
Python for 
the Busy Java 
Developer

The Language, Syntax, and 
Ecosystem
—
Deepak Sarda



Python for the Busy 
Java Developer

The Language, Syntax, and 
Ecosystem

Deepak Sarda



Python for the Busy Java Developer

ISBN-13 (pbk): 978-1-4842-3233-0  ISBN-13 (electronic): 978-1-4842-3234-7
https://doi.org/10.1007/978-1-4842-3234-7

Library of Congress Control Number: 2017960940

Copyright © 2017 by Deepak Sarda

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or 
part of the material is concerned, specifically the rights of translation, reprinting, reuse of 
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, 
and transmission or information storage and retrieval, electronic adaptation, computer software, 
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark 
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, 
and images only in an editorial fashion and to the benefit of the trademark owner, with no 
intention of infringement of the trademark. 

The use in this publication of trade names, trademarks, service marks, and similar terms, even if 
they are not identified as such, is not to be taken as an expression of opinion as to whether or not 
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of 
publication, neither the authors nor the editors nor the publisher can accept any legal 
responsibility for any errors or omissions that may be made. The publisher makes no warranty, 
express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Todd Green
Development Editor: James Markham
Technical Reviewer: Chaim Krause
Coordinating Editor: Jill Balzano
Copy Editor: Kim Burton weisman
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,  
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, 
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a 
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc 
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook 
versions and licenses are also available for most titles. For more information, reference our Print 
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available 
to readers on GitHub via the book’s product page, located at www.apress.com/9781484232330. 
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Deepak Sarda
Singapore, Singapore

https://doi.org/10.1007/978-1-4842-3234-7


iii

Table of Contents

Chapter 1:  The Language ������������������������������������������������������������������  1

What Is Python? ������������������������������������������������������������������������������������������������  1

History ���������������������������������������������������������������������������������������������������������������  3

Installation ��������������������������������������������������������������������������������������������������������  5

Tools ������������������������������������������������������������������������������������������������������������������  6

Summary����������������������������������������������������������������������������������������������������������� 12

Chapter 2:  The Syntax ���������������������������������������������������������������������� 13

Hello World �������������������������������������������������������������������������������������������������������� 13

Basic Constructs ����������������������������������������������������������������������������������������������� 14

Basic Types ������������������������������������������������������������������������������������������������������� 16

Numbers ������������������������������������������������������������������������������������������������������ 16

Strings ��������������������������������������������������������������������������������������������������������� 17

Collections ��������������������������������������������������������������������������������������������������� 18

Fun with Lists ���������������������������������������������������������������������������������������������������� 19

Functions ���������������������������������������������������������������������������������������������������������� 25

Functions and Tuples ����������������������������������������������������������������������������������� 29

Functions Inside Functions �������������������������������������������������������������������������� 31

About the Author ����������������������������������������������������������������������������������v

About the Technical Reviewer ������������������������������������������������������������vii

Acknowledgments �������������������������������������������������������������������������������ix

Introduction �����������������������������������������������������������������������������������������xi



iv

Classes �������������������������������������������������������������������������������������������������������������� 34

Inheritance �������������������������������������������������������������������������������������������������� 37

Polymorphism ���������������������������������������������������������������������������������������������� 38

Getting Dynamic! ����������������������������������������������������������������������������������������� 39

Protocols ����������������������������������������������������������������������������������������������������������� 42

Organizing Code ������������������������������������������������������������������������������������������������ 45

Importing code �������������������������������������������������������������������������������������������� 45

The main() Method �������������������������������������������������������������������������������������� 48

Summary����������������������������������������������������������������������������������������������������������� 57

Chapter 3:  The Ecosystem ���������������������������������������������������������������� 59

A Rich Ecosystem���������������������������������������������������������������������������������������������� 59

Popular Tools ����������������������������������������������������������������������������������������������� 60

Popular Frameworks ����������������������������������������������������������������������������������� 62

Summary����������������������������������������������������������������������������������������������������������� 65

Chapter 4:  The Zen of Python������������������������������������������������������������ 67

Appendix:  References ����������������������������������������������������������������������� 69

Index ������������������������������������������������������������������������������������������������� 71

Table of ConTenTsTable of ConTenTs



v

About the Author

Deepak Sarda has been working as a software 

developer for more than twelve years, in 

multiple business domains and in a variety of 

technologies. He has worked on several high-

performance, server-side applications written 

in Java, and has done web development and 

systems automation work in Python.

He lives in Singapore with his lovely wife 

and their adorable daughters. He can be found 

online at antrix.net or @antrix on Twitter.

He’d love to hear what you’ve to say about this book. Please email him 

at deepak@antrix.net. 

http://antrix.net/


vii

About the Technical Reviewer

Chaim Krause is an expert computer 

programmer with over 30 years of experience 

to prove it. He has worked as a lead tech 

support engineer for ISPs as early as 1995, 

as a senior developer support engineer with 

Borland for Delphi, and has worked in Silicon 

Valley for over a decade in various roles, 

including technical support engineer and 

developer support engineer. He is currently 

a military simulation specialist for the US 

Army’s Command and General Staff College, working on projects such as 

developing serious games for use in training exercises.

He has also authored several video training courses on Linux topics 

and has been a technical reviewer on more than 20 books, including 

iOS Code Testing by Abhishek Mishra (Apress, 2017), Android Apps for 

Absolute Beginners by Wallace Jackson (Apress, 2017), and C# and XML 

Primer: XML Essentials for C# and .NET Development by Jonathan Hartwell 

(Apress, 2017). It seems only natural that he would be an avid gamer 

and have his own electronics lab and server room in his basement. He 

currently resides in Leavenworth, Kansas, with his loving partner, Ivana, 

and a menagerie of four-legged companions: their two dogs, Dasher and 

Minnie, and their three cats, Pudems, Talyn, and Alaska.



ix

Acknowledgments

I’d always heard it being said, but only now do I truly realize it: writing a 

book is hard work! It would have been harder still had it not been for the 

support from my family and friends.

I wish to especially thank Hitesh Sarda, Rohit Sharma, and Srijith Nair 

for the incredibly detailed and thoughtful feedback that they provided as I 

wrote this book. I owe many thanks to them.

I must also acknowledge the constant encouragement that I received 

from my wife, Sonika. I can’t thank her enough for her patience and 

support as I took time out to write this book.



xi

Introduction

 Hello There!
If you are reading this book, then chances are that you are a busy Java 

developer who is interested in learning Python. If so, I hope that by the 

time you are done reading this short book.

• You will have gained sufficient familiarity with the 

Python language syntax so that you’re able to read 

some code and understand what it is doing.

• You will have had enough orientation to be able to 

navigate the Python ecosystem of libraries and tools.

This book is not for the beginner programmer. I assume that you 

are comfortable programming in Java (or a similar language like C#), 

and hence, I will not bore you with explanations of basic concepts like 

variables, functions, and classes.

 About the Book
This book is divided into three broad chapters:

• The Language

• The Syntax

• The Ecosystem

In the first chapter, we take a brief look at the Python language and 

learn what it has to offer. Next, we’ll get down to the details of the syntax 

before wrapping up with a look at the wider ecosystem surrounding the 

Python language.



1© Deepak Sarda 2017 
D. Sarda, Python for the Busy Java Developer, https://doi.org/10.1007/978-1-4842-3234-7_1

CHAPTER 1

The Language
Let’s start our Python journey by first gaining an understanding of what 

Python has to offer that’s different from Java. I’ll then help you get setup 

with Python before we dive into the language’s syntax in the next chapter.

 What Is Python?
Python is an “open source, general-purpose programming language that is 

dynamic, strongly typed, object-oriented, functional, memory-managed, 

and fun to use.” Those are a lot of adjectives for one sentence! Let’s unpack 

them one at a time.

Python is distributed under an open source, BSD-style license called the 

Python Software Foundation License Agreement. It is a very permissive 

license that allows great flexibility in how Python can be used. Python’s 

development is done in the open by a large and diverse community of 

volunteers.

Python is general purpose in that you can use it to build a variety 

of applications running the gamut from simple scripts and command- 

line tools to desktop and web applications, network servers, scientific 

applications, and more.

We know that Java is a statically typed language; that is, the types are 

checked and enforced at compile time. In contrast, Python is dynamic, 

which means that the types are checked only at runtime. But Python is 



2

also strongly typed, just like Java. You can only execute operations that are 

supported by the target type.

Another way to think about this is that in Java, both variables and 

objects have types associated with them; whereas in Python, only objects 

have types, not the variables that they are bound to. In Java, when we 

declare

MyType obj = new MyType()

The obj variable is declared of type MyType and then the newly 

instantiated object of type MyType is assigned to it. In contrast, in Python, 

the same declaration would read

obj = MyType()

Ignoring the missing new keyword (which Python doesn’t have), obj is 

simply a name that is bound to the object on the right, which happens to 

be of type MyType. We can even reassign obj in the very next line—obj = 

MyOtherType()—and it wouldn’t be a problem. In Java, this reassignment 

would fail to compile1 while in Python, the program will run and will only 

fail at runtime if we try to execute an operation via obj that is incompatible 

with the type assigned to it at that point in time.

Python is object oriented and supports all the standard OOP features 

that Java has like creation of types using classes, encapsulation of state, 

inheritance, polymorphism, and so forth. It even goes beyond Java and 

supports features such as multiple inheritance, operator overloading, 

meta-programming, and so forth.

Python also supports a rich set of functional programming features 

and idioms. In Python, functions are first-class objects that can be created, 

manipulated, and passed around just like any other object. While its 

emphasis on functional programming might not be as focused as say 

1 Unless MyOtherType happens to be a subclass of MyType.

Chapter 1  the Language



3

Clojure, Python certainly offers much more to the functional programmer 

than Java.2

Another similarity between the languages is in terms of manual 

memory management, in that there is none. The language runtime takes 

care of correctly allocating and freeing up memory, saving the programmer 

from the drudgery—and mistakes—of manually managing memory. 

Having said that, the JVM garbage collectors are much, much better 

performing than the Python GC. This can become a concern depending on 

the type of application you are building.

Finally, and above all, Python is fun and a joy to use. This is a strong 

claim to make but I hope that by the time you are done reading this book, 

you’ll agree with me and the millions of other Python programmers out 

there!

