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Preface
This book is about how to train and use deep learning models or deep neural 
networks in the R programming language and environment. This book is not 
intended to provide an in-depth theoretical coverage of deep neural networks, but 
it will give you enough background to help you understand their basics and use 
and interpret the results. This book will also show you some of the packages and 
functions available to train deep neural networks, optimize their hyperparameters  
to improve the accuracy of your model, and generate predictions or otherwise use  
the model you built. The book is intended to provide an easy-to-read coverage of  
the essentials in order to get going with real-life examples and applications.

What this book covers
Chapter 1, Getting Started with Deep Learning, shows how to get the R and H2O 
packages set up and installed on a computer or server along with covering all the 
basic concepts related to deep learning.

Chapter 2, Training a Prediction Model, covers how to build a shallow unsupervised 
neural network prediction model.

Chapter 3, Preventing Overfitting, explains different approaches that can be used to 
prevent models from overfitting the data in order to improve generalizability called 
regularization on unsupervised data.

Chapter 4, Identifying Anomalous Data, covers how to perform unsupervised deep 
learning in order to identify anomalous data, such as fraudulent activity or outliers.

Chapter 5, Training Deep Prediction Models, shows how to train deep neural networks 
to solve prediction and classification problems, such as image recognition.

www.allitebooks.com
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Chapter 6, Tuning and Optimizing Models, explains how to adjust model tuning 
parameters to improve and optimize the accuracy and performance of deep learning 
models.

Appendix, Bibliography, contains the references for all the citations throughout the 
book.

What you need for this book
You do not need much to use for this book. The main piece of software that you 
need is R, which is open source and runs on Windows, Mac OS, and many varieties 
of Linux. You will also need a recent version of Java. Once you have R and Java 
installed, you will need to install some R packages, all of which work on every major 
operating system.

Perhaps, the more challenging requirement is that, for any real deep learning 
application, and even to explore quite small examples, modern hardware is required. 
For this book, I primarily used a desktop with an Intel Xeon E5-2670 v2 running at 
2.50 GHz (10 physical cores, 20 logical cores), with 32 GB of memory, and a Samsung 
850 PRO 512GB SSD. You do not necessarily need an equivalent system, but I found 
that running some examples on a latest laptop with 16 GB of memory and a dual 
core i7 processor is time consuming.

Who this book is for
This book caters to aspiring data scientists who are well-versed with machine 
learning concepts with R and are looking to explore the deep learning paradigm 
using the packages available in R. You should have a fundamental understanding of 
the R language and be comfortable with statistical algorithms and machine learning 
techniques, but you do not need to be well-versed with deep learning concepts.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:  
"Of course, we cannot actually use the library() function until we have installed 
the packages."
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A block of code is set as follows:

## uncomment to install the checkpoint package
## install.packages("checkpoint")
library(checkpoint)

checkpoint("2016-02-20", R.version = "3.2.3")

When we wish to draw your attention to a particular part of a code block,  
the relevant lines or items are set in bold:

performance.outsample[,-4]

  Size Maxit Shuffle Accuracy AccuracyLower AccuracyUpper

1   40    60   FALSE     0.93          0.92          0.94

2   20   100   FALSE     0.92          0.91          0.93

3   20   100    TRUE     0.92          0.91          0.93

4   50   100   FALSE     0.91          0.90          0.92

5   50   100   FALSE     0.92          0.91          0.93

Any command-line input or output is written as follows:

h2oiris <- as.h2o(

  droplevels(iris[1:100, ]))

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.
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If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at 
http://www.packtpub.com. If you purchased this book elsewhere, you can visit 
http://www.packtpub.com/support and register to have the files e-mailed directly 
to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box.
5.	 Select the book for which you're looking to download the code files.
6.	 Choose from the drop-down menu where you purchased this book from.
7.	 Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder 
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand 
the changes in the output. You can download this file from https://www.
packtpub.com/sites/default/files/downloads/RDeepLearningEssentials_
ColorImages.pdf.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/RDeepLearningEssentials_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/RDeepLearningEssentials_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/RDeepLearningEssentials_ColorImages.pdf
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Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated 
material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
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Getting Started with  
Deep Learning

This chapter discusses deep learning, a powerful multi-layered architecture for 
pattern recognition, signal detection, and classification or prediction. Although deep 
learning is not new, it is only in the past decade that it has gained great popularity, 
due in part to advances in computational capacity and new ways of more efficiently 
training models, as well as the availability of ever-increasing amounts of data. In this 
chapter, you will learn what deep learning is, the R packages available for training 
such models, how to get your system set up for analysis, and how to connect R with 
H2O, which we will use for many of the examples and work in later chapters on how 
to actually train and use a deep learning model.

In this chapter, we will explore the following topics:

•	 What is deep learning?
•	 R packages that train deep learning models such as deep belief networks or 

deep neural networks
•	 Connecting R and H2O, the main package we will be using for deep learning
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What is deep learning?
To understand what deep learning is, perhaps it is easiest to start with what is 
meant by regular machine learning. In general terms, machine learning is devoted 
to developing and using algorithms that learn from raw data in order to make 
predictions. Prediction is a very general term. For example, predictions from 
machine learning may include predicting how much money a customer will spend 
at a given company, or whether a particular credit card purchase is fraudulent. 
Predictions also encompass more general pattern recognition, such as what letters 
are present in a given image, or whether a picture is of a horse, dog, person, face, 
building, and so on. Deep learning is a branch of machine learning where a multi-
layered (deep) architecture is used to map the relations between inputs or observed 
features and the outcome. This deep architecture makes deep learning particularly 
suitable for handling a large number of variables and allows deep learning to 
generate features as part of the overall learning algorithm, rather than feature 
creation being a separate step. Deep learning has proven particularly effective in 
the fields of image recognition (including handwriting as well as photo or object 
classification) and natural language processing, such as recognizing speech.

There are many types of machine learning algorithms. In this book, we are primarily 
going to focus on neural networks as these have been particularly popular in deep 
learning. However, this focus does not mean that it is the only technique available in 
machine learning or even deep learning, nor that other techniques are not valuable 
or even better suited, depending on the specific task. The next sections will discuss 
what neural networks and deep neural networks are conceptually in more depth.

Conceptual overview of neural networks
As their name suggests, neural networks draw their inspiration from neural 
processes and neurons in the body. Neural networks contain a series of neurons, 
or nodes, which are interconnected and process input. The connections between 
neurons are weighted, with these weights based on the function being used and 
learned from the data. Activation in one set of neurons and the weights (adaptively 
learned from the data) may then feed into other neurons, and the activation of some 
final neuron(s) is the prediction.

To make this process more concrete, an example from human visual perception may 
be helpful. The term grandmother cell is used to refer to the concept that somewhere 
in the brain there is a cell or neuron that responds specifically to a complex and 
specific object, such as your grandmother. Such specificity would require thousands 
of cells to represent every unique entity or object we encounter. Instead, it is 
thought that visual perception occurs by building up more basic pieces into complex 
representations. For example, the following is a picture of a square:



Chapter 1

[ 3 ]

Figure 1.1

Rather than our visual system having cells, neurons that are activated only upon 
seeing the gestalt, or entirety, of a square, we can have cells that recognize horizontal 
and vertical lines, as shown in the following:

Figure 1.2
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In this hypothetical case, there may be two neurons, one which is activated when 
it senses horizontal lines and another that is activated when it senses vertical lines. 
Finally, a higher-order process recognizes that it is seeing a square when both the 
lower order neurons are activated simultaneously.

Neural networks share some of these same concepts, with inputs being processed 
by a first layer of neurons that may go on to trigger another layer. Neural networks 
are sometimes shown as graphical models. In Figure 1.3, Inputs are data represented 
as squares. These may be pixels in an image, or different aspects of sounds, or 
something else. The next layer of Hidden neurons consists of neurons that recognize 
basic features, such as horizontal lines, vertical lines, or curved lines. Finally, the 
output may be a neuron that is activated by the simultaneous activation of two of the 
hidden neurons. In this book, observed data or features are depicted as squares, and 
unobserved or hidden layers as circles:

Figure 1.3
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Neural networks are used to refer to a broad class of models and algorithms. Hidden 
neurons are generated based on some combination of the observed data, similar to 
a basis expansion in other statistical techniques; however, rather than choosing the 
form of the expansion, the weights used to create the hidden neurons are learned 
from the data. Neural networks can involve a variety of activation function(s), which 
are transformations of the weighted raw data inputs to create the hidden neurons. 
A common choice for activation functions is the sigmoid function: ( ) 1

1 xx
e

σ −=
+

 and 
the hyperbolic tangent function ( ) ( )tanhf x x= . Finally, radial basis functions are 
sometimes used as they are efficient function approximators. Although there are a 

variety of these, the Gaussian form is common: ( )
2

2exp
2

x c
f x

σ

 −
 = −  
 

.

In a shallow neural network such as is shown in Figure 1.3, with only a single hidden 
layer, from the hidden units to the outputs is essentially a standard regression 
or classification problem. The hidden units can be denoted by h, the outputs by 
Y. Different outputs can be denoted by subscripts i = 1, …, k and may represent 
different possible classifications, such as (in our case) a circle or square. The paths 
from each hidden unit to each output are the weights and for the ith output are 
denoted by wi. These weights are also learned from the data, just like the weights 
used to create the hidden layer. For classification, it is common to use a final 

transformation, the softmax function, which is 

T
i

T
i

hw

i hk w
i

eY
e

=
∑  as this ensures that 

the estimates are positive (using the exponential function) and that the probability of 
being in any given class sums to one. For linear regression, the identity function, 
which returns its input, is commonly used. Confusion may arise as to why there 
are paths between every hidden unit and output as well as every input and hidden 
unit. These are commonly drawn to represent that a priori any of these relations are 
allowed to exist. The weights must then be learned from the data, with zero or near 
zero weights essentially equating to dropping unnecessary relations.

This only scratches the surface of the conceptual and practical aspects of neural 
networks. For a slightly more in-depth introduction to neural networks, see  
Chapter 11 of Hastie, T., Tibshirani, R., and Friedman, J. (2009), which is freely 
available at http://statweb.stanford.edu/~tibs/ElemStatLearn/, Chapter 16 
of Murphy, K. P. (2012), and Chapter 5 of Bishop, C. M. (2006). Next, we will turn to a 
brief introduction to deep neural networks.

http://statweb.stanford.edu/~tibs/ElemStatLearn/
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Deep neural networks
Perhaps the simplest, if not the most informative, definition of a deep neural 
network (DNN) is that it is a neural network with multiple hidden layers. Although 
a relatively simple conceptual extension of neural networks, such deep architecture 
provides valuable advances in terms of the capability of the models and new 
challenges in training them.

Using multiple hidden layers allows a more sophisticated build-up from simple 
elements to more complex ones. When discussing neural networks, we considered 
the outputs to be whether the object was a circle or a square. In a deep neural 
network, many circles and squares could be combined to form other more advanced 
shapes. One can consider two complexity aspects of a model's architecture. One is 
how wide or narrow it is—that is, how many neurons there are in a given layer. 
The second is how deep it is, or how many layers of neurons there are. For data that 
truly has such deep architectures, a deep neural network can fit it more accurately 
with fewer parameters than a neural network (NN), because more layers (each with 
fewer neurons) can be a more efficient and accurate representation; for example, 
because the shallow NN cannot build more advanced shapes from basic pieces, in 
order to provide equal accuracy to the deep neural network it must represent each 
unique object. Again considering pattern recognition in images, if we are trying to 
train a model for text recognition the raw data may be pixels from an image. The 
first layer of neurons could be trained to capture different letters of the alphabet, and 
then another layer could recognize sets of these letters as words. The advantage is 
that the second layer does not have to directly learn from the pixels, which are noisy 
and complex. In contrast, a shallow architecture may require far more parameters, 
as each hidden neuron would have to be capable of going directly from pixels in an 
image to a complete word, and many words may overlap, creating redundancy in 
the model.

One of the challenges in training deep neural networks is how to efficiently learn 
the weights. The models are often complex and local minima abound, making the 
optimization problem a challenging one. One of the major advancements came in 
2006, when it was shown that Deep Belief Networks (DBNs) could be trained one 
layer at a time (See Hinton, G. E., Osindero, S., and Teh, Y. W. (2006)). A DBN is a type 
of deep neural network where multiple hidden layers and connections between (but 
not within) layers (that is, a neuron in layer 1 may be connected to a neuron in layer 
2, but may not be connected to another neuron in layer 1). This is the essentially the 
same definition of a Restricted Boltzmann Machine (RBM)—an example is shown 
in Figure 1.4—except that a RBM typically has one input layer and one hidden layer:
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Figure 1.4

The restriction of no connections within a layer is valuable as it allows for much 
faster training algorithms to be used, such as the contrastive divergence algorithm. 
If several RBMs are stacked together, they can form a DBN. Essentially, the DBN 
can then be trained as a series of RBMs. The first RBM layer is trained and used 
to transform raw data into hidden neurons, which are then treated as a new set 
of inputs in a second RBM, and the process is repeated until all layers have been 
trained.

The benefits of the realization that DBNs could be trained one layer at a time extend 
beyond just DBNs, however. DBNs are sometimes used as a pre-training stage 
for a deep neural network. This allows the comparatively fast, greedy layer-by-
layer training to be used to provide good initial estimates, which are then refined 
in the deep neural network using other, slower, training algorithms such as back 
propagation.
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So far we have been primarily focused on feed-forward neural networks, where 
the results from one layer and neuron feed forward to the next. Before closing this 
section, two specific kinds of deep neural networks that have grown in popularity are 
worth mentioning. The first is a Recurrent Neural Network (RNN) where neurons 
send feedback signals to each other. These feedback loops allow RNNs to work well 
with sequences. A recent example of an application of RNNs was to automatically 
generate click-bait such as One trick great hair salons don't want you to know or Top 10 
reasons to visit Los Angeles: #6 will shock you!. RNNs work well for such jobs as they 
can be seeded from a large initial pool of a few words (even just trending search 
terms or names) and then predict/generate what the next word should be. This 
process can be repeated a few times until a short phrase is generated, the click-
bait. This example is drawn from a blog post by Lars Eidnes, available at http://
larseidnes.com/2015/10/13/auto-generating-clickbait-with-recurrent-
neural-networks/. The second type is a Convolutional Neural Network (CNN). 
CNNs are most commonly used in image recognition. CNNs work by having each 
neuron respond to overlapping subregions of an image. The benefits of CNNs are that 
they require comparatively minimal pre-processing yet still do not require too many 
parameters through weight sharing (for example, across subregions of an image). 
This is particularly valuable for images as they are often not consistent. For example, 
imagine ten different people taking a picture of the same desk. Some may be closer or 
farther away or at positions resulting in essentially the same image having different 
heights, widths, and the amount of image captured around the focal object.

As for neural networks, this description only provides the briefest of overviews as 
to what deep neural networks are and some of the use cases to which they can be 
applied. For an overview, see Schmidhuber, J. (2015) as well as Chapter 28 of Murphy, 
K. P. (2012).

R packages for deep learning
Although there are a number of R packages for machine learning, there are 
comparatively few available for neural networks and deep learning. In this section, 
we will see how to install all the necessary R packages and set them up to use neural 
networks and deep learning.

It is helpful to have a good integrated development environment (IDE) for working 
with R and doing data analysis. I use Emacs, a powerful text editor, along with 
Emacs Speaks Statistics (ESS), which helps Emacs work nicely with R. An easy way 
to get up-and-running is to use a modified distribution of Emacs designed to work 
nicely with R and for statistics. It is created and maintained by Vincent Goulet and is 
freely available at http://vgoulet.act.ulaval.ca/en/emacs/. Another popular 
R IDE is Rstudio (https://www.rstudio.com/). One advantage of both Emacs and 
Rstudio is that they are available on all major platforms (Windows, Mac, and Linux), 
so even if you switch computers you can have a consistent IDE experience.

http://larseidnes.com/2015/10/13/auto-generating-clickbait-with-recurrent-neural-networks/
http://larseidnes.com/2015/10/13/auto-generating-clickbait-with-recurrent-neural-networks/
http://larseidnes.com/2015/10/13/auto-generating-clickbait-with-recurrent-neural-networks/
http://vgoulet.act.ulaval.ca/en/emacs/
https://www.rstudio.com/
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Setting up reproducible results
Software for data science is advancing and changing rapidly. Although this is 
wonderful for progress, it can make reproducing someone else's results a challenge. 
Even your own code may not work when you go back to it a few months later. 
One way to address this issue is to make a record of what versions of software 
were used and ensure there is a snapshot of them available. For this book, we will 
use the R package checkpoint provided by Revolution Analytics; this works in 
connection with their server, which provides daily snapshots (checkpoints) of the 
Comprehensive R Archive Network (CRAN). To learn more about this process, you 
can read the online vignette for the package available at https://cran.r-project.
org/web/packages/checkpoint/vignettes/checkpoint.html.

This book was written using R version 3.2.3, nicknamed Wooden Christmas-Tree, on 
Windows 10 Professional x64. Although this is the latest version of R at the time of 
writing, as new versions are released CRAN keeps copies of older R versions both as 
binaries (in the future at https://cran.r-project.org/bin/windows/base/old/) 
and as source tar balls (https://cran.r-project.org/src/base/R-3/), which can 
be used to compile the source to any operating system.

For H2O, one of the main R packages will be used for deep learning, we will also 
need Java installed. This book was written using the Java SE Development Kit 8 
update 66 for 64 bit. You can download Java for your operating system at  
http://www.oracle.com/technetwork/java/javase/.

With those steps done, we are ready to get started. To use the checkpoint package, 
put all your R scripts for one project together in a single folder. Installing R packages 
using the checkpoint package is a somewhat circular process. The checkpoint 
package works by scanning R scripts in the project directory to see what packages 
are loaded (and therefore that it needs to install), by checking for calls to the 
library() or require() functions. Of course, we cannot actually use the library() 
function until we have installed the packages.

To begin with, create an R script in your project directory called checkpoint.R with 
the following code:

## uncomment to install the checkpoint package
## install.packages("checkpoint")
library(checkpoint)

checkpoint("2016-02-20", R.version = "3.2.3")

https://cran.r-project.org/web/packages/checkpoint/vignettes/checkpoint.html
https://cran.r-project.org/web/packages/checkpoint/vignettes/checkpoint.html
https://cran.r-project.org/bin/windows/base/old/
https://cran.r-project.org/src/base/R-3/
http://www.oracle.com/technetwork/java/javase/
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Once you have created the R script, you can uncomment and run the code to install 
the checkpoint package. You only need to do this once, so when you are done it's 
best to comment the code out again so it is not re-installed each time you run the file. 
This is the file we will run each time we want to set up our R environment for this 
deep learning project. The checkpoint for this book is 20th February 2016 and we are 
using R version 3.2.3. Next, we can add library() calls for some packages we will 
need to be available by adding the following code to our checkpoint.R script (but 
note that these are not run yet!):

## Chapter 1 ##

## Tools
library(RCurl)
library(jsonlite)
library(caret)
library(e1071)

## basic stats packages
library(statmod)
library(MASS)

Downloading the example code
You can download the example code files for this book from your account 
at http://www.packtpub.com. If you purchased this book elsewhere, 
you can visit http://www.packtpub.com/support and register to 
have the files e-mailed directly to you.
You can download the code files by following these steps:

•	 Log in or register to our website using your e-mail address and 
password.

•	 Hover the mouse pointer on the SUPPORT tab at the top.
•	 Click on Code Downloads & Errata.
•	 Enter the name of the book in the Search box.
•	 Select the book for which you're looking to download the code files.
•	 Choose from the drop-down menu where you purchased this book 

from.
•	 Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the 
folder using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

http://www.packtpub.com
http://www.packtpub.com/support
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Once we have added that code, save the file so that any changes are written to the 
disk, and then run the first couple of lines to load the checkpoint package and the call 
to checkpoint(). The results should look something like Figure 1.5:

Figure 1.5
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The checkpoint package asks to create a directory to store specific versions of the 
packages used, and then finds all packages and installs them. The next sections show 
how to set up some specific R packages for deep learning.

Neural networks
There are several packages in R that can fit basic neural networks. The nnet package 
is a recommended package and can fit feed-forward neural networks with one 
hidden layer, like the one shown in Figure 1.3. For more details on the nnet package, 
see Venables, W. N. and Ripley, B. D. (2002). The neuralnet package also fits shallow 
neural networks with one hidden layer, but can train them using back-propagation 
and allows custom error and neuron activation functions. Finally, we come to the 
RSNNS package, which is an R wrapper of the Stuttgart Neural Network Simulator 
(SNNS). The SNNS was originally written in C, but was ported to C++. RSNNS 
allows many types of models to fit in R. Common models are available using 
convenient wrappers, but the RSNNS package also makes many model components 
from SNNS available, making it possible to train a wide variety of models. For more 
details on the RSNNS package, see Bergmeir, C., and Benítez, J. M. (2012). We will see 
examples of how to use these models in Chapter 2, Training a Prediction Model. For 
now, we can install them by adding the following code to the checkpoint.R script 
and saving it. Saving is important because, if our changes to the R script are not 
written to the disk, the checkpoint() function will not see the changes and will not 
find and install the new packages:

## neural networks
library(nnet)
library(neuralnet)
library(RSNNS)

Now, if we re-run the checkpoint() function and it is successful, R should tell us 
that it discovered eight packages and that it installed nnet, neuralnet, RSNNS, and 
Rcpp, a dependency for the RSNNS package.

The deepnet package
The deepnet package provides a number of tools for deep learning in R. Specifically, 
it can train RBMs and use these as part of DBNs to generate initial values to train 
deep neural networks. The deepnet package also allows for different activation 
functions, and the use of dropout for regularization. To install it, we follow the 
same process we used before adding the following code to the checkpoint.R script, 
saving it, and then re-running the checkpoint() function:

## deep learning
library(deepnet)
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The darch package
The darch package is based on Matlab code by George Hinton and stands for deep 
architectures. It can train RBMs and DBNs along with a variety of options related to 
each. A limitation of the darch package is that, because it is a pure R implementation, 
model training tends to be slow. To install it, we follow the same process we used 
before adding the following code to the checkpoint.R script, saving it, and then re-
running the checkpoint() function:

## deep learning
library(darch)

The H2O package
The H2O package provides an interface to the H2O software. H2O is written in 
Java and is fast and scalable. It provides not only deep learning functionality, but 
also a variety of other popular machine learning algorithms and models, and the 
model results can be stored as pure Java code to allow fast scoring, facilitating the 
deployment of models to solve real-world problems. To install it, we follow the 
same process we used before adding the following code to the checkpoint.R script, 
saving it, and then re-running the checkpoint() function:

## deep learning
library(h2o)

Connecting R and H2O
Because H2O is Java-based software with an R wrapper, to connect R to it we must 
initialize an instance of H2O and also connect R with it, linking or passing data and 
model commands to it. In this section, we will show how to get everything set up to 
train a model using H2O.



Getting Started with Deep Learning

[ 14 ]

Initializing H2O
To initialize an H2O cluster, we use the h2o.init() function. Initializing a cluster 
will also set up a lightweight web server that allows interaction with the software via 
a local webpage. Generally, the h2o.init() function has sensible default values, but 
we can customize many aspects of it, and it may be particularly good to customize 
the number of cores/threads to use as well as how much memory we are willing for 
it to use, which can be accomplished as in the following code using the max_mem_
size and nthreads arguments. In the code that follows, we initialize an H2O cluster 
to use two threads and up to three gigabytes of memory. After the code, R will 
indicate the location of log files, the Java version, and details about the cluster:

cl <- h2o.init(

  max_mem_size = "3G",

  nthreads = 2)

H2O is not running yet, starting it now...

