
[1]

www.allitebooks.com

http://www.allitebooks.org

R Deep Learning Essentials

Build automatic classification and prediction models
using unsupervised learning

Dr. Joshua F. Wiley

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

R Deep Learning Essentials

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2016

Production reference: 1220316

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-058-0

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Dr. Joshua F. Wiley

Reviewer
Vincenzo Lomonaco

Commissioning Editor
Akram Hussain

Acquisition Editor
Manish Nainani

Content Development Editor
Siddhesh Salvi

Technical Editor
Pranil Pathare

Copy Editor
Stephen Copestake

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Kirk D'Penha

Disha Haria

Jason Monteiro

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Author

Dr. Joshua F. Wiley is a lecturer at Monash University and a senior partner
at Elkhart Group Limited, a statistical consultancy. He earned his PhD from the
University of California, Los Angeles. His research focuses on using advanced
quantitative methods to understand the complex interplays of psychological,
social, and physiological processes in relation to psychological and physical health.
In statistics and data science, Joshua focuses on biostatistics and is interested in
reproducible research and graphical displays of data and statistical models.
Through consulting at Elkhart Group Limited and his former work at the UCLA
Statistical Consulting Group, Joshua has helped a wide array of clients, ranging
from experienced researchers to biotechnology companies. He develops or
codevelops a number of R packages including varian, a package to conduct
Bayesian scale-location structural equation models, and MplusAutomation,
a popular package that links R to the commercial Mplus software.

I would like to thank my wife and family for the years of support
and encouragement that have kept me passionate about my work.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Vincenzo Lomonaco was born in San Giovanni Rotondo (FG), Italy, in 1991. He
spent his childhood in Basilicata and, after getting his scientific lyceum diploma, he
moved to Modena. After less than three years, he graduated cum laude in computer
science. Attracted by the great reputation and research activities in Bologna, he
decided to start his masters in computer science there. In 2015, he graduated cum
laude with the dissertation, Deep Learning for Computer Vision: A comparison between
Convolutional Neural Networks and Hierarchical Temporal Memories on object recognition
tasks. He's currently a PhD student at University of Bologna, working on deep
learning and biologically-inspired pattern recognition.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

[i]

Table of Contents
Preface	 iii
Chapter 1: Getting Started with Deep Learning	 1

What is deep learning?	 2
Conceptual overview of neural networks	 2
Deep neural networks	 6

R packages for deep learning	 8
Setting up reproducible results	 9
Neural networks	 12
The deepnet package	 12
The darch package	 13
The H2O package	 13

Connecting R and H2O	 13
Initializing H2O	 14
Linking datasets to an H2O cluster	 15

Summary	 17
Chapter 2: Training a Prediction Model	 19

Neural networks in R	 19
Building a neural network	 20
Generating predictions from a neural network	 35

The problem of overfitting data – the consequences explained	 37
Use case – build and apply a neural network	 40
Summary	 45

Chapter 3: Preventing Overfitting	 47
L1 penalty	 48

L1 penalty in action	 50
L2 penalty	 52

L2 penalty in action	 53
Weight decay (L2 penalty in neural networks)	 54

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Ensembles and model averaging	 57
Use case – improving out-of-sample model performance
using dropout	 60
Summary	 65

Chapter 4: Identifying Anomalous Data	 67
Getting started with unsupervised learning	 68
How do auto-encoders work?	 69

Regularized auto-encoders	 70
Penalized auto-encoders	 70
Denoising auto-encoders	 71

Training an auto-encoder in R	 71
Use case – building and applying an auto-encoder model	 84
Fine-tuning auto-encoder models	 88
Summary	 93

Chapter 5: Training Deep Prediction Models	 95
Getting started with deep feedforward neural networks	 96
Common activation functions – rectifiers, hyperbolic tangent,
and maxout	 98
Picking hyperparameters	 100
Training and predicting new data from a deep neural network	 104
Use case – training a deep neural network for automatic
classification	 112

Working with model results	 123
Summary	 130

Chapter 6: Tuning and Optimizing Models	 131
Dealing with missing data	 132
Solutions for models with low accuracy	 135

Grid search	 135
Random search	 137

Summary	 149
Appendix: Bibliography	 151
Index	 153

www.allitebooks.com

http://www.allitebooks.org

[iii]

Preface
This book is about how to train and use deep learning models or deep neural
networks in the R programming language and environment. This book is not
intended to provide an in-depth theoretical coverage of deep neural networks, but
it will give you enough background to help you understand their basics and use
and interpret the results. This book will also show you some of the packages and
functions available to train deep neural networks, optimize their hyperparameters
to improve the accuracy of your model, and generate predictions or otherwise use
the model you built. The book is intended to provide an easy-to-read coverage of
the essentials in order to get going with real-life examples and applications.

