurrency are shown in Listing 6-11.

Listing 6-11.  Running the Image-loading Function in a Separate Thread

void draw() {...
 if (swapInterval * 1000 < t - lastChange) {
 thread("loadRandomImage");
 lastChange = t;
 }
}
...
class Field {
 PImage flowImage;

 synchronized void update(String fn) {
 flowImage = loadImage(fn);
 flowImage.loadPixels();
 }

 synchronized PVector lookupVector(PVector v) {
 if (flowImage == null) return PVector.random2D();
 color c = flowImage.pixels[getPixelIndex(v.x, v.y)];
 float theta = map(brightness(c), 0, 255, 0, TWO_PI);
 return PVector.fromAngle(theta);
 }

 synchronized color lookupColor(PVector v) {
 if (flowImage == null) return color(0, 0, 100, 0);
 return flowImage.pixels[getPixelIndex(v.x, v.y)];
 }
...
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 6 ■ Live Wallpapers

136

Controlling the Hue
As we discussed earlier, a live wallpaper should be visually attractive but not overpower
the UI. In our case, the colors of the particles could be too bright or saturated, making it
hard to see the icons in the foreground. One solution to this issue could be to use the HSB
color space in our sketch and then adjust the brightness of the color when it is obtained
from the pixels array. Listing 6-12 includes a modified lookupColor() method that
applies Processing’s hue() and saturation() functions to extract these properties and
then reconstructs the final color with color() so the particle keeps its original hue and
saturation but lowers its brightness and opacity.

Listing 6-12.  Using the HSB Color Space

void setup() {
 ...
 colorMode(HSB, 360, 100, 100, 100);
 background(0, 0, 100);
}
...
class Field {
 ...
 synchronized color lookupColor(PVector v) {
 if (flowImage == null) return color(0, 0, 100, 0);
 color c = flowImage.pixels[getPixelIndex(v.x, v.y)];
 float h = hue(c);
 float s = saturation(c);
 float b = 50;
 return color(h, s, b, 70);
 }
 ...
}

Chapter 6 ■ Live Wallpapers

137

Figure 6-10.  Final version of the image-flow wallpaper running in the background

In order to use the HSB color space, we need to set the color mode in setup() using
the colorMode() function, which we saw already in Chapter 4. Our image-flow wallpaper
should display more muted colors after this modification, as suggested by Figure 6-10.

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-2719-0_4
http://www.allitebooks.org

Chapter 6 ■ Live Wallpapers

138

Wrapping the Project Up
As a final stage in this project, we should create icons for all the required resolutions (36
× 36, 48 × 48, 72 × 72, 96 × 96, 144 × 144, and 192 × 192 pixels) and set a unique package
name and version number for our wallpaper in the manifest file. See Figure 6-11.

The manifest file will already have most of the required values already filled in if the
sketch has been run at least once on the device or in the emulator. We should set a unique
pacakge name, and also the android:label attribute in both the application and service
tags so the wallpaper is identified with a more readable title in the wallpaper selector and
app listing. A complete manifest file with all these values is show below:

<?xml version="1.0" encoding="UTF-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="1"android:versionName="1.0"
 package="com.example.image_flow">
 <uses-sdk android:minSdkVersion="17" android:targetSdkVersion="25"/>
 <uses-feature android:name="android.software.live_wallpaper"/>
 <application android:icon="@drawable/icon"
 android:label="Image Flow">
 <service android:label="Image Flow"
 android:name=".MainService"
 android:permission="android.permission.BIND_WALLPAPER">
 <intent-filter>
 <action
 android:name="android.service.wallpaper.WallpaperService"/>
 </intent-filter>
 <meta-data android:name="android.service.wallpaper"
 android:resource="@xml/wallpaper"/>
 </service>
 <activity android:name="processing.android.PermissionRequestor"/>
 </application>
 <uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>
</manifest>

After editing the manifest, we are ready to export the sketch as a signed package for
uploading to the Google Play Store, as we discussed in Chapter 3.

Figure 6-11.  Icon set for the image flow wallpaper.

http://dx.doi.org/10.1007/978-1-4842-2719-0_3

Chapter 6 ■ Live Wallpapers

139

Summary
Live wallpapers give us a unique medium to create animated graphics that users can
experience as dynamic backgrounds on their devices. We can apply the entire drawing
API in Processing to create original wallpapers, and, as we learned in this chapter, it
is also possible to import the Android API to carry out more advanced tasks, such as
reading files from external storage or resizing images. This chapter also introduced
the concept of normal and dangerous permissions and how to request them from our
sketches, which we will revisit many times in next chapters.

www.allitebooks.com

http://www.allitebooks.org

PART III

Sensors

143© Andrés Colubri 2017
A. Colubri, Processing for Android, https://doi.org/10.1007/978-1-4842-2719-0_7

CHAPTER 7

Reading Sensor Data

Android devices read data from the physical world around us using numerous sensors,
such as accelerometers, gyroscopes, and magnetometers. In this chapter, we will learn
how to access this data from our Processing sketch using the Android SDK and the Ketai
library.

Sensors in Android Devices
Nowadays, almost every mobile device, from smartphones to activity trackers, is
equipped with a wide range of hardware sensors to capture data about the movement,
environment, and location of the device (and, by extension, of ourselves). Android
devices commonly contain accelerometers, gyroscopes, magnetometers, and location
sensors. These sensors give us access to a large amount of information we can use in our
Processing sketches in multiple ways, from controlling the behavior of graphical elements
on the screen and creating user interfaces that are not limited to the touch gestures, to
inferring and visualizing our own patterns of motion.

Let’s begin this chapter by going over the most typical sensors available on an
Android phone, tablet, or watch (check Google’s official developer guide for more details:
https://developer.android.com/guide/topics/sensors/sensors_overview.html).

Accelerometer
An accelerometer sensor is able to measure acceleration along three coordinate axes
placed as shown in Figure 7-1. Acceleration is measured in meters/second2, and
Android includes in this measurement acceleration resulting from the force of gravity.
Acceleration data has many uses; for example, it can be the basis for determining
orientation in space, and it can also aid in detecting sudden motions, such as shocks or
vibrations.

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-2719-0_7
https://developer.android.com/guide/topics/sensors/sensors_overview.html
http://www.allitebooks.org

Chapter 7 ■ Reading Sensor Data

144

Gyroscope
The gyroscope measures the angular velocity of the device; that is, the rate of rotation
(in radians/second) around each of the same three axes as defined for the accelerometer
sensor in Figure 7-1. Although it is similar to the accelerometer in that both can be used
to determine the position of orientation of the device, the gyroscope can sense rotation,
whereas the accelerometer cannot. Because of this, the gyroscope is very useful when we
need to measure rotational movement, such as spinning, turning, and so on.

Magnetometer
The magnetometer is a sensor that measures the strength and direction of the
geomagnetic field—also using the coordinate system described in Figure 7-1—by
providing the raw components of the field along each axis in μT (microtesla). A typical
application of this sensor, which we will examine in more detail in the next chapter, is to
implement a compass to show the angle of the device with respect to the magnetic North.

Location
This is not an actual sensor, but rather a combination of data collected from different
sources (Global Positioning System, or GPS, cell-ID, and Wi-Fi) that allows us to
determine the device’s geographical location (in latitude/longitude) at different levels
of resolution (coarse or fine). GPS data is obtained from a network of satellites orbiting
Earth and has an accuracy of around 4.9 meters (16 feet) under open sky (http://www.
gps.gov/systems/gps/performance/accuracy/). Location information derived from
cellular tower or Wi-Fi access point IDs has much lower accuracy (between 5,300 feet and
1 mile), but uses very little energy as it works passively, in contrast to the active location-
fixing done by GPS.

Figure 7-1.  Physical axes that Android uses to describe acceleration and other sensor data

http://www.gps.gov/systems/gps/performance/accuracy/
http://www.gps.gov/systems/gps/performance/accuracy/

Chapter 7 ■ Reading Sensor Data

145

Accessing Sensors from Processing
The Processing language does not have specialized functions to read sensor data, but
there are two easy ways to access this data from our code. The first is to rely on the
Android API, which we can call from Processing by importing all the relevant Android
packages, as we did in Chapter 4 to read files from external storage. The second way is to
use a contributed library that extends the functionality of Android mode. We will learn
both ways of accessing sensor data, starting with using the Android SDK from our sketch.

Creating a Sensor Manager
The first step to using the Android sensor API is to obtain the “context” of the app
containing the sketch. We can think of this context as an interface that allows us to access
useful information about our app. For instance, once we get a hold of the context, we can
create a sensor manager from it. This manager will create any sensor we need in our sketch.

Let’s look at a concrete example that reads accelerometer data. We put the
initialization of the sensor manager inside the setup() function, as shown in Listing 7-1,
where we also create the sensor object for the accelerometer.

Listing 7-1.  Accessing the Accelerometer

import android.content.Context;
import android.hardware.Sensor;
import android.hardware.SensorManager;

Context context;
SensorManager manager;
Sensor sensor;

void setup() {
 fullScreen();
 context = getContext();
 manager = (SensorManager)context.getSystemService(Context.SENSOR_SERVICE);
 sensor = manager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
}

void draw() {
}

In this code, we had to import several packages from the Android SDK to gain access
to the Context, SensorManager, and Sensor classes.

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-2719-0_4
http://www.allitebooks.org

Chapter 7 ■ Reading Sensor Data

146

Adding a Sensor Listener
In the next step (Listing 7-2), we add a listener object that will notify the sketch that new
data is available from the sensor. We derive the listener class specific to our sketch from
the base SensorEventListener class in the Android API by implementing two methods,
onSensorChanged() and onAccuracyChanged(). The former is called when new data is
available, and the latter when the accuracy of the sensor changes. Once we obtain an
instance of the listener class, we must register it with the manager so it’s ready to produce
data.

Listing 7-2.  Creating a Listener

import android.content.Context;
import android.hardware.Sensor;
import android.hardware.SensorManager;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;

Context context;
SensorManager manager;
Sensor sensor;
AccelerometerListener listener;

void setup() {
 fullScreen();
 context = getActivity();
 manager = (SensorManager)context.getSystemService(Context.SENSOR_SERVICE);
 sensor = manager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
 listener = new AccelerometerListener();
 manager.registerListener(listener, sensor,
 SensorManager.SENSOR_DELAY_NORMAL);
}

void draw() {
}

class AccelerometerListener implements SensorEventListener {
 public void onSensorChanged(SensorEvent event) {
 }
 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 }
}

You may have noticed the SensorManager.SENSOR_DELAY_NORMAL argument in the
listener registration. This argument sets the rate at which the sensor is updated with new
data. Faster rates mean more responsiveness, but also more battery consumption. The
default SENSOR_DELAY_NORMAL sets a rate fast enough for screen orientation changes,
while SENSOR_DELAY_GAME and SENSOR_DELAY_UI are suitable for use in games and user

Chapter 7 ■ Reading Sensor Data

147

interfaces, respectively. Finally, SENSOR_DELAY_FASTEST allows us to get sensor data as
fast as possible.

Reading Data from the Sensor
As we just mentioned, the event listener has two methods, onSensorChanged() and
onAccuracyChanged(). We only need to use onSensorChanged() to get the data from the
sensor. In the case of the accelerometer, the data consist of three float numbers, which
represent the acceleration along the x, y, and z axes of the device.

In Listing 7-3, we simply print these values to the screen. We can verify that if we place the
phone flat on the table with the screen facing up, we should see a Z acceleration of 9.81 m/s2
(the actual acceleration will fluctuate around this value, since the accelerometer data is noisy),
which corresponds to the acceleration of gravity.

Listing 7-3.  Reading the Accelerometer

import android.content.Context;
import android.hardware.Sensor;
import android.hardware.SensorManager;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;

Context context;
SensorManager manager;
Sensor sensor;
AccelerometerListener listener;
float ax, ay, az;

void setup() {
 fullScreen();
 context = getContext();
 manager = (SensorManager)context.getSystemService(Context.SENSOR_SERVICE);
 sensor = manager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
 listener = new AccelerometerListener();
 manager.registerListener(listener, sensor,
 SensorManager.SENSOR_DELAY_NORMAL);

 textFont(createFont("SansSerif", displayDensity * 24));
 textAlign(CENTER, CENTER);
}

void draw() {
 background(157);
 text("X: " + ax + "\n" + "Y: " + ay + "\n" + "Z: " + az, width/2,
height/2);
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 7 ■ Reading Sensor Data

148

public void resume() {
 if (manager != null) {
 manager.registerListener(listener, sensor,
 SensorManager.SENSOR_DELAY_NORMAL);
 }
}

public void pause() {
 if (manager != null) {
 manager.unregisterListener(listener);
 }
}
class AccelerometerListener implements SensorEventListener {
 public void onSensorChanged(SensorEvent event) {
 ax = event.values[0];
 ay = event.values[1];
 az = event.values[2];
 }
 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 }
}

Additionally, we unregister the listener when the sketch is paused and reregister
when it resumes. Figure 7-2 shows the output of our first sensor sketch, which is just a
printout of the X, Y, and Z acceleration values.

Figure 7-2.  Output of the accelerometer sensor example

Chapter 7 ■ Reading Sensor Data

149

■■ Note A s a best practice for using sensors, we should unregister the associated listeners
when the sketch’s activity is paused to reduce battery usage, then register it again when
the activity resumes.

Reading from Other Sensors
The structure we put together in the previous example can be reused with almost no
changes for other types of sensors. For example, if we want to read the rotation angle
around each axis using the gyroscope, all we need to do is request a TYPE_GYROSCOPE
sensor, which is demonstrated in Listing 7-4.

Listing 7-4.  Reading the Gyroscope

import android.content.Context;
import android.hardware.Sensor;
import android.hardware.SensorManager;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;

Context context;
SensorManager manager;
Sensor sensor;
GyroscopeListener listener;
float rx, ry, rz;

void setup() {
 fullScreen();
 context = getContext();
 manager = (SensorManager)context.getSystemService(Context.SENSOR_SERVICE);
 sensor = manager.getDefaultSensor(Sensor.TYPE_GYROSCOPE);
 listener = new GyroscopeListener();
 manager.registerListener(listener, sensor,
 SensorManager.SENSOR_DELAY_NORMAL);

 textFont(createFont("SansSerif", displayDensity * 24));
 textAlign(CENTER, CENTER);
}

void draw() {
 background(157);
 text("X: " + rx + "\n" + "Y: " + ry + "\n" + "Z: " + rz, width/2, height/2);
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 7 ■ Reading Sensor Data

150

public void resume() {
 if (manager != null) {
 manager.registerListener(listener, sensor,
 SensorManager.SENSOR_DELAY_NORMAL);
 }
}

public void pause() {
 if (manager != null) {
 manager.unregisterListener(listener);
 }
}

class GyroscopeListener implements SensorEventListener {
 public void onSensorChanged(SensorEvent event) {
 rx = event.values[0];
 ry = event.values[1];
 rz = event.values[2];
 }
 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 }
}

The Ketai Library
We have learned to access sensor data by calling the Android API directly from our
sketch. The advantage of this approach is that we can always access the Android API,
but a downside is the additional code we need in order to create sensor managers and
listeners. This extra code does not follow the conventions of the Processing API, so it may
be difficult for new users to understand it.

We had to use Android sensor APIs because Processing for Android does not include
one. However, we can add new functionality to Processing through the use of contributed
libraries. As we saw in Chapter 1, contributed libraries are modules that package extra
functions and classes that are not part of the Processing core. We can import these libraries
into our sketch to use their features and functionality. It turns out that there is a library
aimed precisely at working with Android sensors in a simplified, Processing-like manner. It
is called Ketai (http://ketai.org/) and was created by Daniel Sauter and Jesus Duran.

Installing Ketai
Contributed libraries, such as Ketai, can be easily installed in Processing using the
Contributions Manager, or CM. To open the CM, we go to the Sketch menu and then
select “Import Library|Add Library…” We already used the CM to install Android mode,
but it is also the main interface to install libraries, tools, and examples.

After opening the CM, we select the Libraries tab; there we can search for the library
of interest by either scrolling down the list or searching by name. Once we find the entry
for Ketai, all we need to do is click on the Install button (Figure 7-3).

http://dx.doi.org/10.1007/978-1-4842-2719-0_1
http://ketai.org/

Chapter 7 ■ Reading Sensor Data

151

Using Ketai
The Ketai library provides a simple interface to the sensors in our Android device,
following the style of the core Processing API. Ketai requires some initialization code to
import the library and create a KetaiSensor object, but reading sensor values is very easy.
We only have to add an “event handler” function to our sketch, which will get called every
time there is a new value from the sensor (similar to how the built-in mousePressed() or
touchMoved() functions work).

A simple sketch that reads the accelerometer and shows the values as text, like we
did in Listing 7-3, is presented in Listing 7-5. Its output is shown in Figure 7-4.

Listing 7-5.  Reading the Accelerometer with Ketai

import ketai.sensors.*;

KetaiSensor sensor;
float accelerometerX, accelerometerY, accelerometerZ;

void setup() {
 fullScreen();
 sensor = new KetaiSensor(this);
 sensor.start();
 textAlign(CENTER, CENTER);
 textSize(displayDensity * 36);
}

Figure 7-3.  Installing the Ketai library through the Contributions Manager

www.allitebooks.com

http://www.allitebooks.org

Chapter 7 ■ Reading Sensor Data

152

void draw() {
 background(78, 93, 75);
 text("Accelerometer: \n" +
 "x: " + nfp(accelerometerX, 1, 3) + "\n" +
 "y: " + nfp(accelerometerY, 1, 3) + "\n" +
 "z: " + nfp(accelerometerZ, 1, 3), 0, 0, width, height);
}

void onAccelerometerEvent(float x, float y, float z) {
 accelerometerX = x;
 accelerometerY = y;
 accelerometerZ = z;
}

Figure 7-4.  Output of Ketai accelerometer example

Data from other sensors is accessed in the same way; we only need to add a
different event handler. For example, to read the values from the gyroscope, we use
onGyroscopeEvent (Listing 7-6).

Listing 7-6.  Reading the Gyroscope with Ketai

import ketai.sensors.*;

KetaiSensor sensor;
float rotationX, rotationY, rotationZ;

void setup() {
 fullScreen();
 sensor = new KetaiSensor(this);

Chapter 7 ■ Reading Sensor Data

153

 sensor.start();
 textAlign(CENTER, CENTER);
 textSize(displayDensity * 24);
}

void draw() {
 background(78, 93, 75);
 text("Gyroscope: \n" +
 "x: " + nfp(rotationX, 1, 3) + "\n" +
 "y: " + nfp(rotationY, 1, 3) + "\n" +
 "z: " + nfp(rotationZ, 1, 3), 0, 0, width, height);
}

void onGyroscopeEvent(float x, float y, float z) {
 rotationX = x;
 rotationY = y;
 rotationZ = z;
}

Event Handlers in Ketai
With Ketai, we indicate what sensor data to read by adding the corresponding event
handler function. Some handlers supported by Ketai are shown here, and the complete
list is available in the reference of the library (http://ketai.org/reference/sensors).
Rapid Android Development by Daniel Sauter, available online at https://www.
mobileprocessing.org, is also a good resource to learn all the details about Ketai.

•	 void onSensorEvent(SensorEvent e): This handler returns a
“raw” Android sensor event object that contains all the relevant
information describing the event, including type, values, and
so on. The SensorEvent class is fully documented in the official
Android reference, found here: https://developer.android.
com/reference/android/hardware/SensorEvent.html

•	 void onAccelerometerEvent(float x, float y, float z,
long a, int b): We receive accelerometer data, with x, y,
z being the acceleration along the three axes in m/s2, a the
timestamp of the event (in nanoseconds), and b the current
accuracy level.

•	 void onAccelerometerEvent(float x, float y, float z):
Same as before, but does not give the timestamp or the accuracy

•	 void onGyroscopeEvent(float x, float y, float z, long a,
int b): Provides the x, y, z angular velocity in radians/second,
the event timestamp a, and the accuracy level b

•	 void onGyroscopeEvent(float x, float y, float z): Only
angular velocity

www.allitebooks.com

http://ketai.org/reference/sensors
https://www.mobileprocessing.org/
https://www.mobileprocessing.org/
https://developer.android.com/reference/android/hardware/SensorEvent.html
https://developer.android.com/reference/android/hardware/SensorEvent.html
http://www.allitebooks.org

Chapter 7 ■ Reading Sensor Data

154

•	 void onPressureEvent(float p): Current ambient pressure p in
hectopascals (hPa)

•	 void onTemperatureEvent(float t): Current temperature t in
degrees Celsius

We can use several sensors at once just by adding all the required event handlers.
However, a device might not include a specific sensor. In order to handle such
situations properly, we can check the availability of any supported sensors using the
isXXXAvailable() functions in KetaiSensor. Let’s combine our previous examples
into a single sketch that reads and displays accelerometer and gyroscope data, but only
if the device has these sensors. Generally, almost all Android phones come with an
accelerometer, but cheaper entry-level devices often lack a gyro.

Listing 7-7 includes the sensor availability code in the setup() function and displays
the accelerometer and gyroscope values graphically using bars whose length represents
the magnitude of the sensor values (Figure 7-5). It is inspired by a more comprehensive
example created by Tiago Martins, who also wrote several other sketches illustrating
the use of sensors in Processing (https://github.com/tms-martins/processing-
androidExamples).

Listing 7-7.  Checking Sensor Availability with Ketai

import ketai.sensors.*;

KetaiSensor sensor;
boolean hasAccel = false;
boolean hasGyro = false;
PVector dataAccel = new PVector();
PVector dataGyro = new PVector();

void setup() {
 fullScreen();
 sensor = new KetaiSensor(this);
 sensor.start();

 if (sensor.isAccelerometerAvailable()) {
 hasAccel = true;
 println("Device has accelerometer");
 }
 if (sensor.isGyroscopeAvailable()) {
 hasGyro = true;
 println("Device has gyroscope");
 }

 noStroke();
}

https://github.com/tms-martins/processing-androidExamples
https://github.com/tms-martins/processing-androidExamples

Chapter 7 ■ Reading Sensor Data

155

void draw() {
 background(255);
 float h = height/6;
 float y = 0;
 translate(width/2, 0);
 if (hasAccel) {
 fill(#C63030);
 rect(0, y, map(dataAccel.x, -10, +10, -width/2, +width/2), h);
 y += h;
 rect(0, y, map(dataAccel.y, -10, +10, -width/2, +width/2), h);
 y += h;
 rect(0, y, map(dataAccel.z, -10, +10, -width/2, +width/2), h);
 y += h;
 }
 if (hasGyro) {
 fill(#30C652);
 rect(0, y, map(dataGyro.x, -10, +10, -width/2, +width/2), h);
 y += h;
 rect(0, y, map(dataGyro.y, -10, +10, -width/2, +width/2), h);
 y += h;
 rect(0, y, map(dataGyro.z, -10, +10, -width/2, +width/2), h);
 }
}

void onAccelerometerEvent(float x, float y, float z) {
 dataAccel.set(x, y, z);
}

void onGyroscopeEvent(float x, float y, float z) {
 dataGyro.set(x, y, z);
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 7 ■ Reading Sensor Data

156

Summary
This chapter gave us a foundation for using sensor data in our Processing sketches, either
through the Android API or with the Ketai library. In the next chapters, we will build on
these techniques to create graphics and interactions that are driven by the movement or
location of our device.

Figure 7-5.  Showing values from the accelerometer and the gyroscope

157© Andrés Colubri 2017
A. Colubri, Processing for Android, https://doi.org/10.1007/978-1-4842-2719-0_8

CHAPTER 8

Driving Graphics and Sound
with Sensor Data

With the basics of reading sensor data already covered in the previous chapter, we will
now see how to use data from the accelerometer, magnetometer, and gyroscope to
generate interactive graphics and sound in our Processing sketches.

Using Ketai to Read Sensor Data
The sensors available in an Android device give us plenty of data about the surroundings
of the device. We saw how we can retrieve this data by using either the Android API or the
Ketai library, the latter of which makes sensor handling easier. Once the data is available
as numerical values inside our sketch, we can use it in any way we want to drive the
animations and interactions in the code.

In this chapter, we will focus on three specific sensors that provide immediate
feedback on the movement and position state of our device: the accelerometer (and the
derived step counter), the magnetic field sensor, and the gyroscope. With the data from
these sensors, our Android sketches will be able to react to a wide range of movements
detected by the device: sudden shaking, walking, rotation in space, and orientation with
respect to the Earth’s magnetic field.

We will use Ketai to read the sensor data, since it simplifies the code by eliminating
the need to define event listeners and sensor managers. However, all the examples in this
chapter can be adapted to use the Android API without much difficulty.

Measuring Acceleration
Acceleration is the rate of change of velocity with respect to time, but the acceleration
values returned by Android also include acceleration due to gravity, which is directed
toward the ground and has a magnitude of 9.8 m/s2. If our phone is placed completely
at rest on a table, with its screen facing up, its acceleration would read a = (0, 0, -9.8),
since it includes gravity along the negative direction of the z-axis (remember Figure 7-1).
But if we rotate our phone around, the acceleration from gravity will be projected along
the three axes, depending on the orientation of the phone with respect to the vertical
direction.

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-2719-0_1
http://www.allitebooks.org

Chapter 8 ■ Driving Graphics and Sound with Sensor Data

158

Shake Detection
When we shake the phone, we make its velocity change quickly from zero to a high value in
a very short time. Consequently, acceleration will be high during that time. We can detect
this situation by calculating the magnitude of the acceleration vector and triggering a “shake
event” if it is large enough. However, we also need to take into consideration that gravity
is already in the acceleration, so its magnitude needs to be at least larger than gravity’s
magnitude, 9.8 m/s2. We can do this by comparing the magnitude of the acceleration vector
as obtained from Ketai with gravity’s constant, deciding that a shake takes place if the
former is larger by a pre-defined threshold. This is what we will do in Listing 8-1.

Listing 8-1.  Simple Shake-Detection Code

import ketai.sensors.*;
import android.hardware.SensorManager;

KetaiSensor sensor;
PVector accel = new PVector();
int shakeTime;

color bColor = color(78, 93, 75);

void setup() {
 fullScreen();
 sensor = new KetaiSensor(this);
 sensor.start();
 textAlign(CENTER, CENTER);
 textSize(displayDensity * 36);
}

void draw() {
 background(bColor);
 text("Accelerometer: \n" +
 "x: " + nfp(accel.x, 1, 3) + "\n" +
 "y: " + nfp(accel.y, 1, 3) + "\n" +
 "z: " + nfp(accel.z, 1, 3), 0, 0, width, height);
}

void onAccelerometerEvent(float x, float y, float z) {
 accel.set(x, y, z);
 int now = millis();
 if (now - shakeTime > 250) {
 if (1.2 * SensorManager.GRAVITY_EARTH < accel.mag()) {
 bColor = color(216, 100, 46);
 shakeTime = now;
 } else {
 bColor = color(78, 93, 75);
 }
 }
}

Chapter 8 ■ Driving Graphics and Sound with Sensor Data

159

The condition that checks for a shake is 1.2 * SensorManager.GRAVITY_EARTH <
accel.mag()). Here, we are using 1.2 as the threshold for the shake detection, and we
can use a smaller or larger value to detect weaker or stronger shakes. The SensorManager
class from the Sensor API in Android becomes handy as it contains a constant, GRAVITY_
EARTH, that represents Earth’s gravity acceleration (there are similar constants for all
the planets in the solar system, plus the moon, the sun, and the fictional Death Star).
The time condition is in place so our app cannot trigger more than one shake every 250
milliseconds.

Step Counter
With the case of shake detection, we only had to recognize a single event characterized
by the magnitude of the acceleration. In the case of detecting steps when walking
or running, the problem is harder: it is not enough to recognize a single change in
acceleration when we make one step, but rather we need to note a regular pattern
through time, as shown in Figure 8-1.

However, this pattern does not follow a perfect curve, because it is affected by signal
noise and irregularities in the walking pace. Furthermore, it is different from person
to person, depending on their gait. While it is not too hard to figure out an algorithm
capable of detecting steps from the raw accelerometer data, Android takes care of this
problem by providing a new type of sensor in version 4.4 (KitKat): the step counter. This
sensor does the analysis of the accelerometer input for us. It triggers an new event with
each step, so we can count steps in any interval of time we wish. A very simple step of a
step-detection sketch in Processing is described in Listing 8-2.

Figure 8-1.  Acceleration pattern during the walking stages (left), and acceleration data
corresponding to a series of steps (right). Reproduced with permission from Neil Zhao

www.allitebooks.com

http://www.allitebooks.org

Chapter 8 ■ Driving Graphics and Sound with Sensor Data

160

Listing 8-2.  Using Android’s Step Counter

import ketai.sensors.*;

KetaiSensor sensor;
color bColor = color(78, 93, 75);
int stepTime = 0;
int stepCount = 0;

void setup() {
 fullScreen();
 orientation(PORTRAIT);
 sensor = new KetaiSensor(this);
 sensor.start();
 textAlign(CENTER, CENTER);
 textSize(displayDensity * 24);
}

void draw() {
 if (millis() - stepTime > 500) {
 bColor = color(78, 93, 75);
 }
 background(bColor);
 text("Number of steps = " + stepCount, 0, 0, width, height);
}

void onStepDetectorEvent() {
 bColor = color(216, 100, 46);
 stepTime = millis();
 stepCount++;
}

Ketai has another function, onStepCounterEvent(float s), where we receive in the
variable s, the total number of steps since the device was rebooted. This can be useful if
we need to track the total number of steps throughout the day without missing the activity
while the app is not running.

Audio-Visual Mapping of Step Data
As we just saw, it is very easy to count individual steps using the step-detector event in
Ketai. How to use this step-count data in our Processing sketch is a question that we can
answer only after considering what our final goal is; for example, showing a “utilitarian”
visualization of physical activity, creating a more abstract representation of this activity,
driving some background graphics (and/or audio) that we can use as a live wallpaper,
and so on.

Chapter 8 ■ Driving Graphics and Sound with Sensor Data

161

It is up to us to determine how we would map the sensor data into visual or sound
elements. For the purpose of illustrating how to carry out this mapping, we will work on a
sketch where each new step triggers a simple animation of a colored circle showing up on
the screen and fading back into the background, so the end result would be a geometric
pattern that responds to our walk.

We could start writing some initial sketches in Java mode to refine the visual concept
before moving on to Android mode. One possible approach would be to work with a
rectangular grid on which we place the colored dots at random. It could be useful to
define a class to hold the animation logic of the dots, as well as to use an array list to
keep track of a variable number of dots while the sketch is running. All of these ideas are
implemented in Listing 8-3.

Listing 8-3.  Random Colored Dots

float minSize = 50;
float maxSize = 100;
ArrayList<ColorDot> dots;

void setup() {
 size(800, 480);
 colorMode(HSB, 360, 100, 100, 100);
 noStroke();
 dots = new ArrayList<ColorDot>();
}

void draw() {
 background(0, 0, 0);

 if (random(1) < 0.1) {
 dots.add(new ColorDot());
 }

 for (int i = dots.size() - 1; i >= 0 ; i--) {
 ColorDot d = dots.get(i);
 d.update();
 d.display();
 if (d.colorAlpha < 1) {
 dots.remove(i);
 }
 }
}

class ColorDot {
 float posX, posY;
 float rad, maxRad;
 float colorHue, colorAlpha;

www.allitebooks.com

http://www.allitebooks.org

Chapter 8 ■ Driving Graphics and Sound with Sensor Data

162

 ColorDot() {
 posX = int(random(1, width/maxSize)) * maxSize;
 posY = int(random(1, height/maxSize)) * maxSize;
 rad = 0.1;
 maxRad = random(minSize, maxSize);
 colorHue = random(0, 360);
 colorAlpha = 70;
 }

 void update() {
 if (rad < maxRad) {
 rad *= 1.5;
 } else {
 colorAlpha -= 0.3;
 }
 }

 void display() {
 fill(colorHue, 100, 100, colorAlpha);
 ellipse(posX, posY, rad, rad);
 }
}

Here, we used the HSB space to pick a random color from along the entire spectrum
while keeping the saturation and brightness fixed. The dots animate by growing in size
quickly (with the rad *= 1.5 update of the radius) and then fade out by decreasing
the alpha with colorAlpha -= 0.3 until they become completely transparent, which is
when they are removed. New dots are added with a probability of 0.1 in each frame. After
tweaking these values, we should get an output similar to Figure 8-2.

Figure 8-2.  Output of the initial sketch that generates random dots, running from Java mode

Chapter 8 ■ Driving Graphics and Sound with Sensor Data

163

The next step is connecting the dot animation with the step detection. An easy way to
achieve this could be to create a new dot every time a step-detector event is triggered. So,
we would need to add the Ketai library to our previous code and then create the dots in
the onStepDetectorEvent() event, which is shown in Listing 8-4.

Listing 8-4.  Using Steps to Animate the Dots

import ketai.sensors.*;

KetaiSensor sensor;

float minSize = 150 * displayDensity;
float maxSize = 300 * displayDensity;
ArrayList<ColorDot> dots;

void setup() {
 fullScreen();
 orientation(LANDSCAPE);
 colorMode(HSB, 360, 100, 100, 100);
 noStroke();
 dots = new ArrayList<ColorDot>();
 sensor = new KetaiSensor(this);
 sensor.start();
}

void draw() {
 background(0, 0, 0);
 for (int i = dots.size() - 1; i >= 0 ; i--) {
 ColorDot d = dots.get(i);
 d.update();
 d.display();
 if (d.colorAlpha < 1) {
 dots.remove(i);
 }
 }
}

class ColorDot {
 float posX, posY;
 float rad, maxRad;
 float colorHue, colorAlpha;

 ColorDot() {
 posX = int(random(1, width/maxSize)) * maxSize;
 posY = int(random(1, height/maxSize)) * maxSize;
 rad = 0.1;
 maxRad = random(minSize, maxSize);

www.allitebooks.com

http://www.allitebooks.org

Chapter 8 ■ Driving Graphics and Sound with Sensor Data

164

 colorHue = random(0, 360);
 colorAlpha = 70;
 }

 void update() {
 if (rad < maxRad) {
 rad *= 1.5;
 } else {
 colorAlpha -= 0.1;
 }
 }

 void display() {
 fill(colorHue, 100, 100, colorAlpha);
 ellipse(posX, posY, rad, rad);
 }
}

void onStepDetectorEvent() {
 dots.add(new ColorDot());
}

Notice how the minimum and maximum sizes of the dots are now scaled by
displayDensity, so the output of our sketch preserves its proportions irrespective of
the DPI of the screen’s device. We can run this sketch as either a regular app or a live
wallpaper, in case we want to have it running the entire time and driving the background
image in our home screen.

It is possible to refine this sketch in different ways. For example, we could decrease
randomness in the size and color of the dots by linking these parameters to the time and the
walking speed. To calculate the latter, we could reset the step-count variable to zero at some
fixed interval—say, every five seconds—and divide the count value by the time elapsed
since the last reset (since speed=difference in value /difference in time). Listing 8-5 includes
the additional variables we need to store the current walking speed, the time of the last
update, and the step count, as well as the differences in the calculation of the dot radius and
hue (the rest being identical to Listing 8-4).

Listing 8-5.  Using Time and Walking Speed to Control Animation

import ketai.sensors.*;

KetaiSensor sensor;

float minSize = 150 * displayDensity;
float maxSize = 300 * displayDensity;
ArrayList<ColorDot> dots;

Chapter 8 ■ Driving Graphics and Sound with Sensor Data

165

int stepCount = 0;
int updateTime = 0;
float walkSpeed = 0;
...
class ColorDot {
 float posX, posY;
 float rad, maxRad;
 float colorHue, colorAlpha;

 ColorDot() {
 posX = int(random(1, width/maxSize)) * maxSize;
 posY = int(random(1, height/maxSize)) * maxSize;
 rad = 0.1;
 float speedf = constrain(walkSpeed, 0, 2)/2.0;
 maxRad = map(speedf, 1, 0, minSize, maxSize);
 colorHue = map(second(), 0, 60, 0, 360);
 colorAlpha = 70;
 }
 ...
}

void onStepDetectorEvent() {
 int now = millis();
 stepCount++;
 if (5000 < now - updateTime) {
 walkSpeed = stepCount/5.0;
 stepCount = 0;
 updateTime = now;
 }
 dots.add(new ColorDot());
}

If we inspect the calculation of the radius in the constructor of the ColorDot class,
we can see that the value in walkSpeed is not used directly, but rather is first constrained
to the 0-2 steps/second range with the function constrain() and then normalized so
we have a value between 0 and 1 that we can consistently map onto the radius range
maxSize-minSize. This implies that the faster we walk, the smaller the dots should
appear. The hue of the dots is also the result of a mapping, in this case the current second
obtained with the second() function to the 0-360 hue range.

Playing Audio
So far, all the examples in this book have been purely visual, with no audio component.
However, the dots sketch could make use of sound to complement the walk-driven
animation. One option is to just play random audio clips each time a step is detected, but
perhaps we can do something a little more interesting by playing notes from a musical
scale.

www.allitebooks.com

http://www.allitebooks.org

Chapter 8 ■ Driving Graphics and Sound with Sensor Data

166

To keep things simple, let’s consider a pentatonic scale (http://www.musictheoryis.com/
pentatonic-scale/) with notes A, G, E, D, and C. If we always play these notes in their
natural order, we will hear the original scale over and over again, and the result would be
fairly repetitive. At the other extreme, choosing a note at random would be too chaotic.
So, we could try an intermediate solution that has enough variability while retaining
the harmony of the scale; for example, by playing either the previous or next note to
the current one, giving each choice a predefined probability. How do we go about
implementing this idea?

First of all, as with sensors, Processing does not include any built-in functions for
audio playback. However, we can use the Android API to create a minimal AudioPlayer
class that extends Android’s MediaPlayer. We then need to obtain audio clips for our five
notes and copy them into the sketch’s data folder.

■■ Note  Android supports several audio formats, including MP3, WAVE, MIDI, and Vorbis.
Refer to the media formats page on the development site for a full list of media formats and
codecs: https://developer.android.com/guide/topics/media/media-formats.html.

Listing 8-6 combines our previous colored dot sketch with an AudioPlayer class and
the simple logic we discussed previously to pick which note to play (only the parts of the
code that differ from Listing 8-5 are shown).

Listing 8-6.  Playing a Pentatonic Scale by Walking

import ketai.sensors.*;
import android.media.MediaPlayer;
import android.content.res.AssetFileDescriptor;
import android.media.AudioManager;

KetaiSensor sensor;
...
int numNotes = 5;
AudioPlayer [] notes = new AudioPlayer[numNotes];
int lastNote = int(random(1) * 4);

void setup() {
 fullScreen();
 orientation(LANDSCAPE);
 colorMode(HSB, 360, 100, 100, 100);
 noStroke();
 for (int i = 0; i < numNotes; i++) notes[i] = new AudioPlayer();
 notes[0].loadFile(this, "5A.wav");
 notes[1].loadFile(this, "4G.wav");
 notes[2].loadFile(this, "4E.wav");
 notes[3].loadFile(this, "4D.wav");
 notes[4].loadFile(this, "4C.wav");

http://www.musictheoryis.com/pentatonic-scale/
http://www.musictheoryis.com/pentatonic-scale/
https://developer.android.com/guide/topics/media/media-formats.html

Chapter 8 ■ Driving Graphics and Sound with Sensor Data

167

 dots = new ArrayList<ColorDot>();
 sensor = new KetaiSensor(this);
 sensor.start();
}
...
class ColorDot {
 float posX, posY;
 float rad, maxRad;
float colorHue, colorAlpha;
int note;

 ColorDot() {
 posX = int(random(1, width/maxSize)) * maxSize;
 posY = int(random(1, height/maxSize)) * maxSize;
 rad = 0.1;
 float speedf = constrain(walkSpeed, 0, 2)/2.0;
 maxRad = map(speedf, 1, 0, minSize, maxSize);
 selectNote();
 colorHue = map(note, 0, 4, 0, 360);
 colorAlpha = 70;
 }

 void selectNote() {
 float r = random(1);
 note = lastNote;
 if (r < 0.4) note--;
 else if (r > 0.6) note++;
 if (note < 0) note = 1;
 if (4 < note) note = 3;
 notes[note].play();
 lastNote = note;
 }
 ...
}
...
class AudioPlayer extends MediaPlayer {
 boolean loadFile(PApplet app, String fileName) {
 AssetFileDescriptor desc;
 try {
 desc = app.getActivity().getAssets().openFd(fileName);
 } catch (IOException e) {
 println("Error loading " + fileName);
 println(e.getMessage());
 return false;
 }

www.allitebooks.com

http://www.allitebooks.org

Chapter 8 ■ Driving Graphics and Sound with Sensor Data

168

 if (desc == null) {
 println("Cannot find " + fileName);
 return false;
 }

 try {
 setDataSource(desc.getFileDescriptor(), desc.getStartOffset(),
 desc.getLength());
 setAudioStreamType(AudioManager.STREAM_MUSIC);
 prepare();
 return true;
 } catch (IOException e) {
 println(e.getMessage());
 return false;
 }
 }

 void play() {
 if (isPlaying()) seekTo(0);
 start();
 }
}

We load each note in a separate instance of the AudioPlayer class and store the
five AudioPlayer objects in the notes array. We initialize this array in setup(), then
implement the selection logic in the new selectNote() method in the ColorDot class,
using 0.4 as the probability for selecting the preceding note in the scale, and 0.6 for
selecting the next. Figure 8-3 shows the output of this sketch, but, of course, we need to
run it on an actual device to appreciate its audio component as we walk around.