Note:  In case of errors look at the following log files:

    C:\Users\jwile\AppData\Local\Temp\RtmpuelhZm/h2o_jwile_started_
from_r.out

    C:\Users\jwile\AppData\Local\Temp\RtmpuelhZm/h2o_jwile_started_
from_r.err

java version "1.8.0_66"

Java(TM) SE Runtime Environment (build 1.8.0_66-b18)

Java HotSpot(TM) 64-Bit Server VM (build 25.66-b18, mixed mode)

.Successfully connected to http://127.0.0.1:54321/ 

R is connected to the H2O cluster: 

    H2O cluster uptime:         1 seconds 735 milliseconds 

    H2O cluster version:        3.6.0.8 

    H2O cluster name:           H2O_started_from_R_jwile_ndx127 

    H2O cluster total nodes:    1 

    H2O cluster total memory:   2.67 GB 

    H2O cluster total cores:    4 

    H2O cluster allowed cores:  2 

    H2O cluster healthy:        TRUE 
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Once the cluster is initialized, we can interface with it either using R or using the web 
interface available at the local host (127.0.0.1:54321); it is shown in Figure 1.6:

Figure 1.6

Linking datasets to an H2O cluster
There are a couple of ways to get data into an H2O cluster. If the dataset is already 
loaded into R, you can simply use the as.h2o() function as shown in the following 
code:

h2oiris <- as.h2o(

  droplevels(iris[1:100, ]))

www.allitebooks.com

http://www.allitebooks.org
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We can check the results by typing the R object, h2oiris, which is simply an object 
that holds a reference to the H2O data. The R API queries H2O when we try to print 
it:

h2oiris

This returns the following output:

  Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1          5.1         3.5          1.4         0.2  setosa

2          4.9         3.0          1.4         0.2  setosa

3          4.7         3.2          1.3         0.2  setosa

4          4.6         3.1          1.5         0.2  setosa

5          5.0         3.6          1.4         0.2  setosa

6          5.4         3.9          1.7         0.4  setosa

[100 rows x 5 columns]

We can also check the levels of factor variables, such as the Species variable, as 
shown in the following:

h2o.levels(h2oiris, 5)

[1] setosa     versicolor

In real-world uses, it is more likely that the data already exists somewhere; rather 
than load the data into R only to export it into H2O (a costly operation as it creates an 
unnecessary copy of the data in R), we can just load data directly into H2O. First we 
will create a CSV file based on the built-in mtcars dataset, then we will tell the H2O 
instance to read the data using R. Printing again shows the data:

write.csv(mtcars, file = "mtcars.csv")

h2omtcars <- h2o.importFile(

  path = "mtcars.csv")

h2omtcars

                 C1  mpg cyl disp  hp drat    wt  qsec vs am gear carb

1         Mazda RX4 21.0   6  160 110 3.90 2.620 16.46  0  1    4    4

2     Mazda RX4 Wag 21.0   6  160 110 3.90 2.875 17.02  0  1    4    4

3        Datsun 710 22.8   4  108  93 3.85 2.320 18.61  1  1    4    1

4    Hornet 4 Drive 21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
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5 Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2

6           Valiant 18.1   6  225 105 2.76 3.460 20.22  1  0    3    1

[32 rows x 12 columns]

Finally, the data need not be located on the local disk. We can also ask H2O to 
read in data from a URL as shown in this last example, which uses a dataset made 
available from the UCLA Statistical Consulting Group:

h2obin <- h2o.importFile(

  path = "http://www.ats.ucla.edu/stat/data/binary.csv")

h2obin

  admit gre  gpa rank

1     0 380 3.61    3

2     1 660 3.67    3

3     1 800 4.00    1

4     1 640 3.19    4

5     0 520 2.93    4

6     1 760 3.00    2

[400 rows x 4 columns]

Summary
This chapter presented a brief introduction to NNs and deep neural networks. Using 
multiple hidden layers, deep neural networks have been a revolution in machine 
learning by providing a powerful unsupervised learning and feature extraction 
component that can be standalone or integrated as part of a supervised model.

There are many applications of such models, and they are being increasingly used 
by large companies such as Google, Microsoft, and Facebook. Examples of tasks 
for deep learning are image recognition (for example, automatically tagging faces, 
or identifying keywords for an image), voice recognition, and text translation (for 
example, to go from English to Spanish, or vice versa). Work is even being done 
on text recognition such as sentiment analysis to try to identify whether a sentence 
or paragraph is generally positive or negative, particularly useful for evaluating 
perceptions about a product or service. Imagine being able to scrape reviews and 
social media for any mention of your product and being able to analyse whether it 
was being discussed more or less favourably than the month or year before!
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This chapter also showed how to set up R and the necessary software and packages 
installed, in a reproducible way to match the versions used in this book.

In the next chapter, we will begin to train neural networks and generate our own 
predictions.
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Training a Prediction Model
This chapter shows how to build and train basic neural networks in R through 
hands-on examples that also emphasize the importance of evaluating different 
tuning parameters for models to find the best set. Although evaluating a variety of 
tuning parameters can help increase the performance of a model, it can also lead to 
overfitting, the next topic covered in the chapter. The chapter closes with an example 
use case classifying activity data from a smartphone as walking, going up or down 
stairs, sitting, standing, or lying down.

This chapter covers the following topics:

•	 Neural networks in R
•	 The problem of overfitting data – the consequences explained
•	 Use case – build and apply a neural network

Neural networks in R
To train basic (that is, "shallow" with a single hidden layer) neural networks in R, we 
will use the nnet and the RSNNS (Bergmeir, C., and Benítez, J. M. (2012)) packages. 
From the previous chapter, these should already be installed and based on a 20th 
February 2016 checkpoint so our results are fully reproducible. Although it is 
possible to interface with the nnet package directly, we are going to use it through 
the caret package, which is short for Classification and Regression Training. 
The caret package provides a standardized interface to work with many machine 
learning models in R (Kuhn, 2008; Kuhn and Johnson, 2013), and also has some 
useful features for validation and performance assessment that we will use in this 
chapter and the next.
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For our first examples of building neural networks, we will use a classic classification 
problem—recognizing handwritten digits based on pictures. The data can be 
downloaded from https://www.kaggle.com/c/digit-recognizer and comes in 
an easy-to-use CSV format, where each column of the dataset, or feature, represents 
a pixel from the image. Each image has been normalized to a fixed size so every 
image has the same number of pixels. The first column contains the actual digit 
label, and the remaining are pixel darkness values, to be used for classification. The 
downloaded files, called train.csv and test.csv, were placed in the same folder 
as the R scripts, so they can easily be read in. If you put them in different folders, just 
change the paths accordingly.

Building a neural network
To get started, we will first load our packages, by calling source() on the script where 
we loaded them, and set the checkpoint for the versions to use. Then we can read in 
the training data downloaded from Kaggle, and take a quick look at what it is like:

source("checkpoint.R")

## output omitted

digits.train <- read.csv("train.csv")

dim(digits.train)

[1] 42000   785

head(colnames(digits.train), 4)

[1] "label"  "pixel0" "pixel1" "pixel2"

tail(colnames(digits.train), 4)

[1] "pixel780" "pixel781" "pixel782" "pixel783"

head(digits.train[, 1:4])

  label pixel0 pixel1 pixel2

1     1      0      0      0

2     0      0      0      0

3     1      0      0      0

https://www.kaggle.com/c/digit-recognizer
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4     4      0      0      0

5     0      0      0      0

6     0      0      0      0

We will convert the labels (the digits 0 to 9) to a factor so R knows that this is a 
classification not a regression problem. If this were a real-world problem, we would 
want to use all 42,000 observations but, for the sake of reducing how long it takes 
to run, we will select just the first 5,000 for these first examples of building and 
training a neural network. We also separate the data into the features or predictors 
(digits.X) and the outcome (digits.Y). We are using all the columns except the 
labels as the predictors here:

## convert to factor

digits.train$label <- factor(digits.train$label, levels = 0:9)

i <- 1:5000

digits.X <- digits.train[i, -1]

digits.y <- digits.train[i, 1]

Finally, before we get started building our neural network, let's quickly check the 
distribution of the digits. This can be important as, for example, if one digit occurs very 
rarely, we may need to adjust our modeling approach to ensure that, even though it is 
rare, it is given enough weight in performance evaluation if we care about accurately 
predicting that digit as well. The following code snippet creates a bar plot showing the 
frequency of each digit label (Figure 2.1). They are fairly evenly distributed so there is 
no real need to increase the weight or importance given to any particular one:

barplot(table(digits.y))

Figure 2.1
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Now let's build and train our first neural network using the nnet package through 
the caret package wrapper. First, we use the set.seed() function and specify a 
specific seed so that the results are reproducible. The exact seed is not important. 
This same approach is also used in later examples repeating the same seed, because 
what matters is that the same seed is used for the same model, not whether different 
models have different or similar seeds. The train() function first takes the feature 
or predictor data, the x argument, and then the outcome variable, the y argument. 
The train() function can work with a variety of models, determined via the 
method argument. Although many aspects of machine learning models are learned 
automatically, some parameters have to be set. These vary by the method used; 
for example, in neural networks one parameter is the number of hidden units. The 
train() function provides an easy way to try a variety of these tuning parameters as 
a named data frame to the tuneGrid argument. It returns the performance measures 
for each set of tuning parameters and returns the best trained model. We will start 
with just five hidden neurons in our model, and a modest decay rate, sometimes 
also called the learning rate. The learning rate controls how much each iteration 
or step can influence the current weights. Another argument, trControl, controls 
additional aspects of train(), and is used, when a variety of tuning parameters are 
being evaluated, to tell the caret package how to validate and pick the best tuning 
parameter.

For this example, we will set the method for training control to "none" as we only 
have one set of tuning parameters being used here. Finally, at the end we can specify 
additional, named arguments that are passed on to the actual nnet() function (or 
whatever algorithm is specified). Because of the number of predictors (784), we 
increase the maximum number of weights to 10,000 and specify a maximum of 100 
iterations. Due to the relatively small amount of data, and the paucity of hidden 
neurons, this first model does not take too long to run:

set.seed(1234)

digits.m1 <- train(x = digits.X, y = digits.y,

           method = "nnet",

           tuneGrid = expand.grid(

             .size = c(5),

             .decay = 0.1),

           trControl = trainControl(method = "none"),

           MaxNWts = 10000,

           maxit = 100)
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The predict() function generates a set of predictions for data. When called on the 
results of a model without specifying any new data, it just generates predictions on 
the same data used for training. After calculating and storing the predicted digits, 
we can examine their distribution, shown in Figure 2.2. Even before looking at the 
performance measures for this first model, given the actual distribution (Figure 2.1) it 
is clear this model is not optimal:

digits.yhat1 <- predict(digits.m1)

barplot(table(digits.yhat1))

Figure 2.2

Graphically examining the distribution is just a simple check of the predictions. 
A more formal evaluation of model performance is possible using the 
confusionMatrix() function in the caret package. Because there is a function 
by the same name in the RSNNS package, they are masked so we use the special 
caret:: code to tell R which version of the function to use. The input is simply a 
frequency cross tab between the actual digits and the predicted digits. The remaining 
performance metrics are calculated from these.
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Because we had multiple digits, there are three main sections to the performance 
output. First, the actual frequency cross tab is shown. Correct predictions are on the 
diagonal, with various frequencies of misclassification on the off diagonals. Next 
are the overall statistics, which refer to the model performance across all classes. 
Accuracy is simply the proportion of cases correctly classified, along with a 95% 
confidence interval, which can be useful especially for smaller datasets where there 
may be considerable uncertainty in the estimate. The No Information Rate refers 
to what accuracy could be expected without any information by merely guessing 
the most frequent class, in this case, 1, which occurred 11.16% of the time. The 
p-value tests whether the observed accuracy (44.3%) is significantly different than 
the No Information Rate (11.2%). Although statistically significant, this is not 
very meaningful for digit classification where we would expect to do far better than 
simply guessing the most frequent digit! Finally, individual performance metrics for 
each digit are shown. These are based on calculating that digit versus every other 
digit, so that each is a binary comparison. The following 2 x 2 table contains all the 
information needed to calculate the various measures, and the formulae for all the 
measures are shown here:

Positive Negative
Predicted positive True positive (TP) False positive (FP)
Predicted negative False negative (FN) True negative (TN)

TPSensitivity
TP FN

=
+

TNSpecificity
TN FP

=
+

( ) TPPositive PredictiveValue PPV
TP FP

=
+

( ) TNNegative PredictiveValue NPV
FN TN

=
+
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TPDetection Rate
TP FN FP TN

=
+ + +

TP FPDetection Prevalence
TP FN FP TN

+
=

+ + +

For example, the sensitivity for digit 0 can be interpreted as meaning that 78.5% 
of zero digits were captured or correctly predicted to be zeroes. The specificity for 
digit 0 can be interpreted as meaning that 95.2% of cases that were predicted to be a 
digit other than zero were not zero. The detection rate is just the percentage of true 
positives, and finally the detection prevalence is the proportion of cases predicted to 
be positive, regardless of whether they actually are or not. The balanced accuracy is 
the mean of the sensitivity and specificity. The remaining columns present the same 
information for each of the remaining digits:

caret::confusionMatrix(xtabs(~digits.yhat1 + digits.y))

Confusion Matrix and Statistics

            digits.y

digits.yhat1   0   1   2   3   4   5   6   7   8   9

           0 388   2  40  41   7  75  23   4  23   2

           1   0 495   3   0   0   3   0   4   3   4

           2   0   0   0   0   0   0   0   0   0   0

           3  51  30  36 379   6 329   3  18 290  38

           4   0   0   0   0   0   0   0   0   0   0

           5   0   0   0   0   0   0   0   0   0   0

           6  44   5 304   9 131  29 484   9  16  19

           7  11  26 162  51 333  33   6 470 145 415

           8   0   0   0   0   0   0   0   0   0   0

           9   0   0   0   0   0   0   0   1   0   0
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Overall Statistics

                                          

               Accuracy : 0.4432          

                 95% CI : (0.4294, 0.4571)

    No Information Rate : 0.1116          

    P-Value [Acc > NIR] : < 2.2e-16       

                                          

                  Kappa : 0.3805          

 Mcnemar's Test P-Value : NA              

Statistics by Class:

                     Class: 0 Class: 1 Class: 2 Class: 3 Class: 4

Sensitivity            0.7854   0.8871    0.000   0.7896   0.0000

Specificity            0.9518   0.9962    1.000   0.8228   1.0000

Pos Pred Value         0.6413   0.9668      NaN   0.3212      NaN

Neg Pred Value         0.9759   0.9860    0.891   0.9736   0.9046

Prevalence             0.0988   0.1116    0.109   0.0960   0.0954

Detection Rate         0.0776   0.0990    0.000   0.0758   0.0000

Detection Prevalence   0.1210   0.1024    0.000   0.2360   0.0000

Balanced Accuracy      0.8686   0.9416    0.500   0.8062   0.5000

                     Class: 5 Class: 6 Class: 7 Class: 8 Class: 9

Sensitivity            0.0000   0.9380   0.9289   0.0000   0.0000

Specificity            1.0000   0.8738   0.7370   1.0000   0.9998

Pos Pred Value            NaN   0.4610   0.2845      NaN   0.0000

Neg Pred Value         0.9062   0.9919   0.9892   0.9046   0.9044

Prevalence             0.0938   0.1032   0.1012   0.0954   0.0956

Detection Rate         0.0000   0.0968   0.0940   0.0000   0.0000

Detection Prevalence   0.0000   0.2100   0.3304   0.0000   0.0002

Balanced Accuracy      0.5000   0.9059   0.8329   0.5000   0.4999
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Now that we have some basic understanding of how to set up, train, and evaluate 
model performance, we will try a few different models, increasing the number of 
hidden neurons, which is one key way to improve model performance, at the cost 
of greatly increasing the model complexity. Recall from Chapter 1, Getting Started 
with Deep Learning, that every predictor or feature connects to each hidden neuron, 
and each hidden neuron connects to each outcome or output. With 784 features, 
each additional hidden neuron adds a substantial number of parameters, which also 
results in longer run times. Depending on your computer, be prepared to wait a 
number of minutes for these next models to finish:

set.seed(1234)

digits.m2 <- train(digits.X, digits.y,

           method = "nnet",

           tuneGrid = expand.grid(

             .size = c(10),

             .decay = 0.1),

           trControl = trainControl(method = "none"),

            MaxNWts = 50000,

            maxit = 100)

digits.yhat2 <- predict(digits.m2)

barplot(table(digits.yhat2))

Figure 2.3
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caret::confusionMatrix(xtabs(~digits.yhat2 + digits.y))

Confusion Matrix and Statistics

            digits.y

digits.yhat2   0   1   2   3   4   5   6   7   8   9

           0 395   0  14  23   0 120   6  12  15   5

           1   2 518  35  10   0   7   0  10   8   4

           2  23  23 323  15   8  37  30   1  15   2

           3   0   4  24 337   0  49   0  12  37   5

           4   3   0   0   0  10  14   2   0   0   0

           5  44   0  20  60   0 146  10   1 235   9

           6   1   1  25   2   0   3 327   0   3   0

           7   3   1   7   3   3  11   7 392   3  19

           8   0   0   0   0   0   0   1   0   0   0

           9  23  11  97  30 456  82 133  78 161 434

Overall Statistics

                                          

               Accuracy : 0.5764          

                 95% CI : (0.5626, 0.5901)

    No Information Rate : 0.1116          

    P-Value [Acc > NIR] : < 2.2e-16       

                                          

                  Kappa : 0.5293          

 Mcnemar's Test P-Value : NA              

Statistics by Class:

                     Class: 0 Class: 1 Class: 2 Class: 3 Class: 4

Sensitivity            0.7996   0.9283   0.5927   0.7021  0.02096
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Specificity            0.9567   0.9829   0.9654   0.9710  0.99580

Pos Pred Value         0.6695   0.8721   0.6771   0.7201  0.34483

Neg Pred Value         0.9776   0.9909   0.9509   0.9684  0.90606

Prevalence             0.0988   0.1116   0.1090   0.0960  0.09540

Detection Rate         0.0790   0.1036   0.0646   0.0674  0.00200

Detection Prevalence   0.1180   0.1188   0.0954   0.0936  0.00580

Balanced Accuracy      0.8782   0.9556   0.7790   0.8366  0.50838

                     Class: 5 Class: 6 Class: 7 Class: 8 Class: 9

Sensitivity            0.3113   0.6337   0.7747   0.0000   0.9079

Specificity            0.9164   0.9922   0.9873   0.9998   0.7632

Pos Pred Value         0.2781   0.9033   0.8731   0.0000   0.2884

Neg Pred Value         0.9278   0.9592   0.9750   0.9046   0.9874

Prevalence             0.0938   0.1032   0.1012   0.0954   0.0956

Detection Rate         0.0292   0.0654   0.0784   0.0000   0.0868

Detection Prevalence   0.1050   0.0724   0.0898   0.0002   0.3010

Balanced Accuracy      0.6138   0.8130   0.8810   0.4999   0.8356

Increasing from 5 to 10 hidden neurons improved our in-sample performance from 
an overall accuracy of 44.3% to 57.6%, but this is still quite some way from ideal 
(imagine character recognition software that mixed up 42.4% of all the characters!). 
We increase again, this time to 40 hidden neurons, and wait even longer for the 
model to finish training:

set.seed(1234)

digits.m3 <- train(digits.X, digits.y,

           method = "nnet",

           tuneGrid = expand.grid(

             .size = c(40),

             .decay = 0.1),

           trControl = trainControl(method = "none"),

           MaxNWts = 50000,

           maxit = 100)
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digits.yhat3 <- predict(digits.m3)

barplot(table(digits.yhat3))

Figure 2.4

caret::confusionMatrix(xtabs(~digits.yhat3 + digits.y))

Confusion Matrix and Statistics

            digits.y

digits.yhat3   0   1   2   3   4   5   6   7   8   9

           0 461   0   7   3   0  20  16   2   3   7

           1   0 521   3   4   0   2   2   6  10   2

           2  17   3 469  30   2  13  16  10  39   2

           3   1   5  11 352   2  43   2   9  48   5

           4   1   0   6   1 394   7   0   4   3  36

           5   3   4   2  23   1 334  12   1  51   6

           6   6   1  19   3  15  10 455   1   3   1

           7   0   2   8   7   5   5   2 411   6  35

           8   2  20  10  46   4  28   9  10 297  23

           9   3   2  10  11  54   7   2  52  17 361
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Overall Statistics

                                          

               Accuracy : 0.811           

                 95% CI : (0.7999, 0.8218)

    No Information Rate : 0.1116          

    P-Value [Acc > NIR] : < 2.2e-16       

                                          

                  Kappa : 0.7899          

 Mcnemar's Test P-Value : NA              

Statistics by Class:

                     Class: 0 Class: 1 Class: 2 Class: 3 Class: 4

Sensitivity            0.9332   0.9337   0.8606   0.7333   0.8260

Specificity            0.9871   0.9935   0.9704   0.9721   0.9872

Pos Pred Value         0.8882   0.9473   0.7804   0.7364   0.8717

Neg Pred Value         0.9926   0.9917   0.9827   0.9717   0.9818

Prevalence             0.0988   0.1116   0.1090   0.0960   0.0954

Detection Rate         0.0922   0.1042   0.0938   0.0704   0.0788

Detection Prevalence   0.1038   0.1100   0.1202   0.0956   0.0904

Balanced Accuracy      0.9602   0.9636   0.9155   0.8527   0.9066

                     Class: 5 Class: 6 Class: 7 Class: 8 Class: 9

Sensitivity            0.7122   0.8818   0.8123   0.6226   0.7552

Specificity            0.9773   0.9868   0.9844   0.9664   0.9651

Pos Pred Value         0.7643   0.8852   0.8545   0.6615   0.6956

Neg Pred Value         0.9704   0.9864   0.9790   0.9604   0.9739

Prevalence             0.0938   0.1032   0.1012   0.0954   0.0956

Detection Rate         0.0668   0.0910   0.0822   0.0594   0.0722

Detection Prevalence   0.0874   0.1028   0.0962   0.0898   0.1038

Balanced Accuracy      0.8447   0.9343   0.8983   0.7945   0.8601

Using 40 hidden neurons has improved performance dramatically again, up to 81.1% 
overall. Model performance for 3s, 5s, 8s, and 9s is still not great, but the remaining 
digits are quite good. If this were a real research or business problem, we might 
continue trying additional neurons, tuning the decay rate, or modifying features in 
order to try to boost model performance further, but for now we will move on.
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Next, we will take a look at how to train neural networks using the RSNNS package. 
This package provides an interface to quite a variety of possible models using the 
Stuttgart Neural Network Simulator (SNNS) code; however, for a basic, single-
hidden-layer, feed-forward neural network, we can use the mlp() convenience 
wrapper function, which stands for multi-layer perceptron. The RSNNS package is 
a bit more finicky to use than the convenience of nnet via the caret package, but one 
benefit is that it can be far more flexible and allows for many other types of neural 
network architectures to be trained, including recurrent neural networks, and also 
has a greater variety of learning functions.

One difference between the nnet and RSNNS package is that for multi-class 
outcomes (such as digits), RSNNS requires a dummy coded matrix, so each 
possible class is represented as a column coded as 0/1. This is facilitated using the 
decodeClassLabels() function, and a bit of the output is shown next:

head(decodeClassLabels(digits.y))

     0 1 2 3 4 5 6 7 8 9

[1,] 0 1 0 0 0 0 0 0 0 0

[2,] 1 0 0 0 0 0 0 0 0 0

[3,] 0 1 0 0 0 0 0 0 0 0

[4,] 0 0 0 0 1 0 0 0 0 0

[5,] 1 0 0 0 0 0 0 0 0 0

[6,] 1 0 0 0 0 0 0 0 0 0

Since we had reasonably good success with 40 hidden neurons, we will use the 
same size here. Rather than standard propagation as the learning function, we will 
use resilient propagation, based on the classic work of Riedmiller, M., and Braun, H. 
(1993). Note also that, because a matrix of outcomes is passed, although the predicted 
probability will not exceed 1 for any single digit, the sum of predicted probabilities 
across all digits may exceed 1 and also may be less than 1 (that is, for some cases, the 
model may not predict they are very likely to represent any of the digits). As before, 
we can get in-sample predictions, but here we have to use another function, fitted.
values(). Because this again returns a matrix where each column represents a single 
digit, we use the encodeClassLabels() function to convert back into a single vector 
of digit labels to plot (Figure 2.5) and evaluate model performance:

set.seed(1234)

digits.m4 <- mlp(as.matrix(digits.X),

             decodeClassLabels(digits.y),

             size = 40,
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             learnFunc = "Rprop",

             shufflePatterns = FALSE,

             maxit = 60)

digits.yhat4 <- fitted.values(digits.m4)

digits.yhat4 <- encodeClassLabels(digits.yhat4)

barplot(table(digits.yhat4))

Figure 2.5

Once we have the predicted probabilities, evaluating model performance is virtually 
the same as when using the nnet and caret packages. The only catch is that, when 
the output is encoded back into a single vector, by default the digits are labeled 1 to 
k, where k is the number of classes. Because the digits are 0 to 9, to make them match 
the original digit vector, we subtract 1. Next we can see that, using the learning 
algorithms from the RSNNS package, we obtained a somewhat higher performance 
with the same number of hidden neurons. Next we turn to generating predictions for 
out-of-sample data:

caret::confusionMatrix(xtabs(~ I(digits.yhat4 - 1) + digits.y))

Confusion Matrix and Statistics

                   digits.y

I(digits.yhat4 - 1)   0   1   2   3   4   5   6   7   8   9

                  0 451   0   0   1   0   2   3   2   1   1
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                  1   0 534   4   2   3   1   0   7  11   2

                  2   6   3 496  17   3   4   2   4  20   1

                  3   9   5  11 406   3  21   0   2  13  10

                  4   2   1   6   0 415   7   4   4   9  24

                  5  12   2   0  14   3 376   8   4  23  13

                  6   4   4   2   2   3  12 493   2   9   1

                  7   3   0  10   7   4   1   1 460   1  37

                  8   5   9  14  28  12  31   5   8 375  13

                  9   2   0   2   3  31  14   0  13  15 376

Overall Statistics

                                         

               Accuracy : 0.8764         

                 95% CI : (0.867, 0.8854)

    No Information Rate : 0.1116         

    P-Value [Acc > NIR] : < 2.2e-16      

                                         

                  Kappa : 0.8626         

 Mcnemar's Test P-Value : NA             

Statistics by Class:

                     Class: 0 Class: 1 Class: 2 Class: 3 Class: 4

Sensitivity            0.9130   0.9570   0.9101   0.8458   0.8700

Specificity            0.9978   0.9932   0.9865   0.9836   0.9874

Pos Pred Value         0.9783   0.9468   0.8921   0.8458   0.8792

Neg Pred Value         0.9905   0.9946   0.9890   0.9836   0.9863

Prevalence             0.0988   0.1116   0.1090   0.0960   0.0954

Detection Rate         0.0902   0.1068   0.0992   0.0812   0.0830

Detection Prevalence   0.0922   0.1128   0.1112   0.0960   0.0944

Balanced Accuracy      0.9554   0.9751   0.9483   0.9147   0.9287

                     Class: 5 Class: 6 Class: 7 Class: 8 Class: 9

Sensitivity            0.8017   0.9554   0.9091   0.7862   0.7866

Specificity            0.9826   0.9913   0.9858   0.9724   0.9823

Pos Pred Value         0.8264   0.9267   0.8779   0.7500   0.8246

Neg Pred Value         0.9795   0.9949   0.9897   0.9773   0.9776
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Prevalence             0.0938   0.1032   0.1012   0.0954   0.0956

Detection Rate         0.0752   0.0986   0.0920   0.0750   0.0752

Detection Prevalence   0.0910   0.1064   0.1048   0.1000   0.0912

Balanced Accuracy      0.8921   0.9734   0.9474   0.8793   0.8845

Generating predictions from a neural network
Up until now, we have only generated in-sample predictions on the same data used 
to train the neural network, and we have accepted all the defaults for obtaining the 
classifications. However, there are actually several options, even once the model is 
trained. For any given observation, there can be a probability of membership in any 
of a number of classes (for example, an observation may have a 40% chance of being 
a "5", a 20% chance of being a "6", and so on). For evaluating the performance of the 
model, some choices have to be made about how to go from the probability of class 
membership to a discrete classification. In this section, we will explore a few of these 
options in more detail, and also take a look at generating predictions on data not 
used for training.