 History
Python is the brainchild of a Dutch programmer named Guido van 

Rossum. He started working on it when he got frustrated with the ABC 

language in the late 1980s and after some years of private development, 

he released the first version of Python in 1994. This actually makes 

Python older than Java, the first version of which was released in 1996, 

a full two years later! A comparison of the two languages is shown in 

Table 1-1.

2 Even after the introduction of lambdas in Java 8.

Chapter 1  the Language



4

Note I’ll use this tabular format to compare and contrast python 
and Java whenever it makes sense.

Since then, the language has continued to refine and evolve, with 

Python 2.0 being released in 2000. As of this writing, the 2.x versions are 

the most widely deployed.

In version 3.0, the language designers decided to break backward 

compatibility in order to clean up some of the accumulated language 

warts. Although this has been good from a language perspective, it has 

been a significant hindrance to those upgrading from 2.x to 3.x. Imagine 

if Sun had decided to introduce generics in Java 5 without type erasure, 

thus breaking backward compatibility. The Java language would’ve been 

much nicer today but the transition period would’ve been difficult, to say 

the least. That is the kind of transition the Python user community is going 

through right now.

Table 1-1. Historical comparison of 

Java and Python

Java Python

James gosling guido van rossum

From C++/Oak From aBC

1.0 - Jan 1996 1.0 - Jan 1994

9.0 - Sep 2017 3.6 - Dec 2016

JSr pep

Commercial Community

Chapter 1  the Language



5

Note Since 2.x is still the most widely used version of python, 
this book will cover python 2.x features and syntax, calling out any 
differences with 3.x from time to time.

From the outset, Python’s development has been done in the open 

with a community of volunteers contributing to the language and the core 

libraries. Any language changes are proposed and discussed through a 

process called PEP (Python Enhancement Proposals), with Guido having 

final say in deciding the outcome. For his stewardship and continuous 

involvement in the development of Python, Guido is affectionately called 

the “Benevolent Dictator For Life.” He also periodically writes a Python 

History blog3 chronicling the evolution of various language features.

 Installation
This book is full of example code, and the best way to follow along is to 

actually try these examples by yourself. To do this, you’ll obviously need to 

install Python on your system. But an easier way is to check if you already 

have access to a system with Python installed! Almost all systems running 

Linux should have Python preinstalled. Recent versions of Mac OS X also 

come with Python preinstalled. Just open a command shell on either of 

these two systems and type in python. If you get a Python shell prompt, 

you are all set! The version of Python installed may be a bit outdated but it 

should be sufficient to get started.

3 http://python-history.blogspot.com/

Chapter 1  the Language

http://python-history.blogspot.com/


6

Tip as a lightweight alternative, you can try an online python 
environment, such as http://repl.it/. the examples in this book 
are all simple enough to work there.

 Tools
Python source code is organized in files with a .py extension. The python 

executable interprets the source code and translates it into a Python 

language–specific bytecode that is stored in .pyc files. This bytecode is 

then executed by the Python virtual machine, which is also invoked by the 

same python executable. Although this sounds like two steps, in reality, it 

is just one step with the bytecode generation happening on the fly.

This is in contrast to Java (see Table 1-2), where the responsibilities for 

the parsing and compilation of source code and the actual execution of 

the compiled bytecode are split between javac and java respectively. In 

Python, the python executable handles both steps. In fact, .pyc files are, 

in effect, just intermediate caches to hold the translated bytecode. They 

are not strictly necessary for execution. If you deleted the .pyc files, they’d 

simply be regenerated the next time you ran the .py files.

Table 1-2. Comparison of Tools

Java Python

.java .py

.class .pyc

Java.exe + javac.exe python.exe

IntelliJ IDea pyCharm

eclipse JDt pyDev

Java 9 JShell repL

Chapter 1  the Language

http://repl.it/


7

There are multiple IDEs available for writing Python code. PyDev, 

based on the Eclipse framework, and PyCharm, based on the IntelliJ IDEA 

framework, are two of the more popular choices. While having an IDE is 

nice, it is perfectly feasible to write Python code using a plain text editor 

such as Vim4 or Sublime Text.

One interesting feature of Python that’s missing in Java is the REPL, 

short for Read Eval Print Loop. A quick demo would be useful here. If 

you’ve got access to a Python installation (follow the instructions in the 

“Installation” section of this chapter), go ahead and launch a python shell, 

as follows:

antrix@dungeon:~$ python

Python 2.7.5+ (default, Feb 27 2014, 19:39:55)

[GCC 4.8.1] on linux2

Type "help", "copyright", "credits" or "license" for more 

information.

>>>

When you run the python executable in this manner, it starts up in 

an interactive mode. The first few lines contain information such as the 

version and the underlying operating system. After that, you are presented 

with the >>> prompt. This is where all your interaction with Python will 

occur. The python shell is running a loop, which will read everything that 

you type in at this prompt, evaluate what it has read, and then print the 

result. Thus the name, REPL.

Let’s try it out:

>>> 10 + 10

20

>>>

4 Yes, Emacs is fine too.

Chapter 1  the Language



8

We typed in 10 + 10 at the prompt and hit the Enter key. The Python 

REPL read this value, evaluated it, and printed the result. Then it went back 

to the prompt to wait for our next input. Let’s try the following variable 

assignment:

>>> x = 10

>>>

In this case, we didn’t see any output because what we entered was just 

a statement, not an expression. But it did modify the state of the python 

shell. If we query for x again, we’ll find this:

>>> x = 10

>>> x

10

>>>

Let’s call one of the built-in functions named help.

>>> help(x)

Help on int object:

class int(object)

 |  int(x=0) -> int or long

 |  int(x, base=10) -> int or long

 |

 |   Convert a number or string to an integer, or return 0 if no 

arguments are given

:q

>>>

Calling help on any object brings up a paged view of what is, 

effectively, the Javadoc for the object’s class. To exit the help view, just type 

q at the : prompt and you’ll be back at the >>> prompt.

Chapter 1  the Language



9

The full documentation view for an object can be quite verbose. If you 

just want a quick overview of what attributes an object supports, use the 

dir function.

>>> dir(x)

['__abs__', '__add__', '__and__', '__class__', '__cmp__', '__

coerce__', '__delattr__', '__div__', '__divmod__', '__doc__', 

'__float__', '__floordiv__', '__format__', '__getattribute__', 

'__getnewargs__', '__hash__', '__hex__', '__index__', '__

init__', '__int__', '__invert__', '__long__', '__lshift__', 

'__mod__', '__mul__', '__neg__', '__new__', '__nonzero__', '__

oct__', '__or__', '__pos__', '__pow__', '__radd__', '__rand__', 

'__rdiv__', '__rdivmod__', '__reduce__', '__reduce_ex__', '__

repr__', '__rfloordiv__', '__rlshift__', '__rmod__', '__rmul__', 

'__ror__', '__rpow__', '__rrshift__', '__rshift__', '__rsub__', 

'__rtruediv__', '__rxor__', '__setattr__', '__sizeof__', 

'__str__', '__sub__', '__subclasshook__', '__truediv__', '__

trunc__', '__xor__', 'bit_length', 'conjugate', 'denominator', 

'imag', 'numerator', 'real'] 

>>>

Ignoring the funky double-underscores for now, what dir(x) returned 

is effectively a directory of all the attributes available on the object. You can 

access any of them using the . (dot) syntax.

>>> x.numerator

10

>>> x.denominator

1

>>> x.conjugate

<built-in method conjugate of int object at 0x9e9a274>

Chapter 1  the Language



10

>>> x.conjugate()

10

You can also use the dir() function without any argument to get a list 

of built-ins.

>>> dir()

['__builtins__', '__doc__', '__name__', '__package__']

>>> dir(__builtins__)

['ArithmeticError', 'AssertionError', 'AttributeError', 

'BaseException', 'BufferError', 'BytesWarning', 

'DeprecationWarning', 'EOFError', 'Ellipsis', 

'EnvironmentError', 'Exception', 'False', 'FloatingPointError', 

'FutureWarning', 'GeneratorExit', 'IOError', 'ImportError', 

'ImportWarning', 'IndentationError', 'IndexError', 'KeyError', 

'KeyboardInterrupt', 'LookupError', 'MemoryError', 

'NameError', 'None', 'NotImplemented', 'NotImplementedError', 

'OSError', 'OverflowError', 'PendingDeprecationWarning', 

'ReferenceError'ror', 'RuntimeError', 'RuntimeWarning', 

'StandardError', 'StopIteration', 'SyntaxError', 

'SyntaxWarning', 'SystemError', 'SystemExit', 'TabError', 

'True', 'TypeError', 'UnboundLocalError', 'UnicodeDecodeError', 

'UnicodeEncodeError', 'UnicodeError', 'UnicodeTranslateError', 

'UnicodeWarning', 'UserWarning', 'ValueError', 'Warning', 

'ZeroDivisionError', '_', '__debug__', '__doc__', '__import__', 

'__name__', '__package__', 'abs', 'all', 'any', 'apply', 

'basestring', 'bin', 'bool', 'buffer', 'bytearray', 'bytes', 

'callable', 'chr', 'classmethod', 'cmp', 'coerce', 'compile', 

'complex', 'copyright', 'credits', 'delattr', 'dict', 'dir', 

'divmod', 'enumerate', 'eval', 'execfile', 'exit', 'file', 

Chapter 1  the Language



11

'filter', 'float', 'format', 'frozenset', 'getattr', 'globals', 

'hasattr', 'hash', 'help', 'hex', 'id', 'input', 'int', 

'intern', 'isinstance', 'issubclass', 'iter', 'len', 'license', 

'list', 'locals', 'long', 'map', 'max', 'memoryview', 'min', 

'next', 'object', 'oct', 'open', 'ord', 'pow', 'print', 

'property', 'quit', 'range', 'raw_input', 'reduce', 'reload', 

'repr', 'reversed', 'round', 'set', 'setattr', 'slice', 

'sorted', 'staticmethod', 'str', 'sum', 'super', 'tuple', 

'type', 'unichr', 'unicode', 'vars', 'xrange', 'zip']

>>>

This gives a list of functions and other objects that are built-in and do 

not have to be imported from other packages. This is analogous to how 

everything defined in the java.lang package is available everywhere in 

Java without having to explicitly import it.

Tip the dir and help functions are extremely useful when doing 
exploratory development in a python interactive shell.