Figure 8-3.  Dots sketch running on the device

Chapter 8 ■ Driving Graphics and Sound with Sensor Data

169

Using the Magnetic Sensor
The magnetic sensor (or magnetometer) is another very common sensor we find in
Android devices, which is useful for several applications. For example, Listing 8-7 shows
how we can use it to detect the proximity of a metal object by comparing the measured
magnitude of the magnetic field with the expected magnitude of Earth’s magnetic field at
our present location. If we ran this sketch on our phone, we would be effectively turning it
into a metal detector!

Listing 8-7.  Detecting the Strength of the Magnetic Field

import ketai.sensors.*;
import android.hardware.GeomagneticField;

KetaiSensor sensor;
float expMag, obsMag;

void setup() {
 fullScreen();
 sensor = new KetaiSensor(this);
 sensor.start();
 GeomagneticField geoField = new GeomagneticField(14.0093, 120.996147, 300,
 System.currentTimeMillis());
 expMag = geoField.getFieldStrength()/1000;
}

void draw() {
 println(obsMag, expMag);
 if (obsMag < 0.7 * expMag || 1.3 * expMag < obsMag) {
 background(255);
 } else {
 background(0);
 }
}

void onMagneticFieldEvent(float x, float y, float z) {
 obsMag = sqrt(sq(x) + sq(y) + sq(z));
}

Note that we have to provide the geographical coordinates of our current location
expressed as latitude and longitude in degrees and altitude in meters, as well as the
so-called Epoch Time (current time expressed as milliseconds since January 1, 1970), to
the GeomagneticField() constructor in order to obtain the field due solely to the Earth’s
magnetic field. We can then perform the comparison with the actual magnetic field
measured by the device.

www.allitebooks.com

http://www.allitebooks.org

Chapter 8 ■ Driving Graphics and Sound with Sensor Data

170

Creating a Compass App
Besides being used to implement a handy metal detector, combining the magnetic field
data with the acceleration can be used to determine the orientation of the device with
respect to Earth’s magnetic North Pole. In other words, a compass.

The gravity and geomagnetic vectors encode all the information required to
determine the orientation of the device in relation to Earth’s surface. Using Ketai, we can
get the components of the acceleration and magnetic field vectors and, with those, obtain
the rotation matrix that transforms coordinates from the device system (Figure 7-1) to a
world coordinate system that we can imagine attached to our location on the surface of
Earth, as illustrated in Figure 8-4.

The final step is to derive, from the rotation matrix, the orientation angles with
respect to these xyz axes: azimuth (the angle around –z), pitch (the angle around x), and
roll (the angle around y). For the purpose of implementing a compass, we only need the
azimuth angle, since it gives us the deviation with respect to the y-axis pointing north at
our location. The SensorManager class from the Android API contains several convenient
methods to carry out all these calculations, which we perform in Listing 8-8.

Listing 8-8.  A Compass Sketch

import ketai.sensors.*;
import android.hardware.SensorManager;

KetaiSensor sensor;

float[] gravity = new float[3];
float[] geomagnetic = new float[3];
float[] I = new float[16];
float[] R = new float[16];
float orientation[] = new float[3];

Figure 8-4.  World coordinate system, with x pointing east, y pointing north, and z away
from Earth’s center

http://dx.doi.org/10.1007/978-1-4842-2719-0_7#Fig1

Chapter 8 ■ Driving Graphics and Sound with Sensor Data

171

float easing = 0.05;
float azimuth;

void setup() {
 fullScreen(P2D);
 orientation(PORTRAIT);
 sensor = new KetaiSensor(this);
 sensor.start();
}

void draw() {
 background(255);

 float cx = width * 0.5;
 float cy = height * 0.4;
 float radius = 0.8 * cx;

 translate(cx, cy);

 noFill();
 stroke(0);
 strokeWeight(2);
 ellipse(0, 0, radius*2, radius*2);
 line(0, -cy, 0, -radius);

 fill(192, 0, 0);
 noStroke();
 rotate(-azimuth);
 beginShape();
 vertex(-30, 40);
 vertex(0, 0);
 vertex(30, 40);
 vertex(0, -radius);
 endShape();
}

void onAccelerometerEvent(float x, float y, float z) {
 gravity[0] = x; gravity[1] = y; gravity[2] = z;
 calculateOrientation();
}

void onMagneticFieldEvent(float x, float y, float z) {
 geomagnetic[0] = x; geomagnetic[1] = y; geomagnetic[2] = z;
 calculateOrientation();
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 8 ■ Driving Graphics and Sound with Sensor Data

172

void calculateOrientation() {
 if (SensorManager.getRotationMatrix(R, I, gravity, geomagnetic)) {
 SensorManager.getOrientation(R, orientation);
 azimuth += easing * (orientation[0] - azimuth);
 }
}

By providing the acceleration and magnetic field vectors to the getRotationMatrix()
and getOrientation() methods in SensorManager, we will obtain an orientation vector
containing the azimuth, pitch, and roll angles. In this example, we only use the azimuth
to draw the compass, which we can install as a live wallpaper so it is always available in
the background (shown in Figure 8-5).

Figure 8-5.  Compass sketch running as a live wallpaper

Chapter 8 ■ Driving Graphics and Sound with Sensor Data

173

The values from both the accelerometer and the magnetometer are noisy, so that’s
the reason we apply some “easing” of the values with the line azimuth += easing *
(orientation[0] - azimuth). With this formula, we update the current azimuth value
with a fraction of the new value so changes are softer and noise is smoothed out. The
closer to 0 the easing constant is, the stronger the smoothing and more dampened the
movement of the compass’ hand. On the other end, an easing value of 1 will result in
no smoothing at all, since it is equivalent to assigning the new sensor value azimuth =
orientation[0].

Alternatively, we can get the orientation vector directly from Ketai without having
to rely on the SensorManager class from Android. To do so, we first have to enable the
accelerometer and magnetic field sensors explicitly in setup() (since we will not be
using Ketai’s event functions), and we can then just call getOrientation() from the
KetaiSensor object in draw(), as shown in Listing 8-9. The output of this modified
version of the sketch should be the same as before.

Listing 8-9.  Using Ketai’s getOrientation() Function

import ketai.sensors.*;

float orientation[] = new float[3];
float easing = 0.05;
float azimuth;

KetaiSensor sensor;

void setup() {
 fullScreen(P2D);
 orientation(PORTRAIT);
 sensor = new KetaiSensor(this);
 sensor.enableAccelerometer();
 sensor.enableMagenticField();
 sensor.start();
}

void draw() {
 ...
 ellipse(0, 0, radius*2, radius*2);
 line(0, -cy, 0, -radius);

 sensor.getOrientation(orientation);
 azimuth += easing * (orientation[0] - azimuth);

 fill(192, 0, 0);
 noStroke();
 ...
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 8 ■ Driving Graphics and Sound with Sensor Data

174

The Gyroscope
The gyroscope can complement the accelerometer and magnetometer, but could also
be applied in situations that are not handled by those sensors. The accelerometer and
magnetometer give us data about the movement and orientation of the device in space;
however, they have limitations. The accelerometer, on one hand, is not able to detect
movements at constant speed, since in such cases the acceleration is zero, while the
magnetic sensor, on the other hand, only gives a very coarse variable related to the
location (i.e., orientation with respect to Earth’s magnetic field). Also, both sensors return
values with a significant amount of noise.

The gyroscope, in contrast, gives us a precise reading of the angular velocity at which
the device is rotating in space. With this velocity, it is possible to infer the orientation
of the device with respect to an arbitrary initial state. This is to say, it cannot give us
an absolute description of its orientation with respect to a system such as the world
coordinates we discussed before. However, this information can be inferred with help
from the accelerometer and magnetometer.

Let’s look at a few simple examples to get a sense of how the gyroscope works. Since
it provides values that we apply use to control 3D movement in our Processing sketch, it
makes sense to write a very simple 3D sketch. With Ketai, it is easy to obtain the rotational
angles from the gyroscope, as we did for the other sensors earlier. We will use the P3D
renderer in Listing 8-10 to draw a simple 3D scene with a cube that rotates around its
center according to the angular velocity measured by the gyroscope.

Listing 8-10.  Rotating a Box with the Gyroscope

import ketai.sensors.*;

KetaiSensor sensor;
float rotationX, rotationY, rotationZ;

void setup() {
 fullScreen(P3D);
 orientation(LANDSCAPE);
 sensor = new KetaiSensor(this);
 sensor.start();
 rectMode(CENTER);
 fill(180);
}

void draw() {
 background(255);
 translate(width/2, height/2);
 rotateZ(rotationZ);
 rotateY(rotationX);
 rotateX(rotationY);
 box(height * 0.3);
}

Chapter 8 ■ Driving Graphics and Sound with Sensor Data

175

void onGyroscopeEvent(float x, float y, float z) {
 rotationX += 0.1 * x;
 rotationY += 0.1 * y;
 rotationZ += 0.1 * z;
}

Since the x, y, and z values are (angular) velocities, we cannot use them directly
as the rotation angles of the objects in our scene, but we should instead add them to
the rotation variables (scaled by a constant that in this case is 0.1, but can be adjusted
to make the movement slower or faster). Moreover, we apply the rotationX angle with
the rotateY() function (meaning that we are rotating the cube around the y-axis), and
rotationY with rotateX(). The reason for this switch is that the orientation of the device
is locked in LANDSCAPE, meaning that the x-axis in the Processing screen corresponds
to the horizontal direction of the device, which runs along the y-axis of the device’s
coordinate system, which we saw in Figure 7-1.

Another important aspect of using the gyroscope is that any rotation involving
the device will be measured by the sensor; for example, it will detect when the person
holding the phone turns around while walking (even if the relative orientation of the
phone with respect to the user does not change). In such cases, we can keep the initial
orientation by subtracting an offset value any time we want to “re-center” the scene on
our phone. For instance, we can store the current rotation angles as our offset when
touching the screen, as is done in Listing 8-11 (only showing the parts that are different
from Listing 8-10).

Figure 8-6.  Sketch using the gyroscope to control rotation of a cube

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-2719-0_7#Fig1
http://www.allitebooks.org

Chapter 8 ■ Driving Graphics and Sound with Sensor Data

176

Listing 8-11.  Recentering the Gyroscope Data

...
void draw() {
 background(255);
 translate(width/2, height/2);
 rotateZ(rotationZ - offsetZ);
 rotateY(rotationX - offsetX);
 rotateX(rotationY - offsetY);
 box(height * 0.3);
}
...
void mousePressed() {
 offsetX = rotationX;
 offsetY = rotationY;
 offsetZ = rotationZ;
}

We are not limited to working with 3D geometry when using the gyroscope. If we are
drawing in 2D, all we need to do is keep track of the z rotation, like in Listing 8-12.

Listing 8-12.  Gyroscope Rotation in 2D

import ketai.sensors.*;

KetaiSensor sensor;
float rotationZ, offsetZ;

void setup() {
 fullScreen(P2D);
 orientation(LANDSCAPE);
 sensor = new KetaiSensor(this);
 sensor.start();
 rectMode(CENTER);
 fill(180);
}

void draw() {
 background(255);
 translate(width/2, height/2);
 rotate(rotationZ - offsetZ);
 rect(0, 0, height * 0.3, height * 0.3);
}

void onGyroscopeEvent(float x, float y, float z) {
 rotationZ += 0.1 * z;
}

void mousePressed() {
 offsetZ = rotationZ;
}

Chapter 8 ■ Driving Graphics and Sound with Sensor Data

177

The gyroscope can be useful for implementing input in a game app. We will see how
to do that in the final section of this chapter.

Controlling Navigation with the Gyroscope
In the previous examples, we used the rotation angles to control 2D and 3D shapes that
remained fixed in the center of the screen. This would be enough if we needed to control
only the rotation of the shapes, but if we want to determine their translation as well, we
need to come up with other methods.

In fact, one approach is to not translate the shapes we want to control with the
gyro, but rather to translate the rest of the scene in the opposite direction. The diagram
in Figure 8-7 helps to visualize this idea. Here, we will write a sketch to navigate a
“spaceship” (just a triangle shape) through an endless field of asteroids (ellipses). The
key is to properly code for the translation of all the ellipses, in order to convey the relative
movement of the spaceship with respect to the asteroids.

The math to achieve this effect is not difficult: if our shape is initially moving toward
the top edge of the screen, the forward vector describing this movement would be v =
new PVector(0, -1), since the y-axis in Processing points down. We can calculate a
matrix that represents the rotation that should be applied on this vector. The resulting
vector can be used to translate all the other shapes in the scene to create the relative
motion.

Figure 8-7.  Diagram on relative translations of moving objects

www.allitebooks.com

http://www.allitebooks.org

Chapter 8 ■ Driving Graphics and Sound with Sensor Data

178

The Processing API includes a PMatrix2D class that encapsulates these calculations.
If our rotation angle is, for example, QUARTER_PI, we can generate a rotation matrix
corresponding to this rotation by doing mat.rotate(QUARTER_PI), with mat being an
object of type PMatrix3D. Once we have done this, we can apply the matrix to the PVector
object representing the translation; e.g., mat.mult(v, rv), where v is the original PVector
and rv is the resulting rotated PVector. Let’s see this API in Listing 8-13.

Listing 8-13.  Controlling a Spaceship with the Gyroscope

import ketai.sensors.*;

KetaiSensor sensor;
float rotationZ, offsetZ;
PMatrix2D rotMatrix = new PMatrix2D();
PVector forward = new PVector(0, -1);
PVector forwardRot = new PVector();
ArrayList<Asteroid> field;
float speed = 2;

void setup() {
 fullScreen(P2D);
 orientation(LANDSCAPE);
 sensor = new KetaiSensor(this);
 sensor.start();
 ellipseMode(CENTER);
 noStroke();
 field = new ArrayList<Asteroid>();
 for (int i = 0; i < 100; i++) {
 field.add(new Asteroid());
 }
}

void draw() {
 background(0);

 boolean hit = false;
 float angle = rotationZ - offsetZ;
 rotMatrix.reset();
 rotMatrix.rotate(angle);
 rotMatrix.mult(forward, forwardRot);
 forwardRot.mult(speed);
 for (Asteroid a: field) {
 a.update(forwardRot);
 a.display();
 if (a.hit(width/2, height/2)) hit = true;
 }

Chapter 8 ■ Driving Graphics and Sound with Sensor Data

179

 pushMatrix();
 translate(width/2, height/2);
 rotate(angle);
 if (hit) {
 fill(252, 103, 43);
 } else {
 fill(67, 125, 222);
 }
 float h = height * 0.2;
 triangle(0, -h/2, h/3, +h/2, -h/3, +h/2);
 popMatrix();
}

void onGyroscopeEvent(float x, float y, float z) {
 rotationZ += 0.1 * z;
}

void mousePressed() {
 offsetZ = rotationZ;
}

class Asteroid {
 float x, y, r;
 color c;
 Asteroid() {
 c = color(random(255), random(255), random(255));
 r = height * random(0.05, 0.1);
 x = random(-2 * width, +2 * width);
 y = random(-2 * height, +2 * height);
 }
 void update(PVector v) {
 x -= v.x;
 y -= v.y;
 if (x < -2 * width || 2 * width < x ||
 y < -2 * height || 2 * height < y) {
 x = random(-2 * width, +2 * width);
 y = random(-2 * height, +2 * height);
 }
 }
 void display() {
 fill(c);
 ellipse(x, y, r, r);
 }
 boolean hit(float sx, float sy) {
 return dist(x, y, sx, sy) < r;
 }
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 8 ■ Driving Graphics and Sound with Sensor Data

180

As we can see in this code, the spaceship is always drawn at the center of the screen,
and it is the asteroids that are translated by the rotated forward vector, as we discussed
earlier. The Asteroid class contains all the logic that handles placing each asteroid at a
random position, updating its position using the rotated forward vector, displaying it at
the current position, and determining if it is hitting the spaceship by checking if it is close
enough to the center of the screen.

Each asteroid is placed in a rectangular area of dimensions [-2 * width, +2 *
width] × [-2 * height, +2 * height], and as soon as it moves out of this area (which
is determined by the boundary check in the update() function), it’s placed back inside
again. Also, notice the minus sign in the translations along x and y, –v.x, and –v.y, which
ensures the correct relative motion. We can think of the forward vector as the velocity of
our spaceship, and in fact by scaling it by the speed factor (set to 2 in this sketch), we can
make the spaceship move faster or slower.

Finally, we implemented a simple collision detection element so that the spaceship
changes color when an asteroid gets close to its position at the center of the screen. We
can imagine multiple ways to turn this early prototype into a more engaging game by
adding interaction to control the speed, better graphics with images and SVG shapes, and
so on. In its initial form, the output should look similar to Figure 8-8.

Summary
Building upon the basic techniques to read sensor data in Processing, we have
now learned some advanced applications of three common hardware sensors: the
accelerometer, the magnetometer, and the gyroscope. These sensors are particularly
important because they provide instant feedback on the movement and position of our
device and so enable us to create interactive apps based on physical gestures and actions.
We will find these interactions very useful in a wide range of projects, from visualizing
physical activity to coding our own game experiences with graphics and sound.

Figure 8-8.  Controlling the navigation through a field of obstacles with the gyroscope

181© Andrés Colubri 2017
A. Colubri, Processing for Android, https://doi.org/10.1007/978-1-4842-2719-0_9

CHAPTER 9

Geolocation

The geolocation sensors in our Android devices give us the ability to know where we
are with high accuracy, and we can use this information in location-aware apps. In this
chapter, we will see how to create this type of app in Processing, and we will develop a
final project combining location with images from Google Street View.

Location Data in Android
We use location-aware apps in our smartphones on a daily basis to find places of interest
around us, to plan travel directions in advance, or to play location-based games, like Turf
and Pokémon GO. All these uses are made possible by the same underlying geolocation
technology, mainly the global positioning system (GPS), but also cell-tower triangulation,
Bluetooth proximity detection, and Wi-Fi access points. GPS is the technology that most
people immediately associate with geolocation: it is based on a network of satellites
owned by the United States and operated by the United States Air Force that send
geolocation information to GPS receivers on Earth’s surface, including those in a mobile
phone.

■■ Note  Other countries have also developed similar systems, such as GLONASS (Russia),
BeiDou (China), NAVIC (India), and Galileo (Europe). By default, the Android system only uses
GPS satellites, but some manufacturers introduced changes to get geolocation data from
these other systems as well, which can provide better coverage and accuracy. The GPS Test
app, available in the Play Store, shows the systems in use by the phone.

One drawback of using GPS or a comparable navigation satellite system to get
location data is that it draws a lot of battery to power the GPS antenna. Also, the phone
needs to have an unobstructed line of sight to the sky. To deal with these issues, we can
take advantage of other location sources, such as Cell-ID, Bluetooth, and Wi-Fi, which
are less precise but consume less energy. As a reference, the accuracy of GPS location is
around 16 feet (4.9 meters), while Wi-Fi is accurate to within 130 feet (40 meters). Cell-ID
has a much higher degree of variability, depending on cell size, which can range from a
few feet to miles.

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-2719-0_9
http://www.allitebooks.org

Chapter 9 ■ Geolocation

182

However, we don’t need to worry about when and how to choose a particular
location system, as Android will automatically switch between the best location
provider given a general configuration in the settings of the phone, seen in Figure 9-1.
In Android 7 and higher, all we have to do is to set whether we want high-accuracy
location by combining all possible sources, battery saving without GPS, or GPS only.

Figure 9-1.  Android settings to choose the location mode

Using Location API in Processing
Android provides a comprehensive API to access the location services available in the
system (https://developer.android.com/guide/topics/location/index.html). We
can also use the Ketai library to get location values without having to worry about this
API, as we did for motion sensors. However, in this chapter we will use the location API

https://developer.android.com/guide/topics/location/index.html

Chapter 9 ■ Geolocation

183

directly from our Processing sketch because there are a number of important aspects to
consider when using location services, specifically permission handling and concurrency,
and it is a good idea to familiarize ourselves with them even if we later use Ketai.

■■ Note  Google Play Services location APIs (https://developer.android.com/training/
location/index.html) are a newer and more feature-rich alternative to the standard
Android location API we will learn in this chapter. However, Processing only supports the latter
when coding from the PDE. We can export our sketch as an Android project and then import it
from Android Studio to use Google Play Services (see Appendix A for details).

Location Permissions
The use of specific functionality in our Android app, such as accessing the Internet,
requires adding the appropriate permissions to our sketch using the Android Permissions
Selector. However, we saw in Chapter 6 that this is not enough for dangerous permissions,
which need an additional explicit request during runtime in devices running Android
6 or newer. The permissions to access location data fall within this category, and they
are ACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATION. The first grants access to
an approximate location derived from cell towers and Wi-Fi, while the second enables
obtaining location from the GPS. In order to use these permissions in our sketch,
we need to check them in the Permissions Selector (Figure 9-2) and then use the
requestPermission() function in the code of our sketch.

Figure 9-2.  Selecting coarse and fine location permissions

www.allitebooks.com

https://developer.android.com/training/location/index.html
https://developer.android.com/training/location/index.html
http://dx.doi.org/10.1007/978-1-4842-2719-0_6
http://www.allitebooks.org

Chapter 9 ■ Geolocation

184

Listing 9-1 demonstrates the basic setup of a location-enabled sketch, where we
define a location manager and the associated listener in a similar manner as we did with
other sensors earlier, including setting up the permissions required by the sketch.

Listing 9-1.  Getting Location Data

import android.content.Context;
import android.location.Location;
import android.location.LocationListener;
import android.location.LocationManager;
import android.os.Bundle;

LocationManager manager;
SimpleListener listener;
String provider;

double currentLatitude;
double currentLongitude;
double currentAltitude;

void setup () {
 fullScreen();
 textFont(createFont("SansSerif", displayDensity * 24));
 textAlign(CENTER, CENTER);
 �requestPermission("android.permission.ACCESS_FINE_LOCATION",
"initLocation");

}

void draw() {
 background(0);
 if (hasPermission("android.permission.ACCESS_FINE_LOCATION")) {
 text("Latitude: " + currentLatitude + "\n" +
 "Longitude: " + currentLongitude + "\n" +
 "Altitude: " + currentAltitude, width, height);
 } else {
 text("No permissions to access location", 0, 0, width, height);
 }
}

void initLocation(boolean granted) {
 if (granted) {
 Context context = getContext();
 listener = new SimpleListener();
 manager = (LocationManager)
 context.getSystemService(Context.LOCATION_SERVICE);

Chapter 9 ■ Geolocation

185

 provider = LocationManager.NETWORK_PROVIDER;
 if (manager.isProviderEnabled(LocationManager.GPS_PROVIDER)) {
 provider = LocationManager.GPS_PROVIDER;
 }
 manager.requestLocationUpdates(provider, 1000, 1, listener);
 }
}

public void resume() {
 if (manager != null) {
 manager.requestLocationUpdates(provider, 1000, 1, listener);
 }
}

public void pause() {
 if (manager != null) {
 manager.removeUpdates(listener);
 }
}

class SimpleListener implements LocationListener {
 public void onLocationChanged(Location loc) {
 currentLatitude = loc.getLatitude();
 currentLongitude = loc.getLongitude();
 currentAltitude = loc.getAltitude();
 }
 public void onProviderDisabled(String provider) { }
 public void onProviderEnabled(String provider) { }
 public void onStatusChanged(String provider, int status, Bundle extras) {
}
}

The location object received in onLocationChanged() contains several pieces of
information, the most important of which are the latitude and longitude values that
indicate the phone’s position on Earth’s surface, along the lines parallel to the Equator
and the meridian lines that connect the geographical poles.

■■ Note  Android provides latitude and longitude as double-precision numbers, and the
significant digits reflect the precision of the location reading: five significant digits are
needed for meter precision, while six or more are required for sub-meter detail.

There are a few more things that are important to note. First, we requested the fine
location permission, which will give us the highest resolution available as well as access
to less-accurate sources, so there is no need to request separate permission for coarse
location. Second, we configured the location manager with requestLocationUpdates()

www.allitebooks.com

http://www.allitebooks.org

Chapter 9 ■ Geolocation

186

by indicating our preferred provider (network or GPS). Android will determine the actual
provider by considering the combination of requested permissions, the location mode
of the device, and the available source of location data at each moment. In the code, we
set the network provider as the default, which determines location using data from cell
towers and Wi-Fi access points, and switch to the more accurate GPS if the corresponding
provider is enabled. We also set the minimum time interval between location updates in
milliseconds (here 1000 means that updates cannot happen more often than once every
second) and the minimum distance, in meters, at which to trigger location updates.

Finally, we implemented the resume and pause events as we did with other sensors,
so no location updates are generated while the app is paused, and the app requests them
again after resuming. This is very important in order to save battery when the app is
running in the background.

Event Threads and Concurrency
In all sensor examples we saw earlier, we read the sensor data in the corresponding
listener without major difficulties. As long as we are just storing the last-received data in
float variables, we should be fine. However, problems will start as soon as we save sensor
information in data structures such as an array or an array list to keep track of previous
values. The problem originates from the fact that the draw() function in Processing is
called from the animation thread (take a look at the “Using Threads” section in Chapter 6),
while the event handling methods, like onLocationChanged() in the case of location, are
called from another thread, the app’s main thread. Since these threads run in parallel,
conflicts could happen when they try to access the same data concurrently; that is, at the
same time. This can lead to unexpected behaviors in our app, and even crashes.

As we discussed in Chapter 6, solving concurrency issues requires some extra work.
One solution is to store the location data obtained in each call of onLocationChanged()
in a “queue” and then retrieve the events from the queue during drawing. The queue
is “synchronized” so that when new data is being added or existing data is removed in
one thread, any other thread must wait until the operation is concluded. This particular
technique would not fix all concurrency problems, but it should be enough in our case.
Listing 9-2 shows how we can implement a queue of latitude/longitude locations.

Listing 9-2.  Storing Locations in a Queue

import android.content.Context;
import android.location.Location;
import android.location.LocationListener;
import android.location.LocationManager;
import android.os.Bundle;

LocationManager manager;
SimpleListener listener;
String provider;
LocationQueue queue = new LocationQueue();
ArrayList<LocationValue> path = new ArrayList<LocationValue>();

http://dx.doi.org/10.1007/978-1-4842-2719-0_6
http://dx.doi.org/10.1007/978-1-4842-2719-0_6

Chapter 9 ■ Geolocation

187

void setup () {
 fullScreen();
 textFont(createFont("SansSerif", displayDensity * 24));
 textAlign(CENTER, CENTER);
 �requestPermission("android.permission.ACCESS_FINE_LOCATION",
"initLocation");

}

void draw() {
 background(0);
 while (queue.available()) {
 LocationValue loc = queue.remove();
 path.add(0, loc);
 }
 String info = "";
 for (LocationValue loc: path) {
 info += loc.latitude + ", " + loc.longitude + "\n";
 }
 text(info, 0, 0, width, height);
}

void initLocation(boolean granted) {
 if (granted) {
 Context context = getContext();
 listener = new SimpleListener();
 manager = (LocationManager)
 context.getSystemService(Context.LOCATION_SERVICE);
 provider = LocationManager.NETWORK_PROVIDER;
 if (manager.isProviderEnabled(LocationManager.GPS_PROVIDER)) {
 provider = LocationManager.GPS_PROVIDER;
 }
 manager.requestLocationUpdates(provider, 1000, 1, listener);
 }
}

class SimpleListener implements LocationListener {
 public void onLocationChanged(Location loc) {
 queue.add(new LocationValue(loc.getLatitude(), loc.getLongitude()));
 }
 public void onProviderDisabled(String provider) { }
 public void onProviderEnabled(String provider) { }
 public void onStatusChanged(String provider, int status, Bundle extras) {
}
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 9 ■ Geolocation

188

public void resume() {
 if (manager != null) {
 manager.requestLocationUpdates(provider, 1000, 1, listener);
 }
}

public void pause() {
 if (manager != null) {
 manager.removeUpdates(listener);
 }
}

class LocationValue {
 double latitude;
 double longitude;
 LocationValue(double lat, double lon) {
 latitude = lat;
 longitude = lon;
 }
}

class LocationQueue {
 LocationValue[] values = new LocationValue[10];
 int offset, count;

 synchronized void add(LocationValue val) {
 if (count == values.length) {
 values = (LocationValue[]) expand(values);
 }
 values[count++] = val;
 }

 synchronized LocationValue remove() {
 if (offset == count) {
 return null;
 }
 LocationValue outgoing = values[offset++];
 if (offset == count) {
 offset = 0;
 count = 0;
 }
 return outgoing;
 }

 synchronized boolean available() {
 return 0 < count;
 }
}

Chapter 9 ■ Geolocation

189

The permission and listener setup code is the same as in Listing 9-1, but now we
have two new classes, LocationValue and LocationQueue. LocationValue is very
simple, it just stores a single pair of latitude/longitude values in double precision.
Let’s look at LocationQueue more closely. It has three methods: add(), remove(), and
available(), all of which are synchronized so they cannot be called simultaneously from
different threads. When a new location is received in onLocationChanged(), we create a
new LocationValue and add it to the queue. As new locations keep coming in from the
event thread, they get stored in the values array inside the queue, which is expanded
by doubling its size if needed. On the animation thread, we remove locations from the
queue and add them to the path array list so we can print in every frame all the latitude/
longitude values received so far, in reverse order from last to first. Notice that we remove
the locations from the queue not using how many are to be left, since this number could
change if new locations arrive while we are still drawing a new frame, but simply by
checking if the queue has available elements.

■■ Note  We may experience a delay until the app starts receiving location values. This
delay is caused by the device’s search for a signal from a GPS satellite or from a local cell
tower or Wi-Fi access point.

We can now draw the path as a line strip connecting the successive locations. Listing 9-3
shows the new draw() function that does this, with the rest of the sketch being the same.
Since we map the latitude and longitude values to positions on the screen, we have to
determine the minimum and maximum values to define the mapping. Also, we convert
the double-precision values into single-precision floats we can use as arguments in the
min(), max(), and map() functions. Figure 9-3 shows a typical output of this sketch as one
walks around.

Listing 9-3.  Drawing the Locations Along a Line Strip

float minLat = 90;
float maxLat = -90;
float minLon = 180;
float maxLon = -180;
...
void draw() {
 background(255);
 while (queue.available()) {
 LocationValue loc = queue.remove();
 minLat = min(minLat, (float)loc.latitude);
 maxLat = max(maxLat, (float)loc.latitude);
 minLon = min(minLon, (float)loc.longitude);
 maxLon = max(maxLon, (float)loc.longitude);
 path.add(0, loc);
 }

www.allitebooks.com

http://www.allitebooks.org

Chapter 9 ■ Geolocation

190

 stroke(70, 200);
 strokeWeight(displayDensity * 4);
 beginShape(LINE_STRIP);
 for (LocationValue loc: path) {
 float x = map((float)loc.longitude, minLon, maxLon,
 0.1 * width, 0.9 * width);
 float y = map((float)loc.latitude, minLat, maxLat,
 0.1 * height, 0.9 * height);
 vertex(x, y);
 }
 endShape();
}

Location with Ketai
The advantage of using Ketai is that all the details we discussed in the previous section
(permissions, concurrency) are automatically taken care of, so we can focus on using the
location values. The previous example, rewritten using Ketai, is much shorter, as we can
see in Listing 9-4.

Figure 9-3.  Path-tracking sketch running

Chapter 9 ■ Geolocation

191

Listing 9-4.  Getting Location Data with Ketai

import ketai.sensors.*;

KetaiLocation location;
ArrayList<LocationValue> path = new ArrayList<LocationValue>();

float minLat = 90;
float maxLat = -90;
float minLon = 180;
float maxLon = -180;

void setup () {
 fullScreen();
 location = new KetaiLocation(this);
}

void draw() {
 background(255);
 stroke(70, 200);
 strokeWeight(displayDensity * 4);
 beginShape(LINE_STRIP);
 for (LocationValue loc: path) {
 float x = map((float)loc.longitude, minLon, maxLon,
 0.1 * width, 0.9 * width);
 float y = map((float)loc.latitude, minLat, maxLat,
 0.1 * height, 0.9 * height);
 vertex(x, y);
 }
 endShape();
}

void onLocationEvent(double lat, double lon) {
 path.add(new LocationValue(lat, lon));
 minLat = Math.min(minLat, (float)lat);
 maxLat = Math.max(maxLat, (float)lat);
 minLon = Math.min(minLon, (float)lon);
 maxLon = Math.max(maxLon, (float)lon);
}

class LocationValue {
 double latitude;
 double longitude;
 LocationValue(double lat, double lon) {
 latitude = lat;
 longitude = lon;
 }
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 9 ■ Geolocation

192

The onLocationEvent() is triggered by Ketai in the same thread as the draw()
function, so there is no risk of running into concurrency issues.

Using Additional Location Data
When our location listener receives a new location in the onLocationChanged() handler
method, it is not only the latitude and longitude of the location that become available to
us, but also other relevant information, such as altitude, accuracy, and bearing (https://
developer.android.com/reference/android/location/Location.html). The accuracy
value is important as it reflects the location precision of the current provider. In particular,
it would not make sense to store consecutive location values if they differ by less than the
current accuracy. We can modify our previous location queue example (Listing 9-3) to
incorporate this check. The changes are shown in Listing 9-5.

Listing 9-5.  Using Location Accuracy

void draw() {
 background(255);
 while (queue.available()) {
 LocationValue loc = queue.remove();
 minLat = min(minLat, (float)loc.latitude);
 maxLat = max(maxLat, (float)loc.latitude);
 minLon = min(minLon, (float)loc.longitude);
 maxLon = max(maxLon, (float)loc.longitude);
 if (0 < path.size()) {
 LocationValue last = path.get(path.size() - 1);
 if (last.distanceTo(loc) < loc.accuracy + last.accuracy) continue;
 }
 path.add(0, loc);
 }
 stroke(70, 200);
 strokeWeight(displayDensity * 4);
 beginShape(LINE_STRIP);
 for (LocationValue loc: path) {
 float x = map((float)loc.longitude, minLon, maxLon,
 0.1 * width, 0.9 * width);
 float y = map((float)loc.latitude, minLat, maxLat,
 0.1 * height, 0.9 * height);
 vertex(x, y);
 }
 endShape();
}
...
class SimpleListener implements LocationListener {
 public void onLocationChanged(Location loc) {
 queue.add(new LocationValue(loc.getLatitude(), loc.getLongitude(),
 loc.getAccuracy()));
 }

https://developer.android.com/reference/android/location/Location.html
https://developer.android.com/reference/android/location/Location.html

Chapter 9 ■ Geolocation

193

 ...
}
...
class LocationValue {
 double latitude;
 double longitude;
 double accuracy;

 LocationValue(double lat, double lon, double acc) {
 latitude = lat;
 longitude = lon;
 accuracy = acc;
 }

 double distanceTo(LocationValue dest) {
 double a1 = radians((float)latitude);
 double a2 = radians((float)longitude);
 double b1 = radians((float)dest.latitude);
 double b2 = radians((float)dest.longitude);

 double t1 = Math.cos(a1) * Math.cos(a2) * Math.cos(b1) * Math.cos(b2);
 double t2 = Math.cos(a1) * Math.sin(a2) * Math.cos(b1) * Math.sin(b2);
 double t3 = Math.sin(a1) * Math.sin(b1);
 double tt = Math.acos(t1 + t2 + t3);

 return 6366000 * tt;
 }
}

We obtain the location accuracy from the Location argument in the
onLocationChanged() event and store it in the LocationValue object alongside its
latitude and longitude. Then, we use the accuracy of the latest and previous location
to determine if the latest is different enough to be added to the path. This involves
calculating the distance between two locations, which is the length of the arc connecting
them on Earth’s surface. There are several formulas to approximate this distance
(https://en.wikipedia.org/wiki/Great-circle_distance#Computational_formulas);
in the code, we used the so–called Law of Cosines that assumes a perfectly spherical
Earth (not perfectly accurate, since our planet is slightly flattened along its South-North
axis, but good enough for this simple application).

A Street View Collage
At this point, we have several techniques at our disposal to create a more elaborate
geolocation project. As mentioned at the beginning, we use location-aware apps on a
daily basis, probably dozens or even hundreds of times a day. Tools such as Google Street
View are so popular that we often first see a new place not when we visit it in person, but
when we view it on Google Maps. Our experience in the city is so mediated by these apps

www.allitebooks.com

https://en.wikipedia.org/wiki/Great-circle_distance#Computational_formulas
http://www.allitebooks.org

Chapter 9 ■ Geolocation

194

that it could be worth trying to use imagery from Street View in combination with the
locations we visit during the day to create some kind of non-functional visual collage. In
fact, this idea is not new, and many artists have been working with it before, transforming
the everyday urban landscape into compositions that are at the same time familiar and
strange and disorienting. Figure 9-4 reproduces a panoramic photo collage by artist
Masumi Hayashi (http://masumimuseum.com/), who used a custom-made system for
capturing 360° strips of scenery that later combined into collages. More recently, Annalisa
Casini (http://www.annalisacasini.com/project-withtools-google-maps/) has been
creating surreal photo collages of urban landscapes from Street View images.

Thanks to the always-on nature of the smartphone and the possibility of
real-time location updates, we could build a dynamic collage that uses Street View
images downloaded from the Internet as we move around. From the point of view of the
visual output, the most important question to solve is how to combine urban imagery
into an engaging composition. Of course, there are many (infinite!) ways we could do
this, and work from artists like Hayashi and Casini gives us some references to inspire
our own.

We will start by solving the problem of retrieving Street View images via our Processing
sketch, as this step is a prerequisite for any further work to realize our concept. Once we are
able to solve this technical issue, we will consider automated ways to create the collage.

Figure 9-4.  Top: OSERF Building Broad Street View, Columbus, Ohio, by Masumi Hayashi
(2001). Reproduced with permission from the Estate of Masumi Hayashi.

http://masumimuseum.com/
http://www.annalisacasini.com/project-withtools-google-maps/

Chapter 9 ■ Geolocation

195

Using Google Street View Image API
Google Street View is a popular feature of Google Maps and Google Earth that provides
panoramic views of many places around the world, primarily streets in cities and towns,
but which now also includes sites like building interiors, coral reefs, and even space!
Street View can be accessed from Android apps using different APIs, one of which allows
you to create interactive panoramas inside a specialized view component. However, this
API is not suitable for use in our Processing sketch, since the panorama view cannot be
integrated with Processing’s drawing surface.

Fortunately, Google also offers an image API via which one can download Street View
static images corresponding to a latitude/longitude coordinate using an HTTP request
(https://developers.google.com/maps/documentation/streetview/intro). To use
this API, we first have to enable the Google Street View Image API under the Google Maps
APIs and create a Google API project in the Developer’s Console (https://console.
developers.google.com/apis/dashboard). Then, we must obtain an API key (https://
developers.google.com/maps/documentation/android-api/signup) to add to the
project. These steps are very important, or our applications will not be able to request
Street View images. We can test if everything is working as expected by creating a request
in the web browser. Google Street View Image API requests have the following format:

http://maps.googleapis.com/maps/api/streetview?size=WIDTHxHEIGHT&location=
LAT,LONG&sensor=SENSOR_STATUS&heading=HEADING&fov=FOV&pitch=PITCH&key=GOOG
LE_API_CONSOLE_KEY

Most of the parameters in the request are optional, with the exception of the
location, size, and, of course, API key. The Google Street View Image API page linked to in
the previous paragraph describes all these URL parameters in detail. The request should
return an image that we can then save on our computer.

We can use exactly the same request syntax in a Processing sketch to request a
PImage. This is achieved with the simple code in Listing 9-6, where you have to provide
your own API key and also add the Internet permission to the sketch.

Listing 9-6.  Requesting a Street View Image

PImage street;
String apiKey = "<your API key>";

void setup() {
 size(512, 512);
 street = requestImage("http://maps.googleapis.com/maps/api/streetview?" +
 "location=42.383401,-71.116110&size=512x512&" +
 "fov=90&pitch=-10&key=" + apiKey);
}

void draw() {
 if (0 < street.width && 0 < street.height) {
 image(street, 0, 0, width, height);
 }
}

www.allitebooks.com

https://developers.google.com/maps/documentation/streetview/intro
https://console.developers.google.com/apis/dashboard
https://console.developers.google.com/apis/dashboard
https://developers.google.com/maps/documentation/android-api/signup
https://developers.google.com/maps/documentation/android-api/signup
http://maps.googleapis.com/maps/api/streetview?size=WIDTHxHEIGHT&location=LAT,LONG&sensor=SENSOR_STATUS&heading=HEADING&fov=FOV&pitch=PITCH&key=GOOGLE_API_CONSOLE_KEY
http://maps.googleapis.com/maps/api/streetview?size=WIDTHxHEIGHT&location=LAT,LONG&sensor=SENSOR_STATUS&heading=HEADING&fov=FOV&pitch=PITCH&key=GOOGLE_API_CONSOLE_KEY
http://maps.googleapis.com/maps/api/streetview?size=WIDTHxHEIGHT&location=LAT,LONG&sensor=SENSOR_STATUS&heading=HEADING&fov=FOV&pitch=PITCH&key=GOOGLE_API_CONSOLE_KEY
http://www.allitebooks.org

Chapter 9 ■ Geolocation

196

The requestImage() function returns a PImage object that will be downloaded in a
separate thread to avoid hanging our sketch while the image data is transferred. We will
know that the image is ready when its width and height are greater than zero. If for some
reason the request failed, the width and height will both be set to -1. This is why have the
if (0 < street.width && 0 < street.height) condition in draw().

