
Propeller
Programming

Using Assembler, Spin, and C
—
Sridhar Anandakrishnan

www.allitebooks.com

http://www.allitebooks.org

Propeller
Programming

Using Assembler, Spin, and C

Sridhar Anandakrishnan

www.allitebooks.com

http://www.allitebooks.org

Propeller Programming: Using Assembler, Spin, and C

ISBN-13 (pbk): 978-1-4842-3353-5		 ISBN-13 (electronic): 978-1-4842-3354-2
https://doi.org/10.1007/978-1-4842-3354-2

Library of Congress Control Number: 2018935236

Copyright © 2018 by Sridhar Anandakrishnan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Cover photo: Double slip at Munich Central, 2005. Photo by Bjorn Laczay, license CC-BY-SA 2.0.
https://goo.gl/q7EHSv.

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484233535.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Sridhar Anandakrishnan
Department of Geosciences, University Park,
Pennsylvania, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3354-2
http://www.allitebooks.org

iii

About the Author��xi

Acknowledgments��xiii

Preface��xv

Table of Contents

Part I: Introduction���1

Chapter 1: �Introduction���3

1.1 ��The Propeller Eight-Cog Processor��5

1.1.1 ��Cogs���6

1.1.2 ��Hubs and Cogs��9

1.2 ��Memory Layout��11

1.2.1 ��Hub Memory��13

1.2.2 ��Cog Memory��14

1.3 ��Layout of This Book��16

Chapter 2: �Steim Compression��17

2.1 ��Packing and Compressing Data���18

2.2 ��Specification��21

2.3 ��Implementation��23

Chapter 3: �Introduction to Spin���25

3.1 ��Negative Numbers���28

3.2 ��Memory Layout��29

www.allitebooks.com

http://www.allitebooks.org

iv

3.3 ��Spin Template��30

3.3.1 ��Hello, World��30

3.3.2 ��Running the Program��35

3.4 ��PASM Template��37

3.5 ��Template for PASM Code in a Separate File���40

3.6 ��Summary���43

Chapter 4: �Test-Driven Development���45

4.1 ��TDD Spin Code���49

4.2 ��Summary���51

Chapter 5: �Compression in Spin��53

5.1 ��Structure of the Project��53

5.2 ��Goals of This Chapter���54

5.3 ��First Iteration��55

5.4 ��Passing Arrays to Methods��61

5.5 ��Testing��62

5.6 ��Final Code��64

5.6.1 ��Compression in Spin��64

5.6.2 ��Decompression in Spin��66

5.7 ��The Need for Speed��70

5.7.1 ��Timing in PASM��71

5.7.2 ��PASM Timing Estimate���72

5.8 ��Summary���73

Part II: Spin and PASM��75

Chapter 6: �Propeller Assembler: PASM���77

6.1 ��Instructions in PASM��78

6.1.1 ��The Add Instruction��81

6.1.2 ��The mov Instruction���82

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

v

6.1.3 ��Variables��83

6.1.4 ��Effects���84

6.1.5 ��Literals���85

6.1.6 ��Labels��85

6.1.7 ��Conditional Evaluation���86

6.1.8 ��Branching��88

6.2 ��Reading the PASM Manual���89

6.3 ��Categories of PASM Instruction and Registers��90

6.3.1 ��Copying��90

6.3.2 ��Arithmetic��91

6.3.3 ��Boolean, Comparison, and Bit-Shift Operators��������������������������������������92

6.3.4 ��Process Control���94

6.3.5 ��Hub Reads/Writes��95

6.3.6 ��Locks���95

6.3.7 ��Variables��96

6.3.8 ��Special Registers���96

6.3.9 ��Counters��97

6.4 ��The Structure of PASM Programs���97

6.5 ��Passing Parameters to PASM���102

6.6 ��Summary���102

Chapter 7: �Interacting with the World���105

7.1 ��Outline��108

7.2 ��Timing in Spin and PASM���108

7.3 ��Spin��109

7.4 ��PASM��111

7.4.1 ��Toggle a Pin in PASM���111

7.4.2 ��Monitor a Switch���114

7.5 ��Communication Protocols��115

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

vi

7.6 ��SPI Logging��119

7.6.1 ��PASM SPI Write��123

7.6.2 ��Logging Deadlock��126

7.7 ��Locks��127

7.7.1 ��Introduction to Locks���127

7.7.2 ��Using Locks for Logging��130

7.8 ��Some Common Tasks���132

7.8.1 ��Assignment��132

7.8.2 ��Multiplication���133

7.8.3 ��Division��135

7.8.4 ��Loops���136

7.8.5 ��Conditionals���136

7.9 ��Summary���137

Chapter 8: �Implementing the Compression Code in PASM����������������139

8.1 ��Passing Parameters to PASM���139

8.2 ��Setting Up steim_pasm0�� �140

8.3 ��Passing Parameters in the cognew Command��149

8.3.1 ��Using PAR��151

8.3.2 ��Using PAR Some More���151

8.3.3 ��Using the Addresses��153

8.3.4 ��Starting the Compression��154

8.4 ��Passing Parameters: Method 2�� �155

8.5 ��Summary���159

Chapter 9: �Compression in PASM with TDD���������������������������������������163

9.1 ��Overall Flowchart���165

9.2 ��Test 1: Passing nsamps and ncompr��167

9.2.1 ��Spin Code��167

9.2.2 ��PASM Code��168

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

vii

9.3 ��Test 2: Packing Sample 0��� �171

9.3.1 ��Spin Code��171

9.3.2 ��Memory Layout of Arrays and Parameters��172

9.3.3 ��PASM Code��174

9.3.4 ��Subroutines in PASM���176

9.3.5 ��Testing the Compression of Sample 0��� �178

9.4 ��Packing Differences for Latter Samples��179

9.4.1 ��Testing Compressing Two Samples!��184

9.4.2 ��Test Compressing an Arbitrary Number of Samples����������������������������187

9.5 ��Success?��190

9.6 ��Summary���191

Chapter 10: �Decompression in PASM��193

10.1 ��Getting the Sign Right��196

10.2 ��Overall Flowchart���196

10.3 ��Spin Code���197

10.4 ��PASM: Main Decompression Loop���198

10.5 ��Subroutines for Unpacking��201

10.6 ��Testing Decompression of Two Samples��206

10.7 ��Testing Decompression of 128 Samples��208

Chapter 11: �Debugging PASM Code���213

11.1 ��Logging to a Hub Array���215

11.2 ��Spin Code���217

11.3 ��PASM Code���218

11.4 ��Bug Fix���221

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

viii

Part III: C Language��225

Chapter 12: �C Programming for the Propeller�����������������������������������227

12.1 ��The C Language���229

12.2 ��Programming the Propeller in C���235

12.2.1 ��SimpleIDE��236

12.2.2 ��Hello World��238

12.2.3 ��Launching a New Cog��239

12.2.4 ��Compression Code in C���245

12.3 ��Summary���250

Chapter 13: �Programming in Cog-C Mode���253

13.1 ��Cog-C Mixed Mode Programming��254

13.1.1 ��Main Cog Code��255

13.1.2 ��Compression Cog-C Code��258

13.1.3 ��Header File compr_cogc.h���261

13.1.4 ��Running the Cog-C Code���262

13.2 ��Summary���263

Chapter 14: �Programming with C and PASM�������������������������������������267

14.1 ��Compression with C and PASM��269

14.1.1 ��C Code for Main Cog��269

14.1.2 ��PASM Code��273

14.2 ��Summary���274

Chapter 15: �Hardware I/O with C���279

15.1 ��Referencing Hardware in C��280

15.2 ��simpletools Library��282

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

ix

15.3 ��Using the Registers Directly���283

15.3.1 ��Set a Pin��283

15.3.2 ��Read a Pin���284

15.4 ��Implementing SPI in Cog-C��286

15.5 ��Goals of This Chapter���286

15.5.1 ��Main Cog (Controller)���287

15.5.2 ��SPI Master���291

15.5.3 ��SPI Slave (Simulated Data Producing Device)�����������������������������������294

15.5.4 ��Running the SPI Code��297

15.6 ��Summary���297

Chapter 16: �Using Inline Assembly Instructions in C Code����������������301

16.1 ��Inline Assembler��303

16.2 ��spiSlave.cogc Inline Assembly���306

16.3 ��Timing��307

16.4 ��Summary���307

Chapter 17: �Concluding Thoughts���309

�Index��311

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

xi

About the Author

Sridhar Anandakrishnan is a professor of glaciology and geophysics

at Pennsylvania State University where he studies the flow of glaciers in

Antarctica and Greenland. Sridhar uses the Propeller chip in a seismic data

acquisition device that is used “on the ice,” as they say!

xiii

I would like to thank Peter Burkett, Bruce Long, and Don Voigt for their

help in the lab and in the field. They designed and deployed rugged and

precise instruments in Antarctica and Greenland that helped to shape

our knowledge of those continents. I would like to thank the US National

Science Foundation, whose financial and logistical support has made this

work possible. I would like to thank my wife Martha Bright, whose love and

support has made this book possible.

Acknowledgments

xv

Preface

This book is intended for those who are familiar with Spin programming

for the Parallax Propeller microcontroller but who want to learn Propeller

C and Propeller Assembly (PASM) programming. The overall task you will

pursue in the book is to implement a delta compression algorithm (a way

to store a string of numbers in less space), first in Spin, then in PASM, and

finally in C. Along the way, I talk about Test-Driven Development and will

end with a chapter on hardware manipulations.

�Intended Audience
It will be helpful to have some knowledge of a programming language. The

intent is to help you extend the capabilities of the Propeller processor by

using C and the Assembler language. If you don’t know Spin but do know

another programming language (C or Python, for example), you will still

be able to follow along actively.

You will learn by doing, so you must purchase a Propeller board such

as the QuickStart board (https://www.parallax.com/product/40000) so

that you can run the code.

�Formatting
In this book, code listings are typeset in a typewriter font: nSamps := 1.

To keep the bloat down, I often elide lines that have been explained

earlier. I will insert an ellipsis to indicate that:

https://www.parallax.com/product/40000

xvi

Lines of code in Spin may not have a line break. When a long line

listing is broken into two because of the page width, this is indicated

with an arrow: (). You can download the code examples from GitHub

(https://github.com/Apress/propeller-programming). Two libraries

(FullDuplexSerial4PortPlus_0v3 and Numbers) are used in the code.

Both can be downloaded from the Propeller Object Exchange

(http://obex.parallax.com), and for convenience I include them in

the GitHub repository.

�Trains
As you will discover, I like trains! But my choice of trains as an analog for

the Propeller isn’t entirely arbitrary. Like the Propeller, train stations have

many parallel tracks with trains moving at different speeds and performing

different tasks and with the need to somehow communicate between each

other and with the outside world.

As with trains there is always the possibility of a crash! Gentle

programmer, as in any journey, you will experience tears and heartache en

route to your destination, but if you persist, there is a great reward at the

end of the journey!

PrefacePreface

https://github.com/Apress/propeller-programming
http://obex.parallax.com/

Introduction

PART I

3© Sridhar Anandakrishnan 2018
S. Anandakrishnan, Propeller Programming, https://doi.org/10.1007/978-1-4842-3354-2_1

CHAPTER 1

Introduction
This is a tutorial on programming the Propeller microcontroller using

both the C programming language and the Propeller Assembly (PASM)

language. For many years after its introduction, the Propeller could be

programmed in Spin and PASM; more recently, Parallax (the company

behind the Propeller) has made a C compiler available. Spin and C are

high-level interpreted and compiled languages, respectively. PASM is a

low-level language, with a one-to-one correspondence between an

instruction and the Propeller’s machine code.

The advantage of PASM over Spin (and to some extent C) is speed.

PASM is faster than Spin by almost two orders of magnitude, and it is

faster than C by a factor of about two to five. The disadvantage of PASM

is that it is cryptic and has fewer helpful shortcuts. A common task such

as a loop is a single statement in C or Spin but requires more effort in

PASM. Furthermore, Spin and C are well-documented, and there are a

number of books and tutorials available. To learn PASM, you can turn to far

fewer resources. This book is an attempt to fill that gap.

Together, we will first program a compression/decompression algorithm

in Spin and then in PASM and finally in C and PASM. Compression refers to

the process of taking a set of numbers and processing them in such a way

that they can be stored in less space than they would have originally taken

up. In lossless compression, those compressed numbers must still retain

all the information in the original set of numbers (in lossy compression, we

accept some degradation of the information in the numbers). The process

of decompression is one in which those original numbers are generated

4

from the compressed ones. In this book I will implement a lossless

compression algorithm popular in the earthquake research community

known as delta compression or Steim compression (named after its

originator). Steim compression can reduce the space needed to store a

seismogram (the sequence of numbers from an instrument for measuring

ground motion due to an earthquake) by a factor of two or three.

We will work through the code for compression and decompression in

Spin and in C. I then reproduce that code in PASM. The intent is that you

should be able to follow the Spin/C code if you know some programming

language. Thus, when you plunge into the PASM programming, you can

focus on translating what you know from the higher-level language to the

lower-level one.

If the speed of compression/decompression for the Spin/C code is

fast enough to handle the sampling data rates, there may be no need to

use the PASM code. For higher sampling rates, we will need to use a PASM

program. Nevertheless, the Spin/C code is useful to write and run as a way

to generate input for testing the PASM code.

The Propeller is most often used as an embedded controller to read

and write electrical signals on its input and output pins. I will demonstrate

these hardware interactions in all three languages as well. In this book I

start with all the interaction through the terminal. Later, so that we can

debug PASM code, it can be helpful to toggle a pin to see when the code

enters and exits particular parts of the program. For that a logic analyzer or

an oscilloscope is needed.

In the end, I find that the most convenient combination that balances

simplicity of programming language and speed of operation is to use C

with particular sections written in PASM.

Chapter 1 Introduction

5

Disclaimer  I use and enjoy programming the Propeller, but I’m by
no means an expert. If you find mistakes or have suggestions for new
content, I welcome corrections and improvements.

Chapters 1–4 are an introduction to the device, to the Spin language,

and to Test-Driven Development. Chapters 5–10 cover the PASM

programming language and hardware interactions. Chapters 11–14 cover

the C language and the various modes of programming the propeller in

C: pure C, so-called Cog C, and mixed C and PASM programming. I end

with a chapter on using an inline assembler that injects assembly code to

speed up sections of C code.

1.1  �The Propeller Eight-Cog Processor
The Propeller microcontroller is a versatile and powerful device. What

sets it apart from most other microcontrollers is that there are in fact eight

independent, parallel, but cooperating microcontrollers (known as cogs)

within each Propeller microcontroller. You use as many or as few cogs

as you need to do the job (and can turn cogs on and off, as needed, to

conserve power).

There is a wealth of information about the Propeller on the Parallax

web site1 and even more on the forums.2

•	 You will need a Propeller board (available from Parallax

for $25 to $80).

•	 You must download or purchase the Propeller manual.3

1�https://parallax.com
2�https://goo.gl/enX7pB
3�https://www.parallax.com/downloads/propeller-manual

Chapter 1 Introduction

https://parallax.com
https://goo.gl/enX7pB
https://www.parallax.com/downloads/propeller-manual

6

•	 Also take a look at the Q&A.4

•	 There are detailed tutorials and getting-started guides

at the web site at http://learn.parallax.com.

An Opinionated Aside T he Propeller is of remarkable (unique?)
design because of the eight parallel cogs, or processors. Embedded
systems (programmable controllers that are often “hidden” from
users but interact with the physical world through electrical signals)
require careful attention to detail when it’s possible for more than
one signal to arrive at nearly the same time. That worry about timing
doesn’t go away with the Propeller, but it is much alleviated by having
eight truly parallel processors that can monitor and respond to events
independently of each other.

The other remarkable aspect of the device is that it is useful (and
used) by folks in the hobby/maker/education community as well as in
commercial products.

Finally, the Propeller community is fantastically helpful. Ask questions
(any question, no matter how basic) on the forums, and beginners will
get a friendly welcome and gentle nudge in the right direction; those with
more advanced questions sometimes get a complete, tested solution!

1.1.1  �Cogs
A cog is a microprocessor (one of eight within the Propeller that can

be individually activated and deactivated by other cogs). You provide

a cog with a set of instructions and an order in which to execute those

4�https://www.parallax.com/propeller/qna/

Chapter 1 Introduction

http://learn.parallax.com
https://www.parallax.com/propeller/qna/

7

instructions. The cogs run in parallel, meaning that all the active cogs

respond to each clock cycle in parallel (more on this later). A program

always starts on one cog known as the main cog. The main cog can

selectively start and stop up to seven other cogs that can independently

perform tasks. All the cogs have access to all the input and output lines of

the Propeller.

The Propeller as a whole can run at a variety of clock speeds

depending on the needs of the program and the desire for reducing

power consumption (slower speeds and fewer cogs consume less power,

unsurprisingly).

Each of the eight cogs of the Propeller can operate at approximately

20 million instructions per second (MIPS) . And because the cogs run on

separate pieces of hardware, the total capacity of the Propeller is something

closer to 160MIPS.

•	 Each cog has access to all 32 input/output pins of the

Propeller. Each cog has access to an internal counter

that increments once per clock cycle and to two

programmable counters that can be associated with

pins.

•	 Each cog has access to a 32 kilobytes (KB) shared

memory area called the hub.

•	 The propeller runs a Spin interpreter that converts Spin

code (stored in the hub) to PASM instructions that are

then copied to a cog and run there.

•	 Alternatively, each cog can be programmed directly

in PASM; a PASM program consists of a few hundred

instructions.

•	 Each cog has 2KB of internal memory for storing

instructions and data.

Chapter 1 Introduction

www.allitebooks.com

http://www.allitebooks.org

8

PASM instructions fall into a few families.

•	 Assignment, addition, and subtraction.

•	 Bitwise logical operations (AND, OR, and so on).

•	 Bit manipulations (shift or rotate longs by a certain

number of bits).

•	 Hub memory access (reading and writing to the hub).

•	 Waiting for a condition to be met (e.g., waiting for the

counter to equal a value, waiting for a pin to equal a

state).

•	 Changing the location where execution will continue

(jumping to an address); without an explicit jump, the

next instruction in memory is executed.

•	 Setting or clearing a shared lock in an atomic fashion.

•	 Starting and stopping cogs.

•	 Conditional execution of an instruction based on the

value of two special flags, Z and C.

•	 Setting the Z and C flags. Many of the instructions

mentioned can and do change these flags precisely for

use by the conditional execution step.

In Figure 1-1, you can see the effect of clock speed on current

consumption. The Propeller can dynamically change clock speed, so you

could, for example, run at a slow speed (low power) while waiting for an

event and then switch to a higher speed to process data.

Chapter 1 Introduction

9

Figure 1-1.  Current consumption for eight cogs under different
conditions. Horizontal axis is frequency from 100Hz to 100MHz, and
vertical axis is current from 1μA to 1A. Source: Propeller P8X32A
Datasheet, Parallax Semiconductor, 2011.

1.1.2  �Hubs and Cogs
The hub serves as a common area with 32KB of storage (versus 2KB in each

cog). Each cog keeps immediately needed instructions and data internally

but can request other data and instructions from the hub as needed. The key

difference between cog memory and hub memory is latency. Cog memory

is available instantly; hub memory operates on a round-robin basis. Each of

the eight cogs is given a window of access to the hub, and if a cog misses that

window, it must wait until the hub “rotates back” to it (Figure 1-2).

Chapter 1 Introduction

10

Figure 1-2.  The relationship between the hub and cogs. The hub
rotates to the next cog every four clock cycles, and at that time, the cog
can exchange data with the hub. Source: Propeller P8X32A Datasheet,
Parallax Semiconductor, 2011.

Initially only one cog is running. You can start up a second cog, which

will run at the same clock speed and in parallel to the first cog. In other

words, both cogs will execute their own instructions at exactly the same

time. This is particularly valuable in cases where timing is critical or in

cases where you need to read data from a pin at high speed (or, more likely,

if you need to do both things at once).

For example, let’s say we want to monitor the pulse-per-second (PPS)

line from a GPS receiver5 to synchronize the internal clock to an absolute

time standard. At the same time, we may be reading data from a digitizer

at rates of 100 kilobits per second (Kbps). This is 100,000 bits per second or

approximately every 10μs. One way to structure this program would be to

have two cogs running in parallel where the first does nothing but wait for

the PPS line to rise and to set the clock when it does; the second cog could

be independently reading the data line.

5�GPS receivers are some of the most accurate clocks in existence. Even an
inexpensive GPS receiver has time accuracy of a few tens of nanoseconds.

Chapter 1 Introduction

11

The only time that the cogs are not completely independent is when

they want to access hub resources. For example, if a cog wants to write data

to hub memory, it waits its turn. The hub operates in round-robin fashion

and gives each of the eight cogs its window of opportunity to write to the

hub (Figure 1-2 shows a railroad turntable that is analogous: the different

locomotives can access the central hub only when it’s their turn).

Multi-core vs. single-core processors T o be fair, everything
you will do with a Propeller microcontroller can be done with a
single-processor machine. A single-processor machine—even a
relatively simple one—can easily keep up with a 100Kbps data stream.
These processors may have a counter module that could be set to be
triggered by the PPS line, so you could synchronize to GPS time, or they
may be capable of setting the PPS line as a hardware interrupt that
will call a synchronization subroutine when the PPS signal arrives.

There are proponents of the Propeller, and there are those who like
other processors. What I find appealing about the Propeller is the
elegance of separating functionally different tasks into different cogs.

1.2  �Memory Layout
We will be doing lots of messing about with memory locations and whether

a number is a byte or a long, and so on, so this section is a quick high-level

introduction to what the Propeller “looks like” on the inside. There are two

areas of memory that we will be dealing with. One is hub memory. This is

a 32KB area of shared space where program instructions and variables, as

well as special-purpose registers, are saved. We will mainly be focusing on

variables’ storage and access to some of those special registers.

In the propeller, memory is addressed by byte, word (two bytes), or

long (4 bytes). In hub memory, one can use all three of these memory

types, but in a cog, only bytes and longs are allowed.

Chapter 1 Introduction

12

The other area of memory is cog memory. There are seven such areas

available (the eighth, cog 0, is generally not programmed by us in PASM).

PASM instructions are placed in that space, as well as storage for any

variables used by that cog. It is important to keep in mind that this space

is completely separate from the hub memory (and from the cog memory

for other cogs). If you want to interact with the other cogs, you must do

so by writing to and reading from hub memory. We will spend some time

looking at that. Figure 1-3 shows a railroad turntable. The engines are

stored on the spokes of the turntable and the central hub rotates to access

them as needed, in similar fashion to the Propeller.

Figure 1-3.  A railroad turntable. To store locomotives in a yard and
to access them at any time, the central turntable would rotate to a
particular set of tracks; the locomotive would drive onto the turntable,
and then the turntable would rotate to another set of tracks (or would
rotate 180 degrees to reverse the direction of locomotive). Source:
Photograph by Jeroen Komen. https://goo.gl/PjJhgZ. Distributed
under the Creative Commons License CC-BY-SA 2.0.

Chapter 1 Introduction

https://goo.gl/PjJhgZ

13

1.2.1  �Hub Memory
All memory is addressed by byte. Listing 1-1 shows how memory is

declared (reserved), and Figure 1-4 shows how the bytes are organized.

The upper part of the code (before the DAT) is Spin code, which reserves

space in hub memory; the part after the DAT is PASM code, which affects

memory in a cog after a cognew command. (In this and subsequent code

listings, an ellipsis [...] stands in for other lines of code that I’m not

showing.)

Listing 1-1.  Variable Declarations in Spin

 1 ...

 2 VAR

 3 byte packBuf [8]

 4 long nSamps, sampsBuf [2]

 5

 6 PUB MAIN

 7 packBuf[0] := $00 ’ not really necessary

 8 packBuf[1] := $00

 9 packBuf[2] := $00

10 packBuf[3] := $00

11 nSamps := $02

12 sampsBuf[0] := $00_14_00_72

13 sampsBuf[1] := $00_00_01_5c

14 cognew(@PROG, 0)

15 ...

16

17 DAT

18 PROG ORG 0

19 ...

Chapter 1 Introduction

14

20 :loop

21 ...

22 _ns res 1

23 _nsPtr res 1

24 FIT 496

All memory is addressed by byte (in both hub and cog memory).

The variables declared as byte values (packBuf[i]) are stored in

consecutive memory locations.

However, the variables declared as long values (nsamps, sampsBuf[i])

are stored at every fourth memory location (because they take up four

bytes each): 0x54, 0x58, and 0x5C.

The order of memory storage follows the order of how the variables are

declared in the VAR section. In other words, because I declared nSamps first

and then sampsBuf immediately after, that is how the memory will look.6

1.2.2  �Cog Memory
The cog memory is also addressed by byte, but unlike in hub memory,

there is no provision to reserve byte-wide memory. Everything is stored in

full longs. If you want to address a byte, you have to first address a long and

then mask the eight bits corresponding to the byte of interest. Each cog has

512 longs of space (2KB), of which 496 are available to the user. The last 16

longs of cog memory are reserved for special registers (PAR, OUTA, etc.).

You put PASM instructions at address zero, and the Propeller will

execute that instruction and then step to the next instruction at the next

location (1 long higher), and so on. An instruction is simply a 32-bit

number (a very special number where every bit is important and tells

6�Don’t interleave byte and long declarations in VAR. The Spin compiler will store
all longs first, then all words, and then all byte variables, even if you declare a byte
variable before a long.

Chapter 1 Introduction

15

the Propeller to do something particular—add these numbers, copy

this number there, etc.—but just a number nevertheless), which

means that if execution accidentally wandered into areas where you

have variables stored, the cog will try to execute those as if they were

instructions.

Symbol Hub Memory Address
.
.
.

nSamps 0x02 0x54

0x00
0x00
0x00

sampsBuf[0] 0x72 0x58

0x00
0x14
0x00

sampsBuf[1] 0x12 0x5C

0x01
0x00
0x00

packBuf[0] 0x00 0x60

packBuf[1] 0x00 0x61

packBuf[2] 0x00 0x62

packBuf[3] 0x00 0x63
.
.
.

Symbol Cog Memory Address

ORG PASM Instr 0x00
.
.
.

:loop PASM Instr 0x12

PASM Instr 0x16
.
.
.

ns 0x?? 0x24
nsPtr 0x?? 0x28

.

.

.

Figure 1-4.  Hub and cog memory layout from Listing 1-1. Note that
memory addresses increase downward.

Chapter 1 Introduction

16

1.3  �Layout of This Book
In Chapter 2 I describe the underlying process of delta compression (or

Steim compression). In Chapter 3 I introduce the Spin language and

provide templates for a Spin program and a PASM “Hello, World” program.

Here you can verify that your hardware setup is working (you did buy a

Propeller board to run your code on, right?). In Chapter 4, I introduce a

simplified version of Test-Driven Development (TDD), which I use in this

book. In Chapter 5, I implement the Steim compression and decompression

algorithm in Spin and verify that it is working using TDD.

Chapter 6 introduces PASM, and we begin the development of Steim

compression code in PASM. In Chapter 7, I introduce methods for reading

and setting pins. I implement a Serial Peripheral Interface (SPI) bus in

Spin and in PASM and use that bus between two cogs (one running the

main Spin code and one running the Steim PASM code). Next, I introduce

semaphores (or locks) and end with examples of some useful routines in

Spin: multiplication, division, loops, branching.

In Chapters 8 and 9 I continue the PASM compression algorithm

development using TDD. In Chapter 10, I implement the Steim

decompression routines in PASM, including TDD. Chapter 11 is devoted to

some simple debugging methods for PASM code.

The last section of the book is devoted to using C to perform many of

the same tasks. Chapter 12 introduces C and, in particular, the Propeller-

specific peculiarities we will encounter; here we program the Steim

compression routine in C. In Chapter 13 I describe Cog-C mode where the

compression C code is launched in a new cog. In Chapter 14, I do the same

but with a mix of C and PASM.

Finally, in Chapters 15 and 16, I go over the methods for interacting

with hardware again, but this time in C.

Chapter 1 Introduction

17© Sridhar Anandakrishnan 2018
S. Anandakrishnan, Propeller Programming, https://doi.org/10.1007/978-1-4842-3354-2_2

CHAPTER 2

Steim Compression
Consider a freight train carrying goods—some big and some small—across

the country. Rather than put each item in its own railroad car, the little

things are combined and put in one car and then separated at the far end.

Compression does much the same thing. Given a set of numbers

(some small and some large), you squeeze the small ones together for

storage and then take them apart when you need to use them.

This book is built around implementing a delta compression routine.

Given a set of N numbers, Si, i = 0, …, N − 1, the Steim compression method

is to form a set of backward differences: δj = Sj − Sj−1, j = 1, …, N − 1.1

These differences (along with S0, the first sample) are packed into a

compressed string, where each difference may take up less space than the

original sample. To uncompress the data, each difference must have an

associated code ci indicating how many bytes were used for storing the

difference: ci, i = 0, …, N − 1.

1�This technique was popularized by Dr. JM Steim and has been implemented
by the International Federation of Digital Seismograph Networks. The best
description is in the SEED Reference Manual, “Standards for the Exchange of
Earthquake Data,” https://www.fdsn.org/seed_manual/SEEDManual_ V2.4.pdf.
There is no published reference to Dr. Steim’s work.

https://www.fdsn.org/seed_manual/SEEDManual_V2.4.pdf
https://www.fdsn.org/seed_manual/SEEDManual_V2.4.pdf

18

In this compression routine, the allowed sizes are 32 bits (4 bytes, or

a long in Spin), 24 bits (3 bytes), 16 bits (2 bytes, or a word), and 8 bits (a

byte). In more advanced compressors, 4-bit and 12-bit word lengths are

allowed. I will leave that as an exercise for you!

2.1  �Packing and Compressing Data
You can picture the memory impact of the compression with an

example of four samples (7, 42, -12, 350) that must be compressed.

Figure 2-1 shows the memory layout for these samples in panel (a)

(from here out I will generally represent numbers in hexadecimal

format and indicate that by prepending the number with 0x). In panel

(b) I show the compressed and packed buffer layout with the 3-byte

sample 0 storage and the subsequent differences stored. In panel (c)

I show the compression coding.

Chapter 2 Steim Compression

19

Figure 2-1.  Compression: (a) Samples are 4 bytes long but are
packed into 1–3 bytes of differences of samples. (I know a priori that
my numbers always fit in 3 bytes). (b) Sample 0 is stored as is; the
difference between samples 1 and 0 is stored in the smallest number of
bytes possible, and so on. (c) The length of storage is itself saved in the
compression code array.

Chapter 2 Steim Compression

20

It should be apparent that this compression method is best suited

for time-series data where the mean of the numbers may be large but

the standard deviation is small. Steim compression is most commonly

used in data from seismographs (instruments that measure the ground

motion to detect earthquakes). For much of the time, the seismographs

are recording background noise, which has a small sample-to-sample

variability. When an earthquake occurs, however, the seismograph output

can and does change dramatically from one sample to the next. Figure 2-2

shows an example of a set of seismograms after a massive and destructive

earthquake in Japan. All these data needs to be recorded and stored

without any loss.

Chapter 2 Steim Compression

21

Figure 2-2.  Seismograms from around the world after the
devastating Tohoku earthquake of March 2011 (magnitude 9). The
lines show ground displacement at various seismographs ranging in
distance from close to Japan (angular distance of 0 degrees) to the
other side of the world from Japan (angular distance of 180 degrees).
The horizontal axis is time after the earthquake occurs (in minutes).
You can see the surface wave train travel around the world, back to
Japan, and then repeat! In fact, the earth “rung like a bell” for hours
after this event. Source: http://ds.iris.edu/ds/nodes/dmc/specia
levents/2011/03/11/tohoku-japan-earthquake/.

2.2  �Specification
Input numbers must be valid 32-bit numbers, but the dynamic range

of the samples is limited to 24 bits (that is the limit of our digitizer).

Therefore, every sample can be represented and stored in at most 3 bytes.

However, most programming languages prefer 4-byte numbers. Thus, on

Chapter 2 Steim Compression

http://ds.iris.edu/ds/nodes/dmc/specialevents/2011/03/11/tohoku-japan-earthquake/

22

decompression, numbers should be 4 bytes long, with the uppermost byte

sign extended from bit 23 (more on this later).

In the main cog, I will define the following:

•	 nsamps: A long variable holding the number of samples

N to process.

•	 sampsBuf: A long array holding the samples si.

•	 packBuf: A byte array holding the compressed and

packed differences δi.

•	 codeBuf: A long array holding the compression code

for each compressed sample.

•	 nCompr: A long variable holding the populated number

of bytes in packBuf.

Here is what happens:

	 1.	 The compression program will compress nsamps

numbers from the sampsBuf array and populate the

output variables packBuf, codeBuf, and nCompr.

	 2.	 If nsamps is greater than the length of sampsBuf,

return an error by setting ncompr to -1.

	 3.	 For sample zero:

•	 STEIM SHALL compress the first sample, s0, by

storing its bits 0 to 23 (the lower 3 bytes) into

packBuf.

•	 STEIM SHALL store CODE24 in the lowest 2 bits of

codeBuf.

•	 STEIM SHALL set nCompr to 3.

(My digitizer has a 24-bit dynamic range, so all

numbers fit within 3 or fewer bytes.)

Chapter 2 Steim Compression

23

	 4.	 For sample j (0 < j < N) :

•	 STEIM will form the backward difference δj = sj −sj−1

and determine whether the difference would fit

completely within 1, 2, or 3 bytes and SHALL append

those bytes to packBuf.

•	 STEIM SHALL increment nCompr by 1, 2, 3,

according as the number of bytes needed for δj.

•	 STEIM SHALL place the appropriate code (CODE08,

CODE16, or CODE24) in comprBuf.

	 5.	 Finally, the decompression routine takes as input

nsamps, packBuf, codeBuf, and nCompr and SHALL

populate sampsBuf correctly.

2.3  �Implementation
Now that we have a concise specification for the procedure, we will

implement it in the following chapters (first in Spin, then in PASM,

then in C, and finally in C and PASM). The way we will build up the

implementations is similar in all cases. We will write a test for each of the

previous bullets, and then we will write the code so that it passes the test.

Chapter 2 Steim Compression

25© Sridhar Anandakrishnan 2018
S. Anandakrishnan, Propeller Programming, https://doi.org/10.1007/978-1-4842-3354-2_3

CHAPTER 3

Introduction to Spin
Let’s set up a Spin and PASM template and make sure you can compile

the Spin and PASM program, that you can connect to the Propeller and

download the binary file, and that you can see the output.

A few notes: Spin is sensitive to indentation (PASM is not). Comments

begin with a single quote (') and continue for the remainder of the line.

Block comments are delineated by curly braces ({ and }).

In general, strive for simplicity and clarity in the code when starting

out (even at the expense of speed). Once the code is working, you can

tweak portions to speed them up if you need better performance.

Neither Spin nor PASM is sensitive to case. Nevertheless, we will hold

to these conventions:

•	 All caps are used for block identifiers (CON, OBJ, VAR,

PUB, PRI, and DAT), constants, and function names (also

called method names).

•	 Words in function names are separated by underscores (_).

•	 Variable names use lowercase and “camel case”

(capitalized second and later words, for example,

sampsPerSecond).

•	 An underscore is used as the first letter of variables in

PASM code.

•	 A lowercase p is used as the first letter of array address

variable names (“pointers”) in functions.

26

Finally, Spin has a flexible and friendly way of representing numbers.

Prepend $ (dollar sign) for hexadecimal numbers and % (percent sign) for

binary; numbers without a preceding symbol are decimal numbers. You

can insert underscores anywhere in a number, and they are ignored by the

compiler. They are syntactic “sugar” to help reduce errors—particularly with

binary numbers with long strings of ones and zeros. So, you can say this:

1 pi4 := 3 _1415 ' the _ is ignored pi4 =31415

2 pi4 := $7A_B7

3 pi4 := %0111 _1010_1011_0111

BINARY AND DECIMAL AND HEX, OH MY

The Propeller (and computers in general) store numbers in binary format.

•	 In a decimal representation of a number (what we are used to

in real life), digits can range from 0 to 9, and a number like 42

is read as “2 times 1 plus 4 times 10.”

•	 In a binary representation, only the digits 0 and 1 are allowed,

and the number 42 is represented as 101010, which is read

as (right to left) “0 times 1 plus 1 times 2 plus 0 times 4 plus 1

times 8 plus 0 times 16 plus 1 times 32” (32 + 8 + 2 = 42).

•	 In a hexadecimal (or hex) representation, digits range from 0 to

9 and A to F (where A is 10, B is 11, up to F, which is 15). The

number 42 is represented as 2A, which is read as “A, which is

10, times 1 plus 2 times 16” (32 + 10 = 42).

In this book (and many computer books), a hex number is written as 0x2A

(the 0x signals that the number should be interpreted as a hex number).

However, in a Spin or PASM program, that would be written as $2A. In a C

program, that would be written as 0x2A.

Chapter 3 Introduction to Spin

27

In this book and in C, a binary number is written as 0b00101010. In Spin and

PASM, it is written as %0010_1010.

Yes, I know, it would be nice if we could all agree to use the same vocabulary,

but what a boring world that would be!

1 theAnswerDec := 42 ' decimal 42

2 theAnswerHex := $2A ' hexadecimal 0x2A

3 theAnswerBin := %00101010 ' binary 0 b00101010.

By convention, we show only as many decimal numbers as needed, so for

example for the number 7, we don’t say 007, just 7. However, also by convention

we always show hex numbers in groups of two, so we would write that as $07

or 0x07, and in binary we show groups of eight: %0000_0111 or 0b00000111.

There are 8 binary digits per byte and 2 bytes per word (16 bits) and 4 bytes

per long (32 bits). A byte is a collection of 8 bits. A byte can contain unsigned

numbers from 0 to 255; a word can contain numbers from 0 to 65,535; and a

long can contain numbers from 0 to 4,294,967,295 (about 4 billion).

The advantage of a hex representation is that each byte (a collection of 8 bits)

can be succinctly and naturally written as two hex digits. The largest number

that can be written in 8 bits is the number you and I know in decimal as 255

(5 times 1 plus 5 times 10 plus 2 times 100) or binary 11111111 (I won’t write

out the sums here, but you should). In hex, that number is FF (15 times 1 plus

15 times 16). There are many advantages to this method of writing numbers

and many resources on the Web for understanding it.

One enormously useful tool is a calculator app that has a “programmer’s

mode” that can show numbers in the different bases (bases are the underlying

number system, either binary, decimal, or hex).

Chapter 3 Introduction to Spin

28

3.1  �Negative Numbers
If we decide that an eight-bit number is unsigned, then it can store

numbers from 0 to 255 (%0000_0000 to %1111_1111: 1 times 1 plus 1 times 2

plus 1 times 4, etc., up to 1 times 128 = 255).

However, if we decide that an 8-bit number is signed, then it can store

numbers from -128 to 127. The most significant bit is referred to as the sign

bit, and if it is 1, then the number is a negative number. Thus, the same set

of bits (e.g., i =%1111_1111) would be i = 255 if i were signed, and it would

be i = –1 if i were unsigned.

Negative numbers are stored in a “two’s-complement” representation.1

You don’t need to worry about the details of what that means, except to be

careful when changing the size of storage from, for example, 8 bits to 32 bits.

Now that we have “laid the rails” for our work (Figure 3-1 shows some actual

rails!), let’s look at how the propeller implements memory.

1�See the Wikipedia page at https://en.wikipedia.org/wiki/Two%27s_
complement for more information.

Chapter 3 Introduction to Spin

https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Two%27s_complement

29

3.2  �Memory Layout
Absolute memory addresses increase from zero, incrementing by one for

each byte. There are three storage lengths in the propeller: bytes, words

(2 bytes), and longs (4 bytes).

Propellers are little-endian devices. Thus, the lowest byte of a long

number is stored at a lower memory location than the higher bytes in

that number. (Note that the Propeller happily allows you to modify any

memory location!)

Figure 3-1.  A crew of railroad workers poses for the camera in 1911.
Photographer unknown. In Nelson, Scott Reynolds (2007), Ain’t
Nothing but a Man: My Quest to Find the Real John Henry, National
Geographic Books, ISBN: 9781426300004. https://upload.
wikimedia.org/wikipedia/commons/5/51/A_crew_of_railroad_
workers_poses_for_the_camera_in_1911.jpg. Wikimedia
Commons, no license attached.

Chapter 3 Introduction to Spin

https://upload.wikimedia.org/wikipedia/commons/5/
https://upload.wikimedia.org/wikipedia/commons/5/
https://upload.wikimedia.org/wikipedia/commons/5/51/A_crew_of_railroad_workers_poses_for_the_camera_in_1911.jpg
https://upload.wikimedia.org/wikipedia/commons/5/51/A_crew_of_railroad_workers_poses_for_the_camera_in_1911.jpg

30

3.3  �Spin Template
Let’s start with the Spin file. Listing 3-1 is a template that you can use to

make sure your Propeller is working and connected and that the compiler

and loader on your computer are working. There are a couple of options

for the computer side. Parallax supports an excellent Propeller Tool2

(Windows only), and there is a cross-platform PropellerIDE tool3 (both of

which have a compiler, program loader, and serial terminal included).

I use separate command-line tools for compiling the code (openspin)

and loading the Propeller (propeller-load), which are included with the

PropellerIDE package.

The Propeller Tool and the PropellerIDE tool both include an editor
that colorizes the code and handles indentation properly. You can also
use a stand-alone text editor (such as Atom, emacs, and vi) and use
command-line tools.

3.3.1  �Hello, World

Trust Me, It’s Good for You!  I know this seems silly, but instead
of downloading this file from GitHub or cutting and pasting this from
the screen, type in the whole file by hand! It may seem like a waste
of time, but I guarantee you that in the process of finding bugs and
fixing them, you will learn way more than you can imagine.