There’s one last thing I wish to show before we wrap up this section. 

Let’s create a new file named hello.py with the following contents:

print "Hello There!"

x = 10 + 10

print "The value of x is", x

Now execute python, passing in this file as an argument:

antrix@dungeon:~$ python hello.py

Hello There!

The value of x is 20

antrix@dungeon:~$

Chapter 1  the Language



12

This is more along the lines of a traditional development process: write 

code in a file and then execute that file. This also demonstrates how the 

python executable combines the role of javac and java in one process.

With that brief demo of Python, we are ready to explore the language’s 

syntax.

 Summary
In this chapter, we learned that Python is not just a scripting language but a 

general-purpose programming language with a long history behind it. We 

then got familiar with the python executable, the Python counterpart of the 

java and javac executables.

We also looked at the Python REPL environment, which is a great way 

to interactively try out Python. If you still don’t have the REPL set up, I urge 

you to do so now because the next chapter makes extensive use of it as we 

dive into the nitty-gritty details of the language’s syntax!

Chapter 1  the Language



13© Deepak Sarda 2017 
D. Sarda, Python for the Busy Java Developer, https://doi.org/10.1007/978-1-4842-3234-7_2

CHAPTER 2

The Syntax
This chapter is the heart of the book. It is a deep dive into Python language 

features. I explain them using short code fragments that you can easily try 

out yourself.

We start by introducing the basic data types and built-in collections 

such as dictionaries and sets, with a special emphasis on lists. We’ll then 

dive into functions and discover their power as a first-class language 

feature.

Moving on to classes, we’ll find out how flexible Python is as an 

object-oriented language, especially compared to Java. We’ll then explore 

protocols, which extend the language’s syntax to your own types.

Finally, we’ll discuss the concepts of modules and packages as a means 

of organizing Python code.

As you can see, it is going to be a long chapter. So grab some coffee and 

let’s get started!

 Hello World
>>> print "Hello World"

Hello World

>>>

Well, that was easy! Moving on …



14

Tip In Python 3, the print keyword has been replaced with the 
print() function.

 Basic Constructs
Here’s a bit of Python code that, well, I don’t have to tell you what it 

does, do I? Most Python code is like this: eminently readable and almost 

pseudo-code-like.

>>> numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]                     ①

>>> odd_numbers = []                                          ②

>>>

>>> # What are the odds?                                      ③

>>> for num in numbers:                                       ④

...   if num % 2 != 0:                                        ⑤

...     odd_numbers.append(num)                               ⑥

...

>>> print "the odd numbers are:", odd_numbers                 ⑦

the odd numbers are: [1, 3, 5, 7, 9]

>>>

You must have noticed a few things, such as the lack of semicolons as 

statement separators. Let’s work through this code one line at a time to see 

what else is new and different compared to Java.

 1. In the first line, we are declaring a list of numbers. 

Lists are one of the built-in data structures in 

Python, along with tuples, dicts, and sets. Notice that 

we didn’t declare any types nor did we use any new 

keyword to allocate the list.

ChaPter 2  the Syntax



15

 2. Next, we declare another list, named odd_numbers, 

which is initialized empty.

 3. Moving further down, we find a comment starting 

with the # token. Comments extend to the end of 

line, just like they do in Java with the // token.

 4. Here, we come upon a for loop, which should 

remind you of a more English version of Java’s 

foreach loop. Block scopes, like in this for loop or 

the if conditional in the next line, are denoted using 

indentation instead of curly ({..}) braces. Using just 

whitespace indentation to define blocks may sound 

weird and even prone to errors! But just give it a 

chance and you’ll find it to quickly become second 

nature. Note that the Python REPL uses ellipsis (...) 

to indicate a block scope, you don’t type the ellipsis. 

The next three lines start with an ellipsis, which is 

the scope of this for loop.

 5. On this line is an if statement that is quite similar to 

Java, except for the lack of parentheses. Parentheses 

around for and if conditional expressions are 

optional. Include them only when they add clarity. 

Apart from the for and if constructs shown here, 

Python also has elif, while, and so forth.

 6. Here, we append the current loop number to the 

odd_numbers list. The list, like almost everything in 

Python, is an object that supports several operations 

on it, including the append operation.

 7. Finally, we print the results to console. No more 

typing of the decidedly more verbose System.out.

println!

ChaPter 2  the Syntax



16

Caution Never mix tabs and whitespaces in Python source code. 
While you can use either tabs or whitespace to denote indentation, 
mixing the two in the same source file may lead to parsing errors.  
My recommendation: just don’t use tabs and stick to spaces. Set your 
text editor to insert four space characters per tab.

 Basic Types
Some of the basic data types in Python are numbers, strings, and 

collections.

 Numbers
Numbers come in the following variety.

Type Example value

int 1000

long 1000L

float 1000.12

complex 1000 + 12j

Although int and long are different data types, in practice, you only 

need to worry about them when declaring literal values; that is, literal 

longs need to be declared with a L suffix. During arithmetic operations, 

Python automatically converts int values to long values as needed. This 

also prevents overflow-related bugs.

Note In Python 3, there’s no distinction between int and long; 
there’s only one arbitrary length integer type.

ChaPter 2  the Syntax



17

 Strings
As in Java, strings are immutable in Python. String values can be wrapped 

in either single or double quotes. To differentiate between vanilla ASCII 

strings and Unicode strings, Python uses the u prefix to denote the latter. 

Unicode strings provide additional operations related to encoding/

decoding from various character sets.

Type Example value

str 'apple'

unicode u'äþþĺė'

str r'C:\temp'

A third type of string is the raw string denoted by the r prefix. This is 

just an indication to the Python parser to not apply any backslash escaping 

rules to the string. Here’s a quick example that illustrates the difference.

>>> print 'c:\temp\dir'        ①

c:      emp\dir

>>> print 'c:\\temp\dir'       ②

c:\temp\dir

>>> print r'c:\temp\dir'       ③

c:\temp\dir

>>>

 1. The \t is interpreted as the tab character, resulting 

in a tab being printed.

 2. Escaping the \t with an additional backslash helps, 

but makes the string harder to read.

 3. Now the \t is left as-is since the r prefix is used to 

mark the string as a raw string.

ChaPter 2  the Syntax



18

As you can imagine, raw strings are extremely useful when denoting 

file system paths or regular expressions.

Note In Python 3, all strings are unicode by default. Strings 
without encoding are treated as bytes without any text semantics.

 Collections
The built-in Python collections come in four varieties.

Collection Type Java Equivalent Example Value

list java.util.ArrayList ['apple', 'ball', 'ball']

tuple java.util.ArrayList ('apple', 'ball', 'ball')

dict java.util.HashMap {'fruit': 'apple', 'toy': 

'ball'}

set java.util.HashSet {'apple', 'ball'}

Each of these collection types provides several useful operations, such 

as sort, subsequence, and so forth. Another key property is that all these 

data types are heterogeneous and can host values of differing data types. 

Think Collection<Object> and not Collection<T>.

Tip While tuple and list may look similar, the distinction is that 
a tuple is immutable.

Having these basic collections built into the language syntax is 

immensely useful. It makes a lot of day-to-day code quite succinct without 

the overhead of importing collection APIs and their associated baggage.

ChaPter 2  the Syntax



19

 Fun with Lists
Lists are the workhorse data structure in Python and I exaggerate only 

slightly when I say that mastering them is the key to mastering Python! 

Although earlier I said that they are like java.util.ArrayList, they 

are truly much more than that. But first, let’s look at a short example 

demonstrating their use as a basic array.

>>> numbers = [0, 1, 2, 'three', 4, 5, 6, 7, 8, 9]    ①

>>> numbers[0]                                        ②

0

>>> numbers[-1]                                       ③

9

 1. The first thing to note is that the numbers list is not 

homogeneous and can host values of different types, 

be it numbers, strings, other objects or even other lists!

 2. The individual element access is using the well-

known array index syntax: L[index].

 3. Python allows passing in a negative value for the 

index, in which case, it adds the length of the list to 

the index and returns the corresponding element.

Apart from single element access, what sets apart Python lists is the 

ability to extract element ranges from lists. This is accomplished using the 

slice syntax. Here’s how.

>>> numbers[0:4]               ①

[0, 1, 2, 'three']

>>> numbers[:4]                ②

[0, 1, 2, 'three']

ChaPter 2  the Syntax



20

>>> numbers[4:]                    ③

[4, 5, 6, 7, 8, 9]

>>> numbers[2:-2]                  ④

[2, 'three', 4, 5, 6, 7]

>>> numbers[0:9:2]                 ⑤

[0, 2, 4, 6, 8]

>>> numbers[::2]                   ⑥

[0, 2, 4, 6, 8]

>>> numbers[::-1]                  ⑦

[9, 8, 7, 6, 5, 4, 'three', 2, 1, 0]

 1. The slice syntax—L[start:stop]—returns a 

subsequence of the list as a new list.

 2. The start index is optional and when omitted, 

defaults to 0.

 3. The stop index is also optional and defaults to the 

length of the list.

 4. A negative stop index counts off from the end, in 

accordance with the rule described for line 3 of this 

code example.

 5. The full slice syntax is actually L[start:stop:step] 

where the step, when omitted, defaults to 1. Here, we 

set it to 2 and it skips every other element of the list.

 6. Another example showing default values for start 

and stop.

 7. A negative step reverses the direction of iteration.

ChaPter 2  the Syntax



21

The copy returned by the slice notation is a shallow copy. I can 

demonstrate this in the following example:

>>> copy = numbers[:]                ①

>>> copy == numbers                  ②

True

>>> copy is numbers                  ③

False

>>> id(copy), id(numbers)            ④

(3065471404L, 3075271788L)

 1. Creates a shallow copy

 2. The two lists are logically equal. This is similar to 

comparison using equals() in Java.

 3. But the two lists are not the same object. This is 

similar to comparison using == in Java.

 4. We can confirm by checking the object references 

using the id() built- in function. This is similar to 

the default hashCode() in Java.

Now let’s turn our eyes toward performing operations on lists. The 

first thing one would want to do with a list is to iterate over its elements. 

There are a few different variants of list iteration in Python, either using the 

vanilla foreach style syntax or augmenting it with the enumerate, range, 

and len built-in functions.

>>> numbers = [10, 20, 30]

>>> for number in numbers:

...   print number

...

