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Introduction

This volume embraces machine learning approaches and Python to enable automatic 
rendering of rich insights and solutions to business problems. The book uses a 
hands-on case study-based approach to crack real-world applications where machine 
learning concepts can provide a best fit. These smarter machines will enable your 
business processes to achieve efficiencies in minimal time and resources.

Python Machine Learning Case Studies walks you through a step-by-step approach to 
improve business processes and help you discover the pivotal points that frame corporate 
strategies. You will read about machine learning techniques that can provide support to 
your products and services. The book also highlights the pros and cons of each of these 
machine learning concepts to help you decide which one best suits your needs.

By taking a step-by-step approach to coding you will be able to understand the 
rationale behind model selection within the machine learning process. The book is 
equipped with practical examples and code snippets to ensure that you understand the 
data science approach for solving real-world problems.

Python Machine Leaarning Case Studies acts as an enabler for people from both 
technical and non-technical backgrounds to apply machine learning techniques to 
real-world problems. Each chapter starts with a case study that has a well-defined 
business problem. The chapters then proceed by incorporating storylines, and code 
snippets to decide on the most optimal solution. Exercises are laid out throughout the 
chapters to enable the hands-on practice of the concepts learned. Each chapter ends 
with a highlight of real-world applications to which the concepts learned can be applied. 
Following is a brief overview of the contents covered in each of the five chapters:

Chapter 1 covers the concepts of statistics and probability.
Chapter 2 talks about regression techniques and methods to fine-tune the model.
Chapter 3 exposes readers to time series models and covers the property of 

stationary in detail.
Chapter 4 uses clustering as an aid to segment the data for marketing purposes.
Chapter 5 talks about classification models and evaluation metrics to gauge the 

goodness of these models.

http://dx.doi.org/10.1007/978-1-4842-2823-4_1
http://dx.doi.org/10.1007/978-1-4842-2823-4_2
http://dx.doi.org/10.1007/978-1-4842-2823-4_3
http://dx.doi.org/10.1007/978-1-4842-2823-4_4
http://dx.doi.org/10.1007/978-1-4842-2823-4_5
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CHAPTER 1

Statistics and Probability

The purpose of this chapter is to instill in you the basic concepts of traditional statistics 
and probability. Certainly many of you might be wondering what it has to do with 
machine learning. Well, in order to apply a best fit model to your data, the most important 
prerequisite is for you to understand the data in the first place. This will enable you to find 
out distributions within data, measure the goodness of data, and run some basic tests 
to understand if some form of relationship exists between dependant and independent 
variables. Let’s dive in.

 ■ Note  This book incorporates Python 2.7.11 as the de facto standard for coding 
examples. Moreover, you are required to have it installed it for the Exercises as well.

So why do I prefer Python 2.7.11 over Python 3x? Following are some of the reasons:

•	 Third-party library support for Python 2x is relatively better than 
support for Python 3x. This means that there are a considerable 
number of libraries in Python 2x that lack support in Python 3x.

•	 Some current Linux distributions and macOS provide Python 2x 
by default. The objective is to let readers, regardless of their OS 
version, apply the code examples on their systems, and thus this 
is the choice to go forward with.

•	 The above-mentioned facts are the reason why companies prefer 
to work with Python 2x or why they decide not to migrate their 
code base from Python 2x to Python 3x.

Case Study: Cycle Sharing  
Scheme—Determining Brand Persona
Nancy and Eric were assigned with the huge task of determining the brand persona 
for a new cycle share scheme. They had to present their results at this year’s annual 
board meeting in order to lay out a strong marketing plan for reaching out to 
potential customers.
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The cycle sharing scheme provides means for the people of the city to commute 
using a convenient, cheap, and green transportation alternative. The service has 500 
bikes at 50 stations across Seattle. Each of the stations has a dock locking system (where 
all bikes are parked); kiosks (so customers can get a membership key or pay for a trip); 
and a helmet rental service. A person can choose between purchasing a membership 
key or short-term pass. A membership key entitles an annual membership, and the key 
can be obtained from a kiosk. Advantages for members include quick retrieval of bikes 
and unlimited 45-minute rentals. Short-term passes offer access to bikes for a 24-hour 
or 3-day time interval. Riders can avail and return the bikes at any of the 50 stations 
citywide.

Jason started this service in May 2014 and since then had been focusing on 
increasing the number of bikes as well as docking stations in order to increase 
convenience and accessibility for his customers. Despite this expansion, customer 
retention remained an issue. As Jason recalled, “We had planned to put in the investment 
for a year to lay out the infrastructure necessary for the customers to start using it. We 
had a strategy to make sure that the retention levels remain high to make this model self-
sustainable. However, it worked otherwise (i.e., the customer base didn’t catch up with 
the rate of the infrastructure expansion).”

A private service would have had three alternatives to curb this problem: get 
sponsors on board, increase service charges, or expand the pool of customers. Price hikes 
were not an option for Jason as this was a publicly sponsored initiative with the goal of 
providing affordable transportation to all. As for increasing the customer base, they had 
to decide upon a marketing channel that guarantees broad reach on low cost incurred.

Nancy, a marketer who had worked in the corporate sector for ten years, and Eric, a 
data analyst, were explicitly hired to find a way to make things work around this problem. 
The advantage on their side was that they were provided with the dataset of transaction 
history and thus they didn’t had to go through the hassle of conducting marketing 
research to gather data.

Nancy realized that attracting recurring customers on a minimal budget 
required understanding the customers in the first place (i.e., persona). As she stated, 
“Understanding the persona of your brand is essential, as it helps you reach a targeted 
audience which is likely to convert at a higher probability. Moreover, this also helps in 
reaching out to sponsors who target a similar persona. This two-fold approach can make 
our bottom line positive.”

As Nancy and Eric contemplated the problem at hand, they had questions like the 
following: Which attribute correlates the best with trip duration and number of trips? 
Which age generation adapts the most to our service?

Following is the data dictionary of the Trips dataset that was provided to Nancy and 
Eric:
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Exercises for this chapter required Eric to install the packages shown in Listing 1-1.  
He preferred to import all of them upfront to avoid bottlenecks while implementing the 
code snippets on your local machine.

However, for Eric to import these packages in his code, he needed to install them in 
the first place. He did so as follows:

 1. Opened terminal/shell

 2. Navigated to his code directory using terminal/shell

 3. Installed pip:

python get-pip.py

 4. Installed each package separately, for example:

pip install pandas

Listing 1-1. Importing Packages Required for This Chapter

%matplotlib inline

import random
import datetime
import pandas as pd
import matplotlib.pyplot as plt
import statistics

Table 1-1. Data Dictionary for the Trips Data from Cycles Share Dataset 

Feature name Description

trip_id Unique ID assigned to each trip

Starttime Day and time when the trip started, in PST

Stoptime Day and time when the trip ended, in PST

Bikeid ID attached to each bike

Tripduration Time of trip in seconds

from_station_name Name of station where the trip originated

to_station_name Name of station where the trip terminated

from_station_id ID of station where trip originated

to_station_id ID of station where trip terminated

Usertype Value can include either of the following: short-term pass 
holder or member

Gender Gender of the rider

Birthyear Birth year of the rider
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import numpy as np
import scipy
from scipy import stats
import seaborn

Performing Exploratory Data Analysis
Eric recalled to have explained Exploratory Data Analysis in the following words: 

What do I mean by exploratory data analysis (EDA)? Well, by this I 
mean to see the data visually. Why do we need to see the data visually? 
Well, considering that you have 1 million observations in your dataset 
then it won’t be easy for you to understand the data just by looking at it, 
so it would be better to plot it visually. But don’t you think it’s a waste of 
time? No not at all, because understanding the data lets us understand 
the importance of features and their limitations.

Feature Exploration
Eric started off by loading the data into memory (see Listing 1-2).

Listing 1-2. Reading the Data into Memory

data = pd.read_csv('examples/trip.csv')

Nancy was curious to know how big the data was and what it looked like. Hence, Eric 
wrote the code in Listing 1-3 to print some initial observations of the dataset to get a feel 
of what it contains.

Listing 1-3. Printing Size of the Dataset and Printing First Few Rows

print len(data)
data.head()

Output

236065
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trip_id

431 10/13/2014
10:31

10/13/2014
10:48

SEA00298 985.935 2nd Ave & Spring St
Occidental Park/
Occidental Ave S
& S Washing...

432 10/13/2014
10:32

10/13/2014
10:48

SEA00195 926.375 2nd Ave & Spring St
Occidental Park/
Occidental Ave S
& S Washing...

433 10/13/2014
10:33

10/13/2014
10:48

SEA00486 883.831 2nd Ave & Spring St
Occidental Park/
Occidental Ave S
& S Washing...

434 10/13/2014
10:34

10/13/2014
10:48

SEA00333 865.937 2nd Ave & Spring St
Occidental Park/
Occidental Ave S
& S Washing...

435 10/13/2014
10:34

10/13/2014
10:49

SEA00202 923.923 2nd Ave & Spring St
Occidental Park/
Occidental Ave S
& S Washing...

starttime stoptime bikeid tripduration from_station_name to_station_name

Table 1-2. Print of Observations in the First Seven Columns of Dataset

from_station_id

CBD-06 PS-04 Member Male 1960.0

CBD-06 PS-04 Member Male

Male

1970.0

CBD-06 PS-04 Member Female 1988.0

CBD-06 PS-04 Member Female 1977.0

CBD-06 PS-04 Member 1971.0

to_station_id usertype gender birthyear

Table 1-3. Print of Observations in the Last five Columns of Dataset
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After looking at Table 1-2 and Table 1-3 Nancy noticed that tripduration is 
represented in seconds. Moreover, the unique identifiers for bike, from_station, and 
to_station are in the form of strings, contrary to those for trip identifier which are in 
the form of integers.

Types of variables
Nancy decided to go an extra mile and allocated data type to each feature in the dataset.

After looking at the feature classification in Table 1-4 Eric noticed that Nancy had 
correctly identified the data types and thus it seemed to be an easy job for him to explain 
what variable types mean. As Eric recalled to have explained the following:

In normal everyday interaction with data we usually represent numbers 
as integers, text as strings, True/False as Boolean, etc. These are what 
we refer to as data types. But the lingo in machine learning is a bit more 
granular, as it splits the data types we knew earlier into variable types. 
Understanding these variable types is crucial in deciding upon the type 
of charts while doing exploratory data analysis or while deciding upon a 
suitable machine learning algorithm to be applied on our data.

Continuous/Quantitative Variables
A continuous variable can have an infinite number of values within a given range. Unlike 
discrete variables, they are not countable. Before exploring the types of continuous 
variables, let’s understand what is meant by a true zero point.

Table 1-4. Nancy’s Approach to Classifying Variables into Data Types

Feature name Variable type

trip_id
bikeid
tripduration
from_station_id
to_station_id
birthyear

Numbers

Starttime
Stoptime

Date

from_station_name to_station_name
Usertype
Gender

Text
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True Zero Point

If a level of measurement has a true zero point, then a value of 0 means you have nothing. 
Take, for example, a ratio variable which represents the number of cupcakes bought. A 
value of 0 will signify that you didn’t buy even a single cupcake. The true zero point is a 
strong discriminator between interval and ratio variables.

Let’s now explore the different types of continuous variables.

Interval Variables

Interval variables exist around data which is continuous in nature and has a numerical 
value. Take, for example, the temperature of a neighborhood measured on a daily basis. 
Difference between intervals remains constant, such that the difference between 70 
Celsius and 50 Celsius is the same as the difference between 80 Celsius and 100 Celsius.
We can compute the mean and median of interval variables however they don’t have a 
true zero point.

Ratio Variables

Properties of interval variables are very similar to those of ratio variables with the 
difference that in ratio variables a 0 indicates the absence of that measurement. Take, 
for example, distance covered by cars from a certain neighborhood. Temperature in 
Celsius is an interval variable, so having a value of 0 Celsius does not mean absence of 
temperature. However, notice that a value of 0 KM will depict no distance covered by the 
car and thus is considered as a ratio variable. Moreover, as evident from the name, ratios 
of measurements can be used as well such that a distance covered of 50 KM is twice the 
distance of 25 KM covered by a car.

Discrete Variables
A discrete variable will have finite set of values within a given range. Unlike continuous 
variables those are countable. Let’s look at some examples of discrete variables which are 
categorical in nature.

Ordinal Variables

Ordinal variables have values that are in an order from lowest to highest or vice versa. 
These levels within ordinal variables can have unequal spacing between them. Take, for 
example, the following levels:

 1. Primary school

 2. High school

 3. College

 4. University
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The difference between primary school and high school in years is definitely not 
equal to the difference between high school and college. If these differences were 
constant, then this variable would have also qualified as an interval variable.

Nominal Variables

Nominal variables are categorical variables with no intrinsic order; however, constant 
differences between the levels exist. Examples of nominal variables can be gender, month 
of the year, cars released by a manufacturer, and so on. In the case of month of year, each 
month is a different level.

Dichotomous Variables

Dichotomous variables are nominal variables which have only two categories or levels. 
Examples include

•	 Age: under 24 years, above 24 years

•	 Gender: male, female

Lurking Variable
A lurking variable is not among exploratory (i.e., independent) or response  
(i.e., dependent) variables and yet may influence the interpretations of relationship 
among these variables. For example, if we want to predict whether or not an applicant 
will get admission in a college on the basis of his/her gender. A possible lurking variable 
in this case can be the name of the department the applicant is seeking admission to.

Demographic Variable
Demography (from the Greek word meaning “description of people”) is the study of 
human populations. The discipline examines size and composition of populations as well 
as the movement of people from locale to locale. Demographers also analyze the effects 
of population growth and its control. A demographic variable is a variable that is collected 
by researchers to describe the nature and distribution of the sample used with inferential 
statistics. Within applied statistics and research, these are variables such as age, gender, 
ethnicity, socioeconomic measures, and group membership.

Dependent and Independent Variables
An independent variable is also referred to as an exploratory variable because it is being 
used to explain or predict the dependent variable, also referred to as a response variable 
or outcome variable.

Taking the dataset into consideration, what are the dependent and independent 
variables? Let’s say that Cycle Share System’s management approaches you and asks 
you to build a system for them to predict the trip duration beforehand so that the supply 
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of cycles can be ensured. In that case, what is your dependent variable? Definitely 
tripduration. And what are the independent variables? Well, these variables will comprise 
of the features which we believe influence the dependent variable (e.g., usertype, gender, 
and time and date of the day).

Eric asked Nancy to classify the features in the variable types he had just explained.

Nancy now had a clear idea of the variable types within machine learning, and also 
which of the features qualify for which of those variable types (see Table 1-5). However 
despite of looking at the initial observations of each of these features (see Table 1-2) she 
couldn’t deduce the depth and breadth of information that each of those tables contains. 
She mentioned this to Eric, and Eric, being a data analytics guru, had an answer: perform 
univariate analysis on features within the dataset.

Univariate Analysis
Univariate comes from the word “uni” meaning one. This is the analysis performed on a 
single variable and thus does not account for any sort of relationship among exploratory 
variables.

Eric decided to perform univariate analysis on the dataset to better understand the 
features in isolation (see Listing  1-4). 

Listing 1-4. Determining the Time Range of the Dataset

data = data.sort_values(by='starttime')
data.reset_index()
print 'Date range of dataset: %s - %s'%(data.ix[1, 'starttime'],  
data.ix[len(data)-1, 'stoptime'])

Output

Date range of dataset: 10/13/2014 10:32 - 9/1/2016 0:20

Table 1-5. Nancy’s Approach to Classifying Variables into Variable Types

Feature name Variable type

trip_id
bikeid
tripduration
from_station_id
to_station_id
birthyear

Continuous

Starttime
Stoptime

DateTime

from_station_name  
to_station_name

String

Usertype gender Nominal
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Eric knew that Nancy would have a hard time understanding the code so he decided 
to explain the ones that he felt were complex in nature. In regard to the code in Listing 
1-4, Eric explained the following:

We started off by sorting the data frame by starttime. Do note that 
data frame is a data structure in Python in which we initially loaded 
the data in Listing 1-2. Data frame helps arrange the data in a tabular 
form and enables quick searching by means of hash values. Moreover, 
data frame comes up with handy functions that make lives easier when 
doing analysis on data. So what sorting did was to change the position 
of records within the data frame, and hence the change in positions 
disturbed the arrangement of the indexes which were earlier in an 
ascending order. Hence, considering this, we decided to reset the indexes 
so that the ordered data frame now has indexes in an ascending order. 
Finally, we printed the date range that started from the first value of 
starttime and ended with the last value of stoptime.

Eric’s analysis presented two insights. One is that the data ranges from October 2014 
up till September 2016 (i.e., three years of data). Moreover, it seems like the cycle sharing 
service is usually operational beyond the standard 9 to 5 business hours.

Nancy believed that short-term pass holders would avail more trips than their 
counterparts. She believed that most people would use the service on a daily basis rather 
than purchasing the long term membership. Eric thought otherwise; he believed that 
new users would be short-term pass holders however once they try out the service and 
become satisfied would ultimately avail the membership to receive the perks and benefits 
offered. He also believed that people tend to give more weight to services they have paid 
for, and they make sure to get the maximum out of each buck spent. Thus, Eric decided 
to plot a bar graph of trip frequencies by user type to validate his viewpoint (see Listing 1-5).  
But before doing so he made a brief document of the commonly used charts and 
situations for which they are a best fit to (see Appendix A for a copy). This chart gave 
Nancy his perspective for choosing a bar graph for the current situation. 

Listing 1-5. Plotting the Distribution of User Types

groupby_user = data.groupby('usertype').size()
groupby_user.plot.bar(title = 'Distribution of user types')
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Nancy didn’t understand the code snippet in Listing 1-5. She was confused by the 
functionality of groupby and size methods. She recalled asking Eric the following: “I can 
understand that groupby groups the data by a given field, that is, usertype, in the current 
situation. But what do we mean by size? Is it the same as count, that is, counts trips falling 
within each of the grouped usertypes?”

Eric was surprised by Nancy’s deductions and he deemed them to be correct. 
However, the bar graph presented insights (see Figure 1-1) in favor of Eric’s view as the 
members tend to avail more trips than their counterparts.

Nancy had recently read an article that talked about the gender gap among 
people who prefer riding bicycles. The article mentioned a cycle sharing scheme in UK 
where 77% of the people who availed the service were men. She wasn’t sure if similar 
phenomenon exists for people using the service in United States. Hence Eric came up 
with the code snippet in Listing 1-6 to answer the question at hand.

Listing 1-6. Plotting the Distribution of Gender

groupby_gender = data.groupby('gender').size()
groupby_gender.plot.bar(title = 'Distribution of genders')
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Figure 1-1. Bar graph signifying the distribution of user types
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Figure 1-2 revealed that the gender gap resonates in states as well. Males seem to 
dominate the trips taken as part of the program.

Nancy, being a marketing guru, was content with the analysis done so far. However 
she wanted to know more about her target customers to whom to company’s marketing 
message will be targetted to. Thus Eric decided to come up with the distribution of 
birth years by writing the code in Listing 1-7. He believed this would help the Nancy 
understand the age groups that are most likely to ride a cycle or the ones that are more 
prone to avail the service.

Listing 1-7. Plotting the Distribution of Birth Years

data = data.sort_values(by='birthyear')
groupby_birthyear = data.groupby('birthyear').size()
groupby_birthyear.plot.bar(title = 'Distribution of birth years',  
figsize = (15,4))
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Figure 1-2. Bar graph signifying the distribution of genders
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Figure 1-3 provided a very interesting illustration. Majority of the people who had 
subscribed to this program belong to Generation Y (i.e., born in the early 1980s to mid 
to late 1990s, also known as millennials). Nancy had recently read the reports published 
by Elite Daily and CrowdTwist which said that millennials are the most loyal generation 
to their favorite brands. One reason for this is their willingness to share thoughts and 
opinions on products/services. These opinions thus form a huge corpus of experiences—
enough information for the millenials to make a conscious decision, a decision they will 
remain loyal to for a long period. Hence Nancy was convinced that most millennials 
would be members rather than short-term pass holders. Eric decided to populate a bar 
graph to see if Nancy’s deduction holds true.

Listing 1-8. Plotting the Frequency of Member Types for Millenials

data_mil = data[(data['birthyear'] >= 1977) & (data['birthyear']<=1994)]
groupby_mil = data_mil.groupby('usertype').size()
groupby_mil.plot.bar(title = 'Distribution of user types')

14000

12000

10000

8000

6000

4000

2000

0

19
31

.0
19

36
.0

19
39

.0
19

42
.0

19
43

.0
19

44
.0

19
45

.0
19

46
.0

19
47

.0
19

48
.0

19
49

.0
19

50
.0

19
51

.0
19

52
.0

19
53

.0
19

54
.0

19
55

.0
19

56
.0

19
57

.0
19

58
.0

19
59

.0
19

60
.0

19
61

.0
19

62
.0

19
63

.0
19

64
.0

19
65

.0
19

66
.0

19
67

.0
19

68
.0

19
69

.0
19

70
.0

19
71

.0
19

72
.0

19
73

.0
19

74
.0

19
75

.0
19

76
.0

19
77

.0
19

78
.0

19
79

.0
19

80
.0

19
81

.0
19

82
.0

19
83

.0
19

84
.0

19
85

.0
19

86
.0

19
87

.0
19

88
.0

19
89

.0
19

90
.0

19
91

.0
19

92
.0

19
93

.0
19

94
.0

19
95

.0
19

96
.0

19
97

.0
19

98
.0

19
99

.0

Distribution of birth years

birthyear

Figure 1-3. Bar graph signifying the distribution of birth years
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After looking at Figure 1-4 Eric was surprised to see that Nancy’s deduction appeared 
to be valid, and Nancy made a note to make sure that the brand engaged millennials as 
part of the marketing plan.

Eric knew that more insights can pop up when more than one feature is used as part 
of the analysis. Hence, he decided to give Nancy a sneak peek at multivariate analysis 
before moving forward with more insights.

Multivariate Analysis
Multivariate analysis refers to incorporation of multiple exploratory variables to 
understand the behavior of a response variable. This seems to be the most feasible 
and realistic approach considering the fact that entities within this world are usually 
interconnected. Thus the variability in response variable might be affected by the 
variability in the interconnected exploratory variables.

Nancy believed males would dominate females in terms of the trips completed. The 
graph in Figure 1-2, which showed that males had completed far more trips than any 
other gender types, made her embrace this viewpoint. Eric thought that the best approach 
to validate this viewpoint was a stacked bar graph (i.e., a bar graph for birth year, but each 
bar having two colors, one for each gender) (see Figure 1-5).

Listing 1-9. Plotting the Distribution of Birth Years by Gender Type

groupby_birthyear_gender = data.groupby(['birthyear', 'gender'])
['birthyear'].count().unstack('gender').fillna(0)
groupby_birthyear_gender[['Male','Female','Other']].plot.bar(title = 
'Distribution of birth years by Gender', stacked=True, figsize = (15,4))
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Figure 1-5. Bar graph signifying the distribution of birth years by gender type
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The code snippet in Listing 1-9 brought up some new aspects not previously 
highlighted.

We at first transformed the data frame by unstacking, that is, splitting, 
the gender column into three columns, that is, Male, Female, and Other. 
This meant that for each of the birth years we had the trip count for all 
three gender types. Finally, a stacked bar graph was created by using this 
transformed data frame.

It seemed as if males were dominating the distribution. It made sense as well. No? 
Well, it did; as seen earlier, that majority of the trips were availed by males, hence this 
skewed the distribution in favor of males. However, subscribers born in 1947 were all 
females. Moreover, those born in 1964 and 1994 were dominated by females as well. Thus 
Nancy’s hypothesis and reasoning did hold true.

The analysis in Listing 1-4 had revealed that all millennials are members. Nancy was 
curious to see what the distribution of user type was for the other age generations. Is it 
that the majority of people in the other age generations were short-term pass holders? 
Hence Eric brought a stacked bar graph into the application yet again (see Figure 1-6).

Listing 1-10. Plotting the Distribution of Birth Years by User Types

groupby_birthyear_user = data.groupby(['birthyear', 'usertype'])
['birthyear'].count().unstack('usertype').fillna(0)

groupby_birthyear_user['Member'].plot.bar(title = 'Distribution of birth 
years by Usertype', stacked=True, figsize = (15,4))
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Figure 1-6. Bar graph signifying the distribution of birth years by user types
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Whoa! Nancy was surprised to see the distribution of only one user type and not 
two (i.e., membership and short-term pass holders)? Does this mean that birth year 
information was only present for only one user type? Eric decided to dig in further and 
validate this (see Listing 1-11).

Listing 1-11. Validation If We Don’t Have Birth Year Available for Short-Term Pass 
Holders

data[data['usertype']=='Short-Term Pass Holder']['birthyear'].isnull().
values.all()

Output

True

In the code in Listing 1-11, Eric first sliced the data frame to consider only short-
term pass holders. Then he went forward to find out if all the values in birth year are 
missing (i.e., null) for this slice. Since that is the case, Nancy’s initially inferred hypothesis 
was true—that birth year data is only available for members. This made her recall her 
prior deduction about the brand loyalty of millennials. Hence the output for Listing 1-11 
nullifies Nancy’s deduction made after the analysis in Figure 1-4. This made Nancy sad, 
as the loyalty of millenials can’t be validated from the data at hand. Eric believed that 
members have to provide details like birth year when applying for the membership, 
something which is not a prerequisite for short-term pass holders. Eric decided to test his 
deduction by checking if gender is available for short-term pass holders or not for which 
he wrote the code in Listing 1-12.

Listing 1-12. Validation If We Don’t Have Gender Available for Short-Term Pass Holders

data[data['usertype']=='Short-Term Pass Holder']['gender'].isnull().values.
all()

Output

True

Thus Eric concluded that we don’t have the demographic variables for user type 
‘Short-Term Pass holders’.

Nancy was interested to see as to how the frequency of trips vary across date and 
time (i.e., a time series analysis). Eric was aware that trip start time is given with the data, 
but for him to make a time series plot, he had to transform the date from string to date 
time format (see Listing 1-13). He also decided to do more: that is, split the datetime into 
date components (i.e., year, month, day, and hour).

www.allitebooks.com

http://www.allitebooks.org
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Listing 1-13. Converting String to datetime, and Deriving New Features

List_ = list(data['starttime'])

List_ = [datetime.datetime.strptime(x, "%m/%d/%Y %H:%M") for x in List_]
data['starttime_mod'] = pd.Series(List_,index=data.index)
data['starttime_date'] = pd.Series([x.date() for x in List_],index=data.index)
data['starttime_year'] = pd.Series([x.year for x in List_],index=data.index)
data['starttime_month'] = pd.Series([x.month for x in List_],index=data.index)
data['starttime_day'] = pd.Series([x.day for x in List_],index=data.index)
data['starttime_hour'] = pd.Series([x.hour for x in List_],index=data.index)

Eric made sure to explain the piece of code in Listing 1-13 as he had explained to Nancy:

At first we converted start time column of the dataframe into a list. 
Next we converted the string dates into python datetime objects. We 
then converted the list into a series object and converted the dates from 
datetime object to pandas date object. The time components of year, 
month, day and hour were derived from the list with the datetime objects.

Now it was time for the time series analysis of the frequency of trips over all days 
provided within the dataset (see Listing 1-14).

Listing 1-14. Plotting the Distribution of Trip Duration over Daily Time

data.groupby('starttime_date')['tripduration'].mean().plot.bar(title = 
'Distribution of Trip duration by date', figsize = (15,4))

Wow! There seems to be a definitive pattern of trip duration over time.
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Figure 1-7. Bar graph signifying the distribution of trip duration over daily time
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Time Series Components
Eric decided to brief Nancy about the types of patterns that exist in a time series analysis. 
This he believed would help Nancy understand the definite pattern in Figure 1-7.

Seasonal Pattern
A seasonal pattern (see Figure 1-8) refers to a seasonality effect that incurs after a fixed 
known period. This period can be week of the month, week of the year, month of the year, 
quarter of the year, and so on. This is the reason why seasonal time series are also referred 
to as periodic time series.

Cyclic Pattern
A cyclic pattern (see Figure 1-9) is different from a seasonal pattern in the notion that the 
patterns repeat over non-periodic time cycles.
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Trend
A trend (see Figure 1-10) is a long-term increase or decrease in a continuous variable. 
This pattern might not be exactly linear over time, but when smoothing is applied it can 
generalize into either of the directions.

Eric decided to test Nancy’s concepts on time series, so he asked her to provide her 
thoughts on the time series plot in Figure 1-7. “What do you think of the time series plot? 
Is the pattern seasonal or cyclic? Seasonal is it right?”

Nancy’s reply amazed Eric once again. She said the following:

Yes it is because the pattern is repeating over a fixed interval of time—
that is, seasonality. In fact, we can split the distribution into three 
distributions. One pattern is the seasonality that is repeating over time. 
The second one is a flat density distribution. Finally, the last pattern is 
the lines (that is, the hikes) over that density function. In case of time 
series prediction we can make estimations for a future time using both 
of these distributions and add up in order to predict upon a calculated 
confidence interval.

On the basis of her deduction it seemed like Nancy’s grades in her statistics elective 
course had paid off. Nancy wanted answers to many more of her questions. Hence she 
decided to challenge the readers with the Exercises that follow.
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Figure 1-10. Illustration of trend
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EXERCISES

1. determine the distribution of number of trips by year. do you 
see a specific pattern?

2. determine the distribution of number of trips by month. do you 
see a specific pattern?

3. determine the distribution of number of trips by day. do you see 
a specific pattern?

4. determine the distribution of number of trips by day. do you see 
a specific pattern?

5. plot a frequency distribution of trips on a daily basis.

Measuring Center of Measure
Eric believed that measures like mean, median, and mode help give a summary view 
of the features in question. Taking this into consideration, he decided to walk Nancy 
through the concepts of center of measure.

Mean
Mean in layman terms refers to the averaging out of numbers Mean is highly affected by 
outliers, as the skewness introduced by outliers will pull the mean toward extreme values.

•	 Symbol:

•	 μ-> Parameter -> population mean

•	 x’ -> Statistic -> sample mean

•	 Rules of mean:

•	 m ma bx xa b+ = +

•	 m m mx y x y+ = +

We will be using statistics.mean(data) in our coding examples. This will return the 
sample arithmetic mean of data, a sequence or iterator of real-valued numbers.

Mean exists in two major variants.
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Arithmetic Mean
An arithmetic mean is simpler than a geometric mean as it averages out the numbers  
(i.e., it adds all the numbers and then divides the sum by the frequency of those numbers). 
Take, for example, the grades of ten students who appeared in a mathematics test.

78, 65, 89, 93, 87, 56, 45, 73, 51, 81

Calculating the arithmetic mean will mean

mean =
+ + + + + + + + +

=
78 65 89 93 87 56 45 73 51 81

10
71 8.

Hence the arithmetic mean of scores taken by students in their mathematics test was 
71.8. Arithmetic mean is most suitable in situations when the observations (i.e., math 
scores) are independent of each other. In this case it means that the score of one student 
in the test won’t affect the score that another student will have in the same test.

Geometric Mean
As we saw earlier, arithmetic mean is calculated for observations which are independent 
of each other. However, this doesn’t hold true in the case of a geometric mean as it is 
used to calculate mean for observations that are dependent on each other. For example, 
suppose you invested your savings in stocks for five years. Returns of each year will be 
invested back in the stocks for the subsequent year. Consider that we had the following 
returns in each one of the five years:

60%, 80%, 50%, -30%, 10%

Are these returns dependent on each other? Well, yes! Why? Because the investment 
of the next year is done on the capital garnered from the previous year, such that a loss in 
the first year will mean less capital to invest in the next year and vice versa. So, yes, we will 
be calculating the geometric mean. But how? We will do so as follows:

[(0.6 + 1) * (0.8 + 1) * (0.5 + 1) * (-0.3 + 1) * (0.1 + 1)]1/5 - 1 = 0.2713

Hence, an investment with these returns will yield a return of 27.13% by the end of 
the fifth year. Looking at the calculation above, you can see that at first we first converted 
percentages into decimals. Next we added 1 to each of them to nullify the effects brought 
on by the negative terms. Then we multiplied all terms among themselves and applied a 
power to the resultant. The power applied was 1 divided by the frequency of observations 
(i.e., five in this case). In the end we subtracted the result by 1. Subtraction was done to 
nullify the effect introduced by an addition of 1, which we did initially with each term. 
The subtraction by 1 would not have been done had we not added 1 to each of the terms 
(i.e., yearly returns).
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Median
Median is a measure of central location alongside mean and mode, and it is less affected 
by the presence of outliers in your data. When the frequency of observations in the data is 
odd, the middle data point is returned as the median.

In this chaapter we will use statistics.median(data) to calculate the median. This 
returns the median (middle value) of numeric data if frequency of values is odd and 
otherwise mean of the middle values if frequency of values is even using “mean of middle 
two” method. If data is empty, StatisticsError is raised.

Mode
Mode is suitable on data which is discrete or nominal in nature. Mode returns the 
observation in the dataset with the highest frequency. Mode remains unaffected by the 
presence of outliers in data.

Variance
Variance represents variability of data points about the mean. A high variance means 
that the data is highly spread out with a small variance signifying the data to be closely 
clustered.

 1. Symbol: s x
2

 2. Formula:

a. å -
-

( ’ )X X
n

2

1

b. s mx i x ix p2 2= -( )å
 3. Why n-1 beneath variance calculation? The sample variance 

averages out to be smaller than the population variance; hence, 
degrees of freedom is accounted for as the conversion factor.

 4. Rules of variance:

i. s sa bx xb+ =2 2 2

ii. s s sx y x y+ = +2 2 2 (If X and Y are independent variables)

s s sx y x y- = +2 2 2

iii. s s s s sx y x y x yr+ = + +2 2 2 2 (if X and Y have correlation r)

s s s s sx y x y x yr+ = + +2 2 2 2
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We will be incorporating statistics.variance(data, xbar=None) to calculate variance 
in our coding exercises. This will return the sample variance across at least two real-valued 
numbered series.

Standard Deviation
Standard deviation, just like variance, also captures the spread of data along the mean. 
The only difference is that it is a square root of the variance. This enables it to have the 
same unit as that of the data and thus provides convenience in inferring explanations 
from insights. Standard deviation is highly affected by outliers and skewed distributions.

•	 Symbol: σ

•	 Formula: s 2

We measure standard deviation instead of variance because

•	 It is the natural measure of spread in a Normal distribution

•	 Same units as original observations

Changes in Measure of Center Statistics due to Presence 
of Constants
Let’s evaluate how measure of center statistics behave when data is transformed by 
the introduction of constants. We will evaluate the outcomes for mean, median, IQR 
(interquartile range), standard deviation, and variance. Let’s first start with what behavior 
each of these exhibits when a constant “a” is added or subtracted from each of these.

Addition: Adding a

•	 x a xnew
’ ’= +

•	 median a mediannew = +

•	 IQR a IQRnew = +

•	 s snew =

•	 s sx new x
2 2=

Adding a constant to each of the observations affected the mean, median, and IQR. 
However, standard deviation and variance remained unaffected. Note that the same 
behavior will come through when observations within the data are subtracted from a 
constant. Let’s see if the same behavior will repeat when we multiply a constant (i.e., “b”) 
to each observation within the data.
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Multiplication: Multiplying b

•	 x bxnew
’ ’=

•	 median bmediannew =

•	 IQR bIQRnew =

•	 s bsnew =

•	 s sx new xb2 2 2=

Wow! Multiplying a constant to each observation within the data changed all five 
measures of center statistics. Do note that you will achieve the same effect when all 
observations within the data are divided by a constant term.