What this book covers
Chapter 1, Getting Started with Deep Learning, shows how to get the R and H2O
packages set up and installed on a computer or server along with covering all the
basic concepts related to deep learning.

Chapter 2, Training a Prediction Model, covers how to build a shallow unsupervised
neural network prediction model.

Chapter 3, Preventing Overfitting, explains different approaches that can be used to
prevent models from overfitting the data in order to improve generalizability called
regularization on unsupervised data.

Chapter 4, Identifying Anomalous Data, covers how to perform unsupervised deep
learning in order to identify anomalous data, such as fraudulent activity or outliers.

Chapter 5, Training Deep Prediction Models, shows how to train deep neural networks
to solve prediction and classification problems, such as image recognition.

www.allitebooks.com

http://www.allitebooks.org

Preface

[iv]

Chapter 6, Tuning and Optimizing Models, explains how to adjust model tuning
parameters to improve and optimize the accuracy and performance of deep learning
models.

Appendix, Bibliography, contains the references for all the citations throughout the
book.

What you need for this book
You do not need much to use for this book. The main piece of software that you
need is R, which is open source and runs on Windows, Mac OS, and many varieties
of Linux. You will also need a recent version of Java. Once you have R and Java
installed, you will need to install some R packages, all of which work on every major
operating system.

Perhaps, the more challenging requirement is that, for any real deep learning
application, and even to explore quite small examples, modern hardware is required.
For this book, I primarily used a desktop with an Intel Xeon E5-2670 v2 running at
2.50 GHz (10 physical cores, 20 logical cores), with 32 GB of memory, and a Samsung
850 PRO 512GB SSD. You do not necessarily need an equivalent system, but I found
that running some examples on a latest laptop with 16 GB of memory and a dual
core i7 processor is time consuming.

Who this book is for
This book caters to aspiring data scientists who are well-versed with machine
learning concepts with R and are looking to explore the deep learning paradigm
using the packages available in R. You should have a fundamental understanding of
the R language and be comfortable with statistical algorithms and machine learning
techniques, but you do not need to be well-versed with deep learning concepts.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Of course, we cannot actually use the library() function until we have installed
the packages."

Preface

[v]

A block of code is set as follows:

uncomment to install the checkpoint package
install.packages("checkpoint")
library(checkpoint)

checkpoint("2016-02-20", R.version = "3.2.3")

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

performance.outsample[,-4]

 Size Maxit Shuffle Accuracy AccuracyLower AccuracyUpper

1 40 60 FALSE 0.93 0.92 0.94

2 20 100 FALSE 0.92 0.91 0.93

3 20 100 TRUE 0.92 0.91 0.93

4 50 100 FALSE 0.91 0.90 0.92

5 50 100 FALSE 0.92 0.91 0.93

Any command-line input or output is written as follows:

h2oiris <- as.h2o(

 droplevels(iris[1:100,]))

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

Preface

[vi]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box.
5.	 Select the book for which you're looking to download the code files.
6.	 Choose from the drop-down menu where you purchased this book from.
7.	 Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand
the changes in the output. You can download this file from https://www.
packtpub.com/sites/default/files/downloads/RDeepLearningEssentials_
ColorImages.pdf.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/RDeepLearningEssentials_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/RDeepLearningEssentials_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/RDeepLearningEssentials_ColorImages.pdf

Preface

[vii]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Getting Started with
Deep Learning

This chapter discusses deep learning, a powerful multi-layered architecture for
pattern recognition, signal detection, and classification or prediction. Although deep
learning is not new, it is only in the past decade that it has gained great popularity,
due in part to advances in computational capacity and new ways of more efficiently
training models, as well as the availability of ever-increasing amounts of data. In this
chapter, you will learn what deep learning is, the R packages available for training
such models, how to get your system set up for analysis, and how to connect R with
H2O, which we will use for many of the examples and work in later chapters on how
to actually train and use a deep learning model.