2�https://www.parallax.com/downloads/propeller-tool-software-windows-
spin-assembly

3�https://www.parallax.com/downloads/propeller-p8x32a-software

Chapter 3 Introduction to Spin

https://www.parallax.com/downloads/propeller-tool-software-windows-spin-assembly
https://www.parallax.com/downloads/propeller-tool-software-windows-spin-assembly
https://www.parallax.com/downloads/propeller-p8x32a-software

31

Listing 3-1.  Spin Program Template for “Hello, World”

 1 {*

 2 * Spin Template - curly braces are block comments

 3 *}

 4 ' single quotes are line comments

 5 CON ' Clock mode settings

 6 _CLKMODE = XTAL1 + PLL16X

 7 _XINFREQ = 5_000_000

 8

 9 ' system freq as a constant

10 FULL_SPEED = ((_clkmode - xtal1) >> 6) * _xinfreq

11 ' ticks in 1ms

12 ONE_MS = FULL_SPEED / 1_000

13 ' ticks in 1us

14 ONE_US = FULL_SPEED / 1_000_000

15

16 CON ' Pin map

17

18 DEBUG_TX_TO = 30

19 DEBUG_RX_FROM = 31

20

21 CON ' UART ports

22 DEBUG = 0

23 DEBUG_BAUD = 115200

24

25 UART_SIZE = 100

26 CR = 13

27 LF = 10

28 SPACE = 32

29 TAB = 9

Chapter 3 Introduction to Spin

32

30 COLON = 58

31 COMMA = 44

32

33 OBJ

34 �UARTS : " FullDuplexSerial4portPlus_0v3 " ' 1 COG for 3 

serial ports

35 NUM : " Numbers " ' Object for writing numbers to debug

36

37 VAR

38 byte mainCogId, serialCogId

39

40 PUB MAIN

41

42 mainCogId := cogid

43 LAUNCH_SERIAL_COG

44 PAUSE_MS(500)

45

46 UARTS.STR(DEBUG, string (CR, LF, " mainCogId : "))

47 UARTS.DEC(DEBUG, mainCogId)

48 �UARTS.STR(DEBUG, string (CR, LF, "Hello, World !", 

CR, LF))

49 repeat

50 PAUSE_MS(1000)

51

52 PUB LAUNCH_SERIAL_COG

53 " method that sets up the serial ports

54 NUM.INIT

55 UARTS.INIT

56 ' Add DEBUG port

57 �UARTS.ADDPORT(DEBUG, DEBUG_RX_FROM, DEBUG_TX_TO, 

-1, -1, 0, %000000, DEBUG_BAUD)

Chapter 3 Introduction to Spin

33

58 UARTS.START

59 serialCogId := UARTS.GETCOGID

60 ' Start the ports

61 PAUSE_MS(300)

62

63 PUB PAUSE_MS(mS)

64 waitcnt(clkfreq /1000 * mS + cnt)

65

66 ' Program ends here

•	 Lines 1–4: Comments.

•	 Lines 5–31: Constants (CON) blocks. They are

separated into individual blocks solely for purposes of

organization.

•	 Lines 33–37: Objects (OBJ) block. The compiler will

read the files named in quotes to the right of the

colon (after appending .spin to the name) and assign

constants and methods to the symbol to the left of the

colon. So, all functions in Numbers.spin are available

as NUM.FUNCTION_NAME. A function is a block of code

that can be called, possibly with arguments (you will

sometimes see them referred to as methods).

•	 Lines 39–40: Variables declaration block VAR. Variables

declared here are initialized to zero. The size of

memory is determined by the variable type (byte, word,

or long).

•	 Lines 42–50: The first function in the top-level (or

entry) file is executed by the Spin compiler in cog 0. By

convention, we call it MAIN.

•	 Lines 52–65: Functions that can be called by MAIN.

Chapter 3 Introduction to Spin

34

The first CON block is the declaration of a set of constants for the

Propeller clock. For now, simply copy the lines. I’ll come back to what they

mean later. The second and third blocks are constants for the serial port.

In constant blocks, the constant name and value are separated by an equal

sign (=). Later in the code, assignment to variables is done using :=.

The next block (OBJ) is like #include in C; it’s a way to bring in external

libraries. The desired name for the library and the string containing the file

name of the library (without the .spin extension) are separated by a colon.

LIBNAME : "LibFile" ' read in file LibFile.spin and assign it

to LIBNAME

From now on you can refer to the functions and constants in that

library by invoking this:

LIBNAME.LIBFUNCTION to call a function or method LIBFUNCTION in

library LIBNAME and LIBNAME#LIBCONSTANT to refer to a constant

LIBCONSTANT defined in that library4.

The next block is a VAR where variables are declared and initialized

to zero.

Finally, the actual program begins at the first PUB method (named

MAIN by convention). This block is run automatically after the program is

loaded on the Propeller. This is the “entry point” into the program (like int

main() in C). From within MAIN you can call functions with any required

arguments in parentheses. If there are no arguments, there is no need for

the parentheses.

In the template some of the function calls are part of Spin (cogid, for

example), some are written by us (PAUSE_MS), and some are part of an

4�The two libraries are available on the Propeller Object Exchange (obex.
parallax.com) or in the GitHub repo (https://github.com/sanandak/
propbook-code).

Chapter 3 Introduction to Spin

https://github.com/sanandak/propbook-code
https://github.com/sanandak/propbook-code

35

object or library (UARTS.STR). Functions may return a value (for example,

cogid does), which we can assign to a variable using := (a colon followed

by the equal sign).

3.3.2  �Running the Program
If you have openspin and propeller-load (or propman) on your path

(Linux and macOS),5 the following are the commands to run from a

terminal.

The following will create a .binary file:

$ openspin ./spin_template.spin

The following command will send it to the Propeller. Your serial port

number will differ. The propeller-load program is invoked with the

-r and -t flags that instruct the Propeller to run the program after it is

downloaded and to start a terminal to view messages from the Propeller,

respectively.

$ propeller-load -p /dev/cu.usbserial-A103FFE0 \

 -t -r spin_template.binary

Propeller Version 1 on /dev/cu.usbserial-A103FFE0

Loading spin_template.binary to hub memory

3924 bytes sent

Verifying RAM ... OK

[Entering terminal mode. Type ESC or Control-C to exit.]

mainCogId: 0

Hello, World!

5�Using sh or bash on a Mac, the command is as follows: export PATH=/
Applications/PropellerIDE.app/Contents/MacOS/:$PATH. On Linux, the
command is as follows: export PATH=/opt/parallax/bin:$PATH.

Chapter 3 Introduction to Spin

36

Alternatively, you can use the PropellerIDE shown in Figure 3-2.6

Congratulations! You have successfully seen that the Propeller is

attached, that you can communicate with it, that the clock is set correctly,

and that you can compile and download a program and view the output.

That’s a lot!

6�https://www.parallax.com/downloads/propelleride-software-mac

Figure 3-2.  Main window and terminal window for PropellerIDE

Chapter 3 Introduction to Spin

https://www.parallax.com/downloads/propelleride-software-mac

37

3.4  �PASM Template
Let’s add a minimal PASM cog called HELLO. Here we will include the code

for the new cog at the end of the template.spin file (copy the template to

hello0.spin). Later, when we start working on the real code, we will put

the Spin and PASM code in their own files. The main changes in the file are

shown in Listing 3-2.

Listing 3-2.  Changes to spin template.spin to Include PASM Cog

Code (ch3/pasm template.spin)

 1 ...

 2 ' in VAR

 3 byte helloCogId

 4

 5 ...

 6 ' in MAIN

 7 helloCogId := -1

 8 helloCogId := cognew(@HELLO, 0)

 9

10 UARTS.STR(DEBUG, string (CR, LF, " helloCogId : "))

11 UARTS.DEC(DEBUG, helloCogId)

12 UARTS.PUTC(DEBUG, CR)

13 UARTS.PUTC(DEBUG, LF)

14 ...

15

16 ' in a new DAT section at end

17 DAT ' pasm cog HELLO

18 HELLO ORG 0

19

20 :mainLoop

Chapter 3 Introduction to Spin

38

21 jmp #:mainLoop

22

23 FIT 496

This PASM code is the text between the DAT block marker and the FIT

496 instruction. This program does very little; it just runs an infinite loop

(the jmp command jumps to the line labeled :mainLoop, which brings it

right back to the jmp...).

The structure of the files and cogs is as follows. The file hello0.spin

has the MAIN method, as well as a DAT section where the PASM program

HELLO is defined. The file FullDuplexSerial has a Spin part where the

methods DEC, HEX, PUTC, and so on, are defined, as well as a DAT part for the

PASM code. Finally, the Numbers.spin file has only Spin code.

However the “cog view” of the Propeller is more like the following. The

MAIN method calls a UARTS method (in the FullDuplexSerial file/object)

named UARTS.START. This method includes a call to cognew that starts

a new cog that manipulates the serial port lines with the correct timing.

In addition, the MAIN method itself calls cognew. Each cognew command

Chapter 3 Introduction to Spin

www.allitebooks.com

http://www.allitebooks.org

39

launches a new cog with code that is in the appropriate DAT section. At the

end of the MAIN method, the cogs are as follows:

So, for example, when MAIN calls the method UARTS.DEC(), that code

runs in cog 0, but it passes instructions to cog 1 that does the actual

hardware manipulations of the serial line.

Cog 0 isn’t a special cog. When the Propeller boots, it loads a Spin
interpreter into cog 0 that reads, interprets, and executes Spin code
(code that is stored in hub memory). You can launch a second cog
that also has a Spin interpreter, but in this tutorial, we will load PASM
code into those new cogs.

Now run this (along with print statements to print out the serial and

hello cog IDs):

% propman -t hello0.binary

pm.loader: [cu.usbserial-A400A0NZ] Preparing image...

pm.loader: [cu.usbserial-A400A0NZ] Downloading to RAM...

pm.loader: [cu.usbserial-A400A0NZ] Verifying RAM...

pm.loader: [cu.usbserial-A400A0NZ] Success!

Entering terminal on cu.usbserial-A400A0NZ

Chapter 3 Introduction to Spin

40

Press Ctrl+C to exit

mainCogId: 0

Hello, World

serialCogId: 1

helloCogId: 2

(In this case I used the propman command instead of propeller-load.)

Congratulations again! You have started a PASM cog successfully.

3.5  �Template for PASM Code in a Separate
File

Unless your PASM code is very simple, you will want to move that code to

a separate file. This will allow you to turn that functionality into an object

that can be included in any project.

Edit hello0.spin and create two files: hello_Demo.spin and

hello_pasm.spin. The file hello_Demo is derived from hello0 with the

changes shown in Listing 3-3.

Listing 3-3.  Changes to pasm template.spin When PASM Code Is in

a Separate File (ch3/hello Demo.spin and ch3/hello pasm.spin)

 1 ...

 2 OBJ

 3 ... ' add this

 4 HELLO: " hello_pasm " 'pasm cog is in a different file

 5

 6 PUB MAIN

 7 ...

 8

 9 helloCogId := -1

Chapter 3 Introduction to Spin

41

10 ' replace cognew (@HELLO, 0) with the following 2 lines

11 HELLO.INIT

12 helloCogId:= HELLO.START

13

14 ' HELLO.STOP would stop the cog

15 ...

16 ' delete the DAT section

The line in the OBJ section will include the hello_pasm code as HELLO.

Next, instead of calling cognew directly, you initialize and start the cog by

calling functions in the library HELLO. The HELLO.START method will return

the number of the newly launched cog.

Create a new file called hello_pasm.spin and type in the code in

Listing 3-4.

Listing 3-4.  Contents of hello_pasm.spin

 1 {*

 2 * pasm template for code in a separate file from main

 3 *}

 4

 5 VAR

 6 byte ccogid

 7

 8 PUB INIT

 9 ccogid := -1

10

11 PUB START

12 STOP

13 ccogid:=cognew(@HELLO, 0)

14 return ccogid

15

16 PUB STOP

Chapter 3 Introduction to Spin

42

17 if ccogid <> -1

18 cogstop(ccogid)

19 ccogid:= -1

20

21 DAT ' pasm cog HELLO

22 HELLO ORG 0

23

24 : mainLoop

25 jmp #:mainLoop

26

27 FIT 496

•	 Lines 5–6: Declare a variable ccogid that is local to this

file. ccogid is either 0–7 for a valid cog number or -1 if

the cog is not running.

•	 Lines 8–9: The INIT method, well, initializes variables.

In this case, you want to ensure that ccogid is set to

-1 to indicate that the cog is not running (when the

variable is first declared, it is set to zero, which isn’t

what you want).

•	 Lines 11–19: The START and STOP methods are

straightforward. Start a new cog (after stopping it, in

case it is already running) and return the number of the

newly launched cog. To stop a cog, make sure it really is

running and then stop it. Set the cog ID to -1 to indicate

that it is no longer active.

Chapter 3 Introduction to Spin

43

3.6  �Summary
In this chapter, I laid some rails for running a new PASM cog. The cog

does nothing so far. Again, I want to emphasize that once you launch a

cog, it is entirely separate from other cogs. It has access to hub memory,

but if two cogs want to share information through the hub, they both

need some way to know where to look. The most confusing part of

programming PASM for beginners is getting information into and out of

the cogs (at least it was for me!).

Shall we try to connect the cogs? Figure 3-3 is a famous photograph of

the ceremony when the two halves of the US Transcontinental railroad met

and one could take a train from New York to San Francisco! Take a break

and continue with the next chapter when you are ready.

Figure 3-3.  Connecting the Eastern and Western halves of the
Transcontinental Railroad at Promontory Summit, Utah, May 10, 1869.

Chapter 3 Introduction to Spin

45© Sridhar Anandakrishnan 2018
S. Anandakrishnan, Propeller Programming, https://doi.org/10.1007/978-1-4842-3354-2_4

CHAPTER 4

Test-Driven
Development
One of the techniques I will be using is Test-Driven Development

(TDD). You don’t need to use TDD, but I find it helpful as a learning

aide. TDD is rapidly becoming the norm in large software projects. The

advantages of this method of development are manifold. In collaborative

projects, developers can ensure that their changes don’t inadvertently

break something elsewhere. In long-lived projects, when you return to

something from a long time ago, you can study the tests to maintain the

code. Even in small projects (such as this one), using TDD will give you

confidence that the results are correct.

The idea behind TDD is that you write a specification of what the

program is supposed to do; you then write a test for a small piece of the

program. Then, and only then, write the minimal amount of code that

lets the test pass. Then write another test and another piece of code to

pass that test…and run all the tests every time to make sure your changes

haven’t broken anything. Once you have enough tests that cover the

specification and all the tests pass, you are done. If you ever change the

code (or the specification), then you rerun the tests.

46

For example, here is my specification for a program, SQR, to square a

number:

	 1.	 SQR(i) SHALL return the square of i, so long as the

result doesn’t overflow a 32-bit number.

	 2.	 The program SHALL return -1 if the square of the

number would overflow.

The first test, TEST_THAT_SQR_2_IS_4, runs SQR(2) and then asks the

question “Is the result 4?” The function prints OK or FAIL depending on

whether the answer is TRUE or FALSE. It will also print an informational

message. (The full code is on GitHub; Listing 4-1 shows the parts related

to TDD.)

Listing 4-1.  Spin Program to Demonstrate TDD (ch04/tdd 0.spin)

 1 ' set up clock here - more on that later

 2 ...

 3

 4 PUB MAIN

 5

 6 �'Initialize the Terminal and TDD here - more on that later

 7 ...

 8

 9 " run the tests

10 TEST_THAT_SQR_2_IS_4

11 TEST_THAT_SQR_BIG_IS_NEG1

12 TEST_THAT_SQR_NEG_BIG_IS_NEG1

13

14 PUB SQR(x)

15 return x*x

16

Chapter 4 Test-Driven Development

47

17 PUB TEST_THAT_SQR_2_IS_4 | t0

18 t0 := 4 == SQR (2)

19 �TDD.ASSERT_TRUTHY(t0, string("Test that SQR (2) == 4"))

20

21 PUB TEST_THAT_SQR_BIG_IS_NEG1 | t0

22 t0 := -1 == SQR(1<<30)

23 �TDD.ASSERT_TRUTHY(t0, string("Test that SQR(big) == -1"))

24

25 PUB TEST_THAT_SQR_NEG_BIG_IS_NEG1 | t0

26 t0 := -1 == SQR(-(1<<30))

27 �TDD.ASSERT_TRUTHY(t0, string("Test that SQR(-big) == -1"))

•	 Lines 11–13: Calls to the testing methods.

•	 Lines 15–16: The method under test, SQR.

•	 Lines 18–20: A method to test that 2×2 == 4. t0 will

be true if SQR(2) returns 4. The method TDD.ASSERT_

TRUTHY takes two arguments: t0 and a string. It prints

out the string and then either OK or FAIL depending on

whether t0 is true or false.

•	 Lines 22–28: Two additional tests.

TDD is simply a formal layer over what people do in an ad hoc manner

when programming. You write your code and run it with some example

inputs and verify that it works. With TDD, that process is saved with the

code that you are developing and can (and should) be rerun every time

you make changes to the code. Ideally, you are striving for 100 percent

coverage, where the tests traverse all the lines of code that you have written

by appropriately setting the inputs. By convention, the tests are simple and

Chapter 4 Test-Driven Development

48

test a small piece of the code. By running all the tests, you hope to cover all

the lines of the program under test. Also, by convention, the test names are

verbose and grammatical so that they are self-documenting.

Let’s run the tests. As you can see, there is a problem with the code.

The tests are written to meet my specification, but the code fails some of

my tests. It passes the test to square a small number but not to square a

large one.

Propeller Version 1 on /dev/cu.usbserial - A103FFE0

Loading tdd_0 . binary to hub memory

4308 bytes sent

Verifying RAM ... OK

[Entering terminal mode. Type ESC or Control -C to exit.]

Test that SQR (2) == 4

... ok

Test that SQR(big) == -1

*** FAIL

The test for overflow after multiplication has failed. Let’s modify SQR

so that it passes those tests. Spin has two forms of multiplication. The

standard from, *, will restrict the result to 32 bits. The alternative form,

**, will return the upper 32 bits of the multiplication.

1 PUB SQR(x) | t

2 t := x ** x ' multiply and return high long

3 if t

4 return -1

5 return x*x

Let’s rerun the tests and ensure that all the tests pass.

Test that SQR (2) == 4

... ok

Test that SQR(big) == -1

Chapter 4 Test-Driven Development

49

... ok

Test that SQR(-big) == -1

... ok

4.1  �TDD Spin Code
The TDD Spin library is quite simple (see Listing 4-2). Define variables

local to TDD (debugging port, number of tests run, etc.) and then print out

the message and test result.

Listing 4-2.  TDD Library (libs/TestDrivenDevelopment.spin)

 1 { TestDrivenDevelopment .spin: Test Driven Development }

 2

 3 VAR

 4 byte debug, nTest, nPass, nFail

 5

 6 OBJ

 7 �UARTS : " FullDuplexSerial4portPlus_0v3 " '1 COG for 3 

serial ports

 8

 9 DAT

10 OK byte "... ok", 13, 10, 0

11 FAIL byte "*** FAIL", 13, 10, 0

12

13 PUB INIT(debugport)

14 debug := debugport

15 nTest := nPass := nFail := 0

16

17 PUB ASSERT_TRUTHY(condition, msg)

18 nTest++

Chapter 4 Test-Driven Development

50

19 UARTS.PUTC(debug, 13)

20 UARTS.PUTC(debug, 10)

21 UARTS.STR(debug, msg)

22 UARTS.PUTC(debug, 13)

23 UARTS.PUTC(debug, 10)

24 'UARTS.DEC(debug, t)

25 if condition <> 0

26 UARTS.STR(debug, @OK)

27 nPass++

28 return TRUE

29 else

30 UARTS.STR(debug, @FAIL)

31 nFail++

32 return FALSE

33

34 PUB SUMMARIZE

35 UARTS.STR(DEBUG, string(" Tests Run: "))

36 UARTS.DEC(DEBUG, nTest)

37 UARTS.PUTC(DEBUG, 13)

38 UARTS.PUTC(DEBUG, 10)

39 UARTS.STR(DEBUG, string(" Tests Passed : "))

40 UARTS.DEC(DEBUG, nPass)

41 UARTS.PUTC(DEBUG, 13)

42 UARTS.PUTC(DEBUG, 10)

43 UARTS.STR(DEBUG, string(" Tests Failed : "))

44 UARTS.DEC(DEBUG, nFail)

45 UARTS.PUTC(DEBUG, 13)

46 UARTS.PUTC(DEBUG, 10)

Chapter 4 Test-Driven Development

51

•	 Lines 3–4: Variables local to TDD that are set/reset by

the INIT method.

•	 Lines 9–11: A data block in which you reserve memory

for the message strings. These are used over and over

again, and rather than generate them each time, you can

define and declare them once. The symbol OK is a series

of bytes made of the ASCII characters for …ok and CR and

LF (carriage return and line feed, respectively). The final

0 informs the printer that the string terminates here.

•	 Lines 13–15: Initialize the variables.

•	 Lines 17–32: Print out the message and either OK or

FAIL. In line 26 and line 30, I pass the address of the

memory space I reserved in the DAT section. UARTS.STR

will print out the bytes at @OK or @FAIL up to the

terminating NULL (0).

•	 Lines 34–46: Print out a summary.

4.2  �Summary
In Test-Driven Development, you first write the specification. Next, you

write a test to exercise one part of the specification. It will fail. So, you write

the code to allow the test to pass. When it passes, you write another test

and the associated code, and so on. By the end, you should have tests that

fully represent the specification, and you should have code that passes all

the tests. If you so much as add a comment, you rerun all the tests!

If you ever change your specification, then you write new tests to cover

those changes. If you ever change the code (be it ever so trivial a change!),

rerun the tests. In collaborative projects, this is particularly important.

When different people submit their updated code, the tests can be run

Chapter 4 Test-Driven Development

52

automatically, and any failed tests are immediately apparent. This is

called continuous integration and is aimed at reducing the manual labor of

merging many different workers.

Now that we have a testing framework in place, shall we plow on?

Figure 4-1 shows the work needed to clear a path forward.

Figure 4-1.  Train in snowdrift, Bernina Railway, Switzerland.
Source: CJ Allen, The Steel Highway, 1928.

Chapter 4 Test-Driven Development

53© Sridhar Anandakrishnan 2018
S. Anandakrishnan, Propeller Programming, https://doi.org/10.1007/978-1-4842-3354-2_5

CHAPTER 5

Compression in Spin
In this chapter, we will implement the compressor and decompressor

purely in Spin using Test-Driven Development (TDD) methods. Rather

than jumping straight into a PASM implementation, starting with a Spin

version lets us ease into the problem and also debug more effectively.

Once we have a working algorithm in Spin, we will translate it to PASM.

In addition, a Spin version can act as a simulator to produce compressed

data streams that the PASM decompressor will have to successfully operate

on, and vice versa.

5.1  �Structure of the Project
There will be two spin files: steim_spin0.spin and steim_spin0 Demo.spin.

The file steim_spin0.spin is where the actual compressor and

decompressor are implemented as a separate object. The file steim_spin0

Demo.spin is the driver file with the MAIN entry point into the code, as well

as where the testing methods are defined. In addition, ensure that the file

TestDrivenDevelopment.spin is in the same directory. Your directory

should look like this:

54

5.2  �Goals of This Chapter
In this chapter, we will write the Steim compressor and decompressor in

Spin. Remember, we have an array of long samples (4 bytes each) called

sampsBuf. The compressor will produce a byte array, packBuf, which

contains the packed or compressed data. We want to do the following:

•	 Start the process by copying 3 bytes from sampsBuf[0]

to packBuf. This is done just once to initialize the

compressor.

•	 Take the difference of sampsBuf[1] - sampsBuf[0].

If that difference fits in 1 byte, then put that 1 byte in

packBuf. If that difference is 2 bytes, put those 2 bytes

in packBuf, and if that difference is 3 bytes, put those

3 bytes into packBuf.

•	 Store a 2-bit code in comprCodeBuf that reflects which

of three things we did.

•	 Do the previous two steps repeatedly for all the samples

(Figure 5-1 shows an example of a real-world “loop”).

Chapter 5 Compression in Spin

55

5.3  �First Iteration
Begin by copying the template spin_template.spin and saving it as

steim_spin0_Demo.spin. Listing 5-1 is the driver program that sets up the

Propeller and then runs the tests to exercise the code. Make the changes

shown in the file.

Figure 5-1.  The Loop, Agony Point, Darjeeling Hill Railway, 1880.
Photo uploaded by Bourne and Shepherd; artist unknown. Public
domain.

Chapter 5 Compression in Spin

56

Listing 5-1.  steim_spin0_Demo: First Iteration of Implementing the

Compression in Spin

 1 OBJ

 2 UARTS : " FullDuplexSerial4portPlus_0v3 "

 3 NUM : " Numbers "

 4 STEIM : " steim_spin0 " ' <<

 5 TDD : " TestDrivenDevelopment " ' <<

 6

 7 CON

 8 NSAMPS_MAX = 128 ' <<

 9

10 VAR

11 byte mainCogId, serialCogId

12 byte comprCogId ' <<

13 byte packBuf[NSAMPS_MAX<<2] ' <<

14

15 long nsamps, ncompr ' <<

16 long sampsBuf[NSAMPS_MAX] ' <<

17 long comprCodeBuf[NSAMPS_MAX>>4] ' <<

18

19 PUB MAIN

20 mainCogId := cogid

21 LAUNCH_SERIAL_COG

22 PAUSE_MS(500)

23

24 UARTS.STR(DEBUG, string(CR, " Compression ", CR, LF))

25 UARTS.STR(DEBUG, string(" mainCogId: "))

26 UARTS.DEC(DEBUG, mainCogId)

27 UARTS.PUTC(DEBUG, CR)

28 UARTS.PUTC(DEBUG, LF)

Chapter 5 Compression in Spin

57

29 STEIM.INIT(NSAMPS_MAX) ' <<

30 TDD.INIT(DEBUG) ' <<

31 TEST_THAT_SAMP0_IS_PROPERLY_PACKED ' <<

32 TDD.SUMMARIZE ' <<

33

34 PRI TEST_THAT_SAMP0_IS_PROPERLY_PACKED | t0, nc

35 nsamps := 1

36 sampsBuf[0] := $AB_CD_EF

37 �nc := STEIM.COMPRESS(@sampsBuf, nsamps, @packBuf, 

@comprCodeBuf)

38 t0 := nc <> -1

39 t0 &= (packBuf[0] == sampsBuf[0] & $FF)

40 t0 &= (packBuf[1] == sampsBuf[0] >> 8 & $FF)

41 t0 &= (packBuf[2] == sampsBuf[0] >> 16 & $FF)

42 �TDD.ASSERT_TRUTHY(t0, string("Test that samp0 is properly 

packed"))

•	 Lines 15–17: Declare the arrays where the packed

samples will be stored (packBuf), the samples

themselves (sampsBuf), and where the compression

codes will be stored (comprCodeBuf). I know that

packBuf will be at most four times the length of

NSAMPS_MAX and that comprCodeBuf will be 1/16th that

length.

•	 Lines 30–31: Initialize the STEIM and TDD objects.

•	 Lines 32–33: Run the test and finish.

•	 Lines 36–38: Perform the compression for a single

sample.

•	 Lines 39–42: Verify whether the output is as we expect.

•	 Line 43: Perform the test and print the results.

Chapter 5 Compression in Spin

58

Add all the lines marked with '<< and add the method TEST_THAT_

SAMP0_IS_PROPERLY_PACKED. Lines 4–5 add the STEIM and TDD objects.

From now on, any method in the file steim_spin.spin can be called by

STEIM.METH_NAME. Similarly, any constant in that file is STEIM#CONSTANT_

NAME. Lines 13–17 declare the new variables that will be needed by the

compression and the new arrays where the uncompressed samples live

before compression (sampsBuf) and where the compressed bytes live

(packBuf).

Finally, in lines 30–31 the two objects are initialized, and in line 32,

the first test is run. By convention, tests begin with the word TEST and

are descriptive and grammatical. The test method itself is in lines 35–43.

Finally, the SUMMARIZE method is called that prints out the number of tests

run, the number that succeeded, and the number that failed.

The test is simple: set sample 0 to a known value, call the compression

routine, and verify that the compressed data in packBuf is correct. The

returned value from COMPRESS is the number of bytes in packBuf or -1 if there

is an error; if there is no error, packBuf and comprCodeBuf are modified.

Listing 5-2 shows the code that does the actual work.

Listing 5-2.  steim_spin0.spin: First Iteration of the Compression Code

 1 CON

 2 CODE08 = %01

 3 CODE16 = %10

 4 CODE24 = %11

 5 VAR

 6 long _nsmax

 7

 8 PUB INIT(nsmax)

 9 " Set the max length of the input samples array

10 _nsmax := nsmax

11

Chapter 5 Compression in Spin

59

12 �PUB COMPRESS(psampsBuf, ns, ppackBuf, pcomprCodesBuf) : ncompr

13 " Inputs :

14 " psampsBuf - address of sampsBuf array (long array).

15 �" ns - length of 'sampsBuf' (number of samps to compress).

16 �" ppackBuf - address of 'packBuf' array (byte array) where

17 " samples are to be packed.

18 " pcomprCodesBuf - address of array of compresion codes

19 " (long array) - 16 codes per long.

20 " Output :

21 " ncompr - length of packed array (bytes)

22 if ns == 0 'this isn't an error - but do nothing

23 return 0

24

25 if (ns < 0) | (ns > _nsmax)

26 return -1

27

28 ' handle sample0 first - it is always packed to

29 ' 3 bytes regardless of its size

30 bytemove(ppackBuf, psampsBuf, 3)

31 ncompr := 3

32 long[pcomprCodesBuf] := CODE24

33

34 if ns == 1

35 return ncompr

36 return -1

Chapter 5 Compression in Spin

60

•	 Lines 1–4: Constants that define the compression

codes.

•	 Lines 8–10: The initialization routine. Save a local

version of NSAMPS_MAX.

•	 Lines 12–21: The compression method, along with

comments detailing what the inputs and outputs are.

•	 Lines 22–26: Check the inputs.

•	 Lines 30–32: Perform the compression for the first

sample.

•	 Lines 34–35: Return in the case of N ≡ 1.

•	 Line 36: Otherwise, return an error.

The actual compression is simple. We copy the three low bytes of

sampsBuf[0] to packBuf[0]-packBuf[2], we set the compression code

to reflect that this is a 3-byte packing, and we return the number 3. The

calling code for COMPRESS is as follows:

nc := STEIM.COMPRESS(@sampsBuf, nsamps, @packBuf,

@comprCodeBuf)

The method definition is as follows:

PUB COMPRESS(psampsBuf, ns, ppackBuf, pcomprCodesBuf) : ncompr

MAIN passes in the addresses of the arrays; in particular, it passes the

memory location of the first element of each array (@sampsBuf). The

method definition saves those addresses as psampsBuf, and so on.

Chapter 5 Compression in Spin

61

5.4  �Passing Arrays to Methods
The compression method in the STEIM object must access the arrays

sampsBuf, packBuf, and comprCodeBuf. To do so, it needs the address in

hub memory where each of them is stored. The calling method is written

thusly:

nc := STEIM.COMPRESS(@sampsBuf, nsamps, @packBuf,

@comprCodeBuf)

The symbol @sampsBuf is shorthand for “address of the first byte of the

first sample of the sampsBuf array.”

The definition of the called method in the STEIM object is as follows:

PUB COMPRESS(psampsBuf, ns, ppackBuf, pcomprCodesBuf) : ncompr

Here the variable psampsBuf holds that address. To access that data,

we must inform the compiler that the variable is an address (rather than a

value). In other words, to access the i-th sample (sampsBuf[i]), we must

say long[psampsBuf][i]. Similarly, ppackBuf holds the address of the byte

array packBuf, and it must be accessed as byte[ppackBuf][i]. To copy

data from sampsBuf to packBuf, we must do something like the following:

bytemove(ppackBuf, psampsBuf, 3)

Here, 3 bytes are copied from the address psampsBuf (which is the

address of the start of that array) to the address ppackBuf (which is the

address of the start of the packBuf array).

The bytemove command copies 3 bytes from memory location

psampsBuf to memory location ppackBuf (a longmove command would

have moved 3 longs).

The expression long[pcomprCodeBuf] := CODE24 says to treat the

address pcomprCodeBuf as a long and to write to all 4 bytes following that

address.

Chapter 5 Compression in Spin

62

A function/method definition in Spin looks like this:

 1 VAR

 2 long globalVar

 3

 4 PUB MYFUN(arg1, arg2) : retVal | localVar

 5 �' globalVar is available for use and can be modified

 6 �' globalVar changes will be seen outside the function

 7 '

 8 ' use arg1 and arg2 inside the function

 9 '

10 ' localVar is available here and is local to the

11 ' function. It isn't available outside the function.

12 '

13 ' set the return value retVal

14 return ' this will return retVal to the calling program

The arguments arg1 and arg2, the return value retVal, and the local

variable localVar are all optional.

5.5  �Testing
Here are the tests that I run. As I was developing the code, I started out

with the simpler tests (testing that sample 0 was packed correctly and then

sample 1) and moved to successively more complex tests (sample 15, and

so on).

TEST_THAT_SAMP0_IS_PROPERLY_PACKED

TEST_THAT_SAMP0_SETS_NCOMPR_CORRECTLY

TEST_THAT_SAMP0_SETS_COMPRCODE_CORRECTLY

TEST_THAT_COMPRESSOR_FAILS_FOR_NSAMPS_WRONG

Chapter 5 Compression in Spin

63

TEST_THAT_SAMP1_IS_PROPERLY_PACKED_ONE_BYTE

TEST_THAT_SAMP1_IS_PROPERLY_PACKED_TWO_BYTES

TEST_THAT_SAMP1_IS_PROPERLY_PACKED_THREE_BYTES

TEST_THAT_SAMP1_SETS_COMPRCODE_CORRECTLY

TEST_THAT_SAMP1_SETS_COMPRCODE_CORRECTLY_TWO_BYTES

TEST_THAT_SAMP15_PACKS_PROPERLY

TEST_THAT_SAMP16_PACKS_PROPERLY

TEST_THAT_SAMP127_PACKS_PROPERLY

TEST_THAT_SAMP0_IS_PROPERLY_UNPACKED

TEST_THAT_SAMP1_IS_PROPERLY_UNPACKED

TEST_THAT_128_SAMPS_PROPERLY_COMPRESS_AND_DECOMPRESS

I built up the code by writing the test and then writing the code that

lets the test succeed. As I built up the code bit by bit, I made sure all the

tests were run every time I modified the program and that they all passed.

$ propeller-load -t -r -p /dev/cu.usbserial-A103FFE0 steim_

spin_Demo.binary

Propeller Version 1 on /dev/cu.usbserial-A103FFE0

Loading steim_spin_Demo.binary to hub memory

7568 bytes sent

Verifying RAM ... OK

[Entering terminal mode. Type ESC or Control-C to exit.]

Compression

mainCogId: 0

Test that sample 0 is properly packed to packBuf

...ok

<<<...output deleted...>>>

Test that compression and decompression of 128 random numbers

is successful

...ok

Chapter 5 Compression in Spin

64

Tests Run: 20

Tests Passed: 20

Tests Failed: 0

5.6  �Final Code
I won’t go through the compression and decompression routines in

detail because the focus of this book is on PASM (and they are quite self-

explanatory). However, I reproduce them here because I’ll refer to them

when I am developing the PASM code.

5.6.1  �Compression in Spin
The full compression code first checks that the inputs are correct. Next,

the first sample is compressed, and then the remaining samples are

differenced and compressed. The driver file (steim_spin1_Demo.spin) will

call the code in Listings 5-3 and 5-4 (which are in file steim_spin1.spin).

Listing 5-3.  steim spin1.spin: Complete Compressor Code Listing

 1 �PUB COMPRESS(psampsBuf, ns, ppackBuf, pcomprCodesBuf) : 

ncompr | j, diff, adiff, codeIdx, codeShift

 2 " Inputs :

 3 " psampsBuf - address of sampsBuf array (long array).

 4 " �ns - length of `sampsBuf ` (number of samps to compress).

 5 " �ppackBuf - address of `packBuf ` array (byte array) where

 6 " samples are to be packed.

 7 " pcomprCodesBuf - address of array of compresion codes

 8 " (long array) - 16 codes per long.

 9 " Output :

Chapter 5 Compression in Spin

65

10 " ncompr - length of packed array (bytes)

11 if ns == 0 ' this isn't an error - but do nothing

12 return 0

13

14 if (ns < 0) | (ns > _nsmax)

15 return -1

16

17 ' handle sample0 first - it is always packed to 3 bytes

18 ' regardless of its size

19 bytemove(ppackBuf, psampsBuf, 3)

20 ncompr := 3

21 long[pcomprCodesBuf] := CODE24

22

23 if ns == 1

24 return ncompr

25

26 repeat j from 1 to ns -1

27 �diff := long[psampsBuf][j] - long[psampsBuf][j -1]

28 adiff := || diff

29 codeIdx := j / 16

30 codeShift := (j // 16) * 2

31 if adiff < $7F

32 bytemove(ppackBuf + ncompr, @diff, 1)

33 ncompr++

34 �long[pcomprCodesBuf][codeIdx] |= CODE08 << 

codeShift

35 elseif adiff < $7FFF

36 bytemove(ppackBuf + ncompr, @diff, 2)

37 ncompr += 2

Chapter 5 Compression in Spin

66

38 �long[pcomprCodesBuf][codeIdx] |= CODE16 << 

codeShift

39 else

40 bytemove(ppackBuf + ncompr, @diff, 3)

41 ncompr += 3

42 �long[pcomprCodesBuf][codeIdx] |= CODE24 << 

codeShift

43

44 return ncompr

•	 Lines 11–21: Verify inputs and compress sample 0.

•	 Line 27: Form the backward difference δj = sj − sj−1.

•	 Line 28: Calculate the absolute value aj = |δj |.

•	 Lines 29–30: The compression codes are 2 bits

each, so the codes for samples sj , j = 0–15 are in

comprCodesBuf[0], the codes for samples sj , j=16–31

are in comprCodesBuf[1], and so on. The j-th code is

shifted by (j mod 16) × 2 bits.

•	 Lines 31-42: Depending on whether aj fits in 1, 2, or

3 bytes, place the difference in packBuf and place the

code in comprCodeBuf.

5.6.2  �Decompression in Spin
The decompression is a little more involved, mainly because negative

numbers have to be sign-extended properly. The general outline is the

same as for compression: handle the first sample and then loop through

the remaining samples.

Chapter 5 Compression in Spin

67

Listing 5-4.  steim_spin.spin: Spin Decompression Method

 1 �PUB DECOMPRESS(psampsBuf, ns, ppackBuf, ncompr, 

pcomprCodesBuf) : ndecomp | diff, pkIdx, codeIdx, 

codeShift, theComprLong, jcomprCode, pkBytes, shneg

 2 " Inputs :

 3 " psampsBuf - address of sampsBuf array

 4 �" ns - length of 'sampsBuf' (number of samps to decompress)

 5 �" ppackBuf - address of 'packBuf' array where samples 

are packed

 6 " ncompr - length of packBuf

 7 �" pcomprCodesBuf - array of compresion codes (16 codes 

per long)

 8 " Output :

 9 �" ndecomp - number of samples decompressed (should be 

same as ns)

10

11 ' check inputs

12 if ns == 0 ' this isn't an error - but do nothing

13 return 0

14

15 if (ns < 0) | (ns > _nsmax)

16 return -1

17

18 ' init

19 ndecomp := 0

20 pkIdx := 0

21

22 repeat while ns > ndecomp

23 ' codeIdx - index into the comprCodesBuf array

24 ' codeShift - index into the actual code long where

Chapter 5 Compression in Spin

68

25 ' the code for this sample is stored

26 codeIdx := ndecomp / 16

27 codeShift := (ndecomp // 16) * 2

28

29 theComprLong := long[pcomprCodesBuf][codeIdx]

30 jcomprCode := (theComprLong >> codeShift) & %11

31 case jcomprCode

32 CODE08 :

33 bytemove(@diff, ppackBuf + pkIdx, 1)

34 diff <<= 24 ' sign extend

35 diff ~>= 24

36 pkBytes := 1

37 CODE16 :

38 bytemove(@diff, ppackBuf + pkIdx, 2)

39 diff <<= 16 ' sign extend

40 diff ~>= 16

41 pkBytes := 2

42 CODE24 :

43 bytemove(@diff, ppackBuf + pkIdx, 3)

44 diff <<= 8 ' sign extend

45 diff ~>= 8

46 pkBytes := 3

47

48 pkIdx += pkBytes

49 ncompr -= pkBytes

50

51 �if ndecomp == 0 ' samp 0 is packed as is - not a 

difference

52 theSamp := diff

53 else

54 �theSamp := long[psampsBuf][ndecomp -1] + diff

55

Chapter 5 Compression in Spin

69

56 theSamp <<= 8

57 theSamp ~>= 8

58 long[psampsBuf][ndecomp] := theSamp

59 ndecomp++

60

61 if ncompr < 0 ' error check on ncompr

62 return -1

63 return ndecomp

•	 Lines 26–30: Determine the compression code for

this sample by getting the correct long from the

comprCodesBuf array and then getting the appropriate

2 bits.

•	 Lines 31–46: Copy the difference bytes (either 1, 2, or 3,

depending on the compression code for this sample)

from packBuf and sign-extend them to form a proper

32-bit δj . The operations diff <<= 24 and diff ~>= 24

will first shift the low byte up to the high byte location

and then do an arithmetic shift back to the low byte.

An arithmetic shift retains the sign of the byte. So, if

the low byte was a negative 1-byte number (-127 to -1),

then the 32-bit number would still be negative (with 1s

in all the high bits).

•	 Lines 51–58: Form the sample sj = sj−1 + δj and

sign-extend.

As we build up the PASM code, we have to reproduce each of these

steps, including the loops.

Chapter 5 Compression in Spin

www.allitebooks.com

http://www.allitebooks.org

70

5.7  �The Need for Speed
The main reason to implement the code in PASM is to speed it up. Let’s

see how much time the compression and decompression take in Spin.

Listing 5-5 shows the timing code in the driver file steim_spin1_Demo.spin.

Listing 5-5.  Measuring the Timing of Compression

 1 PUB MAIN | t0, dt, j

 2 ...

 3 ' time

 4 nsamps := 128

 5 repeat j from 0 to nsamps-1

 6 sampsBuf[j] := j * 50000

 7

 8 t0 := cnt

 9 �nc := STEIM.COMPRESS(@sampsBuf, nsamps, @packBuf, 

@comprCodeBuf)

10 dt := cnt - t0

11 UARTS.STR(DEBUG, string(" nc= "))

12 UARTS.DEC(DEBUG, nc)

13 UARTS.PUTC(DEBUG, CR)

14 UARTS.STR(DEBUG, string(" dt= "))

15 UARTS.DEC(DEBUG, dt)

16 UARTS.PUTC(DEBUG, CR)

17 UARTS.STR(DEBUG, string(" dt(ms) ~ "))

18 UARTS.DEC(DEBUG, dt / ONE_MS)

19 UARTS.PUTC(DEBUG, CR)

20 ...