After going through the description of center of measures, Nancy was interested in 
understanding the trip durations in detail. Hence Eric came up with the idea to calculate 
the mean and median trip durations. Moreover, Nancy wanted to determine the station 
from which most trips originated in order to run promotional campaigns for existing 
customers. Hence Eric decided to determine the mode of ‘from_station_name’ field.

 ■ Note  determining the measures of centers using the statistics package will require us 
to transform the input data structure to a list type.

Listing 1-15. Determining the Measures of Center Using Statistics Package

trip_duration = list(data['tripduration'])
station_from = list(data['from_station_name'])
print 'Mean of trip duration: %f'%statistics.mean(trip_duration)
print 'Median of trip duration: %f'%statistics.median(trip_duration)
print 'Mode of station originating from: %s'%statistics.mode(station_from)

Output

Mean of trip duration: 1202.612210
Median of trip duration: 633.235000
Mode of station originating from: Pier 69 / Alaskan Way & Clay St

The output of Listing 1-15 revealed that most trips originated from Pier 69/Alaskan 
Way & Clay St station. Hence this was the ideal location for running promotional 
campaigns targeted to existing customers. Moreover, the output showed the mean to 
be greater than that of the mean. Nancy was curious as to why the average (i.e., mean) 
is greater than the central value (i.e., median). On the basis of what she had read, she 
realized that this might be either due to some extreme values after the median or due to 
the majority of values lying after the median. Eric decided to plot a distribution of the trip 
durations (see Listing 1-16) in order to determine which premise holds true.
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Listing 1-16. Plotting Histogram of Trip Duration

data['tripduration'].plot.hist(bins=100, title='Frequency distribution of 
Trip duration')
plt.show()

The distribution in Figure 1-11 has only one peak (i.e., mode). The distribution is 
not symmetric and has majority of values toward the right-hand side of the mode. These 
extreme values toward the right are negligible in quantity, but their extreme nature tends 
to pull the mean toward themselves. Thus the reason why the mean is greater than the 
median.

The distribution in Figure 1-11 is referred to as a normal distribution.

The Normal Distribution
Normal distribution, or in other words Gaussian distribution, is a continuous probability 
distribution that is bell shaped. The important characteristic of this distribution is that 
the mean lies at the center of this distribution with a spread (i.e., standard deviation) 
around it. The majority of the observations in normal distribution lie around the mean 
and fade off as they distance away from the mean. Some 68% of the observations lie 
within 1 standard deviation from the mean; 95% of the observations lie within 2 standard 
deviations from the mean, whereas 99.7% of the observations lie within 3 standard 
deviations from the mean. A normal distribution with a mean of zero and a standard 
deviation of 1 is referred to as a standard normal distribution. Figure 1-12 shows normal 
distribution along with confidence intervals.
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Figure 1-11. Frequency distribution of trip duration
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These are the most common confidence levels:

Confidence level Formula

68% Mean ± 1 std.

95% Mean ± 2 std.

99.7% Mean ± 3 std.

Skewness
Skewness is a measure of the lack of symmetry. The normal distribution shown 
previously is symmetric and thus has no element of skewness. Two types of skewness 
exist (i.e., positive and negative skewness).
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Figure 1-12. Normal distribution and confidence levels
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As seen from Figure 1-13, a relationship exists among measure of centers for each 
one of the following variations:

•	 Symmetric distributions: Mean = Median = Mode

•	 Positively skewed: Mean < Median < Mode

•	 Negatively skewed: Mean > Median > Mode

Going through Figure 1-12 you will realize that the distribution in Figure 1-13(c) has 
a long tail on its right. This might be due to the presence of outliers.

Outliers
Outliers refer to the values distinct from majority of the observations. These occur either 
naturally, due to equipment failure, or because of entry mistakes.

In order to understand what outliers are, we need to look at Figure 1-14.
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Figure 1-14. Illustration of outliers using a box plot
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Figure 1-13. Skewed and symmetric normal distributions
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From Figure 1-14 we can see that the observations lying outside the whiskers are 
referred to as the outliers.

Listing 1-17. Interval of Values Not Considered Outliers

[Q1 – 1.5 (IQR) ,  Q3 + 1.5 (IQR) ] (i.e. IQR = Q3 - Q1)

Values not lying within this interval are considered outliers. Knowing the values of 
Q1 and Q3 is fundamental for this calculation to take place.

Is the presence of outliers good in the dataset? Usually not! So, how are we going to 
treat the outliers in our dataset? Following are the most common methods for doing so:

•	 Remove the outliers: This is only possible when the proportion of 
outliers to meaningful values is quite low, and the data values are 
not on a time series scale. If the proportion of outliers is high, then 
removing these values will hurt the richness of data, and models 
applied won’t be able to capture the true essence that lies within. 
However, in case the data is of a time series nature, removing 
outliers from the data won’t be feasible, the reason being that for 
a time series model to train effectively, data should be continuous 
with respect to time. Removing outliers in this case will introduce 
breaks within the continuous distribution.

•	 Replace outliers with means: Another way to approach this is 
by taking the mean of values lying with the interval shown in 
Figure 1-14, calculate the mean, and use these to replace the 
outliers. This will successfully transform the outliers in line with 
the valid observations; however, this will remove the anomalies 
that were otherwise present in the dataset, and their findings 
could present interesting insights.

•	 Transform the outlier values: Another way to cop up with outliers 
is to limit them to the upper and lower boundaries of acceptable 
data. The upper boundary can be calculated by plugging in the 
values of Q3 and IQR into Q3 + 1.5IQR and the lower boundary 
can be calculated by plugging in the values of Q1 and IQR into 
Q1 – 1.5IQR.

•	 Variable transformation: Transformations are used to convert the 
inherited distribution into a normal distribution. Outliers bring 
non-normality to the data and thus transforming the variable can 
reduce the influence of outliers. Methodologies of transformation 
include, but are not limited to, natural log, conversion of data into 
ratio variables, and so on.

Nancy was curious to find out whether outliers exist within our dataset—more 
precisely in the tripduration feature. For that Eric decided to first create a box plot 
(see Figure 1-15) by writing code in Listing 1-18 to see the outliers visually and then 
checked the same by applying the interval calculation method in Listing 1-19.
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Listing 1-18. Plotting a Box plot of Trip Duration

box = data.boxplot(column=['tripduration'])
plt.show()

Nancy was surprised to see a huge number of outliers in trip duration from the box 
plot in Figure 1-15. She asked Eric if he could determine the proportion of trip duration 
values which are outliers. She wanted to know if outliers are a tiny or majority portion of 
the dataset. For that Eric wrote the code in Listing 1-19.

Listing 1-19. Determining Ratio of Values in Observations of tripduration Which Are 
Outliers

q75, q25 = np.percentile(trip_duration, [75 ,25])
iqr = q75 - q25
print 'Proportion of values as outlier: %f percent'%(
(len(data) - len([x for x in trip_duration if q75+(1.5*iqr)  
>=x>= q25-(1.5*iqr)]))*100/float(len(data)))

Output

Proportion of values as outlier: 9.548218 percent
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Figure 1-15. Box plot of trip duration
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Eric explained the code in Listing 1-19 to Nancy as follows:

As seen in Figure 1-14, Q3 refers to the 75th percentile and Q1 refers 
to the 25th percentile. Hence we use the numpy.percentile() method 
to determine the values for Q1 and Q3. Next we compute the IQR by 
subtracting both of them. Then we determine the subset of values by 
applying the interval as specified in Listing 1-18. We then used the 
formula to get the number of outliers.

Listing 1-20. Formula for Calculating Number of Outliers

Number of outliers values = Length of all values - Length of all non 
outliers values

In our code, len(data) determines Length of all values and Length of all non outliers 
values is determined by len([x for x in trip_duration if q75+(1.5*iqr) >=x>= 
q25-(1.5*iqr)])).

Hence then the formula in Listing 1-20 was applied to calculate the ratio of values 
considered outliers.

Listing 1-21. Formula for Calculating Ratio of Outlier Values

Ratio of outliers = ( Number of outliers values / Length of all values ) * 100

Nancy was relieved to see only 9.5% of the values within the dataset to be outliers. 
Considering the time series nature of the dataset she knew that removing these outliers 
wouldn’t be an option. Hence she knew that the only option she could rely on was to 
apply transformation to these outliers to negate their extreme nature. However, she was 
interested in observing the mean of the non-outlier values of trip duration. This she then 
wanted to compare with the mean of all values calculated earlier in Listing 1-15.

Listing 1-22. Calculating z scores for Observations Lying Within tripduration

mean_trip_duration = np.mean([x for x in trip_duration if q75+(1.5*iqr) 
>=x>= q25-(1.5*iqr)])
upper_whisker = q75+(1.5*iqr)
print 'Mean of trip duration: %f'%mean_trip_duration

Output

Mean of trip duration: 711.726573



ChapTer 1 ■ STaTiSTiCS and probabiliTy

31

The mean of non-outlier trip duration values in Listing 1-22 (i.e., approximately 712) 
is considerably lower than that calculated in the presence of outliers in Listing 1-15 (i.e., 
approximately 1,203). This best describes the notion that mean is highly affected by the 
presence of outliers in the dataset.

Nancy was curious as to why Eric initialized the variable upper_whisker given that 
it is not used anywhere in the code in Listing 1-22. Eric had a disclaimer for this: “upper_
whisker is the maximum value of the right (i.e., positive) whisker i.e. boundary uptill 
which all values are valid and any value greater than that is considered as an outlier. You 
will soon understand why we initialized it over here.”

Eric was interested to see the outcome statistics once the outliers were transformed 
into valid value sets. Hence he decided to start with a simple outlier transformation to the 
mean of valid values calculated in Listing 1-22.

Listing 1-23. Calculating Mean Scores for Observations Lying Within tripduration

def transform_tripduration(x):

    if x > upper_whisker:
        return mean_trip_duration
    return x

data['tripduration_mean'] = data['tripduration'].apply(lambda x: transform_
tripduration(x))

data['tripduration_mean'].plot.hist(bins=100, title='Frequency distribution 
of mean transformed Trip duration')
plt.show()

Eric remembers walking Nancy through the code in Listing 1-23.

We initialized a function by the name of transform_tripduration. 
The function will check if a trip duration value is greater than the upper 
whisker boundary value, and if that is the case it will replace it with the 
mean. Next we add tripduration_mean as a new column to the data 
frame. We did so by custom modifying the already existing tripduration 
column by applying the transform_tripduration function.

Nancy was of the opinion that the transformed distribution in Figure 1-16 is a 
positively skewed normal distribution. Comparing Figure 1-16 to Figure 1-10 reveals that 
the skewness has now decreased to a great extent after the transformation. Moreover, 
the majority of the observations have a tripduration of 712 primarily because all values 
greater than the upper whisker boundary are not converted into the mean of the non-
outlier values calculated in Listing 1-22. Nancy was now interested in understanding how 
the center of measures appear for this transformed distribution. Hence Eric came up with 
the code in Listing 1-24.
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Listing 1-24. Deternining the Measures of Center in Absence of Outliers

print 'Mean of trip duration: %f'%data['tripduration_mean'].mean()
print 'Standard deviation of trip duration: %f'%data['tripduration_mean'].std()
print 'Median of trip duration: %f'%data['tripduration_mean'].median()

Output

Mean of trip duration: 711.726573
Standard deviation of trip duration: 435.517297
Median of trip duration: 633.235000
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Figure 1-16. Frequency distribution of mean transformed trip duration
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Nancy was expecting the mean to appear the same as that in Listing 1-22 because 
of the mean transformation of the outlier values. In Figure 1-16 she knew that the hike at 
711.7 is the mode, which meant that after the transformation the mean is the same as that 
of the mode. The thing that surprised her the most was that the median is approaching the 
mean, which means that the positive skewness we saw in Figure 1-16 is not that strong.

On the basis of the findings in Figure 1-1, Nancy knew that males dominate females 
in terms of trips taken. She was hence interested to see the trip duration of males and 
repeat the outlier treatment for them as well. Hence she came up with these exercise 
questions for you in the hopes of gaining further insights.

EXERCISES

1. Find the mean, median, and mode of the trip duration of gender 
type male.

2. by looking at the numbers obtained earlier, in your opinion is 
the distribution symmetric or skewed? if skewed, then is is it 
positively skewed or negatively skewed?

3. plot a frequency distribution of trip duration for trips availed by 
gender type male. does it validate your inference as you did so 
in the previous question?

4. plot a box plot of the trip duration of trips taken by males. do 
you think any outliers exist?

5. apply the formula in listing 1-6 to determine the percentage of 
observations for which outliers exists.

6. perform the treatment of outliers by incorporating one of the 
methods we discussed earlier for the treatment of outliers.

The multivariate analysis that Nancy and Eric had performed had yielded some good 
insights. However, Nancy was curious to know if some statistical tests exist to determine 
the strength of the relationship between two variables. She wanted to use this information 
to determine the features which have the most impact on trip duration. The concept of 
correlation popped up in Eric’s mind, and he decided to share his knowledge base before 
moving on further with the analysis.
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Correlation
Correlation refers to the strength and direction of the relationship between two 
quantitative features. A correlation value of 1 means strong correlation in the positive 
direction, whereas a correlation value of -1 means a strong correlation in the negative 
direction. A value of 0 means no correlation between the quantitative features. Please 
note that correlation doesn’t imply causation; that is, the change in one entity doesn’t 
enforce a change in the other one.

Correlation of an attribute to itself will imply a correlation value of 1. Many machine 
learning algorithms fail to provide optimum performance because of the presence of 
multicollinearity. Multicollinearity refers to the presence of correlations among the 
features of choice, and thus it is usually recommended to review all pair-wise correlations 
among the features of a dataset before considering them for analysis.

Following are the most common types of correlations:

Pearson R Correlation
Pearson R correlation is the most common of the three and is usually suitable to calculate 
the relationships between two quantitative variables which are linearly related and seem 
to be normally distributed. Take, for example, two securities in the stock market closely 
related to one another and examine the degree of relationship between them.

Kendall Rank Correlation
As compared to Pearson, which is suitable for normally distributed data, Kendall 
rank correlation is a non-parametric test to determine the strength and direction 
of relationship between two quantitative features. Non-parametric techniques are 
targeted to distributions other than the normal distribution. To the contrary, parametric 
techniques are targeted toward normal distribution.
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Spearman Rank Correlation
Spearman rank correlation is a non-parametric test just like Kendall rank correlation, 
with the difference that Spearman rank correlation does not make any assumptions about 
the distribution of the data. Spearman rank correlation is most suitable for ordinal data.

Nancy was interested to see if change in age brings a linear change to trip duration. 
For that Eric decided to bring Pearson R correlation into practice and decided to make a 
scatter plot between the two quantities for them to see the relationship visually.

Listing 1-25. Pairplot of trip duration and age

data = data.dropna()
seaborn.pairplot(data, vars=['age', 'tripduration'], kind='reg')
plt.show()
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Figure 1-17. Pairplot between trip duration and age
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While looking at Figure 1-17, Nancy didn’t find any definitive pattern between trip 
duration and age. There is a minor positive correlation, as explained in Figure 1-18.

Nancy knew that a perfect positive correlation meant a value of 1; hence she wanted 
to see if the correlation value between age and tripduration is positive and approaches 1 
or not. Eric wrote the code in Listing 1-26  to make it possible.

Listing 1-26. Correlation Coefficient Between trip duration and age

pd.set_option('display.width', 100)
pd.set_option('precision', 3)

data['age'] = data['starttime_year'] - data['birthyear']

correlations = data[['tripduration','age']].corr(method='pearson')
print(correlations)

Output

                tripduration    age
tripduration    1.000           0.058
age             0.058           1.000

The correlation coefficient came out to be greater than 0 which according to Nancy’s 
deduction was a positive correlation, but being much less than 1 meant it to be weak in 
nature.

Nancy was aware that a simple analysis meant taking a feature into consideration 
and analyzing it. Another more complex method was to split the feature into its categories 
(e.g., splitting gender into male and female) and then performing the analysis on both 
these chunks separately. She was confused as to which was the right approach and thus 
asked Eric for his opinion. Eric thought of introducing the concept of t-statistics and came 
up with a small demonstration for Nancy.
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Figure 1-18. Correlation directions
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Hypothesis Testing: Comparing Two Groups
Before going through the methodology to compare two groups, it is important to 
understand null and alternative hypotheses.

Null hypothesis is something we attempt to find evidence against in the hypothesis 
tests. Null hypothesis is usually an initial claim that researchers make on the basis of 
previous knowledge or experience. Alternative hypothesis has a population parameter 
value different from that of null hypothesis. Alternative hypothesis is something you hope 
to come out to be true. Statistical tests are performed to decide which of these holds true 
in a hypothesis test. If the experiment goes in favor of the null hypothesis then we say the 
experiment has failed in rejecting the null hypothesis. You might be thinking, “Ain’t it the 
same” as that of accepting the null hypothesis? Well, no! Not guilty doesn’t actually mean 
that a person is innocent.

t-Statistics
t-refers to a difference represented in the units of standard error. This exists in two most 
common variants:

1-sample-t

This is the search of evidence of a significant difference between a population mean 
and a hypothesized value.

2-sample-t

This is when you are trying to find the evidence of a significant difference between 
population means. Note that the samples from both the distributions should be 
independent of each other.

t-value and p-values are internally linked. The larger the absolute value of the t-value, 
the smaller the p-value as the distribution is concentrated around the mean, and thus the 
higher the probability to reject the null hypothesis.

t-value can be negative as well as positive. The greater the magnitude of T in either 
direction, the greater is the evidence against the notion that there is no significant 
difference (i.e., the null hypothesis). Vice versa, if the t-value approaches 0, then it implies 
that there is no significant difference between the population means or between a 
population mean and a hypothesized value.

Contrary to a statistical phenomenon like correlation, a t-value is calculated by 
sampling one value from the entire population. Given that the sampling is random, each 
time a t-value is calculated the answer presents a random sampling error (i.e., some 
variation from the t-value calculated earlier).

t-distributions help identify the magnitude of change due to random sampling from 
the entire population.
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t-Distributions and Sample Size
Degree of freedom refers to the instances in which you have the freedom to choose from 
more than one choice. Usually this is sample size - 1. Degree of freedom (DF) defines the 
spread of a Gaussian distribution. The more the DF, the lesser probability density lies 
within the tails, with the distribution tightly clustered around the mean. Small sample 
sizes are more likely to be unusual and thus pose a threat of getting further away from the 
null hypothesis even though the null hypothesis holds true. Hence it is better to have a 
large sample size when calculating t-value.
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Figure 1-19. Change in t-distributions due to changes in sample size

Let’s calculate the two-tail t-test for all categories of genders and user types 
(see Listing 1-27). We do this so we can understand if different categories have 
resemblance in variances. If they do, then they will be considered a group; otherwise 
they will be treated separately in the analysis mode.

Listing 1-27. Computing Two-Tail t-test of Categories of gender and user types

for cat in ['gender','usertype']:

    print 'Category: %s\n'%cat
     groupby_category = data.groupby(['starttime_date', cat])['starttime_

date'].count().unstack(cat)
    groupby_category = groupby_category.dropna()
    category_names = list(groupby_category.columns)

     for comb in [(category_names[i],category_names[j]) for i in 
range(len(category_names)) for j in range(i+1, len(category_names))]:

        print '%s %s'%(comb[0], comb[1])
         t_statistics = stats.ttest_ind(list(groupby_category[comb[0]]), 

list(groupby_category[comb[1]]))
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         print 'Statistic: %f, P value: %f'%(t_statistics.statistic,  
t_statistics.pvalue)

        print '\n'

Output

Category: gender

Female Male
Statistic: -38.572176, P value: 0.000000

Female Other
Statistic: 48.248666, P value: 0.000000

Male Other
Statistic: 53.180282, P value: 0.000000

Category: usertype

Member Short-Term Pass Holder
Statistic: 14.393456, P value: 0.000000

Neither the code nor the output made any sense to Nancy; hence Eric explained the 
following:

At first we looped over the two features gender and age. For each of these 
features, we first split its column into category columns. For example, 
gender was split into Male, Female, and Others. Next we made category 
pairs and ran t-statistics on them. For example, Male-Female, Male-
Others, etcetera.

The results seem to be homogeneous across all categories. What do I 
mean by that? Well for all of the comparisons, the p-values in the output 
seem to be roughly 0. If we go with a confidence interval of 95%, then it 
translates to a p-value of 0.05. None of the statistics above exceeds our set 
p-value benchmark. This leads us to the conclusion that we need to treat 
all of these categories separately when moving in the modeling aspect, as 
all of them have different variances.

Nancy now knew her audience to a certain degree, but she wanted to know more, 
and for that purpose she planned on generating a question and doing sampling. Thus she 
asked Eric if he could enlighten her with a concept or two along those lines. Eric knew 
that central limit theorem has a pivotal value in sampling and analysis, so he came up 
with an illustration.
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Central Limit Theorem
Consider as an example any distribution consisting of random samples with a well-
defined mean and standard deviation. Now let’s pick some random samples from that 
distribution and calculate the mean and standard deviation. As you increase the sample 
size (i.e., n), the mean and standard deviation converge to that of a Gaussian normal 
distribution. In other words, as you increase sampling from an arbitrary distribution it 
converges to a normal distribution with a given mean and standard deviation. So how 
large should the sampling size be for the theorem to influence the behavior?

•	 The greater the sample size is, the more closely that sampling 
distribution will resemble the normal distribution.

•	 The more the arbitrary distribution resembles the normal 
distribution, the fewer samplings will be required to satisfy the 
theorem. Statisticians usually recommend a sample size of 30 to 
40 in a scenario like this one.

Eric decided to use the data at hand as an aid to explain central limit theorem  
(see Listing 1-28).

Listing 1-28. Script to Validate Central Limit Theorem on Trips Dataset

daily_tickets = list(data.groupby('starttime_date').size())
sample_tickets = []
checkpoints = [1, 10, 100, 300, 500, 1000]
plot_count = 1

random.shuffle(daily_tickets)

plt.figure(figsize=(15,7))
binrange=np.array(np.linspace(0,700,101))

for i in xrange(1000):
    if daily_tickets:
        sample_tickets.append(daily_tickets.pop())

    if i+1 in checkpoints or not daily_tickets:
        plt.subplot(2,3,plot_count)
        plt.hist(sample_tickets, binrange)
        plt.title('n=%d' % (i+1),fontsize=15)        
        plot_count+=1

    if not daily_tickets:
       break

plt.show()
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Eric explained the code in Listing 1-28 as follows:

Random shuffling was done in order to change the order of daily number 
of tickets. Once done, then different sample sizes were fixed in order to 
see the change in distribution as a function of the sample size. Note in 
Figure 1-20 that with the increase in sample size, the distribution seems 
to transform into a normal distribution. This validates the central limit 
theorem.

Case Study Findings
Eric and Nancy’s deductions helped them understand their audience to a better extent 
and garner valuables insights. The insights were rendered on data collected from 2014 
to 2016 with demographic information only available for the members and not short-
term pass holders. Hence, in order to get information about the short-term pass holders 
Nancy knew that she had to go through a market research exercise where central limit 
theorem would come in handy. Trip duration follows a definite seasonal pattern that 
repeats over time. Forecasting this time series can help Nancy predict the times when 
the company needs to push its marketing efforts and times when most trips anticipated 
can help ensure operational efficiencies. As for the promotions, Nancy now knew that 
the best station at which to kick off the campaign would be Pier 69/Alaskan Way & Clay 
St. Outliers were a tiny portion of the dataset; however, their time series nature meant 
that those outliers couldn’t be removed and transformation was thus applied. Regarding 
further analysis, Nancy was now aware that as the features are not homogeneous, the 
analysis would have to be done on the individual category level.
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Figure 1-20. Distributions of daily tickets on different sample sizes
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Nancy wasn’t sure if the techniques they applied were obsolete or have applications 
in real world applications as well. Hence Eric compiled the following list of applications 
that his friends from the industry use to bring Statistics and Probability into live.

Applications of Statistics and Probability
Applications of statistics and probability are vibrant in several fields of study.

Actuarial Science
Actuaries use the concepts of mathematics, probability theory, statistics, finance, 
economics, computer science, and modeling to evaluate and price risks. Their 
application cases exist in the domains of insurance, consulting firms, and government.

Biostatistics
There are applications of statistics in various branches of biology. This encompasses the 
design of biological experiments and making inferences from them. Diving deeper into 
biostatistics reveals examples in which subjects (patients, cells, etc.) exhibit variation in 
response to some stimuli (e.g., medicine). Biostatisticians use inferential statistics to give 
meaning to these anomalies.

Astrostatistics
Astrostatistics is an amalgam of statistical analysis, astrophysics, and data mining. Data 
collected from automatic scanning of cosmos is used to make deductions.

Business Analytics
Business analytics uses operational and statistical theories to make predictive models. It 
also incorporates optimization techniques to garner effective insights for customers and 
business executives.

These insights enable companies to automate and optimize their business processes. 
Business intelligence differs from business analytics in that business intelligence 
helps us answer what happened whereas business analytics helps us understand the 
reason for this anomaly (i.e., why it happened in the first place and the chances of it 
happening again). These analytics are used in various business areas such as enterprise 
optimization, fraud analytics, pricing analytics, supply chain analytics, and so on.
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Econometrics
The application of statistical methods for estimating economic relationships constitutes 
econometrics. Some of the examples include measuring the effect of divorce laws 
on divorce and marriage rates, change in wages of native workers from impact on 
immigration policies, or forecasting macroeconomic variables of inflation rates, interest 
rates, or gross domestic product.

Machine Learning
Several machine learning algorithms are based on statistical theories or an advanced 
version of the same. An example of this is the Bayesian theory which is commonly used.

Statistical Signal Processing
Past corpus of speeches is used to determine the highest probability of spoken words. 
Moreover, statistical signal processing is used in the following applications:

•	 Game theory

•	 Estimation and filtering

•	 Signal processing

•	 Linear systems

Elections
Campaign managers use the results of the polls to infer wins in the coming elections for 
their political parties.
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CHAPTER 2

Regression

Regression and time series analysis make predictions for quantitative target variables 
possible. This chapter aims to highlight the core concept of regression and its variants. 
The emphasis here is to take the readers through the journey of model selection when 
solving for real-world problems. Moreover, this chapter also features statistical tests to 
evaluate the findings of these regression techniques.

 ■ Note  This book incorporates Python 2.7.11 as the de facto standard for coding 
examples. Moreover, you are required to have it installed for the Exercises.

In this chapter we will be using the Concrete Compressive Strength dataset for 
coding examples and exercises. This data dump can be downloaded from UCI’s web  
site link:

http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength

Case Study: Removing Inconsistencies in 
Concrete Compressive Strength
Andrew had an hour-long meeting with Smith regarding the frequent complaints he 
had been receiving from their existing clientele. Smith was the sales representative 
at a construction aggregates company and was facing difficulties in meeting his sales 
targets. Smith believed that the reason for his difficulties was that the existing clients had 
complaints regarding quality inconsistencies—this, when coupled with negative word of 
mouth in the market, was making it tough for him to seal deals with potential customers.

Andrew, the plant supervisor, was Smith’s friend. At first Smith tried to find a solution 
for this problem, but when things got out of his control, he decided to have a meeting 
with Andrew.

http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
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There is usually friction between the production and sales departments in most 
companies. Both of them usually fight over their yearly budgets and their plans for 
meeting their annual targets. Smith knew this but he felt sure that things would be 
different with Andrew as they had been friends for some time. However, as the meeting 
kicked off and Smith presented the matter to Andrew, to his dismay Andrew wasn’t ready 
to acknowledge any inconsistencies in production. As Smith recalled Andrew saying, 
“These complaints don’t make any sense to me. You ask why! Well first of all, we had an 
upgrade at our production plant in the last quarter, and you know for a fact that the raw 
material we use goes through a thorough testing prior to being used for production.”

The meeting didn’t help Smith in any way, and he let the matter go for some time. 
One day, when he was in a networking session during one of his company’s corporate 
events, Smith heard some executives from the production department talking about 
the recent upgrade of the plant. He recalled hearing one of the executives say, “Though 
we don’t have any testing improvement in our recent upgrade for measuring concrete 
compressive strength, then too our product quality is superior thanks to our robust 
testing of raw material used.”

When Smith heard this, he did some research and was surprised to discover that the 
complaints had gained momentum ever since the upgrade had taken place. However, he 
also discovered that the procurement of the testing equipment was put on hold due to a 
shortage of funds allocated to the procurement department. Smith knew for a fact that he 
couldn’t afford to wait until the next year for the issue to resolve on its own, and he had to 
find a way to make things right.

He had heard that the recent upgrade meant that machines had recording data. 
Smith decided to set up a meeting with Claire (the manager of analytics) to see if she 
could help in figuring out the reason behind the inconsistencies in concrete compressive 
strength. The meeting went well for Smith, as Claire assured him of the in-house analytics 
capabilities. As Claire recalled, “At that time we had started up the analytics vertical, but 
I knew for sure that we had the muscles to formulate a model which can answer this 
anomaly.”

Smith was relieved and now had to formulate a strategy to take his findings 
forward—that is, either approach management with his findings or share his findings 
to the production department for them to integrate those into their inner processes. 
However, Smith was curious if the data at hand was strong enough to deduce some 
quality findings. Moreover, he was interested to see which factors influence concrete 
compressive strength the most.

Smith was interested to know which features of the dataset Claire would be working 
on. Hence, Claire came up with the data dictionary in Table 2-1.
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Before moving forward Claire thought of initializing the following packages. She 
preferred to do this in order to avoid bottlenecks while implementing the code snippets 
on her local machine (Listing 2-1).

Listing 2-1. Importing Packages Required for This Chapter

%matplotlib inline

import time
import random
import datetime
import pandas as pd
import matplotlib.pyplot as plt
import statistics
import numpy as np
from scipy import stats
from sklearn.grid_search import GridSearchCV
from sklearn.linear_model import RANSACRegressor, LinearRegression, 
TheilSenRegressor

Table 2-1. Data Dictionary for the Concrete Compressive Strength Dataset

Feature name Description

Cement (kg in a m3 mixture) Amount of cement used in a m3 mixture 
(unit: kg)

Blast furnace slag (kg in a m3 mixture) Amount of blast furnace slag used in a  
m3 mixture (unit: kg)

Fly ash (kg in a m3 mixture) Amount of blast fly ash usedin a  
m3 mixture (unit: kg)

Water (kg in a m3 mixture) Amount of water used in a m3 mixture 
(unit:kg)

Superplasticizer (kg in a m3 mixture) Amount of superplasticizer used in a  
m3 mixture (unit: kg)

Coarse aggregate (kg in a m3 mixture) Amount of coarse aggregate used in a  
m3 mixture (unit: kg)

Fine aggregate (kg in a m3 mixture) Amount of fine aggregate used in a  
m3 mixture (unit: kg)

Age (days) Age of concrete (unit: days)

Concrete compressive strength Concrete compressive strength which is 
measured in MegaPascal (MPa). This is 
the unit for pressure or stress and is the 
common unit to determine compressive 
strength of concrete.
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from sklearn.metrics import explained_variance_score, mean_absolute_error, 
mean_squared_error, median_absolute_error, r2_score

from sklearn.svm import SVR
from sklearn.linear_model import Ridge,Lasso,ElasticNet,BayesianRidge
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.cross_validation import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures
from sklearn.cross_validation import cross_val_score
import seaborn
from IPython.display import Image

Smith was curious as to which techniques Claire would use to solve this problem. 
Claire thought this problem to be the ideal application for regression as the response 
variable (concrete compressive strength) is a quantitative quantity, and she was concerned 
about finding the factors that influence concrete compressive strength. These influential 
factors, when scaled by their composition and added together, can produce the compressive 
stength of concrete. Thus this will enable the calculation of concrete compressive strength 
without the need to procure any equipment specifically for the problem at hand. To help 
Smith understand what regression is, she compiled information on the topic.

Concepts of Regression
Regression describes the relationship between an exploratory variable (i.e., independent) 
and a response variable (i.e., dependent). Exploratory variables are also referred to as 
predictors and can have a frequency of more than 1. Regression is being used within 
the realm of predictions and forecasting. Regression determines the change in response 
variable when one exploratory variable is varied while the other independent variables 
are kept constant. This is done to understand the relationship that each of those 
exploratory variables exhibits. Please note that irrespective of classification that is used to 
predict discrete response variables, regression is used to predict response variables that 
are continuous in nature. A basic variant of regression is linear regression.

Interpolation and Extrapolation
Extrapolation refers to the use of regression for predicting response variable values 
outside the range of exploratory values used initially for training the model. This data is 
not used for training the model and is represented by the dotted line in Figure 2-1.
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The regression model will be fitted/trained on the data at hand (i.e., interpolation 
represented by the solid line) and the trained model will then be used to extrapolate on 
the portion represented by a dotted line. Hence, interpolation is done on data already 
known, and extrapolation is done on the data unknown.

Linear Regression
Linear regression is a form of regression in which one exploratory variable is used to 
predict the outcome of a response variable. Mathematically it can be defined as follows:

•	 Symbol: y

•	 Formula: y = b0 + b1x + e

•	 Illustration:

•	 y: Response variable

•	 x: Explanatory variable

•	 b0: Slope

•	 b1: Intercept

•	 e: Regression residual

Figure 2-2 shows this equation visually.

Extrapolated, D

Measured B

Measured, A

Interpolated, C

y

x

Figure 2-1. Visual representation of interpolation and extrapolation
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Please note in Figure 2-2 that intercept is the point where the best fit line crosses 
the y axis. Regression residual is the difference between the actual value of the response 
variable and the predicted one.

Least Squares Regression Line of y on x
The least squares regression line makes the sum of square vertical distances of data 
points from the line as minimal as possible. Mathematically it can be defined as follows:

•	 Symbol: ŷ

•	 Formula: ŷ b b x= +0 1

•	 Further derivations:

•	 b r
s

s
y

x
1 =

•	 b y b0 1= -’ x’

•	 Least squares regression line always passes through (x’ y’, )

The illustration in Figure 2-3 uses linear regression (i.e., one exploratory variable 
to depict the methodology adapted by the least squares regression line). y depicts the 
response variable whereas x denotes the exploratory variable. Vertical distances from 
data points to the lines are shown and the best fit regression line is seen as passing 
through the center of these data points. Thus this ensures that the square of residual is 
minimized for each data point.

Y

Y 0 + 1X + e.

1
slope

intercept0

X

Figure 2-2. Linear regression best fit line along with the regression coefficients explained
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Multiple Regression
Multiple regression is a type of regression in which more than one exploratory variable is 
used to predict the outcome of a response variable. Multiple regression is mathematically 
defined as follows:

•	 Symbol: y

•	 Formula: y = b0 + b1x1 + b2x2 + b3x3 +….. bt xt+ e

•	 Illustration:

•	 y: Response variable

•	 x1, x2 , x3, ……, xt: Explanatory variable

•	 b0: Slope

•	 b1, b2, b3, ……., bt: Intercepts

•	 e: Regression residual

The formula above can also be referred to as the equation of regression. Essentially, 
one is trying to find optimal values for all coefficients such can give the best possible 
value of y given all x. In the case of single variable, it’s a line (i.e., linear regression), as 
shown in Figure 2-3, but in case of multiple variables it becomes a plane, as shown in 
Figure 2-4.
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Figure 2-3. Residuals
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Plugging optimal values of coefficients (i.e., slope and intercepts) back in the 
formula above will yield us an equation. Unknown values in this equation will be the x 
values, which are the exploratory variable values in this case. For any given value of x, the 
equation will return us with a prediction.