By combining the ability to request images from the Google Street View Image API
with our previous path-tracking sketch from Listing 9-5, we will be able to display a street
image of the latest position received from the location services. Let’s see how to do this in
Listing 9-7.

Listing 9-7.  Showing Street View of Our Last Location

...
ArrayList<LocationValue> path = new ArrayList<LocationValue>();
ArrayList<PImage> street = new ArrayList<PImage>();
String apiKey = "<your API key>";
...
void draw() {
 background(255);
 while (queue.available()) {
 LocationValue loc = queue.remove();
 minLat = min(minLat, (float)loc.latitude);
 maxLat = max(maxLat, (float)loc.latitude);
 minLon = min(minLon, (float)loc.longitude);
 maxLon = max(maxLon, (float)loc.longitude);
 if (0 < path.size()) {
 LocationValue last = path.get(path.size() - 1);
 if (last.distanceTo(loc) < loc.accuracy + last.accuracy) continue;
 }
 path.add(0, loc);
 String url = "http://maps.googleapis.com/maps/api/streetview?location=" +
 loc.latitude + "," + loc.longitude +
 �"&size=512x512&fov=90&pitch=-10&sensor=false&key=" +

apiKey;
 street.add(requestImage(url));
 }
 if (0 < street.size()) {
 PImage img = street.get(street.size() - 1);
 if (0 < img.width && 0 < img.height) {
 image(img, 0, 0, width, height);
 }
 }
}
...

We add the requested images for each new location to the street array list and then
select the last one in the list when it has finished downloading, like we did in Listing 9-6.

Chapter 9 ■ Geolocation

197

■■ Note  If you use a version-control service, such as GitHub, to store your code projects,
be careful to not upload your API keys to public repositories that anyone can access. If you
committed sensitive data into a public Git repository, this article explains how to completely
remove it: https://help.github.com/articles/removing-sensitive-data-from-a-
repository/.

Voronoi Tessellations
We now face the challenge of creating a visually interestingly collage through code. One
way of thinking about this problem is by contemplating how we could divide the screen
into non-overlapping regions, each one corresponding to a location and its associated
image. This partition is technically called a tessellation. A tessellation using rectangles will
be easy to implement, but will probably look too simple. However, there is a well-known
partition called a Voronoi tessellation. To create a Voronoi tessellation, we start with a set
of arbitrary 2D points. Next, if we are at position (x, y) in the 2D plane, we find the point p
in the set that is the closest to (x, y). We say (x, y) belongs to the region determined by p.
We then paint all such positions (x, y) associated with p using the same color. Following
this simple algorithm, we will reach a partition of the plane into regions that look more or
less like in the left panel of Figure 9-5.

Figure 9-5.  Left: Voronoi tessellation with 20 regions. Right: Voronoi portraits by Mark
Kleback and Sheiva Rezvani

www.allitebooks.com

https://help.github.com/articles/removing-sensitive-data-from-a-repository/
https://help.github.com/articles/removing-sensitive-data-from-a-repository/
http://www.allitebooks.org

Chapter 9 ■ Geolocation

198

Voronoi tessellations have applications in fields as diverse as biology, geography,
mathematics, meteorology, and robotics, where there is a need to conduct spatial data
analysis. Voronoi tessellations are capable of dividing space into regions that make it easier
to manipulate data. Artists have also used it as the basic technique to create pieces where
some underlying dataset (like the portraits in the right panel of Figure 9-5) is processed to
generate a “natural” partition of the data while also being visually attractive.

There are many algorithms with which to generate the Voronoi tessellation given
a point set—some very efficient but also complicated to implement. The simplest
algorithm, but also the least efficient, is the one that literally translates our textual
description of the Voronoi tessellation into code. It is very inefficient because we need to
compare each pixel (x, y) in the screen with all the points in the set, and so its execution
time grows as the square of the number of pixels in the screen, which in turn is the
product of the width and height. This implies that the algorithm slows down very quickly
as the screen resolution increases.

However, if the screen resolution is not too high, this simple algorithm is still fast
enough to be run interactively. In Listing 9-8, we add a new point to the Voronoi set every
time we press the mouse (or touch the screen). We set the maximum number of “Voronoi
points” to 10 and the resolution to 512 × 512. This sketch can be run from either Java or
Android modes without any modifications. The key element that makes possible an easy
implementation of this algorithm in Processing is the pixels array, which we discussed
back in Chapter 6. This array contains the color of each pixel in the screen, arranged as
consecutive values so that, if the resolution of the screen is W × H, the first W elements
in the pixels array correspond to the first row in the screen, the next W elements to the
second, etc. We can also use the pixels array to set the color of any pixel in the screen.
We do so in Listing 9-8.

Listing 9-8.  Generating a Voronoi Tessellation

int lastPoint = 0;
int maxPoints = 10;
VoronoiPoint[] points = new VoronoiPoint[maxPoints];
boolean updated = false;

void setup () {
 size(512, 512);
}

void draw() {
 if (updated) {
 updateColors();
 drawPoints();
 updated = false;
 }
}

http://dx.doi.org/10.1007/978-1-4842-2719-0_6

Chapter 9 ■ Geolocation

199

void mousePressed() {
 �points[lastPoint] = new VoronoiPoint(mouseX, mouseY, color(random(255),
random(255), random(255)));

 lastPoint = (lastPoint + 1) % maxPoints;
 updated = true;
}

void updateColors() {
 int idx = 0;
 loadPixels();
 for (int y = 0; y < height; y++) {
 for (int x = 0; x < width; x++) {
 int closest = findClosestPoint(x, y);
 if (-1 < closest) pixels[idx] = points[closest].getColor();
 idx++;
 }
 }
 updatePixels();
}

void drawPoints() {
 strokeWeight(10);
 stroke(0, 50);
 for (int i = 0; i < points.length; i++) {
 VoronoiPoint p = points[i];
 if (p == null) break;
 point(p.x, p.y);
 }
}

int findClosestPoint(float x, float y) {
 int minIdx = -1;
 float minDist = 1000;
 for (int i = 0; i < points.length; i++) {
 VoronoiPoint p = points[i];
 if (p == null) break;
 float d = dist(x, y, p.x, p.y);
 if (d < minDist) {
 minIdx = i;
 minDist = d;
 }
 }
 return minIdx;
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 9 ■ Geolocation

200

class VoronoiPoint {
 float x, y;
 color c;
 VoronoiPoint(float x, float y, color c){
 this.x = x;
 this.y = y;
 this.c = c;
 }
 color getColor() {
 return c;
 }
}

We set the color of each screen pixel in the updateColors() function by locating the
point in the Voronoi list that is closest to it. For this to work, we need to call loadPixels()
first to make sure that the pixels array is initialized, and then updatePixels()so the pixels
are drawn to the screen. The findClosestPoint() function finds the closest point to a
screen position (x, y); it works by setting an large initial distance (1000), then iterating
over all points, saving in the variable minIdx the index of the point with a distance to (x, y)
smaller than the previous one.

If we run this sketch, either on the computer or on the Android device, we will create
new Voronoi regions until a maximum of ten, with each region being assigned a random
color. Once we go over ten, the sketch cycles over the points array, and the new mouse/
touch positions will replace the original ones. Figure 9-6 shows a typical output.

Figure 9-6.  A typical Voronoi tessellation

Chapter 9 ■ Geolocation

201

In this interactive tessellation, we assigned a solid color to each point. However, we
could use an image instead so that the pixels in the corresponding region are painted
with the colors from the image’s pixels. In this way, each region would show a portion of a
different image. If all images have the same size as the screen resolution, it will be easy to
modify the previous listing to use images. This is what we do in Listing 9-9. Here, we use
a set of ten images generated with Street View at 512 × 512 resolution, streetview0.jpg
through streetview9.jpg, and stored in the data folder of the sketch.

Listing 9-9.  Painting a Voronoi Tessellation with Images

...
void mousePressed() {
 points[lastPoint] = new VoronoiPoint(mouseX, mouseY, lastPoint);
 lastPoint = (lastPoint + 1) % maxPoints;
 updated = true;
}

void updateColors() {
 int idx = 0;
 loadPixels();
 for (int y = 0; y < height; y++) {
 for (int x = 0; x < width; x++) {
 int closest = findClosestPoint(x, y);
 if (-1 < closest) pixels[idx] = points[closest].getColor(idx);
 idx++;
 }
 }
 updatePixels();
}
...
class VoronoiPoint {
 float x, y;
 PImage img;
 VoronoiPoint(float x, float y, int i) {
 this.x = x;
 this.y = y;
 img = loadImage("streetview" + i + ".jpg");
 img.loadPixels();
 }
 color getColor(int idx) {
 return img.pixels[idx];
 }
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 9 ■ Geolocation

202

This listing only shows the few parts of the code that need changes. Now, we use the
point index to load the image object we store inside each VoronoiPoint class. The PImage
class also has a pixels array, and from it we can retrieve the colors of the image at each
one of its pixels. Using ten images from Google Street View, our new example should
generate a collage similar to the one shown in Figure 9-7.

Using an Offscreen Drawing Surface
A limitation of our Voronoi tessellation code is that it should be used only at low
resolutions, making it unsuitable for full-screen apps. We could apply offscreen drawing
to address this issue. The idea is to draw the tessellation onto a smaller drawing surface
and then render the contents of this surface on the screen at full resolution. Processing
allows us to create an offscreen drawing surface with the createGraphics(width,
height) function, which returns a PGraphics object (https://processing.org/
reference/PGraphics.html) encapsulating a surface with the requested resolution.
We can use all the APIs we have learned so far to draw into a PGraphics object. One
important thing to keep in mind is to enclose all PGraphics drawing calls between
beginDraw() and endDraw(). Listing 9-10 shows the changes needed to make the image
tessellation sketch into a full-screen app using offscreen rendering.

Figure 9-7.  Painting the regions in a Voronoi tessellation using Street View images

https://processing.org/reference/PGraphics.html
https://processing.org/reference/PGraphics.html

Chapter 9 ■ Geolocation

203

Listing 9-10.  Drawing into an Offscreen Pgraphics Object

...
PGraphics canvas;

void setup () {
 fullScreen();
 canvas = createGraphics(512, 512);
}

void draw() {
 ...
 image(canvas, 0, 0, width, height);
}

void mousePressed() {
 float x = map(mouseX, 0, width, 0, canvas.width);
 float y = map(mouseY, 0, height, 0, canvas.height);
 points[lastPoint] = new VoronoiPoint(x, y, lastPoint);
 lastPoint = (lastPoint + 1) % maxPoints;
 updated = true;
}

void updateColors() {
 int idx = 0;
 canvas.beginDraw();
 canvas.loadPixels();
 for (int y = 0; y < canvas.height; y++) {
 for (int x = 0; x < canvas.width; x++) {
 int closest = findClosestPoint(x, y);
 if (-1 < closest) canvas.pixels[idx] = points[closest].getColor(idx);
 idx++;
 }
 }
 canvas.updatePixels();
 canvas.endDraw();
}

void drawPoints() {
 canvas.beginDraw();
 canvas.strokeWeight(10);
 canvas.stroke(0, 50);
 for (int i = 0; i < points.length; i++) {
 VoronoiPoint p = points[i];
 if (p == null) break;
 canvas.point(p.x, p.y);
 }
 canvas.endDraw();
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 9 ■ Geolocation

204

Also, remember that, while the (x, y) coordinates in the main screen surface
range from (0, 0) to (width, height), the PGraphics resolution is (PGraphics.width,
PGraphics.height), meaning that we might need to map coordinates from one surface
to the other. For instance, (mouseX, mouseY) coordinates always refer to the screen, so
we should map them to the width and height of the PGraphics object so the interactions
work properly on the offscreen surface.

Putting Everything Together
Thus far, we have managed to generate the collage with a set of predefined Street View
images. So, it is time to combine that code with our earlier sketches that retrieved the
device’s location from the available location services. We will use the latitude and
longitude values to assemble the HTTPS request to obtain a new Street View image, as we
did in Listing 9-7, and assign it to a random Voronoi point.

However, we should consider a couple of important technical aspects. First, we want
to draw the collage at full-screen resolution, and to do this we could use an offscreen
PGraphics object at a lower resolution, e.g., 512 × 512, and then scale it up to cover the
entire screen, as we did in Listing 9-10, although preserving the original square ratio of
the image.

The second aspect concerns the frequency of the location updates. Requesting
updates very often, especially in high-accuracy mode (i.e., GPS), will drain the battery
faster, but we actually don’t need very frequent updates, since the app should wait
long enough to ensure that there are noticeable differences in the surroundings. The
granularity of the location updates are set in the call to requestLocationUpdates(),
where we have been using 1 second and 1 meters as minimum time and distance for the
updates. These values are too small for the purpose of our collage, and we can increase
them quite a bit—for example, to 30 seconds and 20 meters, respectively. With these
considerations in mind, let’s take a look at the full code in Listing 9-11.

Listing 9-11.  Street View Collage

import android.content.Context;
import android.location.Location;
import android.location.LocationListener;
import android.location.LocationManager;
import android.os.Bundle;

LocationManager manager;
SimpleListener listener;
String provider;
LocationQueue queue = new LocationQueue();
ArrayList<LocationValue> path = new ArrayList<LocationValue>();
int lastPoint = 0;
int maxPoints = 10;
VoronoiPoint[] points = new VoronoiPoint[maxPoints];
PGraphics canvas;
String apiKey = "<your API key>";

Chapter 9 ■ Geolocation

205

void setup () {
 fullScreen();
 orientation(PORTRAIT);
 canvas = createGraphics(512, 512);
 imageMode(CENTER);
 �requestPermission("android.permission.ACCESS_FINE_LOCATION",
"initLocation");

}

void draw() {
 background(0);
 updatePositions();
 float h = max(width, height);
 image(canvas, width/2, height/2, h, h);
}

void updatePositions() {
 while (queue.available()) {
 LocationValue loc = queue.remove();
 if (0 < path.size()) {
 LocationValue last = path.get(path.size() - 1);
 if (last.distanceTo(loc) < 20) continue;
 }
 String url = "http://maps.googleapis.com/maps/api/streetview?location=" +
 loc.latitude + "," + loc.longitude +
 �"&size=512x512&fov=90&pitch=-10&sensor=false&key=" +

apiKey;
 loc.setStreetView(requestImage(url));
 path.add(loc);
 }

 boolean newImage = false;
 for (int i = path.size() - 1; i >= 0; i--) {
 LocationValue loc = path.get(i);
 PImage img = loc.getStreetView();
 if (img.width == -1 || img.height == -1) {
 path.remove(i);
 } else if (img.width == 512 && img.height == 512) {
 float x = random(0, canvas.width);
 float y = random(0, canvas.height);
 points[lastPoint] = new VoronoiPoint(x, y, img);
 lastPoint = (lastPoint + 1) % maxPoints;
 newImage = true;
 path.remove(i);
 }
 }

www.allitebooks.com

http://www.allitebooks.org

Chapter 9 ■ Geolocation

206

 if (newImage) updateColors();
}

void updateColors() {
 int idx = 0;
 canvas.beginDraw();
 canvas.loadPixels();
 for (int y = 0; y < canvas.height; y++) {
 for (int x = 0; x < canvas.width; x++) {
 int closest = findClosestPoint(x, y);
 if (-1 < closest) canvas.pixels[idx] = points[closest].getColor(idx);
 idx++;
 }
 }
 canvas.updatePixels();
 canvas.endDraw();
}

void initLocation(boolean granted) {
 if (granted) {
 Context context = getContext();
 listener = new SimpleListener();
 manager = (LocationManager)
 context.getSystemService(Context.LOCATION_SERVICE);
 provider = LocationManager.NETWORK_PROVIDER;
 if (manager.isProviderEnabled(LocationManager.GPS_PROVIDER)) {
 provider = LocationManager.GPS_PROVIDER;
 }
 manager.requestLocationUpdates(provider, 30000, 20, listener);
 }
}

class SimpleListener implements LocationListener {
 public void onLocationChanged(Location loc) {
 queue.add(new LocationValue(loc.getLatitude(), loc.getLongitude()));
 }
 public void onProviderDisabled(String provider) { }
 public void onProviderEnabled(String provider) { }
 public void onStatusChanged(String provider, int status, Bundle extras) {
}
}

public void resume() {
 if (manager != null) {
 manager.requestLocationUpdates(provider, 30000, 20, listener);
 }
}

Chapter 9 ■ Geolocation

207

public void pause() {
 if (manager != null) {
 manager.removeUpdates(listener);
 }
}

class LocationValue {
 double latitude;
 double longitude;
 PImage streetView;

 LocationValue(double lat, double lon) {
 latitude = lat;
 longitude = lon;
 }

 void setStreetView(PImage img) {
 streetView = img;
 }

 PImage getStreetView() {
 return streetView;
 }

 double distanceTo(LocationValue dest) {
 double a1 = radians((float)latitude);
 double a2 = radians((float)longitude);
 double b1 = radians((float)dest.latitude);
 double b2 = radians((float)dest.longitude);

 double t1 = Math.cos(a1) * Math.cos(a2) * Math.cos(b1) * Math.cos(b2);
 double t2 = Math.cos(a1) * Math.sin(a2) * Math.cos(b1) * Math.sin(b2);
 double t3 = Math.sin(a1) * Math.sin(b1);
 double tt = Math.acos(t1 + t2 + t3);

 return 6366000 * tt;
 }
}

class LocationQueue {
 LocationValue[] values = new LocationValue[10];
 int offset, count;

 synchronized void add(LocationValue val) {
 if (count == values.length) {
 values = (LocationValue[]) expand(values);
 }
 values[count++] = val;
 }

www.allitebooks.com

http://www.allitebooks.org

Chapter 9 ■ Geolocation

208

 synchronized LocationValue remove() {
 if (offset == count) {
 return null;
 }
 LocationValue outgoing = values[offset++];
 if (offset == count) {
 offset = 0;
 count = 0;
 }
 return outgoing;
 }

 synchronized boolean available() {
 return 0 < count;
 }
}

class VoronoiPoint {
 float x, y;
 PImage img;

 VoronoiPoint(float x, float y, PImage img){
 this.x = x;
 this.y = y;
 this.img = img;
 img.loadPixels();
 }

 color getColor(int idx) {
 return img.pixels[idx];
 }
}

int findClosestPoint(float x, float y) {
 int minIdx = -1;
 float minDist = 1000;
 for (int i = 0; i < points.length; i++) {
 VoronoiPoint p = points[i];
 if (p == null) break;
 float d = dist(x, y, p.x, p.y);
 if (d < minDist) {
 minIdx = i;
 minDist = d;
 }
 }
 return minIdx;
}

Chapter 9 ■ Geolocation

209

Figure 9-8.  Different Street View collages generated with the final sketch, running as a live
wallpaper

Let’s discuss the new code in this sketch, in particular the updatePositions() function.
The first part is very similar to what we had before: removing new locations from the queue,
skipping them if they are too close to the previous location (20 meters is the threshold here),
and otherwise adding them to the path. We also generate the corresponding Street View
request and store the PImage object inside the new LocationValue object. It then iterates
backward through all the locations received so far and deletes those that either failed to
receive a Street View image (by checking if the width or height of the requested image is -1)
or did complete the image download. The latter locations are deleted because their image
is assigned to a new Voronoi point, so they are no longer needed. In this way, we make sure
that the memory usage of the app does not keep increasing until it runs of memory and is
forced to quit; we only store up to a maximum of ten simultaneous images (with a resolution
of 512 × 512), since this is the length of our array of Voronoi points.

A smaller detail, but one still important to ensure that the collage looks good, is ensuring
that it covers the entire screen while keeping its original aspect ratio. If we look at the code in
the draw() function, we see how to do it: we take the largest screen dimension with the line
float h = max(width, height) and then draw the offscreen PGraphics canvas at this size
h with the image() function, placing it at the screen’s center. Since we set the image mode to
CENTER in setup(), the canvas will appear properly centered on the screen.

We can run this sketch as a regular app or as a live wallpaper (in the second case, we
may want to use the wallpaperPreview() function so the location permission is requested
only after the wallpaper is selected). Some examples of the output are shown in Figure 9-8.
If we plan to distribute it via the Play Store, we will also have to create a full set of icons, write
down the full package and name of the app, as well as the version, in its manifest file, and
export a release package, as we did for the final projects in chapters 3 and 6.

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-2719-0_3
http://dx.doi.org/10.1007/978-1-4842-2719-0_6
http://www.allitebooks.org

Chapter 9 ■ Geolocation

210

Summary
In this chapter, we explored in detail the possibilities offered by the Android location
API and how we can use it in Processing for Android to create unconventional
applications of geolocation in combination with other technologies such as Google
Street View. As we just saw, Processing gives us a lot of freedom to access different
data sources (GPS, images, etc.), but also provides a solid framework with which to
successfully integrate these sources so we can take our ideas from concept sketches to
finished apps.

PART IV

Wearables and Watch
Faces

www.allitebooks.com

http://www.allitebooks.org

213© Andrés Colubri 2017
A. Colubri, Processing for Android, https://doi.org/10.1007/978-1-4842-2719-0_10

CHAPTER 10

Wearable Devices

In this chapter, we will use Processing to create watch faces for Android smartwatches.
We will go through the specific features and constraints of wearable devices that we
should take into consideration when writing smartwatch apps.

From Activity Trackers to Smartwatches
Even though we may think of phones and tablets first when considering mobile
development, wearable devices have been present in many people’s lives since the
introduction of fitness trackers, such as the Fitbit, back in 2009, and more recently the
list of such devices has expanded to include digital smartwatches from Apple and several
Android manufacturers. With the rapid advance of sensor technology and the decrease
in size of electronic components, these devices are capable of performing a wide array
of functions well beyond counting steps and heartbeats. In fact, a 2017 smartwatch
has many of the same capabilities as a smartphone (2D and 3D graphics, touchscreen,
location and movement sensors, Wi-Fi connectivity).

The Android platform provides support for all these devices through the Wear
version of the Android operating system. Devices running Android Wear 1.x need
to be paired with an Android phone running Android 4.3 or higher to enable all the
functionality in the wearable (for example, displaying email and message notifications
from the phone), while watches running Wear 2.x can run standalone apps that don’t
require pairing the watch with a phone. Wear apps (https://developer.android.com/
training/wearables/apps/index.html) on the Android platform have access to the
watch’s sensors and graphics. Watch faces are a special kind of Wear app that runs as
the background of the watch, not unlike live wallpapers on phones and tablets. They are
meant to display the time and other relevant information, such as physical activity.

Processing for Android currently allows us to run a sketch as a watch face on Android
smartwatches, but not as a general Wear app. All the drawing, interaction, and sensing
APIs discussed in previous chapters are applicable to watch faces, with a few additions
needed to handle the unique features of smartwatches.

https://doi.org/10.1007/978-1-4842-2719-0_10
https://developer.android.com/training/wearables/apps/index.html
https://developer.android.com/training/wearables/apps/index.html

Chapter 10 ■ Wearable Devices

214

■■ Note  Version 4.0 of Android mode can be used to create watch faces for smartwatches
running Android Wear 2.0 or higher. It does not support Wear 1.x devices.

Smartwatches
Several manufacturers offer Android smartwatches, and as result there is a wide range
of models with different specifications and styles. Figure 10-1 shows a small selection of
Android watches.

Even though there is an ample variety of watches, all of them must conform to
a minimum baseline of technical specifications. Watches released for version 1.x of
Android Wear have (round or square) displays with densities between 200 and 300
dpi (so, falling in the hdpi range), Wi-Fi and Bluetooth connectivity, accelerometer,
gyroscope, and typically heart-rate sensors, 4 GB of internal storage, and a battery life
of up to two days of mixed use (fully active versus battery-saving “ambient” mode).
As mentioned in the introduction of the chapter, Wear 2.0 will encourage watches packed
with more sensors, higher display densities, and longer battery life given the increased
autonomy of Wear 2.x devices.

■■ Note  An important difference between Wear 1.x and 2.x is that with the former,
watches always need to be paired with a smartphone to be fully functional (i.e., displaying
messages, providing location), but with the latter, they can work entirely autonomously and
run apps as powerful as those designed for phones.

Figure 10-1.  A selection of Android smartwatches, from left to right: Sony Smartwatch 3,
Moto 360, LG Watch Urbane, Polar M600

www.allitebooks.com

http://www.allitebooks.org

Chapter 10 ■ Wearable Devices

215

Running Watch Face Sketches
Just as we can run Processing sketches for regular apps on an actual device or in the
emulator, we can run our watch face sketches on a watch or in the emulator. The process
of debugging on a physical device is generally more convenient, since the emulator is
typically slower and not capable of simulating all the sensor data that we might need
in order to debug our watch face, but the emulator allows us to test various display
configurations and to run our watch face if we don’t have an Android watch yet.

Using a Watch
To run a Processing sketch on an Android watch, we first need to enable “Developer
Options” on the watch, as follows:

	 1.	 Open the Settings menu on the watch.

	 2.	 Scroll to the bottom of the menu and select “System | About.”

	 3.	 Tap the build number seven times.

	 4.	 From the Settings menu, select “Developer Options.”

	 5.	 Confirm that “ADB debugging” is enabled.

Once we have enabled the Developer Options, we must choose from between two
alternatives to run and debug our watch face sketches on a Wear 2.x watch: Wi-Fi and
Bluetooth. The developer guide from Google on debugging Wear apps goes through all
the details (https://developer.android.com/training/wearables/apps/debugging.
html), and we will now review the most important steps.

With Bluetooth, the watch must be paired with the phone. First, we need to
enable Bluetooth debugging on both devices. On the watch, we do so by opening the
“Settings|Developer Options” and enabling “Debug Over Bluetooth.” On the phone, we
open the Android Wear companion app, tap on its Settings icon, and then enable “Debug
Over Bluetooth.” Once we have done all of this, Processing should be able to connect to
the watch via its Bluetooth pairing with the phone.

■■ Note  If the watch is paired with a phone over Bluetooth, and this phone is the only
device plugged into the computer through USB, then Processing will be able to connect to
the watch automatically. But if there is more than one phone, you need to connect the watch
manually with the adb command ` ./adb -s ID forward tcp:4444 localabstract:/
adb-hub`, provide the ID of the phone the watch is paired to, and then use the command
` adb connect 127.0.0.1:4444`.

https://developer.android.com/training/wearables/apps/debugging.html
https://developer.android.com/training/wearables/apps/debugging.html

Chapter 10 ■ Wearable Devices

216

In the case of Wi-Fi, both the computer we are running Processing on and the watch
must be connected to the same network. Then, we need to enable Wi-Fi debugging on
the watch by going to “Settings|Developer Options” and enabling “Debug over Wi-Fi.”
After a moment, the watch will display its IP address (e.g., 192.168.1.100). Once we
have obtained the IP address of the watch, we will open a terminal. From there, we will
change to the platform-tools folder inside the Android SDK and run the command `adb
connect 192.168.1.100`, as seen in Figure 10-2.

Once we have connected the watch via either Wi-Fi or Bluetooth, we should see it in
the list of devices under the Android menu. Also, we must make sure to select the “Watch
Face” option, since Processing will not allow us to run other sketch types on a watch
(Figure 10-3).

Figure 10-2.  Connecting to a watch over Wi-Fi from the command line

Figure 10-3.  Enabling running sketches as watch faces and listing a connected watch

www.allitebooks.com

http://www.allitebooks.org

Chapter 10 ■ Wearable Devices

217

After connecting to our watch via either Bluetooth or Wi-Fi, we can follow Listing 10-1
to run an animated watch face.

Listing 10-1.  Simple Animated Watch Face

void setup() {
 fullScreen();
 strokeCap(ROUND);
 stroke(255);
 noFill();
}

void draw() {
 background(0);
 if (wearAmbient()) strokeWeight(1);
 else strokeWeight(10);
 float angle = map(millis() % 60000, 0, 60000, 0, TWO_PI);
 arc(width/2, height/2, width/2, width/2, 0, angle);
}

After Processing installs the sketch on the device as a watch face, we have to select it
as the active watch face. To do this, left swipe the screen to access the list of favorite watch
faces. If ours does not show up in this list, tap on “Add more watch faces” at the rightmost
end of the list, and you should find the sketch there, possibly among other available
watch faces. Select it there first, and once it is added to the favorite list, you can tap on it
to set is as the current background. The output would look like Figure 10-4.

Figure 10-4.  Output of the animated watch face example

Chapter 10 ■ Wearable Devices

218

Please note that the watch face will not look like it does in this figure all the time. After
a few seconds, the watch will enter ambient mode, where the display is updated only once
every minute. The purpose of this mode is to save battery power when we are not looking
at the watch. As soon as the watch detects (using its accelerometer) the typical gesture
of turning the wrist to look at the time, it will return to interactive mode. The developer
guides from Google recommend setting most of the screen to a black background when in
ambient mode and drawing the remaining graphic elements with thin white lines. As we
can see in the code, Processing gives us the wearAmbient() function to detect whether the
watch is in ambient mode and update the graphics accordingly.

Using the Emulator
We saw in Chapter 1 that we should install a system image in order to run a phone
Android Virtual Device (AVD) in the emulator. We also saw that we must decide whether
we want to use ARM or x86 images. To use the emulator with watch faces, we need to
install a separate watch AVD for the emulator to use. The first time we run a watch face
sketch in the emulator, we would see a dialog asking us to download the watch system
image (Figure 10-5), followed by the ARM/x86 selection. Once the image (and the HAXM
software for x86 images, as we also discussed in Chapter 1) is downloaded and installed,
Processing will copy the sketch into the emulator and inform us once the sketch has been
installed successfully as a watch face.

Figure 10-5.  Downloading the watch system image

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-2719-0_1
http://dx.doi.org/10.1007/978-1-4842-2719-0_1
http://www.allitebooks.org

Chapter 10 ■ Wearable Devices

219

Just as with actual devices, we need to select our watch face in order to set it as the
current background, which we do by following the same series of steps we saw earlier, shown
in Figure 10-6: add the watch face to the list of favorites and then select it from that list.

Processing by default creates a square watch AVD with a 280 × 280 resolution.
However, in Chapter 3 we learned that we can create other AVDs with the avdmanager
command-line tool. Processing will run our sketches on these AVDs as long as we launch
them with the emulator tool on the right port. For instance, let’s create a round watch
AVD with the "wear_round_360_300dpi" device definition and launch it on port 5576 so
we can use it from Processing. The commands to do this are shown in Figure 10-7 (after
creating the AVD, remember to add the skin parameter to its config.ini file, as we saw
in Chapter 3). The resulting emulator running our sketch in the round watch AVD is
shown in Figure 10-8.

Figure 10-6.  Selecting a watch face in the emulator

Figure 10-7.  Creating and launching a custom watch AVD

http://dx.doi.org/10.1007/978-1-4842-2719-0_3
http://dx.doi.org/10.1007/978-1-4842-2719-0_3

Chapter 10 ■ Wearable Devices

220

Displaying Time
Displaying time is one of the basic functions of a watch, and with Processing we are able
to create any visual representation of time we can imagine. Processing offers a number
of functions to obtain the current time and date—year(), month(), day(), hour(),
minute(), and second()—which will allow us to generate our own time visualizations.
As a basic example, in Listing 10-2 we show the time using text.

Listing 10-2.  Displaying the Time as Text

void setup() {
 fullScreen();
 frameRate(1);
 textFont(createFont("Serif-Bold", 48));
 textAlign(CENTER, CENTER);
 fill(255);
}

void draw() {
 background(0);
 if (wearInteractive()) {
 String str = hour() + ":" + nfs(minute(), 2) + ":" + nfs(second(), 2);
 text(str, width/2, height/2);
 }
}

Figure 10-8.  Running our watch face sketch in the custom AVD

www.allitebooks.com

http://www.allitebooks.org

Chapter 10 ■ Wearable Devices

221

Notice that we use frameRate(1). Since we are showing the time down to seconds,
there is no need to run the sketch at a higher framerate, which also helps save battery.
The nfs() function conveniently adds zeros to the right of the number so the resulting
string always has two digits. Finally, wearInteractive() simply returns the opposite of
the wearAmbient() function, which we used in our first watch face.

Counting Steps
We can access the sensors available in our watch with the same techniques we learned
in the previous chapters, either through the Android API or with the Ketai library. We
will investigate the possibilities of body sensing in Chapter 12, but here in Listing 10-3 we
present a simple step-counter example that uses the Android sensor API.

Listing 10-3.  Simple Step Counter

import android.content.Context;
import android.hardware.Sensor;
import android.hardware.SensorManager;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;

Context context;
SensorManager manager;
Sensor sensor;
SensorListener listener;

int offset = -1;
int steps;

void setup() {
 fullScreen();
 frameRate(1);
 Context context = (Context) surface.getComponent();
 manager = (SensorManager)context.getSystemService(Context.SENSOR_SERVICE);
 sensor = manager.getDefaultSensor(Sensor.TYPE_STEP_COUNTER);
 listener = new SensorListener();
 �manager.registerListener(listener, sensor, SensorManager.SENSOR_DELAY_
NORMAL);

 textFont(createFont("SansSerif", 40 * displayDensity));
 textAlign(CENTER, CENTER);
 fill(255);
}

http://dx.doi.org/10.1007/978-1-4842-2719-0_12

Chapter 10 ■ Wearable Devices

222

void draw() {
 background(0);
 if (wearInteractive()) {
 String str = steps + " steps";
 float w = textWidth(str);
 text(str, width/2, height/2);
 }
}

void resume() {
 if (manager != null)
 manager.registerListener(listener, sensor,
 SensorManager.SENSOR_DELAY_NORMAL);
}

void pause() {
 if (manager != null) manager.unregisterListener(listener);
}

class SensorListener implements SensorEventListener {
 public void onSensorChanged(SensorEvent event) {
 if (offset == -1) offset = (int)event.values[0];
 steps = (int)event.values[0] - offset;
 }
 public void onAccuracyChanged(Sensor sensor, int accuracy) { }
}

Since the values returned by the step-counter sensor (which is not an actual
hardware sensor, but rather a “derived” sensor that uses information from the
accelerometer to compute the steps) are cumulative from the time the watch booted up,
we store the first value to start the counting from the moment that particular watch face is
open.

Designing for Smartwatches
Using Processing’s drawing API to create watch faces opens up innumerable directions
for representation of time in combination with contextual and sensor data. The limited
size of smartwatch displays poses challenges in terms of visual design and information
density. We will look more deeply into these challenges in the next two chapters.

The official Google developer site includes a section specifically on watch face
design (https://developer.android.com/design/wear/watchfaces.html), which
provides some useful guidance on design concepts and language, as well as on how to
handle aspects unique to smartwatches.

www.allitebooks.com

https://developer.android.com/design/wear/watchfaces.html
http://www.allitebooks.org

Chapter 10 ■ Wearable Devices

223

Screen Shape and Insets
A first important aspect to consider is adapting the graphics of the watch face to both
round and square displays so that our visual design works effectively in both scenarios.

■■ Note  Even if the display is round, the width and height values refer to the largest
extent of the display along the horizontal and vertical directions.

You can determine the shape of the screen by calling the wearRound() or the
wearSquare() functions, which will return true for round/square screens, and false
otherwise, as demonstrated in Listing 10-4.

Listing 10-4.  Adjusting Graphics to the Screen Shape

void setup() {
 fullScreen();
 if (wearSquare()) rectMode(CENTER);
}

void draw() {
 background(0);
 if (wearAmbient()) {
 stroke(255);
 noFill();
 } else {
 noStroke();
 fill(255);
 }
 float scale = map(second(), 0, 59, 0, 1);
 if (wearRound()) {
 ellipse(width/2, height/2, scale * width, scale * width);
 } else {
 rect(width/2, height/2, scale * width, scale * height);
 }
}

Chapter 10 ■ Wearable Devices

224

Figure 10-9.  “Chin” in a Moto 360 smartwatch. Graphics centered at the screen center
(left), and translated by half of the bottom inset to properly center them with respect to the
bezels

However, if we run the sketch from Listing 10-4 on a device that has an inset (or
“chin”) at the bottom of the screen, such as the Moto 360, we will notice that the circle is
off-center with respect to the bezels of the watch, even though it is centered with respect
to the display itself (Figure 10-9).

We can use the wearInsets() function to properly center the sketch graphics in these
cases. This function returns an object containing the inset borders around the display:
top, bottom, left, and right. In the case of devices with a lower chin, we only need to
add the call translate(0, wearInsets().bottom/2) to center the graphics with respect
to the bezel center, although at the cost of clipping the lower portion of the graphics
(Listing 10-5).

Listing 10-5.  Watch Face Insets

void setup() {
 fullScreen();
 if (wearSquare()) rectMode(CENTER);
}

void draw() {
 background(0);
 if (wearAmbient()) {
 stroke(255);
 noFill();
 } else {
 noStroke();

www.allitebooks.com

http://www.allitebooks.org

Chapter 10 ■ Wearable Devices

225

 fill(255);
 }
 translate(0, wearInsets().bottom/2);
 float scale = map(second(), 0, 59, 0, 1);
 if (wearRound()) {
 ellipse(width/2, height/2, scale * width, scale * width);
 } else {
 rect(width/2, height/2, scale * width, scale * height);
 }
}

Watch Face Preview Icons
In addition to the regular app icons we discussed in Chapter 3, Android requires a set of
preview icons to show the watch face in the selection list. The regular icons will be used in
other parts of the UI, such as the App Info and Uninstall menus.

Since the watch can be either round or square, we need to provide only two preview
icons: one for the round case (with 320 × 320 resolution) and the other for the square case
(with 280 × 280 resolution). Both icons need to be copied into the sketch’s folder, and they
must have the names preview_circular.png and preview_rectangular.png.

Figure 10-10 shows the preview icons, note that the red portion in the circular
preview won’t be visible. When exporting the sketch as a signed package, Processing will
not let us complete the export until all eight icons—six regular for ldpi, mdpi, hdpi, xhdpi,
xxhdpi, and xxxhdpi resolutions, and two preview—are included in the sketch folder.

Figure 10-10.  Preview images for round (left) and square (right) devices. The red portion
in the round preview will be ignored.

http://dx.doi.org/10.1007/978-1-4842-2719-0_3

Chapter 10 ■ Wearable Devices

226

Summary
In this first chapter about Android smartwatches, we have learned the basics about
wearable devices and apps, as well as how to create watch faces for these novel devices.
We also took a detailed look at the setup required to connect Processing to either
actual watches or the emulator to test our watch face sketches across different display
configurations.

www.allitebooks.com

http://www.allitebooks.org

227© Andrés Colubri 2017
A. Colubri, Processing for Android, https://doi.org/10.1007/978-1-4842-2719-0_11

CHAPTER 11

Visualizing Time

Displaying the time is one of the main functions of a watch, and in this chapter we
will learn how to apply Processing’s drawing API to experiment with different visual
representations of time.

From Sundials to Smartwatches
The visual representation of time dates to the beginnings of civilization, when sundials
were used to keep track of the time during the daylight hours. Mechanical pocket and
then smaller wrist watches have been in use since the sixteenth century. In the digital era
of the past few decades, electronic watches with multiple features became popular. The
long history of the machines used for measuring and displaying time (Figure 11-1) gives
us a rich technical and cultural background to draw inspiration from or to reinterpret via
the nearly boundless possibilities offered by the smartwatch.

Figure 11-1.  From left to right: Sundial at the Imperial Palace in Beijing (eighth century
BC); design for a ring watch, from Livre d'Aneaux d'Orfevrerie (1561); a late Victorian
silver open-faced pocket watch (c.1890), Casio DBC 600 digital calculator watch (1985)

https://doi.org/10.1007/978-1-4842-2719-0_11

Chapter 11 ■ Visualizing Time

228

Although we can already find thousands of different watch faces on the Google Play
Store, many of them translate analog concepts into very realistic digital representations.
This is a valid approach, but the digital canvas also allows us to represent time in entirely
original ways. Figure 11-2 shows a few examples of Android watch faces, all available on
the Google Play Store, which demonstrate some interesting ideas, from eyes staring back
at the user, abstract patterns, and whimsical animations representing the passage of time,
to reinterpretations of an analog watch face through the use of digital zoom.