In this chapter, we will explore the following topics:

•	 What is deep learning?
•	 R packages that train deep learning models such as deep belief networks or

deep neural networks
•	 Connecting R and H2O, the main package we will be using for deep learning

Getting Started with Deep Learning

[2]

What is deep learning?
To understand what deep learning is, perhaps it is easiest to start with what is
meant by regular machine learning. In general terms, machine learning is devoted
to developing and using algorithms that learn from raw data in order to make
predictions. Prediction is a very general term. For example, predictions from
machine learning may include predicting how much money a customer will spend
at a given company, or whether a particular credit card purchase is fraudulent.
Predictions also encompass more general pattern recognition, such as what letters
are present in a given image, or whether a picture is of a horse, dog, person, face,
building, and so on. Deep learning is a branch of machine learning where a multi-
layered (deep) architecture is used to map the relations between inputs or observed
features and the outcome. This deep architecture makes deep learning particularly
suitable for handling a large number of variables and allows deep learning to
generate features as part of the overall learning algorithm, rather than feature
creation being a separate step. Deep learning has proven particularly effective in
the fields of image recognition (including handwriting as well as photo or object
classification) and natural language processing, such as recognizing speech.

There are many types of machine learning algorithms. In this book, we are primarily
going to focus on neural networks as these have been particularly popular in deep
learning. However, this focus does not mean that it is the only technique available in
machine learning or even deep learning, nor that other techniques are not valuable
or even better suited, depending on the specific task. The next sections will discuss
what neural networks and deep neural networks are conceptually in more depth.

Conceptual overview of neural networks
As their name suggests, neural networks draw their inspiration from neural
processes and neurons in the body. Neural networks contain a series of neurons,
or nodes, which are interconnected and process input. The connections between
neurons are weighted, with these weights based on the function being used and
learned from the data. Activation in one set of neurons and the weights (adaptively
learned from the data) may then feed into other neurons, and the activation of some
final neuron(s) is the prediction.

To make this process more concrete, an example from human visual perception may
be helpful. The term grandmother cell is used to refer to the concept that somewhere
in the brain there is a cell or neuron that responds specifically to a complex and
specific object, such as your grandmother. Such specificity would require thousands
of cells to represent every unique entity or object we encounter. Instead, it is
thought that visual perception occurs by building up more basic pieces into complex
representations. For example, the following is a picture of a square:

Chapter 1

[3]

Figure 1.1

Rather than our visual system having cells, neurons that are activated only upon
seeing the gestalt, or entirety, of a square, we can have cells that recognize horizontal
and vertical lines, as shown in the following:

Figure 1.2

Getting Started with Deep Learning

[4]

In this hypothetical case, there may be two neurons, one which is activated when
it senses horizontal lines and another that is activated when it senses vertical lines.
Finally, a higher-order process recognizes that it is seeing a square when both the
lower order neurons are activated simultaneously.

Neural networks share some of these same concepts, with inputs being processed
by a first layer of neurons that may go on to trigger another layer. Neural networks
are sometimes shown as graphical models. In Figure 1.3, Inputs are data represented
as squares. These may be pixels in an image, or different aspects of sounds, or
something else. The next layer of Hidden neurons consists of neurons that recognize
basic features, such as horizontal lines, vertical lines, or curved lines. Finally, the
output may be a neuron that is activated by the simultaneous activation of two of the
hidden neurons. In this book, observed data or features are depicted as squares, and
unobserved or hidden layers as circles:

Figure 1.3

Chapter 1

[5]

Neural networks are used to refer to a broad class of models and algorithms. Hidden
neurons are generated based on some combination of the observed data, similar to
a basis expansion in other statistical techniques; however, rather than choosing the
form of the expansion, the weights used to create the hidden neurons are learned
from the data. Neural networks can involve a variety of activation function(s), which
are transformations of the weighted raw data inputs to create the hidden neurons.
A common choice for activation functions is the sigmoid function: () 1

1 xx
e

σ −=
+

 and
the hyperbolic tangent function () ()tanhf x x= . Finally, radial basis functions are
sometimes used as they are efficient function approximators. Although there are a

variety of these, the Gaussian form is common: ()
2

2exp
2

x c
f x

σ

 −
 = −  
 

.