Stepwise Regression
This type of regression is a customized version of multiple regression. Rather than using 
all exploratory variables for predicting the outcome, stepwise regression automatically 
selects the independent variables from a given pool which can yield a best fit line. This 
can be done by doing either of the following:

•	 Try out one exploratory variable at a time and use that for fitting 
the regression model. Incorporate that exploratory variable if 
found statistically significant.

•	 Run multiple regression on all exploratory variables and use the 
one that is most statically significant to determine the best fitted 
regression line.

Figure 2-5 best describes the methodology adopted by stepwise regression.

Y

X2

X1

Data Point

Figure 2-4. Multiple regression with two exploratory and one response variables explained
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However, as per some statisticians, this approach inherits the following problems:

•	 Opting for one exploratory variable and dropping others creates 
a bias toward the one selected and deprives one from observing 
the chunk of variations which could have been captured by the 
exploratory variables dropped in the first place.

•	 In the case of choosing among many exploratory variables, going 
through this entire exercise will require significant computing 
power, and thus time.

Polynomial Regression
Sometimes when plotting the scatter plot between exploratory and response variables we 
see a non-linear trend. This trend will go unnoticed by the linear regression cameo, and 
will thus require a non-linear treatment where polynomial regression comes in handy. 
Polynomial regression uses degrees of polynomial to make a non-linear regression line. 
Polynomial regression can mathematically be defined as follows:

•	 Symbol: y

•	 Formula: y = b0 + b1x + b2x2 + b3x3 + bhxh+ e

•	 Illustration:

•	 y: Response variable

•	 x1, x2, x3, ……, xh: Explanatory variable
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Figure 2-5. Flowchart of stepwise regression Source:.slideshare.net/bzinchenko/quant-
trader-algorithms
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•	 b0: Slope

•	 b1, b2, b3 , ……., bh: Intercepts

•	 e: Regression residual

•	 h: Degree of polynomial

Looking at Figure 2-6 you will notice that increasing the degree of polynomial makes 
the curve more non-linear and induces additional curves within the regression line.

Assumptions of Regressions
In order to prevent Smith from thinking of regression as the magic wand for continuous 
data predictions, Claire came up with the set of assumptions that should hold true for 
regression to be applicable to a given dataset.
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Figure 2-6. Polynomial regression curves for different values of degrees (i.e., h)
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Number of Cases
The ratio of cases-to-independent variables (IVs) should ideally be 20:1. This means that 
there should be 20 samples for each exploratory variable. However, in extreme cases a 
minimum of 5 samples to one exploratory variable is permissible (i.e., for 5 exploratory 
variables there should be 25 samples in the dataset).

Missing Data
In regression, missing data can lead to a model which is unfit for the sampling data.  
You might fall victim to either one of the following situations:

•	 There might be instances when some observations have missing 
values for all fields within the data. Removing them will be a wise 
thing to do because if the missing values are insignificant then 
neglecting them won’t disturb the overall behavior captured by 
the model.

•	 In case only a given column has missing values in majority of the 
observations no treatment is required because then regression 
will neglect the cases in which there are no values for that 
variable.

Outliers
Outliers can create a bias in the outcome of a regression model such that they will pull the 
best fit line toward themselves. Hence treatment of outliers is critical in regression and 
can be done by means of an appropriate method selected from the ones highlighted in 
Chapter 1.

Multicollinearity and Singularity
Multicollinearity and Singularity are two concepts which undermines the regression 
modeling, resulting in bizarre and inaccurate results. If exploratory variables are highly 
correlated, then regression becomes vulnerable to biases. Multicollinearity refers to a 
correlation of 0.9 or higher, whereas singularity refers to a perfect correlation (i.e., 1).

A remedy to this is to remove the exploratory variable exhibiting correlation of more 
than 0.7. But then this brings us to the following problem. Considering the example in 
Figure 2-7, where weight and blood pressure (BP) have a high correlation of 0.95.

http://dx.doi.org/10.1007/978-1-4842-2823-4_1
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Now which one (weight or BP) is the troublemaker and should be removed? This 
is the point where tolerance comes in as a remedy? Tolerance can be mathematically 
defined as follows:

•	 Formula: Tolerance = 1-r2

•	 Illustration:

•	 r2: Squared multiple correlation of this variable with all other 
independent variables in the regression equation

Tolerance refers to the proportion of the exploratory variable’s variance not captured 
by other exploratory variables in the equation. The greater this value, the better it is. 
Eradicating multicollinearity and singularity will ensure that the response variable is 
predicted from the variations captured by exploratory variables independently and not by 
the correlations which exist among them.

After reading through the description of the regression techniques available, 
Smith was curious to know which method would work best for the problem at hand. 
However, Claire knew that the process for figuring out the right method would need 
some understanding of the data before moving forward. Hence she decided to perform 
features’ exploration. By features she meant variables within the dataset. She was 
primarily interested to see what the data looks like and if the following exist:

•	 Correlation between the exploratory variables and the response 
variable or not

•	 Multicollinearity and singularity

Features’ Exploration
Claire started off by loading the data into memory (see Listing 2-2).

Listing 2-2. Reading the Data in the Memory

data = pd.read_csv('examples/concrete_data.csv')

Correlation: BP, Age, Weight, BSA, Dur, Pulse, Stress

Stress 0.164 0.368 0.034 0.018 0.312 0.506

BP Age Weight BSA Dur Pulse

Pulse 0.721 0.619 0.659 0.465 0.402
Dur 0.293 0.344 0.201
BSA 0.866 0.378
Weight 0.950
Age 0.659

0.407
0.875

0.131

Figure 2-7. Illustration of multicollinearity
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Smith was curious to know how much data there was and what it looked like. Hence 
Claire wrote the code in Listing 2-3 to print some initial observations of the dataset to get 
a feel of what it contains.

Listing 2-3. Printing the Size of the Dataset and Printing the First Few Rows of the 
Dataset

print len(data)
data.head()

Output

1030

While looking at the first few observations in Table 2-2, Smith noticed that all the 
features except that of age are floating point numbers, with age being the only integer 
variable. He also noticed that blast furnace slag, fly ash, and superplasticizer are not 
always the prerequisite when building a concrete. Moreover, he noticed that the concrete 
data within the dataset can be a year old (i.e., row no. 3 has an age of 365 ~ year)

Claire knew for sure that for the analysis (i.e., correlation, regression) to be done it is 
important that feature names should be as simple as possible. Hence she wrote the code 
snippet in Listing 2-4 to make the names brief and human readable. For renaming she 
followed the name mapping as defined in Table 2-3.

Listing 2-4. Renaming the Columns

data.columns = ['cement_component', 'furnace_slag', 'flay_ash',  
'water_component', 'superplasticizer', \
            'coarse_aggregate', 'fine_aggregate', 'age', 'concrete_strength']

Cement
(component
1)(kg in a
m^3 mixture)

0 540.0

540.0

332.5

332.5

198.6

0.0

0.0

142.5

142.5

132.4

0.0

0.0

0.0

0.0

0.0

162.0

162.0

228.0

228.0

192.0

2.5

2.5

0.0

0.0

0.0

1040.0

1055.0

932.0

932.0

978.4

676.0

676.0

594.0

594.0

825.5

28

28

270

365

360

79.99

61.89

40.27

41.05

44.30

1

2

3

Blast Furnace
Slag (component
2)(kg in a m^3
mixture)

4

Fly Ash
(component
3)(kg in a m^3
mixture)

Water
(component
4)(kg in a
m^3 mixture)

Superplasticizer
(component 5)
(kg in a m^3
mixture)

Coarse
Aggregate
(component 6)
(kg in a m^3
mixture)

Fine Aggregate
(component 7)
(kg in a m^3
mixture)

Age
(day)

Concrete
compressive
strength(MPa,
megapascals)

Table 2-2. Print of Observations of the Dataset
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Having seen what the data looks like, it was time for Claire to see how well the 
exploratory variables correlate to the response variable and if any multicollinearity/
singularity in the data exists or not.

Correlation
Claire first decided to see whether any of the exploratory variables correlates to the 
response variable (i.e., concrete strength). This question was of the utmost importance 
to her because she believed that high correlation between two quantitative entities can 
lead to a better best fit linear regression line. Hence she was interested to determine the 
strength and direction of relationships between these quantitative quantities. For that 
she wrote the code in Listing 2-5. However, before moving forward she explained why 
correlation and regression are not entirely the same:

Correlation can be calculated between any two quantitative quantities. 
However, regression is always commuted between a response variable and 
exploratory variable(s). Correlation is limited to just two quantitative 
quantities where regression can have more than two quantitative 
quantities, that is, one response variable and more than one exploratory 
variables aka multiple regression.

Claire also pointed out that an easy way to see the correlation visually is to use a scatter 
plot between response variable and exploratory variables, one at a time (Figure 2-8).

Table 2-3. Variable Names’ Mapping

Old Feature name New feature name

Cement(component 1)(kg in a m3 mixture) cement_component

Blast Furnace Slag(component 2)(kg in a m3 mixture) furnace_slag

Fly Ash(component 3)(kg in a m3 mixture) flay_ash

Water(component 4)(kg in a m3 mixture) water_component

Superplasticizer(component 5)(kg in a m3 mixture) superplasticizer

Coarse Aggregate(component 6)(kg in a m3 mixture) coarse_aggregate

Fine Aggregate(component 7)(kg in a m3 mixture) fine_aggregate

Age (days) age

Concrete compressive strength(MPa, megapascals) concrete_strength
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Listing 2-5. Plotting Scatter Plots Between the Response and Exploratory Variables

plt.figure(figsize=(15,10.5))
plot_count = 1

for feature in list(data.columns)[:-1]:
        plt.subplot(3,3,plot_count)
        plt.scatter(data[feature], data['concrete_strength'])
        plt.xlabel(feature.replace('_',' ').title())
        plt.ylabel('Concrete strength')
        plot_count+=1

plt.show()
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Figure 2-8. Scatter plot between response variable and exploratory variables
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Claire came up with the description of the code in Listing 2-5 to make Smith at ease 
with the methodology used. She recalled saying the following:

We came up with multiples plots within the same figure by using 
subplots. We first defined the figure size by means of plt.figure 
(figsize=(15,10.5)). This fixes the figure to a width of 15 and height 
of 10.5. The response variable (that is, concrete strength) i.e. response 
variable remains the same for all plots, whereas exploratory variables 
are taken into consideration one at a time (that is, Plot by plot). Thus 
we used: for feature in list(data.columns)[:-1] which looped 
through all the variables except the last one (that is, the response 
variable). Then we defined the subplot index as follows: plt.subplot 
(3,3,plot_count). The first three define the number of rows, 
whereas the other three define the number of columns. This means  
that the figure will be able to accommodate a maximum of 9 plots.  
plot_count defines the index where that specific plot will be positioned 
on the figure. Possible values within this scenario can be from 1 to 9.

Smith decided to take a shot and explain the correlations by looking at Figure 2-8. 
Hence he came up with the following three insights:

•	 The presence of outliers is negligible in the majority of these plots 
except for the plot between concrete strength and age.

•	 In some of the scatter plots we see a high frequency of values lying 
on 0. This can be seen in the plots between the concrete strength 
variable and exploratory variables, primarily age, furnace slag, fly 
ash, and superplasticizer.

•	 There seems to exist instances in which positive, sometimes 
negative, and sometimes no correlation exists between the two 
quantitative quantities.

Claire decided to extend these findings by listing the pairs for each of the instances 
(i.e., no, positive and negative correlations). She did so by evaluating plots in Figure 2-6 on 
the benchmark correlation in Figure 2-9. In case there is a trend, it will be either a negative 
or a positive correlation. An absence of a definite trend will indicate the existence of no 
correlation.
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•	 Positive correlation exists between

•	 Cement component and concrete strength

•	 Superplasticizer and concrete strength

•	 Negative correlation lies between

•	 Fly ash and concrete strength

•	 Water component and concrete strength

•	 Coarse aggregate and concrete strength

•	 Fine aggregate and concrete strength

•	 No correlation exists between

•	 Furnace slag and concrete strength

•	 Age and concrete strength

The pairs identified by the visual representation made it easy for Smith to 
understand what correlation is. However, he wanted to validate if the findings made sense 
statistically as well. Hence, Claire came up with the code snippet and computed Pearson 
correlation in Listing 2-6.

Listing 2-6. Calculating Pair-wise Pearson Correlations

pd.set_option('display.width', 100)
pd.set_option('precision', 3)
correlations = data.corr(method='pearson')
print(correlations)

y-axis y-axis y-axis

0
Positive Correlation

x-axis 0
Negative Correlation

x-axis 0
No Correlation

x-axis

Figure 2-9. Illustration of positive, negative, and no correlation
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Claire recalled explaining the findings in the following words:

Output in Figure 2-10 shows a grid in which the Pearson correlation is 
computed between all features in the dataset and not confined to just 
the correlations between exploratory variables and response variable as 
we saw earlier in Figure 2-8. A strong positive correlation has a value 
of 1, strong negative correlation has a value of -1, and 0 indicates no 
correlation. By looking at the scatter plot in Figure 2-8 we had assumed 
that there exists no correlation between age and concrete strength; 
however, the statistical results in Figure 2-10 say otherwise; that is, there 
exists a slight positive correlation between the two quantities. Visual 
deduction is prone to human error so we will go with the latter (that is, 
there’s a slight positive correlation between the two quantities).

Smith, knowing how each exploratory variable correlates to the response variable, 
was curious to investigate whether or not singularity or multicollinearity exists in the 
dataset. This was exactly the next thing Claire had on list, and thus she wrote the code in 
Listing 2-7.

Listing 2-7. Calculating Pair Plot Between All Features

data_ = data[(data.T != 0).any()]
seaborn.        pairplot(data_, vars=data.columns, kind='reg')
plt.show()
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Figure 2-10. Correlations between response variable and exploratory variables
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Claire decided to first explain to Smith what the code meant in Listing 2-7. She pointed 
out an aspect obvious in Figure 2-8 (i.e., that some of the features in the dataset have value 
of 0 in majority). She believed that having a majority of 0 values in the dataset can lead to 
correlation coefficients and regression lines that do not cover the dataset in its true essence.  
She started off by explaining that data_= data[(data.T != 0).any()] meant deleting the 
records in columns having a value of 0. After doing that she used seaborn pairplot to plot 
correlations between all features in the dataset.

While explaining the output in Figure 2-11, Claire asked Smith to concentrate on 
column 1 and row 2. Claire recalled to having explained that: “In many of the cases 
feature pairs don’t have a correlation between them. Exception lies in two cases—that is, 
cement component and furnace slag and cement component and fly ash—where we can 
see a strong negative correlation.”

Smith was overwhelmed by the insights he had gained so far. He had seen what 
the plots looked like after zero was removed from the observations. He was curious to 
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Figure 2-11. Pair plot of all features in the dataset
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determine how the correlation coefficients would look after zeros are removed from 
the dataset. Moreover, he was aware that a Spearman correlation exists between these 
features hence he was curious to see what correlation coefficients it would present in the 
given situation. Finally, while looking at Figure 2-8, it seemed to Smith that all features 
were continuous except age, which looked like a discrete variable to him as observations 
within age fell within one of the seven discrete values, Smith was interested in splitting 
the data in to age segments and compute the correlations for each of these splits to see 
a strong correlation between the response variable and any of the exploratory variables. 
Can you help Smith answer these questions? Give it a shot in the following exercises.

EXERCISES

1. remove zeros from the data features and then recalculate 
the pearson correlation. any improvements in the correlation 
coefficient?

2. Determine spearman correlation for features in the dataset. Did 
this bring any marginal difference in the correlation scores?

3. From the scatter plot it seems that age is more of a discrete 
feature. Take the data from each age one by one and calculate 
the pearson correlations for the remaining features. Does any 
specific age yield a good correlation between the response 
variable and exploratory ones?

Now that Claire and Smith understood the exploratory variables that had a 
significant influence on concrete strength, and with knowledge of where multicollinearity 
possibly exists, it was time to bring regression into practice. Regression was required 
for them to come up with an equation which can enable them to measure the concrete 
strength without the need of procuring some special equipment to measure it. However, 
before proceeding with regression models Claire felt she needed to make Smith aware of 
the important concepts of overfitting and underfitting.

Overfitting and Underfitting
Overfitting refers to the phenomenon where a model is highly fitted on a dataset. This 
generalization thus deprives the model from making highly accurate predictions about 
unseen data. Overfitting is shown by the non-linear line in Figure 2-12.
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The following methodologies can be used to curb overfitting:

•	 Make models simple; that is, tune as many minimum parameters 
as possible, because the more complex they are, the more they 
will overfit the data at hand.

•	 Perform cross-validation. For example, randomly choose x% of 
the data values for train and the remaining y% for test. Fit the 
model on the train data, use it to predict values on the test data, 
and compute the test error. Repeat this exercise again n times. 
Each of the times the train/test split will be done randomly. 
Compute the average of all test errors to find out the real test error 
of the model at hand.

Underfitting is a phenomenon where the model is not trained with high precision on 
data at hand.

The treatment of underfitting is subject to bias and variance. A model will have a 
high bias if both train and test errors are high, as shown in Figure 2-13.
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Figure 2-12. Illustration of overfitting
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Moreover, a model will have a high variance if there is a large gap between test and 
train errors, as shown in Figure 2-14.

If a model has a high bias type underfitting, then the remedy can be to increase the 
model complexity, and if a model is suffering from high variance type underfitting, then 
the cure can be to bring in more data or otherwise make the model less complex.

Claire decided to randomly divide the data into a train/test split to validate the 
accuracy of the model and perform cross-validation in cases of overfitting (Listing 2-8).
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Figure 2-13. Illustration of high bias
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Figure 2-14. Illustration of high variance
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Listing 2-8. Splitting the Data in Training and Testing sets

def split_train_test(data, feature, train_index=0.7):

    train, test = train_test_split(data, test_size = 1-train_index)

    if type(feature) == list:
        x_train = train[feature].as_matrix()
        y_train = train['concrete_strength'].as_matrix()

        x_test = test[feature].as_matrix()
        y_test = test['concrete_strength'].as_matrix()

    else:
        x_train = [[x] for x in list(train[feature])]
        y_train = [[x] for x in list(train['concrete_strength'])]

        x_test = [[x] for x in list(test[feature])]
        y_test = [[x] for x in list(test['concrete_strength'])]

    return x_train, y_train, x_test, y_test

Claire explained the code in Listing 2-8 to Smith as follows: “In the code above, we 
are performing a 0.7-0.3 split. This means that 70% of the observations in the data form 
the training dataset on which the data is fitted on, while 30% of it comprises the test 
dataset on which the model will be evaluated.”

Claire pointed out that underfitting and overfitting are something that can be 
detected from the output of a model when first applied. In order to determine the best 
methodology to eradicate underfitting and overfitting, you have to go through multiple 
iterations of modeling until you land on a model which is free from both of these. 
Hence, this is an ongoing exercise and should be done whenever any model (regression, 
classification, etc.) is applied to the data.

Smith was curious to see whether some techniques exist to evaluate the accuracy of 
a regression model once applied to a dataset. Claire’s answer was affirmative, and hence 
she compiled the next section for that purpose.

Regression Metrics of Evaluation
Sklearn.metrics is a great tool in determining the performance of a regression model.  
It does this by implementing several utility functions, scores, and losses. These usually 
give a single output; however, they have been enhanced to generate multiple outputs as 
well, most notably, mean absolute error, R2 score, mean squared error, and explained 
variance score.

Claire came up with a brief list of the most commonly used evaluation methods for 
regression.
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Explained Variance Score
This score defines the proportion of variance in population explained by the best 
fit regression model. The best score for this metric is 1. Explained variance score is 
mathematically defined as follows:

•	 Formula: explained y y
Var y y

Var yvariance ,ˆ
ˆ

( ) = -
-{ }
{ }

1

•	 Where:

•	 ŷ: Estimated target output

•	 y: Corresponding (correct) target output

•	 Var: Variance

Mean Absolute Error
Mean absolute error (MAE) is the mean of residuals (i.e., difference between the 
estimated target and actual target outcomes). Alternative formulations of this measure 
may include relative frequencies as the weight factors. MAE works on the same scale  
(i.e., unit) on which the data is measured. Hence the limitation is that there is no 
possibility of making comparisons between series using different scales/units. This can 
be mathematically defined by the following:

•	 Formula: MAE y y
n

y y
samples

n

i i

samples

,ˆ ˆ( ) = -( )
=

-

å1

1 0

1
2

•	 Where:

•	 ŷ
i
: Estimated target output

•	 y
i
: Corresponding (correct) target output

•	 n
samples

: Number of samples

Mean Squared Error
Mean squared error (MSE) is similar to MAE, except that now the square of residual is 
taken instead of taking the absolute difference among the estimated target output and 
corresponding actual target output. The value is always positive and values closer to 0 are 
better. Taking the square root of MSE will yield root mean square deviation (RMSE) which 
holds the same units as that of the target output. The mathematical definition of MSE is as 
follows:

•	 Formula: MSE y y
n

y y
samples

n

i i

samples

,ˆ ˆ( ) = -( )
=

-

å1

1 0

1
2
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•	 Where:

•	 ŷ
i
: Estimated target output of ith sample

•	 y
i
: Corresponding (correct) target output

•	 n
samples

: Number of samples

R2

R2, also referred to as the coefficient of determination, defines the measure of how many 
future samples are likely to be predicted by the regression model. Moreover, it also 
signifies the proportion of variance in response variable that is predictable from the 
exploratory ones. Value ranges from 1 to minus infinity where 1 is the most optimum. The 
mathematical representation is as follows:

•	 Formula: R y y
y y

y

n

i i

n

i

samples

samples

2 1 0

1
2

1 0

1
2

1,ˆ
ˆ

( ) = -
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•	 Formula: R
varianceofpredictedvaluesy

varianceofobservedvaluesy
2 =

ˆ

•	 Example:

•	 R = -0.7

•	 R2 = 0.49 (i.e., half the variation is accounted for by linear 
relationship)

•	 Where:

•	 ŷ
i
: Estimated target output of ith sample

•	 y
i
: Corresponding (correct) target output

•	 ý
n

y
samples

n

i

samples

=
=

-

å1

1 0

1

•	 n
samples

: Number of samples

Residual
•	 Formula: Residual = observed y – predicted y OR (y y- ˆ)

•	 Mean of least squares residuals is always 0
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Residual Plot
A residual plot is a scatter plot of regression residuals against exploratory variable x  
(i.e., independent). See Figure 2-15. The least square regression line is pulled by and 
toward a point that is extreme in x direction with no other points near it. A dotted line 
represents the least square regression line.

Residual Sum of Squares
The residual sum of squares (RSS) refers to amount of variance in data not captured by 
the best fit line of a regression model. The more minimal the RSS, the better the model is.

For the sake of simplicity we will go forward with using R2 as the metrics of cross-
validation. Moreover, it seems to be a better choice considering that we are working for 
prediction, and this metric will help us determine where future samples will lie on the 
accuracy scale.

Now having gone through the concepts of underfitting and overfitting and evaluation 
techniques of regression, Claire believed that it was time for her to test their mantle in 
finding a regression model which best fits the data at hand.

Types of Regression
Claire continued on by pointing out that SKLearn is the most common library for 
machine learning in Python. SKLearn offers a spectrum of algorithms for regression 
modeling. She came up with Figure 2-13 from SKLearn’s web site as a reference to 
determine the regression algorithms which are usually the best given the size of our 
dataset.
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You can download the cheat sheet shown in Figure 2-16 from http://scikit-
learn.org/stable/tutorial/machine_learning_map/. 

Smith decided to give it a shot and try to identify the regression models suitable 
for the size of the current dataset. He recalled having said: “As in our case, the number 
of samples is less than 100K, hence the potential models are Lasso, ElasticNet, 
SVR(kernel=‘rbf’), Ensemble Regressors, Ridge Regression, and SVR(kernel=‘linear’).”

Linear regression is the most basic of the regression models to start with, and hence 
Claire decided to start modeling from it.

Linear Regression
Smith already knew what a linear regression was, thanks to Claire (see Figure 2-2). Hence 
Claire decided to put it into the application to see how it performs, so she compiled the 
code in Listing 2-9.

Listing 2-9. Calculating Single Linear Regression

plt.figure(figsize=(15,7))
plot_count = 1

for feature in ['cement_component', 'flay_ash', 'water_component', 
'superplasticizer', 'coarse_aggregate']:
    data_tr = data[['concrete_strength', feature]]
    data_tr=data_tr[(data_tr.T != 0).all()]

    x_train, y_train, x_test, y_test = split_train_test(data_tr, feature)

Figure 2-16. Cheat sheet of Regression-SKLearn

http://scikit-learn.org/stable/tutorial/machine_learning_map/
http://scikit-learn.org/stable/tutorial/machine_learning_map/
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    # Create linear regression object
    regr = LinearRegression()

    # Train the model using the training sets
    regr.fit(x_train, y_train)
    y_pred = regr.predict(x_test)

    # Plot outputs
    plt.subplot(2,3,plot_count)

    plt.scatter(x_test, y_test,  color='black')
    plt.plot(x_test, y_pred, color='blue',
             linewidth=3)
    plt.xlabel(feature.replace('_',' ').title())
    plt.ylabel('Concrete strength')

    print feature, r2_score(y_test, y_pred)

    plot_count+=1

plt.show()

Output

cement_component     0.250526602238
flay_ash             0.0546142086558
water_component      0.112291736027
superplasticizer     0.0430808938239
coarse_aggregate     0.0206812124102
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Explaining the code was essential for Smith to understand the outcome. Thus Claire 
came up with the following explanation of the code in Listing 2-9:

While looking at the code above, you will notice that we are only using 
the exploratory variables in which we noticed either positive or negative 
correlations while visually looking at Figure 2-8. Second we have 
initialized a figure for subplots with a width of 15 and height of 7. Third 
we did the train/test split method for cross-validation.

Smith decided to take a shot at explaining what the output means. Almost all 
of the exploratory variables have their R2 values closer to 0, which indicates that the 
linear regression best fit line failed to capture the variance that lay within each of these. 
However, an exception lies in the case of the cement component, which has a relatively 
decent variance captured by its best fit line. Considering that the R2 is low, neither of the 
models can be used for predicting concrete strength.

Listing 2-10. Calculating Multiple Linear Regression

features = ['cement_component', 'flay_ash', 'water_component', 
'superplasticizer', 'coarse_aggregate']

data_tr = data
data_tr=data_tr[(data_tr.T != 0).all()]

x_train, y_train, x_test, y_test = split_train_test(data_tr, features)

# Create linear regression object
regr = LinearRegression()

# Train the model using the training sets
regr.fit(x_train, y_train)
y_pred = regr.predict(x_test)

plt.scatter(range(len(y_test)), y_test,  color='black')
plt.plot(y_pred, color='blue', linewidth=3)

print 'Features: %s'%str(features)
print 'R2 score: %f'%r2_score(y_test, y_pred)
print 'Intercept: %f'%regr.intercept_
print 'Coefficients: %s'%str(regr.coef_)

Output

Features:       ['cement_component', 'flay_ash', 'water_component', 
'superplasticizer', 'coarse_aggregate']

R2 score:      0.097982
Intercept:     77.802791
Coefficients:  [0.04531335  0.01168227 -0.13620573  0.24324622 -0.0329745
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Claire was surprised, as Smith was spot-on. She was curious to see what would 
happen if she ran a multiple regression by incorporating all of the exploratory variables at 
the same time. Hence she came up with the code snippet in Listing 2-10. Smith was able 
to understand the code to a certain extent; however, he was surprised to see a non-linear 
regression best fit line in Figure 2-18.

His perception was that multiple linear regression should be producing a linear line 
rather than a non-linear best fit line. To this Claire responded the following:

Number of features in analysis is directly proportional to the number 
of dimensions on the plot. As in our case we have five exploratory and 
one response variable which add up to six variables. Plotting points in 
6 dimensions will be a difficult thing to do, hence the representation of 
that is shown using two dimensions in Figure 2-18. The best fit line would 
have been linearly represented had we seen that in the 6 dimensions.

Claire pointed out that since the R2 for this multiple regression is extremely low, 
one cannot use this model to predict the response variable (i.e., concrete strength). Note 
that the R2 is extremely low; hence we will definitely not go forward with this to answer 
the question at hand. However, the output also gives us the coefficients. The first is the 
alpha coefficient, with the subsequent ones representing the beta coefficients. Both Smith 
and Claire knew that multicollinearity exists in the data. Hence in the pursuit of finding 
regression techniques which work on a multicollinear data, they came across Ridge 
regression and decided to try that out. However, Claire thought it better to explain to 
Smith about grid search. Before proceeding onward, let’s tap into other regression models 
to find the one that fits our data in the best possible way.
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Figure 2-18. Multiple linear regression plot
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Grid Search
Grid search uses a ‘fit’ and ‘score’ methodology to determine the best parameter for a 
given model. The model to be tuned along with the parameters and their finite possible 
values is passed within GridSearchCV. The output signifies the parameter values on 
which the model will be best tuned.

Having explained grid search, Clare compiled a knowledge base regarding Ridge 
regression.

Ridge Regression
Ridge regression implements the loss function of linear least squares function with a 
regularization of L2-norm. This type of regression has an inbuilt support of accepting 
multiple exploratory variables to predict the response variable. L2 is a vector norm which 
captures the magnitude of a vector. L2 is most commonly taught and used frequently. 
Consider that we have a vector 

�
b  which has two components β

0
 and β

1
. L2-norm for this 

can be defined as follows:

•	 Formula: 
�
b b b

2
0
2

1
2= +

This is the Cartesian distance from the origin to these vector components  
(i.e., β

0
 and b1). Ridge regression is good in the following conditions:

•	 When we have more than one exploratory variable

•	 Multicollinearity exists between the exploratory variables

Multicollinearity will lead to biased estimators because the beta coefficients get 
abnormally high when calculated over many iterations. Hence this will lead us to the 
question, the best coefficient of which iteration is the real one? As the estimators will 
be biased now, taking the coefficient averages over much iteration won’t yield the 
population coefficients. However, the variances within these coefficients won’t be too 
high and thus will help in better understanding these coefficients. In order to avoid 
having beta values that are too big we need to put some constraint on how big the betas 
can get. Hence we can mathematically define Ridge regression as follows:

•	 Formula: min�
� �

b
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2
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In Ridge regression considering our choice is L2-norm, our beta value constraint is 
in the shape of a circle which can be seen in Figure 2-19. Earlier we applied single and 
multiple linear regression on data. However, Ridge, Lasso, and ElasticNet regression are 
more suitable with multiple regression and thus will be our analyses of choice.
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2

1

Figure 2-19. Representation of Ridge regression

Now that Smith understood Ridge regression, he was interested to see how well it 
predicts concrete strength from the available exploratory variables. As we read earlier, 
Ridge regression has a support of accepting multiple exploratory variables as input; hence, 
Claire decided to run a multiple Ridge regression, as seen in Listing 2-11. Figure 2-20 
shows the result.

Listing 2-11. Calculating Multiple Ridge Regression

alphas = np.arange(0.1,5,0.1)

model = Ridge()
cv = GridSearchCV(estimator=model, param_grid=dict(alpha=alphas))

y_pred = cv.fit(x_train, y_train).predict(x_test)

plt.scatter(range(len(y_test)), y_test,  color='black')
plt.plot(y_pred, color='blue', linewidth=3)

print 'Features: %s'%str(features)
print 'R2 score: %f'%r2_score(y_test, y_pred)
print 'Intercept: %f'%regr.intercept_
print 'Coefficients: %s'%str(regr.coef_)

Output

Features:       ['cement_component', 'flay_ash', 'water_component', 
'superplasticizer', 'coarse_aggregate']

R2 score:      0.097982
Intercept:     77.802791
Coefficients:  [0.04531335  0.01168227 -0.13620573  0.24324622 -0.03297459] 
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Smith didn’t have much difficulty in understanding the code in Listing 2-11 as it 
resembled the code in Listing 2-10. The only thing he didn’t understand was how grid 
search was brought into application. Hence Claire started to explain the piece of code that 
has to do with GridSearchCV. She at first pointed to alphas = np.arange(0.1,5,0.1) which was 
used to generate an array of values in the range of 0.1 to 5, with an offset of 0.1. This along 
with the Ridge regression model was then fed into GridSearchCV. Hence GridSearchCV 
tried values of alpha one by one to determine the one that best fine-tunes the model.

Having understood the code in Listing 2-11, Smith had a question. Did R2 fare better 
when applying Ridge regression? To this Claire said the following:

Not at all, as it’s exactly the same and so are the coefficients. The 
reason for which can be that in the presence of multiple features, and 
multicollinearity linear regression tends to bias towards the L2-norm, 
and L2-norm is the regularization term which is used by Ridge regression, 
hence a resemblance. Moreover, also notice that we are using grid search 
in our approach to optimize for alpha. So what exactly is alpha? Alpha is 
a regularization parameter which is used to weight the L2-norm term in 
Ridge regression. The value of 0 for alpha translates the Ridge regression 
model to the ordinary least squares regression model. Hence the higher 
the value of alpha, the higher the smoothness constraint, and the lower 
would be the magnitude of the coefficients. The effect of alpha values is 
shown for the illustration in Figure 2-21.
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Figure 2-20. Multiple Ridge regression plot
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Ridge regression even after parameter didn’t bring any improvement over what a 
multiple linear regression had to offer. Claire believed that changing the regularization 
term from L2-norm to L1-norm might bring some improvements to the R2 score. Hence, 
she decided to try out Lasso regression, and came up with the description of that in the 
following sections.
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Figure 2-21. Effect of alpha value on the smoothness of the regression fit line
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Lasso Regression
Contrary to Ridge regression, Lasso regression uses an L1-norm. L1-norm for Lasso 
regression can be defined as follows:

•	 Formula: 
�
b b b

1
0 1= + Ú

Mathematically we define Lasso regression as follows:

•	 Formula: min�
� �

b
y AB-

2

2
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OR
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b
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Because our Ridge regression choice was an L2-norm, our beta value constraint 
was in the shape of a circle. However, in Lasso regression which takes L1-norm into 
consideration, our beta constraint is in the shape of a diamond (see Figure 2-22).

2

1

Figure 2-22. Representation of Lasso regression

Considering the edge of this diamond lying on the x axis of the first quadrant we can 
see that the coordinates are (c,0). The level curve above touches the diamond at (0,c) 
which means that we have a value for β

1
 and not for β

2
. Hence substituting the following 

in the equation will lead to the exploratory variable associated with β
1
 to turn into 0. Thus 

Lasso regression in this entire process will end with only a few exploratory variables as 
compared to Ridge regression in which the shape is a circle and includes all exploratory 
variables within the dataset.

