
Python
Machine Learning
Case Studies

Five Case Studies for the Data Scientist
—
Danish Haroon

www.allitebooks.com

http://www.allitebooks.org

Python Machine
Learning Case

Studies
Five Case Studies for the

Data Scientist

Danish Haroon

www.allitebooks.com

http://www.allitebooks.org

Python Machine Learning Case Studies

Danish Haroon
Karachi, Pakistan

ISBN-13 (pbk): 978-1-4842-2822-7 ISBN-13 (electronic): 978-1-4842-2823-4
DOI 10.1007/978-1-4842-2823-4

Library of Congress Control Number: 2017957234

Copyright © 2017 by Danish Haroon

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Celestin Suresh John
Development Editor: Matthew Moodie
Technical Reviewer: Somil Asthana
Coordinating Editor: Sanchita Mandal
Copy Editor: Lori Jacobs
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is
a California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-2822-7.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/978-1-4842-2822-7
http://www.apress.com/source-code
http://www.allitebooks.org

iii

Contents at a Glance

About the Author �� xi

About the Technical Reviewer �� xiii

Acknowledgments ��� xv

Introduction ��� xvii

 ■Chapter 1: Statistics and Probability �� 1

 ■Chapter 2: Regression �� 45

 ■Chapter 3: Time Series ��� 95

 ■Chapter 4: Clustering �� 129

 ■Chapter 5: Classification �� 161

 ■Appendix A: Chart types and when to use them ������������������������� 197

Index �� 201

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Author �� xi

About the Technical Reviewer �� xiii

Acknowledgments ��� xv

Introduction ��� xvii

 ■Chapter 1: Statistics and Probability �� 1

Case Study: Cycle Sharing Scheme—Determining Brand Persona �������� 1

Performing Exploratory Data Analysis ��� 4

Feature Exploration��� 4

Types of variables ��� 6

Univariate Analysis ��� 9

Multivariate Analysis �� 14

Time Series Components �� 18

Measuring Center of Measure ��� 20

Mean ��� 20

Median �� 22

Mode ��� 22

Variance �� 22

Standard Deviation ��� 23

Changes in Measure of Center Statistics due to Presence of Constants ���������������� 23

The Normal Distribution �� 25

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

vi

Correlation ��� 34

Pearson R Correlation ��� 34

Kendall Rank Correlation �� 34

Spearman Rank Correlation �� 35

Hypothesis Testing: Comparing Two Groups �� 37

t-Statistics �� 37

t-Distributions and Sample Size ��� 38

Central Limit Theorem ��� 40

Case Study Findings �� 41

Applications of Statistics and Probability �� 42

Actuarial Science �� 42

Biostatistics �� 42

Astrostatistics ��� 42

Business Analytics �� 42

Econometrics �� 43

Machine Learning ��� 43

Statistical Signal Processing �� 43

Elections ��� 43

 ■Chapter 2: Regression �� 45

Case Study: Removing Inconsistencies in Concrete
Compressive Strength ��� 45

Concepts of Regression��� 48

Interpolation and Extrapolation��� 48

Linear Regression ��� 49

Least Squares Regression Line of y on x �� 50

Multiple Regression �� 51

Stepwise Regression �� 52

Polynomial Regression ��� 53

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

vii

Assumptions of Regressions ��� 54

Number of Cases �� 55

Missing Data ��� 55

Multicollinearity and Singularity ��� 55

Features’ Exploration �� 56

Correlation �� 58

Overfitting and Underfitting ��� 64

Regression Metrics of Evaluation �� 67

Explained Variance Score ��� 68

Mean Absolute Error ��� 68

Mean Squared Error ��� 68

R2 �� 69

Residual �� 69

Residual Plot ��� 70

Residual Sum of Squares ��� 70

Types of Regression �� 70

Linear Regression ��� 71

Grid Search ��� 75

Ridge Regression �� 75

Lasso Regression ��� 79

ElasticNet ��� 81

Gradient Boosting Regression �� 82

Support Vector Machines �� 86

Applications of Regression �� 89

Predicting Sales �� 89

Predicting Value of Bond ��� 90

Rate of Inflation �� 90

Insurance Companies ��� 91

Call Center �� 91

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

viii

Agriculture �� 91

Predicting Salary �� 91

Real Estate Industry�� 92

 ■Chapter 3: Time Series ��� 95

Case Study: Predicting Daily Adjusted Closing Rate of Yahoo ��������������� 95

Feature Exploration ��� 97

Time Series Modeling ��� 98

Evaluating the Stationary Nature of a Time Series Object ��������������������� 98

Properties of a Time Series Which Is Stationary in Nature ������������������������������������� 99

Tests to Determine If a Time Series Is Stationary ��� 99

Methods of Making a Time Series Object Stationary �� 102

Tests to Determine If a Time Series Has Autocorrelation �������������������� 113

Autocorrelation Function �� 113

Partial Autocorrelation Function ��� 114

Measuring Autocorrelation ��� 114

Modeling a Time Series ��� 115

Tests to Validate Forecasted Series �� 116

Deciding Upon the Parameters for Modeling �� 116

Auto-Regressive Integrated Moving Averages ������������������������������������ 119

Auto-Regressive Moving Averages ��� 119

Auto-Regressive ��� 120

Moving Average �� 121

Combined Model ��� 122

Scaling Back the Forecast ��� 123

Applications of Time Series Analysis ��� 127

Sales Forecasting ��� 127

Weather Forecasting ��� 127

Unemployment Estimates ��� 127

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

ix

Disease Outbreak ��� 128

Stock Market Prediction ��� 128

 ■Chapter 4: Clustering �� 129

Case Study: Determination of Short Tail Keywords for Marketing ������� 129

Features’ Exploration �� 131

Supervised vs� Unsupervised Learning ��� 133

Supervised Learning ��� 133

Unsupervised Learning ��� 133

Clustering �� 134

Data Transformation for Modeling ��� 135

Metrics of Evaluating Clustering Models �� 137

Clustering Models ��� 137

k-Means Clustering �� 137

Applying k-Means Clustering for Optimal Number of Clusters ����������������������������� 143

Principle Component Analysis �� 144

Gaussian Mixture Model ��� 151

Bayesian Gaussian Mixture Model �� 156

Applications of Clustering ��� 159

Identifying Diseases ��� 159

Document Clustering in Search Engines �� 159

Demographic-Based Customer Segmentation ��� 159

 ■Chapter 5: Classification �� 161

Case Study: Ohio Clinic—Meeting Supply and Demand ��������������������� 161

Features’ Exploration �� 164

Performing Data Wrangling ��� 168

Performing Exploratory Data Analysis ��� 172

Features’ Generation ��� 178

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

x

Classification ��� 180

Model Evaluation Techniques ��� 181

Ensuring Cross-Validation by Splitting the Dataset �� 184

Decision Tree Classification �� 185

Kernel Approximation �� 186

SGD Classifier ��� 187

Ensemble Methods ��� 189

Random Forest Classification �� 190

Gradient Boosting ��� 193

Applications of Classification �� 195

Image Classification ��� 196

Music Classification �� 196

E-mail Spam Filtering ��� 196

Insurance �� 196

 ■Appendix A: Chart types and when to use them ������������������������� 197

Pie chart �� 197

Bar graph��� 198

Histogram �� 198

Stem and Leaf plot �� 199

Box plot ��� 199

Index �� 201

www.allitebooks.com

http://www.allitebooks.org

xi

About the Author

Danish Haroon currently leads the Data Sciences
team at Market IQ Inc, a patented predictive analytics
platform focused on providing actionable, real-time
intelligence, culled from sentiment inflection points.
He received his MBA from Karachi School for Business
and Leadership, having served corporate clients and
their data analytics requirements. Most recently, he
led the data commercialization team at PredictifyME,
a startup focused on providing predictive analytics for
demand planning and real estate markets in the US
market. His current research focuses on the amalgam of
data sciences for improved customer experiences (CX).

xiii

About the Technical
Reviewer

Somil Asthana has a BTech from IITBHU India and
a MS from the University of New York at Buffalo (in
the United States) both in Computer Science. He is an
entrepreneur, machine learning wizard, and BigData
specialist consulting with fortune 500 companies like
Sprint, Verizon , HPE, and Avaya. He has a startup
which provides BigData solutions and Data Strategies
to Data Driven Industries in ecommerce, content/
media domain.

xv

Acknowledgments

I would like to thank my parents and lovely wife for their continuous support throughout
this enlightening journey.

xvii

Introduction

This volume embraces machine learning approaches and Python to enable automatic
rendering of rich insights and solutions to business problems. The book uses a
hands-on case study-based approach to crack real-world applications where machine
learning concepts can provide a best fit. These smarter machines will enable your
business processes to achieve efficiencies in minimal time and resources.

Python Machine Learning Case Studies walks you through a step-by-step approach to
improve business processes and help you discover the pivotal points that frame corporate
strategies. You will read about machine learning techniques that can provide support to
your products and services. The book also highlights the pros and cons of each of these
machine learning concepts to help you decide which one best suits your needs.

By taking a step-by-step approach to coding you will be able to understand the
rationale behind model selection within the machine learning process. The book is
equipped with practical examples and code snippets to ensure that you understand the
data science approach for solving real-world problems.

Python Machine Leaarning Case Studies acts as an enabler for people from both
technical and non-technical backgrounds to apply machine learning techniques to
real-world problems. Each chapter starts with a case study that has a well-defined
business problem. The chapters then proceed by incorporating storylines, and code
snippets to decide on the most optimal solution. Exercises are laid out throughout the
chapters to enable the hands-on practice of the concepts learned. Each chapter ends
with a highlight of real-world applications to which the concepts learned can be applied.
Following is a brief overview of the contents covered in each of the five chapters:

Chapter 1 covers the concepts of statistics and probability.
Chapter 2 talks about regression techniques and methods to fine-tune the model.
Chapter 3 exposes readers to time series models and covers the property of

stationary in detail.
Chapter 4 uses clustering as an aid to segment the data for marketing purposes.
Chapter 5 talks about classification models and evaluation metrics to gauge the

goodness of these models.

http://dx.doi.org/10.1007/978-1-4842-2823-4_1
http://dx.doi.org/10.1007/978-1-4842-2823-4_2
http://dx.doi.org/10.1007/978-1-4842-2823-4_3
http://dx.doi.org/10.1007/978-1-4842-2823-4_4
http://dx.doi.org/10.1007/978-1-4842-2823-4_5

1© Danish Haroon 2017
D. Haroon, Python Machine Learning Case Studies, DOI 10.1007/978-1-4842-2823-4_1

CHAPTER 1

Statistics and Probability

The purpose of this chapter is to instill in you the basic concepts of traditional statistics
and probability. Certainly many of you might be wondering what it has to do with
machine learning. Well, in order to apply a best fit model to your data, the most important
prerequisite is for you to understand the data in the first place. This will enable you to find
out distributions within data, measure the goodness of data, and run some basic tests
to understand if some form of relationship exists between dependant and independent
variables. Let’s dive in.

 ■ Note This book incorporates Python 2.7.11 as the de facto standard for coding
examples. Moreover, you are required to have it installed it for the Exercises as well.

So why do I prefer Python 2.7.11 over Python 3x? Following are some of the reasons:

•	 Third-party library support for Python 2x is relatively better than
support for Python 3x. This means that there are a considerable
number of libraries in Python 2x that lack support in Python 3x.

•	 Some current Linux distributions and macOS provide Python 2x
by default. The objective is to let readers, regardless of their OS
version, apply the code examples on their systems, and thus this
is the choice to go forward with.

•	 The above-mentioned facts are the reason why companies prefer
to work with Python 2x or why they decide not to migrate their
code base from Python 2x to Python 3x.

Case Study: Cycle Sharing
Scheme—Determining Brand Persona
Nancy and Eric were assigned with the huge task of determining the brand persona
for a new cycle share scheme. They had to present their results at this year’s annual
board meeting in order to lay out a strong marketing plan for reaching out to
potential customers.

ChapTer 1 ■ STaTiSTiCS and probabiliTy

2

The cycle sharing scheme provides means for the people of the city to commute
using a convenient, cheap, and green transportation alternative. The service has 500
bikes at 50 stations across Seattle. Each of the stations has a dock locking system (where
all bikes are parked); kiosks (so customers can get a membership key or pay for a trip);
and a helmet rental service. A person can choose between purchasing a membership
key or short-term pass. A membership key entitles an annual membership, and the key
can be obtained from a kiosk. Advantages for members include quick retrieval of bikes
and unlimited 45-minute rentals. Short-term passes offer access to bikes for a 24-hour
or 3-day time interval. Riders can avail and return the bikes at any of the 50 stations
citywide.

Jason started this service in May 2014 and since then had been focusing on
increasing the number of bikes as well as docking stations in order to increase
convenience and accessibility for his customers. Despite this expansion, customer
retention remained an issue. As Jason recalled, “We had planned to put in the investment
for a year to lay out the infrastructure necessary for the customers to start using it. We
had a strategy to make sure that the retention levels remain high to make this model self-
sustainable. However, it worked otherwise (i.e., the customer base didn’t catch up with
the rate of the infrastructure expansion).”

A private service would have had three alternatives to curb this problem: get
sponsors on board, increase service charges, or expand the pool of customers. Price hikes
were not an option for Jason as this was a publicly sponsored initiative with the goal of
providing affordable transportation to all. As for increasing the customer base, they had
to decide upon a marketing channel that guarantees broad reach on low cost incurred.

Nancy, a marketer who had worked in the corporate sector for ten years, and Eric, a
data analyst, were explicitly hired to find a way to make things work around this problem.
The advantage on their side was that they were provided with the dataset of transaction
history and thus they didn’t had to go through the hassle of conducting marketing
research to gather data.

Nancy realized that attracting recurring customers on a minimal budget
required understanding the customers in the first place (i.e., persona). As she stated,
“Understanding the persona of your brand is essential, as it helps you reach a targeted
audience which is likely to convert at a higher probability. Moreover, this also helps in
reaching out to sponsors who target a similar persona. This two-fold approach can make
our bottom line positive.”

As Nancy and Eric contemplated the problem at hand, they had questions like the
following: Which attribute correlates the best with trip duration and number of trips?
Which age generation adapts the most to our service?

Following is the data dictionary of the Trips dataset that was provided to Nancy and
Eric:

ChapTer 1 ■ STaTiSTiCS and probabiliTy

3

Exercises for this chapter required Eric to install the packages shown in Listing 1-1.
He preferred to import all of them upfront to avoid bottlenecks while implementing the
code snippets on your local machine.

However, for Eric to import these packages in his code, he needed to install them in
the first place. He did so as follows:

 1. Opened terminal/shell

 2. Navigated to his code directory using terminal/shell

 3. Installed pip:

python get-pip.py

 4. Installed each package separately, for example:

pip install pandas

Listing 1-1. Importing Packages Required for This Chapter

%matplotlib inline

import random
import datetime
import pandas as pd
import matplotlib.pyplot as plt
import statistics

Table 1-1. Data Dictionary for the Trips Data from Cycles Share Dataset

Feature name Description

trip_id Unique ID assigned to each trip

Starttime Day and time when the trip started, in PST

Stoptime Day and time when the trip ended, in PST

Bikeid ID attached to each bike

Tripduration Time of trip in seconds

from_station_name Name of station where the trip originated

to_station_name Name of station where the trip terminated

from_station_id ID of station where trip originated

to_station_id ID of station where trip terminated

Usertype Value can include either of the following: short-term pass
holder or member

Gender Gender of the rider

Birthyear Birth year of the rider

ChapTer 1 ■ STaTiSTiCS and probabiliTy

4

import numpy as np
import scipy
from scipy import stats
import seaborn

Performing Exploratory Data Analysis
Eric recalled to have explained Exploratory Data Analysis in the following words:

What do I mean by exploratory data analysis (EDA)? Well, by this I
mean to see the data visually. Why do we need to see the data visually?
Well, considering that you have 1 million observations in your dataset
then it won’t be easy for you to understand the data just by looking at it,
so it would be better to plot it visually. But don’t you think it’s a waste of
time? No not at all, because understanding the data lets us understand
the importance of features and their limitations.

Feature Exploration
Eric started off by loading the data into memory (see Listing 1-2).

Listing 1-2. Reading the Data into Memory

data = pd.read_csv('examples/trip.csv')

Nancy was curious to know how big the data was and what it looked like. Hence, Eric
wrote the code in Listing 1-3 to print some initial observations of the dataset to get a feel
of what it contains.

Listing 1-3. Printing Size of the Dataset and Printing First Few Rows

print len(data)
data.head()

Output

236065

ChapTer 1 ■ STaTiSTiCS and probabiliTy

5

trip_id

431 10/13/2014
10:31

10/13/2014
10:48

SEA00298 985.935 2nd Ave & Spring St
Occidental Park/
Occidental Ave S
& S Washing...

432 10/13/2014
10:32

10/13/2014
10:48

SEA00195 926.375 2nd Ave & Spring St
Occidental Park/
Occidental Ave S
& S Washing...

433 10/13/2014
10:33

10/13/2014
10:48

SEA00486 883.831 2nd Ave & Spring St
Occidental Park/
Occidental Ave S
& S Washing...

434 10/13/2014
10:34

10/13/2014
10:48

SEA00333 865.937 2nd Ave & Spring St
Occidental Park/
Occidental Ave S
& S Washing...

435 10/13/2014
10:34

10/13/2014
10:49

SEA00202 923.923 2nd Ave & Spring St
Occidental Park/
Occidental Ave S
& S Washing...

starttime stoptime bikeid tripduration from_station_name to_station_name

Table 1-2. Print of Observations in the First Seven Columns of Dataset

from_station_id

CBD-06 PS-04 Member Male 1960.0

CBD-06 PS-04 Member Male

Male

1970.0

CBD-06 PS-04 Member Female 1988.0

CBD-06 PS-04 Member Female 1977.0

CBD-06 PS-04 Member 1971.0

to_station_id usertype gender birthyear

Table 1-3. Print of Observations in the Last five Columns of Dataset

ChapTer 1 ■ STaTiSTiCS and probabiliTy

6

After looking at Table 1-2 and Table 1-3 Nancy noticed that tripduration is
represented in seconds. Moreover, the unique identifiers for bike, from_station, and
to_station are in the form of strings, contrary to those for trip identifier which are in
the form of integers.

Types of variables
Nancy decided to go an extra mile and allocated data type to each feature in the dataset.

After looking at the feature classification in Table 1-4 Eric noticed that Nancy had
correctly identified the data types and thus it seemed to be an easy job for him to explain
what variable types mean. As Eric recalled to have explained the following:

In normal everyday interaction with data we usually represent numbers
as integers, text as strings, True/False as Boolean, etc. These are what
we refer to as data types. But the lingo in machine learning is a bit more
granular, as it splits the data types we knew earlier into variable types.
Understanding these variable types is crucial in deciding upon the type
of charts while doing exploratory data analysis or while deciding upon a
suitable machine learning algorithm to be applied on our data.

Continuous/Quantitative Variables
A continuous variable can have an infinite number of values within a given range. Unlike
discrete variables, they are not countable. Before exploring the types of continuous
variables, let’s understand what is meant by a true zero point.

Table 1-4. Nancy’s Approach to Classifying Variables into Data Types

Feature name Variable type

trip_id
bikeid
tripduration
from_station_id
to_station_id
birthyear

Numbers

Starttime
Stoptime

Date

from_station_name to_station_name
Usertype
Gender

Text

ChapTer 1 ■ STaTiSTiCS and probabiliTy

7

True Zero Point

If a level of measurement has a true zero point, then a value of 0 means you have nothing.
Take, for example, a ratio variable which represents the number of cupcakes bought. A
value of 0 will signify that you didn’t buy even a single cupcake. The true zero point is a
strong discriminator between interval and ratio variables.

Let’s now explore the different types of continuous variables.

Interval Variables

Interval variables exist around data which is continuous in nature and has a numerical
value. Take, for example, the temperature of a neighborhood measured on a daily basis.
Difference between intervals remains constant, such that the difference between 70
Celsius and 50 Celsius is the same as the difference between 80 Celsius and 100 Celsius.
We can compute the mean and median of interval variables however they don’t have a
true zero point.

Ratio Variables

Properties of interval variables are very similar to those of ratio variables with the
difference that in ratio variables a 0 indicates the absence of that measurement. Take,
for example, distance covered by cars from a certain neighborhood. Temperature in
Celsius is an interval variable, so having a value of 0 Celsius does not mean absence of
temperature. However, notice that a value of 0 KM will depict no distance covered by the
car and thus is considered as a ratio variable. Moreover, as evident from the name, ratios
of measurements can be used as well such that a distance covered of 50 KM is twice the
distance of 25 KM covered by a car.

Discrete Variables
A discrete variable will have finite set of values within a given range. Unlike continuous
variables those are countable. Let’s look at some examples of discrete variables which are
categorical in nature.

Ordinal Variables

Ordinal variables have values that are in an order from lowest to highest or vice versa.
These levels within ordinal variables can have unequal spacing between them. Take, for
example, the following levels:

 1. Primary school

 2. High school

 3. College

 4. University

ChapTer 1 ■ STaTiSTiCS and probabiliTy

8

The difference between primary school and high school in years is definitely not
equal to the difference between high school and college. If these differences were
constant, then this variable would have also qualified as an interval variable.

Nominal Variables

Nominal variables are categorical variables with no intrinsic order; however, constant
differences between the levels exist. Examples of nominal variables can be gender, month
of the year, cars released by a manufacturer, and so on. In the case of month of year, each
month is a different level.

Dichotomous Variables

Dichotomous variables are nominal variables which have only two categories or levels.
Examples include

•	 Age: under 24 years, above 24 years

•	 Gender: male, female

Lurking Variable
A lurking variable is not among exploratory (i.e., independent) or response
(i.e., dependent) variables and yet may influence the interpretations of relationship
among these variables. For example, if we want to predict whether or not an applicant
will get admission in a college on the basis of his/her gender. A possible lurking variable
in this case can be the name of the department the applicant is seeking admission to.

Demographic Variable
Demography (from the Greek word meaning “description of people”) is the study of
human populations. The discipline examines size and composition of populations as well
as the movement of people from locale to locale. Demographers also analyze the effects
of population growth and its control. A demographic variable is a variable that is collected
by researchers to describe the nature and distribution of the sample used with inferential
statistics. Within applied statistics and research, these are variables such as age, gender,
ethnicity, socioeconomic measures, and group membership.

Dependent and Independent Variables
An independent variable is also referred to as an exploratory variable because it is being
used to explain or predict the dependent variable, also referred to as a response variable
or outcome variable.

Taking the dataset into consideration, what are the dependent and independent
variables? Let’s say that Cycle Share System’s management approaches you and asks
you to build a system for them to predict the trip duration beforehand so that the supply

ChapTer 1 ■ STaTiSTiCS and probabiliTy

9

of cycles can be ensured. In that case, what is your dependent variable? Definitely
tripduration. And what are the independent variables? Well, these variables will comprise
of the features which we believe influence the dependent variable (e.g., usertype, gender,
and time and date of the day).

Eric asked Nancy to classify the features in the variable types he had just explained.

Nancy now had a clear idea of the variable types within machine learning, and also
which of the features qualify for which of those variable types (see Table 1-5). However
despite of looking at the initial observations of each of these features (see Table 1-2) she
couldn’t deduce the depth and breadth of information that each of those tables contains.
She mentioned this to Eric, and Eric, being a data analytics guru, had an answer: perform
univariate analysis on features within the dataset.

Univariate Analysis
Univariate comes from the word “uni” meaning one. This is the analysis performed on a
single variable and thus does not account for any sort of relationship among exploratory
variables.

Eric decided to perform univariate analysis on the dataset to better understand the
features in isolation (see Listing 1-4).

Listing 1-4. Determining the Time Range of the Dataset

data = data.sort_values(by='starttime')
data.reset_index()
print 'Date range of dataset: %s - %s'%(data.ix[1, 'starttime'],
data.ix[len(data)-1, 'stoptime'])

Output

Date range of dataset: 10/13/2014 10:32 - 9/1/2016 0:20

Table 1-5. Nancy’s Approach to Classifying Variables into Variable Types

Feature name Variable type

trip_id
bikeid
tripduration
from_station_id
to_station_id
birthyear

Continuous

Starttime
Stoptime

DateTime

from_station_name
to_station_name

String

Usertype gender Nominal

ChapTer 1 ■ STaTiSTiCS and probabiliTy

10

Eric knew that Nancy would have a hard time understanding the code so he decided
to explain the ones that he felt were complex in nature. In regard to the code in Listing
1-4, Eric explained the following:

We started off by sorting the data frame by starttime. Do note that
data frame is a data structure in Python in which we initially loaded
the data in Listing 1-2. Data frame helps arrange the data in a tabular
form and enables quick searching by means of hash values. Moreover,
data frame comes up with handy functions that make lives easier when
doing analysis on data. So what sorting did was to change the position
of records within the data frame, and hence the change in positions
disturbed the arrangement of the indexes which were earlier in an
ascending order. Hence, considering this, we decided to reset the indexes
so that the ordered data frame now has indexes in an ascending order.
Finally, we printed the date range that started from the first value of
starttime and ended with the last value of stoptime.

Eric’s analysis presented two insights. One is that the data ranges from October 2014
up till September 2016 (i.e., three years of data). Moreover, it seems like the cycle sharing
service is usually operational beyond the standard 9 to 5 business hours.

Nancy believed that short-term pass holders would avail more trips than their
counterparts. She believed that most people would use the service on a daily basis rather
than purchasing the long term membership. Eric thought otherwise; he believed that
new users would be short-term pass holders however once they try out the service and
become satisfied would ultimately avail the membership to receive the perks and benefits
offered. He also believed that people tend to give more weight to services they have paid
for, and they make sure to get the maximum out of each buck spent. Thus, Eric decided
to plot a bar graph of trip frequencies by user type to validate his viewpoint (see Listing 1-5).
But before doing so he made a brief document of the commonly used charts and
situations for which they are a best fit to (see Appendix A for a copy). This chart gave
Nancy his perspective for choosing a bar graph for the current situation.

Listing 1-5. Plotting the Distribution of User Types

groupby_user = data.groupby('usertype').size()
groupby_user.plot.bar(title = 'Distribution of user types')

ChapTer 1 ■ STaTiSTiCS and probabiliTy

11

Nancy didn’t understand the code snippet in Listing 1-5. She was confused by the
functionality of groupby and size methods. She recalled asking Eric the following: “I can
understand that groupby groups the data by a given field, that is, usertype, in the current
situation. But what do we mean by size? Is it the same as count, that is, counts trips falling
within each of the grouped usertypes?”

Eric was surprised by Nancy’s deductions and he deemed them to be correct.
However, the bar graph presented insights (see Figure 1-1) in favor of Eric’s view as the
members tend to avail more trips than their counterparts.

Nancy had recently read an article that talked about the gender gap among
people who prefer riding bicycles. The article mentioned a cycle sharing scheme in UK
where 77% of the people who availed the service were men. She wasn’t sure if similar
phenomenon exists for people using the service in United States. Hence Eric came up
with the code snippet in Listing 1-6 to answer the question at hand.

Listing 1-6. Plotting the Distribution of Gender

groupby_gender = data.groupby('gender').size()
groupby_gender.plot.bar(title = 'Distribution of genders')

160000

140000

120000

100000

80000

60000

40000

20000

0

M
em

be
r

Sh
or

t-
Te

rm
 P

as
s

Ho
ld

er

usertype

Distribution of user types

Figure 1-1. Bar graph signifying the distribution of user types

ChapTer 1 ■ STaTiSTiCS and probabiliTy

12

Figure 1-2 revealed that the gender gap resonates in states as well. Males seem to
dominate the trips taken as part of the program.

Nancy, being a marketing guru, was content with the analysis done so far. However
she wanted to know more about her target customers to whom to company’s marketing
message will be targetted to. Thus Eric decided to come up with the distribution of
birth years by writing the code in Listing 1-7. He believed this would help the Nancy
understand the age groups that are most likely to ride a cycle or the ones that are more
prone to avail the service.

Listing 1-7. Plotting the Distribution of Birth Years

data = data.sort_values(by='birthyear')
groupby_birthyear = data.groupby('birthyear').size()
groupby_birthyear.plot.bar(title = 'Distribution of birth years',
figsize = (15,4))

120000

100000

80000

60000

40000

20000

0

Fe
m

al
e

M
al

e

Ot
he

r
gender

Distribution of genders

Figure 1-2. Bar graph signifying the distribution of genders

ChapTer 1 ■ STaTiSTiCS and probabiliTy

13

Figure 1-3 provided a very interesting illustration. Majority of the people who had
subscribed to this program belong to Generation Y (i.e., born in the early 1980s to mid
to late 1990s, also known as millennials). Nancy had recently read the reports published
by Elite Daily and CrowdTwist which said that millennials are the most loyal generation
to their favorite brands. One reason for this is their willingness to share thoughts and
opinions on products/services. These opinions thus form a huge corpus of experiences—
enough information for the millenials to make a conscious decision, a decision they will
remain loyal to for a long period. Hence Nancy was convinced that most millennials
would be members rather than short-term pass holders. Eric decided to populate a bar
graph to see if Nancy’s deduction holds true.

Listing 1-8. Plotting the Frequency of Member Types for Millenials

data_mil = data[(data['birthyear'] >= 1977) & (data['birthyear']<=1994)]
groupby_mil = data_mil.groupby('usertype').size()
groupby_mil.plot.bar(title = 'Distribution of user types')

14000

12000

10000

8000

6000

4000

2000

0

19
31

.0
19

36
.0

19
39

.0
19

42
.0

19
43

.0
19

44
.0

19
45

.0
19

46
.0

19
47

.0
19

48
.0

19
49

.0
19

50
.0

19
51

.0
19

52
.0

19
53

.0
19

54
.0

19
55

.0
19

56
.0

19
57

.0
19

58
.0

19
59

.0
19

60
.0

19
61

.0
19

62
.0

19
63

.0
19

64
.0

19
65

.0
19

66
.0

19
67

.0
19

68
.0

19
69

.0
19

70
.0

19
71

.0
19

72
.0

19
73

.0
19

74
.0

19
75

.0
19

76
.0

19
77

.0
19

78
.0

19
79

.0
19

80
.0

19
81

.0
19

82
.0

19
83

.0
19

84
.0

19
85

.0
19

86
.0

19
87

.0
19

88
.0

19
89

.0
19

90
.0

19
91

.0
19

92
.0

19
93

.0
19

94
.0

19
95

.0
19

96
.0

19
97

.0
19

98
.0

19
99

.0

Distribution of birth years

birthyear

Figure 1-3. Bar graph signifying the distribution of birth years

120000

100000

80000

60000

40000

20000

0

M
em

be
r

usertype

Distribution of user types

Figure 1-4. Bar graph of member types for millenials

ChapTer 1 ■ STaTiSTiCS and probabiliTy

14

After looking at Figure 1-4 Eric was surprised to see that Nancy’s deduction appeared
to be valid, and Nancy made a note to make sure that the brand engaged millennials as
part of the marketing plan.

Eric knew that more insights can pop up when more than one feature is used as part
of the analysis. Hence, he decided to give Nancy a sneak peek at multivariate analysis
before moving forward with more insights.

Multivariate Analysis
Multivariate analysis refers to incorporation of multiple exploratory variables to
understand the behavior of a response variable. This seems to be the most feasible
and realistic approach considering the fact that entities within this world are usually
interconnected. Thus the variability in response variable might be affected by the
variability in the interconnected exploratory variables.

Nancy believed males would dominate females in terms of the trips completed. The
graph in Figure 1-2, which showed that males had completed far more trips than any
other gender types, made her embrace this viewpoint. Eric thought that the best approach
to validate this viewpoint was a stacked bar graph (i.e., a bar graph for birth year, but each
bar having two colors, one for each gender) (see Figure 1-5).

Listing 1-9. Plotting the Distribution of Birth Years by Gender Type

groupby_birthyear_gender = data.groupby(['birthyear', 'gender'])
['birthyear'].count().unstack('gender').fillna(0)
groupby_birthyear_gender[['Male','Female','Other']].plot.bar(title =
'Distribution of birth years by Gender', stacked=True, figsize = (15,4))

14000

12000

10000

8000

6000

4000

2000

0

Distribution of birth years by Gender

19
31

.0
19

36
.0

19
39

.0
19

42
.0

19
43

.0
19

44
.0

19
45

.0
19

46
.0

19
47

.0
19

48
.0

19
49

.0
19

50
.0

19
51

.0
19

52
.0

19
53

.0
19

54
.0

19
55

.0
19

56
.0

19
57

.0
19

58
.0

19
59

.0
19

60
.0

19
61

.0
19

62
.0

19
63

.0
19

64
.0

19
65

.0
19

66
.0

19
67

.0
19

68
.0

19
69

.0
19

70
.0

19
71

.0
19

72
.0

19
73

.0
19

74
.0

19
75

.0
19

76
.0

19
77

.0
19

78
.0

19
79

.0
19

80
.0

19
81

.0
19

82
.0

19
83

.0
19

84
.0

19
85

.0
19

86
.0

19
87

.0
19

88
.0

19
89

.0
19

90
.0

19
91

.0
19

92
.0

19
93

.0
19

94
.0

19
95

.0
19

96
.0

19
97

.0
19

98
.0

19
99

.0

gender
Male
Female
Other

birthyear

Figure 1-5. Bar graph signifying the distribution of birth years by gender type

ChapTer 1 ■ STaTiSTiCS and probabiliTy

15

The code snippet in Listing 1-9 brought up some new aspects not previously
highlighted.

We at first transformed the data frame by unstacking, that is, splitting,
the gender column into three columns, that is, Male, Female, and Other.
This meant that for each of the birth years we had the trip count for all
three gender types. Finally, a stacked bar graph was created by using this
transformed data frame.

It seemed as if males were dominating the distribution. It made sense as well. No?
Well, it did; as seen earlier, that majority of the trips were availed by males, hence this
skewed the distribution in favor of males. However, subscribers born in 1947 were all
females. Moreover, those born in 1964 and 1994 were dominated by females as well. Thus
Nancy’s hypothesis and reasoning did hold true.

The analysis in Listing 1-4 had revealed that all millennials are members. Nancy was
curious to see what the distribution of user type was for the other age generations. Is it
that the majority of people in the other age generations were short-term pass holders?
Hence Eric brought a stacked bar graph into the application yet again (see Figure 1-6).

Listing 1-10. Plotting the Distribution of Birth Years by User Types

groupby_birthyear_user = data.groupby(['birthyear', 'usertype'])
['birthyear'].count().unstack('usertype').fillna(0)

groupby_birthyear_user['Member'].plot.bar(title = 'Distribution of birth
years by Usertype', stacked=True, figsize = (15,4))

14000

12000

10000

8000

6000

4000

2000

0

Distribution of birth years by Usertype

19
31

.0
19

36
.0

19
39

.0
19

42
.0

19
43

.0
19

44
.0

19
45

.0
19

46
.0

19
47

.0
19

48
.0

19
49

.0
19

50
.0

19
51

.0
19

52
.0

19
53

.0
19

54
.0

19
55

.0
19

56
.0

19
57

.0
19

58
.0

19
59

.0
19

60
.0

19
61

.0
19

62
.0

19
63

.0
19

64
.0

19
65

.0
19

66
.0

19
67

.0
19

68
.0

19
69

.0
19

70
.0

19
71

.0
19

72
.0

19
73

.0
19

74
.0

19
75

.0
19

76
.0

19
77

.0
19

78
.0

19
79

.0
19

80
.0

19
81

.0
19

82
.0

19
83

.0
19

84
.0

19
85

.0
19

86
.0

19
87

.0
19

88
.0

19
89

.0
19

90
.0

19
91

.0
19

92
.0

19
93

.0
19

94
.0

19
95

.0
19

96
.0

19
97

.0
19

98
.0

19
99

.0

birthyear

Figure 1-6. Bar graph signifying the distribution of birth years by user types

ChapTer 1 ■ STaTiSTiCS and probabiliTy

16

Whoa! Nancy was surprised to see the distribution of only one user type and not
two (i.e., membership and short-term pass holders)? Does this mean that birth year
information was only present for only one user type? Eric decided to dig in further and
validate this (see Listing 1-11).

Listing 1-11. Validation If We Don’t Have Birth Year Available for Short-Term Pass
Holders

data[data['usertype']=='Short-Term Pass Holder']['birthyear'].isnull().
values.all()

Output

True

In the code in Listing 1-11, Eric first sliced the data frame to consider only short-
term pass holders. Then he went forward to find out if all the values in birth year are
missing (i.e., null) for this slice. Since that is the case, Nancy’s initially inferred hypothesis
was true—that birth year data is only available for members. This made her recall her
prior deduction about the brand loyalty of millennials. Hence the output for Listing 1-11
nullifies Nancy’s deduction made after the analysis in Figure 1-4. This made Nancy sad,
as the loyalty of millenials can’t be validated from the data at hand. Eric believed that
members have to provide details like birth year when applying for the membership,
something which is not a prerequisite for short-term pass holders. Eric decided to test his
deduction by checking if gender is available for short-term pass holders or not for which
he wrote the code in Listing 1-12.

Listing 1-12. Validation If We Don’t Have Gender Available for Short-Term Pass Holders

data[data['usertype']=='Short-Term Pass Holder']['gender'].isnull().values.
all()

Output

True

Thus Eric concluded that we don’t have the demographic variables for user type
‘Short-Term Pass holders’.

Nancy was interested to see as to how the frequency of trips vary across date and
time (i.e., a time series analysis). Eric was aware that trip start time is given with the data,
but for him to make a time series plot, he had to transform the date from string to date
time format (see Listing 1-13). He also decided to do more: that is, split the datetime into
date components (i.e., year, month, day, and hour).

www.allitebooks.com

http://www.allitebooks.org

ChapTer 1 ■ STaTiSTiCS and probabiliTy

17

Listing 1-13. Converting String to datetime, and Deriving New Features

List_ = list(data['starttime'])

List_ = [datetime.datetime.strptime(x, "%m/%d/%Y %H:%M") for x in List_]
data['starttime_mod'] = pd.Series(List_,index=data.index)
data['starttime_date'] = pd.Series([x.date() for x in List_],index=data.index)
data['starttime_year'] = pd.Series([x.year for x in List_],index=data.index)
data['starttime_month'] = pd.Series([x.month for x in List_],index=data.index)
data['starttime_day'] = pd.Series([x.day for x in List_],index=data.index)
data['starttime_hour'] = pd.Series([x.hour for x in List_],index=data.index)

Eric made sure to explain the piece of code in Listing 1-13 as he had explained to Nancy:

At first we converted start time column of the dataframe into a list.
Next we converted the string dates into python datetime objects. We
then converted the list into a series object and converted the dates from
datetime object to pandas date object. The time components of year,
month, day and hour were derived from the list with the datetime objects.

Now it was time for the time series analysis of the frequency of trips over all days
provided within the dataset (see Listing 1-14).

Listing 1-14. Plotting the Distribution of Trip Duration over Daily Time

data.groupby('starttime_date')['tripduration'].mean().plot.bar(title =
'Distribution of Trip duration by date', figsize = (15,4))

Wow! There seems to be a definitive pattern of trip duration over time.

3000

2500

2000

1500

1000

500

0

starttime date

Distribution of Trip duration by date

Figure 1-7. Bar graph signifying the distribution of trip duration over daily time

ChapTer 1 ■ STaTiSTiCS and probabiliTy

18

Time Series Components
Eric decided to brief Nancy about the types of patterns that exist in a time series analysis.
This he believed would help Nancy understand the definite pattern in Figure 1-7.

Seasonal Pattern
A seasonal pattern (see Figure 1-8) refers to a seasonality effect that incurs after a fixed
known period. This period can be week of the month, week of the year, month of the year,
quarter of the year, and so on. This is the reason why seasonal time series are also referred
to as periodic time series.

Cyclic Pattern
A cyclic pattern (see Figure 1-9) is different from a seasonal pattern in the notion that the
patterns repeat over non-periodic time cycles.

-2
0

-1
0

0
5

10

60

se
as
on
al

Figure 1-8. Illustration of seasonal pattern

1975 1980 1985 1990 1995

Year

30
40

50
60

70
80

90

M
on

th
ly

 h
ou

si
ng

 s
al

es
 (m

ill
io

ns
)

Figure 1-9. Illustration of cyclic pattern

ChapTer 1 ■ STaTiSTiCS and probabiliTy

19

Trend
A trend (see Figure 1-10) is a long-term increase or decrease in a continuous variable.
This pattern might not be exactly linear over time, but when smoothing is applied it can
generalize into either of the directions.

Eric decided to test Nancy’s concepts on time series, so he asked her to provide her
thoughts on the time series plot in Figure 1-7. “What do you think of the time series plot?
Is the pattern seasonal or cyclic? Seasonal is it right?”