So long as there are no perfect ties, the simplest method may be to classify 
observations based on the high predicted probability. Another approach, which the 
RSNNS package calls the winner takes all (WTA) method, is to choose the class with 
the highest probability so long as there are no ties, the highest probability is above 
a user-defined threshold (the threshold could be zero), and the remaining classes 
all have a predicted probability under the maximum minus another user-defined 
threshold. Otherwise, observations are classified as unknown. If both thresholds are 
zero (the default), this equates to saying that there must be one unique maximum. 
The advantage of such an approach is that it provides some quality control. In the 
digit classification example we have been exploring, there are 10 possible classes. 
Suppose nine of the digits had a predicted probability of 0.099, and the remaining 
class had a predicted probability of 0.109. Although one class is technically more 
likely than the others, the difference is fairly trivial and we may conclude that the 
model cannot with any certainty classify that observation. A final method, called 
402040, classifies if only one value is above a user-defined threshold, and all other 
values are below another user-defined threshold; if multiple values are above 
the first threshold, or any value is not below the second threshold, it treats the 
observation as unknown. Again, the goal here is to provide some quality control. It 
may seem like this is unnecessary because uncertainty in predictions should come 
out in the model performance. However, it can be helpful to know if your model was 
highly certain in its prediction and right or wrong, or uncertain and right or wrong.

www.allitebooks.com
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Finally, in some cases not all classes are equally important. For example, in a medical 
context where a variety of biomarkers and genes are collected on patients and 
used to classify whether they are healthy or not, at risk of cancer, or at risk of heart 
disease, even a 40% chance of having cancer may be enough to warrant further 
investigation, even if they have a 60% chance of being healthy. This has to do with 
the performance measures we saw earlier where, beyond overall accuracy, we can 
assess aspects such as sensitivity, specificity, and positive and negative predictive 
values. There are cases where overall accuracy is less important than making sure  
no one is missed.

The following code shows the raw probabilities for the in-sample data, and the 
impact these different choices have on the predicted values:

digits.yhat4.insample <- fitted.values(digits.m4)

head(round(digits.yhat4.insample, 2))

     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0.00 0.89 0.00 0.01 0.00 0.00 0.00 0.00 0.21     0

[2,] 0.99 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.00     0

[3,] 0.00 1.00 0.09 0.00 0.00 0.00 0.00 0.05 0.00     0

[4,] 0.00 0.00 0.00 0.00 0.22 0.00 0.02 0.05 0.00     0

[5,] 1.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00     0

[6,] 0.99 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00     0

table(encodeClassLabels(digits.yhat4.insample,

                        method = "WTA", l = 0, h = 0))

  1   2   3   4   5   6   7   8   9  10 

461 564 556 480 472 455 532 524 500 456 

 

table(encodeClassLabels(digits.yhat4.insample,

                        method = "WTA", l = 0, h = .5))

  0   1   2   3   4   5   6   7   8   9  10 

569 448 544 497 400 429 366 499 463 379 406 

 

table(encodeClassLabels(digits.yhat4.insample,
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                        method = "WTA", l = .2, h = .5))

  0   1   2   3   4   5   6   7   8   9  10 

658 443 542 490 393 408 358 493 460 364 391 

 

table(encodeClassLabels(digits.yhat4.insample,

                        method = "402040", l = .4, h = .6))

  0   1   2   3   4   5   6   7   8   9  10

907 431 526 472 363 383 326 475 448 301 368

We can easily generate predicted values for new data using the predict() function. 
For this, we will use the next 5,000 observations. Note that even generating these 
predictions took a couple of minutes on a new desktop:

i2 <- 5001:10000

digits.yhat4.pred <- predict(digits.m4, 

                             as.matrix(digits.train[i2, -1]))

table(encodeClassLabels(digits.yhat4.pred,

                        method = "WTA", l = 0, h = 0))

  1   2   3   4   5   6   7   8   9  10 

449 570 531 518 476 442 522 533 468 491

Having generated predictions on out-of-sample data (that is, data that was not used 
to train the model), we can now proceed to examine problems related to overfitting 
the data and the impact on the evaluation of model performance.

The problem of overfitting data – the 
consequences explained
A common issue in machine learning is the problem of overfitting data. Generally, 
overfitting is used to refer to the phenomenon where, in the data used to train the 
model, the model performs better than it does on data not used to train the model 
(holdout data, future real use, and so on). Overfitting occurs when a model fits what is 
essentially noise in the training data. It appears to become more accurate as it accounts 
for the noise, but because the noise changes from one dataset to the next, this accuracy 
does not apply to any data but the training data—it does not generalize.
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Overfitting can occur at any time but tends to become more severe as the ratio of 
parameters to information increases. Usually, this is can be thought of as the ratio of 
parameters to observations, but not always (for example, suppose the outcome is a 
rare event that occurs in 1 in 5 million people, a sample size of 15 million may still 
only have 3 people experiencing the event and would not support a complex model 
at all—information is low even though the sample size is large). To consider a simple 
but extreme case, imagine fitting a straight line to two data points. The fit will be 
perfect, and in those two training data your linear regression model will appear to 
have fully accounted for all variations in the data. However, if we then applied that 
line to another 1,000 cases, we might not expect it to fit very well at all.

In the previous section, we generated out-of-sample predictions for the RSNNS 
model we trained. We know that, in-sample, the accuracy was 87.6%. How good 
is that estimate? We can examine how well the model generalizes by checking the 
accuracy on the out-of-sample predictions using code that is by now quite familiar. 
Next we can see that it is still doing fairly well, but the accuracy is reduced to 83.6% 
on the holdout data. Here there appears to have been approximately a 4% loss; or, 
put differently, using training data to evaluate model performance resulted in an 
overly optimistic estimate of the accuracy, and that overestimate was 4%:

caret::confusionMatrix(xtabs(~digits.train[i2, 1] +

  I(encodeClassLabels(digits.yhat4.pred) - 1)))

Confusion Matrix and Statistics

                   I(encodeClassLabels(digits.yhat4.pred) - 1)

digits.train[i2, 1]   0   1   2   3   4   5   6   7   8   9

                  0 429   0  13  16   4   9   8   4   9   5

                  1   0 515   9   3   0   2   2   2   4   0

                  2   4   7 427  17   2   3  12  10  12   6

                  3   0   2  20 416   2  28   5  11  40   5

                  4   0   6   6   8 392   7  13   2  19  37

                  5   8   2   4  24  15 335  11   7  21  10

                  6   2   1   8   1   1   9 460   0   3   2

                  7   1  14  22   9   8   2   2 459   3  13

                  8   4  23  19  11  16  27   8   5 348  12

                  9   1   0   3  13  36  20   1  33   9 401
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Overall Statistics

                                        

               Accuracy : 0.836         

                 95% CI : (0.826, 0.847)

    No Information Rate : 0.114         

    P-Value [Acc > NIR] : <2e-16        

                                        

                  Kappa : 0.818         

 Mcnemar's Test P-Value : NA            

Statistics by Class:

                     Class: 0 Class: 1 Class: 2 Class: 3 Class: 4

Sensitivity            0.9555    0.904   0.8041   0.8031   0.8235

Specificity            0.9851    0.995   0.9837   0.9748   0.9783

Pos Pred Value         0.8632    0.959   0.8540   0.7864   0.8000

Neg Pred Value         0.9956    0.988   0.9769   0.9772   0.9814

Prevalence             0.0898    0.114   0.1062   0.1036   0.0952

Detection Rate         0.0858    0.103   0.0854   0.0832   0.0784

Detection Prevalence   0.0994    0.107   0.1000   0.1058   0.0980

Balanced Accuracy      0.9703    0.949   0.8939   0.8889   0.9009

                     Class: 5 Class: 6 Class: 7 Class: 8 Class: 9

Sensitivity            0.7579   0.8812   0.8612   0.7436   0.8167

Specificity            0.9776   0.9940   0.9834   0.9724   0.9743

Pos Pred Value         0.7666   0.9446   0.8612   0.7357   0.7756

Neg Pred Value         0.9766   0.9863   0.9834   0.9735   0.9799

Prevalence             0.0884   0.1044   0.1066   0.0936   0.0982

Detection Rate         0.0670   0.0920   0.0918   0.0696   0.0802

Detection Prevalence   0.0874   0.0974   0.1066   0.0946   0.1034

Balanced Accuracy      0.8678   0.9376   0.9223   0.8580   0.8955
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Since we fitted several models earlier of varying complexity, we could examine 
the degree of overfitting or overly optimistic accuracy from in-sample versus out-
of-sample performance measures across them. The code is not shown as it is just 
a repetition of what we have already done, but it is available in the code bundle 
provided with the book. The results are shown in Figure 2.6:

Figure 2.6

Use case – build and apply a neural 
network
To close out the chapter, we will discuss a more realistic use case for neural 
networks. We will use a public dataset by Anguita, D., Ghio, A., Oneto, L., Parra, X., 
and Reyes-Ortiz, J. L. (2013) that uses smartphones to track physical activity. The data 
can be downloaded here: http://archive.ics.uci.edu/ml/datasets/Human+Ac
tivity+Recognition+Using+Smartphones. The smartphones had an accelerometer 
and gyroscope from which 561 features from both time and frequency were used.

http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
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The smartphones were worn during walking, walking upstairs, walking downstairs, 
standing, sitting, and lying down. Although this data came from phones, similar 
measures could be derived from other devices designed to track activity such as 
various fitness tracking watches or bands. So this data can be useful if we want to sell 
devices and have them automatically track how many of these different activities the 
wearer engages in.

This data has been normalized to range from -1 to +1; however, usually we might 
want to perform some normalization. After downloading the data, the files can be 
unzipped and we can then locate them in the working directory or modify the paths 
in the following code to point to the correct location. We can read in the training and 
testing data, as well as the labels, and to recap take a quick look at the distribution of 
the outcome (Figure 2.7):

use.train.x <- read.table("UCI HAR Dataset/train/X_train.txt")

use.train.y <- read.table("UCI HAR Dataset/train/y_train.txt")[[1]]

use.test.x <- read.table("UCI HAR Dataset/test/X_test.txt")

use.test.y <- read.table("UCI HAR Dataset/test/y_test.txt")[[1]]

use.labels <- read.table("UCI HAR Dataset/activity_labels.txt")

barplot(table(use.train.y))

Figure 2.7
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We are going to evaluate a variety of tuning parameters to show how we might 
experiment with different approaches to try to get the best possible model. Because 
the models can take some time to train and as currently shown only use a single 
core, we can evaluate the models using different tuning parameters simultaneously 
using parallel processing. First, we need to add some additional packages to our 
checkpoint.R file and re-run that:

## Chapter 2 ##
library(parallel)
library(foreach)
library(doSNOW)

Now we can pick our tuning parameters and set up a local cluster as the backend for 
the foreach R package for parallel for loops. Note that, if you do this on a machine 
with fewer than five cores, you should change makeCluster(5) to a lower number:

## choose tuning parameters

tuning <- list(

  size = c(40, 20, 20, 50, 50),

  maxit = c(60, 100, 100, 100, 100),

  shuffle = c(FALSE, FALSE, TRUE, FALSE, FALSE),

  params = list(FALSE, FALSE, FALSE, FALSE, c(0.1, 20, 3)))

## setup cluster using 5 cores

## load packages, export required data and variables

## and register as a backend for use with the foreach package

cl <- makeCluster(5)

clusterEvalQ(cl, {

  library(RSNNS)

})

clusterExport(cl,

  c("tuning", "use.train.x", "use.train.y",

    "use.test.x", "use.test.y")

  )

registerDoSNOW(cl)

Now we are ready to train all the models. The following code shows a parallel for 
loop, using code that is similar to what we have already seen, but this time setting 
some of the arguments based on the tuning parameters we previously stored in the list:
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use.models <- foreach(i = 1:5, .combine = 'c') %dopar% {

  if (tuning$params[[i]][1]) {

    set.seed(1234)

    list(Model = mlp(

      as.matrix(use.train.x),

      decodeClassLabels(use.train.y),

      size = tuning$size[[i]],

      learnFunc = "Rprop",

      shufflePatterns = tuning$shuffle[[i]],

      learnFuncParams = tuning$params[[i]],

      maxit = tuning$maxit[[i]]

      ))

  } else {

    set.seed(1234)

    list(Model = mlp(

      as.matrix(use.train.x),

      decodeClassLabels(use.train.y),

      size = tuning$size[[i]],

      learnFunc = "Rprop",

      shufflePatterns = tuning$shuffle[[i]],

      maxit = tuning$maxit[[i]]

    ))

  }

}

Because generating out-of-sample predictions can also take some time, we will do 
that in parallel as well. However, first we need to export the model results to each of 
the workers on our cluster, and then we can calculate the predictions:

clusterExport(cl, "use.models")

use.yhat <- foreach(i = 1:5, .combine = 'c') %dopar% {

  list(list(

    Insample = encodeClassLabels(fitted.values(use.models[[i]])),

    Outsample = encodeClassLabels(predict(use.models[[i]],

                                          newdata = as.matrix(use.
test.x)))

    ))

}
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Finally, we can merge the actual and fitted or predicted values together into a 
dataset, calculate performance measures on each one, and store the overall results 
together for examination and comparison. We can repeat almost identical code as 
follows to generate out-of-sample performance measures. That code is not shown 
in the book, but is available in the code bundle provided with the book. Some 
additional data management is required here as sometimes a model may not predict 
each possible response level, but this can make for non-symmetrical frequency cross 
tabs, unless we convert the variable to a factor and specify the levels. We also drop  
0 values, which indicate the model was uncertain how to classify an observation:

use.insample <- cbind(Y = use.train.y,

  do.call(cbind.data.frame, lapply(use.yhat, `[[`, "Insample")))

colnames(use.insample) <- c("Y", paste0("Yhat", 1:5))

performance.insample <- do.call(rbind, lapply(1:5, function(i) {

  f <- substitute(~ Y + x, list(x = as.name(paste0("Yhat", i))))

  use.dat <- use.insample[use.insample[,paste0("Yhat", i)] != 0, ]

  use.dat$Y <- factor(use.dat$Y, levels = 1:6)

  use.dat[, paste0("Yhat", i)] <- factor(use.dat[, paste0("Yhat", i)], 
levels = 1:6)

  res <- caret::confusionMatrix(xtabs(f, data = use.dat))

  cbind(Size = tuning$size[[i]],

        Maxit = tuning$maxit[[i]],

        Shuffle = tuning$shuffle[[i]],

        as.data.frame(t(res$overall[c("AccuracyNull", "Accuracy", 
"AccuracyLower", "AccuracyUpper")])))

}))

If we print the in-sample and out-of-sample performance, we can see how each of 
our models did and the effect of varying some of the tuning parameters. The output 
is shown in the following code. The fourth column (null accuracy) is dropped as 
it is not as important for this comparison. Note that the code for the out-of-sample 
performance is not shown in this book but is left as an exercise for the reader (an 
easy adaptation of the code for in-sample performance) and is provided in the code 
bundle:

performance.insample[,-4]

  Size Maxit Shuffle Accuracy AccuracyLower AccuracyUpper
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1   40    60   FALSE     0.99          0.98          0.99

2   20   100   FALSE     0.99          0.99          0.99

3   20   100    TRUE     0.99          0.99          0.99

4   50   100   FALSE     0.99          0.99          1.00

5   50   100   FALSE     1.00          1.00          1.00

 

performance.outsample[,-4]

  Size Maxit Shuffle Accuracy AccuracyLower AccuracyUpper

1   40    60   FALSE     0.93          0.92          0.94

2   20   100   FALSE     0.92          0.91          0.93

3   20   100    TRUE     0.92          0.91          0.93

4   50   100   FALSE     0.91          0.90          0.92

5   50   100   FALSE     0.92          0.91          0.93

First of all, these results show that we are able to classify the types of activity people 
are engaged in quite accurately based on the data from their smartphones. It also 
seems from the in-sample data that the more complex models do better. However, 
examining the out-of-sample performance measures, the reverse is actually true! 
Thus, not only are the in-sample performance measures biased estimates of the 
models' actual out-of-sample performance, they do not even provide the best way  
to rank order model performance to choose the best performing model. We will  
get into ways to combat this overfitting in the next chapter as we prepare to go  
into deep neural networks where there are multiple hidden layers.

Despite the slightly worse out-of-sample performance, the models still do  
well—far better than chance alone—and, for our example use case, we could  
pick the best model (number 1) and be quite confident that using this will  
provide a good classification of a user's activities.

Summary
This chapter showed how to get started building and training neural networks to 
classify data including image recognition and physical activity data. One pitfall in 
machine learning is that more complex models will be more likely to overfit the 
training data, so that evaluating performance in the same data used to train the 
model results in biased, overly optimistic estimates of the model performance. 
Indeed, this can even make a difference as to which model is chosen as the best. 
Overfitting is also an issue for deep neural networks, and in the next chapter we will 
discuss various techniques used to prevent overfitting—termed regularization—and 
obtain more accurate estimates of model performance.
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Preventing Overfitting
In the previous chapter, we learned how to train a basic neural network. We also 
saw the diminishing returns from further training iterations or a larger neural 
network in terms of its predictive ability on holdout or validation data not used 
to train the model. This highlights how, although a more complex model will 
almost always fit the data it was trained on better, it may not actually predict new 
data better. This chapter shows different approaches that can be used to prevent 
models from overfitting the data to improve generalizability, called regularization 
on unsupervised data. More specifically, whereas models are typically trained by 
optimizing parameters in a way that reduces the training error, regularization is 
concerned with reducing testing or validation errors so that the model performs well 
with new data as well as training data.

The first part of the chapter provides a conceptual overview of a variety of 
regularization strategies. The chapter closes with an example use case using 
regularization to improve out-of-sample performance. It covers the following topics:

•	 L1 penalty
•	 L2 penalty
•	 Ensembles and model averaging
•	 Use case – improving out-of-sample model performance using dropout
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L1 penalty
The basic concept of the L1 penalty, also known as the Least Absolute Shrinkage 
and Selection Operator (lasso)—(Hastie, T., Tibshirani, R., and Friedman, J. (2009)), 
is that a penalty is used to shrink weights towards zero. The penalty term uses the 
sum of the absolute weights, so the degree of penalty is no smaller or larger for small 
or large weights, with the result that small weights may get shrunken to zero, a 
convenient effect as, in addition to preventing overfitting, it can be a sort of variable 
selection. The strength of the penalty is controlled by a hyperparameter, λ, which 
multiplies the sum of the absolute weights, and can be set a priori or, as with other 
hyperparameters, optimized using cross validation or some similar approach.

Mathematically, it is easier to start with an Ordinary Least Squares (OLS) regression 
model. In regression, a set of coefficients or model weights are estimated using the 
least squared error criteria, where the weight/coefficient vector, B, is estimated 
such that it minimizes: (Y – XB)T(Y – XB) where Y is the outcome or dependent 
variable, X is a k + 1 column design matrix with k columns for the predictors and one 
constant column for the intercept (also called an offset sometimes). The difference 
between the observed outcome and the predicted values (the product of the design 
matrix post multiplied by the weight vector) is a vector of the errors or residuals. 
In this framework, one way to think about the L1 penalty is that it is a constrained 
estimator, where the weight vector, B, is estimated subject to the constraint that the 
sum of the absolute weights is less than or equal to some (user-chosen) threshold, λ.

Typically, the intercept or offset term is excluded from this constraint (for example, 
by pre-centering all data and dropping the intercept or by selectively applying the 
constraint). Another way of viewing the L1 penalty is to see it as a modification to 
the function minimized, from (Y – XB)T(Y – XB) to (Y – XB)T(Y – XB) + λ||B||1, 
where ||B||1 represents the sum of the absolute weights. If λ = 0, then the L1 
penalty reduces to the regular OLS estimator. The user may choose λ, or more 
commonly it is treated as a hyperparameter and optimized by evaluating a range of 
possible λ values (for example, through cross validation). Although outside the scope 
of this book, the L1 penalty may also be viewed through a Bayesian perspective, the 
final posterior estimates are a function of the estimates from the data and the prior, 
and the shrinkage that occurs from the penalty term is accomplished by setting a 
prior with varying degrees of certainty. Technically, the parameters could be shrunk 
towards any arbitrary value, but they are almost always shrunk towards zero.
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Even if the theory behind why and how the L1 penalty works is not so clear, there 
are a number of practical implications that are straightforward. First, it may be 
obvious that the effect of the penalty depends on the size of the weights, and the 
size of the weights depends on the scale of the data. Therefore, data is typically 
standardized to have unit variance first (or at least to make the variance of each 
variable equal). The L1 penalty has a tendency to shrink small weights to zero (for 
explanations as to why this happens, see Hastie, T., Tibshirani, R., and Friedman, 
J. (2009)). If you only consider variables for which the L1 penalty leaves non zero 
weights, it can essentially function as feature selection, a primary motivation of 
another name commonly used for the L1 penalty, the Least Absolute Shrinkage and 
Selection Operator, or lasso. Even outside the usage of strict feature selection, the 
tendency for the L1 penalty to shrink small coefficients to zero can be convenient for 
simplifying the interpretation of the model results.

When considering the L1 penalty as constrained optimization, it is easy to see how it 
effectively limits the complexity of the model. Even if many predictors are included, 
the sum of the absolute weights cannot exceed the defined threshold. One result of 
this is that, using the L1 penalty, it is actually possible to include more predictors 
than cases or observations, so long as there is a sufficiently strong penalty term; the 
apparently (by number of weights) over-parameterized model becomes uniquely 
estimable through the constraints.

With these basics on the L1 penalty, we will now briefly consider how the L1 
penalty can apply to neural networks, the main use case we are concerned with in 
this book. Let X represent our inputs, Y our outcome or dependent variable, and 
B our parameters, and F, the objective function which will be optimized to obtain 
B. Specifically: F(B; X, Y). In neural networks, parameters may be biases or offsets 
(essentially intercepts from regression) and the weights. The L1 penalty modifies the 
objective function to be: F(B; X, Y) + λ||w||1, where w represents only the weights 
(that is, typically offsets are ignored). Considering the gradient, we can show that 
the additional penalty term is λ * sign(w). This highlights the fact that the penalty is 
constant regardless of the magnitude of the weight. This will be an important point 
of distinction compared with the L2 penalty, which we will discuss next. Further, it 
is part of the way in which the L1 penalty tends to result in a sparse solution (that is, 
more zero weights) as small and larger weights result in equal penalties, so that at 
each update of the gradient the weights are moved towards zero.
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We have discussed λ as a constant, controlling the degree of penalty or regularization. 
However, it is possible to set different values. Although not commonly done in a 
single layer neural network (it is atypical to seek to differentially regularize specific 
weights), it becomes more useful with deep neural networks, where varying degrees 
of regularization can be applied to different layers. One reason for considering such 
differential regularization is that it is sometimes desirable to allow a greater number of 
parameters (say by including more neurons in a particular layer) but then counteract 
this somewhat through stronger regularization. Despite this, as these hyperparameters 
are typically optimized through cross validation or other empirical techniques, 
it can be quite computationally demanding to allow them to vary for every layer 
of a deep neural network, as the number of possible values grows exponentially; 
so most commonly a single value is used across the entire model. After exploring 
the L1 penalty practically in R, we move on to consider another common form of 
regularization, the L2 penalty.