Smith was anticipating an improvement in the R2 here because he believed that 
handpicking only a few exploratory variables and neglecting the rest can make the model 
stronger. Hence, Claire tested the model, as shown in Listing 2-12.
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Listing 2-12. Calculating Multiple Lasso Regression

model = Lasso()
cv = GridSearchCV(estimator=model, param_grid=dict(alpha=alphas))

y_pred = cv.fit(x_train, y_train).predict(x_test)

plt.scatter(range(len(y_test)), y_test,  color='black')
plt.plot(y_pred, color='blue', linewidth=3)

print 'Features: %s'%str(features)
print 'R2 score: %f'%r2_score(y_test, y_pred)
print 'Intercept: %f'%regr.intercept_
print 'Coefficients: %s'%str(regr.coef_)

Output

Features:       ['cement_component', 'flay_ash', 'water_component', 
'superplasticizer', 'coarse_aggregate']

R2 score:      0.103610
Intercept:     77.802791
Coefficients:  [0.04531335 0.01168227 -0.13620573 0.24324622 -0.03297459]

Smith noticed that Lasso regression fared better than multiple Ridge and linear 
regressions (Figure 2-23).

80

70

60

50

40

30

20

20 30 40 50 60 70 80

10

10-10
0

0

Figure 2-23. Multiple Lasso regression plot
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However, as per Claire, a R2 of 0.1 is very low and not something the response 
variable can be extrapolated onto. Also, she pointed out that grid search was used again 
to optimize for alpha term as was done in Ridge regression.

Having had no major success so far, Claire decided to bring in the best of the regressions. 
ElasticNet brings in an amalgam of both of these two approaches (i.e., Ridge and Lasso).

ElasticNet
ElasticNet overcomes the limitations found in Lasso regression (i.e., the penalty 
function). Lasso tends to select only some exploratory variables and for the multicollinear 
group of exploratory variables, it will only select one from the group. To avoid this, it is 
wise to add a quadratic part to the penalty (i.e., b

2
) which is present in Ridge 

regression. Hence what ElasticNet does is to include the convex sums of Lasso and Ridge 
regression penalties.

Claire wrote the code in Listing 2-13 to try multiple ElasticNet on the data.

Listing 2-13. Calculating Multiple ElasticNet Regression

model = ElasticNet()
cv = GridSearchCV(estimator=model, param_grid=dict(alpha=alphas))

y_pred = cv.fit(x_train, y_train).predict(x_test)

plt.scatter(range(len(y_test)), y_test,  color='black')
plt.plot(y_pred, color='blue', linewidth=3)

print 'Features: %s'%str(features)
print 'R2 score: %f'%r2_score(y_test, y_pred)
print 'Intercept: %f'%regr.intercept_
print 'Coefficients: %s'%str(regr.coef_)

Output

Features:       ['cement_component', 'flay_ash', 'water_component', 
'superplasticizer', 'coarse_aggregate']

R2 score:      0.099785
Intercept:     77.802791
Coefficients:  [0.04531335  0.01168227 -0.13620573  0.24324622 -0.03297459] 
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Claire was disappointed with the results of this model (Figure 2-24). She recalled:

The cross-validation seemed to be lower here as compared to Lasso 
regression. As we read earlier, Lasso seems to consider a chunk of the 
exploratory variables; hence the ElasticNet’s efforts in adding both of 
them together nullifies the advantage that Lasso had in isolation. This 
is the behavior we saw on the data at hand but beware it doesn’t stand 
universal for all problem sets.

Smith was curious to if any technique exists that iteratively improves the accuracy of 
a regression model. Claire knew the answer to that (i.e., gradient boosting regression).

Gradient Boosting Regression
An ensemble of either classification or regression tree models populates into a gradient 
boosted model (see Figure 2-25). Boosting is a non-linear flexible regression technique 
that helps increase the accuracy of trees by assigning more weights to wrong predictions. 
The reason for inducing more weight is so the model can emphasize more on these 
wrongly predicted samples and tune itself to increase accuracy. The gradient boosting 
method solves the inherent problem in boosting trees (i.e., low speed and human 
interpretability). The algorithm supports parallelism by specifying the number of threads.
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Figure 2-24. Multiple ElasticNet regression plot
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Claire decided to run both single and multiple gradient boosting regressions on 
the dataset in question. She started out by writing the code for single gradient boosting 
regression in Listing 2-14.

Listing 2-14. Calculating Single Gradient Boosting Regression

plt.figure(figsize=(15,7))
plot_count = 1

for feature in ['cement_component', 'flay_ash', 'water_component', 
'superplasticizer', 'coarse_aggregate']:
    data_tr = data[['concrete_strength', feature]]
    data_tr=data_tr[(data_tr.T != 0).all()]

    x_train, y_train, x_test, y_test = split_train_test(data_tr, feature)

    # Create linear regression object
    regr = GradientBoostingRegressor()

    # Train the model using the training sets
    regr.fit(x_train, y_train)
    y_pred = regr.predict(x_test)

    # Plot outputs
    plt.subplot(2,3,plot_count)

20

15

10

5

0

–5

–10
0 2 4 6 8 10

x

f(x
)

f(x) = x sin(x)
Observations
Prediction
90% prediction inerval

Figure 2-25. Illustration of gradient boosting regression
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    plt.scatter(x_test, y_test,  color='black')
    plt.plot(x_test, y_pred, color='blue',
             linewidth=3)
    plt.xlabel(feature.replace('_',' ').title())
    plt.ylabel('Concrete strength')

    print feature, r2_score(y_test, y_pred)

    plot_count+=1

plt.show()

Output

cement_component    0.339838267592
flay_ash            0.0804872388797
water_component     0.311858270879
superplasticizer    0.123130891086
coarse_aggregate    0.230383758064

Smith was thrilled to see the results as after much effort they were able to 
significantly improve the R2 coefficient of the regression model (Figure 2-26).

While looking at the R2 coefficient values of cement component, water component, 
and coarse aggregate, Smith saw a better R2 relative to what they had gotten from linear 
regression. He knew that the results could be improved by incorporating grid search to 
tune in the parameter values. Claire was still not content with the results; hence she went 
forward to run multiple gradient boosting in Listing 2-15.
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Listing 2-15. Calculating Multiple Gradient Boosting Regression

model = GradientBoostingRegressor()

y_pred = model.fit(x_train, y_train).predict(x_test)

plt.scatter(range(len(y_test)), y_test,  color='black')
plt.plot(y_pred, color='blue',
         linewidth=3)

print 'Features: %s'%str(features)
print 'R2 score: %f'%r2_score(y_test, y_pred)
print 'Intercept: %f'%regr.intercept_
print 'Coefficients: %s'%str(regr.coef_)

Output

Features:       ['cement_component', 'flay_ash', 'water_component', 
'superplasticizer', 'coarse_aggregate']

R2 score:      0.005876
Intercept:     77.802791
Coefficients:  [0.04531335  0.01168227 -0.13620573  0.24324622 -0.03297459]

Smith saw the R2 go from bad to worse. Single gradient boosting regression seems to 
have fared better than multiple gradient boosting regression (Figure 2-27).

Claire had once read that to better classify or extrapolate the data, one approach can 
be to plot the data in a high-dimensional space. Support vector machines tend to do that 
in the presence of kernels.
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Figure 2-27. Multiple gradient boosting regression plot
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Support Vector Machines

Support vector machines constructs hyperplane(s) for the purposes of classification and 
regression (see Figure 2-28). The goal is to have the largest separation between the two 
classes. This is ensured by maximizing the distance between the hyperplane and the data 
point on each side. During this process the sets are often not linearly separable in that 
space, and thus we are advised to map it to a high-dimensional space (i.e., by introducing 
kernels).

Claire decided to run both single and multiple support vector machine regressions 
on the dataset. She also planned to apply the linear kernel to the support vector regressor 
for better results.

Listing 2-16. Calculating Single Support Vector Machine Regression Using Linear Kernel

plt.figure(figsize=(15,7))
plot_count = 1

for feature in ['cement_component', 'flay_ash', 'water_component', 
'superplasticizer', 'coarse_aggregate']:
    data_tr = data[['concrete_strength', feature]]
    data_tr=data_tr[(data_tr.T != 0).all()]

    x_train, y_train, x_test, y_test = split_train_test(data_tr, feature)

    # Create linear regression object
    regr = SVR(kernel='linear')

    # Train the model using the training sets
    regr.fit(x_train, y_train)
    y_pred = regr.predict(x_test)

    # Plot outputs
    plt.subplot(2,3,plot_count)

Figure 2-28. Illustration of support vector machine regression
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    plt.scatter(x_test, y_test,  color='black')
    plt.plot(x_test, y_pred, color='blue', linewidth=3)
    plt.xlabel(feature.replace('_',' ').title())
    plt.ylabel('Concrete strength')

    print feature, r2_score(y_test, y_pred)

    plot_count+=1

plt.show()

Output

cement_component    0.186215229943
flay_ash            0.0566844466086
water_component     0.0824723749594
superplasticizer    0.0412024702221
coarse_aggregate    0.0293294512993

Smith noticed that contrary to the gradient boosting regressor’s best fit lines in 
Figure 2-23, best fit lines in Figure 2-26 seem to be much cleaner, linear, and relatively 
less overfitted. However, the R2 got a hit as it decreased from what they observed in single 
gradient boosting regressor (see Figure 2-29).

Claire came up with the code in Listing 2-17 to see if multiple support vector 
machines will bring any improvement to the R2 coefficient. Figure 2-30 shows the result.
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Listing 2-17. Calculating Multiple Support Vector Machine Regression Using Linear 
Kernel

model = SVR(kernel='linear')

y_pred = model.fit(x_train, y_train).predict(x_test)

plt.scatter(range(len(y_test)), y_test,  color='black')
plt.plot(y_pred, color='blue', linewidth=3)

print 'Features: %s'%str(features)
print 'R2 score: %f'%r2_score(y_test, y_pred)

Output

Features:   ['cement_component', 'flay_ash', 'water_component', 
'superplasticizer', 'coarse_aggregate']

R2 score:  0.010077

On Smith’s scale, the support vector regressor performed the worst among the 
models they had explored earlier. Claire believed that parameter tuning can be done 
to improve the performance. Moreover, other kernel types can be put into practice to 
increase the efficiency of the predictions.

Smith and Claire are done for the day. Help them tune the model, and try different 
kernels by completing the following exercises.
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Figure 2-30. Multiple Support Vector Machine regression plot
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EXERCISES

1. run the support vector machine regression with ‘rbf’ kernel. 
also try running ‘polynomial’ and ‘sigmoid’ kernels to optimize 
for prediction accuracy.

2. gradient boosting regressor has parameters of learning rate, 
min_samples_split, min_samples_leaf on which it can be 
tuned. run a grid search over these to increase the efficiency of 
the regressor.

3. support vector regressor has parameters of c and gamma on 
which it can be tuned onto. run a grid search over these to 
increase the efficiency of the regressor.

4. gradient boosting regressor returns the feature importance of 
every model fitted. explore features which the model gave more 
importance to, and redo the modeling by only considering those 
models together or in isolation.

5. in an earlier exercise we split the data on the basis of age and 
computed correlations. pick the age split which had the greatest 
correlation and then repeat the examples and exercises to see if 
we can fit the model with higher precision for that group of data.

Applications of Regression
Applications of regression are vibrant in several fields of study.

Predicting Sales
Regression can be used to predict the sales of a good or service such as demand analysis 
(Figure 2-31).
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Historical data of sales can be used to extrapolate the results for the future. Features 
like marketing costs, merchandizing, price, and number of stock keeping units (SKUs) 
can be given as the exploratory variables to the model.

Predicting Value of Bond
Inflation rate at different times can be used to predict bonds' value. This can be the game 
changer when estimating the expected return from a portfolio that includes bonds.

Rate of Inflation
In economics we have the concepts of rate of inflation and theory of money supply. If a 
researcher believes the rate of inflation to be a function of the amount of money supply 
in the economy then what can he do? He can make rate of inflation as a response variable 
and the supply of money as the exploratory variable (see Figure 2-32).

60

50

40

30

20

10

0
1/70 1/79 1/88 1/97

DATE

0

100

200

300

400

500

600 Variables
AUTOADJ
INCOME

Automotive Retail Sales ($bn, sa) and Personal Income ($bn)

Figure 2-31. Prediction of retail sales and personal income



ChapTer 2 ■ regression

91

Insurance Companies
These companies use regression to predict the amount of people who might reclaim their 
health insurance or life insurance, or the number of people who might have accidents in 
their insured vehicles.

Call Center
A call center manager might want to know the increase in number of complaints as a 
function of the call waiting times.

Agriculture
Regression can be used to predict the number of fruits that a given region is expected to 
yield. Possible exploratory variables can be the amount of rainfall, hours of sunshine, 
number of diseases affecting crops, number of affected crops by fire or diseases, quality 
index of soil, land fertility index, and so on.

Predicting Salary
Universities can use a predictive model to forecast the salary of students. Possible 
exploratory variables can be grades, number of competitions participated in, seat 
placement in the class, number of internships done, number of research papers 
published, number of projects done, number of sport events participated in, and so on.
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Real Estate Industry
The price of real estate can be predicted from size in square feet of a property, number 
of rooms, availability of parking, square feet of open space, number of miles from main 
road, and so on (see Figure 2-33).

To sum up this chapter, Claire and Smith at first came up with a consensus to 
use regression for predicting concrete strength. They planned to do so by means of a 
regression equation in order to avoid the costs of procuring testing equipment to measure 
it. They started off with the analysis by at first understanding the correlations that exist 
among concrete strength and exploratory variables. The ones exhibiting a positive or 
negative correlation were used for regression modeling. Moreover, correlations helped 
discover the multicollinearity that existed among the three exploratory variables.

Regression model evaluation metrics were looked at and R2 was picked for 
evaluating the regression models. They looked at what grid search is and how to apply it 
to determine the best parameter values for best tuning the model. They split the data into 
test and train subsets to enable cross-validation. Among the many regression techniques 
applied, single gradient boosting regressor exhibited the best R2 values. Hence by the end 
of the analysis Smith and Claire had the following three models which they could use in 
isolation to predict concrete strength.

At first Claire defined the use case of the gradient boosting regressor model which takes 
cement component as an input to predict concrete strength. She recalled from the output of 
Listing 2-14 that the confidence level of this regression model is approximately 34%.

Listing 2-18. Predicting Concrete Strength from Cement Component

feature = 'cement_component'
cc_new_data = [213.5]

data_tr = data[['concrete_strength', feature]]
data_tr=data_tr[(data_tr.T != 0).all()]
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Figure 2-33. Predicting property as a function of size in feet
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x_train, y_train, x_test, y_test = split_train_test(data_tr, feature)

regr = GradientBoostingRegressor()

# Train the model using the training sets

regr.fit(x_train, y_train)
cs_pred = regr.predict(cc_new_data)
print 'Predicted value of concrete strength: %f'%cs_pred

Output

Predicted value of concrete strength: 34.008896

As an illustration, an input value of cement component was passed in the variable 
‘cc_new_data’. Claire pointed out that in order to predict concrete strength, a new value 
can be passed in the same variable.

Then Claire repeated the exercise, the difference being that water component was 
taken as an input. She recalled from the output of Listing 2-14 that the confidence level of 
this regression model is approximately 31%.

Listing 2-19. Predicting Concrete Strength from Water Component

feature = 'water_component'
wc_new_data = [200]

data_tr = data[['concrete_strength', feature]]
data_tr=data_tr[(data_tr.T != 0).all()]

x_train, y_train, x_test, y_test = split_train_test(data_tr, feature)

regr = GradientBoostingRegressor()

# Train the model using the training sets
regr.fit(x_train, y_train)
cs_pred = regr.predict(wc_new_data)
print 'Predicted value of concrete strength: %f'%cs_pred

Output

Predicted value of concrete strength: 35.533469

As an illustration an input value of water component was passed in the variable 
‘wc_new_data’..

Finally, Claire repeated the exercise, the difference this time being that coarse 
aggregate was taken as an input. She recalled from the output of Listing 2-14 that the 
confidence level of this regression model is approximately 23%.
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Listing 2-20. Predicting Concrete Strength from Coarse Aggregate

feature = 'coarse_aggregate'
ca_new_data = [1000]

data_tr = data[['concrete_strength', feature]]
data_tr=data_tr[(data_tr.T != 0).all()]

x_train, y_train, x_test, y_test = split_train_test(data_tr, feature)

regr = GradientBoostingRegressor()

# Train the model using the training sets
regr.fit(x_train, y_train)
cs_pred = regr.predict(ca_new_data)
print 'Predicted value of concrete strength: %f'%cs_pred

Output

Predicted value of concrete strength: 32.680344

As an illustration, an input value of water component was passed in the variable  
‘ca_new_data’.. Smith was convinced by the approaches taken by Claire, and he believed 
that if some more time was invested on R&D (research and development), he could 
pitch this alternative to management and free them of any need to procure any more 
equipment.
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CHAPTER 3

Time Series

The goal of this chapter is to get you started with time series forecasting. A time series 
forecast is different from regression in that time acts as an exploratory variable and 
should be continuous along equal intervals. The chapter will cover the concept of 
stationary, its importance, and methodologies to check its existence in a time series 
object. Several time series models will be applied, and their forecasts will be checked 
using the most effective evaluation techniques.

 ■ Note  This book incorporates Python 2.7.11 as the de facto standard for coding 
examples. Moreover, you are required to have it installed for the Exercises.

Case Study: Predicting Daily Adjusted Closing 
Rate of Yahoo
David had a meeting scheduled with his client Janice the next day. They were meeting to 
investigate the reason for a dip in Janice’s returns. Janice was the daughter of a millionaire 
businessman, and she had approached David after hearing speculations that the market 
was expected to grow with escalating economic conditions. She was interested in taking 
a long-term risky position to enjoy potentially high returns on investment. However, this 
quarter she had seen a dip in her returns despite a good outlook in the capital market.

David searched Janice’s portfolio and started looking at the performance of each 
stock individually to see how each one of them had fared in the last quarter. He figured 
out that the reason for the mismatch between the portfolio’s return and the expected 
returns was a huge residual in Yahoo stock forecasts. This forecast error would have had 
a minimal impact had the number of shares been a tiny chunk of the entire portfolio, but 
that was not the case in this scenario.

David recalled the courses in corporate finance and business analytics that he had 
taken during his time at Harvard Business School and decided to give those concepts a 
try for figuring out a solution to this problem. Should he apply regression or time series? 
Which techniques can he apply to a forecast for the Yahoo stock?

David pulled the data regarding Yahoo stock from the Matplotlib finance package 
provided by Python (see Listing 3-2 for a code snippet).
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David did some research to see what information is present in each feature within the 
data. He came up with a data dictionary for the Yahoo Stock prices dataset (see Table 3-1).

Before moving forward David thought of initializing the following packages. This he 
preferred to do in order to avoid bottlenecks while implementing the code snippets on his 
local machine.

Listing 3-1. Importing Packages Required for This Chapter

%matplotlib inline

import pandas as pd
import numpy as np
from datetime import datetime
import statsmodels.api as sm
import matplotlib.pyplot as plt
from IPython.display import Image
from matplotlib.pylab import rcParams
from statsmodels.tsa.stattools import adfuller
from statsmodels.tsa.stattools import acf, pacf
from sklearn.linear_model import LinearRegression
from statsmodels.tsa.arima_model import ARMA, ARIMA
from sklearn.metrics import explained_variance_score
from matplotlib.finance import fetch_historical_yahoo, parse_yahoo_
historical_ochl

rcParams['figure.figsize'] = 15, 5

Table 3-1. Data Dictionary for the Yahoo Stock Prices Dataset

Feature name Description

Date Date of given day of trading

Year Year of given day of trading

Month Month of given day of trading

Day Month of given day of trading

D Floating point representation of day

Open Open rate of given day of trading

Close Close rate of given day of trading

High High rate of given day of trading

Low Low rate of given day of trading

Volume Shares volume of given day of trading

adjusted_close Close rate of given day of trading. This also takes into account 
distributions and corporate actions that occurred before that day’s 
market opening.
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David knew with certainty that understanding the data is fundamental prior to 
starting any analysis. His plan was to load the dataset within the memory and see a time 
plot of the adjusted closing rates to see if any pattern exists within the time series object.

Feature Exploration
David started off by loading the data into memory.

Listing 3-2. Reading the Data in the Memory

fh = fetch_historical_yahoo('^GSPC', (2016, 1, 1), (2016, 12, 31))
yahoo_data = parse_yahoo_historical_ochl(fh, asobject=True, adjusted=False)

While explaining the code, he first explained that fetch_historical_yahoo class was 
used to fetch the object of the yahoo index for all trading days of 2016. Next he passed that 
object into the parse_yahoo_historical_ochl method to get the data for the features 
described in Table 3-1.

Listing 3-3. Plotting Adjusted Closing Rate of Yahoo Stock for 2016 on a Time Series

dates = [x[0] for x in list(yahoo_data)]
values = [x[-1] for x in list(yahoo_data)]
data = pd.DataFrame({'Close_Adj':values}, index=dates)

date_thresh = datetime.strptime('2016-10-01',"%Y-%m-%d").date()

data_train = data[:date_thresh]
data_test = data[date_thresh:]

plt.plot(data_train.index, data['Close_Adj'])
plt.xlabel('Year')
plt.ylabel('Adjusted Closing Rate')
plt.title('Yahoo Adjusted closing rate - Year 2016')
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Figure 3-1. Time series plot of adjusted closing rate of Yahoo stock for year 2016
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From Listing 3-3, David plotted the Yahoo stock closing rates for the year 2016 in 
Figure 3-1. He split the original data series into test data (i.e., data_test) and train data 
(i.e., data_train). Hence, from that time onward David decided to use data_train as the 
data for formulating the time series model.

Looking at the distribution in Figure 3-1 David noticed that a definitive upward trend 
exists. Moreover, he saw that a seasonality exists (i.e., downward dip), repeating itself 
every 4.5-month interval.

Because the majority of Janice’s portfolio included Yahoo stock, David knew that he 
had to take some measures to reduce the forecast error. In order for him to validate his 
model he decided to split the dataset. He aimed to use the data of the first nine months of 
2016 as the training dataset, with the last three months for cross-validation of the model’s 
forecast. An idea came mind that he could use the forecasting techniques to come up 
with a generalization curve for the Yahoo stock time series. Then on the basis of the shape 
of that curve he could decide on the regression model that would enable predictions at a 
future point in time. The rationale behind using the forecasting techniques was to capture 
the seasonality and trend components present in the time series object.

Hence David started off by concentrating on the first goal—that is, formulating a 
time series forecasting model that captures the components of Yahoo stock time series at 
its best. He recalled from his corporate finance course that they used to apply time series 
methods for stock forecasting. He did some research to understand what time series 
modeling is, and when it should be preferred.

Time Series Modeling
Data points collected at fixed period time intervals constitute a time series. Time series 
analysis is usually done with the objective of forecasting the long-term trend over time as 
per the problem’s underlying hypothesis.

It was Friday and David was now looking forward to the weekend with his friends 
and family. He was also excited about meeting his friend Maria, who had been his batch 
mate in school, whose research was inclined toward statistics.

It was Saturday, and David was having lunch with Maria at a famous fast-food 
restaurant. Without wasting much time, David brought up the problem and how he was 
planning on solving it. He knew that it was better to do due diligence in the analysis 
initially to conclude fruitful research. Thus he was interested to hear from Maria 
regarding the statistical concepts and techniques essential to time series analysis that he 
should incorporate before moving forward, Maria recommended that he check if his time 
series data was stationary as a majority of the time series models are designed to give 
results on stationary data.

Evaluating the Stationary Nature of a Time Series 
Object
David broke his plan into pieces. First he planned to see what properties a time series 
object should have for it to be stationary. Then he had to check if the data at hand was 
stationary; if it was not, he had to search for the techniques to make it stationary. David 
started off by pulling up the properties that make a time series object stationary.
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Properties of a Time Series Which Is Stationary in Nature
Most of the time series models work on the assumption that data is stationary. Moreover, 
contrary theories related to stationary time series are easier to implement than non-
stationary time series theories. A time series object is stationary if it has the following 
properties:

•	 No trend exists

•	 Mean remains constant over time

•	 Variance remains constant over time

•	 No autocorrelation exists. Autocorrelation is the correlation 
between the series at current time with a lagged version of itself.

Once David knew the four properties a time series object should have for it to be 
stationary, he started to look for techniques to test if the time series data is stationary or not.

Tests to Determine If a Time Series Is Stationary
His search provided him with two methods for validation: exploratory data analysis and 
Dickey-Fuller test. The exploratory data analysis method can help detect the property of 
stationary within the Yahoo stock dataset.

Exploratory Data Analysis
This is more of a visual method of finding if the distribution is stationary. It encompasses 
the use of rolling mean and rolling variance to answer the underlying question. If these 
rolling metrics stay constant over time then the distribution will qualify as a stationary 
time series object. So, how is a rolling mean calculated? First we define the length of a 
subset over which rolling means have to be calculated (e.g., 5). Then we generate our own 
time series by averaging over the numbers in series in chunks of 5. Take, for example, a 
time series with the following values:

10, 50, 34, -5, 15, 19, 1, -30, 16, 37

Then the subsequent rolling mean will be as follows:

NA, NA, NA, NA, NA, 20.8, 22.6, 12.8, 0, 4.2, 8.6

The same holds true for rolling variance except that instead of mean we will be 
calculating the variance at each instance.

These rolling means will then be plotted on a time series plot. However, by looking at 
the rolling means above we can deduce that the values seem to vary a lot and are not at all 
constant. Hence, the time series shown in the example above is not stationary.

Despite the fact that the first method seemed straightforward and easy to implement, 
David was looking for a statistical technique that would enable him to validate if the time 
series object is stationary or not. His search also brought him to the Dickey-Fuller test.
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Dickey-Fuller Test
This is more of a statistical approach of checking if the time series object is stationary or 
not. The test in its null hypothesis assumes the time series object to be non-stationary. 
Once applied to a given time series object, the Dickey-Fuller test returns the test statistics 
and critical values at different confidence intervals. If the value of test statistics is lower 
than that of the critical value, then the null hypothesis does not hold true and we opt for 
the alternative hypothesis (i.e., that the time series object is stationary).

Once he knew what properties make a time series object stationary, and after looking 
through the techniques to identify it, David decided to check if the data at hand was 
stationary or not. Thus he came up with the code snippet in Listing 3-4.

Listing 3-4. Method to Evaluate If a Time Series Object Is Stationary

def evaluate_stationarity(timeseries, t=30):

    #Determing rolling statistics
    rolmean = timeseries.rolling(window=t).mean()
    rolstd = timeseries.rolling(window=t).std()

    #Plot rolling statistics:
    orig = plt.plot(timeseries, color='blue',label='Original')
    mean = plt.plot(rolmean, color='red', label='Rolling Mean')
    std = plt.plot(rolstd, color='black', label = 'Rolling Std')
    plt.legend(loc='best')
    plt.title('Rolling Mean & Standard Deviation')
    plt.show(block=False)

    #Perform Dickey-Fuller test:
    print 'Results of Dickey-Fuller Test:'
    dftest = adfuller(timeseries, autolag='AIC')
     dfoutput = pd.Series(dftest[0:4], index=['Test Statistic', 

'p-value','#Lags Used','Number of Observations Used'])
    for key,value in dftest[4].items():
        dfoutput['Critical Value (%s)'%key] = value
    print dfoutput

Writing the code snippet in Listing 3-4 was not an easy task for David, who didn't 
have considerable experience in programming. He knew that this functionality of time 
series validation is subject to being reused again and again. Hence he wrote the code 
in a function so that he could use this functionality whenever needed. He decided to 
document whatever code he had written so that he could refer to it later, when he faced 
difficulty in understanding it. As he recalled:

By default I initialized the window size 't' to 30, that is, a month. Then I 
calculated the rolling mean and rolling standard deviation of our time 
series object. Next I plotted the time series, rolling mean, and rolling 
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standard deviation together to apply the exploratory data analysis 
method into practice. This I knew would enable me to determine if 
the time series object is stationary or not. Later I decided to also try 
the statistical test for detection and brought the Dickey-Fuller test into 
application. I made sure to print the output of the Dickey-Fuller test and 
determine the critical intervals from the confidence interval.

Now that David had defined the method in Listing 3-4, he decided to call it and pass 
the time series object as a parameter while keeping the window size ‘t’ to 15 (i.e., two 
weeks). He called the evaluate_stationary method as shown in Listing 3-5.

Listing 3-5. Using the Method to Test If Time Series Object Is Stationary

evaluate_stationarity(data_train['Close_Adj'], 15)

Output

Results of Dickey-Fuller Test:

Test Statistic                 -1.114302
p-value                        0.709335
#Lags Used                     0.000000
Number of Observations Used    188.000000
Critical Value (5%)            -2.877040
Critical Value (1%)            -3.465620
Critical Value (10%)           -2.575032
dtype: float64
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Figure 3-2. Plot of rolling mean and standard deviation of time series object
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While looking at the exploratory data analysis in Figure 3-2, David noticed that 
despite the variation in rolling standard deviation being small, rolling mean clearly seems 
to relatively vary a lot. Hence he deduced the time series object to be non-stationary. He 
then looked at the output of the Dickey-Fuller test to see if it depicts the same result as 
well. He noticed the test statistic to be greater than the critical values; hence he failed to 
reject the null hypothesis, which meant that the data is non-stationary in nature.

The time series object being non-stationary meant that now the path to forecasting 
was no longer straightforward. He would first have to make the time series object 
stationary before he could apply forecasting to it. Hence he did some research and came 
up with several methods to make a time series object stationary.

Methods of Making a Time Series Object Stationary
Though several methods of doing the job exist, none of them promises to make the time 
series object completely stationary. What these methods do is to transform the time series 
object to make it look closer to a stationary object. The methods do this by removing 
trend and seasonality from the time series object. Following are some of the methods that 
can make a time series object closer to a stationary object:

•	 Applying transformations

•	 Estimating trend and removing it from the original series

•	 Differencing

•	 Decomposition

David decided to apply all these methodologies one by one to determine the one that 
can make the time series object as stationary as possible. He started off by looking at how 
applying transformations can help achieve this short-term objective.

Applying Transformations
Transformations like log, cube root, and square root penalize larger values and thus 
can enable the series to become stationary. David decided to apply each of these 
transformations to figure out the one that makes this time series object almost stationary.  
He started off with log transformation

Log Transformation

David wrote the code snippet in Listing 3-6, to see if log transformation can yield a time 
series which is stationary in nature.

Listing 3-6. Applying Log Transformation to Time Series Object

data_log = np.log(data_train['Close_Adj'])
evaluate_stationarity(data_log, 15)
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Output

Results of Dickey-Fuller Test:

Test Statistic                  -1.136109
p-value                         0.700460
#Lags Used                      0.000000
Number of Observations Used     188.000000
Critical Value (5%)             -2.877040
Critical Value (1%)             -3.465620
Critical Value (10%)            -2.575032
dtype: float64
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Figure 3-3. Log transformed time series along with rolling mean and standard deviation

Looking at Figure 3-3, David noticed that the transformation did work as it managed 
to make the rolling mean and rolling standard deviation constant. However, he was 
astonished to see that the Dickey-Fuller test proved otherwise (i.e., the transformed 
series is still non-stationary). He deduced this after noticing the test statistics to be 
greater than the critical values which meant that the null hypothesis holds true and the 
log transformed object is non-stationary in nature. He was curious to know why both 
methods produced results contradicting each other. The only explanation he could think 
of was that the rolling mean, though it seems constant, might vary once he zoomed into 
Figure 3-3. Hence he added some lines of code as shown in Listing 3-7.

Listing 3-7. Zooomed Figure of Rolling Mean from a Log Transformed Distribution

data_log = np.log(data_train['Close_Adj'])

#Determing rolling statistics
rolmean = data_log.rolling(window=15).mean()
rolstd = data_log.rolling(window=15).std()
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#Plot rolling statistics:
orig = plt.plot(data_log, color='blue',label='Original')
mean = plt.plot(rolmean, color='red', label='Rolling Mean')
std = plt.plot(rolstd, color='black', label = 'Rolling Std')
plt.legend(loc='best')
plt.ylim([7.4,7.8])
plt.title('Rolling Mean & Standard Deviation')
plt.show(block=False)
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Figure 3-4. Plot of a zoomed figure of rolling mean from a log transformed distribution

The zoomed figure in Figure 3-4 revealed rolling mean to be varying and not at all 
constant against time. According to David, this reasoning showed that the results from 
the Dickey-Fuller test demonstrated that the transformed series is non-stationary. Log 
transformation failed to make the object stationary in nature, and thus David moved to 
square root transformation as the next resort.

Square Root Transformation

David applied square root (Sqrt) transformation to Yahoo stock data by writing the script 
in Listing 3-8.

Listing 3-8. Applying Sqrt Transformation to Time Series Object

data_sqrt = np.sqrt(data_train['Close_Adj'])
evaluate_stationarity(data_sqrt, 15)

Output

Results of Dickey-Fuller Test:

Test Statistic                   -1.124704
p-value                          0.705121
#Lags Used                       0.000000
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Number of Observations Used     188.000000
Critical Value (5%)             -2.877040
Critical Value (1%)             -3.465620
Critical Value (10%)            -2.575032
dtype: float64
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Figure 3-5. Sqrt transformed time series along with rolling mean and standard deviation

David deduced the following from Figure 3-5: 

Rolling mean and standard deviation seem constant as we see the plot 
above, but not much as compared to what we saw in the log transformed 
series plot. This is the reason that in the results of this Dickey-Fuller test, 
test statistics is greater than the critical values, which means that the null 
hypothesis holds true and the log transformed object is non-stationary 
in nature.

Log and square transformation weren’t able to make the time series object at hand 
closer to a stationary nature. Log transformation did help to scale down the time series 
subject and make it more flat. Hence, David decided to apply other methods to the log 
transformed series to make it stationary. He started looking for other transformations 
recommended by the statistical community and that is when he learned about cube 
transformation. However, it was time for him to leave for home and he thus requested you 
to apply the cube transformation in your spare time and share the results with him.

EXERCISE

1. Determine the cube transformation of our time series. Does it 
improve the value of the test statistic?
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It was a new day and David resumed with his short-term mission of transforming the 
nature of the time series object to a stationary one. Having failed with the transformation 
methodologies, he was in search of other techniques that could help him achieve his 
short-term objective. He started afresh and started looking at the initial plot of the time 
series object in Figure 3-1. It was then that an idea came to mind: what if he removed the 
upward trend from the data to make it stationary.

Estimating Trend and Removing It from the Original Series
He knew that the approach was two-fold: at first he would need to estimate the trend and 
then remove it from the Yahoo stock time series object. He started looking for techniques 
for estimating trends and luckily he found two methods: moving average smoothing and 
exponentially weighted moving average. He started off with moving average smoothing.

Moving Average Smoothing
Moving average smoothing is similar to rolling mean in that in both these methods, the 
average of observations lying within a fixed window size is calculated in order to estimate 
the observation at a given time.

David decided to apply moving average smoothing to estimate the trend of the log 
transformed time series. He decided to apply rolling mean over the past two weeks (i.e., 
last 15 values) by writing the code in Listing 3-9.

Listing 3-9. Applying Moving Average Smoothing to the Time Series Object

moving_avg = pd.rolling_mean(data_log,15)
plt.plot(data_log)
plt.plot(moving_avg, color='red')
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Figure 3-6. Moving average smoothed time series
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David made the following deduction from Figure 3-6: “The red line shows the rolling 
mean, that is, the estimated trend from the moving average smoothing. The goal is now to 
subtract this estimated trend from the log transformed time series.” Note that since David 
had taken the average of the last 15 values, rolling mean is not defined for the first 14 
values. This can be observed from the output of Listing 3-10.