Nancy’s reply amazed Eric once again. She said the following:

Yes it is because the pattern is repeating over a fixed interval of time—
that is, seasonality. In fact, we can split the distribution into three
distributions. One pattern is the seasonality that is repeating over time.
The second one is a flat density distribution. Finally, the last pattern is
the lines (that is, the hikes) over that density function. In case of time
series prediction we can make estimations for a future time using both
of these distributions and add up in order to predict upon a calculated
confidence interval.

On the basis of her deduction it seemed like Nancy’s grades in her statistics elective
course had paid off. Nancy wanted answers to many more of her questions. Hence she
decided to challenge the readers with the Exercises that follow.

0 20 40 60 80 100
Day

85
86

87
88

89
90

91
US

 tr
ea

su
ry

 b
ill

 c
on

tr
ac

ts

Figure 1-10. Illustration of trend

ChapTer 1 ■ STaTiSTiCS and probabiliTy

20

EXERCISES

1. determine the distribution of number of trips by year. do you
see a specific pattern?

2. determine the distribution of number of trips by month. do you
see a specific pattern?

3. determine the distribution of number of trips by day. do you see
a specific pattern?

4. determine the distribution of number of trips by day. do you see
a specific pattern?

5. plot a frequency distribution of trips on a daily basis.

Measuring Center of Measure
Eric believed that measures like mean, median, and mode help give a summary view
of the features in question. Taking this into consideration, he decided to walk Nancy
through the concepts of center of measure.

Mean
Mean in layman terms refers to the averaging out of numbers Mean is highly affected by
outliers, as the skewness introduced by outliers will pull the mean toward extreme values.

•	 Symbol:

•	 μ-> Parameter -> population mean

•	 x’ -> Statistic -> sample mean

•	 Rules of mean:

•	 m ma bx xa b+ = +

•	 m m mx y x y+ = +

We will be using statistics.mean(data) in our coding examples. This will return the
sample arithmetic mean of data, a sequence or iterator of real-valued numbers.

Mean exists in two major variants.

ChapTer 1 ■ STaTiSTiCS and probabiliTy

21

Arithmetic Mean
An arithmetic mean is simpler than a geometric mean as it averages out the numbers
(i.e., it adds all the numbers and then divides the sum by the frequency of those numbers).
Take, for example, the grades of ten students who appeared in a mathematics test.

78, 65, 89, 93, 87, 56, 45, 73, 51, 81

Calculating the arithmetic mean will mean

mean =
+ + + + + + + + +

=
78 65 89 93 87 56 45 73 51 81

10
71 8.

Hence the arithmetic mean of scores taken by students in their mathematics test was
71.8. Arithmetic mean is most suitable in situations when the observations (i.e., math
scores) are independent of each other. In this case it means that the score of one student
in the test won’t affect the score that another student will have in the same test.

Geometric Mean
As we saw earlier, arithmetic mean is calculated for observations which are independent
of each other. However, this doesn’t hold true in the case of a geometric mean as it is
used to calculate mean for observations that are dependent on each other. For example,
suppose you invested your savings in stocks for five years. Returns of each year will be
invested back in the stocks for the subsequent year. Consider that we had the following
returns in each one of the five years:

60%, 80%, 50%, -30%, 10%

Are these returns dependent on each other? Well, yes! Why? Because the investment
of the next year is done on the capital garnered from the previous year, such that a loss in
the first year will mean less capital to invest in the next year and vice versa. So, yes, we will
be calculating the geometric mean. But how? We will do so as follows:

[(0.6 + 1) * (0.8 + 1) * (0.5 + 1) * (-0.3 + 1) * (0.1 + 1)]1/5 - 1 = 0.2713

Hence, an investment with these returns will yield a return of 27.13% by the end of
the fifth year. Looking at the calculation above, you can see that at first we first converted
percentages into decimals. Next we added 1 to each of them to nullify the effects brought
on by the negative terms. Then we multiplied all terms among themselves and applied a
power to the resultant. The power applied was 1 divided by the frequency of observations
(i.e., five in this case). In the end we subtracted the result by 1. Subtraction was done to
nullify the effect introduced by an addition of 1, which we did initially with each term.
The subtraction by 1 would not have been done had we not added 1 to each of the terms
(i.e., yearly returns).

ChapTer 1 ■ STaTiSTiCS and probabiliTy

22

Median
Median is a measure of central location alongside mean and mode, and it is less affected
by the presence of outliers in your data. When the frequency of observations in the data is
odd, the middle data point is returned as the median.

In this chaapter we will use statistics.median(data) to calculate the median. This
returns the median (middle value) of numeric data if frequency of values is odd and
otherwise mean of the middle values if frequency of values is even using “mean of middle
two” method. If data is empty, StatisticsError is raised.

Mode
Mode is suitable on data which is discrete or nominal in nature. Mode returns the
observation in the dataset with the highest frequency. Mode remains unaffected by the
presence of outliers in data.

Variance
Variance represents variability of data points about the mean. A high variance means
that the data is highly spread out with a small variance signifying the data to be closely
clustered.

 1. Symbol: s x
2

 2. Formula:

a. å -
-

(’)X X
n

2

1

b. s mx i x ix p2 2= -()å
 3. Why n-1 beneath variance calculation? The sample variance

averages out to be smaller than the population variance; hence,
degrees of freedom is accounted for as the conversion factor.

 4. Rules of variance:

i. s sa bx xb+ =2 2 2

ii. s s sx y x y+ = +2 2 2 (If X and Y are independent variables)

s s sx y x y- = +2 2 2

iii. s s s s sx y x y x yr+ = + +2 2 2 2 (if X and Y have correlation r)

s s s s sx y x y x yr+ = + +2 2 2 2

ChapTer 1 ■ STaTiSTiCS and probabiliTy

23

We will be incorporating statistics.variance(data, xbar=None) to calculate variance
in our coding exercises. This will return the sample variance across at least two real-valued
numbered series.

Standard Deviation
Standard deviation, just like variance, also captures the spread of data along the mean.
The only difference is that it is a square root of the variance. This enables it to have the
same unit as that of the data and thus provides convenience in inferring explanations
from insights. Standard deviation is highly affected by outliers and skewed distributions.

•	 Symbol: σ

•	 Formula: s 2

We measure standard deviation instead of variance because

•	 It is the natural measure of spread in a Normal distribution

•	 Same units as original observations

Changes in Measure of Center Statistics due to Presence
of Constants
Let’s evaluate how measure of center statistics behave when data is transformed by
the introduction of constants. We will evaluate the outcomes for mean, median, IQR
(interquartile range), standard deviation, and variance. Let’s first start with what behavior
each of these exhibits when a constant “a” is added or subtracted from each of these.

Addition: Adding a

•	 x a xnew
’ ’= +

•	 median a mediannew = +

•	 IQR a IQRnew = +

•	 s snew =

•	 s sx new x
2 2=

Adding a constant to each of the observations affected the mean, median, and IQR.
However, standard deviation and variance remained unaffected. Note that the same
behavior will come through when observations within the data are subtracted from a
constant. Let’s see if the same behavior will repeat when we multiply a constant (i.e., “b”)
to each observation within the data.

ChapTer 1 ■ STaTiSTiCS and probabiliTy

24

Multiplication: Multiplying b

•	 x bxnew
’ ’=

•	 median bmediannew =

•	 IQR bIQRnew =

•	 s bsnew =

•	 s sx new xb2 2 2=

Wow! Multiplying a constant to each observation within the data changed all five
measures of center statistics. Do note that you will achieve the same effect when all
observations within the data are divided by a constant term.

After going through the description of center of measures, Nancy was interested in
understanding the trip durations in detail. Hence Eric came up with the idea to calculate
the mean and median trip durations. Moreover, Nancy wanted to determine the station
from which most trips originated in order to run promotional campaigns for existing
customers. Hence Eric decided to determine the mode of ‘from_station_name’ field.

 ■ Note determining the measures of centers using the statistics package will require us
to transform the input data structure to a list type.

Listing 1-15. Determining the Measures of Center Using Statistics Package

trip_duration = list(data['tripduration'])
station_from = list(data['from_station_name'])
print 'Mean of trip duration: %f'%statistics.mean(trip_duration)
print 'Median of trip duration: %f'%statistics.median(trip_duration)
print 'Mode of station originating from: %s'%statistics.mode(station_from)

Output

Mean of trip duration: 1202.612210
Median of trip duration: 633.235000
Mode of station originating from: Pier 69 / Alaskan Way & Clay St

The output of Listing 1-15 revealed that most trips originated from Pier 69/Alaskan
Way & Clay St station. Hence this was the ideal location for running promotional
campaigns targeted to existing customers. Moreover, the output showed the mean to
be greater than that of the mean. Nancy was curious as to why the average (i.e., mean)
is greater than the central value (i.e., median). On the basis of what she had read, she
realized that this might be either due to some extreme values after the median or due to
the majority of values lying after the median. Eric decided to plot a distribution of the trip
durations (see Listing 1-16) in order to determine which premise holds true.

ChapTer 1 ■ STaTiSTiCS and probabiliTy

25

Listing 1-16. Plotting Histogram of Trip Duration

data['tripduration'].plot.hist(bins=100, title='Frequency distribution of
Trip duration')
plt.show()

The distribution in Figure 1-11 has only one peak (i.e., mode). The distribution is
not symmetric and has majority of values toward the right-hand side of the mode. These
extreme values toward the right are negligible in quantity, but their extreme nature tends
to pull the mean toward themselves. Thus the reason why the mean is greater than the
median.

The distribution in Figure 1-11 is referred to as a normal distribution.

The Normal Distribution
Normal distribution, or in other words Gaussian distribution, is a continuous probability
distribution that is bell shaped. The important characteristic of this distribution is that
the mean lies at the center of this distribution with a spread (i.e., standard deviation)
around it. The majority of the observations in normal distribution lie around the mean
and fade off as they distance away from the mean. Some 68% of the observations lie
within 1 standard deviation from the mean; 95% of the observations lie within 2 standard
deviations from the mean, whereas 99.7% of the observations lie within 3 standard
deviations from the mean. A normal distribution with a mean of zero and a standard
deviation of 1 is referred to as a standard normal distribution. Figure 1-12 shows normal
distribution along with confidence intervals.

Frequency distribution of Trip duration
80000

70000

60000

50000

40000

30000

20000

10000

0
0 5000 10000 15000 20000 25000 30000

Fr
eq

ue
nc

y

Figure 1-11. Frequency distribution of trip duration

ChapTer 1 ■ STaTiSTiCS and probabiliTy

26

These are the most common confidence levels:

Confidence level Formula

68% Mean ± 1 std.

95% Mean ± 2 std.

99.7% Mean ± 3 std.

Skewness
Skewness is a measure of the lack of symmetry. The normal distribution shown
previously is symmetric and thus has no element of skewness. Two types of skewness
exist (i.e., positive and negative skewness).

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00
–4 –3

0.159 0.159

0.683

Normal distribution with confidence intervals

–2 –1 0 1 2 3 4

Figure 1-12. Normal distribution and confidence levels

ChapTer 1 ■ STaTiSTiCS and probabiliTy

27

As seen from Figure 1-13, a relationship exists among measure of centers for each
one of the following variations:

•	 Symmetric distributions: Mean = Median = Mode

•	 Positively skewed: Mean < Median < Mode

•	 Negatively skewed: Mean > Median > Mode

Going through Figure 1-12 you will realize that the distribution in Figure 1-13(c) has
a long tail on its right. This might be due to the presence of outliers.

Outliers
Outliers refer to the values distinct from majority of the observations. These occur either
naturally, due to equipment failure, or because of entry mistakes.

In order to understand what outliers are, we need to look at Figure 1-14.

Minimum Value in
the Data 25th Percentile (Q1)

Potential
Outliers

Interquartile Range
(IQR)

Maximum (Minimum Value in the Data, Q1 – I.5*IQR)

Potential
Outliers

Median
(Q2)

75th Percentile
(Q3)

Maximum Value in
the Data

Figure 1-14. Illustration of outliers using a box plot

(a) Negatively skewed

Negative direction Positive directionThe normal curve
represents a perfectly

symmetrical distribution

Mode

Median

Fr
eq

ue
nc

y

Mean

X

Mode
Median

X

Mean

Mode

Median

X

Mean

(b) Normal (no skew) (c) Positively skewed

Figure 1-13. Skewed and symmetric normal distributions

ChapTer 1 ■ STaTiSTiCS and probabiliTy

28

From Figure 1-14 we can see that the observations lying outside the whiskers are
referred to as the outliers.

Listing 1-17. Interval of Values Not Considered Outliers

[Q1 – 1.5 (IQR) , Q3 + 1.5 (IQR)] (i.e. IQR = Q3 - Q1)

Values not lying within this interval are considered outliers. Knowing the values of
Q1 and Q3 is fundamental for this calculation to take place.

Is the presence of outliers good in the dataset? Usually not! So, how are we going to
treat the outliers in our dataset? Following are the most common methods for doing so:

•	 Remove the outliers: This is only possible when the proportion of
outliers to meaningful values is quite low, and the data values are
not on a time series scale. If the proportion of outliers is high, then
removing these values will hurt the richness of data, and models
applied won’t be able to capture the true essence that lies within.
However, in case the data is of a time series nature, removing
outliers from the data won’t be feasible, the reason being that for
a time series model to train effectively, data should be continuous
with respect to time. Removing outliers in this case will introduce
breaks within the continuous distribution.

•	 Replace outliers with means: Another way to approach this is
by taking the mean of values lying with the interval shown in
Figure 1-14, calculate the mean, and use these to replace the
outliers. This will successfully transform the outliers in line with
the valid observations; however, this will remove the anomalies
that were otherwise present in the dataset, and their findings
could present interesting insights.

•	 Transform the outlier values: Another way to cop up with outliers
is to limit them to the upper and lower boundaries of acceptable
data. The upper boundary can be calculated by plugging in the
values of Q3 and IQR into Q3 + 1.5IQR and the lower boundary
can be calculated by plugging in the values of Q1 and IQR into
Q1 – 1.5IQR.

•	 Variable transformation: Transformations are used to convert the
inherited distribution into a normal distribution. Outliers bring
non-normality to the data and thus transforming the variable can
reduce the influence of outliers. Methodologies of transformation
include, but are not limited to, natural log, conversion of data into
ratio variables, and so on.

Nancy was curious to find out whether outliers exist within our dataset—more
precisely in the tripduration feature. For that Eric decided to first create a box plot
(see Figure 1-15) by writing code in Listing 1-18 to see the outliers visually and then
checked the same by applying the interval calculation method in Listing 1-19.

ChapTer 1 ■ STaTiSTiCS and probabiliTy

29

Listing 1-18. Plotting a Box plot of Trip Duration

box = data.boxplot(column=['tripduration'])
plt.show()

Nancy was surprised to see a huge number of outliers in trip duration from the box
plot in Figure 1-15. She asked Eric if he could determine the proportion of trip duration
values which are outliers. She wanted to know if outliers are a tiny or majority portion of
the dataset. For that Eric wrote the code in Listing 1-19.

Listing 1-19. Determining Ratio of Values in Observations of tripduration Which Are
Outliers

q75, q25 = np.percentile(trip_duration, [75 ,25])
iqr = q75 - q25
print 'Proportion of values as outlier: %f percent'%(
(len(data) - len([x for x in trip_duration if q75+(1.5*iqr)
>=x>= q25-(1.5*iqr)]))*100/float(len(data)))

Output

Proportion of values as outlier: 9.548218 percent

30000

25000

20000

15000

10000

5000

0
tripduration

Figure 1-15. Box plot of trip duration

ChapTer 1 ■ STaTiSTiCS and probabiliTy

30

Eric explained the code in Listing 1-19 to Nancy as follows:

As seen in Figure 1-14, Q3 refers to the 75th percentile and Q1 refers
to the 25th percentile. Hence we use the numpy.percentile() method
to determine the values for Q1 and Q3. Next we compute the IQR by
subtracting both of them. Then we determine the subset of values by
applying the interval as specified in Listing 1-18. We then used the
formula to get the number of outliers.

Listing 1-20. Formula for Calculating Number of Outliers

Number of outliers values = Length of all values - Length of all non
outliers values

In our code, len(data) determines Length of all values and Length of all non outliers
values is determined by len([x for x in trip_duration if q75+(1.5*iqr) >=x>=
q25-(1.5*iqr)])).

Hence then the formula in Listing 1-20 was applied to calculate the ratio of values
considered outliers.

Listing 1-21. Formula for Calculating Ratio of Outlier Values

Ratio of outliers = (Number of outliers values / Length of all values) * 100

Nancy was relieved to see only 9.5% of the values within the dataset to be outliers.
Considering the time series nature of the dataset she knew that removing these outliers
wouldn’t be an option. Hence she knew that the only option she could rely on was to
apply transformation to these outliers to negate their extreme nature. However, she was
interested in observing the mean of the non-outlier values of trip duration. This she then
wanted to compare with the mean of all values calculated earlier in Listing 1-15.

Listing 1-22. Calculating z scores for Observations Lying Within tripduration

mean_trip_duration = np.mean([x for x in trip_duration if q75+(1.5*iqr)
>=x>= q25-(1.5*iqr)])
upper_whisker = q75+(1.5*iqr)
print 'Mean of trip duration: %f'%mean_trip_duration

Output

Mean of trip duration: 711.726573

ChapTer 1 ■ STaTiSTiCS and probabiliTy

31

The mean of non-outlier trip duration values in Listing 1-22 (i.e., approximately 712)
is considerably lower than that calculated in the presence of outliers in Listing 1-15 (i.e.,
approximately 1,203). This best describes the notion that mean is highly affected by the
presence of outliers in the dataset.

Nancy was curious as to why Eric initialized the variable upper_whisker given that
it is not used anywhere in the code in Listing 1-22. Eric had a disclaimer for this: “upper_
whisker is the maximum value of the right (i.e., positive) whisker i.e. boundary uptill
which all values are valid and any value greater than that is considered as an outlier. You
will soon understand why we initialized it over here.”

Eric was interested to see the outcome statistics once the outliers were transformed
into valid value sets. Hence he decided to start with a simple outlier transformation to the
mean of valid values calculated in Listing 1-22.

Listing 1-23. Calculating Mean Scores for Observations Lying Within tripduration

def transform_tripduration(x):

 if x > upper_whisker:
 return mean_trip_duration
 return x

data['tripduration_mean'] = data['tripduration'].apply(lambda x: transform_
tripduration(x))

data['tripduration_mean'].plot.hist(bins=100, title='Frequency distribution
of mean transformed Trip duration')
plt.show()

Eric remembers walking Nancy through the code in Listing 1-23.

We initialized a function by the name of transform_tripduration.
The function will check if a trip duration value is greater than the upper
whisker boundary value, and if that is the case it will replace it with the
mean. Next we add tripduration_mean as a new column to the data
frame. We did so by custom modifying the already existing tripduration
column by applying the transform_tripduration function.

Nancy was of the opinion that the transformed distribution in Figure 1-16 is a
positively skewed normal distribution. Comparing Figure 1-16 to Figure 1-10 reveals that
the skewness has now decreased to a great extent after the transformation. Moreover,
the majority of the observations have a tripduration of 712 primarily because all values
greater than the upper whisker boundary are not converted into the mean of the non-
outlier values calculated in Listing 1-22. Nancy was now interested in understanding how
the center of measures appear for this transformed distribution. Hence Eric came up with
the code in Listing 1-24.

ChapTer 1 ■ STaTiSTiCS and probabiliTy

32

Listing 1-24. Deternining the Measures of Center in Absence of Outliers

print 'Mean of trip duration: %f'%data['tripduration_mean'].mean()
print 'Standard deviation of trip duration: %f'%data['tripduration_mean'].std()
print 'Median of trip duration: %f'%data['tripduration_mean'].median()

Output

Mean of trip duration: 711.726573
Standard deviation of trip duration: 435.517297
Median of trip duration: 633.235000

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Frequency distribution of z transformed Trip duration

Frequency distribution of mean transformed Trip duration
30000

25000

20000

15000

10000

5000

0
0 500 1000 1500 2000 2500

80000

70000

60000

50000

40000

30000

20000

10000

0
0 2 4 6 8 10 12 14–2

Figure 1-16. Frequency distribution of mean transformed trip duration

ChapTer 1 ■ STaTiSTiCS and probabiliTy

33

Nancy was expecting the mean to appear the same as that in Listing 1-22 because
of the mean transformation of the outlier values. In Figure 1-16 she knew that the hike at
711.7 is the mode, which meant that after the transformation the mean is the same as that
of the mode. The thing that surprised her the most was that the median is approaching the
mean, which means that the positive skewness we saw in Figure 1-16 is not that strong.

On the basis of the findings in Figure 1-1, Nancy knew that males dominate females
in terms of trips taken. She was hence interested to see the trip duration of males and
repeat the outlier treatment for them as well. Hence she came up with these exercise
questions for you in the hopes of gaining further insights.

EXERCISES

1. Find the mean, median, and mode of the trip duration of gender
type male.

2. by looking at the numbers obtained earlier, in your opinion is
the distribution symmetric or skewed? if skewed, then is is it
positively skewed or negatively skewed?

3. plot a frequency distribution of trip duration for trips availed by
gender type male. does it validate your inference as you did so
in the previous question?

4. plot a box plot of the trip duration of trips taken by males. do
you think any outliers exist?

5. apply the formula in listing 1-6 to determine the percentage of
observations for which outliers exists.

6. perform the treatment of outliers by incorporating one of the
methods we discussed earlier for the treatment of outliers.

The multivariate analysis that Nancy and Eric had performed had yielded some good
insights. However, Nancy was curious to know if some statistical tests exist to determine
the strength of the relationship between two variables. She wanted to use this information
to determine the features which have the most impact on trip duration. The concept of
correlation popped up in Eric’s mind, and he decided to share his knowledge base before
moving on further with the analysis.

ChapTer 1 ■ STaTiSTiCS and probabiliTy

34

Correlation
Correlation refers to the strength and direction of the relationship between two
quantitative features. A correlation value of 1 means strong correlation in the positive
direction, whereas a correlation value of -1 means a strong correlation in the negative
direction. A value of 0 means no correlation between the quantitative features. Please
note that correlation doesn’t imply causation; that is, the change in one entity doesn’t
enforce a change in the other one.

Correlation of an attribute to itself will imply a correlation value of 1. Many machine
learning algorithms fail to provide optimum performance because of the presence of
multicollinearity. Multicollinearity refers to the presence of correlations among the
features of choice, and thus it is usually recommended to review all pair-wise correlations
among the features of a dataset before considering them for analysis.

Following are the most common types of correlations:

Pearson R Correlation
Pearson R correlation is the most common of the three and is usually suitable to calculate
the relationships between two quantitative variables which are linearly related and seem
to be normally distributed. Take, for example, two securities in the stock market closely
related to one another and examine the degree of relationship between them.

Kendall Rank Correlation
As compared to Pearson, which is suitable for normally distributed data, Kendall
rank correlation is a non-parametric test to determine the strength and direction
of relationship between two quantitative features. Non-parametric techniques are
targeted to distributions other than the normal distribution. To the contrary, parametric
techniques are targeted toward normal distribution.

ChapTer 1 ■ STaTiSTiCS and probabiliTy

35

Spearman Rank Correlation
Spearman rank correlation is a non-parametric test just like Kendall rank correlation,
with the difference that Spearman rank correlation does not make any assumptions about
the distribution of the data. Spearman rank correlation is most suitable for ordinal data.

Nancy was interested to see if change in age brings a linear change to trip duration.
For that Eric decided to bring Pearson R correlation into practice and decided to make a
scatter plot between the two quantities for them to see the relationship visually.

Listing 1-25. Pairplot of trip duration and age

data = data.dropna()
seaborn.pairplot(data, vars=['age', 'tripduration'], kind='reg')
plt.show()

ag
e

age

tr
ip
du
ra
tio
n

90

80

70

60

50

40

30

20

10

30000

25000

20000

15000

10000

5000

0

–5000

tripduration
30000250002000015000100005000–5000010 20 30 40 50 60 70 80 90

Figure 1-17. Pairplot between trip duration and age

ChapTer 1 ■ STaTiSTiCS and probabiliTy

36

While looking at Figure 1-17, Nancy didn’t find any definitive pattern between trip
duration and age. There is a minor positive correlation, as explained in Figure 1-18.

Nancy knew that a perfect positive correlation meant a value of 1; hence she wanted
to see if the correlation value between age and tripduration is positive and approaches 1
or not. Eric wrote the code in Listing 1-26 to make it possible.

Listing 1-26. Correlation Coefficient Between trip duration and age

pd.set_option('display.width', 100)
pd.set_option('precision', 3)

data['age'] = data['starttime_year'] - data['birthyear']

correlations = data[['tripduration','age']].corr(method='pearson')
print(correlations)

Output

 tripduration age
tripduration 1.000 0.058
age 0.058 1.000

The correlation coefficient came out to be greater than 0 which according to Nancy’s
deduction was a positive correlation, but being much less than 1 meant it to be weak in
nature.

Nancy was aware that a simple analysis meant taking a feature into consideration
and analyzing it. Another more complex method was to split the feature into its categories
(e.g., splitting gender into male and female) and then performing the analysis on both
these chunks separately. She was confused as to which was the right approach and thus
asked Eric for his opinion. Eric thought of introducing the concept of t-statistics and came
up with a small demonstration for Nancy.

y-axis y-axis y-axis

x-axis x-axis0
Positive Correlation Negative Correlation No Correlation

0 x-axis0

Figure 1-18. Correlation directions

www.allitebooks.com

http://www.allitebooks.org

ChapTer 1 ■ STaTiSTiCS and probabiliTy

37

Hypothesis Testing: Comparing Two Groups
Before going through the methodology to compare two groups, it is important to
understand null and alternative hypotheses.

Null hypothesis is something we attempt to find evidence against in the hypothesis
tests. Null hypothesis is usually an initial claim that researchers make on the basis of
previous knowledge or experience. Alternative hypothesis has a population parameter
value different from that of null hypothesis. Alternative hypothesis is something you hope
to come out to be true. Statistical tests are performed to decide which of these holds true
in a hypothesis test. If the experiment goes in favor of the null hypothesis then we say the
experiment has failed in rejecting the null hypothesis. You might be thinking, “Ain’t it the
same” as that of accepting the null hypothesis? Well, no! Not guilty doesn’t actually mean
that a person is innocent.

t-Statistics
t-refers to a difference represented in the units of standard error. This exists in two most
common variants:

1-sample-t

This is the search of evidence of a significant difference between a population mean
and a hypothesized value.

2-sample-t

This is when you are trying to find the evidence of a significant difference between
population means. Note that the samples from both the distributions should be
independent of each other.

t-value and p-values are internally linked. The larger the absolute value of the t-value,
the smaller the p-value as the distribution is concentrated around the mean, and thus the
higher the probability to reject the null hypothesis.

t-value can be negative as well as positive. The greater the magnitude of T in either
direction, the greater is the evidence against the notion that there is no significant
difference (i.e., the null hypothesis). Vice versa, if the t-value approaches 0, then it implies
that there is no significant difference between the population means or between a
population mean and a hypothesized value.

Contrary to a statistical phenomenon like correlation, a t-value is calculated by
sampling one value from the entire population. Given that the sampling is random, each
time a t-value is calculated the answer presents a random sampling error (i.e., some
variation from the t-value calculated earlier).

t-distributions help identify the magnitude of change due to random sampling from
the entire population.

ChapTer 1 ■ STaTiSTiCS and probabiliTy

38

t-Distributions and Sample Size
Degree of freedom refers to the instances in which you have the freedom to choose from
more than one choice. Usually this is sample size - 1. Degree of freedom (DF) defines the
spread of a Gaussian distribution. The more the DF, the lesser probability density lies
within the tails, with the distribution tightly clustered around the mean. Small sample
sizes are more likely to be unusual and thus pose a threat of getting further away from the
null hypothesis even though the null hypothesis holds true. Hence it is better to have a
large sample size when calculating t-value.

f

0

df=1

df=9

df=25

df=

t scores

Figure 1-19. Change in t-distributions due to changes in sample size

Let’s calculate the two-tail t-test for all categories of genders and user types
(see Listing 1-27). We do this so we can understand if different categories have
resemblance in variances. If they do, then they will be considered a group; otherwise
they will be treated separately in the analysis mode.

Listing 1-27. Computing Two-Tail t-test of Categories of gender and user types

for cat in ['gender','usertype']:

 print 'Category: %s\n'%cat
 groupby_category = data.groupby(['starttime_date', cat])['starttime_

date'].count().unstack(cat)
 groupby_category = groupby_category.dropna()
 category_names = list(groupby_category.columns)

 for comb in [(category_names[i],category_names[j]) for i in
range(len(category_names)) for j in range(i+1, len(category_names))]:

 print '%s %s'%(comb[0], comb[1])
 t_statistics = stats.ttest_ind(list(groupby_category[comb[0]]),

list(groupby_category[comb[1]]))

ChapTer 1 ■ STaTiSTiCS and probabiliTy

39

 print 'Statistic: %f, P value: %f'%(t_statistics.statistic,
t_statistics.pvalue)

 print '\n'

Output

Category: gender

Female Male
Statistic: -38.572176, P value: 0.000000

Female Other
Statistic: 48.248666, P value: 0.000000

Male Other
Statistic: 53.180282, P value: 0.000000

Category: usertype

Member Short-Term Pass Holder
Statistic: 14.393456, P value: 0.000000

Neither the code nor the output made any sense to Nancy; hence Eric explained the
following:

At first we looped over the two features gender and age. For each of these
features, we first split its column into category columns. For example,
gender was split into Male, Female, and Others. Next we made category
pairs and ran t-statistics on them. For example, Male-Female, Male-
Others, etcetera.

The results seem to be homogeneous across all categories. What do I
mean by that? Well for all of the comparisons, the p-values in the output
seem to be roughly 0. If we go with a confidence interval of 95%, then it
translates to a p-value of 0.05. None of the statistics above exceeds our set
p-value benchmark. This leads us to the conclusion that we need to treat
all of these categories separately when moving in the modeling aspect, as
all of them have different variances.

Nancy now knew her audience to a certain degree, but she wanted to know more,
and for that purpose she planned on generating a question and doing sampling. Thus she
asked Eric if he could enlighten her with a concept or two along those lines. Eric knew
that central limit theorem has a pivotal value in sampling and analysis, so he came up
with an illustration.

ChapTer 1 ■ STaTiSTiCS and probabiliTy

40

Central Limit Theorem
Consider as an example any distribution consisting of random samples with a well-
defined mean and standard deviation. Now let’s pick some random samples from that
distribution and calculate the mean and standard deviation. As you increase the sample
size (i.e., n), the mean and standard deviation converge to that of a Gaussian normal
distribution. In other words, as you increase sampling from an arbitrary distribution it
converges to a normal distribution with a given mean and standard deviation. So how
large should the sampling size be for the theorem to influence the behavior?

•	 The greater the sample size is, the more closely that sampling
distribution will resemble the normal distribution.

•	 The more the arbitrary distribution resembles the normal
distribution, the fewer samplings will be required to satisfy the
theorem. Statisticians usually recommend a sample size of 30 to
40 in a scenario like this one.

Eric decided to use the data at hand as an aid to explain central limit theorem
(see Listing 1-28).

Listing 1-28. Script to Validate Central Limit Theorem on Trips Dataset

daily_tickets = list(data.groupby('starttime_date').size())
sample_tickets = []
checkpoints = [1, 10, 100, 300, 500, 1000]
plot_count = 1

random.shuffle(daily_tickets)

plt.figure(figsize=(15,7))
binrange=np.array(np.linspace(0,700,101))

for i in xrange(1000):
 if daily_tickets:
 sample_tickets.append(daily_tickets.pop())

 if i+1 in checkpoints or not daily_tickets:
 plt.subplot(2,3,plot_count)
 plt.hist(sample_tickets, binrange)
 plt.title('n=%d' % (i+1),fontsize=15)
 plot_count+=1

 if not daily_tickets:
 break

plt.show()

ChapTer 1 ■ STaTiSTiCS and probabiliTy

41

Eric explained the code in Listing 1-28 as follows:

Random shuffling was done in order to change the order of daily number
of tickets. Once done, then different sample sizes were fixed in order to
see the change in distribution as a function of the sample size. Note in
Figure 1-20 that with the increase in sample size, the distribution seems
to transform into a normal distribution. This validates the central limit
theorem.

Case Study Findings
Eric and Nancy’s deductions helped them understand their audience to a better extent
and garner valuables insights. The insights were rendered on data collected from 2014
to 2016 with demographic information only available for the members and not short-
term pass holders. Hence, in order to get information about the short-term pass holders
Nancy knew that she had to go through a market research exercise where central limit
theorem would come in handy. Trip duration follows a definite seasonal pattern that
repeats over time. Forecasting this time series can help Nancy predict the times when
the company needs to push its marketing efforts and times when most trips anticipated
can help ensure operational efficiencies. As for the promotions, Nancy now knew that
the best station at which to kick off the campaign would be Pier 69/Alaskan Way & Clay
St. Outliers were a tiny portion of the dataset; however, their time series nature meant
that those outliers couldn’t be removed and transformation was thus applied. Regarding
further analysis, Nancy was now aware that as the features are not homogeneous, the
analysis would have to be done on the individual category level.

10

0.8

0.6

0.4

0.2

0.0

n=300

n=1

0 100 200 300 400 500 600 700

10 18 25

20

15

10

5

0

16

14

12

10

8

6

4

2

0

8

6

4

2

0
0 100 200 300 400 500 600 7000 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

10

0.8

0.6

0.4

0.2

0.0

n=500

n=10

0 100 200 300 400 500 600 700

5

4

3

2

1

0

n=689

n=100

0 100 200 300 400 500 600 700

Figure 1-20. Distributions of daily tickets on different sample sizes

ChapTer 1 ■ STaTiSTiCS and probabiliTy

42

Nancy wasn’t sure if the techniques they applied were obsolete or have applications
in real world applications as well. Hence Eric compiled the following list of applications
that his friends from the industry use to bring Statistics and Probability into live.

Applications of Statistics and Probability
Applications of statistics and probability are vibrant in several fields of study.

Actuarial Science
Actuaries use the concepts of mathematics, probability theory, statistics, finance,
economics, computer science, and modeling to evaluate and price risks. Their
application cases exist in the domains of insurance, consulting firms, and government.

Biostatistics
There are applications of statistics in various branches of biology. This encompasses the
design of biological experiments and making inferences from them. Diving deeper into
biostatistics reveals examples in which subjects (patients, cells, etc.) exhibit variation in
response to some stimuli (e.g., medicine). Biostatisticians use inferential statistics to give
meaning to these anomalies.

Astrostatistics
Astrostatistics is an amalgam of statistical analysis, astrophysics, and data mining. Data
collected from automatic scanning of cosmos is used to make deductions.

Business Analytics
Business analytics uses operational and statistical theories to make predictive models. It
also incorporates optimization techniques to garner effective insights for customers and
business executives.

These insights enable companies to automate and optimize their business processes.
Business intelligence differs from business analytics in that business intelligence
helps us answer what happened whereas business analytics helps us understand the
reason for this anomaly (i.e., why it happened in the first place and the chances of it
happening again). These analytics are used in various business areas such as enterprise
optimization, fraud analytics, pricing analytics, supply chain analytics, and so on.

ChapTer 1 ■ STaTiSTiCS and probabiliTy

43

Econometrics
The application of statistical methods for estimating economic relationships constitutes
econometrics. Some of the examples include measuring the effect of divorce laws
on divorce and marriage rates, change in wages of native workers from impact on
immigration policies, or forecasting macroeconomic variables of inflation rates, interest
rates, or gross domestic product.

Machine Learning
Several machine learning algorithms are based on statistical theories or an advanced
version of the same. An example of this is the Bayesian theory which is commonly used.

Statistical Signal Processing
Past corpus of speeches is used to determine the highest probability of spoken words.
Moreover, statistical signal processing is used in the following applications:

•	 Game theory

•	 Estimation and filtering

•	 Signal processing

•	 Linear systems

Elections
Campaign managers use the results of the polls to infer wins in the coming elections for
their political parties.

45© Danish Haroon 2017
D. Haroon, Python Machine Learning Case Studies, DOI 10.1007/978-1-4842-2823-4_2

CHAPTER 2

Regression

Regression and time series analysis make predictions for quantitative target variables
possible. This chapter aims to highlight the core concept of regression and its variants.
The emphasis here is to take the readers through the journey of model selection when
solving for real-world problems. Moreover, this chapter also features statistical tests to
evaluate the findings of these regression techniques.

 ■ Note This book incorporates Python 2.7.11 as the de facto standard for coding
examples. Moreover, you are required to have it installed for the Exercises.

In this chapter we will be using the Concrete Compressive Strength dataset for
coding examples and exercises. This data dump can be downloaded from UCI’s web
site link:

http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength

Case Study: Removing Inconsistencies in
Concrete Compressive Strength
Andrew had an hour-long meeting with Smith regarding the frequent complaints he
had been receiving from their existing clientele. Smith was the sales representative
at a construction aggregates company and was facing difficulties in meeting his sales
targets. Smith believed that the reason for his difficulties was that the existing clients had
complaints regarding quality inconsistencies—this, when coupled with negative word of
mouth in the market, was making it tough for him to seal deals with potential customers.

Andrew, the plant supervisor, was Smith’s friend. At first Smith tried to find a solution
for this problem, but when things got out of his control, he decided to have a meeting
with Andrew.

http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength

ChapTer 2 ■ regression

46

There is usually friction between the production and sales departments in most
companies. Both of them usually fight over their yearly budgets and their plans for
meeting their annual targets. Smith knew this but he felt sure that things would be
different with Andrew as they had been friends for some time. However, as the meeting
kicked off and Smith presented the matter to Andrew, to his dismay Andrew wasn’t ready
to acknowledge any inconsistencies in production. As Smith recalled Andrew saying,
“These complaints don’t make any sense to me. You ask why! Well first of all, we had an
upgrade at our production plant in the last quarter, and you know for a fact that the raw
material we use goes through a thorough testing prior to being used for production.”

The meeting didn’t help Smith in any way, and he let the matter go for some time.
One day, when he was in a networking session during one of his company’s corporate
events, Smith heard some executives from the production department talking about
the recent upgrade of the plant. He recalled hearing one of the executives say, “Though
we don’t have any testing improvement in our recent upgrade for measuring concrete
compressive strength, then too our product quality is superior thanks to our robust
testing of raw material used.”

When Smith heard this, he did some research and was surprised to discover that the
complaints had gained momentum ever since the upgrade had taken place. However, he
also discovered that the procurement of the testing equipment was put on hold due to a
shortage of funds allocated to the procurement department. Smith knew for a fact that he
couldn’t afford to wait until the next year for the issue to resolve on its own, and he had to
find a way to make things right.

He had heard that the recent upgrade meant that machines had recording data.
Smith decided to set up a meeting with Claire (the manager of analytics) to see if she
could help in figuring out the reason behind the inconsistencies in concrete compressive
strength. The meeting went well for Smith, as Claire assured him of the in-house analytics
capabilities. As Claire recalled, “At that time we had started up the analytics vertical, but
I knew for sure that we had the muscles to formulate a model which can answer this
anomaly.”

Smith was relieved and now had to formulate a strategy to take his findings
forward—that is, either approach management with his findings or share his findings
to the production department for them to integrate those into their inner processes.
However, Smith was curious if the data at hand was strong enough to deduce some
quality findings. Moreover, he was interested to see which factors influence concrete
compressive strength the most.

Smith was interested to know which features of the dataset Claire would be working
on. Hence, Claire came up with the data dictionary in Table 2-1.

ChapTer 2 ■ regression

47

Before moving forward Claire thought of initializing the following packages. She
preferred to do this in order to avoid bottlenecks while implementing the code snippets
on her local machine (Listing 2-1).

Listing 2-1. Importing Packages Required for This Chapter

%matplotlib inline

import time
import random
import datetime
import pandas as pd
import matplotlib.pyplot as plt
import statistics
import numpy as np
from scipy import stats
from sklearn.grid_search import GridSearchCV
from sklearn.linear_model import RANSACRegressor, LinearRegression,
TheilSenRegressor

Table 2-1. Data Dictionary for the Concrete Compressive Strength Dataset

Feature name Description

Cement (kg in a m3 mixture) Amount of cement used in a m3 mixture
(unit: kg)

Blast furnace slag (kg in a m3 mixture) Amount of blast furnace slag used in a
m3 mixture (unit: kg)

Fly ash (kg in a m3 mixture) Amount of blast fly ash usedin a
m3 mixture (unit: kg)

Water (kg in a m3 mixture) Amount of water used in a m3 mixture
(unit:kg)

Superplasticizer (kg in a m3 mixture) Amount of superplasticizer used in a
m3 mixture (unit: kg)

Coarse aggregate (kg in a m3 mixture) Amount of coarse aggregate used in a
m3 mixture (unit: kg)

Fine aggregate (kg in a m3 mixture) Amount of fine aggregate used in a
m3 mixture (unit: kg)

Age (days) Age of concrete (unit: days)

Concrete compressive strength Concrete compressive strength which is
measured in MegaPascal (MPa). This is
the unit for pressure or stress and is the
common unit to determine compressive
strength of concrete.