■■ Note  In order to take a screenshot of a watch face, we can use the adb tool in
the Android SDK. First, save the screen grab to an image file on the watch: `adb -s
127.0.0.1:4444 shell screencap -p /sdcard/screenshot.png`. Then, download
the resulting image to the computer: `adb -s 127.0.0.1:4444 pull -p /sdcard/
screenshot.png`. We can also use third-party graphics tools to make this process even
easier, like the Android tool for Mac: https://github.com/mortenjust/androidtool-mac.

Using Time to Control Motion
Processing includes a time API that allows us to obtain the current time and date. Let’s
begin by using hour, minutes, and seconds to control a simple animation. If we were to
work with a digital implementation of an analog concept, such as rotating hands, the
transformation between time and angular values is fairly straightforward: we can map the
values between their respective ranges; for instance, between 0 and 60 for minutes and
seconds, and 0 to TWO_PI (2π) for angles. This mapping is demonstrated in Listing 11-1.

Figure 11-2.  From left to right: Gaze Effect (by Fathom Information Design); Waves (by
ustwo); Space and Time (by Geng Gao); and Spotlight (by Maize)

www.allitebooks.com

https://github.com/mortenjust/androidtool-mac
http://www.allitebooks.org

Chapter 11 ■ Visualizing Time

229

Listing 11-1.  Concentric Circles for Seconds, Minutes, and Hours

void setup() {
 noStroke();
 strokeWeight(2);
}

void draw() {
 background(0);

 float hAngle = map(hour() % 12, 0, 12, 0, TWO_PI);
 float mAngle = map(minute(), 0, 60, 0, TWO_PI);
 float sAngle = map(second(), 0, 60, 0, TWO_PI);

 translate(width/2, height/2 + wearInsets().bottom/2);
 fill(ambientMode ? 0 : #F0DB3F);
 ellipse(0, 0, width, width);
 drawLine(hAngle, width/2);

 fill(ambientMode ? 0 : #FFB25F);
 ellipse(0, 0, 0.75 * width, 0.75 * width);
 drawLine(mAngle, 0.75 * width/2);

 fill(ambientMode ? 0 : #ED774D);
 ellipse(0, 0, 0.5 * width, 0.5 * width);
 drawLine(sAngle, 0.5 * width/2);

 fill(0);
 ellipse(0, 0, 0.25 * width, 0.25 * width);
}

void drawLine(float a, float r) {
 pushStyle();
 stroke(wearAmbient() ? 255 : 0);
 pushMatrix();
 rotate(a);
 line(0, 0, 0, -r);
 popMatrix();
 popStyle();
}

Chapter 11 ■ Visualizing Time

230

The output of this sketch (Figure 11-3) is three concentric circles, where the lines
correspond to the hands for hour, minute, and second. Since the lines are drawn from the
center of the screen pointing upward, which is the typical reference position in an analog
watch, the rotation can be applied directly between 0 and TWO_PI.

Once we run this watch face on the device or in the emulator, we can notice that the
animation of the hands is not smooth. The innermost circle jumps from one second to the
next because we are not interpolating the intermediate angles between two consecutive
seconds. One solution to this problem is to use the millis() function, which returns the
milliseconds elapsed since the sketch started running. We can calculate the difference
between consecutive millis() calls to calculate the difference in milliseconds between
two points in time, and then use that value to create a smoother animation.

More concretely, if we add two new variables to our previous sketch, say s0 and
m0, we can keep track of the moment when the value of the second changes (either
by incrementing by one or resetting to zero), store the milliseconds at that particular
moment, and then use it to compute the fraction of the second we are at for each
successive moment. This is, in fact, easier done than said, and Listing 11-2 shows the
additions to our previous sketch that make this work.

Listing 11-2.  Concentric Circles with Second Animation

void draw() {
 background(0);

 int h = hour() % 12;
 int m = minute();
 int s = second();

 if (s0 != s) {
 m0 = millis();
 s0 = s;
 }
 float f = (millis() - m0)/1000.0;

Figure 11-3.  Concentric circles watch face

www.allitebooks.com

http://www.allitebooks.org

Chapter 11 ■ Visualizing Time

231

 float sf = s + f;
 float mf = m + sf/60.0;
 float hf = h + mf/60.0;

 float hAngle = map(hf, 0, 12, 0, TWO_PI);
 float mAngle = map(mf, 0, 60, 0, TWO_PI);
 float sAngle = map(sf, 0, 60, 0, TWO_PI);
 ...
}

The sf, mf, and hf variables are the decimal second, minute, and hour values, which
we can map to the angular ranges as we did before and which now result in a continuous
rotation.

Square Versus Round Watch Faces
Android smartwatches can have either a square or a round frame, and we need to ensure
our watch face design can work with both, or if we prioritize one over the other, we
should still provide a usable experience with the other one. The preference of round over
square watches, or vice versa, is a contested topic in watch UI design: “In my experience,
round-faced watches sell better than square-faced watches. I don’t know exactly why
that is. . . . It’s most likely purely psychological; people’s semantic notion of what a clock
or a watch should look like” (https://www.wareable.com/smartwatches/round-v-
square-smartwatches-which-is-best). On the opposite end: “I think that Round’s
days are numbered. We underestimate people’s ability to get used to new things, to new
paradigms. I think the experience of using a more squared watch will make more sense to
people when they use both, and they will come around” (https://birchtree.me/blog/
data-is-square/).

Regardless of which format becomes more popular in the end, Android supports
both, and it is up to us to come up with designs that contemplate square and round
watches. As an illustration of this problem, let’s go ahead with a simple design for
a square watch face: a rectangular grid with 24 squares, split into six rows and four
columns. Each square corresponds to one hour, hours that already have passed are
entirely grayed out, and the current hour is grayed up to the percentage given by the
current minute. An implementation of this design is presented in Listing 11-3.

Listing 11-3.  Rectangular Hour Grid

void setup() {
 textFont(createFont("Monospaced", 15 * displayDensity));
 textAlign(CENTER, CENTER);
 noStroke();
}

void draw() {
 background(0);
 int h = hour();

https://www.wareable.com/smartwatches/round-v-square-smartwatches-which-is-best
https://www.wareable.com/smartwatches/round-v-square-smartwatches-which-is-best
https://birchtree.me/blog/data-is-square/
https://birchtree.me/blog/data-is-square/

Chapter 11 ■ Visualizing Time

232

 int m = minute();
 float cellW = 0.9 * width/4.0;
 float cellH = 0.9 * height/6.0;
 translate(0.05 * cellW, 0.05 * cellH + wearInsets().bottom/2);
 for (int n = 0; n < 24; n++) {
 int i = n % 4;
 int j = n / 4;
 float x = map(i, 0, 4, 0, width);
 float y = map(j, 0, 6, 0, height);
 float w = n == h ? map(m, 0, 60, 0, cellW) : cellW;

 if (!wearAmbient()) {
 fill(#578CB7);
 rect(x, y, cellW, cellH);
 }

 fill(255);
 text(str(n), x, y, cellW, cellH);

 if (n <= h) {
 fill(0, 170);
 rect(x, y, w, cellH);
 }
 }
}

Since in this watch face we are working with text, we create a monospaced font at a
size that is scaled by the displayDensity system variable, as we did in previous chapters
to ensure the consistent appearance of the text across devices with different DPIs. The
screen resolution of an Android watch is typically between 300 and 400 pixels, but
because of the small screen size, the DPI is usually in the xhdpi range (~320dpi).

This design will clearly not work on a round-faced watch. We could replace this
rectangular grid with a polar one, but in that case each cell would have a different size,
as shown in the left panel of Figure 11-4, and it would also be harder to implement the
partially grayed-out cell that corresponds to the current hour. Another alternative could
be to still use a rectangular grid, this time of 6 × 6, and remove the six corner cells that are
either entirely or mostly outside of the circumscribed circle (right panel in Figure 11-4).

www.allitebooks.com

http://www.allitebooks.org

Chapter 11 ■ Visualizing Time

233

The option here will depend on the desired visual result, and in certain cases the
polar grid might be a better choice, while the trimmed rectangular grid might be in
others. Since our priority is to keep all the elements the same size, we chose the latter
option, shown in Listing 11-4.

Listing 11-4.  Rectangular Grid for a Circular Watch

import java.util.Arrays;
import java.util.List;
List<Integer> corners = Arrays.asList(1, 2, 5, 6, 7, 12, 25,
 30, 31, 32, 35, 36);

void setup() {
 textFont(createFont("Monospaced", 15 * displayDensity));
 textAlign(CENTER, CENTER);
 noStroke();
}

void draw() {
 background(0);
 int h = hour();
 int m = minute();
 float cellW = 0.9 * width/6.0;
 float cellH = 0.9 * height/6.0;
 translate(0.05 * cellW, 0.05 * cellH + wearInsets().bottom/2);
 int n = 0;
 for (int n0 = 0; n0 < 36; n0++) {
 if (corners.contains(n0 + 1)) continue;

 int i = n0 % 6;
 int j = n0 / 6;
 float x = map(i, 0, 6, 0, width);

Figure 11-4.  Adapting a 6 × 4 rectangular grid to fit inside a round watch face, either as a
polar grid (left) or as a larger 6 × 6 grid with some elements removed (right)

Chapter 11 ■ Visualizing Time

234

 float y = map(j, 0, 6, 0, height);
 float cw = n == h ? map(m, 0, 60, 0, cellW) : cellW;

 if (!wearAmbient()) {
 fill(#578CB7);
 rect(x, y, cellW, cellH);
 }

 fill(255);
 text(str(n), x, y, cellW, cellH);

 if (n <= h) {
 fill(0, 170);
 rect(x, y, cw, cellH);
 }
 n++;
 }
}

The output of these two watch faces sketches, from Listings 11-3 and 11-4, can be
seen in Figure 11-5. The code of the two sketches can be combined into a single watch
face sketch that selects the appropriate visualization depending on the value returned by
the wearRound() or wearSquare() functions.

Figure 11-5.  Hour grid for square (left) and round (right) watches

www.allitebooks.com

http://www.allitebooks.org

Chapter 11 ■ Visualizing Time

235

Working with a Watch Face Concept
Creating a watch face involves balancing several factors. As mentioned at the
beginning of this chapter, there is an established visual language that people expect
when communicating time. Smartwatches give us ample latitude to expand upon this
existing language, and to come up with entirely new concepts. Also, watch faces can
be interactive, configurable, and augmented with additional information (physical
activity, calendar events, and so forth). Some of these considerations are covered in the
design guide from Google (https://www.google.com/design/spec-wear/patterns/
interactive-watch-faces.html), but experimentation can lead us to new ideas for
displaying time.

As we saw with earlier projects in the book, a fundamental methodology in visual
design is sketching and iteration, and this remains true for designing watch faces.
A concept might be original and attractive, but it is unlikely that it will be successful
in the first implementation. In the next sections, we will carry one concept through
several iterations until reaching a definitive version.

Elapsed/Remaining Time
The concept for this watch face is not so much to serve as a functional timepiece, but
rather to provide a reminder of the amount of time elapsed since the beginning of the
day, and the remaining time until it ends. To accentuate this progression, we can measure
time in total seconds since and from midnight, displaying it as it changes continuously
from and toward zero.

As a visual representation of this progression, the waxing crescent of the moon could
work as a metaphor for the diminishing day (Figure 11-6). Of course, this is not the only
visual representation possible (and one could argue that it would mislead users into
thinking the watch face is displaying the actual phases of the moon), but it will suffice as
our first design.

Figure 11-6.  Crescent moon

https://www.google.com/design/spec-wear/patterns/interactive-watch-faces.html
https://www.google.com/design/spec-wear/patterns/interactive-watch-faces.html

Chapter 11 ■ Visualizing Time

236

Bezier curves are handy for creating the shape of the waxing crescent by partially
covering an ellipse with a shape containing the edge of the dark region, which is
illustrated in Figure 11-7.

As the elapsed seconds increase from 0 to 86,400 (24 × 60 × 60), the control vectors of
the Bezier curve at the top and bottom of the shape start pointing toward the left side of the
screen (left panel of Figure 11-7), and gradually rotate to point toward the opposite side
(right panel). So, we could map the seconds to an angular value from PI to 0, and then use this
value to rotate the control points.

The code in Listing 11-7 implements this idea and shows the remaining seconds as
text, which is scaled according to the space left in the visible crescent.

Listing 11-5.  Moon Watch Face

int totSec = 24 * 60 * 60;
PFont font;

void setup() {
 font = createFont("Serif", 62);
 textAlign(LEFT, CENTER);
}

void draw() {
 background(0);
 int sec = 60 * 60 * hour() + 60 * minute() + second();
 float a = map(sec, 0, totSec, PI, 0);
 float x = map(sec, 0, totSec, 0, width);
 float r = sec < totSec/2 ? map(sec, 0, totSec/2, 90, 50) :
 map(sec, totSec/2, totSec, 50, 90);

Figure 11-7.  Drawing a waxing crescent moon with Bezier curves

www.allitebooks.com

http://www.allitebooks.org

Chapter 11 ■ Visualizing Time

237

 int t = totSec - sec;
 String strt = str(t);
 int n = strt.length();
 float d = (width - x) / n;
 textFont(font, 1.75 * d);

 float rad = 0.5 * width;
 float diam = width;
 if (wearAmbient()) {
 fill(255);
 text(strt, x, rad);
 } else {
 fill(255);
 ellipse(rad, rad, diam, diam);
 noStroke();
 fill(0);
 beginShape();
 vertex(0, 0);
 vertex(rad, 0);
 float cx = r * cos(a);
 float cy = r * sin(a);
 bezierVertex(rad + cx, cy, x, rad - r, x, rad);
 vertex(x, rad);
 bezierVertex(x, rad + r, rad + cx, diam - cy, rad, diam);
 vertex(0, diam);
 endShape(CLOSE);

 fill(0, 170);
 text(strt, x, rad);
 }
}

In this code, we create a large font for the numbers in the watch face. Since these
numbers change size as the available space in the moon crescent grows and shrinks, we
set the original font size to be the largest possible (in this case, 62 pixels) so that the text
looks good after resizing it with textFont(font, 1.75 * d). Remember that text will look
blurry when we create the font with a certain size but then set a larger size for drawing.

Adding Interaction
Watch faces can receive touch events via the touch screen just like regular apps do
on phones and tablets. Likewise, we can handle these events in Processing using the
mousePressed() and mouseReleased() functions. However, dragging events are not
supported on watch faces, since these events are captured by the Android system to drive
the swipes that give access to the different menus in the watch UI. Multi-touch events are
not supported either.

Chapter 11 ■ Visualizing Time

238

Given the small size of the watch screen, touch events are typically meant to toggle
between different views on the watch face and not to drive precise interaction using the
x and y coordinates associated with the touch. In the case of our watch face, we can use
a single touch to toggle between showing the elapsed and the remaining seconds. The
entire code, including the new interaction handling, is shown in Listing 11-6.

Listing 11-6.  Moon Watch Face with Interaction

int totSec = 24 * 60 * 60;
boolean showElapsed = false;
PFont font;

void setup() {
 font = createFont("Serif", 62);
 textAlign(LEFT, CENTER);
}

void draw() {
 background(0);
 int sec = 60 * 60 * hour() + 60 * minute() + second();
 float a = map(sec, 0, totSec, PI, 0);
 float x = map(sec, 0, totSec, 0, width);
 float r = sec < totSec/2 ? map(sec, 0, totSec/2, 90, 50) :
 map(sec, totSec/2, totSec, 50, 90);

 int t = showElapsed ? sec : totSec - sec;
 String strt = str(t);
 int n = strt.length();
 float d = showElapsed ? x / n : (width - x) / n;
 textFont(font, 1.75 * d);

 float rad = 0.5 * width;
 float diam = width;
 if (wearAmbient()) {
 fill(255);
 text(strt, x, rad);
 } else {
 fill(255);
 ellipse(rad, rad, diam, diam);
 noStroke();
 fill(0);
 beginShape();
 vertex(0, 0);
 vertex(rad, 0);
 float cx = r * cos(a);
 float cy = r * sin(a);
 bezierVertex(rad + cx, cy, x, rad - r, x, rad);
 vertex(x, rad);

www.allitebooks.com

http://www.allitebooks.org

Chapter 11 ■ Visualizing Time

239

 bezierVertex(x, rad + r, rad + cx, diam - cy, rad, diam);
 vertex(0, diam);
 endShape(CLOSE);

 if (showElapsed) fill(255, 170);
 else fill(0, 170);
 text(strt, x, rad);
 }
}

void mousePressed() {
 showElapsed = !showElapsed;
 if (showElapsed) textAlign(RIGHT, CENTER);
 else textAlign(LEFT, CENTER);
}

Loading/Displaying Images
Images are supported in watch faces in exactly the same way as we discussed previously
for regular and wallpaper apps. We can rely on loadImage() to load an image file into
our sketch and the image() function to display the image on the screen. With the help of
this functionality, we can complete our watch face in Listing 11-7 with an actual image of
the moon as the background. Different outputs of the watch face, with and without the
background image, are included in Figure 11-8.

Listing 11-7.  Moon Watch Face with Background Image

int totSec = 24 * 60 * 60;
boolean showElapsed = false;
PFont font;
PImage moon;

void setup() {
 moon = loadImage("moon.png");
 font = createFont("Serif", 62);
 textAlign(LEFT, CENTER);
}

void draw() {
 background(0);
 int sec = 60 * 60 * hour() + 60 * minute() + second();
 float a = map(sec, 0, totSec, PI, 0);
 float x = map(sec, 0, totSec, 0, width);
 float r = sec < totSec/2 ? map(sec, 0, totSec/2, 90, 50) :
 map(sec, totSec/2, totSec, 50, 90);

Chapter 11 ■ Visualizing Time

240

 int t = showElapsed ? sec : totSec - sec;
 String strt = str(t);
 int n = strt.length();
 float d = showElapsed ? x / n : (width - x) / n;
 textFont(font, 1.75 * d);

 float rad = 0.5 * width;
 float diam = width;
 if (wearAmbient()) {
 fill(255);
 text(strt, x, rad);
 } else {
 image(moon, 0, 0, 2*rad, 2*rad);
 noStroke();
 fill(0);
 beginShape();
 vertex(0, 0);
 vertex(rad, 0);
 float cx = r * cos(a);
 float cy = r * sin(a);
 bezierVertex(rad + cx, cy, x, rad - r, x, rad);
 vertex(x, rad);
 bezierVertex(x, rad + r, rad + cx, diam - cy, rad, diam);
 vertex(0, diam);
 endShape(CLOSE);

 if (showElapsed) fill(255, 170);
 else fill(200, 230);
 text(strt, x, rad);
 }
}

void mousePressed() {
 showElapsed = !showElapsed;
 if (showElapsed) textAlign(RIGHT, CENTER);
 else textAlign(LEFT, CENTER);
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 11 ■ Visualizing Time

241

One small change we made in this new version of our watch face was to use a
different color for the text of the remaining seconds. In the version without a background
image, we had a dark gray (0, 170) that offered good contrast with the white background.
Now, the moon image is too dark to ensure that the text is readable, so we switched to a
brighter gray with the color values (200, 230).

Summary
In this chapter, we looked at watch faces for time display. As part of this subject, we
discussed some of the issues one needs to be aware of, starting with using time values
to implement dynamic visualizations of time, moving on to how to create designs for
round and square watches, and concluding with an example illustrating the importance
of iteration in watch face design. These materials should provide guidance for a first foray
into the topic, and many possibilities await those interested in delving deeper into the
development of watch faces.

Figure 11-8.  Versions of the “moon” watch face showing remaining seconds in the day,
elapsed, and moon texture

243© Andrés Colubri 2017
A. Colubri, Processing for Android, https://doi.org/10.1007/978-1-4842-2719-0_12

CHAPTER 12

Visualizing Physical Activity

In this chapter, we will go over some of the body sensors available on smartwatches and
wearable devices in general, and the techniques we have at our disposal to read and use
data from these sensors in real-time.

Body Sensors
There are body sensors in many different kinds of wearable devices, particularly fitness
trackers designed for personal monitoring of physical activity. These devices are often
linked to mobile apps that help users track their progress over time. Most Android
smartwatches come with at least two kinds of body sensors, a pedometer, or step
counter, and a heart-rate sensor. This shows that there is some overlap between activity
trackers (which also include clock functions) and proper smartwatches. Some Android
smartwatches (like the Polaris M600) are even meant to be used primarily as activity
trackers.

In the previous two chapters, we learned how to use Processing to create animated
watch faces, and, before that, we went through the details of accessing sensor data
using the Android API and the Ketai library. We should now be able to combine these
techniques to create watch faces that read the data from the body sensors on the watch
and present this data to the user through dynamic visualization.

Step Counter
The step counter is the most common sensor for monitoring physical activity. It reads
data from the accelerometer to infer the movement patterns of the wearer, specifically
those associated with walking or running. Step count is a proxy for overall physical
activity, although of limited accuracy, as it is not able to measure other forms of activity
that do not involve walking or running or the intensity of the movement.

A daily step count of 10,000 is a typically accepted goal for an adequate level of
physical activity, but there has been some controversy surrounding this number as a
universal target for fitness (https://www.ncbi.nlm.nih.gov/pubmed/14715035).

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-2719-0_12
https://www.ncbi.nlm.nih.gov/pubmed/14715035)
http://www.allitebooks.org

Chapter 12 ■ Visualizing Physical Activity

244

Heart Rate
Heart rate is a very precise indicator of physical exertion, and the heart-rate monitor on a
smartwatch allows us to access this information in real-time. Optical heart-rate monitors,
like those available in smartwatches, are generally less reliable than other types of monitors.
Optical monitors measure heart rate in a process called photoplethysmography, where they
shine light, typically from an LED, into the skin and detect the differences in light diffraction
due to changes in blood flow. The watch processes this data to generate a pulse reading that
can be displayed back to the user.

On the other hand, electrocardiogram (ECG) sensors measure the electrical signals
from heart activity directly, but they require that electrodes be attached to different parts of
the body, following the same principles as the first electrocardiographs in the early twentieth
century (Figure 12-1). Medical ECG sensors can use up to 12 electrodes, but sport chest straps
rely on a single ECG sensor placed near the heart. However, optical monitors in smartwatches
and other wearables have evolved to monitor heart rate accurately enough and continuously
throughout the day with minimal inconvenience.

Figure 12-1.  An early electrocardiograph from 1911. Note the arms and one leg of the
patient immersed in buckets, which contain a saline solution to conduct the body’s current.
Modern ECG sensors are still based on this three-point principle, but optical sensors rely on
a completely different physical process to measure heart rate.

Chapter 12 ■ Visualizing Physical Activity

245

Visualizing Physical Activity in Real-time
Using Processing to implement a watch face that displays step count or heart rate data is
not difficult. We can retrieve the sensor data in the same way we did with other sensors
earlier, like the accelerometer and the gyroscope. All we need to do is create a sensor
manager, get the corresponding sensor object from it, and attach a listener that will return
the actual values as they are measured by the hardware.

Simple Step Counter
Accessing the step-counter sensor does not require any special permission. This sensor
runs continuously, even if our watch face does not access it. One peculiarity is that it
returns the number of steps since the last startup of the watch, and it is reset to zero only
on a system reboot. Because of this, if we want to show the number of steps since we
launched the watch face, we have to store the first step count value we receive from the
listener and subtract it from all subsequent values, as shown in Listing 12-1.

Listing 12-1.  Displaying the Step Count

import android.content.Context;
import android.hardware.Sensor;
import android.hardware.SensorManager;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;

Context context;
SensorManager manager;
Sensor sensor;
SensorListener listener;

int offset = -1;
int steps;

void setup() {
 fullScreen();
 frameRate(1);
 textFont(createFont("SansSerif", 28 * displayDensity));
 textAlign(CENTER, CENTER);
 initCounter();
}

void draw() {
 background(0);
 translate(0, wearInsets().bottom/2);
 text(steps + " steps", 0, 0, width, height);
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 12 ■ Visualizing Physical Activity

246

void initCounter() {
 Context context = getContext();
 manager = (SensorManager)context.getSystemService(Context.SENSOR_SERVICE);
 sensor = manager.getDefaultSensor(Sensor.TYPE_STEP_COUNTER);
 listener = new SensorListener();
 manager.registerListener(listener, sensor,
 SensorManager.SENSOR_DELAY_NORMAL);
}

class SensorListener implements SensorEventListener {
 public void onSensorChanged(SensorEvent event) {
 if (offset == -1) offset = (int)event.values[0];
 steps = (int)event.values[0] - offset;
 }
 public void onAccuracyChanged(Sensor sensor, int accuracy) { }
}

Here, we use the offset variable, initialized to -1, to store the initial step count.
Also, if we are planning to create a watch face that keeps track of daily step counts, we
should implement our own “overnight reset,” since Android will not reset the step count
automatically at the end of the day.

Accessing the Heart-rate Sensor
The heart rate requires the BODY_SENSORS permission, which is classified as a critical or
dangerous permission because of the personal nature of the data. As with geolocation,
it is not enough to select the permission through the Android Permission Selector in
the PDE (Figure 12-2); we have to manually request the permission in the code with the
requestPermission() function, providing the name of the function that will be called
upon the result of the permission request. See Listing 12-2.

Listing 12-2.  Displaying the Heart Rate

import android.content.Context;
import android.hardware.Sensor;
import android.hardware.SensorManager;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;

Context context;
SensorManager manager;
Sensor sensor;
SensorListener listener;

Chapter 12 ■ Visualizing Physical Activity

247

int bpm;

void setup() {
 fullScreen();
 frameRate(1);
 textFont(createFont("SansSerif", 28 * displayDensity));
 textAlign(CENTER, CENTER);
 requestPermission("android.permission.BODY_SENSORS", "initMonitor");
}

void draw() {
 background(0);
 translate(0, wearInsets().bottom/2);
 text(bpm + " beats/min", 0, 0, width, height);
}

void initMonitor(boolean granted) {
 if (granted) {
 Context context = getContext();
 manager = (SensorManager)context.
 getSystemService(Context.SENSOR_SERVICE);
 sensor = manager.getDefaultSensor(Sensor.TYPE_HEART_RATE);
 listener = new SensorListener();
 manager.registerListener(listener, sensor,
 SensorManager.SENSOR_DELAY_NORMAL);
 }
}

class SensorListener implements SensorEventListener {
 public void onSensorChanged(SensorEvent event) {
 bpm = int(event.values[0]);
 }
 public void onAccuracyChanged(Sensor sensor, int accuracy) { }
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 12 ■ Visualizing Physical Activity

248

Figure 12-3.  Permission request when launching the watch face

Figure 12-2.  The BODY_SENSORS permission in the selector

When we open the watch face for the first time, we should see a dialog similar to the
one in Figure 12-3 asking to allow or deny access to body-sensor data.

Chapter 12 ■ Visualizing Physical Activity

249

Visualizing Step-count Data
A simple way of visualizing activity data is by using a radial representation that depicts
the progression toward a set goal. We already used the arc() function to display elapsed
time, and we can adapt it easily to show progress toward a desired step-count value; for
example, 100, as in Listing 12-3.

Listing 12-3.  Radial Step-count Visualization

...
void setup() {
 frameRate(1);
 strokeCap(ROUND);
 stroke(255);
 noFill();
 textFont(createFont("SansSerif", 18 * displayDensity));
 textAlign(CENTER, CENTER);
 initCounter();
}

void draw() {
 background(0);
 translate(0, wearInsets().bottom/2);
 if (wearAmbient()) strokeWeight(1);
 else strokeWeight(10);
 float angle = map(min(steps, 100), 0, 100, 0, TWO_PI);
 arc(width/2, height/2, width/2, width/2,
 PI + HALF_PI, PI + HALF_PI + angle);
 if (steps == 0) text("0 steps", 0, 0, width, height);
}
...

The rest of the sketch is identical to Listing 12-1. Next, we can add a multiplier to
show how many times the user has reached the goal already by simply dividing the
number of steps by the target, in this case 100, and drawing that value as text in the center
of the screen. The updated draw() function is shown in Listing 12-4, and the output of
this new watch face can be seen in Figure 12-4.

Listing 12-4.  Adding a Multiplier

void draw() {
 background(0);
 translate(0, wearInsets().bottom/2);
 if (wearAmbient()) strokeWeight(1);
 else strokeWeight(10);
 int mult = int(steps / 100);
 float angle = map(steps - mult * 100, 0, 100, 0, TWO_PI);
 noFill();

www.allitebooks.com

http://www.allitebooks.org

Chapter 12 ■ Visualizing Physical Activity

250

 arc(width/2, height/2, width/2, width/2,
 PI + HALF_PI, PI + HALF_PI + angle);
 fill(255);
 if (0 < steps) {
 text("x" + (mult + 1), 0, 0, width, height);
 } else {
 text("0 steps", 0, 0, width, height);
 }
}

A Beating Heart
For a visual representation of the heart-rate data, we can rely on a very direct translation:
a beating heart, or a beating circle for simplicity. We already know how to obtain the
beats-per-minute value from the sensor; the problem is animating the circle based on
this rate so it is accurate enough to convey the intensity and rhythm of the heartbeat. An
actual ECG signal is reproduced in Figure 12-5, where we see that the electric signal of a
single beat has several peaks and valleys. This signal depicts the so-called sinus rhythm
(https://en.wikipedia.org/wiki/Sinus_rhythm), with the large peak corresponding to
contraction of the heart ventricles (https://en.wikipedia.org/wiki/Heart#Blood_flow).

Figure 12-4.  Step-count watch face, with multiplier counter

https://en.wikipedia.org/wiki/Sinus_rhythm
https://en.wikipedia.org/wiki/Heart#Blood_flow

Chapter 12 ■ Visualizing Physical Activity

251

We can approximate this pattern with an “impulse” curve that presents a rapid initial
increase followed by a decay until the next beat (Figure 12-6). A simple mathematical
function that generates this impulse curve is the following:

float impulse(float k, float t) {
 float h = k * t;
 return h * exp(1.0 - h);
}

In this formula, the constant k determines how quickly the impulse reaches its peak
(the position of the peak is exactly t =1/k). From inspecting the ECG signal in Figure 12-5,
we could conclude that the first peak in a heartbeat occurs at around 25 percent of the entire
duration of the beat. As an example, if our heart is beating at 80 beats per minute (bpm),
then a single beat would last 60,000/80 = 750 milliseconds, and its first peak should occur
approximately 0.25 × 750 = 187.5 milliseconds. From this, we can calculate k, since t = 187.5 =
1/k, giving in this case k ~ 0.0053. In general, for any measured bpm value, the constant k will
be equal to bpm/(0.25×60,000).

Figure 12-5.  An ECG signal

Figure 12-6.  An impulse function, generated with Graph Toy, by Inigo Quilez (http://
www.iquilezles.org/apps/graphtoy/index.html)

www.allitebooks.com

http://www.iquilezles.org/apps/graphtoy/index.html
http://www.iquilezles.org/apps/graphtoy/index.html
http://www.allitebooks.org

Chapter 12 ■ Visualizing Physical Activity

252

We can control the animation of any shape in Processing using this impulse
formula. Of course, this formula is not exact, and its maximum does not necessarily
coincide with the exact moment of ventricular contraction, but it should be enough as
an approximation to convey the beating pace. Listing 12-5 extends our previous heart-
rate watch face from Listing 12-2 by incorporating an ellipse whose radius follows the
impulse function. As before, we must add the BODY_SENSORS permission through the PDE,
granting this permission once the watch face launches on the device or in the emulator.

Listing 12-5.  Creating a Heart-beat Animation

import android.content.Context;
import android.hardware.Sensor;
import android.hardware.SensorManager;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;

Context context;
SensorManager manager;
Sensor sensor;
SensorListener listener;

int bpm;

void setup() {
 fullScreen();
 noStroke();
 textFont(createFont("SansSerif", 28 * displayDensity));
 textAlign(CENTER, CENTER);
 requestPermission("android.permission.BODY_SENSORS", "initMonitor");
}

void draw() {
 background(0);
 translate(0, wearInsets().bottom/2);
 if (wearAmbient()) {
 fill(255);
 text(bpm + " bpm", 0, 0, width, height);
 } else {
 int duration = 750;
 if (0 < bpm) duration = 60000 / bpm;
 float x = millis() % duration;
 float k = 1/(0.25 * duration);
 float a = impulse(k, x);
 float r = map(a, 0, 1, 0.75, 0.9) * width;
 translate(width/2, height/2);
 fill(247, 47, 47);
 ellipse(0, 0, r, r);
 }
}

Chapter 12 ■ Visualizing Physical Activity

253

float impulse(float k, float x) {
 float h = k * x;
 return h * exp(1.0 - h);
}

void initMonitor(boolean granted) {
 if (!granted) return;
 Context context = getContext();
 manager = (SensorManager)context.getSystemService(Context.SENSOR_SERVICE);
 sensor = manager.getDefaultSensor(Sensor.TYPE_HEART_RATE);
 listener = new SensorListener();
 manager.registerListener(listener, sensor,
 SensorManager.SENSOR_DELAY_NORMAL);
}

class SensorListener implements SensorEventListener {
 public void onSensorChanged(SensorEvent event) {
 bpm = int(event.values[0]);
 }
 public void onAccuracyChanged(Sensor sensor, int accuracy) { }
}

The ellipse is drawn only when the watch is in interactive mode. We calculate the
duration of a single beat at the current bpm and store it in the duration variable, which
we use in all the other parameters needed to evaluate the impulse function. Since the
impulse ranges between 0 and 1, we map it to the (0.75, 0.9) interval so that the size of
the ellipse varies between contracted and expanded states that are neither too small nor
too big. We can tweak these parameters until we arrive at a result that we find visually
satisfactory.

Sensor Debugging
Testing a watch face that makes use of sensors can be difficult, since we may need to
move around to get enough data from the step counter or heart-rate sensor to ensure that
we evaluate the different instances in our code. Since Processing allows us to easily switch
back and forth between modes, and the great majority of the Processing API remains the
same between Java and Android modes, we could use Java mode to test the parts of the
code that do not depend on the actual sensors, particularly the rendering code.

However, we often still have to inspect the actual sensor data to determine if
something is wrong, either with our assumptions about this data or with the way we are
processing it in our code. One way we could do this is by recording the values from the
sensors into a text file and then pulling this file from the watch to look for any patterns
of interest. Listing 12-6 exemplifies this approach to save the data from the heart-rate
sensor. Since we write the data to a file in the external storage, we need to add the WRITE_
EXTERNAL_STORAGE permission to the sketch, and the corresponding request in the sketch
code, since it is also a dangerous permission.

www.allitebooks.com

http://www.allitebooks.org

Chapter 12 ■ Visualizing Physical Activity

254

Listing 12-6.  Saving Sensor Data to a File

import android.content.Context;
import android.hardware.Sensor;
import android.hardware.SensorManager;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.os.Environment;

Context context;
SensorManager manager;
Sensor sensor;
SensorListener listener;

int bpm;
String[] data = { "time,rate" };

void setup() {
 fullScreen();
 frameRate(1);
 textFont(createFont("SansSerif", 28 * displayDensity));
 textAlign(CENTER, CENTER);
 requestPermission("android.permission.BODY_SENSORS", "initMonitor");

 requestPermission("android.permission.WRITE_EXTERNAL_STORAGE");
}

void draw() {
 background(0);
 translate(0, wearInsets().bottom/2);
 text(bpm + " beats/min", 0, 0, width, height);
}

void mousePressed() {
 background(200, 40, 40);
 File sd = Environment.getExternalStorageDirectory();
 String path = sd.getAbsolutePath();
 File directory = new File(path, "out");
 File file = new File(directory, "sensor-data.csv");
 saveStrings(file, data);
}

void initMonitor(boolean granted) {
 if (granted) {
 Context context = getContext();
 manager = (SensorManager)
 context.getSystemService(Context.SENSOR_SERVICE);
 sensor = manager.getDefaultSensor(Sensor.TYPE_HEART_RATE);
 listener = new SensorListener();

Chapter 12 ■ Visualizing Physical Activity

255

 manager.registerListener(listener, sensor,
 SensorManager.SENSOR_DELAY_NORMAL);
 }
}

class SensorListener implements SensorEventListener {
 public void onSensorChanged(SensorEvent event) {
 bpm = int(event.values[0]);
 data = (String[]) append(data, millis() + "," + bpm);
 }
 public void onAccuracyChanged(Sensor sensor, int accuracy) { }
}

First, notice how the request for the WRITE_EXTERNAL_STORAGE permission does
not include a function to call after the permission has been granted (or denied). This is
because there is no additional initialization required to write to the external storage.

In this sketch, every time we receive a new sensor value, we append it to the string
array data, together with the time in milliseconds. We save this array as a CSV (comma-
separated values) file into the device’s external storage only when touching the screen,
with the saveStrings() function. The external storage in a watch is emulated in its internal
storage, as smartwatches don’t include SD cards. In order to download the file to the
development computer, we can run the following command from the terminal:

adb -s 127.0.0.1:4444 pull /storage/emulated/0/out/sensor-data.csv

Once we have downloaded the data file, we can read it in a text editor or spreadsheet
software. We could also use it as the input in a Processing sketch, like the one in Listing
12-7, where we read the CSV file with the loadTable() function (https://processing.
org/reference/loadTable_.html). This function returns a Table object containing all
the data organized in rows and columns. In this case, we simply draw a line plot with a
LINE_STRIP shape, connecting the values in each consecutive row. A typical outcome of
this sketch is depicted in Figure 12-7.

Listing 12-7.  Plotting Sensor Data in Processing

size(700, 200, P2D);
Table table = loadTable("sensor-data.csv", "header");
background(90);
stroke(247, 47, 47);
strokeWeight(4);
beginShape(LINE_STRIP);
for (int i = 0; i < table.getRowCount(); i++) {
 TableRow row = table.getRow(i);
 int r = row.getInt("rate");
 float x = map(i, 0, table.getRowCount() - 1, 0, width);
 float y = map(r, 0, 100, height, 0);
 vertex(x, y);
}
endShape();

www.allitebooks.com

https://processing.org/reference/loadTable_.html
https://processing.org/reference/loadTable_.html
http://www.allitebooks.org

Chapter 12 ■ Visualizing Physical Activity

256

In these two examples, our goal was to record the sensor data in order to conduct a later
analysis to identify any issues with the data. A different, but related, aim is to debug our data-
processing code in a more controlled fashion. We could do this by generating “synthetic”
data resembling what would come out from the sensors. For example, Listing 12-8 shows
the heart-rate example from earlier, modified to print random bpm values generated in a
continuously running thread.

Listing 12-8.  Generating Synthetic Sensor Data

int bpm;

void setup() {
 fullScreen();
 frameRate(1);
 textFont(createFont("SansSerif", 28 * displayDensity));
 textAlign(CENTER, CENTER);
 thread("generateData");
}

void draw() {
 background(0);
 translate(0, wearInsets().bottom/2);
 text(bpm + " beats/min", 0, 0, width, height);
}

void generateData() {
 while (true) {
 bpm = int(random(60, 100));
 delay(2000);
 }
}

Figure 12-7.  Line plot of heart-rate data

Chapter 12 ■ Visualizing Physical Activity

257

We discussed threads back in Chapter 6, including how we can use them to run
calculations that would otherwise slow down the framerate of our app. Here, we launch
the generateData() function in a new thread at the end of setup(). In this function, we
keep generating random bpm values between 60 and 100, with a delay of two seconds
between each consecutive value, which approximates the behavior of the real heart-rate
sensor well enough for testing (the delay interval could also be random to add even more
variability). Also in Chapter 6, we considered the use of synchronized methods to prevent
different threads from accessing the same data concurrently. In this minimal example,
concurrency is not an issue, but we will need to take care of it in the final project we are
about to consider for the rest of this chapter.

Growing a Tree as You Exercise
So far, our physical activity watch faces have been relatively simple. Can we make an
activity tracker more interesting (and maybe more rewarding) by offering a visual output
that not only tracks the activity level, but also introduces some visual variation? If we
think of the step count as a value that starts at 0 and grows until reaching a set goal, say
10,000 steps, would it be possible to use it to drive the “growth” of some organic element
in our sketch—for example, a plant or a tree?

Generating a natural-looking tree with code is a problem that can take us to fascinating
ideas in mathematics, like self-similarity and fractals (https://en.wikipedia.org/wiki/
Self-similarity). We can find several techniques to simulate tree growth, some of them
shown in Figure 12-8.

Figure 12-8.  Different algorithms for tree generation. Left: fractal recursion (by Daniel
Shiffman, https://processing.org/examples/tree.html). Center: branching tree (by
Ryan Chao, https://www.openprocessing.org/sketch/186129). Right: particle system
tree (by Asher Salomon, https://www.openprocessing.org/sketch/144159)

Most importantly, we need an algorithm that lets us grow our tree as the step count
increases. Both the fractal-recursion and particle-system algorithms referred to in
Figure 12-8 can be unfolded through time. Particularly the latter, as it gradually grows
until it reaches its full size, and it gives a more organic look than the fractal recursion
does. Furthermore, its code is available on OpenProcessing, so we can use it as the
starting point for our project.