Listing 3-10. Printing Trendless Time Series Object

data_log_moving_avg_diff = data_log - moving_avg
data_log_moving_avg_diff.head(15)

Output

2016-01-04      NaN
2016-01-05      NaN
2016-01-06      NaN
2016-01-07      NaN
2016-01-08      NaN
2016-01-11      NaN
2016-01-12      NaN
2016-01-13      NaN
2016-01-14      NaN
2016-01-15      NaN
2016-01-19      NaN
2016-01-20      NaN
2016-01-21      NaN
2016-01-22      NaN
2016-01-25      -0.023439

Name: Close_Adj, dtype: float64

David knew that the trend has NaN in its first 14 observations. Hence he decided 
to remove NaN from the trend and then subtract this trend from the original time series 
object. He expected the result to be stationary and planned to test it (see Listing 3-11) 
from the function defined in Listing 3-4.

Listing 3-11. Evaluating Trendless Time Series for Stationary

data_log_moving_avg_diff.dropna(inplace=True)
evaluate_stationarity(data_log_moving_avg_diff)

Output

Results of Dickey-Fuller Test:

Test Statistic                  -4.375719
p-value                         0.000328
#Lags Used                      0.000000
Number of Observations Used     174.000000
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Critical Value (5%)             -2.878298
Critical Value (1%)             -3.468502
Critical Value (10%)            -2.575704
dtype: float64
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Figure 3-7. Time series with moving average removed along with rolling mean and 
standard deviation

David was thrilled by some concrete results while looking at Figure 3-7. The 
exploratory analysis approach proved the trendless data to be stationary because of a 
near to constant rolling mean and standard deviation. The Dickey-Fuller test proved 
the same as well because the test statistics came out to be smaller than all of the critical 
values. This meant that the null hypothesis is rejected and the trendless time series object 
stood stationary with a confidence level of 99%.

David got what he wanted; that is, he changed the nature of the log transformed 
time series object to a stationary one. However, he wanted to explore if other techniques 
can make it closer to the stationary nature. Hence, he decided to try the exponentially 
weighted moving average for estimating the trend.

Exponentially Weighted Moving Average
Exponentially weighted moving average is similar to the rolling mean approach except 
that a recent observation is assigned the highest weight and a distinct one the lowest. 
In other words, the weight assignment decreases exponentially from the most recent 
observation to the most distinct one.

David then applied the exponential weighted moving average to the log transformed 
time series object to see if he could witness a considerable improvement in making the 
time series object resemble the stationary one.

Listing 3-12. Applying Exponential Weighted Moving Average Smoothing to the Time 
Series Object

expwighted_avg = pd.ewma(data_log, halflife=15)
data_log_ewma_diff = data_log - expwighted_avg
evaluate_stationarity(data_log_ewma_diff)
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Output

Results of Dickey-Fuller Test:

Test Statistic                  -3.273472
p-value                         0.016107
#Lags Used                      0.000000
Number of Observations Used     188.000000
Critical Value (5%)             -2.877040
Critical Value (1%)             -3.465620
Critical Value (10%)            -2.575032
dtype: float64
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Figure 3-8. Exponentially weighted moving average smoothed time series

While looking at Figure 3-8, David noticed that the rolling mean varied more than 
it did in Figure 3-7. Hence he was he was indifferent to reaching a conclusion using the 
exploratory data analysis method. However, test statistics from the Dickey-Fuller test 
barely crossed the 5% critical value measure. Thus, the test statistic being less than the 
critical value meant rejection of the null hypothesis. This led David to conclude that the 
log transformed trendless time series object has successfully become stationary in nature.

The only considerable success that David had had so far came from removing 
the moving average smoothing estimated trend from the log transformed time series. 
However, he was not convinced of the stationary nature within the time series while 
looking at its exploratory data analysis plot. As per his deduction in Figure 3-1, the time 
series object had both trend and seasonality. If trend reduction could do so well, he 
wondered, logically, whether both trend and seasonality reduction should do even better. 
He started looking for techniques to reduce both trend and seasonality. It didn’t take him 
long to figure out that differencing can do this job.
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Differencing
Differencing subtracts the time series from a lagged version of itself (i.e., observations 
at the previous instant). Differencing stabilizes the mean of a time series by removing 
changes in the level. David was confident that differencing, given its definition, would be 
the more effective in making the time series object stationary.

He was expecting a closer-to-stationary time series subject. Hence he wrote the 
script in Listing 3-13 for his expectations to come true.

Listing 3-13. Applying First-Order Differencing to the Log Version of the Time Series 
Object

data_log_diff = data_log - data_log.shift()
data_log_diff.dropna(inplace=True)
evaluate_stationarity(data_log_diff)

Output

Results of Dickey-Fuller Test: 

Test Statistic                  -1.038969e+01
p-value                         2.036243e-18
#Lags Used                      1.000000e+00
Number of Observations Used     1.860000e+02
Critical Value (5%)             -2.877208e+00
Critical Value (1%)             -3.466005e+00
Critical Value (10%)            -2.575122e+00
dtype: float64
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Figure 3-9. Statistics for the differencing applied time series

David saw a remarkable improvement in Figure 3-9 as the rolling mean and rolling 
standard deviation appear to be almost constant. The same was reflected by the Dickey-
Fuller test as the test statistics came out to be much less than the 1% critical values. 
The seasonality and trend removed time series seems to be almost stationary in nature 
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now. David had applied a first-order differencing; that is, a lag of 1 was induced while 
differencing. He was curious to find if a second- or third-order differencing can improve 
the stationary nature of the time series object. He invites you to collaborate on this by 
attempting the exercises.

EXERCISE

1. apply second- and third-order differencing to our log transformed 
series. Did it make the log transformed series stationary?

David’s curious mind made him ponder if he could manage to remove seasonality 
and trend from the log transformed time series object as he had in trend estimation and 
removal earlier. Earlier he had applied two techniques to estimate the trend and removed 
that from the time series object to make it stationary in nature. He started looking for 
methodologies, if any, by which he could break the time series object into trend and 
seasonality components. He then planned to remove these two components from the 
time series object to make its resemblance closer to one of a stationary nature. His search 
brought him to the concept of decomposition.

Decomposition
Decomposition is yet another approach to eliminate trend and seasonality from a time 
series to make it stationary in nature. It does that by dividing the time series into three 
components: trend, seasonality, and residuals. The component of interest in this case is 
the residuals (i.e., time series without trend and seasonality).

David was curious to see what the three components of the log transformed time 
series in question looked like. Hence, without wasting any further time he wrote the code 
in Listing 3-14.

Listing 3-14. Decomposing the Log Transformed Time Series

from statsmodels.tsa.seasonal import seasonal_decompose
decomposition = seasonal_decompose(list(data_log), freq=15)

trend = decomposition.trend
seasonal = decomposition.seasonal
residual = decomposition.resid

plt.subplot(411)
plt.plot(data_log, label='Original')
plt.legend(loc='best')
plt.subplot(412)
plt.plot(trend, label='Trend')
plt.legend(loc='best')
plt.subplot(413)
plt.plot(seasonal,label='Seasonality')
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plt.legend(loc='best')
plt.subplot(414)
plt.plot(residual, label='Residuals')
plt.legend(loc='best')
plt.tight_layout()
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Figure 3-10. Decomposed log transformed time series

David had read that trends are linear in nature and the trend component in Figure 3-10 
was showing a true depiction of that. However, when David compared this trend component 
to the trend estimates in Figures 3-6 and 3-8, he noticed that although the estimates depicted 
the trend, seasonality existed within them as well. The seasonality component in Figure 3-10 
resonated with the definition of seasonality as well—that is, a pattern that repeats itself after 
a fixed time interval. Finally, David deduced the residual component to be fairly constant 
over time, as it seems in Figure 3-10 as well. Now his aim was to evaluate the residuals to see 
if they were stationary in nature or not.

Listing 3-15. Evaluating the Residuals for Stationary

data_log_decompose = pd.Series(residual)
data_log_decompose.dropna(inplace=True)
evaluate_stationarity(data_log_decompose)

Output

Results of Dickey-Fuller Test:

Test Statistic                  -7.557158e+00
p-value                         3.077807e-11
#Lags Used                      4.000000e+00
Number of Observations Used     1.700000e+02
Critical Value (5%)             -2.878696e+00
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Critical Value (1%)            -3.469413e+00
Critical Value (10%)           -2.575917e+00
dtype: float64

Rolling Mean & Standard Deviation
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Figure 3-11. Stationary-related statistics for residuals

Exploratory data analysis of rolling mean and rolling standard deviation depicted both 
these measures to be almost stationary over time. David moved forward to see if the Dickey-
Fuller test came up with the same verdict. Test statistics came out to be lower than all three 
critical values. Hence, with a confidence level of 99% he concluded the residual plot to be 
stationary. However, the test statistics were not much less than the critical values if compared 
to what we saw in the first-order differencing technique (i.e., the output of Listing 3-13).

David was relaxed to an extent because of the four conditions of a stationary object, 
he was able to nail the first three by means of the first-order differencing technique. He 
was able to remove the trend and make the rolling statistics constant over time. Now 
he had to check for the fourth condition—that is, if autocorrelation exists or not within 
the time series object. If autocorrelation varies over time for the time series object in 
question, he would have to figure out a technique to make the autocorrelations constant.

Tests to Determine If a Time Series Has 
Autocorrelation
Autocorrelation is the correlation between the series at current time with a lagged 
version of itself. While reading the literature about autocorrelation, David learned that 
autocorrelation exists in two variants.

Autocorrelation Function
Autocorrelation function (ACF) determines the correlation of time series along with a 
lagged version of itself. For example, data with ten observations and with a lag of 5 will 
have the correlation between the following series calculated:

t4, t5, t6, t7, t8, t9

t0, t1, t2, t3, t4, t5
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Partial Autocorrelation Function
Partial autocorrelation function (PACF) also measures the correlation of a time series 
along with a lagged version of itself except that it eliminates the variations already 
explained by the prior comparisons. For example, as in our case, with a lag of 5, it will 
remove the variations already captured between t0 and t3.

Now that David knew what autocorrelation is, his next step was to determine the 
methodologies available to measure it within the log transformed differencing applied 
time series.

Measuring Autocorrelation
David achieved some success as he was able to find a statistical method to measure 
autocorrelation within the log transformed time series (i.e., Durbin Watson statistic).

Durbin Watson Statistic
Contrary to the autocorrelation correlogram, Durbin Watson statistic is more of 
a statistical approach to determining the existence of autocorrelation within the 
data. It does so by computing autocorrelation among residuals from a statistical 
regression analysis. It returns a number between 0 and 4 where 0 depicts strong 
positive autocorrelation, 4 depicts strong negative autocorrelation, and 2 depicts no 
autocorrelation at all.

While doing the research on autocorrelations, David recalled reading that 
differencing can be used to eradicate ACF and PACF. Having already applied differencing 
on the log transformed time series object, David was expecting no presence of ACF and 
PACF. At first he planned to check for the presence of autocorrelation using the Durbin 
Watson statistics method in Listing 3-16.

Listing 3-16. Calculating the Durbin Watson Statistics for Log Transformed Differencing 
Applied Time Series

sm.stats.durbin_watson(data_log_diff)

Output

2.1859293629518555

David was thrilled to see the results to be a score approaching 2, which indicated the 
presence of no autocorrelation in the log transformed differencing applied time series. 
However, he was curious to see what the ACF and PACF would look in the absence of 
autocorrelation. Hence he came up with the code snippet in Listing 3-17.

Listing 3-17. Plotting Correlograms for ACF and PACF on Log Transformed Differencing 
Applied Time Series

ax1 = plt.subplot(211)
fig = sm.graphics.tsa.plot_acf(data_log_diff.squeeze(), lags=40, ax=ax1)
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ax2 = plt.subplot(212)
fig = sm.graphics.tsa.plot_pacf(data_log_diff, lags=40, ax=ax2)

David noticed that both the ACF and PACF correlograms should a spike at 1 lag with 
no correlations to come on the later time lags. The next step after making the time series 
stationary was what excited David the most (i.e., applying forecasting to the Yahoo stock 
dataset to get forecasts with minimal residuals).

Modeling a Time Series
Before applying the different time series models, David thought it better to first 
understand the underlying concepts many of the models use. After research, he compiled 
explanations on the meaning of Number of Auto-Regressive (AR), Number of Moving 
Average (MA), and Number of Differences (D). He deemed these terms important 
because they formulate the prediction equation for the time series model.

•	 Number of Auto-Regressive (AR) terms or p: AR terms are the 
lags of the response variable. Take, for example, a value of p = 5. 
Hence, in order to predict the response variable at t5, a time series 
between t0 and t4 will be considered the exploratory variables.

•	 Number of Moving Average (MA) terms or q: MA terms are the 
lagged forecast errors in a response variable. Take, for example, 
a value of q = 5. Hence in order to predict the response variable 
at t5, a time series between t0 and t4 will be considered. Hence 
this means the difference between the moving average and actual 
value at that time instant.

•	 Number of Differences (d): This refers to the order of differencing 
that we are interested in applying to our time series object.
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Figure 3-12. Plotting correlograms for ACF and PACF on log transformed differencing 
applied time series
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Parameters for a given time series model are written as follows: p, d, q. Once he 
understood the common parameters of the time series techniques, David decided to 
compile a list of the statistical tests to measure the accuracy of the forecasted time series.

Tests to Validate Forecasted Series
After due research, David learned about some of the most notable tests for measuring the 
accuracy of the forecasted time series.

Mean Forecast Error
This is the mean of residuals at each time point. Mean forecast error values can range 
from negative infinity to positive infinity.

Mean Absolute Error
Mean absolute error is same as mean forecast error except that the residuals are converted 
to absolute terms; that is, positive residuals remain the same whereas negative residuals 
are converted into positive ones. Values can range between zero and positive infinity.

Residual Sum of Squares
The residual sum of squares (RSS) is usually used in regression to understand the fraction 
of variance not explained by the regression model. It is calculated by calculating the 
residuals at each point in time, taking their squares, and then adding them over. Squaring 
of the residuals ensures that the values come out to be positive. RSS can have a minimum 
value of 0, which indicates that the variance is estimated to the fullest extent by the time 
series model.

Root Mean Squared Error
The root mean squared error (RMSE), also known as root mean squared deviation (RMSD), 
is an advanced version of RSS in which square root is applied to the output of RSS.

David now had a fair idea of what was meant by the terms p, q, and d. However, he 
wasn’t sure that what value each of these terms should entail when passing them within a 
time series model. His search uncovered some of the rules that decide the values of p, q, 
and d subject to the patterns within ACF and PACF.

Deciding Upon the Parameters for Modeling
David planned to view the ACF and PACF of the log transformed differencing applied 
time series to determine the rule it best matches.

•	 Rule 1: p = 1 when ACF shows exponential decay, and PACF has a 
spike at lag 1 with no correlation further on (See Figure 3-13).
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Figure 3-13. ACF and PACF plots for p = 1
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Figure 3-14. ACF and PACF plots for p=2

•	 Rule 2: p = 2, when ACF shows a set of exponential decays or sine 
wave-shaped pattern, and PACF has spikes at lags 1 and 2, with no 
correlation further on (See Figure 3-14).

•	 Rule 3: q = 1 when ACF has a spike at lag 1 with no correlation 
further on, and PACF shows exponential decay (See Figure 3-15).
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Figure 3-15. ACF and PACF plots for q = 1
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Figure 3-16. ACF and PACF plots for q = 2

•	 Rule 4: q = 2, when ACF has spikes at lags 1 and 2, with no 
correlation further on, and PACF shows a set of exponential 
decays or sine wave-shaped pattern (See Figure 3-16).

•	 Rule 5: p = 1, q = 1 when both ACF and PACF show exponential 
decay starting at a lag of 1 (See Figure 3-17).
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Looking at Figure 3-12, David wasn’t sure that which of the rules satisfied the ACF 
and PACF patterns obvious in the correlograms. Both ACF and PACF had a spike at 1 
with no correlation in the proceeding lags. He didn’t find this behavior being covered 
by any of the rules, and thus he decided to leave to accuracy the values of p, d, and q he 
would choose for the models. Having gone through the evaluation methods for time 
series and having gone through the rules for selecting the parameter values, David knew 
that the time had come to apply the time series models to the differencing applied log 
transformed time series. His search of time series models brought him to the effectiveness 
that ARIMA models displayed in various time series applications. Hence he started off with 
understanding ARIMA.

Auto-Regressive Integrated Moving Averages
ARIMA stands for auto-regressive integrated moving averages. ARIMA forecasting 
revolves around a linear equation whose behavior is dependent upon the values of p, 
d, and q. In other words, the ARIMA model filters signal from noise and forecasts it for 
future point in time. An ARIMA model is defined as ARIMA (p, d, q).

This section discusses some of the variants of an ARIMA model.

Auto-Regressive Moving Averages
The ARMA (auto-regressive moving averages) model is similar to an ARIMA model except 
that now we use p and q to determine the linear equation. Moreover, now the prediction 
is done on a mean adjusted series; that is, a time series is transformed to a zero mean 
variant by subtracting the sample mean from it.

This phenomenon can be defined by the following equation:
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Figure 3-17. ACF and PACF plots for p = 1 and q = 1
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Where,

•	 Y
t
 : Original time series

•	 Ý: Mean adjusted time series

ARMA model is defined as ARMA (p, q)

Auto-Regressive
An ARMA model forecasts a time series from a linear function of its past values. Time lag 
is defined in the AR (auto-regressive) model to forecast the future values of a time series. 
An AR model can be defined by the following equation:

y
t
 = β

0
 + β

1
y

t−1
 + ϵ

t

Where,

•	 β
0
, β

1
 : Beta coefficients

•	 y
t-1

: Lagged version of the time series

•	 ϵ
t
 : Residuals, which are assumed to be normally distributed and 

random in time

An AR model is defined as AR (p, d)
David decided to apply the AR model on differencing applied log transformed time 

series. He knew that because this technique does not have the term ‘q’, its value will be 0 
(i.e., q = 0). He decided to apply AR with the arbitrary term of p = 2 and d = 1 in Listing 3-18.

Listing 3-18. Applying AR Model to Log Transformed Differencing Applied Time Series

model = ARIMA(data_log, order=(2, 1, 0), dates=data_log.index.to_datetime())  
results_AR_210 = model.fit(disp=-1)
plt.plot(data_log_diff)
plt.plot(results_AR_210.fittedvalues, color='red')
plt.title('RSS: %.4f'% sum((results_AR_210.fittedvalues-data_log_diff)**2))

RSS: 0.0149
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Figure 3-18. Plotting MA model smoothing on log transformed differencing applied time 
series



ChapTer 3 ■ TiMe SerieS

121

David made sure to plot the original differencing applied and log transformed time 
series along with the forecasted one using the AR technique in Figure 3-18. He was pleased 
to see the RSS for this forecasted series approaching 0, which meant that the model was 
fairly accurate in capturing the variance in the input series. The prediction of Yahoo stock 
at that much of a negligible RSS was a big relief for him. He then moved on to search for 
other techniques and that is when he discovered the moving average technique.

Moving Average
MA stands for moving average model. MA is best for situations in which we have a univariate 
time series object. MA forecasts future values by training itself on the current and past values 
of a time series that are random in nature. The MA model is defined as MA (d, q).

MA models don’t have the term p; hence David initialized it as p = 0. David decided 
to apply the MA model to the log transformed differencing applied time series, with  
a q = 1 and d = 1.

Listing 3-19. Applying MA Model to Log Transformed Differencing Applied Time Series

model = ARIMA(data_log, order=(0, 1, 1), dates=data_log.index.to_datetime())  
results_MA_011 = model.fit(disp=-1)  
plt.plot(data_log_diff)
plt.plot(results_MA_011.fittedvalues, color='red')
plt.title('RSS: %.4f'% sum((results_MA_011.fittedvalues-data_log_diff)**2))

RSS: 0.01490.03
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Figure 3-19. Plotting MA model smoothing on log transformed differencing applied time 
series

David noticed no significant improvement in the RSS score after applying MA to the 
differencing applied log transformed time series. He decided to merge the AR and MA 
models in the hopes of seeing a more robust model for predicting Yahoo stock.
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Combined Model
The combined model refers to the addition of AR and MA. This model will have all the three 
parameters—p, d, and q—and will initially be defined as an ARIMA —ARIMA (p, d, q).  
A combined model means that all of the parameters will be taken into consideration. David 
was anticipating a reduction in the RSS score; hence, without wasting any undue time he 
applied the combined model in Listing 3-20 with parameter values of p = 1, d = 1, and q = 1.

Listing 3-20. Applying Combined Model to Log Transformed Differencing Applied Time 
Series

model = ARIMA(data_log, order=(1, 1, 1), dates=data_log.index.to_datetime())
results_ARIMA_111 = model.fit(disp=-1)
plt.plot(data_log_diff)
plt.plot(results_ARIMA_111.fittedvalues, color='red')
plt.title('RSS: %.4f'% sum((results_ARIMA_111.fittedvalues- 
data_log_diff)**2))

RSS: 0.0149
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Figure 3-20. Plotting combined model smoothing on log transformed differencing applied 
time series

RSS for this forecasted series was approaching 0 as well; hence the model is fairly 
accurate in capturing the variance in the input series. However, David was puzzled to see 
that the RSS scores for all of these approaches were the same. Making a random pick, he 
decided to go forward with the combined model.

It has been a long journey so far. David applied log transformation, used differencing 
to make the time series stationary, and finally applied the combined model to that 
log transformed differencing applied time series. The time series was now different 
from what he had seen initially because he had applied the log transformation and 
differencing. As the forecasting was performed on the modified time series, so it now had 
to be scaled back to see how well it forecasted the initial Yahoo stock time series.
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Scaling Back the Forecast
Before scaling back the forecasts to the original units, David thought it wise to print initial 
observations of the forecasted time series.

Listing 3-21. Printing First Few Observations of the Forecasted Series

predictions_ARIMA_diff = pd.Series(results_ARIMA_111.fittedvalues, 
copy=True)
print predictions_ARIMA_diff.head()

Output

2016-01-05    0.000401
2016-01-06    0.000237
2016-01-07    0.001781
2016-01-08    0.003630
2016-01-11    0.003035
dtype: float64

The output of Listing 3-21 provided an interesting insight for David. Data loaded 
initially in Listing 3-2 had dates starting from 2016-01-04 whereas dates in the output 
of Listing 3-2 were starting from 2016-01-05. After much thinking he found the answer 
to that. 'The parameter d'—that is, the number of differences—had a value of 1 when 
forecasting was done using the combined modeling. This induced a lag of 1, and the 
thus the first element didn’t have anything in the lagged version of itself to subtract from. 
While conducting research on time series models, David had also read that the output of 
these models gives absolute changes rather than cumulative sums at each time interval. 
Going forward with absolute changes would have been a sound strategy had the data 
been discrete. However, in a situation like this, where the forecasted series will be a 
continuous distribution, cumulative sums were the requirement. Hence David decided to 
convert these absolute changes to cumulative sums for all time intervals in Listing 3-22.

Listing 3-22. Printing Cumulative Sum of the Forecasted Series

predictions_ARIMA_diff_cumsum = predictions_ARIMA_diff.cumsum()
print predictions_ARIMA_diff_cumsum.head()

Output

2016-01-05    0.000401
2016-01-06    0.000638
2016-01-07    0.002418
2016-01-08    0.006049
2016-01-11    0.009084
dtype: float64
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David knew that the model performed well in minimizing the residuals as seen from 
the RSS score. However, he was also concerned with the quality of the model, and hence 
he started looking for methods of measuring it. His search concluded when he found 
Akaike Information Criterion (AIC) to test the quality of a time series model. As per the 
explanation, the lower the score of AIC, the better the quality of a time series model. 
Hence he put the forecasted time series to the test in Listing 3-23.

Listing 3-23. Printing AIC BIC, and HQIC scores of the Forecasted Series

print results_ARIMA_111.aic

Output

(-1234.0564146247877)

The score from the output of Listing 3-23 came out to be extremely low, thus proving 
the goodness of the model. Now David’s plan of action was to scale back the forecasted 
series by reversing the differencing and log transformation. He aimed to do so by taking 
the following steps:

•	 Remove differencing from the forecasted series.

•	 Reverse the log transformation by applying an exponent.

•	 Evaluate the forecasted series by calculating mean forecast error, 
mean absolute error, and root mean absolute error.

•	 Plot the original and forecasted series.

David started off by concentrating on removing differencing from the forecasted 
series. He planned to do that by adding a base value to all observations of the forecasted 
series. He assumed the first value of the log transformed time series to be the base value 
and went forward with the implementation in Listing 3-24.

Listing 3-24. Printing Differencing Removed Forecasted Time Series

predictions_ARIMA_log = pd.Series(data_log.ix[0], index=data_log.index)
predictions_ARIMA_log = predictions_ARIMA_log.add(predictions_ARIMA_diff_
cumsum,fill_value=0)
predictions_ARIMA_log.head()

Output

2016-01-04    7.607213
2016-01-05    7.607614
2016-01-06    7.607850
2016-01-07    7.609631
2016-01-08    7.613261
dtype: float64
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The next step was to remove log transformation from the forecasted time series. 
Recalling his learnings from his Calculus 1 course in college he knew that the exponential 
acts as the inverse of log base 10. In Listing 3-25 he planned to do that, and rate the 
forecasted series by the aid of evaluation metrics.

Listing 3-25. Evaluating the Forecasted Series vs. the Original One

def mean_forecast_err(y, yhat):
    return y.sub(yhat).mean()

def mean_absolute_err(y, yhat):
     return np.mean((np.abs(y.sub(yhat).mean()) / yhat)) # or  

percent error = * 100

def rmse(y, yhat):
    return np.sqrt(sum((yhat-y)**2)/len(y))

predictions_ARIMA = np.exp(predictions_ARIMA_log)
plt.plot(data_train['Close_Adj'])
plt.plot(predictions_ARIMA)

plt.title('RMSE: %.4f | MFE: %.4f | MAE: %.4f'% (
        rmse(data_train['Close_Adj'], predictions_ARIMA), mean_forecast_
            err(data_train['Close_Adj'], predictions_ARIMA), mean_absolute_
            err(data_train['Close_Adj'], predictions_ARIMA)))
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Figure 3-21. Plotting forecasted series vs. the original time series

In Listing 3-24, David at first initialized a separate method for each of the evaluation 
metrics. He then removed the log from the forecasted series. In the end he validated the 
forecasted series by comparing it to the real one, both statistically and graphically. The test 
statistics of RMSE, MFE, and MAE revealed that this model had successfully forecasted 
correctly, which was good news for David. Forecasted plot is represented by the green 
line, with the original time series represented by a blue one. David was surprised to see in 
Figure 3-21 that the forecasted time series resembled that of a linear regression line.
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Hence David decided to apply regression to the near to linear forecasted series seen 
in Figure 3-21. He planned to train the regression line from the linear forecasted series, 
predict for data from October to December 2016, and then cross-validate it from the real 
values for that time period. He did so by writing the code in Listing 3-26.

Listing 3-26. Predicting and Evaluating Future Time Series Using a Linear Regression Model

regr = LinearRegression()

x_train = [[x] for x in range(len(data_train))]
y_train = [[y] for y in list(data_train['Close_Adj'])]

x_test = [[z] for z in range(x+1, x + 1+len(data_test))]

regr.fit(x_train, y_train)

y_pred = regr.predict(x_test)

explained_variance_score(data_test['Close_Adj'], y_pred)

plt.scatter(range(len(data_test)), data_test['Close_Adj'],  color='black')
plt.plot(range(len(data_test)), y_pred, color='blue',
             linewidth=3)
plt.ylabel('Concrete strength')

Output

0.63472586609437109
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Figure 3-22. Plotting forecasted series along with the predicted regression line for  
Oct-Dec 2016

David was happy to see the regression line in Figure 3-22 fairly capture the trend 
within the dataset. He performed model training on the forecasted time series and 
evaluated it against the original time series of Yahoo stock. He also made sure to calculate 
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the explained variance score as well to see how much variance of the time series is 
correctly captured by the best fit line. The value came out to be 0.63, which indicated that 
63% of the variance within the time series was captured by the linear regression line.

Given the results he had achieved within a short time span, David was optimistic 
that he could achieve more if he had more days to spare. However, he wants you to come 
on board and help him experiment with different time series forecasting strategies. His 
rationale is that he further wants to improve the accuracy of the forecasted series, as it is 
the input being fed into the regression line. Hence, he has left the following exercises for 
you to solve.

EXERCISES

1. repeat the above steps by applying decomposition instead of 
differencing. Did it improve the forecast accuracy?

2. repeat the exercise by changing the parameter values of p, d, and q for the 
arMa, and ariMa models. Then compute the test statistics to see if a given 
combination of these parameters yields a better forecast accuracy.

Applications of Time Series Analysis
Sales Forecasting
Corporate organizations are concerned about the expected sales for the next period. 
Sales forecasts help them make rational decisions to achieve the targets at hand. Sales 
usually have a strong element of seasonality in them. Consider, for example, that we 
are forecasting the sales in dollar amount of groceries on a daily basis. We will see a 
seasonality that repeats monthly with the hike in sales coming in the first week of every 
month. Moreover, the change in habits of people (i.e., spending and consumption) can 
instill a positive and negative trend in the series.

Weather Forecasting
This is the de facto application for time series analysis. Weather forecasting comes along 
with a lot of elements other than just the temperature. Forecasts are done for amount of 
rainfall, humidity, and wind speed as well.

Unemployment Estimates
Time series analysis is also used to estimate unemployed people in our economy. 
Unemployment is strongly affected by change in foreign direct investment, the security 
situation of a country, change in rate of skilled labor, and so on. These estimates are 
highly important as they affect the government’s expenditures for social and relief 
programs. Moreover, they help the government estimate the amount of change in direct 
and indirect tax as consumption levels increase due to the creation of employment.
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Disease Outbreak
Nongovernmental organizations (NGOs) and social organizations are interested in 
forecasting the outbreak of a disease across the globe. This is important for them so 
that they can launch awareness programs and prevention strategies in regions highly 
susceptible to a particular disease or epidemic.

Stock Market Prediction
Stocks fluctuate a lot on a short-term basis during trading hours, which makes it difficult 
for investors to forecast the point in time when they can benefit the most. However, the 
problem becomes more critical when investors invest in a portfolio of stocks and are 
worried about the return they should expect from it in the future or adjust a stock in order 
to receive returns in their favor. This is where time series analysis comes in handy.

David didn’t forget to summarize the methodology incorporated to reach the end 
result. He recalled having first defined the problem statement (i.e., predict Yahoo stock 
with a minimal residual). At first he had to understand what a time series is and then 
he validated the test of stationary against the time series object. Transformation and 
differencing were done to make the series object stationary. Then he applied the time 
series model and chose the one with the lowest RSS. This forecasted time series was 
then scaled back and used as an input to the linear regression line. The regression line 
enabled the extrapolation of future values and cross-validation was done to determine 
the variance explained by the best fit line.

David now planned to incorporate this model to predict Janice’s expected returns 
and to avoid a major setback due to prediction inaccuracies.
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CHAPTER 4

Clustering

The goal of this chapter is to solve real-world problems with the aid of supervised and 
unsupervised learning algorithms. First we will start off with the concept of clustering, 
determine how to organize the data, decide upon the number of components, and then 
end up seeing if the cluster outputs make any intuitive sense.

 ■ Note  This book incorporates Python 2.7.11 as the de facto standard for coding 
examples. Moreover, you are required to install it for the Exercises.

In this chapter we will be using the Accepted Papers dataset for clustering coding 
examples. This data dump can be downloaded from

https://archive.ics.uci.edu/ml/datasets/AAAI+2014+Accepted+Papers

Case Study: Determination of Short Tail Keywords 
for Marketing
Ross, the marketing director of an artificial intelligence (AI) conference, had to report to 
the board with recommendations for short tail keywords for the marketing of the 2015 
conference. He also had to come up with a visualization of research papers submitted so 
far, grouped by their paper type.

The conference is run by a nonprofit scientific society that ensures advancements 
in the domains of artificial intelligence. It does so by enhancing public understanding of 
the domain, as well as by providing researchers with a platform for them to present their 
findings in yearly conferences.

In order to come up with a solution for the problem at hand, Ross started off by going 
through the web site. However, the magnitude of content from the research papers was 
too much for him to make an analysis.

https://archive.ics.uci.edu/ml/datasets/AAAI+2014+Accepted+Papers
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He thus knocked on Ted’s door to find out if any data was available to start off 
the analysis. The meeting with Ted, who was the director of the data warehousing 
department, gave Ross a glimpse of hope. As Ted recalled:

Ross came up to me with this request, but the problem was that we were 
going through a major overhaul of integrating SAP in/out processes. But 
fortunately we had some data dumps available in storage. I asked Ross 
for the conference year he wanted the data for, and boom we had the 
data dump for that year.

Ross loaded the data dump in Microsoft Excel and started looking through the 
features. He thought that one strategy could be to group the papers by keywords or 
groups. He could then run separate ads on social media and use SEO (search engine 
optimization) to target the respective keywords within them. However, there were too 
many distinct values within keywords and group features, and thus they would result 
in many clusters of SEO keywords. His strategy was to come up with a maximum of ten 
different SEO keyword groups and let them run for several days to reap benefits. He had 
heard something about clustering, where you cluster the data into a fixed number of 
clusters, and so he decided that clustering would be his starting point.

Now that he had a path to follow, he had some questions in mind. How many 
clusters would be optimal from the data provided? Given that the data is small, can any 
machine learning algorithm be a best fit to it? How should he visually present the data 
and, ultimately, the findings?

Ross believed that understanding the features of data provided by Ted would prove 
beneficial later on down the path. He felt that understanding them would help him 
decide upon the best approach for solving the problem at hand. Hence he compiled the 
data dictionary in Table 4-1.

Table 4-1. Data Dictionary for the Accepted Papers Dataset

Feature name Description

Title Title of the paper

Authors Author(s) of the paper

Groups Author-selected, high-level keyword(s)

Keywords Author-generated keywords

Topics Author-selected, low-level keywords

Abstracts Paper abstracts
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While looking at Table 4-1, Ross deduced that all of the features were in a string 
format. Moreover, he noticed that paper manuscripts are not part of the dataset and 
abstracts were provided instead.

Ross had recently completed the Python specialization offered by the University of 
Michigan on Coursera. Hence he was confident of his Python skills to nail the job. Before 
starting with the analysis, he decided to load all the relevant packages into the memory as 
shown in Listing 4-1.

Listing 4-1. Importing Packages Required for This Chapter

%matplotlib inline

import operator
import itertools
import numpy as np
import pandas as pd
from ggplot import *
import seaborn as sns
import matplotlib as mpl
from sklearn import mixture
import matplotlib.pyplot as plt
from matplotlib.pylab import rcParams
from sklearn.decomposition import PCA
from wordcloud import WordCloud, STOPWORDS
from scipy.spatial.distance import cdist, pdist
from sklearn.cluster import KMeans, SpectralClustering
from sklearn.metrics import euclidean_distances, silhouette_score

rcParams['figure.figsize'] = 15, 5

Though Ross knew the features and their descriptions, he was curious to know the 
contents within.