ChapTer 2 ■ regression

48

from sklearn.metrics import explained_variance_score, mean_absolute_error,
mean_squared_error, median_absolute_error, r2_score

from sklearn.svm import SVR
from sklearn.linear_model import Ridge,Lasso,ElasticNet,BayesianRidge
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.cross_validation import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures
from sklearn.cross_validation import cross_val_score
import seaborn
from IPython.display import Image

Smith was curious as to which techniques Claire would use to solve this problem.
Claire thought this problem to be the ideal application for regression as the response
variable (concrete compressive strength) is a quantitative quantity, and she was concerned
about finding the factors that influence concrete compressive strength. These influential
factors, when scaled by their composition and added together, can produce the compressive
stength of concrete. Thus this will enable the calculation of concrete compressive strength
without the need to procure any equipment specifically for the problem at hand. To help
Smith understand what regression is, she compiled information on the topic.

Concepts of Regression
Regression describes the relationship between an exploratory variable (i.e., independent)
and a response variable (i.e., dependent). Exploratory variables are also referred to as
predictors and can have a frequency of more than 1. Regression is being used within
the realm of predictions and forecasting. Regression determines the change in response
variable when one exploratory variable is varied while the other independent variables
are kept constant. This is done to understand the relationship that each of those
exploratory variables exhibits. Please note that irrespective of classification that is used to
predict discrete response variables, regression is used to predict response variables that
are continuous in nature. A basic variant of regression is linear regression.

Interpolation and Extrapolation
Extrapolation refers to the use of regression for predicting response variable values
outside the range of exploratory values used initially for training the model. This data is
not used for training the model and is represented by the dotted line in Figure 2-1.

ChapTer 2 ■ regression

49

The regression model will be fitted/trained on the data at hand (i.e., interpolation
represented by the solid line) and the trained model will then be used to extrapolate on
the portion represented by a dotted line. Hence, interpolation is done on data already
known, and extrapolation is done on the data unknown.

Linear Regression
Linear regression is a form of regression in which one exploratory variable is used to
predict the outcome of a response variable. Mathematically it can be defined as follows:

•	 Symbol: y

•	 Formula: y = b0 + b1x + e

•	 Illustration:

•	 y: Response variable

•	 x: Explanatory variable

•	 b0: Slope

•	 b1: Intercept

•	 e: Regression residual

Figure 2-2 shows this equation visually.

Extrapolated, D

Measured B

Measured, A

Interpolated, C

y

x

Figure 2-1. Visual representation of interpolation and extrapolation

ChapTer 2 ■ regression

50

Please note in Figure 2-2 that intercept is the point where the best fit line crosses
the y axis. Regression residual is the difference between the actual value of the response
variable and the predicted one.

Least Squares Regression Line of y on x
The least squares regression line makes the sum of square vertical distances of data
points from the line as minimal as possible. Mathematically it can be defined as follows:

•	 Symbol: ŷ

•	 Formula: ŷ b b x= +0 1

•	 Further derivations:

•	 b r
s

s
y

x
1 =

•	 b y b0 1= -’ x’

•	 Least squares regression line always passes through (x’ y’,)

The illustration in Figure 2-3 uses linear regression (i.e., one exploratory variable
to depict the methodology adapted by the least squares regression line). y depicts the
response variable whereas x denotes the exploratory variable. Vertical distances from
data points to the lines are shown and the best fit regression line is seen as passing
through the center of these data points. Thus this ensures that the square of residual is
minimized for each data point.

Y

Y 0 + 1X + e.

1
slope

intercept0

X

Figure 2-2. Linear regression best fit line along with the regression coefficients explained

ChapTer 2 ■ regression

51

Multiple Regression
Multiple regression is a type of regression in which more than one exploratory variable is
used to predict the outcome of a response variable. Multiple regression is mathematically
defined as follows:

•	 Symbol: y

•	 Formula: y = b0 + b1x1 + b2x2 + b3x3 +….. bt xt+ e

•	 Illustration:

•	 y: Response variable

•	 x1, x2 , x3, ……, xt: Explanatory variable

•	 b0: Slope

•	 b1, b2, b3, ……., bt: Intercepts

•	 e: Regression residual

The formula above can also be referred to as the equation of regression. Essentially,
one is trying to find optimal values for all coefficients such can give the best possible
value of y given all x. In the case of single variable, it’s a line (i.e., linear regression), as
shown in Figure 2-3, but in case of multiple variables it becomes a plane, as shown in
Figure 2-4.

6

6

5

5

4

4

3y

x
3

2

2

1

1

Figure 2-3. Residuals

ChapTer 2 ■ regression

52

Plugging optimal values of coefficients (i.e., slope and intercepts) back in the
formula above will yield us an equation. Unknown values in this equation will be the x
values, which are the exploratory variable values in this case. For any given value of x, the
equation will return us with a prediction.

Stepwise Regression
This type of regression is a customized version of multiple regression. Rather than using
all exploratory variables for predicting the outcome, stepwise regression automatically
selects the independent variables from a given pool which can yield a best fit line. This
can be done by doing either of the following:

•	 Try out one exploratory variable at a time and use that for fitting
the regression model. Incorporate that exploratory variable if
found statistically significant.

•	 Run multiple regression on all exploratory variables and use the
one that is most statically significant to determine the best fitted
regression line.

Figure 2-5 best describes the methodology adopted by stepwise regression.

Y

X2

X1

Data Point

Figure 2-4. Multiple regression with two exploratory and one response variables explained

ChapTer 2 ■ regression

53

However, as per some statisticians, this approach inherits the following problems:

•	 Opting for one exploratory variable and dropping others creates
a bias toward the one selected and deprives one from observing
the chunk of variations which could have been captured by the
exploratory variables dropped in the first place.

•	 In the case of choosing among many exploratory variables, going
through this entire exercise will require significant computing
power, and thus time.

Polynomial Regression
Sometimes when plotting the scatter plot between exploratory and response variables we
see a non-linear trend. This trend will go unnoticed by the linear regression cameo, and
will thus require a non-linear treatment where polynomial regression comes in handy.
Polynomial regression uses degrees of polynomial to make a non-linear regression line.
Polynomial regression can mathematically be defined as follows:

•	 Symbol: y

•	 Formula: y = b0 + b1x + b2x2 + b3x3 + bhxh+ e

•	 Illustration:

•	 y: Response variable

•	 x1, x2, x3, ……, xh: Explanatory variable

Start: Constant term only, no
variable terms yet

Stage I : test
Linear terms

Pr
og

re
ss

iv
e

M
od

el
 E

nh
an

ce
m

en
t

Re
-f

it
M

od
el

 &
 R

e-
te

st
 A

ll
Te

rm
s

Stage II : test
Cross-product terms

Stage III : test
Univariate 2nd, 3rd, 4th order terms

No

No

No

No

Yes

Sufficient?

Delete insignificant
variable terms

Model selected; done.

Linear terms added

Cross-product terms
added

Higher order
terms added

Necessary?

Necessary?

Necessary?

Yes

Yes

Yes

Figure 2-5. Flowchart of stepwise regression Source:.slideshare.net/bzinchenko/quant-
trader-algorithms

ChapTer 2 ■ regression

54

•	 b0: Slope

•	 b1, b2, b3 , ……., bh: Intercepts

•	 e: Regression residual

•	 h: Degree of polynomial

Looking at Figure 2-6 you will notice that increasing the degree of polynomial makes
the curve more non-linear and induces additional curves within the regression line.

Assumptions of Regressions
In order to prevent Smith from thinking of regression as the magic wand for continuous
data predictions, Claire came up with the set of assumptions that should hold true for
regression to be applicable to a given dataset.

Degree 2 Degree 3

Degree 6

Centered X Variable

-20

Fi
tte

d
Va

lu
es

18
22

26
30

Fi
tte

d
Va

lu
es

18
20

22
24

0 20 40

Centered X Variable

-20 0 20 40

Centered X Variable

-20

Fi
tte

d
Va

lu
es

15
20

25
30

0 20 40

Centered X Variable

-20

Fi
tte

d
Va

lu
es

15
20

25
30

0 20 40

Degree 7

Figure 2-6. Polynomial regression curves for different values of degrees (i.e., h)

ChapTer 2 ■ regression

55

Number of Cases
The ratio of cases-to-independent variables (IVs) should ideally be 20:1. This means that
there should be 20 samples for each exploratory variable. However, in extreme cases a
minimum of 5 samples to one exploratory variable is permissible (i.e., for 5 exploratory
variables there should be 25 samples in the dataset).

Missing Data
In regression, missing data can lead to a model which is unfit for the sampling data.
You might fall victim to either one of the following situations:

•	 There might be instances when some observations have missing
values for all fields within the data. Removing them will be a wise
thing to do because if the missing values are insignificant then
neglecting them won’t disturb the overall behavior captured by
the model.

•	 In case only a given column has missing values in majority of the
observations no treatment is required because then regression
will neglect the cases in which there are no values for that
variable.

Outliers
Outliers can create a bias in the outcome of a regression model such that they will pull the
best fit line toward themselves. Hence treatment of outliers is critical in regression and
can be done by means of an appropriate method selected from the ones highlighted in
Chapter 1.

Multicollinearity and Singularity
Multicollinearity and Singularity are two concepts which undermines the regression
modeling, resulting in bizarre and inaccurate results. If exploratory variables are highly
correlated, then regression becomes vulnerable to biases. Multicollinearity refers to a
correlation of 0.9 or higher, whereas singularity refers to a perfect correlation (i.e., 1).

A remedy to this is to remove the exploratory variable exhibiting correlation of more
than 0.7. But then this brings us to the following problem. Considering the example in
Figure 2-7, where weight and blood pressure (BP) have a high correlation of 0.95.

http://dx.doi.org/10.1007/978-1-4842-2823-4_1

ChapTer 2 ■ regression

56

Now which one (weight or BP) is the troublemaker and should be removed? This
is the point where tolerance comes in as a remedy? Tolerance can be mathematically
defined as follows:

•	 Formula: Tolerance = 1-r2

•	 Illustration:

•	 r2: Squared multiple correlation of this variable with all other
independent variables in the regression equation

Tolerance refers to the proportion of the exploratory variable’s variance not captured
by other exploratory variables in the equation. The greater this value, the better it is.
Eradicating multicollinearity and singularity will ensure that the response variable is
predicted from the variations captured by exploratory variables independently and not by
the correlations which exist among them.

After reading through the description of the regression techniques available,
Smith was curious to know which method would work best for the problem at hand.
However, Claire knew that the process for figuring out the right method would need
some understanding of the data before moving forward. Hence she decided to perform
features’ exploration. By features she meant variables within the dataset. She was
primarily interested to see what the data looks like and if the following exist:

•	 Correlation between the exploratory variables and the response
variable or not

•	 Multicollinearity and singularity

Features’ Exploration
Claire started off by loading the data into memory (see Listing 2-2).

Listing 2-2. Reading the Data in the Memory

data = pd.read_csv('examples/concrete_data.csv')

Correlation: BP, Age, Weight, BSA, Dur, Pulse, Stress

Stress 0.164 0.368 0.034 0.018 0.312 0.506

BP Age Weight BSA Dur Pulse

Pulse 0.721 0.619 0.659 0.465 0.402
Dur 0.293 0.344 0.201
BSA 0.866 0.378
Weight 0.950
Age 0.659

0.407
0.875

0.131

Figure 2-7. Illustration of multicollinearity

ChapTer 2 ■ regression

57

Smith was curious to know how much data there was and what it looked like. Hence
Claire wrote the code in Listing 2-3 to print some initial observations of the dataset to get
a feel of what it contains.

Listing 2-3. Printing the Size of the Dataset and Printing the First Few Rows of the
Dataset

print len(data)
data.head()

Output

1030

While looking at the first few observations in Table 2-2, Smith noticed that all the
features except that of age are floating point numbers, with age being the only integer
variable. He also noticed that blast furnace slag, fly ash, and superplasticizer are not
always the prerequisite when building a concrete. Moreover, he noticed that the concrete
data within the dataset can be a year old (i.e., row no. 3 has an age of 365 ~ year)

Claire knew for sure that for the analysis (i.e., correlation, regression) to be done it is
important that feature names should be as simple as possible. Hence she wrote the code
snippet in Listing 2-4 to make the names brief and human readable. For renaming she
followed the name mapping as defined in Table 2-3.

Listing 2-4. Renaming the Columns

data.columns = ['cement_component', 'furnace_slag', 'flay_ash',
'water_component', 'superplasticizer', \
 'coarse_aggregate', 'fine_aggregate', 'age', 'concrete_strength']

Cement
(component
1)(kg in a
m^3 mixture)

0 540.0

540.0

332.5

332.5

198.6

0.0

0.0

142.5

142.5

132.4

0.0

0.0

0.0

0.0

0.0

162.0

162.0

228.0

228.0

192.0

2.5

2.5

0.0

0.0

0.0

1040.0

1055.0

932.0

932.0

978.4

676.0

676.0

594.0

594.0

825.5

28

28

270

365

360

79.99

61.89

40.27

41.05

44.30

1

2

3

Blast Furnace
Slag (component
2)(kg in a m^3
mixture)

4

Fly Ash
(component
3)(kg in a m^3
mixture)

Water
(component
4)(kg in a
m^3 mixture)

Superplasticizer
(component 5)
(kg in a m^3
mixture)

Coarse
Aggregate
(component 6)
(kg in a m^3
mixture)

Fine Aggregate
(component 7)
(kg in a m^3
mixture)

Age
(day)

Concrete
compressive
strength(MPa,
megapascals)

Table 2-2. Print of Observations of the Dataset

ChapTer 2 ■ regression

58

Having seen what the data looks like, it was time for Claire to see how well the
exploratory variables correlate to the response variable and if any multicollinearity/
singularity in the data exists or not.

Correlation
Claire first decided to see whether any of the exploratory variables correlates to the
response variable (i.e., concrete strength). This question was of the utmost importance
to her because she believed that high correlation between two quantitative entities can
lead to a better best fit linear regression line. Hence she was interested to determine the
strength and direction of relationships between these quantitative quantities. For that
she wrote the code in Listing 2-5. However, before moving forward she explained why
correlation and regression are not entirely the same:

Correlation can be calculated between any two quantitative quantities.
However, regression is always commuted between a response variable and
exploratory variable(s). Correlation is limited to just two quantitative
quantities where regression can have more than two quantitative
quantities, that is, one response variable and more than one exploratory
variables aka multiple regression.

Claire also pointed out that an easy way to see the correlation visually is to use a scatter
plot between response variable and exploratory variables, one at a time (Figure 2-8).

Table 2-3. Variable Names’ Mapping

Old Feature name New feature name

Cement(component 1)(kg in a m3 mixture) cement_component

Blast Furnace Slag(component 2)(kg in a m3 mixture) furnace_slag

Fly Ash(component 3)(kg in a m3 mixture) flay_ash

Water(component 4)(kg in a m3 mixture) water_component

Superplasticizer(component 5)(kg in a m3 mixture) superplasticizer

Coarse Aggregate(component 6)(kg in a m3 mixture) coarse_aggregate

Fine Aggregate(component 7)(kg in a m3 mixture) fine_aggregate

Age (days) age

Concrete compressive strength(MPa, megapascals) concrete_strength

ChapTer 2 ■ regression

59

Listing 2-5. Plotting Scatter Plots Between the Response and Exploratory Variables

plt.figure(figsize=(15,10.5))
plot_count = 1

for feature in list(data.columns)[:-1]:
 plt.subplot(3,3,plot_count)
 plt.scatter(data[feature], data['concrete_strength'])
 plt.xlabel(feature.replace('_',' ').title())
 plt.ylabel('Concrete strength')
 plot_count+=1

plt.show()

80

60

40

20Co
nc

re
te

 s
tr

en
gt

h

0

0 100 200
Cement Component Furnace Slag

300 400 500 600

100 120 140
Water Component

180160 200 220 240 260

500 600 700
Fine Aggregate

900800 1000 1100

80

60

40

20Co
nc

re
te

 s
tr

en
gt

h

0

80

60

40

20Co
nc

re
te

 s
tr

en
gt

h

0

80

60

40

20Co
nc

re
te

 s
tr

en
gt

h

0

80

60

40

20Co
nc

re
te

 s
tr

en
gt

h

0

80

60

40

20Co
nc

re
te

 s
tr

en
gt

h

0

80

60

40

20Co
nc

re
te

 s
tr

en
gt

h

0

-50 0 50 100 150 200 250
Flay Ash

-50 0 50 100 150 200 250

Coarse Aggregate
750 800 850 900 950 1000 1050 1100 1150 1200

300 350 400

Age
-50 0 50 100 150 200 250 300 350 400

Superplasticizer
-5 0 5 10 15 20 25 30 35

80

60

40

20Co
nc

re
te

 s
tr

en
gt

h
0

Figure 2-8. Scatter plot between response variable and exploratory variables

ChapTer 2 ■ regression

60

Claire came up with the description of the code in Listing 2-5 to make Smith at ease
with the methodology used. She recalled saying the following:

We came up with multiples plots within the same figure by using
subplots. We first defined the figure size by means of plt.figure
(figsize=(15,10.5)). This fixes the figure to a width of 15 and height
of 10.5. The response variable (that is, concrete strength) i.e. response
variable remains the same for all plots, whereas exploratory variables
are taken into consideration one at a time (that is, Plot by plot). Thus
we used: for feature in list(data.columns)[:-1] which looped
through all the variables except the last one (that is, the response
variable). Then we defined the subplot index as follows: plt.subplot
(3,3,plot_count). The first three define the number of rows,
whereas the other three define the number of columns. This means
that the figure will be able to accommodate a maximum of 9 plots.
plot_count defines the index where that specific plot will be positioned
on the figure. Possible values within this scenario can be from 1 to 9.

Smith decided to take a shot and explain the correlations by looking at Figure 2-8.
Hence he came up with the following three insights:

•	 The presence of outliers is negligible in the majority of these plots
except for the plot between concrete strength and age.

•	 In some of the scatter plots we see a high frequency of values lying
on 0. This can be seen in the plots between the concrete strength
variable and exploratory variables, primarily age, furnace slag, fly
ash, and superplasticizer.

•	 There seems to exist instances in which positive, sometimes
negative, and sometimes no correlation exists between the two
quantitative quantities.

Claire decided to extend these findings by listing the pairs for each of the instances
(i.e., no, positive and negative correlations). She did so by evaluating plots in Figure 2-6 on
the benchmark correlation in Figure 2-9. In case there is a trend, it will be either a negative
or a positive correlation. An absence of a definite trend will indicate the existence of no
correlation.

ChapTer 2 ■ regression

61

•	 Positive correlation exists between

•	 Cement component and concrete strength

•	 Superplasticizer and concrete strength

•	 Negative correlation lies between

•	 Fly ash and concrete strength

•	 Water component and concrete strength

•	 Coarse aggregate and concrete strength

•	 Fine aggregate and concrete strength

•	 No correlation exists between

•	 Furnace slag and concrete strength

•	 Age and concrete strength

The pairs identified by the visual representation made it easy for Smith to
understand what correlation is. However, he wanted to validate if the findings made sense
statistically as well. Hence, Claire came up with the code snippet and computed Pearson
correlation in Listing 2-6.

Listing 2-6. Calculating Pair-wise Pearson Correlations

pd.set_option('display.width', 100)
pd.set_option('precision', 3)
correlations = data.corr(method='pearson')
print(correlations)

y-axis y-axis y-axis

0
Positive Correlation

x-axis 0
Negative Correlation

x-axis 0
No Correlation

x-axis

Figure 2-9. Illustration of positive, negative, and no correlation

ChapTer 2 ■ regression

62

Claire recalled explaining the findings in the following words:

Output in Figure 2-10 shows a grid in which the Pearson correlation is
computed between all features in the dataset and not confined to just
the correlations between exploratory variables and response variable as
we saw earlier in Figure 2-8. A strong positive correlation has a value
of 1, strong negative correlation has a value of -1, and 0 indicates no
correlation. By looking at the scatter plot in Figure 2-8 we had assumed
that there exists no correlation between age and concrete strength;
however, the statistical results in Figure 2-10 say otherwise; that is, there
exists a slight positive correlation between the two quantities. Visual
deduction is prone to human error so we will go with the latter (that is,
there’s a slight positive correlation between the two quantities).

Smith, knowing how each exploratory variable correlates to the response variable,
was curious to investigate whether or not singularity or multicollinearity exists in the
dataset. This was exactly the next thing Claire had on list, and thus she wrote the code in
Listing 2-7.

Listing 2-7. Calculating Pair Plot Between All Features

data_ = data[(data.T != 0).any()]
seaborn. pairplot(data_, vars=data.columns, kind='reg')
plt.show()

cement_component

cement_component

furnance_slag

furnance_slag

flay_ash

flay_ash

water_component

water_component

superplasticizer

superplasticizer

\

coarse_aggregate
fine_aggregate
age
concrete_strength

cement_component
furnance_slag
flay_ash
water_component
superplasticizer
coarse_aggregate

coarse_aggregate

fine_aggregate

fine_aggregate

age

age

concrete_strength

concrete_strength

1.000
1.000

1.000
1.000

-0.275
-0.275

-0.397
-0.082
0.092

-0.109
-0.223
0.082
0.498

-0.324
0.107
0.043

-0.284
-0.282
-0.044
0.135

-0.397
-0.324

-0.257
0.378

-0.010
0.079

-0.154
-0.106

-0.082
0.107

-0.257

-0.658
-0.182
-0.451
0.278

-0.290

0.092
0.043
0.378

-0.658
1.000

-0.266
0.223

-0.193
0.366

-0.109
-0.284
-0.010
-0.182
-0.266
1.000

-0.178
-0.003
-0.165

-0.223
-0.282
-0.079
-0.451

-0.178

-0.156
-0.167

0.223

1.000

0.082
-0.044
-0.154
0.278

-0.193
-0.003
-0.156
1.000
0.329

0.498
0.135

-0.106
-0.290
0.366

-0.165
-0.167
0.329
1.000

Figure 2-10. Correlations between response variable and exploratory variables

ChapTer 2 ■ regression

63

Claire decided to first explain to Smith what the code meant in Listing 2-7. She pointed
out an aspect obvious in Figure 2-8 (i.e., that some of the features in the dataset have value
of 0 in majority). She believed that having a majority of 0 values in the dataset can lead to
correlation coefficients and regression lines that do not cover the dataset in its true essence.
She started off by explaining that data_= data[(data.T != 0).any()] meant deleting the
records in columns having a value of 0. After doing that she used seaborn pairplot to plot
correlations between all features in the dataset.

While explaining the output in Figure 2-11, Claire asked Smith to concentrate on
column 1 and row 2. Claire recalled to having explained that: “In many of the cases
feature pairs don’t have a correlation between them. Exception lies in two cases—that is,
cement component and furnace slag and cement component and fly ash—where we can
see a strong negative correlation.”

Smith was overwhelmed by the insights he had gained so far. He had seen what
the plots looked like after zero was removed from the observations. He was curious to

ce
m
en
t_
co
m
po
ne
nt

fu
rn
ac
e_
sl
ag

fla
y_
as
h

600

500

400

400

300

200

w
at
er
_c
om

po
ne
nt

su
pe
rp
la
st
ic
iz
er

260

240

220

200

180

160

140

120

100

40

30

20

10

–10

–20

1200
1150

1100
1050
1000

950
900

850
800

1100

1000

900

800

700

600

500

100

80

60

40

20

–20

0

cement_component furnace_slag flay_ash water_component superplasticizer
0 100 200 300 400 500 600 –50 0 50100150200250 –50 0 50 100 100 120140 160180 200220 240260 –5 0 5 10 15 20 25 30 35 750800850900950 50100150200 500 600 700 800 900 1000 1100 –50 –20 0 20 40 60 80 10050 100150200250 350400300010000150 200 250300350400

400

300

200

100

–100

0

750

0

–50

250

200

150

100

50

0

100

–100

0

300

200

100

0

co
ar
se
_a
gg
re
ga
te

coarse_aggregate fine_aggregate age concrete_strength

fin
e_
ag
gr
eg
at
e

ag
e

co
nc
re
te
_s
tr
en
gt
h

Figure 2-11. Pair plot of all features in the dataset

ChapTer 2 ■ regression

64

determine how the correlation coefficients would look after zeros are removed from
the dataset. Moreover, he was aware that a Spearman correlation exists between these
features hence he was curious to see what correlation coefficients it would present in the
given situation. Finally, while looking at Figure 2-8, it seemed to Smith that all features
were continuous except age, which looked like a discrete variable to him as observations
within age fell within one of the seven discrete values, Smith was interested in splitting
the data in to age segments and compute the correlations for each of these splits to see
a strong correlation between the response variable and any of the exploratory variables.
Can you help Smith answer these questions? Give it a shot in the following exercises.

EXERCISES

1. remove zeros from the data features and then recalculate
the pearson correlation. any improvements in the correlation
coefficient?

2. Determine spearman correlation for features in the dataset. Did
this bring any marginal difference in the correlation scores?

3. From the scatter plot it seems that age is more of a discrete
feature. Take the data from each age one by one and calculate
the pearson correlations for the remaining features. Does any
specific age yield a good correlation between the response
variable and exploratory ones?

Now that Claire and Smith understood the exploratory variables that had a
significant influence on concrete strength, and with knowledge of where multicollinearity
possibly exists, it was time to bring regression into practice. Regression was required
for them to come up with an equation which can enable them to measure the concrete
strength without the need of procuring some special equipment to measure it. However,
before proceeding with regression models Claire felt she needed to make Smith aware of
the important concepts of overfitting and underfitting.

Overfitting and Underfitting
Overfitting refers to the phenomenon where a model is highly fitted on a dataset. This
generalization thus deprives the model from making highly accurate predictions about
unseen data. Overfitting is shown by the non-linear line in Figure 2-12.

ChapTer 2 ■ regression

65

The following methodologies can be used to curb overfitting:

•	 Make models simple; that is, tune as many minimum parameters
as possible, because the more complex they are, the more they
will overfit the data at hand.

•	 Perform cross-validation. For example, randomly choose x% of
the data values for train and the remaining y% for test. Fit the
model on the train data, use it to predict values on the test data,
and compute the test error. Repeat this exercise again n times.
Each of the times the train/test split will be done randomly.
Compute the average of all test errors to find out the real test error
of the model at hand.

Underfitting is a phenomenon where the model is not trained with high precision on
data at hand.

The treatment of underfitting is subject to bias and variance. A model will have a
high bias if both train and test errors are high, as shown in Figure 2-13.

15

10

5

0

–5

–10

–15
–6 –4 –2 0 2 4 6

Figure 2-12. Illustration of overfitting

ChapTer 2 ■ regression

66

Moreover, a model will have a high variance if there is a large gap between test and
train errors, as shown in Figure 2-14.

If a model has a high bias type underfitting, then the remedy can be to increase the
model complexity, and if a model is suffering from high variance type underfitting, then
the cure can be to bring in more data or otherwise make the model less complex.

Claire decided to randomly divide the data into a train/test split to validate the
accuracy of the model and perform cross-validation in cases of overfitting (Listing 2-8).

Er
ro

r

m (Training Set Size)

Jtest()

Jtrain()

Figure 2-13. Illustration of high bias

Er
ro

r

m (Training Set Size)

Jtest()

Jtrain()

Figure 2-14. Illustration of high variance

ChapTer 2 ■ regression

67

Listing 2-8. Splitting the Data in Training and Testing sets

def split_train_test(data, feature, train_index=0.7):

 train, test = train_test_split(data, test_size = 1-train_index)

 if type(feature) == list:
 x_train = train[feature].as_matrix()
 y_train = train['concrete_strength'].as_matrix()

 x_test = test[feature].as_matrix()
 y_test = test['concrete_strength'].as_matrix()

 else:
 x_train = [[x] for x in list(train[feature])]
 y_train = [[x] for x in list(train['concrete_strength'])]

 x_test = [[x] for x in list(test[feature])]
 y_test = [[x] for x in list(test['concrete_strength'])]

 return x_train, y_train, x_test, y_test

Claire explained the code in Listing 2-8 to Smith as follows: “In the code above, we
are performing a 0.7-0.3 split. This means that 70% of the observations in the data form
the training dataset on which the data is fitted on, while 30% of it comprises the test
dataset on which the model will be evaluated.”

Claire pointed out that underfitting and overfitting are something that can be
detected from the output of a model when first applied. In order to determine the best
methodology to eradicate underfitting and overfitting, you have to go through multiple
iterations of modeling until you land on a model which is free from both of these.
Hence, this is an ongoing exercise and should be done whenever any model (regression,
classification, etc.) is applied to the data.

Smith was curious to see whether some techniques exist to evaluate the accuracy of
a regression model once applied to a dataset. Claire’s answer was affirmative, and hence
she compiled the next section for that purpose.

Regression Metrics of Evaluation
Sklearn.metrics is a great tool in determining the performance of a regression model.
It does this by implementing several utility functions, scores, and losses. These usually
give a single output; however, they have been enhanced to generate multiple outputs as
well, most notably, mean absolute error, R2 score, mean squared error, and explained
variance score.

Claire came up with a brief list of the most commonly used evaluation methods for
regression.

ChapTer 2 ■ regression

68

Explained Variance Score
This score defines the proportion of variance in population explained by the best
fit regression model. The best score for this metric is 1. Explained variance score is
mathematically defined as follows:

•	 Formula: explained y y
Var y y

Var yvariance ,ˆ
ˆ

() = -
-{ }
{ }

1

•	 Where:

•	 ŷ: Estimated target output

•	 y: Corresponding (correct) target output

•	 Var: Variance

Mean Absolute Error
Mean absolute error (MAE) is the mean of residuals (i.e., difference between the
estimated target and actual target outcomes). Alternative formulations of this measure
may include relative frequencies as the weight factors. MAE works on the same scale
(i.e., unit) on which the data is measured. Hence the limitation is that there is no
possibility of making comparisons between series using different scales/units. This can
be mathematically defined by the following:

•	 Formula: MAE y y
n

y y
samples

n

i i

samples

,ˆ ˆ() = -()
=

-

å1

1 0

1
2

•	 Where:

•	 ŷ
i
: Estimated target output

•	 y
i
: Corresponding (correct) target output

•	 n
samples

: Number of samples

Mean Squared Error
Mean squared error (MSE) is similar to MAE, except that now the square of residual is
taken instead of taking the absolute difference among the estimated target output and
corresponding actual target output. The value is always positive and values closer to 0 are
better. Taking the square root of MSE will yield root mean square deviation (RMSE) which
holds the same units as that of the target output. The mathematical definition of MSE is as
follows:

•	 Formula: MSE y y
n

y y
samples

n

i i

samples

,ˆ ˆ() = -()
=

-

å1

1 0

1
2

ChapTer 2 ■ regression

69

•	 Where:

•	 ŷ
i
: Estimated target output of ith sample

•	 y
i
: Corresponding (correct) target output

•	 n
samples

: Number of samples

R2

R2, also referred to as the coefficient of determination, defines the measure of how many
future samples are likely to be predicted by the regression model. Moreover, it also
signifies the proportion of variance in response variable that is predictable from the
exploratory ones. Value ranges from 1 to minus infinity where 1 is the most optimum. The
mathematical representation is as follows:

•	 Formula: R y y
y y

y

n

i i

n

i

samples

samples

2 1 0

1
2

1 0

1
2

1,ˆ
ˆ

() = -
-()

-()
=

-

=

-

å

å ý

•	 Formula: R
varianceofpredictedvaluesy

varianceofobservedvaluesy
2 =

ˆ

•	 Example:

•	 R = -0.7

•	 R2 = 0.49 (i.e., half the variation is accounted for by linear
relationship)

•	 Where:

•	 ŷ
i
: Estimated target output of ith sample

•	 y
i
: Corresponding (correct) target output

•	 ý
n

y
samples

n

i

samples

=
=

-

å1

1 0

1

•	 n
samples

: Number of samples

Residual
•	 Formula: Residual = observed y – predicted y OR (y y- ˆ)

•	 Mean of least squares residuals is always 0

ChapTer 2 ■ regression

70

Residual Plot
A residual plot is a scatter plot of regression residuals against exploratory variable x
(i.e., independent). See Figure 2-15. The least square regression line is pulled by and
toward a point that is extreme in x direction with no other points near it. A dotted line
represents the least square regression line.

Residual Sum of Squares
The residual sum of squares (RSS) refers to amount of variance in data not captured by
the best fit line of a regression model. The more minimal the RSS, the better the model is.

For the sake of simplicity we will go forward with using R2 as the metrics of cross-
validation. Moreover, it seems to be a better choice considering that we are working for
prediction, and this metric will help us determine where future samples will lie on the
accuracy scale.

Now having gone through the concepts of underfitting and overfitting and evaluation
techniques of regression, Claire believed that it was time for her to test their mantle in
finding a regression model which best fits the data at hand.

Types of Regression
Claire continued on by pointing out that SKLearn is the most common library for
machine learning in Python. SKLearn offers a spectrum of algorithms for regression
modeling. She came up with Figure 2-13 from SKLearn’s web site as a reference to
determine the regression algorithms which are usually the best given the size of our
dataset.

55

50

45

40

35

30

25

20

15

Ac
tu

al
 v

al
ue

s
fo

r R
ev

en
ue

20 25 30 35 40 45 50

Predicted values for Revenue

20 25 30 35 40 45 50

Predicted values for Revenue

-2

-1

0

1

2

Predicted vs Actual Residuals

Figure 2-15. Residual plot

ChapTer 2 ■ regression

71

You can download the cheat sheet shown in Figure 2-16 from http://scikit-
learn.org/stable/tutorial/machine_learning_map/.

Smith decided to give it a shot and try to identify the regression models suitable
for the size of the current dataset. He recalled having said: “As in our case, the number
of samples is less than 100K, hence the potential models are Lasso, ElasticNet,
SVR(kernel=‘rbf’), Ensemble Regressors, Ridge Regression, and SVR(kernel=‘linear’).”

Linear regression is the most basic of the regression models to start with, and hence
Claire decided to start modeling from it.

Linear Regression
Smith already knew what a linear regression was, thanks to Claire (see Figure 2-2). Hence
Claire decided to put it into the application to see how it performs, so she compiled the
code in Listing 2-9.

Listing 2-9. Calculating Single Linear Regression

plt.figure(figsize=(15,7))
plot_count = 1

for feature in ['cement_component', 'flay_ash', 'water_component',
'superplasticizer', 'coarse_aggregate']:
 data_tr = data[['concrete_strength', feature]]
 data_tr=data_tr[(data_tr.T != 0).all()]

 x_train, y_train, x_test, y_test = split_train_test(data_tr, feature)

Figure 2-16. Cheat sheet of Regression-SKLearn

http://scikit-learn.org/stable/tutorial/machine_learning_map/
http://scikit-learn.org/stable/tutorial/machine_learning_map/

ChapTer 2 ■ regression

72

 # Create linear regression object
 regr = LinearRegression()

 # Train the model using the training sets
 regr.fit(x_train, y_train)
 y_pred = regr.predict(x_test)

 # Plot outputs
 plt.subplot(2,3,plot_count)

 plt.scatter(x_test, y_test, color='black')
 plt.plot(x_test, y_pred, color='blue',
 linewidth=3)
 plt.xlabel(feature.replace('_',' ').title())
 plt.ylabel('Concrete strength')

 print feature, r2_score(y_test, y_pred)

 plot_count+=1

plt.show()

Output

cement_component 0.250526602238
flay_ash 0.0546142086558
water_component 0.112291736027
superplasticizer 0.0430808938239
coarse_aggregate 0.0206812124102

80

60

40

20

0

0 0 50 100 150 200 250 100 120 140 160 180 200 220 240 260100 200 300 400 500 600
Cement Component Flay Ash Water Component

Co
nc

re
te

 s
tr

en
gt

h 80

60

40

20

0Co
nc

re
te

 s
tr

en
gt

h

Co
nc

re
te

 s
tr

en
gt

h

Co
nc

re
te

 s
tr

en
gt

h

0
10
20
30
40

50
60

70
80

90
80
70
60
50
40
30
20
10

0

Co
nc

re
te

 s
tr

en
gt

h

90
80
70
60
50
40
30
20
10

0
0 5 10 15 20 25 30 35

Superplasticizer Coarse Aggregate
750 800 850 900 950 1000 1050 1100 1150 1200

Figure 2-17. Single linear regression plots

ChapTer 2 ■ regression

73

Explaining the code was essential for Smith to understand the outcome. Thus Claire
came up with the following explanation of the code in Listing 2-9:

While looking at the code above, you will notice that we are only using
the exploratory variables in which we noticed either positive or negative
correlations while visually looking at Figure 2-8. Second we have
initialized a figure for subplots with a width of 15 and height of 7. Third
we did the train/test split method for cross-validation.

Smith decided to take a shot at explaining what the output means. Almost all
of the exploratory variables have their R2 values closer to 0, which indicates that the
linear regression best fit line failed to capture the variance that lay within each of these.
However, an exception lies in the case of the cement component, which has a relatively
decent variance captured by its best fit line. Considering that the R2 is low, neither of the
models can be used for predicting concrete strength.

Listing 2-10. Calculating Multiple Linear Regression

features = ['cement_component', 'flay_ash', 'water_component',
'superplasticizer', 'coarse_aggregate']

data_tr = data
data_tr=data_tr[(data_tr.T != 0).all()]

x_train, y_train, x_test, y_test = split_train_test(data_tr, features)

Create linear regression object
regr = LinearRegression()

Train the model using the training sets
regr.fit(x_train, y_train)
y_pred = regr.predict(x_test)

plt.scatter(range(len(y_test)), y_test, color='black')
plt.plot(y_pred, color='blue', linewidth=3)

print 'Features: %s'%str(features)
print 'R2 score: %f'%r2_score(y_test, y_pred)
print 'Intercept: %f'%regr.intercept_
print 'Coefficients: %s'%str(regr.coef_)

Output

Features: ['cement_component', 'flay_ash', 'water_component',
'superplasticizer', 'coarse_aggregate']

R2 score: 0.097982
Intercept: 77.802791
Coefficients: [0.04531335 0.01168227 -0.13620573 0.24324622 -0.0329745

ChapTer 2 ■ regression

74

Claire was surprised, as Smith was spot-on. She was curious to see what would
happen if she ran a multiple regression by incorporating all of the exploratory variables at
the same time. Hence she came up with the code snippet in Listing 2-10. Smith was able
to understand the code to a certain extent; however, he was surprised to see a non-linear
regression best fit line in Figure 2-18.

His perception was that multiple linear regression should be producing a linear line
rather than a non-linear best fit line. To this Claire responded the following:

Number of features in analysis is directly proportional to the number
of dimensions on the plot. As in our case we have five exploratory and
one response variable which add up to six variables. Plotting points in
6 dimensions will be a difficult thing to do, hence the representation of
that is shown using two dimensions in Figure 2-18. The best fit line would
have been linearly represented had we seen that in the 6 dimensions.

Claire pointed out that since the R2 for this multiple regression is extremely low,
one cannot use this model to predict the response variable (i.e., concrete strength). Note
that the R2 is extremely low; hence we will definitely not go forward with this to answer
the question at hand. However, the output also gives us the coefficients. The first is the
alpha coefficient, with the subsequent ones representing the beta coefficients. Both Smith
and Claire knew that multicollinearity exists in the data. Hence in the pursuit of finding
regression techniques which work on a multicollinear data, they came across Ridge
regression and decided to try that out. However, Claire thought it better to explain to
Smith about grid search. Before proceeding onward, let’s tap into other regression models
to find the one that fits our data in the best possible way.

80

70

60

50

40

30

20

10

0
–10 0 10 20 30 40 50 60 70 80

Figure 2-18. Multiple linear regression plot

ChapTer 2 ■ regression

75

Grid Search
Grid search uses a ‘fit’ and ‘score’ methodology to determine the best parameter for a
given model. The model to be tuned along with the parameters and their finite possible
values is passed within GridSearchCV. The output signifies the parameter values on
which the model will be best tuned.

Having explained grid search, Clare compiled a knowledge base regarding Ridge
regression.