L1 penalty in action
To see how the L1 penalty works, we can use a simulated linear regression problem. 
First, we will add the R package glmnet to the checkpoint.R file to load the relevant 
library and use a reproducible version, as before:

library(glmnet)

Next we can simulate the data, using a purposefully pathologically correlated set of 
predictors:

set.seed(1234)

X <- mvrnorm(n = 200, mu = c(0, 0, 0, 0, 0),

  Sigma = matrix(c(

    1, .9999, .99, .99, .10,

    .9999, 1, .99, .99, .10,

    .99, .99, 1, .99, .10,

    .99, .99, .99, 1, .10,

    .10, .10, .10, .10, 1

  ), ncol = 5))

y <- rnorm(200, 3 + X %*% matrix(c(1, 1, 1, 1, 0)), .5)
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Next, we can fit an OLS regression model to the first 100 cases, and then use the 
lasso. To use the lasso, we use the glmnet() function from the glmnet package. This 
function can actually fit the L1 or the L2 (discussed in the next section) penalties, 
and which occurs is determined by the argument, alpha. When alpha = 1, it is 
the L1 penalty (that is, the lasso), and when alpha = 0 it is the L2 penalty (that is, 
ridge regression). Further, because we do not know the value of lambda we should 
pick, we can evaluate a range of options and tune this hyperparameter automatically 
using cross validation, accomplished by using the cv.glmnet() function:

m.ols <- lm(y[1:100] ~ X[1:100, ])

m.lasso.cv <- cv.glmnet(X[1:100, ], y[1:100], alpha = 1)

We can plot the lasso object to see the mean squared error for a variety of lambda 
values:

plot(m.lasso.cv) 

Figure 3.1

One thing that we can see from the graph is that, when the penalty gets too high,  
the cross-validated model error increases. Indeed, the lasso seems to do well  
with very low lambda values, perhaps indicating the lasso does not help improve 
out-of-sample performance/generalizability much. For the sake of this example,  
we will continue but in actual use this might give us pause to consider whether the 
lasso was really helping.
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Finally, we can compare the OLS coefficients with those from the lasso:

cbind(

  OLS = coef(m.ols),

  Lasso = coef(m.lasso.cv)[,1])

               OLS Lasso

(Intercept)  2.958  2.99

X[1:100, ]1 -0.082  1.41

X[1:100, ]2  2.239  0.71

X[1:100, ]3  0.602  0.51

X[1:100, ]4  1.235  1.17

X[1:100, ]5 -0.041  0.00

Notice that the OLS coefficients are noisier and also that, in the lasso, predictor 5 is 
penalized to 0. Recall from the simulated data that the true coefficients are 3, 1, 1, 1, 1, 
and 0. The OLS estimates have much too low a value for the first predictor and much 
too high a value for the second, whereas the lasso has more accurate values  
for each.

L2 penalty
The L2 penalty, also known as ridge regression, is similar in many ways to the L1 
penalty, but instead of adding a penalty based on the sum of the absolute weights, 
the penalty is based on the squared weights. This has the effect of providing a varied 
penalty, with larger (positive or negative) weights resulting in a greater penalty. In 
the context of neural networks, this is sometimes referred to as weight decay. If you 
examine the gradient of the regularized objective function, there is a penalty such 
that, at every update, there is a multiplicative penalty to the weights. As for the L1 
penalty, although they could be included, biases or offsets are usually excluded  
from this.

From the perspective of a linear regression problem, the L2 penalty is a modification 
to the objective function minimized, from (Y – XB)T(Y – XB) to (Y – XB)T(Y – XB) + 
0.5λBTB. As with the L1 penalty, the L2 penalty can allow otherwise undetermined 
problems to be solved, particularly when the covariance matrix of the predictors 
is singular. The reason for this is that the effect of the L2 penalty is essentially to 
increase the variance of each variable. In OLS, the normal equations for B in matrix 
form are inv(XTX)XTy but solving the regularized OLS objective function shown 
earlier, obtain, inv(XTX + λI)XTy, where I is the identity matrix.
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Since XTX is the variance-covariance matrix for the design matrix, adding λI will 
have the effect of increasing the diagonal, but leaving the off diagonals unchanged. 
That is, the variances are increased but covariances unchanged, resulting in 
shrinking the correlations (standardized covariances) towards zero. A sufficiently 
strong penalty will result in otherwise singular covariance matrices being uniquely 
estimable, and can also help stabilize estimates when there are strongly correlated 
predictors.

L2 penalty in action
To see how the L2 penalty works, we can use the same simulated linear regression 
problem we used for the L1 penalty. To fit a ridge regression model, we use the 
glmnet() function from the glmnet package. As mentioned previously, this function 
can actually fit the L1 or the L2 penalties, and which occurs is determined by the 
argument, alpha. When alpha = 1, it fits the lasso, and when alpha = 0, it fits 
ridge regression. This time, we choose alpha = 0. Again, we evaluate a range of 
lambda options and tune this hyperparameter automatically using cross validation, 
accomplished by using the cv.glmnet() function:

m.ridge.cv <- cv.glmnet(X[1:100, ], y[1:100], alpha = 0)

We plot the ridge regression object to see the error for a variety of lambda values:

plot(m.ridge.cv)

Figure 3.2
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Although the shape is different from the lasso in that the error appears to asymptote 
for higher lambda values, it is still clear that, when the penalty gets too high, the 
cross-validated model error increases. As with the lasso, the ridge regression model 
seems to do well with very low lambda values, perhaps indicating the L2 penalty 
does not much help improve out-of-sample performance/generalizability.

Finally, we can compare the OLS coefficients with those from the lasso and the ridge 
regression model:

cbind(

  OLS = coef(m.ols),

  Lasso = coef(m.lasso.cv)[,1],

  Ridge = coef(m.ridge.cv)[,1])

               OLS Lasso Ridge

(Intercept)  2.958  2.99 3.002

X[1:100, ]1 -0.082  1.41 0.958

X[1:100, ]2  2.239  0.71 0.964

X[1:100, ]3  0.602  0.51 0.924

X[1:100, ]4  1.235  1.17 0.949

X[1:100, ]5 -0.041  0.00 0.011

Although ridge regression does not shrink the coefficient for the fifth predictor to 
exactly zero, it is smaller than in the OLS, and the remaining parameters are all 
slightly shrunken, but quite close to their true values of 3, 1, 1, 1, 1, and 0.

Weight decay (L2 penalty in neural networks)
Without knowing it, we have actually already seen regularization in action in 
Chapter 2, Training a Prediction Model. The neural network we trained using the caret 
and nnet package used a weight decay of 0.10. We can investigate the use of the 
weight decay by varying it, and tuning it using cross-validation. First we load the 
data as before. Then we create a local cluster to run the cross validation in parallel. 
Note that, as before, rather than load the libraries directly, we need to source() 
the checkpoint.R file so that each of the workers in our cluster is using the same R 
package version:

## same data as from previous chapter

digits.train <- read.csv("train.csv")
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## convert to factor

digits.train$label <- factor(digits.train$label, levels = 0:9)

i <- 1:5000

digits.X <- digits.train[i, -1]

digits.y <- digits.train[i, 1]

## try various weight decays and number of iterations

## register backend so that different decays can be

## estimated in parallel

cl <- makeCluster(4)

clusterEvalQ(cl, {

  source("checkpoint.R")

})

registerDoSNOW(cl)

Next we train a neural network on the digit classification, and vary the weight decay 
penalty at 0 (no penalty) and 0.10. We also loop through two sets of the number of 
iterations allowed: 100 or 150. Note that this code is computationally intensive and 
depending on hardware may take some time to run:

set.seed(1234)

digits.decay.m1 <- lapply(c(100, 150), function(its) {

  train(digits.X, digits.y,

           method = "nnet",

           tuneGrid = expand.grid(

             .size = c(10),

             .decay = c(0, .1)),

           trControl = trainControl(method = "cv", number = 5, repeats = 
1),

           MaxNWts = 10000,

           maxit = its)

})
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Examining the results, we see that, when we limit to only 100 iterations, the non-
regularized model (Accuracy = 0.63) outperforms the regularized model (Accuracy 
= 0.60) based on cross-validated results (although neither is doing well absolutely, 
particularly on this data):

digits.decay.m1[[1]]

Neural Network 

5000 samples

 784 predictor

  10 classes: '0', '1', '2', '3', '4', '5', '6', '7', '8', '9' 

No pre-processing

Resampling: Cross-Validated (5 fold) 

Summary of sample sizes: 4000, 3999, 4000, 4001, 4000 

Resampling results across tuning parameters:

  decay  Accuracy  Kappa  Accuracy SD  Kappa SD

  0.0    0.63      0.59   0.052        0.058   

  0.1    0.60      0.56   0.061        0.068   

Tuning parameter 'size' was held constant at a value of 10

Accuracy was used to select the optimal model using  the

 largest value.

The final values used for the model were size = 10 and decay = 0.

Next we can examine the model with 150 iterations and see whether the regularized 
or non-regularized model performs better:

digits.decay.m1[[2]]

Neural Network 

5000 samples

 784 predictor

  10 classes: '0', '1', '2', '3', '4', '5', '6', '7', '8', '9' 
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No pre-processing

Resampling: Cross-Validated (5 fold) 

Summary of sample sizes: 4002, 4000, 4000, 3999, 3999 

Resampling results across tuning parameters:

  decay  Accuracy  Kappa  Accuracy SD  Kappa SD

  0.0    0.65      0.61   0.049        0.055   

  0.1    0.66      0.62   0.071        0.078   

Tuning parameter 'size' was held constant at a value of 10

Accuracy was used to select the optimal model using  the

 largest value.

The final values used for the model were size = 10 and decay = 0.1.

Overall, the model with more iterations outperforms the model with fewer iterations, 
regardless of the regularization. However, comparing both models with 150 
iterations, the regularized model is superior (Accuracy = 0.66) to the non-regularized 
model (Accuracy = 0.65), although here the difference is relatively small.

These results highlight the point that regularization is often most helpful with more 
complex models that have greater flexibility to fit (and overfit) the data, and that 
(in models that are appropriate or overly simplistic for the data) regularization may 
actually decrease performance. In the next section, we will discuss ensemble and 
model averaging techniques, the last forms of regularization we will highlight in this 
book.

Ensembles and model averaging
Another approach to regularization involves creating ensembles of models and 
combining them, such as by model averaging or some other algorithm for combining 
individual model results. As with many of the previous regularization methods, 
model averaging is a fairly simple concept. If you have different models that each 
generate a set of predictions, each model may make errors in its predictions, but 
they might not all make the same errors. Where one model predicts too high a value, 
another may predict one that's too low, so that, if averaged, some of the errors 
cancel out resulting in a more accurate prediction than would have been otherwise 
obtained.
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To better understand model averaging, let's consider a couple of different but 
extreme examples. In the first case, suppose that the models being averaged are 
identical or at least generate identical predictions (that is, perfectly correlated). 
In that case, the average will result in no benefit, but also no harm. In the second 
case, suppose that the models being averaged each independently perform equally 
well, and their predictions are uncorrelated (or have very low correlations). Then 
the average will be far more accurate as it gains the strengths of each model. The 
following code gives an example using simulated data. In this small example, we 
only have three models, but they illustrate the point:

## simulated data

set.seed(1234)

d <- data.frame(

  x = rnorm(400))

d$y <- with(d, rnorm(400, 2 + ifelse(x < 0, x + x^2, x + x^2.5), 1))

d.train <- d[1:200, ]

d.test <- d[201:400, ]

## three different models

m1 <- lm(y ~ x, data = d.train)

m2 <- lm(y ~ I(x^2), data = d.train)

m3 <- lm(y ~ pmax(x, 0) + pmin(x, 0), data = d.train)

## In sample R2

cbind(

  M1 = summary(m1)$r.squared,

  M2 = summary(m2)$r.squared,

  M3 = summary(m3)$r.squared)

       M1   M2   M3

[1,] 0.33 0.60 0.76

We can see that the predictive value of each model, at least in the training data, 
varies quite a bit. Evaluating the correlations among fitted values in the training data 
can also help to indicate how much overlap there is among the model predictions:

## correlations in the training data

cor(cbind(
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  M1 = fitted(m1),

  M2 = fitted(m2),

  M3 = fitted(m3)))

     M1   M2   M3

M1 1.00 0.11 0.65

M2 0.11 1.00 0.78

M3 0.65 0.78 1.00

Next we generate predicted values for the testing data, the average of the predicted 
values, and again correlate the predictions along with reality in the testing data:

## generate predictions and the average prediction

d.test$yhat1 <- predict(m1, newdata = d.test)

d.test$yhat2 <- predict(m2, newdata = d.test)

d.test$yhat3 <- predict(m3, newdata = d.test)

d.test$yhatavg <- rowMeans(d.test[, paste0("yhat", 1:3)])

## correlation in the testing data

cor(d.test)

             x    y  yhat1  yhat2 yhat3 yhatavg

x        1.000 0.44  1.000 -0.098  0.60    0.55

y        0.442 1.00  0.442  0.753  0.87    0.91

yhat1    1.000 0.44  1.000 -0.098  0.60    0.55

yhat2   -0.098 0.75 -0.098  1.000  0.69    0.76

yhat3    0.596 0.87  0.596  0.687  1.00    0.98

yhatavg  0.552 0.91  0.552  0.765  0.98    1.00

From the results we can see that indeed the average of the three models' predictions 
performs better than any of the models individually. However, this is only 
guaranteed to be true when each model performs similarly well. For example, 
consider a pathological case where one model predicts the outcome perfectly and 
another is random noise that is completely uncorrelated with the outcome. In this 
case, averaging the two would certainly result in worse performance than just using 
the good model. In general, it is good to check that the models being averaged have 
similar performance, at least in the training data. The second lesson is that, given 
models with similar performance, it is desirable to have lower correlations between 
model predictions, as this will result in the best performing average.
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Ensemble methods are methods that employ model averaging. One common 
technique is known as bootstrap aggregating, where the data is sampled with 
replacement to form equally sized datasets, a model is trained on each, and then 
these results are averaged. Because the data is sampled with replacement, some cases 
may show up multiple times or not at all in each dataset. Because a model is trained 
on each dataset, if a particular variation is unique to just a few cases or a rare quirk 
of the data, it may only emerge in one model; when the predictions are averaged 
across many models trained on each of the resampled datasets, such overfitting will 
tend to be reduced. This process is known as bagging (bootstrap aggregating). In 
some contexts (for example, decision trees), further steps may be taken to attempt 
to reduce the correlations among the different models. For example, random forests 
are decision trees that use bootstrap aggregating but also randomly select a subset of 
features at each node split in order to try to reduce model to model correlations and 
thus improve the overall average performance.

Bagging and model averaging is not used as frequently in deep neural networks 
because the computational cost of training each model can be quite high and thus 
repeating the process many times becomes prohibitively expensive in terms of 
time and compute resources. However, the dropout process discussed in the next 
section serves a very similar function to the way many subset models are trained, 
by dropping specific neurons, and then the results of these models are averaged. 
Nevertheless, it is still possible to use model averaging in the context of deep neural 
networks, even if perhaps it is on only a handful of models rather than hundreds, as 
is common in random forests and some other approaches.

Use case – improving out-of-sample 
model performance using dropout
Dropout is a relatively novel approach to regularization that is particularly valuable 
for large and complex deep neural networks. For a much more detailed exploration 
of dropout in deep neural networks, see Srivastava, N., Hinton, G., Krizhevsky, A., 
Sutskever, I., and Salakhutdinov, R. (2014). The concept behind dropout is actually 
quite straightforward. During the training of the model, units (for example, inputs, 
hidden neurons, and so on) are probabilistically dropped along with all connections 
to and from them. For example, Figure 3.3 is an example of what might happen at 
each step of training for a model where hidden neurons and their connections are 
probabilistically dropped with a probability of 1/3. The grayed out and dashed 
neurons and connections are the ones that were dropped. Importantly, it is not that 
some neurons are dropped during the entirety of training, but that they are only 
dropped for a step/update:
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Figure 3.3

One way to think about dropout is that it forces models to be more robust to 
perturbations. Although many neurons are included in the full model, during 
training they are not all simultaneously present, and so neurons must operate 
somewhat more independently than they would have to otherwise. It is also worth 
noting that inputs can be dropped as well as hidden neurons, but typically this is 
either not done or done to a much lesser extent.
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Another way of viewing dropout is that, if you have a large model with N weights 
between hidden neurons, but 50% are dropped during training, although all N weights 
will be used during some stages of training, you have effectively halved the total 
model complexity as the average number of weights will be halved. This reduces 
model complexity, and hence may help to prevent overfitting of the data. Because 
of this feature, if the proportion of dropout is p, Srivastava, N., Hinton, G., Krizhevsky, 
A., Sutskever, I., and Salakhutdinov, R. (2014) recommend scaling up the target model 
complexity by 1/p in order to end up with a roughly equally complex model.

Although neurons can be randomly dropped during training, during testing it 
is computationally inconvenient to calculate many predictions based on models 
dropping some neurons and then average the predictions from each model. Instead, 
it has been suggested (and this seems to perform well) that we should use an 
approximate average based on scaling the weights from a single neural network 
based on each weight's probability of being included (that is, 1 – p, although this can 
be done empirically rather than theoretically).

In addition to working well, this approximate weight re-scaling is a fairly trivial 
calculation. Thus, the primary computational cost of dropout comes from the fact 
that a model with more neurons and weights must be used because so many (a 
commonly recommended value is around 50% for hidden neurons) are dropped 
during each training update.

Although dropout is fairly computationally cheap, it can be slower as, because of the 
dropout, a larger model may be required, and larger models typically are slower or 
more computationally demanding to train. To counteract this, a higher learning rate 
can be used so that fewer iterations are required. One potential downside of such an 
approach is that, with fewer neurons and a faster learning rate, some weights may 
become quite large. Fortunately, it is possible to use dropout along with other forms 
of regularization, such as the L1 or L2 penalty. Taken together, the result is a larger 
model that that can quickly (a faster learning rate) explore a broader parameter 
space, but is regularized through dropout and a penalty to keep the weights in check.

To show the use of dropout in a neural network, we will return to the Modified 
National Institute of Standards and Technology (MNIST) dataset (that we 
downloaded in Chapter 2, Training a Prediction Model, from Kaggle) we worked with 
previously. We will use the nn.train() function from the deepnet package, as it 
allows for dropout. As in the previous chapter, we will run the four models in parallel 
to reduce the time it takes. Specifically, we compare four models, two with and two 
without dropout regularization and with either 40 or 80 hidden neurons. For dropout, 
we specify the proportion to dropout separately for the hidden and visible units. Based 
on the rule of thumb that about 50% of hidden units (and 80% of observed units) 
should be kept, we specify the dropout proportions at .5 and .2, respectively:
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## Fit Models

nn.models <- foreach(i = 1:4, .combine = 'c') %dopar% {

set.seed(1234)

 list(nn.train(

    x = as.matrix(digits.X),

    y = model.matrix(~ 0 + digits.y),

    hidden = c(40, 80, 40, 80)[i],

    activationfun = "tanh",

    learningrate = 0.8,

    momentum = 0.5,

    numepochs = 150,

    output = "softmax",

    hidden_dropout = c(0, 0, .5, .5)[i],

    visible_dropout = c(0, 0, .2, .2)[i]))

}

Next, we can loop through the models and obtain predicted values and get the 
overall model performance:

nn.yhat <- lapply(nn.models, function(obj) {

  encodeClassLabels(nn.predict(obj, as.matrix(digits.X)))

})

perf.train <- do.call(cbind, lapply(nn.yhat, function(yhat) {

  caret::confusionMatrix(xtabs(~ I(yhat - 1) + digits.y))$overall

}))

colnames(perf.train) <- c("N40", "N80", "N40_Reg", "N80_Reg")

options(digits = 4)

perf.train

                  N40    N80 N40_Reg N80_Reg

Accuracy       0.9050 0.9546  0.9212  0.9396

Kappa          0.8944 0.9495  0.9124  0.9329

AccuracyLower  0.8965 0.9485  0.9134  0.9326
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AccuracyUpper  0.9130 0.9602  0.9285  0.9460

AccuracyNull   0.1116 0.1116  0.1116  0.1116

AccuracyPValue 0.0000 0.0000  0.0000  0.0000

McnemarPValue     NaN    NaN     NaN     NaN

When evaluating the models in the in-sample training data, it seems that the 
40-neuron model performs better with regularization than without it, but that the 
80-neuron model performs better without regularization than with regularization. Of 
course the real test comes on the testing or hold out data:

i2 <- 5001:10000

test.X <- digits.train[i2, -1]

test.y <- digits.train[i2, 1]

nn.yhat.test <- lapply(nn.models, function(obj) {

  encodeClassLabels(nn.predict(obj, as.matrix(test.X)))

})

perf.test <- do.call(cbind, lapply(nn.yhat.test, function(yhat) {

  caret::confusionMatrix(xtabs(~ I(yhat - 1) + test.y))$overall

}))

colnames(perf.test) <- c("N40", "N80", "N40_Reg", "N80_Reg")

perf.test

                  N40    N80 N40_Reg N80_Reg

Accuracy       0.8652 0.8684  0.8868  0.9014

Kappa          0.8502 0.8537  0.8742  0.8904

AccuracyLower  0.8554 0.8587  0.8777  0.8928

AccuracyUpper  0.8746 0.8777  0.8955  0.9095

AccuracyNull   0.1074 0.1074  0.1074  0.1074

AccuracyPValue 0.0000 0.0000  0.0000  0.0000

McnemarPValue     NaN    NaN     NaN     NaN
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The testing data highlights quite well the fact that, in the non-regularized model, 
the additional neurons do not meaningfully improve the performance of the model 
on the testing data. In addition, the in-sample performance was overly optimistic 
(Accuracy = 0.9546 versus Accuracy = 0.8684 for the 80-neuron, non-regularized 
model in training and testing data, respectively). However, here we see the 
advantage of the regularized models for both the 40- and the 80-neuron models. 
Although both still perform worse in the testing data than they did in the training 
data, they perform better than the equivalent non-regularized models in the testing 
data. This difference is particularly important for the 80-neuron model as there is a 
0.0862 drop in overall accuracy from training to testing data, but in the regularized 
model the drop is only 0.0382, resulting in the regularized 80-neuron model having 
the best overall performance.

Although these numbers are by no means record-setting, they do show the value of 
using dropout, or regularization more generally, and how one might go about trying to 
tune the model and dropout parameters to improve the ultimate testing performance.

Summary
This chapter showed several approaches to preventing overfitting including common 
penalties, the L1 penalty and L2 penalty, ensembles of simpler models, and dropout 
where variables and/or cases are dropped to make the model noisy and prevent 
overfitting. We examined the role of penalties in regression problems and for neural 
networks. In the next chapter, we will move into deep learning and deep neural 
networks and see how to push the accuracy and performance of our predictive 
models even further.
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Identifying Anomalous Data
In this chapter we will delve into deep neural networks and deep learning models. 
This chapter will focus on auto-encoder models, which can be used to learn the 
features of a dataset. The first part of the chapter introduces unsupervised learning 
where there is no specific outcome to be predicted. The next section provides a 
conceptual overview of auto-encoder models in a machine learning and deep neural 
network context in particular. The main core of the chapter will show how to build 
and apply an auto-encoder model to identify anomalous data. Such atypical data 
may simply be bad data or outliers, but these techniques are also used for fraud 
detection; for example, when an individual's credit card spending pattern differs 
from their usual behavior, it may be a red flag that something is wrong. Finally, 
the chapter closes with some exploration of how to fine-tune the models, including 
the use of different regularization strategies discussed in the previous chapter. In 
addition to being useful in its own right, this chapter will provide important building 
blocks for using and training deep learning models.

This chapter will cover the following topics:

•	 What is unsupervised learning?
•	 How do auto-encoders work?
•	 Training an auto-encoder in R
•	 Use case – building and applying an auto-encoder model
•	 Fine-tuning auto-encoder models
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Getting started with unsupervised 
learning
So far we have focused on models and techniques that broadly fall under the 
category of supervised learning. Supervised learning is supervised in the sense 
that the task is for the machine to learn the relationship between a set of variables 
or features and one or more outcomes. Often, there is only a single outcome. For 
example, a company may wish to predict whether someone is likely to become a 
customer, in which case the outcome of whether an individual becomes a customer 
coded as yes/no. In this chapter, we will delve into methods of unsupervised 
learning. In contrast with supervised learning, where there is an outcome variable(s) 
or labeled data is used, unsupervised learning does not require any outcomes or 
labeled data. Unsupervised learning uses only input features for learning. A common 
example of unsupervised learning is cluster analysis, such as K-means clustering, 
where the machine learns hidden or latent clusters in the data to minimize a criterion 
(for example, the smallest variance within a cluster).