10

20

30

ChaPter 2  the Syntax



22

>>> for index, number in enumerate(numbers):

...   print index, number

...

0 10

1 20

2 30

>>> for  index in range(len(numbers)):

...   print index

...

0

1

2

Next, let’s look at how to mutate lists.

>>> toys = ['bat', 'ball', 'truck']

>>> if 'bat' in toys:

...   print 'Found bat!'

...

Found bat!

>>> toys.append('doll')

>>> print toys

['bat', 'ball', 'truck', 'doll']

>>> toys.remove('ball')

>>> print toys

['bat', 'truck', 'doll']

>>> toys.sort()

>>> print toys

['bat', 'doll', 'truck']

Lists can also be used as simple stacks and queues.

ChaPter 2  the Syntax



23

>>> stack = []

>>> stack.append("event")   # Push

>>> event = stack.pop()       # Pop

>>>

>>> queue = []

>>> queue.append("event")  # Push

>>> event = queue.pop(0)    # Pop from beginning

There are many more operations that a list provides, such as extend, 

insert, and reverse. But let’s now look at one of the most interesting 

features of lists: comprehensions.

Consider the following code, which computes the factorial of the first 

few integers:

>>> import math

>>> numbers = range(5)

>>> numbers

[0, 1, 2, 3, 4]

>>> factorials = []

>>> for num in numbers:

...   factorials.append(math.factorial(num))

...

>>> factorials

[1, 1, 2, 6, 24]

The preceding procedural loop can be replaced by a functional one- 

liner using the built-in map function, as follows:

>>> factorials = map(math.factorial, range(5))

ChaPter 2  the Syntax



24

Python defines list comprehensions using the syntax: new_list = 

[function(item) for item in L]. We can rewrite the factorial loop using 

this syntax, as follows:

>>> factorials = [math.factorial(num) for num in range(5)]

Tip List comprehensions are one of the most Pythonic language 
features. anytime that you see or think of a map(fn, iter), it can 
be better expressed as [fn(x) for x in iter].

Here’s another variant that introduces a conditional in the 

comprehension:

>>> factorials_of_odds = [math.factorial(num) for num in 

range(10) if num % 2 != 0]

If the list/object being iterated over is large (or even unbounded), then 

a variant of the list comprehension syntax called generator expressions can 

be used. In the following snippet, factorials_of_odds is lazily computed 

as you iterate over it.

>>> factorials_of_odds = (math.factorial(num) for num in 

xrange(10**10) if num % 2 != 0)

Syntactically, the only difference between list comprehensions and 

generator expressions is that while the former are enclosed in square 

brackets, the latter are enclosed in round brackets.

ChaPter 2  the Syntax



25

ASIDE

In the generator expressions example, I used a function xrange(10**10). 

the ** is the exponent operator; that is, 10**10 is 10000000000. the 

usual range function, when called with 10**10 as an argument, would 

have to allocate and keep in memory a ten billion–elements list. Instead of 

preallocating such a big list, xrange returns an iterator, which only when 

iterated over, produces elements up to ten billion, one at a time.

With that rather verbose introduction to lists, let’s turn our attention 

toward one of the core building blocks of procedural programming: 

functions.

 Functions
Functions in Python are quite a bit more flexible than in Java.

• They are first-class objects that can live by themselves 

without the need to be wrapped inside classes. They 

can be created at runtime, assigned to variables, passed 

as arguments to other functions, and returned as values 

from other functions.

• In addition to a simple list of positional parameters, 

Python functions also support named parameters, 

varargs, and keyword-based varargs.

• Python also supports anonymous functions in the form 

of lambda expressions, a feature added to Java in 2014 

as part of the Java SE 8 release.

ChaPter 2  the Syntax



26

Here’s what a function definition in Python looks like:

def a_function(arg1, arg2="default", *args, **kwargs):

    """This is a short piece of documentation for this function.

       It can span multiple lines.

    """

    print "arg1:", arg1     # arg1 is a mandatory parameter

     print "arg2:", arg2     # arg2 is an optional parameter 

with a default value

     print "args:", args     # args is a tuple of positional 

parameters

     print "kwargs:", kwargs # kwargs is a dictionary of keyword 

parameters

Function definitions begin with the def keyword (Hello, Scala and 

Groovy!) followed by the parameter list in parentheses. Once again, there 

are no curly braces, and only the indentation defines the scope of the 

function body.

Note For now, please ignore the strange looking asterisk prefix in 
front of args and kwargs in this function’s parameter declaration. It 
is a special bit of syntax that I’ll describe in the next section.

The documentation within triple quotes is called a docstring, similar to 

Javadoc. Calling help(a_function) displays this docstring.

>>> help(a_function)

Help on function a_function in module __main__:

a_function(arg1, arg2='default', *args, **kwargs)

    This is a short piece of documentation for this function.

    It can span multiple lines.

(END)

ChaPter 2  the Syntax



27

We don’t declare the types of the parameters, relying instead on duck 

typing; that is, as long as the parameter argument has the attributes our 

function expects to operate upon, we don’t care about its real type.

ASIDE

Wikipedia has a nice, concise explanation of duck typing: “a style of typing 

in which an object’s methods and properties determine the valid semantics, 

rather than its inheritance from a particular class or implementation of an 

explicit interface.” the name of the concept refers to the duck test, attributed 

to James Whitcomb riley, which is phrased as follows: “When I see a bird that 

walks like a duck, and swims like a duck, and quacks like a duck, I call that 

bird a duck.”

In duck typing, a programmer is only concerned with ensuring that objects 

behave as demanded of them in a given context, rather than ensuring that 

they are of a specific type. For example, in a non-duck-typed language, you 

would create a function that requires that the object passed into it be of type 

Duck to ensure that that function can then use the object’s walk and quack 

methods. In a duck-typed language, the function would take an object of any 

type, and simply call its walk and quack methods, producing a runtime error 

if they are not defined.

Let’s see how a_function (as defined earlier) behaves when called 

with different argument values.

>>> a_function(10)                            ①

arg1: 10

arg2: default

args: ()

kwargs: {}

ChaPter 2  the Syntax



28

>>> a_function(10, "ten")                                ②

arg1: 10

arg2: ten

args: ()

kwargs: {}

>>> a_function(10, 20, 30, 40)                           ③

arg1: 10

arg2: 20

args: (30, 40)

kwargs: {}

>>> a_function(10, "twenty", arg3=30, arg4="forty")      ④

arg1: 10

arg2: twenty

args: ()

kwargs: {'arg3': 30, 'arg4': 'forty'}

>>> a_function(arg2="twenty", arg1=10, arg3=30,  

arg4="forty")                                                 ⑤

arg1: 10

arg2: twenty

args: ()

kwargs: {'arg3': 30, 'arg4': 'forty'}

 1. Only arg1 is provided; the other parameters are 

initialized to default values.

 2. The positional arguments are provided.

 3. This is like Java’s varargs. All the positional 

arguments that aren’t explicitly declared in the 

parameter list are populated in the args tuple.

ChaPter 2  the Syntax



29

 4. This demonstrates the usage of a keyword or named 

arguments.

 5. The order isn’t important when the parameter 

names are made explicit.

 Functions and Tuples
Python functions hold one more trick up their sleeve: support for multiple 

return values!

def multi_return():

    # These are automatically wrapped up

    # and returned in one tuple

    return 10, 20, 'thirty'

>>> values = multi_return()

>>> print values

(10, 20, 'thirty')

When a function returns multiple comma-separated values, Python 

automatically wraps them up into a tuple data structure and returns that 

tuple to the caller. This is a feature called automatic tuple packing. You may 

make this packing more explicit by wrapping up your return values in a 

tuple yourself but this is neither required, nor encouraged.

The really interesting part comes when this feature is combined with 

its counterpart, automatic tuple unpacking. Here’s how it works:

>>> numbers = (1, 2, 3)              ①

>>> print numbers

(1, 2, 3)

>>> a, b, c = (1, 2, 3)              ②

>>> print a, b, c

1 2 3

ChaPter 2  the Syntax



30

>>> a, b, c = multi_return()    ③

>>> print a, b, c

10 20 thirty

 1. Here, numbers is just a regular tuple.

 2. The tuple on the right of the assignment got 

unpacked into the variables on the left.

 3. The tuple returned from multi_return got 

unpacked into the variables on the left.

What happened here is that first, Python packed the multiple return 

values from multi_return into a single tuple. Then, it transparently 

unpacked the returned tuple and assigned the contained values to the 

corresponding variables on the left of the assignment.

For this to work, the number of variables on the left must match the 

number of elements being returned by the called function; otherwise, an 

error is raised.

>>> a, b = multi_return()

ValueError: too many values to unpack

Now that you know how tuple packing and unpacking works, let’s 

revisit the strange looking asterisks in *args and **kwargs that we 

encountered in the previous section. The leading single asterisk is Python 

notation to unpack the tuple values while the leading double asterisk 

unpacks the dict values. Here’s an example that demonstrates this:

def ternary(a, b, c):

    print a, b, c

>>> ternary(1, 2, 3)

1 2 3

>>> args = (1, 2, 3)

>>> ternary(args)

ChaPter 2  the Syntax



31

TypeError: ternary() takes exactly 3 arguments (1 given)

>>> ternary(*args)  # Unpacks the args tuple before function call

1 2 3

>>> kwargs = {'a': 1, 'b': 2, 'c': 3}

>>> ternary(kwargs)

TypeError: ternary() takes exactly 3 arguments (1 given)

>>> ternary(**kwargs) # unpacks the dictionary before function 

call

1 2 3

 Functions Inside Functions
Now that you are familiar with the basic function definition syntax, let’s 

look at a more advanced example. Consider the following function:

def make_function(parity):                                    ①

    """Returns a function that filters out `odd` or `even`

       numbers depending on the provided `parity`.

    """

    if parity == 'even':

        matches_parity = lambda x: x % 2 == 0                 ②

    elif parity == 'odd':

        matches_parity = lambda x: x % 2 != 0

    else:

        raise AttributeError("Unknown Parity: " + parity)     ③

    def get_by_parity(numbers):                               ④

        filtered = [num for num in numbers if matches_parity(num)]

        return filtered

    return get_by_parity                                      ⑤

#

ChaPter 2  the Syntax



32

There’s a lot to digest here! Let’s take it line by line.