Ridge Regression
Ridge regression implements the loss function of linear least squares function with a
regularization of L2-norm. This type of regression has an inbuilt support of accepting
multiple exploratory variables to predict the response variable. L2 is a vector norm which
captures the magnitude of a vector. L2 is most commonly taught and used frequently.
Consider that we have a vector

�
b which has two components β

0
 and β

1
. L2-norm for this

can be defined as follows:

•	 Formula:
�
b b b

2
0
2

1
2= +

This is the Cartesian distance from the origin to these vector components
(i.e., β

0
 and b1). Ridge regression is good in the following conditions:

•	 When we have more than one exploratory variable

•	 Multicollinearity exists between the exploratory variables

Multicollinearity will lead to biased estimators because the beta coefficients get
abnormally high when calculated over many iterations. Hence this will lead us to the
question, the best coefficient of which iteration is the real one? As the estimators will
be biased now, taking the coefficient averages over much iteration won’t yield the
population coefficients. However, the variances within these coefficients won’t be too
high and thus will help in better understanding these coefficients. In order to avoid
having beta values that are too big we need to put some constraint on how big the betas
can get. Hence we can mathematically define Ridge regression as follows:

•	 Formula: min�
� �

b
y AB-

2

2
 subject to Ú Ú £

�
b 2

2 2c

OR

min�
� � �

b
l by AB- + Ú Ú

2

2

2
2

In Ridge regression considering our choice is L2-norm, our beta value constraint is
in the shape of a circle which can be seen in Figure 2-19. Earlier we applied single and
multiple linear regression on data. However, Ridge, Lasso, and ElasticNet regression are
more suitable with multiple regression and thus will be our analyses of choice.

ChapTer 2 ■ regression

76

2

1

Figure 2-19. Representation of Ridge regression

Now that Smith understood Ridge regression, he was interested to see how well it
predicts concrete strength from the available exploratory variables. As we read earlier,
Ridge regression has a support of accepting multiple exploratory variables as input; hence,
Claire decided to run a multiple Ridge regression, as seen in Listing 2-11. Figure 2-20
shows the result.

Listing 2-11. Calculating Multiple Ridge Regression

alphas = np.arange(0.1,5,0.1)

model = Ridge()
cv = GridSearchCV(estimator=model, param_grid=dict(alpha=alphas))

y_pred = cv.fit(x_train, y_train).predict(x_test)

plt.scatter(range(len(y_test)), y_test, color='black')
plt.plot(y_pred, color='blue', linewidth=3)

print 'Features: %s'%str(features)
print 'R2 score: %f'%r2_score(y_test, y_pred)
print 'Intercept: %f'%regr.intercept_
print 'Coefficients: %s'%str(regr.coef_)

Output

Features: ['cement_component', 'flay_ash', 'water_component',
'superplasticizer', 'coarse_aggregate']

R2 score: 0.097982
Intercept: 77.802791
Coefficients: [0.04531335 0.01168227 -0.13620573 0.24324622 -0.03297459]

ChapTer 2 ■ regression

77

Smith didn’t have much difficulty in understanding the code in Listing 2-11 as it
resembled the code in Listing 2-10. The only thing he didn’t understand was how grid
search was brought into application. Hence Claire started to explain the piece of code that
has to do with GridSearchCV. She at first pointed to alphas = np.arange(0.1,5,0.1) which was
used to generate an array of values in the range of 0.1 to 5, with an offset of 0.1. This along
with the Ridge regression model was then fed into GridSearchCV. Hence GridSearchCV
tried values of alpha one by one to determine the one that best fine-tunes the model.

Having understood the code in Listing 2-11, Smith had a question. Did R2 fare better
when applying Ridge regression? To this Claire said the following:

Not at all, as it’s exactly the same and so are the coefficients. The
reason for which can be that in the presence of multiple features, and
multicollinearity linear regression tends to bias towards the L2-norm,
and L2-norm is the regularization term which is used by Ridge regression,
hence a resemblance. Moreover, also notice that we are using grid search
in our approach to optimize for alpha. So what exactly is alpha? Alpha is
a regularization parameter which is used to weight the L2-norm term in
Ridge regression. The value of 0 for alpha translates the Ridge regression
model to the ordinary least squares regression model. Hence the higher
the value of alpha, the higher the smoothness constraint, and the lower
would be the magnitude of the coefficients. The effect of alpha values is
shown for the illustration in Figure 2-21.

80

70

60

50

40

30

20

20 30 40 50 60 70 80

10

10–10
0

0

Figure 2-20. Multiple Ridge regression plot

ChapTer 2 ■ regression

78

Ridge regression even after parameter didn’t bring any improvement over what a
multiple linear regression had to offer. Claire believed that changing the regularization
term from L2-norm to L1-norm might bring some improvements to the R2 score. Hence,
she decided to try out Lasso regression, and came up with the description of that in the
following sections.

2.0
1.5
1.0
0.5

0.0
-0.5
-1.0

-1.5
-2.0

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0 0.2 0.4 0.6 0.8 1.0
x

y

2.0
1.5
1.0
0.5

0.0
-0.5
-1.0

-1.5
-2.0

y

0.0 0.2 0.4 0.6 0.8 1.0
x

2.0
1.5
1.0
0.5

0.0
-0.5
-1.0

-1.5
-2.0

y

0.0 0.2 0.4 0.6 0.8 1.0
x

2.0
1.5
1.0
0.5

0.0
-0.5
-1.0

-1.5
-2.0

y

alpha=0.0

alpha=1e-08

alpha=1e-05

alpha=0.1

108

107

106

105

104

103

102

101

100

10-1
1 2 3 4 5 6 7 8 9

coefficients

ab
s(
co
ef
fic
ie
nt
)

108

107

106

105

104

103

102

101

100

10-1
1 2 3 4 5 6 7 8 9

coefficients

ab
s(
co
ef
fic
ie
nt
)

108

107

106

105

104

103

102

101

100

10-1
1 2 3 4 5 6 7 8 9

coefficients

ab
s(
co
ef
fic
ie
nt
)

108

107

106

105

104

103

102

101

100

10-1
1 2 3 4 5 6 7 8 9

coefficients

ab
s(
co
ef
fic
ie
nt
)

Figure 2-21. Effect of alpha value on the smoothness of the regression fit line

ChapTer 2 ■ regression

79

Lasso Regression
Contrary to Ridge regression, Lasso regression uses an L1-norm. L1-norm for Lasso
regression can be defined as follows:

•	 Formula:
�
b b b

1
0 1= + Ú

Mathematically we define Lasso regression as follows:

•	 Formula: min�
� �

b
y AB-

2

2
 subject to Ú Ú £

�
b 1 c

OR

•	 min�
� � �

b
l by AB- + Ú Ú

2

2

1

Because our Ridge regression choice was an L2-norm, our beta value constraint
was in the shape of a circle. However, in Lasso regression which takes L1-norm into
consideration, our beta constraint is in the shape of a diamond (see Figure 2-22).

2

1

Figure 2-22. Representation of Lasso regression

Considering the edge of this diamond lying on the x axis of the first quadrant we can
see that the coordinates are (c,0). The level curve above touches the diamond at (0,c)
which means that we have a value for β

1
 and not for β

2
. Hence substituting the following

in the equation will lead to the exploratory variable associated with β
1
 to turn into 0. Thus

Lasso regression in this entire process will end with only a few exploratory variables as
compared to Ridge regression in which the shape is a circle and includes all exploratory
variables within the dataset.

Smith was anticipating an improvement in the R2 here because he believed that
handpicking only a few exploratory variables and neglecting the rest can make the model
stronger. Hence, Claire tested the model, as shown in Listing 2-12.

ChapTer 2 ■ regression

80

Listing 2-12. Calculating Multiple Lasso Regression

model = Lasso()
cv = GridSearchCV(estimator=model, param_grid=dict(alpha=alphas))

y_pred = cv.fit(x_train, y_train).predict(x_test)

plt.scatter(range(len(y_test)), y_test, color='black')
plt.plot(y_pred, color='blue', linewidth=3)

print 'Features: %s'%str(features)
print 'R2 score: %f'%r2_score(y_test, y_pred)
print 'Intercept: %f'%regr.intercept_
print 'Coefficients: %s'%str(regr.coef_)

Output

Features: ['cement_component', 'flay_ash', 'water_component',
'superplasticizer', 'coarse_aggregate']

R2 score: 0.103610
Intercept: 77.802791
Coefficients: [0.04531335 0.01168227 -0.13620573 0.24324622 -0.03297459]

Smith noticed that Lasso regression fared better than multiple Ridge and linear
regressions (Figure 2-23).

80

70

60

50

40

30

20

20 30 40 50 60 70 80

10

10-10
0

0

Figure 2-23. Multiple Lasso regression plot

ChapTer 2 ■ regression

81

However, as per Claire, a R2 of 0.1 is very low and not something the response
variable can be extrapolated onto. Also, she pointed out that grid search was used again
to optimize for alpha term as was done in Ridge regression.

Having had no major success so far, Claire decided to bring in the best of the regressions.
ElasticNet brings in an amalgam of both of these two approaches (i.e., Ridge and Lasso).

ElasticNet
ElasticNet overcomes the limitations found in Lasso regression (i.e., the penalty
function). Lasso tends to select only some exploratory variables and for the multicollinear
group of exploratory variables, it will only select one from the group. To avoid this, it is
wise to add a quadratic part to the penalty (i.e., b

2
) which is present in Ridge

regression. Hence what ElasticNet does is to include the convex sums of Lasso and Ridge
regression penalties.

Claire wrote the code in Listing 2-13 to try multiple ElasticNet on the data.

Listing 2-13. Calculating Multiple ElasticNet Regression

model = ElasticNet()
cv = GridSearchCV(estimator=model, param_grid=dict(alpha=alphas))

y_pred = cv.fit(x_train, y_train).predict(x_test)

plt.scatter(range(len(y_test)), y_test, color='black')
plt.plot(y_pred, color='blue', linewidth=3)

print 'Features: %s'%str(features)
print 'R2 score: %f'%r2_score(y_test, y_pred)
print 'Intercept: %f'%regr.intercept_
print 'Coefficients: %s'%str(regr.coef_)

Output

Features: ['cement_component', 'flay_ash', 'water_component',
'superplasticizer', 'coarse_aggregate']

R2 score: 0.099785
Intercept: 77.802791
Coefficients: [0.04531335 0.01168227 -0.13620573 0.24324622 -0.03297459]

ChapTer 2 ■ regression

82

Claire was disappointed with the results of this model (Figure 2-24). She recalled:

The cross-validation seemed to be lower here as compared to Lasso
regression. As we read earlier, Lasso seems to consider a chunk of the
exploratory variables; hence the ElasticNet’s efforts in adding both of
them together nullifies the advantage that Lasso had in isolation. This
is the behavior we saw on the data at hand but beware it doesn’t stand
universal for all problem sets.

Smith was curious to if any technique exists that iteratively improves the accuracy of
a regression model. Claire knew the answer to that (i.e., gradient boosting regression).

Gradient Boosting Regression
An ensemble of either classification or regression tree models populates into a gradient
boosted model (see Figure 2-25). Boosting is a non-linear flexible regression technique
that helps increase the accuracy of trees by assigning more weights to wrong predictions.
The reason for inducing more weight is so the model can emphasize more on these
wrongly predicted samples and tune itself to increase accuracy. The gradient boosting
method solves the inherent problem in boosting trees (i.e., low speed and human
interpretability). The algorithm supports parallelism by specifying the number of threads.

80

70

60

50

40

30

20

20 30 40 50 60 70 80

10

10 –10
0

0

Figure 2-24. Multiple ElasticNet regression plot

ChapTer 2 ■ regression

83

Claire decided to run both single and multiple gradient boosting regressions on
the dataset in question. She started out by writing the code for single gradient boosting
regression in Listing 2-14.

Listing 2-14. Calculating Single Gradient Boosting Regression

plt.figure(figsize=(15,7))
plot_count = 1

for feature in ['cement_component', 'flay_ash', 'water_component',
'superplasticizer', 'coarse_aggregate']:
 data_tr = data[['concrete_strength', feature]]
 data_tr=data_tr[(data_tr.T != 0).all()]

 x_train, y_train, x_test, y_test = split_train_test(data_tr, feature)

 # Create linear regression object
 regr = GradientBoostingRegressor()

 # Train the model using the training sets
 regr.fit(x_train, y_train)
 y_pred = regr.predict(x_test)

 # Plot outputs
 plt.subplot(2,3,plot_count)

20

15

10

5

0

–5

–10
0 2 4 6 8 10

x

f(x
)

f(x) = x sin(x)
Observations
Prediction
90% prediction inerval

Figure 2-25. Illustration of gradient boosting regression

ChapTer 2 ■ regression

84

 plt.scatter(x_test, y_test, color='black')
 plt.plot(x_test, y_pred, color='blue',
 linewidth=3)
 plt.xlabel(feature.replace('_',' ').title())
 plt.ylabel('Concrete strength')

 print feature, r2_score(y_test, y_pred)

 plot_count+=1

plt.show()

Output

cement_component 0.339838267592
flay_ash 0.0804872388797
water_component 0.311858270879
superplasticizer 0.123130891086
coarse_aggregate 0.230383758064

Smith was thrilled to see the results as after much effort they were able to
significantly improve the R2 coefficient of the regression model (Figure 2-26).

While looking at the R2 coefficient values of cement component, water component,
and coarse aggregate, Smith saw a better R2 relative to what they had gotten from linear
regression. He knew that the results could be improved by incorporating grid search to
tune in the parameter values. Claire was still not content with the results; hence she went
forward to run multiple gradient boosting in Listing 2-15.

90
80
70
60
50
40
30
20
10
0

0 0
0

50 100 100 120 140 160 180 200 220 240 260150 200 250100 200 300 400 500 600

Co
nc

re
te

 s
tr

en
gt

h

80 80

60

40

20

70
60
50
40
30
20
10

90

0
0 5 10 15 20 25

0

Co
nc

re
te

 s
tr

en
gt

h

Co
nc

re
te

 s
tr

en
gt

h
Co

nc
re

te
 s

tr
en

gt
h

Co
nc

re
te

 s
tr

en
gt

h

Cement Component Flay Ash Water Component

70
80

60

40

20

0

60

50

40

30

20

10

Superplasticizer
750 800 850 900 950 1000 10501100 11501200

Coarse Aggregate

Figure 2-26. Single gradient boosting regression plot

ChapTer 2 ■ regression

85

Listing 2-15. Calculating Multiple Gradient Boosting Regression

model = GradientBoostingRegressor()

y_pred = model.fit(x_train, y_train).predict(x_test)

plt.scatter(range(len(y_test)), y_test, color='black')
plt.plot(y_pred, color='blue',
 linewidth=3)

print 'Features: %s'%str(features)
print 'R2 score: %f'%r2_score(y_test, y_pred)
print 'Intercept: %f'%regr.intercept_
print 'Coefficients: %s'%str(regr.coef_)

Output

Features: ['cement_component', 'flay_ash', 'water_component',
'superplasticizer', 'coarse_aggregate']

R2 score: 0.005876
Intercept: 77.802791
Coefficients: [0.04531335 0.01168227 -0.13620573 0.24324622 -0.03297459]

Smith saw the R2 go from bad to worse. Single gradient boosting regression seems to
have fared better than multiple gradient boosting regression (Figure 2-27).

Claire had once read that to better classify or extrapolate the data, one approach can
be to plot the data in a high-dimensional space. Support vector machines tend to do that
in the presence of kernels.

80

70

60

50

40

30

20

10

 –10
0

0 10 20 30 40 50 60 70 80

Figure 2-27. Multiple gradient boosting regression plot

ChapTer 2 ■ regression

86

Support Vector Machines

Support vector machines constructs hyperplane(s) for the purposes of classification and
regression (see Figure 2-28). The goal is to have the largest separation between the two
classes. This is ensured by maximizing the distance between the hyperplane and the data
point on each side. During this process the sets are often not linearly separable in that
space, and thus we are advised to map it to a high-dimensional space (i.e., by introducing
kernels).

Claire decided to run both single and multiple support vector machine regressions
on the dataset. She also planned to apply the linear kernel to the support vector regressor
for better results.

Listing 2-16. Calculating Single Support Vector Machine Regression Using Linear Kernel

plt.figure(figsize=(15,7))
plot_count = 1

for feature in ['cement_component', 'flay_ash', 'water_component',
'superplasticizer', 'coarse_aggregate']:
 data_tr = data[['concrete_strength', feature]]
 data_tr=data_tr[(data_tr.T != 0).all()]

 x_train, y_train, x_test, y_test = split_train_test(data_tr, feature)

 # Create linear regression object
 regr = SVR(kernel='linear')

 # Train the model using the training sets
 regr.fit(x_train, y_train)
 y_pred = regr.predict(x_test)

 # Plot outputs
 plt.subplot(2,3,plot_count)

Figure 2-28. Illustration of support vector machine regression

ChapTer 2 ■ regression

87

 plt.scatter(x_test, y_test, color='black')
 plt.plot(x_test, y_pred, color='blue', linewidth=3)
 plt.xlabel(feature.replace('_',' ').title())
 plt.ylabel('Concrete strength')

 print feature, r2_score(y_test, y_pred)

 plot_count+=1

plt.show()

Output

cement_component 0.186215229943
flay_ash 0.0566844466086
water_component 0.0824723749594
superplasticizer 0.0412024702221
coarse_aggregate 0.0293294512993

Smith noticed that contrary to the gradient boosting regressor’s best fit lines in
Figure 2-23, best fit lines in Figure 2-26 seem to be much cleaner, linear, and relatively
less overfitted. However, the R2 got a hit as it decreased from what they observed in single
gradient boosting regressor (see Figure 2-29).

Claire came up with the code in Listing 2-17 to see if multiple support vector
machines will bring any improvement to the R2 coefficient. Figure 2-30 shows the result.

Co
nc

re
te

 s
tr

en
gt

h
Co

nc
re

te
 s

tr
en

gt
h

80

90

80

70
60

50

40

30

20

10

0

Co
nc

re
te

 s
tr

en
gt

h

90

80

70
60

50

40

30

20

10

0
750 800 850 900 950 1000 1050 1100 1150 1200

60

40

20

0

Co
nc

re
te

 s
tr

en
gt

h

Co
nc

re
te

 s
tr

en
gt

h
80

70

50

60

40

30

20

10

0 50 100 150 200 250
0

80

90

70

50

60

40

30

20

10

0
1 00 1 20 1 40 1 60 1 80 200 220 240 260

Cement Component Flay Ash Water Component

Superplasticizer Coarse Aggregate

0 100 200 300 400 500 600

0 5 10 15 20 25 30 35

Figure 2-29. Single support vector machine regression plot

www.allitebooks.com

http://www.allitebooks.org

ChapTer 2 ■ regression

88

Listing 2-17. Calculating Multiple Support Vector Machine Regression Using Linear
Kernel

model = SVR(kernel='linear')

y_pred = model.fit(x_train, y_train).predict(x_test)

plt.scatter(range(len(y_test)), y_test, color='black')
plt.plot(y_pred, color='blue', linewidth=3)

print 'Features: %s'%str(features)
print 'R2 score: %f'%r2_score(y_test, y_pred)

Output

Features: ['cement_component', 'flay_ash', 'water_component',
'superplasticizer', 'coarse_aggregate']

R2 score: 0.010077

On Smith’s scale, the support vector regressor performed the worst among the
models they had explored earlier. Claire believed that parameter tuning can be done
to improve the performance. Moreover, other kernel types can be put into practice to
increase the efficiency of the predictions.

Smith and Claire are done for the day. Help them tune the model, and try different
kernels by completing the following exercises.

80

60

40

20

0

0-50 50 100 150 200 250 300 350

Figure 2-30. Multiple Support Vector Machine regression plot

ChapTer 2 ■ regression

89

EXERCISES

1. run the support vector machine regression with ‘rbf’ kernel.
also try running ‘polynomial’ and ‘sigmoid’ kernels to optimize
for prediction accuracy.

2. gradient boosting regressor has parameters of learning rate,
min_samples_split, min_samples_leaf on which it can be
tuned. run a grid search over these to increase the efficiency of
the regressor.

3. support vector regressor has parameters of c and gamma on
which it can be tuned onto. run a grid search over these to
increase the efficiency of the regressor.

4. gradient boosting regressor returns the feature importance of
every model fitted. explore features which the model gave more
importance to, and redo the modeling by only considering those
models together or in isolation.

5. in an earlier exercise we split the data on the basis of age and
computed correlations. pick the age split which had the greatest
correlation and then repeat the examples and exercises to see if
we can fit the model with higher precision for that group of data.

Applications of Regression
Applications of regression are vibrant in several fields of study.

Predicting Sales
Regression can be used to predict the sales of a good or service such as demand analysis
(Figure 2-31).

ChapTer 2 ■ regression

90

Historical data of sales can be used to extrapolate the results for the future. Features
like marketing costs, merchandizing, price, and number of stock keeping units (SKUs)
can be given as the exploratory variables to the model.

Predicting Value of Bond
Inflation rate at different times can be used to predict bonds' value. This can be the game
changer when estimating the expected return from a portfolio that includes bonds.

Rate of Inflation
In economics we have the concepts of rate of inflation and theory of money supply. If a
researcher believes the rate of inflation to be a function of the amount of money supply
in the economy then what can he do? He can make rate of inflation as a response variable
and the supply of money as the exploratory variable (see Figure 2-32).

60

50

40

30

20

10

0
1/70 1/79 1/88 1/97

DATE

0

100

200

300

400

500

600 Variables
AUTOADJ
INCOME

Automotive Retail Sales ($bn, sa) and Personal Income ($bn)

Figure 2-31. Prediction of retail sales and personal income

ChapTer 2 ■ regression

91

Insurance Companies
These companies use regression to predict the amount of people who might reclaim their
health insurance or life insurance, or the number of people who might have accidents in
their insured vehicles.

Call Center
A call center manager might want to know the increase in number of complaints as a
function of the call waiting times.

Agriculture
Regression can be used to predict the number of fruits that a given region is expected to
yield. Possible exploratory variables can be the amount of rainfall, hours of sunshine,
number of diseases affecting crops, number of affected crops by fire or diseases, quality
index of soil, land fertility index, and so on.

Predicting Salary
Universities can use a predictive model to forecast the salary of students. Possible
exploratory variables can be grades, number of competitions participated in, seat
placement in the class, number of internships done, number of research papers
published, number of projects done, number of sport events participated in, and so on.

5.00%

4.00%

3.00%

2.00%

1.00%

-1.00%

No
v-

10
De

c-
10

Ja
n-

11
Fe

b-
11

M
ar

-1
1

Ap
r-

11
M

ay
-1

1
Ju

n-
11

Ju
l-1

1
Au

g-
11

Se
p-

11
Oc

t-
11

No
v-

11

Ja
n-

12
Fe

b-
12

M
ar

-1
2

Ap
r-

12
M

ay
-1

2
Ju

n-
12

Ju
l-1

2
Au

g-
12

Se
p-

12
Oc

t-
12

No
v-

12

De
c-

11

0.00%

Actual Inflation Rate Projectd Inflation Rate

Extreme High

Extreme Low

Most Likely

Likely High

Likely Low

Moore Inflation Predictor (MIP)®
JaTes Moore

Prepared By Timothy McMahon, Editor
©Financial Trend Forecaster

Created 12/16/2011
Reality Line added 9/14/12

http://fintrend.com/ftf/mlp.asp

Deflation

Figure 2-32. Prediction of inflation rates

ChapTer 2 ■ regression

92

Real Estate Industry
The price of real estate can be predicted from size in square feet of a property, number
of rooms, availability of parking, square feet of open space, number of miles from main
road, and so on (see Figure 2-33).

To sum up this chapter, Claire and Smith at first came up with a consensus to
use regression for predicting concrete strength. They planned to do so by means of a
regression equation in order to avoid the costs of procuring testing equipment to measure
it. They started off with the analysis by at first understanding the correlations that exist
among concrete strength and exploratory variables. The ones exhibiting a positive or
negative correlation were used for regression modeling. Moreover, correlations helped
discover the multicollinearity that existed among the three exploratory variables.

Regression model evaluation metrics were looked at and R2 was picked for
evaluating the regression models. They looked at what grid search is and how to apply it
to determine the best parameter values for best tuning the model. They split the data into
test and train subsets to enable cross-validation. Among the many regression techniques
applied, single gradient boosting regressor exhibited the best R2 values. Hence by the end
of the analysis Smith and Claire had the following three models which they could use in
isolation to predict concrete strength.

At first Claire defined the use case of the gradient boosting regressor model which takes
cement component as an input to predict concrete strength. She recalled from the output of
Listing 2-14 that the confidence level of this regression model is approximately 34%.

Listing 2-18. Predicting Concrete Strength from Cement Component

feature = 'cement_component'
cc_new_data = [213.5]

data_tr = data[['concrete_strength', feature]]
data_tr=data_tr[(data_tr.T != 0).all()]

400

300

200

100

0
0 500 1000 1500 2000 2500

SIZE IN FEET2

PR
IC

E
($

) I
N

10
00

’S

Figure 2-33. Predicting property as a function of size in feet

ChapTer 2 ■ regression

93

x_train, y_train, x_test, y_test = split_train_test(data_tr, feature)

regr = GradientBoostingRegressor()

Train the model using the training sets

regr.fit(x_train, y_train)
cs_pred = regr.predict(cc_new_data)
print 'Predicted value of concrete strength: %f'%cs_pred

Output

Predicted value of concrete strength: 34.008896

As an illustration, an input value of cement component was passed in the variable
‘cc_new_data’. Claire pointed out that in order to predict concrete strength, a new value
can be passed in the same variable.

Then Claire repeated the exercise, the difference being that water component was
taken as an input. She recalled from the output of Listing 2-14 that the confidence level of
this regression model is approximately 31%.

Listing 2-19. Predicting Concrete Strength from Water Component

feature = 'water_component'
wc_new_data = [200]

data_tr = data[['concrete_strength', feature]]
data_tr=data_tr[(data_tr.T != 0).all()]

x_train, y_train, x_test, y_test = split_train_test(data_tr, feature)

regr = GradientBoostingRegressor()

Train the model using the training sets
regr.fit(x_train, y_train)
cs_pred = regr.predict(wc_new_data)
print 'Predicted value of concrete strength: %f'%cs_pred

Output

Predicted value of concrete strength: 35.533469

As an illustration an input value of water component was passed in the variable
‘wc_new_data’..

Finally, Claire repeated the exercise, the difference this time being that coarse
aggregate was taken as an input. She recalled from the output of Listing 2-14 that the
confidence level of this regression model is approximately 23%.

ChapTer 2 ■ regression

94

Listing 2-20. Predicting Concrete Strength from Coarse Aggregate

feature = 'coarse_aggregate'
ca_new_data = [1000]

data_tr = data[['concrete_strength', feature]]
data_tr=data_tr[(data_tr.T != 0).all()]

x_train, y_train, x_test, y_test = split_train_test(data_tr, feature)

regr = GradientBoostingRegressor()

Train the model using the training sets
regr.fit(x_train, y_train)
cs_pred = regr.predict(ca_new_data)
print 'Predicted value of concrete strength: %f'%cs_pred

Output

Predicted value of concrete strength: 32.680344

As an illustration, an input value of water component was passed in the variable
‘ca_new_data’.. Smith was convinced by the approaches taken by Claire, and he believed
that if some more time was invested on R&D (research and development), he could
pitch this alternative to management and free them of any need to procure any more
equipment.

95© Danish Haroon 2017
D. Haroon, Python Machine Learning Case Studies, DOI 10.1007/978-1-4842-2823-4_3

CHAPTER 3

Time Series

The goal of this chapter is to get you started with time series forecasting. A time series
forecast is different from regression in that time acts as an exploratory variable and
should be continuous along equal intervals. The chapter will cover the concept of
stationary, its importance, and methodologies to check its existence in a time series
object. Several time series models will be applied, and their forecasts will be checked
using the most effective evaluation techniques.

 ■ Note This book incorporates Python 2.7.11 as the de facto standard for coding
examples. Moreover, you are required to have it installed for the Exercises.

Case Study: Predicting Daily Adjusted Closing
Rate of Yahoo
David had a meeting scheduled with his client Janice the next day. They were meeting to
investigate the reason for a dip in Janice’s returns. Janice was the daughter of a millionaire
businessman, and she had approached David after hearing speculations that the market
was expected to grow with escalating economic conditions. She was interested in taking
a long-term risky position to enjoy potentially high returns on investment. However, this
quarter she had seen a dip in her returns despite a good outlook in the capital market.

David searched Janice’s portfolio and started looking at the performance of each
stock individually to see how each one of them had fared in the last quarter. He figured
out that the reason for the mismatch between the portfolio’s return and the expected
returns was a huge residual in Yahoo stock forecasts. This forecast error would have had
a minimal impact had the number of shares been a tiny chunk of the entire portfolio, but
that was not the case in this scenario.

David recalled the courses in corporate finance and business analytics that he had
taken during his time at Harvard Business School and decided to give those concepts a
try for figuring out a solution to this problem. Should he apply regression or time series?
Which techniques can he apply to a forecast for the Yahoo stock?

David pulled the data regarding Yahoo stock from the Matplotlib finance package
provided by Python (see Listing 3-2 for a code snippet).

ChapTer 3 ■ TiMe SerieS

96

David did some research to see what information is present in each feature within the
data. He came up with a data dictionary for the Yahoo Stock prices dataset (see Table 3-1).

Before moving forward David thought of initializing the following packages. This he
preferred to do in order to avoid bottlenecks while implementing the code snippets on his
local machine.

Listing 3-1. Importing Packages Required for This Chapter

%matplotlib inline

import pandas as pd
import numpy as np
from datetime import datetime
import statsmodels.api as sm
import matplotlib.pyplot as plt
from IPython.display import Image
from matplotlib.pylab import rcParams
from statsmodels.tsa.stattools import adfuller
from statsmodels.tsa.stattools import acf, pacf
from sklearn.linear_model import LinearRegression
from statsmodels.tsa.arima_model import ARMA, ARIMA
from sklearn.metrics import explained_variance_score
from matplotlib.finance import fetch_historical_yahoo, parse_yahoo_
historical_ochl

rcParams['figure.figsize'] = 15, 5

Table 3-1. Data Dictionary for the Yahoo Stock Prices Dataset

Feature name Description

Date Date of given day of trading

Year Year of given day of trading

Month Month of given day of trading

Day Month of given day of trading

D Floating point representation of day

Open Open rate of given day of trading

Close Close rate of given day of trading

High High rate of given day of trading

Low Low rate of given day of trading

Volume Shares volume of given day of trading

adjusted_close Close rate of given day of trading. This also takes into account
distributions and corporate actions that occurred before that day’s
market opening.

ChapTer 3 ■ TiMe SerieS

97

David knew with certainty that understanding the data is fundamental prior to
starting any analysis. His plan was to load the dataset within the memory and see a time
plot of the adjusted closing rates to see if any pattern exists within the time series object.

Feature Exploration
David started off by loading the data into memory.

Listing 3-2. Reading the Data in the Memory

fh = fetch_historical_yahoo('^GSPC', (2016, 1, 1), (2016, 12, 31))
yahoo_data = parse_yahoo_historical_ochl(fh, asobject=True, adjusted=False)

While explaining the code, he first explained that fetch_historical_yahoo class was
used to fetch the object of the yahoo index for all trading days of 2016. Next he passed that
object into the parse_yahoo_historical_ochl method to get the data for the features
described in Table 3-1.

Listing 3-3. Plotting Adjusted Closing Rate of Yahoo Stock for 2016 on a Time Series

dates = [x[0] for x in list(yahoo_data)]
values = [x[-1] for x in list(yahoo_data)]
data = pd.DataFrame({'Close_Adj':values}, index=dates)

date_thresh = datetime.strptime('2016-10-01',"%Y-%m-%d").date()

data_train = data[:date_thresh]
data_test = data[date_thresh:]

plt.plot(data_train.index, data['Close_Adj'])
plt.xlabel('Year')
plt.ylabel('Adjusted Closing Rate')
plt.title('Yahoo Adjusted closing rate - Year 2016')

Yahoo Adjusted closing rate - Year 2016
2300

2200

2100

Ad
ju

st
ed

 C
lo

si
ng

 R
at

e

2000

1900

1800
Feb 2016 Mar 2016 Apr 2016 May 2016 Jun 2016 Jul 2016

Year
Aug 2016 Sep 2016 Oct 2016 Nov 2016 Dec 2016

Figure 3-1. Time series plot of adjusted closing rate of Yahoo stock for year 2016

ChapTer 3 ■ TiMe SerieS

98

From Listing 3-3, David plotted the Yahoo stock closing rates for the year 2016 in
Figure 3-1. He split the original data series into test data (i.e., data_test) and train data
(i.e., data_train). Hence, from that time onward David decided to use data_train as the
data for formulating the time series model.

Looking at the distribution in Figure 3-1 David noticed that a definitive upward trend
exists. Moreover, he saw that a seasonality exists (i.e., downward dip), repeating itself
every 4.5-month interval.

Because the majority of Janice’s portfolio included Yahoo stock, David knew that he
had to take some measures to reduce the forecast error. In order for him to validate his
model he decided to split the dataset. He aimed to use the data of the first nine months of
2016 as the training dataset, with the last three months for cross-validation of the model’s
forecast. An idea came mind that he could use the forecasting techniques to come up
with a generalization curve for the Yahoo stock time series. Then on the basis of the shape
of that curve he could decide on the regression model that would enable predictions at a
future point in time. The rationale behind using the forecasting techniques was to capture
the seasonality and trend components present in the time series object.

Hence David started off by concentrating on the first goal—that is, formulating a
time series forecasting model that captures the components of Yahoo stock time series at
its best. He recalled from his corporate finance course that they used to apply time series
methods for stock forecasting. He did some research to understand what time series
modeling is, and when it should be preferred.

Time Series Modeling
Data points collected at fixed period time intervals constitute a time series. Time series
analysis is usually done with the objective of forecasting the long-term trend over time as
per the problem’s underlying hypothesis.

It was Friday and David was now looking forward to the weekend with his friends
and family. He was also excited about meeting his friend Maria, who had been his batch
mate in school, whose research was inclined toward statistics.

It was Saturday, and David was having lunch with Maria at a famous fast-food
restaurant. Without wasting much time, David brought up the problem and how he was
planning on solving it. He knew that it was better to do due diligence in the analysis
initially to conclude fruitful research. Thus he was interested to hear from Maria
regarding the statistical concepts and techniques essential to time series analysis that he
should incorporate before moving forward, Maria recommended that he check if his time
series data was stationary as a majority of the time series models are designed to give
results on stationary data.

Evaluating the Stationary Nature of a Time Series
Object
David broke his plan into pieces. First he planned to see what properties a time series
object should have for it to be stationary. Then he had to check if the data at hand was
stationary; if it was not, he had to search for the techniques to make it stationary. David
started off by pulling up the properties that make a time series object stationary.

ChapTer 3 ■ TiMe SerieS

99

Properties of a Time Series Which Is Stationary in Nature
Most of the time series models work on the assumption that data is stationary. Moreover,
contrary theories related to stationary time series are easier to implement than non-
stationary time series theories. A time series object is stationary if it has the following
properties:

•	 No trend exists

•	 Mean remains constant over time

•	 Variance remains constant over time

•	 No autocorrelation exists. Autocorrelation is the correlation
between the series at current time with a lagged version of itself.

Once David knew the four properties a time series object should have for it to be
stationary, he started to look for techniques to test if the time series data is stationary or not.

Tests to Determine If a Time Series Is Stationary
His search provided him with two methods for validation: exploratory data analysis and
Dickey-Fuller test. The exploratory data analysis method can help detect the property of
stationary within the Yahoo stock dataset.

Exploratory Data Analysis
This is more of a visual method of finding if the distribution is stationary. It encompasses
the use of rolling mean and rolling variance to answer the underlying question. If these
rolling metrics stay constant over time then the distribution will qualify as a stationary
time series object. So, how is a rolling mean calculated? First we define the length of a
subset over which rolling means have to be calculated (e.g., 5). Then we generate our own
time series by averaging over the numbers in series in chunks of 5. Take, for example, a
time series with the following values:

10, 50, 34, -5, 15, 19, 1, -30, 16, 37

Then the subsequent rolling mean will be as follows:

NA, NA, NA, NA, NA, 20.8, 22.6, 12.8, 0, 4.2, 8.6

The same holds true for rolling variance except that instead of mean we will be
calculating the variance at each instance.

These rolling means will then be plotted on a time series plot. However, by looking at
the rolling means above we can deduce that the values seem to vary a lot and are not at all
constant. Hence, the time series shown in the example above is not stationary.

Despite the fact that the first method seemed straightforward and easy to implement,
David was looking for a statistical technique that would enable him to validate if the time
series object is stationary or not. His search also brought him to the Dickey-Fuller test.

ChapTer 3 ■ TiMe SerieS

100

Dickey-Fuller Test
This is more of a statistical approach of checking if the time series object is stationary or
not. The test in its null hypothesis assumes the time series object to be non-stationary.
Once applied to a given time series object, the Dickey-Fuller test returns the test statistics
and critical values at different confidence intervals. If the value of test statistics is lower
than that of the critical value, then the null hypothesis does not hold true and we opt for
the alternative hypothesis (i.e., that the time series object is stationary).

Once he knew what properties make a time series object stationary, and after looking
through the techniques to identify it, David decided to check if the data at hand was
stationary or not. Thus he came up with the code snippet in Listing 3-4.

Listing 3-4. Method to Evaluate If a Time Series Object Is Stationary

def evaluate_stationarity(timeseries, t=30):

 #Determing rolling statistics
 rolmean = timeseries.rolling(window=t).mean()
 rolstd = timeseries.rolling(window=t).std()

 #Plot rolling statistics:
 orig = plt.plot(timeseries, color='blue',label='Original')
 mean = plt.plot(rolmean, color='red', label='Rolling Mean')
 std = plt.plot(rolstd, color='black', label = 'Rolling Std')
 plt.legend(loc='best')
 plt.title('Rolling Mean & Standard Deviation')
 plt.show(block=False)

 #Perform Dickey-Fuller test:
 print 'Results of Dickey-Fuller Test:'
 dftest = adfuller(timeseries, autolag='AIC')
 dfoutput = pd.Series(dftest[0:4], index=['Test Statistic',

'p-value','#Lags Used','Number of Observations Used'])
 for key,value in dftest[4].items():
 dfoutput['Critical Value (%s)'%key] = value
 print dfoutput

Writing the code snippet in Listing 3-4 was not an easy task for David, who didn't
have considerable experience in programming. He knew that this functionality of time
series validation is subject to being reused again and again. Hence he wrote the code
in a function so that he could use this functionality whenever needed. He decided to
document whatever code he had written so that he could refer to it later, when he faced
difficulty in understanding it. As he recalled:

By default I initialized the window size 't' to 30, that is, a month. Then I
calculated the rolling mean and rolling standard deviation of our time
series object. Next I plotted the time series, rolling mean, and rolling

ChapTer 3 ■ TiMe SerieS

101

standard deviation together to apply the exploratory data analysis
method into practice. This I knew would enable me to determine if
the time series object is stationary or not. Later I decided to also try
the statistical test for detection and brought the Dickey-Fuller test into
application. I made sure to print the output of the Dickey-Fuller test and
determine the critical intervals from the confidence interval.

Now that David had defined the method in Listing 3-4, he decided to call it and pass
the time series object as a parameter while keeping the window size ‘t’ to 15 (i.e., two
weeks). He called the evaluate_stationary method as shown in Listing 3-5.

Listing 3-5. Using the Method to Test If Time Series Object Is Stationary

evaluate_stationarity(data_train['Close_Adj'], 15)

Output

Results of Dickey-Fuller Test:

Test Statistic -1.114302
p-value 0.709335
#Lags Used 0.000000
Number of Observations Used 188.000000
Critical Value (5%) -2.877040
Critical Value (1%) -3.465620
Critical Value (10%) -2.575032
dtype: float64

Rolling Mean & Standard Deviation2500

2000

1500

1000

500

0
Feb 2016

Original
Rolling Mean
Rolling Std

Mar 2016 Apr 2016 May 2016 Jun 2016 Jul 2016 Aug 2016 Sep 2016

Figure 3-2. Plot of rolling mean and standard deviation of time series object

ChapTer 3 ■ TiMe SerieS

102

While looking at the exploratory data analysis in Figure 3-2, David noticed that
despite the variation in rolling standard deviation being small, rolling mean clearly seems
to relatively vary a lot. Hence he deduced the time series object to be non-stationary. He
then looked at the output of the Dickey-Fuller test to see if it depicts the same result as
well. He noticed the test statistic to be greater than the critical values; hence he failed to
reject the null hypothesis, which meant that the data is non-stationary in nature.

The time series object being non-stationary meant that now the path to forecasting
was no longer straightforward. He would first have to make the time series object
stationary before he could apply forecasting to it. Hence he did some research and came
up with several methods to make a time series object stationary.

Methods of Making a Time Series Object Stationary
Though several methods of doing the job exist, none of them promises to make the time
series object completely stationary. What these methods do is to transform the time series
object to make it look closer to a stationary object. The methods do this by removing
trend and seasonality from the time series object. Following are some of the methods that
can make a time series object closer to a stationary object:

•	 Applying transformations

•	 Estimating trend and removing it from the original series

•	 Differencing

•	 Decomposition

David decided to apply all these methodologies one by one to determine the one that
can make the time series object as stationary as possible. He started off by looking at how
applying transformations can help achieve this short-term objective.