Another way to think about unsupervised learning is that the goal is to predict the 
inputs. An example of this is shown in Figure 4.1. At first this is counter-intuitive 
as it may seem relatively unhelpful to learn a sophisticated model whose only 
purpose is to reproduce the inputs fed into it. However, there are a number of useful 
features. One common use of unsupervised learning is dimension reduction. The 
goal of dimension reduction is for a set of p variables to find a set of latent variables, 
k, so that k < p, but with the k latent variables the p raw variables can be reasonably 
reproduced. This is always a trade-off and balancing act, as typically the greater the 
dimension reduction, the greater the simplicity, but at the cost of accuracy:

Figure 4.1
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Perhaps the most common example of dimension reduction is principal component 
analysis. Principal component analysis uses an orthogonal transformation to go 
from the raw data to the principal components. In addition to being uncorrelated, 
the principal components are ordered from the component that explains the most 
variance to that which explains the least. Although all principal components can be 
used (in which case the dimensionality of the data is not reduced), only components 
that explain a sufficiently large amount of variance (for example, based on high 
eigenvalues) are included and components that account for relatively little variance 
are dropped as noise or unnecessary.

A variety of other methods for unsupervised learning are covered in Chapter 14 of 
Hastie, T., Tibshirani, R., and Friedman, J. (2009). The remainder of this chapter will 
focus on unsupervised methods for deep learning, specifically on auto-encoders.

How do auto-encoders work?
Auto-encoders are neural networks and may be shallow or deep, as with other 
neural networks we have discussed so far. What distinguishes auto-encoders from 
other forms of neural network is that auto-encoders are trained to reproduce or 
predict the inputs. Thus the hidden layers and neurons are not maps between an 
input and some other outcome, but are self (auto)-encoding.

Unlike the more common cases of neural networks where the outcome is some 
variable we are interested in predicting; given sufficient complexity, auto-encoders 
can simply learn the identity function and the hidden neurons will exactly mirror the 
raw data, resulting in no meaningful benefit. Because the outcome used for training is 
the same as the inputs, the best auto-encoder is not necessarily the most accurate one, 
but one that reveals some meaningful structure or architecture in the data or one that 
reduces noise, identifies outliers or anomalous data, or some other useful side effect 
that is not necessarily directly related to accurate predictions of the model inputs.

One way to use auto-encoders is to perform dimension reduction. Auto-encoders 
with a lower dimensionality than the raw data are called undercomplete; by using 
an undercomplete auto-encoder, one can force the auto-encoder to learn the most 
salient or prominent features of the data. These new hidden features can then 
be used for further analysis or work. For example, an important and common 
application of auto-encoders is to pre-train deep neural networks or other supervised 
learning models. In addition, it may be possible and of interest to directly interpret 
the hidden features themselves; for example, they may provide insight into the key 
characteristics or structures in the data.
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Using an undercomplete model is effectively a way to regularize the model. 
However, it is also possible to train overcomplete auto-encoders where the 
hidden dimensionality is greater than the raw data, so long as some other form of 
regularization is used. We will discuss different forms of regularization in more 
depth in the next section.

As with regular neural networks, there are broadly two parts to auto-encoders. First, 
an encoding function, f(∙), encodes the raw data, x, to the hidden neurons, H. Second, 
a decoding function, g(∙), decodes H back to x.

Regularized auto-encoders
An undercomplete auto-encoder is, in a way, a form of regularized auto-encoder, 
where the regularization occurs through using a shallower (or in some other way 
lower) dimensional representation than the data. However, regularization can be 
accomplished through other means as well.

Penalized auto-encoders
As we have seen in Chapter 3, Preventing Overfitting, one approach is to use penalties. 
In general, our goal is to (as simply as possible) minimize the re-construction 
error. If we have an objective function, F, traditionally, we may optimize F(y, f(x)), 
where f(∙) encodes the raw data inputs to generate predicted or expected y values. 
For auto-encoders, we have F(x, g(f(x))), so that the machine learns the weights 
and functional form of f(∙) and g(∙) to minimize the discrepancy between x and the 
reconstruction of x, namely g(f(x)). If we want to use an overcomplete auto-encoder, 
we need to introduce some form of regularization to force the machine to learn a 
representation that does not simply exactly mirror the input. For example, we might 
add a function that penalizes based on complexity, so that, instead of optimizing F(x, 
g(f(x))), we optimize F(x, g(f(x))) + P(f(x)), where the penalty function, P, depends 
on the encoding or the raw inputs, f(∙). Such penalties differ somewhat from those 
we have seen before, however, in that the penalty is designed to induce sparseness 
not of the parameters but rather of the latent variables, H, which are the encoded 
representations of the raw data. The goal is to learn a latent representation that 
captures the essential features of the data.

Another type of penalty that can be used to provide regularization is one based on 
the derivative. Whereas sparse auto-encoders have a penalty that induces sparseness 
of the latent variables, penalizing the derivatives results in the model learning a form 
of f(∙) that is relatively insensitive to minor perturbations of the raw input data, x, or 
rather it forces a penalty on functions where the encoding varies greatly for changes 
in x, preferring regions where the gradient is relatively flat.



Chapter 4

[ 71 ]

Denoising auto-encoders
Denoising auto-encoders remove noise or denoise data, and are a useful technique 
for learning a latent representation of raw data (Vincent, P., Larochelle, H., Bengio, Y., 
and Manzagol, P. A. (2008, July); Bengio, Y., Courville, A., and Vincent, P. (2013)). We 
said the general task of an auto-encoder was to optimize: F(x, g(f(x))). However, for a 
denoising auto-encoder, the task is to recover x from a noisy or corrupted version of 
x, denoted as . So the task becomes optimizing .

Although denoising auto-encoders are used to try to recover the true representation 
from corrupted data or data with noise, this technique can also be used as a 
regularization tool. As a method of regularization, rather than having noisy or 
corrupted data and attempting to recover the truth, the raw data is purposefully 
corrupted. This forces the auto-encoder to do more than merely learn the identity 
function, as the raw inputs  are no longer identical to the output (x). The process 
is shown in Figure 4.2:
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Figure 4.2

The remaining choice is what the function, N(∙), which adds the noise or corrupts x, 
should be. Two choices are to add noise through a stochastic process or for any given 
training iteration to only include a subset of the raw x inputs. In the next section, we 
will explore how to actually train auto-encoder models in R.

Training an auto-encoder in R
To train our first auto-encoder, we first need to get R set up. In addition to the other 
packages in our checkpoint.R file, we will add the data.table package to facilitate 
data management, as shown in the following code:

library(data.table)
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Now we can source the checkpoint.R file to set up the R environment for analysis, 
as follows:

source("checkpoint.R")
options(width = 70, digits = 2)

For these first examples, we will use the Modified National Institute of Standards 
and Technology (MNIST) digits image data. The following code loads the necessary 
data, as in previous chapters, and sets up the H2O cluster for analysis. We use the 
first 20,000 rows of data for training and the next 10,000 rows for testing. In addition 
to loading the data and setting up the H2O cluster, the data need to be transferred to 
H2O, which is done using the as.h2o() function:

## data and H2O setup

digits.train <- read.csv("train.csv")

digits.train$label <- factor(digits.train$label, levels = 0:9)

cl <- h2o.init(

  max_mem_size = "20G",

  nthreads = 10)

h2odigits <- as.h2o(

  digits.train,

  destination_frame = "h2odigits")

i <- 1:20000

h2odigits.train <- h2odigits[i, -1]

itest <- 20001:30000

h2odigits.test <- h2odigits[itest, -1]

xnames <- colnames(h2odigits.train)
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For analysis, we use the h2o.deeplearning() function, which has many options 
and provides all the deep learning features available in H2O. Before we get into how 
to write the code for the model, however, a brief comment on reproducibility is in 
order. Often it is possible to set random seeds in order to make the results of running 
code exactly replicable. H2O uses a parallelization approach known as Hogwild!, 
that parallelizes stochastic gradient descent optimization, how the weights for the 
model are optimized/determined (see Hogwild!: A Lock-Free Approach to Parallelizing 
Stochastic Gradient Descent by Niu, F., Recht, B., Ré, C., and Wright, S. J. (2011) at 
https://www.eecs.berkeley.edu/~brecht/papers/hogwildTR.pdf). Because of 
the way that Hogwild! works, it is not possible to make the results exactly replicable. 
Thus, when you run these codes, you may get slightly different results.

In the h2o.deeplearning() function call, the first argument is the list of x, or input, 
variable names. The training frame is the H2O dataset used for model training. The 
validation frame is only used to evaluate the performance of the model in data not 
trained on. Next we specify the activation function to use here: "Tanh", which will be 
discussed in further detail in the next chapter on deep learning prediction. By setting 
the autoencoder = TRUE argument, the model is an auto-encoder model, rather 
than a regular model, so that no y or outcome variable(s) need to be specified.

Although we are using a deep learning function, to start with we use a single 
layer (shallow) of hidden neurons, with 50 hidden neurons. There are 20 training 
iterations, called epochs. The remaining arguments just specify not to use any form of 
regularization for this model. Regularization is not needed as there are hundreds of input 
variables and only 50 hidden neurons, so the relative simplicity of the model provides all 
the needed regularization. Finally, all the results are stored in an R object, m1:

m1 <- h2o.deeplearning(

  x = xnames,

  training_frame= h2odigits.train,

  validation_frame = h2odigits.test,

  activation = "Tanh",

  autoencoder = TRUE,

  hidden = c(50),

  epochs = 20,

  sparsity_beta = 0,

  input_dropout_ratio = 0,

  hidden_dropout_ratios = c(0),

  l1 = 0,

  l2 = 0

)

https://www.eecs.berkeley.edu/~brecht/papers/hogwildTR.pdf
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The remaining models are similar to the first model, m1, but adjust the complexity of 
the model by increasing the number of hidden neurons and adding regularization. 
Specifically, model m2a has no regularization, but increases the number of hidden 
neurons to 100. Model m2b uses 100 hidden neurons and also a sparsity beta of .5. 
Finally, model m2c uses 100 hidden neurons and a 20% dropout of the inputs (the 
x variables), which results in a form of corrupted inputs, so model m2c is a form of 
denoising auto-encoder:

m2a <- h2o.deeplearning(

  x = xnames,

  training_frame= h2odigits.train,

  validation_frame = h2odigits.test,

  activation = "Tanh",

  autoencoder = TRUE,

  hidden = c(100),

  epochs = 20,

  sparsity_beta = 0,

  input_dropout_ratio = 0,

  hidden_dropout_ratios = c(0),

  l1 = 0,

  l2 = 0

)

m2b <- h2o.deeplearning(

  x = xnames,

  training_frame= h2odigits.train,

  validation_frame = h2odigits.test,

  activation = "Tanh",

  autoencoder = TRUE,

  hidden = c(100),

  epochs = 20,

  sparsity_beta = .5,

  input_dropout_ratio = 0,

  hidden_dropout_ratios = c(0),

  l1 = 0,
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  l2 = 0

)

m2c <- h2o.deeplearning(

  x = xnames,

  training_frame= h2odigits.train,

  validation_frame = h2odigits.test,

  activation = "Tanh",

  autoencoder = TRUE,

  hidden = c(100),

  epochs = 20,

  sparsity_beta = 0,

  input_dropout_ratio = .2,

  hidden_dropout_ratios = c(0),

  l1 = 0,

  l2 = 0

)

By typing the name of the stored model objects into R, we can get a summary of the 
model and its performance. To save space, much of the output has been omitted, but 
for each model the following output shows the performance as the mean squared 
error (MSE) in the training and validation data. A zero MSE indicates a perfect fit 
with higher values indicating deviations between g(f(x)) and x.

In model m1, the MSE is fairly low and identical in the training and validation data. 
This may be in part due to how relatively simple the model is (50 hidden neurons 
and 20 epochs, when there are hundreds of input variables). In model m2a, there is 
about a 45% reduction in the MSE, although both are low. However, with the greater 
model complexity, a slight difference between the training and validation metrics is 
observed. Similar results are noted in model m2b. Despite the fact that the validation 
metrics did not improve with regularization, the training metrics were closer to 
the validation metrics, suggesting the performance of the regularized training data 
generalizes better. In model m2c, the 20% input dropout without additional model 
complexity results in poorer performance in both the training and validation data. 
Our initial model with 100 hidden neurons is too simple still to really need much 
regularization:

m1

Training Set Metrics: 
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=====================

MSE: (Extract with `h2o.mse`) 0.014

H2OAutoEncoderMetrics: deeplearning

** Reported on validation data. **

Validation Set Metrics: 

=====================

MSE: (Extract with `h2o.mse`) 0.014

m2a

Training Set Metrics: 

=====================

MSE: (Extract with `h2o.mse`) 0.0076

H2OAutoEncoderMetrics: deeplearning

** Reported on validation data. **

Validation Set Metrics: 

=====================

MSE: (Extract with `h2o.mse`) 0.0079

m2b

Training Set Metrics: 

=====================

MSE: (Extract with `h2o.mse`) 0.0077

H2OAutoEncoderMetrics: deeplearning

** Reported on validation data. **

Validation Set Metrics: 
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=====================

MSE: (Extract with `h2o.mse`) 0.0079

m2c

Training Set Metrics: 

=====================

MSE: (Extract with `h2o.mse`) 0.0095

H2OAutoEncoderMetrics: deeplearning

** Reported on validation data. **

Validation Set Metrics: 

=====================

MSE: (Extract with `h2o.mse`) 0.0098

Another way we can look at the model results is to calculate how anomalous 
each case is. This can be done using the h2o.anomaly() function. The results are 
converted to data frames, labeled, and joined together in one final data table object 
called error:

error1 <- as.data.frame(h2o.anomaly(m1, h2odigits.train))

error2a <- as.data.frame(h2o.anomaly(m2a, h2odigits.train))

error2b <- as.data.frame(h2o.anomaly(m2b, h2odigits.train))

error2c <- as.data.frame(h2o.anomaly(m2c, h2odigits.train))

error <- as.data.table(rbind(

  cbind.data.frame(Model = 1, error1),

  cbind.data.frame(Model = "2a", error2a),

  cbind.data.frame(Model = "2b", error2b),

  cbind.data.frame(Model = "2c", error2c)))
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Next we will use the data.table package to create a new data object, percentile, that 
contains the 99th percentile for each model:

percentile <- error[, .(

  Percentile = quantile(Reconstruction.MSE, probs = .99)

), by = Model]

Combining the information on how anomalous each case is and the 99th percentile, 
both by model, we can use the ggplot2 package to plot the results. The histograms 
show the error rates for each case and the dashed line is the 99th percentile. Any 
value beyond the 99th percentile may be considered fairly extreme or anomalous:

p <- ggplot(error, aes(Reconstruction.MSE)) +

  geom_histogram(binwidth = .001, fill = "grey50") +

  geom_vline(aes(xintercept = Percentile), data = percentile, linetype = 
2) +

  theme_bw() +

  facet_wrap(~Model)

print(p)

The results of this are shown in Figure 4.3. Models 2a and 2b have the lowest error 
rates, and you can see the small tails:

Figure 4.3
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If we merge the data in wide form, with the anomaly values for each model in 
separate columns rather than in one long column with another indicating the model, 
we can plot the anomalous values against each other. The results are shown in Figure 
4.4, and shows a high degree of correspondence between the models, with cases that 
tend to be anomalous for one model being anomalous for others as well:

error.tmp <- cbind(error1, error2a, error2b, error2c)

colnames(error.tmp) <- c("M1", "M2a", "M2b", "M2c")

plot(error.tmp)

Figure 4.4
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Another way we can examine the model results is to extract the deep features 
from the model. Deep features (layer by layer) can be extracted using the h2o.
deepfeatures() function. The deep features are the values for the hidden neurons 
in the model. One way to explore these features is to correlate them and examine 
the distribution of correlations, again using the ggplot2 package, as shown in the 
following code. The results are shown in Figure 4.5. In general, the deep features 
have small correlations, r, with an absolute value < .20, with only very few having 
|r| > .20.

features1 <- as.data.frame(h2o.deepfeatures(m1, h2odigits.train))

r.features1 <- cor(features1)

r.features1 <- data.frame(r = r.features1[upper.tri(r.features1)])

p.hist <- ggplot(r.features1, aes(r)) +

  geom_histogram(binwidth = .02) +

  theme_classic()

print(p.hist)

Figure 4.5
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The examples so far show how auto-encoders can be trained, but have only 
represented shallow auto-encoders with a single hidden layer. We can also have 
deep auto-encoders with multiple hidden layers.

Given that we know the MNIST dataset consists of 10 different handwritten 
digits, perhaps we might try adding a second layer of hidden neurons with only 
10 neurons, supposing that, when the model learns the features of the data, 10 
prominent features may correspond to the 10 digits.

To add this second layer of hidden neurons, we pass a vector, c(100, 10), to the 
hidden argument, and update the hidden_dropout_ratios argument as well, 
because a different dropout ratio can be used for each hidden layer:

m3 <- h2o.deeplearning(

  x = xnames,

  training_frame= h2odigits.train,

  validation_frame = h2odigits.test,

  activation = "Tanh",

  autoencoder = TRUE,

  hidden = c(100, 10),

  epochs = 30,

  sparsity_beta = 0,

  input_dropout_ratio = 0,

  hidden_dropout_ratios = c(0, 0),

  l1 = 0,

  l2 = 0

)

As we saw previously, we can extract the values for the hidden neurons. Here we 
again use the h2o.deepfeatures() function, but we specify that we want the values 
for layer 2. The first six rows of these features are shown next:

features3 <- as.data.frame(h2o.deepfeatures(m3, h2odigits.train, 2))

head(features3)

  DF.L2.C1 DF.L2.C2 DF.L2.C3 DF.L2.C4 DF.L2.C5 DF.L2.C6 DF.L2.C7

1    -0.16     0.01     0.61    0.610   0.7468     0.11  -0.3927

2    -0.28    -0.77    -0.82    0.563  -0.4422    -0.66   0.6042

3    -0.48    -0.23     0.24   -0.141   0.3252     0.42  -0.0088

4    -0.30    -0.37     0.42   -0.313   0.1896    -0.27   0.1442
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5    -0.36    -0.73    -0.84    0.733  -0.4807    -0.62   0.6828

6    -0.24     0.16    -0.10   -0.037  -0.0064    -0.20   0.4794

  DF.L2.C8 DF.L2.C9 DF.L2.C10

1    0.023    -0.39     0.385

2    0.321    -0.39    -0.079

3    0.589     0.59     0.538

4   -0.224    -0.31     0.557

5    0.347    -0.62    -0.098

6   -0.592     0.11     0.253

Because there are no outcomes being predicted, these values are continuous and are 
not probabilities of there being a particular digit, but just values on 10 continuous 
hidden neurons.

Next we can add in the actual digit labels from the training data, and use the melt() 
function to reshape the data into a long dataset. From there, we can plot the means 
on each of the 10 hidden layers by which digit a case actually belongs to. If the 
10 hidden features roughly correspond to the 10 digit labels, for particular labels 
(for example, 0, 3, etc.) they should have an extreme value on one deep feature, 
indicating the correspondence between a deep feature and the actual digits. The 
results are shown in Figure 4.6:

features3$label <- digits.train$label[i]

features3 <- melt(features3, id.vars = "label")

p.line <- ggplot(features3, aes(as.numeric(variable), value,

                      colour = label, linetype = label)) +

  stat_summary(fun.y = mean, geom = "line") +

  scale_x_continuous("Deep Features", breaks = 1:10) +

  theme_classic() +

  theme(legend.position = "bottom", legend.key.width = unit(1, "cm"))

print(p.line)
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Figure 4.6

Although there does seem to be some correspondence (for example, zeros are 
particularly high on deep features 4 and 7), in general the results are quite noisy 
without particularly clear indication of a high degree of separation between deep 
features and the actual digit labels.

Finally, we can take a look at the performance metrics for the model. With an MSE of 
about 0.039, the model fits substantially worse than did the shallow model, probably 
because having only 10 hidden neurons for the second layer is too simplistic to 
capture all the different features of the data needed to reproduce the original inputs:

m3

Training Set Metrics: 
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=====================

MSE: (Extract with `h2o.mse`) 0.039

H2OAutoEncoderMetrics: deeplearning

** Reported on validation data. **

Validation Set Metrics: 

=====================

MSE: (Extract with `h2o.mse`) 0.04

This section has shown the basics of training an auto-encoder model, the code, and 
some ways of evaluating its performance. In the next section, we will examine a use 
case: finding anomalous values using an auto-encoder.

Use case – building and applying an  
auto-encoder model
For our use case, we are using the actigraphy data from smartphones we have 
previously examined. These data include actimetry on a number of individuals while 
sitting, standing, lying, walking, walking downstairs, and walking upstairs. Our goal 
is to identify any anomalous values or values that are aberrant or otherwise unusual.

To start with, we will load the training and testing data into R and then convert it 
over to H2O for analysis:

use.train.x <- read.table("UCI HAR Dataset/train/X_train.txt")

use.test.x <- read.table("UCI HAR Dataset/test/X_test.txt")

use.train.y <- read.table("UCI HAR Dataset/train/y_train.txt")[[1]]

use.test.y <- read.table("UCI HAR Dataset/test/y_test.txt")[[1]]

use.labels <- read.table("UCI HAR Dataset/activity_labels.txt")

h2oactivity.train <- as.h2o(

  use.train.x,
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  destination_frame = "h2oactivitytrain")

h2oactivity.test <- as.h2o(

  use.test.x,

  destination_frame = "h2oactivitytest")

With the data in, we are ready to train our model. The setup is fairly similar to the 
initial models we trained. Here we use two layers with 100 hidden neurons each. For 
the moment, there is no specific regularization used, although again, given that there 
are significantly fewer hidden neurons than there are input variables, the model 
simplicity may provide adequate regularization:

mu1 <- h2o.deeplearning(

  x = colnames(h2oactivity.train),

  training_frame= h2oactivity.train,

  validation_frame = h2oactivity.test,

  activation = "Tanh",

  autoencoder = TRUE,

  hidden = c(100, 100),

  epochs = 30,

  sparsity_beta = 0,

  input_dropout_ratio = 0,

  hidden_dropout_ratios = c(0, 0),

  l1 = 0,

  l2 = 0

)

Examining the performance of the model, it has a very low reconstruction error. This 
suggests that the model is sufficiently complex to capture the key features of the 
data. There is no substantial difference in model performance between the training 
and validation data:

mu1

Training Set Metrics: 

=====================

MSE: (Extract with `h2o.mse`) 0.001

H2OAutoEncoderMetrics: deeplearning

www.allitebooks.com

http://www.allitebooks.org
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** Reported on validation data. **

Validation Set Metrics: 

=====================

MSE: (Extract with `h2o.mse`) 0.0011

We can extract how anomalous each case is and plot the distribution. The results are 
shown in Figure 4.7. Clearly, there are a few cases that are far more anomalous than 
the rest, as shown by much higher error rates:

erroru1 <- as.data.frame(h2o.anomaly(mu1, h2oactivity.train))

pue1 <- ggplot(erroru1, aes(Reconstruction.MSE)) +

  geom_histogram(binwidth = .001, fill = "grey50") +

  geom_vline(xintercept = quantile(erroru1[[1]], probs = .99), linetype = 
2) +

  theme_bw()

print(pue1)

Figure 4.7
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One way to try to explore these anomalous cases further is to examine whether 
any of the activities tend to have more or less anomalous values. We can do this by 
finding which cases are anomalous, here defined as the top 1% of error rates, and 
then extracting the activities of those cases and plotting them. The results from this 
are shown in Figure 4.8. The vast majority of anomalous cases come from walking 
downstairs or lying down. With a high error in recreating the inputs, the deep 
features may be a (relatively) poor representation of the input for those cases. In 
practice if we were classifying based on these results, we might want to exclude 
these cases as they do not seem to fit the features the model has learned:

i.anomolous <- erroru1$Reconstruction.MSE >= quantile(erroru1[[1]], probs 
= .99)

pu.anomolous <- ggplot(as.data.frame(table(use.labels$V2[use.train.y[i.
anomolous]])),

       aes(Var1, Freq)) +

  geom_bar(stat = "identity") +

  xlab("") + ylab("Frequency") +

  theme_classic() +

  theme(axis.text.x = element_text(angle = 45, hjust = 1, vjust = 1))

# print the ggplot2 plot object

print(pu.anomolous)

Figure 4.8
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In this example, we used a deep auto-encoder model to learn the features of 
actimetry data from smartphones. Such work can be useful for excluding unknown 
or unusual activities, rather than incorrectly classifying them. For example, as part of 
an app that classifies what activity you engaged in for how many minutes, it may be 
better to simply leave out a few minutes where the model is uncertain or the hidden 
features do not adequately reconstruct the inputs, rather than to aberrantly call an 
activity walking or sitting when it was actually walking downstairs.