In a shallow neural network such as is shown in Figure 1.3, with only a single hidden
layer, from the hidden units to the outputs is essentially a standard regression
or classification problem. The hidden units can be denoted by h, the outputs by
Y. Different outputs can be denoted by subscripts i = 1, …, k and may represent
different possible classifications, such as (in our case) a circle or square. The paths
from each hidden unit to each output are the weights and for the ith output are
denoted by wi. These weights are also learned from the data, just like the weights
used to create the hidden layer. For classification, it is common to use a final

transformation, the softmax function, which is

T
i

T
i

hw

i hk w
i

eY
e

=
∑ as this ensures that

the estimates are positive (using the exponential function) and that the probability of
being in any given class sums to one. For linear regression, the identity function,
which returns its input, is commonly used. Confusion may arise as to why there
are paths between every hidden unit and output as well as every input and hidden
unit. These are commonly drawn to represent that a priori any of these relations are
allowed to exist. The weights must then be learned from the data, with zero or near
zero weights essentially equating to dropping unnecessary relations.

This only scratches the surface of the conceptual and practical aspects of neural
networks. For a slightly more in-depth introduction to neural networks, see
Chapter 11 of Hastie, T., Tibshirani, R., and Friedman, J. (2009), which is freely
available at http://statweb.stanford.edu/~tibs/ElemStatLearn/, Chapter 16
of Murphy, K. P. (2012), and Chapter 5 of Bishop, C. M. (2006). Next, we will turn to a
brief introduction to deep neural networks.

http://statweb.stanford.edu/~tibs/ElemStatLearn/

Getting Started with Deep Learning

[6]

Deep neural networks
Perhaps the simplest, if not the most informative, definition of a deep neural
network (DNN) is that it is a neural network with multiple hidden layers. Although
a relatively simple conceptual extension of neural networks, such deep architecture
provides valuable advances in terms of the capability of the models and new
challenges in training them.

Using multiple hidden layers allows a more sophisticated build-up from simple
elements to more complex ones. When discussing neural networks, we considered
the outputs to be whether the object was a circle or a square. In a deep neural
network, many circles and squares could be combined to form other more advanced
shapes. One can consider two complexity aspects of a model's architecture. One is
how wide or narrow it is—that is, how many neurons there are in a given layer.
The second is how deep it is, or how many layers of neurons there are. For data that
truly has such deep architectures, a deep neural network can fit it more accurately
with fewer parameters than a neural network (NN), because more layers (each with
fewer neurons) can be a more efficient and accurate representation; for example,
because the shallow NN cannot build more advanced shapes from basic pieces, in
order to provide equal accuracy to the deep neural network it must represent each
unique object. Again considering pattern recognition in images, if we are trying to
train a model for text recognition the raw data may be pixels from an image. The
first layer of neurons could be trained to capture different letters of the alphabet, and
then another layer could recognize sets of these letters as words. The advantage is
that the second layer does not have to directly learn from the pixels, which are noisy
and complex. In contrast, a shallow architecture may require far more parameters,
as each hidden neuron would have to be capable of going directly from pixels in an
image to a complete word, and many words may overlap, creating redundancy in
the model.

One of the challenges in training deep neural networks is how to efficiently learn
the weights. The models are often complex and local minima abound, making the
optimization problem a challenging one. One of the major advancements came in
2006, when it was shown that Deep Belief Networks (DBNs) could be trained one
layer at a time (See Hinton, G. E., Osindero, S., and Teh, Y. W. (2006)). A DBN is a type
of deep neural network where multiple hidden layers and connections between (but
not within) layers (that is, a neuron in layer 1 may be connected to a neuron in layer
2, but may not be connected to another neuron in layer 1). This is the essentially the
same definition of a Restricted Boltzmann Machine (RBM)—an example is shown
in Figure 1.4—except that a RBM typically has one input layer and one hidden layer:

Chapter 1

[7]

Figure 1.4

The restriction of no connections within a layer is valuable as it allows for much
faster training algorithms to be used, such as the contrastive divergence algorithm.
If several RBMs are stacked together, they can form a DBN. Essentially, the DBN
can then be trained as a series of RBMs. The first RBM layer is trained and used
to transform raw data into hidden neurons, which are then treated as a new set
of inputs in a second RBM, and the process is repeated until all layers have been
trained.