Applying Transformations
Transformations like log, cube root, and square root penalize larger values and thus
can enable the series to become stationary. David decided to apply each of these
transformations to figure out the one that makes this time series object almost stationary.
He started off with log transformation

Log Transformation

David wrote the code snippet in Listing 3-6, to see if log transformation can yield a time
series which is stationary in nature.

Listing 3-6. Applying Log Transformation to Time Series Object

data_log = np.log(data_train['Close_Adj'])
evaluate_stationarity(data_log, 15)

ChapTer 3 ■ TiMe SerieS

103

Output

Results of Dickey-Fuller Test:

Test Statistic -1.136109
p-value 0.700460
#Lags Used 0.000000
Number of Observations Used 188.000000
Critical Value (5%) -2.877040
Critical Value (1%) -3.465620
Critical Value (10%) -2.575032
dtype: float64

Rolling Mean & Standard Deviation
8

7

6

5

4

3

2

1

0
Feb 2016

Original
Rolling Mean
Rolling Std

Mar 2016 Apr 2016 May 2016 Jun 2016 Jul 2016 Aug 2016 Sep 2016

Figure 3-3. Log transformed time series along with rolling mean and standard deviation

Looking at Figure 3-3, David noticed that the transformation did work as it managed
to make the rolling mean and rolling standard deviation constant. However, he was
astonished to see that the Dickey-Fuller test proved otherwise (i.e., the transformed
series is still non-stationary). He deduced this after noticing the test statistics to be
greater than the critical values which meant that the null hypothesis holds true and the
log transformed object is non-stationary in nature. He was curious to know why both
methods produced results contradicting each other. The only explanation he could think
of was that the rolling mean, though it seems constant, might vary once he zoomed into
Figure 3-3. Hence he added some lines of code as shown in Listing 3-7.

Listing 3-7. Zooomed Figure of Rolling Mean from a Log Transformed Distribution

data_log = np.log(data_train['Close_Adj'])

#Determing rolling statistics
rolmean = data_log.rolling(window=15).mean()
rolstd = data_log.rolling(window=15).std()

ChapTer 3 ■ TiMe SerieS

104

#Plot rolling statistics:
orig = plt.plot(data_log, color='blue',label='Original')
mean = plt.plot(rolmean, color='red', label='Rolling Mean')
std = plt.plot(rolstd, color='black', label = 'Rolling Std')
plt.legend(loc='best')
plt.ylim([7.4,7.8])
plt.title('Rolling Mean & Standard Deviation')
plt.show(block=False)

Rolling Mean & Standard Deviation
7.80

7.75

7.70

7.65

7.60

7.55

7.50

7.45

7.40
Feb 2016

Original
Rolling Mean
Rolling Std

Mar 2016 Apr 2016 May 2016 Jun 2016 Jul 2016 Aug 2016 Sep 2016

Figure 3-4. Plot of a zoomed figure of rolling mean from a log transformed distribution

The zoomed figure in Figure 3-4 revealed rolling mean to be varying and not at all
constant against time. According to David, this reasoning showed that the results from
the Dickey-Fuller test demonstrated that the transformed series is non-stationary. Log
transformation failed to make the object stationary in nature, and thus David moved to
square root transformation as the next resort.

Square Root Transformation

David applied square root (Sqrt) transformation to Yahoo stock data by writing the script
in Listing 3-8.

Listing 3-8. Applying Sqrt Transformation to Time Series Object

data_sqrt = np.sqrt(data_train['Close_Adj'])
evaluate_stationarity(data_sqrt, 15)

Output

Results of Dickey-Fuller Test:

Test Statistic -1.124704
p-value 0.705121
#Lags Used 0.000000

ChapTer 3 ■ TiMe SerieS

105

Number of Observations Used 188.000000
Critical Value (5%) -2.877040
Critical Value (1%) -3.465620
Critical Value (10%) -2.575032
dtype: float64

Rolling Mean & Standard Deviation
50

40

30

20

10

0
Feb 2016

Original
Rolling Mean
Rolling Std

Mar 2016 Apr 2016 May 2016 Jun 2016 Jul 2016 Aug 2016 Sep 2016

Figure 3-5. Sqrt transformed time series along with rolling mean and standard deviation

David deduced the following from Figure 3-5:

Rolling mean and standard deviation seem constant as we see the plot
above, but not much as compared to what we saw in the log transformed
series plot. This is the reason that in the results of this Dickey-Fuller test,
test statistics is greater than the critical values, which means that the null
hypothesis holds true and the log transformed object is non-stationary
in nature.

Log and square transformation weren’t able to make the time series object at hand
closer to a stationary nature. Log transformation did help to scale down the time series
subject and make it more flat. Hence, David decided to apply other methods to the log
transformed series to make it stationary. He started looking for other transformations
recommended by the statistical community and that is when he learned about cube
transformation. However, it was time for him to leave for home and he thus requested you
to apply the cube transformation in your spare time and share the results with him.

EXERCISE

1. Determine the cube transformation of our time series. Does it
improve the value of the test statistic?

ChapTer 3 ■ TiMe SerieS

106

It was a new day and David resumed with his short-term mission of transforming the
nature of the time series object to a stationary one. Having failed with the transformation
methodologies, he was in search of other techniques that could help him achieve his
short-term objective. He started afresh and started looking at the initial plot of the time
series object in Figure 3-1. It was then that an idea came to mind: what if he removed the
upward trend from the data to make it stationary.

Estimating Trend and Removing It from the Original Series
He knew that the approach was two-fold: at first he would need to estimate the trend and
then remove it from the Yahoo stock time series object. He started looking for techniques
for estimating trends and luckily he found two methods: moving average smoothing and
exponentially weighted moving average. He started off with moving average smoothing.

Moving Average Smoothing
Moving average smoothing is similar to rolling mean in that in both these methods, the
average of observations lying within a fixed window size is calculated in order to estimate
the observation at a given time.

David decided to apply moving average smoothing to estimate the trend of the log
transformed time series. He decided to apply rolling mean over the past two weeks (i.e.,
last 15 values) by writing the code in Listing 3-9.

Listing 3-9. Applying Moving Average Smoothing to the Time Series Object

moving_avg = pd.rolling_mean(data_log,15)
plt.plot(data_log)
plt.plot(moving_avg, color='red')

7.70

7.65

7.60

7.55

7.50
Feb 2016 Mar 2016 Apr 2016 May 2016 Jun 2016 Jul 2016 Aug 2016 Sep 2016

Figure 3-6. Moving average smoothed time series

ChapTer 3 ■ TiMe SerieS

107

David made the following deduction from Figure 3-6: “The red line shows the rolling
mean, that is, the estimated trend from the moving average smoothing. The goal is now to
subtract this estimated trend from the log transformed time series.” Note that since David
had taken the average of the last 15 values, rolling mean is not defined for the first 14
values. This can be observed from the output of Listing 3-10.

Listing 3-10. Printing Trendless Time Series Object

data_log_moving_avg_diff = data_log - moving_avg
data_log_moving_avg_diff.head(15)

Output

2016-01-04 NaN
2016-01-05 NaN
2016-01-06 NaN
2016-01-07 NaN
2016-01-08 NaN
2016-01-11 NaN
2016-01-12 NaN
2016-01-13 NaN
2016-01-14 NaN
2016-01-15 NaN
2016-01-19 NaN
2016-01-20 NaN
2016-01-21 NaN
2016-01-22 NaN
2016-01-25 -0.023439

Name: Close_Adj, dtype: float64

David knew that the trend has NaN in its first 14 observations. Hence he decided
to remove NaN from the trend and then subtract this trend from the original time series
object. He expected the result to be stationary and planned to test it (see Listing 3-11)
from the function defined in Listing 3-4.

Listing 3-11. Evaluating Trendless Time Series for Stationary

data_log_moving_avg_diff.dropna(inplace=True)
evaluate_stationarity(data_log_moving_avg_diff)

Output

Results of Dickey-Fuller Test:

Test Statistic -4.375719
p-value 0.000328
#Lags Used 0.000000
Number of Observations Used 174.000000

ChapTer 3 ■ TiMe SerieS

108

Critical Value (5%) -2.878298
Critical Value (1%) -3.468502
Critical Value (10%) -2.575704
dtype: float64

Rolling Mean & Standard Deviation
0.04

0.03

0.02

0.01

0.00

–0.01

–0.02

–0.03

–0.04
Feb 2016

Original
Rolling Mean
Rolling Std

Mar 2016 Apr 2016 May 2016 Jun 2016 Jul 2016 Aug 2016 Sep 2016

Figure 3-7. Time series with moving average removed along with rolling mean and
standard deviation

David was thrilled by some concrete results while looking at Figure 3-7. The
exploratory analysis approach proved the trendless data to be stationary because of a
near to constant rolling mean and standard deviation. The Dickey-Fuller test proved
the same as well because the test statistics came out to be smaller than all of the critical
values. This meant that the null hypothesis is rejected and the trendless time series object
stood stationary with a confidence level of 99%.

David got what he wanted; that is, he changed the nature of the log transformed
time series object to a stationary one. However, he wanted to explore if other techniques
can make it closer to the stationary nature. Hence, he decided to try the exponentially
weighted moving average for estimating the trend.

Exponentially Weighted Moving Average
Exponentially weighted moving average is similar to the rolling mean approach except
that a recent observation is assigned the highest weight and a distinct one the lowest.
In other words, the weight assignment decreases exponentially from the most recent
observation to the most distinct one.

David then applied the exponential weighted moving average to the log transformed
time series object to see if he could witness a considerable improvement in making the
time series object resemble the stationary one.

Listing 3-12. Applying Exponential Weighted Moving Average Smoothing to the Time
Series Object

expwighted_avg = pd.ewma(data_log, halflife=15)
data_log_ewma_diff = data_log - expwighted_avg
evaluate_stationarity(data_log_ewma_diff)

ChapTer 3 ■ TiMe SerieS

109

Output

Results of Dickey-Fuller Test:

Test Statistic -3.273472
p-value 0.016107
#Lags Used 0.000000
Number of Observations Used 188.000000
Critical Value (5%) -2.877040
Critical Value (1%) -3.465620
Critical Value (10%) -2.575032
dtype: float64

Rolling Mean & Standard Deviation
0.05

0.04

0.03

0.02

0.01

0.00

–0.01

–0.02

–0.03

–0.04
Feb 2016

Original
Rolling Mean
Rolling Std

Mar 2016 Apr 2016 May 2016 Jun 2016 Jul 2016 Aug 2016 Sep 2016

Figure 3-8. Exponentially weighted moving average smoothed time series

While looking at Figure 3-8, David noticed that the rolling mean varied more than
it did in Figure 3-7. Hence he was he was indifferent to reaching a conclusion using the
exploratory data analysis method. However, test statistics from the Dickey-Fuller test
barely crossed the 5% critical value measure. Thus, the test statistic being less than the
critical value meant rejection of the null hypothesis. This led David to conclude that the
log transformed trendless time series object has successfully become stationary in nature.

The only considerable success that David had had so far came from removing
the moving average smoothing estimated trend from the log transformed time series.
However, he was not convinced of the stationary nature within the time series while
looking at its exploratory data analysis plot. As per his deduction in Figure 3-1, the time
series object had both trend and seasonality. If trend reduction could do so well, he
wondered, logically, whether both trend and seasonality reduction should do even better.
He started looking for techniques to reduce both trend and seasonality. It didn’t take him
long to figure out that differencing can do this job.

ChapTer 3 ■ TiMe SerieS

110

Differencing
Differencing subtracts the time series from a lagged version of itself (i.e., observations
at the previous instant). Differencing stabilizes the mean of a time series by removing
changes in the level. David was confident that differencing, given its definition, would be
the more effective in making the time series object stationary.

He was expecting a closer-to-stationary time series subject. Hence he wrote the
script in Listing 3-13 for his expectations to come true.

Listing 3-13. Applying First-Order Differencing to the Log Version of the Time Series
Object

data_log_diff = data_log - data_log.shift()
data_log_diff.dropna(inplace=True)
evaluate_stationarity(data_log_diff)

Output

Results of Dickey-Fuller Test:

Test Statistic -1.038969e+01
p-value 2.036243e-18
#Lags Used 1.000000e+00
Number of Observations Used 1.860000e+02
Critical Value (5%) -2.877208e+00
Critical Value (1%) -3.466005e+00
Critical Value (10%) -2.575122e+00
dtype: float64

Rolling Mean & Standard Deviation
0.03

0.02

0.01

0.00

–0.01

–0.02

–0.04

–0.03

Feb 2016

Original
Rolling Mean
Rolling Std

Mar 2016 Apr 2016 May 2016 Jun 2016 Jul 2016 Aug 2016 Sep 2016

Figure 3-9. Statistics for the differencing applied time series

David saw a remarkable improvement in Figure 3-9 as the rolling mean and rolling
standard deviation appear to be almost constant. The same was reflected by the Dickey-
Fuller test as the test statistics came out to be much less than the 1% critical values.
The seasonality and trend removed time series seems to be almost stationary in nature

ChapTer 3 ■ TiMe SerieS

111

now. David had applied a first-order differencing; that is, a lag of 1 was induced while
differencing. He was curious to find if a second- or third-order differencing can improve
the stationary nature of the time series object. He invites you to collaborate on this by
attempting the exercises.

EXERCISE

1. apply second- and third-order differencing to our log transformed
series. Did it make the log transformed series stationary?

David’s curious mind made him ponder if he could manage to remove seasonality
and trend from the log transformed time series object as he had in trend estimation and
removal earlier. Earlier he had applied two techniques to estimate the trend and removed
that from the time series object to make it stationary in nature. He started looking for
methodologies, if any, by which he could break the time series object into trend and
seasonality components. He then planned to remove these two components from the
time series object to make its resemblance closer to one of a stationary nature. His search
brought him to the concept of decomposition.

Decomposition
Decomposition is yet another approach to eliminate trend and seasonality from a time
series to make it stationary in nature. It does that by dividing the time series into three
components: trend, seasonality, and residuals. The component of interest in this case is
the residuals (i.e., time series without trend and seasonality).

David was curious to see what the three components of the log transformed time
series in question looked like. Hence, without wasting any further time he wrote the code
in Listing 3-14.

Listing 3-14. Decomposing the Log Transformed Time Series

from statsmodels.tsa.seasonal import seasonal_decompose
decomposition = seasonal_decompose(list(data_log), freq=15)

trend = decomposition.trend
seasonal = decomposition.seasonal
residual = decomposition.resid

plt.subplot(411)
plt.plot(data_log, label='Original')
plt.legend(loc='best')
plt.subplot(412)
plt.plot(trend, label='Trend')
plt.legend(loc='best')
plt.subplot(413)
plt.plot(seasonal,label='Seasonality')

ChapTer 3 ■ TiMe SerieS

112

plt.legend(loc='best')
plt.subplot(414)
plt.plot(residual, label='Residuals')
plt.legend(loc='best')
plt.tight_layout()

7.75
7.70
7.65
7.60
7.55
7.50

7.75
7.70
7.65
7.60
7.55
7.50

0.003
0.002
0.001
0.000

–0.001
–0.002
–0.003

0.03
0.02
0.01
0.00

–0.01
–0.02
–0.03
–0.04

0

0

50

50

100

100

150

150

200

200

250

0 50 100 150 200 250

300250

Feb 2016

Original

Seasonality

Residuals

Trend

Mar 2016 Apr 2016 May 2016 Jun 2016 Jul 2016 Aug 2016 Sep 2016 Oct 2016 Nov 2016 Dec 2016

Figure 3-10. Decomposed log transformed time series

David had read that trends are linear in nature and the trend component in Figure 3-10
was showing a true depiction of that. However, when David compared this trend component
to the trend estimates in Figures 3-6 and 3-8, he noticed that although the estimates depicted
the trend, seasonality existed within them as well. The seasonality component in Figure 3-10
resonated with the definition of seasonality as well—that is, a pattern that repeats itself after
a fixed time interval. Finally, David deduced the residual component to be fairly constant
over time, as it seems in Figure 3-10 as well. Now his aim was to evaluate the residuals to see
if they were stationary in nature or not.

Listing 3-15. Evaluating the Residuals for Stationary

data_log_decompose = pd.Series(residual)
data_log_decompose.dropna(inplace=True)
evaluate_stationarity(data_log_decompose)

Output

Results of Dickey-Fuller Test:

Test Statistic -7.557158e+00
p-value 3.077807e-11
#Lags Used 4.000000e+00
Number of Observations Used 1.700000e+02
Critical Value (5%) -2.878696e+00

ChapTer 3 ■ TiMe SerieS

113

Critical Value (1%) -3.469413e+00
Critical Value (10%) -2.575917e+00
dtype: float64

Rolling Mean & Standard Deviation
0.03

0.02

0.01

0.00

–0.01

–0.02

–0.03

–0.04
0

Original
Rolling Mean
Rolling Std

50 100 150 200

Figure 3-11. Stationary-related statistics for residuals

Exploratory data analysis of rolling mean and rolling standard deviation depicted both
these measures to be almost stationary over time. David moved forward to see if the Dickey-
Fuller test came up with the same verdict. Test statistics came out to be lower than all three
critical values. Hence, with a confidence level of 99% he concluded the residual plot to be
stationary. However, the test statistics were not much less than the critical values if compared
to what we saw in the first-order differencing technique (i.e., the output of Listing 3-13).

David was relaxed to an extent because of the four conditions of a stationary object,
he was able to nail the first three by means of the first-order differencing technique. He
was able to remove the trend and make the rolling statistics constant over time. Now
he had to check for the fourth condition—that is, if autocorrelation exists or not within
the time series object. If autocorrelation varies over time for the time series object in
question, he would have to figure out a technique to make the autocorrelations constant.

Tests to Determine If a Time Series Has
Autocorrelation
Autocorrelation is the correlation between the series at current time with a lagged
version of itself. While reading the literature about autocorrelation, David learned that
autocorrelation exists in two variants.

Autocorrelation Function
Autocorrelation function (ACF) determines the correlation of time series along with a
lagged version of itself. For example, data with ten observations and with a lag of 5 will
have the correlation between the following series calculated:

t4, t5, t6, t7, t8, t9

t0, t1, t2, t3, t4, t5

ChapTer 3 ■ TiMe SerieS

114

Partial Autocorrelation Function
Partial autocorrelation function (PACF) also measures the correlation of a time series
along with a lagged version of itself except that it eliminates the variations already
explained by the prior comparisons. For example, as in our case, with a lag of 5, it will
remove the variations already captured between t0 and t3.

Now that David knew what autocorrelation is, his next step was to determine the
methodologies available to measure it within the log transformed differencing applied
time series.

Measuring Autocorrelation
David achieved some success as he was able to find a statistical method to measure
autocorrelation within the log transformed time series (i.e., Durbin Watson statistic).

Durbin Watson Statistic
Contrary to the autocorrelation correlogram, Durbin Watson statistic is more of
a statistical approach to determining the existence of autocorrelation within the
data. It does so by computing autocorrelation among residuals from a statistical
regression analysis. It returns a number between 0 and 4 where 0 depicts strong
positive autocorrelation, 4 depicts strong negative autocorrelation, and 2 depicts no
autocorrelation at all.

While doing the research on autocorrelations, David recalled reading that
differencing can be used to eradicate ACF and PACF. Having already applied differencing
on the log transformed time series object, David was expecting no presence of ACF and
PACF. At first he planned to check for the presence of autocorrelation using the Durbin
Watson statistics method in Listing 3-16.

Listing 3-16. Calculating the Durbin Watson Statistics for Log Transformed Differencing
Applied Time Series

sm.stats.durbin_watson(data_log_diff)

Output

2.1859293629518555

David was thrilled to see the results to be a score approaching 2, which indicated the
presence of no autocorrelation in the log transformed differencing applied time series.
However, he was curious to see what the ACF and PACF would look in the absence of
autocorrelation. Hence he came up with the code snippet in Listing 3-17.

Listing 3-17. Plotting Correlograms for ACF and PACF on Log Transformed Differencing
Applied Time Series

ax1 = plt.subplot(211)
fig = sm.graphics.tsa.plot_acf(data_log_diff.squeeze(), lags=40, ax=ax1)

ChapTer 3 ■ TiMe SerieS

115

ax2 = plt.subplot(212)
fig = sm.graphics.tsa.plot_pacf(data_log_diff, lags=40, ax=ax2)

David noticed that both the ACF and PACF correlograms should a spike at 1 lag with
no correlations to come on the later time lags. The next step after making the time series
stationary was what excited David the most (i.e., applying forecasting to the Yahoo stock
dataset to get forecasts with minimal residuals).

Modeling a Time Series
Before applying the different time series models, David thought it better to first
understand the underlying concepts many of the models use. After research, he compiled
explanations on the meaning of Number of Auto-Regressive (AR), Number of Moving
Average (MA), and Number of Differences (D). He deemed these terms important
because they formulate the prediction equation for the time series model.

•	 Number of Auto-Regressive (AR) terms or p: AR terms are the
lags of the response variable. Take, for example, a value of p = 5.
Hence, in order to predict the response variable at t5, a time series
between t0 and t4 will be considered the exploratory variables.

•	 Number of Moving Average (MA) terms or q: MA terms are the
lagged forecast errors in a response variable. Take, for example,
a value of q = 5. Hence in order to predict the response variable
at t5, a time series between t0 and t4 will be considered. Hence
this means the difference between the moving average and actual
value at that time instant.

•	 Number of Differences (d): This refers to the order of differencing
that we are interested in applying to our time series object.

0

1.0
Autocorrelation

0.8

0.6

0.4

0.2

0.0

–0.2
10 20 30 400

0

1.0
Partial Autocorrelation

0.8

0.6

0.4

0.2

0.0

–0.2
10 20 30 40

Figure 3-12. Plotting correlograms for ACF and PACF on log transformed differencing
applied time series

ChapTer 3 ■ TiMe SerieS

116

Parameters for a given time series model are written as follows: p, d, q. Once he
understood the common parameters of the time series techniques, David decided to
compile a list of the statistical tests to measure the accuracy of the forecasted time series.

Tests to Validate Forecasted Series
After due research, David learned about some of the most notable tests for measuring the
accuracy of the forecasted time series.

Mean Forecast Error
This is the mean of residuals at each time point. Mean forecast error values can range
from negative infinity to positive infinity.

Mean Absolute Error
Mean absolute error is same as mean forecast error except that the residuals are converted
to absolute terms; that is, positive residuals remain the same whereas negative residuals
are converted into positive ones. Values can range between zero and positive infinity.

Residual Sum of Squares
The residual sum of squares (RSS) is usually used in regression to understand the fraction
of variance not explained by the regression model. It is calculated by calculating the
residuals at each point in time, taking their squares, and then adding them over. Squaring
of the residuals ensures that the values come out to be positive. RSS can have a minimum
value of 0, which indicates that the variance is estimated to the fullest extent by the time
series model.

Root Mean Squared Error
The root mean squared error (RMSE), also known as root mean squared deviation (RMSD),
is an advanced version of RSS in which square root is applied to the output of RSS.

David now had a fair idea of what was meant by the terms p, q, and d. However, he
wasn’t sure that what value each of these terms should entail when passing them within a
time series model. His search uncovered some of the rules that decide the values of p, q,
and d subject to the patterns within ACF and PACF.

Deciding Upon the Parameters for Modeling
David planned to view the ACF and PACF of the log transformed differencing applied
time series to determine the rule it best matches.

•	 Rule 1: p = 1 when ACF shows exponential decay, and PACF has a
spike at lag 1 with no correlation further on (See Figure 3-13).

ChapTer 3 ■ TiMe SerieS

117

0

-0
.2

0.
0

0.
2

AC
F 0.
4

0.
6

0.
8

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
81.

0

2 4

Lag

6 8 10 2 4

Lag

Pa
rt

ia
l A

CF

6 8 10

Figure 3-13. ACF and PACF plots for p = 1

0

0.
0

0.
2

AC
F

0.
4

0.
6

0.
0

0.
2Pa

rt
ia

l A
CF 0.

4
0.

6

0.
8

1.
0

5 10
Lag
15 20 25 30 0 5 10

Lag
15 20 25 30

Figure 3-14. ACF and PACF plots for p=2

•	 Rule 2: p = 2, when ACF shows a set of exponential decays or sine
wave-shaped pattern, and PACF has spikes at lags 1 and 2, with no
correlation further on (See Figure 3-14).

•	 Rule 3: q = 1 when ACF has a spike at lag 1 with no correlation
further on, and PACF shows exponential decay (See Figure 3-15).

ChapTer 3 ■ TiMe SerieS

118

2

0.
0

-0
.2

0.
2

AC
F 0.

4
0.

6

Pa
rt

ia
l A

CF

0.
8

0.
0

-0
.2

0.
2

0.
4

0.
6

0.
8

1.
0

4 6

Lag
8 10 20 4 6

Lag
8 10

Figure 3-15. ACF and PACF plots for q = 1

0.
0

0 5 10 15
Lag

20 25 30 0 5 10 15
Lag

20 25 30

0.
2

AC
F

0.
4

0.
6

0.
0

0.
2

Pa
rt

ia
l A

CF
0.

4
0.

6
0.

8
1.

0

Figure 3-16. ACF and PACF plots for q = 2

•	 Rule 4: q = 2, when ACF has spikes at lags 1 and 2, with no
correlation further on, and PACF shows a set of exponential
decays or sine wave-shaped pattern (See Figure 3-16).

•	 Rule 5: p = 1, q = 1 when both ACF and PACF show exponential
decay starting at a lag of 1 (See Figure 3-17).

ChapTer 3 ■ TiMe SerieS

119

Looking at Figure 3-12, David wasn’t sure that which of the rules satisfied the ACF
and PACF patterns obvious in the correlograms. Both ACF and PACF had a spike at 1
with no correlation in the proceeding lags. He didn’t find this behavior being covered
by any of the rules, and thus he decided to leave to accuracy the values of p, d, and q he
would choose for the models. Having gone through the evaluation methods for time
series and having gone through the rules for selecting the parameter values, David knew
that the time had come to apply the time series models to the differencing applied log
transformed time series. His search of time series models brought him to the effectiveness
that ARIMA models displayed in various time series applications. Hence he started off with
understanding ARIMA.

Auto-Regressive Integrated Moving Averages
ARIMA stands for auto-regressive integrated moving averages. ARIMA forecasting
revolves around a linear equation whose behavior is dependent upon the values of p,
d, and q. In other words, the ARIMA model filters signal from noise and forecasts it for
future point in time. An ARIMA model is defined as ARIMA (p, d, q).

This section discusses some of the variants of an ARIMA model.

Auto-Regressive Moving Averages
The ARMA (auto-regressive moving averages) model is similar to an ARIMA model except
that now we use p and q to determine the linear equation. Moreover, now the prediction
is done on a mean adjusted series; that is, a time series is transformed to a zero mean
variant by subtracting the sample mean from it.

This phenomenon can be defined by the following equation:

y
t
 = Y

t
 – Ý, t = 1, …N

0 5 10 15
Lag

20 25 30 0 5 10 15
Lag

20 25 30

AC
F

0.
0

0.
2

Pa
rt

ia
l A

CF

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 3-17. ACF and PACF plots for p = 1 and q = 1

ChapTer 3 ■ TiMe SerieS

120

Where,

•	 Y
t
 : Original time series

•	 Ý: Mean adjusted time series

ARMA model is defined as ARMA (p, q)

Auto-Regressive
An ARMA model forecasts a time series from a linear function of its past values. Time lag
is defined in the AR (auto-regressive) model to forecast the future values of a time series.
An AR model can be defined by the following equation:

y
t
 = β

0
 + β

1
y

t−1
 + ϵ

t

Where,

•	 β
0
, β

1
 : Beta coefficients

•	 y
t-1

: Lagged version of the time series

•	 ϵ
t
 : Residuals, which are assumed to be normally distributed and

random in time

An AR model is defined as AR (p, d)
David decided to apply the AR model on differencing applied log transformed time

series. He knew that because this technique does not have the term ‘q’, its value will be 0
(i.e., q = 0). He decided to apply AR with the arbitrary term of p = 2 and d = 1 in Listing 3-18.

Listing 3-18. Applying AR Model to Log Transformed Differencing Applied Time Series

model = ARIMA(data_log, order=(2, 1, 0), dates=data_log.index.to_datetime())
results_AR_210 = model.fit(disp=-1)
plt.plot(data_log_diff)
plt.plot(results_AR_210.fittedvalues, color='red')
plt.title('RSS: %.4f'% sum((results_AR_210.fittedvalues-data_log_diff)**2))

RSS: 0.0149
0.03

0.02

0.01

0.00

–0.01

–0.02

–0.03

–0.04
Feb 2016 Mar 2016 Apr 2016 May 2016 Jun 2016 Jul 2016 Aug 2016 Sep 2016

Figure 3-18. Plotting MA model smoothing on log transformed differencing applied time
series

ChapTer 3 ■ TiMe SerieS

121

David made sure to plot the original differencing applied and log transformed time
series along with the forecasted one using the AR technique in Figure 3-18. He was pleased
to see the RSS for this forecasted series approaching 0, which meant that the model was
fairly accurate in capturing the variance in the input series. The prediction of Yahoo stock
at that much of a negligible RSS was a big relief for him. He then moved on to search for
other techniques and that is when he discovered the moving average technique.

Moving Average
MA stands for moving average model. MA is best for situations in which we have a univariate
time series object. MA forecasts future values by training itself on the current and past values
of a time series that are random in nature. The MA model is defined as MA (d, q).

MA models don’t have the term p; hence David initialized it as p = 0. David decided
to apply the MA model to the log transformed differencing applied time series, with
a q = 1 and d = 1.

Listing 3-19. Applying MA Model to Log Transformed Differencing Applied Time Series

model = ARIMA(data_log, order=(0, 1, 1), dates=data_log.index.to_datetime())
results_MA_011 = model.fit(disp=-1)
plt.plot(data_log_diff)
plt.plot(results_MA_011.fittedvalues, color='red')
plt.title('RSS: %.4f'% sum((results_MA_011.fittedvalues-data_log_diff)**2))

RSS: 0.01490.03

0.02

0.01

0.00

–0.01

–0.02

–0.03

–0.04
Feb 2016 Mar 2016 Apr 2016 May 2016 Jun 2016 Jul 2016 Aug 2016 Sep 2016

Figure 3-19. Plotting MA model smoothing on log transformed differencing applied time
series

David noticed no significant improvement in the RSS score after applying MA to the
differencing applied log transformed time series. He decided to merge the AR and MA
models in the hopes of seeing a more robust model for predicting Yahoo stock.

ChapTer 3 ■ TiMe SerieS

122

Combined Model
The combined model refers to the addition of AR and MA. This model will have all the three
parameters—p, d, and q—and will initially be defined as an ARIMA —ARIMA (p, d, q).
A combined model means that all of the parameters will be taken into consideration. David
was anticipating a reduction in the RSS score; hence, without wasting any undue time he
applied the combined model in Listing 3-20 with parameter values of p = 1, d = 1, and q = 1.

Listing 3-20. Applying Combined Model to Log Transformed Differencing Applied Time
Series

model = ARIMA(data_log, order=(1, 1, 1), dates=data_log.index.to_datetime())
results_ARIMA_111 = model.fit(disp=-1)
plt.plot(data_log_diff)
plt.plot(results_ARIMA_111.fittedvalues, color='red')
plt.title('RSS: %.4f'% sum((results_ARIMA_111.fittedvalues-
data_log_diff)**2))

RSS: 0.0149
0.03

0.02

0.01

0.00

–0.01

–0.02

–0.03

–0.04
Feb 2016 Mar 2016 Apr 2016 May 2016 Jun 2016 Jul 2016 Aug 2016 Sep 2016

Figure 3-20. Plotting combined model smoothing on log transformed differencing applied
time series

RSS for this forecasted series was approaching 0 as well; hence the model is fairly
accurate in capturing the variance in the input series. However, David was puzzled to see
that the RSS scores for all of these approaches were the same. Making a random pick, he
decided to go forward with the combined model.

It has been a long journey so far. David applied log transformation, used differencing
to make the time series stationary, and finally applied the combined model to that
log transformed differencing applied time series. The time series was now different
from what he had seen initially because he had applied the log transformation and
differencing. As the forecasting was performed on the modified time series, so it now had
to be scaled back to see how well it forecasted the initial Yahoo stock time series.

ChapTer 3 ■ TiMe SerieS

123

Scaling Back the Forecast
Before scaling back the forecasts to the original units, David thought it wise to print initial
observations of the forecasted time series.

Listing 3-21. Printing First Few Observations of the Forecasted Series

predictions_ARIMA_diff = pd.Series(results_ARIMA_111.fittedvalues,
copy=True)
print predictions_ARIMA_diff.head()

Output

2016-01-05 0.000401
2016-01-06 0.000237
2016-01-07 0.001781
2016-01-08 0.003630
2016-01-11 0.003035
dtype: float64

The output of Listing 3-21 provided an interesting insight for David. Data loaded
initially in Listing 3-2 had dates starting from 2016-01-04 whereas dates in the output
of Listing 3-2 were starting from 2016-01-05. After much thinking he found the answer
to that. 'The parameter d'—that is, the number of differences—had a value of 1 when
forecasting was done using the combined modeling. This induced a lag of 1, and the
thus the first element didn’t have anything in the lagged version of itself to subtract from.
While conducting research on time series models, David had also read that the output of
these models gives absolute changes rather than cumulative sums at each time interval.
Going forward with absolute changes would have been a sound strategy had the data
been discrete. However, in a situation like this, where the forecasted series will be a
continuous distribution, cumulative sums were the requirement. Hence David decided to
convert these absolute changes to cumulative sums for all time intervals in Listing 3-22.

Listing 3-22. Printing Cumulative Sum of the Forecasted Series

predictions_ARIMA_diff_cumsum = predictions_ARIMA_diff.cumsum()
print predictions_ARIMA_diff_cumsum.head()

Output

2016-01-05 0.000401
2016-01-06 0.000638
2016-01-07 0.002418
2016-01-08 0.006049
2016-01-11 0.009084
dtype: float64

ChapTer 3 ■ TiMe SerieS

124

David knew that the model performed well in minimizing the residuals as seen from
the RSS score. However, he was also concerned with the quality of the model, and hence
he started looking for methods of measuring it. His search concluded when he found
Akaike Information Criterion (AIC) to test the quality of a time series model. As per the
explanation, the lower the score of AIC, the better the quality of a time series model.
Hence he put the forecasted time series to the test in Listing 3-23.

Listing 3-23. Printing AIC BIC, and HQIC scores of the Forecasted Series

print results_ARIMA_111.aic

Output

(-1234.0564146247877)

The score from the output of Listing 3-23 came out to be extremely low, thus proving
the goodness of the model. Now David’s plan of action was to scale back the forecasted
series by reversing the differencing and log transformation. He aimed to do so by taking
the following steps:

•	 Remove differencing from the forecasted series.

•	 Reverse the log transformation by applying an exponent.

•	 Evaluate the forecasted series by calculating mean forecast error,
mean absolute error, and root mean absolute error.

•	 Plot the original and forecasted series.

David started off by concentrating on removing differencing from the forecasted
series. He planned to do that by adding a base value to all observations of the forecasted
series. He assumed the first value of the log transformed time series to be the base value
and went forward with the implementation in Listing 3-24.

Listing 3-24. Printing Differencing Removed Forecasted Time Series

predictions_ARIMA_log = pd.Series(data_log.ix[0], index=data_log.index)
predictions_ARIMA_log = predictions_ARIMA_log.add(predictions_ARIMA_diff_
cumsum,fill_value=0)
predictions_ARIMA_log.head()

Output

2016-01-04 7.607213
2016-01-05 7.607614
2016-01-06 7.607850
2016-01-07 7.609631
2016-01-08 7.613261
dtype: float64

ChapTer 3 ■ TiMe SerieS

125

The next step was to remove log transformation from the forecasted time series.
Recalling his learnings from his Calculus 1 course in college he knew that the exponential
acts as the inverse of log base 10. In Listing 3-25 he planned to do that, and rate the
forecasted series by the aid of evaluation metrics.

Listing 3-25. Evaluating the Forecasted Series vs. the Original One

def mean_forecast_err(y, yhat):
 return y.sub(yhat).mean()

def mean_absolute_err(y, yhat):
 return np.mean((np.abs(y.sub(yhat).mean()) / yhat)) # or

percent error = * 100

def rmse(y, yhat):
 return np.sqrt(sum((yhat-y)**2)/len(y))

predictions_ARIMA = np.exp(predictions_ARIMA_log)
plt.plot(data_train['Close_Adj'])
plt.plot(predictions_ARIMA)

plt.title('RMSE: %.4f | MFE: %.4f | MAE: %.4f'% (
 rmse(data_train['Close_Adj'], predictions_ARIMA), mean_forecast_
 err(data_train['Close_Adj'], predictions_ARIMA), mean_absolute_
 err(data_train['Close_Adj'], predictions_ARIMA)))

2200

2150

2100

2050

2000

1950

1900

1850

1800
Feb 2016 Mar 2016 Apr 2016 May 2016 Jun 2016 Jul 2016 Aug 2016 Sep 2016

Figure 3-21. Plotting forecasted series vs. the original time series

In Listing 3-24, David at first initialized a separate method for each of the evaluation
metrics. He then removed the log from the forecasted series. In the end he validated the
forecasted series by comparing it to the real one, both statistically and graphically. The test
statistics of RMSE, MFE, and MAE revealed that this model had successfully forecasted
correctly, which was good news for David. Forecasted plot is represented by the green
line, with the original time series represented by a blue one. David was surprised to see in
Figure 3-21 that the forecasted time series resembled that of a linear regression line.

ChapTer 3 ■ TiMe SerieS

126

Hence David decided to apply regression to the near to linear forecasted series seen
in Figure 3-21. He planned to train the regression line from the linear forecasted series,
predict for data from October to December 2016, and then cross-validate it from the real
values for that time period. He did so by writing the code in Listing 3-26.

Listing 3-26. Predicting and Evaluating Future Time Series Using a Linear Regression Model

regr = LinearRegression()

x_train = [[x] for x in range(len(data_train))]
y_train = [[y] for y in list(data_train['Close_Adj'])]

x_test = [[z] for z in range(x+1, x + 1+len(data_test))]

regr.fit(x_train, y_train)

y_pred = regr.predict(x_test)

explained_variance_score(data_test['Close_Adj'], y_pred)

plt.scatter(range(len(data_test)), data_test['Close_Adj'], color='black')
plt.plot(range(len(data_test)), y_pred, color='blue',
 linewidth=3)
plt.ylabel('Concrete strength')

Output

0.63472586609437109

2350

Co
nc

re
te

 s
tr

en
gt

h

2300

2250

2200

2150

2100

2050
–10 0 10 20 30 40 50 60 70

Figure 3-22. Plotting forecasted series along with the predicted regression line for
Oct-Dec 2016

David was happy to see the regression line in Figure 3-22 fairly capture the trend
within the dataset. He performed model training on the forecasted time series and
evaluated it against the original time series of Yahoo stock. He also made sure to calculate

ChapTer 3 ■ TiMe SerieS

127

the explained variance score as well to see how much variance of the time series is
correctly captured by the best fit line. The value came out to be 0.63, which indicated that
63% of the variance within the time series was captured by the linear regression line.

Given the results he had achieved within a short time span, David was optimistic
that he could achieve more if he had more days to spare. However, he wants you to come
on board and help him experiment with different time series forecasting strategies. His
rationale is that he further wants to improve the accuracy of the forecasted series, as it is
the input being fed into the regression line. Hence, he has left the following exercises for
you to solve.

EXERCISES

1. repeat the above steps by applying decomposition instead of
differencing. Did it improve the forecast accuracy?

2. repeat the exercise by changing the parameter values of p, d, and q for the
arMa, and ariMa models. Then compute the test statistics to see if a given
combination of these parameters yields a better forecast accuracy.

Applications of Time Series Analysis
Sales Forecasting
Corporate organizations are concerned about the expected sales for the next period.
Sales forecasts help them make rational decisions to achieve the targets at hand. Sales
usually have a strong element of seasonality in them. Consider, for example, that we
are forecasting the sales in dollar amount of groceries on a daily basis. We will see a
seasonality that repeats monthly with the hike in sales coming in the first week of every
month. Moreover, the change in habits of people (i.e., spending and consumption) can
instill a positive and negative trend in the series.

Weather Forecasting
This is the de facto application for time series analysis. Weather forecasting comes along
with a lot of elements other than just the temperature. Forecasts are done for amount of
rainfall, humidity, and wind speed as well.