Such work can also help to identify where the model tends to have more issues. 
Perhaps further sensors and additional data are needed to represent walking 
downstairs or more could be done to understand why walking downstairs tends to 
produce relatively high error rates.

These deep auto-encoders are also useful in other contexts where identifying 
anomalies is important, such as with financial data or credit card usage patterns. 
Anomalous spending patterns may indicate fraud or that a credit card has been 
stolen. Rather than attempt to manually search through millions of credit card 
transactions, one could train an auto-encoder model and use it to identify anomalies 
for further investigation.

Fine-tuning auto-encoder models
In the previous sections of this chapter, we have learned how to train and use auto-
encoder models. This last section explores how to optimize and fine-tune an auto-
encoder model, examining issues such as how to pick the number of hidden neurons 
or the number of layers.

Sometimes, there may be conceptual reasons to assume certain structures about the 
data. However, if there are not, we may vary the values of these parameters to obtain 
the best model. One dilemma that is exacerbated when trying several models and 
choosing the best one is that, even if several models are equivalent, by chance in a 
given sample one may outperform the others. To combat this, we can use techniques 
such as cross-validation during training in order to optimize the parameter values 
while only using the training data, and then only this final model needs to be 
validated using the holdout or testing data. Currently, H2O does not support cross-
validation for auto-encoder models. If we really wanted to use cross-validation, 
we could implement it manually. We can do this easily using the createFolds() 
function from the caret package:

## create 5 folds

folds <- createFolds(1:20000, k = 5)
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Next we can create a list of the hyperparameters we want to try for tuning. We do 
this in the following code:

## create parameters to try

hyperparams <- list(

  list(

    hidden = c(50),

    input_dr = c(0),

    hidden_dr = c(0)),

  list(

    hidden = c(200),

    input_dr = c(.2),

    hidden_dr = c(0)),

  list(

    hidden = c(400),

    input_dr = c(.2),

    hidden_dr = c(0)),

  list(

    hidden = c(400),

    input_dr = c(.2),

    hidden_dr = c(.5)),

  list(

    hidden = c(400, 200),

    input_dr = c(.2),

    hidden_dr = c(.25, .25)),

  list(

    hidden = c(400, 200),

    input_dr = c(.2),

    hidden_dr = c(.5, .25)))

Finally, we can loop through the hyperparameters and 5-fold cross-validation to 
train all of the models. This may take several minutes to complete as we are training 
6 x 5 or 30 models, some with hundreds of hidden neurons (note that, for this model 
to run with increased speed, we changed the H2O cluster to one with 12GB of 
memory and 5 cores):

fm <- lapply(hyperparams, function(v) {

  lapply(folds, function(i) {

  h2o.deeplearning(
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    x = xnames,

    training_frame = h2odigits.train[-i, ],

    validation_frame = h2odigits.train[i, ],

    activation = "Tanh",

    autoencoder = TRUE,

    hidden = v$hidden,

    epochs = 30,

    sparsity_beta = 0,

    input_dropout_ratio = v$input_dr,

    hidden_dropout_ratios = v$hidden_dr,

    l1 = 0,

    l2 = 0

  )

  })

})

Next we loop through the results and extract the MSE for the validation data, which 
here is the single fold not used in the cross-validation:

fm.res <- lapply(fm, function(m) {

  sapply(m, h2o.mse, valid = TRUE)

})

We merge the results together into a data table to view and plot the performance 
across the folds of the cross-validation:

fm.res <- data.table(

  Model = rep(paste0("M", 1:6), each = 5),

  MSE = unlist(fm.res))

head(fm.res)

   Model         MSE

1:    M1 0.014619734

2:    M1 0.014655749

3:    M1 0.014651761

4:    M1 0.014310286

5:    M1 0.014303792

6:    M2 0.006781414
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Finally, we can make boxplots of the results to see how spread out they are or if any 
of the cross-validated runs were especially aberrant. The results are shown in Figure 
4.9, and it appears that the MSEs for each fold in the cross-validation are quite close 
so that the mean/median is a reasonable summary:

p.erate <- ggplot(fm.res, aes(Model, MSE)) +

  geom_boxplot() +

  stat_summary(fun.y = mean, geom = "point", colour = "red") +

  theme_classic()

print(p.erate)

Figure 4.9

If we calculate the mean MSE by model and order from smallest to largest, these are 
the results we get:

fm.res[, .(Mean_MSE = mean(MSE)), by = Model][order(Mean_MSE)]

   Model    Mean_MSE

1:    M4 0.006261764

2:    M3 0.006276417
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3:    M2 0.006725956

4:    M5 0.007768764

5:    M6 0.007797575

6:    M1 0.014508264

It appears that the fourth set of hyperparameters provided the lowest cross-
validated MSE. The fourth set of hyperparameters was a fairly complex model, with 
400 hidden neurons, but also had regularization with 20% of the input variables 
dropped and 50% of the hidden neurons dropped at each iteration, and this actually 
outperforms (albeit only slightly) the third set of hyperparameters where the same 
model complexity was used but without any dropout on the hidden layer. Although 
not much worse, the deep models here with a second layer of 200 hidden neurons 
perform worse than the shallow model.

With the best model selected, we can re-run using all training data and with our 
actual testing data, using the fourth set of hyperparameters:

fm.final <- h2o.deeplearning(

    x = xnames,

    training_frame = h2odigits.train,

    validation_frame = h2odigits.test,

    activation = "Tanh",

    autoencoder = TRUE,

    hidden = hyperparams[[4]]$hidden,

    epochs = 30,

    sparsity_beta = 0,

    input_dropout_ratio = hyperparams[[4]]$input_dr,

    hidden_dropout_ratios = hyperparams[[4]]$hidden_dr,

    l1 = 0,

    l2 = 0

  )

fm.final

Training Set Metrics: 

=====================

MSE: (Extract with `h2o.mse`) 0.005880221

H2OAutoEncoderMetrics: deeplearning
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** Reported on validation data. **

Validation Set Metrics: 

=====================

MSE: (Extract with `h2o.mse`) 0.006072476

We can see that the MSE in our testing data, which was not used at all during 
training, is fairly close, though slightly worse than in the training data, and is 
actually slightly less than the MSE estimated from cross-validation, in this case. To 
the extent that we searched over a reasonable set of hyperparameters, this model is 
now optimized, validated, and ready for use.

In practice, it is often difficult to balance the tradeoff between the possibility 
of obtaining better performance with a different model or different set of 
hyperparameters with the time it takes to run and train many different models. 
Sometimes it can be helpful to explore the optimal model using a random subset of 
all data, if the data is very large, in order to speed computation. For this book, the 
example datasets we have been using are quite small compared to those commonly 
used in deep learning where there may be millions or hundreds of millions of cases 
and hundreds or thousands of variables or inputs. However, the approaches used here 
will scale to larger datasets, but will simply take more time. It is also worth noting that, 
though for these relatively small datasets we have been seeing good performance with 
fairly simpler models, larger datasets may benefit more from complex models and 
provide sufficient data to support learning a very complex structure.

Summary
This chapter introduced the distinction between supervised and unsupervised 
learning. It covered how to use unsupervised learning (such as auto-encoders) 
to learn the deep or hidden features of data. These hidden features may be used 
on their own, such as to better understand the structure of data, or for other 
applications. Two common applications of auto-encoders and unsupervised learning 
are to identify anomalous data (for example, outlier detection, financial fraud) and 
to pre-train more complex, often supervised, models such as deep neural networks. 
In the next chapter, we will learn how to train and build deep neural networks to 
develop prediction models (that is, supervised learning).
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Training Deep Prediction 
Models

In this chapter we will explore how to train and build deep prediction models. We 
will focus on feedforward neural networks, which are perhaps the most common 
type and a good starting point.

This chapter will cover the following topics:

•	 Getting started with deep feedforward neural networks
•	 Common activation functions: rectifiers, hyperbolic tangent, and maxout
•	 Picking hyperparameters
•	 Training and predicting new data from a deep neural network
•	 Use case – training a deep neural network for automatic classification

In this chapter, we will not use any new packages. The only requirements are to 
source the checkpoint.R file to set up the R environment for the rest of the code 
shown and to initialize the H2O cluster. Both can be done using the following code:

source("checkpoint.R")

options(width = 70, digits = 2)

cl <- h2o.init(

  max_mem_size = "12G",

  nthreads = 4)
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Getting started with deep feedforward 
neural networks
A deep feedforward neural network is designed to approximate a function, f(), 
that maps some set of input variables, x, to an output variable, y. They are called 
feedforward neural networks because information flows from the inputs through 
each successive layer as far as the output, and there are no feedback or recursive 
loops (models including both forward and backward connections are referred to as 
recurrent neural networks).

Deep feedforward neural networks are applicable to a wide range of problems, and 
are particularly useful for applications such as image classification. More generally, 
feedforward neural networks are useful for prediction and classification where 
there is a clearly defined outcome (what digit an image contains, whether someone 
is walking upstairs or walking on a flat surface, the presence/absence of disease, 
and so on). In these cases, there is no particular need for a feedback loop. Recurrent 
networks are useful for cases where feedback loops are important, such as for natural 
language processing. However, these are outside the scope of this book, which will 
focus on training standard prediction models.

Deep feedforward neural networks can be constructed by chaining layers or functions 
together. For example, a network with four hidden layers is shown in Figure 5.1:
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Figure 5.1

A different function is learned for each successive layer, and to finally map the 
hidden layers to the outcome. If sufficient hidden neurons are included in a layer, 
it can approximate to the desired degree of precision with many different types of 
functions. Even if the mapping from the final hidden layer to the outcome is a linear 
mapping with learned weights, feedforward neural networks can approximate non-
linear functions, by first applying non-linear transformations from the input layer to 
the hidden layer. This is one of the key strengths of deep learning. In linear regression, 
for example, the model learns the weights from the inputs to the outcome. However, 
the functional form must be specified. In deep feedforward neural networks, the 
transformations from the input layer to the hidden layer are learned as well as the 
weights from the hidden layer to the outcome. In essence, the model learns the 
functional form as well as the weights. In practice, although it is unlikely that the 
model will learn the true generative model, it can (closely) approximate the true 
model. The more hidden neurons, the closer the approximation. Thus for practical, if 
not theoretically exact, purposes, the model learns the functional form.
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Figure 5.1 shows a diagram of the model as a directed acyclic graph. Represented as a 
function, the overall mapping from the inputs, X, to the output, Y, is a multi-layered 
function. The first hidden layer is H1 = f(1)(X, w1, α1), the second hidden layer is H2 
= f(2)(H1, w2, α2), and so on. These multiple layers can allow complex functions and 
transformations to be built up from relatively simple ones.

The weights for each layer will be learned by the machine, but are also dependent on 
decisions made, such as how many hidden neurons should be in each layer and the 
activation function to be used, a topic explored further in the next section. Another 
key piece of the model that must be determined is the cost or loss function. The two 
most commonly used cost functions are cross-entropy and mean squared error 
(MSE), which is quadratic.

Common activation functions – rectifiers, 
hyperbolic tangent, and maxout
The activation function determines the mapping between inputs and a hidden 
layer. It defines the functional form for how a neuron gets activated. For example, 
a linear activation function could be defined as: f(x) = x, in which case the value for 
the neuron would be the raw input, x, times the learned weight, a linear model. 
A linear activation function is shown in the top panel of Figure 5.2. The problem 
with making activation functions linear is that this does not permit any non-linear 
functional forms to be learned. Previously, we have used the hyperbolic tangent 
as an activation function, so f(x) = tanh(x). The hyperbolic tangent can work well in 
some cases, but a potential limitation is that, at either low or high values, it saturates, 
as shown in the middle panel of Figure 5.2.

Perhaps the most popular activation function currently, and a good first choice 
(Nair, V., and Hinton, G. E. (2010)), is known as a rectifier. There can be different 
kinds of rectifiers but, most commonly, linear rectifiers are used and are defined 
by the function f(x) = max(0, x). Linear rectifiers are flat below some threshold and 
are then linear; an example is shown in the bottom panel of Figure 5.2. Despite their 
simplicity, linear rectifiers provide a non-linear transformation, and enough linear 
rectifiers can be used to approximate arbitrary non-linear functions, unlike using 
only linear activation functions.

A final type of activation function we will discuss is maxout (Goodfellow, I. J., Warde-
Farley, D., Mirza, M., Courville, A., and Bengio, Y. (2013)). A maxout unit takes the 
maximum value of its inputs, although as usual this is after weighting so it is not the 
case that the input variable with the highest value will always win. Maxout activation 
functions seem to work particularly well with dropout.
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For the purposes of this chapter, we will focus on linear rectifiers. This is both 
because they are a good default and perform well and also because we have already 
shown the use of hyperbolic tangent in previous chapters:

Figure 5.2
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Picking hyperparameters
The parameters of a model typically refer to things such as the weights or bias/
intercept parameters. However, there are many other parameters that must be 
set at the offset and are not optimized or learned during model training. These 
are sometimes referred to as hyperparameters. Indeed, even the choice of model 
(for example, deep feedforward neural network, random forest, or support vector 
machine) can be seen as a hyperparameter.

Even if we assume that somehow we have decided that a deep feedforward neural 
network is the best modeling strategy, there are still many hyperparameters that 
must be set. These hyperparameters may be explicitly specified by the user or 
implicitly specified by using default values, where software provides them.

The values chosen for the hyperparameters can have a dramatic impact on the 
accuracy and training speed of a model. Indeed, we have already seen examples 
of trying different hyperparameters, such as trying different numbers of hidden 
neurons in a layer or a different number of layers. However, other hyperparameters 
also impact performance and speed. For example, in the following code, we set 
up the R environment, load the Modified National Institute of Standards and 
Technology (MNIST) data (images of handwritten digits) we have worked with, 
and run two prediction models, only varying the learning rate:

source("checkpoint.R")

options(width = 70, digits = 2)

cl <- h2o.init(

  max_mem_size = "12G",

  nthreads = 4)

## data setup

digits.train <- read.csv("train.csv")

digits.train$label <- factor(digits.train$label, levels = 0:9)

h2odigits <- as.h2o(

  digits.train,

  destination_frame = "h2odigits")

i <- 1:32000

h2odigits.train <- h2odigits[i, ]
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itest <- 32001:42000

h2odigits.test <- h2odigits[itest, ]

xnames <- colnames(h2odigits.train)[-1]

system.time(ex1 <- h2o.deeplearning(

  x = xnames,

  y = "label",

  training_frame= h2odigits.train,

  validation_frame = h2odigits.test,

  activation = "RectifierWithDropout",

  hidden = c(100),

  epochs = 10,

  adaptive_rate = FALSE,

  rate = .001,

  input_dropout_ratio = 0,

  hidden_dropout_ratios = c(.2)

))

system.time(ex2 <- h2o.deeplearning(

  x = xnames,

  y = "label",

  training_frame= h2odigits.train,

  validation_frame = h2odigits.test,

  activation = "RectifierWithDropout",

  hidden = c(100),

  epochs = 10,

  adaptive_rate = FALSE,

  rate = .01,

  input_dropout_ratio = 0,

  hidden_dropout_ratios = c(.2)

))
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The first difference is that ex1 took 1.34 times as long to train as did ex2. Printing 
each model shows a fairly large performance difference, as well. To save space in the 
book, most of the output from typing ex1 and ex2 is omitted and only the test set 
metrics are shown:

ex1

Test Set Metrics: 

=====================

Metrics reported on full validation frame 

MSE: (Extract with `h2o.mse`) 0.03326067

R^2: (Extract with `h2o.r2`) 0.9960457

Logloss: (Extract with `h2o.logloss`) 0.2021435

Confusion Matrix: Extract with `h2o.confusionMatrix(<model>, <data>)`)

===============================================================

         X0   X1  X2   X3  X4  X5   X6   X7  X8  X9      Error 

0       984    0   1    0   0   3   13    2   6   2 0.02670623 

1         0 1119   5    2   1   1    1    5   5   0 0.01755926 

2         7    1 920    8   5   0    6    7   7   2 0.04465213 

3         3    5   5 1006   1  13    1    7   7   1 0.04099142 

4         0    7   3    0 896   2    5    2   4  13 0.03862661 

5         6    2   4   17   5 835    7    1  10   5 0.06390135 

6         5    2   1    0   6   8  966    1   2   0 0.02522704 

7         2    2   8    7   3   1    0 1027   0   8 0.02930057 

8         1   11   3    7   4  15    1    2 922   3 0.04850361 

9         5    3   1    7  18   6    2   20   2 932 0.06425703 

Totals 1013 1152 951 1054 939 884 1002 1074 965 966 0.03930000 

ex2

Test Set Metrics: 

=====================

Metrics reported on full validation frame 
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MSE: (Extract with `h2o.mse`) 0.1264212

R^2: (Extract with `h2o.r2`) 0.9849702

Logloss: (Extract with `h2o.logloss`) 2.136629

Confusion Matrix: Extract with `h2o.confusionMatrix(<model>, <data>)`)

==============================================================

        X0   X1  X2   X3  X4   X5  X6   X7  X8  X9      Error 

0      938    0   5   11   3   19  19    7   8   1 0.07220574 

1        0 1105   6    6   2    6   1    8   5   0 0.02985075 

2       18    7 757   54  20    9  47   36   5  10 0.21391485 

3        1    2  22  887  10   36   0   50  30  11 0.15443279 

4        1    7   0    1 854    7  13    8   5  36 0.08369099 

5       11    6   4   45  16  767   8    5  29   1 0.14013453 

6       13    5   5    1   6   63 887    5   6   0 0.10494450 

7        2    8   3    3   4    7   0 1024   0   7 0.03213611 

8        7   48  37   27   8   67  12   22 715  26 0.26212590 

9        7    3   3   12  47   22   1  158  11 732 0.26506024 

Totals 998 1191 842 1047 970 1003 988 1323 814 824 0.13340000 

Although ex1 took longer to train, it performs substantially better on the test data 
than does ex2. The higher learning rate is faster but sacrifices performance. This 
highlights one of the decisions that needs to be made. However, as there are many 
hyperparameters, the decision about one is not made in isolation from the rest. One 
example of this is regularization. Often, relatively larger or more complex models are 
used with many hidden neurons and possibly multiple layers, choices that will tend 
to increase accuracy (at least within the training data) and reduce speed. However, 
these complex models often include some form of regularization, such as dropout, 
which would tend to reduce accuracy (at least within the training data) and improve 
speed as only a subset of neurons are included in any given iteration.

One of the most important decisions has to do with the architecture of the model. 
For example, decisions must be made as to how many layers there should be, 
how many hidden neurons should be in each layer, whether there should be any 
skipping patterns or each layer should only have sequential connections, and so on. 
Unfortunately, there are no simple rules to follow to resolve many of these questions. 
Good choices may rely on having a knowledge of the subject domain or prior 
analytical work may provide reasonable starting points.
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In the absence of subject domain expertise or prior models, designing an effective 
architecture requires some trial and error. This trial and error can be a manual or an 
automated process. In theory, just as parameters are optimized, so hyperparameters 
could also be optimized. However, in practice this may not be feasible 
computationally as it can require running many variations of models, each of which 
requires substantial compute resources and time to complete.

Understanding what each hyperparameter does can help to inform your decisions. 
For example, if you start with a model and its performance is worse than is 
acceptable hyperparameters should be changed to allow greater capacity and 
flexibility in the model, for example, adding more hidden neurons, additional layers 
of hidden neurons, more training epochs, and so on. If there is a large difference 
between the model's performance on the training data and testing data, this may 
suggest the model is overfitting the data, in which case hyperparameters may be 
tweaked to reduce capacity or add more regularization. In some cases, it may be that 
more data is required to support fitting a more complex model needed to adequately 
predict the outcome. We will discuss some ways to refine model architecture 
(including more analytical approaches) in greater detail in Chapter 6, Tuning and 
Optimizing Models.

Training and predicting new data from a 
deep neural network
In this section we will learn how to train deep neural networks and use them to 
generate predictions on new data. The examples for this section will use the activity 
data we have worked with before, and the following code simply sets up the data:

use.train.x <- read.table("UCI HAR Dataset/train/X_train.txt")

use.test.x <- read.table("UCI HAR Dataset/test/X_test.txt")

use.train.y <- read.table("UCI HAR Dataset/train/y_train.txt")[[1]]

use.test.y <- read.table("UCI HAR Dataset/test/y_test.txt")[[1]]

use.train <- cbind(use.train.x, Outcome = factor(use.train.y))

use.test <- cbind(use.test.x, Outcome = factor(use.test.y))

use.labels <- read.table("UCI HAR Dataset/activity_labels.txt")
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h2oactivity.train <- as.h2o(

  use.train,

  destination_frame = "h2oactivitytrain")

h2oactivity.test <- as.h2o(

  use.test,

  destination_frame = "h2oactivitytest")

We have already learned the components of training a deep prediction model. We 
use the h2o.deeplearning() function as we did for the auto-encoder models, but 
specify the variable names for both the x and y arguments. Before, we included the 
testing data to automatically get performance metrics on both training and testing 
data. However, to show how to generate predictions on new data, we do not include 
it in the call to h2o.deeplearning(). The activation function used is a linear rectifier 
with dropout both on the input variables (20%) and the hidden neurons (50%). This 
little example is a shallow network with only 50 hidden neurons and 10 training 
iterations. The cost (loss) function is cross-entropy:

mt1 <- h2o.deeplearning(

  x = colnames(use.train.x),

  y = "Outcome",

  training_frame= h2oactivity.train,

  activation = "RectifierWithDropout",

  hidden = c(50),

  epochs = 10,

  loss = "CrossEntropy",

  input_dropout_ratio = .2,

  hidden_dropout_ratios = c(.5), ,

  export_weights_and_biases = TRUE

)

We show the stored object by simply typing its name in the R console. The first 
information is about the type of model. The outcome has six discrete levels so a 
multinomial model is used. The model includes a total of 28,406 weights/biases. 
Biases are like intercepts or constant offsets. Because this is a feedforward neural 
network, there are only weights between adjacent layers. Input variables do not have 
biases, but hidden neurons and outcomes do. The 28,406 weights are made up from 
561 * 50 = 28,050 weights between the input variables and the first layer of hidden 
neurons, 50 * 6 = 300 weights between the hidden neurons and the outcome (6 
because there are different levels of the outcome), 50 biases for the hidden neurons, 
and 6 biases for the outcome.
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The output also shows the number of layers and the number of units in each 
layer, the type of each unit, the dropout percentage, and other regularization and 
hyperparameter information:

mt1

Model Details:

==============

H2OMultinomialModel: deeplearning

Model ID:  DeepLearning_model_R_1451894068318_16 

Status of Neuron Layers: predicting Outcome, 6-class classification, 
multinomial distribution, CrossEntropy loss, 28,406 weights/biases, 406.9 
KB, 73,520 training samples, mini-batch size 1

  layer units             type dropout       l1       l2 mean_rate

1     1   561            Input 20.00 %                            

2     2    50 RectifierDropout 50.00 % 0.000000 0.000000  0.001891

3     3     6          Softmax         0.000000 0.000000  0.004912

  rate_RMS momentum mean_weight weight_RMS mean_bias bias_RMS

1                                                            

2 0.002408 0.000000    0.000172   0.062088  0.347545 0.114483

3 0.015856 0.000000   -0.009241   0.755695 -0.029887 0.294392

The next set of output reports performance metrics on the training data, including 
the mean squared error (lower is better), R2 (higher is better), and the log loss (lower 
is better):

H2OMultinomialMetrics: deeplearning

** Reported on training data. **

Description: Metrics reported on temporary (load-balanced) training frame

Training Set Metrics: 

=====================

Metrics reported on temporary (load-balanced) training frame 

MSE: (Extract with `h2o.mse`) 0.023

R^2: (Extract with `h2o.r2`) 0.99

Logloss: (Extract with `h2o.logloss`) 0.082
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Finally, a confusion matrix is printed, which shows the actual outcome against the 
predicted outcome. The observed outcome is shown on the rows, and the predicted 
outcome is shown on the columns. The diagonal indicates correct classification, and 
the error rate by outcome level is shown:

Confusion Matrix: Extract with `h2o.confusionMatrix(<model>,train = 
TRUE)`)

=====================================================================

         X1   X2  X3   X4   X5   X6  Error        Rate

1      1216   10   0    0    0    0 0.0082  10 / 1,226

2         3 1070   0    0    0    0 0.0028   3 / 1,073

3         2   11 973    0    0    0 0.0132    13 / 986

4         0    1   0 1236   40    9 0.0389  50 / 1,286

5         0    0   0  146 1228    0 0.1063 146 / 1,374

6         0    0   0    0    0 1407 0.0000   0 / 1,407

Totals 1221 1092 973 1382 1268 1416 0.0302 222 / 7,352

Hit Ratio Table: Extract with `h2o.hit_ratio_table(<model>,train = TRUE)`

=====================================================================

Top-6 Hit Ratios: 

  k hit_ratio

1 1  0.969804

2 2  0.999728

3 3  1.000000

4 4  1.000000

5 5  1.000000

6 6  1.000000

We can extract and look at the features of the model using the h2o.deepfeatures() 
function, specifying the model, data, and layer we want to extract. The following 
code extracts features and looks at the first few rows. The outcome is also included 
by default. Note the zeros in the features; these are there because we used a linear 
rectifier, so values below zero are censored at zero:

f <- as.data.frame(h2o.deepfeatures(mt1, h2oactivity.train, 1))

f[1:10, 1:5]
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   Outcome DF.L1.C1 DF.L1.C2 DF.L1.C3 DF.L1.C4