Chapter 5 Compression in Spin

71

Running this code prints out the following:

...

nc= 382

dt= 1526096

dt (ms) ~ 19

Here, nc is the number of bytes in the compressed buffer packBuf, and

the two dt values are the time taken to perform the compression (in clock

cycles and milliseconds, respectively).

If your application is OK with taking 20ms to compress 128 samples,

then you can stop right here. If not, let’s estimate how much of a speedup

we can expect in PASM.

5.7.1  �Timing in PASM
Each instruction in PASM takes a fixed number of clock cycles that are

documented in the manual. Almost all the instructions take four clock

cycles exactly.1

A clock cycle is 12.5ns (when the system clock is running at 80MHz), so

typically instructions require 50ns to complete.

The system clock is determined by the constants shown in Listing 5-6

in the main Spin file.

Listing 5-6.  Clock Mode Settings

1 CON ' Clock mode settings

2 _CLKMODE = XTAL1 + PLL16X

3 _XINFREQ = 5_000_000

1�There are exceptions. Hub operations (rdlong, for example) take between 8 and
23 clock cycles. There are a small number of other exceptions. The manual lists
the timing for each instruction.

Chapter 5 Compression in Spin

72

_XINFREQ is the frequency of the external crystal. The _CLKMODE

variable sets the clock to 16 times the crystal frequency (in this case,

80MHz).

5.7.2  �PASM Timing Estimate
During the compression, there is some setup, and then all the samples are

processed.

For each of the 128 samples, something like the following must happen:

•	 Read a sample from the hub (∼20 clock cycles).

•	 Subtract from the previous one (∼5 instructions,

∼20 cycles).

•	 Take the absolute value (∼5 instructions, ∼20 cycles).

•	 Check for the length of the absolute value

(∼10 instructions, ∼40 cycles).

•	 Calculate the compression code location

(∼5 instructions, ∼20 cycles).

•	 Write up to 3 bytes to the hub (∼60 cycles).

The initialization and finalization may look something like this:

•	 Initialize the variables (∼10 instructions, ∼40 cycles).

•	 Take care of the overhead, in other words, writing the

compression code to the hub every 16 samples, or

8 times for 128 samples (∼20 cycles × 8 ∼ 160 cycles).

The total is approximately 25,000 clock cycles, or 0.3ms (with an

80MHz clock). This is a speedup factor of 60, so if the data rates in your

application are high, it will be worth going to the trouble of implementing

it in PASM (in Figure 5-2, I show an example of things that go at different

speeds!).

Chapter 5 Compression in Spin

73

5.8  �Summary
In this chapter, we worked through a full example of using Test-Driven

Development to build and verify a Steim compressor and decompressor.

The code is pure Spin, with a driver file (with a Demo suffix) and a worker

file with functions (also known as methods) that are called from the driver.

The tests are in the driver file, and each one exercises one small part of the

specification.

I showed how a function/method is defined and called, how to test

the inputs for reasonableness, how to copy bytes out of a long, and how

to correctly copy them back in during decompression. I discussed how to

pass variables and arrays to a Spin function and how to get a return value.

Finally, you learned how measure the time taken to process an array.

Figure 5-2.  Bullock cart in front of Victoria Terminus (“The most
magnificent railway station in the world,” Bombay, India, 1903.
https://upload.wikimedia.org/wikipedia/commons/f/f4/
Victoriaterminus1903.JPG.

Chapter 5 Compression in Spin

https://upload.wikimedia.org/wikipedia/commons/f/f4/Victoriaterminus1903.JPG

Spin and PASM

PART II

77© Sridhar Anandakrishnan 2018
S. Anandakrishnan, Propeller Programming, https://doi.org/10.1007/978-1-4842-3354-2_6

CHAPTER 6

Propeller Assembler:
PASM
Now that we are all up to speed on Spin, let’s plunge into PASM. Here I

introduce the form and structure of PASM cogs and the details of PASM

instructions.

In addition, I spend some time talking about how to pass information

from the main cog (generally the driver program in Spin) to the PASM cogs.

In this chapter and the next one, we will need to pass all the same variables

(nsamps, sampsBuf, etc.) to the PASM cog as we did in the Spin version.

Remember, the cogs are almost completely independent of each other.

To communicate between two of them, they have to agree on a location in

hub memory where the shared information is kept. In addition, each cog

has to continually check that location in case the other one has changed it.

Passing parameters between Spin programs is easy.

...

PUB MAIN

 retval := MYFUN(x, y, @z)

PUB MYFUN(funx, funy, funzPtr) : funret

 ...

 funret := ...

 return funret

78

We simply place a list of the variables in the call (MYFUN(x, y, @z)),

and those variables are available in the function body. Similarly, the

function can return a number (funret), which is available in the main

program.

It is more complicated in PASM because the PASM code is running in a

separate cog that has its own memory. Spin code affects hub memory, and

Spin instructions have implicit access that space. PASM code running in a

separate cog has to explicitly access hub memory. That dance is what we

will focus on for the rest of the book.

There is one more subtle difference between Spin and PASM: Spin

functions (MYFUN) spring into existence when they are called, and they

proceed from the beginning to the end and then disappear. A PASM cog is

generally started once, and then it persists forever. You have to explicitly

ask it to do something and have it idle otherwise.

Once launched, a PASM cog runs independently. The only way to pass
parameters back and forth to the cog is to change a variable in hub
memory and to have the cog read and react to that change.

6.1  �Instructions in PASM
Cog memory consists of a series of longs (up to 496 of them). Some of

those longs are instructions, and some are space reserved for variables.

Instructions are executed in order starting at the first one (the one marked

with ORG 0). You can request that instead of executing the next instruction,

the Propeller should jump to a different part of cog memory. The Propeller

will do so and then continue to execute instructions starting there.

There are more than 100 instructions in PASM, but many of them are

close cousins, so don’t be intimidated by the PASM manual. For example,

there are five variants of add, four versions of sum, and so on. What all the

Chapter 6 Propeller Assembler: PASM

79

instructions have in common is that they do one simple thing to a memory

location in cog memory (sometimes referred to as a register). They may

also affect the special flags Z and C. That’s it.

The form of a PASM instruction is as follows:

<label> <if-clause> instr destination, <#>source <effect>

Here, the items in angle braces are optional. instr is the PASM

instruction; the destination and source numbers are 9-bit values that

refer to a register address. If the source is preceded by the optional literal

operator #, then the source is that 9-bit value (rather than a register

address). The label, if clause, and effect parts of the instruction are all

optional.

Listing 6-1 shows a complete PASM program to toggle a pin (this is

from p. 239 of the Propeller manual, v1.2).

Listing 6-1.  Toggle a Pin in PASM

 1 {{ AssemblyToggle.spin }}

 2 CON

 3 _clkmode = xtal1 + pll16x

 4 _xinfreq = 5_000_000

 5

 6 PUB Main

 7 { Launch cog to toggle P16 endlessly }

 8 cognew (@Toggle, 0) 'Launch new cog

 9

10 DAT

11 {Toggle P16}

12 org 0 �'Begin at Cog RAM addr 0

13 Toggle mov dira, Pin �'Set Pin to output

Chapter 6 Propeller Assembler: PASM

80

14 mov Time, cnt �'Calculate delay time

15 add Time, #9 �'Set minimum delay here

16 :loop Waitcnt Time, Delay 'Wait

17 xor outa, Pin 'Toggle Pin

18 jmp #:loop 'Loop endlessly

19

20 Pin long |< 16 'Pin number

21 Delay long 6_000_000 �'Clock cycles to delay

22 Time res 1 �'System Counter space

23 FIT 496

•	 Lines 1–8: The Spin program in cog 0 that launches a

new cog to do the work.

•	 Line 8: The Spin command to start a new cog using the

code at the address @Toggle.

•	 Lines 10–23: The PASM code that does the work of

toggling the pin.

•	 Line 13: This line has a label (Toggle), an instruction

(mov), a destination register, and a source register

(dira and Pin, respectively).

•	 Line 15: This line has a literal value (#9).

•	 Line 16: This line has a label and a process control

instruction, waitcnt, that pauses the cog until the

counter value in cnt reaches the value in the register

Time. When the counter reaches the value in the

register Time, the processor continues to the next

Chapter 6 Propeller Assembler: PASM

81

expression. In addition, waitcnt Time, Delay will

add Delay to Time and store that number in Time, so

the next time the waitcnt instruction is executed, the

processor will pause until time Time + Delay.

•	 Line 18: Another process control statement that

changes the direction of execution. The instruction

loops back to the instruction labeled :loop rather than

stepping to the next instruction.

•	 Lines 20–21: Register holding data. The construct

|< 16 sets pin 16 of the register Pin.

•	 Line 22: Register of reserved workspace. Its value is

undefined.

The new cog is loaded with nine longs. The first six longs are

instructions (mov, mov, add, waitcnt, xor, and jmp); the next three longs are

the data and reserved space. Execution begins with the first instruction

and steps along sequentially, until it encounters the jmp. This is a basic

program but one that captures many features of PASM. We will look at

effects and hub interactions soon.

6.1.1  �The Add Instruction
One of the most common tasks for a computer is to do arithmetic. In Spin

you can write the following:

x += y

z++

a := b + c

You can do the same in PASM. Here is the add instruction:

' PASM version of x += y

add _cX, _cY

Chapter 6 Propeller Assembler: PASM

82

This sums the two numbers in variables _cX and _cY and places the

result back into _cX.

' PASM version of z++

add _cZ, #1

Here the instruction increments the number in _cZ by 1 and places the

result back into _cZ:

' PASM version of a := b + c

mov _cA, _cB

add _cA, _cC

Here we encounter the big difference between Spin and PASM. In Spin,

we simply said a := b + c. Under the hood, two things are going on: b

and c are added, and then the result is placed into a. In PASM, there is no

“hood.” We have to do those two things explicitly!

The mov _cA, _cB instruction moves the contents of variable _cB

into _cA. Then the add instruction adds _cC to _cA and places the result

back into _cA (and because we had the foresight to place _cB into _cA first,

the result is as we desire).

6.1.2  �The mov Instruction
The mov instruction sets a variable to a value.

' PASM version of x := y

mov _cX, _cY

Here we copy the contents of variable _cY to the variable _cX.

' PASM version of x := 42

mov _cX, #42

Chapter 6 Propeller Assembler: PASM

83

Here we set _cX equal to 42. When you want to set _cX to a number, you

have to tell PASM that by including the literal indicator (#). Without that,

the instruction is mov _cX, 42 (don’t do this at home!), and the Propeller

would try to move the contents of memory location 42 into _cX—not what

you wanted.

' PASM version of x := 31415

'mov _cX, #31415 ' NOPE NOPE NOPE won't work

mov _cX, _cPiFour

Unfortunately, if you want to refer to numbers larger than 511 (in

other words, any number that won’t fit into 9 bits), you have to first store

that number into a variable and then copy the contents of that variable to

where you want it.

6.1.3  �Variables
Variables are longs that are stored in cog memory along with the

instructions (after all the instructions). You can initialize these variables to

any number (any number that will fit in a long, of course).

_cPiFour long 31415

r0 res 1

r1 res 1

_cArr res 8

FIT 496

Here we declare a name for the variable (_cPiFour), followed by the

size of the variable (long), followed by the value to which that variable is

initialized (31415). Here you don’t need the literal indication (#), and you

aren’t limited to 9 bits.

Finally, the line r0 res 1 reserves one long and places that address in

r0. The form of this instruction is like this: the name of the variable (r0)

followed by the res directive, followed by the number of longs to reserve.

Chapter 6 Propeller Assembler: PASM

84

The expression _cArr res 8 reserves eight longs and places the address

of the first long in the variable _cArr. Any variables you refer to in your

PASM code must have an associated storage declaration (either a line

like _cPiFour long 31415 or a reservation line like r0 res 1). The PASM

compiler will complain if you don’t do this.1

The expression FIT 496 should always come at the end of the

PASM program. It validates that the previous instructions and memory

allocations fit within the allowed 496 longs.

6.1.4  �Effects
Most instructions can include effects. If you specify either wz or wc, the Z or

C flags will be changed, respectively. So, for example, the mov instruction

has the following effects (this is an excerpt from the manual page for mov):

mov Destination, <#>Value

...

If the WZ effect is specified, the Z flag is set (1) if

Value equals zero. If the WC effect is specified, the

C flag is set to Values MSB. The result is written to

Destination unless the NR effect is specified.

Here are some examples:

mov r0, #0 wz ' set Z=1

mov r0, #1 wz ' set Z=0

neg r0, #1 ' put -1 into r0

mov r1, r0 wc ' set C=1 (msb of r0 is 1)

mov r0, #42 wz,nr ' set Z=0 (wz), but don’t change r0 (nr)

1�res lines must come after long variable declaration lines.

Chapter 6 Propeller Assembler: PASM

85

The value of Z or C will persist until it is next changed by a wz or wc effect in

an instruction. An important use of the effect is in branching and conditional

expressions where an instruction is executed based on the value of these flags.

6.1.5  �Literals
The mov instruction moves a value into a destination register. The source

value either can be from another register or can be a literal value.

mov Destination, <#>Value

Literals are indicated by the pound sign (#) and are limited to 9 bits.

mov r0, r1 ' move contents of register r1 to register r0

mov r0, #0 ' set r0=0

mov r0, #42 ' set r0=42

'mov r0, #31415 ' ILLEGAL. Literals must be less than 512

6.1.6  �Labels
There are 496 longs of cog memory available for use. Every instruction

occupies one long. An instruction can include a label so that you can

branch to that instruction.

...

 mov r1, #0

 mov r0, #8

:loop

 add r1, #1

 djnz r0, #:loop

_cPiFour long 31415

r0 res 1

r1 res 1

FIT 496

Chapter 6 Propeller Assembler: PASM

86

Here the label :loop labels the add instruction so that the jump

instruction (djnz r0, #:loop) will execute the add instruction eight times

(djnz r0, #:loop means “decrement the register r0 and jump to label :loop

if the result is nonzero”).2

6.1.7  �Conditional Evaluation
In Spin the following is a common task:

' conditional evaluation

' if x is less than 100, set x to y.

if x < 100

 x := y

x++

As you can imagine, there is quite a bit under the hood here that will

need to be done explicitly in PASM. The general scheme is this: compare

a variable with a number and either jump past a section of code or don’t

jump past it based on the result of the comparison.

1 cmp _cX, #100 wc

2 if_nc jmp #:done

3 'PASM instructions to evaluate if x < 100

4 mov _cX, _cY

5 :done

6 add _cX, #1

2�There are two types of labels: global and local. Local labels have a colon as the
first character. There are rules about the use of local variables that allow you
to reuse the name, but I prefer to always use unique local variable names. See
p. 242 in the Propeller manual if you want to reuse local variable names.

Chapter 6 Propeller Assembler: PASM

87

•	 Line 1: Compare x to 100 and set the C flag if x < 100.

Here is the explanation for cmp from the manual:

CMP (Compare Unsigned) compares the unsigned

values of Value1 and Value2. The Z and C flags, if

written, indicate the relative equal, and greater or

lesser relationship between the two. If the WZ effect

is specified, the Z flag is set (1) if Value1 equals

Value2. If the WC effect is specified, the C flag is set

(1) if Value1 is less than Value2.

We ask for the wc effect, so if x (Value1) is less than 100 (Value2), then

the C flag will be set (C=1).

•	 Line 2: This is conditional expression that says that if

the C flag is not set (if_nc), then execute the instruction

that follows on that line (the jmp #:done). In our case, if

x < 100, then the C flag will be set, and the jump will not

be executed.

There are a host of if_xx conditional expressions. They all have similar

form (see p. 244 of the Propeller manual for a complete list).

•	 if_z instr: If the Z flag is set, execute the instruction.

•	 if_nz instr: If the Z flag is not set, execute the

instruction.

•	 if_c instr: This is the same as the previous one, but

for the C flag.

•	 if_nz_and_nc instr: If the Z flag is not set and the C

flag is also not set, then execute the instruction...and

every possible combination of Z, NZ, C, NC, AND, and OR.

As you can imagine, this gives tremendous flexibility in

deciding when to do something.

Chapter 6 Propeller Assembler: PASM

88

I used the cmp instruction to set the C flag. Remember, every instruction

gives you the option to manipulate the Z and C flags, so you can set the

groundwork for the various if_ instructions in many ways.

6.1.8  �Branching
As I said earlier, the Propeller will execute instructions in order starting at

the start of cog memory. It will proceed to the next instruction unless the

order is interrupted by a jump instruction. There are two jump instructions

that we will use a lot.

•	 jmp #:label: Jump to an address labeled :label

immediately.

•	 djnz r0, #:label: Decrement the variable r0 and

jump to a label if the result is not zero.

These are used in conditional evaluation (as in the previous section)

and in loops. In Spin, you would say this:

x := 0

repeat 8

 x++

In PASM, you must set up a loop variable (here r0) and explicitly

decrement and check its value. Repeat until its value is zero.

1 mov r0, #8

2 mov _cX, #0

3 :loop

4 add _cX, #1

5 djnz r0, #:loop

In line 5, the instruction is to “decrement r0 and jump to :loop if the

result is not zero.” After eight iterations, r0 will be zero, and the loop is

exited.

Chapter 6 Propeller Assembler: PASM

89

6.2  �Reading the PASM Manual
PASM instructions are composed of (up to) four parts. For example, the

instruction to move the contents of a 4-byte long from hub memory to cog

memory is rdlong (the manual page for rdlong is shown in Figure 6-1).

rdlong _cns, _cnsPtr wz

The parts of the instruction are as follows:

•	 The action to be taken (rdlong).

•	 The destination address (_cns).

•	 The source address.

•	 The effect wz, which will affect the Z flag. There is also

wc, which affects the C flag.

•	 The effect nr, which will prevent the instruction from

actually occurring but only set the Z or C flag.

In the manual page, the important pieces of information are the

succinct description of the instruction:

Instruction R ead long of main memory.

Here’s the summary:

RDLONG Value, <#> Address

•	 Value (d-field) is the register to store the long value

into.

•	 Address (s-field) is a register or a 9-bit literal whose

value is the main memory address to read from.

Chapter 6 Propeller Assembler: PASM

90

Here is the detailed explanation, along with a description of the wz, wc,

and nr effects:

RDLONG syncs to the hub. ...If the WZ effect is specified, the Z flag
will be set (1) if the value read from main memory is zero.

Finally, the time taken to execute the instruction will be stated. For

most instructions, it is four clock cycles. Hub instructions take longer

because of the need to sync with the other cogs.

RDLONG is a hub instruction. Hub instructions require 8 to 23 clock
cycles to execute....

6.3  �Categories of PASM Instruction
and Registers

There are a large number of PASM instructions and registers, but they fall

into a small number of categories, which I summarize here.

6.3.1  �Copying
The instructions in this category are used to both copy values from one

memory location to another, as well as to affect the Z and C flags. The

instruction mov d, <#>s <wz> <wc> will move the source (either the

contents of register s or the value #s) into register d. If the source value

is zero and the wz effect is specified, then set the Z flag. If the wc effect is

specified, then the C flag is set to the source’s MSB (either 0 or 1).

Chapter 6 Propeller Assembler: PASM

91

6.3.2  �Arithmetic
There are a number of math instructions to take the absolute value, add or

subtract two numbers, or negate a number. There are variants of each of

these that do slightly different things based on the value of flags.

Figure 6-1.  Manual page for rdlong

Chapter 6 Propeller Assembler: PASM

92

•	 The add instruction adds the unsigned values in the

destination and source and places the result in the

destination register. By contrast, adds treats the values

as signed numbers. The instructions addx and addsx

are extended additions that let you do multilong

addition (for example, 64-bit addition; see the manual

for details).

•	 There are a similar set of subtraction instructions (sub,

subs, subabs, etc.)

•	 The neg instruction negates a number; negc does so if

C=1; negnc does so if C=0; and negz and negnz negate

based on the value of the Z flag.

6.3.3  �Boolean, Comparison, and Bit-Shift
Operators

These instructions operate bitwise.

•	 The Boolean instructions and, or, and xor perform

the bitwise and, or, and exclusive or of the destination

and the source, placing the result in the destination

register. test performs an and but doesn’t store the

result in the destination; this is usually done to affect

the flags.

•	 The comparison operator cmp d, s compares the

destination and the source (treating them as unsigned

values). If the wz effect is specified, then Z=1 if d=s. If

the wc effect is specified, then C=1 if d<s. There are other

comparison instructions (cmps, cmpsub, cmpsx, etc.)

that compare signed values or compare and subtract,

and so on.

Chapter 6 Propeller Assembler: PASM

93

•	 The min and max operators store the greater or lesser of

the source and destination in the destination register,

respectively.

There are a number of bit-setting and shifting operators.

•	 The mux... family of operators sets the destination

register based on two things: the high bits in the source

and the value of either C or Z. Thus, muxc d, #5 will set

bits 2 and 0 (because #5 = b0101) of the destination

register d to the value of the flag C. The other bits in d

are unaffected. The other members of this family are

muxnc, muxz, and muxnz.

The bit shifting operators are as follows:

•	 Reverse: rev d, s reverses the lower 32 − s bits of d and

stores the result in d. So, if s = 24, then reverse the lower

8 bits of d and clear the upper 24 bits. Store this result

back into d.

•	 Rotate: rol d, s rotates the destination register (d) left

by s bits, placing the MSBs rotated out of d into its LSBs.

Similarly, ror will rotate right. By contrast, rcl d, s also

rotates the register d left but fills the LSBs with the value

of C. rcr does the same for rightward rotation.

•	 Shift: shl d, s shifts d left by s bits. The new LSBs are

set to zero. Similarly, shr shifts right.

•	 Shift arithmetic: sar d, s shifts d right by s bits,

extending the MSB. In other words, the value of MSB

will be copied into all the shifted bit locations. Thus,

sar d, #8 will set the upper 8 bits to either 1 or 0

depending on the original value of the MSB of d. The

lower 24 bits of d are the result of the shift.

Chapter 6 Propeller Assembler: PASM

94

6.3.4  �Process Control
Process control instructions will either pause the processor until a

condition is met or alter the sequence of execution.

The waitcnt t, dt instruction will pause execution until the

internal counter cnt is equal to the value in t. When the two are equal,

the value of t will be set to t+dt, and the processor will step to the next

instruction. Because cnt is a 32-bit register that rolls over, the pause

from the waitcnt instruction will eventually end, but it could take up to 4

billion counts (about 53 seconds at 80MHz clock) if t happens to be less

than the current value of cnt.

The reason that the time register t is incremented by dt is to allow for

regular and deterministic delays in the program. With this mechanism,

regardless of when you call waitcnt, the program will step every dt seconds.

The instruction waitpeq value, mask will pause execution until the

values in the ina register referenced by the high bits in mask are equal

to the bits in value. In other words, if, for example, mask=b0100 and

value=b0100, then the processor will pause until pin 2 is high.3 Similarly,

waitpne will wait until the mask bits in input register ina are not equal to

those bits value.

The jmp and djnz instructions alter the direction of execution.

Normally, the next instruction is executed. At a jmp #:location, the

next instruction to be executed will be the one labeled :location. The

instruction djnz d, #:loop will decrement the number in d and will jump

to :loop if d≠0. Otherwise, the instruction next in line will be executed.

tjz and tjnz are similar, but they only test the value of d without

decrementing it.

3�This is how we generally use waitpeq, though we could have multiple pins in
mask, and we could have both highs and lows in the values for those pins.

Chapter 6 Propeller Assembler: PASM

95

6.3.5  �Hub Reads/Writes
The hub has more (but slower) memory than the cogs. You can read and

write longs, words, or bytes from and to the hub.

The read instruction rdlong cogmem, hubmem will read a long from

hub memory address hubmem and store that value in the cog location

cogmem. The wrlong cogmem, hubmem instruction will write a long from

cogmem to hubmem. Similarly, rdword, rdbyte, wrword, and wrbyte operate

on words and bytes.

6.3.6  �Locks
Locks (or semaphores) are a special utility to allow cogs to negotiate

exclusive access to some resource. There are eight lock IDs (0–7) in the

Propeller that can be checked out and released. After creating a lock

with locknew lockID, which stores a lock ID number in lockID, you can

request a lock with lockset and release the lock with lockclr.

The way locks work is that a cog has to first create a lock and get its

ID. This ID has to be shared with the other cogs. Next, both cogs will

request a lock. One (and only one) of the cogs will get it. (The one that asks

for it first; because locking is a hub operation, the cogs ask for the lock one

after the other in round-robin fashion, so there is no possibility of conflict.)

The cog that gets the lock can then, for example, access a shared memory

location. The other cogs don’t have the lock, so they will simply loop

continuously requesting the lock until the cog with the lock releases it.

If a lock is set, then its value is 1; if it is available, then its value is 0.

lockset lockID wc sets the value of lockID to 1 and returns the

previous value of the lock (in the C flag).

If nobody else had checked out the lock, then its value will be 0; the

lockset will set the lock to 1 and set C=0 (because that is its previous

value). If somebody else has the lock, then its value will be 1; lockset will

set C=1.

Chapter 6 Propeller Assembler: PASM

96

A cog calls lockset and then checks the value of C. If C is 0, then that

cog has the lock; if it is 1, then it doesn’t have the lock.

If a cog does have the lock, it must make sure to eventually call lockclr

lockID.

6.3.7  �Variables
In addition to the instructions (each of which takes up one long), you can

declare and initialize variables or reserve blocks of space. Always put the

res directives at the end of the code.

_cVarname long 31415 ' these declare and initialize the vars

_cVarAns long 42 ' variables are always longs in PASM

_cArry res 8 ' this reserves 8 longs

6.3.8  �Special Registers
Each cog has 16 special registers, each of which is a long (4 bytes). Because

a cog has 512 longs of memory, this leaves 496 longs for instructions and

variables.

•	 cnt: The 32-bit system counter is incremented by 1 at

every system clock. This register will roll over when it

fills up (232 − 1 counts, or approximately 4 billion). With

an 80MHz clock, that happens every 53 seconds. This is

a read-only register.

•	 dira: This register sets the direction for the signals on

the pins. The 32 bits of this register correspond to the 32

pins (P0 to P31). If a bit is a 1, then the corresponding

pin is an output. All cogs have their own dira register.

Thus, a pin is an output if any cog declares it so; it is an

input if no cog declares it as an output.

Chapter 6 Propeller Assembler: PASM

97

•	 outa: If a pin is set as an output in the dira register,

then this register can control its value. Setting a bit high

(1) in outa will set the corresponding pin high. Any cog

that has declared a pin as an output can control it. So, it

is up to the programmer to avoid conflicts.

•	 ina: The value of each bit in this register reflects the

state of the physical pin. If pin PN is high, then bit N of

ina will be high. Again, this pin will be an input only if

no cog has set it as an output.

•	 par: This register is populated by the cognew command

when the cog is launched. The second argument to

cognew is (generally) an address in hub memory,

and that address is placed in par so that the cog can

communicate with other cogs.

6.3.9  Counters
I don’t discuss the registers ctra, phsa, and frqa in this book, but together

they provide a powerful and general-purpose counting capability. You

can do a remarkable number of things with these registers, including

pulse width measurements, counting the number of pulses, pulse-width

modulation (PWM), frequency synthesis and measurement, and much

more. See the app note at https://www.parallax.com/downloads/an001-

propeller-p8x23a-counters for details.

6.4  �The Structure of PASM Programs
These programs run from two files: a “driver” file called, for example,

myprog_Demo.spin (Listing 6-2 shows the outline for such a file) and a

worker file called myprog.spin (Listing 6-3). The driver file is pure Spin

Chapter 6 Propeller Assembler: PASM

https://www.parallax.com/downloads/an001-propeller-p8x23a-counters
https://www.parallax.com/downloads/an001-propeller-p8x23a-counters

98

code, but the worker file is a combination of Spin and PASM code. The

driver file will have overall control of the program, such as for opening the

terminal and starting and stopping cogs. The worker file (or files) will be

responsible for a single cog and will generally have a few Spin methods

along with the PASM code. At a minimum, it will have the following:

•	 INIT: Set up the needed variables.

•	 START: Start a new cog and load the PASM code into it.

•	 STOP: Stop the cog.

In addition, the worker file will have a section of PASM code that will

be loaded into a new cog by the START method.

Listing 6-2 shows the driver file myprog_Demo.spin.

Listing 6-2.  Structure of Spin Driver File

 1 {*

 2 * myprog_Demo.spin : do an important thing

 3 *}

 4

 5 CON ' Clock mode settings

 6 ...

 7 CON ' Pin map

 8 ...

 9 CON ' UART ports

10 ...

11 OBJ

12 MYPROG : "myprog" ' load the worker file

13 VAR

14 ...

15

16 PUB MAIN

17 ...

Chapter 6 Propeller Assembler: PASM

99

18 ' initialize and start the worker

19 MYPROG.INIT

20 MYPROG.START

21 ...

22 ' stop the worker

23 MYPROG.STOP

•	 Line 12: Read the file myprog.spin and make it

available as MYPROG.

•	 Line 19–23: Call functions INIT, START, and STOP in the

library MYPROG.

Listing 6-3 shows the worker file myprog.spin.

Listing 6-3.  Structure of PASM Worker File

 1 {*

 2 * myprog.spin : spin and pasm worker code

 3 *}

 4 CON

 5 ...

 6 VAR

 7 �' set up some local variables. At a minimum, keep track of 

the cog id

 8 byte myprogcogid, mylocalvar

 9

10 �' initialize vars, at a minimum set the cog id to -1 

(indicating that no

11 ' cog is running this code)

12 PUB INIT

13 mylocalvar := 0

14 myprogcogid := -1

15

Chapter 6 Propeller Assembler: PASM

100

16 ' start a new cog (after stopping the old one)

17 ' save the cog id as well as returning it

18 PUB START

19 STOP

20 myprogcogid := cognew(@MYPROG, @mylocalvar)

21 return myprogcogid

22

23 ' stop the cog - after checking that it is running.

24 ' else do nothing

25 PUB STOP

26 if myprogcogid <> -1

27 cogstop(myprogcogid)

28

29 �' actual PASM code (loaded into new cog by the cognew 

command in START)

30 DAT ' myprog

31 MYPROG ORG 0

32 ' get the address of the variable to be passed here

33 mov _cmyvarPtr, par

34 ' get the value of that variable

35 rdlong _cmyvar, _cmyvarPtr

36 ...

37

38

39 ' reserve space for the address and value of the variables

40 _cmyvarPtr res 1

41 _cmyvar res 1

42

43 FIT 496

Chapter 6 Propeller Assembler: PASM

101

•	 Line 8: These variables are available inside this file to

all the functions.

•	 Lines 12, 18, 25: A public function can be called

from outside this file (for example, from the driver

file, myprog_Demo.spin). A public function is written

as PUB INIT, and a private function (one that can

be called only from within this file) is written as PRI

APRIVATEFUNCTION.

•	 Lines 12–14: The INIT function that initializes

variables.

•	 Lines 18–121: The START function first stops the new

cog (if it is running) and then starts it. The cognew

command takes two arguments: the address of the

PASM code and the address of a local variable, which

is passed to the PASM cog. The function returns the

number of the newly launched cog.

•	 Lines 30–43: The PASM code that is copied to a new

cog and run.

•	 Line 30–31: The special operator DAT announces the

start of the PASM code. The line MYPROG ORG 0 assigns

a name (MYPROG) to that code and says that it starts at

address 0 in the cog. (This is always the case in this

book, though it doesn’t have to be; code could start

anywhere within the 496 longs of the cog, but that is

advanced voodoo!)

•	 Lines 33–41: These lines are the way parameters get

passed to the code. You’ll learn more about that in the

next sections.

•	 Line 43: This line always ends the PASM code.

Chapter 6 Propeller Assembler: PASM

102

6.5  �Passing Parameters to PASM
A significant challenge in PASM programming is exchanging data

between cogs and between Spin and PASM cogs. There are two main

ways this is done.

•	 An address in hub memory is passed to a cog when it is

launched. The instruction cognew(@PROG, @var) will

place the address of var into the special register PAR

when the PASM cog PROG is run.

•	 An address in hub memory is placed into cog memory

before the cog is launched.

This is discussed at length in Sections 8.3 and 8.4.

6.6  �Summary
PASM instructions have four parts: the instruction itself (mov, add,...),

the destination, the source, and an optional effect (wc or wz) that sets the

value of the C and Z flags.

To communicate between cogs, both cogs must have the address of a

variable that they regularly check. That address is passed to a new cog on

launch in the PAR register.

 1 VAR

 2 �'variable1 and variable2 are stored in successive locations

 3 long variable1, variable2

 4

 5 PUB MAIN

 6 ' cognew command will store the address of variable1

 7 ' in PAR and then launch MYCOG in a new cog

 8 cognew(@MYCOG, @variable1)

 9

Chapter 6 Propeller Assembler: PASM

103

10 DAT

11 MYCOG org 0

12 �mov _cvar1Ptr, par �' when mycog is launched, 

' par contains the 

13 ' address of variable1

14 �mov _cvar2Ptr, par ' �the next long location contains the 

address

15 add _cvar2Ptr, #4 ' of variable2

16

17 rdlong _cvar1, _cvar1Ptr ' the actual value of variable1

18 ' is obtained by a rdlong

19 rdlong _cvar2, _cvar2Ptr

Chapter 6 Propeller Assembler: PASM

105© Sridhar Anandakrishnan 2018
S. Anandakrishnan, Propeller Programming, https://doi.org/10.1007/978-1-4842-3354-2_7

CHAPTER 7

Interacting
with the World
One of the main uses of a Propeller is to “talk” to hardware such as motors,

relays, switches, LEDs, and so on. In the Propeller there are 32 general-

purpose input/output pins, P0–P31. Figure 7-1 shows an overview of the

relationship between the cogs and pins. Pins P30 and P31 are usually

reserved for the programming and serial ports. Pins P28 and P29 are

usually tied to an electrically erasable programmable read-only memory

(EEPROM) that stores the program even when there is no power applied.

So, pins P0–P27 are available for general input/output use.

Again, I must emphasize that all the cogs can run in parallel, so they

can interact with the pins at the same time. If a cog has declared a pin an

input, then it can read the value of that pin at the same time as other cogs

do. If a pin is declared an output by more than one cog, then the output of

that pin is the logical OR of the output of those cogs.

Three registers control these pins.

•	 DIRA is a 32-bit register that controls the direction of the

pin associated with each bit. If bit N of this register is 1,

then the corresponding pin P<N> will be an output, and

if it is zero, that pin will be an input.

106

•	 OUTA is a 32-bit register that sets the value of a pin P<N>

by setting or clearing the associated bit N. These pins

will be affected only if the value of the associated DIRA

bit is set to output (1).

•	 INA is a 32-bit register that reflects the value of the

signal on pin P<N>. A low voltage (0–0.7V) is a zero on

the associated bit N of the register, and a high voltage

(2.7–3.3V) is a 1. Again, bitN of DIRA should be set to

input (0).

Figure 7-1.  Block diagram of the Propeller showing the cogs and pins

All eight cogs have access to all of the pins. Each of the cogs has its own

independent DIRA, INA, and OUTA registers. The output of a pin is what is

“agreed on” by all the cogs. If more than one cog declares a pin as output,

then the pin will be high if any of those cogs sets it high. The pin will be

low if all of those cogs set it low. In Figure 7-2, a switchman is manually

operating a switch that controls which track a train will take.

Chapter 7 Interacting with the World

107

A pin will be an input if no active cog has it as an output.

To view the result of setting a pin, a logic analyzer is useful. A logic

analyzer attaches to a pin and displays the logical state of the pin as a

function of time (1 or 0). Unlike an oscilloscope, you can monitor multiple

pins (usually 8 or 16), and importantly, the logic analyzer software is aware of

common protocols such as Universal Serial Receive/Transmit (UART), Serial

Peripheral Interface (SPI), Inter-Integrated Communication (I2C), and so on.

(I am partial to the Logic8 from Saleae.1) See also the Papilio Logic Analyzer.2

1�https://www.saleae.com
2�http://store.gadgetfactory.net/papilio-fpga-logic-analyzer-kit/

Figure 7-2.  Switchman throwing a switch at the Chicago and NW
Railroad Proviso yard, Chicago, IL, 1942. Photo by Jack Delano;
available at the Library of Congress Farm Security Administration
archives. www.loc.gov/pictures/item/fsa1992000705/PP/.

Chapter 7 Interacting with the World

https://www.saleae.com/
http://store.gadgetfactory.net/papilio-fpga-logic-analyzer-kit/
http://www.loc.gov/pictures/item/fsa1992000705/PP/

108

7.1  �Outline
In this chapter we will read and set the value of pins in both Spin and

PASM. We will look at the SPI communication protocol (a common

method for communicating between embedded devices). We will

implement SPI between cogs as a way to log data from a PASM cog to the

main Spin code. Finally, I introduce the concept of semaphores or locks

that allow two cogs to interact without confusion or conflict. This is a

dense chapter, so feel free to refer to it if and when you need it!

7.2  �Timing in Spin and PASM
Instructions in Spin run slowly compared to the same instruction in PASM

(by an order of magnitude or more). In addition, in Spin, the amount of

time an instruction takes to complete is subject to change. By contrast,

the timing of PASM instructions is short (generally four clock cycles) and

unvarying. For applications that require precise and rapid timing (high-

frequency clocks or monitoring a high data rate line), PASM is preferred.

Each PASM instruction has a known number of clock cycles to complete.

 1 CON ' Clock mode settings

 2 _CLKMODE = XTAL1 + PLL16X

 3 _XINFREQ = 5_000_000

 4

 5 ' system freq as a constant

 6 FULL_SPEED = ((_clkmode - xtal1) >> 6) * _xinfreq

 7 ' ticks in 1ms

 8 ONE_MS = FULL_SPEED / 1_000

 9 ' ticks in 1us

10 ONE_US = FULL_SPEED / 1_000_000

Chapter 7 Interacting with the World

109

•	 Lines 2–3: These define the clock speed of the

Propeller. _XINFREQ is the frequency of the crystal

oscillator. _CLKMODE is a register that sets the CLK

register to (in this case) generate a clock that is 16 times

the oscillator frequency.

•	 Line 6: Here we define a constant for the number of

clock ticks in one second. It is somewhat cryptic, but in

short, XTAL1 and PLL16X are predefined constants. The

expression _CLKMODE - XTAL1 = PLL16X = 0x40_00.

Therefore, PLL16X >> 6 = 16 (right shift by 6 bits). Finally, multiply

that by the oscillator frequency. This is a reliable way to get the startup

clock speed.

7.3  �Spin
In Spin these registers are usually set as shown in Listing 7-1.

Listing 7-1.  Toggle a Pin in Spin (ch7/io0.spin)

 1 CON

 2 BLUE = 10 ' blue led

 3

 4 PUB MAIN

 5 DIRA~ ' set all pins low (no output)

 6 OUTA[BLUE] := 0 ' set pin 10 low

 7 DIRA[BLUE] := 1 ' set pin 10 to output

 8 repeat

 9 ! OUTA[BLUE] ' toggle pin 10

10 PAUSE_MS(1000)

Chapter 7 Interacting with the World

110

•	 Line 5: The tilde (~) after a variable says to set that

variable to zero.

•	 Line 7: When the array form of addressing (arr[j])

is used with a register (DIRA[BLUE]), the effect is to

address individual bits. In this case, only bit 10 of DIRA

is set to 1, so P10 is set to output.

•	 Line 9: The exclamation mark (!) is a bitwise negation

of the bit OUTA[BLUE], which will toggle pin P10.

•	 If we wish to read the value on a line, the Spin code is

shown in Listing 7-2:

Listing 7-2.  Read a Switch and Pin (ch7/io1.spin)

 1 CON

 2 SW = 11 ' normally open, high

 3 SWMASK = |< SW ' set pin <SW> high

 4 INPIN = 12

 5

 6 PUB MAIN | val

 7 DIRA~ ' set all pins low (no output)

 8

 9 ' initially wait until switch is open (high)

10 waitpeq(SWMASK, SWMASK, 0) ' wait until high

11 repeat

12 waitpne(SWMASK, SWMASK, 0) ' wait for it to go low

13 val := INA[INPIN]

14 �waitpeq(SWMASK, SWMASK, 0) ' wait for release of switch

•	 Line 3: Set bit 11 of SWMASK high. The operator |< is

referred to as a “Decode” operator that sets the bit

corresponding to the number in SW.

Chapter 7 Interacting with the World

111

•	 Line 10: SWMASK is used in two ways here:

waitpeq(Value, Mask, 0). The first argument to waitpeq

(Value) is the value that the Propeller will compare

against the values of the input pins that are set in the

Mask argument. In other words, bit 11 is 1 in Value; bit

11 is 1 in Mask. Compare the value 1 to bit 11 of INA, and

wait until they are equal, that is, until P11 is high.

•	 Line 12: Similar to waitpeq, waitpne waits until the

Value argument is not equal to the pins set in Mask. Bit

11 of Value is 1, so wait until P11 is not 1.

•	 Line 13: To read the value of a line, simply read the

value of a bit of the INA register.

7.4  �PASM
In PASM the same registers (DIRA, OUTA, and INA) are available at the

addresses (unsurprisingly) dira, outa, and ina. These addresses are

registers in the reserved part of the cog. Recall that when a cog is launched,

512 longs are copied to the cog RAM, of which the last 16 longs are

reserved registers (including our old friend par).

7.4.1  �Toggle a Pin in PASM
Similar to the Spin code in Listing 7-1, we toggle the value of a pin once a

second but using PASM, as shown in Listing 7-3.

Listing 7-3.  Toggle a Pin in PASM (ch7/io2-pasm.spin)

 1 ...

 2 ' << ADD THESE LINES

 3 CON

Chapter 7 Interacting with the World

112

 4 BLUE = 10

 5 SW = 11

 6 INPIN = 12

 7 ONESEC = ((_clkmode - xtal1) >> 6) * _xinfreq

 8

 9 VAR

10 ...

11 byte rdpinCogId ' << ADD THIS

12

13 PUB MAIN

14 ...

15 ' << ADD THESE LINES

16 rdpinCogId := cognew (@RDPIN, 0)

17 UARTS.STR(DEBUG, string (" rdpinCogId : "))

18 UARTS.DEC(DEBUG, rdpinCogId)

19 UARTS.PUTC(DEBUG, CR)

20 UARTS.PUTC(DEBUG, LF)

21

22 ' << ADD THESE LINES

23 DAT ' RDPIN

24

25 RDPIN ORG 0

26 mov dira, #0 wz ' set all pins to input

27 muxnz outa, _cblueMask ' set pin low

28 muxz dira, _cblueMask ' set led pin to output

29

30 mov r0, cnt

31 add r0, _coneSec

32 :loop

33 waitcnt r0, _coneSec

34 xor outa, _cblueMask

Chapter 7 Interacting with the World

113

35 jmp #:loop

36

37 _cblueMask long |< BLUE

38 _cswMask long |<SW

39 _coneSec long ONESEC

40 r0 res 1

41 FIT 496

42

43 ' Program ends here

•	 Line 26: Set all pins to input. The wz effect will set Z.