Unemployment Estimates
Time series analysis is also used to estimate unemployed people in our economy.
Unemployment is strongly affected by change in foreign direct investment, the security
situation of a country, change in rate of skilled labor, and so on. These estimates are
highly important as they affect the government’s expenditures for social and relief
programs. Moreover, they help the government estimate the amount of change in direct
and indirect tax as consumption levels increase due to the creation of employment.

ChapTer 3 ■ TiMe SerieS

128

Disease Outbreak
Nongovernmental organizations (NGOs) and social organizations are interested in
forecasting the outbreak of a disease across the globe. This is important for them so
that they can launch awareness programs and prevention strategies in regions highly
susceptible to a particular disease or epidemic.

Stock Market Prediction
Stocks fluctuate a lot on a short-term basis during trading hours, which makes it difficult
for investors to forecast the point in time when they can benefit the most. However, the
problem becomes more critical when investors invest in a portfolio of stocks and are
worried about the return they should expect from it in the future or adjust a stock in order
to receive returns in their favor. This is where time series analysis comes in handy.

David didn’t forget to summarize the methodology incorporated to reach the end
result. He recalled having first defined the problem statement (i.e., predict Yahoo stock
with a minimal residual). At first he had to understand what a time series is and then
he validated the test of stationary against the time series object. Transformation and
differencing were done to make the series object stationary. Then he applied the time
series model and chose the one with the lowest RSS. This forecasted time series was
then scaled back and used as an input to the linear regression line. The regression line
enabled the extrapolation of future values and cross-validation was done to determine
the variance explained by the best fit line.

David now planned to incorporate this model to predict Janice’s expected returns
and to avoid a major setback due to prediction inaccuracies.

129© Danish Haroon 2017
D. Haroon, Python Machine Learning Case Studies, DOI 10.1007/978-1-4842-2823-4_4

CHAPTER 4

Clustering

The goal of this chapter is to solve real-world problems with the aid of supervised and
unsupervised learning algorithms. First we will start off with the concept of clustering,
determine how to organize the data, decide upon the number of components, and then
end up seeing if the cluster outputs make any intuitive sense.

 ■ Note This book incorporates Python 2.7.11 as the de facto standard for coding
examples. Moreover, you are required to install it for the Exercises.

In this chapter we will be using the Accepted Papers dataset for clustering coding
examples. This data dump can be downloaded from

https://archive.ics.uci.edu/ml/datasets/AAAI+2014+Accepted+Papers

Case Study: Determination of Short Tail Keywords
for Marketing
Ross, the marketing director of an artificial intelligence (AI) conference, had to report to
the board with recommendations for short tail keywords for the marketing of the 2015
conference. He also had to come up with a visualization of research papers submitted so
far, grouped by their paper type.

The conference is run by a nonprofit scientific society that ensures advancements
in the domains of artificial intelligence. It does so by enhancing public understanding of
the domain, as well as by providing researchers with a platform for them to present their
findings in yearly conferences.

In order to come up with a solution for the problem at hand, Ross started off by going
through the web site. However, the magnitude of content from the research papers was
too much for him to make an analysis.

https://archive.ics.uci.edu/ml/datasets/AAAI+2014+Accepted+Papers

ChapTer 4 ■ ClusTering

130

He thus knocked on Ted’s door to find out if any data was available to start off
the analysis. The meeting with Ted, who was the director of the data warehousing
department, gave Ross a glimpse of hope. As Ted recalled:

Ross came up to me with this request, but the problem was that we were
going through a major overhaul of integrating SAP in/out processes. But
fortunately we had some data dumps available in storage. I asked Ross
for the conference year he wanted the data for, and boom we had the
data dump for that year.

Ross loaded the data dump in Microsoft Excel and started looking through the
features. He thought that one strategy could be to group the papers by keywords or
groups. He could then run separate ads on social media and use SEO (search engine
optimization) to target the respective keywords within them. However, there were too
many distinct values within keywords and group features, and thus they would result
in many clusters of SEO keywords. His strategy was to come up with a maximum of ten
different SEO keyword groups and let them run for several days to reap benefits. He had
heard something about clustering, where you cluster the data into a fixed number of
clusters, and so he decided that clustering would be his starting point.

Now that he had a path to follow, he had some questions in mind. How many
clusters would be optimal from the data provided? Given that the data is small, can any
machine learning algorithm be a best fit to it? How should he visually present the data
and, ultimately, the findings?

Ross believed that understanding the features of data provided by Ted would prove
beneficial later on down the path. He felt that understanding them would help him
decide upon the best approach for solving the problem at hand. Hence he compiled the
data dictionary in Table 4-1.

Table 4-1. Data Dictionary for the Accepted Papers Dataset

Feature name Description

Title Title of the paper

Authors Author(s) of the paper

Groups Author-selected, high-level keyword(s)

Keywords Author-generated keywords

Topics Author-selected, low-level keywords

Abstracts Paper abstracts

ChapTer 4 ■ ClusTering

131

While looking at Table 4-1, Ross deduced that all of the features were in a string
format. Moreover, he noticed that paper manuscripts are not part of the dataset and
abstracts were provided instead.

Ross had recently completed the Python specialization offered by the University of
Michigan on Coursera. Hence he was confident of his Python skills to nail the job. Before
starting with the analysis, he decided to load all the relevant packages into the memory as
shown in Listing 4-1.

Listing 4-1. Importing Packages Required for This Chapter

%matplotlib inline

import operator
import itertools
import numpy as np
import pandas as pd
from ggplot import *
import seaborn as sns
import matplotlib as mpl
from sklearn import mixture
import matplotlib.pyplot as plt
from matplotlib.pylab import rcParams
from sklearn.decomposition import PCA
from wordcloud import WordCloud, STOPWORDS
from scipy.spatial.distance import cdist, pdist
from sklearn.cluster import KMeans, SpectralClustering
from sklearn.metrics import euclidean_distances, silhouette_score

rcParams['figure.figsize'] = 15, 5

Though Ross knew the features and their descriptions, he was curious to know the
contents within.

Features’ Exploration
Before moving forward, it was time for him to lay out his strategy. After putting much
thought into it, he finally came up with a plan that could potentially work. The plan was
to initially break the research papers into segments so that he could focus on each one
of them by means of the targeted short tail and long tail keywords. He then looked at the
features in Table 4-1 to filter out the ones that resonated to his approach. He believed
that the Authors field was irrelevant and that the Abstract field was too detailed in nature.
Hence he narrowed his search to just four features (Title, Groups, Keywords, and Topics).
He filtered the features by writing down the code snippet in Listing 4-2.

ChapTer 4 ■ ClusTering

132

Listing 4-2. Reading the Data in the Memory, and Subsetting Features

data_train = pd.read_csv('examples/[UCI] AAAI-14 Accepted Papers - Papers.csv')
data_train = data_train[['title', 'groups', 'keywords', 'topics']]

Ross was now interested to know how big the dataset was (i.e., how many research
papers were available). Moreover, he was interested in taking a sneak peek of the dataset.
He wrote the script in Listing 4-3 for that purpose.

Listing 4-3. Printing the Size of the Dataset and Printing the First Few Rows of the Dataset

print len(data_train)
data_train.head()

Output

398

From the output of Listing 4-3, Ross noticed that the dataset has data on
approximately 400 research papers. Moreover, he found validation for his deduction that
all of the features within the dataset are in a string data format. He also noticed that a
given research paper can fall into more than one group and keyword.

Ross was on his way home, on the subway, waiting for the next train to arrive, when
he ran into his college mate Matt, with whom he had partnered for community work. After
college Matt had made a career in the domain of data analytics. Ross thus brought up
the problem he was trying to solve. After listening diligently Matt advised Ross to decide
whether he was going to use supervised learning or unsupervised learning before moving
onto model selection. It was a brief conversation as Matt had to go, and it left Ross with
many questions about this concept. It was not until the next morning that Ross returned to
the office and did research on supervised and unsupervised learning methods.

title

0

1

2

3

4

groups keywords topics

Kernelized Bayesian Transfer Learning

“Source Free”Transfer Learning for Text
Class...

A Generalization of probabilistic Serial to Ra...

Lifetime Lexical Variation in Social Media

Hybrid Singular Value Thresholding for
Tensor...

Novel Machine Learning Algorithms (NMLA)

AI and the Web (AIW)\nNovel Machine Learning
A...

Game Theory and Economic Paradigms (GTEM)

NLP and Text Mining (NLPTM)

Knowledge Repressentation and Reasoning (KRR)
\n...

cross-domain learning\ndomain
adaptation\nkern...

Transfer Learning\nAuxiliary Data Retrieval\nT...

social choice theory\nvoting\nfair division\ns...

Generative model\nSocial Networks\nAge
Prediction

tensor completion\nlow-rank recovery\nhybrid s...

APP: Biomedical / Bioinformatics\nNMLA: Bayesi...

AIW: Knowledge acquisition from the web\nAIW: ...

GTEP: Game Theory\nGTEP: Social Choice /
Voting

AIW: Web personalization and user
modeling\nNL...

KRR: Knowledge Representation (General/Other)
\...

Table 4-2. Print of Observations of the Dataset

ChapTer 4 ■ ClusTering

133

Supervised vs. Unsupervised Learning
Machine learning algorithms are usually divided into supervised and unsupervised learning.

Ross came up with an explanation for both these methods.

Supervised Learning
As the name suggests, supervised learning algorithms require supervision for them to
train the model. This supervision is usually necessary in the case of classification where
we have labeled data on which we train the model for it to predict the labels of the
unseen data. Here, the supervision is by means of the label provided with each and every
observation (i.e., supervising the learning process). Examples include classification for
discrete predictors and regression for the continuous ones.

Unsupervised Learning
Unsupervised learning algorithms require no supervision from the data while training
the model. A prime example of this is clustering, which discovers the labels without any
supervision needed. These discovered labels then become the basis for classifying any
new unseen data. Another example of unsupervised learning is the rule of association,
which entails the concepts of complement and substitute. Complement refers to a
phenomenon whereby if a shopper buys X then, with a high degree of certainty, he will
buy Y as well. Substitute refers to a behavior whereby a shopper will buy either X or Y.

Other examples include anomaly detection, method of moments (e.g., mean and
covariance), independent component analysis, and principle component analysis (PCA).

Supervised Learning

X2

X1

X2

X1

Unsupervised Learning

Figure 4-1. Supervised vs. unsupervised learning

ChapTer 4 ■ ClusTering

134

Ross had to decide on which of the two is suitable for his problem at hand and the
available data. From the data in Table 4-2, he noticed that the dataset provided no labeled
data. This meant that he had to predict labels from scratch using unsupervised learning.

Ross was assuming that clustering, being an unsupervised learning method, could
help him find the correct segments to meet the marketing goals. However, he wasn't too
sure if clustering was the right approach to pursue. Hence he came up with the following
material on the topic.

Clustering
Cluster analysis refers to the grouping of observations so that the objects within each
cluster share similar properties, and properties of all clusters are independent of each
other. Cluster algorithms usually optimize by maximizing the distance among clusters
and minimizing the distance between objects in a cluster. Cluster analysis does not
complete in a single iteration but goes through several iterations until the model
converges. Model convergence means that the cluster memberships of all objects
converge and don’t change with every new iteration. Some clustering algorithms don’t
ask for the number of clusters/components, and come up with the number of clusters
that statistically make more sense. However, a huge chunk of clustering algorithms
prompt the user upfront for the number of clusters/components he desires in the output.
It is important to understand that clustering, just like classification, is used to segment the
data; however, these groups are not previously defined in the training dataset (i.e., they
are unlabeled data).

Different algorithms deploy different techniques for the computation of clusters.
Some of those techniques are as follows:

•	 Partitioning: Groups data into given number of clusters while
optimizing for the objective (e.g., distance).

•	 Hierarchical: Groups data into a hierarchy of clusters. These
hierarchies are formed top-down or bottom-up.

•	 Grid-based: Divides the data into hyper-rectangle cells, discards
low-density cells, and combines high-density cells to form
clusters.

A good clustering algorithm satisfies the following requirements:

•	 Within-cluster similarity and between-cluster dissimilarity

•	 Can deal with training dataset which is:

•	 Of a high dimension

•	 Affected by noise and outliers

Ross now had some knowledge of supervised and unsupervised models; however,
he was not sure if clustering could be applied to data that is textual in nature. Moreover,
he knew that the greater the number of features fed in, the higher the chances to discover
features that influence during the cluster discovery process. Hence he had to figure out
a way to convert textual data into numeric form and use the existing four features to
generate more features.

ChapTer 4 ■ ClusTering

135

Data Transformation for Modeling
Ross spent hours searching for a solution to this mystery. He felt disappointed as he had
expected this approach to work and yield results. To make it easy, he narrowed down his
search to one feature (i.e. groups) and started pondering on how he could recode it into
a numeric form. It was late at night, but Ross couldn't sleep, and then an idea struck him.
Why not convert the “groups” feature into Boolean, such that a research paper that falls
within a group will have 1 marked next to it, and 0 otherwise. The data representation he
could think of would be a matrix where columns will represent the different groups and
rows will represent the research papers.

He knew that a research paper could fall into one group. Groups for a given research
paper were separated by a delimiter (i.e., \n) in the dataset. Hence he first decided to
separate groups by dividing the delimiter in between so that if a research paper falls within
three groups it will be represented by three different observations (i.e., rows) in the dataset.

Listing 4-4. Stretching the Data Frame Row-wise as a Function of Groups

s = data_train['groups'].str.split('\n').apply(pd.Series, 1).stack()
s.index = s.index.droplevel(-1)
s.name = 'groups'
del data_train['groups']
data_train = data_train.join(s).reset_index()

In addition to separating groups, Ross also decided to add a new feature “flags,”
and assign a value of 1 to all the rows. As per his notion, a value of 1 will denote that the
research paper in that row belongs to the group in the “groups” column.

Listing 4-5. Adding New Variable for Group Membership

data_train['flags'] = pd.Series(np.ones(len(data_train)),
index=data_train.index)
data_train.head()

Table 4-3. Print of Observations of the Dataset After Data Frame Transformation

title keywords groups flagstopics

Kernelized Bayesian Transfer Learning

“Source Free”Transfer Learning for Text
Class...

“Source Free”Transfer Learning for Text
Class...

A Generalization of probabilistic Serial to
Ra...

Lifetime Lexical Variation in Social Media

cross-domain learning\ndomain
adaptation\nkern...

Transfer Learning\nAuxiliary Data
Retrieval\nT...

Transfer Learning\nAuxiliary Data
Retrieval\nT...

social choice theory\nvoting\nfair division\ns...

Generative model\nSocial Networks\nAge
Prediction

APP: Biomedical / Bioinformatics\nNMLA:
Bayesi...

AIW: Knowledge acquisition from the web\nAIW:
...

AIW: Knowledge acquisition from the web\nAIW:
...

GTEP: Game Theory\nGTEP: Social Choice /
Voting

AIW: Web personalization and user
modeling\nNL...

Novel Machine Learning Algorithms
(NMLA)

1.0

1.0

1.0

1.0

1.0

Novel Machine Learning Algorithms
(NMLA)

AI and the Web (AIW)

Game Theory and Economic Paradigms
(GTEM)

NLP and Text Mining (NLPTM)

ChapTer 4 ■ ClusTering

136

Having expanded a research paper as a function of the group it belongs in, and
having associated a member flag to it, Ross knew that the time had come to convert this
data structure into a matrix. For that he defined the function in Listing 4-6.

Listing 4-6. Adding a Function for Matrix Creation

def matrix_from_df(data_train):

 matrix = data_train.pivot_table(index = ['title'], columns=['groups'],
values='flags')

 matrix = matrix.fillna(0).reset_index()
 x_cols = matrix.columns[1:]
 return matrix, x_cols

Over the years, Ross had become proficient in pivot tables within Microsoft Excel.
He thus decided to use the same methodology in Listing 4-6 for the data frame to matrix
transformation. Hence he initialized a method in Listing 4-6 whereby he converted the
training data into a pivot with title as an index, each group represented by a separate
column, having values from the “flags” feature. Then he placed 0 where the research
paper in the index didn't fall within the realm of a given group. He decided to bring the
matrix live by using the method defined in Listing 4-6.

Listing 4-7. Retrieve Matrix and x cols from the matric_from_df Method

matrix, x_cols = matrix_from_df(data_train)
matrix.head()

Table 4-4. Initial Observations of the Matrix

groups

0 1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0

0.0

0.0

0.0

1.0

“Source Free”
Transfer
Learning for
Text Class...

A
Characterization
of the Single-
Peaked Single...

A
Computational
Method for
(MSS, CoMSS)
Partiti...

1

2

title

AI
and
the
Web
(AIW)

Applications
(APP)

Cognitive
Modeling
(CM)

Cognitive
Systems
(CS)

Computational
Sustainability
and AI (CSAI)

Game Playing
and
Interactive
Entertainment
(GPIE)

Game
Theory
and
Economic
Paradigms
(GTEP)

Heuristic
Search and
Optimization
(HSO)

Human-
Computation
and Crowd
Sourcing
(HCC)

...

...

...

...

ChapTer 4 ■ ClusTering

137

Ross was thrilled to see the output come out as expected. To test his understanding,
he picked a research paper from Table 4-4 at random. He chose “A Computational
Method for (MSS.CoMSS).” By looking at the matrix in Table 4-4, Ross inferred that the
paper fell in group HSO and didn’t have membership in any of the other groups.

Now that he knew what clustering was, and having transformed the data into a form
friendly for applying it, it was time for him to apply clustering modeling. However, first
he had to determine the evaluation metrics by which he could evaluate the goodness
of a clustering model. Contrary to the techniques available for evaluating regression
and classification models, not many techniques are available to statistically evaluate
the goodness of a clustering model. The reason is that in regression and classification,
labeled data is already available on which the model is trained. However, this is not the
case with clustering.

Metrics of Evaluating Clustering Models
Having done some research, Ross learned that there is no one way of to evaluate the
output of a clustering model. He came across two approaches for making it work. The first
was more of a technical nature. It deems a clustering model good enough if maximum
variance is explained within each of the clusters, objects within the clusters share similar
properties, and clusters are further away from each other. The second approach indicated
the model to be strong if the cluster definitions make intuitive sense.

Ross now had a clear understanding of clustering and methodologies to evaluate
its goodness. Hence he started to look for clustering models that work best in related
applications. After thorough research, he came up with several clustering models.

Clustering Models
Ross decided to start with the de facto clustering algorithm (i.e., k-means clustering).
To Ross, understanding the methodology by which clusters converge was pivotal before
applying it to the dataset in hand. Hence he compiled an explanation of the k-means
clustering algorithm.

k-Means Clustering
k-means clustering partitions the data space into Voronoi cells representation. This
transformation divides the data observations into k-clusters in which each of the
observations belongs to the cluster with the nearest mean. k-means clustering is done
as follows:

 1. k-centroids are chosen randomly.

 2. Each of the observations is binded with the closest centroid.

 3. New centroids for each of the clusters are recomputed by
taking the mean of the observations lying within each cluster.

 4. Step 2 is repeated again.

ChapTer 4 ■ ClusTering

138

You might note that steps 1 and 3 resemble each other, the difference being that in
step 1, centroids are chosen at random, whereas in step 3 they are calculated by taking the
mean of observations within each of those clusters.

Then steps 2 and 4 are a repetition of the same step. Steps 3 and 4 are iterated until
the clusters converge—that is, cluster memberships remain constant for all observations
in the dataset. This maximizes the distance between clusters and minimizes the distance
among the observations within each cluster. k-means clustering does not always find
the most optimal configuration while minimizing the global objective function. The
clustering algorithm is highly sensitive to how cluster centers are initially selected.

Ross now fully understood how convergence is performed in a k-means clustering
algorithm. However, he was clueless on as to what value of k (i.e., number of clusters he
should specify upfront) would be optimal for the data at hand. He recalled having seen
an article on k-means clustering on Linkedin. Hence he searched for the person who had
posted that article and then messaged him asking for his assistance in this regard. His
connection, Pollack, suggested that Ross use the following methods:

•	 Elbow method

•	 Variance explained

•	 BIC score

He started off by looking at how the Elbow method works and then applied it to find
the number of clusters optimal to the model.

Elbow Method
The Elbow method in Ross’s terms is the percentage of variance explained as a function
of the number of clusters. It determines how much marginal variance is contributed by
a newly added cluster. A point of interest is that the first cluster will explain maximum
variance with marginal gains dropping on the addition of every new cluster. Elbow will
be the point where a new cluster will result in a considerable marginal drop, that being
the optimal number of clusters. Ross decided to apply the Elbow method to the matrix
transformed dataset.

Listing 4-8. Applying Elbow Method and Variance Explained on Data Matrix

matrix, x_cols = matrix_from_df(data_train)
X = matrix[x_cols]

K = range(1,50)
KM = [KMeans(n_clusters=k).fit(X) for k in K]
centroids = [k.cluster_centers_ for k in KM]

D_k = [cdist(X, cent, 'euclidean') for cent in centroids]
dist = [np.min(D,axis=1) for D in D_k]
avgWithinSS = [sum(d)/X.shape[0] for d in dist]

ChapTer 4 ■ ClusTering

139

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(K, avgWithinSS, 'b*-')
plt.grid(True)
plt.xlabel('Number of clusters')
plt.ylabel('Average within-cluster sum of squares')
plt.title('Elbow for KMeans clustering')

12

10

0.8

0.6

0.4

Av
er

ag
e

w
ith

in
-c

lu
st

er
 s

um
 o

f s
qu

ar
es

0 10

Elbow for KMeans clustering

Number of clusters
20 30 40 50

Figure 4-2. Elbow method curve as a function of number of clusters

In Listing 4-8, Ross recalled training 49 models of k-means clustering, each having
a different k-value ranging from 1 to 50. He then fetched the cluster centers for those
clustering models and determined the cluster memberships for each research paper
model by model. Finally, for each model, he computed the sum of all research papers and
divided it by the total number of research papers to get the average within cluster sum
of squares. He then plotted the cluster sum of squares for all of the 49 cluster models in
Figure 4-2 to formulate the Elbow method.

While looking at Figure 4-2, Ross deduced the elbow to occur at k = 9. However,
he wasn't sold until and unless more than one method doesn't converge on the same
number of clusters. Thus he moved toward understanding variance explained.

Variance Explained
The percentage of variance explained, or in other words F-test, is the ratio of group
variance to the total variance. Here again the elbow will determine the optimal number
of clusters for the k-means clustering model. Ross put variance explained into practice by
writing the code snippet in Listing 4-9.

ChapTer 4 ■ ClusTering

140

Listing 4-9. Applying Elbow Method and Variance Explained to Data Matrix

matrix, x_cols = matrix_from_df(data_train)
X = matrix[x_cols]

K = range(1,50)
KM = [KMeans(n_clusters=k).fit(X) for k in K]
centroids = [k.cluster_centers_ for k in KM]

D_k = [cdist(X, cent, 'euclidean') for cent in centroids]
dist = [np.min(D,axis=1) for D in D_k]

wcss = [sum(d**2) for d in dist]
tss = sum(pdist(X)**2)/X.shape[0]
bss = tss-wcss

kIdx = 10-1

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(K, bss/tss*100, 'b*-')
plt.grid(True)
plt.xlabel('Number of clusters')
plt.ylabel('Percentage of variance explained')
plt.title('Elbow for KMeans clustering')

80

60

40

20

0

Pe
rc

en
ta

ge
 o

f v
ar

ia
nc

e
ex

pl
ai

ne
d

0 10

Elbow for KMeans clustering

Number of clusters
20 30 40 50

Figure 4-3. Explained variance curve as a function of number of clusters

Ross recalled having explained Listing 4-9 in the following words:

After getting the cluster memberships of each research paper cluster by
cluster, the distances were then used to compute the within cluster sum of
square. Next, distances were computed among the columns within each
research paper to compute the total sum of squares. Finally, within the
cluster sum of square was subtracted from total sum of squares to get the
between sum of squares. Ratio of between sum of squares and total sum
of squares was taken to plot in Figure 4-3.

ChapTer 4 ■ ClusTering

141

To Ross Figure 4-3 looked like an exponential cumulative distribution function.
The variance explained was seemingly smooth and kept increasing with the number of
clusters. This made it difficult for Ross to figure out the elbow. After due consideration,
Ross noticed the gradient to start smoothing from k = 9, similar to what he had observered
with the Elbow method.

However, he didn't stop there and continued looking for methods to help determine
the optimal k, and within a short time he was exposed to the Bayesian Information
Criterion (BIC) score.

Bayesian Information Criterion Score
BIC is another technique to choose the best model out of a finite set of models. The
model with the lowest BIC score is deemed to be the winner. When training the model
a high probability of increasing the likelihood of getting accurate clusters exists by
adding extra parameters; however, he knew that doing so would overfit the model.
BIC overcomes this problem by adding a penalty term on number of parameters in the
model. BIC works on the assumption that the sample size should be much larger than the
number of parameters in the model. Hence BIC won’t be suitable for complex models
working on high-dimensional data.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4

Se
nc

iti
vi

ty

0.5
1 - Specificity

0.6 0.7 0.8 0.9 1

10
100
500
1000
2000
3000
5000
10000

Figure 4-4. Sample BIC score plot

The knowledge base on BIC score made Ross drop it as an option, because that BIC
score is suitable for low-dimensional data, and therefore the matrix transformation meant
that now the data had (number of groups + 1) dimensions, making it high-dimensional data.

He was curious to know if a method existed to determine the optimal number of
clusters, a method which resonates to how a k-means cluster works. In other words,
Ross wanted to find a method that determines the optimal number of clusters on which
intercluster distances are the maximum and intracluster distances are at a minimum. His
search made him look into research papers, where he found the Silhouette method.

ChapTer 4 ■ ClusTering

142

Silhouette Score
Silhouette score is used to measure how close observations within a cluster are (i.e., intra-
cluster distance (a)), and how distinct the clusters are from each other (i.e., mean nearest
cluster distance (b)). The Silhouette coefficient is calculated as follows:

(b-a) / max (a, b)

The best value is 1 and the worst is -1. A coefficient value of 0 indicates overlapping
clusters. The catch for Ross was now to select the number of clusters that yield the
maximum Silhouette score. Without wasting any time he applied the Silhouette method
on k-means models, within the cluster size range of 2 to 30.

Listing 4-10. Plotting Silhouette Score Plot from the Data Matrix

s = []

for n_clusters in range(2,30):
 kmeans = KMeans(n_clusters=n_clusters)
 kmeans.fit(X)

 labels = kmeans.labels_
 centroids = kmeans.cluster_centers_

 s.append(silhouette_score(X, labels, metric='euclidean'))

plt.plot(s)
plt.ylabel("Silouette")
plt.xlabel("k")
plt.title("Silouette for K-means cell's behaviour")
sns.despine()

Si
lo

ue
tte

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15
0 5 10 15

k

Silouette for k-means cell’s behaviour

20 25 30

Figure 4-5. Silhouette coefficients plot as a function of number of clusters

ChapTer 4 ■ ClusTering

143

Ross was puzzled to see the plot in Figure 4-5 as the Silhouette coefficient seemed to
increase continuously with the increasing number of clusters. As the theory suggested the
optimal number of clusters to be the point where the Silhouette coefficient is the highest, he
couldn't realistically choose 27 to be the right number of clusters for the following reasons:

•	 27 clusters will be too many for a data matrix having 398
observations in total.

•	 He realistically couldn't market 27 different segments within the
limited amount of time he had.

Hence he decided to proceed with nine clusters, which he determined from the
Elbow method (i.e., Figure 4-3) and variance explained (i.e., Figure 4-4).

Applying k-Means Clustering for Optimal Number of
Clusters
Ross applied k-means clustering with a cluster size of 9 in Listing 4-11.

Listing 4-11. Training k-means Model for Cluster Size of 9

matrix, x_cols = matrix_from_df(data_train)
X = matrix[x_cols]

cluster = KMeans(n_clusters = 9, random_state = 2)
matrix['cluster'] = cluster.fit_predict(X)
matrix.cluster.value_counts()

Output

0 81
1 78
2 32
3 38
4 27
5 44
6 36
7 30
8 30

Name: cluster, dtype: int64

In Listing 4-11, Ross decided to print the number of research papers that fall
within each of the nine clusters. He noticed that except for two clusters, which had 80
observations each, the remaining seven clusters had 30 observations each on average.

ChapTer 4 ■ ClusTering

144

Ross was interested to see what these clusters would look like visually. He was aware
that dimensions within the dataset are a function of the number of distinct groups. Ross
knew that no package within Python would be sufficient to plot such a high-dimensional
figure. Even if he were successful in plotting it, he was aware that the figure would be too
complex to extract any intuitive sense. Hence he started looking for a method by which he
could somehow reduce the number of dimensions. He didn’t have to wait for long before
he was exposed to principle component analysis (PCA).

Principle Component Analysis
PCA converts a set of observations that are highly correlated into a set of linearly
uncorrelated variables called principle components by an orthogonal transformation.
This transformation is done such that the first component has the highest variance.

20

PCA 2nd Dimention

PCA 1st Dimention

15

10

5

0

-5

-10

-15

-20

-25
-10 -8 -6 -4 -2 0 2 4 6

Figure 4-6. Illustration of PCA

Subsequent components have lower variances, keeping the constraint under
consideration that it is orthogonal to the preceding components as depicted in Figure 4-6.
PCA is highly sensitive to relative scaling of the data. PCA can be thought of as a
dimension reduction technique which reduces high-dimensional data to a fixed number
of components.

Having read the description, Ross was sure that with dimension reduction he was
doing the right thing. Hence without wasting any further time he wrote the code in
Listing 4-11 for reducing the group dimensions to two dimensions (i.e., x, and y). He
decided to convert it into two dimensions to make it easy for him to plot the clusters on a
two-dimensional axis.

ChapTer 4 ■ ClusTering

145

Listing 4-12. Using PCA to Transform Group-Related Features into Two Components

pca = PCA(n_components=2)
matrix['x'] = pca.fit_transform(matrix[x_cols])[:,0]
matrix['y'] = pca.fit_transform(matrix[x_cols])[:,1]
matrix = matrix.reset_index()

customer_clusters = matrix[['title', 'cluster', 'x', 'y']]
customer_clusters.head()

Having done the transformation in Table 4-5, Ross now had to plot that on a scatter
plot for which he wrote the code in Listing 4-13.

Listing 4-13. Plotting Clusters in a Two-Dimensional Space

cluster_centers = pca.transform(cluster.cluster_centers_)
cluster_centers = pd.DataFrame(cluster_centers, columns=['x', 'y'])
cluster_centers['cluster'] = range(0, len(cluster_centers))

plt.scatter(customer_clusters['x'], customer_clusters['y'], s = 20,
c=customer_clusters['cluster'])
plt.scatter(cluster_centers['x'], cluster_centers['y'], s = 150, c=cluster_
centers['cluster'])

Table 4-5. Print of Clusters Along with Two Newly Created Components Using PCA

groups

0 “Source Free” Transfer Learning for Text Class... 1 0.615810 -0.060295

0.971322

-0.216148

0.570206

-0.129668

-0.756838

-0.287956

-0.521295

0.198578

8

4

2

3

A Characterization of the Single-Peaked Single...

A Comutational Method for (MSS, CoMSS) Partiti...

A Control Dichotomy for Pure Scoring Rules

A Convex Formulation for Semi-supervised Multi...

1

2

3

4

title cluster x y

1.5

1.0

0.5

0.0

–0.5

–1.0
–1.0 –0.5 0.0 0.5 1.0 1.5–1.5

Figure 4-7. Clusters in two-dimensional space

ChapTer 4 ■ ClusTering

146

While writing down the code in Listing 4-13 Ross made sure to assign a different
color label to each cluster observation so that he could visually see their cluster
memberships in Figure 4-7. Moreover, he made sure to represent the cluster centers
as well. Cluster memberships in Figure 4-7 seemed to him to be distinct and non-
overlapping. However, recalling his initially laid objective of finding the keywords
associated with each segment, he had to merge the dimension-reduced data into the
original data (i.e., the one before matrix transformation). For that purpose he wrote down
the script in Listing 4-14.

Listing 4-14. Merging Matrix into the Original Data Frame

customer_clusters.columns.name = None
df = data_train.merge(customer_clusters, on='title')
df.head()

title

Kernelized Bayesian
Transfer Learning

cross-domain
learning\ndomain
adaptation\nkern...

APP: Biomedical /
Bioinformatics\nNMLA:
Bayesi...

AI and the Web (AIW)

Novel Machine
Learning Algorithms
(NMLA)

1.0 1 0.613870 0.245408

-0.060295

-0.060295

0.570206

-0.090091

0.615810

0.615810

-0.521295

-0.183192

1

1

2

0

1.0

1.0

1.0

1.0

Novel Machine
Learning Algorithms
(NMLA)

Game Theory and
Economic Paradigms
(GTEP)

NLP and Text Mining
(NLPTM)

GTEP: Game
Theory\nGTEP: Social
Choice / Voting

AIW: Web personalization
and user modeling\nNL...

AIW: Knowledge acquisition
from the web\nAIW:...

AIW: Knowledge acquisition
from the web\nAIW:...

Transfer
Learning\nAuxiliary Data
Retrieval\nT...

Transfer
Learning\nAuxiliary Data
Retrieval\nT...

social choice
theory\nvoting\nfair
division\ns...

Generative mode\nSocial
Networks\nAge Prediction

“Source Free”Transfer
Learning for Text
Class...

“Source Free”Transfer
Learning for Text
Class...

A Generalization of
Probailistic Serial to
Ra...

Lifetime Lexical
Variation in Social
Media

keywords topics groups flags cluster x y

Table 4-6. Print of Observations of the Merged Data Frame

Ross made sure to print the first few observations of this merged data object. He was
successful in merging the two data representations as now the data had title, keywords,
topics, and gender features from the original dataset and features of flags, cluster, x,
and y from the dimension-reduced dataset. He now had to use this merged dataset to
generate keywords for each of the segments. He decided to do so by using a wordcloud.
A wordcloud will show all words associated with a given cluster, with the word font
sizes representing their frequency of occurrence within the pivotal feature. He planned
to keep the pivotal feature arbitrary, and this pivotal feature would be used to supply
words to the wordcloud. He started off by writing a method in Listing 4-15 to generate
wordclouds.

ChapTer 4 ■ ClusTering

147

Listing 4-15. Creating Function to Generate Wordcloud

def wordcloud_object(word_string):

 FONT_ROOT = './fonts/'
 wordcloud = WordCloud(font_path=FONT_ROOT + 'arial.

ttf',stopwords=STOPWORDS, background_color='black', width=1200,
height=1000).generate(' '.join(word_string))

 return wordcloud

Ross pointed out that a prerequisite to the code in Listing 4-15 is that a folder by the
name of Fonts should be created in the same repository as the script itself, and the Arial
font file should be pushed into it. For testing he recommended passing in any string input
as the parameter to this function for it to generate a wordcloud.

Ross went on further and wrote the code in Listing 4-16 to generate a wordcloud for
each of the nine clusters.

Listing 4-16. Creating Function to Plot Wordcloud for Each Cluster

def plot_wordcloud(df, clusters, pivot):

 fig = plt.figure(figsize=(15,29.5))
 for cluster in range(clusters):
 List_ = []

 for x in df[df['cluster']==cluster][pivot]:
 try:
 List_.extend(x.split('\n'))
 except:
 pass

 if List_:
 ax = fig.add_subplot(5,2,cluster+1)
 wordcloud = wordcloud_object(List_)
 plt.title('Cluster: %d'%(cluster+1))
 ax.imshow(wordcloud)
 ax.axis('off')

Before moving on, Ross pointed out that one of the parameters in the plot_wordcloud
method is the pivot parameter. Pivot is the feature from which the bag of words will be
taken to make the wordcloud.

Ross was excited as to see what the wordclouds would depict. Hence without waiting
any longer he wrote the code in Listing 4-17 to call the method initialized in Listing 4-16,
and passed in “keywords” as the pivotal feature.

Listing 4-17. Generating Wordclouds of Feature Named ‘Keywords’

plot_wordcloud(df, cluster.n_clusters, 'keywords')

ChapTer 4 ■ ClusTering

148

Figure 4-8. Wordcloud for each cluster generated from keywords

ChapTer 4 ■ ClusTering

149

After looking at Figure 4-8, Ross decided to give his deductive abilities a shot and
defined the nine clusters as follows:

•	 Cluster 1: Papers talking about search and robotics

•	 Cluster 2: Papers talking in depth about models’ learning and
optimization

•	 Cluster 3: Topics of application of data analytics in games and
social media analytics

•	 Cluster 4: Topics of image recognition, robotics, and social media
analytics

•	 Cluster 5: Topics of linear programming and search

•	 Cluster 6: Papers on reasoning-based models

•	 Cluster 7: Papers on application of data sciences in social graphs
and other online mediums

•	 Cluster 8: Topics ranging in knowledge graphs

•	 Cluster 9: Papers concentrating on game theory and data security

Ross pointed to the fact that the words in the wordclouds are unigram (i.e., single
words). He was happy with the results so far, but it seemed to him that some clusters
had overlapping terms; for instance, clusters 1 and 5 had “search” as the overlapping
term. It felt important to Ross to remove the overlap to make the cluster keywords and
characteristics as distinctive as possible. Hence he planned to delve deeply into the
details to see if both the clusters touched the same or distinctive topics of SEO. He started
off by defining a method in Listing 4-18 which will take the term (e.g., “search”) as a
parameter and return the keywords for each cluster having that term within.

Listing 4-18. Define Method to Find Complete Keywords for Given Clusters and Unigram

def perform_cluster_group_audit(clusters, term):

 for cluster in clusters:

 df_cluster = df[df['cluster'] == cluster]
 print 'Cluster number: %d'%(cluster + 1)
 keywords = list(df_cluster['keywords'])
 keywords = [keyword.split('\n') for keyword in keywords]
 keywords = [item for sublist in keywords for item in sublist]
 keywords = [keyword.lower() for keyword in keywords if term in

keyword.lower()]
 keywords_freq = {x:keywords.count(x) for x in keywords}
 print sorted(keywords_freq.items(), key=operator.itemgetter(1),

reverse=True)
 print '\n'

ChapTer 4 ■ ClusTering

150

Ross pointed out the second to last line of Listing 4-18 which is used to sort the
keywords in descending order of their frequencies. Now it was time to use the method
defined in Listing 4-18. He started off by looking at the topics that differentiate clusters 1
and 5 in the aspect of “search.”

Listing 4-19. Using Function to Find Keywords for Search in clusters 0 and 4

perform_cluster_group_audit([0,4], 'search')

Output

Cluster number: 1
[('heuristic search', 7), ('greedy best first search', 4), ('Monticello
tree search', 2), ('bounded suboptimal search', 1), ('real-time search',
1), ('best-first search', 1), ('incremental search', 1), ('parallel
search', 1), ('similarity search', 1), ('suboptimal heuristic search', 1),
('agent-centered search', 1), ('approximate nearest neighbor search', 1),
('hierarchical search', 1)]

Cluster number: 5
[('search', 3), ('heuristic search', 3), ('local search', 2), ('stochastic
local search', 2), ('and/or search', 2)]

Ross made clear that clusters 1 and 5 were referred to as 0 and 4 because list indexes
start from 0. The output of Listing 4-19 depicted topics along a heuristic search being
captured by both the segments. He noticed that cluster 5 had topics on local search and
cluster 1 had topics on other search algorithms.

After looking at Figure 4-8 Ross noticed that clusters 3, 4, and 7 were sharing topics
along the social medium space. Hence he decided to investigate the points of differences
by using the function earlier defined in Listing 4-20.

Listing 4-20. Using Function to Find Keywords for Social in Clusters 2, 3, and 6

perform_cluster_group_audit([2,3,6], 'social')

Output

Cluster number: 3
[('computational social choice', 11), ('social choice theory', 2), ('social
decision schemes', 2), ('randomized social choice', 1)]

Cluster number: 4
[('social media', 5), ('social spammer', 2), ('social image classification', 2)]

Cluster number: 7
[('social networks', 6), ('social network', 3), ('social infectivity',
3), ('social network analysis', 2), ('location based social network', 2),
('social influence', 2), ('social dynamics', 1), ('social explanation', 1)]

ChapTer 4 ■ ClusTering

151

The output of Listing 4-20 made it clear to Ross how the three clusters were different
from each other. Cluster 3 emphasized social choice theories. Cluster 4, on the other
hand, concentrated on social images classification and social spamming. Finally, cluster 3
grouped research papers related to social graphs and influences among interconnections.

Ross was curious to see what the wordclouds would look like if the pivotal feature
had been other than ‘keywords.’ Ross had limited time and too much to do, so he invites
you to come on board and help him answer the questions in the Exercises.

EXERCISES

1. plot wordclouds while keeping “groups” as the pivotal feature.

2. plot wordclouds while keeping “topics” as the pivotal feature.