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-2719-0_6
http://dx.doi.org/10.1007/978-1-4842-2719-0_6
https://en.wikipedia.org/wiki/Self-similarity
https://en.wikipedia.org/wiki/Self-similarity
https://processing.org/examples/tree.html)
https://www.openprocessing.org/sketch/186129
https://www.openprocessing.org/sketch/144159
http://www.allitebooks.org

Chapter 12 ■ Visualizing Physical Activity

258

■■ Note  OpenProcessing (https://www.openprocessing.org/) is an online library of
Processing sketches, most of which can be run inside the browser, available for modification
and sharing under a Creative Commons license.

Generating a Tree with a Particle System
We already made use of particle systems in Chapter 6 to generate an animation that
follows the brightness patterns in an image. Particle systems can be used in many different
scenarios to create organic movement, as is the case here. Making some changes to the
OpenProcessing sketch by Asher Salomon, we arrive at the code seen in Listing 12-9,
which gives us the output shown in Figure 12-9 when running it in Java mode.

Listing 12-9.  Growing Tree

ArrayList<Branch> branches = new ArrayList<Branch>();

void setup() {
 size(500, 500);
 noStroke();
 branches.add(new Branch());
 background(155, 211, 247);
}

void draw() {
 for (int i = 0; i < branches.size(); i++) {
 Branch branch = branches.get(i);
 branch.update();
 branch.display();
 }
}

class Branch {
 PVector position;
 PVector velocity;
 float diameter;

 Branch() {
 position = new PVector(width/2, height);
 velocity = new PVector(0, -1);
 diameter = width/15.0;
 }
 Branch(Branch parent) {
 position = parent.position.copy();
 velocity = parent.velocity.copy();

https://www.openprocessing.org/
http://dx.doi.org/10.1007/978-1-4842-2719-0_6

Chapter 12 ■ Visualizing Physical Activity

259

 diameter = parent.diameter / 1.4142;
 parent.diameter = diameter;
 }
 void update() {
 if (1 < diameter) {
 position.add(velocity);
 float opening = map(diameter, 1, width/15.0, 1, 0);
 float angle = random(PI - opening * HALF_PI,
 TWO_PI + opening * HALF_PI);
 PVector shake = PVector.fromAngle(angle);
 shake.mult(0.1);
 velocity.add(shake);
 velocity.normalize();
 if (random(0, 1) < 0.04) branches.add(new Branch(this));
 }
 }
 void display() {
 if (1 < diameter) {
 fill(175, 108, 44, 50);
 ellipse(position.x, position.y, diameter, diameter);
 }
 }
}

To understand this code, we should look at how the Branch class is used to represent
a swarm of moving particles that, as they leave a trail on the screen, generate the
branches of the tree. The basic idea is the following: each particle is a small ellipse with a
position, velocity, and diameter. Initially, there is a single particle, placed at the bottom

Figure 12-9.  Output of the tree-generation algorithm

www.allitebooks.com

http://www.allitebooks.org

Chapter 12 ■ Visualizing Physical Activity

260

of the screen, with a diameter of width/15 (more about this choice later) and an upward
velocity of 1. From time to time, a new particle branches out from an existing one, so we
eventually get many branches coming out from a single trunk. For this to work properly,
we must be careful to call background() only in setup() so the trails of the particles are
not erased in the next frame.

Every time the update() method of a particle is called in draw(), its position is
updated according to the current velocity, and the velocity is slightly jolted by the shake
vector. This vector has a magnitude of 0.1 and a random direction determined by the
angle variable. However, there is one important detail in the way this angle is calculated
that makes it not completely random. The reason for this is that we want to avoid having
the tree swing to the sides early on, so we map the branches’ diameters, ranging from
width/15 at the beginning to 1 at the end, to the opening variable between 0 and 1. If the
diameter of a branch approaches 1, it means that the tree is already well grown, so the
branch does not need to be straight, and the angle of the shake vector can be anywhere
between PI - opening * HALF_PI and TWO_PI + opening * HALF_PI. If the opening
is exactly 1, then the angle is chosen from the entire circle range. On the other hand,
when the opening is close to 0 at the beginning, the angle can only range between PI and
TWO_PI, which represents the upper half of the circle. In this way, the branches are forced
to move upward when the tree is starting to grow.

The other key aspect of the algorithm is the branching mechanism: every time a
particle is updated, it creates a new branch at the current position if a random draw
between 0 and 1 is smaller than 0.04. The new branch is just another particle object,
which is initialized from its parent by having the same position and velocity, but a
diameter scaled down by a factor of 1/ 2 . As a result of the branching, the parent
particle also gets its diameter reduced by the same factor.

We just reviewed the main elements of the algorithm. As we see in the code, there
are several numerical parameters we could modify to tweak the appearance of the tree.
One such choice is the initial diameter of the branches, here set to width/15 because it
gives reasonably sized trees. Also, as the result of this particular parameter selection, the
algorithm will take a fairly well-defined number of iterations to reach a full-grown tree,
which in this case is around 300 (we will come back to this number soon).

Incorporating Step-count Data
We have a working version of the tree-generation algorithm, but it is not tied to the step-
count sensor yet. Inspecting the values returned by this sensor, we realize that steps are
not detected one by one, but rather we get a number that increases by irregular amounts.
So, we could compute the difference in the step count between the current and the last
onSensorChanged() event and update our particles as many times as needed. Let’s try
this approach in Listing 12-10.

Listing 12-10.  Driving the Growth of the Tree with the Step Count

import android.content.Context;
import android.hardware.Sensor;
import android.hardware.SensorManager;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;

Chapter 12 ■ Visualizing Physical Activity

261

Context context;
SensorManager manager;
Sensor sensor;
SensorListener listener;

int offset = -1;
int psteps, steps;
int stepInc = 0;

ArrayList<Branch> branches = new ArrayList<Branch>();
PGraphics canvas;

void setup() {
 fullScreen();
 noStroke();
 branches.add(new Branch());
 initCanvas();
 initCounter();
}

void draw() {
 background(0);
 if (wearInteractive()) growTree();
 image(canvas, 0, 0);
}

synchronized void growTree() {
 canvas.beginDraw();
 for (int s = 0; s < stepInc; s++) {
 for (int i = 0; i < branches.size(); i++) {
 Branch branch = branches.get(i);
 branch.update();
 branch.display();
 }
 }
 canvas.endDraw();
 stepInc = 0;
}

synchronized void updateSteps(int value) {
 if (offset == -1) offset = value;
 steps = value - offset;
 stepInc += steps - psteps;
 psteps = steps;
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 12 ■ Visualizing Physical Activity

262

void initCanvas() {
 canvas = createGraphics(width, height);
 canvas.beginDraw();
 canvas.background(155, 211, 247);
 canvas.noStroke();
 canvas.endDraw();
}

class Branch {
 PVector position;
 PVector velocity;
 float diameter;

 Branch() {
 position = new PVector(width/2, height);
 velocity = new PVector(0, -1);
 diameter = width/15.0;
 }
 Branch(Branch parent) {
 position = parent.position.copy();
 velocity = parent.velocity.copy();
 diameter = parent.diameter / 1.4142;
 parent.diameter = diameter;
 }
 void update() {
 if (1 < diameter) {
 position.add(velocity);
 float opening = map(diameter, 1, width/15.0, 1, 0);
 float angle = random(PI - opening * HALF_PI,
 TWO_PI + opening * HALF_PI);
 PVector shake = PVector.fromAngle(angle);
 shake.mult(0.1);
 velocity.add(shake);
 velocity.normalize();
 if (random(0, 1) < 0.04) branches.add(new Branch(this));
 }
 }
 void display() {
 if (1 < diameter) {
 canvas.fill(175, 108, 44, 50);
 canvas.ellipse(position.x, position.y, diameter, diameter);
 }
 }
}

Chapter 12 ■ Visualizing Physical Activity

263

void initCounter() {
 Context context = getContext();
 manager = (SensorManager)context.getSystemService(Context.SENSOR_SERVICE);
 sensor = manager.getDefaultSensor(Sensor.TYPE_STEP_COUNTER);
 listener = new SensorListener();
 manager.registerListener(listener, sensor,
 SensorManager.SENSOR_DELAY_NORMAL);
}

class SensorListener implements SensorEventListener {
 synchronized void onSensorChanged(SensorEvent event) {
 updateSteps(int(event.values[0]));
 }
 void onAccuracyChanged(Sensor sensor, int accuracy) { }
}

We reused most of the code from Listing 12-9 and added the standard Android event
handlers. But there are several new things we should consider. First, we are drawing the
branches into an offscreen PGraphics surface, which we used already in Chapter 9. The
reason is the following: as a watch face, our sketch will have to present a different output
for ambient mode. Since this would require erasing the entire screen, we would lose
the particle trails making the tree. Drawing them into a separate surface, which we can
display at any time, is one easy way to solve this problem.

We also have two synchronized functions, growTree() and updateSteps().
Both access and modify the stepInc variable, which contains the number of steps
counted since the last onSensorChanged() event. Since growTree() is called from
draw(), and hence from Processing’s Animation thread, and updateSteps() from
onSensorChanged(), which in turn is triggered from the app’s main thread, we need
synchronization to avert concurrent modifications to stepInc from these two threads.

Tweaking the Watch Face
We still have two issues with our first version of the tree watch face. One is that, since one
step equates to one branch update cycle, the tree will grow too quickly, especially if we
want it to reach full size only when the step count is high enough, say 10,000. The second
problem results from the nature of the step-counter sensor: onSensorChanged() may be
called at irregular intervals, with a large step increase at one moment and a small change
at another. In particular, if the increase is very large, growTree() may take a long time to
run, freezing the watch face, because it updates all particles as many times as steps were
counted since the last sensor-changed event.

To solve the first problem, let’s recall our earlier observation that the algorithm, with
this current parameter selection, takes around 300 updates to completely grow the tree.
This means that one step should represent only a fraction of an update iteration. More
precisely, if our goal is to complete the tree at 10,000 steps, then the contribution of one
single step toward one update iteration would be 300/10,000.

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-2719-0_9
http://www.allitebooks.org

Chapter 12 ■ Visualizing Physical Activity

264

Secondly, a simple solution for the freezing issue could be to remove the first loop in
the growTree() function and run just one update per particle, while decreasing the value of
stepInc by exactly one. In this way, we do a single update per frame, so the watch face does
not freeze, but rather will keep growing the tree until stepInc reaches zero. Listing 12-11
shows the changes needed in the code to implement these tweaks.

Listing 12-11.  Controlling Growth Rate

...
int offset = -1;
int psteps, steps;
float stepInc = 0;
int stepGoal = 10000;
float stepScale = stepGoal / 300.0;
...
synchronized void growTree() {
 if (1 <= stepInc) {
 canvas.beginDraw();
 for (int i = 0; i < branches.size(); i++) {
 Branch branch = branches.get(i);
 branch.update();
 branch.display();
 }
 canvas.endDraw();
 stepInc--;
 }
}

synchronized void updateSteps(int value) {
 if (offset == -1) offset = value;
 steps = value - offset;
 stepInc += (steps - psteps) / stepScale;
 psteps = steps;
}
...

Blooming the Tree
We are very close to completing our watch face! We still need some improvements: an
ambient mode, which could simply be a text drawing of the total step count and the
time; an extra animation when approaching the desired step-count goal—the proverbial
10,000, for example; and a restart after reaching the goal. Listing 12-12 adds these
improvements, which we will discuss right after the code.

Chapter 12 ■ Visualizing Physical Activity

265

Listing 12-12.  Adding Flowers, Time, and Step Count

import android.content.Context;
import android.hardware.Sensor;
import android.hardware.SensorManager;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;

Context context;
SensorManager manager;
Sensor sensor;
SensorListener listener;

int offset = -1;
int tsteps, psteps, steps, phour;
float stepInc = 0;
int stepGoal = 10000;
float stepScale = stepGoal / 300.0;

ArrayList<Branch> branches = new ArrayList<Branch>();
PGraphics canvas;
color bloomColor = color(230, 80, 120, 120);

void setup() {
 fullScreen();
 noStroke();
 textFont(createFont("SansSerif-Bold", 28 * displayDensity));
 branches.add(new Branch());
 initCanvas();
 initCounter();
}

void draw() {
 background(0);
 String str = hour() + ":" + nfs(minute(), 2) + ":" +
 nfs(second(), 2) + "\n" +
 tsteps + " steps";
 if (wearInteractive()) {
 growTree();
 if (stepGoal <= steps) clearTree();
 image(canvas, 0, 0);
 textAlign(CENTER, BOTTOM);
 textSize(20 * displayDensity);
 fill(0, 80);
 } else {

www.allitebooks.com

http://www.allitebooks.org

Chapter 12 ■ Visualizing Physical Activity

266

 textAlign(CENTER, CENTER);
 textSize(28 * displayDensity);
 fill(200, 255);
 translate(0, wearInsets().bottom/2);
 }
 text(str, 0, 0, width, height);
}

synchronized void growTree() {
 if (1 <= stepInc) {
 canvas.beginDraw();
 for (int i = 0; i < branches.size(); i++) {
 Branch branch = branches.get(i);
 branch.update();
 branch.display();
 branch.bloom();
 }
 canvas.endDraw();
 stepInc--;
 }
}

synchronized void updateSteps(int value) {
 if (hour() < phour) tsteps = steps;
 if (offset == -1) offset = value;
 steps = value - offset;
 tsteps += steps - psteps;
 stepInc += (steps - psteps) / stepScale;
 psteps = steps;
 phour = hour();
}

synchronized void clearTree() {
 canvas.beginDraw();
 canvas.background(155, 211, 247);
 canvas.endDraw();
 branches.clear();
 branches.add(new Branch());
 offset = -1;
 steps = psteps = 0;
 bloomColor = color(random(255), random(255), random(255), 120);
}

Chapter 12 ■ Visualizing Physical Activity

267

void initCanvas() {
 canvas = createGraphics(width, height);
 canvas.beginDraw();
 canvas.background(155, 211, 247);
 canvas.noStroke();
 canvas.endDraw();
}

class Branch {
 PVector position;
 PVector velocity;
 float diameter;

 Branch() {
 position = new PVector(width/2, height);
 velocity = new PVector(0, -1);
 diameter = width/15.0;
 }
 Branch(Branch parent) {
 position = parent.position.copy();
 velocity = parent.velocity.copy();
 diameter = parent.diameter / 1.4142;
 parent.diameter = diameter;
 }
 void update() {
 if (1 < diameter) {
 position.add(velocity);
 float opening = map(diameter, 1, width/15.0, 1, 0);
 float angle = random(PI - opening * HALF_PI,
 TWO_PI + opening * HALF_PI);
 PVector shake = PVector.fromAngle(angle);
 shake.mult(0.1);
 velocity.add(shake);
 velocity.normalize();
 if (random(0, 1) < 0.04) branches.add(new Branch(this));
 }
 }
 void display() {
 if (1 < diameter) {
 canvas.fill(175, 108, 44, 50);
 canvas.ellipse(position.x, position.y, diameter, diameter);
 }
 }

www.allitebooks.com

http://www.allitebooks.org

Chapter 12 ■ Visualizing Physical Activity

268

 void bloom() {
 if (0.85 * stepGoal < steps && random(0, 1) < 0.001) {
 float x = position.x + random(-10, +10);
 float y = position.y + random(-10, +10);
 float r = random(5, 20);
 canvas.fill(bloomColor);
 canvas.ellipse(x, y, r, r);
 }
 }
}

void initCounter() {
 Context context = getContext();
 manager = (SensorManager)context.getSystemService(Context.SENSOR_SERVICE);
 sensor = manager.getDefaultSensor(Sensor.TYPE_STEP_COUNTER);
 listener = new SensorListener();
 manager.registerListener(listener, sensor,
 SensorManager.SENSOR_DELAY_NORMAL);
}

class SensorListener implements SensorEventListener {
 void onSensorChanged(SensorEvent event) {
 updateSteps(int(event.values[0]));
 }
 void onAccuracyChanged(Sensor sensor, int accuracy) { }
}

The implementation of ambient mode is fairly straightforward: drawing a screen-
centered text message. The tree blooming is also relatively simple: once we reach 85
percent of the total step goal, we place an ellipse near the current position of each branch
particle, with a probability of 0.001. One other function we need in the final watch face
is a reset after reaching the goal, so the canvas is cleared and all particles are removed
to start a new tree from scratch. This is done in the clearTree() function, synchronized
since it modifies the offset, pstep, and step variables that are also altered in every
sensor-changed event. Also, we added a “midnight reset” so that the total step count,
tstep, is set to the current step value when the hour wraps around back to zero (situation
which can only happen at midnight), with the line if (hour() < phour) tsteps =
steps in updateSteps().

Figure 12-10 shows a sequence of three screen captures with a tree at different
growth stages, from early in the step tracking until blooming when nearing the step-count
goal. In Figure 12-11, we can see how the watch face looks like in ambient and interactive
modes on an actual watch.

Chapter 12 ■ Visualizing Physical Activity

269

Figure 12-10.  Three stages in the growth of the tree

Testing and debugging this watch face can be challenging, as we discussed
previously, since we need to walk around long enough to observe changes in the growth
of the tree. However, we can easily generate synthetic data that resembles the output of
the step-count sensor. Listing 12-13 illustrates the changes needed in the code in order
to use a step-count generator instead of the step-count listener. These changes are in
fact fairly minimal, essentially launching a thread that runs the data-generation loop. We
can adjust the values in the loop to increase or decrease the frequency of the updates, as
well as the range of the values. This gives us enough flexibility to evaluate our code under
different scenarios that would be hard to test with real step-count data.

Figure 12-11.  Final version of the tree watch face, in ambient (left) and interactive (right)
modes

www.allitebooks.com

http://www.allitebooks.org

Chapter 12 ■ Visualizing Physical Activity

270

Listing 12-13.  Testing with Synthetic Data

...
void setup() {
 ...
 branches.add(new Branch());
 initCanvas();
 thread("generateData");
}
...
void generateData() {
 int total = 0;
 while (true) {
 total += int(random(10, 20));
 updateSteps(total);
 delay(500);
 }
}

The final step in the development process is to upload our watch face to the Google
Play Store. Android devices running Wear 2.x can install standalone apps and watch faces
without the need for a “companion” mobile app, as indicated in the online developer
documentation on packaging and distributing Wear apps: https://developer.android.
com/training/wearables/apps/packaging.html. To get the signed package for the
watch face from the PDE, we can follow the same steps for regular apps described in
Chapter 3.

First, we must write a package name in the manifest file inside the sketch’s folder.
A label for the service and the application are optional, but highly recommended, as it
will be used throughout the watch UI to identify the watch face. A complete manifest file
for the tree watch face is provided below:

<?xml version="1.0" encoding="UTF-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="1" android:versionName="1.0"
 package="com.example.running_tree">
 <uses-sdk android:minSdkVersion="25" android:targetSdkVersion="25"/>
 <uses-feature android:name="android.hardware.type.watch"/>
 <application android:icon="@drawable/icon"
 android:label="Running Tree" android:supportsRtl="true">
 <uses-library android:name="com.google.android.wearable"
 android:required="false"/>
 <meta-data android:name="com.google.android.wearable.standalone"
 android:value="true"/>
 <service android:label="Running Tree" android:name=".MainService"

 android:permission="android.permission.BIND_WALLPAPER">
 <meta-data android:name="android.service.wallpaper"
 android:resource="@xml/watch_face"/>
 <meta-data android:name=

https://developer.android.com/training/wearables/apps/packaging.html
https://developer.android.com/training/wearables/apps/packaging.html
http://dx.doi.org/10.1007/978-1-4842-2719-0_3

Chapter 12 ■ Visualizing Physical Activity

271

 "com.google.android.wearable.watchface.preview"

 android:resource="@drawable/preview_rectangular"/>
 <meta-data android:name=

 �"com.google.android.wearable.watchface.preview_
circular"

 android:resource="@drawable/preview_circular"/>
 <meta-data android:name=
 "com.google.android.wearable.watchface.companionConfigurationAction"
 android:value=
 "com.catinean.simpleandroidwatchface.CONFIG_DIGITAL"/>
 <intent-filter>
 <action android:name=
 "android.service.wallpaper.WallpaperService"/>
 <category android:name=
 "com.google.android.wearable.watchface.category.WATCH_FACE"/>
 </intent-filter>
 </service>
 <activity android:name="processing.android.PermissionRequestor"/>
 </application>
 <uses-permission android:name="android.permission.WAKE_LOCK"/>
</manifest>

Finally, we need to create a full icon set, including the six app icons for all DPI levels
(xxxhdpi through ldpi) and the circular and rectangular preview icons (Figure 12-12).
Although most current watches offer xhdpi resolution, this will probably change in the
near future as devices sporting screens with even higher resolutions become available.

Figure 12-12.  Icon set needed to export the signed package

www.allitebooks.com

http://www.allitebooks.org

Chapter 12 ■ Visualizing Physical Activity

272

Summary
This chapter concludes the section on wearable devices and watch faces. Although
wearable development is an entire field in its own right, we were able to apply most of the
techniques we learned in previous chapters to create interactive graphics and dynamic
visualizations of sensor data, all while taking into account some of the unique aspects of
wearable devices in terms of screen size, resolution, and battery life.

PART V

3D and VR

www.allitebooks.com

http://www.allitebooks.org

275© Andrés Colubri 2017
A. Colubri, Processing for Android, https://doi.org/10.1007/978-1-4842-2719-0_13

CHAPTER 13

3D in Processing

Our journey through Virtual Reality (VR) starts with this introduction to the basic
concepts of 3D programming with Processing: coordinate systems, 3D transformations,
lighting, texturing, and the creation of 3D shapes, which we can apply not only in VR
apps, but in any situation where we may need interactive 3D graphics.

The P3D Renderer
The development of VR apps has an important pre-requisite: learning how to create
interactive 3D graphics. Up to this point, we have only made two-dimensional drawings,
using either the default or the P2D renderer. Even though 2D rendering is a special case of
3D, there are many aspects of motion and interaction that are specific to 3D graphics with
which we need to become familiar.

Processing includes a renderer for drawing 3D scenes, appropriately called P3D. It
supports basic 3D features, such as lighting and texturing objects, but also more advanced
functionality, such as shaders. We can use P3D by setting the renderer parameter in the
size() or fullScreen() functions during setup(); e.g., size(width, height, P3D) or
fullScreen(P3D). After doing that, we can not only use all the 3D rendering functions
available in Processing, but also continue to make 2D drawings as we did before.

A 3D Hello World
Let’s start by writing a simple sketch that demonstrates the basics of 3D in Processing: a
rotating cube. Listing 12-1 includes translation and rotation transformations, as well as
default lighting.

https://doi.org/10.1007/978-1-4842-2719-0_13

Chapter 13 ■ 3D in Processing

276

Listing 13-1.  Basic 3D Sketch

float angle = 0;

void setup() {
 fullScreen(P3D);
 fill(#AD71B7);
}

void draw() {
 background(#81B771);
 lights();
 translate(width/2, height/2);
 rotateY(angle);
 rotateX(angle*2);
 box(300);
 angle += 0.01;
}

We will look at these functions more closely in subsequent sections, but as
an overview of what happens in draw(), we first “turn on” a set of default lights
with lights(), then translate the entire scene to the center of the screen with
translate(width/2, height/2), and apply two rotations, one along the y-axis with
rotateY(angle), and a second along the x-axis with rotateX(angle*2). As in 2D
drawing, these transformations affect all shapes we draw afterward, in this case the cube
drawn with box(300). We end by increasing the rotation angle so we have continuous
animation. Figure 13-1 shows the output of this sketch.

Figure 13-1.  Simple 3D rendering in Processing

www.allitebooks.com

http://www.allitebooks.org

Chapter 13 ■ 3D in Processing

277

The Camera
When we draw any 3D scene, there is a “camera” looking into the virtual space, and we
can think of the device’s screen as the viewport of that camera. Processing includes some
functions to manipulate the position and “virtual” lenses of the camera. In a VR sketch, on
the other hand, the Processing camera will be controlled automatically by the movement
of the phone in space. In either case, Processing’s camera is defined by three vectors: the
eye position, the center of the scene, and the “up” vector, illustrated in Figure 13-2.

These vectors can be set using the camera() function: camera(eyeX, eyeY, eyeZ,
centerX, centerY, centerZ, upX, upY, upZ). Calling camera() without any argument
will set the default camera’s position and orientation, in which the center is the
(0, 0, 0) point, the eye is placed along the z-axis, and the up direction is the positive y
vector. By continuously changing the eye’s position, we can look at the scene from any
vantage point. Listing 13-2 illustrates how to set these parameters.

Listing 13-2.  Camera Parameters

void setup() {
 fullScreen(P3D);
 fill(#AD71B7);
}

void draw() {
 background(#81B771);
 float t = millis()/1000.0;
 float ex = width/2 + 500 * cos(t);
 float ey = height/2 + 500 * sin(t);
 float ez = 1000 + 100 * cos(millis()/1000.0);
 camera(ex, ey, ez, width/2, height/2, 0, 0, 1, 0);
 lights();
 translate(width/2, height/2);
 box(300);
}

Figure 13-2.  Vectors defining position and orientation of the camera

Chapter 13 ■ 3D in Processing

278

We can not only set the camera’s position and orientation, but also choose how the
scene is projected onto the camera’s viewport (which can be thought as of choosing the
camera “lenses”). There are two types of projections: perspective and orthographic. They
are illustrated in Figure 13-3. Perspective projection, the default setting in P3D, is the one
that corresponds to how images are formed in the physical world. In it, objects are projected
onto the viewport plane following lines of view that converge into the “eye” position behind
the viewport. This simulates the effect of perspective, where distant objects look smaller. In
fact, Processing uses default perspective parameters so that a rectangle of dimensions (0, 0,
width, height) at z=0 exactly covers the entire output window. Thanks to these settings, we
can draw 2D shapes in P3D in the same way we did before.

In orthographic projection, on the other hand, the objects are projected onto
the viewport following lines perpendicular to it, so there is no decrease or increase in
size as objects move away from or toward the camera eye. The default settings of the
orthographic projection in Processing are such that the points of 3D coordinates (0, 0, z)
and (width, height, z) fall exactly on the upper right and lower left corners of the output
window, regardless of the value of z.

We can easily switch back and forth between these two projection modes with the
perspective() and ortho() functions. These functions have default settings as just
described, but we can also use them with additional arguments to adjust the field of
vision, the position of the camera eye, and other parameters: perspective(fovy, aspect,
zNear, zFar) and ortho(left, right, bottom, top, near, far). In Listing 13-3,
we tie the field of vision to time through a cosine function so it oscillates back and forth
between an angle of 10° (very narrow field of vision, object blows up to occupy almost the
entire screen) to 80° (very wide, object looks smaller than normal).

Figure 13-3.  Perspective (left) and orthographic (right) projections in Processing

www.allitebooks.com

http://www.allitebooks.org

Chapter 13 ■ 3D in Processing

279

Listing 13-3.  Perspective Parameters

float angle = 0;

void setup() {
 fullScreen(P3D);
 fill(#AD71B7);
}

void draw() {
 background(#81B771);
 float fov = radians(map(cos(millis()/1000.0), -1, +1, 10, 80));
 float ratio = float(width)/height;
 perspective(fov, ratio, 1, 2000);
 lights();
 translate(width/2, height/2);
 rotateY(angle);
 rotateX(angle*2);
 box(300);
 angle += 0.01;
}

A couple of additional things to note here include the setting of the width-to-height
aspect ratio, which in most situations should simply be the width/height, and the clipping
planes. These planes determine the visible volume along the z direction by having a near
and a far value: anything closer than the former or farther than the latter is clipped out.

■■ Note  The camera() and perspective() functions are not particularly intuitive to use,
especially if one would like to think of camera movements and adjustments in physical
space (like zooming, panning, and rolling), but there are libraries that simplify camera
handling, among them PeasyCam, Obsessive Camera Direction, and proscene. Appendix B
includes a list of libraries that we can use from Android mode.

Immediate Versus Retained Rendering
One important aspect about how we were handling 3D scenes in previous examples
is that we were creating a new box from scratch in every frame and discarding it right
afterward. This way of drawing 3D (and also 2D) graphics, known as immediate rendering,
is fine if we have relatively few objects in our scene, but might slow down rendering if
we have a more complex scene with many shapes. This is particularly relevant with our
goal of writing VR apps, as we will discuss further in the following chapters, because the
rendering animation should be as smooth as possible to ensure that the viewer does not
experience motion sickness resulting from low or uneven framerates.

Chapter 13 ■ 3D in Processing

280

Processing provides another way of drawing geometry, called retained rendering,
to improve performance. With retained rendering, we create our shapes once, and then
redraw them as many times as needed. We already used this technique in Chapter 4, and
it can be much faster when drawing complex scenes. Retained rendering will become
very handy later when working with VR.

Using retained rendering is easy, we only need to store our shapes in a PShape object.
Processing provides a few pre-defined 3D shapes, like boxes and spheres, which can be
created with a single call, as shown in Listing 13-4.

Listing 13-4.  Using Retained Rendering

float angle = 0;
PShape cube;

void setup() {
 fullScreen(P3D);
 perspective(radians(80), float(width)/height, 1, 1000);
 PImage tex = loadImage("mosaic.jpg");
 cube = createShape(BOX, 400);
 cube.setTexture(tex);
}

void draw() {
 background(#81B771);
 lights();
 translate(width/2, height/2);
 rotateY(angle);
 rotateX(angle*2);
 shape(cube);
 angle += 0.01;
}

In this code, once we obtain our cube object from the createShape() function,
we can make changes to it. For example, we can apply a texture to it so its faces are
“wrapped” with the image for a more interesting look. The final output is depicted in
Figure 13-4.

In these first four examples, we have applied most of the basic 3D rendering
techniques (creating shapes, applying transformations, defining lighting, and texturing),
and we will go through each one of these topics in more detail in the remaining sections
of this chapter.

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-2719-0_4
http://www.allitebooks.org

Chapter 13 ■ 3D in Processing

281

3D Transformations
We have three types of 3D transformations: translations (moving from point A to B),
rotations (turning around an axis), and scaling (contracting or expanding uniformly or
along one direction). Listings 13-5 through 13-7 exemplify each one separately.

Listing 13-5.  Applying a Translation

void setup() {
 fullScreen(P3D);
 fill(120);
}

void draw() {
 background(157);
 float x = map(cos(millis()/1000.0), -1, +1, 0, width);
 translate(x, height/2);
 box(200);
}

For the rotation, we need to do a translation to the center of the screen first, since the
box() function places the cube at (0, 0, 0).

Figure 13-4.  Drawing a textured PShape

Chapter 13 ■ 3D in Processing

282

Listing 13-6.  Applying a Rotation

void setup() {
 fullScreen(P3D);
 fill(120);
}

void draw() {
 background(157);
 translate(width/2, height/2);
 rotateY(millis()/1000.0);
 box(200);
}

For scaling, a similar observation applies—we apply the translation (width/2,
height/2) first so the box appears in the center of the screen.

Listing 13-7.  Applying Scaling

void setup() {
 fullScreen(P3D);
 fill(120);
}

void draw() {
 background(157);
 translate(width/2, height/2);
 float f = map(cos(millis()/1000.0), -1, +1, 0.1, 5);
 scale(f);
 box(200);
}

■■ Note  The relative size of the shapes in all these examples will be different depending
on the device’s DPI. We can use the densityDisplay system constant to scale them up or
down so they look consistent across screens with different resolutions and sizes.

Combining Transformations
The previous examples showed how to use 3D transformations separately (although in
the case of the rotation and scaling, there was the initial translation to the center of the
screen). But in most situations we need to combine translations, rotations, and scalings,
typically by defining a chain of transformations that put an object in the desired spot in
3D space and with the intended proportions. In fact, transformations can be composed
to create very complex movements, with a couple of “rules” to keep in mind: (1) the

www.allitebooks.com

http://www.allitebooks.org

Chapter 13 ■ 3D in Processing

283

order of transformations cannot be exchanged (for example, applying a rotation and
then a translation is not equivalent to translating first and rotating later, as we discussed
in the context of 2D drawing in Chapter 4); and (2) a chain of transformations can be
manipulated with pushMatrix() and popMatrix(), with pushMatrix() preserving
the current transformation composition, thus isolating the effect of additional
transformations that happen between it and the matching popMatrix(). We saw some
examples of this in Chapter 2.

Listing 13-8 shows an application of transformation composition, where the idea is
to create and animate an articulated “arm” with multiple segments, which we can see in
Figure 13-5.

Listing 13-8.  Composing 3D Transformations

float[] r1, r2;

void setup() {
 fullScreen(P3D);
 noStroke();
 r1 = new float[100];
 r2 = new float[100];
 for (int i = 0; i < 100; i++) {
 r1[i] = random(0, 1);
 r2[i] = random(0, 1);
 }
}

void draw() {
 background(157);
 lights();
 translate(width/2, height/2);
 scale(4);
 for (int i = 0; i < 100; i++) {
 float tx = 0, ty = 0, tz = 0;
 float sx = 1, sy = 1, sz = 1;
 if (r1[i] < 1.0/3.0) {
 rotateX(millis()/1000.0);
 tz = sz = 10;
 } else if (1.0/3.0 < r1[i] && r1[i] < 2.0/3.0) {
 rotateY(millis()/1000.0);
 tz = sz = 10;
 } else {
 rotateZ(millis()/1000.0);
 if (r2[i] < 0.5) {
 tx = sx = 10;
 } else {
 ty = sy = 10;
 }
 }

http://dx.doi.org/10.1007/978-1-4842-2719-0_4
http://dx.doi.org/10.1007/978-1-4842-2719-0_2

Chapter 13 ■ 3D in Processing

284

 translate(tx/2, ty/2, tz/2);
 pushMatrix();
 scale(sx, sy, sz);
 box(1);
 popMatrix();
 translate(tx/2, ty/2, tz/2);
 }
}

The important points in this example are: first, we use random numbers (r1 and r2)
to decide at each joint which axis we rotate the next segment around, and also which axis
we extend the segment along; and second, the use of scale() in two different places—
right after centering the scene, to increase the size of the entire arm, and before drawing
each arm and only along the displacement axis, so the segments are properly connected
with each other. Also, notice that the random numbers are pre-calculated in setup() and
stored in float arrays; otherwise, the geometry would change entirely from frame to frame.

3D Shapes
As we did in 2D, we can generate primitive shapes using Processing’s functions. All the
2D primitives (triangle, ellipse, rect, and quads) can be used in 3D, with the addition of
two new 3D primitives (box and sphere). Listing 13-9 draws all these primitives in a single
sketch, and the output is shown in Figure 13-6.

Figure 13-5.  Animated arm with combined 3D transformations

www.allitebooks.com

http://www.allitebooks.org

Chapter 13 ■ 3D in Processing

285

Listing 13-9.  2D and 3D Primitives

float[] r1, r2;
void setup() {
 fullScreen(P3D);
}

void draw() {
 background(157);

 translate(width/2, height/2);

 pushMatrix();
 translate(-width/3, -height/4);
 rotateY(millis()/2000.0);
 ellipse(0, 0, 200, 200);
 popMatrix();

 pushMatrix();
 translate(0, -height/4);
 rotateY(millis()/2000.0);
 triangle(0, +150, -150, -150, +150, -150);
 popMatrix();

 pushMatrix();
 translate(+width/3, -height/4);
 rotateY(millis()/2000.0);
 rect(-100, -100, 200, 200, 20);
 popMatrix();

 pushMatrix();
 translate(-width/3, +height/4);
 rotateY(millis()/2000.0);
 quad(-40, -100, 120, -80, 120, 150, -80, 150);
 popMatrix();

 pushMatrix();
 translate(0, +height/4);
 rotateY(millis()/2000.0);
 box(200);
 popMatrix();

 pushMatrix();
 translate(+width/3, +height/4);
 rotateY(millis()/2000.0);
 sphere(150);
 popMatrix();
}

Chapter 13 ■ 3D in Processing

286

Custom Shapes
We saw in Chapter 4 that it is possible to create custom shapes using the beginShape
()/vertex()/endShape() functions, with the appropriate shape type (POINTS, LINES,
TRIANGLES, etc.). As with the earlier primitives, all the code we learned for 2D rendering
can be reused in P3D without any changes, but now there is the possibility of adding a
z coordinate. For instance, let’s create in Listing 13-10 a terrain with QUADS and some
randomness in the height from the noise() function.

Listing 13-10.  Creating a Custom Shape with QUADS

void setup() {
 fullScreen(P3D);
}

void draw() {
 background(150);
 lights();
 translate(width/2, height/2);
 rotateX(QUARTER_PI);
 beginShape(QUADS);
 float t = 0.0001 * millis();
 for (int i = 0; i < 50; i++) {
 for (int j = 0; j < 50; j++) {
 float x0 = map(i, 0, 50, -width/2, width/2);
 float y0 = map(j, 0, 50, -height/2, height/2);
 float x1 = x0 + width/50.0;
 float y1 = y0 + height/50.0;
 float z1 = 200 * noise(0.1 * i, 0.1 * j, t);

Figure 13-6.  2D and 3D primitives rendered with P3D

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-2719-0_4
http://www.allitebooks.org

Chapter 13 ■ 3D in Processing

287

 float z2 = 200 * noise(0.1 * (i + 1), 0.1 * j, t);
 float z3 = 200 * noise(0.1 * (i + 1), 0.1 * (j + 1), t);
 float z4 = 200 * noise(0.1 * i, 0.1 * (j + 1), t);
 vertex(x0, y0, z1);
 vertex(x1, y0, z2);
 vertex(x1, y1, z3);
 vertex(x0, y1, z4);
 }
 }
 endShape();
}

The noise is generated using the (i, j) indices of the vertices defining the mesh,
so it ensures that the height displacement is consistent at the vertices shared between
contiguous quads. We can see the result in Figure 13-7.

Figure 13-7.  Terrain generated with a QUADS shape

Chapter 13 ■ 3D in Processing

288

PShape Objects
Creating a large shape as we just did could lead to reduced performance, especially on
basic smartphones. If the geometry is static the whole time the sketch is running, we can
store it in a PShape object for faster retained rendering, as shown in Listing 13-11.

Listing 13-11.  Storing a Custom Shape Inside a PShape

PShape terrain;

void setup() {
 fullScreen(P3D);
 terrain = createShape();
 terrain.beginShape(QUADS);
 for (int i = 0; i < 50; i++) {
 for (int j = 0; j < 50; j++) {
 float x0 = map(i, 0, 50, -width/2, width/2);
 float y0 = map(j, 0, 50, -height/2, height/2);
 float x1 = x0 + width/50.0;
 float y1 = y0 + height/50.0;
 float z1 = 200 * noise(0.1 * i, 0.1 * j, 0);
 float z2 = 200 * noise(0.1 * (i + 1), 0.1 * j, 0);
 float z3 = 200 * noise(0.1 * (i + 1), 0.1 * (j + 1), 0);
 float z4 = 200 * noise(0.1 * i, 0.1 * (j + 1), 0);
 terrain.vertex(x0, y0, z1);
 terrain.vertex(x1, y0, z2);
 terrain.vertex(x1, y1, z3);
 terrain.vertex(x0, y1, z4);
 }
 }
 terrain.endShape();
}

void draw() {
 background(150);
 lights();
 translate(width/2, height/2);
 rotateX(QUARTER_PI);
 shape(terrain);
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 13 ■ 3D in Processing

289

We can still modify a PShape object after we have created it. For example, Listing 13-12
adds some random displacement to the vertices in each frame with the setVertex()
function (the setup is identical to Listing 13-11), so the entire surface is now animated.

Listing 13-12.  Modifying a PShape After Creating It

...
void draw() {
 background(150);
 lights();
 translate(width/2, height/2);
 rotateX(QUARTER_PI);
 updateShape();
 shape(terrain);
 println(frameRate);
}

void updateShape() {
 float t = 0.0001 * millis();
 int vidx = 0;
 for (int i = 0; i < 50; i++) {
 for (int j = 0; j < 50; j++) {
 float x0 = map(i, 0, 50, -width/2, width/2);
 float y0 = map(j, 0, 50, -height/2, height/2);
 float x1 = x0 + width/50.0;
 float y1 = y0 + height/50.0;
 float z1 = 200 * noise(0.1 * i, 0.1 * j, t);
 float z2 = 200 * noise(0.1 * (i + 1), 0.1 * j, t);
 float z3 = 200 * noise(0.1 * (i + 1), 0.1 * (j + 1), t);
 float z4 = 200 * noise(0.1 * i, 0.1 * (j + 1), t);
 terrain.setVertex(vidx++, x0, y0, z1);
 terrain.setVertex(vidx++, x1, y0, z2);
 terrain.setVertex(vidx++, x1, y1, z3);
 terrain.setVertex(vidx++, x0, y1, z4);
 }
 }
}

However, by modifying all the vertices of the PShape object, we will likely see the
performance of the sketch return to the levels of immediate rendering. If we modify only
some vertices, then performance would still be better than in immediate rendering.

We can group PShape objects of different types as child objects into a single
containing PShape. Processing will render them all together as a single entity, which will
also result in higher framerates than if they were drawn either with immediate rendering
or as separate PShape objects. In Listing 13-13, we read the 3D coordinates of 1,000 points
from a text file using loadStrings() and then draw them as boxes or spheres.