 1. Here, we begin defining a function named make_

function, starting with the docstring.

 2. Next, we use the lambda keyword to define a 

one line, anonymous function that we assign to 

matches_parity. The lambda function assigned to 

matches_parity depends on the value of the parity 

function argument.

 3. If the parameter argument value is neither odd 

nor even, we raise the built-in AttributeError 

exception.

 4. We now define a get_by_parity function within 

the enclosing function’s body. You’ll notice 

that the value of matches_parity is used here. 

This is a closure. It is similar to capturing final 

fields from enclosing scopes inside anonymous 

class declarations in Java. In fact, the lambda 

functionality in Java 8 is much closer to this Python 

feature than Java anonymous classes.

 5. Finally, we return the get_by_parity function 

object from make_function.

Functions in Python are first-class objects of type function. They can 

be passed around and assigned to variables, just like any other object. In 

this case, when someone calls make_function, it returns another function 

whose definition depends on the parameter passed to make_function. 

Let’s see how this works with a quick example.

>>> get_odds = make_function('odd')            ①

>>> print get_odds(range(10))                  ②

[1, 3, 5, 7, 9]

ChaPter 2  the Syntax



33

>>> get_evens = make_function('even')          ③

>>> print get_evens(range(10))

[0, 2, 4, 6, 8]

 1. We called make_function with odd as the parity 

parameter value, and it returns to us a function that 

we assign to the get_odds variable.

 2. Now, for all practical purposes, get_odds is just 

another function. We invoke it by passing in a list of 

numbers (range(10) returns a list of 0..10) and out 

comes a filtered list of odd numbers.

 3. We can repeat this exercise for the even parity and 

verify that make_function is working as expected.

Tip “Functions as first-class objects” is a powerful idea to digest 
and necessitates a change in how you structure your programs. 
Coming from a Java background to Python, you must learn to resist 
the urge to model everything as a class. after all, not everything is a 
noun and some things are best described using verbs!1

a lot can be accomplished using functions and Python’s built-in 
data structures like lists and dicts. In doing so, you’ll find that more 
often than not, your programs turn out to be simpler and easier to 
understand.

1 See steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html

ChaPter 2  the Syntax

http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html


34

 Classes
Everything in Python is an object and as you’d expect, the way to create 

objects is to start from classes. Consider the following definition of a 

simple Person class.

class Person(object):

    def __init__(self, first, last):

        self.first = first

        self.last = last

    def full_name(self):

        return "%s %s" % (self.first, self.last)

    def __str__(self):

        return "Person: " + self.full_name()

As in Java, object is at the root of the class hierarchy but unlike Java, 

it needs to be specified explicitly in Python (although not in Python 3).2 

Inheritance declarations do not use a special keyword like extends. Instead, 

the parent class' name is enclosed within parentheses after the declaring 

class’s name.

The __init__ method is the initializer method and is analogous 

to the Java class constructor. There is also a constructor method called 

__new__ but you won’t use it unless you are doing metaprogramming like 

writing factory classes, and so forth. Within __init__, all the instance 

fields — called attributes in Python — are initialized. Note that we did not 

have to pre-declare all the attributes of the class.

2 You may skip specifying object as the base class in Python 2, but it’ll have implications 
as explained in New-style Classes - https://www.python.org/doc/newstyle/

ChaPter 2  the Syntax

https://www.python.org/doc/newstyle/
https://www.python.org/doc/newstyle/


35

The first argument of all instance methods is self. It is the this 

reference that is implicit in Java but made explicit in Python. Note that the 

literal name self isn’t mandatory; you could name it whatever you want. If 

you named it current, then full_name would be defined as:

# `current` instead of the conventional `self`

def full_name(current):

    return "%s %s" % (current.first, current.last)

ASIDE

I’ve sneaked in an example of string interpolation in the full_name method 

definition. Python’s string interpolation works on tuple arguments and is 

similar to Java’s String.format(s, arg...). there’s another variant that 

works on named parameters and takes a dictionary argument:

>>> "The name is %(last)s, %(first)s %(last)s" % {'first': 

'James', 'last': 'Bond'}

'The name is Bond, James Bond'

The double underscore notation used in the __init__ method name is 

a Python convention for declaring special methods. The __str__ is another 

special method. Its behavior is exactly like that of the toString() method 

in Java. I’ll explain what makes these methods special when we talk about 

protocols.

Now here is some example usage of this Person class.

>>> person = Person('Clark', 'Kent')  ①

>>> print person                      ②

Person: Clark Kent

>>> print person.first                ③

Clark

ChaPter 2  the Syntax



36

>>> print person.full_name()          ④

Clark Kent

>>> print Person.full_name(person)    ⑤

Clark Kent

 1. Object creation is just as it is in Java, except that you 

don’t need to use the new keyword.

 2. print is equivalent to System.out.println() and 

it’ll call the argument’s __str__ method, just like the 

latter calls to toString().

 3. The fields of the class, called attributes in Python, 

are accessed using the dotted syntax.

 4. Methods are accessed using the dotted syntax 

too. Although self is explicit during the method 

definition, it is implicitly passed when the method is 

called on an object.

 5. But you can make it explicit by calling the method 

from the class and passing in an instance. Can’t do 

that in Java!

You’ll notice that we didn’t declare whether our fields are private or 

public. We just accessed them as if they are public. In fact, Python does 

not have the concept of visibility at all! Everything is just public. If you wish 

to indicate to the user of your class that a particular attribute or method 

is an internal implementation detail, then the convention is to prefix the 

attribute/method name with a single underscore and the person using the 

code will know to tread carefully.

ChaPter 2  the Syntax



37

 Inheritance
Python supports single inheritance as well as multiple inheritance; that is, 

the inheritance model is closer to C++ than Java. With multiple inheritance, 

there’s always the question of how methods are resolved when declared 

at multiple places in the class hierarchy. In Python, the method resolution 

order is in general, depth-first. The class attribute __mro__ can be inspected 

to check the actual method resolution order being used for the class.

Here’s a SuperHero class that extends the Person class that we 

previously defined. We’ve added one new attribute, nick, and one new 

method, nick_name, in the SuperHero class.

class SuperHero(Person):

    def __init__(self, first, last, nick):

        super(SuperHero, self).__init__(first, last)

        self.nick = nick

    def nick_name(self):

        return "I am %s" % self.nick

super works like it does in Java, but once again, you need to be 

explicit about the class at which it should start climbing up. Let’s see how 

SuperHero behaves in a few examples.

>>> p = SuperHero("Clark", "Kent", "Superman")

>>> p.nick_name()

I am Superman

>>> p.full_name()

'Clark Kent'

>>> type(p)                              ①

<class '__main__.SuperHero'>

>>> type(p) is SuperHero

True

ChaPter 2  the Syntax



38

>>> type(type(p))

<type 'type'>

>>> isinstance(p, SuperHero)             ②

True

>>> isinstance(p, Person)

True

>>> issubclass(p.__class__, Person)      ③

True

 1. The built-in type() function gives the type of any 

object. The type of a class object is type. The 

__main__ that you see in the class name here is just 

the default namespace in which Python places your 

objects. You’ll learn more about namespaces in the 

“Organizing Code” section.

 2. The isinstance() built-in function is the Python 

counterpart of Java’s instanceof operator and the 

Class.isInstance() method.

 3. Similarly, the obj.__class__ attribute is like Java’s 

obj.class field.

 Polymorphism
Let’s look at the canonical example that is used to demonstrate 

polymorphic behavior, the shape.

class Square(object):

    def draw(self, canvas):

        ...

ChaPter 2  the Syntax



39

class Circle(object):

    def draw(self, canvas):

        ...

Given these two Square and Circle classes, the Java developer inside 

you would already be thinking of extracting a Shape class or interface 

that defines the draw(canvas) method. Resist that urge! Since Python is 

dynamic, the following code works just fine without an explicit Shape class:

shapes = [Square(), Circle()]

for shape in shapes:

    shape.draw(canvas)

There is no real advantage to having a common Shape base class that 

defines draw(canvas) since there’s no static type check to enforce that 

anyway. If the objects in the shapes list did not implement draw(canvas), 

you’ll find that out at runtime. In short, use inheritance for shared 

behavior, not for polymorphism.

 Getting Dynamic!
So far, what we’ve seen of classes in Python is pretty tame. There’s nothing 

that you couldn’t accomplish in Java. Time to make it interesting! Consider 

the following:

>>> p = SuperHero("Clark", "Kent", "Superman")     ①

>>> def get_last_first(self):                      ②

...   return "%s, %s" % (self.last, self.first)

...

>>> Person.last_first = get_last_first               ③

>>> print p.last_first()                           ④

Kent, Clark

ChaPter 2  the Syntax



40

 1. We start with an instance of the SuperHero class.

 2. Next, we define a new top-level function named 

get_last_first().

 3. Then we assign the reference of the get_last_

first() function to a new attribute named last_

first of the Person class.

 4. Thanks to the previous step, all instances of the 

Person class, including instances of derived classes, 

have now sprouted a new method.

To summarize, what we’ve done here is bound a new function as an 

instance method to the Person class. Once bound, the method becomes 

available to all instances of the Person class, including those already created!

This technique can also be used to define a new implementation for 

an existing method. Doing so is usually called monkey patching and is 

generally frowned upon in the Python community since it can quite easily 

cause surprising and unexpected behavior.

Now that we’ve seen how we can add behavior to a class after the fact, 

can we go the other way and remove behavior? Sure!

>>> print p.last

Kent

>>> del p.last

>>> print p.last

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

  AttributeError: 'SuperHero' object has no attribute 'last'

ChaPter 2  the Syntax



41

>>> del Person.full_name

>>> p.full_name()

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

  AttributeError: 'SuperHero' object has no attribute 'full_name'

>>>

Because Python is dynamically typed, accessing non-existent fields 

and methods causes exceptions at runtime. Conversely, we can define new 

attributes at runtime!

class Person(object):

   ...

   def __getattr__(self, item):

        # This special method is called when normal attribute 

lookup fails

       if item is 'hyphenated_name':

           return lambda x: "%s-%s" % (x.first, x.last)

       else raise AttributeError(item)

>>> p = Person('Clark', 'Kent')

>>> p.hyphenated_name()

'Clark-Kent'

Imagine the amount of bytecode rewriting trickery you would have 

to do to achieve this same effect in Java! Case in point, think of the code 

gymnastics that Java mock libraries are forced to go through. In Python, 

mocks are trivial to implement using __getattr__ and __setattr__.