Ross had read somewhere that clusters in k-means are usually in a spherical shape.
He was curious to know if methods exist which create non-uniform clusters of different
shapes. It didn’t take him long to discover Gaussian mixture models as a potential
candidate to satisfy his curiosity.

Gaussian Mixture Model
Gaussian mixture models use probabilistic theory to estimate the number of clusters the
data can be divided into. It works on the assumption that all data points are generated
from the mixture of finite number of Gaussian distributions with unknown parameters.
Gaussian mixture models can be thought as an enhancement to k-means where the
covariance of the data and centers of Gaussian models are taken into consideration.

Gaussian Mixture Model

10

8

6

4

2

0

–2

–4

–6
–10 –5 0 5

Figure 4-9. Visual representation of Gaussian mixture model

ChapTer 4 ■ ClusTering

152

Gaussian mixture model comes in the following variants to constrain the covariance
of different cluster estimates:

•	 Spherical

•	 Diagonal

•	 Tied

•	 Full covariance

Ross decided to apply Gaussian mixture models to find out the segments and their
characteristics. For that purpose he wrote a function in Listing 4-21 to generate a scatter
plot of clusters generated from Gaussian mixture models.

Listing 4-21. Defining Function to Plot the Clusters

def plot_results(X, Y_, means, covariances, index, title):

 color_iter = itertools.cycle(['b', 'g', 'red', 'm', 'y', 'navy', 'c',
'cornflowerblue', 'gold',

 'darkorange'])
 splot = plt.subplot(2, 1, 1 + index)
 for i, (mean, covar, color) in enumerate(zip(
 means, covariances, color_iter)):
 v, w = np.linalg.eigh(covar)
 v = 2. * np.sqrt(2.) * np.sqrt(v)
 u = w[0] / np.linalg.norm(w[0])

 if not np.any(Y_ == i):
 continue
 plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color)

 angle = np.arctan(u[1] / u[0])
 angle = 180. * angle / np.pi # convert to degrees
 ell = mpl.patches.Ellipse(mean, v[0], v[1], 180. + angle,

color=color)
 ell.set_clip_box(splot.bbox)
 ell.set_alpha(0.5)
 splot.add_artist(ell)

 plt.xlim(0.0, 0.1)
 plt.ylim(-0.2, 1.2)

 plt.xticks(())
 plt.yticks(())
 plt.title(title)

In Listing 4-21 Ross made sure to represent each cluster with a different color in
order to help visually differentiate among them. He was now looking forward to applying
Gaussian mixture models; however, he wasn’t very sure about what the number of

ChapTer 4 ■ ClusTering

153

components should be. He looked through the literature and found out that BIC score is
used commonly in Gaussian mixture models for deciding upon the number of clusters.
Now his plan was to run a Gaussian mixture model for all possible combinations of
covariance types and components (i.e., from 2 to 9). Covariance types include spherical,
tied, and full. For each of these combinations BIC score will be calculated and the
combination with the maximum BIC score will be selected. Ross made this happen by
writing the code in Listing 4-22.

Listing 4-22. Determining the Optimal Covariance Type and Components for Model and
Plotting It

matrix, x_cols = matrix_from_df(data_train)
X = matrix[x_cols].as_matrix()
model_stats = []
n_components_range = range(2, 10)
cv_types = ['spherical', 'tied', 'full']
for cv_type in cv_types:
 for n_components in n_components_range:

 gmm = mixture.GaussianMixture(n_components=n_components,
 covariance_type=cv_type, random_

state=0)
 gmm.fit(X)
 model_stats.append({'name':'%s_%d'%(cv_type, n_components),

'model':gmm, 'bic':gmm.bic(X)})

bic = np.array([m_type['bic'] for m_type in model_stats])
best_gmm = model_stats[bic.argmax()]
clf = best_gmm['model']
color_iter = itertools.cycle(['navy', 'turquoise', 'cornflowerblue'])

bars = []

Plot the BIC scores
spl = plt.subplot(2, 1, 1)
for i, (cv_type, color) in enumerate(zip(cv_types, color_iter)):
 xpos = np.array(n_components_range) + .2 * (i - 2)
 bars.append(plt.bar(xpos, bic[i * len(n_components_range):
 (i + 1) * len(n_components_range)],
 width=.2, color=color))
plt.xticks(n_components_range)
plt.ylim([bic.min() * 1.01 - .01 * bic.max(), bic.max()])
plt.title('BIC score per model')
spl.set_xlabel('Number of components')
spl.legend([b[0] for b in bars], cv_types)

labels = clf.predict(X)
plot_results(X, labels, gmm.means_, gmm.covariances_, 1,
 'Gaussian Mixture-%s'%gmm.converged_)

ChapTer 4 ■ ClusTering

154

Ross pointed out that the values within Figure 4-10 are of a negative magnitude.
Therefore, a covariance type and number of components at 0 will be deemed the winner.
A Gaussian mixture model with covariance type “tied” and three components qualified to
be the winner in this case. Ross was curious to see if all the cluster sizes were uniform or
not. For that purpose he wrote the code in Listing 4-23.

Listing 4-23. Display Frequency of Objects in Each Cluster

matrix['cluster'] = labels
matrix.cluster.value_counts()

Output

0 232
1 108
2 56
Name: cluster, dtype: int64

Ross was curious to see what the wordclouds from this method would look like, and
if they would make any intuitive sense or not. However, before doing so he had to merge
the matrix into the original dataset. He did so with the aid of the code in Listing 4-24.

plt.xticks(())
plt.yticks(())
plt.title('Selected GMM: %s model, %s components'%(best_gmm['name'].
split('_')[0], best_gmm['name'].split('_')[1]))
plt.subplots_adjust(hspace=.35, bottom=.02)
plt.show()

BIC score per model
–5000

–10000
–15000
–20000
–25000
–30000
–35000
–40000

2 3 4 5 6 7 8 9

spherical
fied
full

Figure 4-10. BIC score per model

Number of components
Selected GMM: tied model, 3 components

Figure 4-11. Best Gaussian mixture model’s components plot

ChapTer 4 ■ ClusTering

155

Listing 4-24. Merging Matrix into the Initial Data Frame

customer_clusters.columns.name = None
df = data_train.merge(customer_clusters, on='title')

Without waiting any longer, he pushed the merged dataset in Listing 4-25 to the
function defined in Listing 4-15 for generating the wordcloud plots.

Listing 4-25. Generating Wordclouds of Feature Named “Keywords”

plot_wordcloud(df, gmm.n_components, 'keywords')

Figure 4-12. Wordcloud for each cluster generated from keywords

Ross decided to put his deductive abilities to the test and defined the research papers
that fall within each of these clusters:

•	 Cluster 1: Papers discussing in depth models’ learning and linear
programming

•	 Cluster 2: Papers discussing in depth model optimization and
knowledge graphs

•	 Cluster 3: Topics on game theory and social media analytics

ChapTer 4 ■ ClusTering

156

Ross was thrilled to see the results, as these clusters seemed to be unique in terms of
their characteristics. However, he was searching for an algorithm which can automatically
determine the optimal number of components. After some struggle he was able to settle
on the Bayesian Gaussian mixture model.

Bayesian Gaussian Mixture Model

0

-1

-2

-3

-4

-5

-6

-7

-2 -1 0 1 2 3 4 5 6 7

Figure 4-13. Illustration of Bayesian Gaussian mixture model

The Bayesian Gaussian mixture model is a variant of the Gaussian mixture model in which
the model chooses the optimal number of clusters on its own. It exhibits this behavior
when weight_concentration_prior is set to be small enough and n_components is set
to be larger than what is found necessary by the model. The variational Bayesian mixture
model sets some mixture weight values close to zero, which lets the model choose effective
components automatically.

Ross decided to apply the Bayesian Gaussian mixture model to the data matrix. He
decided to limit the number of components to five. He was interested to see what number
of components will be deemed optimal by the Bayesian Gaussian mixture model.

Listing 4-26. Training the Model and Plotting the Clusters

matrix, x_cols = matrix_from_df(data_train)
X = matrix[x_cols].as_matrix()

dpgmm = mixture.BayesianGaussianMixture(n_components=3,
 covariance_type='full', random_

state=1).fit(X)

ChapTer 4 ■ ClusTering

157

labels = dpgmm.predict(X)
plot_results(X, labels, dpgmm.means_, dpgmm.covariances_, 1,
 'Bayesian Gaussian Mixture with a Dirichlet process

prior-%s'%dpgmm.converged_)

plt.show()

The three colors in Figure 4-14 implied to Ross that the three components were sufficient
for the model to converge. He was interested to see the frequency of research papers that fall
within each of these clusters; hence, he wrote the code snippet in Listing 4-27.

Listing 4-27. Display Frequency of Objects in Each Cluster

matrix['cluster'] = labels
matrix.cluster.value_counts()

Output

0 229
1 117
2 50
Name: cluster, dtype: int64

Ross noticed that the first cluster has more than 50% of the observations falling
within itself, with the number of observations decreasing in the next two clusters.

The current matrix only had titles and clusters as the features. Hence he decided
to merge them within the initial data frame in order to get access to other features
corresponding to these research paper titles.

Listing 4-28. Merging Matrix into the Initial Data Frame

customer_clusters.columns.name = None
df = data_train.merge(customer_clusters, on='title')

It was time for Ross to explore the characteristics of each of those three clusters.
Hence he brought the function defined in Listing 4-16 into application.

Listing 4-29. Generating Wordclouds of Feature Named “Keywords”

plot_wordcloud(df, dpgmm.n_components, 'keywords')

Bayesian Gaussian Mixture with a Dirichlet process prior-True

Figure 4-14. Clusters formed by means of Bayesian Gaussian mixture model

ChapTer 4 ■ ClusTering

158

Figure 4-15. Wordcloud for each cluster generated from keywords

Ross defined the three clusters with the aid of the wordclouds in the following words:

•	 Cluster 1: Papers discussing in depth game theory and social
media analytics

•	 Cluster 2: Papers discussing in depth model optimization and
models’ learning

•	 Cluster 3: Topics on linear programming, knowledge graphs, and
reasoning-based models

Ross was satisfied as after going through the exercise he was able to get finite clusters
with distinct characteristics. He planned to drop the output of k-means and go forward
with the segments defined by the Bayesian Gaussian mixture model. His reasoning was,
first, that the clusters made more intuitive sense, and second, that it was smart enough to
find the optimal number of clusters all on its own.

Though Ross had nailed the problem at hand, he was interested to see the
applications of clustering in the real world.

ChapTer 4 ■ ClusTering

159

Applications of Clustering
Applications of clustering are vibrant in several fields of study.

Identifying Diseases

Cluster 1
22%

Cluster 2
18%

Cluster 3
54%

t-test : P = 0.003

Cluster 4
8%

Cluster 5
28%

E2F

Myc
PI3K

ß-catenin
Src
Ras

Docetaxel
Etoposide
Vinorelbine

Cisplatin

Figure 4-16. Clusters obtained along with their confidence intervals while identifying
diseases

Clustering has recently caught the attention of those in the medical field. This is primarily
due to the fact that unsupervised non-linear clustering algorithms have been relatively
more effective in predicting cancerous diseases.

Document Clustering in Search Engines
Search engines use the input query of user as a parameter to cluster documents from
the information retrieval system. The search results are thus in a sorted order of those
clustered documents.

Demographic-Based Customer Segmentation
Clustering is also used in the field of marketing—more specifically, branding. Marketing
research executives use clustering to find out customer segmentations and perceptual
maps of their brand and that of their competitors. This way they find out the positioning
of their brands and the customer segmentation they are catering to. This helps brands
determine the customer personas to target, both existing and potential customers, and
their demographics.

ChapTer 4 ■ ClusTering

160

Ross decided to conclude his journey by recalling how he had started off with the
difference between supervised and unsupervised algorithms. He then transformed the
data into a matrix to increase the dimensions of the data at hand. He looked at different
methodologies for determining the optimal number of clusters. He learned how to make
wordclouds to generate an intuitive sense of the clusters formed. Along the lines of the
end objective, he used several techniques in search of the right one to divide the research
papers into segments with disjoint characteristics. His plan was to market those segments
by means of their related keywords for the upcoming conference this year. He selected the
three components from the Bayesian Gaussian mixture model to fuel up his efforts for the
upcoming conference next year.

161© Danish Haroon 2017
D. Haroon, Python Machine Learning Case Studies, DOI 10.1007/978-1-4842-2823-4_5

CHAPTER 5

Classification

This chapter aims to solve real-world problems that depend on a finite number of
outcomes. These outcomes can be Boolean in nature, with only two choices (i.e., True/
False or Yes/No). They can also be nominal in nature (boat name on which a passenger will
embark, maximum education attainment a group of students will have, etc.). Throughout
this chapter we will be talking about supervised learning whereby labeled data will be
used to train the model. Training the models on this data will enable label predictions on
an unseen dataset (i.e., future predictions). In this chapter we will be talking about feature
extraction and selection and will conclude with methods to evaluate classification accuracy.

 ■ Note This book incorporates Python 2.7.11 as the de facto standard for coding
examples. Moreover, you are required to install it for the Exercises.

In this chapter we will be incorporating the Medical Appointment No-Shows
dataset available to download from

www.kaggle.com/joniarroba/noshowappointments

Case Study: Ohio Clinic—Meeting Supply and
Demand
Dr. Judy, a pediatric surgeon and clinic supervisor at Ohio Clinic, was in big trouble,
facing clinic losses for the third consecutive year. Dr. Judy had recently been promoted
to this position, but she knew for a fact that the clinic had been doing due diligence in
terms of efficiency. What surprised her most was that the hospital was incurring losses
despite having the finest doctors available and no lack of scheduled appointments. To be
reassured about the financial side of things, she hired a third-party firm to audit the finance
department. However, the firm found no evidence pertaining to the dilemma at hand.

Ohio Clinic is a nonprofit medical center in Ohio. The clinic operates with a unique
mission of blending research and education with clinical and hospital care. The medical
center has a huge head force of 50,000 employees, and as a result of the combined effort
of those employees, the medical center has been able to handle approximately 7 million
visits so far.

http://www.kaggle.com/joniarroba/noshowappointments

ChapTer 5 ■ ClassifiCaTion

162

Previously, in situations like these, the hospital relied on an influx of capital from
donors. However, with the recent change in management, efforts had been commenced
to make the medical center self-sustainable. As Dr. Judy recalled,

This new initiative by the management was a huge challenge for me given
the fact that it was the exact time when I was handed over the position. I
got no time to settle and thus it was a do-or-die situation for me. If finances
have no flaws, appointments are skyrocketing, no considerable hiring, or
raises have taken place, then the only reason for this dilemma could be that
patients are not showing up after getting the appointments in the first place.

A board meeting was expected soon and she had to gather insights by then to give a
reason to this anomaly. Dr. Judy knew that neither speculations nor rumors would enable
her to figure out the reason for the losses despite the number of scheduled appointments.
To further investigate her suspicions, she obtained the data dump of appointments,
and decided to use the data to validate the evidence. She knew that concrete data is not
subject to bias and thus would provide a clear picture of the situation at hand. First she
had to cross-check whether the features within the dataset were relevant to the problem
at hand. Hence she fetched the data dictionary in Table 5-1.

Table 5-1. Data Dictionary for the Medical Appointment No-Shows Dataset

Feature name Description

Age Age of patient

Gender Gender of patient

AppointmentRegistration Date on which appointment was issued to the patient

ApointmentData Date for which appointment was issued to the patient

DayOfTheWeek Day of the week for which appointment was issued

Status Day of the week for which appointment was issued
(i.e., response variable)

Diabetes Whether the patient has diabetes or not

Alcoolism Whether the patient is affected by Alcoolism or not

HiperTension Whether the patient has HiperTension or not

Handicap Whether the patient is handicapped or not

Smokes Whether the patient smokes or not

Tuberculosis Whether the patient has tuberculosis or not

Scholarship Whether or not a patient has been granted scholarship
from a social welfare organization or not. Poor families may
benefit by receiving financial aid.

Sms_Reminder Whether SMS reminder for appointment has been issued to
the patient or not

AwaitingTime AwaitingTime = AppointmentRegistration – ApointmentData

ChapTer 5 ■ ClassifiCaTion

163

Dr. Judy searched the Web to find all the relevant packages she would need
throughout the course of this analysis. Listing 5-1 illustrates the results of her Web search.

Listing 5-1. Importing Packages Required for This Chapter

%matplotlib inline

import numpy as np
import pandas as pd
from time import time
import matplotlib.pyplot as plt
from IPython.display import Image
from matplotlib.pylab import rcParams

from sklearn import metrics
from sklearn.cross_validation import train_test_split

from sklearn.decomposition import PCA
from sklearn import kernel_approximation
from sklearn.linear_model import SGDClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.kernel_approximation import (RBFSampler,Nystroem)
from sklearn.ensemble import GradientBoostingClassifier,
RandomForestClassifier

rcParams['figure.figsize'] = 15, 5

Dr. Judy was hoping to do the following with the information from the data dump:

 1. Discover reasons that losses are coming up even though the
rate of appointments is going up?

 2. If patients are not reporting at the time of their scheduled
appointments, come up with a method to determine
whether a patient would show up on the basis of his/her
characteristics. She believed that knowing which patients
were likely not to show up would enable the hospital to take
countermeasures like the following:

•	 Provide constant appointment reminders and confirmations

•	 Make the head count of doctors and hospital staff in line with
the demand at hand.

Dr. Judy decided to start off by understanding the features within the data dump and
listing their possible values.

ChapTer 5 ■ ClassifiCaTion

164

Features’ Exploration
Dr. Judy put her faith in the data dump and loaded it into the computer’s memory using
the code snippet in Listing 5-2. She also made sure to print the first initial observations
from the data dump.

Listing 5-2. Reading the Data in the Memory and Printing the First Few Observations

data = pd.read_csv('examples/No-show-Issue-Comma-300k.csv')
data.head()

Dr. Judy decided to use Table 5-2 as an aid to classify the features into the most
common data types.

•	 Integer: Age, waiting time

•	 String: Gender, DayOfTheWeek, Status

•	 Datetime: AppointmentRegistration, ApointmentData

•	 Boolean: HiperTension, Handicap, Smokes, Scholarship,
Tuberculosis, Sms_Reminder

She anticipated the records within the data dump to be in thousands as she noticed
that the appointment calendars were usually full at the start of every month. She decided
to validate that in Listing 5-3.

Listing 5-3. Finding Count of Number of Observations in the Dataset

print len(data)

Output

300000

Age Gender AppointmentRegistration AppointmentData

0 19 M

DayOfTheWeek Status Diabetes Alcoolism HiperTension Handcap Smokes Scholarship Tuberculosis Sms_Reminder AwaitingTime

1 24 F

2 4 F

3 5 M

4 38 M

2014-12-16T14:46:25Z

2015-08-18T07:01:26Z

2015-10-21T15:20:09Z

2014-02-17T12:53:46Z

2014-07-23T17:02:11Z

2015-01-
14T00:00:00Z

2015-08-
19T00:00:00Z

2014-02-
18T00:00:00Z

2014-08-
07T00:00:00Z

2015-10-
27T00:00:00Z

Wednesday

Wednesday

Tuesday

Tuesday

Thursday

Show-
Up

Show-
Up

Show-
Up

Show-
Up

Show-
Up

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

-29

-1

-1

-15

-6

Table 5-2. Print of Observations of the Dataset

ChapTer 5 ■ ClassifiCaTion

165

The output of Listing 5-3 was way above Dr. Judy’s expectations and reassured her
of the fact that insights gained from the data will have a high confidence level. Next she
planned on observing the number of distinct values within each of the features. She
believed this would help her to drop the features that offered no variability (i.e., having
same value for all observations) and to decide upon the types of plots these features could
be represented in. For that purpose she wrote the code in Listing 5-4.

Listing 5-4. Print of the Frequency of Distinct Values in Each Feature Set

for column in list(data.columns):
 print "{0:25} {1}".format(column, data[column].nunique())

Output

Age 109
Gender 2
AppointmentRegistration 295425
ApointmentData 534
DayOfTheWeek 7
Status 2
Diabetes 2
Alcoolism 2
HiperTension 2
Handicap 5
Smokes 2
Scholarship 2
Tuberculosis 2
Sms_Reminder 3
AwaitingTime 213

Dr. Judy explained that {0:25} in the print statement meant that the feature in the
first index (i.e., column) would be printed and 25 character spaces would be allocated
to it. The output of Listing 5-4 implied that there are many variables within the dataset
that have discrete values, examples of which include Gender, Status, DayOfTheWeek,
and so on. This helped her choose the types of plots to represent each of these features.
She decided to plot AwaitingTime and Age as histograms because these are numbers
and continuous in nature. As for the features which are discrete in nature, she planned
to represent them as a bar graph. She executed that graph by initializing the function in
Listing 5-5, and later called it in Figure 5-1 to plot the figure.

ChapTer 5 ■ ClassifiCaTion

166

Listing 5-5. Initialize Function to Plot All Features Within the Dataset

def features_plots(discrete_vars):

 plt.figure(figsize=(15,24.5))

 for i, cv in enumerate(['Age', 'AwaitingTime']):
 plt.subplot(7, 2, i+1)
 plt.hist(data[cv], bins=len(data[cv].unique()))
 plt.title(cv)
 plt.ylabel('Frequency')

 for i, dv in enumerate(discrete_vars):
 plt.subplot(7, 2, i+3)
 data[dv].value_counts().plot(kind='bar', title=dv)
 plt.ylabel('Frequency')

Dr. Judy pointed to the fact that the method in Listing 5-5 takes as an input the names of
features which are discrete in nature because those will be represented as bar graphs. Without
wasting time she called the function to plot the feature representations in Listing 5-6.

Listing 5-6. Calling ‘features_plot’ method in Listing 5-5 to Plot the Feature
Representation

discrete_vars = ['Gender', 'DayOfTheWeek', 'Status', 'Diabetes',
 'Alcoolism', 'HiperTension', 'Handcap', 'Smokes',
 'Scholarship', 'Tuberculosis', 'Sms_Reminder']

features_plots(discrete_vars)

ChapTer 5 ■ ClassifiCaTion

167

Figure 5-1. Plots of feature representations

ChapTer 5 ■ ClassifiCaTion

168

While looking at Figure 5-1, Dr. Judy noticed that none of the features has missing
values. She made the following deductions about some of the features from the dataset:

•	 Age: Age lay in the range of -2 and 113. Age between 0 and 113 did
make sense, but what surprised her was how it could be negative.
It seemed to her that there was some noise in the dataset.

•	 Handicap: Instead of being Boolean, this feature had values in
the range of 0 and 4.

•	 Sms_Reminder: Instead of being a Boolean entity, it had values
in the range of 0 and 2. It seemed to her that Sms_Reminder
represented the frequency of reminders sent to each and every
patient.

•	 AwaitingTime: Dr. Judy was puzzled to see AwaitingTime in
negative terms. By definition this feature represented the number
of days from which the appointment was issued to the date for
which the appointment was issued. She believed that positive
numbers would have made more sense.

Findings from the deductions meant that Dr.Judy would have to clean data a bit
(i.e., perform data wrangling) before pushing it into the analysis pipeline.

Performing Data Wrangling
She read somewhere that data wrangling is the process of mapping raw data into an
organized form suitable for analyzing the data. Findings from Figure 5-1 depicted the
presence of negative values within ‘Age,’ which didn’t make any intuitive sense to her, and
thus she referred to these as noise. Hence she planned to start the treatment by counting
the frequency of negative Age values. If the frequency of these observations were high she
wouldn’t delete them as doing so would keep her from detecting the variations necessary
for the prediction. To the contrary she planned to delete them if their frequency was
negligible as deleting them wouldn’t have a major effect on the analysis. She started off by
taking the frequency of negative Age values in Listing 5-7.

Listing 5-7. Counting Frequency of Negative Age Observations

data[data['Age'] < 0]['Age'].value_counts().sum()

Output

6

The output of Listing 5-7 indicated the negative Age observations to be negligible as
compared to the total number of observations within the dataset. Hence Dr. Judy decided
to remove these negative observations from the Age feature.

Listing 5-8. Removing Observations with Negative Age Values

data = data[data['Age'] >= 0]

ChapTer 5 ■ ClassifiCaTion

169

While looking at the deductions from Figure 5-1, Dr. Judy also noticed that the
feature named ‘Handicap’ was an integer variable rather than a Boolean variable one.
She recalled that the data definition for this feature set was missing from the data source
and hence open to multiple interpretations. The only rationale she could think of for
values lying within the range of 0 and 4 was that this might be a Likert scale question or a
numeric entity representing the frequency of times a patient has been handicapped. As
the interpretation of this feature was ambiguous to her she decided to drop this feature
from the dataset.

Listing 5-9. Removing Variable Named ‘Handicap’ from the Dataset

del data['Handcap']

While looking at the deductions from Figure 5-1, Dr. Judy also recalled that values
within AwaitingTime appeared to be negative, and hence it made sense to transform
them into positive values.

Listing 5-10. Making Values Within AwaitingTime Positive

data['AwaitingTime'] = data['AwaitingTime'].apply(lambda x: abs(x))

The treatment of features on the basis of her deductions in Figure 5-1 was completed.
However, Dr. Judy recalled reading that most machine learning algorithms work best with
integer or floating point input rather than in string format. She knew that the categorical
variables in the dataset didn’t comply with this condition and hence it was important for
her to recode the string categorical features to their integer counterparts. Dr. Judy started
off by recoding DayOfTheWeek by binding the mapping from string to integer.

Listing 5-11. Recode String Categorical Feature DayOfTheWeek to Integers

dow_mapping = {'Monday' : 0, 'Tuesday' : 1, 'Wednesday' : 2, 'Thursday' : 3,
'Friday' : 4, 'Saturday' : 5, 'Sunday' : 6}
data['DayOfTheWeek'] = data['DayOfTheWeek'].map(dow_mapping)

Dr. Judy explained her recoding methodology as follows:

There exists methods for automatic recoding of categorical variables.
These methods perform the recoding in an alphabetic order such that if
categories for a feature are Male and Female, then it will assign a code of
0 to Female and 1 to Male. DayOfTheWeek is an ordinal quantity; hence
I decided to do the mapping manually. However, this is not the case in
the Gender and Status features as they are nominal in nature. Hence, I
will be using the predefined method to do the recoding automatically.

ChapTer 5 ■ ClassifiCaTion

170

Dr. Judy performed the recoding for ‘Gender’ and ‘Status’ in Listing 5-12.

Listing 5-12. Recode String Categorical Features to Integers

for field in ['Gender', 'Status']:
 data[field] = pd.Categorical.from_array(data[field]).codes

Once she had performed data wrangling on the original dataset, Dr. Judy was curious
as to how their representations had changed. Hence she looked at Figure 5-2 to see their
transformed feature representations.

Listing 5-13. Feature Representations Post Data Wrangling

discrete_vars = ['Gender', 'DayOfTheWeek', 'Status', 'Diabetes',
 'Alcoolism', 'HiperTension', 'Smokes',
 'Scholarship', 'Tuberculosis', 'Sms_Reminder']

features_plots(discrete_vars)

ChapTer 5 ■ ClassifiCaTion

171

Figure 5-2. Plots of feature representations post data wrangling

ChapTer 5 ■ ClassifiCaTion

172

Dr. Judy made sure to remove ‘Handicap’ from the list of discrete features in
Listing 5-13. She pointed out that recoding assigned codes in the range of

0 to (number of unique observations within the feature - 1)

While looking at Figure 5-2, Dr. Judy noticed that AwaitingTime seemed to decay
in an exponential fashion. As per her observation, majority of the patients have an age
of 0 (i.e., infants whose age is in months). She also pointed out to the hikes at the ages
of 19, 38, and 57. Other than this, another surprising fact was that one-third of patients
were males, and that the same proportion of patients didn’t show up at the date and
time of their appointments. This information gave her a clue as to why the clinic was
seeing losses despite of an increase in the number of appointments. She also noticed that
majority of the patients were sent at least one SMS reminder; however, two-thirds of the
time no reminder was sent. The absence of appointment reminders, she believed might
be the reason behind patients not showing up.

Once she understood the features within the dataset and after she had removed
the ambiguities by performing data wrangling, Dr. Judy was interested in identifying
relationships between different features within the dataset. She wanted to perform this
multivariate analysis to gain an intuitive understanding of the types of patients who don’t
show up on their appointment dates and time.

Performing Exploratory Data Analysis
Rather than starting off with the exploratory data analysis (EDA), Dr. Judy believed it best
to see the data visually to identify if there were patterns to which she could redirect the
model. Dr. Judy believed that as people got older, their need to see a doctor would also
increase. The notion behind this was that as people age, diseases increase exponentially.
Hence she wrote the code in Listing 5-14 to see if the relationship between these
quantities is inversely proportional in reality or not.

Listing 5-14. Scatter Plot Between Age and AwaitingTime

plt.scatter(data['Age'], data['AwaitingTime'], s=0.5)
plt.title('Scatter plot of Age and Awaiting Time')
plt.xlabel('Age')
plt.ylabel('Awaiting Time')
plt.xlim(0, 120)
plt.ylim(0, 120)

ChapTer 5 ■ ClassifiCaTion

173

Dr. Judy wasn’t happy with the results as Figure 5-3 gave a highly dispersed plot,
with no signs of correlation at the start and a bit of negative correlation after the age of 90.
Visual representation showed the earlier established hypothesis to have failed. However,
she decided to validate this using a statistical correlation technique as well in Listing 5-15.

Listing 5-15. Calculating Pearson Correlation Between Age and AwaitingTime

pd.set_option('display.width', 100)
pd.set_option('precision', 3)
correlations = data[['Age', 'AwaitingTime']].corr(method='pearson')
print(correlations)

Output

 Age AwaitingTime
Age 1.00e+00 -4.18e-03
AwaitingTime -4.18e-03 1.00e+00

The correlation between Age and AwaitingTime was approaching 0 which deferred
to the hypothesis she had established earlier. She was now interested to see if the increase
in SMS reminders increased the likelihood of a patient showing up or not. For that reason
she wrote the code in Listing 5-16 to plot a stacked bar graph in Figure 5-4.

Listing 5-16. Effect on Status on the Basis of Number of SMS Reminders

data_dow_status = data.groupby(['Sms_Reminder', 'Status'])['Sms_Reminder'].
count().unstack('Status').fillna(0)
data_dow_status[[0, 1]].plot(kind='bar', stacked=True)
plt.title('Frequency of people showing up and not showing up by number of
SMS reminders sent')
plt.xlabel('Number of SMS reminders')
plt.ylabel('Frequency')

100

80

60

40

20

120

0
20 40 60 80 1000 120

Age

Aw
ai

tin
g

Ti
m

e

Scatter plot of Age and Awaiting Time

Figure 5-3. Scatter plot between Age and AwaitingTime

ChapTer 5 ■ ClassifiCaTion

174

Looking at Figure 5-4 Dr. Judy noticed that the rate of change in the number of
patients who showed up after one reminder relative to those who showed up when no
reminder was sent was roughly 30% (i.e., (0.17 m – 0.13 m) / 0/13m), whereas the rate
of change in the number of patients not showing up after one reminder relative to those
who showed up when no reminder was sent was roughly 25% (i.e., (0.05 m – 0.04 m) /
0/04m0. She thus concluded that SMS reminders do marginally increase the likelihood of
a patient showing up on his/her appointment day.

Dr. Judy’s perspective was that the majority of the patients would show up in the
middle of a week, whereas many of them changed their plans and would not show up for
an appointment at the start or the end of the week. This she believed was due to the fact
that the start and the end of the week are usually the busiest for businesses, while relief
in work occurs during the middle of a week. She decided to validate her perspective in
Listing 5-17.

Listing 5-17. Effect on Appointment Day of the Week on the Basis of Number of SMS
Reminders

data_dow_status = data.groupby(['DayOfTheWeek', 'Status'])['DayOfTheWeek'].
count().unstack('Status').fillna(0)
data_dow_status[[0, 1]].plot(kind='bar', stacked=True)
plt.title('Frequency of people showing up and not showing up by Day of the
week')
plt.xlabel('Day of the week')
plt.ylabel('Frequency')

160000

140000

120000

100000

80000

60000

40000

20000

180000

0 0 1 2

Number of SMS reminders

Fr
eq

ue
nc

y

Frequency of people showing up and not showing up by number of SMS reminders sent

Status
0
1

Figure 5-4. Stacked bar chart between Status and Sms_Reminder

ChapTer 5 ■ ClassifiCaTion

175

Dr. Judy pointed out that in Figure 5-5, 0 represents Monday whereas 6 represents
Sunday, with rest of the days lying within in order. Close to no patients showed up on
Saturdays, and the clinic was closed on Sundays. The rate of change of no-shows stayed
pretty much the same for the remaining five days, whereas the distribution of show-
ups seemed to have followed a bell-shaped curve, with most patients showing up on
Wednesdays.

Dr. Judy believed that people who are younger are more likely to be busy and to have
a job. Because of that they might be short of time and highly likely to not show up at the
time of their appointment. She initially thought of finding the measure of center (i.e.,
mean or median) to validate her hypothesis. However, she wasn’t sure which one of the
center of measures she should go forward with (i.e., mean, median, or mode).

She recalled from Figure 5-2 that a huge chunk of observations in Age have a value of
0. This she knew could turn out into a disadvantage while calculating the mean as then it
will pull the mean toward the lower side. Hence she believed a better measure to be the
median, which is unaffected by outliers. Thus she planned on plotting a box plot of Age
grouped by Status.

Listing 5-18. Plotting Box Plot of Patients’ Age by Status

data.boxplot(column=['Age'], return_type='axes', by='Status')
plt.show()

70000

60000

50000

40000

30000

20000

10000

0

Fr
eq

ue
nc

y

0 1 2 3 4 5 6

Day of the week

Frequency of people showing up and not showing up by Day of the week

Status
0
1

Figure 5-5. Stacked bar chart between Status and DayOfTheWeek

ChapTer 5 ■ ClassifiCaTion

176

She was thrilled to see the results in Figure 5-6 as her hypothesis held true as the
median age of people showing up (i.e., 40) turned out to be relatively greater than that
of those not showing up (i.e., 32). She also pointed to the fact that the upper limit (i.e.,
quartile 3) of people showing up is 58, which is relatively higher than that of those of not
showing up (i.e., 52).

Dr. Judy decided to analyze Age against Status for both genders separately. For that
reason she wrote the code snippet to plot line graphs in Listing 5-19.

Listing 5-19. Plotting Line Plot of Age by Gender for Patients Status-Wise

plt.figure(figsize=(15,3.5))

for i, status in enumerate(['no show ups', 'show ups']):

 data_show = data[data['Status']==i]
 plt.subplot(1, 2, i+1)

 for gender in [0, 1]:
 data_gender = data_show[data_show['Gender']==gender]
 freq_age = data_gender['Age'].value_counts().sort_index()
 freq_age.plot()

 plt.title('Age wise frequency of patient %s for both genders'%status)
 plt.xlabel('Age')
 plt.ylabel('Frequency')
 plt.legend(['Female', 'Male'], loc='upper left')

120

100

80

60

40

20

0
0

Status
1

Box plot grouped by Status
Age

Figure 5-6. Box plot of Age by Status

ChapTer 5 ■ ClassifiCaTion

177

Age pattern for males seems to be similar for both statuses, contrary to that of
females which varies across statuses. Females in the age range of 42 to 62 are likely to
show up on the date and time of their appointment.

Dr. Judy believed that people having a long AwaitingTime (i.e., days to appointment)
would have preferred to see another doctor rather than waiting so long. She believed that
another reason for not showing up on the appointment date could be that if a disease
is seasonal it is likely to be cured after some prevention techniques or home-based
remedies. Hence, by the time their appointment date arrives, the patients decide not to
consult the doctor. She decided to see if this was true from the data at hand.

Listing 5-20. Plotting Box Plot of AwaitingTime by Status

data.boxplot(column=['AwaitingTime'], return_type='axes', by='Status')
plt.show()

1600

1400

1200

1000

800

600
400

200

0
0 20 40 60 80 100

Age

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Age wise frequency of patient no show ups for both genders Age wise frequency of patient show ups for both genders

Female
Male

Female
Male

4000

3500

3000

2500

2000

1500

1000

500

0
0 20 40 60 80 100

Age

Figure 5-7. Line chart of Age by Gender status-wise

400

350

300

250

200

150

100

50

0
0 1

Status

Boxplot grouped by Status
Awaiting Time

Figure 5-8. Box plot of AwaitingTime by Status

After looking at Figure 5-8, Dr. Judy deduced that patients who have their
AwaitingTime in the third quartile are relatively more likely to not to show up, which
supported her earlier laid null hypothesis—with increasing waiting time the likelihood of
patient not showing up also increases. She also pointed out that the median in both the
status instances is close to zero.

ChapTer 5 ■ ClassifiCaTion

178

Dr. Judy was thrilled as exploratory data analysis provided her with many insights.
Summing up, she observed that SMS reminders increased the likelihood of a patient
showing up on time. She also noticed that younger patients more often did not show up
at their appointment times whereas older patients were more disciplined and showed up
on time. She also saw that people with long waiting times decided not to show up on their
appointed date and times. Dr. Judy now had a fair idea that no-shows to appointment
was the reason for losses, and she had gained insight into what leads people to exhibit
this behavior. Now she was planning to move ahead and make a classification model to
predict the likelihood of a patient to show up or not in the future. This was important
because if she knew the total number of patients who would show up on a given day,
week, or month, she could tune the resources likewise to save costs. However, before
starting with this classification, she wondered whether she could extract more features
out of the existing ones by means of features’ generation. She believed this would help
her capture the variability and definite patterns within the dataset.

Features’ Generation
In machine learning, the greater the number of observations and feature sets within the
dataset, the greater the likelihood that the model will capture the variability within it, to
understand its true essence. Dr. Judy knew that increasing the number of observations
was not an option; however, she could increase the feature sets within the dataset. Dr.
Judy was clueless as to how she could extract more features from the existing features.
After much thinking, she decided to break the features having dates into more granular
date components. She wrote the code snippet in Listing 5-21 to apply her logic to features
named AppointmentRegistration and AppointmentDate.

Listing 5-21. Breaking Date Features into Date Components

for col in ['AppointmentRegistration', 'ApointmentData']:
 for index, component in enumerate(['year', 'month', 'day']):
 data['%s_%s'%(col, component)] = data[col].apply(lambda x:

int(x.split('T')[0].split('-')[index]))

Dr. Judy explained that the code snippet in Listing 5-21 broke AppointmentRegistration
and AppointmentData features into their respective year, month, and day components.
However, it didn’t break them into their time components because ApointmentData doesn’t
have a time component within its string object, whereas AppointmentRegistration feature
does have it. Hence she wrote the code in Listing 5-22 to break the AppointmentRegistration
feature into its time component as well.

Listing 5-22. Breaking AppointmentRegistration into Time Components

for index, component in enumerate(['hour', 'min', 'sec']):
 data['%s_%s'%('AppointmentRegistration', component)] =

data['AppointmentRegistration'].apply(
 lambda x: int(x.split('T')[1][:-1].split(':')[index]))

ChapTer 5 ■ ClassifiCaTion

179

Next she wrote the code in Listing 5-23 to witness the step of features’ generation.

Listing 5-23. Printing First Few Observations of the Features Extracted Dataset

data.head()

Table 5-3. Print of Observations of the Dataset

Age Gender AppointmentRegistration AppointmentData

0 19 M

DayOfTheWeek Status Diabetes Alcoolism HiperTension Handcap Smokes Scholarship Tuberculosis Sms_Reminder AwaitingTime

1 24 F

2 4 F

3 5 M

4 38 M

2014-12-16T14:46:25Z

2015-08-18T07:01:26Z

2015-10-21T15:20:09Z

2014-02-17T12:53:46Z

2014-07-23T17:02:11Z

2015-01-
14T00:00:00Z

2015-08-
19T00:00:00Z

2014-02-
18T00:00:00Z

2014-08-
07T00:00:00Z

2015-10-
27T00:00:00Z

Wednesday

Wednesday

Tuesday

Tuesday

Thursday

Show-
Up

Show-
Up

Show-
Up

Show-
Up

Show-
Up

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

-29

-1

-1

-15

-6

Smokes

0 29 2014 12 16

18

17

23

21

8

2

7

10

2014

2014

2015

2015

1

1

6

15

...

...

...

...

...

0

0

0

0

... Waiting Time AppointmentRegistration_year AppointmentRegistration_month AppointmentRegistration_day

14 14 46 25

26

46

11

9

1

53

2

20

19

18

7

7

12

17

1527

8

1

2

8

10

AppointmentRegistration_hour AppointmentRegistration_min AppointmentRegistration_secAppointmentData_month AppointmentData_day

ChapTer 5 ■ ClassifiCaTion

180

Looking at Table 5-3 Dr. Judy was thrilled to see the features’ generation come
true. The evidence was the columns representing the year, month, day, hour, minute,
and second components of AppointmentData and AppointmentRegistration. Dr. Judy
was well aware that her methodology of increasing the feature sets wasn’t the de facto
technique as several other techniques achieving the same objective exist. She had
some ideas about extracting more features; however, she went with the simplest one to
save time. But she is open to collaboration if someone can help her extract other date
components from the date features or help her transform the features into their Boolean
counterparts. Hence she listed the exercises that follow.