1        5     0.00      5.9    0.091      2.1

2        5     0.00      4.7    0.000      1.7

3        5     0.00      4.4    0.102      1.5

4        5     0.00      4.9    0.000      1.9

5        5     0.00      5.0    0.000      1.8

6        5     0.00      4.9    0.000      2.0

7        5     0.00      4.9    0.000      1.6

8        5     0.00      4.6    0.000      1.8

9        5     0.00      5.0    0.000      1.6

10       5     0.13      5.1    0.000      1.3

Just as we extracted the features, we can extract weights from each layer. The 
following code extracts weights and makes a heatmap so we can see if there are any 
clear patterns of certain input variables having higher weights to particular hidden 
neurons:

w1 <- as.matrix(h2o.weights(mt1, 1))

## plot heatmap of the weights

tmp <- as.data.frame(t(w1))

tmp$Row <- 1:nrow(tmp)

tmp <- melt(tmp, id.vars = c("Row"))

p.heat <- ggplot(tmp,

       aes(variable, Row, fill = value)) +

  geom_tile() +

  scale_fill_gradientn(colours = c("black", "white", "blue")) +

  theme_classic() +

  theme(axis.text = element_blank()) +

  xlab("Hidden Neuron") +

  ylab("Input Variable") +

  ggtitle("Heatmap of Weights for Layer 1")

print(p.heat)
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There does not seem to be any particularly clear pattern to the effect that particular 
neurons are made up predominantly of a few inputs as seen in the Figure 5.3:

Figure 5.3

For all their complexity, once they are trained feedforward neural networks are 
straightforward to score and to use to generate predictions on data. There are built-
in functions to do this, but to get a better understanding of the model we will work 
through one example manually.
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As noted earlier, feedforward networks are constructed by layering functions 
together. We already extracted the weights for the first layer. However, in order 
to construct the neurons for hidden layer 1, we will also need the input data and 
the biases. Because we need to add the same constant term to an entire column to 
construct the deep features (even though the biases are stored as a vector with one 
bias for each hidden neuron), we replicate the biases and convert them into a matrix 
with dimensions matching the input data:

## input data

d <- as.matrix(use.train[, -562])

## biases for hidden layer 1 neurons

b1 <- as.matrix(h2o.biases(mt1, 1))

b12 <- do.call(rbind, rep(list(t(b1)), nrow(d)))

Now we can construct the features for layer 1, the hidden neurons. First, we need 
to standardize each column of the input data, which we can do by applying the 
scale() function in R to the data by columns (the second dimension of a matrix):

d.scaled <- apply(d, 2, scale)

Next we post multiply the scaled data by the weights we extracted earlier, and then 
add the bias matrix.

d.weighted <- d.scaled %*% t(w1) + b12

Because we included dropout on the hidden layer, we need to apply a correction. 
This is just a multiplicative correction based on the proportion of hidden units that 
are included at any iteration—that is: 1 – dropout proportion:

d.weighted <- d.weighted * (1 - .5)

Finally, for each column, we only want to take values that are zero or higher, because 
we used a linear rectifier. We accomplish this in R by applying the pmax() function 
to the weighted data by columns:

d.weighted.rectifier <- apply(d.weighted, 2, pmax, 0)

We can check whether our work was correct by comparing it to the features extracted 
by H2O. We use the all.equal() function for comparison with some tolerance for 
slight numerical differences due to floating point arithmetic:

all.equal(

  as.numeric(f[, 2]),
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  d.weighted.rectifier[, 1],

  check.attributes = FALSE,

  use.names = FALSE,

  tolerance = 1e-04)

In a similar fashion, we can extract the weights and biases for the next layer, 
which is the output layer. We create the predicted outcome just like we created the 
predicted hidden neurons, by multiplying by the weights and adding the biases. 
However, these operations are not applied to the raw data, but rather to the features 
we constructed in the first stage. As before, we need to expand the biases to the 
appropriate dimensions:

w2 <- as.matrix(h2o.weights(mt1, 2))

b2 <- as.matrix(h2o.biases(mt1, 2))

b22 <- do.call(rbind, rep(list(t(b2)), nrow(d)))

yhat <- d.weighted.rectifier %*% t(w2) + b22

To construct the hidden neurons, we used a linear rectifier activation function. For 
the outputs, a softmax function is used, which normalizes all the predictions to 
be within [0, 1] and ensures that they sum to one, like a predicted probability. We 
know to use the softmax function both because it is common and because, earlier 
in the model output, H2O indicated that softmax was the function linking to the 
output layer. The softmax function is defined for each case, and is the exponentiated 
predictions divided by the sum of the exponentiated predictions for that case:

yhat <- exp(yhat)

normalizer <- do.call(cbind, rep(list(rowSums(yhat)), ncol(yhat)))

yhat <- yhat / normalizer

Finally, we can derive a predicted classification by choosing the output column with 
the highest predicted probability, using the which.max() function, and append this 
to our prediction dataset:

yhat <- cbind(Outcome = apply(yhat, 1, which.max), yhat)
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Via the h2o.predict() function, we can also extract predictions using the built-in 
function, and we can compare these with the predictions we generated manually:

yhat.h2o <- as.data.frame(h2o.predict(mt1, newdata = h2oactivity.train))

xtabs(~ yhat[, 1] + yhat.h2o[, 1])

         yhat.h2o[, 1]

yhat[, 1]    1    2    3    4    5    6

        1 1216    0    0    0    0    0

        2    0 1122    0    0    0    0

        3    0    0  948    0    0    0

        4    0    0    0 1316    0    0

        5    0    0    0    0 1344    0

        6    0    0    0    0    0 1406

Our manual process matches that of H2O exactly. Of course, in practice one would 
not re-implement the prediction function manually, and the code that demonstrates 
doing it manually is not particularly computationally efficient. However, working 
through examples like this can help to clarify exactly what pieces go into the model 
and how they are used. If we had many hidden layers of neurons, the process would 
be very similar, just repeating the steps to generate features for each layer, and 
always building on top of the results from the previous layer.

Use case – training a deep neural 
network for automatic classification
For our use case, we use data from a subset of the Million Song Dataset, from the 
University of California Irvine online dataset repository (Lichman, M. (2013)). There 
are 515,345 cases, with the first 463,715 being training cases and the last 51,630 cases 
used for testing. The first column of the dataset contains the year and the remaining 
columns are features from the timbre of the song. Download and decompress the 
data from here: http://archive.ics.uci.edu/ml/datasets/YearPredictionMSD. 
Our goal is to predict the year each song was released.

First we need to download the data and then unzip it, which we can do using the 
following code:

download.file( 
"http://archive.ics.uci.edu/ml/machine-learning-databases/00203/
YearPredictionMSD.txt.zip", destfile = "YearPredictionMSD.txt.zip")

http://archive.ics.uci.edu/ml/datasets/YearPredictionMSD
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unzip("YearPredictionMSD.txt.zip")

Now we can read data into R using fread() from the data.table package. The 
fread() function is preferable to read.csv() here because it can be orders-of-
magnitude faster, and it still took 30 seconds on a high-end desktop with a solid state 
hard drive:

d <- fread("YearPredictionMSD.txt", sep = ",")

First we can take a quick look at the distribution of the outcome, the year of release. 
The following code creates a histogram that is shown in Figure 5.4:

p.hist <- ggplot(d[, .(V1)], aes(V1)) +

  geom_histogram(binwidth = 1) +

  theme_classic() +

  xlab("Year of Release") 

print(p.hist)  

Figure 5.4
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One possible concern is that the relatively extreme values may exert an undue 
influence on the model. We can reduce this by reflecting the distribution and taking 
the square root. We could also exclude a small amount of the more extreme cases, 
such as by excluding the bottom and top 0.5% (1% of data total). Checking the 
quantiles (in the following code) would include the years 1957 to 2010:

quantile(d$V1, probs = c(.005, .995))

0.5% 100% 

1957 2010

The following code trims the data and converts the training and testing datasets for 
H2O:

d.train <- d[1:463715][V1 >= 1957 & V1 <= 2010]

d.test <- d[463716:515345][V1 >= 1957 & V1 <= 2010]

h2omsd.train <- as.h2o(

  d.train,

  destination_frame = "h2omsdtrain")

h2omsd.test <- as.h2o(

  d.test,

  destination_frame = "h2omsdtest")

To get started and provide some baseline performance levels, we can build a linear 
regression model:

summary(m0 <- lm(V1 ~ ., data = d.train))$r.squared

[1] 0.24

cor(

  d.test$V1,

  predict(m0, newdata = d.test))^2

[1] 0.23

Although not great, linear regression accounts for 24% of the variance in years in the 
training data and 23% in the testing data; these results provide a benchmark for us to 
beat with the feedforward neural network.
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Our first network is shallow with a single hidden layer and is fairly small. This is 
a larger dataset than some of the previous ones we have worked with, but it is still 
small enough that it is easy to work with all of it. To make performance scoring 
occur on the full dataset, we use the special value, 0, passed to the score_training_
samples and score_validation_samples arguments. On the 10-core H2O cluster 
setup, the model took 79 seconds to train, recorded using the system.time() 
function:

m1 <- h2o.deeplearning(

  x = colnames(d)[-1],

  y = "V1",

  training_frame= h2omsd.train,

  validation_frame = h2omsd.test,

  activation = "RectifierWithDropout",

  hidden = c(50),

  epochs = 100,

  input_dropout_ratio = 0,

  hidden_dropout_ratios = c(0),

  score_training_samples = 0,

  score_validation_samples = 0,

  diagnostics = TRUE,

  export_weights_and_biases = TRUE,

  variable_importances = TRUE

  )

The results from this simple model show a marked improvement over the linear 
regression model. The feedforward neural network, even though it only had a single 
layer with 50 hidden neurons, accounted for 32% of the variance in release year in 
the testing data, up from 23% using only linear regression.

Because the model was small and had fewer hidden neurons than input variables, no 
dropout or other regularization was used. However, the performance discrepancy 
between the training and testing data (R2 = 0.37 versus R2 = 0.32, respectively), 
indicates that some regularization may be helpful:

m1

Model Details:

==============
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H2ORegressionModel: deeplearning

Model ID:  DeepLearning_model_R_1451972322936_5 

Status of Neuron Layers: predicting V1, regression, gaussian 
distribution, Quadratic loss, 4,601 weights/biases, 72.5 KB, 13,702,476 
training samples, mini-batch size 1

  layer units             type dropout       l1       l2 mean_rate

1     1    90            Input  0.00 %                            

2     2    50 RectifierDropout  0.00 % 0.000000 0.000000  0.009403

3     3     1           Linear         0.000000 0.000000  0.000218

  rate_RMS momentum mean_weight weight_RMS mean_bias bias_RMS

1                                                            

2 0.007939 0.000000   -0.018219   0.598229 -2.199141 2.245173

3 0.000202 0.000000   -0.042807   0.103305 -0.767868 0.000000

H2ORegressionMetrics: deeplearning

** Reported on training data. **

Description: Metrics reported on full training frame

MSE:  76

R2 :  0.37

Mean Residual Deviance :  76

H2ORegressionMetrics: deeplearning

** Reported on validation data. **

Description: Metrics reported on temporary (load-balanced) validation 
frame

MSE:  80

R2 :  0.32

Mean Residual Deviance :  80
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Although our shallow neural network model was an improvement over linear 
regression, it still did not perform well and there is clearly room for improvement. 
Next, we will try a larger, deep feedforward neural network. In the model code next, 
we have three layers of hidden neurons, with 200, 200, and 400 hidden neurons, 
respectively. We will also introduce a modest amount of dropout on the hidden (but 
not input) layer. This model took 843 seconds to train:

m2 <- h2o.deeplearning(

  x = colnames(d)[-1],

  y = "V1",

  training_frame= h2omsd.train,

  validation_frame = h2omsd.test,

  activation = "RectifierWithDropout",

  hidden = c(200, 200, 400),

  epochs = 100,

  input_dropout_ratio = 0,

  hidden_dropout_ratios = c(.2, .2, .2),

  score_training_samples = 0,

  score_validation_samples = 0,

  diagnostics = TRUE,

  export_weights_and_biases = TRUE,

  variable_importances = TRUE

  )

Examining the performance of the model shows a noticeable improvement from the 
small and shallow model we tried first. In the testing data, the shallow model had an 
R2 of 0.32 whereas the deep model has an R2 of 0.35.

There is also a degree of overfitting. The difference in R2 between the training and 
testing data is 0.05, which is comparable to the simpler model where the difference 
was also 0.05. The more complex model improves performance, with little difference 
in overfitting, perhaps due to the dropout used:

m2

Model Details:

==============
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H2ORegressionModel: deeplearning

Model ID:  DeepLearning_model_R_1452031055473_5 

Status of Neuron Layers: predicting V1, regression, gaussian 
distribution, Quadratic loss, 139,201 weights/biases, 1.6 MB, 22,695,351 
training samples, mini-batch size 1

  layer units             type dropout       l1       l2 mean_rate

1     1    90            Input  0.00 %                            

2     2   200 RectifierDropout 20.00 % 0.000000 0.000000  0.011513

3     3   200 RectifierDropout 20.00 % 0.000000 0.000000  0.014861

4     4   400 RectifierDropout 20.00 % 0.000000 0.000000  0.054338

5     5     1           Linear         0.000000 0.000000  0.001258

  rate_RMS momentum mean_weight weight_RMS mean_bias bias_RMS

1                                                            

2 0.004978 0.000000    0.000848   0.207373 -0.254659 0.321144

3 0.012359 0.000000   -0.032566   0.104347  1.017329 0.341556

4 0.036596 0.000000   -0.031768   0.072171  0.651546 0.292565

5 0.000505 0.000000    0.001421   0.020867 -0.596303 0.000000

H2ORegressionMetrics: deeplearning

** Reported on training data. **

Description: Metrics reported on full training frame

MSE:  66

R2 :  0.40

Mean Residual Deviance :  66

H2ORegressionMetrics: deeplearning

** Reported on validation data. **

Description: Metrics reported on temporary (load-balanced) validation 
frame

MSE:  70

R2 :  0.35

Mean Residual Deviance :  70
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To see whether the performance on the testing data can be improved further, we 
will try one additional model including substantially more hidden neurons in each 
layer, more training iterations (epochs), and with a higher degree of regularization. 
Readers may not wish to run the following code (the model took over 10 hours to 
complete on the 10-core H2O cluster):

m3 <- h2o.deeplearning(

  x = colnames(d)[-1],

  y = "V1",

  training_frame= h2omsd.train,

  validation_frame = h2omsd.test,

  activation = "RectifierWithDropout",

  hidden = c(500, 500, 1000),

  epochs = 500,

  input_dropout_ratio = 0,

  hidden_dropout_ratios = c(.5, .5, .5),

  score_training_samples = 0,

  score_validation_samples = 0,

  diagnostics = TRUE,

  export_weights_and_biases = TRUE

  )

The performance of this model on the testing data was actually worse than either of 
the previous two models, though still superior to the linear regression:

m3

Model Details:

==============

H2ORegressionModel: deeplearning

Model ID:  DeepLearning_model_R_1451972322936_15 

Status of Neuron Layers: predicting V1, regression, gaussian 
distribution, Quadratic loss, 798,001 weights/biases, 9.2 MB, 47,002,720 
training samples, mini-batch size 1

  layer units             type dropout       l1       l2 mean_rate

1     1    90            Input  0.00 %                            

2     2   500 RectifierDropout 50.00 % 0.000000 0.000000  0.028872
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3     3   500 RectifierDropout 50.00 % 0.000000 0.000000  0.047632

4     4  1000 RectifierDropout 50.00 % 0.000000 0.000000  0.084886

5     5     1           Linear         0.000000 0.000000  0.001238

  rate_RMS momentum mean_weight weight_RMS mean_bias bias_RMS

1                                                            

2 0.014727 0.000000    0.000941   0.069018  0.417255 0.048082

3 0.020226 0.000000   -0.007515   0.049535  0.968111 0.054521

4 0.062396 0.000000   -0.009451   0.038735  0.929930 0.032726

5 0.000445 0.000000    0.000538   0.014785 -0.478095 0.000000

H2ORegressionMetrics: deeplearning

** Reported on training data. **

Description: Metrics reported on full training frame

MSE:  84

R2 :  0.30

Mean Residual Deviance :  84

H2ORegressionMetrics: deeplearning

** Reported on validation data. **

Description: Metrics reported on temporary (load-balanced) validation 
frame

MSE:  85

R2 :  0.28

Mean Residual Deviance :  85

Our best model then is still the deep model, but with fewer hidden neurons per 
layer. One way that we can try to see if that model can be improved is to try training 
for additional epochs or iterations. In the model output, there is a model ID. For the 
best performing model, this was: DeepLearning_model_R_1452031055473_5. This 
can be passed to the checkpoint argument of the h2o.deeplearning() function so 
that training begins using the weights from the previous model. Note that the model 
ID will be different every time you run the code; thus, when running it on your own 
computer or servers, you will need to use the model ID from your run.
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As long as the general architecture—the number of hidden neurons, layers, and 
connections—remains the same, using the checkpoint can be a great time saver. 
This is not only true because the previous training iterations can be re-used, but also 
because it tends to take longer for earlier than later iterations. The following example 
shows how to run the model, changing the epochs from 500 to 1,000 (since 500 have 
already been done) and starting from the previous model run by specifying the 
model name as a character string to the checkpoint argument:

m2b <- h2o.deeplearning(

  x = colnames(d)[-1],

  y = "V1",

  training_frame= h2omsd.train,

  validation_frame = h2omsd.test,

  activation = "RectifierWithDropout",

  hidden = c(200, 200, 400),

  checkpoint = "DeepLearning_model_R_1452031055473_5",

  epochs = 1000,

  input_dropout_ratio = 0,

  hidden_dropout_ratios = c(.2, .2, .2),

  score_training_samples = 0,

  score_validation_samples = 0,

  diagnostics = TRUE,

  export_weights_and_biases = TRUE,

  variable_importances = TRUE

  )

However, in the end, the additional epochs did not improve the model performance. 
In fact, it became slightly worse:

m2b

Model Details:

==============

H2ORegressionModel: deeplearning

Model ID:  DeepLearning_model_R_1452031055473_81 
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Status of Neuron Layers: predicting V1, regression, gaussian 
distribution, Quadratic loss, 139,201 weights/biases, 1.6 MB, 30,054,531 
training samples, mini-batch size 1

  layer units             type dropout       l1       l2 mean_rate

1     1    90            Input  0.00 %                            

2     2   200 RectifierDropout 20.00 % 0.000000 0.000000  0.008598

3     3   200 RectifierDropout 20.00 % 0.000000 0.000000  0.012581

4     4   400 RectifierDropout 20.00 % 0.000000 0.000000  0.025138

5     5     1           Linear         0.000000 0.000000  0.000895

  rate_RMS momentum mean_weight weight_RMS mean_bias bias_RMS

1                                                            

2 0.004485 0.000000   -0.004116   0.473692 -1.601533 1.060434

3 0.017790 0.000000   -0.040249   0.239924  0.767950 1.305716

4 0.022843 0.000000   -0.048592   0.105753  0.360921 0.439503

5 0.000582 0.000000   -0.001778   0.029287 -0.065273 0.000000

H2ORegressionMetrics: deeplearning

** Reported on training data. **

Description: Metrics reported on full training frame

MSE:  62

R2 :  0.43

Mean Residual Deviance :  62

H2ORegressionMetrics: deeplearning

** Reported on validation data. **

Description: Metrics reported on temporary (load-balanced) validation 
frame

MSE:  72

R2 :  0.33

Mean Residual Deviance :  72
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Working with model results
It is easy to save models in R but, when calling H2O from R, most results are not 
actually stored in R; instead they are stored in the H2O cluster. Thus, only saving the 
R object will merely save the reference to the model in the H2O cluster and, if that is 
shut down and lost, the full model results will not be saved. To avoid this and save 
the full model results, we use the h2o.saveModel() function and specify the model 
to be saved (by passing the R object), the path, and whether to overwrite files if 
already there (using force = TRUE):

h2o.saveModel(

  object = m2,

  path = "c:\\Users\\jwile\\DeepLearning",

  force = TRUE)

This will create a directory with all of the files needed to load and use the model 
again. Once you have saved a model, you can load it back into a new H2O cluster 
using the h2o.loadModel() function. Note that you also must specify the folder 
name for the model results to load.

In addition to just saving the model results to be loaded again into an H2O cluster, 
models can be saved as a Plain Old Java Object (POJO). Saving models as a POJO is 
useful as they can be embedded in other applications and used to score results. H2O 
models can be saved as a POJO using the h2o.download_pojo() function, with the 
same arguments.

Another useful function is h2o.scoreHistory(). The score history shows the 
performance of the model across iterations as well as a time stamp and the duration 
for each epoch. The following code shows how to use it and the results:

h2o.scoreHistory(m2)

Scoring History: 

             timestamp          duration training_speed   epochs

1  2016-01-06 23:20:18         0.000 sec                 0.00000

2  2016-01-06 23:20:26        15.537 sec 13922 rows/sec  0.21687

3  2016-01-06 23:21:51  1 min 40.761 sec 22603 rows/sec  4.11902

4  2016-01-06 23:23:15  3 min  4.790 sec 25030 rows/sec  8.66890

5  2016-01-06 23:24:39  4 min 28.208 sec 26347 rows/sec 13.43506

6  2016-01-06 23:26:00  5 min 49.401 sec 27540 rows/sec 18.41458
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7  2016-01-06 23:27:21  7 min 10.032 sec 28317 rows/sec 23.39553

8  2016-01-06 23:28:40  8 min 29.325 sec 28928 rows/sec 28.37323

9  2016-01-06 23:29:59  9 min 48.908 sec 29354 rows/sec 33.34907

10 2016-01-06 23:31:21 11 min 10.056 sec 29771 rows/sec 38.54472

11 2016-01-06 23:32:41 12 min 30.532 sec 30130 rows/sec 43.73626

12 2016-01-06 23:34:04 13 min 53.652 sec 30444 rows/sec 49.14818

13 2016-01-06 23:34:12 14 min  1.667 sec 30442 rows/sec 49.14818

   iterations         samples training_MSE training_deviance

1           0        0.000000                               

2           1   100145.000000     73.50950          73.50950

3          19  1902057.000000     65.90201          65.90201

4          40  4003071.000000     66.39865          66.39865

5          62  6203960.000000     63.97995          63.97995

6          85  8503375.000000     65.20361          65.20361

7         108 10803448.000000     62.67372          62.67372

8         131 13102020.000000     63.91678          63.91678

9         154 15399734.000000     60.31355          60.31355

10        178 17798949.000000     60.15803          60.15803

11        202 20196268.000000     61.71012          61.71012

12        227 22695351.000000     58.34747          58.34747

13        227 22695351.000000     65.90201          65.90201

   training_r2 validation_MSE validation_deviance validation_r2

1                                                              

2      0.32564       73.67272            73.67272       0.30763

3      0.39543       69.57711            69.57711       0.34612

4      0.39087       71.70615            71.70615       0.32611

5      0.41306       70.45211            70.45211       0.33790

6      0.40184       71.98921            71.98921       0.32345



Chapter 5

[ 125 ]

7      0.42505       70.90519            70.90519       0.33364

8      0.41364       72.69913            72.69913       0.31678

9      0.44670       70.49905            70.49905       0.33746

10     0.44812       70.76801            70.76801       0.33493

11     0.43389       72.22494            72.22494       0.32124

12     0.46473       70.55234            70.55234       0.33696

13     0.39543       69.57711            69.57711       0.34612

So far we have only examined the overall performance of the model. Although this 
is a useful summary, it provides less than a complete picture. Examining the model 
residuals can help us understand whether the model performs consistently across the 
range of the data and any anomalous residuals; it also helps us to generally assess 
performance more comprehensively. We can calculate residuals by getting predicted 
values for all cases using the h2o.predict() function and then taking the difference 
between the observed values and the predictions. The following code extracts 
predictions, joins them with observed values, and plots them. A residual of zero 
indicates a perfect prediction, with either positive or negative residuals indicating 
over- or under-prediction. Since years are discrete, we can visualize the data using 
boxplots of the residuals for each actual year of song release, using the following 
code. This is shown in Figure 5.5:

yhat <- as.data.frame(h2o.predict(m1, h2omsd.train))

yhat <- cbind(as.data.frame(h2omsd.train[["V1"]]), yhat)

p.resid <- ggplot(yhat, aes(factor(V1), predict - V1)) +

  geom_boxplot() +

  geom_hline(yintercept = 0) +

  theme_classic() +

  theme(axis.text.x = element_text(

          angle = 90, vjust = 0.5, hjust = 0)) +

  xlab("Year of Release") +
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  ylab("Predicted Year of Release")

print(p.resid)