•	 Line 27–28: Set pin BLUE (10) low before setting it to be

an output. The muxnz outa, _cblueMask instruction

says to set the pins in outa that are referenced in

_cblueMask to the value of NOT Z (outa[_cblueMask]

:= !Z. In other words, pin 10 is set in _cblueMask, so

set pin 10 of outa to !Z, which is 0. muxz sets dira[_

cblueMask] := Z, which sets pin 10 to be an output.

•	 Lines 30–33: Set r0 to the current counter value plus

one second worth of counts. Wait until the counter

reaches that value (waitcnt will increment r0 by

_coneSec when it expires so it is ready for the next

waitcnt).

•	 Line 34: Toggle the output pin 10. xor outa, _

cblueMask is the bitwise exclusive OR of the value of

the output pins and the mask register (which has pin

10 set high). The result is written back to outa. So, if

outa[10] == 1, then 1 XOR 1 = 0, and outa[10] is

set to zero. If outa[10] == 0, then 0 XOR 1 = 1, and

outa[[10] is set to one.

Chapter 7 Interacting with the World

114

7.4.2  �Monitor a Switch
As in Listing 7-2, we monitor a switch and then read the value of a pin

when the switch closes, as shown in Listing 7-4.

Listing 7-4.  Read a Pin in PASM (ch7/io2-pasm.spin)

 1 CON

 2 BLUE = 10

 3 SW = 11

 4 INPIN = 12

 5 ONESEC = ((_clkmode - xtal1) >> 6) * _xinfreq

 6

 7 DAT

 8 STEIM ORG 0

 9

10 mov dira, #0 wz ' set all pins to input

11 waitpeq _cswMask, _cswMask

12 :loop

13 waitpne _cswMask, _cswMask

14 test _cinMask, ina wc

15 rcl _cval, #1

16 waitpeq _cswMask, _cswMask

17 jmp #:loop

18

19 _cblueMask long |< BLUE

20 _cswMask long |<SW

21 _cinMask long |< INPIN

22 _coneSec long ONESEC

23 r0 res 1

Chapter 7 Interacting with the World

115

•	 Line 11: As in the Spin code, waitpeq Value, Mask

waits until the pins in INA that are referenced in Mask

are equal to Value.”

•	 Line 13: waitpne waits until Mask is not equal to the

value.

•	 Lines 14–15: To read a pin, test _cinMask, ina wc

will set C flag to the bitwise AND of the mask and the

ina register. rcl _cval, #1 will move the C flag into

the low bit of _cval.

7.5  �Communication Protocols
There are number of common ways to send data from one device to

another on a small number of lines, including UART, I2C, and the 1-Wire

protocols. These are commonly classed as serial communication channels

because the bits are transmitted over time. In contrast, a parallel channel

would use a number of lines to send the bits at the same time. In Figure 7-3,

an early serial communication device is shown: an electric telegraph which

would visually display the signal transmitted from the other end.

Chapter 7 Interacting with the World

116

Figure 7-3.  Five-needle electric telegraph invented by Charles
Wheatstone (of the Wheatstone bridge), 1837. The telegraph was used
to signal when trains arrived and left stations. Now at the London
Science Museum. Photo by Wikipedia user Geni; license CC-BY-SA
GFDL.

Chapter 7 Interacting with the World

117

A widely used serial protocol for interdevice communications is the SPI

bus. The SPI protocol requires four lines for bidirectional communications

between a so-called master and multiple slave devices. The SPI protocol

uses a bitwise data transmission mechanism, with a bit sent by both sides

(and that bit received by the other side) at each SPI clock cycle. The SPI

clock frequency is typically a few hundred kilohertz to a few megahertz.

Here we will use an 8kHz clock.

SPI communications are bidirectional, but one of the two ends is

designated the master, and the other is the slave. The master will control

the timing of the transfer by generating the select signal and the SPI clock,

and the slave will read from the master.

The slave will also write to the master at the same time. Therefore, the

master cannot set a pace that is too fast for the slave to keep up with.

SPI is fundamentally quite simple (though the devil is in the details).

To send a number from master to slave, the master indicates the beginning

of the transfer by pulling the select line low. It then toggles a clock and

makes sure that each successive bit of the number is ready on the active

edge of the clock (generally the rising edge). After the bits are all sent, the

master pulls the select line high. At the other end, the slave waits until the

select line is low. It then watches the clock line and receives a bit at each

active edge. The end of the transfer is signaled by the select line going high.

•	 Select: The select or chip select (CS) line (active low)

selects the slave devices with which the master wants

to communicate and determines the start and end of

communications. The master device generates this signal.

•	 Clock: The SPI clock line (SCLK) controls the timing of

data transmission. The most common arrangement is

for the rising edge of the clock to be the one at which

data is exchanged and the falling edge is when the

two sides are free to change the data on that line. The

master device generates the clock.

Chapter 7 Interacting with the World

118

•	 Data out: The data out or master out or master out/

slave in (MOSI) line is where the data from the master to

the slave is placed. The master device will ensure that

a data bit is stable on the line prior to the rising edge of

the clock. This is because on the rising edge, the slave

device reads the value. The master should keep the data

on this line stable until the falling edge because the

slave could read it at any time between the rising and

falling edges.

•	 Data in: The data in or master in or master in/slave out

(MISO) line is where data from the slave to the master is

placed. The master will read the MISO line on the rising

edge of SCLK. Thus, at each rising edge of SCLK, a bit is

sent from master to slave and from slave to master.

The interpretation of the bits (whether big- or little-endian, number

of bits, and so on) is entirely up to agreement between the slave and the

master. Figure 7-4 shows the case where we have 8 bits. The red lines are

the active edges at which the MOSI line is read by the slave. The blue lines

are when the master can change the value of the MOSI line in preparation

for the next active edge.

Clock

Select

Cycle # 1 2 3 4 5 6 7 8

MISO z 1 2 3 4 5 6 7 8 z

MOSI z 1 2 3 4 5 6 7 8 z

Figure 7-4.  SPI timing diagram for the case when the clock starts out
low (CPOL=0) and the data is required to be valid on a rising edge
(CPHA=0)

Chapter 7 Interacting with the World

119

7.6  �SPI Logging

The values on the pins can be set by any cog and read by any cog.
That means we can use them to communicate between cogs. We will
use that as a logging facility where the PASM cog will write to the
SPI bus and the Spin cog will read from it. As the Spin cog is slower,
it must control the transactions. In other words, the PASM cog is the
master, and the Spin cog is the slave.

We are going to write an SPI logging utility. The Spin cog (main) will

request a log value, and a PASM cog (logtst) will transmit the log value.

The main cog will read that value and print it out. The handshaking

between the cogs is as follows:

•	 The PASM cog will block, waiting for the REQ line to be

asserted (set to the active level, in this case raised).

•	 When the main cog (the slave) is ready to receive a log

value, it will raise the REQ line.

•	 This will signal the PASM cog (the master) to initiate an

SPI transfer by lowering the CS line (the CS line is active

low, so it is asserted by lowering it).

•	 The falling CS line will signal the main cog to lower the

REQ line so that no further SPI transfers start until the

main cog has finished with the current one and has

successfully printed the value.

REQ (spin)

CS (pasm) spi data

Chapter 7 Interacting with the World

120

Figure 7-5.  Logic analyzer display

Figure 7-5 shows the output of a logic analyzer (LA). The LA can

monitor and trigger on individual lines (here I triggered on REQ on channel

0). In addition, logic analyzers can interpret well-known communication

protocols such as the RS-232 serial protocol, the I2C protocol, and, as in

this case, the SPI protocol. I have informed the LA of the four SPI lines, the

endianness and length of the data, and the phase and polarity of the clock;

the LA can interpret the data on the MOSI and MISO lines and display the

result. In this example, the MOSI line is showing a 32-bit number that was

transmitted MSB first and is interpreted as 0x2A.

In the Spin code (Listing 7-5), we define the pins, start the spitst cog,

and assert the REQ line. When the CS line is asserted by the PASM cog, we

read the log value and then re-assert the REQ line.

Listing 7-5.  SPI Logging, Spin Side (ch7/spi-log Demo.spin)

 1 ...

 2 CON

 3 REQ = 0

 4 CS = 1

 5 CLK = 2

Chapter 7 Interacting with the World

121

 6 MOSI = 3

 7 MISO = 4

 8

 9 CSMASK = |<CS

10 CLKMASK = |<CLK

11 VAR

12 byte logCogId

13

14 ...

15

16 PUB MAIN | x, x0, logVal

17 ...

18 logCogId := -1

19

20 ' set the REQ line low, then set it as an output line

21 ' all others are inputs

22 outa[REQ] := 0

23 dira ~ ' all lines in

24 dira[REQ] := 1 ' req out

25

26 SPILOG.INIT

27 logCogId := SPILOG.START

28 UARTS.STR(DEBUG, string(CR, LF, " logCogId : "))

29 UARTS.DEC(DEBUG, logCogId)

30 UARTS.PUTC(DEBUG, CR)

31 UARTS.PUTC(DEBUG, LF)

32

33 ' wait here until PASM cog sets CS line high

34 waitpeq(CSMASK, CSMASK, 0)

35

36 ' OK ready for SPI

37 outa[REQ] := 1 ' assert req

Chapter 7 Interacting with the World

122

38 repeat

39 ' wait for cs mask to go low

40 waitpne(CSMASK, CSMASK, 0)

41 !outa[REQ] ' lower req

42 logVal := READ_SPILOG 'read 32 bits

43 UARTS.HEX(DEBUG, logVal, 8) ' print out logVal

44 UARTS.PUTC(DEBUG, CR)

45 UARTS.PUTC(DEBUG, LF)

46 !outa[REQ] ' raise req and loop

•	 Lines 3–7: Define pins.

•	 Lines 22–24: Set all pins to input for main cog, except

for REQ.

•	 Lines 26–27: Launch the SPILOG PASM cog.

•	 Line 34: Make sure CS is high (that is, not currently in

an SPI transfer). Assert REQ.

•	 Lines 40–46: Wait until the CS line is lowered by the

PASM cog, immediately de-assert the REQ line, read a

log value, and print it. Raise the REQ line to signal that

the main cog is ready for another log value. Repeat.

The actual SPI read is done with the method shown in Listing 7-6.

Listing 7-6.  Method to Read 32 Bits from SPI

1 PUB READ_SPILOG : logVal | b

2 logVal := 0

3 repeat 32

4 waitpeq(CLKMASK, CLKMASK, 0)

5 b := INA[MOSI]

6 waitpne(CLKMASK, CLKMASK, 0)

7 logVal <<= 1

8 logVal |= b

Chapter 7 Interacting with the World

123

The actual SPI read is straightforward; it waits for the clock line to go

high (waitpeq), reads a bit (b := INA[MOSI]), and shifts it into logVal, as

follows:

1 logVal <<= 1

2 logVal |= b

•	 Line 1: Shift the bits in logVal left by one position.

•	 Line 2: b is the value read earlier (either 0 or 1). By OR-ing

it with logVal, we set the lowest bit to the value of b.

The waitpne instruction is there so that we wait until the clock line

goes low before looping so that we don’t read the same bit twice.

7.6.1  �PASM SPI Write
The core of the PASM SPI write is shown in Listing 7-7 and the code

following the listing, with two subroutines that set the pins and do the

actual writing.

Listing 7-7.  SPI Logging, PASM Side (ch7/spi-log.spin)

1 DAT 'spilog

2 SPILOG ORG 0

3

4 call #SETUP_PINS

5

6 mov _clogVal, #42

7 call #WRITE_SPI

8 ...

•	 Line 4: Set up the REQ pin as input and the SPI pins as

outputs.

Chapter 7 Interacting with the World

124

•	 Lines 6–7: Place the log value to be transmitted into

_clogVal and call WRITE_SPI to transmit. WRITE_SPI

will wait for REQ to be raised and will then transmit

_clogVal on the SPI lines.

The subroutine to set the pins (SETUP_PINS) is shown in Listing 7-8.

Listing 7-8.  Subroutine to set the SPI pins’ direction

 1 SETUP_PINS

 2 mov dira, #0, wz

 3

 4 muxz outa, _ccsMask 'preset cs high, and then to output

 5 muxz dira, _ccsMask

 6 muxnz outa, _cclkMask ' preset clk low

 7 muxz dira, _cclkMask

 8 muxnz outa, _cmosiMask ' preset mosi low

 9 muxz dira, _cmosiMask

10 SETUP_PINS_ret ret

•	 Line 2: Set all pins to inputs.

•	 Lines 4–5: Set CS high and then set CS to output.

•	 Lines 6–9: Set CLK and MOSI low and then set them to

output.

In Listing 7-9, we do the actual work of writing 32 bits to the MOSI line.

First we wait for the REQ line to be asserted, then we loop 32 times, setting

the MOSI line appropriately (with a short wait between bits).

Listing 7-9.  Subroutine to transmit the data on MOSI

 1 WRITE_SPI

 2 waitpeq _creqMask, _creqMask

 3 mov r0, #32 wz ' Z is set = 0

Chapter 7 Interacting with the World

125

 4 mov _cdt, cnt

 5 add _cdt, _cEighthMS

 6 waitcnt _cdt, _cEighthMS

 7

 8 ' lower cs

 9 xor outa, _ccsMask

10

11 ' tx 32 bits, msb first

12 :spiloop

13 rol _clogVal, #1 wc ' set C from high bit of logVal

14 muxc outa, _cmosiMask ' set mosi to C

15

16 muxnz outa, _cclkMask ' raise clock (Z=0 from above)

17 waitcnt _cdt, _cEighthMS

18 xor outa, _cclkMask ' lower clock

19 waitcnt _cdt, _cEighthMS

20 djnz r0, #:spiloop

21

22 ' raise cs

23 xor outa, _ccsMask

24 WRITE_SPI_ret ret

25 ...

26 _cdt long 0

27 _cOneSec long ONE_SEC

28 _cOneMS long ONE_MS

29 _cOneUS long ONE_US

30 _cEighthMS long ONE_MS >> 3

31

32 _creqMask long |<REQ

33 _ccsMask long |<CS

34 _cclkMask long |<CLK

35 _cmosiMask long |< MOSI

Chapter 7 Interacting with the World

126

•	 Line 13: Set the loop index and set Z to zero.

•	 Lines 14–16: Set_cdt to the current counter, add

1/8ms (125us), and wait until then. waitcnt takes

two arguments, and the counter will wait until it is

equal to the first argument. It will then add the second

argument to the first so that you can call waitcnt again.

•	 Line 19: Lower CS. xor outa, _ccsMask will toggle

the CS.

•	 Line 23–24: Get the bits, with the most significant bit

first, and place it on the MOSI line. The rol _clogVal,

#1 wc instruction will rotate left and put the highest

bit in C. The instruction muxc outa, _cmosiMask will set

MOSI to C.

•	 Lines 26–29: Raise the clock line, wait 1/8th of a

millisecond, lower the clock, wait again, and loop.

•	 Line 33: Lower the CS.

7.6.2  �Logging Deadlock

Warning!  If you call WRITE_SPI, you must have another cog that
raises the REQ line; otherwise, you will block forever.

At any time you can call WRITE_SPI in the PASM code. It will block until

the Spin code raises the REQ line. At that point, the PASM code will transmit

the log value and continue.

Chapter 7 Interacting with the World

127

7.7  �Locks

On single-track lines, railroads needed a foolproof way to prevent
two trains from traveling on the same section of track at the same
time. They settled on a simple but elegant solution: the semaphore.
A brass cylinder or token is cast and engraved with the name of the
stations at each end of the section of single-track. A train could enter
that section if and only if the engineer had physical possession of the
token. When he arrived at the station at the far end, he would give the
token to the station master, who could pass it on to a train traveling
in the other direction.

You still see a version of this when road crews are working on
potholes and signals at each end control the traffic.

7.7.1  �Introduction to Locks
The propeller has semaphores for the same reason: to control access to

critical shared resources. To prevent a collision (for example, one cog is

modifying an array at the same time that another is reading from it), the

propeller has eight semaphores. In Figure 7-6, we see a semaphore that

controlled the movement of trains in order to prevent collisions.

•	 locknew/lockret: Create or destroy a semaphore.

•	 lockset: Request the semaphore. If it is free

(semaphore = 0), set the state of the semaphore to

1 and return a 0 (obtaining the lock). If it isn’t free

(semaphore = 1), return a 1 (not obtaining the lock).

You must check the return value to know whether you

obtained the lock or not.

•	 lockclr: Set the state of the semaphore to 0, releasing

the semaphore.

Chapter 7 Interacting with the World

128

Figure 7-6.  Waiting for the signal, Santa Fe RR Train, Melrose,
NM. Photo by Jack Delano, 1943. From the Library of Congress Farm
Security Administration archives. http://www.loc.gov/pictures/
item/fsa1992000785/PP/.

Chapter 7 Interacting with the World

http://www.loc.gov/pictures/item/fsa1992000785/PP/
http://www.loc.gov/pictures/item/fsa1992000785/PP/

129

Here is a sketch of the process, with time proceeding to the right.

(“Time” is a bit of misnomer here; because locking is a hub operation,

even though both cogs may request the lock at the same time, the hub

will service those requests in order.) At time 1, cog 0 acquires the lock.

Because lockset is a hub operation, only one cog a time can request the

lock. Though it looks like both cogs are competing for the lock, in fact

only of them can obtain it. In this case, cog 0 received the lock, and when

cog 1 requested it (one clock cycle later), it was informed that somebody

else had the lock (because lockset returns 1). Remember, the propeller

operates in round-robin fashion for hub operations, providing exclusive

access to the hub for one cog, then the next, and so on.

At time 2, cog 1 again requests the semaphore, and the Propeller again

returns the previous state of the lock, 1, which indicates that somebody

else has it. This continues until time 5, when cog 0 releases the semaphore,

and it is set to 0. At time 6, cog 1 again requests the lock, and this time the

previous value is 0, so cog 1 knows that it has the semaphore.3 It holds it

until time 9.

The semaphore is created, and then a lockset/lockclr pair of

instructions brackets the critical section of code. So, for example, in

our code, cog 0 could acquire samples between times 1 and 5, but we

must prevent cog 1 from attempting to compress them during that time.

Between times 6 and 9 the compression can safely proceed.

3�I lie. In reality, cog 0 would have released the cog at time 5, and during the next
clock cycle, cog 1 would have requested and received the lock, but for illustration
purposes, I fibbed.

Chapter 7 Interacting with the World

130

The way we have written the code, there is in fact no chance of a
collision between sample acquisition and compression. The main
cog blocks while the compression cog is working, so it is impossible
for it to modify sampsBuf. However, that isn’t very good design. It is
wasteful for main to sit there twiddling her thumbs while steim is
off doing his job. She could be (and usually is) performing other tasks.
It is under that type of system design that the semaphore is most
useful. After all, if one has a multicore parallel machine, we might as
well use it as a…multicore…parallel…machine!

7.7.2  �Using Locks for Logging
We could, for example, use a semaphore to signal between cogs. If you

don’t want to waste an I/O line for the REQ signal between cogs for logging,

you could use a semaphore instead, as shown here in Listing 7-10:

Listing 7-10.  Demonstration of using locks for SPI signalling

 1 PUB MAIN

 2

 3 ...

 4 logSem := locknew

 5 repeat until not lockset(logSem) 'acquire semaphore

 6 COMPR.START ' start the pasm cog

 7 ...

 8

 9 �lockclr(logSem) ' release the semaphore, allowing PASM access

10 repeat

11 waitpne(CSMASK, CSMASK, 0)

12 logVal := READ_SPILOG

Chapter 7 Interacting with the World

131

13 waitpeq(CSMASK, CSMASK, 0)

14 �repeat until not lockset(logSem) ' re - acquire 

semaphore

15 UARTS.STR(DEBUG, string(" Log value : "))

16 UARTS.HEX(DEBUG, logVal, 8)

17 UARTS.PUTC(DEBUG, CR) ' release semaphore

18 lockclr(logSem)

•	 Lines 4–9: Create a new semaphore, acquire it, and start

the PASM cog. When ready to start logging, release it.

•	 Lines 11–13: Read a log value on the SPI lines.

•	 Line 14: lockset will return TRUE if somebody else

has the token. In that case, repeat until won’t

exit. Eventually, the other person will release the

semaphore, lockset will return FALSE, repeat until

will terminate, and control will continue.

•	 Lines 15–18: We now have the token and can slowly

print out the log value, confident that the PASM cog

won’t try to send another value.

•	 Line 18: Release the semaphore so that the PASM cog

can acquire it when it is ready to send another log

value.

This is the code in the Spin section that interfaces with the locks

(Listing 7-11).

Listing 7-11.  Spin code that uses locks to signal SPI communications

 1 �' in the pasm cog, we must somehow pass the semaphore 

number (logSem)

 2 ' to the cog: _clogSem

 3 ...

Chapter 7 Interacting with the World

132

 4

 5 WRITE_SPI

 6 :semLoop ' acquire semaphore

 7 lockset _clogSem wc

 8 if_c jmp #:semLoop

 9

10 ' <<WRITE LOG VALUE TO SPI >>

11 lockclr _clogSem ' release semaphore

•	 Lines 6–8: In the PASM cog, the WRITE_SPI function

will check whether the semaphore is free. If so, it will

acquire it, confident that the Spin cog is ready.

This loop will repeat as long as somebody else has

the token. When nobody else has the token, C=0,

and we continue to transmit the log value on the SPI

lines.

•	 Line 8: Once we are done, release the semaphore.

7.8  �Some Common Tasks
Here are some examples of common operations, with both Spin and PASM

equivalents shown. As can be seen, some things are much simpler in Spin.

This must be weighed against the speedup that can be achieved with PASM.

7.8.1  �Assignment

Spin PASM

x := 42

y := 31415926

mov _cX, #42

mov _cY, _cbigNum

_cbigNum long 31415926

Chapter 7 Interacting with the World

133

7.8.2  �Multiplication

Spin PASM

z := x * y 1 shl _cX, #16

2 mov r0, #16

3 shr _cY, #1 wc

4 :loop

5 if_c add _cY, _cX wc

6 rcr _cY, #1 wc

7 djnz r0, #:loop

The multiply code is from Appendix B of the Propeller manual. Two

16-bit numbers, _cX[0..15] and _cY[0..15] are multiplied, and the result

is saved to _cY.

Let x = 42 and y = 2. Here are their binary representations:

After shl _cX, #16, here is what they look like:

After shr _cY, #1 wc, here they are again:

Chapter 7 Interacting with the World

134

�Loop 1 of 16

Because C=0, the add is not performed.

After rcr _cY, #1 wc, here is what they look like:

�Loop 2 of 16

Because C=1, the add is performed. The add has a wc effect, which will set C

if the add overflows. In this case, C=0.

Here they are after the add:

Here is the y register after rcr (the x’ register is unchanged):

From here on, y is shifted right once each iteration of the loop. No

more adds are performed as all the remaining bits of y (bits 0–13) are 0.

�Loop 16 of 16

The final result is y = 42 × 2 = 84.

Chapter 7 Interacting with the World

135

7.8.3  �Division

Spin PASM

q := x / y

'quotient (32 bit)

r := x // y

'remainder (32 bit)

1 ' Divide x [31..0] by y [15..0]

2 ' (y [16] must be 0)

3 ' on exit, quotient is in x [15..0]

4 ' and remainder is in x [31..16]

5 ' get divisor into y [30..15]

6 shl _cY, #15

7 ' ready for 16 quotient bits

8 mov r0, #16

9 :loop

10 ' y =< x? Subtract it,

11 ' quotient bit in c

12 cmpsub _cX, _cY wc

13 ' rotate c into quotient,

14 ' shift dividend

15 rcl _cX, #1

16 ' loop until done

17 djnz r0, #:loop

18 ' quotient in x [15..0],

19 ' remainder in x [31..16]

This is also from the appendix. Get a pad of graph paper and confirm

for yourself how it works.

Chapter 7 Interacting with the World

136

7.8.4  �Loops

Spin PASM

1 x0 := 0

2 x := 1

3 repeat 8

4 f := x + x0

5 x0 := x

6 x := f

1 mov _cx0, #0

2 mov _cx1, #1

3 mov _cf, _cx1

4

5 mov r0, #8

6 :loop

7 add _cf, _cx0

8 mov _cx0, _cx1

9 mov _cx1, _cf

10

11 mov _clogVal, _cf

12 call # WRITE_SPI

13 djnz r0, #:loop

The critical parts are mov r0, #8, which sets the loop counter and

djnz r0, and #:loop, which decrements r0 and jumps to :loop if the

result is nonzero. When r0=0, continue past the loop.

7.8.5  �Conditionals

Spin PASM

if x => 10

x := 0

' else

1 cmp _cX, #10 wz, wc

2 if_nz_and_nc jmp #:cont

3 mov _cX, #0

4

5 :cont

6 'else

Chapter 7 Interacting with the World

137

The compare sets the Z flag if X ≡ 10 and the C flag if X < 10. So, if

neither is set, then X must be greater than 10. The if_nz_and_nc jmp

#:cont instruction will jump to :cont in that case.

7.9  �Summary
Setting and reading pins are central tasks to the function of the Propeller. In

PASM code you set and read pins by writing to the outa register and reading

from the ina register, respectively. In general, you define a mask that is

specific to a pin and then operate on that mask and the ina/outa registers.

In this book I try and document my code with comments and

descriptive variable and method names. In addition I use TDD when

possible. In Figure 7-7, is a picture of all the lubrication points on a

locomotive: documentation and maintenance!

 1 mov dira, #0 wz ' set all pins to input, and set z=1

 2 ' mux <flag > <dest >, <source >

 3 ' the mux__ instructions set the bits of

 4 ' the <destination register > that are called out in the

 5 ' <source register > baseed on the value of <flag >

 6 '

 7 ' for example, here we set outa based _coutMask

 8 ' and NOT Z (!Z)

 9 muxnz outa, _coutMask

10 ' here we set dira based on _coutMask and Z

11 muxz dira, _coutMask

12

13 ...

14 ' here we toggle the bit in outa based on _coutMask

15 xor outa, _coutMask

16

17 ...

18 ' here we set C from ina, based on the value of _cinMask

19 test _cinMask, ina, wc

Chapter 7 Interacting with the World

138

Figure 7-7.  Locomotive lubrication chart, Chicago and NW Railroad
Laboratory, Chicago, IL. Photo by Jack Delano, 1942. From the
Library of Congress Farm Security Administration archives. www.loc.
gov/pictures/item/fsa1992000662/PP/.

Chapter 7 Interacting with the World

http://www.loc.gov/pictures/item/fsa1992000662/PP/
http://www.loc.gov/pictures/item/fsa1992000662/PP/

139© Sridhar Anandakrishnan 2018
S. Anandakrishnan, Propeller Programming, https://doi.org/10.1007/978-1-4842-3354-2_8

CHAPTER 8

Implementing the
Compression Code
in PASM
In this chapter and the next one, we will start to write some real PASM code

to implement the compression. In this chapter, I will talk mainly about

passing parameters to the PASM cog. In the next chapter, I will complete

the compression and decompression code.

8.1  �Passing Parameters to PASM
To reproduce the Spin code from steim_spin in PASM, we need to have

a way to pass the addresses of sampsBuf and other arrays to the PASM

cog. In Spin that was simple. @sampsBuf was the address, and it could be

passed to the COMPRESS method, where the values could be accessed with

long[psampsBuf][j].

There are two main ways to pass information back and forth. Let’s

begin with the (in my opinion) simpler way, which is passing information

in the cognew command.

140

We’ll set up these files:

8.2  �Setting Up steim_pasm0
Create two new files: steim_pasm0_Demo.spin (Listing 8-1) and steim_

pasm0.spin (Listing 8-2). Most of what is shown here is similar to what is in

the pure-Spin version, but the compression will be done in PASM instead.

First, we set up the ..._Demo.spin file, which is the entry point.

Listing 8-1.  steim_pasm0_Demo: Spin Side of the First Iteration of

the PASM Compression

 1 {* -*- Spin -*- *}

 2 {* steim_pasm0_Demo .spin *}

 3

 4 CON ' Clock mode settings

 5 _CLKMODE = XTAL1 + PLL16X

 6 _XINFREQ = 6 _250_000

 7

 8 ' system freq as a constant

 9 FULL_SPEED = ((_clkmode - xtal1) >> 6) * _xinfreq

10 ONE_MS = FULL_SPEED / 1_000 ' ticks in 1ms

11 ONE_US = FULL_SPEED / 1 _000_000 ' ticks in 1us

12

13 CON ' Pin map

14

15 DEBUG_TX_TO = 30

16 DEBUG_RX_FROM = 31

17

Chapter 8 Implementing the Compression Code in PASM

141

18 CON ' UART ports

19 DEBUG = 0

20 DEBUG_BAUD = 115200

21

22 UART_SIZE = 100

23 CR = 13

24 LF = 10

25 SPACE = 32

26 TAB = 9

27 COLON = 58

28 COMMA = 44

29

30 OBJ

31 '1 COG for 3 serial ports

32 UARTS : "FullDuplexSerial4portPlus_0v3"

33 NUM : "Numbers" 'Object for writing numbers to debug

34 COMPR : "steim_pasm0"

35

36 CON

37 NSAMPS_MAX = 128

38

39 VAR

40 long nsamps, ncompr

41 long sampsBuf[NSAMPS_MAX]

42 long comprCodeBuf[NSAMPS_MAX >> 4]

43

44 byte mainCogId, serialCogId, comprCogId

45 byte packBuf[NSAMPS_MAX << 2]

46

47 PUB MAIN

48

Chapter 8 Implementing the Compression Code in PASM

142

49 ' main cog

50 mainCogId := cogid

51

52 ' uart cog

53 LAUNCH_SERIAL_COG

54 PAUSE_MS(500)

55

56 UARTS.STR(DEBUG, string(CR, " Compression ", CR, LF))

57 UARTS.STR(DEBUG, string(" mainCogId : "))

58 UARTS.DEC(DEBUG, mainCogId)

59 UARTS.PUTC(DEBUG, CR)

60 UARTS.PUTC(DEBUG, LF)

61

62 ' compression cog

63 COMPR.INIT(NSAMPS_MAX)

64 comprCogId := COMPR.START

65

66 UARTS.STR(DEBUG, string(" comprCogId : "))

67 UARTS.DEC(DEBUG, comprCogId)

68 UARTS.PUTC(DEBUG, CR)

69 UARTS.PUTC(DEBUG, LF)

70

71 nsamps := 1

72 �ncompr := COMPR.COMPRESS (@sampsBuf, nsamps, 

@packBuf, @comprCodeBuf)

73

74 UARTS.STR(DEBUG, string(" ncompr : "))

75 UARTS.DEC(DEBUG, ncompr)

76 UARTS.PUTC(DEBUG, CR)

77 UARTS.PUTC(DEBUG, LF)

Chapter 8 Implementing the Compression Code in PASM

143

78 repeat

79 PAUSE_MS(1000)

80

81 PRI LAUNCH_SERIAL_COG

82 " method that sets up the serial ports

83 NUM.INIT

84 UARTS.INIT

85 �UARTS.ADDPORT (DEBUG, DEBUG_RX_FROM, DEBUG_TX_TO, -1, 

-1, 0, %000000, DEBUG_BAUD) 'Add DEBUG port

86 UARTS.START

87 serialCogId := UARTS.GETCOGID 'Start the, ports

88 PAUSE_MS(300)

89

90 PRI PAUSE_MS(mS)

91 waitcnt(clkfreq /1000 * mS + cnt)

92

93 ' Program ends here

•	 Line 34: Import the file steim_pasm0.spin as object

COMPR.

•	 Lines 63–64: Initialize and start the compression cog.

As you will see, the COMPR.START function (a Spin

function) launches a new PASM cog.

•	 Lines 71–72: Call the Spin method COMPR.COMPRESS

(a Spin function), which signals the PASM cog to

compress the samples in sampsBuf.

We will start by implementing the simplest possible compression code

in Spin and PASM code in steim_pasm0. It includes passing nsamps to the

PASM cog and reading ncompr back. As I said earlier, the PASM code has

to monitor the hub memory and react to a change. Here we use nsamps as

Chapter 8 Implementing the Compression Code in PASM

144

the trigger. If the value is greater than zero, then perform a compression,

and at the end of the compression, set ncompr to a nonzero value. That, in

turn, will be the signal to the Spin code that the PASM cog has completed

its work. In this first example, that work is simple: you don’t have to do

anything! The compressor will simply set ncompr to a nonzero value and

return to monitoring nsamps.

The steim_pasm0.spin file starts out looking like Listing 8-2.

Listing 8-2.  First Version of steim_pasm0.spin Showing the Spin

Methods and the Beginning of the PASM Code

 1 CON

 2 CODE08 = %01

 3 CODE16 = %10

 4 CODE24 = %11

 5

 6 VAR

 7 byte ccogid

 8 long mymax

 9

10 long myns, myncompr

11

12 PUB INIT(nsmax)

13 mymax := nsmax

14 ccogid := -1

15

16 PUB START

17 STOP

18 ' myns <> 0 controls when the compression is started

19 myns := 0

20 ccogid := cognew (@STEIM, @myns)

21 return ccogid

22

Chapter 8 Implementing the Compression Code in PASM

145

23 PUB STOP

24 if ccogid <> -1

25 cogstop (ccogid)

26

27 �PUB COMPRESS(psampsBuf, ns, ppackBuf, pcomprCodeBuf) : ncompr

28 �" Inputs : psampsBuf - address of long array of samples 

(max len, mymax)

29 "' ns - number of samples to compress

30 " ppackBuf - address of byte array of packed data

31 " �pcomprCodeBuf - address of long array of 

compression, codes

32 " Output : ncompr - number of bytes in packBuf

33 "

34 " Modified : packBuf and comprCodeBuf are changed

35

36 myns := 0

37 myncompr := 0

38

39 ' this will start the compression

40 myns := ns

41

42 �' when ncompr is non -zero, the compression is complete

43 repeat until myncompr > 0

44 return myncompr

45

46 �PUB DECOMPRESS(psampsBuf, ns, ppackBuf, ncompr, 

pcomprCodesBuf) : ndecomp

47 return 0

48

49 DAT 'steim

Chapter 8 Implementing the Compression Code in PASM

146

50 "

51 "

52

53 STEIM org 0

54 ' copy the param addresses

55 mov _cnsPtr, par

56 mov _cncomprPtr, par

57

58 add _cncomprPtr, #4

59

60 : mainLoop

61 ' the signal for starting the compression is when ns <> 0

62 rdlong _cns, _cnsPtr wz

63 if_z jmp #:mainLoop

64

65 ' signal completion

66 mov _cncompr, #3

67 wrlong _cncompr, _cncomprPtr

68

69 ' wait for another compression request

70 jmp #:mainLoop

71

72 ' const

73 _ccode24 long CODE24

74 _ccode16 long CODE16

75 _ccode08 long CODE08

76

77 _cnsPtr res 1

78 _cncomprPtr res 1

79

80 _cns res 1

Chapter 8 Implementing the Compression Code in PASM

147

81 _cncompr res 1

82

83 r0 res 1

84

85 FIT 496

•	 Line 10: The variables myns and myncompr are declared

one after the other, so they will be stored in hub memory

one after the other. This property of storage is used in

the PASM cog to find these variables. In other words, be

careful about rearranging variable declaration order!

•	 Lines 16–21: We start the compression cog with

cognew (after stopping any already running cog). The

command cognew(@STEIM, @myns) says to copy the

code in the DAT section (lines 49–85) into a new cog

and to launch that cog. In addition, the address of the

variable myns (a hub address) is also passed to the cog.

•	 Lines 27–44: Here the actual compression will take

place. When myns is set to a nonzero number, the

compression cog will notice that and will then begin

the compression. When the cog has completed the

compression, it will set myncompr, the length of the

packed buffer packBuf, to a positive number.

•	 Lines 46–47: The decompression routine does nothing

for now.

•	 Lines 53–58: This is the heart of the parameter passing

to the cog. The address of myns (a hub address) is

copied to _cnsPtr (a cog address), and the address of

myncompr is copied to _cncomprPtr. You’ll learn much

more about this in the next chapter.

Chapter 8 Implementing the Compression Code in PASM

148

•	 Lines 60–63: Here the cog sits in a loop, continually

copying the value of myns from its hub location (earlier,

we copied @myns to _cnsPtr) to _cns. It checks whether

myns is nonzero (which is the wz effect that you’ll learn

more about later); if it is still zero, it jumps back up to

:mainLoop.

•	 Lines 66–70: The program arrives here if myns is

nonzero, at which point we set myncompr to 3. This is

done by setting _cncompr to 3 and then copying that

value to hub memory. Then the program jumps back

around to :mainLoop and repeats.

•	 Lines 73–83: Reserve space for some cog variables

(I like to prepend the variable names with c to

indicate they are local to the cog). I also have some

temporary register variables (here r0).

OK, let’s break this code down.

The CON section defines the codes for the compression. For example,

if a difference value δj can be stored in 1 byte, then we write CODE08 in the

comprCodeBuf (at the location corresponding to the j-th sample).

Pay particular attention to the VAR section where we have two long

variables one right after the other.

long myns, myncompr

This means they are stored in consecutive locations in hub memory.

Next we have the INIT, START, and STOP methods. The START method

has the following command:

ccogid := cognew(@STEIM, @myns)

This starts a new cog and returns the cog number if successful (or -1

if eight cogs are already running). To reiterate, the Propeller has eight

Chapter 8 Implementing the Compression Code in PASM

149

independent processors or cogs. When you first run steim_pasm0_Demo,

one cog starts up and runs all the code in MAIN. When MAIN calls COMPR.

START, which runs cognew, a new cog is launched. The contents of this

cog are the PASM instructions in the DAT section labeled STEIM (starting

at line 53 and continuing to the FIT instruction at line 85). From this

point forward, the STEIM cog is entirely independent (if you are coming

from the C world, this is a fork and exec...). The only way for the MAIN

cog and the STEIM cog to interact is for one of them to change variables

in hub memory...and for the other cog to react to that change.

This means that each cog has to periodically check the same location

in hub memory and has to include logic to decide that something must be

done. Let’s look at the parameter passing in more detail.

8.3  �Passing Parameters in the cognew
Command

The cognew command takes two arguments: the PASM cog to launch

(@STEIM) and the address of a variable to share (here @myns).

ccogid := cognew (@STEIM, @myns)

When Spin encounters the command cognew, it does two things: it

copies the PASM code into cog memory, and it places the value of the

second argument to cognew (@myns—the memory location where the value

myns lives) into the location PAR in cog memory. (PAR is always 0x1F0.) The

STEIM cog can now get @myns from PAR, and using the rdlong and wrlong

commands, it can read and change myns. The main cog (and other cogs)

can also read and change myns, so there will need to be some protocol for

making sure they don’t collide. (In other words, if the STEIM cog reads myns

and then writes a new value there some time later, we can’t allow the main

cog to mess with it during that time.)

Chapter 8 Implementing the Compression Code in PASM

150

An Analogy to PAR  Consider a train station—one of those lovely,
high-ceiling Central European train stations filled with spies, intrigue,
and good coffee. There is a room off to the side with rows of lockers
(or at least back in the innocent days of my youth there were...). Each
locker has a number. In this train station, there are only a few people: an
elegant young woman with the odd name of Ms. Main Cog (main for short)
and an older gentleman named Mr. Joe Steim (steim for short). They
want to communicate, but they don’t know what the other looks like.

When main wants to give steim a message, the only way she can
do so is to place the message in a locker. steim can then open the
locker and read and modify the message. main can come back some
time later and re-open the locker and read what steim did. There
is still a problem, though. main needs to tell steim which locker to
open. This is where the information desk comes in (every train station
has one, with some wonderfully patient, friendly, and knowledgeable
folks). Before steim arrives (with the cognew command), main
chooses a locker where she is going to leave messages and tells the
lady at the information desk the locker number. When steim arrives,
he goes to the information desk and asks “Did main leave a locker
number for me?” Voilà. Both main and steim can now communicate.

The expression @myns is the address (the “locker number”) of the variable

myns. When passed to cognew, cognew places this address in a location known

to everybody, called PAR (the “information desk” of my analogy).

Chapter 8 Implementing the Compression Code in PASM

151

8.3.1  �Using PAR
The Spin code has this:

cognew(@STEIM, @myns)

The PASM cog has the statements shown in Listing 8-3.

Listing 8-3.  PASM Fragment for Passing Parameters Using par

1 mov _cnsPtr, par

2 ...

3 _cnsPtr res 1

The mov_cnsPtr, par instruction copies the address stored in PAR (this

is the “information desk” of my example) into the cog memory location

_cnsPtr. The PASM cog also needs to reserve some space for that number,

which it does with the _cnsPtr res 1 statement.

8.3.2  �Using PAR Some More
In the Spin code, the variables myns and myncompr are declared thusly:

VAR

 long myns, myncompr

Therefore, we know that these two variables occupy successive

memory in the hub. So, for example, if myns is at memory location 0x14,

then myncompr will be at 0x18 (they are 4 bytes apart because they are longs).

In Figure 8-1, the memory layout for the Hub and cog are shown.

Chapter 8 Implementing the Compression Code in PASM

152

When cognew(@STEIM, @myns) is called, the Propeller places the

number 0x14 (the address of myns) into memory location PAR. We use our

knowledge about the layout of hub memory to now find out how to access

myncompr.

 mov _cnsPtr, par

 mov _cncomprPtr, par

 add _cncomprPtr, #4

...

_cnsPtr res 1

_cncomprPtr res 1

The instruction mov _cnsPtr, par copies 0x14 into _cnsPtr. The

instruction mov _cncomprPtr, par also copies 0x14 into _cncomprtPtr...,

but the next instruction, add _cncomprPtr, #4, adds 4 to that value with

the result of _cncomprPtr = 0x18, which is just what we want.

Figure 8-1.  The layout of Hub memory (left) and cog memory (right)
showing how parameters are passing using the par register

Symbol Hub Memory Address
.
.
.

myns 0x10 0x14
0x00
0x00
0x00

myncompr 0x00 0x18
0x00
0x00
0x00
.
.
.

Symbol Cog Memory Address

ORG PASM Instr 0x00
.
.
.