ChaPter 2  the Syntax



42

 Protocols
Protocols are like Java interfaces in that they define one or more methods 

that offer a particular behavior. However, unlike Java interfaces, protocols 

are not explicitly defined in source code. The closest equivalent would 

be the equals(), hashcode(), and toString() methods in Java. These 

methods aren’t part of any explicit interface. Yet, we have an implicit 

convention3 that these methods will be invoked in certain situations. So it 

is with Python protocols.

The Python language defines several different protocols such as 

sequences, numeric, containers, and so forth. These protocols manifest 

themselves in terms of special syntactic support in the language grammar. 

Pretty much every language syntax in Python is implemented in terms 

of protocols, and thus, can be made to work with your own types by 

implementing the relevant protocols.

Let me explain this further using one of the protocols, the Container 

protocol, as an example. Consider the following OrderRepository class 

definition, which provides access to a database backed collection of Order 

objects.

Caution Please do not use this example as the basis of production 
code! It is wide open to SQL Injection attacks. For relational database 
access, consider using the SQLalchemy library discussed in Chapter 3.

3 A convention documented in the Java Language Specification, but a convention 
nevertheless; not a source code level contract.

ChaPter 2  the Syntax



43

 class OrderRepository(object):

    ...

    def __contains__(self, key):

         return 1 == db.query("select count(1) from Orders where 

id='%s'" % key)

    def __getitem__(self, key):

         return Order(db.query("select * from Orders where 

id='%s'" % key))

    def __setitem__(self, key, value):

        d = value.as_dict()

         update_params = ", ".join( ["%s = '%s'" % x for x in 

d.iteritems()] )

         db.update("update Orders set %s where id='%s'" % 

(update_params, key)

I’ve elided the full class definition and only shown the three methods that 

are part of the Container protocol. Since OrderRepository can now be said to 

implement the Container protocol, it allows us to use it in the following way:

>>> orders = OrderRepository(db)

>>> if "orderId123" in orders:           ①

...     order = orders["orderId123"]     ②

...     order.status = "shipped"

...     orders["orderId123"] = order     ③

>>>

 1. Because we’ve implemented the __contains__ 

method for the OrderRepository, we can now 

use the if x in y syntax to operate on it. What’s 

happening under the covers is that Python is 

translating that if statement into if orders.__

contains__("orderId123").

ChaPter 2  the Syntax



44

 2. Similarly, the __getitem__ method unlocks 

the dictionary like access using the order id, 

translating the key lookup to orders.__getitem__

("orderId123").

 3. Finally, dictionary-like assignment works via the 

__setitem__ method call.

You can think of this as operator overloading or syntactic sugar, 

whichever fits your mental model!

Table 2-1 lists of some of the other protocols that Python supports and 

the syntax that they power.

Table 2-1. Protocols in Python

Protocol Methods Supports Syntax

Sequences Support slice in __getitem__, 

etc.

seq[1:2]

Iterators __iter__, next for x in collection:

Comparison __eq__, __gt__, __lt__, 

...

x == y, x > y, x < y, 

...

numeric __add__, __sub__, __

and__, ...

x + y, x - y, x & y, ...

String like __str__, __unicode__, 

__repr__

print x

attribute access __getattr__, __setattr__ obj.attr

Context 

Managers

__enter__, __exit__ with open('out.txt') 

as f: f.read()

ChaPter 2  the Syntax



45

 Organizing Code
The most basic unit of source code organization in Python is the module, 

which is just a .py file with Python code in it. This code could be functions, 

classes, statements or any combination thereof. Several modules can 

be collected together into a package. Python packages are just like Java 

packages, with one difference: the directory corresponding to a package 

must contain an initializer file named __init__.py. This file can be empty 

or it can optionally contain some bootstrap code that is executed when the 

package is first imported.

Suppose we have a code base organized, as follows:

 .

 |-- cart.py

 |-- db

 |   |-- __init__.py

 |   |-- mysql.py

 |   +-- postgresql.py

 +-- model

     |-- __init__.py

     +-- order.py

Given this directory listing, we can see that there are two packages: db 

and model. There are four modules: cart, mysql, postgresql, and order.

 Importing code
Importing code defined in one file (or module, in Python terms) into 

another is accomplished using the import statement. The import 

statement works pretty much like it does in Java: it brings the declarations 

from the target module into the current namespace.

ChaPter 2  the Syntax



46

There are two syntactical variants of the import statement. The first 

one is in the familiar Java style, import ... while the second one follows a 

from ... import ... pattern.

Suppose we have a class named SellOrder defined in the order 

module; that is, inside the order.py file:

$ cat model/order.py

class SellOrder(object):

    ...

    ...

There are a few different ways in which we can import and use this 

class in our main app, cart.py.

import model

sell_order = model.order.SellOrder()

In this example, we use the import <package|module> syntax to 

import the target package — model — into the current namespace and then 

use a dotted notation to get to our SellOrder class. We can use the same 

syntax to import the specific module instead of the containing package:

import model.order

sell_order = order.SellOrder()

Here, we imported the order module directly. Note the distinction 

between the way the import syntax works in Java and in Python. In Java, we 

always import a class from within our package hierarchy. In Python, an import 

... statement can only be used to import packages or modules. If you want 

to access a class or function definition, you must refer to it via the containing 

module. Or use the alternate syntax, from <package|module> import <item>:

from model.order import SellOrder

sell_order = SellOrder()

ChaPter 2  the Syntax



47

Here, we use the from <package|module> import <item> syntax 

variant that directly imports SellOrder into the current namespace. This 

style of import can be used to import any top-level item from within the 

source module, be it a function, class, or variable definition.

Python offers one more enhancement over Java imports: the ability to 

rename the import using the as keyword.

from model.order import TYPES as ORDER_TYPES

from db import TYPES as DATABASE_TYPES

print ORDER_TYPES

# ['buy', 'sell']

print DATABASE_TYPES

# ['mysql', 'postgresql']

As you can imagine, this feature comes in very handy when trying to 

avoid namespace conflicts without having to use the full package/module 

hierarchy for disambiguation like we do in Java.

Tip In Java, each .java file must contain only class or interface 
declarations at the top level. Moreover, in typical usage, each such 
file has just one public class or interface defined. Python modules 
have no such restrictions. It is perfectly fine to create modules with 
just functions or just classes or a mix of both. Do not restrict yourself 
to just one class or function definition per module. this is not only 
unnecessary, but also considered a bad practice. Instead, strive to 
collect constructs having conceptual similarity into one module.

ChaPter 2  the Syntax



48

 The main() Method
Now that we’ve organized our application’s source code into multiple files, 

you must be wondering, what defines the entry point for the application? 

As Java programmers, public static void main is forever burned into 

our brains! What’s the equivalent in Python?

There is no formal notion of an application entry point in Python. 

Instead, when Python executes a file; for example, when you run python 

foo.py, execution begins at the start of the file and all statements defined 

at the top-level are executed in order until we reach the end of the file. 

Consider a file named odds.py that contains the following code:

# odds.py

def get_odds(numbers):

    odds = [n for n in numbers if n % 2 != 0]

    return odds

odds_until = 10

numbers = range(odds_until)

print get_odds(numbers)

When this file is executed by running python odds.py from your 

favorite operating system shell, the Python interpreter starts at the top, 

runs down the file till it finds the definition of the get_odds function. It 

makes note of this function by adding its name to the current namespace. 

It does so by making an entry in a lookup table that it maintains for each 

namespace. Once done with adding get_odds to the current namespace’s 

lookup table, Python then skips the rest of the function declaration since 

statements inside the function’s body aren’t at the top level.

Moving further down the file, Python encounters the declaration of the 

odds_until variable and executes that statement causing the value 10 to 

be assigned to it. Once again, an entry is made in the current namespace’s 

lookup table for the odds_until variable.

ChaPter 2  the Syntax



49

On the next line, it encounters an assignment statement that 

involves a function named range. Python looks up this function in the 

current namespace, where it can’t find it. It then looks for it in the  built- 

in namespace and finds it there. Recall that the built-in namespace is 

equivalent to java.lang.*—things defined here don’t have to be explicitly 

imported. Having found the range function, it calls it assigning the return 

value to numbers. As you can guess by now, another entry is made for 

numbers in the current namespace.

Proceeding further, we reach the last line of the file where there’s a call 

to get_odds with numbers as a parameter. Since both these names have 

entries in the current namespace, Python has no trouble calling get_odds 

with the list of numbers. Only at this point in time is the get_odds function 

body parsed and executed. The return value is then supplied to print, 

which writes it out to the console, as follows:

$ python odds.py

[1, 3, 5, 7, 9]

$

Having seen how Python executes a script, we can try and simulate a 

main method, as follows:

# odds.py

def get_odds(numbers):

    odds = [n for n in numbers if n % 2 != 0]

    return odds

def main():

    odds_until = 10

    numbers = range(odds_until)

    print get_odds(numbers)

main()

ChaPter 2  the Syntax



50

All we’ve done here is wrapped up all our top-level statements into a 

function that we conveniently gave the name of main! We call this function 

at the end of the file, in effect, making main the entry point of our app.

Let’s complete our Java-like main method implementation by taking 

care of the arguments to main; that is, the args in public static void 

main(String[] args). In Java, all command-line parameters passed to 

the application during launch would be populated in the args arrays. In 

Python, this information is available using the built-in sys standard library 

module. This module defines sys.argv, which is a list of the command- 

line arguments passed to the Python script on startup. The first value in 

the list, sys.argv[0] is the name of the script itself. The remaining items in 

this list are the command-line arguments, if any.

Let’s modify our odds.py script to take the number, until which we 

should print odd numbers as a command-line parameter, which we 

retrieve using the sys module.