Figure 5.5

The results show a marked pattern of decreasing residuals in later years or, 
conversely, show extremely aberrant model predictions for the earlier years. In part, 
this may be due to the distribution of the data. With most cases coming from the 
mid 1990s to 2000s, as we saw earlier in Figure 5.4 the model will be most sensitive to 
accurately predicting these values, and the comparatively fewer cases before 1990 or 
1980 will have less influence.
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Because we used the variable_importances argument, we can extract the relative 
importance of each variable for the model using the h2o.varimp() function. 
Although it is difficult to accurately apportion the importance of each variable, it 
can be helpful to provide a rough sense of which variables tend to make a larger 
contribution to the prediction than others. This can be a helpful way to exclude 
some variables that contribute very little, for example. The following code extracts 
the important variables, prints the top 10 (the dataset is sorted from most to least 
important), and makes a graph of the results to display the distribution, shown in 
Figure 5.6:

imp <- as.data.frame(h2o.varimp(m2))

imp[1:10, ]

   variable relative_importance scaled_importance percentage

1        V2                1.00              1.00      0.039

2        V3                0.66              0.66      0.026

3        V4                0.53              0.53      0.020

4       V14                0.47              0.47      0.018

5       V24                0.47              0.47      0.018

6        V7                0.44              0.44      0.017

7       V37                0.40              0.40      0.016

8        V6                0.39              0.39      0.015

9       V59                0.35              0.35      0.014

10      V26                0.34              0.34      0.013

p.imp <- ggplot(imp, aes(factor(variable, levels = variable), 
percentage)) +

  geom_point() +

  theme_classic() +

  theme(axis.text.x = element_blank()) +

  xlab("Variable Number") +
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  ylab("Percentage of Total Importance")

print(p.imp)

Figure 5.6

From the description of the dataset, the first 12 variables represented various timbres 
of the music, with the next 78 being the unique elements of a covariance matrix from 
the first 12. Thus it is interesting that, in the top variables, the first three are all the 
timbres, not from the covariances. If, for example, the later 78 variables were costly 
or difficult to collect, we might consider what performance is possible using only the 
first 12 predictors. The following model tests that approach using a simple shallow 
model:

mtest <- h2o.deeplearning(

  x = colnames(d)[2:13],

  y = "V1",

  training_frame= h2omsd.train,
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  validation_frame = h2omsd.test,

  activation = "RectifierWithDropout",

  hidden = c(50),

  epochs = 100,

  input_dropout_ratio = 0,

  hidden_dropout_ratios = c(0),

  score_training_samples = 0,

  score_validation_samples = 0,

  diagnostics = TRUE,

  export_weights_and_biases = TRUE,

  variable_importances = TRUE

)

mtest

H2ORegressionModel: deeplearning

Model ID:  DeepLearning_model_R_1452082402089_15 

Status of Neuron Layers: predicting V1, regression, gaussian 
distribution, Quadratic loss, 701 weights/biases, 13.6 KB, 27,398,762 
training samples, mini-batch size 1

  layer units             type dropout       l1       l2 mean_rate

1     1    12            Input  0.00 %                            

2     2    50 RectifierDropout  0.00 % 0.000000 0.000000  0.003773

3     3     1           Linear         0.000000 0.000000  0.000985

  rate_RMS momentum mean_weight weight_RMS mean_bias bias_RMS

1                                                            

2 0.007925 0.000000    0.004197   0.504967 -0.679546 0.965184

3 0.000926 0.000000   -0.106522   0.286619 -1.400430 0.000000

H2ORegressionMetrics: deeplearning

** Reported on training data. **

Description: Metrics reported on full training frame



Training Deep Prediction Models

[ 130 ]

MSE:  82

R2 :  0.24

Mean Residual Deviance :  82

H2ORegressionMetrics: deeplearning

** Reported on validation data. **

Description: Metrics reported on temporary (load-balanced) validation 
frame

MSE:  83

R2 :  0.22

Mean Residual Deviance :  83

The results show an R2 of only 0.24 for the training and 0.22 for the testing data. This 
is still comparable to the linear regression with all variables, but quite a bit lower 
than the 0.32 or 0.35 obtained using neural networks on the full set of predictors. 
Even though many of the variables have a fairly small importance, combined they 
add up to a noticeable difference.

Summary
In this chapter, we covered what deep neural networks are in more detail, 
particularly how to use them to train prediction models. Even though deep 
feedforward neural networks can seem quite complex, they can be broken down into 
a sequence of layers, each of which is fairly simple, with one set of inputs and one set 
of outputs, along with weights and biases to map between the two.

We have also seen the improvement in predictive performance possible using deep 
learning. In the use case example, using linear regression alone accounted for 23% 
of the variance in the testing data; however, by using a deep feedforward neural 
network, we were able to account for 35% of the variance in the year of song release. 
Although still far from perfect, it is a dramatic improvement over regression,  
and the low performance probably has more to do with lacking the data to explain 
year-to-year differences than the model itself (in other words, even with the best 
model achieving 99% variance accounted for is unlikely without more/better 
predictors). The next and final chapter will cover how to tune and optimize models, 
including how to address some common challenges such as missing data or poor 
model accuracy/performance.
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Tuning and Optimizing 
Models

In this final chapter, we will discuss a few approaches to tuning models. We will 
cover ways of addressing missing data. Although we have used example datasets 
without any missing data, in the real world missing data is a common occurrence. 
We will also discuss what can be done when a model is performing poorly, including 
a detailed examination of how to search for and optimize model hyperparameters.

This chapter will cover the following topics:

•	 Dealing with missing data
•	 Solutions for models with low accuracy

In this chapter, we make use of two new packages: the gridExtra package for 
graphics and the mgcv package for fitting generalized additive models at the end. 
These new packages should be added to the checkpoint.R file, and the file should 
be sourced to set up the R environment for the rest of the code shown. R can be set 
up and an H2O cluster initialized using the following code:

source("checkpoint.R")

options(width = 70, digits = 2)

cl <- h2o.init(

  max_mem_size = "12G",

  nthreads = 4)
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Dealing with missing data
When working with real-world applications, we often must contend with missing 
data. H2O includes a function to impute variables using the mean, median, or mode, 
and optionally to do so by some other grouping variables.

To examine how to impute missing data this way, we will use the small Iris dataset 
on flowers. In particular, we will set the petal width and length values to missing for 
the species "setosa" and then impute their values:

## setup iris data with some missing

d <- as.data.table(iris)

d[Species == "setosa", c("Petal.Width", "Petal.Length") := .(NA, NA)]

h2o.dmiss <- as.h2o(d, destination_frame="iris_missing")

h2o.dmeanimp <- as.h2o(d, destination_frame="iris_missing_imp")

First, we will do a simple mean imputation. This has to be done one column at a 
time:

## mean imputation

missing.cols <- colnames(h2o.dmiss)[apply(d, 2, anyNA)]

for (v in missing.cols) {

  h2o.dmeanimp <- h2o.impute(h2o.dmeanimp, column = v)

}

One problem with imputing the overall non-missing mean is that, if there are any 
systematic differences, these will be missed; also, if we could get better predictions 
about the missing data from any of the non-missing data, this is also missed.

Instead of a simple mean imputation, we could use a simple prediction model. The 
following code builds a random forest model to predict each missing column. All 
default values are used. If random forests take too long, a glm model could also be 
used:

## random forest imputation

d.imputed <- d

## prediction model

for (v in missing.cols) {

  tmp.m <- h2o.randomForest(
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    x = setdiff(colnames(h2o.dmiss), v),

    y = v,

    training_frame = h2o.dmiss)

  yhat <- as.data.frame(h2o.predict(tmp.m, newdata = h2o.dmiss))

  d.imputed[[v]] <- ifelse(is.na(d.imputed[[v]]), yhat$predict, 
d.imputed[[v]])

}

To compare the different methods, we can create a scatter plot of petal length against 
petal width, with the color and shape of the points determined by the flower species. 
This graph has three panels. The top panel is the original data. The middle panel is 
the data using mean imputation. The bottom panel is the data using random forest 
imputation. The following code creates the graph shown in Figure 6.1:

grid.arrange(

  ggplot(iris, aes(Petal.Length, Petal.Width,

    color = Species, shape = Species)) +

    geom_point() +

    theme_classic() +

    ggtitle("Original Data"),

 ggplot(as.data.frame(h2o.dmeanimp), aes(Petal.Length, Petal.Width,

    color = Species, shape = Species)) +

    geom_point() +

    theme_classic() +

   ggtitle("Mean Imputed Data"),

 ggplot(d.imputed, aes(Petal.Length, Petal.Width,

    color = Species, shape = Species)) +

    geom_point() +

    theme_classic() +

   ggtitle("Random Forest Imputed Data"),

  ncol = 1)
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Figure 6.1
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In this case, the mean imputation creates aberrant values quite removed from reality. 
If needed, more advanced prediction models could be generated. In statistical 
inferences, multiple imputation is preferred over single imputation (regardless of 
the method) as the latter fails to account for uncertainty—that is, when imputing the 
missing values there is some degree of uncertainty as to exactly what those values are. 
However, in most use cases for deep learning, the datasets are far too large and the 
computational time too demanding to create multiple datasets with different imputed 
values, train models on each, and pool the results; thus, these simpler methods (such 
as mean imputation or using some other prediction model) are common.

Solutions for models with low accuracy
One of the most challenging, but also potentially important, aspects of optimizing 
a model is choosing the values for the hyperparameters. In theory, we want to 
choose the best combination and, although we are unlikely to ever truly find the 
global maximum, the techniques in this section can help to find better values for the 
hyperparameters. Better hyperparameters can often improve the accuracy of a model.

Sometimes, however, a model has poor accuracy due to lacking the variables 
required for good prediction or because there is not enough data to support training 
a complex enough model to accurately predict or classify the data. In these cases, 
either acquiring additional variables/features that can be used as predictors and/or 
additional cases may be required. This book cannot help you collect more data, but it 
can present ways to tune and optimize hyperparameters. We'll deal with this next.

Grid search
For more information on tuning hyperparameters, see Bengio, Y. (2012), particularly 
Section 3, Hyper-Parameters, which discusses the selection and characteristics of 
various hyperparameters. Aside from manual trial and error, two other approaches 
to improving hyperparameters are grid searches and random searches. In a 
grid search, several values for hyperparameters are specified and all possible 
combinations are tried. This is perhaps easiest to see. In R we can use the expand.
grid() function to create all possible combinations of variables:

expand.grid(

  layers = c(1, 2, 4),

  epochs = c(50, 100),

  l1 = c(.001, .01, .05))

   layers epochs    l1
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1       1     50 0.001

2       2     50 0.001

3       4     50 0.001

4       1    100 0.001

5       2    100 0.001

6       4    100 0.001

7       1     50 0.010

8       2     50 0.010

9       4     50 0.010

10      1    100 0.010

11      2    100 0.010

12      4    100 0.010

13      1     50 0.050

14      2     50 0.050

15      4     50 0.050

16      1    100 0.050

17      2    100 0.050

18      4    100 0.050

Grid searching is excellent when there are only a few values for a few parameters. 
However, although this is a comprehensive way of assessing different parameter 
values, when there are many values for some or many parameters, it quickly 
becomes unfeasible. For example, even with only two values for each of eight 
parameters, there are 28 = 256 combinations, which quickly becomes computationally 
impracticable. In addition, if there are no interactions between parameters and 
model performance, or at least the interactions are small relative to the main effects, 
then grid searches are an inefficient approach because many parameter values 
are repeated so that only a small set of values is sampled, even though many 
combinations are tried.
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Random search
An alternative approach is searching through random sampling. Rather than pre-
specifying all the values to try and creating all possible combinations, one can 
randomly sample values for the parameters, fit a model, store the results, and repeat. 
To get a very large sample size, this too would be computationally demanding, but 
does make it straightforward to specify just how many different models you are 
willing to run.

For random sampling, all that needs to be specified are the values to randomly 
sample or distributions to randomly draw from. Typically, some limits would also be 
set. For example, although a model could theoretically have any integer number of 
layers, some reasonable number (such as 1 to 10) is used rather than sampling integers 
from 1 to a billion.

To do random sampling, we will write a function that takes a seed and then 
randomly samples a number of hyperparameters, stores the sampled parameters, 
runs the model, and returns the results. Even though we are doing a random search 
to try to find better values, we are not sampling from every possible hyperparameter. 
Many remain fixed at values we specify or their defaults.

For some parameters, specifying how to randomly sample values can take a bit of 
work. For example, when using dropout for regularization, it is common to have a 
relatively smaller amount of dropout for the input variables (around 20% commonly) 
and a higher amount for hidden neurons (around 50% commonly). Choosing the 
right distributions can allow us to encode this prior information into our random 
search. The following code plots the density of two beta distributions, and the results 
are shown in Figure 6.2. By sampling from these distributions, we can ensure that 
our search, while random, focuses on small proportions of dropout for the input 
variables and in the 0 to 0.50 range for the hidden neurons with a tendency to over-
sample from values closer to 0.50:

par(mfrow = c(2, 1))

plot(

  seq(0, .5, by = .001),

  dbeta(seq(0, .5, by = .001), 1, 12),

  type = "l", xlab = "x", ylab = "Density",

  main = "Density of a beta(1, 12)")

plot(

  seq(0, 1, by = .001)/2,
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  dbeta(seq(0, 1, by = .001), 1.5, 1),

  type = "l", xlab = "x", ylab = "Density",

  main = "Density of a beta(1.5, 1) / 2")

Figure 6.2



Chapter 6

[ 139 ]

Now we can write our function, called run(). All it requires is a seed, which is used 
to make the parameter selection reproducible. A name can be specified, although 
there is a default based on the seed, and there is an optional (logical) argument, run, 
to control whether or not the model is run. This can be helpful if you want to check 
the hyperparameter values sampled.

We sample the depth or number of layers from 1 to 5 and the number of neurons in 
each layer from 20 to 600; by default each will have an equal probability. The runif() 
function samples from a uniform distribution in the specified range, and we have 
already seen the beta distribution, which we sample from using the rbeta() function.

Two new arguments we also randomly sample are rho and epsilon. These are used 
because, rather than specifying the learning rate and momentum manually, we are 
using (as H2O does by default) the ADADELTA algorithm (Zeiler, M. D. (2012)) to 
automatically tune the learning rate. ADADELTA only has two hyperparameters 
that need to be specified: rho and epsilon. ADADELTA works in part by examining 
the previous gradients but, rather than store all previous gradients, a weighted 
cumulative average is used. The rho parameter is used to weight the gradients 
prior to the current iteration and 1 – rho is used to weight the gradient at the current 
iteration. If rho = 1, then the current gradient is not used and it is completely based 
on the previous gradients. If rho = 0, the previous gradients are not used and it is 
completely based on the current gradient. Typically, values between .9 and .999  
are used.

The epsilon parameter is a small constant that is added when taking the root mean 
square of previous squared gradients to improve conditioning (it is ideal to avoid 
this becoming actually zero) and is typically a very small number. Further details are 
available from the paper presenting ADADELTA (Zeiler, M. D. (2012)):

run <- function(seed, name = paste0("m_", seed), run = TRUE) {

  set.seed(seed)

  p <- list(

    Name = name,

    seed = seed,

    depth = sample(1:5, 1),

    l1 = runif(1, 0, .01),

    l2 = runif(1, 0, .01),

    input_dropout = rbeta(1, 1, 12),

    rho = runif(1, .9, .999),
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    epsilon = runif(1, 1e-10, 1e-4))

  p$neurons <- sample(20:600, p$depth, TRUE)

  p$hidden_dropout <- rbeta(p$depth, 1.5, 1)/2

  if (run) {

  model <- h2o.deeplearning(

    x = colnames(use.train.x),

    y = "Outcome",

    training_frame = h2oactivity.train,

    activation = "RectifierWithDropout",

    hidden = p$neurons,

    epochs = 100,

    loss = "CrossEntropy",

    input_dropout_ratio = p$input_dropout,

    hidden_dropout_ratios = p$hidden_dropout,

    l1 = p$l1,

    l2 = p$l2,

    rho = p$rho,

    epsilon = p$epsilon,

    export_weights_and_biases = TRUE,

    model_id = p$Name

  )

  ## performance on training data

  p$MSE <- h2o.mse(model)

  p$R2 <- h2o.r2(model)

  p$Logloss <- h2o.logloss(model)

  p$CM <- h2o.confusionMatrix(model)

  ## performance on testing data

  perf <- h2o.performance(model, h2oactivity.test)

  p$T.MSE <- h2o.mse(perf)

  p$T.R2 <- h2o.r2(perf)

  p$T.Logloss <- h2o.logloss(perf)
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  p$T.CM <- h2o.confusionMatrix(perf)

  } else {

    model <- NULL

  }

  return(list(

    Params = p,

    Model = model))

}

Before we can run the models, we need to load our data, which for this example is 
the activity data:

use.train.x <- read.table("UCI HAR Dataset/train/X_train.txt")

use.test.x <- read.table("UCI HAR Dataset/test/X_test.txt")

use.train.y <- read.table("UCI HAR Dataset/train/y_train.txt")[[1]]

use.test.y <- read.table("UCI HAR Dataset/test/y_test.txt")[[1]]

use.train <- cbind(use.train.x, Outcome = factor(use.train.y))

use.test <- cbind(use.test.x, Outcome = factor(use.test.y))

use.labels <- read.table("UCI HAR Dataset/activity_labels.txt")

h2oactivity.train <- as.h2o(

  use.train,

  destination_frame = "h2oactivitytrain")

h2oactivity.test <- as.h2o(

  use.test,

  destination_frame = "h2oactivitytest")

In order to make the parameters reproducible, we specify a list of random seeds, 
which we loop through to run the models:

use.seeds <- c(403L, 10L, 329737957L, -753102721L, 1148078598L, 
-1945176688L,

-1395587021L, -1662228527L, 367521152L, 217718878L, 1370247081L,
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571790939L, -2065569174L, 1584125708L, 1987682639L, 818264581L,

1748945084L, 264331666L, 1408989837L, 2010310855L, 1080941998L,

1107560456L, -1697965045L, 1540094185L, 1807685560L, 2015326310L,

-1685044991L, 1348376467L, -1013192638L, -757809164L, 1815878135L,

-1183855123L, -91578748L, -1942404950L, -846262763L, -497569105L,

-1489909578L, 1992656608L, -778110429L, -313088703L, -758818768L,

-696909234L, 673359545L, 1084007115L, -1140731014L, -877493636L,

-1319881025L, 3030933L, -154241108L, -1831664254L)

The models can be run (although it takes some time) simply by looping through  
the seeds:

model.res <- lapply(use.seeds, run)

Once the models are done, we can create a dataset, and plot the mean squared error 
(MSE) against the different parameters, using the following code. The results are 
shown in Figure 6.3:

model.res.dat <- do.call(rbind, lapply(model.res, function(x) 
with(x$Params,

  data.frame(l1 = l1, l2 = l2,

             depth = depth, input_dropout = input_dropout,

             SumNeurons = sum(neurons),

             MeanHiddenDropout = mean(hidden_dropout),

             rho = rho, epsilon = epsilon, MSE = T.MSE))))

p.perf <- ggplot(melt(model.res.dat, id.vars = c("MSE")), aes(value, 
MSE)) +

  geom_point() +

  stat_smooth(color = "black") +

  facet_wrap(~ variable, scales = "free_x", ncol = 2) +

  theme_classic()

print(p.perf)
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Figure 6.3
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In addition to viewing the univariate relations between parameters and the model 
error, it can be helpful to use a multivariate model to simultaneously take different 
parameters into account.

To fit this (and allow some non-linearity), we use a generalized additive model, 
using the gam() function from the mgcv package. We specifically hypothesize an 
interaction between the model depth and total number of hidden neurons, which 
we capture by including both of those terms in a tensor expansion using the te() 
function, with the remaining terms given univariate smooths, using the s() function. 
The specifics here are not so important. The key is to somehow model the relation 
between the hyperparameters and model performance in order to decide what 
values should be chosen:

m.gam <- gam(MSE ~ s(l1, k = 4) +

              s(l2, k = 4) +

              s(input_dropout) +

              s(rho, k = 4) +

              s(epsilon, k = 4) +

              s(MeanHiddenDropout, k = 4) +

              te(depth, SumNeurons, k = 4),

            data = model.res.dat)

Now we can visualize the results. The first six univariate terms we plot on one graph, 
using the following code; this is shown in Figure 6.4. The constant term is not shown, 
so these values are not directly MSE estimates, but the key is to find the lowest point 
for each hyperparameter:

par(mfrow = c(3, 2))

for (i in 1:6) {

  plot(m.gam, select = i)

}
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Figure 6.4
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Finally, we plot the interaction term with the following code:

plot(m.gam, select = 7)

The results are shown in Figure 6.5. This is a contour plot and shows each variable in 
the interaction on the x and y axes. The actual MSE is not shown, but is labeled on the 
lines. Because of the interaction, it is possible to get the same estimated MSE using 
different combinations of the predictors. In general, it seems that, the more layers 
there are, the more neurons are required to achieve a comparable performance:

Figure 6.5



Chapter 6

[ 147 ]

Based on these graphs, we chose hyperparameters and specify an optimized model in 
the following code:

model.optimized <- h2o.deeplearning(

    x = colnames(use.train.x),

    y = "Outcome",

    training_frame = h2oactivity.train,

    activation = "RectifierWithDropout",

    hidden = c(300, 300, 300),

    epochs = 100,

    loss = "CrossEntropy",

    input_dropout_ratio = .08,

    hidden_dropout_ratios = c(.50, .50, .50),

    l1 = .002,

    l2 = 0,

    rho = .95,

    epsilon = 1e-10,

    export_weights_and_biases = TRUE,

    model_id = "optimized_model"

)

After training, we can estimate the model performance in the validation data by 
using the h2o.performance() function and passing the optimized model and the 
testing data as arguments:

H2OMultinomialMetrics: deeplearning

Test Set Metrics: 

=====================

MSE: (Extract with `h2o.mse`) 0.053

R^2: (Extract with `h2o.r2`) 0.98

Logloss: (Extract with `h2o.logloss`) 0.18

Confusion Matrix: Extract with `h2o.confusionMatrix(<model>, <data>)`)

=========================================================================

        X1  X2  X3  X4  X5  X6 Error        Rate

1      491   0   5   0   0   0 0.010     5 / 496

2       12 457   1   0   1   0 0.030    14 / 471



Tuning and Optimizing Models

[ 148 ]

3       32  47 341   0   0   0 0.188    79 / 420

4        0   2   0 434  55   0 0.116    57 / 491

5        0   0   0  38 494   0 0.071    38 / 532

6        0   0   0   0  15 522 0.028    15 / 537

Totals 535 506 347 472 565 522 0.071 208 / 2,947

Hit Ratio Table: Extract with `h2o.hit_ratio_table(<model>, <data>)`

=======================================================================

Top-6 Hit Ratios: 

  k hit_ratio

1 1  0.929420

2 2  0.993892

3 3  0.998643

4 4  0.999661

5 5  1.000000

6 6  1.000000

Finally, we can compare the performance of our optimized model against the single 
best model from the random search. Using the optimized parameters, we were able 
to achieve an MSE of 0.053 in the testing data, a reduction of approximately 21% 
from the single best model found during the random search:

model.res.dat[which.min(model.res.dat$MSE), ]

       l1      l2 depth input_dropout SumNeurons MeanHiddenDropout

18 0.0024 0.00011     5         1e-04       2186              0.39

    rho epsilon   MSE

18 0.96   3e-06 0.067

In this section we showed how to search a variety of hyperparameters and, using 
graphs and some modeling, how to attempt to choose better hyperparameters. It 
is also possible to optimize hyperparameters more formally, such as by using the 
Spearmint library for Bayesian optimization of hyperparameters, available online 
here: https://github.com/HIPS/Spearmint. Although these fine tuning and 
optimization examples have only been shown for deep prediction models, they can 
be applied to both prediction and anomaly detection.

https://github.com/HIPS/Spearmint
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Summary
With the techniques in Chapter 4, Identifying Anomalous Data and Chapter 5, Training 
Deep Prediction Models, you should be able to set up and use deep auto-encoders to 
learn features in data, identify outliers or anomalous values, and deep-feed forward 
neural networks to predict new outcomes or classify data, such as images, speech, or 
other data. Although just an introduction, the ideas and code from this book can get 
you started using deep learning to solve real-world, practical problems.

Deep learning and artificial intelligence are very active areas of research. New tools 
and techniques are coming out all the time and this book has only provided an 
introduction to some of the standard and commonly used models in deep learning. It 
is an exciting time to learn about this field, and I hope that this book has helped you 
begin your journey.
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