PAR 0x14 0x1F0

Chapter 8 Implementing the Compression Code in PASM

153

8.3.3  �Using the Addresses
Now that we have those addresses for myns and myncompr, we can access

the actual values.

rdlong _cns, _cnsPtr wz

...

mov _cncompr, #3

wrlong _cncompr, _cncomprPtr

There are only two sets of instructions to access hub memory: rdlong

and wrlong (and their sisters rdbyte/wrbyte and rdword/wrword). The

following instruction does two things:

rdlong _cns, _cnsPtr wz

It copies whatever is in the hub memory location that is pointed to by

_cnsPtr into _cns. (Again, _cnsPtr contains the number 0x14; the rdlong

instruction copies the long value that is stored at location 0x14 into the

variable _cns.)

The second thing going on in that instruction is the wz effect. Every

PASM instruction can have, as a side effect, the ability to change the flags Z

and C. You have to read the manual to find out when and how Z and C are

affected.

In the case of rdlong _cns, _cnsPtr wz, the Z flag is set to 1 (one)

if the read operation results in a zero being written to _cns. If the read

operation results in a nonzero value in _cns, then Z is set to 0 (zero).

Read that paragraph a few times (and if it is unclear, drop us a line with

suggestions!).

Now both cogs can do what they want with the variable myns.

Chapter 8 Implementing the Compression Code in PASM

154

8.3.4  �Starting the Compression
The PASM cog continues after the instructions shown earlier and would

continue to the end of cog memory except that we have some branching

instructions.

:mainLoop

 rdlong _cns, _cnsPtr wz

 if_z jmp #:mainLoop

The expression :mainLoop is a label. It is a location that we can jump

to. And we use that in this instruction:

if_z jmp #:mainLoop

The rdlong instruction sets Z according to whether _cns ends up being

zero (in other words, whether myns in hub memory is zero or not). As long

as myns is zero, then _cns will be zero, and therefore Z=1. The instruction

if_z jmp #:mainLoop says that if Z==1, then jump to :mainLoop. If Z≠1,

then continue to the next instruction. The reason for setting Z is so that we

can make branching decisions based on whether myns is zero or not. As

I said, the STEIM and main cogs are independent, and the way main asks

STEIM to start a compression is by setting myns to the number of samples to

compress (a nonzero value).

Once Ms. Main has asked Mr. Steim to start work (with the cognew
command), he will periodically check the locker number 0x14
(named _cnsPtr in the PASM cog and myns in the main cog). If the
note in there has the number zero on it, he will go back to cafe and
get another espresso. If it has a nonzero number, then he knows he
has work to do.

Chapter 8 Implementing the Compression Code in PASM

155

8.4  �Passing Parameters: Method 2
The second way to pass parameters is to write a hub address to a cog

variable before it is launched.

In the previous sections, we used the special memory location PAR to

pass the address of a variable to the PASM cog.

To go back to Ms. Main and Mr. Steim passing messages in the train
station, main launches steim with the cognew command. You can
think of that action as if Mr. Steim were handed a book with 512
pages. He reads the instruction on page 0 and does as instructed; he
moves on to page 1, and so on. Well, before you hand him the book,
go to, for example, page 0x100 (oddly enough, both Ms. Main and
Mr. Steim think in hex!) and write down the number of a locker that
you want to share with him. Now both of you know the locker (and
you don’t have to get the information desk involved).

To review, the cognew command copies instructions, variables,

reserved space, and special registers to a new cog (512 longs worth, of

which the user has access to 496), as shown in Listing 8-4.

Listing 8-4.  PASM Fragment Showing Cog Memory Layout

 1 PUB START

 2 ...

 3 ccogid:= cognew(@STEIM, @myns)

 4 ...

 5

 6 DAT 'pasm cog

 7 STEIM ORG 0

 8

Chapter 8 Implementing the Compression Code in PASM

156

 9 ... instructions

10 rdlong _cns, _cnsPtr wz

11

12 ... variables

13 _ccode24 long CODE24

14

15 ... reserved space

16 _cnsPtr res 1

17

18 FIT 496

19 ... system registers (PAR, CNT, etc)

For the cog to access a hub array such as logBuf, we will do the following:

	 1.	 We will define a new array in Spin called logBuf.

(This is like deciding on a locker number.)

	 2.	 We will define a new variable in the PASM code called

_clogBufPtr. (This is the “page number” 0x100 in the

book of instructions that Mr. Steim is given.)

	 3.	 Before the cog is launched, we will place the address

of logBuf into _clogBufPtr. (We write down the

locker number on the correct page.)

We are, in effect, dynamically writing the PASM code, as shown in

Listing 8-5.

Listing 8-5.  PASM Fragment Showing Memory Layout for Passing

Array Address in a Register

 1 CON
 2 LOGLEN = 256
 3
 4 VAR

Chapter 8 Implementing the Compression Code in PASM

157

 5 logBuf[LOGLEN]
 6
 7 PUB START
 8 _clogBufPtr := @logBuf
 9 ccogid := cognew(@STEIM, @myns)
10 ...
11
12 DAT 'pasm cog
13 STEIM ORG 0
14
15 ... instructions
16 rdlong _cns, _cnsPtr wz
17
18 ... variables
19 _ccode24 long CODE24
20
21 _clogBufPtr long 0
22

23 ... reserved space

24 _cnsPtr res 1

25

26 FIT 496

27 ... system registers (PAR, CNT, etc)

The instruction in the Spin code just before the cognew command,

_clogBufPtr := @logBuf, is like writing down a locker number in the book.

The layout of memory in Hub and cog are shown in Figure 8-2.

Chapter 8 Implementing the Compression Code in PASM

158

Now both the Spin cog and the PASM cog can read and write from

logBuf. The Spin cog can access logBuf[j] directly, and the PASM cog can

access it using the rdlong/wrlong instructions to address _clogBufPtr. I

will use this array in Chapter 11.

Naming Variables T he naming of variables should follow a pattern.
Use a prefix for variables local to the cog followed by a short name
for the variable (e.g., cns). Those variables that are addresses of
variable (“locker numbers”) should have Ptr appended (cnsPtr).
I use c as a prefix for variables within the scope of the cog. This
reduces the possibility of inadvertently using the wrong variable.

Figure 8-2.  The layout of memory in Hub and cog when we are
passing parameters using an address written to a variable (method 2
of parameter-passing)

Symbol Hub Memory Address
.
.
.

logBuf[0] 0xnn 0x50

0xnn 0x51
0xnn 0x52
0xnn 0x53

logBuf[1] 0xnn 0x54
.
.
.

Symbol Cog Memory Address

ORG PASM Instr 0x00
.
.
.

clogBufPtr 0x50 0x100
.
.
.

Chapter 8 Implementing the Compression Code in PASM

159

8.5  �Summary
In this chapter, we looked at two different ways of passing data into and

out of cogs. The first method is to place the address of a variable into the

PAR register when a new cog is launched. The PASM cog can now read

and write to that location (and to subsequent locations, if they also have

variables of interest).

The second way is to store the address of a variable in a location that

both the Spin and PASM code know about. This is done before the PASM

cog is launched. There is no need to involve PAR in this case. See Listing 8-6

for a template for these two ways of passing parameters.

In Figure 8-3 we show an actual Information Desk at the old Penn

Station in New York (sadly torn down in the 1960s).

Listing 8-6.  A template for passing parameters from Spin to

PASM cogs

 1 VAR

 2 �'variable1 and variable2 are stored in successive locations

 3 long variable1, variable2

 4 ' this variable will be passed to the cog by storing

 5 ' it 's value in a PASM variable BEFORE launch

 6 long variable3

 7

 8 PUB MAIN

 9 ' 1. cognew command will store the address of variable1

10 ' in PAR and then launch MYCOG in a new cog

11 �' 2. before we launch MYCOG, we place the address of 

variable3

Chapter 8 Implementing the Compression Code in PASM

160

12 �' into _cvariable3Ptr, which will be available to the cog

13 _cvariable3Ptr := @variable3

14 cognew(@MYCOG, @variable1)

15

16 DAT

17 MYCOG org 0

18 �mov _cvar1Ptr, par �' when mycog is launched, 

' par contains the 

19 ' address of variable1

20 mov _cvar2Ptr, par �' the next long location 

' contains the address

21 add _cvar2Ptr, #4 ' of variable2

22

23 rdlong _cvar1, _cvar1Ptr ' the actual value of variable1

24 ' is obtained by a rdlong

25 rdlong _cvar2, _cvar2Ptr

26

27 �rdlong _cvar3, _cvariable3Ptr ' �_cvar3Ptr is populated 

with the address

28 ' �variable3 BEFORE launch, 

so no need for par

29

30 �_cvariable3Ptr long 0 ' �variable where the address of 

variable3

31 ' will be written BEFORE launch of cog

32 _cvar1Ptr res 1 ' space for the ptrs and vars that are

33 _cvar2Ptr res 1 ' passed thru par

34 _cvar1 res 1

35 _cvar2 res 1

36 _cvar3 res 1

Chapter 8 Implementing the Compression Code in PASM

161

Figure 8-3.  Information desk at the old Pennsylvania Station
in New York. https://commons.wikimedia.org/wiki/
File:Information_booth_at_the_Pennsylvania_railroad_
station8d21848v.jpg.

Chapter 8 Implementing the Compression Code in PASM

https://commons.wikimedia.org/wiki/File:Information_booth_at_the_Pennsylvania_railroad_station8d21848v.jpg
https://commons.wikimedia.org/wiki/File:Information_booth_at_the_Pennsylvania_railroad_station8d21848v.jpg
https://commons.wikimedia.org/wiki/File:Information_booth_at_the_Pennsylvania_railroad_station8d21848v.jpg

163© Sridhar Anandakrishnan 2018
S. Anandakrishnan, Propeller Programming, https://doi.org/10.1007/978-1-4842-3354-2_9

CHAPTER 9

Compression in PASM
with TDD
Let’s convert our Steim compressor to PASM using TDD. The specification

in Chapter 5 is written for a “traditional” language where the compression

routine is called by the main program (as in our Spin example). As we want

to implement the compression routine in PASM, we will start a new cog

and will have to perform handshaking, as it is called, between the two cogs

as follows (Figure 9-1):

Figure 9-1.  Diagram showing the handshaking between the Spin cog
and the PASM cog

164

As shown in Figure 9-1, the main Spin cog will set myns to a nonzero

value, which will trigger the PASM cog to perform the compression. When

the PASM cog finishes its work, it will set myncompr to a nonzero value,

which signals the main cog that the compression is complete.

Let’s look at the “file view” and “cog view” of the project. The Spin

code is split between the main file (steim_pasm_Demo) and the actual

compressor file (steim_pasm), shown in Figure 9-2. The main file and

the compressor file are related as shown in Figure 9-2: the main or

driver file includes the worker file using the OBJ keyword.

Figure 9-2.  The file-level view of the compression program, with the
driver file on the left and the worker file on the right

The cog view of the project is (in part) as follows: cog0 runs main

and the Spin methods in steim_pasm. cog1 runs the PASM code for the

compression and decompression (Figure 9-3). The PASM code is triggered

by changes in hub memory (when myns is set to a nonzero value).

Chapter 9 Compression in PASM with TDD

165

The files for this program are on GitHub.

9.1  �Overall Flowchart
Figure 9-4 shows the flowchart for the PASM cog. When N > 0 (myns),

the cog will read and process a sample. Every 16th sample, it will write

out a compression code long. Upon completion, it will write out the last

compression code long. It will set N = 0 and write out the number of bytes

used in the compression, Nc (myncompr).

Figure 9-3.  The cog-level view of the compression program

Chapter 9 Compression in PASM with TDD

166

Figure 9-4.  Flowchart for compression of samples

Chapter 9 Compression in PASM with TDD

167

9.2  �Test 1: Passing nsamps and ncompr
Let’s write a test for a small part of this: setting myncompr to non-negative.

The test will do the following:

	 1.	 The calling cog (main) will set the number of

samples (myns in the COMPR object) to the number of

samples in sampsBuf.

	 2.	 Upon completion of compression, the STEIM PASM

cog will set the number of compressed bytes

(myncompr) to a non-negative number.

9.2.1  �Spin Code
Listing 9-1 shows the Spin code. Add it to main.

Listing 9-1.  Spin Code

 1 PUB MAIN

 2 ...

 3

 4 TEST_THAT_NCOMPR_IS_SET_TO_NONNEGATIVE

 5

 6 ...

 7 PUB TEST_THAT_NCOMPR_IS_SET_TO_NONNEGATIVE | nc, t0

 8 " test methods are rarely commented - the name should be

 9 " explanatory ...

10 nsamps := 1

11 �nc := COMPR.COMPRESS (@sampsBuf, nsamps, @packBuf, 

@comprCodeBuf)

12 t0 := nc => 0

13 �TDD.ASSERT_TRUTHY (t0, string("Test that the compression 

cog sets ncompr => 0"))

Chapter 9 Compression in PASM with TDD

168

The test is relatively simple. The test method in main sets nsamps to

1 and calls COMPR.COMPRESS. Within the COMPRESS object, myns is set to 1,

which triggers the compression.

9.2.2  �PASM Code
Listing 9-2 shows the START code that launches the PASM cog, the

COMPRESS code, and the PASM code from the previous chapter with the

handshaking discussed in detail.

Listing 9-2.  PASM Code

 1 ...

 2 PUB START

 3 STOP

 4 ' myns <> 0 controls when the compression is started

 5 myns := 0

 6 ccogid := cognew(@STEIM, @myns)

 7 return ccogid

 8

 9 PUB COMPRESS(psampsBuf, ns, ...)

10 ...

11 myns := 0

12 myncompr := 0

13

14 ' this will start the compression

15 myns := ns

16

17 ' when ncompr is non -zero, the compression is complete

18 repeat until myncompr > 0

19 return myncompr

Chapter 9 Compression in PASM with TDD

169

20 ...

21

22 STEIM org 0

23 ' copy the param addresses

24 mov _cnsPtr, par

25 mov _cncomprPtr, par

26 add _cncomprPtr, #4

27

28 : mainLoop

29 ' the signal for starting the compression is when ns <> 0

30 rdlong _cns, _cnsPtr wz

31 if_z jmp #:mainLoop

32

33 �' set myns to zero first so we don't start another 

cycle ...

34 mov _cns, #0

35 wrlong _cns, _cnsPtr

36

37 ' signal completion

38 mov _cncompr, #3

39 wrlong _cncompr, _cncomprPtr

40

41 ' wait for another compression request

42 jmp #:mainLoop

The START function is called once by the driver file, and that starts the

PASM cog. The COMPRESS function can be called any number of times, and

it communicates with the (running) PASM cog via the value of myns. When

the COMPRESS function sets myns := ns, that sets myns to 1. The running

PASM cog is continually monitoring myns (via the rdlong in the steim cog

that sets _cns). Because of the wz effect of the rdlong, the instruction will

Chapter 9 Compression in PASM with TDD

170

set Z to 0 when _cns is nonzero. Now, instead of jumping back around to

:mainLoop, control will pass to the next instructions:

' set myns to zero first so we don't start another cycle...

mov _cns, #0

wrlong _cns, _cnsPtr

mov _cncompr, #3

wrlong _cncompr, _cncomprPtr

' wait for another compression request

jmp #:mainLoop

Next, we set _cns to zero and write that back to hub memory (to myns)

so that when we go back up to :mainLoop, we don’t immediately start

another compression cycle. Finally, we set the variable _cncompr to 3

and then write that value to hub memory (to myncompr) with the wrlong

instruction.

In the Spin code in COMPRESS, the following statement will loop at that

line continuously until myncompr is greater than zero, which it will be soon,

when the PASM code does its wrlong!

repeat until myncompr > 0

At that point, the Spin code will continue to the next instruction.

return myncompr

Back in the calling function, nc will be set to 3, the value t0 will be true,

and the ASSERT_TRUTHY call will print OK.

nc := COMPR.COMPRESS(@sampsBuf, nsamps, @packBuf,

@comprCodeBuf)

t0 := nc => 0

Chapter 9 Compression in PASM with TDD

171

9.3  �Test 2: Packing Sample 0
In the previous section, we passed nsamps to the steim cog, which signals

the start of the compression process. In this section, we will actually

compress sample 0 and populate packBuf and comprCodeBuf. If you recall

from the specification and from the Spin code examples, the three low

bytes of sampsBuf[0] are placed in packBuf, and the code for a 3-byte

compression is placed in the low 2 bits of comprCodeBuf[0].

9.3.1  �Spin Code
To read from sampsBuf and write to the other two arrays, we need to

pass their addresses to the steim cog. Listing 9-3 shows the modified

calling routine, with three new tests that check whether sample 0 is

packed correctly, whether ncompr is set correctly (to 3), and whether

comprCodeBuf[0] is set correctly to COMPR.CODE24.

Listing 9-3.  Driver File Testing Code

 1 PUB MAIN

 2 ...

 3

 4 TEST_THAT_SAMP0_IS_PACKED_PROPERLY

 5 TEST_THAT_SAMP0_SETS_NCOMPR_TO_3

 6 TEST_THAT_SAMP0_SETS_COMPRCODE_TO_CODE24

 7

 8 ...

 9 PUB TEST_THAT_SAMP0_IS_PACKED_PROPERLY | t0, nc

10 sampsBuf[0] := $AB_CD_EF

11 nsamps := 1

Chapter 9 Compression in PASM with TDD

172

12 �nc := COMPR.COMPRESS (@sampsBuf, nsamps, @packBuf, 

@comprCodeBuf)

13 t0 := (packBuf[0] == sampsBuf[0] & $FF)

14 t0 &= (packBuf[1] == sampsBuf[0] >> 8 & $FF)

15 t0 &= (packBuf[2] == sampsBuf[0] >> 16 & $FF)

16 �TDD.ASSERT_TRUTHY(t0, string(" Test that samp0 is packed 

correctly into packbuf "))

17

18 PUB TEST_THAT_SAMP0_SETS_NCOMPR_TO_3 | t0, nc

19 sampsBuf[0] := $AB_CD_EF

20 nsamps := 1

21 �nc := COMPR.COMPRESS (@sampsBuf, nsamps, @packBuf, 

@comprCodeBuf)

22 t0 := nc == 3

23 �TDD.ASSERT_TRUTHY(t0, string("Test that samp0 sets 

ncompr =3"))

24

25 PUB TEST_THAT_SAMP0_SETS_COMPRCODE_TO_CODE24 | t0

26 sampsBuf[0] := $AB_CD_EF

27 nsamps := 1

28 �nc := COMPR.COMPRESS (@sampsBuf, nsamps, @packBuf, 

@comprCodeBuf)

29 t0 := comprCodeBuf[0] == COMPR#CODE24

30 �TDD.ASSERT_TRUTHY(t0, string("Test that samp0 sets 

comprCodeBuf to CODE24"))

9.3.2  �Memory Layout of Arrays and Parameters
As in the previous section, we now need to pass the addresses of sampsBuf,

packBuf, and comprCodeBuf as well to the steim cog.

Chapter 9 Compression in PASM with TDD

173

Modify the VAR declaration for myns and myncompr to now include three

new variables: sampsBufAddr, packBufAddr, and comprCodeBufAddr. These

variables are all listed one after the other, so they occupy successive long

locations.

There is one crucial difference, however, between myns and

sampsBufAddr: the number stored at location @myns/0x14 is the

actual value of myns (1). The number stored at sampsBufAddr/0x1C

is the address of the location where sampsBuf lives in hub memory;

here I have put in some arbitrary number as an example (0x104). In

Figure 9-5, I show the layout of hub memory with the longs following

@myns (myncompr, sampsBufAddr, etc.). The array sampsBuf itself is in

a different part of memory, but its address is in sampsBufAddr, which

will be made available to the PASM cog. You need to do this “indirect

addressing” when you want to pass the address of an array that is

stored elsewhere.

Symbol HUB Memory Address
myns 0x01 0x14

myncompr 0x00 0x18
sampsBufAddr 0x104 0x1C

packBufAddr 0x472 0x20

comprCodeBufAddr 0x400 0x24
.
.
.

sampsBuf 0xEF 0x104

0xCD 0x105
0xAB 0x106
0x00 0x107

Figure 9-5.  Memory layout in hub showing the arrangement
of variables that will be passed to the PASM cog. sampsBufAddr
contains the address to the first sample of sampsBuf, which is shown
further along in memory.

Chapter 9 Compression in PASM with TDD

174

The COMPRESS method gets those values because the calling routine

passes @sampsBuf (the address of sampsBuf), and this is similar for the

other two arrays.

Those three addresses are stored in the variables sampsBufAddr,

packBufAddr, and comprCodeBufAddr, and when myns is set to nonzero, the

steim cog will start the compression, using those addresses.

VAR

 long myns, myncompr, sampsBufAddr, packBufAddr,

comprCodeBufAddr

PUB COMPRESS(psampsBuf, ns, ppackBuf, pcomprCodeBuf) : ncompr

 sampsBufAddr := psampsBuf

 packBufAddr := ppackBuf

 comprCodeBufAddr := pcomprCodeBuf

 ' this will start the compression

 myns := ns

9.3.3  �PASM Code
In the PASM code, we have already looked at how to access myns; now let’s

look at how to access sampsBuf[0] using indirect addressing (Listing 9-4).

Listing 9-4.  Indirect Addressing in PASM to Read from an Array

 1 ...

 2 : mainLoop

 3 ' the signal for starting the compression is when ns <> 0

 4 rdlong _cns, _cnsPtr wz

 5 if_z jmp #:mainLoop

 6

 7 ' get the array start addresses

 8 mov r0, par

 9 add r0, #8

Chapter 9 Compression in PASM with TDD

175

10 rdlong _csampsbufPtr, r0

11

12 mov r0, par

13 add r0, #12

14 rdlong _cpackbufPtr, r0

15

16 mov r0, par

17 add r0, #16

18 rdlong _ccomprcodebufPtr, r0

19

20 call #GET_SAMPLE

21 call #HANDLE_SAMP0

22

23 �' set myns to zero first so we don't start another 

cycle ...

24 mov _cns, #0

25 wrlong _cns, _cnsPtr

26 ' signal completion

27 wrlong _cncompr, _cncomprPtr

•	 Lines 8–9: Copy the contents of PAR (the address of

myns) to a temporary variable r0 and add 8 to it. Now

r0 will have the address of the location that has the

address of sampsBuf (0x1C).

•	 Line 10: The rdlong gets that address so that

_csampsBufPtr is set to 0x104 (the address of the

sampsBuf array in the hub).

We then copy the contents of the long at 0x1C to csampsbufPtr:

csampsbufPtr = 0x104. We now have the location of sampsBuf[0]. We

go through a similar procedure for the other two arrays, packBuf and

comprCodeBuf.

Chapter 9 Compression in PASM with TDD

176

9.3.4  �Subroutines in PASM
As in other languages, you can define a subroutine when there is code that

is often repeated or simply to keep your code modular and organized. In

this case, I define two subroutines: GET_SAMPLE and HANDLE_SAMP0.

Subroutines are defined by enclosing them between two labels:

SUBROUTINE_NAME and SUBROUTINE_NAME_ret. In addition, the second

label (SUBROUTINE_NAME_ret) should be immediately followed by the

PASM instruction ret. There are no formal arguments or parameters for

the subroutine. Rather, the subroutine is in the same scope as the calling

code. All variables are available and can be read and modified. Therefore,

it is important to be clear on which variables are needed by the subroutine

and which are modified. In Listing 9-5, I show the GET_SAMPLE and

HANDLE_SAMP0 subroutines. The comments at the start show which

variables are read and which are modified.

Listing 9-5.  Examples of subroutines, with comments showing

variables that are used and modified

 1 GET_SAMPLE

 2 " read a sample from sampsBuf

 3 " modifies samp

 4 " increments sampsbufPtr to next sample

 5 rdlong _csamp, _csampsbufPtr

 6 add _csampsbufPtr, #4

 7 GET_SAMPLE_ret ret

 8

 9 HANDLE_SAMP0

10 " write the three bytes of samp to packbuf

11 " write code24 to comprcodebuf [0]

12 " destroys samp

13 " modifies ncompr
14

Chapter 9 Compression in PASM with TDD

177

15 mov r0, #3
16 :s0loop
17 wrbyte _csamp, _cpackbufPtr
18 add _cpackbufPtr, #1
19 shr _csamp, #8
20 djnz r0, #:s0loop
21 ' loop terminates here
22 mov _cncompr, #3
23 mov _ccomprcode, _ccode24
24 wrlong _ccomprcode, _ccomprcodebufPtr

25 HANDLE_SAMP0_ret ret

GET_SAMPLE is straightforward. It reads a long from the current index of

sampBuf (initially 0) and increments the index to point at the next value in

sampsBuf.

HANDLE_ SAMP0 takes that sample and writes the low 3 bytes back to

packBuf. The following sequence is like a repeat 3 in Spin or a for loop in

C. Set r0 to the number of times you want to loop and, at the end of the loop,

decrement it by 1 and test for when it is equal to 0 (djnz r0, #:s0loop says

“decrement r0 and jump to s0loop if r0 is not zero”). After three times, the

loop terminates, and the instructions following djnz are executed.

 mov r0, #3
:s0loop
 <<do something>>
 djnz r0, #:s0loop

<<here after 3 iteration>>

The “do something” part is where the 3 bytes of sampsBuf[0] are copied

to packBuf. The instruction wrbyte _csamp, _cpackbufPtr will copy the

lowest byte of _csamp to the current address in _cpackbufPtr. The next

instruction, add _cpackbufPtr, #1, will add the literal value 1 to the address

_cpackbufPtr. This increments the index of packBuf. The next and final

instruction in the loop, shr _csamp, #8, shifts the contents of the variable

Chapter 9 Compression in PASM with TDD

178

_csamp right by 8 bits (in other words, shifts the low byte out and moves the

next higher byte into the low byte position). Finally, the instruction djnz r0,

#:s0loop will decrement r0 by 1 and loop to :s0loop if r0≠0.

The first time through the loop, the low byte (bits 0–7) of _csamp is

copied to packBuf[0]. The second time (after the increment of

_cpackbufPtr and the shift right by 8 bits of _csamp), the second

byte (the original bits 8–15 of _csamp) is copied to packBuf[1].

The third time, the third byte of _csamp is copied to packBuf[2]. In

the process, _csamp is destroyed—and we note that in the comments

for the subroutine so that the calling routine knows not to use _csamp

again.

9.3.5  �Testing the Compression of Sample 0
Let’s run our tests (including running our previous test). If these

succeed, we are confident that the array addresses are being passed

correctly.

Compression

mainCogId: 0

comprCogId: 2

Test that the compression cog sets ncompr => 0

...ok

Test that sample 0 is properly packed to packBuf

...ok

Test that compressor sets ncompr correctly for sample 0

...ok

Test that compressor sets compression code correctly for sample 0

...ok

Tests Run: 4

Tests Passed: 4

Tests Failed: 0

Chapter 9 Compression in PASM with TDD

179

9.4  �Packing Differences for Latter Samples
Now that we know how to access the arrays, we can proceed with

compressing all the samples by forming differences and packing those

differences in packBuf based on their length.

Here is the PASM code in Listing 9-6. Here we add code to handle all

the samples and to set the compression codes correctly.

Listing 9-6.  Changes to the PASM code to handle all the samples

and to set the compression codes correctly

 1 ...
 2 mov r0, par
 3 add r0, #16
 4 rdlong _ccomprcodebufPtr, r0
 5
 6 mov _cj, #0 ' j-th samp
 7 ' there are 16 codes in each code word

 8 �' there are NSAMPS_LONG /16 code longs (e.g., 8 
codelongs for 128 samps)

 9 ' samps 0-15 have their codes in _ccodebufptr [0],
10 ' samps 16 -31 have their codes in _ccodebufptr [1], etc

11 �' _ccodebitidx is the location within a long (0, 2, 4, 
... 30)

12 ' _ccodelongidx is the idx of the long in the code array
13 mov _ccodebitidx, #0
14 mov _ccodelongidx, #0
15
16 call #GET_SAMPLE
17 mov _cprev, _csamp ' save sample for diff
18 call #HANDLE_SAMP0
19 add _ccodebitidx, #2
20
21 sub _cns, #1 wz
22 if_z jmp #:done
23

Chapter 9 Compression in PASM with TDD

180

24 : loopns

25 call #GET_SAMPLE

26 call #HANDLE_SAMPJ

27 mov _cprev, _csamp

28 add _cj, #1

29

30 add _ccodebitidx, #2

31 test _ccodebitidx, #31 wz

32 if_nz jmp #:samelong

33

34 wrlong _ccomprcode, _ccomprcodebufptr

35 add _ccomprcodebufptr, #4

36 mov _ccomprcode, #0

37

38 : samelong

39 djnz _cns, #:loopns

40

41 :done

42 ' wait for another compression request - zero out myns

43 �' so we don't immediately start another compression cycle

44 wrlong _cns, _cnsPtr

45 ' signal completion

46 wrlong _cncompr, _cncomprPtr

47 jmp #:mainLoop

48 ...

49 HANDLE_SAMPJ

50 " form difference between j and j-1 samps

51 " determine byte - length of diff

52 " save diff to packbuf

53 " increment ncompr appropriately

Chapter 9 Compression in PASM with TDD

181

54 " modify comprcode appropriately

55

56 HANDLE_SAMPJ_ret ret

We have added these variables:

•	 _cj: The current sample number.

•	 _ccodelongidx: The index into the array comprCodeBuf

where the current sample’s code will be stored.

•	 _ccodebitidx: The bit location within the long where

the code will be stored.

•	 _cprev and _cdiff: The previous sample and the

difference between the current and previous samples.

After initializing these variables (lines 6–14), we handle the

special case of sample 0 (lines 16–18). Here we add the instruction

mov _cprev, _csamp before the subroutine call HANDLE_SAMP0.

Remember, that subroutine destroys _csamp, so if we want to use it to

form the difference, we must save it. Next, we check for whether there

is only one sample, and if so, we are done (lines 20–21): subtract 1 from

_cns (the number of samples) and set the Z flag if the result is 0 (that is

the effect of wz). If Z is set, jump to the code to finalize the compression

(done) when the myncompr variables in hub memory are set to the

correct values (which signals the main cog that the compression has

completed).

If there is more than one sample to process, continue and process

those samples in lines 23–38.

•	 Lines 24–25: Get the next sample and process it

(we’ll look at HANDLE_SAMPJ in a moment).

•	 Lines 26–27: Save the sample for the next loop and

increment j.

Chapter 9 Compression in PASM with TDD

182

•	 Lines 29–31: The bit index moves up by 2, and we check

whether we need to move to the next comprCodeBuf

long. The instruction test_ccodebitidx, #31 wz will

set Z if ccodebitidx is equal to 32 (31=%0001 1111 and

32=%0010 0000; the bitwise AND of the two numbers is

0, which will set Z to 1) The instruction test is like and,

but doesn’t save the result; it only affects the flags. If Z is

not set, then we are still within this comprCodeBuf long,

and we jump around the subsequent code.

•	 Lines 33–35: New comprCodeBuf long. Write the

completed long to hub memory and increment the

pointer to point to the next long.

OK, now let’s look at HANDLE_SAMPJ, shown in Listing 9-7. Here

we take the difference between the two samples and determine if that

number would fit in one, two, or three bytes and handle packBuf and

comprCodeBuf accordingly.

Listing 9-7.  Subroutine to form the difference between two samples

and to update packBuf and comprCodeBuf depending on the size of

the difference

 1 HANDLE_SAMPJ
 2 " form the difference diff=csamp -cprev
 3 " if |diff| < 127, write 1 byte of diff
 4 " if |diff| < 32767, write 2 bytes of diff
 5 " else write three bytes of diff.
 6 " ccode, ccodebitidx changed
 7 " packbufptr incremented by 1,2, or 3
 8
 9 mov _cdiff, _csamp
10 sub _cdiff, _cprev
11
12 ' write a byte and check if more need to be written

Chapter 9 Compression in PASM with TDD

183

13 ' repeat as necessary
14 ' r0 - running count of number of bytes used by diff
15 ' r1 - compr code - updated as more bytes are used
16 ' r2 - abs value of cdiff
17 wrbyte _cdiff, _cpackBufptr
18 add _cpackBufptr, #1
19 mov r0, #1
20 mov r1, _ccode08
21 ' is -127 < cdiff < 127
22 abs r2, _cdiff
23 cmp r2, _onebyte wc,wz
24 if_c_or_z jmp #:donej
25
26 ' write 2nd byte
27 shr _cdiff, #8
28 wrbyte _cdiff, _cpackBufptr
29 add _cpackBufptr, #1
30 add r0, #1
31 mov r1, _ccode16
32 ' is -32K < cdiff < 32k
33 cmp r2, _twobyte wc,wz
34 if_c_or_z jmp #:donej
35
36 ' must be 3 bytes long ...
37 shr _cdiff, #8
38 wrbyte _cdiff, _cpackBufptr
39 add _cpackBufptr, #1
40 add r0, #1
41 mov r1, _ccode24
42
43 :donej
44 �add _cncompr, r0 ' add number of bytes seen here to ncompr
45 rol r1, _ccodebitidx
46 or _ccode, r1
47
48 HANDLE_SAMPJ_ret ret

49 ...

Chapter 9 Compression in PASM with TDD

184

50 _onebyte long $7F

51 _twobyte long $7F_FF

•	 Lines 9–10: Form the difference diff = samp - prev.

•	 Lines 17–24: Write the low byte of diff to packBuf and

set the code temporarily to CODE08. Check if ||δj|| < 127:

cmp r2, _onebyte wc,wz. The constant _onebyte is

127, and wz says to set Z if r2 is equal to 127; wc says to

set C if r2 is less than 127. if_c_or_z jmp #:donej says

to jump to donej if C or Z is set.

•	 Lines 26–41: If r2 is greater than 127, then write the

second byte of diff; check again if that is all we need to

do. If not, write the third byte of diff.

•	 Lines 43–46: r0 has the number of bytes of diff (1, 2,

or 3). Add it to _cncompr. r1 has the compression

code (CODE08, CODE16, or CODE24). Shift it to the correct

location (rol means “rotate left”) and set those two bits

of _ccode (with an or instruction).

9.4.1  �Testing Compressing Two Samples!
The following are the tests for the new code to test the code for

compression (Listing 9-8). Hopefully the names of the methods and the

informational string (in TDD.ASSERT_TRUTHY) are self-explanatory.

Each testing method tests a small piece of functionality and should be

re-run whenever changes are made to the code.

Chapter 9 Compression in PASM with TDD

185

Listing 9-8.  Some of the tests that exercise different parts of the

compression code

 1 PUB MAIN

 2 ...

 3 TEST_THAT_SAMP1_IS_PROPERLY_PACKED_ONE_BYTE

 4 TEST_THAT_SAMP1_IS_PROPERLY_PACKED_TWO_BYTES

 5 TEST_THAT_SAMP1_IS_PROPERLY_PACKED_THREE_BYTES

 6 TEST_THAT_SAMP1_SETS_COMPRCODE_CORRECTLY

 7 TEST_THAT_SAMP1_SETS_COMPRCODE_CORRECTLY_TWO_BYTES

 8 ...

 9 PRI TEST_THAT_SAMP1_IS_PROPERLY_PACKED_ONE_BYTE | t0, nc, d

10 nsamps := 2

11 d := 42

12 sampsBuf[0] := $AB_CD_EF

13 sampsBuf[1] := sampsBuf[0] + d ' diff will be < 127

14 �nc := COMPR.COMPRESS (@sampsBuf, nsamps, @packBuf, 

@comprCodeBuf)

15 t0 := nc <> -1 & (packBuf[3] == d)

16 �TDD.ASSERT_TRUTHY (t0, string("Test that sample 1 is 

properly packed to packBuf (1 byte)"))

17

18 PRI TEST_THAT_SAMP1_IS_PROPERLY_PACKED_TWO_BYTES | t0, nc,d

19 nsamps := 2

20 d := 314

21 sampsBuf[0] := $AB_CD_EF

22 �sampsBuf[1] := sampsBuf[0] + d ' diff will be less < 32k 

but > 127

23 �nc :=COMPR.COMPRESS (@sampsBuf, nsamps, @packBuf, 

@comprCodeBuf)

24 �t0 := nc <> -1 & (packBuf [3] == d & $FF) & (packBuf [4] 

== d >> 8 & $FF)

Chapter 9 Compression in PASM with TDD

186

25 �TDD.ASSERT_TRUTHY (t0, string("Test that sample 1 is 

properly packed to packBuf (two bytes)"))

26

27 PRI TEST_THAT_SAMP1_SETS_COMPRCODE_CORRECTLY | t0, nc

28 nsamps := 2

29 sampsBuf[0] := $AB_CD_EF

30 sampsBuf[1] := $AB_CD_EF + $42

31 �nc := COMPR.COMPRESS (@sampsBuf, nsamps, @packBuf, 

@comprCodeBuf)

32 �t0 := nc <> -1 & (comprCodeBuf [1] & %1111 ==

(COMPR#CODE08 <<2) | (COMPR # CODE24))

33 �TDD.ASSERT_TRUTHY (t0, string("Test that compressor sets 

compression code correctly for sample 1"))

34

35 �PRI TEST_THAT_SAMP1_SETS_COMPRCODE_CORRECTLY_TWO_BYTES | t0, nc

36 nsamps := 2

37 sampsBuf[0] := $AB_CD_EF

38 sampsBuf[1] := $AB_CD_EF + $42_42

39 �nc :=COMPR.COMPRESS (@sampsBuf, nsamps, @packBuf, 

@comprCodeBuf)

40 �t0 := nc <> -1 & (comprCodeBuf [1] & %1111 == (COMPR# 

CODE16 << 2) | (COMPR # CODE24))

41 �TDD.ASSERT_TRUTHY (t0, string("Test that compressor sets 

compression code correctly for sample 1 (2 bytes)"))

Compression

mainCogId: 0

comprCogId: 2

Test that the compression cog sets ncompr => 0

...ok

Test that sample 0 is properly packed to packBuf

...ok

Chapter 9 Compression in PASM with TDD

187

Test that compressor sets ncompr correctly for sample 0

...ok

Test that compressor sets compression code correctly for sample 0

...ok

Test that sample 1 is properly packed to packBuf (1 byte)

...ok

Test that sample 1 is properly packed to packBuf (two bytes)

...ok

Test that compressor sets compression code correctly for sample 1

...ok

Test that compressor sets compression code correctly for sample 1 

(2 bytes)

...ok

Tests Run: 8

Tests Passed: 8

Tests Failed: 0

9.4.2  �Test Compressing an Arbitrary Number
of Samples

Now that we have tested the cases of two samples being packed

correctly, let’s see if an arbitrary number of samples are packed correctly.

Remember, the compression codes are written two bits at a time; the

compression codes for samples 0–15 are stored in comprCodeBuf[0] and

for sample 16 into comprCodeBuf[1]. We need to exercise the code in as

many “edge” cases as possible. Here are the most basic ones: 16 samples,

17 samples, and 127 samples. This is not an exhaustive test but will give

us some confidence that we are packing the bytes correctly and writing

the compression codes correctly. Now that we know that the first and

Chapter 9 Compression in PASM with TDD

188

second sample are handled correctly, let’s write tests that walk through

compressing the whole array, including testing for “edge cases” where

problems often occur (Listing 9-9).

Listing 9-9.  Testing that more than two samples can be compressed

correctly

 1 PUB MAIN

 2 ...

 3 TEST_THAT_SAMP15_PACKS_PROPERLY

 4 TEST_THAT_SAMP16_PACKS_PROPERLY

 5 TEST_THAT_SAMP127_PACKS_PROPERLY

 6 ...

 7 PRI TEST_THAT_SAMP15_PACKS_PROPERLY | t0, nc, i, d

 8 nsamps := 16

 9 longfill(@sampsBuf, 0, 16)

10

11 sampsBuf[14] := 12

12 d := -42

13 sampsBuf[15] := 12 + d

14 �nc := COMPR.COMPRESS (@sampsBuf, nsamps, @packBuf, 

@comprCodeBuf)

15 repeat i from 0 to nc -1

16 UARTS.HEX(DEBUG, packBuf [i], 2)

17 UARTS.PUTC(DEBUG, SPACE)

18

19 t0 := nc == 18

20 �TDD.ASSERT_TRUTHY (t0, string("Test that compressor 

sets nc correctly for samp 15"))

21 t0 := comprCodeBuf[0] >> 30 == %01

22 �TDD.ASSERT_TRUTHY (t0, string("Test that compressor 

sets compr code correctly for samp 15"))

23 t0 := packBuf [nc -1] == d & $FF

Chapter 9 Compression in PASM with TDD

189

24 �TDD.ASSERT_TRUTHY (t0, string("Test that compressor 

sets compr code correctly for samp 15"))

25

26 PRI TEST_THAT_SAMP16_PACKS_PROPERLY | t0, nc, i, d

27 nsamps := 17

28 longfill(@sampsBuf, 0, 17)

29

30 sampsBuf[15] := 12

31 d := -42

32 sampsBuf[16] := 12 + d

33 �nc := COMPR.COMPRESS (@sampsBuf, nsamps, @packBuf, 

@comprCodeBuf)

34 t0 := nc == 19

35 �TDD.ASSERT_TRUTHY (t0, string("Test that compressor sets 

nc correctly for samp 16"))

36 t0 := comprCodeBuf[1] & %11 == %01 '

37 �TDD.ASSERT_TRUTHY (t0, string("Test that compressor sets 

compr code correctly for samp 16"))

38 t0 := packBuf [nc -1] == d & $FF

39 �TDD.ASSERT_TRUTHY (t0, string("Test that compressor sets 

compr code correctly for samp 16"))

40

41 PRI TEST_THAT_SAMP127_PACKS_PROPERLY | t0, nc, i, d

42 nsamps := 128

43 longfill(@sampsBuf, 0, 128)

44

45 sampsBuf[126] := 12

46 d := -42

47 sampsBuf[127] := 12 + d

48 �nc := COMPR.COMPRESS (@sampsBuf, nsamps, @packBuf,

@comprCodeBuf)

49 t0 := nc == 130

Chapter 9 Compression in PASM with TDD

190

50 �TDD.ASSERT_TRUTHY (t0, string("Test that compressor sets 

nc correctly for samp 127"))

51 t0 := comprCodeBuf[7] >> 30 == %01 '

52 �TDD.ASSERT_TRUTHY (t0, string("Test that compressor sets 

compr code correctly for samp 127"))

53 t0 := packBuf [nc -1] == d & $FF

54 �TDD.ASSERT_TRUTHY (t0, string("Test that compressor sets 

compr code correctly for samp 127"))

In all these tests, we zero out sampsBuf and then set the last two

samples to known values. We run the compression and make sure the

number of compressed bytes is correct and that the packed array and

compression code array have the correct values.