# odds.py

def get_odds(numbers):

    odds = [n for n in numbers if n % 2 != 0]

    return odds

def main(args):

    try:

        odds_until = int(args[1])

    except:

        print "Usage: %s <number>" % sys.argv[0]

        sys.exit(1)

    numbers = range(odds_until)

    print get_odds(numbers)

import sys

main(sys.argv)

ChaPter 2  the Syntax



51

In this modified odds.py, we invoke the main function with the list of 

command-line arguments as a parameter. Within main, we initialize the 

odds_until variable using the first command-line argument. If this fails for 

any reason, we print a helpful message on how to use the script before exiting 

with a 1 error code. Here’s how this modified example works in practice:

$ python odds.py

Usage: odds.py <number>

$ python odds.py abc

Usage: odds.py <number>

$ python odds.py 15

[1, 3, 5, 7, 9, 11, 13]

$

Finally, we have a main function that works like Java! It even looks 

like the main method in Java; def main(args) is more or less identical 

to public static void main(String[] args) once all the type-related 

declarations are dropped.

However, there’s a wrinkle here that I wish to talk about. Imagine that 

we found our get_odds function to be so useful that we wanted to use it as 

a utility function elsewhere in our project’s codebase. Since we just talked 

about modules, the obvious way would be to just use odds.py as a module 

and import the module wherever we find the use of this utility function. 

For example, in demo.py:

# demo.py

import odds

print odds.get_odds(range(10))

ChaPter 2  the Syntax



52

When we run this demo.py script, we expect it to import the odds 

module and then use the get_odds defined in there to print the odd 

numbers till ten. Instead, here’s what happens:

$ python demo.py

Usage: demo.py <number>

$

That’s odd. Why are we getting this message? We passed in 10 as an 

argument to get_odds in demo.py. Which other <number> is it expecting? In 

fact, even though the message says “Usage: demo.py”, this usage message 

looks very much like the one we defined inside odds.py.

Here’s what is actually happening. When Python imports a module, 

it actually executes that module, just as it would have if the module were 

run as a script! During the execution of demo.py, when Python encounters 

the import odds statement, it first attempts to locate the odds.py file. 

Having found it, Python executes the entire file, just as I described in our 

discussion earlier. Specifically, it executes the following piece of top-level 

code in odds.py:

import sys

main(sys.argv)

Since there was no command-line parameter supplied during 

execution of demo.py, the value of sys.argv[1] is missing. This raises an 

exception within main(), which causes the Usage message to get printed. 

Moreover, since the actual command executed in this case was python 

demo.py, the value of sys.argv[0] is demo.py and not odds.py. This 

explains the output message.

To use odds as a module, we would have to remove all top-level 

statements from it. In fact, this is a very important point!

ChaPter 2  the Syntax



53

Caution Unless you have a very good reason, do not define any 
side effect–causing top-level statements in your modules. If you 
do so, these statements will be executed whenever your module is 
imported causing all sorts of headaches.

Here’s a modified odds.py, stripped of all top-level code:

# odds.py

def get_odds(numbers):

    odds = [n for n in numbers if n % 2 != 0]

    return odds

Now, running the demo.py script yields the expected output.

$ python demo.py

[1, 3, 5, 7, 9]

Having made this change, while we gained the ability to use odds as 

a module, we lost the ability to run it as a script. Wouldn’t it be nice if 

we could do both? Even in Java land, just because a class defines a main 

method does not mean that it can’t be imported and used as a vanilla class 

elsewhere!

To achieve this module/script duality, we’ll have to dig a little bit 

deeper into the notion of namespaces.

I’ve mentioned the term namespace several times in this chapter 

without defining it in more detail. In computer science terms, we 

understand namespaces as isolated contexts or containers for names. 

Namespaces allow us to group logical things together and allow reuse of 

names without causing conflicts.

ChaPter 2  the Syntax



54

During program execution, whenever a module is imported, Python 

creates a new namespace for it. The name of the module is used as the 

name of the namespace. Thus, all that a piece of code such as odds.

get_odds(...) is doing is invoking the get_odds function in the odds 

namespace. When a namespace qualifier is left out, then the object 

is looked up in the current namespace or failing that, in the built-in 

namespace.

At runtime, you can get access to the namespace encapsulating your 

code by referring to the special __name__ variable. This variable is always 

bound to the current namespace. Let’s see an example of __name__ in 

action by modifying our demo.py and odds.py scripts.

# odds.py

print "In odds, __name__ is", __name__

def get_odds(numbers):

    odds = [n for n in numbers if n % 2 != 0]

    return odds

# demo.py

import odds

print "In demo, __name__ is", __name__

print odds.get_odds(range(10))

Now when we run the demo script, we see this output:

$ python demo.py

In odds, __name__ is odds

In demo, __name__ is __main__

[1, 3, 5, 7, 9]

ChaPter 2  the Syntax



55

As we just discussed, on import, the odds module is bound to a 

namespace with the same name; that is, odds. Hence, in the context of 

code within odds.py, the value of the __name__ variable is odds. However, 

for code in demo.py, we see that the value of __name__ is the curiously 

named __main__. This is a special namespace that Python assigns to the 

main context of your application. In other words, the entry point of your 

application (typically, the script that is executed by Python) is assigned the 

namespace __main__.

We can put this knowledge to use to achieve the script/module duality.

Here is our odds.py file once again, in a form that can be executed 

directly as a Python script, but can’t be imported as a module.

# odds.py

def get_odds(numbers):

    odds = [n for n in numbers if n % 2 != 0]

    return odds

def main(args):

    try:

        odds_until = int(args[1])

    except:

        print "Usage: %s <number>" % sys.argv[0]

        sys.exit(1)

    numbers = range(odds_until)

    print get_odds(numbers)

import sys

main(sys.argv)

ChaPter 2  the Syntax



56

We will wrap up the top-level code behind a check for the current 

namespace:

# odds.py

def get_odds(numbers):

    odds = [n for n in numbers if n % 2 != 0]

    return odds

def main(args):

    try:

        odds_until = int(args[1])

    except:

        print "Usage: %s <number>" % sys.argv[0]

        sys.exit(1)

    numbers = range(odds_until)

    print get_odds(numbers)

if __name__ == '__main__':

    import sys

    main(sys.argv)

As you can see, we took the side-effect causing top-level code, namely 

the invocation of the main() function, and put it behind a conditional that 

checks if the current namespace is __main__. When odds.py is run as a 

script; that is, it is the entry point of the application, the value of __name__ 

will be __main__. Thus, we will enter the conditional block and run that 

piece of code. On the other hand, when odds.py is imported as a module, 

the value of __name__ will be odds and not __main__. Thus, the block of 

code behind the conditional is skipped.

ChaPter 2  the Syntax



57

As you read more and more Python code, you’ll come across the  

if __name__ == '__main__' construct all the time. It is a standard idiom 

used in Python programs to get the effect of a main method. Python’s 

creator, Guido van Rossum, has written a nice blog post on writing 

idiomatic Python main() functions4 that takes this idea even further.

 Summary
We covered quite a bit of ground in this chapter. We started with a look at 

the basic syntax and built-in types that Python provides. We then moved 

on to the building blocks of functions and classes. We then familiarized 

ourselves with Python’s implicit interfaces; that is, protocols. Finally, we 

learned about organizing source code into modules and packages.

While this book ends our discussion of Python language syntax over 

here, there’s more to Python than this! Some of the advanced topics 

that we didn’t discuss include decorators, properties, generators, context 

managers, and I/O. These are topics you’ll find yourself exploring once 

you get comfortable writing basic Python code. To help you along in your 

learning, I’ve compiled some useful resources in “References” section at 

the end of this book.

4 See http://www.artima.com/weblogs/viewpost.jsp?thread=4829

ChaPter 2  the Syntax

http://www.artima.com/weblogs/viewpost.jsp?thread=4829


59© Deepak Sarda 2017 
D. Sarda, Python for the Busy Java Developer, https://doi.org/10.1007/978-1-4842-3234-7_3

CHAPTER 3

The Ecosystem
As software developers, we know that when evaluating a programming 

language, we need to look at not just the core language itself, but also 

at the ecosystem of libraries and tools for the language. The richness of 

this ecosystem often determines how productive you’d be when writing 

software in the language.

In this chapter, I describe the Python ecosystem and share some of 

the more popular tools and frameworks to get you started with Python 

development.

 A Rich Ecosystem
In the Java world, we know that Java is much more than the language 

itself. There’s the JVM, the Java language runtime that allows deploying 

applications on a variety of hardware and operating system targets. There 

are the Java SE and EE Standard Libraries, which provide a lot of useful 

functionality out of the box. And of course, there’s an immensely rich 

variety of third-party libraries and frameworks to choose from. It is the 

strength of this ecosystem that makes Java a great platform to build upon.

So it is with Python!

Python too can be deployed on different hardware targets like x86, 

ARM, and MIPS; on multiple operating systems like Linux, Mac OS X, 



60

Windows, and Solaris. It can even be deployed on other software runtimes 

like the .NET CLR (IronPython1) or the Java virtual machine (Jython2).

Python has a great standard library with lots of functionality delivered 

out of the box. “Batteries included” is often used to describe the richness of 

the standard library.

Beyond the standard library, the third-party libraries and frameworks 

landscape is similarly rich, ranging from numerical and scientific 

computing packages, to NLP, to networking, GUI, and web frameworks. 

You’d be hard pressed to find a domain for which there isn’t already a 

Python library out there.

To help you get started, I’ve put together a couple of lists in Tables 3-1 

and 3-2 that’ll help you pick out the Python counterparts of the Java tools 

and libraries that you are already familiar with. These lists are by no means 

exhaustive but I do believe that they represent the most popular options in 

use today.

 Popular Tools
In the Python world, third-party library installation is typically done 

using a tool named pip. It can read the requisite third-party package 

dependencies for your project from a standardized requirements.txt file, 

and then install/upgrade packages as necessary. If needed, it can even 

download packages from a central repository named PyPI, short for the 

Python Package Index. This is the Python world’s equivalent of Maven’s 

Central Repository.

1 http://ironpython.net/
2 http://www.jython.org/

Chapter 3  the eCosystem

http://ironpython.net/
http://www.jython.org/


61

With third-party packages comes the question of how they are located 

at runtime. Java’s solution is the classpath and Python’s equivalent is the 

PYTHONPATH. Conceptually, they are similar in that both specify a list of 

locations where the language runtime should search for packages being 

imported. Implementation wise, they differ a bit. PYTHONPATH is set as an 

environment variable; for example,  PYTHONPATH=/path/to/foo:/path/

to/bar, a syntax similar to the typical system shell’s PATH variable. Another 

flexibility that Python provides is that this library search path can be 

modified at runtime just by manipulating the sys.path attribute exposed 

by the built-in system module. As you might have guessed, sys.path is 

initialized from the value set for the PYTHONPATH environment variable.