The benefits of the realization that DBNs could be trained one layer at a time extend
beyond just DBNs, however. DBNs are sometimes used as a pre-training stage
for a deep neural network. This allows the comparatively fast, greedy layer-by-
layer training to be used to provide good initial estimates, which are then refined
in the deep neural network using other, slower, training algorithms such as back
propagation.

Getting Started with Deep Learning

[8]

So far we have been primarily focused on feed-forward neural networks, where
the results from one layer and neuron feed forward to the next. Before closing this
section, two specific kinds of deep neural networks that have grown in popularity are
worth mentioning. The first is a Recurrent Neural Network (RNN) where neurons
send feedback signals to each other. These feedback loops allow RNNs to work well
with sequences. A recent example of an application of RNNs was to automatically
generate click-bait such as One trick great hair salons don't want you to know or Top 10
reasons to visit Los Angeles: #6 will shock you!. RNNs work well for such jobs as they
can be seeded from a large initial pool of a few words (even just trending search
terms or names) and then predict/generate what the next word should be. This
process can be repeated a few times until a short phrase is generated, the click-
bait. This example is drawn from a blog post by Lars Eidnes, available at http://
larseidnes.com/2015/10/13/auto-generating-clickbait-with-recurrent-
neural-networks/. The second type is a Convolutional Neural Network (CNN).
CNNs are most commonly used in image recognition. CNNs work by having each
neuron respond to overlapping subregions of an image. The benefits of CNNs are that
they require comparatively minimal pre-processing yet still do not require too many
parameters through weight sharing (for example, across subregions of an image).
This is particularly valuable for images as they are often not consistent. For example,
imagine ten different people taking a picture of the same desk. Some may be closer or
farther away or at positions resulting in essentially the same image having different
heights, widths, and the amount of image captured around the focal object.

As for neural networks, this description only provides the briefest of overviews as
to what deep neural networks are and some of the use cases to which they can be
applied. For an overview, see Schmidhuber, J. (2015) as well as Chapter 28 of Murphy,
K. P. (2012).

R packages for deep learning
Although there are a number of R packages for machine learning, there are
comparatively few available for neural networks and deep learning. In this section,
we will see how to install all the necessary R packages and set them up to use neural
networks and deep learning.

It is helpful to have a good integrated development environment (IDE) for working
with R and doing data analysis. I use Emacs, a powerful text editor, along with
Emacs Speaks Statistics (ESS), which helps Emacs work nicely with R. An easy way
to get up-and-running is to use a modified distribution of Emacs designed to work
nicely with R and for statistics. It is created and maintained by Vincent Goulet and is
freely available at http://vgoulet.act.ulaval.ca/en/emacs/. Another popular
R IDE is Rstudio (https://www.rstudio.com/). One advantage of both Emacs and
Rstudio is that they are available on all major platforms (Windows, Mac, and Linux),
so even if you switch computers you can have a consistent IDE experience.

http://larseidnes.com/2015/10/13/auto-generating-clickbait-with-recurrent-neural-networks/
http://larseidnes.com/2015/10/13/auto-generating-clickbait-with-recurrent-neural-networks/
http://larseidnes.com/2015/10/13/auto-generating-clickbait-with-recurrent-neural-networks/
http://vgoulet.act.ulaval.ca/en/emacs/
https://www.rstudio.com/

Chapter 1

[9]

Setting up reproducible results
Software for data science is advancing and changing rapidly. Although this is
wonderful for progress, it can make reproducing someone else's results a challenge.
Even your own code may not work when you go back to it a few months later.
One way to address this issue is to make a record of what versions of software
were used and ensure there is a snapshot of them available. For this book, we will
use the R package checkpoint provided by Revolution Analytics; this works in
connection with their server, which provides daily snapshots (checkpoints) of the
Comprehensive R Archive Network (CRAN). To learn more about this process, you
can read the online vignette for the package available at https://cran.r-project.
org/web/packages/checkpoint/vignettes/checkpoint.html.