9.5  �Success?
Did we speed things up? By how much?

nc= 382

dt= 29264

dt (ms) ~ 0

The Spin version took 1.5 million clocks, and the PASM version takes

29,000 clocks. This is a factor of 50 speedup. (Our original estimate was for

25,000 clocks in the PASM version, so that’s not bad.)

Let’s do a more comprehensive set of tests by writing a decompressor

in the next chapter.

Chapter 9 Compression in PASM with TDD

191

9.6  �Summary
In this chapter, we showed how to pass an array to a PASM cog. When a

new cog is launched, the address (in the hub) of a variable can be stored

in the PAR register, which the new cog can use. To pass arrays, we need

another level of indirection! The address at the start of the array is stored

in a memory location. The address of that memory location is passed to

the PASM cog in PAR (Listing 9-10 has a template that you can modify for

new programs). PASM requires that we pay attention to every detail of the

computation and build the “scaffolding” of our program from the ground

up, much as is shown in Figure 9-6 for a railroad bridge used by Union

Army during the Civil War.

Listing 9-10.  Template for passing parameters to a PASM cog that

uses both methods discussed in this chapter

 1 VAR

 2 long dataArray[100]

 3 long dataArrayPtr

 4

 5 PUB MAIN

 6 ' store the address of start of dataArray in dataArrayPtr

 7 dataArrayPtr := @dataArray

 8 ' pass the address of dataArrayPtr to the new cog in PAR

 9 cognew(@MYARRCOG, @dataArrayPtr)

10

11 DAT

12 MYARRCOG org 0

13 �' par has the address of dataArrayPtr, which is copied to r0

14 mov r0, par

15 �' doing a rdlong from that address gets the address of 

the start

Chapter 9 Compression in PASM with TDD

192

16 ' of dataArray

17 rdlong _cdataArrPtr, r0

18

19 �' doing a rdlong from _cdataArrPtr gets the first element 

of dataArray

20 rdlong _cdata, _cdataArrPtr

21 ...

22 ' increment to the next element of dataArray and get it ...

23 add _cdataArrPtr, #4

24 rdlong _cdata, _dataArrPtr

Figure 9-6.  Railroad bridge across Potomac Creek, 1863 or 1864.
“That man Haupt has built a bridge across Potomac Creek, about
400 feet long and nearly 100 feet high, over which loaded trains are
running every hour and, upon my word, gentlemen, there is nothing
in it but beanpoles and cornstalks!” —Abraham Lincoln, May 23,
1862. Library of Congress, ppmsca.11749.

Chapter 9 Compression in PASM with TDD

193© Sridhar Anandakrishnan 2018
S. Anandakrishnan, Propeller Programming, https://doi.org/10.1007/978-1-4842-3354-2_10

CHAPTER 10

Decompression
in PASM
In this chapter we will write a PASM decompressor. We will go in the

opposite direction from the compression code (flowchart in Figure 10-1):

converting the packBuf array to the sampsBuf array (using the comprCodeBuf

array to help in the reconstruction). In Figure 10-2, we have a great

picture demonstrating that what goes up must come down... and that

work can be fun!

194

Figure 10-1.  Flowchart for decompression of samples

Chapter 10 Decompression in PASM

195

Figure 10-2.  Riding the cog railway down. Mt. Washington Railway.
By Benjamin West Kilburn (1827–1909). Reproduced from an original
stereographic card published by Kilburn Brothers, Littleton, New
Hampshire, Public Domain, https://commons.wikimedia.org/w/
index.php?curid=20253073.

Chapter 10 Decompression in PASM

https://commons.wikimedia.org/w/index.php?curid=20253073
https://commons.wikimedia.org/w/index.php?curid=20253073

196

10.1  �Getting the Sign Right
Remember, packBuf contains sample 0 (the low 3 bytes) and differences

between the j-th and j-1 sample. The length of the difference is stored

(as 2 bits at the appropriate location) in the long array comprCodeBuf.

To regenerate the samples, we need to first get the difference value and

make it a proper long. Let’s say the difference between two samples was

equal to -200, which would be represented as a 2s-complement long:

11111111 11111111 11111111 0011 1000

Because the absolute value of the number is greater than 127, this will

be stored in 2 bytes in packBuf, as shown here:

To reconstruct the original number, we have to sign-extend the high bit

of the second byte. If that bit is 1 (as it is here), then we must put 1s in all

the bits of the upper 2 bytes as well.

10.2  �Overall Flowchart
Figure 10-1 shows the flowchart. We trigger the decompression by setting

N < 0 (myns) to signal the PASM cog that we want decompression rather

than compression (recall, for compression, we set N > 0).

The cog will read a compression code long and, based on the codes,

read the correct number of bytes from packBuf. It will then reconstruct a

sample. Every 16th sample, it will read a new compression code from hub

memory. Finally, after processing all the samples, it will set N = 0.

Chapter 10 Decompression in PASM

197

Once the PASM cog completes the decompression, it will set myns to

zero and set myncompr to the number of bytes read from packBuf during

the decompression. (This can be used as a check on the decompression; it

should be equal to ncompr from the compression stage.)

10.3  �Spin Code
Listing 10-1 shows the Spin code for decompression.

Listing 10-1.  Decompression Method in Spin That Triggers the

PASM Decompression Cog

 1 �PUB DECOMPRESS(psampsBuf, ns, ppackBuf, ncompr, pcomprcodeBuf)

 2 �" Inputs : psampsBuf - address of long array of samples 

(max len mymax)

 3 " ns - number of samples to decompress

 4 " ppackBuf - address of byte array of packed data

 5 �" �pcomprCodeBuf - address of long array of 

compression codes

 6 " Output : ncompr - number of bytes unpacked from packBuf

 7 " Modified : sampsBuf

 8 myns := 0

 9 myncompr := 0

10

11 sampsBufAddr := psampsBuf

12 packBufAddr := ppackBuf

13 comprCodeBufAddr := pcomprCodeBuf

14

15 ' this will start the decompression

16 ' set to negative ns to trigger decompression

Chapter 10 Decompression in PASM

198

17 myns := -ns

18

19 ' when myns is zero, the decompression is complete

20 repeat until myns == 0

21 return myncompr

10.4  �PASM: Main Decompression Loop
We will use the same cog as in the previous chapter but will trigger a

decompression if myns < 0 (in the previous chapter, myns > 0 was a signal

to start a compression). See Listing 10-2.

Listing 10-2.  Decompression Code in PASM; Initialization

 1 mov _ccodebitidx, #0

 2 mov _ccodelongidx, #0

 3

 4 ' ADD THESE LINES >>>

 5 ' check for compression or decompression ?

 6 abs r0, _cns wc ' C set if nsamps < 0

 7 if_c jmp #:decompress

 8 ' ADD THESE LINES <<<

 9

10 call #GET_SAMPLE

11 mov _cprev, _csamp ' save sample for diff

12 call #HANDLE_SAMP0

Here we add two lines in the initialization section: abs r0, cns wc will

take the absolute value of _cns and set C if _cns is negative. If so, jump to

:decompress.

Chapter 10 Decompression in PASM

199

Listing 10-3 shows the decompression code.

Listing 10-3.  Decompression Code in PASM; Details

 1 : decompress ' _cns negative

 2

 3 rdlong _ccomprcode, _ccomprcodebufptr

 4 mov _cncompr, #0

 5 mov _cj, #0

 6

 7 call #MK_SAMP0

 8 call #PUT_SAMPLE

 9

10 add _cj, #1 'sample number j

11 add _cns, #1 wz

12 if_z jmp #:donedecomp

13

14 ' and the rest of the samps

15 : loopdecompns

16 call #MK_SAMPJ

17 call #PUT_SAMPLE

18 add _cj, #1

19 add _cns, #1

20

21 ' every 16th sample, read a new comprcode long

22 test _cj, #15 wz

23 if_nz jmp #:testns

24 add _ccomprcodebufptr, #4

25 rdlong _ccomprcode, _ccomprcodebufptr

26

27 : testns

28 tjnz _cns, #:loopdecompns

Chapter 10 Decompression in PASM

200

29

30 : donedecomp

31 wrlong _cncompr, _cncomprPtr

32 ' signal decompression complete

33 wrlong _cns, _cnsPtr

34 jmp #:mainLoop

You should recognize most of the code, explained here:

•	 Lines 3–5: Get the first compression code long and

initialize the variables ncompr and j.

•	 Lines 7–8: Make sample 0 from packBuf and write it to

sampsBuf in the hub (subroutines are explained in the

next section).

•	 Lines 10–12: Here we add 1 to _cns because it starts

out at -ns. When it is zero, we are done.

•	 Lines 15–28: Loop over the remaining samples.

•	 Lines 22–25: During this loop, every 16th sample, read

a new compression code long from hub memory.

•	 Lines 28–34: Once we have processed all the samples,

set myncompr to the number of bytes read from packBuf

and set myns to zero to signal the completion of

decompression.

Chapter 10 Decompression in PASM

201

10.5  �Subroutines for Unpacking
Listings 10-4, 10-5 and 10-6 shows the three new subroutines.

Listing 10-4.  Decompression Code in PASM; Subroutine to Save a

Sample to the Hub After Reconstruction

1 PUT_SAMPLE

2 ' put a sample from _csamp to HUB sampsBuf

3 wrlong _csamp, _csampsbufPtr

4 add _csampsbufPtr, #4

5 PUT_SAMPLE_ret ret

PUT SAMPLE should be obvious: write the reconstructed sample back to

hub memory and increment the pointer. See Listing 10-5.

Listing 10-5.  Decompression Code in PASM; Subroutine to

Reconstruct the First Sample

 1 MK_SAMP0 ' decompress samp 0

 2 ' read from HUB packbuf to _csamp for samp0 (3 bytes)

 3 mov r0, #0

 4 mov _csamp, #0

 5 :read3

 6 rdbyte r1, _cpackbufPtr

 7 shl r1, r0

 8 or _csamp, r1

 9 add _cpackbufPtr, #1

10 add r0, #8

11 cmp r0, #24 wz

12 if_nz jmp #:read3

13

14 rol _csamp, #8 ' sign extend

15 sar _csamp, #8

Chapter 10 Decompression in PASM

202

16

17 ' update ncompr and code

18 add _cncompr, #3

19 shr _ccomprcode, #2 ' remove samp0 code ...

20 MK_SAMP0_ret ret

MK_SAMP0 reads 3 bytes from packBuf and places them in the correct

spots in _csamp.

•	 Lines 3–4: r0 is the number of bits to shift each byte

of packBuf. r1 is the current byte read from packBuf

and shifted by 0, then 8, then 16 bits (bytes 0, 1, and 2,

respectively).

•	 Lines 5–12: Loop three times to :read3 (r0 = 0, 8, and 16).

When r0==24, break out of the loop. The sign bit for the

sample isn’t correctly set yet (the upper byte, which is

byte 3, containing bits 31–24 are all zero. However, if the

sample was originally negative, those bits should all be 1.

Luckily, that information (about whether the sample was

originally negative or positive) is in the most significant

bit of byte 2 (bit 23). If the sample was originally negative

before compression, bits 23 would have been 1; if the

sample was positive, bit 23 would be 0. The instruction

rol _csamp, #8 shifts bits 23–0 up to bits 31–8, and

sar _csamp, #8 then shifts the bits back to the right but

preserves the sign of the long. In other words, we shift bit

23 to bit 31 (rol) and then shift bit 31 back to 23, but if

it is a 1, then bits 31–23 are set to 1. If that MSB is a zero,

then those bits are set to 0.

•	 Lines 18–19: Update ncompr and comprCode.

Chapter 10 Decompression in PASM

203

Finally, Listing 10-6 shows the reconstruction of the j-th sample by

properly making the difference and adding it to the previous sample.

Listing 10-6.  Decompression Code in PASM; Subroutine to

Reconstruct a Sample

 1 MK_SAMPJ

 2 mov r0, #0 ' number of bytes

 3 mov _cdiff, #0

 4 mov r1, _ccomprcode

 5 �and r1, #3 ' get compr code for this samp. (2 low bits)

 6 shr _ccomprcode, #2 ' and prep for next loop ...

 7

 8 ' byte 0 - right most

 9 rdbyte r2, _cpackbufPtr

10 add _cpackbufPtr, #1

11 mov _cdiff, r2

12 add r0, #1

13 cmp r1, _ccode08 wz ' check r1 (code)

14

15 if_z jmp #:shiftde

16

17 ' byte 1

18 rdbyte r2, _cpackbufPtr

19 add _cpackbufPtr, #1

20 rol r2, #8

21 or _cdiff, r2

22 add r0, #1

23

24 cmp r1, _ccode16 wz

25 if_z jmp #:shiftde

26

Chapter 10 Decompression in PASM

204

27 ' byte 2

28 rdbyte r2, _cpackbufPtr

29 add _cpackbufPtr, #1

30 rol r2, #16

31 or _cdiff, r2

32 add r0, #1

33

34 : shiftde

35 �' set the sign of the diff correctly by sign extending ...

36 ' 1 byte diff ...

37 cmp r0, #1 wz

38 if_nz jmp #:sh2

39 rol _cdiff, #24 ' sign extend

40 sar _cdiff, #24

41 jmp #:donede

42

43 ' 2 byte diff ...

44 :sh2

45 cmp r0, #2 wz

46 if_nz jmp #:sh3

47 rol _cdiff, #16 ' sign extend

48 sar _cdiff, #16

49 jmp #:donede

50

51 ' 3 byte diff ...

52 :sh3

53 rol _cdiff, #8 ' sign extend

54 sar _cdiff, #8

55

56 : donede

Chapter 10 Decompression in PASM

205

57 ' add sample to prev

58 add _csamp, _cdiff

59 �' now mask off the high byte and sign extend the 3 lower

60 rol _csamp, #8

61 sar _csamp, #8

62 add _cncompr, r0 ' update ncompr

63 MK_SAMPJ_ret ret

MK SAMPJ tests the value of the compression code for the j-th sample

and reads 1, 2, or 3 bytes from packBuf accordingly. It writes those bytes

to _cdiff (with the dance of shifting left and right to get the sign right) and

then adds _cdiff to _csamp to get the current sample (again, with the shift

left/right dance).

•	 Lines 2–6: Initialize variables. r0 is number of bytes

to read, r1 is the compression code, and r2 will be the

byte read from packBuf.

•	 Lines 9–15: Read a byte, place it in _cdiff, and check

the code to see whether we are done.

•	 Lines 13–25: If code was CODE08, then we’re done. If

not, then get another byte, shift it left by 8, and or it

with _cdiff.

•	 Lines 28–32: Again, these lines will properly set byte 2

if necessary (if the compression code is CODE16).

•	 Lines 34–54: If only 1 byte was read (r0==1), then shift _

cdiff by 24 bits up and then back down. If 2 bytes were read,

then shift by 16; if 3 were read, then shift by 8; and so on.

•	 Lines 58–62: Add _cdiff to _csamp (the previous sample),

shift it up by 8, and then shift it back down and return.

Chapter 10 Decompression in PASM

206

10.6  �Testing Decompression of Two
Samples

The testing is straightforward: compress the samples and then decompress

them. In between the compression and decompression, I set sampsBuf

to zero, so I know that the values in sampsBuf after decompression were

in fact generated by the decompression code. Compare these values for

sampsBuf with the original numbers.

 1 PUB MAIN

 2 ...

 3 TEST_THAT_SAMP0_IS_PROPERLY_UNPACKED

 4 TEST_THAT_SAMP1_IS_PROPERLY_UNPACKED

 5 ...

 6 �PRI TEST_THAT_SAMP0_IS_PROPERLY_UNPACKED | t0, nc, nc1, ns, d

 7 nsamps := 1

 8 d := $FF_FF_AB_CD

 9 sampsBuf[0] := d

10 �nc := COMPR.COMPRESS (@sampsBuf, nsamps, @packBuf, 

@comprCodeBuf)

11 sampsBuf[0] := 0

12

13 �nc1 := COMPR.DECOMPRESS (@sampsBuf, nsamps, @packBuf, 

nc, @comprCodeBuf)

14

15 t0 := (nc == nc1) & (sampsBuf[0] == d)

16 �TDD.ASSERT_TRUTHY (t0, string (" Test that sample 0 is 

properly unpacked from packBuf "))

17

18 �PRI TEST_THAT_SAMP1_IS_PROPERLY_UNPACKED | t0, nc, nc1, 

ns, s0, s1

Chapter 10 Decompression in PASM

207

19 nsamps := 2

20 s0 := $FF_FA_09_19

21 s1 := $FF_FA_4F_2E

22 sampsBuf[0] := s0

23 sampsBuf[1] := s1

24 �nc := COMPR.COMPRESS (@sampsBuf, nsamps, @packBuf, 

@comprCodeBuf)

25 sampsBuf[0] := 0

26 sampsBuf[1] := 0

27

28 �nc1 := COMPR.DECOMPRESS (@sampsBuf, nsamps, @packBuf, nc, 

@comprCodeBuf)

29 t0 := (nc == nc1) & (sampsBuf[1] == s1)

30 �TDD.ASSERT_TRUTHY (t0, string(" Test that sample 1 is 

properly unpacked from packBuf "))

The test should pass, as shown here:

Test that sample 0 is properly unpacked from packBuf

...ok

Test that sample 1 is properly unpacked from packBuf

...ok

Chapter 10 Decompression in PASM

208

10.7  �Testing Decompression of 128
Samples

OK, that worked. Let’s try it with 128 samples. We will generate 128

pseudorandom numbers. Listing 10-7 shows the Spin instructions.

Listing 10-7.  Testing the Decompression Code; 128 Samples

Initialized

 1 j := 0

 2 sampsBuf[j] := cnt ' seed it with counter

 3 ?sampsBuf[j] ' pseudorandom number

 4 sampsBuf[j] &= $FF_FF_FF ' low 3 bytes only

 5

 6 sampsBuf[j] <<= 8 ' sign extend

 7 sampsBuf[j] ~>= 8

 8 sav[j] := sampsBuf[j]

These instructions will seed the sample with the current value of the

counter and then use that seed to look up a pseudorandom number. The

number has to be limited to 3 bytes, so we mask off those 3 bytes and then

sign-extend the upper bit.

The compression, decompression, and testing are done as shown in

Listing 10-8.

Listing 10-8.  Testing the Decompression Code; Stub Showing Test

Results

 1 �nc := COMPR.COMPRESS (@sampsBuf, nsamps, @packBuf, 

@comprCodeBuf)

 2

 3 repeat j from 0 to nsamps -1

 4 sampsBuf[j] := 0

Chapter 10 Decompression in PASM

209

 5

 6 �nc1 := COMPR.DECOMPRESS (@sampsBuf, nsamps, @packBuf, nc, 

@comprCodeBuf)

 7

 8 t0 := (nc == nc1)

 9 repeat j from 0 to nsamps -1

10 t1 := (sampsBuf[j] == sav[j])

11 t0 &= t1

The samples are compressed, the sampsBuf array is cleared, and the

samples are decompressed. We then check that the number of compressed

and decompressed bytes is equal (nc==nc1) and that the samples are equal

to their saved values.

 1 PUB MAIN

 2 ...

 3 TEST_THAT_128_SAMPS_PROPERLY_COMPRESS_AND_DECOMPRESS

 4 ...

 5 �PRI TEST_THAT_128_SAMPS_PROPERLY_COMPRESS_AND_DECOMPRESS | 

t0, t1, j, nc, nc1, sav [128]

 6 nsamps := 128

 7

 8 j := 0

 9 sampsBuf[j] := cnt ' seed it with counter

10 ?sampsBuf[j] ' pseudorandom number

11 sampsBuf[j] &= $FF_FF_FF ' low 3 bytes only

12

13 sampsBuf[j] <<= 8 ' sign extend

14 sampsBuf[j] ~>= 8

15 sav[j] := sampsBuf[j]

16

17 repeat j from 1 to nsamps -1

Chapter 10 Decompression in PASM

210

18 sampsBuf[j] := sampsBuf[j -1]

19 ?sampsBuf[j] ' pseudorandom numbers

20 sampsBuf[j] &= $FF_FF_FF ' low 3 bytes only

21 sampsBuf[j] <<= 8 ' sign extend

22 sampsBuf[j] ~>= 8

23 sav[j] := sampsBuf[j]

24

25 �nc := COMPR.COMPRESS (@sampsBuf, nsamps, @packBuf, 

@comprCodeBuf)

26

27 repeat j from 0 to nsamps -1

28 sampsBuf[j] := 0

29

30 �nc1 := COMPR.DECOMPRESS (@sampsBuf, nsamps, @packBuf, nc,

 @comprCodeBuf)

31

32 t0 := (nc == nc1)

33 repeat j from 0 to nsamps -1

34 t1 := (sampsBuf[j] == sav[j])

35 t0 &= t1

36

37 �TDD.ASSERT_TRUTHY (t0, string(" Test that compression 

and decompression of 128 random numbers is successful "))

Next run the test, as shown here:

Test that compression and decompression of 128 random numbers

is successful

***FAIL

Oh no! What went wrong? Let’s do some debugging in the next chapter.

As you can see in Figure 10-3, there are real-world consequences to

engineering or user mistakes!

Chapter 10 Decompression in PASM

211

Figure 10-3.  Derailment at Eastwood Junction, 1948. https://
upload.wikimedia.org/wikipedia/commons/4/4a/Derailment_at_
Eastwood%2C_1948_%285247093755%29.jpg.

Chapter 10 Decompression in PASM

https://upload.wikimedia.org/wikipedia/commons/4/4a/Derailment_at_Eastwood,_1948_(5247093755).jpg
https://upload.wikimedia.org/wikipedia/commons/4/4a/Derailment_at_Eastwood,_1948_(5247093755).jpg
https://upload.wikimedia.org/wikipedia/commons/4/4a/Derailment_at_Eastwood,_1948_(5247093755).jpg
https://upload.wikimedia.org/wikipedia/commons/4/4a/Derailment_at_Eastwood,_1948_(5247093755).jpg
https://upload.wikimedia.org/wikipedia/commons/4/4a/Derailment_at_Eastwood,_1948_(5247093755).jpg

213© Sridhar Anandakrishnan 2018
S. Anandakrishnan, Propeller Programming, https://doi.org/10.1007/978-1-4842-3354-2_11

CHAPTER 11

Debugging PASM
Code
It is relatively straightforward to debug Spin code. You can insert

commands to print the value of variables to the terminal. This is a time-

honored way to debug code, and though tedious, it works. In Listings 11-1

and 11-2, I show how I monitor the value of a variable.

Listing 11-1.  Debugging Spin Code with Print Commands

1 PUB MAIN

2 ...

3 UARTS.STR(DEBUG, string(" nsamps = "))

4 UARTS.DEC(DEBUG, nsamps)

5 UARTS.PUTC(DEBUG, CR)

Insert print statements like this in your Spin code, and you can

examine the value of variables at different places.

I find that the verbose set of commands gets inconvenient, so I have

defined a method called PRINTF.

214

Listing 11-2.  Convenience Method to Print Out a Variable’s Value

 1

 2 PUB MAIN

 3 ...

 4 PRINTF(DEBUG, string(" nc "), nc, 1)

 5 ...

 6 '

 7 �' Convenience method to print `n' to port `p' with the 

following format :

 8 ' PRINTF(DEBUG, string(" nc "), nc, 1)

 9 ' nc :3, 0x03, 0 b0000011

10 PRI PRINTF(p, lbl, n, len)

11 ' p is the serial port, lbl is the string label

12 ' n is the number to print

13 �' len is the number of bytes to display in the hex and binary

14 UARTS.STR(p, lbl)

15 UARTS.PUTC(p, COLON)

16 UARTS.DEC(p, n)

17 UARTS.STR(p, string(COMMA, " 0x"))

18 UARTS.HEX(p, n, len *2)

19 UARTS.STR(p, string(COMMA, " 0b"))

20 UARTS.BIN(p, n, len *8)

21 UARTS.PUTC(p, CR)

22 UARTS.PUTC(p, LF)

We can’t do the same in PASM code, though. There isn’t a simple

way to print to the terminal from PASM code, so I will demonstrate two

different methods for examining variable values in PASM. These methods

of debugging are referred to as logging (see Figure 11-1 for another

example of logging; the size of those logs is astonishing and the sight of

them cut down is quite sad!)

Chapter 11 Debugging PASM Code

215

11.1  �Logging to a Hub Array
The first logging technique is to save values to a hub array that can be

printed out at leisure. The second is to write a long from one cog to another

(from a PASM cog to a Spin cog) using a set of hardware pins and Serial

Peripheral Interface (SPI). Here I will look at the first technique.

We already looked at the SPI logging in Chapter 7.

	 1.	 We will define a new array in Spin called logBuf.

	 2.	 We will define a new variable in the PASM code

called clogBufPtr.

	 3.	 Before the cog is launched, we will place the address

of logBuf into clogBufPtr.

Recall from Chapter 6 that there are two ways to pass parameters to a

PASM cog: by using the cognew command and by storing the parameter in the

cog code before it is launched. We are using the second method in Listing 11-3.

Figure 11-1.  Redwood logs on train from forest to mill. https://
upload.wikimedia.org/wikipedia/commons/9/9a/Redwood_
Logging_Train.jpg.

Chapter 11 Debugging PASM Code

https://upload.wikimedia.org/wikipedia/commons/9/9a/Redwood_Logging_Train.jpg
https://upload.wikimedia.org/wikipedia/commons/9/9a/Redwood_Logging_Train.jpg
https://upload.wikimedia.org/wikipedia/commons/9/9a/Redwood_Logging_Train.jpg
https://upload.wikimedia.org/wikipedia/commons/9/9a/Redwood_Logging_Train.jpg

216

Listing 11-3.  Debugging PASM Code by Passing the Address of the

Log Buffer in a Register

 1 CON

 2 LOGLEN = 256

 3

 4 VAR

 5 logBuf[LOGLEN]

 6

 7 PUB START

 8 _clogBufPtr := @logBuf

 9 ccogid := cognew(@STEIM, @myns)

10 ...

11

12 DAT 'pasm cog

13 STEIM ORG 0

14

15 ... instructions

16 rdlong _cns _cnsPtr wz

17

18 ... variables

19 _ccode24 long CODE24

20

21 _clogBufPtr long 0

22

23 ... reserved space

24 _cnsPtr res 1

25

26 FIT 496

27 ... system registers (PAR, CNT, etc)

Chapter 11 Debugging PASM Code

217

We can now write to logBuf from PASM, and the Spin code can print

out those values. There is one important caveat: the PASM code and the

Spin code run at very different speeds. The PASM code will populate the

logBuf array, and at some later time, the Spin code will print it out. For

that reason, you should include a label during logging. This label will

be some unique identifier that tells you where the log value was written,

during which iteration of the loop, and so on.

11.2  �Spin Code
Add the following to steim_pasm.spin:

 1 CON

 2 LOGLEN = 256

 3 ...

 4 VAR

 5 byte logIdx

 6

 7 long logBuf[LOGLEN]

 8

 9 PUB GETLOG

10 '' return address of log array

11 return @logBuf

12

13 PUB GETLOGLEN

14 '' return length of log

15 return logIdx

Here we define a new array where the log values will be stored, as

well as new methods GETLOG and GETLOGLEN that return the address and

populated length of that array.

Chapter 11 Debugging PASM Code

218

In the main Spin file steim_pasm_Demo.spin, you can use the code in

Listing 11-4 to print out the contents of the log array.

Listing 11-4.  Debugging PASM Code by Sharing a Log Buffer;

Spin Code

 1 VAR

 2 byte loglen

 3 long logBufPtr

 4

 5 PUB MAIN

 6 ...

 7

 8 logBufPtr := COMPR.GETLOG

 9 loglen := COMPR.GETLOGLEN

10 repeat j from 0 to loglen -1

11 UARTS.HEX(DEBUG, long [logBufPtr][j], 8)

11.3  �PASM Code
Populating the log array is done with wrlong instructions in PASM. The

hub address of the log array is available in _clogBufPtr. We first save that

value to _clogBufPtrSav so that we can reset to that location when we

reach the end of the array.

In Listing 11-5, we implement the logging code. In addition to

the storage for the logged data itself, we define a variable _clogIdx

and a constant _clogMaxIdx. Every time we write to the log array, we

increment the former; when the index reaches the end of the array, we

reset the index to the beginning of the array.

Chapter 11 Debugging PASM Code

219

Listing 11-5.  Debugging PASM Code by Sharing a Log Buffer; PASM

Code

 1

 2 mov r0, par

 3 add r0, #16

 4 rdlong _ccomprcodebufPtr, r0

 5

 6 ''>>> ADD THIS TO INITIALIZATION SECTION OF PASM CODE

 7 call #INIT_LOG

 8 ''<<<

 9 mov _cj, #0 ' j-th samp

10

11 ''>>> ADD THESE SUBROUTINE DEFENITIONS

12 INIT_LOG

13 mov _clogIdx, #0

14 mov _clogBufPtr, _clogBufPtrSav

15 INIT_LOG_ret ret

16

17 LOG

18 '' write logVal to logBuf

19 '' increment logIdx

20 '' treat as circular buffer

21 wrlong _clogVal, _clogBufPtr

22 add _clogBufPtr, #4

23 add _clogIdx, #1

24 wrlong _clogIdx, _clogIdxPtr

25

26 ' wrap around ?

Chapter 11 Debugging PASM Code

220

27 test _clogIdx, _clogMaxIdx wz

28 if_nz jmp #:logdone

29

30 mov _clogIdx, #0

31 mov _clogBufPtr, _clogBufPtrSav

32 :logdone

33 LOG_ret ret

34

35 ...

36

37 ''>>> ADD THESE VARIABLE DECLARATIONS

38 _clogMaxIdx long LOGLEN -1 ' 0 to loglen -1

39 _clogIdx long 0

40 _clogVal long 0

41

42 _clogBufPtr long 0

43 _clogBufPtrSav long 0

44 ...

The LOG subroutine keeps track of the index into the log array and

resets to the start when it reaches the end. It writes the value in _clogVal

to the current address in the log array, increments that address, and resets

the address to the beginning of the array if needed.

Chapter 11 Debugging PASM Code

221

11.4  �Bug Fix
The failure at the end of the previous chapter can now be tracked down. By

placing the following statements at strategic places, I discovered that I had

made a mistake in writing the compression code longs:

mov _clogVal, xxx

call #LOG

When there are 128 samples, the compression code array is 8 longs in

length (2 bits per sample). However, I was mistakenly writing a ninth long,

which overwrote memory of another array. (As it turns out, this was the

packBuf array, but it could have been anything.)

Figure 11-2 shows the compression flowchart again, but I have added

a check to the right of “16th samp?” shape. If this is also the last sample,

jump out of the loop and finalize.

Chapter 11 Debugging PASM Code

222

Figure 11-2.  Flowchart for processing samples, with addition of
a check for the final sample before writing the compression code.
Compare this figure to Figure 9-1.

Chapter 11 Debugging PASM Code

223

If, for example, there are exactly 16 samples to compress, the

compression code is written only once.

On the first sample to the 15th sample, control flows down from “16th

samp?” to “Done?” and then back up to “16th samp?”

On the last sample, the “16th samp?” query is true, so we go to the

right, but the “Done?” query is also true, so we exit the loop and write the

compression code at the end (without that question, we would write the

compression code twice). In Figure 11-3, we show the consequences of

over-running ones bounds!

Chapter 11 Debugging PASM Code

224

Figure 11-3.  Train wreck at Gare Montparnasse, Paris, 1895. The
train entered the station at a dangerously fast 40–60km/hr, and when
the air brake on the locomotive failed, the train crossed the entire
concourse (100m) and crashed through a 60cm thick wall before
falling to the street below.

PASM code will allow you modify any memory location. There is no
checking of array lengths or bounds. It’s all up to you!

Chapter 11 Debugging PASM Code

C Language

PART III

227© Sridhar Anandakrishnan 2018
S. Anandakrishnan, Propeller Programming, https://doi.org/10.1007/978-1-4842-3354-2_12

CHAPTER 12

C Programming
for the Propeller
Parallax and the community have put enormous effort into bringing a C

compiler to the Propeller. The advantage to using C is that it is a stable,

established language with a large knowledge base. In addition, there are

hundreds of books and web sites devoted to teaching C, and you can use

many libraries and pieces of example code in your programs. Many of the

programs that run the backbone (or the engine, Figure 12-1) of the Internet

are written in C.

228

Figure 12-1.  In the engineer’s cab on the Chicago and Northwestern
Railroad. Photographer Jack Delano, Library of Congress, Farm
Security Administration archives (https://goo.gl/pHmY5t).

Chapter 12 C Programming for the Propeller

https://goo.gl/pHmY5t

229

12.1  �The C Language
This section is a short primer on C. I encourage you to get a copy of The C

Programming Language by Brian Kernighan and Dennis Ritchie, which is

the authoritative guide to C. Here are a few important rules to remember:

•	 C is case sensitive.

•	 Statements must end with a semicolon (;).

•	 Blocks are enclosed in paired curly braces (indentation

is not important).

1 while (x < 100) {

2 x += 1;

3 }

•	 Block comments have /* at the beginning and */ at the

end. Line comments start with //.

•	 Variable naming follows the same rules as in Spin.

•	 Numbers are in decimal if naked, hexadecimal if

preceded by 0x, and binary if preceded by b.

1 /* a block comment

2 * three assignments that do the same thing

3 */

4 x = 42; // decimal . This is a line comment

5 x = 0x2A; // hex

6 x = b00101010; // binary

Here are some Spin and C parallels:

•	 CON: The equivalent of the CON block in Spin is the

#define statement, as shown in Listing 12-1.

Chapter 12 C Programming for the Propeller

230

Listing 12-1.  define Statements in C

1 #define NSAMPS_MAX 128

OBJ: The equivalent of the OBJ block in Spin is the #include statement,

as shown in Listing 12-2.

Listing 12-2.  #include Statements in C

1 #include <stdio.h>

2 #include <propeller.h>

VAR: Variables can be defined as either local variables that are

available only within a function or as global variables that are available to

all functions in the program. To define (reserve space for) a variable, do the

following:

1 int nsamps, ncompr;

2 char packBuf[512];

3 unsigned int spiSem;

Variable definitions are either for individuals (nsamps, etc.) or for arrays

(packBuf[512]). The type of the variable precedes its name. Variables types

are the integers char, short, int (8-, 16-, and 32-bit, respectively), and a

32-bit float. The integer types can be either signed or unsigned.

Assignment and math: These are similar to Spin but use an equal sign

instead of :=. Addition, multiplication, and division are the same as in Spin.

The modulo operator is the percent sign (%).

1 int x, y, z;

2 x = 12;

3 x += 42;

4 y = x/5; // integer division

5 z = x % 5; // remainder of x/5

6 z = x++; // post - increment: increment x, and store in z

7 z = ++x; // pre - increment: store x in z, then increment x

Chapter 12 C Programming for the Propeller

231

Relational and logical operators: These are similar to Spin, but with

these differences:

•	 The not equal operator is !=.

•	 The AND operator is && and the OR operator is ||.

•	 The NOT operator is !.

•	 The “less-than-or-equal and “greater-than-or-equal”

relations are <= and >=.”

In conditional statements, 0 (zero) is false, and any nonzero value

is true.

Flow control: There are four flow control statements.

•	 This is a for loop:

 1 /* for (<init >; <end condition >; <per - loop action >)

 2 * The most common for - loop runs N times

 3 * number of times as below.

 4 * An infinite loop is for (;;) { <stmts > }.

 5 * (you can have blank init, end or per - loop)

 6 */

 7 for(i=0; i<N; i++) {

 8 x++;

 9 y--;

10 }

•	 These are while and do...while:

 1 // while loop. The block only runs if the relation is true.

 2 while (x < 100) {

 3 y++;

 4 }

 5 // do ... while loop. The block always runs once

 6 // and then check the relation.

Chapter 12 C Programming for the Propeller

232

 7 do {

 8 y++

 9 } while (x < 100);

•	 This is a switch...case:

 1 switch(menuItems) {

 2 case MENUITEM0: // if menuItems == MENUITEM0,

 3 do_menu0(); // execute block up to the break.

 4 break;

 5 /*** DANGER **

 6 * you must have a break at the end

 7 * of the case block.

 8 * the break will return control to the switch.

 9 * without the break, control will pass to the

10 * next case block.

11 *** YOU WERE WARNED **

12 */

13 case MENUITEM1:

14 do_menu1();

15 break;

16 default: // you can include a case that handles

17 // unknown values

18 handle_unknownMenu();

19 }

Pointers and arrays: Every variable and array has a memory address.

The address of variables is given thusly:

 1 int x;

 2 /* this defines a pointer to an int */

 3 int *px;

Chapter 12 C Programming for the Propeller

233

 4 x = 42;

 5

 6 /* this obtains the address of x and stores it in px */

 7 px = &x;

 8

 9 /* this obtains the value stored at the location

10 pointed to by px */

11 y = *px; // now y is 42

Arrays are stored in contiguous memory, and the address of the array is

the address of the first element of the array.

 1 int sampsBuf[128];

 2 int packBuf[512];

 3

 4 // arrays are zero -based, sampsBuf[0]... sampsBuf[127]

 5 y = sampsBuf[12];

 6

 7 // the memory address of an array is obtained by

 8 // referring to the array.

 9 // the n-th element of the array is obtained by

10 // adding n to the address, treating that as a pointer

11 // here we get the 12 th element (12 th int) of sampsBuf

12 y = *(sampsBuf +12);

13

14 // the compiler knows that packbuf is a char array

15 // so packBuf +12 refers to the 12 th element (12 th byte),

16 // in this case

17 z = *(packBuf +12);

Chapter 12 C Programming for the Propeller

234

Pointer arithmetic is needed when you want to modify the value of

variables in a function.

 1 ...

 2 int main() {

 3 int x = 42;

 4 int y;

 5 int *px = &x;

 6 y = incrementNum(x);

 7 // x is still 42, but y is 43.

 8 incrementNumPtr (px);

 9 // x is now 43.

10 }

11

12 /* incrementNum - increment a variable

13 * args: n - variable to be incremented

14 * return: incremented value

15 */

16 �int incrementNum(int n) { // n is a local copy of x. x is 

unaffected.

17 return (n++);

18 }

19

20 /* incrementNumPtr - increment the value of a variable.

21 * args: *pn - a pointer to an int

22 * return: none

23 * effect: the variable pointed to by pn is incremented

24 */

25 void incrementNumPtr(int *pn) {

26 // pn is a pointer to the int, and *pn is the int itself

27 �*pn++; // * binds tightly, so parens (* pn)++ not needed.

28 }

Chapter 12 C Programming for the Propeller

235

12.2  �Programming the Propeller in C
To program the Propeller with C code, we have to recognize a few

constraints of the device. The first, and most critical, is that hub memory

is limited to 32KB and that cog RAM is limited to 2KB. Next, the Propeller

has eight cogs, and the C compiler and linker have to handle launching

new cogs properly. In this book, I will discuss three cases (cases that I think

cover most of the likely projects).

SimpleIDE creates a workspace when you first install it. If you
have downloaded the repository from https://github.com/
sanandak/propbook-code.git, then there is a SimpleIDE
workspace in propbook-code. Select Tools ➤ Properties and set
the workspace to the downloaded directory (.../propbook-code/
SimpleIDE).

•	 If the size of the C program (after compiling) is less

than approximately 30KB, then it will fit entirely in

hub memory. The compiler will place your code into

hub along with a kernel (approximately sized 2KB, for

a total size of less than 32KB). The kernel is a program

that copies instructions from your code into a cog and

executes them. This is known as the large memory

model (LMM). The main drawback of LMM is that

every instruction resides in the hub and is copied to cog

memory before execution, slowing down the program.

In almost every way, though, this is a standard C

program. Cogs can be launched and stopped; the

counters and special registers like ina and outa can be

read and set; the locks can be used; and so on.

Chapter 12 C Programming for the Propeller

https://github.com/sanandak/propbook-code.git
https://github.com/sanandak/propbook-code.git

236

•	 If there is a need for a faster speed from some part

of the program, we can place that C code in a Cog-C

file (with the extension .cogc). This part of the code

must compile to assembly code that is less than 2KB in

size, and it will be placed into cog RAM and run at full

speed. The rest of the program will continue to operate

under LMM mode. I call this the mixed-mode Cog-C

model. The advantage is that the program will run at

full speed. The drawback is that the assembly code

produced by the compiler may not be as efficient as

code that you write.

•	 The final model is where the speed-critical code is

written in PASM and is saved on a cog. This cog is now

fully under your control. You can optimize it for your

needs (of course, as with the previous case, the code

has to be less than 2KB in size). The rest of the code

continues to run under LMM. This is called the mixed-

mode PASM model.

12.2.1  �SimpleIDE
To write the code, compile and link it, download it to the Propeller, and

view the output, we will use the SimpleIDE application, which is an

integrated development environment (IDE). This is a cross-platform IDE

(Windows, Linux, and macOS) that is aware of all three of the models and

does the detailed work of compiling the programs correctly and linking

them in the right way.

The place to start with SimpleIDE is at http://learn.propeller.com

where you can download the program and step through a series of

excellent tutorials on using the program and developing LMM projects

(see Figure 12-2).

Chapter 12 C Programming for the Propeller

http://learn.propeller.com/

237

There are three tabs in the Project Manager: the Project Options tab,

the Compiler tab, and the Linker tab. The settings shown in Figure 12-3 are

good for the examples in this book, so make sure you set yours properly.

Figure 12-2.  SimpleIDE window with Project Manager button, Build
Window button (at bottom of picture), and Build button (the hammer
at the top of the picture) highlighted

Figure 12-3.  Settings for the Project Options, Compiler, and
Linker tabs

Chapter 12 C Programming for the Propeller

238

12.2.2  �Hello World
After installing SimpleIDE, you will have a number of examples in the

Propeller GCC Demos folder (in the SimpleIDE workspace). One of those

is called Welcome. Open the project file Welcome.side and build it; you

should see messages in the build window ending with “Build Succeeded!”

At the bottom of the window a message shows the size of the program

(in this case, about 7KB). If the program successfully builds, you can

download and run it on the Propeller and have the output displayed on a

terminal by clicking the icon at the top that shows a screen with an arrow.

I have modified the code slightly, but it is very straightforward, as

shown in Listing 12-3.