Features’ Exploration
Before moving forward, it was time for him to lay out his strategy. After putting much 
thought into it, he finally came up with a plan that could potentially work. The plan was 
to initially break the research papers into segments so that he could focus on each one 
of them by means of the targeted short tail and long tail keywords. He then looked at the 
features in Table 4-1 to filter out the ones that resonated to his approach. He believed 
that the Authors field was irrelevant and that the Abstract field was too detailed in nature. 
Hence he narrowed his search to just four features (Title, Groups, Keywords, and Topics). 
He filtered the features by writing down the code snippet in Listing 4-2.
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Listing 4-2. Reading the Data in the Memory, and Subsetting Features

data_train = pd.read_csv('examples/[UCI] AAAI-14 Accepted Papers - Papers.csv')
data_train = data_train[['title', 'groups', 'keywords', 'topics']]

Ross was now interested to know how big the dataset was (i.e., how many research 
papers were available). Moreover, he was interested in taking a sneak peek of the dataset. 
He wrote the script in Listing 4-3 for that purpose.

Listing 4-3. Printing the Size of the Dataset and Printing the First Few Rows of the Dataset

print len(data_train)
data_train.head()

Output

398

From the output of Listing 4-3, Ross noticed that the dataset has data on 
approximately 400 research papers. Moreover, he found validation for his deduction that 
all of the features within the dataset are in a string data format. He also noticed that a 
given research paper can fall into more than one group and keyword.

Ross was on his way home, on the subway, waiting for the next train to arrive, when 
he ran into his college mate Matt, with whom he had partnered for community work. After 
college Matt had made a career in the domain of data analytics. Ross thus brought up 
the problem he was trying to solve. After listening diligently Matt advised Ross to decide 
whether he was going to use supervised learning or unsupervised learning before moving 
onto model selection. It was a brief conversation as Matt had to go, and it left Ross with 
many questions about this concept. It was not until the next morning that Ross returned to 
the office and did research on supervised and unsupervised learning methods.

title

0

1

2

3

4

groups keywords topics

Kernelized Bayesian Transfer Learning

“Source Free”Transfer Learning for Text
Class...

A Generalization of probabilistic Serial to Ra...

Lifetime Lexical Variation in Social Media

Hybrid Singular Value Thresholding for
Tensor...

Novel Machine Learning Algorithms (NMLA) 

AI and the Web (AIW)\nNovel Machine Learning
A...

Game Theory and Economic Paradigms (GTEM)

NLP and Text Mining (NLPTM)

Knowledge Repressentation and Reasoning (KRR)
\n...

cross-domain learning\ndomain
adaptation\nkern...

Transfer Learning\nAuxiliary Data Retrieval\nT...

social choice theory\nvoting\nfair division\ns...

Generative model\nSocial Networks\nAge
Prediction

tensor completion\nlow-rank recovery\nhybrid s...

APP: Biomedical / Bioinformatics\nNMLA: Bayesi...

AIW: Knowledge acquisition from the web\nAIW: ...

GTEP: Game Theory\nGTEP: Social Choice /
Voting

AIW: Web personalization and user
modeling\nNL...

KRR: Knowledge Representation (General/Other)
\...

Table 4-2. Print of Observations of the Dataset
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Supervised vs. Unsupervised Learning
Machine learning algorithms are usually divided into supervised and unsupervised learning.

Ross came up with an explanation for both these methods.

Supervised Learning
As the name suggests, supervised learning algorithms require supervision for them to 
train the model. This supervision is usually necessary in the case of classification where 
we have labeled data on which we train the model for it to predict the labels of the 
unseen data. Here, the supervision is by means of the label provided with each and every 
observation (i.e., supervising the learning process). Examples include classification for 
discrete predictors and regression for the continuous ones.

Unsupervised Learning
Unsupervised learning algorithms require no supervision from the data while training 
the model. A prime example of this is clustering, which discovers the labels without any 
supervision needed. These discovered labels then become the basis for classifying any 
new unseen data. Another example of unsupervised learning is the rule of association, 
which entails the concepts of complement and substitute. Complement refers to a 
phenomenon whereby if a shopper buys X then, with a high degree of certainty, he will 
buy Y as well. Substitute refers to a behavior whereby a shopper will buy either X or Y.

Other examples include anomaly detection, method of moments (e.g., mean and 
covariance), independent component analysis, and principle component analysis (PCA).

Supervised Learning

X2

X1

X2

X1

Unsupervised Learning

Figure 4-1. Supervised vs. unsupervised learning
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Ross had to decide on which of the two is suitable for his problem at hand and the 
available data. From the data in Table 4-2, he noticed that the dataset provided no labeled 
data. This meant that he had to predict labels from scratch using unsupervised learning.

Ross was assuming that clustering, being an unsupervised learning method, could 
help him find the correct segments to meet the marketing goals. However, he wasn't too 
sure if clustering was the right approach to pursue. Hence he came up with the following 
material on the topic.

Clustering
Cluster analysis refers to the grouping of observations so that the objects within each 
cluster share similar properties, and properties of all clusters are independent of each 
other. Cluster algorithms usually optimize by maximizing the distance among clusters 
and minimizing the distance between objects in a cluster. Cluster analysis does not 
complete in a single iteration but goes through several iterations until the model 
converges. Model convergence means that the cluster memberships of all objects 
converge and don’t change with every new iteration. Some clustering algorithms don’t 
ask for the number of clusters/components, and come up with the number of clusters 
that statistically make more sense. However, a huge chunk of clustering algorithms 
prompt the user upfront for the number of clusters/components he desires in the output. 
It is important to understand that clustering, just like classification, is used to segment the 
data; however, these groups are not previously defined in the training dataset (i.e., they 
are unlabeled data).

Different algorithms deploy different techniques for the computation of clusters. 
Some of those techniques are as follows:

•	 Partitioning: Groups data into given number of clusters while 
optimizing for the objective (e.g., distance).

•	 Hierarchical: Groups data into a hierarchy of clusters. These 
hierarchies are formed top-down or bottom-up.

•	 Grid-based: Divides the data into hyper-rectangle cells, discards 
low-density cells, and combines high-density cells to form 
clusters.

A good clustering algorithm satisfies the following requirements:

•	 Within-cluster similarity and between-cluster dissimilarity

•	 Can deal with training dataset which is:

•	 Of a high dimension

•	 Affected by noise and outliers

Ross now had some knowledge of supervised and unsupervised models; however, 
he was not sure if clustering could be applied to data that is textual in nature. Moreover, 
he knew that the greater the number of features fed in, the higher the chances to discover 
features that influence during the cluster discovery process. Hence he had to figure out 
a way to convert textual data into numeric form and use the existing four features to 
generate more features.
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Data Transformation for Modeling
Ross spent hours searching for a solution to this mystery. He felt disappointed as he had 
expected this approach to work and yield results. To make it easy, he narrowed down his 
search to one feature (i.e. groups) and started pondering on how he could recode it into 
a numeric form. It was late at night, but Ross couldn't sleep, and then an idea struck him. 
Why not convert the “groups” feature into Boolean, such that a research paper that falls 
within a group will have 1 marked next to it, and 0 otherwise. The data representation he 
could think of would be a matrix where columns will represent the different groups and 
rows will represent the research papers.

He knew that a research paper could fall into one group. Groups for a given research 
paper were separated by a delimiter (i.e., \n) in the dataset. Hence he first decided to 
separate groups by dividing the delimiter in between so that if a research paper falls within 
three groups it will be represented by three different observations (i.e., rows) in the dataset.

Listing 4-4. Stretching the Data Frame Row-wise as a Function of Groups

s = data_train['groups'].str.split('\n').apply(pd.Series, 1).stack()
s.index = s.index.droplevel(-1)
s.name = 'groups'
del data_train['groups']
data_train = data_train.join(s).reset_index()

In addition to separating groups, Ross also decided to add a new feature “flags,” 
and assign a value of 1 to all the rows. As per his notion, a value of 1 will denote that the 
research paper in that row belongs to the group in the “groups” column.

Listing 4-5. Adding New Variable for Group Membership

data_train['flags'] = pd.Series(np.ones(len(data_train)),  
index=data_train.index)
data_train.head()

Table 4-3. Print of Observations of the Dataset After Data Frame Transformation

title keywords groups flagstopics

Kernelized Bayesian Transfer Learning

“Source Free”Transfer Learning for Text
Class...

“Source Free”Transfer Learning for Text
Class...

A Generalization of probabilistic Serial to
Ra...

Lifetime Lexical Variation in Social Media

cross-domain learning\ndomain
adaptation\nkern...

Transfer Learning\nAuxiliary Data
Retrieval\nT...

Transfer Learning\nAuxiliary Data
Retrieval\nT...

social choice theory\nvoting\nfair division\ns...

Generative model\nSocial Networks\nAge
Prediction

APP: Biomedical / Bioinformatics\nNMLA:
Bayesi...

AIW: Knowledge acquisition from the web\nAIW:
...

AIW: Knowledge acquisition from the web\nAIW:
...

GTEP: Game Theory\nGTEP: Social Choice /
Voting

AIW: Web personalization and user
modeling\nNL...

Novel Machine Learning Algorithms
(NMLA) 

1.0

1.0

1.0

1.0

1.0

Novel Machine Learning Algorithms
(NMLA) 

AI and the Web (AIW)

Game Theory and Economic Paradigms
(GTEM)

NLP and Text Mining (NLPTM)
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Having expanded a research paper as a function of the group it belongs in, and 
having associated a member flag to it, Ross knew that the time had come to convert this 
data structure into a matrix. For that he defined the function in Listing 4-6.

Listing 4-6. Adding a Function for Matrix Creation

def matrix_from_df(data_train):

     matrix = data_train.pivot_table(index = ['title'], columns=['groups'], 
values='flags')

    matrix = matrix.fillna(0).reset_index()
    x_cols = matrix.columns[1:]
    return matrix, x_cols

Over the years, Ross had become proficient in pivot tables within Microsoft Excel. 
He thus decided to use the same methodology in Listing 4-6 for the data frame to matrix 
transformation. Hence he initialized a method in Listing 4-6 whereby he converted the 
training data into a pivot with title as an index, each group represented by a separate 
column, having values from the “flags” feature. Then he placed 0 where the research 
paper in the index didn't fall within the realm of a given group. He decided to bring the 
matrix live by using the method defined in Listing 4-6.

Listing 4-7. Retrieve Matrix and x cols from the matric_from_df Method

matrix, x_cols = matrix_from_df(data_train)
matrix.head()

Table 4-4. Initial Observations of the Matrix

groups

0 1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0

0.0

0.0

0.0

1.0

“Source Free”
Transfer
Learning for
Text Class...

A
Characterization
of the Single-
Peaked Single...

A
Computational
Method for
(MSS, CoMSS)
Partiti...

1

2

title

AI
and
the
Web
(AIW)

Applications
(APP)

Cognitive
Modeling
(CM)

Cognitive
Systems
(CS)

Computational
Sustainability
and AI (CSAI)

Game Playing
and
Interactive
Entertainment
(GPIE)

Game 
Theory
and
Economic
Paradigms
(GTEP)

Heuristic
Search and
Optimization
(HSO)

Human-
Computation
and Crowd
Sourcing
(HCC)

...

...

...

...
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Ross was thrilled to see the output come out as expected. To test his understanding, 
he picked a research paper from Table 4-4 at random. He chose “A Computational 
Method for (MSS.CoMSS).” By looking at the matrix in Table 4-4, Ross inferred that the 
paper fell in group HSO and didn’t have membership in any of the other groups.

Now that he knew what clustering was, and having transformed the data into a form 
friendly for applying it, it was time for him to apply clustering modeling. However, first 
he had to determine the evaluation metrics by which he could evaluate the goodness 
of a clustering model. Contrary to the techniques available for evaluating regression 
and classification models, not many techniques are available to statistically evaluate 
the goodness of a clustering model. The reason is that in regression and classification, 
labeled data is already available on which the model is trained. However, this is not the 
case with clustering.

Metrics of Evaluating Clustering Models
Having done some research, Ross learned that there is no one way of to evaluate the 
output of a clustering model. He came across two approaches for making it work. The first 
was more of a technical nature. It deems a clustering model good enough if maximum 
variance is explained within each of the clusters, objects within the clusters share similar 
properties, and clusters are further away from each other. The second approach indicated 
the model to be strong if the cluster definitions make intuitive sense.

Ross now had a clear understanding of clustering and methodologies to evaluate 
its goodness. Hence he started to look for clustering models that work best in related 
applications. After thorough research, he came up with several clustering models.

Clustering Models
Ross decided to start with the de facto clustering algorithm (i.e., k-means clustering). 
To Ross, understanding the methodology by which clusters converge was pivotal before 
applying it to the dataset in hand. Hence he compiled an explanation of the k-means 
clustering algorithm.

k-Means Clustering
k-means clustering partitions the data space into Voronoi cells representation. This 
transformation divides the data observations into k-clusters in which each of the 
observations belongs to the cluster with the nearest mean. k-means clustering is done 
as follows:

 1. k-centroids are chosen randomly.

 2. Each of the observations is binded with the closest centroid.

 3. New centroids for each of the clusters are recomputed by 
taking the mean of the observations lying within each cluster.

 4. Step 2 is repeated again.
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You might note that steps 1 and 3 resemble each other, the difference being that in 
step 1, centroids are chosen at random, whereas in step 3 they are calculated by taking the 
mean of observations within each of those clusters.

Then steps 2 and 4 are a repetition of the same step. Steps 3 and 4 are iterated until 
the clusters converge—that is, cluster memberships remain constant for all observations 
in the dataset. This maximizes the distance between clusters and minimizes the distance 
among the observations within each cluster. k-means clustering does not always find 
the most optimal configuration while minimizing the global objective function. The 
clustering algorithm is highly sensitive to how cluster centers are initially selected.

Ross now fully understood how convergence is performed in a k-means clustering 
algorithm. However, he was clueless on as to what value of k (i.e., number of clusters he 
should specify upfront) would be optimal for the data at hand. He recalled having seen 
an article on k-means clustering on Linkedin. Hence he searched for the person who had 
posted that article and then messaged him asking for his assistance in this regard. His 
connection, Pollack, suggested that Ross use the following methods:

•	 Elbow method

•	 Variance explained

•	 BIC score

He started off by looking at how the Elbow method works and then applied it to find 
the number of clusters optimal to the model.

Elbow Method
The Elbow method in Ross’s terms is the percentage of variance explained as a function 
of the number of clusters. It determines how much marginal variance is contributed by 
a newly added cluster. A point of interest is that the first cluster will explain maximum 
variance with marginal gains dropping on the addition of every new cluster. Elbow will 
be the point where a new cluster will result in a considerable marginal drop, that being 
the optimal number of clusters. Ross decided to apply the Elbow method to the matrix 
transformed dataset.

Listing 4-8. Applying Elbow Method and Variance Explained on Data Matrix

matrix, x_cols = matrix_from_df(data_train)
X = matrix[x_cols]

K = range(1,50)
KM = [KMeans(n_clusters=k).fit(X) for k in K]
centroids = [k.cluster_centers_ for k in KM]

D_k = [cdist(X, cent, 'euclidean') for cent in centroids]
dist = [np.min(D,axis=1) for D in D_k]
avgWithinSS = [sum(d)/X.shape[0] for d in dist]
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fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(K, avgWithinSS, 'b*-')
plt.grid(True)
plt.xlabel('Number of clusters')
plt.ylabel('Average within-cluster sum of squares')
plt.title('Elbow for KMeans clustering')
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Figure 4-2. Elbow method curve as a function of number of clusters

In Listing 4-8, Ross recalled training 49 models of k-means clustering, each having 
a different k-value ranging from 1 to 50. He then fetched the cluster centers for those 
clustering models and determined the cluster memberships for each research paper 
model by model. Finally, for each model, he computed the sum of all research papers and 
divided it by the total number of research papers to get the average within cluster sum 
of squares. He then plotted the cluster sum of squares for all of the 49 cluster models in 
Figure 4-2 to formulate the Elbow method.

While looking at Figure 4-2, Ross deduced the elbow to occur at k = 9. However, 
he wasn't sold until and unless more than one method doesn't converge on the same 
number of clusters. Thus he moved toward understanding variance explained.

Variance Explained
The percentage of variance explained, or in other words F-test, is the ratio of group 
variance to the total variance. Here again the elbow will determine the optimal number 
of clusters for the k-means clustering model. Ross put variance explained into practice by 
writing the code snippet in Listing 4-9.
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Listing 4-9. Applying Elbow Method and Variance Explained to Data Matrix

matrix, x_cols = matrix_from_df(data_train)
X = matrix[x_cols]

K = range(1,50)
KM = [KMeans(n_clusters=k).fit(X) for k in K]
centroids = [k.cluster_centers_ for k in KM]

D_k = [cdist(X, cent, 'euclidean') for cent in centroids]
dist = [np.min(D,axis=1) for D in D_k]

wcss = [sum(d**2) for d in dist]
tss = sum(pdist(X)**2)/X.shape[0]
bss = tss-wcss

kIdx = 10-1

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(K, bss/tss*100, 'b*-')
plt.grid(True)
plt.xlabel('Number of clusters')
plt.ylabel('Percentage of variance explained')
plt.title('Elbow for KMeans clustering')
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Figure 4-3. Explained variance curve as a function of number of clusters

Ross recalled having explained Listing 4-9 in the following words: 

After getting the cluster memberships of each research paper cluster by 
cluster, the distances were then used to compute the within cluster sum of 
square. Next, distances were computed among the columns within each 
research paper to compute the total sum of squares. Finally, within the 
cluster sum of square was subtracted from total sum of squares to get the 
between sum of squares. Ratio of between sum of squares and total sum 
of squares was taken to plot in Figure 4-3.
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To Ross Figure 4-3 looked like an exponential cumulative distribution function. 
The variance explained was seemingly smooth and kept increasing with the number of 
clusters. This made it difficult for Ross to figure out the elbow. After due consideration, 
Ross noticed the gradient to start smoothing from k = 9, similar to what he had observered 
with the Elbow method.

However, he didn't stop there and continued looking for methods to help determine 
the optimal k, and within a short time he was exposed to the Bayesian Information 
Criterion (BIC) score.

Bayesian Information Criterion Score
BIC is another technique to choose the best model out of a finite set of models. The 
model with the lowest BIC score is deemed to be the winner. When training the model 
a high probability of increasing the likelihood of getting accurate clusters exists by 
adding extra parameters; however, he knew that doing so would overfit the model. 
BIC overcomes this problem by adding a penalty term on number of parameters in the 
model. BIC works on the assumption that the sample size should be much larger than the 
number of parameters in the model. Hence BIC won’t be suitable for complex models 
working on high-dimensional data.
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Figure 4-4. Sample BIC score plot

The knowledge base on BIC score made Ross drop it as an option, because that BIC 
score is suitable for low-dimensional data, and therefore the matrix transformation meant 
that now the data had (number of groups + 1) dimensions, making it high-dimensional data.

He was curious to know if a method existed to determine the optimal number of 
clusters, a method which resonates to how a k-means cluster works. In other words, 
Ross wanted to find a method that determines the optimal number of clusters on which 
intercluster distances are the maximum and intracluster distances are at a minimum. His 
search made him look into research papers, where he found the Silhouette method.



ChapTer 4 ■ ClusTering

142

Silhouette Score
Silhouette score is used to measure how close observations within a cluster are (i.e., intra-
cluster distance (a)), and how distinct the clusters are from each other (i.e., mean nearest 
cluster distance (b)). The Silhouette coefficient is calculated as follows:

(b-a) / max (a, b)

The best value is 1 and the worst is -1. A coefficient value of 0 indicates overlapping 
clusters. The catch for Ross was now to select the number of clusters that yield the 
maximum Silhouette score. Without wasting any time he applied the Silhouette method 
on k-means models, within the cluster size range of 2 to 30.

Listing 4-10. Plotting Silhouette Score Plot from the Data Matrix

s = []

for n_clusters in range(2,30):
    kmeans = KMeans(n_clusters=n_clusters)
    kmeans.fit(X)

    labels = kmeans.labels_
    centroids = kmeans.cluster_centers_

    s.append(silhouette_score(X, labels, metric='euclidean'))

plt.plot(s)
plt.ylabel("Silouette")
plt.xlabel("k")
plt.title("Silouette for K-means cell's behaviour")
sns.despine()
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Figure 4-5. Silhouette coefficients plot as a function of number of clusters
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Ross was puzzled to see the plot in Figure 4-5 as the Silhouette coefficient seemed to 
increase continuously with the increasing number of clusters. As the theory suggested the 
optimal number of clusters to be the point where the Silhouette coefficient is the highest, he 
couldn't realistically choose 27 to be the right number of clusters for the following reasons:

•	 27 clusters will be too many for a data matrix having 398 
observations in total.

•	 He realistically couldn't market 27 different segments within the 
limited amount of time he had.

Hence he decided to proceed with nine clusters, which he determined from the 
Elbow method (i.e., Figure 4-3) and variance explained (i.e., Figure 4-4).

Applying k-Means Clustering for Optimal Number of 
Clusters
Ross applied k-means clustering with a cluster size of 9 in Listing 4-11.

Listing 4-11. Training k-means Model for Cluster Size of 9

matrix, x_cols = matrix_from_df(data_train)
X = matrix[x_cols]

cluster = KMeans(n_clusters = 9, random_state = 2)
matrix['cluster'] = cluster.fit_predict(X)
matrix.cluster.value_counts()

Output

0    81
1    78
2    32
3    38
4    27
5    44
6    36
7    30
8    30

Name: cluster, dtype: int64

In Listing 4-11, Ross decided to print the number of research papers that fall 
within each of the nine clusters. He noticed that except for two clusters, which had 80 
observations each, the remaining seven clusters had 30 observations each on average.
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Ross was interested to see what these clusters would look like visually. He was aware 
that dimensions within the dataset are a function of the number of distinct groups. Ross 
knew that no package within Python would be sufficient to plot such a high-dimensional 
figure. Even if he were successful in plotting it, he was aware that the figure would be too 
complex to extract any intuitive sense. Hence he started looking for a method by which he 
could somehow reduce the number of dimensions. He didn’t have to wait for long before 
he was exposed to principle component analysis (PCA).

Principle Component Analysis
PCA converts a set of observations that are highly correlated into a set of linearly 
uncorrelated variables called principle components by an orthogonal transformation. 
This transformation is done such that the first component has the highest variance.
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Figure 4-6. Illustration of PCA

Subsequent components have lower variances, keeping the constraint under 
consideration that it is orthogonal to the preceding components as depicted in Figure 4-6.  
PCA is highly sensitive to relative scaling of the data. PCA can be thought of as a 
dimension reduction technique which reduces high-dimensional data to a fixed number 
of components.

Having read the description, Ross was sure that with dimension reduction he was 
doing the right thing. Hence without wasting any further time he wrote the code in  
Listing 4-11 for reducing the group dimensions to two dimensions (i.e., x, and y). He 
decided to convert it into two dimensions to make it easy for him to plot the clusters on a 
two-dimensional axis.
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Listing 4-12. Using PCA to Transform Group-Related Features into Two Components

pca = PCA(n_components=2)
matrix['x'] = pca.fit_transform(matrix[x_cols])[:,0]
matrix['y'] = pca.fit_transform(matrix[x_cols])[:,1]
matrix = matrix.reset_index()

customer_clusters = matrix[['title', 'cluster', 'x', 'y']]
customer_clusters.head()

Having done the transformation in Table 4-5, Ross now had to plot that on a scatter 
plot for which he wrote the code in Listing 4-13.

Listing 4-13. Plotting Clusters in a Two-Dimensional Space

cluster_centers = pca.transform(cluster.cluster_centers_)
cluster_centers = pd.DataFrame(cluster_centers, columns=['x', 'y'])
cluster_centers['cluster'] = range(0, len(cluster_centers))

plt.scatter(customer_clusters['x'], customer_clusters['y'], s = 20, 
c=customer_clusters['cluster'])
plt.scatter(cluster_centers['x'], cluster_centers['y'], s = 150, c=cluster_
centers['cluster'])

Table 4-5. Print of Clusters Along with Two Newly Created Components Using PCA

groups

0 “Source Free” Transfer Learning for Text Class... 1 0.615810 -0.060295

0.971322

-0.216148

0.570206

-0.129668

-0.756838

-0.287956

-0.521295

0.198578

8

4

2

3

A Characterization of the Single-Peaked Single...
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Figure 4-7. Clusters in two-dimensional space
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While writing down the code in Listing 4-13 Ross made sure to assign a different 
color label to each cluster observation so that he could visually see their cluster 
memberships in Figure 4-7. Moreover, he made sure to represent the cluster centers 
as well. Cluster memberships in Figure 4-7 seemed to him to be distinct and non-
overlapping. However, recalling his initially laid objective of finding the keywords 
associated with each segment, he had to merge the dimension-reduced data into the 
original data (i.e., the one before matrix transformation). For that purpose he wrote down 
the script in Listing 4-14.

Listing 4-14. Merging Matrix into the Original Data Frame

customer_clusters.columns.name = None
df = data_train.merge(customer_clusters, on='title')
df.head()

title

Kernelized Bayesian
Transfer Learning

cross-domain
learning\ndomain
adaptation\nkern...

APP: Biomedical /
Bioinformatics\nNMLA:
Bayesi...

AI and the Web (AIW)

Novel Machine
Learning Algorithms
(NMLA)

1.0 1 0.613870 0.245408

-0.060295

-0.060295

0.570206

-0.090091

0.615810

0.615810

-0.521295

-0.183192

1

1

2

0

1.0

1.0

1.0

1.0

Novel Machine
Learning Algorithms
(NMLA)

Game Theory and
Economic Paradigms
(GTEP)

NLP and Text Mining
(NLPTM)

GTEP: Game
Theory\nGTEP: Social
Choice / Voting

AIW: Web personalization
and user modeling\nNL...

AIW: Knowledge acquisition
from the web\nAIW:...

AIW: Knowledge acquisition
from the web\nAIW:...

Transfer
Learning\nAuxiliary Data
Retrieval\nT...

Transfer
Learning\nAuxiliary Data
Retrieval\nT...

social choice
theory\nvoting\nfair
division\ns...

Generative mode\nSocial
Networks\nAge Prediction

“Source Free”Transfer
Learning for Text
Class...

“Source Free”Transfer
Learning for Text
Class...

A Generalization of
Probailistic Serial to
Ra...

Lifetime Lexical
Variation in Social
Media

keywords topics groups flags cluster x y

Table 4-6. Print of Observations of the Merged Data Frame

Ross made sure to print the first few observations of this merged data object. He was 
successful in merging the two data representations as now the data had title, keywords, 
topics, and gender features from the original dataset and features of flags, cluster, x, 
and y from the dimension-reduced dataset. He now had to use this merged dataset to 
generate keywords for each of the segments. He decided to do so by using a wordcloud. 
A wordcloud will show all words associated with a given cluster, with the word font 
sizes representing their frequency of occurrence within the pivotal feature. He planned 
to keep the pivotal feature arbitrary, and this pivotal feature would be used to supply 
words to the wordcloud. He started off by writing a method in Listing 4-15 to generate 
wordclouds.
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Listing 4-15. Creating Function to Generate Wordcloud

def wordcloud_object(word_string):

    FONT_ROOT = './fonts/'
     wordcloud = WordCloud(font_path=FONT_ROOT + 'arial.

ttf',stopwords=STOPWORDS, background_color='black', width=1200, 
height=1000).generate(' '.join(word_string))

    return wordcloud

Ross pointed out that a prerequisite to the code in Listing 4-15 is that a folder by the 
name of Fonts should be created in the same repository as the script itself, and the Arial 
font file should be pushed into it. For testing he recommended passing in any string input 
as the parameter to this function for it to generate a wordcloud.

Ross went on further and wrote the code in Listing 4-16 to generate a wordcloud for 
each of the nine clusters.

Listing 4-16. Creating Function to Plot Wordcloud for Each Cluster

def plot_wordcloud(df, clusters, pivot):

    fig = plt.figure(figsize=(15,29.5))
    for cluster in range(clusters):
        List_ = []

        for x in df[df['cluster']==cluster][pivot]:
            try:
                List_.extend(x.split('\n'))
            except:
                pass

        if List_:
            ax = fig.add_subplot(5,2,cluster+1)
            wordcloud = wordcloud_object(List_)
            plt.title('Cluster: %d'%(cluster+1))
            ax.imshow(wordcloud)
            ax.axis('off')

Before moving on, Ross pointed out that one of the parameters in the plot_wordcloud 
method is the pivot parameter. Pivot is the feature from which the bag of words will be 
taken to make the wordcloud.

Ross was excited as to see what the wordclouds would depict. Hence without waiting 
any longer he wrote the code in Listing 4-17 to call the method initialized in Listing 4-16, 
and passed in “keywords” as the pivotal feature.

Listing 4-17. Generating Wordclouds of Feature Named ‘Keywords’

plot_wordcloud(df, cluster.n_clusters, 'keywords')
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Figure 4-8. Wordcloud for each cluster generated from keywords
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After looking at Figure 4-8, Ross decided to give his deductive abilities a shot and 
defined the nine clusters as follows:

•	 Cluster 1: Papers talking about search and robotics

•	 Cluster 2: Papers talking in depth about models’ learning and 
optimization

•	 Cluster 3: Topics of application of data analytics in games and 
social media analytics

•	 Cluster 4: Topics of image recognition, robotics, and social media 
analytics

•	 Cluster 5: Topics of linear programming and search

•	 Cluster 6: Papers on reasoning-based models

•	 Cluster 7: Papers on application of data sciences in social graphs 
and other online mediums

•	 Cluster 8: Topics ranging in knowledge graphs

•	 Cluster 9: Papers concentrating on game theory and data security

Ross pointed to the fact that the words in the wordclouds are unigram (i.e., single 
words). He was happy with the results so far, but it seemed to him that some clusters 
had overlapping terms; for instance, clusters 1 and 5 had “search” as the overlapping 
term. It felt important to Ross to remove the overlap to make the cluster keywords and 
characteristics as distinctive as possible. Hence he planned to delve deeply into the 
details to see if both the clusters touched the same or distinctive topics of SEO. He started 
off by defining a method in Listing 4-18 which will take the term (e.g., “search”) as a 
parameter and return the keywords for each cluster having that term within.

Listing 4-18. Define Method to Find Complete Keywords for Given Clusters and Unigram

def perform_cluster_group_audit(clusters, term):

    for cluster in clusters:

        df_cluster = df[df['cluster'] == cluster]
        print 'Cluster number: %d'%(cluster + 1)
        keywords = list(df_cluster['keywords'])
        keywords = [keyword.split('\n') for keyword in keywords]
        keywords = [item for sublist in keywords for item in sublist]
         keywords = [keyword.lower() for keyword in keywords if term in 

keyword.lower()]
        keywords_freq = {x:keywords.count(x) for x in keywords}
         print sorted(keywords_freq.items(), key=operator.itemgetter(1), 

reverse=True)
        print '\n'



ChapTer 4 ■ ClusTering

150

Ross pointed out the second to last line of Listing 4-18 which is used to sort the 
keywords in descending order of their frequencies. Now it was time to use the method 
defined in Listing 4-18. He started off by looking at the topics that differentiate clusters 1 
and 5 in the aspect of “search.”

Listing 4-19. Using Function to Find Keywords for Search in clusters 0 and 4

perform_cluster_group_audit([0,4], 'search')

Output

Cluster number: 1
[('heuristic search', 7), ('greedy best first search', 4), ('Monticello 
tree search', 2), ('bounded suboptimal search', 1), ('real-time search', 
1), ('best-first search', 1), ('incremental search', 1), ('parallel 
search', 1), ('similarity search', 1), ('suboptimal heuristic search', 1), 
('agent-centered search', 1), ('approximate nearest neighbor search', 1), 
('hierarchical search', 1)]

Cluster number: 5
[('search', 3), ('heuristic search', 3), ('local search', 2), ('stochastic 
local search', 2), ('and/or search', 2)]

Ross made clear that clusters 1 and 5 were referred to as 0 and 4 because list indexes 
start from 0. The output of Listing 4-19 depicted topics along a heuristic search being 
captured by both the segments. He noticed that cluster 5 had topics on local search and 
cluster 1 had topics on other search algorithms.

After looking at Figure 4-8 Ross noticed that clusters 3, 4, and 7 were sharing topics 
along the social medium space. Hence he decided to investigate the points of differences 
by using the function earlier defined in Listing 4-20.

Listing 4-20. Using Function to Find Keywords for Social in Clusters 2, 3, and 6

perform_cluster_group_audit([2,3,6], 'social')

Output

Cluster number: 3
[('computational social choice', 11), ('social choice theory', 2), ('social 
decision schemes', 2), ('randomized social choice', 1)]

Cluster number: 4
[('social media', 5), ('social spammer', 2), ('social image classification', 2)]

Cluster number: 7
[('social networks', 6), ('social network', 3), ('social infectivity', 
3), ('social network analysis', 2), ('location based social network', 2), 
('social influence', 2), ('social dynamics', 1), ('social explanation', 1)]
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The output of Listing 4-20 made it clear to Ross how the three clusters were different 
from each other. Cluster 3 emphasized social choice theories. Cluster 4, on the other 
hand, concentrated on social images classification and social spamming. Finally, cluster 3 
grouped research papers related to social graphs and influences among interconnections.

Ross was curious to see what the wordclouds would look like if the pivotal feature 
had been other than ‘keywords.’ Ross had limited time and too much to do, so he invites 
you to come on board and help him answer the questions in the Exercises.

EXERCISES

1. plot wordclouds while keeping “groups” as the pivotal feature.

2. plot wordclouds while keeping “topics” as the pivotal feature.

Ross had read somewhere that clusters in k-means are usually in a spherical shape. 
He was curious to know if methods exist which create non-uniform clusters of different 
shapes. It didn’t take him long to discover Gaussian mixture models as a potential 
candidate to satisfy his curiosity.

Gaussian Mixture Model
Gaussian mixture models use probabilistic theory to estimate the number of clusters the 
data can be divided into. It works on the assumption that all data points are generated 
from the mixture of finite number of Gaussian distributions with unknown parameters. 
Gaussian mixture models can be thought as an enhancement to k-means where the 
covariance of the data and centers of Gaussian models are taken into consideration.
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Figure 4-9. Visual representation of Gaussian mixture model
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Gaussian mixture model comes in the following variants to constrain the covariance 
of different cluster estimates:

•	 Spherical

•	 Diagonal

•	 Tied

•	 Full covariance

Ross decided to apply Gaussian mixture models to find out the segments and their 
characteristics. For that purpose he wrote a function in Listing 4-21 to generate a scatter 
plot of clusters generated from Gaussian mixture models.