Chapter 13 ■ 3D in Processing

290

Listing 13-13.  Creating a Group Shape

PVector[] coords;
PShape group;

void setup() {
 fullScreen(P3D);
 textFont(createFont("SansSerif", 20 * displayDensity));
 sphereDetail(10);
 group = createShape(GROUP);
 String[] lines = loadStrings("points.txt");
 coords = new PVector[lines.length];
 for (int i = 0; i < lines.length; i++) {
 String line = lines[i];
 String[] valores = line.split(" ");
 float x = float(valores[0]);
 float y = float(valores[1]);
 float z = float(valores[2]);
 coords[i] = new PVector(x, y, z);
 PShape sh;
 if (random(1) < 0.5) {
 sh = createShape(SPHERE, 20);
 sh.setFill(#E8A92A);
 } else {
 sh = createShape(BOX, 20);
 sh.setFill(#4876B2);
 }
 sh.translate(x, y, z);
 sh.setStroke(false);
 group.addChild(sh);
 }
 noStroke();
}

void draw() {
 background(255);
 fill(0);
 text(frameRate, 50, 50);
 fill(255, 0, 0);
 lights();
 translate(width/2, height/2, 0);
 rotateY(map(mouseX, 0, width, 0, TWO_PI));
 shape(group);
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 13 ■ 3D in Processing

291

We applied a few optimization tricks to this code to reduce the complexity of the
scene: we set the sphere detail to 10 (the default is 30) and disabled the stroke. Stroke
lines in particular can add a lot of extra geometry to a shape, and thus slow down
rendering. The final result should look something like Figure 13-8, with a reasonable
performance even on low-end phones (fps > 40).

■■ Note  Performance in 3D is controlled by several factors, but one of the most important
is the total vertex count in the scene. It is important that we do not add unnecessary vertices
to a scene, keeping in mind that users will look at our sketches on a (relatively) small
screen. Other optimizations, such as using PShapes to store static geometry, could be also
useful to keep a high framerate.

Loading OBJ Shapes
The OBJ file format (http://paulbourke.net/dataformats/obj/) is a simple text-based
format used to store 3D geometry and material definitions. It was created back in the
1980s by Wavefront Technologies, a company that developed animation software used
in movies and other industries. Although it is fairly basic, it is supported by most 3D
modeling tools, and there are many online repositories that include free 3D models in this
format. Processing’s API includes the loadShape() function, which we have already used
to load SVG shapes in 2D, and which would read OBJ shapes in P3D, as demonstrated in
Listing 13-14.

Figure 13-8.  Group shape containing shapes of different kinds

http://paulbourke.net/dataformats/obj/

Chapter 13 ■ 3D in Processing

292

Listing 13-14.  Loading an OBJ File

PShape model;
PVector center;

void setup() {
 fullScreen(P3D);
 model = loadShape("Deer.obj");
 center = getShapeCenter(model);
 float dim = max(model.getWidth(), model.getHeight(), model.getDepth());
 float factor = width/(3 * dim);
 model.rotateX(PI);
 model.scale(factor);
 center.mult(factor);
 center.y *= -1;
}

void draw() {
 background(157);
 lights();
 translate(width/2, height/2);
 translate(-center.x, -center.y, -center.z);
 rotateY(millis()/1000.0);
 shape(model);
}

PVector getShapeCenter(PShape sh) {
 PVector bot = new PVector(+10000, +10000, +10000);
 PVector top = new PVector(-10000, -10000, -10000);
 PVector v = new PVector();
 for (int i = 0; i < sh.getChildCount(); i++) {
 PShape child = sh.getChild(i);
 for (int j = 0; j < child.getVertexCount(); j++) {
 child.getVertex(j, v);
 bot.x = min(bot.x, v.x);
 bot.y = min(bot.y, v.y);
 bot.z = min(bot.z, v.z);
 top.x = max(top.x, v.x);
 top.y = max(top.y, v.y);
 top.z = max(top.z, v.z);
 }
 }
 return PVector.add(top, bot).mult(0.5);
}

In this code, we start by loading the shape, and then we calculate some parameters
so it is placed it correctly in the scene. First, we compute the center position of the shape
with the getShapeCenter() function, where we go over all the vertices in the shape and

www.allitebooks.com

http://www.allitebooks.org

Chapter 13 ■ 3D in Processing

293

get the maximum and minimum values across each axis. The two vectors holding the
minimum and maximum values, bot and top, are the opposite corners of the bounding
box enclosing the entire shape. The middle point of the bounding box is the center of the
shape, which we want to coincide with the center of the screen, as seen in Figure 13-9.

Also, the coordinates in an OBJ model might have a very different range of values
from what we use in Processing (typically 0 – width and 0 – height), so by getting
the dimensions of the model along each axis (using getWidth(), getHeight(), and
getDepth()), we can calculate a factor by which to scale the shape up or down to fit the
screen. The shape also needs to be rotated 180° around x, since it is upside down. This
is often the case when loading OBJ files, since a common convention in 3D graphics is to
have the y-axis pointing upward, while Processing uses an y-axis pointing down, a more
common setting in graphic design tools. Note that we need to scale and invert the center
vector separately, since it is computed from the input coordinates of the shape, which are
not affected by the shape transformations.

We retrieve the shape’s coordinates with a getVertex() call, where we reuse the same
PVector object v. This is because if we were to create a new temporary PVector for each
vertex, all these objects would need to be discarded from memory at the end. This memory-
release operation, although very fast, could add up to a noticeable delay when freeing
thousands of PVector objects, potentially causing a hiccup in the animation.

Lighting and Texturing
Lights and textures are two key aspects to consider when we create a 3D scene. Without
them, most objects will look like flat shapes without any sense of depth or surface
complexity. Lighting and texturing algorithms simulate how lights and materials interact
with each other in the physical world so that 3D graphics are realistic enough to convey a
credible space. We do not need photo-realism, but a combination of lights and materials

Figure 13-9.  3D shape loaded from an OBJ file

Chapter 13 ■ 3D in Processing

294

that approximates reality to some extent is necessary to engage our users. Lights and
textures become even more critical when working with VR, where users are entirely
surrounded by a synthetic 3D scene.

Processing has several functions we can apply to create light sources and set the
material properties of 3D shapes, including textures. The lighting model that underlies these
functions in the P3D renderer is a first approximation of more complex models. As such, it is
not capable of generating shadows or rendering rugged or bumpy surfaces, but it can handle
phenomena such as brightness and emissivity of a material, light falloffs, directional light
sources, and spotlights. However, we can implement our own, more realistic lighting models
through custom shaders (https://processing.org/tutorials/pshader/).

Light Sources and Material Properties
The final color of a shape in a 3D scene in Processing is determined by the interplay
between its material properties and the characteristics of the light sources. Very briefly,
the color of a light source will affect a shape depending on whether the corresponding
material property of the shape has been set to a color that matches to some degree the
light-source color. The most important property is the fill color. For instance, if a light
source has an RGB color of (200, 150, 150), and the fill color of the shape is (255, 255, 20),
the shape will reflect the entirety of the red and green components of the light, but only a
small fraction of its blue component.

There are four types of light sources in Processing:

	 1)	 Ambient: represents a light that doesn’t come from a specific
direction; the rays of light have bounced around so much that
objects are evenly lit from all sides. The function that sets the
ambient light is

ambientLight(c1, c2, c3);

The color of the ambient light is (c2, c2, c3), which is
interpreted according to the current color mode.

	 2)	 Point light: a light that has a specific location in space and
emits in all directions from that location, which is the center.
Its function is

pointLight(c1, c2, c3, x, y, z);

The position of the point light is given by (x, y, z), while its
color is given by (c1, c2, c3).

www.allitebooks.com

https://processing.org/tutorials/pshader/
http://www.allitebooks.org

Chapter 13 ■ 3D in Processing

295

	 3)	 Directional light: represents a light source that is far enough
from the objects that all its rays follow the same direction
(the sun being an example of a directional light source). We
configure it with:

directionalLight(c1, c2, c3, nx, ny, nz);

The direction of the directional light is given by (nx, ny, nz),
while its color is given by (c1, c2, c3).

	 4)	 Spotlight: a source that illuminates all objects within a
cone centered at the light position. A spotlight has several
parameters:

spotLight(c1, c2, c3, x, y, z, nx, ny, nz, angle,
concentration)

As before, the position of the spotlight is given by (x, y, z), and
its color by (c1, c2, c3). The additional parameters are (nx, ny,
nz), the direction of the cone (not of the rays though, which
are cast away from the origin as in a point light), the aperture
angle of the cone, and the concentration toward the center of
the cone.

Let’s now consider Listing 13-15 to see how this works with a few shapes and a
couple of objects.

Listing 13-15.  Lighting a 3D Scene

void setup() {
 fullScreen(P3D);
 noStroke();
}

void draw() {
 background(20);
 translate(width/2, height/2);

 float pointX = map(mouseX, 0, width, -width/2, +width/2);
 float dirZ = map(mouseY, 0, height, 0, -1);
 pointLight(200, 200, 200, pointX, 0, 600);
 directionalLight(100, 220, 100, 0, 1, dirZ);

 rotateY(QUARTER_PI);

 fill(255, 250, 200);
 box(320);

Chapter 13 ■ 3D in Processing

296

 translate(-400, 0);
 fill(200, 200, 250);
 sphere(160);

 translate(0, +110, 360);
 fill(255, 200, 200);
 box(100);
}

In this example, we have two light sources: a bright gray point light and a green
directional light. We can control the x coordinate of the point light by swiping horizontally
and the z coordinate of the directional light by swiping vertically. Since each object has
a different fill color that “reflects” each of the incoming lights to a different extent, the
final appearance of the scene can change quite significantly depending on the position
and direction of the lights, as we can see in Figure 13-10. For example, the larger the
coordinate of the directional light along z, the more directly it impacts the shapes with
faces that are perpendicular to z, and so we see an increase of the overall green hue.

■■ Note  We should set the lights in every call of the draw() function; otherwise, they
won’t be active. We can set a default lighting configuration, sometimes enough for quick
tests, by calling the lights() function.

The fill color, which determines how the surface reflects the incoming light color, is
not the only material property we can adjust. We have the following additional properties:

	 1)	 Emissiveness: the capacity of emitting light on its own. It is
controlled by the following function:

emissive(c1, c2, c2)

where (c1, c2, c3) the emissive color of the material.

Figure 13-10.  Color of shapes in a scene change as light sources move around

www.allitebooks.com

http://www.allitebooks.org

Chapter 13 ■ 3D in Processing

297

	 2)	 Shininess: the amount of gloss on the surface of shapes. We
only need to set a single parameter with

shininess(s)

with s being the level of gloss, going from 0 (no shininess) to 1
(maximum shininess).

	 3)	 Specularity: the capacity to create specular reflections. The
way it works is by calling the following function:

specular(c1, c2, c2)

with the color (c1, c2, c3) of the highlights.

By adjusting these three material properties, we can generate a wide range of
material surfaces, even if the fill color is the same across the materials, as demonstrated
in Listing 13-16, whose output is depicted in Figure 13-11.

Listing 13-16.  Material Properties

void setup() {
 fullScreen(P3D);
 noStroke();
}

void draw() {
 background(0);
 translate(width/2, height/2);

 directionalLight(255, 255, 255, 0, 0, -1);

 pushMatrix();
 translate(-width/3, 0);
 fill(250, 100, 50);
 specular(200, 250, 200);
 emissive(0, 0, 0);
 shininess(10.0);
 sphere(200);
 popMatrix();

 pushMatrix();
 fill(250, 100, 50);
 specular(255);
 shininess(1.0);
 emissive(0, 20, 0);
 sphere(200);
 popMatrix();

Chapter 13 ■ 3D in Processing

298

 pushMatrix();
 translate(+width/3, 0);
 fill(250, 100, 50);
 specular(255);
 shininess(2.0);
 emissive(50, 10, 100);
 sphere(200);
 popMatrix();
}

As with other properties in Processing, the emissive(), specular(), and
shininess() functions set the corresponding properties for all shapes drawn afterward.
Calling pushStyle() and popStyle() also act on the material properties, including the
fill, emissiveness, and specular colors, and the shininess factor.

Texture Mapping
The use of fill color and other material properties gives us significant latitude to define
how a specific shape will look under different lighting scenarios, ranging from no lights
(in which case the fill color is used to paint shapes uniformly) to more complex situations
with multiple light sources. However, shapes are still relatively “flat” in the sense that they
look like they are made of a single material. Texture mapping allows us to address that
uniformity and to create more-complex-looking surfaces with ease by simply “wrapping”
the 3D shapes with a texture image, illustrated with a sphere in Figure 13-12.

Figure 13-11.  Spheres with different material properties

www.allitebooks.com

http://www.allitebooks.org

Chapter 13 ■ 3D in Processing

299

Primitive shapes, such as boxes and spheres, can be textured right away by providing
a suitable image, which is done in Listing 13-17.

Listing 13-17.  Texturing a Sphere

PShape earth;
PImage texmap;

void setup() {
 fullScreen(P3D);
 texmap = loadImage("earthmap1k.jpg");
 earth = createShape(SPHERE, 300);
 earth.setStroke(false);
 earth.setTexture(texmap);
}

void draw() {
 background(255);
 translate(width/2, height/2);
 rotateY(0.01 * frameCount);
 shape(earth);
}

When we create custom shapes, we need to provide some extra information to apply
a texture successfully: texture coordinates. These coordinates indicate which pixel (u, v)
in the image goes to which vertex (i, j) in the shape, and using those specifications, P3D is
able to apply all the pixels in the image onto the entire shape.

The simplest texture mapping would be that of a rectangle, illustrated by
Listing 13-18, where we only need to match the corners of the image with the four
vertices of the QUAD.

Figure 13-12.  Texture mapping a sphere with an image of Earth

Chapter 13 ■ 3D in Processing

300

Listing 13-18.  Texturing a QUAD Shape

PImage texmap;

void setup() {
 fullScreen(P3D);
 texmap = loadImage("woodstock.png");
 noStroke();
}

void draw() {
 background(255);
 translate(width/2, height/2);
 rotateY(0.01 * frameCount);
 scale(displayDensity);
 beginShape(QUAD);
 texture(texmap);
 vertex(-150, -150, 0, 0);
 vertex(-150, 150, 0, texmap.height);
 vertex(150, 150, texmap.width, texmap.height);
 vertex(150, -150, texmap.width, 0);
 endShape();
}

Sometimes, we might find it more convenient to specify the image pixels using
normalized coordinates, which allow us to texture a shape without referring to the
image’s width and height. For instance, we can use the normalized value (0.5, 0.5) to
indicate the center pixel of an image, instead of (img.width/2, img.height/2). We switch
between default (IMAGE) and normalized (NORMAL) modes using the textureMode()
function. Once we select the normal mode, the (u, v) values should range between 0 and 1,
as in Listing 13-19.

Listing 13-19.  Using Normalized Texture Coordinates

PImage texmap;

void setup() {
 fullScreen(P3D);
 texmap = loadImage("woodstock.png");
 textureMode(NORMAL);
 noStroke();
}

void draw() {
 background(255);
 translate(width/2, height/2);
 rotateY(0.01 * frameCount);
 beginShape(QUAD);

www.allitebooks.com

http://www.allitebooks.org

Chapter 13 ■ 3D in Processing

301

 texture(texmap);
 vertex(-150, -150, 0, 0);
 vertex(-150, 150, 0, 1);
 vertex(150, 150, 1, 1);
 vertex(150, -150, 1, 0);
 endShape();
}

With more complex shapes, we need to make sure that the texture coordinates are
calculated correctly so the final textured object looks as we intended. For example, if we
go back to the terrain example from Listing 13-11, we have the (i, j) indices of the grid,
which we can use to obtain the corresponding normalized texture coordinates with the
map() function. Listing 13-20 shows how to do this, and the corresponding output is
shown in Figure 13-13.

Listing 13-20.  Texturing a Complex Shape

PShape terrain;

void setup() {
 fullScreen(P3D);
 PImage dirt = loadImage("dirt.jpg");
 textureMode(NORMAL);
 terrain = createShape();
 terrain.beginShape(QUADS);
 terrain.noStroke();
 terrain.texture(dirt);
 for (int i = 0; i < 50; i++) {
 for (int j = 0; j < 50; j++) {
 float x0 = map(i, 0, 50, -width/2, width/2);
 float y0 = map(j, 0, 50, -width/2, width/2);
 float u0 = map(i, 0, 50, 0, 1);
 float v0 = map(j, 0, 50, 0, 1);
 float u1 = map(i + 1, 0, 50, 0, 1);
 float v1 = map(j + 1, 0, 50, 0, 1);
 float x1 = x0 + width/50.0;
 float y1 = y0 + width/50.0;
 float z1 = 200 * noise(0.1 * i, 0.1 * j, 0);
 float z2 = 200 * noise(0.1 * (i + 1), 0.1 * j, 0);
 float z3 = 200 * noise(0.1 * (i + 1), 0.1 * (j + 1), 0);
 float z4 = 200 * noise(0.1 * i, 0.1 * (j + 1), 0);
 terrain.vertex(x0, y0, z1, u0 ,v0);
 terrain.vertex(x1, y0, z2, u1 ,v0);
 terrain.vertex(x1, y1, z3, u1 ,v1);
 terrain.vertex(x0, y1, z4, u0 ,v1);
 }
 }
 terrain.endShape();
}

Chapter 13 ■ 3D in Processing

302

void draw() {
 background(150);
 lights();
 translate(width/2, height/2);
 rotateX(QUARTER_PI);
 shape(terrain);
}

It is worth noting that (u, v) texture coordinates, in the same way as (x, y, z)
coordinates, don’t have to be static. Even in a PShape object, we can modify the texture
coordinates dynamically using the setTextureUV() function.

Summary
With the help of the techniques we learned in this chapter, we will be able to create
interactive 3D graphics in Android apps using Processing, including lighting, texturing,
objects created on the fly and also those loaded from OBJ models, as well as performance
tricks. Irrespective of whether we are interested in VR or not, these techniques provide a
useful toolkit for any 3D development we may want to do for games, visualizations, and
other types of applications.

Figure 13-13.  Terrain shape with a dirt texture applied to it

www.allitebooks.com

http://www.allitebooks.org

303© Andrés Colubri 2017
A. Colubri, Processing for Android, https://doi.org/10.1007/978-1-4842-2719-0_14

CHAPTER 14

VR Basics

In this chapter, we will learn some of the basic techniques to create VR apps with
Processing. These techniques cover object selection, interaction, and movement in VR
space, as well as using eye coordinates to create static frames of reference to facilitate the
user experience.

Google VR
We may think of virtual reality as a recent invention, but it has a long history dating back
at least to the 1950s (https://en.wikipedia.org/wiki/Virtual_reality#History), and
even earlier if we consider stereoscopic photo viewers from the nineteenth century as
predecessors to modern VR. After entering the popular consciousness a few decades ago
thanks to movies and early VR headsets for gaming consoles, rapid advances in computer
technology have made it possible to experience VR with highly immersive graphics and
interaction. Part of the wider appeal of VR in recent years was spearheaded by the Oculus
Rift headset, which began as a Kickstarter project in 2012 and sparked a growing industry
that now includes the HTC Vive, the PlayStation VR, and Google VR.

Google VR, in contrast to systems like the Vive or the Oculus, which require a dedicated
desktop computer to drive the graphics, can be experienced just with a smartphone attached
to an inexpensive cardboard headset. This has advantages and disadvantages: on one hand,
it makes VR very accessible and easy to try out, while on the other hand the experience may
not be as rich as the one you could have with more sophisticated VR systems.

Cardboard and Daydream
The VR platform from Google supports two kinds of hardware: the original Cardboard
and the newer Daydream. With Cardboard, the headset can be as simple as a folded
cardboard cutout to support the phone, paired with plastic lenses for viewing.
A Cardboard headset is not meant to be worn for extended periods of time, as we
must hold it as if it were binoculars. Most recent Android phones could be used with
a Cardboard headset (the next section goes over the hardware requirements). With
Daydream, Google introduced a more elaborate headset made of fabric to ensure its light
weight when wearing it for a long time. Daydream also uses standalone smartphones to
drive the VR experience; however, Daydream-compatible hardware is more limited, as
it must be of higher capacity than that used with Cardboard. All VR content designed for
Cardboard should work on Daydream, but the reverse is not necessarily true.

https://doi.org/10.1007/978-1-4842-2719-0_14
https://en.wikipedia.org/wiki/Virtual_reality#History)

Chapter 14 ■ VR Basics

304

Hardware Requirements
Cardboard requires a smartphone with at least a gyroscope so head motion can be
properly tracked. This is a fairly minimal requirement, since most Android phones on
the market in the last couple of years have included a gyro. Daydream is supported by
high-end devices, like the Google Pixel and Asus ZenFone AR (https://vr.google.
com/daydream/smartphonevr/phones/). In general, both for Cardboard and Daydream,
a smartphone with a fast processor is recommended, or the animation might not be
smooth enough, dramatically affecting the quality of the VR experience.

VR in Processing
Processing for Android includes a VR library, which acts as a simplified interface to
Google VR and automatically configures Processing’s 3D view based on the head-tracking
data from the phone’s sensors. Using VR in Processing requires two steps. First, select the
VR option in the Android menu in the PDE, as seen in Figure 14-1.

The second step is to import the VR library into our code and set the STEREO renderer
in the fullScreen() function. This renderer draws the 3D scene in our sketch with
the camera transformations required to follow the head movement in VR space and
to account for the differences between each eye’s point of view. Listing 14-1 shows a
minimal VR sketch in Processing.

Figure 14-1.  Enabling the VR option in the Android menu

www.allitebooks.com

https://vr.google.com/daydream/smartphonevr/phones/
https://vr.google.com/daydream/smartphonevr/phones/
http://www.allitebooks.org

Chapter 14 ■ VR Basics

305

Listing 14-1.  Basic VR Sketch

import processing.vr.*;

void setup() {
 fullScreen(STEREO);
 fill(#AD71B7);
}

void draw() {
 background(#81B771);
 translate(width/2, height/2);
 lights();
 rotateY(millis()/1000.0);
 box(500);
}

We can see the result in Figure 14-2—a rotating cube in VR! If we placed the phone
in a Cardboard or Daydream headset, we would be able to see the cube from different
angles as we rotate our head around it. However, walking in physical space will not have
any effect on the VR viewing, as Google VR headsets do not (at the time of this writing)
support positional tracking.

■■ Note  In order to run our sketch on a Daydream headset, we need to manually edit the
manifest file in the sketch’s folder and replace the category com.google.intent.category.
CARDBOARD in the intent-filter section to com.google.intent.category.DAYDREAM.

Figure 14-2.  Output of a simple VR sketch

Chapter 14 ■ VR Basics

306

Stereo Rendering
As we noticed in our first example, a VR sketch generates two copies of the scene, one for
the left eye and the other for the right. They are slightly different since they correspond to
how the scene is viewed from each eye. A consequence of this is that the draw() function
is called twice in each frame (we will discuss this aspect further).

All the techniques we saw in the previous chapter on 3D drawing using the P3D
renderer translate over to VR with almost no modifications. We can use shapes, textures,
and lights in the same way as before. By default, the orientation of the XYZ axes is the
same as in the P3D renderer, meaning that the origin is located at the upper-left corner
of the screen and the y-axis points down. Listing 14-2 implements a simple scene to
visualize those settings (Figure 14-3).

Listing 14-2.  Axes in VR

import processing.vr.*;

void setup() {
 fullScreen(STEREO);
 strokeWeight(2);
}

void draw() {
 background(0);
 translate(width/2, height/2);
 lights();
 drawAxis();
 drawGrid();
}

void drawAxis() {
 line(0, 0, 0, 200, 0, 0);
 drawBox(200, 0, 0, 50, #E33E3E);
 line(0, 0, 0, 0, -200, 0);
 drawBox(0, -200, 0, 50, #3E76E3);
 line(0, 0, 0, 0, 0, 200);
 drawBox(0, 0, 200, 50, #3EE379);
}

void drawGrid() {
 beginShape(LINES);
 stroke(255);
 for (int x = -10000; x < +10000; x += 500) {
 vertex(x, +500, +10000);
 vertex(x, +500, -10000);
 }

www.allitebooks.com

http://www.allitebooks.org

Chapter 14 ■ VR Basics

307

 for (int z = -10000; z < +10000; z += 500) {
 vertex(+10000, +500, z);
 vertex(-10000, +500, z);
 }
 endShape();
}

void drawBox(float x, float y, float z, float s, color c) {
 pushStyle();
 pushMatrix();
 translate(x, y, z);
 noStroke();
 fill(c);
 box(s);
 popMatrix();
 popStyle();
}

Since the origin is at the upper-left corner of the screen, we need the
translate(width/2, height/2) call to center the scene at the middle of the screen. Also,
we can see that the blue box, placed at (0, -200, 0), is above the line of sight, consistent
with the downward orientation the y-axis.

Figure 14-3.  Default coordinate axes in VR

Chapter 14 ■ VR Basics

308

■■ Note  Most frameworks for developing VR apps use a coordinate system where the
origin is located at the center of the screen and the y-axis points up. In Processing for
Android, we can switch to this system by calling cameraUp() in setup().

Monoscopic Rendering
The Processing VR library includes another renderer that we can use to draw 3D scenes
that respond to the phone’s movement, but not in stereo mode. This can be useful if we
simply want to peek into a 3D space without a VR headset. The only change we need in
our code is to use the MONO renderer instead of STEREO, like we do in Listing 14-3. The
result is shown in Figure 14-4.

Listing 14-3.  Using the MONO Renderer

import processing.vr.*;

float angle = 0;
PShape cube;

void setup() {
 fullScreen(MONO);
 PImage tex = loadImage("mosaic.jpg");
 cube = createShape(BOX, 400);
 cube.setTexture(tex);
}

void draw() {
 background(#81B771);
 translate(width/2, height/2);
 lights();
 rotateY(angle);
 rotateX(angle*2);
 shape(cube);
 angle += 0.01;
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 14 ■ VR Basics

309

VR Interaction
The code examples so far have shown us that creating a VR scene in Processing is fairly
simple: all we need is to select the VR mode in the PDE, import the VR library into our
sketch, and use the STEREO renderer. With these steps, we can apply all the 3D rendering
techniques we learned earlier. But as soon as we start thinking about user interaction in VR,
we will find new challenges. First of all, Cardboard headsets do not include any controller,
like more expensive headsets do. Manual input is limited to a button that triggers a touch
on the screen, and some basic headsets don’t even have this button. We must ask ourselves
a few fundamental questions about interaction in VR: how do we select 3D objects/UI
elements, and how do we move around in VR space?

Developers have been experimenting with various solutions to these problems,
and an overview of VR apps on the Google Play Store can give us some hints. A common
technique for interaction is gaze selection: the app detects which object we are looking at,
and a touch press (or staring at it long enough) triggers the desired action. All VR apps use
this technique in one way or another, in combination with other interesting ideas: head
gestures (tilting, etc.), use of special areas in VR space to place UI elements (i.e., looking
up or down), and automation of certain actions (walking, shooting).

■■ Note  A successful VR experience needs to pay special attention to interaction so that
users feel they are indeed inside of this space. Given the constraints of VR headsets in terms
of graphic realism and controls, we need to craft the interaction very carefully so it makes
sense in terms of the specific experience we are trying to convey.

Figure 14-4.  Monoscopic rendering

Chapter 14 ■ VR Basics

310

Eye and World Coordinates
Before we start looking at interaction techniques for VR, we need to familiarize ourselves
with the coordinate systems we will be dealing with when developing our VR apps. There
are two systems that are important to keep in mind: the world coordinate system and the
eye coordinate system, which are illustrated in Figure 14-5.

We have been using world coordinates all along, since Processing relies on these
coordinates to characterize the position and movement of shapes, in both 2D and 3D. Eye
coordinates are new though, and are very specific to the way the VR view is constructed
automatically for us from the head-tracking information. The eye coordinate system is
defined by three vectors: forward, right, and up (Figure 14-5). The forward vector represents
the direction of our line of sight, and the right and up vectors complete the system. These
vectors get updated automatically in each frame to reflect the movement of the head.

Eye coordinates are the natural choice to represent shapes and other graphic
elements that need to be aligned with our view, such as a text message in front of our eyes
or a piece of geometry that provides a static frame of reference; for example, a helmet or
the interior of a spaceship. The use of eye coordinates makes it very easy to draw those
elements correctly; for example, a box right in front of our eyes would have coordinates
(0, 0, 200).

Processing lets us switch from world to eye coordinates simply by calling the eye()
function, as demonstrated in Listing 14-4. The quad, box, and text are always in front of
our view, as we see in Figure 14-6.

Figure 14-5.  Eye coordinate system with forward, right, and up vectors at the eye position,
and world coordinate system

www.allitebooks.com

http://www.allitebooks.org

Chapter 14 ■ VR Basics

311

Listing 14-4.  Drawing in Eye Coordinates

import processing.vr.*;

public void setup() {
 fullScreen(STEREO);
 textFont(createFont("SansSerif", 30));
 textAlign(CENTER, CENTER);
}

public void draw() {
 background(255);
 translate(width/2, height/2);
 lights();
 fill(#EAB240);
 noStroke();
 rotateY(millis()/1000.0);
 box(300);
 drawEye();
}

void drawEye() {
 eye();

 float s = 50;
 float d = 200;
 float h = 100;

 noFill();
 stroke(0);
 strokeWeight(10);
 beginShape(QUADS);
 vertex(-s, -s, d);
 vertex(+s, -s, d);
 vertex(+s, +s, d);
 vertex(-s, +s, d);
 endShape();

 pushMatrix();
 translate(0, 0, d);
 rotateX(millis()/1000.0);
 rotateY(millis()/2000.0);
 fill(#6AA4FF);
 noStroke();
 box(50);
 popMatrix();

 fill(0);
 text("Welcome to VR!", 0, -h * 0.75, d);
}

Chapter 14 ■ VR Basics

312

The Line of Sight
The most immediate way of interacting in VR space is by looking around! In order to
implement gaze selection, we can refer to Figure 14-5, which shows the actual line of sight
extending from the eye (or camera) position along the forward vector. If a 3D object is
in the path of this line, we can conclude it is being looked at by the user (unless there is
another object blocking the view). So, how can we draw the line of sight? As we saw in the
previous section, eye coordinates should be the answer, since this line starts at (0, 0, 0)
and extends to (0, 0, L), where L is how far we want to go along the line.

In Listing 14-5, we draw the line of sight with an offset at the origin along x and y so
we can see where it intersects a box placed at the center of the world system (otherwise, it
would be perfectly perpendicular to our view and thus be hard to see).

Listing 14-5.  Drawing the Line of Sight

import processing.vr.*;

PMatrix3D mat = new PMatrix3D();

void setup() {
 fullScreen(STEREO);
 hint(ENABLE_STROKE_PERSPECTIVE);
}

void draw() {
 background(120);
 translate(width/2, height/2);
 lights();

Figure 14-6.  Geometry defined in eye coordinates

www.allitebooks.com

http://www.allitebooks.org

Chapter 14 ■ VR Basics

313

 noStroke();
 pushMatrix();
 rotateY(millis()/1000.0);
 fill(#E3993E);
 box(150);
 popMatrix();

 eye();
 stroke(#2FB1EA);
 strokeWeight(50);
 line(100, -100, 0, 0, 0, 10000);
}

In this code, we also use the ENABLE_STROKE_PERSPECTIVE hint so the line becomes
thinner as it moves away from the eye (Figure 14-7).

■■ Note  Hints are special settings for the renderer that are enabled by passing an
ENABLE_name constant to the hint() function and disabled by passing the corresponding
DISABLE_name constant.

We can also use a point stroke to show the exact location of the screen center by
drawing it at the eye coordinates (0, 0), like we do in Listing 14-6. Any 3D shape crossing
the screen center is intersected by the line of sight, so this gives us another way of
indicating what object the user might be looking at.

Figure 14-7.  Line of sight intersecting a box placed at the origin of coordinates

Chapter 14 ■ VR Basics

314

Listing 14-6.  Drawing a Circular Aim

import processing.vr.*;

void setup() {
 fullScreen(STEREO);
}

void draw() {
 background(120);
 translate(width/2, height/2);

 lights();

 noStroke();
 fill(#E3993E);
 beginShape(QUAD);
 vertex(-75, -75);
 vertex(+75, -75);
 vertex(+75, +75);
 vertex(-75, +75);
 endShape(QUAD);

 eye();
 stroke(47, 177, 234, 150);
 strokeWeight(50);
 point(0, 0, 100);
}

The point stroke we draw with the function point() can be made as large as we need
by setting the weight with strokeWeight(). It serves the purpose of a “view aim” with
which to point to objects in VR. Figure 14-8 shows the aim with a weight of 50. In the next
section, we will learn how to determine if a 3D point falls inside the aim.

www.allitebooks.com

http://www.allitebooks.org

Chapter 14 ■ VR Basics

315

Selecting a Shape with Screen Coordinates
As we just saw, a seemingly easy way to determine if a vertex in 3D space falls within our
line of sight would be to determine if its “screen coordinates” are close enough to the
center of the screen. This condition is simple to check visually by drawing a view aim
at the exact center of the screen, like we did in Listing 14-6. However, we need a way to
check the condition with code. Processing has the functions screenX() and screenY(),
which allow us to do exactly that. These functions take as arguments the coordinates
(x, y, z) of a point in 3D space and return the screen coordinates (sx, sy) of that point
when projected onto the screen. If these screen coordinates are close enough to (width/2,
height/2), then we can conclude that the shape is being selected by the user. Let’s use this
technique in Listing 14-7.

Listing 14-7.  Gaze Selection with Button Press

import processing.vr.*;

void setup() {
 fullScreen(STEREO);
}

void draw() {
 background(120);
 translate(width/2, height/2);
 lights();
 drawGrid();
 drawAim();
}

Figure 14-8.  View aim drawn with a point stroke

Chapter 14 ■ VR Basics

316

void drawGrid() {
 for (int i = 0; i < 4; i++) {
 for (int j = 0; j < 4; j++) {
 beginShape(QUAD);
 float x = map(i, 0, 3, -315, +315);
 float y = map(j, 0, 3, -315, +315);
 float sx = screenX(x, y, 0);
 float sy = screenY(x, y, 0);
 if (abs(sx - 0.5 * width) < 50 && abs(sy - 0.5 * height) < 50) {
 strokeWeight(5);
 stroke(#2FB1EA);
 if (mousePressed) {
 fill(#2FB1EA);
 } else {
 fill(#E3993E);
 }
 } else {
 noStroke();
 fill(#E3993E);
 }
 vertex(x - 100, y - 100);
 vertex(x + 100, y - 100);
 vertex(x + 100, y + 100);
 vertex(x - 100, y + 100);
 endShape(QUAD);
 }
 }
}

void drawAim() {
 eye();
 stroke(47, 177, 234, 150);
 strokeWeight(50);
 point(0, 0, 100);
}

The mousePressed variable is set to true if we push the button in the headset,
allowing us to confirm the selection of the shape we are looking at and to get the entire
rectangle highlighted, like in Figure 14-9. However, if the headset lacks a button, we need
a different strategy. We can confirm the selection by looking at the shape for a specific
duration of time, which we do in Listing 14-8 (only the code different from that in the
previous listing is shown).

www.allitebooks.com

http://www.allitebooks.org

Chapter 14 ■ VR Basics

317

Listing 14-8.  Gaze Selection with Staring Time

import processing.vr.*;

int seli = -1;
int selj = -1;
int startSel, selTime;
...
void drawGrid() {
 boolean sel = false;
 for (int i = 0; i < 4; i++) {
 for (int j = 0; j < 4; j++) {
 ...
 if (abs(sx - 0.5 * width) < 50 && abs(sy - 0.5 * height) < 50) {
 strokeWeight(5);
 stroke(#2FB1EA);
 if (seli == i && selj == j) {
 selTime = millis() - startSel;
 } else {
 startSel = millis();
 selTime = 0;
 }
 seli = i;
 selj = j;
 sel = true;
 if (2000 < selTime) {
 fill(#2FB1EA);

Figure 14-9.  Selecting a quad using screen coordinates

Chapter 14 ■ VR Basics

318

 } else {
 fill(#E3993E);
 }
 } else {
 ...
 }
 if (!sel) {
 seli = -1;
 selj = -1;
 selTime = 0;
 }
}

The idea here is to keep track of the indexes of the currently selected rectangle and to
only confirm the selection when the selTime variable is greater than a desired threshold,
which in this case is set to 2,000 milliseconds.

Bounding Box Selection
The technique of selecting a 3D object by calculating its screen coordinates works well for
simple shapes and can be useful when creating a UI. However, it may not be well suited for
more complex objects that have irregular silhouettes when projected onto the screen plane.

A common approach to determining object selection in 3D is bounding box
intersection. A bounding box is a cube that completely encloses a given 3D object. If
the line of sight does not intersect the bounding box of an object, we can be certain that
the object is not being selected, and if it does, we could just select it or perform a more
detailed test. An axis-aligned bounding box (AABB) is a particular type of bounding box
where the edges are aligned to the coordinate axes. This property makes computations
simpler and faster, which is very important in the context of VR apps where we may
have to test for hundreds or even thousands of bounding box intersections. The AABB
of a 3D object can be calculated easily by taking the minimum and maximum of the
xyz coordinates of the vertices in the object and storing them in a pair of vectors, which
completely determine the AABB.

There are many algorithms with which to test the intersection of a line with an AABB
(http://www.realtimerendering.com/intersections.html). One that is efficient and
simple to implement was proposed by Amy Williams and collaborators in 2005 (http://
dl.acm.org/citation.cfm?id=1198748). In this algorithm, we need to provide the
minimum and maximum vectors defining the AABB, as well as a point along the line and
its direction vector (in the case of the intersection with the line of sight, these are the eye
position and the forward vector). The problem is that if we apply transformations to the
object, its bounding box may no longer be aligned to the axes. We can remediate this
by applying the inverse transformation to the line so that the relative orientation of the
line and the AABB is the same as if we had applied the transformations on the bounding
box. This inverse transformation is encoded in the so-called object matrix, which we can
obtain with the getObjectMatrix() function.

www.allitebooks.com

http://www.realtimerendering.com/intersections.html)
http://dl.acm.org/citation.cfm?id=1198748)
http://dl.acm.org/citation.cfm?id=1198748)
http://www.allitebooks.org

Chapter 14 ■ VR Basics

319

As we already pointed out, this algorithm requires the eye position and the forward
vector. These are part of the “eye matrix” that we have used before when switching to
eye coordinates using the eye() function. In order to get a copy of this matrix, we also
have the getEyeMatrix() in the Processing API. Listing 14-9 puts all of this together by
applying Williams’ algorithm to a grid of boxes (see the result in Figure 14-10).

Listing 14-9.  AABB-Line of Sight Intersection

import processing.vr.*;

PMatrix3D eyeMat = new PMatrix3D();
PMatrix3D objMat = new PMatrix3D();
PVector cam = new PVector();
PVector dir = new PVector();
PVector front = new PVector();
PVector objCam = new PVector();
PVector objFront = new PVector();
PVector objDir = new PVector();
float boxSize = 140;
PVector boxMin = new PVector(-boxSize/2, -boxSize/2, -boxSize/2);
PVector boxMax = new PVector(+boxSize/2, +boxSize/2, +boxSize/2);
PVector hit = new PVector();

void setup() {
 fullScreen(PVR.STEREO);
}

void draw() {
 getEyeMatrix(eyeMat);
 cam.set(eyeMat.m03, eyeMat.m13, eyeMat.m23);
 dir.set(eyeMat.m02, eyeMat.m12, eyeMat.m22);
 PVector.add(cam, dir, front);
 background(120);
 translate(width/2, height/2);
 lights();
 drawGrid();
 drawAim();
}

void drawGrid() {
 for (int i = 0; i < 4; i++) {
 for (int j = 0; j < 4; j++) {
 float x = map(i, 0, 3, -350, +350);
 float y = map(j, 0, 3, -350, +350);
 pushMatrix();
 translate(x, y);
 rotateY(millis()/1000.0);
 getObjectMatrix(objMat);

Chapter 14 ■ VR Basics

320

 objMat.mult(cam, objCam);
 objMat.mult(front, objFront);
 PVector.sub(objFront, objCam, objDir);
 boolean res = intersectsLine(objCam, objDir, boxMin, boxMax,
 0, 1000, hit);
 if (res) {
 strokeWeight(5);
 stroke(#2FB1EA);
 if (mousePressed) {
 fill(#2FB1EA);
 } else {
 fill(#E3993E);
 }
 } else {
 noStroke();
 fill(#E3993E);
 }
 box(boxSize);
 popMatrix();
 }
 }
}

void drawAim() {
 eye();
 stroke(47, 177, 234, 150);
 strokeWeight(50);
 point(0, 0, 100);
}

boolean intersectsLine(PVector orig, PVector dir,
 PVector minPos, PVector maxPos, float minDist, float maxDist, PVector hit)
{
 PVector bbox;
 PVector invDir = new PVector(1/dir.x, 1/dir.y, 1/dir.z);

 boolean signDirX = invDir.x < 0;
 boolean signDirY = invDir.y < 0;
 boolean signDirZ = invDir.z < 0;

 bbox = signDirX ? maxPos : minPos;
 float txmin = (bbox.x - orig.x) * invDir.x;
 bbox = signDirX ? minPos : maxPos;
 float txmax = (bbox.x - orig.x) * invDir.x;
 bbox = signDirY ? maxPos : minPos;
 float tymin = (bbox.y - orig.y) * invDir.y;
 bbox = signDirY ? minPos : maxPos;
 float tymax = (bbox.y - orig.y) * invDir.y;

www.allitebooks.com

http://www.allitebooks.org

Chapter 14 ■ VR Basics

321

 if ((txmin > tymax) || (tymin > txmax)) {
 return false;
 }
 if (tymin > txmin) {
 txmin = tymin;
 }
 if (tymax < txmax) {
 txmax = tymax;
 }

 bbox = signDirZ ? maxPos : minPos;
 float tzmin = (bbox.z - orig.z) * invDir.z;
 bbox = signDirZ ? minPos : maxPos;
 float tzmax = (bbox.z - orig.z) * invDir.z;

 if ((txmin > tzmax) || (tzmin > txmax)) {
 return false;
 }
 if (tzmin > txmin) {
 txmin = tzmin;
 }
 if (tzmax < txmax) {
 txmax = tzmax;
 }
 if ((txmin < maxDist) && (txmax > minDist)) {
 hit.x = orig.x + txmin * dir.x;
 hit.y = orig.y + txmin * dir.y;
 hit.z = orig.z + txmin * dir.z;
 return true;
 }
 return false;
}

Each box in the grid has a different object matrix, since the transformations are
different (same rotation, but different translation). Once we obtain the object matrix, we
have to apply it to the eye position and forward vector, since they define the line we want
to intersect with the AABB of the object. We apply the transformation by matrix-vector
multiplication. The eye position is stored in the cam variable, and is transformed into
object space directly with objMat.mult(cam, objCam). However, the forward vector is a
direction, not a position, so it cannot be transformed like that. Instead, first we need to
transform the front vector, which stores the position of the point one unit ahead from
the eye along the line of sight, with objMat.mult(front, objFront), and only then we can
calculate the direction vector in object coordinates by calculating the difference between
the transformed front and eye positions with PVector.sub(objFront, objCam, objDir).