Listing 12-3.  Hello World Program in C (SimpleIDE/My Projects/

ch11/Welcome.c)

 1 # include <stdio.h>

 2 # include <propeller.h>

 3

 4 int main(void) {

 5 int n = 1;

 6 while (1) {

 7 waitcnt(CLKFREQ/10 + CNT);

 8 printf(" Hello World %d\n", n);

 9 n++;

10 }

11 return 0;

12 }

Lines 1–2: The stdio library has the printf function. However,

because it is a complex (and large) function, the Compiler tab includes

the option to use a “Simple printf” that reduces the size somewhat. The

propeller library has the Propeller-specific functions such as waitcnt and

waitpeq and the special registers such as CNT, INA, and so on.

Chapter 12 C Programming for the Propeller

239

Lines 4–13: The main program is similar to the PUB MAIN method in

Spin. This function shouldn’t exit; it should initialize some variables and

then enter an infinite loop.

Line 5: Define the variable n and initialize it to 1.

Line 6: Enter an infinite loop.

Line 7: waitcnt is similar to the waitcnt in Spin, but it has only one

argument. The processor will pause at this line until the counter value is

equal to the argument of waitcnt. In this case, this is the current count

value plus 1 second. The variable CLKFREQ contains the number of counts

in 1 second (generally 80 million at top speed, but it depends on the

external crystal and the phase-locked loop value).

Line 8: The printf function prints a formatted string to the terminal.

Look at the manual page for printf for how to format numbers. In short,

%d prints a decimal number, %x prints the number in hexadecimal format,

and %f prints a floating-point value.

Line 9: Increment the value of n.

Running the program will result in the following in the terminal

window with a new message every tenth of a second:

Hello World 1

Hello World 2

Hello World 3

...

12.2.3  �Launching a New Cog
To launch a new cog in LMM, we must define a function and then pass that

function to the cogstart function.

Start a new C project (Open ➤ New) named compr_cog0. Set the

Project Options, Compiler, and Linker options as before.

Chapter 12 C Programming for the Propeller

240

For the purposes of display and discussion, I have split the file compr_

cog0.c into three separate parts, but really all three parts are in one file.

Every multicog program will have these three parts.

Part 1 in Listing 12-4 is the front matter where the libraries are

included, the shared memory for the stack and the shared variables is set

aside, and the constants are defined.

Listing 12-4.  Part 1: Front Matter for File compr_cog0.c

 1 /*

 2 compr - cog0.c - start a new cog to perform compression.

 3 */

 4

 5 /* libraries */

 6 # include <stdio.h>

 7 # include <propeller.h>

 8

 9 /* defines */

10

11 // size of stack in bytes

12 # define STACK_SIZE_BYTES 200

13 // compression constants

14 # define NSAMPS_MAX 128

15 # define CODE08 0b01

16 # define CODE16 0b10

17 # define CODE24 0b11

18 �# define TWO_BYTES 0x7F // any diff values greater than 

this are 2 bytes

19 �# define THREE_BYTES 0 x7FF // diff values greater than 

this are 3 bytes

20

21

Chapter 12 C Programming for the Propeller

241

22 /* global variables */

23 // reserved space to be passed to cogstart

24 static unsigned int comprCogStack[STACK_SIZE_BYTES >> 2];

25

26 // shared vars

27 volatile int nsamps;

28 volatile int ncompr;

29 volatile int sampsBuf[NSAMPS_MAX];

30 volatile char packBuf[NSAMPS_MAX <<2]; // 128 * 4

31 volatile int comprCodesBuf[NSAMPS_MAX >>4]; // 128 / 16

Line 12: The stack is a region of memory used by the kernel to store

internal variables and state. It should be at least 150 bytes plus 4 bytes per

function call in the cog.

Lines 14–19: Constants used by all cogs.

Line 24: Declare and reserve space for the stack here.

Lines 27–31: Shared variables have a volatile qualifier to signal the

compiler not to remove them during optimization. If the compiler thinks a

variable is unused, it won’t reserve space for it. However, it is possible that

a variable is used by a Spin or PASM cog unknown to the compiler.

Part 2, shown in Listing 12-5, is the code for the cog. Define a function

that is called by the main cog. This function (and any functions that it calls)

will run in a separate cog from the main cog. However, this cog will have

access to the variables declared earlier. Those are global variables and

available to all functions in the file.

Listing 12-5.  Part 2: Compression Cog Code in File compr_cog0.c

 1 /* cog code - comprCog

 2 use nsamps and ncompr to signal with main cog

 3 start compression when nsamps != 0

 4 signal completion with ncompr > 0

Chapter 12 C Programming for the Propeller

242

 5 signal error with ncompr = 0

 6 compress sampsBuf to packBuf - NOT DONE YET

 7 populate comprCodesBuf - NOT DONE YET

 8 - args: pointer to memory space PAR - UNUSED

 9 - return: none

10 */

11 void comprCog(void *p) {

12 int i, nc, nbytes, codenum, codeshift, code;

13 int diff, adiff;

14

15 while (1) {

16 if (nsamps == 0) {

17 continue; // loop continuously while nsamps is 0

18 } else {

19 // perform the compression here

20 if (nsamps > NSAMPS_MAX || nsamps < -NSAMPS_MAX) {

21 ncompr = 0; // signal error

22 nsamps = 0;

23 continue;

24 }

25 ncompr = 3; // signal completion

26 nsamps = 0; // prevent another cycle from starting

27 }

28 }

29 }

Line 11: The cog function definition. void comprCog() means that this

doesn’t return any value. The argument (void *p) means that an address

is passed in—this is the equivalent of PAR. However, because we are using

the global variables to pass information between cogs, we won’t use PAR.

Lines 12–13: Local variables used by the cog.

Chapter 12 C Programming for the Propeller

243

Line 15: Infinite loop that contains the actual code that does the work

of the cog.

Lines 16–18: If nsamps is set to nonzero by main, enter the section that

does the work.

Lines 20–26: Error checking and, finally, the work of this cog.

Set ncompr to 3 and nsamps to 0. (We will add code to do the actual

compression later.)

Part 3, shown in Listing 12-6, is the entry point for the program,

including the main function and the code that runs first. Again, this cog

has access to the global variables. It also starts the new cog and interacts

with it by setting and reading variables in those global variables.

Listing 12-6.  Part 3: Main Code in File compr_cog0.c

 1 /* main cog - initializes variables and starts new cogs.

 2 * don 't exit - start infinite loop as the last thing.

 3 */

 4 int main(void)

 5 {

 6 int comprCogId = -1;

 7 int i;

 8

 9 nsamps = 0;

10 ncompr = -1;

11

12 printf(" starting main \n");

13

14 /* start a new cog with

15 * (1) address of function to run in the new cog

16 * (2) address of the memory to pass to the function

17 * (3) address of the stack

18 * (4) size of the stack, in bytes

19 */

Chapter 12 C Programming for the Propeller

244

20 �comprCogId = cogstart (&comprCog, NULL, comprCogStack, 

STACK_SIZE_BYTES);

21 if(comprCogId < 0) {

22 printf(" error starting compr cog \n");

23 while (1) {;}

24 }

25

26 printf(" started compression cog %d\n", comprCogId);

27

28 /* start the compression cog by setting nsamps to 1 */

29 sampsBuf[0] = 0xEFCDAB;

30 nsamps = 1;

31

32 �/* wait until the compression cog sets ncompr to a non -neg, 

number */

33 while(ncompr < 0) {

34 ;

35 }

36

37 printf(" nsamps = %d, ncompr = %d\n", nsamps, ncompr);

38 �printf(" samp0 = %x, packBuf = %x %x %x\n", sampsBuf[0], 

packBuf[0], packBuf[1], packBuf[2]);

39

40 while (1)

41 {

42 ;

43 }

44 }

Line 20: This is the key in main. The cogstart function takes four

arguments. The first is the address of the function to place in the new cog:

&comprCog. The ampersand symbol (&) in C is to obtain the address of a

Chapter 12 C Programming for the Propeller

245

variable or function. The next argument is the address of memory that

will be passed to the cog in PAR (the “locker number” in the analogy in

Chapter 6). In this case, because we are using global variables to exchange

information, we won’t use PAR and can pass NULL (which is, as it states,

the null pointer). The third and fourth arguments are the address of the

reserved stack space and its length in bytes, respectively. The stack is a

region of memory that the kernel needs to store variables and counters.

Line 30: Here we set nsamps=1, which signals the compression cog to

begin its work.

Lines 33–35: The compression cog will set ncompr to a non-negative

number when it completes its work. The main cog waits in this loop until it

sees that the compression cog is finished.

Lines 37–38: Print out the results. nsamps should now be zero, and

ncompr should now be non-negative.

Line 40: Enter an infinite loop, doing nothing.

The output from running this program is as follows:

starting main

started compression cog 1

nsamps = 0, ncompr = 3

samp0 = EFCDAB, packBuf = 0 0 0

We have shown that we can communicate with the compression cog.

How fast is it? To compare this to the Spin and PASM compression codes

from the previous chapters, let’s implement the compression code.

12.2.4  �Compression Code in C
We will edit comprCog to include the packing. Replace the code with the

code in Listing 12-7. This forms the difference between successive samples

and checks the length of the difference. Depending on that length, it saves

the difference as either 1, 2, or 3 bytes of packBuf. (For simplicity I haven’t

included the part that populates the compression code comprCodesBuf.)

Chapter 12 C Programming for the Propeller

246

Listing 12-7.  Compression Code Version 2 (ch11/compr cog1.side)

 1 /* cog code - comprCog

 2 use nsamps and ncompr to signal with main cog

 3 start compression when nsamps != 0

 4 signal completion with ncmopr > 0

 5 signal error with ncompr = 0

 6 compress sampsBuf to packBuf

 7 populate comprCodesBuf - NOT YET DONE

 8 - args: pointer to memory space PAR - UNUSED

 9 - return: none

10 */

11 void comprCog(void *p) {

12 int i, nc, nbytes, codenum, codeshift, code;

13 int diff, adiff;

14

15 while (1) {

16 if(nsamps == 0) {

17 continue; // loop continuously while nsamps is 0

18 } else {

19 // perform the compression here

20 if(nsamps > NSAMPS_MAX || nsamps < -NSAMPS_MAX) {

21 ncompr = 0; // signal error

22 nsamps = 0;

23 continue;

24 }

25 for(i=0; i< nsamps; i++) {

26 if(i ==0) { // first samp

27 memcpy(packBuf,(char *)sampsBuf, 3);

28 nc = 3;

29 } else {

30 diff = sampsBuf[i] - sampsBuf[i -1];

Chapter 12 C Programming for the Propeller

247

31 adiff = abs(diff);

32 if(adiff < TWO_BYTES) {

33 nbytes = 1;

34 } else if(adiff < THREE_BYTES) {

35 nbytes = 2;

36 } else {

37 nbytes = 3;

38 }

39 // copy the correct number of bytes from diff

40 // to packBuf

41 memcpy(packBuf +nc,(char *)diff, nbytes);

42 nc += nbytes;

43 }

44 }

45 ncompr = nc; // signal completion

46 nsamps = 0; // prevent another cycle from starting

47 }

48 }

49 }

Line 26–28: Here the first sample is packed. The memcpy function

will copy three bytes from the memory location sampsBuf to the memory

location packBuf. There are no indices on the two arrays because we

are operating on the start of both arrays (sampsBuf[0] is copied to

packBuf[0..2]).

Lines 30–38: Form the difference and check the length of its absolute

value.

Line 41: Copy the appropriate number of bytes of the difference to

packBuf.

Lines 45–46: Signal the main cog that the compression is complete by

setting ncompr to the number of bytes used in packBuf. Set nsamps to zero

so that the loop doesn’t start again.

Chapter 12 C Programming for the Propeller

248

Add the following to the main cog:

 1 printf(" nsamps = %d, ncompr = %d\n", nsamps, ncompr);

 2 printf(" nsamps = %d, ncompr = %d\n", nsamps, ncompr);

 3 �printf(" samp0 = %x, packBuf = %x %x %x\n", sampsBuf[0], 

packBuf[0],

 4 % packBuf[1], packBuf[2]);

 5

 6 // NEW CODE STARTS HERE >>>

 7 for(i=0; i< NSAMPS_MAX; i++) {

 8 sampsBuf[i] = 10000*(i +1000);

 9 }

10

11 ncompr = -1;

12 t0 = CNT;

13 nsamps =128;

14 �/* wait until the compression cog sets ncompr to a non -neg 

number */

15 while(ncompr < 0) {

16 ;

17 }

18 t0 = CNT - t0;

19 printf(" nsamps = %d, ncompr = %d\n", nsamps, ncompr);

20 �printf(" samp0 = %x, packBuf = %x %x %x\n", sampsBuf[0], 

packBuf[0], packBuf[1], packBuf[2]);

21 printf(" dt = %d\n", t0);

22 // NEW CODE ENDS HERE <<<

23

24

25 while (1)

26 {

27 ;

28 }

Chapter 12 C Programming for the Propeller

249

Lines 7–9: Initialize sampsBuf.

Lines 12–18: Time how long it takes to perform the compression of 128

samples.

The results are as follows:

starting main

started compression cog 1

nsamps = 0, ncompr = 3

samp0 = EFCDAB, packBuf = AB CD EF

nsamps = 0, ncompr = 384

samp0 = 989680, packBuf = 80 96 98

dt = 151600

Table 12-1 compares the time taken to perform the compression in

different languages. Clearly the fastest language is PASM, with C being

about one-fifth the speed of PASM.

Table 12-1.  Comparison of Time Taken to Compress

Data Using Different Methods

Language Number of Counts to Compress 128 Samples

Spin code 1.5 million counts

PASM code 22,000 counts

C code (LMM) 150,000 counts

Spin is 1/10th the speed of C. In the next chapter, we will program the

compression cog using Cog-C mode, where the cog code is downloaded

to the cog all at once and run there. (Recall that in LMM mode the code is

held on the hub, and one instruction at a time is downloaded and run on

the cog.)

Chapter 12 C Programming for the Propeller

250

Because I know that I won’t be using pure-C mode for the
final version, I’m not going to complete the compression and
decompression code—that can be an exercise for you!

12.3  �Summary
The simplest multicog technique in C is the large memory model

(Listing 12-8 has a template to get you started). Here, all the code for all the

cogs is stored in the hub, along with a kernel, which is a small program that

copies instructions to each cog as needed and executes them. The code for

each cog is defined as a function that is called by the cogstart instruction.

•	 Set aside a chunk of memory for the stack.

•	 Define variables that will be shared by all the cogs.

•	 Define a function pureCCog whose code will be run

in a separate cog (note that the external variables are

available here).

•	 In the main function, call cogstart with the address of

pureCCog. The external variables are available here too.

Listing 12-8.  Template for Pure-C Code

 1 # define STACK_SIZE_INT 100

 2 # define STACK_SIZE_BYTES 4 * STACK_SIZE_INT

 3

 4 // This is a critical number that is difficult to estimate

 5 // In a later chapter I will discuss how to set it

 6 static unsigned int pureCCogStack[STACK_SIZE_INT];

 7

 8 // these are shared with all cogs and must be

Chapter 12 C Programming for the Propeller

251

 9 // declared `` volatile '''

10 volatile int variable1;

11 volatile int variable2;

12 volatile int dataArray[100];

13

14 // function to run in new cog - mustn't return

15 void pureCCog(void *p) {

16 while (1) {

17 ...

18 // access variable1, variable2, and dataArray[]

19 }

20 }

21

22 // the main function - mustn't return

23 int main() {

24 int pureCCogId;

25 // the calling protocol for new cogs

26 �pureCCogId = cogstart (&pureCCog, NULL, pureCCogStack, 

STACK_SIZE_BYTES);

27 while (1) {

28 ...

29 �// main cog can access variable1, variable2, dataArray[]

30 }

31 }

Chapter 12 C Programming for the Propeller

253© Sridhar Anandakrishnan 2018
S. Anandakrishnan, Propeller Programming, https://doi.org/10.1007/978-1-4842-3354-2_13

CHAPTER 13

Programming
in Cog-C Mode
In the previous chapter, we programmed the Propeller in the large

memory model where the code was all stored in hub memory and

instructions were downloaded to a cog one at a time for execution.

This exacts a performance penalty. If the code you want to run on a cog

will fit entirely within the cog (496 longs), then you can write that code

in such a way that it is copied to the cog all at once and runs on the cog

natively.

254

13.1  �Cog-C Mixed Mode Programming
Here we will write the main cog in the same way as in the previous chapter

but will place the compression code in a separate file whose extension is

cogc. This special extension will signal the compiler that the code in that

file will be copied to a cog all at once.

In SimpleIDE start a new project named compr_cogc and create three files.

•	 compr_cogc.c is where the code for the main cog

resides.

•	 compr.cogc is where the code for the compression cog

resides.

•	 compr_cogc.h is a header file that contains common

variable and constant declarations.

Figure 13-1.  A rotary snow plough used for clearing track. From
“The World’s Work, Volume 1,” WH Page, AW Page, Doubleday, 1901.
Available for free download from Google Books https://books.
google.com/books?id=688YPNQ5HNwC.

Chapter 13 Programming in Cog-C Mode

https://books.google.com/books?id=688YPNQ5HNwC
https://books.google.com/books?id=688YPNQ5HNwC

255

13.1.1  �Main Cog Code
Listing 13-1 shows that the main cog code is similar to the code in the

previous chapter with a few significant changes.

Listing 13-1.  Contents of compr_cogc.c Showing Modifications

from Previous Chapter

 1 #include <stdio.h>

 2 #include <propeller.h>

 3 // ADD THIS >>>

 4 #include " compr_cogc.h"

 5 // <<<

 6

 7 /* defines */

 8

 9 /* global variables */

10

11 // ADD THIS >>>

12 // reserved space to be passed to startComprCog

13 struct cogmem_t {

14 unsigned int stack[STACK_SIZE_BYTES >> 2];

15 volatile struct locker_t locker ;

16 } cogmem ;

17 // <<<

18

19 // shared vars

20 volatile int nsamps ;

21 volatile int ncompr ;

22 volatile int sampsBuf[NSAMPS_MAX];

23 volatile char packBuf[NSAMPS_MAX <<2]; // 128 * 4

24 volatile int comprCodesBuf[NSAMPS_MAX >>4]; // 128 / 16

25

Chapter 13 Programming in Cog-C Mode

256

26 // ADD THIS >>>

27 int startComprCog(volatile void *p) {

28 extern unsigned int _load_start_compr_cog [];

29 return cognew(_load_start_compr_cog, p);

30 }

31 // >>>

32

33 // DELETE THE comprCog FUNCTION

34 ...

35

36 // in main ...

37

38 ...

39

40 printf (" starting main \n");

41

42 // CHANGE TO THIS >>>

43 comprCogId = startComprCog (&cogmem.locker);

44 // <<<

45

46 if(comprCogId < 0) {

47 printf (" error starting compr cog \n");

48 while (1) {;}

49 }

50

51 ...

•	 Lines 13–16: Declare a structure struct cogmem_t

{...} cogmem with two members: an array named

stack and another structure named struct locker_t

locker. The cogmem structure will keep the memory

Chapter 13 Programming in Cog-C Mode

257

for the stack and for the locker in adjacent space. The

address of the locker struct will be passed to the new

cog in the PAR register. Note that in this example we

won’t be using the locker but still define it because the

kernel expects this arrangement (stack followed by the

locker variables). The definition of struct locker_t is

in the header file compr_cogc.h.

1 �/* define the struct for passing data via PAR to the

cog -- UNUSED */

2 struct locker_t {

3 };

•	 Lines 27–30: A function that starts the compression

cog. This makes reference to the “magical” address

location of _load_start_compr_cog. This form of this

variable is always as follows:

_load_start_<COGCFILENAME>_cog, where

COGCFILENAME is the name of the file that contains

the cog code (in our case, that file name is compr.

cogc, so we put compr) in the name.

The cognew function takes two arguments: that

magical variable and the pointer p passed to the

function. p points to the struct locker_t locker

memory and will be placed in PAR. In this example, it

is unused, but we still invoke it in all its messy glory

so that if you ever want to use it, you know how!

•	 Line 43: We start the cog by calling the startComprCog

function. It takes one variable, which is the address of

the struct locker_t variable in the cogmem structure:

&cogmem.locker.

Chapter 13 Programming in Cog-C Mode

258

When the main cog runs, it will call comprCogStart with the address of

the start of the locker memory block (&cogmem.locker). Remember, the &

operator returns the address of the variable, and cogmem.locker refers to

the variable locker in the struct cogmem. Yes, I know it is messy, but if you

copy this pattern slavishly, it should work.

13.1.2  �Compression Cog-C Code
The compression code is placed in its own file, compr.cogc, as shown in

Listing 13-2. (You must have the cogc extension.) Whatever name you

choose for this file is what shows up in the cognew command _load_start_

compr_cog.

Listing 13-2.  Contents of compr.cogc

 1 #include "compr_cogc.h"

 2 #include <propeller.h>

 3

 4 // shared vars

 5 extern volatile int nsamps ;

 6 extern volatile int ncompr ;

 7 extern volatile int sampsBuf[NSAMPS_MAX];

 8 extern volatile char packBuf[NSAMPS_MAX <<2]; // 128 * 4

 9 �extern volatile int comprCodesBuf[NSAMPS_MAX >>4]; // 128 / 16

10

11 /* cog code - compr

12 use nsamps and ncompr to signal with main cog

13 start compression when nsamps != 0

14 signal completion with ncmopr > 0

15 signal error with ncompr = 0

16 compress sampsBuf to packBuf

17 populate comprCodesBuf

Chapter 13 Programming in Cog-C Mode

259

18 - args : pointer to memory space PAR - UNUSED

19 - return : none

20 */

21

22 void main (struct locker_t *p) {

23 int i, nc, nbytes, codenum, codeshift, code ;

24 int diff, adiff ;

25

26 while (1) {

27 if (nsamps == 0) {

28 continue ; // loop continuously while nsamps is 0

29 } else {

30

31 // perform the compression here

32 if (nsamps > NSAMPS_MAX || nsamps < -NSAMPS_MAX) {

33 ncompr = 0; // signal error

34 nsamps = 0;

35 continue ;

36 }

37 for(i=0; i< nsamps ; i++) {

38 if(i ==0) { // first samp

39 memcpy (packBuf, (char *) sampsBuf, 3);

40 nc = 3;

41 } else {

42 diff = sampsBuf[i] - sampsBuf[i -1];

43 adiff = abs(diff);

44 if (adiff < TWO_BYTES) {

45 nbytes = 1;

46 code = CODE08 ;

47 } else if (adiff < THREE_BYTES) {

48 nbytes = 2;

49 code = CODE16 ;

Chapter 13 Programming in Cog-C Mode

260

50 } else {

51 nbytes = 3;

52 code = CODE24 ;

53 }

54 // copy the correct number of bytes from diff

55 // to packBuf

56 memcpy (packBuf +nc, (char *) diff, nbytes);

57 nc += nbytes ;

58 }

59 }

60 ncompr = nc; // signal completion

61 nsamps = 0; // prevent another cycle from starting

62 }

63 }

64 }

•	 Lines 5–9: These are variables that are shared between

the main cog and this cog. The extern qualifier tells

the compiler not to reserve new space but that this

variable has been defined in another file. From now

on, any reference to, for example, nsamps will reference

the same variable as in the main cog (where it was

originally defined). The volatile qualifier tells the

compiler that even if it looks like this variable isn’t

used, don’t optimize it away. It could be modified in,

for example, the main cog.

•	 Line 22: The cog code is placed in its own main

function that should never return. It takes one

argument, a pointer to a memory block (this is the

equivalent of PAR). In this example, this is unused

because we prefer to use the shared variables.

Chapter 13 Programming in Cog-C Mode

261

Everything else is the same as in the previous chapter.

13.1.3  �Header File compr_cogc.h
Listing 13-3 shows the contents of compr_cogc.h.

Listing 13-3.  Contents of compr_cogc.h

 1 // size of stack in bytes

 2 #define STACK_SIZE_BYTES 200

 3 // compression constants

 4 #define NSAMPS_MAX 128

 5 #define CODE08 0b01

 6 #define CODE16 0b10

 7 #define CODE24 0b11

 8 #define TWO_BYTES 0x7F // �any diff values greater than this 

are 2 bytes

 9 #define THREE_BYTES 0 x7FF // �diff valus greater than this 

are 3 bytes

10

11 �/* define the struct for passing data via PAR to the 

cog -- UNUSED */

12 struct locker_t {

13 };

This is the front matter that is used by both the main cog and the

compression cog (both have the line #include "compr_cogc.h"). The

struct locker_t declaration is empty because it is a placeholder that we

don’t use.

Chapter 13 Programming in Cog-C Mode

262

13.1.4  �Running the Cog-C Code
Make sure that you have chosen LMM Main Ram as your memory model

on the Project Options tab. (Even though you have chosen LMM, because

the compr.cogc file has a .cogc extension, it will be compiled in Cog-C

mode and copied to a new cog and run in that cog natively.)

starting main

started compression cog 1

done... nsamps = 0, ncompr = 3

samp0 = EFCDAB, packBuf = AB CD EF

nsamps = 0, ncompr = 384

samp0 = 989680, packBuf = 80 96 98

dt = 42064

Let’s compare the running speed to the other ways of compressing 128

longs. See Table 13-1.

Clearly, programming in Cog-C mode improves speed by about a

factor of three to four over LMM C mode. As you can see, PASM is still the

fastest method, but Cog-C is no slouch!

Table 13-1.  Comparison of Compression Speeds with Cog-C

Mode Added

Language Number of Counts to Compress 128 Samples
(Smaller Is Better)

Spin code 1.5 million counts

PASM code 22,000 counts

C code (LMM only) 150,000 counts

Cog-C mode 42,000 counts

Chapter 13 Programming in Cog-C Mode

263

13.2  �Summary
We can start a new cog that is running in Cog-C mode, in which the C code

is compiled to PASM and copied in its entirety to a cog and run there. Of

course, the compiled code must be less than 496 longs (the size of cog

memory).

•	 In the main file, we must set aside a chunk of memory

for the stack and the “locker” (struct cogmem_t); a

template for the main file is in Listing 13-4.

•	 Define shared variables that will be available to all cogs

(volatile int x).

•	 Define a function that starts the cog (int

startMyCogC(...)).

•	 Create a file named myCogC.cogc that contains the code

to be loaded to the new cog; a template for the cog-C

file is in Listing 13-5.

•	 In the main file, call the startMyCogC function.

•	 In the .cogc file, refer to the shared variables using

extern volatile int x so the cog can use them.

Listing 13-4.  Contents of main.c for Cog-C Mixed Mode

 1 // in main .c

 2 #define STACK_SIZE_INTS 50

 3

 4 // �put this in a mycogc .h file (common to this file and 

mycogc .cogc)

 5 // #include " mycogc .h"

 6 struct cogmem_t {

 7 unsigned int stack[STACK_SIZE_INTS];

 8 volatile struct locker_t locker ;

Chapter 13 Programming in Cog-C Mode

264

 9 };

10

11 // declare the cog memory for the new cog

12 // there must be a different memory space for each cog

13 struct cogmem_t myCogCMem ;

14

15 // shared with all cogs

16 volatile int variable1 ;

17 volatile int variable2 ;

18 volatile int dataArray[100];

19

20 // start the new cog ...

21 int startMyCogC(volatile void * parptr) {

22 extern unsigned int _load_start_myCogC_cog[];

23 return cognew(_load_start_myCogC_cog, parptr);

24 }

25

26 int main () {

27 int myCogCId ;

28 // start the new cog . the address of locker is passed to

29 // the cognew command as parptr

30 myCogCId = startMyCogC(&myCogCMem . locker);

31 ...

32 while (1) {

33 ...

34 // �access variable1, variable2, dataArray [] in main cog

35 }

36 }

Chapter 13 Programming in Cog-C Mode

265

Listing 13-5.  Contents of the .cogc File

 1 // contents of myCogC .cogc

 2

 3 // put this in a mycogc .h file and

 4 // # include " mycogc .h"

 5 struct cogmem_t {

 6 unsigned int stack [STACK_SIZE_INTS];

 7 volatile struct locker_t locker ;

 8 };

 9

10 // any variables declared in another file

11 // must be set as `` extern '' so that the

12 // compiler knows where to find them.

13 extern volatile int variable1 ;

14 extern volatile int variable2 ;

15 extern volatile int dataArray [100];

16

17 // the code that will run in the new cog

18 // must be small enough to fit in 496 longs.

19 // the compiler will complain if it is too big

20 void main(struct locker_t *p)

21 while (1) {

22 ...

23 // �access variable1, variable2, and dataArray [] in 2nd cog

24 }

25 }

Chapter 13 Programming in Cog-C Mode

267© Sridhar Anandakrishnan 2018
S. Anandakrishnan, Propeller Programming, https://doi.org/10.1007/978-1-4842-3354-2_14

CHAPTER 14

Programming with
C and PASM
In this chapter, we will look at the combination of using C for the main

cog (and any other cogs that are not required to be fast) and PASM for

the critical cog that must run as fast as possible. For this mode, we must

use the PAR method of passing variables between the main cog and the

compression cog (in pure-C programming, we use shared variables, but

that isn’t possible here). Hitching together fast and slow components has

been done before - see Figure 14-1 for an example!

268

In summary, we will do the following:

•	 In the C program, we will create a block of memory

(using a struct) that contains the variables we want

to pass to the PASM cog. Because we use a struct, the

variables are in contiguous memory.

•	 We create a Spin/PASM file that has one Spin method

(START) that calls cognew to start a PASM cog. The

address of the struct is passed to this cog in PAR.

•	 Now the C program and the PASM cog can interact

through the variables in the struct.

Figure 14-1.  Rapid Transit, Washington, GA 1903. Photographer
JW Stephenson. Library of Congress archives (http://www.loc.gov/
pictures/item/2012646774).

Chapter 14 Programming with C and PASM

http://www.loc.gov/pictures/item/2012646774
http://www.loc.gov/pictures/item/2012646774

269

14.1  �Compression with C and PASM
Create a new project in SimpleIDE called compr_c_pasm and create two

files: compr_c_pasm.c and compr.spin.

14.1.1  �C Code for Main Cog
Listing 14-1 shows the contents of the PASM file.

Listing 14-1.  Contents of ch12/compr_c_pasm.c

 1 /* libraries */

 2 #include <stdio.h>

 3 #include <propeller.h>

 4

 5 /* defines */

 6

 7 // compression constants

 8 #define NSAMPS_MAX 128

 9

10 /* global variables */

11 // reserved space to be passed to startComprPASMCog

12 volatile struct locker_t {

13 int nsamps ;

14 int ncompr ;

15 int *psampsBuf ;

16 unsigned char *ppackBuf ;

17 int *pcomprCodesBuf ;

18 } locker ;

19

20 volatile int sampsBuf[NSAMPS_MAX];

21 volatile unsigned char packBuf[NSAMPS_MAX <<2]; // 128 * 4

Chapter 14 Programming with C and PASM

270

22 volatile int comprCodesBuf[NSAMPS_MAX >>4]; // 128 / 16

23

24 int startComprPASMCog(unsigned int * parptr) {

25 extern unsigned int binary_compr_dat_start[];

26 return cognew(binary_compr_dat_start, parptr);

27 }

28

29

30 /* main cog - initializes variables and starts new cogs.

31 * don 't exit - start infinite loop as the last thing.

32 */

33 int main(void)

34 {

35 int comprCogId = -1;

36 int i;

37 unsigned int t0;

38

39 locker.nsamps = 0;

40 locker.ncompr = -1;

41 locker.psampsBuf = sampsBuf ;

42 locker.ppackBuf = packBuf ;

43 locker.pcomprCodesBuf = comprCodesBuf ;

44

45 printf (" starting main \n");

46

47 comprCogId = startComprPASMCog (&locker);

48 if(comprCogId < 0) {

49 printf (" error starting compr cog \n");

50 while (1) {;}

51 }

52

Chapter 14 Programming with C and PASM

271

53 printf(" started compression cog %d\n", comprCogId);

54

55 /* start the compression cog by setting nsamps to 1 */

56 sampsBuf [0] = 0 xEFCDAB ;

57 locker.nsamps = 1; //= cogmem.locker.nsamps = 1;

58

59 �/* wait until the compression cog sets ncompr to a 

non -neg number */

60 while(locker.ncompr < 0) {

61 ;

62 }

63

64 �printf(" done ... nsamps = %d, ncompr = %d\n", 

locker.nsamps, locker.ncompr);

65 �printf(" samp0 = %x, packBuf = %x %x %x\n", sampsBuf 

[0], packBuf [0], packBuf [1], packBuf [2]) ;

66

67 while (1)

68 {

69 ;// do nothing

70 }

71 }

•	 Lines 12–18: Declare a structure that contains all the

variables to be passed to the PASM cog. By placing

them in a struct, you ensure that they will remain

contiguous and in order. The PASM cog finds variables

by knowing their address relative to the start of the

memory location passed to it in PAR. So, the PASM cog

expects nsamps to be at the start of that memory block

and ncompr to be 4 bytes past that.

Chapter 14 Programming with C and PASM

272

•	 Lines 15–17: Here we place the addresses for the three

arrays. psampsBuf is the address of sampsBuf and so

on. Pointers in C are 4 bytes long, so the three pointers

are at the correct locations that the PASM cog expects.

The expression int *p says that p is a pointer to an int

array.

•	 Lines 20–21: The arrays themselves are declared here.

They are also qualified to be volatile so the compiler

won’t inadvertently remove them.

•	 Lines 24–27: This is the function that starts the PASM

cog. It has a “magic” invocation as well. binary_

compr_dat_start is the address in memory of the

code to be written to the cog. The variable has the

form binary_<PASMFILENAME>_dat_start, where

PASMFILENAME has a .spin extension (in our case,

compr.spin).

•	 Lines 39–43: The lockers are populated. A member of

a struct is accessed via locker.nsamps, and so on.

The address of an array, such as sampsBuf[], can be

obtained by simply mentioning the name of the array,

as in locker.psampsBuf = sampsBuf and so on.

•	 Line 47: Here we call the function that starts the cog

and pass the address of the beginning of the locker:

&locker. The address of the first member of a struct

is the same as the address of the struct variable; thus,

the address of nsamps is given by &locker (remember,

the & operator returns the address of the variable).

Chapter 14 Programming with C and PASM

273

14.1.2  �PASM Code
The PASM code that will run in the new cog is placed in a file with the

.spin extension (see Listing 14-2). The file name will appear in the extern

variable binary_compr_dat_start in the main code.

Listing 14-2.  Contents of compr.spin

 1

 2 PUB START (locker)

 3 cognew (@STEIM, locker)

 4

 5

 6 DAT 'steim

 7 ''

 8 ''

 9

10 STEIM org 0

11 ' copy the param addresses

12 mov _cnsPtr, par

13 mov _cncomprPtr, par

14 add _cncomprPtr, #4

15 ...

•	 Lines 2–3: Define a public method named START that

calls the Spin method cognew. As in regular Spin code,

this has two arguments: the address of the PASM code

we want to run (in this case @STEIM) and the memory

location to place in PAR (in this case locker). When the

main C cog starts the cog with the following, the memory

location parptr is passed to this START method and then

passed on to the Spin cognew method here.

cognew(binary_compr_dat_start, parptr)

Chapter 14 Programming with C and PASM

274

•	 Lines 6–15: This code is lifted directly from the PASM

code in Chapter 9.

Running this code results in compression speeds almost identical to

the PASM case (as it should, this is really the same code running in the

same way). See Table 14-1.

14.2  �Summary
You can start a pure-PASM cog if, for example, you have some tested and

fast code that you want to reuse. To do so, you must have two files: one in C

and one in Spin and PASM. The C program will create a block of memory

(in the hub). That memory location is passed to the Spin method, which

passes it to the PASM cog.

The main C file in Listing 14-3 has a template for creating the memory

(struct locker_t ... locker;) and calling the Spin method START in

the file fastCog.spin (Listing 14-4): cognew(binary_fastCog_dat_start,

parptr);.

Table 14-1.  Comparison of Compression Speeds with Cog-C

Mode Added

Language Number of Counts to Compress 128 Samples
(Smaller Is Better)

Spin code 1.5 million counts

PASM code 22,000 counts

C code (LMM only) 150,000 counts

Cog-C mode 42,000 counts

C and PASM code 22,000 counts

Chapter 14 Programming with C and PASM

275

Listing 14-3.  Template for C/PASM: C File

 1 // Contents of main.c

 2

 3 // �the address of the locker struct is equal to the address of the

 4 // first field in the struct. That address is passed to the

 5 // �PASM cog in PAR. The PASM cog will determine the addresses

 6 // �of the other variables; they are in consecutive 

memory locations

 7 struct locker_t {

 8 int variable1 ;

 9 int variable2 ;

10 int * array ; // this is a pointer to an array

11 } locker ;

12

13 // start the cog

14 int startFastCog(unsigned int * parptr) {

15 extern unsigned int binary_fastCog_dat_start [];

16 return cognew(binary_fastCog_dat_start, parptr);

17 }

18

19 // this array is only available to the main cog

20 // in order to pass it to the PASM cog, copy it 's

21 // address to the locker

22 volatile int dataArray [100];

23

24 int main () {

25 int fastCogId ;

26 locker.variable1 =42; // populate the locker

27 locker.variable2 =12;

Chapter 14 Programming with C and PASM

276

28 locker.array = dataArray ; // �copy the address of the 

array to the locker

29 // start the PASM cog

30 fastCogId = startFastCog (& locker);

31

32 // �from here on, locker.variable1, etc may be modified 

by fastCog

33 while (1) {

34 ;

35 }

36 }

37 // main.c ends here

The Spin/PASM file (Listing 14-4) has a single Spin method (START)

whose argument is the address of memory (in the hub) that we want to

share with the PASM cog. This address is used as the second argument to

the cognew call that launches the PASM cog (and, therefore, that address

is placed in PAR). In the PASM cog, we can modify memory in the hub that

the C program is, presumably, interested in.

Listing 14-4.  Template for C/PASM: PASM File

 1 ' the contents of fastCog.spin

 2 �' locker is the address of the " locker " variable from 

the main cog

 3 PUB START(locker)

 4 cognew(@FASTCOG, locker)

 5

 6 DAT 'fastcog

 7 FASTCOG org 0

 8 �mov _var1Ptr, par ' par contains the address of locker, which

 9 �' is also the address of the first 

field, variable1

Chapter 14 Programming with C and PASM

277

10 mov _var2Ptr, par

11 mov _arrayPtr, par

12 add _var2Ptr, #4 ' variable2 is 4 bytes after variable1

13 �add _arrayPtr, #8 ' the * address * of the array is 8 

bytes after variable1

14 ...

15 ' and we 're off to the races

16 rdlong _cVar1, _var1Ptr ' get C's locker.variable1

17 add _cVar1, #42 ' do something

18 wrlong _cVar1, _var1Ptr ' write it back

19

20 ...

21 _var1Ptr res 1

22 _var2Ptr res 1

23 _arrayPtr res 1

24 _cVar1 res 1

25 FIT 496

26 'fastCog.spin ends here

Chapter 14 Programming with C and PASM

279© Sridhar Anandakrishnan 2018
S. Anandakrishnan, Propeller Programming, https://doi.org/10.1007/978-1-4842-3354-2_15

CHAPTER 15

Hardware I/O with C
We can work with the hardware in C (setting and reading pins and

counters) in one of three ways: using direct calls to the registers (INA, DIRA,

etc.), using the simpletools utility library, and using C code and injecting

PASM code in critical sections. This is known as inline assembler mode.

Let’s begin with the simpler library method and then move on to the

others.

We will write an SPI master and slave and put each in its own cog (see

Section 7.1 for details on SPI). The SPI slave stands in for a data acquisition

device that produces data. The SPI master is the interface to that “device.”

The main cog works only with the SPI master to receive data and process,

print, or store it.

280

15.1  �Referencing Hardware in C
By including the propeller.h library, the following functions and

variables are available (unlike Spin and PASM, these are case-sensitive):

•	 DIRA sets the direction of the 32 I/O pins. If a bit N is a

1, then that pin will be an output. All cogs have their

own copy of the DIRA register. More than one cog can

set a pin as output, and if any of those cogs drives the

pin high (by setting that bit in the OUTA register), then

that pin will go high.

Figure 15-1.  Twelve-horse team pulling snow sweeper. Toronto,
1891. From City of Toronto archives. Image in public domain.
https://commons.wikimedia.org/wiki/File%3ATwelve_horse_
team_pulling_snow_sweeper.jpg.

Chapter 15 Hardware I/O with C

https://commons.wikimedia.org/wiki/File:Twelve_horse_team_pulling_snow_sweeper.jpg
https://commons.wikimedia.org/wiki/File:Twelve_horse_team_pulling_snow_sweeper.jpg

281

•	 OUTA sets the value of pin N to either high or low by

setting the bit in that position to 1 or 0, respectively.

The pin itself will be driven high or low only if the

associated bit in the DIRA register is a 1.

•	 INA (read-only) reflects the state of the pins. If the pin is

high, the bit in that position will be a 1.

•	 CNT (read-only) is the value of the internal counter,

which increments once each clock cycle.

•	 waitpne and waitpeq wait for the state of the inputs to

match a requested state (see Chapter 7).

•	 waitcnt is like Spin’s waitcnt; it takes one argument,

target, and the cog is paused until the counter equals

the target value. waitcnt2 is like the PASM waitcnt,

with two arguments: a target value and a delta value.

The cog is paused until the target count is reached. The

target is incremented by delta for repeated and reliable

delays.

•	 locknew, lockret, lockset, and lockclr are all as in

Spin and PASM.

•	 C has some bitwise operators such as AND (&), OR (|),

and XOR (∧), and shift left (<<) and shift right (>>). It is

missing the rotate left and right operators of Spin and

PASM, the reverse bits operator, and the arithmetic

shift operator. There are functions for performing those

operations in C (see http://graphics.stanford.

edu/~seander/bithacks.html).

Chapter 15 Hardware I/O with C

http://graphics.stanford.edu/~seander/bithacks.html
http://graphics.stanford.edu/~seander/bithacks.html

282

15.2  �simpletools Library
By including the simpletools library (with #include <simpletools.h>),

you have access to a number of functions that simplify hardware

manipulations. However, the authors of simpletools warn that it is best to

use these functions in straight C code (LMM-only mode). This is because

the library is too large to fit in a cog (remember, cog memory is limited to

496 longs). The library consists of a number of functions and variables.1

For example, set a pin with high(N), low(N), or toggle(N). Get the

value of an input pin with v = input(pin). There are more-complex ways

to set the direction and get the state of a single pin or of multiple pins.

There are functions to use the I2C and SPI protocols as well as a full duplex

serial port.

Flashing an LED on the QuickStart board (from http://learn.

parallax.com/tutorials) is self-explanatory, as shown in Listing 15-1.