Listing 4-21. Defining Function to Plot the Clusters

def plot_results(X, Y_, means, covariances, index, title):

     color_iter = itertools.cycle(['b', 'g', 'red', 'm', 'y', 'navy', 'c', 
'cornflowerblue', 'gold',

                              'darkorange'])
    splot = plt.subplot(2, 1, 1 + index)
    for i, (mean, covar, color) in enumerate(zip(
            means, covariances, color_iter)):
        v, w = np.linalg.eigh(covar)
        v = 2. * np.sqrt(2.) * np.sqrt(v)
        u = w[0] / np.linalg.norm(w[0])

        if not np.any(Y_ == i):
            continue
        plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color)

        angle = np.arctan(u[1] / u[0])
        angle = 180. * angle / np.pi  # convert to degrees
         ell = mpl.patches.Ellipse(mean, v[0], v[1], 180. + angle, 

color=color)
        ell.set_clip_box(splot.bbox)
        ell.set_alpha(0.5)
        splot.add_artist(ell)

    plt.xlim(0.0, 0.1)
    plt.ylim(-0.2, 1.2)
    
    plt.xticks(())
    plt.yticks(())
    plt.title(title)

In Listing 4-21 Ross made sure to represent each cluster with a different color in 
order to help visually differentiate among them. He was now looking forward to applying 
Gaussian mixture models; however, he wasn’t very sure about what the number of 



ChapTer 4 ■ ClusTering

153

components should be. He looked through the literature and found out that BIC score is 
used commonly in Gaussian mixture models for deciding upon the number of clusters. 
Now his plan was to run a Gaussian mixture model for all possible combinations of 
covariance types and components (i.e., from 2 to 9). Covariance types include spherical, 
tied, and full. For each of these combinations BIC score will be calculated and the 
combination with the maximum BIC score will be selected. Ross made this happen by 
writing the code in Listing 4-22.

Listing 4-22. Determining the Optimal Covariance Type and Components for Model and 
Plotting It

matrix, x_cols = matrix_from_df(data_train)
X  = matrix[x_cols].as_matrix()
model_stats = []
n_components_range = range(2, 10)
cv_types = ['spherical', 'tied', 'full']
for cv_type in cv_types:
    for n_components in n_components_range:

        gmm = mixture.GaussianMixture(n_components=n_components,
                                       covariance_type=cv_type, random_

state=0)
        gmm.fit(X)
         model_stats.append({'name':'%s_%d'%(cv_type, n_components), 

'model':gmm, 'bic':gmm.bic(X)})

bic = np.array([m_type['bic'] for m_type in model_stats])
best_gmm = model_stats[bic.argmax()]
clf = best_gmm['model']
color_iter = itertools.cycle(['navy', 'turquoise', 'cornflowerblue'])

bars = []

# Plot the BIC scores
spl = plt.subplot(2, 1, 1)
for i, (cv_type, color) in enumerate(zip(cv_types, color_iter)):
    xpos = np.array(n_components_range) + .2 * (i - 2)
    bars.append(plt.bar(xpos, bic[i * len(n_components_range):
                                  (i + 1) * len(n_components_range)],
                        width=.2, color=color))
plt.xticks(n_components_range)
plt.ylim([bic.min() * 1.01 - .01 * bic.max(), bic.max()])
plt.title('BIC score per model')
spl.set_xlabel('Number of components')
spl.legend([b[0] for b in bars], cv_types)

labels = clf.predict(X)
plot_results(X, labels, gmm.means_, gmm.covariances_, 1,
             'Gaussian Mixture-%s'%gmm.converged_)
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Ross pointed out that the values within Figure 4-10 are of a negative magnitude. 
Therefore, a covariance type and number of components at 0 will be deemed the winner. 
A Gaussian mixture model with covariance type “tied” and three components qualified to 
be the winner in this case. Ross was curious to see if all the cluster sizes were uniform or 
not. For that purpose he wrote the code in Listing 4-23.

Listing 4-23. Display Frequency of Objects in Each Cluster

matrix['cluster'] = labels
matrix.cluster.value_counts()

Output

0     232
1     108
2     56
Name: cluster, dtype: int64

Ross was curious to see what the wordclouds from this method would look like, and 
if they would make any intuitive sense or not. However, before doing so he had to merge 
the matrix into the original dataset. He did so with the aid of the code in Listing 4-24.

plt.xticks(())
plt.yticks(())
plt.title('Selected GMM: %s model, %s components'%(best_gmm['name'].
split('_')[0], best_gmm['name'].split('_')[1]))
plt.subplots_adjust(hspace=.35, bottom=.02)
plt.show()
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Figure 4-10. BIC score per model

Number of components
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Figure 4-11. Best Gaussian mixture model’s components plot



ChapTer 4 ■ ClusTering

155

Listing 4-24. Merging Matrix into the Initial Data Frame

customer_clusters.columns.name = None
df = data_train.merge(customer_clusters, on='title')

Without waiting any longer, he pushed the merged dataset in Listing 4-25 to the 
function defined in Listing 4-15 for generating the wordcloud plots.

Listing 4-25. Generating Wordclouds of Feature Named “Keywords”

plot_wordcloud(df, gmm.n_components, 'keywords')

Figure 4-12. Wordcloud for each cluster generated from keywords

Ross decided to put his deductive abilities to the test and defined the research papers 
that fall within each of these clusters:

•	 Cluster 1: Papers discussing in depth models’ learning and linear 
programming

•	 Cluster 2: Papers discussing in depth model optimization and 
knowledge graphs

•	 Cluster 3: Topics on game theory and social media analytics
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Ross was thrilled to see the results, as these clusters seemed to be unique in terms of 
their characteristics. However, he was searching for an algorithm which can automatically 
determine the optimal number of components. After some struggle he was able to settle 
on the Bayesian Gaussian mixture model.

Bayesian Gaussian Mixture Model
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Figure 4-13. Illustration of Bayesian Gaussian mixture model

The Bayesian Gaussian mixture model is a variant of the Gaussian mixture model in which 
the model chooses the optimal number of clusters on its own. It exhibits this behavior 
when weight_concentration_prior is set to be small enough and n_components is set 
to be larger than what is found necessary by the model. The variational Bayesian mixture 
model sets some mixture weight values close to zero, which lets the model choose effective 
components automatically.

Ross decided to apply the Bayesian Gaussian mixture model to the data matrix. He 
decided to limit the number of components to five. He was interested to see what number 
of components will be deemed optimal by the Bayesian Gaussian mixture model.

Listing 4-26. Training the Model and Plotting the Clusters

matrix, x_cols = matrix_from_df(data_train)
X  = matrix[x_cols].as_matrix()

dpgmm = mixture.BayesianGaussianMixture(n_components=3,
                                         covariance_type='full', random_

state=1).fit(X)
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labels = dpgmm.predict(X)
plot_results(X, labels, dpgmm.means_, dpgmm.covariances_, 1,
              'Bayesian Gaussian Mixture with a Dirichlet process  

prior-%s'%dpgmm.converged_)

plt.show()

The three colors in Figure 4-14 implied to Ross that the three components were sufficient 
for the model to converge. He was interested to see the frequency of research papers that fall 
within each of these clusters; hence, he wrote the code snippet in Listing 4-27.

Listing 4-27. Display Frequency of Objects in Each Cluster

matrix['cluster'] = labels
matrix.cluster.value_counts()

Output

0     229
1     117
2     50
Name: cluster, dtype: int64

Ross noticed that the first cluster has more than 50% of the observations falling 
within itself, with the number of observations decreasing in the next two clusters.

The current matrix only had titles and clusters as the features. Hence he decided 
to merge them within the initial data frame in order to get access to other features 
corresponding to these research paper titles.

Listing 4-28. Merging Matrix into the Initial Data Frame

customer_clusters.columns.name = None
df = data_train.merge(customer_clusters, on='title')

It was time for Ross to explore the characteristics of each of those three clusters. 
Hence he brought the function defined in Listing 4-16 into application.

Listing 4-29. Generating Wordclouds of Feature Named “Keywords”

plot_wordcloud(df, dpgmm.n_components, 'keywords')

Bayesian Gaussian Mixture with a Dirichlet process prior-True

Figure 4-14. Clusters formed by means of Bayesian Gaussian mixture model
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Figure 4-15. Wordcloud for each cluster generated from keywords

Ross defined the three clusters with the aid of the wordclouds in the following words:

•	 Cluster 1: Papers discussing in depth game theory and social 
media analytics

•	 Cluster 2: Papers discussing in depth model optimization and 
models’ learning

•	 Cluster 3: Topics on linear programming, knowledge graphs, and 
reasoning-based models

Ross was satisfied as after going through the exercise he was able to get finite clusters 
with distinct characteristics. He planned to drop the output of k-means and go forward 
with the segments defined by the Bayesian Gaussian mixture model. His reasoning was, 
first, that the clusters made more intuitive sense, and second, that it was smart enough to 
find the optimal number of clusters all on its own.

Though Ross had nailed the problem at hand, he was interested to see the 
applications of clustering in the real world.
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Applications of Clustering
Applications of clustering are vibrant in several fields of study.

Identifying Diseases

Cluster 1
22%

Cluster 2
18%

Cluster 3
54%

t-test : P = 0.003

Cluster 4
8%

Cluster 5
28%

E2F

Myc
PI3K

ß-catenin
Src
Ras

Docetaxel
Etoposide
Vinorelbine

Cisplatin

Figure 4-16. Clusters obtained along with their confidence intervals while identifying 
diseases

Clustering has recently caught the attention of those in the medical field. This is primarily 
due to the fact that unsupervised non-linear clustering algorithms have been relatively 
more effective in predicting cancerous diseases.

Document Clustering in Search Engines
Search engines use the input query of user as a parameter to cluster documents from 
the information retrieval system. The search results are thus in a sorted order of those 
clustered documents.

Demographic-Based Customer Segmentation
Clustering is also used in the field of marketing—more specifically, branding. Marketing 
research executives use clustering to find out customer segmentations and perceptual 
maps of their brand and that of their competitors. This way they find out the positioning 
of their brands and the customer segmentation they are catering to. This helps brands 
determine the customer personas to target, both existing and potential customers, and 
their demographics.
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Ross decided to conclude his journey by recalling how he had started off with the 
difference between supervised and unsupervised algorithms. He then transformed the 
data into a matrix to increase the dimensions of the data at hand. He looked at different 
methodologies for determining the optimal number of clusters. He learned how to make 
wordclouds to generate an intuitive sense of the clusters formed. Along the lines of the 
end objective, he used several techniques in search of the right one to divide the research 
papers into segments with disjoint characteristics. His plan was to market those segments 
by means of their related keywords for the upcoming conference this year. He selected the 
three components from the Bayesian Gaussian mixture model to fuel up his efforts for the 
upcoming conference next year.
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CHAPTER 5

Classification

This chapter aims to solve real-world problems that depend on a finite number of 
outcomes. These outcomes can be Boolean in nature, with only two choices (i.e., True/
False or Yes/No). They can also be nominal in nature (boat name on which a passenger will 
embark, maximum education attainment a group of students will have, etc.). Throughout 
this chapter we will be talking about supervised learning whereby labeled data will be 
used to train the model. Training the models on this data will enable label predictions on 
an unseen dataset (i.e., future predictions). In this chapter we will be talking about feature 
extraction and selection and will conclude with methods to evaluate classification accuracy.

 ■ Note  This book incorporates Python 2.7.11 as the de facto standard for coding 
examples. Moreover, you are required to install it for the Exercises.

In this chapter we will be incorporating the Medical Appointment No-Shows 
dataset available to download from

www.kaggle.com/joniarroba/noshowappointments

Case Study: Ohio Clinic—Meeting Supply and 
Demand
Dr. Judy, a pediatric surgeon and clinic supervisor at Ohio Clinic, was in big trouble, 
facing clinic losses for the third consecutive year. Dr. Judy had recently been promoted 
to this position, but she knew for a fact that the clinic had been doing due diligence in 
terms of efficiency. What surprised her most was that the hospital was incurring losses 
despite having the finest doctors available and no lack of scheduled appointments. To be 
reassured about the financial side of things, she hired a third-party firm to audit the finance 
department. However, the firm found no evidence pertaining to the dilemma at hand.

Ohio Clinic is a nonprofit medical center in Ohio. The clinic operates with a unique 
mission of blending research and education with clinical and hospital care. The medical 
center has a huge head force of 50,000 employees, and as a result of the combined effort 
of those employees, the medical center has been able to handle approximately 7 million 
visits so far.

http://www.kaggle.com/joniarroba/noshowappointments
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Previously, in situations like these, the hospital relied on an influx of capital from 
donors. However, with the recent change in management, efforts had been commenced 
to make the medical center self-sustainable. As Dr. Judy recalled,

This new initiative by the management was a huge challenge for me given 
the fact that it was the exact time when I was handed over the position. I 
got no time to settle and thus it was a do-or-die situation for me. If finances 
have no flaws, appointments are skyrocketing, no considerable hiring, or 
raises have taken place, then the only reason for this dilemma could be that 
patients are not showing up after getting the appointments in the first place.

A board meeting was expected soon and she had to gather insights by then to give a 
reason to this anomaly. Dr. Judy knew that neither speculations nor rumors would enable 
her to figure out the reason for the losses despite the number of scheduled appointments. 
To further investigate her suspicions, she obtained the data dump of appointments, 
and decided to use the data to validate the evidence. She knew that concrete data is not 
subject to bias and thus would provide a clear picture of the situation at hand. First she 
had to cross-check whether the features within the dataset were relevant to the problem 
at hand. Hence she fetched the data dictionary in Table 5-1.

Table 5-1. Data Dictionary for the Medical Appointment No-Shows Dataset

Feature name Description

Age Age of patient

Gender Gender of patient

AppointmentRegistration Date on which appointment was issued to the patient

ApointmentData Date for which appointment was issued to the patient

DayOfTheWeek Day of the week for which appointment was issued

Status Day of the week for which appointment was issued  
(i.e., response variable)

Diabetes Whether the patient has diabetes or not

Alcoolism Whether the patient is affected by Alcoolism or not

HiperTension Whether the patient has HiperTension or not

Handicap Whether the patient is handicapped or not

Smokes Whether the patient smokes or not

Tuberculosis Whether the patient has tuberculosis or not

Scholarship Whether or not a patient has been granted scholarship 
from a social welfare organization or not. Poor families may 
benefit by receiving financial aid.

Sms_Reminder Whether SMS reminder for appointment has been issued to 
the patient or not

AwaitingTime AwaitingTime = AppointmentRegistration – ApointmentData
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Dr. Judy searched the Web to find all the relevant packages she would need 
throughout the course of this analysis. Listing 5-1 illustrates the results of her Web search.

Listing 5-1. Importing Packages Required for This Chapter

%matplotlib inline

import numpy as np
import pandas as pd
from time import time
import matplotlib.pyplot as plt
from IPython.display import Image
from matplotlib.pylab import rcParams

from sklearn import metrics
from sklearn.cross_validation import train_test_split

from sklearn.decomposition import PCA
from sklearn import kernel_approximation
from sklearn.linear_model import SGDClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.kernel_approximation import (RBFSampler,Nystroem)
from sklearn.ensemble import GradientBoostingClassifier, 
RandomForestClassifier

rcParams['figure.figsize'] = 15, 5

Dr. Judy was hoping to do the following with the information from the data dump:

 1. Discover reasons that losses are coming up even though the 
rate of appointments is going up?

 2. If patients are not reporting at the time of their scheduled 
appointments, come up with a method to determine 
whether a patient would show up on the basis of his/her 
characteristics. She believed that knowing which patients 
were likely not to show up would enable the hospital to take 
countermeasures like the following:

•	 Provide constant appointment reminders and confirmations

•	 Make the head count of doctors and hospital staff in line with 
the demand at hand.

Dr. Judy decided to start off by understanding the features within the data dump and 
listing their possible values.
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Features’ Exploration
Dr. Judy put her faith in the data dump and loaded it into the computer’s memory using 
the code snippet in Listing 5-2. She also made sure to print the first initial observations 
from the data dump.

Listing 5-2. Reading the Data in the Memory and Printing the First Few Observations

data = pd.read_csv('examples/No-show-Issue-Comma-300k.csv')
data.head()

Dr. Judy decided to use Table 5-2 as an aid to classify the features into the most 
common data types.

•	 Integer: Age, waiting time

•	 String: Gender, DayOfTheWeek, Status

•	 Datetime: AppointmentRegistration, ApointmentData

•	 Boolean: HiperTension, Handicap, Smokes, Scholarship, 
Tuberculosis, Sms_Reminder

She anticipated the records within the data dump to be in thousands as she noticed 
that the appointment calendars were usually full at the start of every month. She decided 
to validate that in Listing 5-3.

Listing 5-3. Finding Count of Number of Observations in the Dataset

print len(data)

Output

300000

Age Gender AppointmentRegistration AppointmentData

0 19 M

DayOfTheWeek Status Diabetes Alcoolism HiperTension Handcap Smokes Scholarship Tuberculosis Sms_Reminder AwaitingTime

1 24 F

2 4 F

3 5 M

4 38 M

2014-12-16T14:46:25Z

2015-08-18T07:01:26Z

2015-10-21T15:20:09Z

2014-02-17T12:53:46Z

2014-07-23T17:02:11Z

2015-01-
14T00:00:00Z

2015-08-
19T00:00:00Z

2014-02-
18T00:00:00Z

2014-08-
07T00:00:00Z

2015-10-
27T00:00:00Z

Wednesday

Wednesday

Tuesday

Tuesday

Thursday

Show-
Up

Show-
Up

Show-
Up

Show-
Up

Show-
Up

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

-29

-1

-1

-15

-6

Table 5-2. Print of Observations of the Dataset
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The output of Listing 5-3 was way above Dr. Judy’s expectations and reassured her 
of the fact that insights gained from the data will have a high confidence level. Next she 
planned on observing the number of distinct values within each of the features. She 
believed this would help her to drop the features that offered no variability (i.e., having 
same value for all observations) and to decide upon the types of plots these features could 
be represented in. For that purpose she wrote the code in Listing 5-4.

Listing 5-4. Print of the Frequency of Distinct Values in Each Feature Set

for column in list(data.columns):
    print "{0:25} {1}".format(column, data[column].nunique())

Output

Age                             109
Gender                          2
AppointmentRegistration         295425
ApointmentData                  534
DayOfTheWeek                    7
Status                          2
Diabetes                        2
Alcoolism                       2
HiperTension                    2
Handicap                        5
Smokes                          2
Scholarship                     2
Tuberculosis                    2
Sms_Reminder                    3
AwaitingTime                    213

Dr. Judy explained that {0:25} in the print statement meant that the feature in the 
first index (i.e., column) would be printed and 25 character spaces would be allocated 
to it. The output of Listing 5-4 implied that there are many variables within the dataset 
that have discrete values, examples of which include Gender, Status, DayOfTheWeek, 
and so on. This helped her choose the types of plots to represent each of these features. 
She decided to plot AwaitingTime and Age as histograms because these are numbers 
and continuous in nature. As for the features which are discrete in nature, she planned 
to represent them as a bar graph. She executed that graph by initializing the function in 
Listing 5-5, and later called it in Figure 5-1 to plot the figure.
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Listing 5-5. Initialize Function to Plot All Features Within the Dataset

def features_plots(discrete_vars):

    plt.figure(figsize=(15,24.5))

    for i, cv in enumerate(['Age', 'AwaitingTime']):
        plt.subplot(7, 2, i+1)
        plt.hist(data[cv], bins=len(data[cv].unique()))
        plt.title(cv)
        plt.ylabel('Frequency')

    for i, dv in enumerate(discrete_vars):
        plt.subplot(7, 2, i+3)
        data[dv].value_counts().plot(kind='bar', title=dv)
        plt.ylabel('Frequency')

Dr. Judy pointed to the fact that the method in Listing 5-5 takes as an input the names of 
features which are discrete in nature because those will be represented as bar graphs. Without 
wasting time she called the function to plot the feature representations in Listing 5-6.

Listing 5-6. Calling ‘features_plot’ method in Listing 5-5 to Plot the Feature 
Representation

discrete_vars = ['Gender', 'DayOfTheWeek', 'Status', 'Diabetes',
                     'Alcoolism', 'HiperTension', 'Handcap', 'Smokes',
                         'Scholarship', 'Tuberculosis', 'Sms_Reminder']

features_plots(discrete_vars)
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Figure 5-1. Plots of feature representations
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While looking at Figure 5-1, Dr. Judy noticed that none of the features has missing 
values. She made the following deductions about some of the features from the dataset:

•	 Age: Age lay in the range of -2 and 113. Age between 0 and 113 did 
make sense, but what surprised her was how it could be negative. 
It seemed to her that there was some noise in the dataset.

•	 Handicap: Instead of being Boolean, this feature had values in 
the range of 0 and 4.

•	 Sms_Reminder: Instead of being a Boolean entity, it had values 
in the range of 0 and 2. It seemed to her that Sms_Reminder 
represented the frequency of reminders sent to each and every 
patient.

•	 AwaitingTime: Dr. Judy was puzzled to see AwaitingTime in 
negative terms. By definition this feature represented the number 
of days from which the appointment was issued to the date for 
which the appointment was issued. She believed that positive 
numbers would have made more sense.

Findings from the deductions meant that Dr.Judy would have to clean data a bit  
(i.e., perform data wrangling) before pushing it into the analysis pipeline.

Performing Data Wrangling
She read somewhere that data wrangling is the process of mapping raw data into an 
organized form suitable for analyzing the data. Findings from Figure 5-1 depicted the 
presence of negative values within ‘Age,’ which didn’t make any intuitive sense to her, and 
thus she referred to these as noise. Hence she planned to start the treatment by counting 
the frequency of negative Age values. If the frequency of these observations were high she 
wouldn’t delete them as doing so would keep her from detecting the variations necessary 
for the prediction. To the contrary she planned to delete them if their frequency was 
negligible as deleting them wouldn’t have a major effect on the analysis. She started off by 
taking the frequency of negative Age values in Listing 5-7.

Listing 5-7. Counting Frequency of Negative Age Observations

data[data['Age'] < 0]['Age'].value_counts().sum()

Output

6

The output of Listing 5-7 indicated the negative Age observations to be negligible as 
compared to the total number of observations within the dataset. Hence Dr. Judy decided 
to remove these negative observations from the Age feature.

Listing 5-8. Removing Observations with Negative Age Values

data = data[data['Age'] >= 0]
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While looking at the deductions from Figure 5-1, Dr. Judy also noticed that the 
feature named ‘Handicap’ was an integer variable rather than a Boolean variable one. 
She recalled that the data definition for this feature set was missing from the data source 
and hence open to multiple interpretations. The only rationale she could think of for 
values lying within the range of 0 and 4 was that this might be a Likert scale question or a 
numeric entity representing the frequency of times a patient has been handicapped. As 
the interpretation of this feature was ambiguous to her she decided to drop this feature 
from the dataset.

Listing 5-9. Removing Variable Named ‘Handicap’ from the Dataset

del data['Handcap']

While looking at the deductions from Figure 5-1, Dr. Judy also recalled that values 
within AwaitingTime appeared to be negative, and hence it made sense to transform 
them into positive values.

Listing 5-10. Making Values Within AwaitingTime Positive

data['AwaitingTime'] = data['AwaitingTime'].apply(lambda x: abs(x))

The treatment of features on the basis of her deductions in Figure 5-1 was completed. 
However, Dr. Judy recalled reading that most machine learning algorithms work best with 
integer or floating point input rather than in string format. She knew that the categorical 
variables in the dataset didn’t comply with this condition and hence it was important for 
her to recode the string categorical features to their integer counterparts. Dr. Judy started 
off by recoding DayOfTheWeek by binding the mapping from string to integer.

Listing 5-11. Recode String Categorical Feature DayOfTheWeek to Integers

dow_mapping = {'Monday' : 0, 'Tuesday' : 1, 'Wednesday' : 2, 'Thursday' : 3, 
'Friday' : 4, 'Saturday' : 5, 'Sunday' : 6}
data['DayOfTheWeek'] = data['DayOfTheWeek'].map(dow_mapping)

Dr. Judy explained her recoding methodology as follows:

There exists methods for automatic recoding of categorical variables. 
These methods perform the recoding in an alphabetic order such that if 
categories for a feature are Male and Female, then it will assign a code of 
0 to Female and 1 to Male. DayOfTheWeek is an ordinal quantity; hence 
I decided to do the mapping manually. However, this is not the case in 
the Gender and Status features as they are nominal in nature. Hence, I 
will be using the predefined method to do the recoding automatically.
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Dr. Judy performed the recoding for ‘Gender’ and ‘Status’ in Listing 5-12.

Listing 5-12. Recode String Categorical Features to Integers

for field in ['Gender', 'Status']:
    data[field] = pd.Categorical.from_array(data[field]).codes

Once she had performed data wrangling on the original dataset, Dr. Judy was curious 
as to how their representations had changed. Hence she looked at Figure 5-2 to see their 
transformed feature representations.

Listing 5-13. Feature Representations Post Data Wrangling

discrete_vars = ['Gender', 'DayOfTheWeek', 'Status', 'Diabetes',
                     'Alcoolism', 'HiperTension', 'Smokes',
                         'Scholarship', 'Tuberculosis', 'Sms_Reminder']

features_plots(discrete_vars)
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Figure 5-2. Plots of feature representations post data wrangling
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Dr. Judy made sure to remove ‘Handicap’ from the list of discrete features in  
Listing 5-13. She pointed out that recoding assigned codes in the range of

0 to (number of unique observations within the feature - 1)

While looking at Figure 5-2, Dr. Judy noticed that AwaitingTime seemed to decay 
in an exponential fashion. As per her observation, majority of the patients have an age 
of 0 (i.e., infants whose age is in months). She also pointed out to the hikes at the ages 
of 19, 38, and 57. Other than this, another surprising fact was that one-third of patients 
were males, and that the same proportion of patients didn’t show up at the date and 
time of their appointments. This information gave her a clue as to why the clinic was 
seeing losses despite of an increase in the number of appointments. She also noticed that 
majority of the patients were sent at least one SMS reminder; however, two-thirds of the 
time no reminder was sent. The absence of appointment reminders, she believed might 
be the reason behind patients not showing up.

Once she understood the features within the dataset and after she had removed 
the ambiguities by performing data wrangling, Dr. Judy was interested in identifying 
relationships between different features within the dataset. She wanted to perform this 
multivariate analysis to gain an intuitive understanding of the types of patients who don’t 
show up on their appointment dates and time.

Performing Exploratory Data Analysis
Rather than starting off with the exploratory data analysis (EDA), Dr. Judy believed it best 
to see the data visually to identify if there were patterns to which she could redirect the 
model. Dr. Judy believed that as people got older, their need to see a doctor would also 
increase. The notion behind this was that as people age, diseases increase exponentially. 
Hence she wrote the code in Listing 5-14 to see if the relationship between these 
quantities is inversely proportional in reality or not.

Listing 5-14. Scatter Plot Between Age and AwaitingTime

plt.scatter(data['Age'], data['AwaitingTime'], s=0.5)
plt.title('Scatter plot of Age and Awaiting Time')
plt.xlabel('Age')
plt.ylabel('Awaiting Time')
plt.xlim(0, 120)
plt.ylim(0, 120)
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Dr. Judy wasn’t happy with the results as Figure 5-3 gave a highly dispersed plot, 
with no signs of correlation at the start and a bit of negative correlation after the age of 90. 
Visual representation showed the earlier established hypothesis to have failed. However, 
she decided to validate this using a statistical correlation technique as well in Listing 5-15.

Listing 5-15. Calculating Pearson Correlation Between Age and AwaitingTime

pd.set_option('display.width', 100)
pd.set_option('precision', 3)
correlations = data[['Age', 'AwaitingTime']].corr(method='pearson')
print(correlations)

Output

               Age             AwaitingTime
Age            1.00e+00        -4.18e-03
AwaitingTime   -4.18e-03       1.00e+00

The correlation between Age and AwaitingTime was approaching 0 which deferred 
to the hypothesis she had established earlier. She was now interested to see if the increase 
in SMS reminders increased the likelihood of a patient showing up or not. For that reason 
she wrote the code in Listing 5-16 to plot a stacked bar graph in Figure 5-4.

Listing 5-16. Effect on Status on the Basis of Number of SMS Reminders

data_dow_status = data.groupby(['Sms_Reminder', 'Status'])['Sms_Reminder'].
count().unstack('Status').fillna(0)
data_dow_status[[0, 1]].plot(kind='bar', stacked=True)
plt.title('Frequency of people showing up and not showing up by number of 
SMS reminders sent')
plt.xlabel('Number of SMS reminders')
plt.ylabel('Frequency')
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Figure 5-3. Scatter plot between Age and  AwaitingTime
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Looking at Figure 5-4 Dr. Judy noticed that the rate of change in the number of 
patients who showed up after one reminder relative to those who showed up when no 
reminder was sent was roughly 30% (i.e., (0.17 m – 0.13 m) / 0/13m), whereas the rate 
of change in the number of patients not showing up after one reminder relative to those 
who showed up when no reminder was sent was roughly 25% (i.e., (0.05 m – 0.04 m) / 
0/04m0. She thus concluded that SMS reminders do marginally increase the likelihood of 
a patient showing up on his/her appointment day.

Dr. Judy’s perspective was that the majority of the patients would show up in the 
middle of a week, whereas many of them changed their plans and would not show up for 
an appointment at the start or the end of the week. This she believed was due to the fact 
that the start and the end of the week are usually the busiest for businesses, while relief 
in work occurs during the middle of a week. She decided to validate her perspective in 
Listing 5-17.

Listing 5-17. Effect on Appointment Day of the Week on the Basis of Number of SMS 
Reminders

data_dow_status = data.groupby(['DayOfTheWeek', 'Status'])['DayOfTheWeek'].
count().unstack('Status').fillna(0)
data_dow_status[[0, 1]].plot(kind='bar', stacked=True)
plt.title('Frequency of people showing up and not showing up by Day of the 
week')
plt.xlabel('Day of the week')
plt.ylabel('Frequency')
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Dr. Judy pointed out that in Figure 5-5, 0 represents Monday whereas 6 represents 
Sunday, with rest of the days lying within in order. Close to no patients showed up on 
Saturdays, and the clinic was closed on Sundays. The rate of change of no-shows stayed 
pretty much the same for the remaining five days, whereas the distribution of show-
ups seemed to have followed a bell-shaped curve, with most patients showing up on 
Wednesdays.

Dr. Judy believed that people who are younger are more likely to be busy and to have 
a job. Because of that they might be short of time and highly likely to not show up at the 
time of their appointment. She initially thought of finding the measure of center (i.e., 
mean or median) to validate her hypothesis. However, she wasn’t sure which one of the 
center of measures she should go forward with (i.e., mean, median, or mode).

She recalled from Figure 5-2 that a huge chunk of observations in Age have a value of 
0. This she knew could turn out into a disadvantage while calculating the mean as then it 
will pull the mean toward the lower side. Hence she believed a better measure to be the 
median, which is unaffected by outliers. Thus she planned on plotting a box plot of Age 
grouped by Status.

Listing 5-18. Plotting Box Plot of Patients’ Age by Status

data.boxplot(column=['Age'], return_type='axes', by='Status')
plt.show()
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She was thrilled to see the results in Figure 5-6 as her hypothesis held true as the 
median age of people showing up (i.e., 40) turned out to be relatively greater than that 
of those not showing up (i.e., 32). She also pointed to the fact that the upper limit (i.e., 
quartile 3) of people showing up is 58, which is relatively higher than that of those of not 
showing up (i.e., 52).

Dr. Judy decided to analyze Age against Status for both genders separately. For that 
reason she wrote the code snippet to plot line graphs in Listing 5-19.

Listing 5-19. Plotting Line Plot of Age by Gender for Patients Status-Wise

plt.figure(figsize=(15,3.5))

for i, status in enumerate(['no show ups', 'show ups']):

    data_show = data[data['Status']==i]
    plt.subplot(1, 2, i+1)

    for gender in [0, 1]:
        data_gender = data_show[data_show['Gender']==gender]
        freq_age = data_gender['Age'].value_counts().sort_index()
        freq_age.plot()

    plt.title('Age wise frequency of patient %s for both genders'%status)
    plt.xlabel('Age')
    plt.ylabel('Frequency')
    plt.legend(['Female', 'Male'], loc='upper left')
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Age pattern for males seems to be similar for both statuses, contrary to that of 
females which varies across statuses. Females in the age range of 42 to 62 are likely to 
show up on the date and time of their appointment.

Dr. Judy believed that people having a long AwaitingTime (i.e., days to appointment) 
would have preferred to see another doctor rather than waiting so long. She believed that 
another reason for not showing up on the appointment date could be that if a disease 
is seasonal it is likely to be cured after some prevention techniques or home-based 
remedies. Hence, by the time their appointment date arrives, the patients decide not to 
consult the doctor. She decided to see if this was true from the data at hand.

Listing 5-20. Plotting Box Plot of AwaitingTime by Status

data.boxplot(column=['AwaitingTime'], return_type='axes', by='Status')
plt.show()
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After looking at Figure 5-8, Dr. Judy deduced that patients who have their 
AwaitingTime in the third quartile are relatively more likely to not to show up, which 
supported her earlier laid null hypothesis—with increasing waiting time the likelihood of 
patient not showing up also increases. She also pointed out that the median in both the 
status instances is close to zero.
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Dr. Judy was thrilled as exploratory data analysis provided her with many insights. 
Summing up, she observed that SMS reminders increased the likelihood of a patient 
showing up on time. She also noticed that younger patients more often did not show up 
at their appointment times whereas older patients were more disciplined and showed up 
on time. She also saw that people with long waiting times decided not to show up on their 
appointed date and times. Dr. Judy now had a fair idea that no-shows to appointment 
was the reason for losses, and she had gained insight into what leads people to exhibit 
this behavior. Now she was planning to move ahead and make a classification model to 
predict the likelihood of a patient to show up or not in the future. This was important 
because if she knew the total number of patients who would show up on a given day, 
week, or month, she could tune the resources likewise to save costs. However, before 
starting with this classification, she wondered whether she could extract more features 
out of the existing ones by means of features’ generation. She believed this would help 
her capture the variability and definite patterns within the dataset.

Features’ Generation
In machine learning, the greater the number of observations and feature sets within the 
dataset, the greater the likelihood that the model will capture the variability within it, to 
understand its true essence. Dr. Judy knew that increasing the number of observations 
was not an option; however, she could increase the feature sets within the dataset. Dr. 
Judy was clueless as to how she could extract more features from the existing features. 
After much thinking, she decided to break the features having dates into more granular 
date components. She wrote the code snippet in Listing 5-21 to apply her logic to features 
named AppointmentRegistration and AppointmentDate.

Listing 5-21. Breaking Date Features into Date Components

for col in ['AppointmentRegistration', 'ApointmentData']:
    for index, component in enumerate(['year', 'month', 'day']):
         data['%s_%s'%(col, component)] = data[col].apply(lambda x:  

int(x.split('T')[0].split('-')[index]))

Dr. Judy explained that the code snippet in Listing 5-21 broke AppointmentRegistration 
and AppointmentData features into their respective year, month, and day components. 
However, it didn’t break them into their time components because ApointmentData doesn’t 
have a time component within its string object, whereas AppointmentRegistration feature 
does have it. Hence she wrote the code in Listing 5-22 to break the AppointmentRegistration 
feature into its time component as well.

Listing 5-22. Breaking AppointmentRegistration into Time Components

for index, component in enumerate(['hour', 'min', 'sec']):
     data['%s_%s'%('AppointmentRegistration', component)] = 

data['AppointmentRegistration'].apply(
       lambda x: int(x.split('T')[1][:-1].split(':')[index]))
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Next she wrote the code in Listing 5-23 to witness the step of features’ generation.