I mentioned earlier that there are multiple runtime implementations 

of the Python language. The canonical implementation is CPython, named 

so because the core of the language runtime is implemented in C. It is 

the most widely used implementation and regarded as the reference for 

the Python language. Alternative implementations include Jython, which 

Table 3-1. Popular Build and  

Execution Tools

Java Python

build.xml/pom.xml requirements.txt

maven pip

maven Central repository pypI

Classpath pythoNpath

hotspot Cpython

Chapter 3  the eCosystem



62

is Python running on the JVM; IronPython, which is Python running on 

the .NET Common Language Runtime; and PyPy, which is an upcoming 

implementation of Python that provides a number of improvements like 

a runtime JIT compiler, secure sandboxing, and green threads based 

concurrency.

As a Java developer, you may wish to explore Jython a bit more. Since it 

is essentially Python code translated to Java bytecode and running inside 

a Java virtual machine, it allows for easy interop between Python and Java. 

As an example, you could write high-level business rules in Python and 

call into a Java rule engine to execute those rules.

 Popular Frameworks
Since Python is a dynamic language, there’s a class of programming errors 

that are revealed at runtime, instead of being caught at compile time like 

they would in a statically typed language. Thus, writing automated tests 

for your Python programs is even more important than it is in Java. The 

Python standard library ships with a unit-testing framework creatively 

named unittest, which should serve as good start. If you find that unittest 

is missing some features you’d like or is just a bit too cumbersome to use, 

then pytest is a good third-party alternative.

Chapter 3  the eCosystem



63

Another tool in the modern developer’s arsenal for keeping code 

quality high is automated static analysis of source code. The findbugs and 

checkstyle equivalent for Python is pylint. It can enforce a uniform code 

formatting style, detect basic programming errors, and duplicate blocks of 

code. And as you would expect, you can integrate it in your IDE as well as 

CI build server.

If you are building a desktop GUI, then the PyQT and PyGTK libraries 

are popular options. These are Python wrappers around the popular Qt 

and GTK libraries, respectively. Both these frameworks are cross-platform, 

just like Java Swing.

While desktop GUI applications still have their place, it isn’t a stretch 

to say that a majority of new applications being built today are web 

applications. Python is very well suited to this task. In fact, you may be 

Table 3-2. Popular Development 

and Testing Frameworks

Java Python

JUnit unittest/pytest

mockito unittest.mock

Findbugs/Checkstyle pylint

Javadoc sphinx

swing pyQt/pyGtK

spring Boot Django/Flask

hibernate sQLalchemy

Velocity/thymeleaf Jinja2

servlets WsGI

tomcat/Jetty apache/uWsGI

Chapter 3  the eCosystem



64

surprised to know that many of the Internet’s most popular websites, like 

YouTube and Reddit, are written in Python.

Spring Boot is a popular choice for full stack web development in the 

Java world. By full stack, I mean a framework that handles everything 

from frontend user authentication to backend database connectivity and 

everything in between. The most popular full-stack web development 

framework for Python is Django. If you are just dipping your toes into 

web development with Python, I strongly recommend that you start 

with Django. You’ll find it to be a very easy to learn and productive web 

development environment.

On the other hand, if you are the type of developer who finds full 

stack frameworks too restrictive to use, then you can mix and match best 

of breed libraries and roll your own stack. On the database access front, 

SQLAlchemy is the preeminent option. It provides a low-level DB interface 

like JDBC, a mid-level Spring JDBCTemplate like interface that provides 

convenient plumbing around writing raw SQL queries, and finally, a  high- 

level ORM layer like Hibernate. Depending on your requirements, you can 

choose just the level of abstraction that you need.

Another aspect of web development is generating responses for HTTP 

requests, typically HTML pages, using a template engine. This is the kind 

of work for which you’d reach for the Velocity or Thymeleaf libraries over 

in Java land. Jinja2 is the go-to templating library for Python applications. 

It has a pleasant syntax, lots of features, and is fairly fast too.

Python web sites are generally deployed using either the Apache web 

server or a smaller Python specific web server like uWSGI. These web 

servers rely on a Python web development standard called the Web Server 

Gateway Interface (WSGI). Think of it as the equivalent of Java servlets in 

the Python world.

Chapter 3  the eCosystem



65

 Summary
Due to its long history and popularity, Python has gained a rich ecosystem 

of libraries, tools, and frameworks that aid software development. We 

discussed a few of the popular ones in this chapter that should help you get 

started on your first Python project.

Chapter 3  the eCosystem



67© Deepak Sarda 2017 
D. Sarda, Python for the Busy Java Developer, https://doi.org/10.1007/978-1-4842-3234-7_4

CHAPTER 4

The Zen of Python
We are finally at the end of this short book and I hope that, as promised at 

the start, you’ve gained sufficient familiarity with the Python language and 

ecosystem to start hacking on some Python code of your own.

While you dive in to writing Python code, I urge you to also take 

some time to read existing Python code written by long time Python 

programmers. Reading code written by experienced Pythonistas will 

give you an appreciation for what is considered to be good and idiomatic 

Python code. Because in the end, it is not just the pure mechanics of the 

language, but this pervasive appreciation by the community for simple, 

readable code that makes Python such a joy to use.

And there’s no better distillation of this Pythonic mind-set than Tim 

Peter’s “TheZen of Python.”1

antrix@cellar:~$ python

>>> import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

1 See http://www.wefearchange.org/2010/06/import-this-and-zen-of-
python.html

http://www.wefearchange.org/2010/06/import-this-and-zen-of-python.html
http://www.wefearchange.org/2010/06/import-this-and-zen-of-python.html


68

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one -- and preferably only one -- obvious way 

to do it.

Although that way may not be obvious at first unless you're Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea -- let's do more of those!

>>>

Chapter 4  the Zen of python



69© Deepak Sarda 2017 
D. Sarda, Python for the Busy Java Developer, https://doi.org/10.1007/978-1-4842-3234-7_5

APPENDIX

References
• Code Like a Pythonista: Idiomatic Python

http://python.net/~goodger/projects/

pycon/2007/idiomatic/handout.html

• Generator Tricks for Systems Programmers

http://www.dabeaz.com/generators-uk/

• Java is not Python, either…

http://dirtsimple.org/2004/12/java-is-not- 

python-either.html

• Python Ecosystem: An Introduction

http://mirnazim.org/writings/python-

ecosystem- introduction/

• Python Is Not Java

http://dirtsimple.org/2004/12/python-is-not- 

java.html

• Secrets of the Framework Creators

http://farmdev.com/src/secrets/

http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html
http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html
http://www.dabeaz.com/generators-uk/
http://dirtsimple.org/2004/12/java-is-not-python-either.html
http://dirtsimple.org/2004/12/java-is-not-python-either.html
http://mirnazim.org/writings/python-ecosystem-introduction/
http://mirnazim.org/writings/python-ecosystem-introduction/
http://dirtsimple.org/2004/12/python-is-not-java.html
http://dirtsimple.org/2004/12/python-is-not-java.html
http://farmdev.com/src/secrets/


70

• Style Guide for Python Code

http://legacy.python.org/dev/peps/pep-0008/

• The Hitchhiker’s Guide to Python!

http://docs.python-guide.org/en/latest/

appendix  RefeRences

http://legacy.python.org/dev/peps/pep-0008/
http://docs.python-guide.org/en/latest/


71© Deepak Sarda 2017 
D. Sarda, Python for the Busy Java Developer, https://doi.org/10.1007/978-1-4842-3234-7

Index

A, B, C, D
Command-line arguments, 51

E, F, G, H
Ecosystem

build and execution tools, 61
Django, 64
frameworks, 62, 64
frameworks landscape, 60
hardware targets, 59
Java SE and EE Standard 

Libraries, 59
Jython, 61
PyQT and PyGTK libraries, 63
PYTHONPATH, 61
SQLAlchemy, 64
third-party libraries, 60
third-party libraries and 

frameworks, 59

I
Inheritance, 37–38
IronPython, 60

J, K, L
Java virtual machine (Jython), 60
Jython, 61

M, N, O
Method resolution order, 37

P, Q
Polymorphism, 38–39
Python

functional programming, 2
history, 3, 5
installation, 5
JVM garbage collectors, 3
memory management, 3
object oriented programming, 2
obj variable, 2
Python Software Foundation 

License Agreement, 1
scripts and command-line 

tools, 1
tools

built-in functions, 8



72

dir function, 9
dir() function, 10–11
dir function, 9
interactive mode, 7
Java, 6
.pyc files, 6
traditional development 

process, 12
types, 1
variables and objects, 2
Zen, 68

Python Enhancement Proposals 
(PEP), 5

Python language features
attributes, 41
basic constructs, 14–16
basic data types

collections, 18
numbers, 16
strings, 17–18

classes, 34–36
code organization

importing code, 45–47
main() method, 48, 50–54, 56
module and packages, 45

dictionaries and sets, 13
functions, 25–27, 29
get_last_first() function, 40
inheritance, 37–38
inside functions, 31–33
lists, 19–20, 22, 24–25

modules and packages, 13
monkey patching, 40
object-oriented  

language, 13
Person class, 40
polymorphism, 38–39
protocols, 42, 44
short code fragments, 13
SuperHero class, 40
tuples, 29–30

Python Software Foundation 
License Agreement, 1

R
Read Eval Print Loop (REPL), 7

S
SuperHero class, 37–38

T, U, V
toString() method, 35

W, X, Y
Web Server Gateway  

Interface (WSGI), 64

Z
Zen of Python, 68

Python (cont.)

Index


	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: The Language
	 What Is Python?
	 History
	 Installation
	 Tools
	 Summary

	Chapter 2: The Syntax
	 Hello World
	 Basic Constructs
	 Basic Types
	 Numbers
	 Strings
	 Collections

	 Fun with Lists
	 Functions
	 Functions and Tuples
	 Functions Inside Functions

	 Classes
	 Inheritance
	 Polymorphism
	 Getting Dynamic!

	 Protocols
	 Organizing Code
	 Importing code
	 The main() Method

	 Summary

	Chapter 3: The Ecosystem
	 A Rich Ecosystem
	 Popular Tools
	 Popular Frameworks

	 Summary

	Chapter 4: The Zen of Python
	Appendix: References
	Index