This book was written using R version 3.2.3, nicknamed Wooden Christmas-Tree, on
Windows 10 Professional x64. Although this is the latest version of R at the time of
writing, as new versions are released CRAN keeps copies of older R versions both as
binaries (in the future at https://cran.r-project.org/bin/windows/base/old/)
and as source tar balls (https://cran.r-project.org/src/base/R-3/), which can
be used to compile the source to any operating system.

For H2O, one of the main R packages will be used for deep learning, we will also
need Java installed. This book was written using the Java SE Development Kit 8
update 66 for 64 bit. You can download Java for your operating system at
http://www.oracle.com/technetwork/java/javase/.

With those steps done, we are ready to get started. To use the checkpoint package,
put all your R scripts for one project together in a single folder. Installing R packages
using the checkpoint package is a somewhat circular process. The checkpoint
package works by scanning R scripts in the project directory to see what packages
are loaded (and therefore that it needs to install), by checking for calls to the
library() or require() functions. Of course, we cannot actually use the library()
function until we have installed the packages.

To begin with, create an R script in your project directory called checkpoint.R with
the following code:

uncomment to install the checkpoint package
install.packages("checkpoint")
library(checkpoint)

checkpoint("2016-02-20", R.version = "3.2.3")

https://cran.r-project.org/web/packages/checkpoint/vignettes/checkpoint.html
https://cran.r-project.org/web/packages/checkpoint/vignettes/checkpoint.html
https://cran.r-project.org/bin/windows/base/old/
https://cran.r-project.org/src/base/R-3/
http://www.oracle.com/technetwork/java/javase/

Getting Started with Deep Learning

[10]

Once you have created the R script, you can uncomment and run the code to install
the checkpoint package. You only need to do this once, so when you are done it's
best to comment the code out again so it is not re-installed each time you run the file.
This is the file we will run each time we want to set up our R environment for this
deep learning project. The checkpoint for this book is 20th February 2016 and we are
using R version 3.2.3. Next, we can add library() calls for some packages we will
need to be available by adding the following code to our checkpoint.R script (but
note that these are not run yet!):

Chapter 1

Tools
library(RCurl)
library(jsonlite)
library(caret)
library(e1071)

basic stats packages
library(statmod)
library(MASS)

Downloading the example code
You can download the example code files for this book from your account
at http://www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.
You can download the code files by following these steps:

•	 Log in or register to our website using your e-mail address and
password.

•	 Hover the mouse pointer on the SUPPORT tab at the top.
•	 Click on Code Downloads & Errata.
•	 Enter the name of the book in the Search box.
•	 Select the book for which you're looking to download the code files.
•	 Choose from the drop-down menu where you purchased this book

from.
•	 Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 1

[11]

Once we have added that code, save the file so that any changes are written to the
disk, and then run the first couple of lines to load the checkpoint package and the call
to checkpoint(). The results should look something like Figure 1.5:

Figure 1.5

Getting Started with Deep Learning

[12]

The checkpoint package asks to create a directory to store specific versions of the
packages used, and then finds all packages and installs them. The next sections show
how to set up some specific R packages for deep learning.

Neural networks
There are several packages in R that can fit basic neural networks. The nnet package
is a recommended package and can fit feed-forward neural networks with one
hidden layer, like the one shown in Figure 1.3. For more details on the nnet package,
see Venables, W. N. and Ripley, B. D. (2002). The neuralnet package also fits shallow
neural networks with one hidden layer, but can train them using back-propagation
and allows custom error and neuron activation functions. Finally, we come to the
RSNNS package, which is an R wrapper of the Stuttgart Neural Network Simulator
(SNNS). The SNNS was originally written in C, but was ported to C++. RSNNS
allows many types of models to fit in R. Common models are available using
convenient wrappers, but the RSNNS package also makes many model components
from SNNS available, making it possible to train a wide variety of models. For more
details on the RSNNS package, see Bergmeir, C., and Benítez, J. M. (2012). We will see
examples of how to use these models in Chapter 2, Training a Prediction Model. For
now, we can install them by adding the following code to the checkpoint.R script
and saving it. Saving is important because, if our changes to the R script are not
written to the disk, the checkpoint() function will not see the changes and will not
find and install the new packages:

neural networks
library(nnet)
library(neuralnet)
library(RSNNS)

Now, if we re-run the checkpoint() function and it is successful, R should tell us
that it discovered eight packages and that it installed nnet, neuralnet, RSNNS, and
Rcpp, a dependency for the RSNNS package.