The eye position and forward vector are encoded in the eye matrix as its third and
fourth columns so we can get the individual components of the matrix, (m02, m12, m22)
and (m03, m13, m23), and then copy them into the dir and cam vectors, respectively.

Chapter 14 ■ VR Basics

322

The intersectsLine() function holds the implementation of Williams’ algorithm. It is
completely self-contained, so we can reuse it in other sketches. Note that, besides returning
true or false depending on whether the line intersects the AABB or not, the algorithm also
returns the coordinates of the intersection point in the hit vector, which could be used to
determine the closest intersection to the camera in case several are detected.

Movement in VR
Movement is a critical aspect of any VR experience that we need to consider carefully,
as it is subject to some constraints and requirements. On one hand, we aim to convince
the user to suspend their disbelief and immerse themselves in the virtual environment.
Having some degree of freedom in this environment is important. On the other hand,
this virtual movement will not completely match our senses, which could cause motion
sickness, something to avoid at all costs in VR apps. Conversely, if we did move around
in physical space while wearing a Google VR headset, we would experience another
disconnect between our vision and physical senses.

Despite these constraints, we can still create convincing movement in VR space. One
trick is to place some sort of reference object that remains fixed within the field of vision,
matching our stationary condition in physical space. For example, in Listing 14-10 we
load an OBJ shape for this purpose, placing it at the camera position in eye coordinates.
The shape is a dodecahedron (Figure 14-11) that acts as a “helmet” of sorts during our
navigation through VR.

Figure 14-10.  Selecting a box with Williams’ algorithm

www.allitebooks.com

http://www.allitebooks.org

Chapter 14 ■ VR Basics

323

Listing 14-10.  Drawing a Stationary Reference Object

import processing.vr.*;

PShape frame;

void setup() {
 fullScreen(STEREO);
 frame = loadShape("dodecahedron.obj");
 prepare(frame, 500);
}

void draw() {
 background(180);
 lights();
 translate(width/2, height/2);
 eye();
 shape(frame);
}

void prepare(PShape sh, float s) {
 PVector min = new PVector(+10000, +10000, +10000);
 PVector max = new PVector(-10000, -10000, -10000);
 PVector v = new PVector();
 for (int i = 0; i < sh.getChildCount(); i++) {
 PShape child = sh.getChild(i);
 for (int j = 0; j < child.getVertexCount(); j++) {
 child.getVertex(j, v);
 min.x = min(min.x, v.x);
 min.y = min(min.y, v.y);
 min.z = min(min.z, v.z);
 max.x = max(max.x, v.x);
 max.y = max(max.y, v.y);
 max.z = max(max.z, v.z);
 }
 }
 PVector center = PVector.add(max, min).mult(0.5f);
 sh.translate(-center.x, -center.y, -center.z);
 float maxSize = max(sh.getWidth(), sh.getHeight(), sh.getDepth());
 float factor = s/maxSize;
 sh.scale(factor);
}

The prepare() function centers the shape at the origin and also scales it to have a
size comparable to the dimensions of our scene. This step is important when loading OBJ
files, since they may be defined using a different range of coordinate values, and so they
could look either very small or very large. In this case, we place the dodecahedron shape
so it is centered at (cameraX, cameraY, cameraZ), thus providing a reference to our vision
in VR. We will see next how to move around with this reference in place.

Chapter 14 ■ VR Basics

324

Automatic Movement
In some instances, we can create movement that is not controlled by the user, thus removing
complexity from the interface. For example, this could be a good solution if the goal is to take
the user through a predetermined path, or to transition between two checkpoints.

Once we have constructed the scene geometry, we can apply any transformations
to it in order to create the movement, enclosing them between pushMatrix() and
popMatrix() to keep the transformations from affecting any shapes that are fixed relative
to the viewer. Listing 14-11 shows how to simulate a rotation around a circular track.

Listing 14-11.  Moving Along a Predefined Path

import processing.vr.*;

PShape frame;
PShape track;

public void setup() {
 fullScreen(STEREO);

 frame = loadShape("dodecahedron.obj");
 prepare(frame, 500);

Figure 14-11.  Using an OBJ shape as a reference in our field of vision

www.allitebooks.com

http://www.allitebooks.org

Chapter 14 ■ VR Basics

325

 track = createShape();
 track.beginShape(QUAD_STRIP);
 track.fill(#2D8B47);
 for (int i = 0; i <= 40; i++) {
 float a = map(i, 0, 40, 0, TWO_PI);
 float x0 = 1000 * cos(a);
 float z0 = 1000 * sin(a);
 float x1 = 1400 * cos(a);
 float z1 = 1400 * sin(a);
 track.vertex(x0, 0, z0);
 track.vertex(x1, 0, z1);
 }
 track.endShape();
}

public void draw() {
 background(255);
 translate(width/2, height/2);

 directionalLight(200, 200, 200, 0, +1, -1);

 translate(1200, +300, 500);
 rotateY(millis()/10000.0);
 shape(track);

 eye();
 shape(frame);
}

void prepare(PShape sh, float s) {
...

In this code, we store the circular track in a PShape object, apply a translation to
the right of the camera so the user starts on top of the track, and then apply a rotation to
create the desired movement around the track’s center. The result of this sketch is shown
in Figure 14-12.

Chapter 14 ■ VR Basics

326

Free-range Movement
In contrast with the previous example, where movement is predefined and the user can
only look around, we will now let the user roam freely in the VR space. This is not difficult
to implement; all we need is to translate the objects in the scene along the forward vector,
as is done in Listing 14-12. However, here we make use of the calculate() function
for the first time, an important function in VR sketches that let us run calculations that
should be performed only once per frame.

Listing 14-12.  Moving Freely in VR Space

import processing.vr.*;

PShape frame;
PShape cubes;
PMatrix3D eyeMat = new PMatrix3D();
float tx, ty, tz;
float step = 5;

public void setup() {
 fullScreen(STEREO);

 frame = loadShape("dodecahedron.obj");
 prepare(frame, 500);

 cubes = createShape(GROUP);
 float v = 5 * width;

Figure 14-12.  Using an OBJ shape as a reference in our field of vision

www.allitebooks.com

http://www.allitebooks.org

Chapter 14 ■ VR Basics

327

 for (int i = 0; i < 50; i++) {
 float x = random(-v, +v);
 float y = random(-v, +v);
 float z = random(-v, +v);
 float s = random(100, 200);
 PShape sh = createShape(BOX, s);
 sh.setFill(color(#74E0FF));
 sh.translate(x, y, z);
 cubes.addChild(sh);
 }
}

void calculate() {
 getEyeMatrix(eyeMat);
 if (mousePressed) {
 tx -= step * eyeMat.m02;
 ty -= step * eyeMat.m12;
 tz -= step * eyeMat.m22;
 }
}

public void draw() {
 background(255);
 translate(width/2, height/2);

 directionalLight(200, 200, 200, 0, +1, -1);

 translate(tx, ty, tz);
 shape(cubes);

 eye();
 shape(frame);
}

void prepare(PShape sh, float s) {
...

The calculate() function is called just once in each frame, right before draw() gets
called twice, once for each eye. This is useful in this example because if we were to put the
translation code inside draw(), we would be increasing the translation by double the intended
amount, resulting in an incorrect translation. It is important that we think about what
operations should be done inside draw()—typically anything drawing-related—and which
ones inside calculate(), such as code that affects the left and right views in the same way.

A problem with fully unbounded movement in VR space is that it could become
disorienting for many people. A more manageable situation would involve restricting the
motion to the XZ plane. This can be accomplished with the forward vector as before, but
you would only use its x and z components to update the translation, as is illustrated in
Listing 14-13.

Chapter 14 ■ VR Basics

328

Listing 14-13.  Moving in a 2D Plane

import processing.vr.*;

PShape cubes;
PShape grid;
PMatrix3D eyeMat = new PMatrix3D();
float tx, tz;
float step = 10;
PVector planeDir = new PVector();

public void setup() {
 fullScreen(STEREO);

 grid = createShape();
 grid.beginShape(LINES);
 grid.stroke(255);
 for (int x = -10000; x < +10000; x += 500) {
 grid.vertex(x, +200, +10000);
 grid.vertex(x, +200, -10000);
 }
 for (int z = -10000; z < +10000; z += 500) {
 grid.vertex(+10000, +200, z);
 grid.vertex(-10000, +200, z);
 }
 grid.endShape();

 cubes = createShape(GROUP);
 float v = 5 * width;
 for (int i = 0; i < 50; i++) {
 float x = random(-v, +v);
 float z = random(-v, +v);
 float s = random(100, 300);
 float y = +200 - s/2;
 PShape sh = createShape(BOX, s);
 sh.setFill(color(#FFBC6A));
 sh.translate(x, y, z);
 cubes.addChild(sh);
 }
}

void calculate() {
 getEyeMatrix(eyeMat);
 if (mousePressed) {
 planeDir.set(eyeMat.m02, 0, eyeMat.m22);
 float d = planeDir.mag();
 if (0 < d) {
 planeDir.mult(1/d);

www.allitebooks.com

http://www.allitebooks.org

Chapter 14 ■ VR Basics

329

 tx -= step * planeDir.x;
 tz -= step * planeDir.z;
 }
 }
}

public void draw() {
 background(0);
 translate(width/2, height/2);
 pointLight(50, 50, 200, 0, 1000, 0);
 directionalLight(200, 200, 200, 0, +1, -1);
 translate(tx, 0, tz);
 shape(grid);
 shape(cubes);
}

In the calculate() function, we construct a plane-direction vector from the m02 and m22
components of the eye matrix. We need to normalize this vector to ensure we keep making
uniform strides as we move around, even if we are looking up and the forward vector has very
small coordinates along the x and z axes. A view from this sketch is shown in Figure 14-13.

Summary
VR brings about exciting new possibilities as well as interesting challenges. In this
chapter, we learned a few techniques in Processing to address some of these challenges
and to explore where the possibilities of VR can take us. In particular, we discussed how
intuitive interaction and movement are key to creating engaging VR experiences.

Figure 14-13.  Movement constrained to a 2D plane

331© Andrés Colubri 2017
A. Colubri, Processing for Android, https://doi.org/10.1007/978-1-4842-2719-0_15

CHAPTER 15

Drawing in VR

In this final chapter, we will go step-by-step through the development of a fully-featured
VR drawing app using Processing for Android. We will apply all the techniques we have
learned so far, including gaze-controlled movement and user interface (UI).

Creating a Successful VR Experience
In the previous chapters, we learned the basics of the 3D API in Processing, as well
as some techniques that we can apply to create interactive graphics in VR. Creating a
successful VR experience is an exciting challenge. In contrast with “traditional” computer
graphics, where we can rely on representations (e.g., perspective vs. isometric views) and
interaction conventions (e.g., mouse- or touch-based gestures) that users are familiar
with, VR is a new medium that presents many possibilities but also comes with unique
constraints and limitations.

Arguably, a central goal in VR is for the user to suspend disbelief and immerse
themselves in the virtual space, at least for a short while, even if the graphics are not
photo-realistic or the interaction is limited. VR creates the unusual experience of being
inside a synthetic 3D space without a body. Recent input hardware demoed at tech and
gaming shows (for example, bicycle stands for biking in VR, air pressure to create the
illusion of touch, even low electric discharges) illustrates the ongoing efforts to embody
the VR experience.

We also need to be aware of the specific characteristics of the Cardboard and
Daydream platforms supported by Processing for Android. Since we are generating
the graphics with a smartphone, they are more limited than those generated by VR rigs
driven by PCs. First, it is important to make sure that phones can handle the complexity
of our scene and can keep a smooth framerate. Otherwise, choppy animation can cause
dizziness and nausea for the users. Second, Cardboard headsets have limited interaction
input, typically only a single button. Also, since we need to use both hands to hold them
(see Figure 15-1), we cannot rely on external input devices. The interaction in our VR app
should take all of these aspects of the experience into account.

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-2719-0_15
http://www.allitebooks.org

Chapter 15 ■ Drawing in VR

332

Drawing in VR
Creating 3D objects in VR can be a very engaging activity, one where we are able to not
only sculpt figures unbounded from the screen or laws of physics, but also be in the same
space with our virtual creations. Google Tilt Brush (Figure 15-2) is an good example of
how a well-designed VR experience can be extremely immersive and fun. Inspired by
these thoughts, wouldn’t it be a good exercise to implement our own drawing VR app for
Cardboard/Daydream?

Figure 15-1.  Students using Google Cardboard during class activities

Figure 15-2.  Google Tilt Brush VR drawing app

Chapter 15 ■ Drawing in VR

333

As we just discussed, we will have to deal with more-limited graphics and interaction
capabilities. If we assume that no input device is available, and we only have one button
with which to make single presses, we are essentially constrained to using gaze as our
pencil. For this reason, some of the techniques in the previous chapter for selecting 3D
elements in a VR space using line of sight will come in handy.

Initial Sketches
A good analogy for VR drawing is sculpting. Following this analogy, we could start off with
a base or podium on top of which we will create our VR drawing/sculpture, with some
UI controls to rotate it when we need to change the angle we are working on. We have to
remember that Google VR does not track changes in position, only head rotations, which
are not enough to make a 3D drawing from all possible angles. Figure 15-3 sketches out a
pen-and-paper concept for the app.

The point where our line of sight reaches the space above the podium could be the
tip of our pencil. The key detail is connecting this pencil to the movements of our head
without interfering with the UI. We could use the button press as the mechanism to
enable/disable drawing, so when we are not pressing the button, we are free to move our
head around and to interact with the UI.

Figure 15-3.  Pen-and-paper concept sketch for our VR drawing app

www.allitebooks.com

http://www.allitebooks.org

Chapter 15 ■ Drawing in VR

334

So, the app could work as follows: while we are in the drawing mode, we stay at
the static vantage point from which we draw on top of the podium. We can add an
additional element of immersion by letting the user move freely around after the drawing
is completed, and by doing so be able to look at it from unusual angles. We saw how to
implement free movement in VR in the previous chapter, so we could use this technique
in our app as well.

A Simple VR UI
Let’s start by creating an initial version of our app with only the base for our drawing
and some initial UI elements, but with no actual drawing capability yet. As a temporary
placeholder for Listing 15-1, we display a dummy shape that we can rotate using the UI.

Listing 15-1.  Starting Point of Our Drawing App

import processing.vr.*;

PShape base;

void setup() {
 fullScreen(STEREO);
 createBase(300, 70, 20);
}

void draw() {
 background(0);
 translate(width/2, height/2);
 directionalLight(200, 200, 200, 0, +1, -1);
 drawBase();
 drawBox();
}

void drawBase() {
 pushMatrix();
 translate(0, +300, 0);
 shape(base);
 popMatrix();
}

void drawBox() {
 pushMatrix();
 translate(0, +100, 0);
 noStroke();
 box(200);
 popMatrix();
}

Chapter 15 ■ Drawing in VR

335

void createBase(float r, float h, int ndiv) {
 base = createShape(GROUP);
 PShape side = createShape();
 side.beginShape(QUAD_STRIP);
 side.noStroke();
 side.fill(#59C5F5);
 for (int i = 0; i <= ndiv; i++) {
 float a = map(i, 0, ndiv, 0, TWO_PI);
 float x = r * cos(a);
 float z = r * sin(a);
 side.vertex(x, +h/2, z);
 side.vertex(x, -h/2, z);
 }
 side.endShape();
 PShape top = createShape();
 top.beginShape(TRIANGLE_FAN);
 top.noStroke();
 top.fill(#59C5F5);
 top.vertex(0, 0, 0);
 for (int i = 0; i <= ndiv; i++) {
 float a = map(i, 0, ndiv, 0, TWO_PI);
 float x = r * cos(a);
 float z = r * sin(a);
 top.vertex(x, -h/2, z);
 }
 top.endShape();
 base.addChild(side);
 base.addChild(top);
}

The base is just a cylinder stored in a PShape, plus an ellipse to use as a top surface.
As we saw previously, we can store different Processing shapes inside a group, and the
resulting PShape group is all we need in order to draw this base shape. Figure 15-4 shows
this first version of the app.

www.allitebooks.com

http://www.allitebooks.org

Chapter 15 ■ Drawing in VR

336

As a first iteration of the UI, we will add three buttons: two to rotate the base and box
along the y-axis, and another button to reset the rotation. Listing 15-2 implements this
initial UI (the createBase(), drawBase(), and drawBox() functions are omitted since
they are identical to the previous code).

Listing 15-2.  Adding a Basic UI

import processing.vr.*;

PShape base;
float angle;
Button leftButton, rightButton, resetButton;

void setup() {
 fullScreen(STEREO);
 textureMode(NORMAL);
 createBase(300, 70, 20);
 createButtons(300, 100, 380, 130);
}

void calculate () {
 if (mousePressed) {
 if (leftButton.selected) angle -= 0.01;
 if (rightButton.selected) angle += 0.01;
 if (resetButton.selected) angle = 0;
 }
}

Figure 15-4.  First step in our VR drawing app: a base shape and a dummy object

Chapter 15 ■ Drawing in VR

337

void draw() {
 background(0);
 translate(width/2, height/2);
 directionalLight(200, 200, 200, 0, +1, -1);
 drawBase();
 drawBox();
 drawUI();
}
...
void createButtons(float dx, float hlr, float ht, float s) {
 PImage left = loadImage("left-icon.png");
 leftButton = new Button(-dx, hlr, 0, s, left);
 PImage right = loadImage("right-icon.png");
 rightButton = new Button(+dx, hlr, 0, s, right);
 PImage cross = loadImage("cross-icon.png");
 resetButton = new Button(0, +1.0 * ht, +1.1 * dx, s, cross);
}

void drawUI() {
 leftButton.display();
 rightButton.display();
 resetButton.display();
 drawAim();
}

void drawAim() {
 eye();
 pushStyle();
 stroke(220, 180);
 strokeWeight(20);
 point(0, 0, 100);
 popStyle();
}

boolean centerSelected(float d) {
 float sx = screenX(0, 0, 0);
 float sy = screenY(0, 0, 0);
 return abs(sx - 0.5 * width) < d && abs(sy - 0.5 * height) < d;
}

class Button {
 float x, y, z, s;
 boolean selected;
 PImage img;

 Button(float x, float y, float z, float s, PImage img) {
 this.x = x;
 this.y = y;

www.allitebooks.com

http://www.allitebooks.org

Chapter 15 ■ Drawing in VR

338

 this.z = z;
 this.s = s;
 this.img = img;
 }

 void display() {
 float l = 0.5 * s;
 pushStyle();
 pushMatrix();
 translate(x, y, z);
 selected = centerSelected(l);
 beginShape(QUAD);
 if (selected) {
 stroke(220, 180);
 strokeWeight(5);
 } else {
 noStroke();
 }
 tint(#59C5F5);
 texture(img);
 vertex(-l, +l, 0, 1);
 vertex(-l, -l, 0, 0);
 vertex(+l, -l, 1, 0);
 vertex(+l, +l, 1, 1);
 endShape();
 popMatrix();
 popStyle();
 }
}

The Button class encapsulating the selection functionality is the central element of this
code. Its constructor takes five parameters: the (x, y, z) coordinates of the center of the button,
the size, and an image to use as the button texture. In the implementation of the display()
method, we determine if the button is selected by using the screen-coordinates technique
from the previous chapter: if (screenX, screenY) is close enough to the screen center, then
it is considered to be selected, in which case the button gets a stroke line. The UI events
are triggered in the calculate() method to avoid applying them again when the “mouse”
pressed (corresponding to the physical trigger available in the VR headset) event is detected.

The placement of the buttons is determined in the createButtons() function, with
the left and right rotation buttons placed to the sides of the base, and the reset button
slightly underneath. We also draw a stroke point at (0, 0, 100) in eye coordinates to use as
an aim to help with drawing and selection.

At this moment, it is important to review the display() function in the Button class
again, where, in addition to drawing the button, we also test if it is selected. This may look like
the wrong place to put that logic, since a display function should take care of only drawing
tasks. As it turns out, the screenX() and screenY() calls require that the 3D transformations
affecting the button are current, or else they will return incorrect results. Since the
transformations are applied when drawing the geometry, we perform the interaction
detection in that stage as well. The result of this sketch should look like Figure 15-5.

Chapter 15 ■ Drawing in VR

339

Drawing in 3D
When we implemented the drawing app in Chapter 2, we only had to worry about
making strokes in 2D. This was easy, thanks to the pmouseX/Y and mouseX/Y variables in
Processing, which allowed us to draw a line between the previous and current mouse
positions. In three dimensions, the idea is in fact the same: a stroke is a sequence of lines
between successive positions, no longer constrained to be within the screen plane. But
if we don’t have an actual 3D pointer in VR space, we need to infer directionality in 3D
space from gaze information alone.

We know that the direction of our gaze is contained in the forward vector, which
is automatically updated to reflect any head movement. If at each frame we project the
forward vector a fixed amount toward the center of the scene, we would have a sliding point
that could generate the strokes in our drawing. In fact, this is not too different from what we
did for 2D drawings, where the strokes were defined by the sequence of (mouseX, mouseY)
positions. We can also compute the difference between the current and previous forward
vectors, analogous to the vector (mouseX – pmouseX, mouseY – pmouseY) in 2D, to
determine if we need to add new points to the drawing. Figure 15-6 shows the relationship
between the difference vector and the corresponding displacement in the drawing.

Figure 15-5.  Adding buttons to the UI

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-2719-0_2
http://www.allitebooks.org

Chapter 15 ■ Drawing in VR

340

An important difference between the 3D and 2D cases is that in the latter we don’t
need to keep track of all the past positions, only the previous one. This is because if we
don’t clear the screen with background(), we can simply add the last line on top of the
ones that are already drawn. But in 3D we have to refresh the screen in every frame,
since the position of the camera is not static, and so the scene needs to be updated
continuously. This means that all past lines since the first position recorded in our
drawing have to be redrawn in each frame. In order to do so, we need to store all positions
in an array.

However, if we want to break the stroke when the user stops pressing the trigger in
the headset, then storing all positions along our drawing in a single array is not enough.
We need to also save where breaks occur. One possibility is to store each continuous
stroke in a separate array and have an array of arrays containing all past strokes.

With all these ideas in mind, we can go ahead and start working on the drawing
functionality. Since the sketch is becoming fairly complex, it is a good idea to split it into
separate tabs with related code in each one. For example, we could have the tab structure
shown in Figure 15-7.

Figure 15-6.  Calculating displacement using previous and current forward vectors

Figure 15-7.  Tabs to organize our increasingly complex VR drawing sketch

Chapter 15 ■ Drawing in VR

341

Let’s examine each tab separately. The main tab shown in Listing 15-3A contains the
standard setup(), calculate(), draw(), and mouseReleased() functions. The rest of the
functions we call from the main tab are implemented in the other tabs.

Listing 15-3A.  Main Tab

import processing.vr.*;

float angle;

void setup() {
 fullScreen(STEREO);
 textureMode(NORMAL);
 createBase(300, 70, 20);
 createButtons(300, 100, 380, 130);
}

void calculate() {
 if (mousePressed) {
 if (leftButton.selected) angle -= 0.01;
 if (rightButton.selected) angle += 0.01;
 }
 if (mousePressed && !selectingUI()) {
 updateStrokes();
 }
}

void draw() {
 background(0);
 translate(width/2, height/2);
 directionalLight(200, 200, 200, 0, +1, -1);
 drawBase();
 drawStrokes();
 drawUI();
}

void mouseReleased() {
 if (resetButton.selected) {
 clearDrawing();
 angle = 0;
 } else {
 startNewStroke();
 }
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 15 ■ Drawing in VR

342

A few important observations about mouse-event handlers. The updates of the
rotation angle remain in calculate(), because this allows us to rotate the scene
continuously by increasing/decreasing the angle in 0.01 steps as long as we keep pressing
the trigger button on the headset. In contrast, the mousePressed()/mouseReleased()
handlers are called only when a press event starts or ends, so they cannot be used for
carrying out some task as long as the button is in pressed state. However, this behavior
is useful to implement tasks that should be executed only upon button press or release.
Clearing the drawing is an example of such tasks, and that’s why clearDrawing() is
placed inside mouseReleased().

■■ Note  The tab structure in a Processing sketch is entirely optional and does not affect
how the sketch is run. It allows us to organize the code and make it more readable.

Moving on to the Drawing tab in Listing 15-3B, we can inspect the code that adds
new positions to the current stroke in updateStrokes() and draws current and previous
strokes by connecting all consecutive positions with lines in drawStrokes().

Listing 15-3B.  Drawing Tab

ArrayList<PVector> currentStroke = new ArrayList<PVector>();
ArrayList[] previousStrokes = new ArrayList[0];

PMatrix3D eyeMat = new PMatrix3D();
PMatrix3D objMat = new PMatrix3D();
PVector pos = new PVector();
PVector pforward = new PVector();
PVector cforward = new PVector();

void updateStrokes() {
 translate(width/2, height/2);
 rotateY(angle);
 getEyeMatrix(eyeMat);
 float cameraX = eyeMat.m03;
 float cameraY = eyeMat.m13;
 float cameraZ = eyeMat.m23;
 float forwardX = eyeMat.m02;
 float forwardY = eyeMat.m12;
 float forwardZ = eyeMat.m22;
 float depth = dist(cameraX, cameraY, cameraZ, width/2, height/2, 0);
 cforward.x = forwardX;
 cforward.y = forwardY;
 cforward.z = forwardZ;
 if (currentStroke.size() == 0 || 0 < cforward.dist(pforward)) {
 getObjectMatrix(objMat);
 float x = cameraX + depth * forwardX;
 float y = cameraY + depth * forwardY;

Chapter 15 ■ Drawing in VR

343

 float z = cameraZ + depth * forwardZ;
 pos.set(x, y, z);
 PVector tpos = new PVector();
 objMat.mult(pos, tpos);
 currentStroke.add(tpos);
 }
 pforward.x = forwardX;
 pforward.y = forwardY;
 pforward.z = forwardZ;
}

void drawStrokes() {
 pushMatrix();
 rotateY(angle);
 strokeWeight(5);
 stroke(255);
 drawStroke(currentStroke);
 for (ArrayList p: previousStrokes) drawStroke(p);
 popMatrix();
}

void drawStroke(ArrayList<PVector> positions) {
 for (int i = 0; i < positions.size() - 1; i++) {
 PVector p = positions.get(i);
 PVector p1 = positions.get(i + 1);
 line(p.x, p.y, p.z, p1.x, p1.y, p1.z);
 }
}

void startNewStroke() {
 previousStrokes = (ArrayList[]) append(previousStrokes, currentStroke);
 currentStroke = new ArrayList<PVector>();
}

void clearDrawing() {
 previousStrokes = new ArrayList[0];
 currentStroke.clear();
}

We have a number of variables in this tab, starting with an array list of PVector
objects holding the positions of the current stroke, as well as an array of array lists,
where each list is a completed stroke. Once a mouse-released event is detected (in the
mouseReleased() function defined in the main tab), the startNewStroke() function is
called to append the current stroke to the array of previous strokes and initialize an empty
array list for the next stroke.

www.allitebooks.com

http://www.allitebooks.org

Chapter 15 ■ Drawing in VR

344

The rest of the variables are used to compute the new positions of the current stroke.
The code is based on our previous discussion about extending the forward vector by
a predefined amount depth (Figure 15-6). This puts the “pencil’s tip” right above the
drawing base, since depth is the distance between the camera and the scene center. The
use of the object matrix, objMat, in updateStrokes() should not be overlooked. It is
necessary to ensure that the strokes are drawn correctly even if there are transformations
applied to the scene (like a translation and a rotation around y, in this case). Notice
how we apply these transformations at the beginning of updateStrokes(). Even though
updateStrokes() is called from calculate(), which does not do any drawing, we still
need to apply the same transformations we later use in draw() to make sure that the
matrix we retrieve with getObjectMatrix() will apply all the transformations on the
stroke vertices.

In the UI tab seen in Listing 15-3C, we have all the definitions of our Button class and
all the button objects we are using so far in our interface.

Listing 15-3C.  UI Tab

Button leftButton, rightButton, resetButton;

void createButtons(float dx, float hlr, float ht, float s) {
 PImage left = loadImage("left-icon.png");
 leftButton = new Button(-dx, hlr, 0, s, left);
 PImage right = loadImage("right-icon.png");
 rightButton = new Button(+dx, hlr, 0, s, right);
 PImage cross = loadImage("cross-icon.png");
 resetButton = new Button(0, +1.0 * ht, +1.1 * dx, s, cross);
}

void drawUI() {
 leftButton.display();
 rightButton.display();
 resetButton.display();
 drawAim();
}

void drawAim() {
 eye();
 pushStyle();
 stroke(220, 180);
 strokeWeight(20);
 point(0, 0, 100);
 popStyle();
}

boolean selectingUI() {
 return leftButton.selected || rightButton.selected ||
 resetButton.selected;
}

Chapter 15 ■ Drawing in VR

345

boolean centerSelected(float d) {
 float sx = screenX(0, 0, 0);
 float sy = screenY(0, 0, 0);
 return abs(sx - 0.5 * width) < d && abs(sy - 0.5 * height) < d;
}

class Button {
 float x, y, z, s;
 boolean selected;
 PImage img;

 Button(float x, float y, float z, float s, PImage img) {
 this.x = x;
 this.y = y;
 this.z = z;
 this.s = s;
 this.img = img;
 }

 void display() {
 float l = 0.5 * s;
 pushStyle();
 pushMatrix();
 translate(x, y, z);
 selected = centerSelected(l);
 beginShape(QUAD);
 if (selected) {
 stroke(220, 180);
 strokeWeight(5);
 } else {
 noStroke();
 }
 tint(#59C5F5);
 texture(img);
 vertex(-l, +l, 0, 1);
 vertex(-l, -l, 0, 0);
 vertex(+l, -l, 1, 0);
 vertex(+l, +l, 1, 1);
 endShape();
 popMatrix();
 popStyle();
 }
}

The Geo tab, shown in Listing 15-3D, just contains, for the time being, the code that
creates and draws the base, which is the same from before.

www.allitebooks.com

http://www.allitebooks.org

Chapter 15 ■ Drawing in VR

346

Listing 15-3D.  Geo Tab

PShape base;

void drawBase() {
 pushMatrix();
 translate(0, +300, 0);
 rotateY(angle);
 shape(base);
 popMatrix();
}

void createBase(float r, float h, int ndiv) {
 base = createShape(GROUP);
 PShape side = createShape();
 side.beginShape(QUAD_STRIP);
 side.noStroke();
 side.fill(#59C5F5);
 for (int i = 0; i <= ndiv; i++) {
 float a = map(i, 0, ndiv, 0, TWO_PI);
 float x = r * cos(a);
 float z = r * sin(a);
 side.vertex(x, +h/2, z);
 side.vertex(x, -h/2, z);
 }
 side.endShape();
 PShape top = createShape();
 top.beginShape(TRIANGLE_FAN);
 top.noStroke();
 top.fill(#59C5F5);
 top.vertex(0, 0, 0);
 for (int i = 0; i <= ndiv; i++) {
 float a = map(i, 0, ndiv, 0, TWO_PI);
 float x = r * cos(a);
 float z = r * sin(a);
 top.vertex(x, -h/2, z);
 }
 top.endShape();
 base.addChild(side);
 base.addChild(top);
}

After all this work, we should have a working drawing app for VR! We can try it out in
a Cardboard or Daydream headset, and if everything goes well, we would be able to use it
to create line drawings like the one shown in Figure 15-8.

Chapter 15 ■ Drawing in VR

347

Flying Around
With the VR drawing app in its current form, we can direct strokes with our gaze and rotate
the drawing around the horizontal direction to add new strokes from different angles. Even
though this should give our users a lot to play with, we could still improve the app in many
different ways.

One limitation so far is that we remain at a fixed position in front of the drawing
podium. Although we can change our viewpoint by moving our head and rotating the
drawing around the horizontal axis, we are not able to get any closer to it, for example. We
saw in the previous chapter how to implement free-range movement in VR, so we could
apply that code to implement this functionality in our app.

Since we want to create a fly-by through the drawing, we could add a pair of animated
wings in the front of our view while we move around. These wings, fixed with respect to
our position, would provide a visual reference to help users not feel disoriented.

We will go over all the changes we should introduce to the tabs of the previous
version of the sketch. Let’s start with the main tab in Listing 15-4A.

Listing 15-4A.  Main Tab with Fly Mode Modifications

import processing.vr.*;

float angle;
boolean flyMode = false;
PVector flyStep = new PVector();

void setup() {
 fullScreen(STEREO);
 textureMode(NORMAL);

Figure 15-8.  Our VR drawing app in action!

www.allitebooks.com

http://www.allitebooks.org

Chapter 15 ■ Drawing in VR

348

 createBase(300, 70, 20);
 createButtons(300, 100, 380, 130);
}

void calculate() {
 if (mousePressed) {
 if (leftButton.selected) angle -= 0.01;
 if (rightButton.selected) angle += 0.01;
 if (flyMode) {
 getEyeMatrix(eyeMat);
 flyStep.add(2 * eyeMat.m02, 2 * eyeMat.m12, 2 * eyeMat.m22);
 }
 }
 if (mousePressed && !selectingUI() && !flyMode) {
 updateStrokes();
 }
}

void draw() {
 background(0);
 translate(width/2, height/2);
 ambientLight(40, 40, 40);
 directionalLight(200, 200, 200, 0, +1, -1);
 translate(-flyStep.x, -flyStep.y, -flyStep.z);
 drawBase();
 drawStrokes();
 if (flyMode) drawWings();
 drawUI();
}

void mouseReleased() {
 if (resetButton.selected) {
 clearDrawing();
 angle = 0;
 } else if (flyToggle.selected) {
 flyToggle.toggle();
 if (flyToggle.state == 0) {
 flyMode = false;
 flyStep.set(0, 0, 0);
 } else {
 flyMode = true;
 }
 } else {
 startNewStroke();
 }
}

Chapter 15 ■ Drawing in VR

349

We introduced a few additional variables: a flyMode Boolean variable to keep track
of whether we are in fly mode or not, as well as the actual displacement vector, flyStep,
that we update by advancing along the forward vector when the headset button is
pressed. Also, we added an ambient light so the wings are visible even when they don’t
receive direct light from the directional sources.

We also had to add some extra interaction handling in mouseReleased(). The problem
is that now we need another UI element to switch between the normal draw mode and the
new fly mode. We do this by implementing a specialized toggle button with two alternative
images indicating which mode we can switch to. The placement of this toggle button is not
obvious; it could just be in front of our view as we start the app, but then it would be not
visible if we are in fly mode and we end up lost somewhere in VR. It would be better if this
button were always visible when we do some specific gesture; for example, looking up. We
can achieve this if the toggle button is not affected by the fly movement and is always placed
exactly above the camera position. The code in Listing 15-4B does this.

Listing 15-4B.  UI Tab with Fly Mode Modifications

Button leftButton, rightButton, resetButton;
Toggle flyToggle;

void createButtons(float dx, float hlr, float ht, float s) {
 ...
 PImage fly = loadImage("fly-icon.png");
 PImage home = loadImage("home-icon.png");
 flyToggle = new Toggle(-ht, s, fly, home);
}

void drawUI() {
 leftButton.display();
 rightButton.display();
 resetButton.display();
 noLights();
 flyToggle.display();
 if (!flyMode) drawAim();
}
...
boolean selectingUI() {
 return leftButton.selected || rightButton.selected ||
 resetButton.selected || flyToggle.selected;
}
...
class Toggle {
 float h, s;
 boolean selected;
 int state;
 PImage[] imgs;
 color[] colors;

www.allitebooks.com

http://www.allitebooks.org

Chapter 15 ■ Drawing in VR

350

 Toggle(float h, float s, PImage img0, PImage img1) {
 this.h = h;
 this.s = s;
 imgs = new PImage[2];
 imgs[0] = img0;
 imgs[1] = img1;
 colors = new color[2];
 colors[0] = #F2674E;
 colors[1] = #59C5F5;
 }

 void display() {
 float l = 0.5 * s;
 pushStyle();
 pushMatrix();
 getEyeMatrix(eyeMat);
 translate(eyeMat.m03 + flyStep.x - width/2,
 eyeMat.m13 + h + flyStep.y - height/2,
 eyeMat.m23 + flyStep.z);
 selected = centerSelected(l);
 beginShape(QUAD);
 if (selected) {
 stroke(220, 180);
 strokeWeight(5);
 } else {
 noStroke();
 }
 tint(colors[state]);
 texture(imgs[state]);
 vertex(-l, 0, +l, 0, 0);
 vertex(+l, 0, +l, 1, 0);
 vertex(+l, 0, -l, 1, 1);
 vertex(-l, 0, -l, 0, 1);
 endShape();
 popMatrix();
 popStyle();
 }

 void toggle() {
 state = (state + 1) % 2;
 }
}

The Toggle class is similar to Button, but it is textured with two images, one for
each toggle state. We can make the toggle button to be always on top of the user by
translating it to (eyeMat.m03 + flyStep.x - width/2, eyeMat.m13 + h + flyStep.y
- height/2, eyeMat.m23 + flyStep.z), which cancels the translations we apply in
draw(), so it is placed at exactly (eyeMat.m03, eyeMat.m13 + h, eyeMat.m23), the
camera coordinates plus a displacement of h along the vertical direction.

Chapter 15 ■ Drawing in VR

351

Finally, Listing 15-4C shows the code for the animated wings we draw while in fly
mode. The geometry is very simple: two larger, rotating quads for the wings and a smaller
rectangle between them to create a body.

Listing 15-4C.  Drawing Tab with Fly Mode Modifications

...
void drawWings() {
 pushMatrix();
 eye();

 translate(0, +50, 100);
 noStroke();
 fill(#F2674E);

 beginShape(QUAD);
 vertex(-5, 0, -50);
 vertex(+5, 0, -50);
 vertex(+5, 0, +50);
 vertex(-5, 0, +50);
 endShape();

 pushMatrix();
 translate(-5, 0, 0);
 rotateZ(map(cos(millis()/1000.0), -1, +1, -QUARTER_PI, +QUARTER_PI));
 beginShape(QUAD);
 vertex(-100, 0, -50);
 vertex(0, 0, -50);
 vertex(0, 0, +50);
 vertex(-100, 0, +50);
 endShape();
 popMatrix();

 pushMatrix();
 translate(+5, 0, 0);
 rotateZ(map(cos(millis()/1000.0), -1, +1, +QUARTER_PI, -QUARTER_PI));
 beginShape(QUAD);
 vertex(+100, 0, -50);
 vertex(0, 0, -50);
 vertex(0, 0, +50);
 vertex(+100, 0, +50);
 endShape();
 popMatrix();

 popMatrix();
}

With these additions, we can switch into fly mode to fly through our drawing and
switch back to the default draw mode to continue the drawing or start a new one, a
sequence of steps we can appreciate in Figure 15-9.

www.allitebooks.com

http://www.allitebooks.org

Chapter 15 ■ Drawing in VR

352

Final Tweaks and Packaging
We have arrived at a simple but fully functional drawing app for VR! During this
process, we encountered challenges that are unique to VR development: constructing
an immersive 3D environment, adding UI elements that can be accessed using gaze
alone, and moving freely in VR. Our app makes use of some techniques to solve these
challenges, which we should explore further in future VR projects. For the time being, we
only need to make a few final tweaks to get the drawing app ready for release on the Play
Store.