Listing 15-1.  Hello Blinky: Using simpletools.h to Toggle an LED

 1 #include " simpletools.h"

 2 #define LED0 16 # pin number for LED0 on Quickstart board.

 3 int main ()

 4 {

 5 while (1) {

 6 high (LED0);

 7 pause (100) ; // Wait 100 ms (1/10 sec)

 8 low (LED0);

 9 pause (100) ;

10 }

11 }

1�See SimpleIDE/Learn/Simple%20Libraries/Utility/libsimpletools/
Documentation%20simpletools%20Library.html; the SimpleIDE folder is in the
Documents folder.

Chapter 15 Hardware I/O with C

http://learn.parallax.com/tutorials
http://learn.parallax.com/tutorials

283

15.3  �Using the Registers Directly
Particularly in Cog-C mode or whenever speed or flexibility is an issue, you

will want to address the input and output registers directly.

15.3.1  �Set a Pin
Set a bit, as shown in Listing 15-2.

Listing 15-2.  Setting a Pin in C Using the OUTA Register

 1 #include <propeller.h>

 2 �#define LED0 16 // pin number for LED0 on Quickstart board.

 3 #define LED0MASK (1U << LED0)

 4 int main () {

 5 unsigned int delayTime = CLKFREQ /2;

 6 OUTA = 0; // set all bits to zero

 7 DIRA |= LED0MASK ; // set pin 16 to output

 8 while (1) {

 9 OUTA ^= LED0MASK ; // toggle pin 16

10 waitcnt (CNT + delayTime);

11 }

12 }

•	 Line 3: Create a mask where bit 16 is high and the

others are low.

•	 Lines 6–7: Set the output register to all 0s and then set

the output direction for pin 16 to 1. The expression DIRA

|= LED0MASK will perform a bitwise OR of the DIRA

register and the LED0MASK and assign the result back to

DIRA. The result is that bit 16 in DIRA is set to 1 (output).

Chapter 15 Hardware I/O with C

284

•	 Line 9: Perform an exclusive OR of OUTA and LED0MASK.

In an exclusive OR, compare the two arguments bit by

bit, and return a 1 if and only if one of the two bits is 1.

If both are 0 or both are 1, then the bit is set to 0. Thus,

as bit 16 of LED0MASK is always 1, if bit 16 of OUTA is 0,

then the exclusive OR will set bit 16 of OUTA to 1 (1∧0 = 1).

If bit 16 of OUTA is 1, then the exclusive OR will set it

to 0 (1∧1 = 0).

15.3.2  �Read a Pin
The QuickStart board doesn’t have a button, but it has a touchpad. Here

you set the touchpad pin high and read its value after a short time. If you

are touching the pad, then the conduction of your skin will quickly force

the pin low. If you aren’t touching it, then the pin will remain high for a

long time (it will eventually decay to low because there is a large resistor to

ground that will eventually pull it low).

In Listing 15-3 we toggle the LED every time we touch pad 0.

Listing 15-3.  Toggle an LED Using Registers in C

 1 #include <propeller.h>

 2 #�define LED0 16 // pin number for LED0 on Quickstart board.

 3 #define LED0Mask (1U << LED0)

 4 #define PAD0 0 // pin number for PAD0 on Quickstart board.

 5 #define PAD0Mask (1U << PAD0)

 6 int main ()

 7 {

 8 DIRA = 0;

 9 OUTA = 0;

10 DIRA |= LED0Mask ;

Chapter 15 Hardware I/O with C

285

11 OUTA |= LED0Mask ; // illuminate LED0

12 while (1) {

13 �waitcnt (CNT + CLKFREQ /10) ; // don 't do this too 

quickly ...

14 DIRA |= PAD0Mask ; // set to output

15 OUTA |= PAD0Mask ; // set pad0 high

16 DIRA ^= PAD0Mask ; // set pad0 back to input

17 waitcnt (CNT + CLKFREQ /1000) ;

18 if (INA & PAD0Mask) // still high - no touch

19 continue ;

20 OUTA ^= LED0Mask ;

21 }

22 }

•	 Lines 8–11: Set the output state register OUTA and the

direction register DIRA to illuminate the LED.

•	 Lines 13–15: Set the pad 0 pin to output, raise it high,

and set it back to input.

•	 Lines 16–19: Wait 1ms and check the value of the pad 0

pin. The INA register bit 0 will reflect the value of pin 0.

Thus, if pad 0 is high (not touching the touchpad), then bit

0 of INA is high, the AND will return TRUE, and the loop will

continue without changing the LED. If pad 0 is low (you

touched the touchpad), the AND will return FALSE and the

next statement toggling the LED will be executed instead.

Chapter 15 Hardware I/O with C

286

15.4  �Implementing SPI in Cog-C
Let’s implement the SPI protocol in Cog-C. The main cog will start two

cogs: an SPI master and an SPI slave. The master cog will request a long of

data from the slave and store it to a shared array. The slave cog will wait for

a request and transmit a number (our fake data is zero the first time and

increments by one for each request).

In SPI, communication is controlled by the master, which asserts

(lowers) the chip select (CS) line and then transmits a clock (CLK). The

master reads the MISO (master in, slave out) line at the rising edge of the

clock (see Figure 15-2 for an example). The slave watches for the CS line to

go low and must place data on the MISO line before the rising edge of each

clock cycle. We will use 32-bit wide words, with the most significant bit

(MSB) transmitted first.

Figure 15-2.  SPI timing diagram for the case when the clock starts
out low (CPOL=0) and the data is required to be valid on a rising
edge (CPHA=0)

15.5  �Goals of This Chapter
In this chapter we will set all the necessary lines at the right times (and

monitor and read them in the slave). We will exercise a number of ways of

setting and reading particular bits in a number. In the next chapter, we will

replace some of the “bit-twiddling” code with inline PASM to speed things up.

Chapter 15 Hardware I/O with C

287

The structure of our project is as follows: a main cog will start two other

cogs that communicate via SPI. The spiSlave stands in for a hardware

device (for example, an analog to digital converter [ADC]) that produces

data. The spiMaster will read data from the spiSlave and store it in the

array data, which will be read by the main cog.

The main/controller cog and the SPI master cog must coordinate their

access to the data array. We will use a lock to signal between main and

spiMaster that the data array is either being filled with data by spiMaster

or ready for processing by main (see Figure 15-3 for a diagram illustrating

this process).

Create a new project called spi-c with four files: spi-c.c, spi-c.h,

spiMaster.cogc, and spiSlave.cogc.

Because the SPI master and slave are .cogc files, they will be placed

entirely in cog memory.

Figure 15-3.  Structure of the SPI program

15.5.1  �Main Cog (Controller)
The main cog will control the other cogs. It will launch the SPI master and

slave and process the data that the master receives from the slave. The data

will be stored in a shared memory array called data[]. To ensure that the

main cog knows when the master is done populating the data array, we use

a lock (semaphore). Listing 15-4 has the contents of the main file, which

will start up two cogs (the master and the slave) and print the contents of

the data array once the master has received all the data from the slave.

Chapter 15 Hardware I/O with C

288

Listing 15-4.  Contents of Main File spi-c.c

 1 #include <stdio.h>

 2 #include <propeller.h>

 3 #include "c-hw.h"

 4

 5 struct cogmem_t {

 6 unsigned int stack [50];

 7 volatile struct locker_t locker ;

 8 };

 9

10 /* reserve memory for spimaster cog and spislave cog */

11 struct cogmem_t mcogmem ; // master

12 struct cogmem_t scogmem ; // slave

13

14 /* functions to start cogc cogs */

15 int startSPIMaster (volatile void *p) {

16 extern unsigned int _load_start_spiMaster_cog [];

17 return cognew (_load_start_spiMaster_cog, p);

18 }

19 int startSPISlave (volatile void *p) {

20 extern unsigned int _load_start_spiSlave_cog [];

21 return cognew (_load_start_spiSlave_cog, p);

22 }

23

24 /* shared memory with cogs */

25 volatile unsigned char masterSem ;

26 volatile int data [NSAMPS_MAX];

27

28 int main ()

29 {

30 int masterCogId, slaveCogId, i;

Chapter 15 Hardware I/O with C

289

31 unsigned int t0;

32

33 masterSem = locknew ();

34 while (lockset (masterSem)) {;} // obtain lock

35

36 /* start both cogs */

37 masterCogId = startSPIMaster (&mcogmem.locker);

38 slaveCogId = startSPISlave (&scogmem.locker);

39

40 �printf (" master id = %d slave id = %d sem = %d\n", 

masterCogId, slaveCogId, masterSem);

41 t0 = CNT ;

42

43 �lockclr (masterSem); // release lock, spimaster obtains lock

44 // wait for spimaster to release lock,

45 while (lockset (masterSem)) {;}

46 t0 = CNT - t0;

47 printf (" Time to read 128 longs = %d\n", t0);

48

49 // process array

50 for(i=0;i< NSAMPS_MAX ;i++)

51 printf ("i=%d data =%x\n", i, data [i]);

52

53 DIRA |= LED0Mask ;

54

55 while (1)

56 {

57 OUTA ^= LED0Mask ;

58 }

59 }

Chapter 15 Hardware I/O with C

290

•	 Lines 5–12: We define a struct cogmem_t with space

for the stack and a dummy entry for the locker (the

PAR locker is unused because we use shared global

memory). We declare and reserve memory for the two

cogs as mcogmem and scogmem.

•	 Lines 15–22: Functions to start the master and slave

cogs.

•	 Lines 25–26: Shared global memory. The masterSem is

where the lock (semaphore) is stored that will be used

by the main cog and the SPI master to control access to

the data array. The data array is simply, and with great

originality, named data[].

•	 Lines 33–34: Create a new semaphore and obtain

the lock in the main cog. Thus, when we start the SPI

master cog, it will sit idle attempting to obtain the lock.

•	 Lines 37–38: Start the two SPI cogs.

•	 Line 43: Release the Kraken. Upon main releasing the

lock, the SPI master will obtain it, which will start a

data acquisition cycle. During this time, the main cog

should not touch the data array.

•	 Line 45: Continuously attempt to obtain the lock. Only

once the SPI master has completed a data acquisition

cycle will it release the lock, allowing the main cog to

proceed beyond here.

•	 Lines 50–51: “Process” the data; print it out.

The header file (Listing 15-5) contains the pin definitions for the SPI

transfer as well as a dummy locker definition (we don’t use the PAR locker;

rather, we prefer to use shared memory).

Chapter 15 Hardware I/O with C

291

Listing 15-5.  Contents of Header File spi-c.h

 1 #define NSAMPS_MAX 128

 2

 3 #define LED0 16

 4 #define LED0Mask (1U << LED0)

 5

 6 #define CS 10

 7 #define CLK 11

 8 #define MOSI 12

 9 #define MISO 13

10 #define CSMask (1U << CS)

11 #define CLKMask (1U << CLK)

12 #define MOSIMask (1U << MOSI)

13 #define MISOMask (1U << MISO)

14

15 struct locker_t {

16 };

15.5.2  �SPI Master
The SPI master (Listing 15-6) begins by setting the SPI pins CS, CLK, and

MOSI as outputs. The CS line idles high and is active low, so set it high

before setting it as an output. Next, obtain the lock, which starts an

acquisition cycle. Acquisition consists of lowering the CS line and then

clocking out 32 cycles on the CLK line. At each rising edge of CLK, read the

value of the MISO and shift it into val. Finally, place val into data[]. After

NSAMPS_MAX acquisitions, release the lock.

Chapter 15 Hardware I/O with C

292

Listing 15-6.  Contents of spiMaster.cogc

 1 #include "c-hw.h"

 2 #include <propeller.h>

 3

 4 extern unsigned char masterSem ;

 5 extern int data [NSAMPS_MAX];

 6 void main (struct locker_t *p) {

 7 int i, j, val, bit ;

 8 int clkwidth =50;

 9

10 // init SPI pins

11 OUTA = 0;

12 OUTA |= CSMask ; // preset CS high

13 DIRA = 0;

14 DIRA |= CSMask | CLKMask | MOSIMask ; // set to outputs

15

16 while (1) {

17 while (lockset (masterSem)) { // wait to obtain lock

18 ;

19 }

20 // read from spi and write to data []

21 for (i=0; i< NSAMPS_MAX ; i++) {

22 OUTA ^= CSMask ; // lower cs

23 val = 0;

24 for (j =31; j >=0; j --) {

25 waitcnt (CNT + clkwidth); // wait

26 OUTA ^= CLKMask ; // raise clock

27

28 // get value of miso pin and put in low bit

29 bit = (INA & MISOMask) >> MISO ;

30 // shift bit into val

Chapter 15 Hardware I/O with C

293

31 val |= bit << j;

32 waitcnt (CNT + clkwidth);

33 OUTA ^= CLKMask ; // lower clock

34 }

35 data [i] = val ;

36 OUTA ^= CSMask ; // raise cs

37 waitcnt (CNT +3* clkwidth);

38 }

39

40 lockclr (masterSem); // release lock

41 }

42 }

•	 Lines 4–5: The shared global memory is referenced

with the extern keyword.

•	 Line 8: We include a short delay between clock

transitions so that the SPI master and slave have

enough time to read and write the bit. This is generally

specified by the device. Here I set it as low as I could

and not corrupt the data (I did this by trial and error).

•	 Lines 11–14: Set CS high by setting that bit of OUTA to 1.

Set CS, CLK, and MOSI as outputs by setting those bits of

DIRA to 1. (MOSI—master out, slave in—is unused here

but could be used to transmit data to the slave.)

•	 Line 17: Wait here until the lock is obtained. masterSem

is shared from the main cog.

•	 Lines 21–38: Acquire NSAMPS_MAX samples.

•	 Line 22: Lower the CS line by performing an exclusive

OR of OUTA with CSMask. We already set the CS bit of

OUTA high, so the XOR will lower it.

Chapter 15 Hardware I/O with C

294

•	 Lines 24–24: Loop over the 32 bits, high bit to low bit.

•	 Lines 26 and 29: Raise the CLK line and read the value

of MISO pin in the INA register. Shift it right by MISO

places so that the variable bit contains either a 0 or a

1 in the lowest bit location.

•	 Line 31: Now shift the low bit of the variable bit left by

31, 30, …, 0 bits into val.

•	 Line 33: Lower the clock line and repeat.

•	 Lines 35 and 36: Place the number val into data[]

and raise the CS line, ending the acquisition of the i-th

number.

•	 Line 37: Introduce a delay between acquisition

requests so the SPI slave can prepare for the next

request.

•	 Line 40: Once all NSAMPS_MAX samples have been

acquired, release the lock back to the main cog for it to

process the data.

15.5.3  �SPI Slave (Simulated Data Producing
Device)

The SPI slave (Listing 15-7) stands in for a data acquisition device or

digitizer. It will wait for the CS line to go low and then place the MSB of its

“data” on the MISO line. Once it sees the CLK line go high and low, it is free

to put the next bit on the MISO line. Rinse and repeat 32 times.

Chapter 15 Hardware I/O with C

295

Listing 15-7.  Contents of File spiSlave.cogc

 1 #include "c-hw.h"

 2 #include <propeller.h>

 3

 4 static _COGMEM int val ;

 5 static _COGMEM int j;

 6 static _COGMEM int bit ;

 7 void main(struct locker_t *p) {

 8 int i=0;

 9 DIRA = 0;

10 OUTA = 0;

11 DIRA |= MISOMask ;

12

13 i=0;

14 while (1) {

15 val = i;

16 waitpeq(CSMask, CSMask);

17 waitpne(CSMask, CSMask);

18 for (j =31; j >=0; j --) {

19 bit = (val >> j) & 0x01; // get jth bit

20 �OUTA ^= (- bit ^ OUTA) & MISOMask ; // set miso pin 

of outa to bit

21 �waitpeq(CLKMask, CLKMask); // wait for rising clock ...

22 �waitpne(CLKMask, CLKMask); // and then falling clock

23 }

24 OUTA &= ! MISOMask ; // lower miso line

25 i++;

26 }

27 }

Chapter 15 Hardware I/O with C

296

•	 Lines 4–6: static _COGMEM int val will ensure that

the variable val is stored in cog memory (like a val

long 0 expression in PASM) rather than being stored

in hub memory. This will speed up use of that variable

because hub access is slower than cog memory access.

•	 Line 11: Set the MISO line as an output.

•	 Lines 16–17: Ensure that the CS line is high and then

that it is low. This high-to-low transition signals the

start of an SPI data transmission cycle.

•	 Lines 19–20: val is the value to be transmitted to

the SPI master. Get the j-th bit (starting at the most

significant bit).

•	 Line 20: This mysterious concoction sets the bit in

OUTA that corresponds to the high bit of MISOMask to

the value of bit. I stole it from http://graphics.

stanford.edu/~seander/bithacks.html.

•	 Line 21: Wait for the rising clock. In the previous line I

set the MISO line to bit j of val, and on the rising clock

the SPI master will read that bit value.

•	 Line 22: Wait until the clock goes low. The MISO line

must hold the j-th bit throughout the time the clock is

high to allow the SPI master time to read it. Once the

master lowers the CLK line, the slave is free to move on

and put the next bit on the MISO line.

•	 Line 24: After all 32 bits have been transmitted, clear

the MISO line (which is not strictly necessary).

Chapter 15 Hardware I/O with C

http://graphics.stanford.edu/~seander/bithacks.html
http://graphics.stanford.edu/~seander/bithacks.html

297

15.5.4  �Running the SPI Code
Let’s run the code.

master id = 1 slave id = 2 sem = 1

Time to read 128 longs = 623664

i=0 data=0

i=1 data=1

i=2 data=2

... lines deleted

i=127 data=7F

We successfully acquired 128 32-bit samples and processed them. It

took about 623,000 counts, or 7.8ms, to acquire those samples (this board

has an 80MHz clock). Thus, the data transfer rate is 128 samples × 32

bits/7.8ms ~ 0.525Mb/sec.

In the next chapter, we will try to speed that up by using inline assembly

instructions.

15.6  �Summary
We can access all the same registers as in Spin or PASM. In particular, we

can write to the outa and read from the ina registers thusly (Listing 15-8):

Listing 15-8.  A C language template for setting and reading a pin

 1 #define INPIN 0

 2 #define OUTPIN 16

 3

 4 int main() {

 5 �const inPinMask =(1U << INPIN); // �create masks with 

pin position = 1

Chapter 15 Hardware I/O with C

298

 6 const outPinMask =(1U << OUTPIN);

 7 int i, inVal ;

 8

 9 �DIRA |= outPinMask ; // �set the direction for OUTPIN 

to output

10 �DIRA &= ~inPinMask ; // �... and the directino for INPIN 

to input

11

12 for (i=0; i <10; i++) {

13 �waitcnt (CNT + CLKFREQ); // �access the CNT register 

and the CLKFREQ value

14 OUTA ^= outPinMask ; // toggle the OUTPIN value

15 �inVal = (INA & inPinMask) >> INPIN ; // �read the 

INPIN value

16 printf (" inVal = %d\n", inVal);

17 }

18

19 while (1) {

20 �waitpeq(inPinMask, inPinMask); // �wait for INPIN to 

be high

21 printf(" switch pressed ...\ n");

22 waitpne(inPinMask, inPinMask); // ... and low

23 printf(" switch released ...\ n");

24 }

Here are some valuable fragments of C code:

 1 bitValue = 1;

 2 mask1 = (1U << bitPosition1)

 3 mask2 = (1U << bitPosition2)

 4 reg |= mask1 ; // set a bit at bitPosition1

 5

Chapter 15 Hardware I/O with C

299

 6 // set a bit in reg at bitPosition1 and bitPosition2

 7 reg |= (mask1 | mask2);

 8 // clear the bits at bitPosition1 and bitPosition2

 9 reg &= ~(mask1 | mask2);

10 reg ^= mask1 ; // toggle the bit at bitPosition1

11

12 // set the value of the bit at bitPosition1 in variable

13 // reg to the value of bitValue

14 reg ^= (- bitValue ^ reg) & mask1 ;

15

16 �// read the value of the bit at bitPosition1 of variable reg

17 bitValue = (reg & mask1) >> bitPosition1 ;

18

19 // shift the value of bit 0 of bitValue into reg

20 reg = (reg << 1) | (bitvalue & 0x01)

There is no equivalent to the sar (or “shift arithmetic right”)

instruction whereby when you shift right and the high bit is copied into the

shifted positions. Rather, we must use a C construct known as a bitfield.

 1 // Spin or PASM :

 2 // i := $FF ' i is %00000000 _00000000_00000000_11111111

 3 // i <<= 24 ' shift left by 24 bits

 4 �// now i is $FF_00_00_00 or %11111111 

_00000000_00000000_00000000

 5 // i ~>= 24 ' shift arithmetic right by 24 bits

 6 �// now i is $FF_FF_FF_FF or %11111111 

_11111111_11111111_11111111

 7

 8 // C:

 9 int i, signExtendi ;

10 i = 0xFF;

Chapter 15 Hardware I/O with C

300

11 // i is %00000000 _00000000_00000000_11111111,

12 // which is i =255 if treated as a 32 bit number,

13 // but i=-1 ** if treated as an eight -bit number **

14 �// we would like to set signExtendi to be a 32 bit value 

equal to -1

15 //

16 �// One can inform C of the bit - size of a number by 

creating a

17 �// struct with a field that has a ":8" (for an eight bit number)

18 struct signExtend8 {

19 signed int x :8; // the :n can be any number ...

20 } s8;

21

22 �// we assign our signed eight bit number 0 x000000FF to 

the bitfield

23 s8.x = i;

24 �// ** when we ask for it back and want it written to a 

32 bit number, the

25 // compiler knows to sign extend it properly **

26 signExtendi = s8.x;

27 // now signExtendi = 0 xFFFFFFFF

Chapter 15 Hardware I/O with C

301© Sridhar Anandakrishnan 2018
S. Anandakrishnan, Propeller Programming, https://doi.org/10.1007/978-1-4842-3354-2_16

CHAPTER 16

Using Inline Assembly
Instructions in C Code
Let’s now look at using PASM and C in the same stretch of code using a

technique called inline assembly. You can use this when you require the

fastest possible execution of a small section of repeated code. The main

part of the code remains in C, but the critical section is written in PASM.

In Figure 16-1, there is a drawing of the Antarctic Snow Cruiser: a hybrid

exploration vehicle that was ahead of its times.

In this example, we will read the input pin MISO 32 times and shift

the value into a variable called val. This is done in SPI (see the previous

chapter) where data is transferred serially, one bit at a time.

Here is how we did it in C:

1 // get value of miso pin and put it in low bit

2 bit = (INA & MISOMask) >> MISO ;

3 // shift bit into val

4 val |= bit << j;

If we were to do this in PASM, we would use the following instructions:

1 test ina, misoMask wc ' set C to the miso pin value

2 rcl val, #1 ' rotate val left and set LSB to C

302

The PASM code is faster because there are only two instructions to

perform, but the C code has six: the AND of INA and MISOMask, the right

shift by MISO bits, the assign to bit, the assign to j, the left shift by j, and

the OR with val.

We can inject the PASM instructions into the middle of the C code to

improve performance, as shown in Listing 16-1.

Listing 16-1.  Modified Version of spiMaster.cogc That Uses Inline

Assembly

 1 ...

 2

 3 // get value of miso pin and put in low bit

 4 // bit = (INA & MISOMask) >> MISO ;

 5 // val |= bit << j;

 6 __asm__ (

 7 " test %[mask], ina wc\n\t"

 8 "rcl %[val], #1\n\t"

 9 : // outputs

10 [val] "+r" (val)

11 : // inputs

12 [mask] "r" (mask)

13);

14 ...

•	 Lines 4–5: The commented-out C version of reading

MISO.

•	 Lines 6–13: The inline assembly injection of the two

PASM instructions.

Chapter 16 Using Inline Assembly Instructions in C Code

303

16.1  �Inline Assembler
Let’s try to decode that gobbledygook!

The inline assembly has the pattern shown in Listing 16-2.

Listing 16-2.  Inline Assembly Format

1 __asm__ (

2 "<pasm instruction>"

3 "<pasm instruction>"

4 : <output variable>,

5 <output variable>

6 : <input variable>,

7 <input variable>

8);

PASM instructions are standard instructions, with one difference:

any variables you want to use in the instruction are referred to as

%[<varname>]. These variables can be shared with the C code. This is done

via the output and input sections (after the colons). Each PASM instruction

is enclosed in quotes. Successive PASM instructions should not have

commas, but they can be on different lines.

You can have more than one input/output variable separated by

commas. Let’s look at lines 7 and 8 in Listing 16-1 in detail.

•	 test ina, %[miso] wc: test is a PASM instruction

with two arguments, and we specify a wc effect. What it

does is compare the bit of miso that is high (bit 12) with

ina and set the C flag to 1 if ina is 1. The expression

%[...] will refer to the variables named in the input

and output sections.

Chapter 16 Using Inline Assembly Instructions in C Code

304

•	 rcl %[val], #1 will shift the variable val left by 1 bit

and will shift C into bit 0.

The variables %[miso] and %[val] refer to the variables miso and val

in the C code because of these statements (lines 10 and 12 of Listing 16-1):

•	 [val] "+r" (val) . This says the variable val in the C

code should be given the name val in the PASM code

so that PASM instructions can refer to %[val]. The "+r"

says that this is both an input variable and an output

variable. It is modified inside the PASM instructions,

and then that modified value is available to the C code.

•	 [miso] "r" (miso). The "r" says that miso is solely an

input variable and isn’t modified in the PASM.

You can refer to the variables by different names in C and in PASM,

but why complicate things? (The C variable name is to the right of "+r" in

parentheses, and the PASM variable name is to the left of "+r" in square

brackets.)

Chapter 16 Using Inline Assembly Instructions in C Code

305

Figure 16-1.  Antarctic Snow Cruiser. A hybrid tractor, tank,
laboratory, and aircraft carrier for Antarctic exploration intended for
use by Admiral Byrd in 1939. Alas, its weight was too much for the
snow surface, and it was never used. Popular Science Monthly, v. 135,
no. 5, Nov., 1939. http://bit.ly/2eJOofM: public domain.

Chapter 16 Using Inline Assembly Instructions in C Code

http://bit.ly/2eJOofM

306

16.2  �spiSlave.cogc Inline Assembly
The spiSlave.cogc C code can also be modified to use inline assembly, as

shown in Listing 16-3.

Listing 16-3.  Modified Version of spiSlave.cogc to Use Inline

Assembly

 1 ...

 2 // bit = (val >> j) & 0x01 ; // get jth bit

 3 �// OUTA ^= (-bit ^ OUTA) & MISOMask ; // set miso pin 

of outa to bit

 4 __asm__ (

 5 "shl %[val], #1 wc\n\t"

 6 " muxc outa, %[mask]\n\t"

 7 : // outputs (+r) for inputs

 8 [val] "+r" (val)

 9 : // inputs

10 [mask] "r" (mask)

11);

12 ...

•	 Lines 2–3: Commented-out C code that set the MISO pin.

•	 Lines 4–11: Injected PASM code to replace the C code.

•	 Line 5: shl %[val], #1 wc will set C to the most

significant bit of val.

•	 Line 6: muxc outa, %[mask] will set outa to the value

of C at those bit locations specified in mask.

•	 Line 8: val is a C variable that will be modified by

PASM instructions.

•	 Line 10: mask is an input variable only; it isn’t modified here.

Chapter 16 Using Inline Assembly Instructions in C Code

307

16.3  �Timing
Running this version of the code results in the following:

master id = 1 slave id = 2 sem = 1

Time to read 128 longs = 334128

i=0 data=0

i=1 data=1

...

This is about twice as fast as the C version.

16.4  �Summary
The ability to inline PASM code brings an impressive increase in speed

while still allowing us to use regular C code for the majority of the work. To

use this technique, include an assembler directive at the location where

the time-consuming (or bit-twiddling-intensive) code is present.

 1 ...

 2 // c code here

 3 int i, j;

 4 i = 12;

 5 __asm__ (

 6 "mov %[j], %[i]\n\t" // the \n is needed to separate the

 7 �"add %[j], #42\ n\t" // �two instructions. The compiler 

copies these

 8 // �verbatim and without the \n it 

would see

 9 // ``mov j, iadd j, #42''

10 // which is a nonsense instruction

11 : /* output variable j is modified in the asm */

Chapter 16 Using Inline Assembly Instructions in C Code

308

12 [j] "+r" (j)

13 : /* input variable i is not modified */

14 [i] "r" (i)

15)

16 // c code continues

17 // here, i is still 12, but j = 54

Chapter 16 Using Inline Assembly Instructions in C Code

309© Sridhar Anandakrishnan 2018
S. Anandakrishnan, Propeller Programming, https://doi.org/10.1007/978-1-4842-3354-2_17

CHAPTER 17

Concluding Thoughts
This book has just skimmed the surface of the capabilities of the Propeller

microcontroller.

As always, the best way to learn is by doing, so pick a problem of

interest and have at it. The next best way to learn is to study somebody

else’s code. You can download a number of Spin and PASM projects at the

Object Exchange (http://obex.parallax.com).

There are a number of programs already written in Spin, and there is a

large knowledge base available to help with learning it and fixing problems.

However, Spin is relatively slow. Furthermore, Parallax is encouraging new

users to learn to use C to program the Propeller and encouraging existing

users to migrate. There is a huge knowledge base of information on

“standard” C, but the Propeller-specific parts of C are still in development.

Finally, PASM is by far the fastest way to run your code (particularly for bit-

twiddling), but Cog-C mode is nearly as fast (see Table 17-1).

Table 17-1.  Comparison of Compression Speeds

Language Number of Counts to Compress 128 Samples

Spin code 1.5 million counts

C code (LMM only) 150,000 counts

Cog-C mode 42,000 counts

Mixed-mode C and PASM 23,000 counts

PASM code 22,000 counts

http://obex.parallax.com/

310

The ideal combination may well be C with Cog-C modules and injected

inline assembly code for particular tasks. This is also, unsurprisingly,

somewhat complex. I hope that you can use the examples in this book to

do your own projects. Good luck with your journey (Figure 17-1)!

Our motto might be “Render unto C that which is C’s and unto PASM

to twiddle bits!”

Figure 17-1.  Crossing the timber line, Pike’s Peak Railway, some
time between 1898 and 1905. Detroit Photographic Company, public
domain. https://goo.gl/dzvSXN.

Chapter 17 Concluding Thoughts

https://goo.gl/dzvSXN

311© Sridhar Anandakrishnan 2018
S. Anandakrishnan, Propeller Programming, https://doi.org/10.1007/978-1-4842-3354-2

Index

A
Assignment, 132

B
Bug fix, 221–224

C
Cog-C mixed mode programming

.cogc file, 265
compr_cogc, 254
compression code, 258
compression speeds, 262
contents, main.c, 263–264
header file compr_cogc.h, 261
main cog code, 255
running, 262

Cog memory, 14–15
cognew(@STEIM, @myns)

command, 147
Cogs, 6–8
cogstart function, 239–245, 250
COMPRESS function, 169, 174
Compression in PASM with TDD

flowchart, 165–166
handshaking, 163
packing differences

arbitrary number of samples,
testing, 187

HANDLE_SAMPJ, 182–183
packBuf, 179
PASM code, 179–180
testing samples, 184
variables, 181

packing sample 0
arrays and parameters,

memory layout, 172–174
driver file testing

code, 171–172
indirect addressing,

174–175
subroutines, 176–178
testing, 178

passing nsamps and ncompr
PASM code, 168–170
spin code, 167–168

steim_pasm, 164
Compression speeds, 309
Conditionals, 136
C Programming

compr_cog0.c
compression cog

code, 241–242
front matter, 240–241
main code, 243–245

https://doi.org/10.1007/978-1-4842-3354-2

312

propeller
cogstart function,

239–245, 250
compression code,

241–242, 245
Hello World, 238–239
SimpleIDE, 236–237

rules, 229
Spin and C parallels

assignment and math, 230
CON, 229–230
flow control, 231–232
OBJ, 230
pointers and

arrays, 232–234
relational and logical

operators, 231
variables, 230

D, E, F, G
Debugging PASM code

bug fix, 221–224
log buffer

PASM code, 219–220
Spin code, 217–218

logging to hub
array, 215–217

variable values, 214
Debugging Spin code, 213
Delta compression, 4

H
Hardware I/O with C

bitfield, 299
functions and variables, 280–281
main cog (controller), 287
registers

LED, 284
outa and ina

registers, 297–298
pin set, 283–284
read pin, 284–285

sar instruction, 299
simpletools library, 282
SPI code running, 297
SPI master, 291–294
SPI protocol, Cog-C, 286
SPI slave, 294–296

Hexadecimal (Hex)
representation, 27

Hubs
array, logging method, 215–216
and cogs, 9–11
memory, 13–14

I, J, K
Indirect addressing, 174
Inline assembly in C Code

format, 303
input/output variable, 303–304
PASM instructions, 303
spiMaster.cogc, 302

C Programming (cont.)

Index

313

spiSlave.cogc, 306
timing, 307

Integrated development
environment (IDE), 236

L, M
Locks

lockset, 129
logging, 130–131
semaphores, 127, 129

Logic analyzer (LA), 107, 120
Loops, 136

N, O
Naming variables, 158
Negative numbers, 28–29

P, Q
packBuf, 58
PASM decompressor

decompression code, 198
flowchart, 194, 196–197
packBuf, 196
Spin code, 197–198
subroutines, 201
testing samples, 206

PASM instructions
add, 81–82
arithmetic, 91–92
bit-shifting operators, 93

Boolean, 92
branching, 88
cog memory, 78–79
comparison operator, 92
conditional evaluation, 86–87
copying, 90
driver file myprog_

Demo.spin, 98–99
effects, 84
form of, 79
hub reads/writes, 95
jump, 88
labels, 85–86
literals, 85
locks, 95
manual reading, 89–90
mov, 82–83
optional. instr, 79
optional literal operator #, 79
parameters, 102
passing parameters, Spin

programs, 77
process control, 94
special registers

cnt, 96
ctra, phsa, and frqa, 97
dira, 96
ina, 97
outa, 97
par, 97

Spin functions, 78
toggle a pin, 79–81

Index

314

variables, 83–84, 96
worker file myprog.spin, 99–101

Programming with C and PASM
compression

compr c pasm.c, 269
compr.spin, 273

template
C file, 275–276
PASM file, 276–277

Propeller Assembly (PASM), 108,
111, 113, 115

advantage, 3
assignment, 132
cognew command, passing

parameters, 149
branching instructions, 154
_clogBufPtr, 156–157
cog memory layout, 155–158
compression, 154
Propeller places, 152
using addresses, 153
using PAR, 151

conditionals, 136
division, 135
loops, 136
low-level language, 3
multiplication, 133–134
PAR, analogy, 150
parameters passing, 139
setting up steim_

pasm0.spin, 140–149
template, 37–40
template, separate file, 40–42

Propeller microcontroller
cogs, 6–8
hubs, 9–10

R
Registers, 283–285

DIRA, 105
INA, 106
OUTA, 106

S
sampsBuf, 54, 58
Select/chip select (CS), 117
Semaphores, 127, 129
Serial Peripheral Interface (SPI)

Cog-C, 286
communications, 117
CS, 117
data out/in, 118
logging

deadlock, 126
LA, 120
PASM cog, 119
PASM SPI write, 123–124, 126
read 32 bits, 123
spin side, 120, 122

protocol, 117
SCLK, 117
timing diagram, 118

simpletools library, 282
SPI clock line (SCLK), 117
SPI master, 291–294

PASM instructions (cont.)

Index

315

Spin, 108–111
assignment, 132
binary numbers, 26
compression, 64–66
conditionals, 136
decompression, 66–67, 69
division, 135
first iteration

steim_spin0_Demo, 56–58
steim_spin0.spin, 58–60

loops, 136
memory layout, 29
multiplication, 133–134
negative numbers, 28–29
PASM template, 37–40
PASM timing

bullock cart, Victoria
Terminus, 73

clock cycles, 71
estimation, 72

passing arrays,
methods, 61–62

sampsBuf, 54
spin_template.spin, 55
steim_spin0.spin and steim_

spin0 Demo.spin, 53

TDD, 46–47
testing, 62–63
template

Hello, World, 30–32, 34
PASM code, separate

file, 40–42
program running, 35–36

timing code, steim_spin1_
Demo.spin, 70

SPI Slave, 294–296
spiSlave.cogc C code, 306
START function, 169
Steim compression, 4

and decompressor (see Spin)
implementation, 21, 23
packing and compressing

data, 18–19
specification, 21–23

T, U, V, W, X, Y, Z
Test-Driven Development (TDD)

SQR, 46–49
specification, 45–46
spin code, 49–51

Timing, 307

Index

	Table of Contents
	About the Author
	Acknowledgments
	Preface
	Part I: Introduction
	Chapter 1: Introduction
	1.1 The Propeller Eight-Cog Processor
	1.1.1 Cogs
	1.1.2 Hubs and Cogs

	1.2 Memory Layout
	1.2.1 Hub Memory
	1.2.2 Cog Memory

	1.3 Layout of This Book

	Chapter 2: Steim Compression
	2.1 Packing and Compressing Data
	2.2 Specification
	2.3 Implementation

	Chapter 3: Introduction to Spin
	3.1 Negative Numbers
	3.2 Memory Layout
	3.3 Spin Template
	3.3.1 Hello, World
	3.3.2 Running the Program

	3.4 PASM Template
	3.5 Template for PASM Code in a Separate File
	3.6 Summary

	Chapter 4: Test-Driven Development
	4.1 TDD Spin Code
	4.2 Summary

	Chapter 5: Compression in Spin
	5.1 Structure of the Project
	5.2 Goals of This Chapter
	5.3 First Iteration
	5.4 Passing Arrays to Methods
	5.5 Testing
	5.6 Final Code
	5.6.1 Compression in Spin
	5.6.2 Decompression in Spin

	5.7 The Need for Speed
	5.7.1 Timing in PASM
	5.7.2 PASM Timing Estimate

	5.8 Summary

	Part II: Spin and PASM
	Chapter 6: Propeller Assembler: PASM
	6.1 Instructions in PASM
	6.1.1 The Add Instruction
	6.1.2 The mov Instruction
	6.1.3 Variables
	6.1.4 Effects
	6.1.5 Literals
	6.1.6 Labels
	6.1.7 Conditional Evaluation
	6.1.8 Branching

	6.2 Reading the PASM Manual
	6.3 Categories of PASM Instruction and Registers
	6.3.1 Copying
	6.3.2 Arithmetic
	6.3.3 Boolean, Comparison, and Bit-Shift Operators
	6.3.4 Process Control
	6.3.5 Hub Reads/Writes
	6.3.6 Locks
	6.3.7 Variables
	6.3.8 Special Registers
	6.3.9 Counters

	6.4 The Structure of PASM Programs
	6.5 Passing Parameters to PASM
	6.6 Summary

	Chapter 7: Interacting with the World
	7.1 Outline
	7.2 Timing in Spin and PASM
	7.3 Spin
	7.4 PASM
	7.4.1 Toggle a Pin in PASM
	7.4.2 Monitor a Switch

	7.5 Communication Protocols
	7.6 SPI Logging
	7.6.1 PASM SPI Write
	7.6.2 Logging Deadlock

	7.7 Locks
	7.7.1 Introduction to Locks
	7.7.2 Using Locks for Logging

	7.8 Some Common Tasks
	7.8.1 Assignment
	7.8.2 Multiplication
	Loop 1 of 16
	Loop 2 of 16
	Loop 16 of 16

	7.8.3 Division
	7.8.4 Loops
	7.8.5 Conditionals

	7.9 Summary

	Chapter 8: Implementing the Compression Code in PASM
	8.1 Passing Parameters to PASM
	8.2 Setting Up steim_pasm0
	8.3 Passing Parameters in the cognew Command
	8.3.1 Using PAR
	8.3.2 Using PAR Some More
	8.3.3 Using the Addresses
	8.3.4 Starting the Compression

	8.4 Passing Parameters: Method 2
	8.5 Summary

	Chapter 9: Compression in PASM with TDD
	9.1 Overall Flowchart
	9.2 Test 1: Passing nsamps and ncompr
	9.2.1 Spin Code
	9.2.2 PASM Code

	9.3 Test 2: Packing Sample 0
	9.3.1 Spin Code
	9.3.2 Memory Layout of Arrays and Parameters
	9.3.3 PASM Code
	9.3.4 Subroutines in PASM
	9.3.5 Testing the Compression of Sample 0

	9.4 Packing Differences for Latter Samples
	9.4.1 Testing Compressing Two Samples!
	9.4.2 Test Compressing an Arbitrary Number of Samples

	9.5 Success?
	9.6 Summary

	Chapter 10: Decompression in PASM
	10.1 Getting the Sign Right
	10.2 Overall Flowchart
	10.3 Spin Code
	10.4 PASM: Main Decompression Loop
	10.5 Subroutines for Unpacking
	10.6 Testing Decompression of Two Samples
	10.7 Testing Decompression of 128 Samples

	Chapter 11: Debugging PASM Code
	11.1 Logging to a Hub Array
	11.2 Spin Code
	11.3 PASM Code
	11.4 Bug Fix

	Part III: C Language
	Chapter 12: C Programming for the Propeller
	12.1 The C Language
	12.2 Programming the Propeller in C
	12.2.1 SimpleIDE
	12.2.2 Hello World
	12.2.3 Launching a New Cog
	12.2.4 Compression Code in C

	12.3 Summary

	Chapter 13: Programming in Cog-C Mode
	13.1 Cog-C Mixed Mode Programming
	13.1.1 Main Cog Code
	13.1.2 Compression Cog-C Code
	13.1.3 Header File compr_cogc.h
	13.1.4 Running the Cog-C Code

	13.2 Summary

	Chapter 14: Programming with C and PASM
	14.1 Compression with C and PASM
	14.1.1 C Code for Main Cog
	14.1.2 PASM Code

	14.2 Summary

	Chapter 15: Hardware I/O with C
	15.1 Referencing Hardware in C
	15.2 simpletools Library
	15.3 Using the Registers Directly
	15.3.1 Set a Pin
	15.3.2 Read a Pin

	15.4 Implementing SPI in Cog-C
	15.5 Goals of This Chapter
	15.5.1 Main Cog (Controller)
	15.5.2 SPI Master
	15.5.3 SPI Slave (Simulated Data Producing Device)
	15.5.4 Running the SPI Code

	15.6 Summary

	Chapter 16: Using Inline Assembly Instructions in C Code
	16.1 Inline Assembler
	16.2 spiSlave.cogc Inline Assembly
	16.3 Timing
	16.4 Summary

	Chapter 17: Concluding Thoughts

	Index