The deepnet package
The deepnet package provides a number of tools for deep learning in R. Specifically,
it can train RBMs and use these as part of DBNs to generate initial values to train
deep neural networks. The deepnet package also allows for different activation
functions, and the use of dropout for regularization. To install it, we follow the
same process we used before adding the following code to the checkpoint.R script,
saving it, and then re-running the checkpoint() function:

deep learning
library(deepnet)

Chapter 1

[13]

The darch package
The darch package is based on Matlab code by George Hinton and stands for deep
architectures. It can train RBMs and DBNs along with a variety of options related to
each. A limitation of the darch package is that, because it is a pure R implementation,
model training tends to be slow. To install it, we follow the same process we used
before adding the following code to the checkpoint.R script, saving it, and then re-
running the checkpoint() function:

deep learning
library(darch)

The H2O package
The H2O package provides an interface to the H2O software. H2O is written in
Java and is fast and scalable. It provides not only deep learning functionality, but
also a variety of other popular machine learning algorithms and models, and the
model results can be stored as pure Java code to allow fast scoring, facilitating the
deployment of models to solve real-world problems. To install it, we follow the
same process we used before adding the following code to the checkpoint.R script,
saving it, and then re-running the checkpoint() function:

deep learning
library(h2o)

Connecting R and H2O
Because H2O is Java-based software with an R wrapper, to connect R to it we must
initialize an instance of H2O and also connect R with it, linking or passing data and
model commands to it. In this section, we will show how to get everything set up to
train a model using H2O.

Getting Started with Deep Learning

[14]

Initializing H2O
To initialize an H2O cluster, we use the h2o.init() function. Initializing a cluster
will also set up a lightweight web server that allows interaction with the software via
a local webpage. Generally, the h2o.init() function has sensible default values, but
we can customize many aspects of it, and it may be particularly good to customize
the number of cores/threads to use as well as how much memory we are willing for
it to use, which can be accomplished as in the following code using the max_mem_
size and nthreads arguments. In the code that follows, we initialize an H2O cluster
to use two threads and up to three gigabytes of memory. After the code, R will
indicate the location of log files, the Java version, and details about the cluster:

cl <- h2o.init(

 max_mem_size = "3G",

 nthreads = 2)

H2O is not running yet, starting it now...

Note: In case of errors look at the following log files:

 C:\Users\jwile\AppData\Local\Temp\RtmpuelhZm/h2o_jwile_started_
from_r.out

 C:\Users\jwile\AppData\Local\Temp\RtmpuelhZm/h2o_jwile_started_
from_r.err

java version "1.8.0_66"

Java(TM) SE Runtime Environment (build 1.8.0_66-b18)

Java HotSpot(TM) 64-Bit Server VM (build 25.66-b18, mixed mode)

.Successfully connected to http://127.0.0.1:54321/

R is connected to the H2O cluster:

 H2O cluster uptime: 1 seconds 735 milliseconds

 H2O cluster version: 3.6.0.8

 H2O cluster name: H2O_started_from_R_jwile_ndx127

 H2O cluster total nodes: 1

 H2O cluster total memory: 2.67 GB

 H2O cluster total cores: 4

 H2O cluster allowed cores: 2

 H2O cluster healthy: TRUE

Chapter 1

[15]

Once the cluster is initialized, we can interface with it either using R or using the web
interface available at the local host (127.0.0.1:54321); it is shown in Figure 1.6:

Figure 1.6

Linking datasets to an H2O cluster
There are a couple of ways to get data into an H2O cluster. If the dataset is already
loaded into R, you can simply use the as.h2o() function as shown in the following
code:

h2oiris <- as.h2o(

 droplevels(iris[1:100,]))

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Deep Learning

[16]