Figure 15-9.  Transition between draw and fly modes

Chapter 15 ■ Drawing in VR

353

Intro Text
When users open our app for the first time, we cannot expect them to know what to do,
so a good idea is to provide an introduction to explain the mechanics of the experience.
We should keep this introduction as brief as possible, since most users don’t want to go
through very lengthy or complicated instructions, and a successful VR experience should
be as self-explanatory as possible.

We could draw the intro page in eye coordinates so it is facing the user irrespective
of their head position, and it should disappear as soon as the user presses the headset
button to continue. Listing 15-5 shows the additions to the code to implement a simple
intro, and the result is shown in Figure 15-10.

Listing 15-5.  Adding an Intro Screen

import processing.vr.*;

float angle;
boolean flyMode = false;
PVector flyStep = new PVector();
boolean showingIntro = true;

void setup() {
 fullScreen(STEREO);
 textureMode(NORMAL);
 textFont(createFont("SansSerif", 30));
 textAlign(CENTER, CENTER);
 ...
}
...
void mouseReleased() {
 if (showingIntro) {
 showingIntro = false;
 } else if (resetButton.selected) {
 ...
}
...
void drawUI() {
 leftButton.display();
 rightButton.display();
 resetButton.display();
 noLights();
 flyToggle.display();
 if (showingIntro) drawIntro();
 else if (!flyMode) drawAim();
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 15 ■ Drawing in VR

354

void drawIntro() {
 noLights();
 eye();
 fill(220);
 text("Welcome to VR Draw!\nLook around while clicking to draw.\n" +
 "Click on the side buttons\nto rotate the podium,\n" +
 "and on the X slightly below\nto reset.\n\n" +
 "Search for the wings to fly", 0, 0, 300);
}
...

The logic for the intro screen is as follows: we use the showingIntro variable to
indicate whether we should be drawing the intro, and set it to true by default. As soon as
the user releases the first button press, the intro will go away.

Icons and Package Export
The final steps in the creation of the app are designing the icons, setting the final package
name, labels, and versions in the manifest file, and then exporting the signed package
that is ready to upload to the Play Store, all of which we covered in Chapter 3.

As for the icons, we need a full set, including 192 × 192 (xxxhdpi), 144 × 144 (xxhdpi),
96 × 96 (xhdpi), 72 × 72 (hdpi), 48 × 48 (mdpi), and 32 × 32 (ldpi) versions, such as the one
shown in Figure 15-11.

Figure 15-10.  Intro screen with some instructions on how to use the app

http://dx.doi.org/10.1007/978-1-4842-2719-0_3

Chapter 15 ■ Drawing in VR

355

The manifest file for the exported package should include a unique full package
name, the version code and name, and the Android label that is used in the UI to identify
the app. The following is an example with all these values filled in:

import processing.vr.*;
<?xml version="1.0" encoding="UTF-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="1" android:versionName="1.0"
 package="com.example.vr_draw">
 <uses-sdk android:minSdkVersion="19" android:targetSdkVersion="25"/>
 <uses-permission android:name="android.permission.VIBRATE"/>
 <uses-permission android:name=
 "android.permission.READ_EXTERNAL_STORAGE"/>
 <uses-feature android:name=
 "android.hardware.sensor.accelerometer"
 android:required="true"/>
 <uses-feature android:name="android.hardware.sensor.gyroscope"
 android:required="true"/>
 <uses-feature android:name="android.software.vr.mode"
 android:required="false"/>
 <uses-feature android:name="android.hardware.vr.high_performance"
 android:required="false"/>
 <uses-feature android:glEsVersion="0x00020000" android:required="true"/>
 <application android:icon="@drawable/icon"
 android:label="VR Draw"
 android:theme="@style/VrActivityTheme">
 <activity android:configChanges=
 "orientation|keyboardHidden|screenSize"
 android:name=".MainActivity"
 android:resizeableActivity="false"
 android:screenOrientation="landscape">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 <category android:name=

Figure 15-11.  App icons in all required resolutions

www.allitebooks.com

http://www.allitebooks.org

Chapter 15 ■ Drawing in VR

356

 "com.google.intent.category.CARDBOARD"/>
 </intent-filter>
 </activity>
 </application>
</manifest>

Summary
We just completed our last project in the book! This was the most complex of all, but
hopefully it helped recognizing the challenges involved in creating VR apps, and learning
how to allow users to interact with their VR surroundings in intuitive ways. By addressing
the challenges involved in such apps, we have discovered how to apply Processing’s 3D
API to implement immersive graphics and interactions. Now you have the tools to create
new and original Android apps, not only for VR, but also for watches, phones, and tablets.
Have fun sketching your ideas into reality!

357© Andrés Colubri 2017
A. Colubri, Processing for Android, https://doi.org/10.1007/978-1-4842-2719-0

APPENDIX A

Gradle and Android Studio
Integration

In this appendix, we will learn to export Processing sketches as Gradle projects that can
be compiled from the command line or imported into Android Studio.

Google’s Tools for Android Development
Android Studio is the official integrated development environment (IDE) for Android. It is
available for free from Google (https://developer.android.com/studio/index.html).
Android Studio offers a rich interface to write and debug Android apps that includes not
only an editor for source code (Figure A-1), but also a visual UI designer.

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-2719-0
https://developer.android.com/studio/index.html)
http://www.allitebooks.org

APPENDIX a ■ Gradle and Android Studio Integration

358

Figure A-1.  Android Studio interface for code editing (top) and visual app design (bottom)

APPENDIX a ■ Gradle and Android Studio Integration

359

Android Studio uses software called Gradle (https://gradle.org/) to build
its projects. Gradle is a “build automation system” in which we can specify all the
information needed to compile the source code, resolve dependencies, and package
the final app. This is accomplished with a set of build files written in a Groovy-based
language, specifically customized for software-building tasks. This provides great
flexibility for handling the complexity of Android projects, which often involve several
files, including source code, libraries, and resources. Processing uses Gradle to build the
sketches into apps, but keeps this complexity hidden away from the user.

Although Processing for Android aims at a group of users (artists, designers,
students) and uses (sketching, prototyping, teaching) that is often not the focus of more
advanced IDEs do, integration with Android Studio can be very convenient in many
cases. For example, we may want to incorporate some interactive graphics we created
with Processing into a larger Android app. Also, being able to access the underlying
Gradle build files for our sketch allows us to tweak things in ways that are not possible
from the PDE.

There are two main ways to combine Processing for Android with Gradle and
Android Studio:

	 1.	 Exporting a Processing sketch as a Gradle project from the PDE.
This project can be compiled from the command line using the
Gradle Wrapper tool (https://docs.gradle.org/current/
userguide/gradle_wrapper.html) that is included with
the exported project. This project can also be imported into
Android Studio.

	 2.	 Importing the processing-core package into an existing or
new Android Studio project and using it to access all the core
Processing’s API for drawing and interaction. This makes
possible to write portions of a larger Android app with custom
Processing-based views, and to integrate them with Android
native views and UI.

We will learn how use each one of these integration approaches in the next sections.

Exporting a Sketch as a Gradle Project
Android mode has an option in the File menu called “Export Android Project” (Figure A-2).
After we select this option, the mode will create a complete Gradle project, including assets
and resources, from our sketch, ready to compile from the command line. The project is
placed in the android folder inside the sketch folder.

www.allitebooks.com

https://gradle.org/
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://docs.gradle.org/current/userguide/gradle_wrapper.html
http://www.allitebooks.org

APPENDIX a ■ Gradle and Android Studio Integration

360

Listing A-1 shows a simple sketch to test the export functionality in Android mode.

Listing A-1.  Sketch to Export as Android Project

PShape world;

void setup() {
 fullScreen(P2D);
 orientation(LANDSCAPE);
 world = loadShape("World-map.svg");
 world.scale(height/world.getHeight());
 shapeMode(CENTER);
}

void draw() {
 background(255);
 translate(width/2, height/2);
 shape(world);
}

Figure A-2.  Export Android Project in the PDE

APPENDIX a ■ Gradle and Android Studio Integration

361

After exporting it, the resulting Gradle project should have the folder structure
shown in Figure A-3. The original sketch includes an SVG file in its data folder, which will
be placed inside src/main/assets in the exported project.

Gradle projects are organized in a hierarchical structure, with a main build.gradle
file in the top-level folder containing the master options, and another build.gradle
file inside the app sub-folder with the specific options to build the project, such as the
dependencies and target SDK level. The Java source code generated from the sketch’s
code is inside app/src/main/java, and all files in the data folder are copied to the assets
folder. The processing core library is placed as a jar file inside the libs folder.

Once we have generated this exported project, we can compile it using the gradlew
command-line program included in the android folder. In order to do so, we need to
open a terminal, change to the project folder, and run the command: `./gradlew build`.

The results of a successful build are the debug and release (unsigned) packages,
which we will find in app/build/outputs/apk as app-debug.apk and app-release-
unsigned.apk. The package name will be the one we set in the manifest file, or the
Processing default if we did not edit the manifest that Processing generates automatically
for us. This manifest file will also be copied into the exported project so we can further
customize it.

Importing into Android Studio
Once we have exported our Processing sketch as Gradle project, we can easily import it
into Android Studio, since an Android Studio project is essentially a Gradle project with
some additional files.

Figure A-3.  File structure of an exported Android project

www.allitebooks.com

http://www.allitebooks.org

APPENDIX a ■ Gradle and Android Studio Integration

362

From inside Android Studio, we go to the File Menu and select “New|Import
Project…”. We can also select ”Import Project (Eclipse ADT, Gradle, etc.)” from the
Welcome screen, as seen in Figure A-4.

Figure A-4.  Importing a Gradle project from the File menu (top) or the Welcome screen
(bottom)

APPENDIX a ■ Gradle and Android Studio Integration

363

The import functionality will prompt us to browse for the folder containing the
Gradle project (Figure A-5).

The exported Gradle project from Processing is linked to the SDK we use in
Processing’s Android mode. If it is different from Android Studio’s SDK, then we will be
prompted to choose to use one or the other in the imported Android Studio project. In
general, it is recommended to use Processing’s SDK, because it will be certain to work
with the project, but a newer SDK in Android Studio should be compatible as well.

After importing the project, we can use all the functionality in Android Studio to edit
and debug the code (Figure A-6). We also have access to any function from Processing’s
API since the core library is included as a dependency in the project.

Figure A-5.  Selecting the folder that contains our Gradle project exported from Processing

www.allitebooks.com

http://www.allitebooks.org

APPENDIX a ■ Gradle and Android Studio Integration

364

The code from our original Processing sketch is converted into two separate classes,
the first for the main activity, and the second containing the sketch itself, which is a
sub-class of PApplet, the core class that holds most of the functions and variables in the
Processing API. See Listing A-2.

Listing A-2.  Exported Sketch Code in Android Studio

package processing.test.listing_a_1;

import processing.core.*;

public class listing_a_1 extends PApplet {
 PShape world;
 public void setup() {
 orientation(LANDSCAPE);
 world = loadShape("World-map.svg");
 world.scale(height/world.getHeight());
 shapeMode(CENTER);
 }
 public void draw() {
 background(255);
 translate(width/2, height/2);
 shape(world);
 }
 public void settings() { fullScreen(P2D); }
}

Figure A-6.  Processing sketch imported into Android Studio

APPENDIX a ■ Gradle and Android Studio Integration

365

Notice an important change with respect to our original sketch code: fullScreen()
is now inside a new function called settings(), which is needed to properly initialize our
sketch when running it outside the PDE, and which always gets called before setup(). If
we were using size() instead, it would also go inside settings().

Listing A-3 shows the main activity where the Processing sketch object is initialized
and attached to a containing fragment inside the activity. This code is automatically
generated by Processing when we export the Android project.

Listing A-3.  Main Activity for an Exported Processing Sketch

package processing.test.listing_a_1;
import android.os.Bundle;
import android.content.Intent;
import android.view.ViewGroup;
import android.widget.FrameLayout;
import android.support.v7.app.AppCompatActivity;

import processing.android.PFragment;
import processing.android.CompatUtils;
import processing.core.PApplet;

public class MainActivity extends AppCompatActivity {
 private PApplet sketch;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 FrameLayout frame = new FrameLayout(this);
 frame.setId(CompatUtils.getUniqueViewId());
 setContentView(frame, new ViewGroup.LayoutParams(
 ViewGroup.LayoutParams.MATCH_PARENT,
 ViewGroup.LayoutParams.MATCH_PARENT));

 sketch = new listing_a_1();
 PFragment fragment = new PFragment(sketch);
 fragment.setView(frame, this);
 }

 @Override
 public void onRequestPermissionsResult(int requestCode,
 String permissions[],
 int[] grantResults) {
 if (sketch != null) {
 sketch.onRequestPermissionsResult(
 requestCode, permissions, grantResults);
 }
 }

www.allitebooks.com

http://www.allitebooks.org

APPENDIX a ■ Gradle and Android Studio Integration

366

 @Override
 public void onNewIntent(Intent intent) {
 if (sketch != null) {
 sketch.onNewIntent(intent);
 }
 }
}

It is important to keep the onRequestPermissionResult() event handler
so that our sketch can respond to the result of a dangerous permission request,
as well as onNewIntent(), which is needed to handle any new intent sent to the
activity (https://developer.android.com/reference/android/app/Activity.
html#onNewIntent(android.content.Intent)).

Let’s take a closer look at the code relevant to creating our sketch object and adding
it to an existing view (Listing A-4), which we used in the onCreate() method in the
previous listing.

Listing A-4.  Adding a Sketch Object to a Fragment View

sketch = new MySketch();
PFragment fragment = new PFragment(sketch);
fragment.setView(frame, this);

Here, MySketch is the class encapsulating our Processing code, like listing_a_1
before. PFragment is a system class from the Processing core library that handles
integration with Android fragments. All we need to do after creating it is to set the
view with the containing layout (in this case a FrameLayout) and the main activity as
arguments. These steps can be used in more complex projects with multiple views.
However, in such cases we would need to add a reference to the actual view object we
want to use, which we will discuss in more detail next.

Adding a Processing Sketch to a Layout
Advanced users might want to work with Android Studio directly, using Processing as a
library in their projects. To do so, we need to consider two important aspects:

	 1.	 How to include the Processing core library as a dependency in
the project

	 2.	 Attaching a Processing sketch to a layout in the UI of the
project

The Processing core library for Android mode is included in the mode folder (e.g.,
<sketchbook folder>/modes/AndroidMode), with the name processing-core.zip. All
we need to do is copy this file to the libs sub-folder (shown in Figure A-7) and change
its extension to .jar. At the time of this writing, Android’s processing-core is not available
as an artifact in Maven Central Repository, but this feature is planned for inclusion in a
near future.

https://developer.android.com/reference/android/app/Activity.html#onNewIntent(android.content.Intent
https://developer.android.com/reference/android/app/Activity.html#onNewIntent(android.content.Intent

APPENDIX a ■ Gradle and Android Studio Integration

367

Once processing-core.jar is copied to the libs folder, we can add it into the
project by opening the module settings for the app module (by right-clicking it in the
Android view), going to the Dependencies tab, where we can add a jar dependency, and
then selecting the file, the steps for which are shown in Figure A-8.

Once we have added processing-core as a dependency, we can write the class
containing the sketch, an example of which is presented in Listing A-5.

Figure A-7.  Location of the libs folder in the project files

Figure A-8.  Adding processing-core.jar as a dependency to a new project in Android
Studio

www.allitebooks.com

http://www.allitebooks.org

APPENDIX a ■ Gradle and Android Studio Integration

368

Listing A-5.  Writing Processing Code in Android Studio

package processing.book.layouts;

import processing.core.PShape;
import processing.core.PImage;
import processing.core.PApplet;

public class MySketch extends PApplet {
 float angle = 0;
 PShape cube;

 public void settings() {
 fullScreen(P3D);
 }

 public void setup() {
 fullScreen(P3D);
 PImage tex = loadImage("mosaic.jpg");
 cube = createShape(BOX, 400);
 cube.setTexture(tex);
 }

 public void draw() {
 background(0x81B771);
 lights();
 translate(width/2, height/2);
 rotateY(angle);
 rotateX(angle*2);
 shape(cube);
 angle += 0.01;
 }
}

As we saw earlier, the screen size must be initialized in settings() instead of in
setup() when working outside of the PDE.

Now, we will integrate the sketch into an existing layout. UI elements in Android are
declared in layouts (https://developer.android.com/guide/topics/ui/declaring-
layout.html), which in turn are described by XML files that are “inflated” as objects
during runtime. If we create a new Basic Activity Project in Android Studio, we will end up
with a layout for the main activity and a content layout. If we want to add the sketch to the
content layout, then we would need to retrieve the reference to the content layout and its
ID from the resources object, as is done in Listing A-6.

Listing A-6.  Adding a Sketch Object to a Fragment View

sketch = new MySketch();
PFragment fragment = new PFragment(sketch);
fragment.setLayout(R.layout.content_main, R.id.content_main, this);

https://developer.android.com/guide/topics/ui/declaring-layout.html
https://developer.android.com/guide/topics/ui/declaring-layout.html

APPENDIX a ■ Gradle and Android Studio Integration

369

If the content layout does not have an ID, we can add it by editing the corresponding
XML file and adding an android:id attribute, as seen in Figure A-9.

With all of this in place, we can implement the onCreate() method in the main
activity to look something like Listing A-7, where we set the layout of the fragment holding
the sketch.

Listing A-7.  Creating the Activity That Contains the Processing Fragment

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
 setSupportActionBar(toolbar);
 FloatingActionButton fab = (FloatingActionButton) findViewById(R.id.fab);
 fab.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 Snackbar.make(view, "Replace with your own action",
 Snackbar.LENGTH_LONG)
 .setAction("Action", null).show();
 }
 });
 sketch = new MySketch();
 PFragment fragment = new PFragment(sketch);
 fragment.setLayout(R.layout.content_main, R.id.content_main, this);
}

Figure A-9.  Setting a name for the content layout to add to our sketch

www.allitebooks.com

http://www.allitebooks.org

APPENDIX a ■ Gradle and Android Studio Integration

370

If we use the requestPermission() function in our sketch to request critical
permissions, then we would also need to add the onRequestPermissionsResult() handler,
as seen in Listing A-8. We did not need to do this when exporting the sketch as an Android
project from the PDE, since in that case Processing adds this handler automatically.

Listing A-8.  Implementation of the onRequestPermissionsResult() handler

@Override
public void onRequestPermissionsResult(int requestCode,
 String permissions[],
 int[] grantResults) {
 if (sketch != null) {
 sketch.onRequestPermissionsResult(requestCode, permissions,
 grantResults);
 }
}

We can now run our project, and we should see a screen similar that shown in
Figure A-10, where we have the Processing output inside the layout containing the sketch
fragment.

Figure A-10.  Running app with the Processing fragment embedded inside a content layout

371© Andrés Colubri 2017
A. Colubri, Processing for Android, https://doi.org/10.1007/978-1-4842-2719-0

APPENDIX B

Processing Libraries

In this appendix, we will review the contributed libraries that can be used in Android
mode and how we can create our own.

Extending Processing with Libraries
Two fundamentals of Processing have contributed to its adoption as a teaching and
prototyping tool: first, a minimal core API that is easy to learn, and, second, a library
architecture that extends the Processing core with new functionality and hardware
support. Some libraries offering important features (such as video or networking) were
developed by the Processing Foundation, but many more were contributed by the
Processing community.

There are contributed libraries for a wide range of applications: 3D, computer vision,
user interface, data handling, audio, and so forth. A few of these libraries are specific to
Android, while others are only for PC or Mac platforms; many can be used across both
Java and Android modes.

Installing a library is very simple to do through the Contribution Manager (although
libraries can be installed manually as well). Search for the library using a keyword, by
category, or simply by scrolling through the list, as shown in Figure B-1.

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-2719-0
http://www.allitebooks.org

APPENDIX B ■ Processing Libraries

372

Once you find a library you would like to try out, all you need to do is to click the
Install button. After you have installed it, you can update it if there is a new version
available, or you can remove it.

Contributed libraries typically include examples that demonstrate their functionality.
These examples can be found by opening the “Examples” option in the File menu and
browsing to the Contributed Libraries category in the listing window (Figure B-2).

Figure B-1.  Contribution Manager showing the Libraries tab

APPENDIX B ■ Processing Libraries

373

In the next sections, we will look at several Processing libraries that are specific to
Android mode or explicitly support it. However, this does not mean that these are the only
libraries that could be used on Android, since many libraries that were originally written
for Java mode are compatible with Android mode.

Data
The AndroidCapture for Processing library (https://github.com/onlylemi/
processing-android-capture) allows you to transfer Android camera and sensor data
from the Android device to a Processing sketch running on the computer.

GUI
ControlP5 (http://www.sojamo.de/libraries/controlP5/) is a GUI library used to
build custom user interfaces for desktop and Android modes. It has been around for a
long time, so there are many examples of it in use, and it has a very characteristic look
and feel. It is important to keep in mind that, when used on Android, ControlP5 does not
rely on the native UI widgets or the standard UI creation techniques.

Figure B-2.  Contributed libraries examples

www.allitebooks.com

https://github.com/onlylemi/processing-android-capture)
https://github.com/onlylemi/processing-android-capture)
http://www.sojamo.de/libraries/controlP5/)
http://www.allitebooks.org

APPENDIX B ■ Processing Libraries

374

The SelectFile library (https://github.com/pif/android-select-file/tree/dlg)
provides dialogs for selecting input and output files and folders, since the core API does
not provide that functionality on Android (it does on PC/Mac).

Hardware/Sensors
Ketai (http://ketai.org/) is an Android library that provides comprehensive support
for sensors, cameras, multi-touch, networking, Bluetooth, Wi-Fi Direct, near-field
communication, and SQLite. We covered Ketai in chapters 7 and 8 of the book.

Geometry/Utilities
The Proscene (https://github.com/remixlab/proscene) library makes it easier
to create interactive scenes in 2D and 3D by handling all the complexity of camera
movement, coordinate systems, and input events (Figure B-3).

Sound and Video
In this category, we have Cassette (https://github.com/shlomihod/cassette), which
provides sound playback functionality, and Processing Video for Android (https://
github.com/omerjerk/processing-video-android), which exposes an API for video
playback and capture similar to that available in the Processing video library for desktop.

Figure B-3.  Example from Proscene library running on Android

https://github.com/pif/android-select-file/tree/dlg)
http://ketai.org/
http://dx.doi.org/10.1007/978-1-4842-2719-0_7
http://dx.doi.org/10.1007/978-1-4842-2719-0_8
https://github.com/remixlab/proscene)
https://github.com/shlomihod/cassette)
https://github.com/omerjerk/processing-video-android
https://github.com/omerjerk/processing-video-android

APPENDIX B ■ Processing Libraries

375

Writing New Libraries
A common situation is when we find ourselves using some code in our sketches over
and over again. It would be easier to include the code in future projects if we were able to
package it as a library. Also, if this code implements some general functionality that other
people might find useful, we could consider sharing it with the rest of the Processing
community. As we saw in the previous section, there is very little restriction on what a
library can do, and even though writing a Processing library involves some technical
steps, it is not that hard to do.

The first step in the creation of a library is to modularize the functionality we want
in a separate class that takes our sketch object as a parameter. Processing puts all of our
sketch code inside a class called PApplet, and this class also holds most of the Processing
API we have seen throughout the book. For example, let’s imagine we wrote a number of
functions to draw regular polyhedrons:

void setup() {
 fullScreen(P3D);
}

void draw() {
 background(255);
 drawTetrahedron();
 drawOctahedron();
 drawDodecahedron();
 drawIcosahedron();
}

void drawTetrahedron() {
 beginShape();
 ...
 endShape();
}

void drawDodecahedron() {
 beginShape();
 ...
 endShape();
}

...

www.allitebooks.com

http://www.allitebooks.org

APPENDIX B ■ Processing Libraries

376

If we move the drawing code inside a new class, we could do something like this:

Polyhedron poly;

void setup() {
 fullScreen(P3D);
 poly = new Polyhedron(this);
}

void draw() {
 background(255);
 poly.drawTetrahedron();
 poly.drawOctahedron();
 poly.drawDodecahedron();
 poly.drawIcosahedron();
}

class Polyhedron {
 PApplet parent;

 Polyhedron(PApplet parent) {
 this.parent = parent;
 }

 void drawTetrahedron() {
 parent.beginShape();
 ...
 parent.endShape();
 }
}

Note how we create an instance of the Polyhedron class with the this keyword,
which is a reference to the current sketch. This reference is stored in the parent field in
the Polyhedron class, which we can use to perform any Processing call.

Once we have organized the code in this way, although it does not bring much
immediate benefit to the sketch, it is easy to move the class encapsulating the special
functionality into a separate library. The Processing Foundation provides a Processing
Android library template with all the required files to create an Eclipse project to build
our library. In that template, we can incorporate our custom code, such as the one we
discussed here. The library template is available at https://github.com/processing/
processing-android-library-template and includes a detailed step-by-step guide on
how to import the template into Eclipse and use it as the basis for a library project.

https://github.com/processing/processing-android-library-template
https://github.com/processing/processing-android-library-template

377© Andrés Colubri 2017
A. Colubri, Processing for Android, https://doi.org/10.1007/978-1-4842-2719-0

�       � A
Acceleration, 157

audio playing, 165
audio-visual mapping, 160
control animation, 164
onStepDetectorEvent()

event, 163
random colored dots, 161
shake detection, 158
step counter, 159

Accelerometer, 143
Ambient light, 294
Android devices

Android library, 8
emulator, 14
installation, 9
interface of, 10
mobile apps, 8
processing, 8
sketch code, 12

Android Virtual Device
(AVD), 14, 218

�       � B
beginContour() and endContour()

functions, 73
beginShape() and endShape()

function, 61
Body sensors

heart rate, 244
step counter, 243

�       � C
Contribution Manager (CM), 7
curveVertex() function, 64

�       � D
Directional light, 295
3D Processing, 275

lights and textures, 293
light sources and material

properties, 294
map() function, 301
material properties, 297
setTextureUV() function, 302
texture mapping, 298
textureMode() function, 300

P3D (see P3D renderer)
shapes

2D and 3D primitives, 284
getShapeCenter() function, 292
loadStrings() function, 289
OBJ file format, 291
PShape objects, 288
QUADS, 286
setVertex() function, 289

3D transformations
rotation, 281
scaling, 282
transformation composition, 283
translations, 281

Drawing app (VR)
3D drawing, 339

background() function, 340
current forward vectors, 340
drawing tab, 342
Geo tab, 346
main tab, 341
previous forward vectors, 340
tab structure, 340
UI tab, 344
updateStrokes() function, 342, 344
working drawing app, 346

Index

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-2719-0
http://www.allitebooks.org

■ INDEX

378

experience, 331
class activities, 332
Google Tilt Brush, 332
sketches, 333

fly-by through, 347
drawing tab, 351
mouseReleased() function, 349
tab modifications, 347
transition, 352
UI tab modification, 349

icons and package export, 354
intro text, 353
UI (see User interface (UI))

�       � E
Extending processing, 7

�       � F
fromAngle() method, 66

�       � G, H
Geolocation sensors

location data, 181
processing sketch, 182

event threads and
concurrency, 186

Ketai, 190
location data, 192
onLocationChanged()

function, 186
path-tracking sketch, 190
permissions, 183

Street View images, 194
Google API, 195
offscreen drawing surface, 202
Pgraphics Object, 203
Street View Collage, 204
updatePositions() function, 209
Voronoi tessellations, 197
wallpaperPreview() function, 209

getChildren() function, 79
getTessellation() function, 101
Global positioning system

(GPS), 181
Gradle projects, 357

build automation system, 359
export Android project, 359

file structure, 361
import project, 361
interface, 357–358
layout option

content layout, 369
fragment view, 368
libs folder, 367
onCreate() method, 369
processing-core.jar, 367
requestPermission() function, 370
sketch fragment, 370
steps, 366

processing sketch object, 364
Graphics processing unit (GPU), 59
growTree() function, 263–264
Gyroscope, 144, 174

controlling navigation, 177
control rotation, 175
2D rotation, 176
recentering data, 176
rotational angles, 174

�       � I, J
Image-flow wallpaper, 128

hue() and saturation() functions, 136
loading, resizing and cropping

images, 128
loadImage() and image() function, 80
loadRandomImage() function, 135
texturing shapes, 81
threads, 134
tint() and noTint() function, 80
touch-based particle system, 130
wrapping up, 138

�       � K
Ketai library, 150, 157

accelerometer, 151
event handlers, 153
gyroscope, 152
installation, 150
mousePressed()/touchMoved()

functions, 151
Keyboard input and touchscreen

input, 32
ellipses, 33
free-hand drawing, 34
fullScreen() function, 33, 34
size() function, 33

Drawing app (VR) (cont.)

■ INDEX

379

�       � L
Libraries, 7, 371

contribution manager, 371–372
creation, 375
data, 373
file menu and

browsing, 372
geometry/utilities, 374
GUI, 373
hardware/sensors, 374
sound and video, 374
teaching and prototyping

tool, 371
Live wallpapers, 111

fullScreen() function, 112
handling permissions, 116
image (see Image-flow wallpaper)
multiple home screens

full-screen mode, 113
image() function, 113
image ratio, 114
image-scroll interaction, 114
offset function, 115

particle systems, 120
autonomous agents, 121
code-based projects, 120
draw() function, 125
image flow field, 126
pen and paper

sketches, 121
update() method, 125

writing and installation, 111
loadFont() and textFont() functions, 83
loadImage() function, 130
loadPixels() function, 126
loadShape() function, 78
loadTable() function, 255

�       � M, N
Magnetic sensor/magnetometer

compass app, 170
compass sketch, 170
getOrientation() function, 172, 173
getRotationMatrix() methods, 172
magnetic field, 169

Magnetometer, 144
Monoscopic rendering, 308
mousePressed()/touchMoved()

function, 105

�       � O
onAccuracyChanged() method, 146
onGyroscopeEvent method, 152
onSensorChanged() function, 146, 263

�       � P, Q
P3D renderer, 275

camera, 277
createShape() function, 280
3D Hello World, 275
immediate vs. retained rendering, 279
orthographic projection, 278
perspective() and ortho()

functions, 278
Point light, 294
Processing development environment

(PDE), 4
Processing project, 3

Android (see Android devices)
code sketchbook, 5
extending processing, 7
language, 3
Mac, 6
PDE process, 4
software sketchbook, 3

PShape class, 74
createShape() function, 75
creation, 75
SVG, 78

pushMatrix() and popMatrix()
function, 31

pushStyle() and popStyle() function, 72

�       � R
Renderers, 59

full-screen output, 60
size() and fullScreen() functions, 59

requestImage() function, 196

�       � S
Sensor data, 157

accelerometer, 143
data in accelerometer, 147
gyroscope, 144
Ketai (see Ketai library)
listener, 146
location, 144

www.allitebooks.com

http://www.allitebooks.org

■ INDEX

380

magnetometer, 144
manager, 145
mobile devices, 143
reading data (gyroscope), 149

Shapes, 60
attributes, 70
contours, 73
curve shapes, 62
styles, 72
types, 60

Sketchbook
artists and designers, 17
code-based drawing

line() function, 20
setup/draw structure, 17

animation line, 18
color, 27
draw() function, 18–19
form, 23
geometric transformations, 30
noLoop() and loop() functions, 19
screen coordinates, 21
setup() function, 17, 19
static sketch, 20
style attributes, 20

user input, 32
vine-drawing app, 34

Sketching and debugging, 4
checkpoints, 44
definition, 41
integrated debugger, 44
logcat, 43
processing console, 42
public release

config.ini file, 50
device DPI, 45
display density, 46
emulator, 48
export signed package, 52
fullScreen() method, 46
icons and package name, 51
package name and version, 51
vine-drawing app, 51, 55

reporting processing bugs, 45
terminal session, 43

Software Development Kit (SDK), 9
Spotlight, 295
surfaceTouchEvent() function, 105

�       � T
Text drawing, 82

attributes, 85
font loading and

creation, 83
scaling text, 86

Texture mapping, 298
Time visualization

sundials
concentric circles, 230
control motion, 228
digital representations, 228
smartwatches, 227
square vs. round watch

faces, 231
technical and cultural

background, 227
watch face concept, 235

crescent moon, 235
elapsed/remaining time, 235
interaction, 237
load/display images, 239

Touchscreen interaction
clear button, 95
draw() function, 95
interface actions, 96
keyboard, 108
line drawing, 93
mouse events, 91
mousedDragged() function, 91
mousePressed() function, 91
mouseReleased()

function, 91, 95
mouse variables, 90
multi-touch events

accessing properties, 96
mouseDragged() function, 97
multiple brushes, 99
startTouch() function, 97
touchEnded() and touchMoved()

function, 98
positions of mouse, 93
scrolling bar, 102
setVelocity() method, 94
shape selection, 101
swipe and pinch, 105
track touch position, 90
virtual/software keyboards, 89

Sensor data (cont.)

■ INDEX

381

�       � U
updateSteps() functions, 263
User interface (UI)

base shape and dummy
object, 336

createBase() functions, 336
createButtons() function, 338
drawBase() function, 336
drawBox() function, 336
drawing app, 334
screenX() and screenY() function, 338

�       � V
vertex() function, 62

and bezierVertex() functions, 66
Vine-drawing app

flower/leaf sketch, 36
output of, 40
randomized spirals, 38
Sketches, 35
spiral parametric equation, 36–37

Virtual reality (VR)
drawingapp (see Drawing app, VR)
Google, 303

cardboard and
daydream, 303

hardware requirements, 304
Vive/Oculus, 303

interaction, 309
box selection, 318
eye and world coordinates, 310
getObjectMatrix() function, 318
intersectsLine() function, 322
line of sight, 312
screen coordinates, 315, 317

movement, 322
automatic movement, 324
calculate() function, 326
free-range movement, 326
prepare() function, 323
stationary reference

object, 323

processing
Android menu, 304
fullScreen() function, 304
monoscopic rendering, 308
output window, 305
sketch, 304
stereo rendering, 306

Visualization
bodysensors (see Body sensors)
real-time, 245

arc() function, 249
BODY_SENSORS permission, 248
heart-rate data, 250
heart-rate sensor, 246
permission request, 248
sensor debugging, 253
step-count data, 249
step-counter sensor, 245

tree generation, 257
algorithms, 257
particle system, 258
step-count sensor, 260
tree blooming, 264
watch face, 263

Voronoi tessellations, 197

�       � W, X, Y, Z
wallpaperHomeCount() function, 114
wallpaperOffset() function, 114
Wearable devices

smartwatches, 213
Android watches, 214
design concepts, 222
screen shape and insets, 223
trackers, 213
watch face preview icons, 225

watch face sketches
ambient mode, 218
emulator, 218
step counter, 221
time displays, 220
watch, 215
Wi-Fi debugging, 216

www.allitebooks.com

http://www.allitebooks.org

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Preface
	Part I: First Steps with Processing for Android
	Chapter 1: Getting Started with Android Mode
	What Is the Processing Project?
	The Processing Language
	The Processing Development Environment

	Extending Processing
	The Contribution Manager

	Processing for Android
	Installing the Android mode
	Interface of Android Mode
	Running a Sketch on a Device
	Running a Sketch in the Emulator

	Summary

	Chapter 2: The Processing Language
	A Programming Sketchbook for Artists and Designers
	The Setup/Draw Structure of a Processing Sketch
	Drawing with Code
	Screen Coordinates
	Form
	Color
	Geometric Transformations

	Responding to User Input
	Creating a Vine-Drawing App
	Summary

	Chapter 3: From Sketch to Play Store
	Sketching and Debugging
	Getting Information from the Console
	Getting More Information with logcat
	Using the Integrated Debugger
	Reporting Processing Bugs

	Preparing a Sketch for Release
	Adjusting for Device’s DPI
	Using the Emulator
	Setting Icons and Package Name
	Setting Package Name and Version
	Exporting as a Signed Package

	Summary

	Part II: Drawing and Interaction
	Chapter 4: Drawing Graphics and Text
	Renderers in Processing
	Drawing Shapes
	More Shape Types
	Curve Shapes
	Shape Attributes
	Shape Styles
	Shape Contours

	The PShape Class
	Creating PShapes
	Loading Shapes from SVG

	Drawing Images
	Texturing Shapes

	Drawing Text
	Loading and Creating Fonts
	Text Attributes
	Scaling Text

	Summary

	Chapter 5: Touchscreen Interaction
	Touch Events in Android
	Basic Touch Events
	Multi-touch Events

	Touch-based Interaction
	Shape Selection
	Scrolling
	Swipe and Pinch

	Using the Keyboard
	Summary

	Chapter 6: Live Wallpapers
	Live Wallpapers
	Writing and Installing Live Wallpapers
	Using Multiple Home Screens
	Handling Permissions

	Particle Systems
	Autonomous Agents
	Image Flow Field

	An Image-flow Wallpaper
	Loading, Resizing, and Cropping Images
	Putting Everything Together
	Using Threads
	Controlling the Hue
	Wrapping the Project Up

	Summary

	Part III: Sensors
	Chapter 7: Reading Sensor Data
	Sensors in Android Devices
	Accelerometer
	Gyroscope
	Magnetometer
	Location

	Accessing Sensors from Processing
	Creating a Sensor Manager
	Adding a Sensor Listener
	Reading Data from the Sensor
	Reading from Other Sensors

	The Ketai Library
	Installing Ketai
	Using Ketai
	Event Handlers in Ketai

	Summary

	Chapter 8: Driving Graphics and Sound with Sensor Data
	Using Ketai to Read Sensor Data
	Measuring Acceleration
	Shake Detection
	Step Counter
	Audio-Visual Mapping of Step Data
	Playing Audio

	Using the Magnetic Sensor
	Creating a Compass App

	The Gyroscope
	Controlling Navigation with the Gyroscope

	Summary

	Chapter 9: Geolocation
	Location Data in Android
	Using Location API in Processing
	Location Permissions
	Event Threads and Concurrency
	Location with Ketai
	Using Additional Location Data

	A Street View Collage
	Using Google Street View Image API
	Voronoi Tessellations
	Using an Offscreen Drawing Surface
	Putting Everything Together

	Summary

	Part IV: Wearables and Watch Faces
	Chapter 10: Wearable Devices
	From Activity Trackers to Smartwatches
	Smartwatches

	Running Watch Face Sketches
	Using a Watch
	Using the Emulator
	Displaying Time
	Counting Steps

	Designing for Smartwatches
	Screen Shape and Insets
	Watch Face Preview Icons

	Summary

	Chapter 11: Visualizing Time
	From Sundials to Smartwatches
	Using Time to Control Motion
	Square Versus Round Watch Faces

	Working with a Watch Face Concept
	Elapsed/Remaining Time
	Adding Interaction
	Loading/Displaying Images

	Summary

	Chapter 12: Visualizing Physical Activity
	Body Sensors
	Step Counter
	Heart Rate

	Visualizing Physical Activity in Real-time
	Simple Step Counter
	Accessing the Heart-rate Sensor
	Visualizing Step-count Data
	A Beating Heart
	Sensor Debugging

	Growing a Tree as You Exercise
	Generating a Tree with a Particle System
	Incorporating Step-count Data
	Tweaking the Watch Face
	Blooming the Tree

	Summary

	Part V: 3D and VR
	Chapter 13: 3D in Processing
	The P3D Renderer
	A 3D Hello World
	The Camera
	Immediate Versus Retained Rendering

	3D Transformations
	Combining Transformations

	3D Shapes
	Custom Shapes
	PShape Objects
	Loading OBJ Shapes

	Lighting and Texturing
	Light Sources and Material Properties
	Texture Mapping

	Summary

	Chapter 14: VR Basics
	Google VR
	Cardboard and Daydream
	Hardware Requirements

	VR in Processing
	Stereo Rendering
	Monoscopic Rendering

	VR Interaction
	Eye and World Coordinates
	The Line of Sight
	Selecting a Shape with Screen Coordinates
	Bounding Box Selection

	Movement in VR
	Automatic Movement
	Free-range Movement

	Summary

	Chapter 15: Drawing in VR
	Creating a Successful VR Experience
	Drawing in VR
	Initial Sketches

	A Simple VR UI
	Drawing in 3D
	Flying Around
	Final Tweaks and Packaging
	Intro Text
	Icons and Package Export

	Summary

	Appendix A: Gradle and Android Studio Integration
	Google’s Tools for Android Development
	Exporting a Sketch as a Gradle Project
	Importing into Android Studio
	Adding a Processing Sketch to a Layout

	Appendix B: Processing Libraries
	Extending Processing with Libraries
	Data
	GUI
	Hardware/Sensors
	Geometry/Utilities
	Sound and Video

	Writing New Libraries

	Index