EXERCISES

1. extract more features from the date features (week of the
month, week of the year, day half, weekend, weekday, etc.).

2. include a Boolean transformation of the features in your dataset
like that done in Chapter 4. This will increase the feature set
which can become beneficial while training the model.

She was hopeful that this huge pool of features would now enable the classification
model to better understand the dynamics of the underlying data. She was aware of what
classification was, but her curiousity to learn more made her come up with the following
material on the topic.

Classification
Classification helps us decide which of the given classes a new observation will fall into.
Classification comes under supervised learning where the model can only be trained
once a membership labeled data is provided as an input. These membership variables are
usually categorical variables which can be nominal as well as Boolean in nature.

As an example, consider a person applying for a mortgage at one of the premier banks.
The bank will access his application and would like to know if that person will be subject to
default in the future or not. If not, the bank will approve his application for the mortgage.
This presents a prime application for classification where the bank uses past data to train
the model. It will then take into account that person’s age, gender, salary index, lifestyle
index, and credit score to predict whether or not he will default in the future. Here the
membership variable we are trying to predict is “default,” and it is categorical in nature.

The following methods can be used to evaluate a classification model:

•	 Accuracy: Classifier and predictor accuracy

•	 Speed: Time to train and predict from the model

•	 Robustness: Handling missing values and noise

•	 Scalability: Efficiency in disk-related databases

•	 Interpretability: Predictions made by the model make
intuitive sense

http://dx.doi.org/10.1007/978-1-4842-2823-4_4

ChapTer 5 ■ ClassifiCaTion

181

Model Evaluation Techniques
Python allows the provision of measuring classification performance with the aid of
several score, loss, and utility functions. These metrics require probability estimates of
confidence values, positive class, binary decision values or value within the sample_
weight parameter (i.e., weighted contribution of each sample to the overall score). These
can be divided in several ways.

Confusion Matrix
Confusion matrix counts the true negatives, false positives, false negatives, and true
positives.

•	 True negatives is the frequency of instances in which the model
correctly predicted 0 as 0.

•	 False negatives is the frequency of instances in which the model
predicted 1 as 0.

•	 True positives is the frequency of instances in which the model
correctly predicted 1 as 1.

•	 False positives is the frequency of instances in which the model
predicted 0 as 1.

Figure 5-9. Confusion matrix along with the respective formulas

While doing research Dr. Judy discovered a simplified version of the Confusion
matrix which shows the model evaluation as a visual representation.

ChapTer 5 ■ ClassifiCaTion

182

Binary Classification: Receiver Operating Characteristic
A good way to understand the mechanics behind ROC (Receiver Operating
Characteristic) curves is by means of a Confusion matrix. ROC curves visually plot the
performance of a binary classifier as the discrimination threshold is varied. Keep in mind
the following terms:

•	 True Positive Rate (TPR): that is, the sensitivity, recall, or
probability of detection

•	 False Positive Rate (FPR): that is, 1 - specificity, true negative
rate, or probability of false alarm

Consider, for example, the same dataset on which the model will be trained to
predict the people who are highly subject to default in the future. We split the data into
70/30, which means that the model will be trained on 70% of the observations and
tested on 30% of the observations. After having used the model to predict on 30% of the
observations we ended up with the chart in Table 5-4.

TPR in this case will be 19/30 ~ 63%. Whereas, FPR in this case will be 36/70 ~ 51%

Table 5-4. Frequency of Defaults from Actual Data and the Predicted One

Will default Will not default

Actual 30 70

Correctly predicted 19 36

Se

0
0 1 - Sp

Good
diagnostic test

diagnostic test

diagnostic benefit

Medium

Test without

Figure 5-10. ROC curves and relative comparison among each of them

ChapTer 5 ■ ClassifiCaTion

183

The ROC curve plots the fraction of true positives out of the positives (i.e., TPR)
versus the fraction of false positives out of the negatives (i.e., FPR). Or, in other terms,
we can say a ROC curve is the sensitivity as a function of fallout. It plots a cumulative
distribution function that helps select possibly optimal models.

Accuracy on the curve is represented by Area under the Curve (AUC). Values range
between 0.0 and 1.0.

Dr. Judy decided to define a method that would take the actual data and predict the
goodness of the model. For that reason she wrote the code snippet in Listing 5-24.

Listing 5-24. Declaring a Function to Detect Model’s Accuracy by Applying Methods
Learned Previously

def model_performance(model_name, X_train, y_train, y_test, Y_pred):

 print 'Model name: %s'%model_name
 print 'Test accuracy (Accuracy Score): %f'%metrics.accuracy_

score(y_test, Y_pred)
 print 'Test accuracy (ROC AUC Score): %f'%metrics.roc_auc_

score(y_test, Y_pred)
 print 'Train accuracy: %f'%clf.score(X_train, y_train)

 fpr, tpr, thresholds = metrics.precision_recall_curve(y_test, Y_pred)
 print 'Area Under the Precision-Recall Curve: %f'%metrics.auc(fpr, tpr)

 false_positive_rate, true_positive_rate, thresholds = metrics.roc_
curve(y_test, Y_pred)

 roc_auc = metrics.auc(false_positive_rate, true_positive_rate)

 plt.title('Receiver Operating Characteristic')
 plt.plot(false_positive_rate, true_positive_rate, 'b',
 label='AUC = %0.2f'% roc_auc)
 plt.legend(loc='lower right')
 plt.plot([0,1],[0,1],'r--')
 plt.xlim([-0.1,1.2])
 plt.ylim([-0.1,1.2])
 plt.ylabel('True Positive Rate')
 plt.xlabel('False Positive Rate')
 plt.show()

In order to cross-validate the model, Dr. Judy knew that she would have to split the
data into training and testing data.

ChapTer 5 ■ ClassifiCaTion

184

Ensuring Cross-Validation by Splitting the Dataset
Dr. Judy planned to train the model from the training dataset and then use that model to
predict the values in the test dataset. She planned on doing so to determine the goodness
of the model. She wrote the code for the training/testing split in Listing 5-25.

Listing 5-25. Declaring Features for Model Training and Splitting Data into Training and
Testing Sets

features_of_choice = [u'Age', u'Gender', 'DayOfTheWeek', 'Diabetes',
'Alcoolism', 'HiperTension',
 'Smokes', 'Scholarship', 'Tuberculosis',

'Sms_Reminder',
 'AwaitingTime', 'AppointmentRegistration_year',

'AppointmentRegistration_month',
 'AppointmentRegistration_day', 'ApointmentData_

year', 'ApointmentData_month',
 'ApointmentData_day', 'AppointmentRegistration_

hour', 'AppointmentRegistration_min',
 'AppointmentRegistration_sec']

x = np.array(data[features_of_choice])
y = np.array(data['Status'])

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3,
random_state=1)

Dr. Judy explained her logic in Listing 5-25. She wrote the code to take a 70-30 split
whereby 70% of the observations fall into training and 30% of observations fall into the
test dataset.

Before applying the classification model she thought it better to recall the reason
for doing classification in the first place. With the aid of the exploratory analysis she had
figured out the reason for recurring losses. Then she decided to go a further mile to find a
remedy for this problem. She decided to use classification as an aid to predict if a patient
will show up on his/her appointment day or not. This would enable management to do
either of the following:

•	 Scale down the human resources (i.e., staff and doctors) to cut
costs

•	 Determine the reasons for patients not showing up and find fixes
for that problem

While looking at classification, the only visual representation Dr. Judy could think of
was a tree. As in the case of Status, the tree will have one parent node and two child nodes
(i.e., show-ups and no-shows). While searching for classification models, she found a
visual representation, Decision Tree Classification.

ChapTer 5 ■ ClassifiCaTion

185

Decision Tree Classification
Decision trees form a tree in a hierarchical fashion with each node having a decision
boundary to proceed downward. The tree stops branching out at the level where there
are no more splits possible. Interior nodes represent input variables having edges to
each of the children. Children split the values from the input variable. They do that by
partitioning the data at each level with nodes branching out to children. This behavior is
known as recursive partitioning. Decision trees are easy to interpret and time efficient,
and hence they can work well with large datasets. Decision trees can also handle both
numerical and categorical data, that is, regression in case of numerical and classification
in case of categorical data. However, the accuracy of decision trees is not as good as that
produced by other machine learning classification algorithms.

Moreover, decision trees generalize highly to the training dataset and thus are
highly susceptible to overfitting. A decision tree aims to partition the data so that each
of the partitioned instances has similar/homogeneous values. ID3 algorithms are
used to calculate the homogeneity of a sample, and if it is completely homogeneous it
translates into an entropy of 0 and into a value of 1 or vice versa. A decision tree is a form
of a parametric supervised learning method, and by parametric we mean that it can be
applied to any data regardless of its underlying distribution.

Dr. Judy wrote the code in Listing 5-26 to train the decision tree classification model
on a training dataset. She used the test-train split variables (i.e., y_test, y_train, x_test,
x_train) from Listing 5-25.

Listing 5-26. Training the Model by Applying Decision Tree Classifier

clf = DecisionTreeClassifier()
clf.fit(x_train, y_train)

Output

DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,
max_features=None, max_leaf_nodes=None, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
presort=False, random_state=None, splitter='best')

Dr. Judy pointed out that because no configuration parameters were passed to the
decision tree classifier, it took the default values of configuration parameters. The next
step was to apply the trained model on a testing dataset to find the predicted labels of
Status. She then aimed to compare the predicted labels to the original label of Status to
calculate accuracy of the model.

ChapTer 5 ■ ClassifiCaTion

186

Listing 5-27. Finding Accuracy of Decision Tree Classifier

y_pred = clf.predict(x_test)
model_performance('Decision tree classifier', x_train, y_train, y_test,
y_pred)

Output

Model name: Decision tree classifier
Test accuracy (Accuracy Score): 0.589040
Test accuracy (ROC AUC Score): 0.523605
Train accuracy: 0.999952
Area Under the Precision-Recall Curve: 0.112530

Dr. Judy explained that the model was trained on x_train, and y_train. The trained
model (i.e., clf) was then used to predict the labels of the test dataset (i.e., y_pred). Her
output of Listing 5-27 presented the perfect representation of overfitting as the train
accuracy was approaching 1. Test data accuracy came out to be subpar as the value was 0.5,
which was distant from 1 (i.e., the perfect score). Dr. Judy was disappointed by the results
but didn’t lose hope as she had many more classification techniques to experiment with.

Dr. Judy was curious to know if techniques exist to enable non-linear learning for
classification models. The search for such a technique brought her to the concept of
kernel approximation.

Kernel Approximation
Kernel approximation performs non-linear transformations of the input to make it
suitable for linear classification and other algorithms. This is better than kernel trick as
it can significantly reduce the cost of learning with very large datasets. The combination
of kernel map approximations with SGD classifier can make non-linear learning on large
datasets possible.

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

AUC = 0.52

Figure 5-11. ROC curve for decision tree model

ChapTer 5 ■ ClassifiCaTion

187

SGD Classifier
In SGD classifier, the gradient of the loss is updated one sample at a time, and the model
is updated with respect to the learning rate. In order for the model to give the best results
on default learning rate, the data should have zero mean and unit variance.

This algorithm works best with data which is represented as sparse arrays of floating
point values for features within the dataset. Loss parameter controls the model it fits,
which is Linear Support Vector Machine (SVM) by default.

Without waiting any longer, Dr. Judy wrote the code snippet in Listing 5-28 to train
kernel approximation along with the SGD classifier model on the training dataset.

Listing 5-28. Training the Model by Applying Kernel Approximation with SGD Classifier

rbf_feature = kernel_approximation.RBFSampler(gamma=1, random_state=1)
X_train = rbf_feature.fit_transform(x_train)

clf = SGDClassifier()
clf.fit(X_train, y_train)

Output

SGDClassifier(alpha=0.0001, average=False, class_weight=None, epsilon=0.1,
eta0=0.0, fit_intercept=True, l1_ratio=0.15,
learning_rate='optimal', loss='hinge', n_iter=5, n_jobs=1,
penalty='l2', power_t=0.5, random_state=None, shuffle=True,
verbose=0, warm_start=False)

2

1

0

0 1 2 3

-1

-2

-2 -1
sepal length [standardized]

pe
ta

l l
en

gt
h

[s
ta

nd
ar

di
ze

d]

SGD - Stochastic Gradient Descent

-1
1

Figure 5-12. SGD classification results on Iris dataset

ChapTer 5 ■ ClassifiCaTion

188

Dr. Judy fitted the model twice in Listing 5-28. The reason behind this was that at first
she sampled from the data by fitting and transforming by means of the RBF Sampler. Per
Dr. Judy, a RBF Sampler approximates the feature map of a RBF kernel prior to applying a
linear algorithm. She also pointed out that fit within fit_tranform performed the Monte
Carlo sampling whereas the transform term performed the mapping of the data.

She then wrote the code in Listing 5-29 to apply the trained model to the testing
dataset and then used it to find the predicted labels along with the model’s accuracy.

Listing 5-29. Finding Accuracy of Kernel Approximation with SGD Classifier

X_test = rbf_feature.fit_transform(x_test)
Y_pred = clf.predict(X_test)
model_performance('Kernel approximation', X_train, y_train, y_test, Y_pred)

Output

Model name: Kernel approximation
Test accuracy (Accuracy Score): 0.695619
Test accuracy (ROC AUC Score): 0.500000
Train accuracy: 0.698398
Area Under the Precision-Recall Curve: 0.152191

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Tr
ue

 P
os

iti
ve

 R
at

e

0.0 0.2 0.4 0.6 0.8 1.0 1.2

False Positive Rate

AUC = 0.50

Receiver Operating Characteristic

Figure 5-13. ROC curve for kernel approximation with SGD classifier

Training accuracy dropped relative to the decision tree classification, which means
that the model didn’t highly generalize on the training dataset, a good notion indeed.
Also, while looking at Figure 5-13, Dr. Judy noticed that test data accuracy showed a
massive improvement by shooting up from 0.59 to 0.7. Despite showing improvements in
the above-mentioned aspects, the value of AUC for ROC dropped down, which surprised
her a lot. After searching online for hours she remained clueless. Hence she decided to
meet her friend Zoe and ask for her feedback. Once Zoe heard the problem, she was able
to provide the following explanation:

ChapTer 5 ■ ClassifiCaTion

189

Well the accuracy only tends to measure performance of the algorithm in
detecting the true positives. Where it falls short is to take into account the
False Positives and False Negatives. These False levels brought down the
AUC down in spite of a higher accuracy.

Zoe’s help enabled Dr. Judy to see clearly through the confusion. However, she
wasn’t yet satisfied with the accuracy of the models she had explored so far. She was
wondering whether techniques exist that can enable combining the power of more
than one model to build a model that can do predictions with top-notch accuracy. After
a thorough search, Dr. Judy found out that “ensemble” is the term that describes the
representation she desired. She also discovered that ensemble techniques are subdivided
into two types (i.e., Boosting and Bagging), which she believed were important to
understand before using them to train the model.

Ensemble Methods
An ensemble method combines predictions from multiple machine learning algorithms,
which result in relatively more accurate predictions than an individual model could
have captured. Ensemble methods are usually divided into two variants (Bagging and
Boosting).

Bagging
Bagging, also known as a bootstrap method, optimizes on minimizing the variance. It
does that by generating additional data for the training dataset using combinations to
produce multisets of same size as that of the original data. The application of Bagging is
ideal when the model overfits and you tend to go to higher variance. This can be taken
care of by taking many resamples, each overfitting, and averaging them out together. This
in turn cancels some of the variance.

Test
Sample 1

Learning
Algorithm

Classifier 1

New
Data

Combined
Classifiers

Prediction

Classifier 2

Classifier 3

Learning
Algorithm

Learning
Algorithm

Test
Sample 2

Training
Examples

Test
Sample 3

Figure 5-14. Basic work flow of Bagging algorithms

ChapTer 5 ■ ClassifiCaTion

190

Decision trees are sensitive to specific data on which they are trained on. If training
data is changed, the resulting decision tree can be quite different and can yield different
predictions. A decision tree being a high-variance machine learning algorithm has the
application of Bagging by means of the bootstrap procedure.

Consider a dataset that has 50 features and 3,000 observations. Bagging might create
500 trees with 500 random observations for 20 features in each tree. Finally it will average
out the predictions for all of those 500 tree models to get the final prediction.

Boosting
Boosting defines an objective function to measure the performance of a model given
a certain set of parameters. The objective function contains two parts: regularization
and training loss, both of which add to one another. The training loss measures how
predictive our model is on the training data. The most commonly used training loss
function includes mean squared error and logistic regression. The regularization term
controls the complexity of the model, which helps avoid overfitting. Boosting trees use
tree ensembles because they sum together the prediction of multiple trees.

D1 D2

D3

Box 2

Box 1 Box 3

Box 4

Figure 5-15. Basic work flow of Boosting algorithms

Dr. Judy decided to put Bagging into the application by applying the most sought
Bagging technique (i.e., random forest classification).

Random Forest Classification
Random forest classification is a type of Bagging, and it is one of the most powerful
machine learning algorithms available currently. In decision tree classification, different
subtrees can have a lot of structural similarities which can result in prediction outputs

ChapTer 5 ■ ClassifiCaTion

191

that are strongly correlated to each other. The random forest classifier reduces this
correlation among the subtrees by limiting the features at each split point. So, instead of
choosing a variable from all variables available, random forest searches for the variable
that will minimize the error from a limited random sample of features. For classification,
the number of variables at each split can be defined as follows:

•	 Symbol: m

•	 Formula: p

•	 Where,

a. ‘m’ is the optimal number of variables at each split

b. ‘p’ is the number of total variables in the dataset

Instance
Random Forest

Tree-1

Class-A Class-B

Majority-Voting

Final-Class

Class-B

Tree-2

...

Tree-n

Figure 5-16. Illustration of random forest classifier

Random forest classifiers are fast and can work with data which is unbalanced or has
missing values. She wrote the code in Listing 5-30 to apply this ensemble technique to the
application.

Listing 5-30. Training RandomForest Classifier on Training Dataset

clf = RandomForestClassifier()
clf.fit(x_train, y_train)

Output

RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_impurity_split=1e-07, min_samples_leaf=1,

ChapTer 5 ■ ClassifiCaTion

192

min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=10, n_jobs=1, oob_score=False, random_state=None,
verbose=0, warm_start=False)

Dr. Judy applied the random forest classifier with the default parameters
configuration. She then wrote the code snippet in Listing 5-31 to evaluate the goodness of
the random forest classifier model.

Listing 5-31. Finding Accuracy of the Random Forest Classifier Model

y_pred = clf.predict(x_test)
model_performance('Random Forest', x_train, y_train, y_test, y_pred)

Output

Model name: Random Forest
Test accuracy (Accuracy Score): 0.640874
Test accuracy (ROC AUC Score): 0.534295
Train accuracy: 0.990071
Area Under the Precision-Recall Curve: 0.132014

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Tr
ue

 P
os

iti
ve

 R
at

e

0.0 0.2 0.4 0.6 0.8 1.0 1.2

False Positive Rate

Receiver Operating Characteristic

AUC = 0.53

Figure 5-17. ROC curve for random forest classifier

Train accuracy resembled that of the decision tree classifier. It appeared that both of
the tree classifier techniques overfitted the model. However, contrary to the decision tree
classifier, test accuracy of the random forest classifier increased considerably. However,
the test level accuracy was nowhere close to that gained from the SGD classifier with
kernel approximation (i.e., 0.7 vs. 0.64).

Having applied the random forest classifier, Dr. Judy was interested to see if the
boosting ensemble would yield a strong model or not. For that purpose she planned to
apply gradient boosting to the train-test split obtained from Listing 5-24.

ChapTer 5 ■ ClassifiCaTion

193

Gradient Boosting
In Boosting, the selection of samples is done by giving more and more weight to hard-to-
classify observations. Gradient boosting classification produces a prediction model in the
form of an ensemble of weak predictive models, usually decision trees. It generalizes the
model by optimizing for the arbitrary differentiable loss function. At each stage, regression
trees fit on the negative gradient of binomial or multinomial deviance loss function.

In simple terminology, the gradient boosting classifier does the following:

 1. Gradient boosting builds an ensemble of trees one by one.

 2. Predictions of all individual trees are summed.

 3. Discrepancy between target function and current ensemble
prediction (i.e., residual) is reconstructed.

 4. The next tree in the ensemble should complement existing
trees and minimize the residual of the ensemble.

Dr. Judy was optimistic that gradient boosting classifiers would yield the best results as
they assign more weight to hard-to-classify samples, which will make the ensemble exert
more efforts to classify these high-weight samples. For that purpose she wrote the code
snippet in Listing 5-32 to train the model and then predict labels for the testing dataset.

Listing 5-32. Training the Model by Applying Gradient Boosting Classifier and Predicting
Status Labels

clf = GradientBoostingClassifier(random_state=10, learning_rate=0.1,
n_estimators=200, max_depth=5, max_features=10)
clf.fit(x_train, y_train)
y_pred = clf.predict(x_test)

This time around, Dr. Judy passed in some parameters while initializing the model.
She decided to go with a learning rate of 0.1, which is not too small and not too large.
Other than that she decided on maximum iterations of 200 and a tree with a maximum
depth of 5, and she limited the model to train itself from a maximum of ten features. Dr.
Judy wrote the code snippet in Listing 5-33 to evaluate the model for goodness. For that
purpose she passed the train, test, and predicted values as parameters to the ‘model
performance’ method earlier defined in Listing 5-24.

Listing 5-33. Finding Accuracy of Gradient Boosting Classifier

model_performance('Gradient Boosting', x_train, y_train, y_test, y_pred)

Output

Model name: Gradient Boosting
Test accuracy (Accuracy Score): 0.700408
Test accuracy (ROC AUC Score): 0.514929
Train accuracy: 0.707403
Area Under the Precision-Recall Curve: 0.153744

ChapTer 5 ■ ClassifiCaTion

194

Dr. Judy believed that the model did a fair job of avoiding overfitting. Accuracy
improved relative to the earlier applied models, with a ROC score rising over that of the
kernel approximation using the SGD classifier. However, the ROC score was still lower
than what came up from the decision tree classifier model.

While doing research, Dr. Judy had discovered that gradient boosting classification
models also output the importance score the model gave to each feature set while
training the model. She was curious to find which features outperformed others while
training the model. For that purpose she wrote the code in Listing 5-34 to see features’
importance scores.

Listing 5-34. Printing Features’ Weight as Assigned by Gradient Boosting Classifier

for feature, score in zip(features_of_choice, list(clf.feature_importances_)):
 print '%s\t%f'%(feature, score)

Output

Age 0.143221
Gender 0.009629
DayOfTheWeek 0.053643
Diabetes 0.005889
Alcoolism 0.010774
HiperTension 0.006360
Smokes 0.011096
Scholarship 0.010460
Tuberculosis 0.003295
Sms_Reminder 0.019245
AwaitingTime 0.128393
AppointmentRegistration_year 0.023332
AppointmentRegistration_month 0.045764
AppointmentRegistration_day 0.077271
AppointmentData_year 0.019696

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Tr
ue

 P
os

iti
ve

 R
at

e

0.0 0.2 0.4 0.6 0.8 1.0 1.2

False Positive Rate

Receiver Operating Characteristic

AUC = 0.51

Figure 5-18. ROC curve for gradient boosting classifier

ChapTer 5 ■ ClassifiCaTion

195

AppointmentData_month 0.066774
AppointmentData_day 0.119192
AppointmentRegistration_hour 0.066528
AppointmentRegistration_min 0.091829
AppointmentRegistration_sec 0.087611

Features named Age, AwaitingTime, and AppointmentData_day were assigned the
most weight by the gradient boosting classifier. Dr. Judy was thrilled to see that the model
was in line with her analogy about Age and AwaitingTime while doing exploratory data
analysis. Features named Gender, HiperTension, Diabetes, and Tuberculosis were given
the least weight by the gradient boosting classification model.

Dr. Judy had had a productive data analysis and classification sprint. However, as
the meeting was scheduled in the next half hour she couldn’t proceed further, and had to
present whatever findings she had gained so far. She couldn’t add more to her findings
unless any one of you can try some other classification alternatives for her. She had some
alternatives in mind which she diligently added in the Exercises.

EXERCISES

1. repeat gradient boosting classification but this time only
consider the features it deemed important. Did aUC and roC
improve?

2. apply grid search (check Chapter 4 for reference) to gradient
boosting to fine-tune the parameters of learning rate,
max_depth, etc.

3. Transform the data using pCa (check Chapter 4 for reference),
which we used in the last chapter, and then apply all the models
we discussed to see if we achieve improvement.

4. recently a new type of boosting, Xgboost, has been popular
among data scientists. apply that to our dataset, optimize using
grid search, and see if it performs relatively better than gradient
boosting.

Dr. Judy was curious to know if there are other real-world applications to
classification. For that purpose she checked the Internet and compiled some of the most
compelling applications of classification to date.

Applications of Classification
Several fields of study have numerous applications for classification.

http://dx.doi.org/10.1007/978-1-4842-2823-4_4
http://dx.doi.org/10.1007/978-1-4842-2823-4_4

ChapTer 5 ■ ClassifiCaTion

196

Image Classification
Deep learning has wide applications in predicting the objects represented within images.
This helps in image clustering within search engines and recommendation engines in
applications like Instagram.

Music Classification
Music applications like Pandora perform classification algorithms on music to
recommend one that matches your preferences. The beauty of it is that you don’t have to
explicitly tell Pandora your preference as it will learn on its own.

E-mail Spam Filtering
E-mail services such as Gmail, Outlook, Ymail, and so on have deployed algorithms to
classify spam e-mails compared to legitimate e-mails. The verdict then decides which
e-mails to dump into the Spam folder.

Insurance
Insurance companies receive a huge amount of insurance claims regarding damages.
Insurance companies thus have to invest a lot of time and human resources to investigate
the matter and come up with the final verdict. The final verdict is right in many of the
cases but wrong in some of the cases. Hence, recently efforts have been made to deploy
classification models in insurance companies to discriminate fraud claim applications
from the legitimate ones.

Dr. Judy summed up her analysis by recalling the initially laid objectives which were
to determine reasons for recurring losses and methods to detect the occurrence of losses
in the future. She started off by performing univariate and multivariate analysis of the
data to determine the areas of data treatment. The exploratory analysis also enabled her
to see that the losses were apparently a result of roughly 33% of patients who did not show
up on their appointment day and time. After performing data wrangling, she thought it
better to generate more features from the existing ones to make it easy for the model to
capture the true essence of data.

She then reviewed multiple classification model evaluation techniques and split
the data into train-test splits to enable evaluation of the models. Dr. Judy started off with
decision tree classifiers which showed overfitting and high test error. However, after
applying a handful of classification techniques she decided on the gradient boosting
classification model, which yielded relatively better accuracy. By means of the gradient
boosting model she now had the power to predict in real time if a patient who had
booked an appointment would or would not show up on the day of his/her appointment.
She knew that she had achieved a major milestone and was now looking forward to the
board meeting.

197© Danish Haroon 2017
D. Haroon, Python Machine Learning Case Studies, DOI 10.1007/978-1-4842-2823-4

APPENDIX A

Chart types and when
to use them

Pie chart
Figure illustration of pie chart

35.8 %

38.3 %

4.5 %
2.3 %

18.3 %

Browser Usage for April 2012

Firefox
Internet Explorer

Chrome
Safari
Opera

Pie chart is best to use when trying to compare parts of a whole. If is suitable for
analyzing categorical variables.

Appendix A ■ ChArt types And when to use them

198

Bar graph
Figure illustration of a bar graph

Rabbit
0

1

2

3

4

5

nu
m

be
r o

f p
eo

pl
e

6

7

8

9

10

11
What kind of pet do you own?

Dog Cat Goldfish Hamster

Bar graph is used to compare things between different groups or track changes over time
(i.e. when changes are large). Bar graph is suitable for categorical and interval variables.

Histogram
Figure illustration of a histogram

40
0

5

10

15

20

25

60 80 100 120 140

Histogram is suitable for continuous variables. It is used to plot frequency
distributions with or without classes. Changing the class intervals will change the
underlying distribution.

Appendix A ■ ChArt types And when to use them

199

Stem and Leaf plot
Figure illustration of a Stem and Leaf plot

15, 16, 21, 23, 23, 26, 26, 30, 32, 41

how to
place “32”

Stem
1

2

3

4

Leaf
5 6

0 2

1

1 3 3 6 6

Stem and Leaf plot is suitable for discrete interval variables, not that much in
frequency. In other words Stem and Leaf plot can be inferred to as the transpose of a
histogram. Contrary to histogram, we can reconstruct the original data from a Stem and
Leaf plot.

Box plot
Figure illustration of a Box plot

Minimum

Lower Quartile
(Q1)

1.5 IQR 1.5 IQRIQR

Data Range

Outliers
Outliers

Median
(Q2)

Upper Quartile
(Q2)

Maximum

Upper Limit
Lower Limit

Box plot is a transformed version of histogram which can help understand the
median, variance and skewness of the data distribution. Line in the center is represented
by the median, and lines on both ends are referred to as whiskers. Edges of the whiskers
represent the first and second quartile with the difference between those referred to as an
Inter Quartile Range. Points lying outside this range are considered to as outliers.

201© Danish Haroon 2017
D. Haroon, Python Machine Learning Case Studies, DOI 10.1007/978-1-4842-2823-4

��������� A
Autocorrelation

ACF, 113
Durbin Watson (see Durbin Watson

statistic)
PACF, 114

Autocorrelation function (ACF), 113
Auto-regressive integrated moving

averages (ARIMA)
ARMA, 119–120
combined model, 122
linear function, 120
moving average, 121

Auto-regressive moving averages
(ARMA), 119

��������� B
Bayesian Gaussian mixture

model, 156–158

��������� C
Center of measure

center statistics, 23–24
mean

arithmetic, 21
geometric, 21

median, 22
mode, 22
normal distribution, 25–26
outliers (see Outliers)
skewness, 26
standard deviation, 23
variance, 22–23

Central limit theorem, 40

Classification model
confusion matrix, 181
cross-validation, 184
dataset, 162, 164, 166
decision trees, 185–186
e-mail spam filtering, 196
feature representations, 166–168
features, 178, 180
image classification, 196
insurance, 196
music, 196
ROC, 182

Clustering
Bayesian Gaussian mixture

(see Bayesian Gaussian
mixture model)

BIC score, 141
dataset, 129–132
data transformation, 135–137
demographic-based customer

segmentation, 159
Elbow method, 138
Gaussian mixture (see Gaussian

mixture models)
K means, 137–138, 143–144
PCA (see Principle component

analysis (PCA))
requirements, 134
search engines, 159
Silhouette score, 142–143
supervised vs. unsupervised

learning, 133
techniques, 134
variance, 139–140

Concrete comprehensive
strength, 45–47

Continuous/quantitative variables, 6

Index

■ INDEX

202

Correlation
dataset, 63
Kendall rank, 34
negative, 61
pair-wise Pearson, 61
Pearson R, 34
positive, 61
response and exploratory variables,

58, 60, 62
Spearman rank, 35–36

��������� D
Data transformation

data frame transformation, 135
matrix, 136–137

Data wrangling, 168–169, 171–172
Demographic variable, 8
Dependent and independent

variables, 8–9
Dickey-Fuller test, 100–101
Discrete variables, 8
Durbin Watson statistic, 114–115

��������� E
ElasticNet, 81–82
Elbow method, 138
Exploratory data analysis (EDA), 99

continuous/quantitative (see
Continuous/quantitative
variables)

correlation, 173
dataset, 4–5
discrete variables, 7
multivariate (see Multivariate

analysis)
status, 175, 177
time series components, 18–19
univariate (see Univariate analysis)
variables

demographic, 8
dependent and independent, 8–9
discrete, 7
lurking, 8

��������� F
Forecasts

linear regression model, 126
sales, 127

time series, 123–125
weather, 127

��������� G
Gaussian mixture models

covariance, 152–153
function, 152
keywords, 155
K means, 151
objects, 154

Gradient boosting regression
multiple, 85
non-linear flexible regression

technique, 82
single, 83–84

Grid search, 75

��������� H, I, J
Hypothesis testing

null, 37
t distributions and

sample size, 38–39
t statistics, 37

��������� K
Kernel approximation

bagging, 189
boosting, 190
ensemble method, 189
SGD classifier, 187–188

��������� L
Lasso regression

definition, 79
multiple, 80

Linear regression
multiple, 73–74
single, 71–72

Lurking variable, 8

��������� M
Mean absolute error (MAE), 68
Mean squared error (MSE), 68
Multicollinearity and

singularity, 55–56
Multivariate analysis, 14–17

■ INDEX

203

��������� N
Normal distribution, 25–26

��������� O
Outliers

center of measures, 31
interval of values, 28
trip duration, 29, 30, 32
values, 30

Overfitting. See Underfitting

��������� P, Q
Partial autocorrelation function (PACF), 114
Principle component analysis (PCA)

data frame, 146
keywords, 147–151
orthogonal transformation, 144
two-dimensional space, 145

��������� R
Random forest classification

accuracy, 192
boosting, 193–195
definition, 191

Receiver operating characteristic (ROC)
FPR, 182
TPR, 182

Regression
agriculture, 91
call center, 91
cases-to-independent variables

(IVs), 55
concrete compressive strength, 45, 47
correlation coefficients (see

Correlation)
dataset, 57
extrapolation, 48
insurance companies, 91
interpolation, 48
least squares, 50
linear, 49
metrics

explained variance score, 68
MAE, 68
MSE, 68–69
residual, 69
residual plot, 70

RSS, 70
R2, 69

missing data, 55
multicollinearity and singularity, 55–56
multiple, 51
name mapping, 57
polynomial, 53–54
predict bonds’ value, 90
predicting salary, 91
predicting sales, 89–90
rate of inflation, 90–91
real estate industry, 92–94
stepwise, 52–53

Residual sum of squares (RSS), 70
Ridge regression

alpha values, 77
linear least squares, 75
multicollinearity, 75
multiple, 76
representation, 76

��������� S
Skewness, 26
Sklearn.metrics, 67
Statistics and probability

actuarial science, 42
astrostatistics, 42
biostatistics, 42
business analytics, 42
center of measure (see Center of

measure)
correlation (see Correlation)
cycle sharing scheme, 2–3
econometrics, 43
EDA (see Exploratory data analysis

(EDA))
elections, 43
machine learning, 43
statistical signal processing, 43

Support vector machines
hyperplane, 86
multiple, 88
single, 86–87

��������� T
Time series components

cyclic pattern, 18
seasonal pattern, 18
trend, 19

■ INDEX

204

Time series object
dataset, 96
decomposition, 111–113
Dickey-Fuller test, 100–101
differencing, 110–111
disease outbreak, 128
exploratory data analysis, 99
exponential

smoothing, 108–109
forecast (see Forecasts)
memory, 97–98
moving average

smoothing, 106, 108
properties, 99
sales forecasting, 127
stock market prediction, 128
tests, 116, 118–119
transformations

log, 102–104
square root, 104–106

trend and remove, 106
unemployment

estimates, 127
weather forecasting, 127

��������� U, V, W, X, Y, Z
Underfitting

cross-validation, 66–67
high bias, 65–66
high variance, 66
non-linear line, 64–65

Univariate analysis
dataset, 9
distributions, 11, 13
user types, 10–11, 13

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Statistics and Probability
	Case Study: Cycle Sharing Scheme—Determining Brand Persona
	Performing Exploratory Data Analysis
	Feature Exploration
	Types of variables
	Continuous/Quantitative Variables
	True Zero Point
	Interval Variables
	Ratio Variables

	Discrete Variables
	Ordinal Variables
	Nominal Variables
	Dichotomous Variables

	Lurking Variable
	Demographic Variable
	Dependent and Independent Variables

	Univariate Analysis
	Multivariate Analysis
	Time Series Components
	Seasonal Pattern
	Cyclic Pattern
	Trend

	Measuring Center of Measure
	Mean
	Arithmetic Mean
	Geometric Mean

	Median
	Mode
	Variance
	Standard Deviation
	Changes in Measure of Center Statistics due to Presence of Constants
	The Normal Distribution
	Skewness
	Outliers

	Correlation
	Pearson R Correlation
	Kendall Rank Correlation
	Spearman Rank Correlation

	Hypothesis Testing: Comparing Two Groups
	t-Statistics
	t-Distributions and Sample Size

	Central Limit Theorem
	Case Study Findings
	Applications of Statistics and Probability
	Actuarial Science
	Biostatistics
	Astrostatistics
	Business Analytics
	Econometrics
	Machine Learning
	Statistical Signal Processing
	Elections

	Chapter 2: Regression
	Case Study: Removing Inconsistencies in Concrete Compressive Strength
	Concepts of Regression
	Interpolation and Extrapolation
	Linear Regression
	Least Squares Regression Line of y on x
	Multiple Regression
	Stepwise Regression
	Polynomial Regression

	Assumptions of Regressions
	Number of Cases
	Missing Data
	Outliers

	Multicollinearity and Singularity

	Features’ Exploration
	Correlation

	Overfitting and Underfitting
	Regression Metrics of Evaluation
	Explained Variance Score
	Mean Absolute Error
	Mean Squared Error
	R2
	Residual
	Residual Plot
	Residual Sum of Squares

	Types of Regression
	Linear Regression
	Grid Search
	Ridge Regression
	Lasso Regression
	ElasticNet
	Gradient Boosting Regression
	Support Vector Machines

	Applications of Regression
	Predicting Sales
	Predicting Value of Bond
	Rate of Inflation
	Insurance Companies
	Call Center
	Agriculture
	Predicting Salary
	Real Estate Industry

	Chapter 3: Time Series
	Case Study: Predicting Daily Adjusted Closing Rate of Yahoo
	Feature Exploration
	Time Series Modeling

	Evaluating the Stationary Nature of a Time Series Object
	Properties of a Time Series Which Is Stationary in Nature
	Tests to Determine If a Time Series Is Stationary
	Exploratory Data Analysis
	Dickey-Fuller Test

	Methods of Making a Time Series Object Stationary
	Applying Transformations
	Log Transformation
	Square Root Transformation

	Estimating Trend and Removing It from the Original Series
	Moving Average Smoothing
	Exponentially Weighted Moving Average
	Differencing
	Decomposition

	Tests to Determine If a Time Series Has Autocorrelation
	Autocorrelation Function
	Partial Autocorrelation Function
	Measuring Autocorrelation
	Durbin Watson Statistic

	Modeling a Time Series
	Tests to Validate Forecasted Series
	Mean Forecast Error
	Mean Absolute Error
	Residual Sum of Squares
	Root Mean Squared Error

	Deciding Upon the Parameters for Modeling

	Auto-Regressive Integrated Moving Averages
	Auto-Regressive Moving Averages
	Auto-Regressive
	Moving Average
	Combined Model

	Scaling Back the Forecast
	Applications of Time Series Analysis
	Sales Forecasting
	Weather Forecasting
	Unemployment Estimates
	Disease Outbreak
	Stock Market Prediction

	Chapter 4: Clustering
	Case Study: Determination of Short Tail Keywords for Marketing
	Features’ Exploration
	Supervised vs. Unsupervised Learning
	Supervised Learning
	Unsupervised Learning

	Clustering
	Data Transformation for Modeling
	Metrics of Evaluating Clustering Models

	Clustering Models
	k-Means Clustering
	Elbow Method
	Variance Explained
	Bayesian Information Criterion Score
	Silhouette Score

	Applying k-Means Clustering for Optimal Number of Clusters
	Principle Component Analysis
	Gaussian Mixture Model
	Bayesian Gaussian Mixture Model

	Applications of Clustering
	Identifying Diseases
	Document Clustering in Search Engines
	Demographic-Based Customer Segmentation

	Chapter 5: Classification
	Case Study: Ohio Clinic—Meeting Supply and Demand
	Features’ Exploration
	Performing Data Wrangling
	Performing Exploratory Data Analysis
	Features’ Generation
	Classification
	Model Evaluation Techniques
	Confusion Matrix
	Binary Classification: Receiver Operating Characteristic

	Ensuring Cross-Validation by Splitting the Dataset
	Decision Tree Classification

	Kernel Approximation
	SGD Classifier
	Ensemble Methods
	Bagging
	Boosting

	Random Forest Classification
	Gradient Boosting

	Applications of Classification
	Image Classification
	Music Classification
	E-mail Spam Filtering
	Insurance

	Appendix A: Chart types and when to use them
	Pie chart
	Bar graph
	Histogram
	Stem and Leaf plot
	Box plot

	Index