Listing 5-23. Printing First Few Observations of the Features Extracted Dataset

data.head()

Table 5-3. Print of Observations of the Dataset

Age Gender AppointmentRegistration AppointmentData

0 19 M

DayOfTheWeek Status Diabetes Alcoolism HiperTension Handcap Smokes Scholarship Tuberculosis Sms_Reminder AwaitingTime

1 24 F

2 4 F

3 5 M

4 38 M

2014-12-16T14:46:25Z

2015-08-18T07:01:26Z

2015-10-21T15:20:09Z

2014-02-17T12:53:46Z

2014-07-23T17:02:11Z

2015-01-
14T00:00:00Z

2015-08-
19T00:00:00Z

2014-02-
18T00:00:00Z

2014-08-
07T00:00:00Z

2015-10-
27T00:00:00Z

Wednesday

Wednesday

Tuesday

Tuesday

Thursday

Show-
Up

Show-
Up

Show-
Up

Show-
Up

Show-
Up

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

-29

-1

-1

-15

-6

Smokes

0 29 2014 12 16

18

17

23

21

8

2

7

10

2014

2014

2015

2015

1

1

6

15

...

...

...

...

...

0

0

0

0

... Waiting Time AppointmentRegistration_year AppointmentRegistration_month AppointmentRegistration_day

14 14 46 25

26

46

11

9

1

53

2

20

19

18

7

7

12

17

1527

8

1

2

8

10

AppointmentRegistration_hour AppointmentRegistration_min AppointmentRegistration_secAppointmentData_month AppointmentData_day
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Looking at Table 5-3 Dr. Judy was thrilled to see the features’ generation come 
true. The evidence was the columns representing the year, month, day, hour, minute, 
and second components of AppointmentData and AppointmentRegistration. Dr. Judy 
was well aware that her methodology of increasing the feature sets wasn’t the de facto 
technique as several other techniques achieving the same objective exist. She had 
some ideas about extracting more features; however, she went with the simplest one to 
save time. But she is open to collaboration if someone can help her extract other date 
components from the date features or help her transform the features into their Boolean 
counterparts. Hence she listed the exercises that follow.

EXERCISES

1. extract more features from the date features (week of the 
month, week of the year, day half, weekend, weekday, etc.).

2. include a Boolean transformation of the features in your dataset 
like that done in Chapter 4. This will increase the feature set 
which can become beneficial while training the model.

She was hopeful that this huge pool of features would now enable the classification 
model to better understand the dynamics of the underlying data. She was aware of what 
classification was, but her curiousity to learn more made her come up with the following 
material on the topic.

Classification
Classification helps us decide which of the given classes a new observation will fall into. 
Classification comes under supervised learning where the model can only be trained 
once a membership labeled data is provided as an input. These membership variables are 
usually categorical variables which can be nominal as well as Boolean in nature.

As an example, consider a person applying for a mortgage at one of the premier banks. 
The bank will access his application and would like to know if that person will be subject to 
default in the future or not. If not, the bank will approve his application for the mortgage. 
This presents a prime application for classification where the bank uses past data to train 
the model. It will then take into account that person’s age, gender, salary index, lifestyle 
index, and credit score to predict whether or not he will default in the future. Here the 
membership variable we are trying to predict is “default,” and it is categorical in nature.

The following methods can be used to evaluate a classification model:

•	 Accuracy: Classifier and predictor accuracy

•	 Speed: Time to train and predict from the model

•	 Robustness: Handling missing values and noise

•	 Scalability: Efficiency in disk-related databases

•	 Interpretability: Predictions made by the model make 
intuitive sense

http://dx.doi.org/10.1007/978-1-4842-2823-4_4
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Model Evaluation Techniques
Python allows the provision of measuring classification performance with the aid of 
several score, loss, and utility functions. These metrics require probability estimates of 
confidence values, positive class, binary decision values or value within the sample_
weight parameter (i.e., weighted contribution of each sample to the overall score). These 
can be divided in several ways.

Confusion Matrix
Confusion matrix counts the true negatives, false positives, false negatives, and true 
positives.

•	 True negatives is the frequency of instances in which the model 
correctly predicted 0 as 0.

•	 False negatives is the frequency of instances in which the model 
predicted 1 as 0.

•	 True positives is the frequency of instances in which the model 
correctly predicted 1 as 1.

•	 False positives is the frequency of instances in which the model 
predicted 0 as 1.

Figure 5-9. Confusion matrix along with the respective formulas

While doing research Dr. Judy discovered a simplified version of the Confusion 
matrix which shows the model evaluation as a visual representation.
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Binary Classification: Receiver Operating Characteristic
A good way to understand the mechanics behind ROC (Receiver Operating 
Characteristic) curves is by means of a Confusion matrix. ROC curves visually plot the 
performance of a binary classifier as the discrimination threshold is varied. Keep in mind 
the following terms:

•	 True Positive Rate (TPR): that is, the sensitivity, recall, or 
probability of detection

•	 False Positive Rate (FPR): that is, 1 - specificity, true negative 
rate, or probability of false alarm

Consider, for example, the same dataset on which the model will be trained to 
predict the people who are highly subject to default in the future. We split the data into 
70/30, which means that the model will be trained on 70% of the observations and 
tested on 30% of the observations. After having used the model to predict on 30% of the 
observations we ended up with the chart in Table 5-4.

TPR in this case will be 19/30 ~ 63%. Whereas, FPR in this case will be 36/70 ~ 51%

Table 5-4. Frequency of Defaults from Actual Data and the Predicted One

Will default Will not default

Actual 30 70

Correctly predicted 19 36

Se

0
0 1 - Sp

Good
diagnostic test

diagnostic test

diagnostic benefit

Medium

Test without

Figure 5-10. ROC curves and relative comparison among each of them
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The ROC curve plots the fraction of true positives out of the positives (i.e., TPR) 
versus the fraction of false positives out of the negatives (i.e., FPR). Or, in other terms, 
we can say a ROC curve is the sensitivity as a function of fallout. It plots a cumulative 
distribution function that helps select possibly optimal models.

Accuracy on the curve is represented by Area under the Curve (AUC). Values range 
between 0.0 and 1.0.

Dr. Judy decided to define a method that would take the actual data and predict the 
goodness of the model. For that reason she wrote the code snippet in Listing 5-24.

Listing 5-24. Declaring a Function to Detect Model’s Accuracy by Applying Methods 
Learned Previously

def model_performance(model_name, X_train, y_train, y_test, Y_pred):

    print 'Model name: %s'%model_name
     print 'Test accuracy (Accuracy Score): %f'%metrics.accuracy_ 

score(y_test, Y_pred)
     print 'Test accuracy (ROC AUC Score): %f'%metrics.roc_auc_ 

score(y_test, Y_pred)
    print 'Train accuracy: %f'%clf.score(X_train, y_train)

    fpr, tpr, thresholds = metrics.precision_recall_curve(y_test, Y_pred)
    print 'Area Under the Precision-Recall Curve: %f'%metrics.auc(fpr, tpr)

     false_positive_rate, true_positive_rate, thresholds = metrics.roc_
curve(y_test, Y_pred)

    roc_auc = metrics.auc(false_positive_rate, true_positive_rate)

    plt.title('Receiver Operating Characteristic')
    plt.plot(false_positive_rate, true_positive_rate, 'b',
    label='AUC = %0.2f'% roc_auc)
    plt.legend(loc='lower right')
    plt.plot([0,1],[0,1],'r--')
    plt.xlim([-0.1,1.2])
    plt.ylim([-0.1,1.2])
    plt.ylabel('True Positive Rate')
    plt.xlabel('False Positive Rate')
    plt.show()

In order to cross-validate the model, Dr. Judy knew that she would have to split the 
data into training and testing data.
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Ensuring Cross-Validation by Splitting the Dataset
Dr. Judy planned to train the model from the training dataset and then use that model to 
predict the values in the test dataset. She planned on doing so to determine the goodness 
of the model. She wrote the code for the training/testing split in Listing 5-25.

Listing 5-25. Declaring Features for Model Training and Splitting Data into Training and 
Testing Sets

features_of_choice = [u'Age', u'Gender', 'DayOfTheWeek', 'Diabetes', 
'Alcoolism', 'HiperTension',
                         'Smokes', 'Scholarship', 'Tuberculosis',  

'Sms_Reminder',
                         'AwaitingTime', 'AppointmentRegistration_year', 

'AppointmentRegistration_month',
                         'AppointmentRegistration_day', 'ApointmentData_

year', 'ApointmentData_month',
                         'ApointmentData_day', 'AppointmentRegistration_

hour', 'AppointmentRegistration_min',
                        'AppointmentRegistration_sec']

x = np.array(data[features_of_choice])
y = np.array(data['Status'])

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, 
random_state=1)

Dr. Judy explained her logic in Listing 5-25. She wrote the code to take a 70-30 split 
whereby 70% of the observations fall into training and 30% of observations fall into the 
test dataset.

Before applying the classification model she thought it better to recall the reason 
for doing classification in the first place. With the aid of the exploratory analysis she had 
figured out the reason for recurring losses. Then she decided to go a further mile to find a 
remedy for this problem. She decided to use classification as an aid to predict if a patient 
will show up on his/her appointment day or not. This would enable management to do 
either of the following:

•	 Scale down the human resources (i.e., staff and doctors) to cut 
costs

•	 Determine the reasons for patients not showing up and find fixes 
for that problem

While looking at classification, the only visual representation Dr. Judy could think of 
was a tree. As in the case of Status, the tree will have one parent node and two child nodes 
(i.e., show-ups and no-shows). While searching for classification models, she found a 
visual representation, Decision Tree Classification.
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Decision Tree Classification
Decision trees form a tree in a hierarchical fashion with each node having a decision 
boundary to proceed downward. The tree stops branching out at the level where there 
are no more splits possible. Interior nodes represent input variables having edges to 
each of the children. Children split the values from the input variable. They do that by 
partitioning the data at each level with nodes branching out to children. This behavior is 
known as recursive partitioning. Decision trees are easy to interpret and time efficient, 
and hence they can work well with large datasets. Decision trees can also handle both 
numerical and categorical data, that is, regression in case of numerical and classification 
in case of categorical data. However, the accuracy of decision trees is not as good as that 
produced by other machine learning classification algorithms.

Moreover, decision trees generalize highly to the training dataset and thus are 
highly susceptible to overfitting. A decision tree aims to partition the data so that each 
of the partitioned instances has similar/homogeneous values. ID3 algorithms are 
used to calculate the homogeneity of a sample, and if it is completely homogeneous it 
translates into an entropy of 0 and into a value of 1 or vice versa. A decision tree is a form 
of a parametric supervised learning method, and by parametric we mean that it can be 
applied to any data regardless of its underlying distribution.

Dr. Judy wrote the code in Listing 5-26 to train the decision tree classification model 
on a training dataset. She used the test-train split variables (i.e., y_test, y_train, x_test, 
x_train) from Listing 5-25.

Listing 5-26. Training the Model by Applying Decision Tree Classifier

clf = DecisionTreeClassifier()
clf.fit(x_train, y_train)

Output

DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,
max_features=None, max_leaf_nodes=None, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
presort=False, random_state=None, splitter='best')

Dr. Judy pointed out that because no configuration parameters were passed to the 
decision tree classifier, it took the default values of configuration parameters. The next 
step was to apply the trained model on a testing dataset to find the predicted labels of 
Status. She then aimed to compare the predicted labels to the original label of Status to 
calculate accuracy of the model.
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Listing 5-27. Finding Accuracy of Decision Tree Classifier

y_pred = clf.predict(x_test)
model_performance('Decision tree classifier', x_train, y_train, y_test, 
y_pred)

Output

Model name: Decision tree classifier
Test accuracy (Accuracy Score):           0.589040
Test accuracy (ROC AUC Score):            0.523605
Train accuracy:                           0.999952
Area Under the Precision-Recall Curve:    0.112530

Dr. Judy explained that the model was trained on x_train, and y_train. The trained 
model (i.e., clf) was then used to predict the labels of the test dataset (i.e., y_pred). Her 
output of Listing 5-27 presented the perfect representation of overfitting as the train 
accuracy was approaching 1. Test data accuracy came out to be subpar as the value was 0.5, 
which was distant from 1 (i.e., the perfect score). Dr. Judy was disappointed by the results 
but didn’t lose hope as she had many more classification techniques to experiment with.

Dr. Judy was curious to know if techniques exist to enable non-linear learning for 
classification models. The search for such a technique brought her to the concept of 
kernel approximation.

Kernel Approximation
Kernel approximation performs non-linear transformations of the input to make it 
suitable for linear classification and other algorithms. This is better than kernel trick as 
it can significantly reduce the cost of learning with very large datasets. The combination 
of kernel map approximations with SGD classifier can make non-linear learning on large 
datasets possible.
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Figure 5-11. ROC curve for decision tree model
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SGD Classifier
In SGD classifier, the gradient of the loss is updated one sample at a time, and the model 
is updated with respect to the learning rate. In order for the model to give the best results 
on default learning rate, the data should have zero mean and unit variance.

This algorithm works best with data which is represented as sparse arrays of floating 
point values for features within the dataset. Loss parameter controls the model it fits, 
which is Linear Support Vector Machine (SVM) by default.

Without waiting any longer, Dr. Judy wrote the code snippet in Listing 5-28 to train 
kernel approximation along with the SGD classifier model on the training dataset.

Listing 5-28. Training the Model by Applying Kernel Approximation with SGD Classifier

rbf_feature = kernel_approximation.RBFSampler(gamma=1, random_state=1)
X_train = rbf_feature.fit_transform(x_train)

clf = SGDClassifier()
clf.fit(X_train, y_train)

Output

SGDClassifier(alpha=0.0001, average=False, class_weight=None, epsilon=0.1,
eta0=0.0, fit_intercept=True, l1_ratio=0.15,
learning_rate='optimal', loss='hinge', n_iter=5, n_jobs=1,
penalty='l2', power_t=0.5, random_state=None, shuffle=True,
verbose=0, warm_start=False)

2

1

0

0 1 2 3

-1

-2

-2 -1
sepal length [standardized]

pe
ta

l l
en

gt
h 

[s
ta

nd
ar

di
ze

d]

SGD - Stochastic Gradient Descent

-1
1

Figure 5-12. SGD classification results on Iris dataset
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Dr. Judy fitted the model twice in Listing 5-28. The reason behind this was that at first 
she sampled from the data by fitting and transforming by means of the RBF Sampler. Per 
Dr. Judy, a RBF Sampler approximates the feature map of a RBF kernel prior to applying a 
linear algorithm. She also pointed out that fit within fit_tranform performed the Monte 
Carlo sampling whereas the transform term performed the mapping of the data.

She then wrote the code in Listing 5-29 to apply the trained model to the testing 
dataset and then used it to find the predicted labels along with the model’s accuracy.

Listing 5-29. Finding Accuracy of Kernel Approximation with SGD Classifier

X_test = rbf_feature.fit_transform(x_test)
Y_pred = clf.predict(X_test)
model_performance('Kernel approximation', X_train, y_train, y_test, Y_pred)

Output

Model name: Kernel approximation
Test accuracy (Accuracy Score):           0.695619
Test accuracy (ROC AUC Score):            0.500000
Train accuracy:                           0.698398
Area Under the Precision-Recall Curve:    0.152191
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Figure 5-13. ROC curve for kernel approximation with SGD classifier

Training accuracy dropped relative to the decision tree classification, which means 
that the model didn’t highly generalize on the training dataset, a good notion indeed. 
Also, while looking at Figure 5-13, Dr. Judy noticed that test data accuracy showed a 
massive improvement by shooting up from 0.59 to 0.7. Despite showing improvements in 
the above-mentioned aspects, the value of AUC for ROC dropped down, which surprised 
her a lot. After searching online for hours she remained clueless. Hence she decided to 
meet her friend Zoe and ask for her feedback. Once Zoe heard the problem, she was able 
to provide the following explanation:
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Well the accuracy only tends to measure performance of the algorithm in 
detecting the true positives. Where it falls short is to take into account the 
False Positives and False Negatives. These False levels brought down the 
AUC down in spite of a higher accuracy.

Zoe’s help enabled Dr. Judy to see clearly through the confusion. However, she 
wasn’t yet satisfied with the accuracy of the models she had explored so far. She was 
wondering whether techniques exist that can enable combining the power of more 
than one model to build a model that can do predictions with top-notch accuracy. After 
a thorough search, Dr. Judy found out that “ensemble” is the term that describes the 
representation she desired. She also discovered that ensemble techniques are subdivided 
into two types (i.e., Boosting and Bagging), which she believed were important to 
understand before using them to train the model.

Ensemble Methods
An ensemble method combines predictions from multiple machine learning algorithms, 
which result in relatively more accurate predictions than an individual model could 
have captured. Ensemble methods are usually divided into two variants (Bagging and 
Boosting).

Bagging
Bagging, also known as a bootstrap method, optimizes on minimizing the variance. It 
does that by generating additional data for the training dataset using combinations to 
produce multisets of same size as that of the original data. The application of Bagging is 
ideal when the model overfits and you tend to go to higher variance. This can be taken 
care of by taking many resamples, each overfitting, and averaging them out together. This 
in turn cancels some of the variance.
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New
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Combined
Classifiers

Prediction
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Algorithm

Learning
Algorithm

Test
Sample 2

Training
Examples

Test
Sample 3

Figure 5-14. Basic work flow of Bagging algorithms
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Decision trees are sensitive to specific data on which they are trained on. If training 
data is changed, the resulting decision tree can be quite different and can yield different 
predictions. A decision tree being a high-variance machine learning algorithm has the 
application of Bagging by means of the bootstrap procedure.

Consider a dataset that has 50 features and 3,000 observations. Bagging might create 
500 trees with 500 random observations for 20 features in each tree. Finally it will average 
out the predictions for all of those 500 tree models to get the final prediction.

Boosting
Boosting defines an objective function to measure the performance of a model given 
a certain set of parameters. The objective function contains two parts: regularization 
and training loss, both of which add to one another. The training loss measures how 
predictive our model is on the training data. The most commonly used training loss 
function includes mean squared error and logistic regression. The regularization term 
controls the complexity of the model, which helps avoid overfitting. Boosting trees use 
tree ensembles because they sum together the prediction of multiple trees.

D1 D2

D3

Box 2

Box 1 Box 3

Box 4

Figure 5-15. Basic work flow of Boosting algorithms

Dr. Judy decided to put Bagging into the application by applying the most sought 
Bagging technique (i.e., random forest classification).

Random Forest Classification
Random forest classification is a type of Bagging, and it is one of the most powerful 
machine learning algorithms available currently. In decision tree classification, different 
subtrees can have a lot of structural similarities which can result in prediction outputs 
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that are strongly correlated to each other. The random forest classifier reduces this 
correlation among the subtrees by limiting the features at each split point. So, instead of 
choosing a variable from all variables available, random forest searches for the variable 
that will minimize the error from a limited random sample of features. For classification, 
the number of variables at each split can be defined as follows:

•	 Symbol: m

•	 Formula: p

•	 Where,

a. ‘m’ is the optimal number of variables at each split

b. ‘p’ is the number of total variables in the dataset

Instance
Random Forest

Tree-1

Class-A Class-B

Majority-Voting

Final-Class

Class-B

Tree-2

...

Tree-n

Figure 5-16. Illustration of random forest classifier

Random forest classifiers are fast and can work with data which is unbalanced or has 
missing values. She wrote the code in Listing 5-30 to apply this ensemble technique to the 
application.

Listing 5-30. Training RandomForest Classifier on Training Dataset

clf = RandomForestClassifier()
clf.fit(x_train, y_train)

Output

RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_impurity_split=1e-07, min_samples_leaf=1,
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min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=10, n_jobs=1, oob_score=False, random_state=None,
verbose=0, warm_start=False)

Dr. Judy applied the random forest classifier with the default parameters 
configuration. She then wrote the code snippet in Listing 5-31 to evaluate the goodness of 
the random forest classifier model.

Listing 5-31. Finding Accuracy of the Random Forest Classifier Model

y_pred = clf.predict(x_test)
model_performance('Random Forest', x_train, y_train, y_test, y_pred)

Output

Model name: Random Forest
Test accuracy (Accuracy Score):           0.640874
Test accuracy (ROC AUC Score):            0.534295
Train accuracy:                           0.990071
Area Under the Precision-Recall Curve:    0.132014
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Figure 5-17. ROC curve for random forest classifier

Train accuracy resembled that of the decision tree classifier. It appeared that both of 
the tree classifier techniques overfitted the model. However, contrary to the decision tree 
classifier, test accuracy of the random forest classifier increased considerably. However, 
the test level accuracy was nowhere close to that gained from the SGD classifier with 
kernel approximation (i.e., 0.7 vs. 0.64).

Having applied the random forest classifier, Dr. Judy was interested to see if the 
boosting ensemble would yield a strong model or not. For that purpose she planned to 
apply gradient boosting to the train-test split obtained from Listing 5-24.
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Gradient Boosting
In Boosting, the selection of samples is done by giving more and more weight to hard-to-
classify observations. Gradient boosting classification produces a prediction model in the 
form of an ensemble of weak predictive models, usually decision trees. It generalizes the 
model by optimizing for the arbitrary differentiable loss function. At each stage, regression 
trees fit on the negative gradient of binomial or multinomial deviance loss function.

In simple terminology, the gradient boosting classifier does the following:

 1. Gradient boosting builds an ensemble of trees one by one.

 2. Predictions of all individual trees are summed.

 3. Discrepancy between target function and current ensemble 
prediction (i.e., residual) is reconstructed.

 4. The next tree in the ensemble should complement existing 
trees and minimize the residual of the ensemble.

Dr. Judy was optimistic that gradient boosting classifiers would yield the best results as 
they assign more weight to hard-to-classify samples, which will make the ensemble exert 
more efforts to classify these high-weight samples. For that purpose she wrote the code 
snippet in Listing 5-32 to train the model and then predict labels for the testing dataset.

Listing 5-32. Training the Model by Applying Gradient Boosting Classifier and Predicting 
Status Labels

clf = GradientBoostingClassifier(random_state=10, learning_rate=0.1,  
n_estimators=200, max_depth=5, max_features=10)
clf.fit(x_train, y_train)
y_pred = clf.predict(x_test)

This time around, Dr. Judy passed in some parameters while initializing the model. 
She decided to go with a learning rate of 0.1, which is not too small and not too large. 
Other than that she decided on maximum iterations of 200 and a tree with a maximum 
depth of 5, and she limited the model to train itself from a maximum of ten features. Dr. 
Judy wrote the code snippet in Listing 5-33 to evaluate the model for goodness. For that 
purpose she passed the train, test, and predicted values as parameters to the ‘model 
performance’ method earlier defined in Listing 5-24.

Listing 5-33. Finding Accuracy of Gradient Boosting Classifier

model_performance('Gradient Boosting', x_train, y_train, y_test, y_pred)

Output

Model name: Gradient Boosting
Test accuracy (Accuracy Score):           0.700408
Test accuracy (ROC AUC Score):            0.514929
Train accuracy:                           0.707403
Area Under the Precision-Recall Curve:    0.153744
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Dr. Judy believed that the model did a fair job of avoiding overfitting. Accuracy 
improved relative to the earlier applied models, with a ROC score rising over that of the 
kernel approximation using the SGD classifier. However, the ROC score was still lower 
than what came up from the decision tree classifier model.

While doing research, Dr. Judy had discovered that gradient boosting classification 
models also output the importance score the model gave to each feature set while 
training the model. She was curious to find which features outperformed others while 
training the model. For that purpose she wrote the code in Listing 5-34 to see features’ 
importance scores.

Listing 5-34. Printing Features’ Weight as Assigned by Gradient Boosting Classifier

for feature, score in zip(features_of_choice, list(clf.feature_importances_)):
        print '%s\t%f'%(feature, score)

Output

Age                                     0.143221
Gender                                  0.009629
DayOfTheWeek                            0.053643
Diabetes                                0.005889
Alcoolism                               0.010774
HiperTension                            0.006360
Smokes                                  0.011096
Scholarship                             0.010460
Tuberculosis                            0.003295
Sms_Reminder                            0.019245
AwaitingTime                            0.128393
AppointmentRegistration_year            0.023332
AppointmentRegistration_month           0.045764
AppointmentRegistration_day             0.077271
AppointmentData_year                    0.019696
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Figure 5-18. ROC curve for gradient boosting classifier
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AppointmentData_month                   0.066774
AppointmentData_day                     0.119192
AppointmentRegistration_hour            0.066528
AppointmentRegistration_min             0.091829
AppointmentRegistration_sec             0.087611

Features named Age, AwaitingTime, and AppointmentData_day were assigned the 
most weight by the gradient boosting classifier. Dr. Judy was thrilled to see that the model 
was in line with her analogy about Age and AwaitingTime while doing exploratory data 
analysis. Features named Gender, HiperTension, Diabetes, and Tuberculosis were given 
the least weight by the gradient boosting classification model.

Dr. Judy had had a productive data analysis and classification sprint. However, as 
the meeting was scheduled in the next half hour she couldn’t proceed further, and had to 
present whatever findings she had gained so far. She couldn’t add more to her findings 
unless any one of you can try some other classification alternatives for her. She had some 
alternatives in mind which she diligently added in the Exercises.

EXERCISES

1. repeat gradient boosting classification but this time only 
consider the features it deemed important. Did aUC and roC 
improve?

2. apply grid search (check Chapter 4 for reference) to gradient 
boosting to fine-tune the parameters of learning rate,  
max_depth, etc.

3. Transform the data using pCa (check Chapter 4 for reference), 
which we used in the last chapter, and then apply all the models 
we discussed to see if we achieve improvement.

4. recently a new type of boosting, Xgboost, has been popular 
among data scientists. apply that to our dataset, optimize using 
grid search, and see if it performs relatively better than gradient 
boosting.

Dr. Judy was curious to know if there are other real-world applications to 
classification. For that purpose she checked the Internet and compiled some of the most 
compelling applications of classification to date.

Applications of Classification
Several fields of study have numerous applications for classification.

http://dx.doi.org/10.1007/978-1-4842-2823-4_4
http://dx.doi.org/10.1007/978-1-4842-2823-4_4
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Image Classification
Deep learning has wide applications in predicting the objects represented within images. 
This helps in image clustering within search engines and recommendation engines in 
applications like Instagram.

Music Classification
Music applications like Pandora perform classification algorithms on music to 
recommend one that matches your preferences. The beauty of it is that you don’t have to 
explicitly tell Pandora your preference as it will learn on its own.

E-mail Spam Filtering
E-mail services such as Gmail, Outlook, Ymail, and so on have deployed algorithms to 
classify spam e-mails compared to legitimate e-mails. The verdict then decides which 
e-mails to dump into the Spam folder.

Insurance
Insurance companies receive a huge amount of insurance claims regarding damages. 
Insurance companies thus have to invest a lot of time and human resources to investigate 
the matter and come up with the final verdict. The final verdict is right in many of the 
cases but wrong in some of the cases. Hence, recently efforts have been made to deploy 
classification models in insurance companies to discriminate fraud claim applications 
from the legitimate ones.

Dr. Judy summed up her analysis by recalling the initially laid objectives which were 
to determine reasons for recurring losses and methods to detect the occurrence of losses 
in the future. She started off by performing univariate and multivariate analysis of the 
data to determine the areas of data treatment. The exploratory analysis also enabled her 
to see that the losses were apparently a result of roughly 33% of patients who did not show 
up on their appointment day and time. After performing data wrangling, she thought it 
better to generate more features from the existing ones to make it easy for the model to 
capture the true essence of data.

She then reviewed multiple classification model evaluation techniques and split 
the data into train-test splits to enable evaluation of the models. Dr. Judy started off with 
decision tree classifiers which showed overfitting and high test error. However, after 
applying a handful of classification techniques she decided on the gradient boosting 
classification model, which yielded relatively better accuracy. By means of the gradient 
boosting model she now had the power to predict in real time if a patient who had 
booked an appointment would or would not show up on the day of his/her appointment. 
She knew that she had achieved a major milestone and was now looking forward to the 
board meeting.
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APPENDIX A

Chart types and when  
to use them

Pie chart
Figure illustration of pie chart
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38.3 %

4.5 %
2.3 %

18.3 %

Browser Usage for April 2012

Firefox
Internet Explorer

Chrome
Safari
Opera

Pie chart is best to use when trying to compare parts of a whole. If is suitable for 
analyzing categorical variables.
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Bar graph
Figure illustration of a bar graph

Rabbit
0

1

2

3

4

5

nu
m

be
r o

f p
eo

pl
e

6

7

8

9

10

11
What kind of pet do you own?

Dog Cat Goldfish Hamster

Bar graph is used to compare things between different groups or track changes over time 
(i.e. when changes are large). Bar graph is suitable for categorical and interval variables.

Histogram
Figure illustration of a histogram
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Histogram is suitable for continuous variables. It is used to plot frequency 
distributions with or without classes. Changing the class intervals will change the 
underlying distribution.
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Stem and Leaf plot
Figure illustration of a Stem and Leaf plot
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Stem and Leaf plot is suitable for discrete interval variables, not that much in 
frequency. In other words Stem and Leaf plot can be inferred to as the transpose of a 
histogram. Contrary to histogram, we can reconstruct the original data from a Stem and 
Leaf plot.

Box plot
Figure illustration of a Box plot

Minimum
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(Q1)

1.5 IQR 1.5 IQRIQR

Data Range

Outliers
Outliers

Median
(Q2)
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(Q2)

Maximum
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Box plot is a transformed version of histogram which can help understand the 
median, variance and skewness of the data distribution. Line in the center is represented 
by the median, and lines on both ends are referred to as whiskers. Edges of the whiskers 
represent the first and second quartile with the difference between those referred to as an 
Inter Quartile Range. Points lying outside this range are considered to as outliers.
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��������� A
Autocorrelation

ACF, 113
Durbin Watson (see Durbin Watson 

statistic)
PACF, 114

Autocorrelation function (ACF), 113
Auto-regressive integrated moving 

averages (ARIMA)
ARMA, 119–120
combined model, 122
linear function, 120
moving average, 121

Auto-regressive moving averages  
(ARMA), 119

��������� B
Bayesian Gaussian mixture  

model, 156–158

��������� C
Center of measure

center statistics, 23–24
mean

arithmetic, 21
geometric, 21

median, 22
mode, 22
normal distribution, 25–26
outliers (see Outliers)
skewness, 26
standard deviation, 23
variance, 22–23

Central limit theorem, 40

Classification model
confusion matrix, 181
cross-validation, 184
dataset, 162, 164, 166
decision trees, 185–186
e-mail spam filtering, 196
feature representations, 166–168
features, 178, 180
image classification, 196
insurance, 196
music, 196
ROC, 182

Clustering
Bayesian Gaussian mixture  

(see Bayesian Gaussian  
mixture model)

BIC score, 141
dataset, 129–132
data transformation, 135–137
demographic-based customer 

segmentation, 159
Elbow method, 138
Gaussian mixture (see Gaussian 

mixture models)
K means, 137–138, 143–144
PCA (see Principle component 

analysis (PCA))
requirements, 134
search engines, 159
Silhouette score, 142–143
supervised vs. unsupervised  

learning, 133
techniques, 134
variance, 139–140

Concrete comprehensive  
strength, 45–47

Continuous/quantitative variables, 6

Index
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Correlation
dataset, 63
Kendall rank, 34
negative, 61
pair-wise Pearson, 61
Pearson R, 34
positive, 61
response and exploratory variables, 

58, 60, 62
Spearman rank, 35–36

��������� D
Data transformation

data frame transformation, 135
matrix, 136–137

Data wrangling, 168–169, 171–172
Demographic variable, 8
Dependent and independent  

variables, 8–9
Dickey-Fuller test, 100–101
Discrete variables, 8
Durbin Watson statistic, 114–115

��������� E
ElasticNet, 81–82
Elbow method, 138
Exploratory data analysis (EDA), 99

continuous/quantitative (see 
Continuous/quantitative 
variables)

correlation, 173
dataset, 4–5
discrete variables, 7
multivariate (see Multivariate  

analysis)
status, 175, 177
time series components, 18–19
univariate (see Univariate analysis)
variables

demographic, 8
dependent and independent, 8–9
discrete, 7
lurking, 8

��������� F
Forecasts

linear regression model, 126
sales, 127

time series, 123–125
weather, 127

��������� G
Gaussian mixture models

covariance, 152–153
function, 152
keywords, 155
K means, 151
objects, 154

Gradient boosting regression
multiple, 85
non-linear flexible regression 

technique, 82
single, 83–84

Grid search, 75

��������� H, I, J
Hypothesis testing

null, 37
t distributions and  

sample size, 38–39
t statistics, 37

��������� K
Kernel approximation

bagging, 189
boosting, 190
ensemble method, 189
SGD classifier, 187–188

��������� L
Lasso regression

definition, 79
multiple, 80

Linear regression
multiple, 73–74
single, 71–72

Lurking variable, 8

��������� M
Mean absolute error (MAE), 68
Mean squared error (MSE), 68
Multicollinearity and  

singularity, 55–56
Multivariate analysis, 14–17



■ INDEX

203

��������� N
Normal distribution, 25–26

��������� O
Outliers

center of measures, 31
interval of values, 28
trip duration, 29, 30, 32
values, 30

Overfitting. See Underfitting

��������� P, Q
Partial autocorrelation function (PACF), 114
Principle component analysis (PCA)

data frame, 146
keywords, 147–151
orthogonal transformation, 144
two-dimensional space, 145

��������� R
Random forest classification

accuracy, 192
boosting, 193–195
definition, 191

Receiver operating characteristic (ROC)
FPR, 182
TPR, 182

Regression
agriculture, 91
call center, 91
cases-to-independent variables  

(IVs), 55
concrete compressive strength, 45, 47
correlation coefficients (see 

Correlation)
dataset, 57
extrapolation, 48
insurance companies, 91
interpolation, 48
least squares, 50
linear, 49
metrics

explained variance score, 68
MAE, 68
MSE, 68–69
residual, 69
residual plot, 70

RSS, 70
R2, 69

missing data, 55
multicollinearity and singularity, 55–56
multiple, 51
name mapping, 57
polynomial, 53–54
predict bonds’ value, 90
predicting salary, 91
predicting sales, 89–90
rate of inflation, 90–91
real estate industry, 92–94
stepwise, 52–53

Residual sum of squares (RSS), 70
Ridge regression

alpha values, 77
linear least squares, 75
multicollinearity, 75
multiple, 76
representation, 76

��������� S
Skewness, 26
Sklearn.metrics, 67
Statistics and probability

actuarial science, 42
astrostatistics, 42
biostatistics, 42
business analytics, 42
center of measure (see Center of 

measure)
correlation (see Correlation)
cycle sharing scheme, 2–3
econometrics, 43
EDA (see Exploratory data analysis 

(EDA))
elections, 43
machine learning, 43
statistical signal processing, 43

Support vector machines
hyperplane, 86
multiple, 88
single, 86–87

��������� T
Time series components

cyclic pattern, 18
seasonal pattern, 18
trend, 19
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Time series object
dataset, 96
decomposition, 111–113
Dickey-Fuller test, 100–101
differencing, 110–111
disease outbreak, 128
exploratory data analysis, 99
exponential  

smoothing, 108–109
forecast (see Forecasts)
memory, 97–98
moving average  

smoothing, 106, 108
properties, 99
sales forecasting, 127
stock market prediction, 128
tests, 116, 118–119
transformations

log, 102–104
square root, 104–106

trend and remove, 106
unemployment  

estimates, 127
weather forecasting, 127

��������� U, V, W, X, Y, Z
Underfitting

cross-validation, 66–67
high bias, 65–66
high variance, 66
non-linear line, 64–65

Univariate analysis
dataset, 9
distributions, 11, 13
user types, 10–11, 13
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