We can check the results by typing the R object, h2oiris, which is simply an object
that holds a reference to the H2O data. The R API queries H2O when we try to print
it:

h2oiris

This returns the following output:

 Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

[100 rows x 5 columns]

We can also check the levels of factor variables, such as the Species variable, as
shown in the following:

h2o.levels(h2oiris, 5)

[1] setosa versicolor

In real-world uses, it is more likely that the data already exists somewhere; rather
than load the data into R only to export it into H2O (a costly operation as it creates an
unnecessary copy of the data in R), we can just load data directly into H2O. First we
will create a CSV file based on the built-in mtcars dataset, then we will tell the H2O
instance to read the data using R. Printing again shows the data:

write.csv(mtcars, file = "mtcars.csv")

h2omtcars <- h2o.importFile(

 path = "mtcars.csv")

h2omtcars

 C1 mpg cyl disp hp drat wt qsec vs am gear carb

1 Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4

2 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4

3 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1

4 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1

Chapter 1

[17]

5 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2

6 Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

[32 rows x 12 columns]

Finally, the data need not be located on the local disk. We can also ask H2O to
read in data from a URL as shown in this last example, which uses a dataset made
available from the UCLA Statistical Consulting Group:

h2obin <- h2o.importFile(

 path = "http://www.ats.ucla.edu/stat/data/binary.csv")

h2obin

 admit gre gpa rank

1 0 380 3.61 3

2 1 660 3.67 3

3 1 800 4.00 1

4 1 640 3.19 4

5 0 520 2.93 4

6 1 760 3.00 2

[400 rows x 4 columns]

Summary
This chapter presented a brief introduction to NNs and deep neural networks. Using
multiple hidden layers, deep neural networks have been a revolution in machine
learning by providing a powerful unsupervised learning and feature extraction
component that can be standalone or integrated as part of a supervised model.

There are many applications of such models, and they are being increasingly used
by large companies such as Google, Microsoft, and Facebook. Examples of tasks
for deep learning are image recognition (for example, automatically tagging faces,
or identifying keywords for an image), voice recognition, and text translation (for
example, to go from English to Spanish, or vice versa). Work is even being done
on text recognition such as sentiment analysis to try to identify whether a sentence
or paragraph is generally positive or negative, particularly useful for evaluating
perceptions about a product or service. Imagine being able to scrape reviews and
social media for any mention of your product and being able to analyse whether it
was being discussed more or less favourably than the month or year before!

Getting Started with Deep Learning

[18]

This chapter also showed how to set up R and the necessary software and packages
installed, in a reproducible way to match the versions used in this book.

In the next chapter, we will begin to train neural networks and generate our own
predictions.

[19]

Training a Prediction Model
This chapter shows how to build and train basic neural networks in R through
hands-on examples that also emphasize the importance of evaluating different
tuning parameters for models to find the best set. Although evaluating a variety of
tuning parameters can help increase the performance of a model, it can also lead to
overfitting, the next topic covered in the chapter. The chapter closes with an example
use case classifying activity data from a smartphone as walking, going up or down
stairs, sitting, standing, or lying down.

This chapter covers the following topics:

•	 Neural networks in R
•	 The problem of overfitting data – the consequences explained
•	 Use case – build and apply a neural network

Neural networks in R
To train basic (that is, "shallow" with a single hidden layer) neural networks in R, we
will use the nnet and the RSNNS (Bergmeir, C., and Benítez, J. M. (2012)) packages.
From the previous chapter, these should already be installed and based on a 20th
February 2016 checkpoint so our results are fully reproducible. Although it is
possible to interface with the nnet package directly, we are going to use it through
the caret package, which is short for Classification and Regression Training.
The caret package provides a standardized interface to work with many machine
learning models in R (Kuhn, 2008; Kuhn and Johnson, 2013), and also has some
useful features for validation and performance assessment that we will use in this
chapter and the next.

Training a Prediction Model

[20]

For our first examples of building neural networks, we will use a classic classification
problem—recognizing handwritten digits based on pictures. The data can be
downloaded from https://www.kaggle.com/c/digit-recognizer and comes in
an easy-to-use CSV format, where each column of the dataset, or feature, represents
a pixel from the image. Each image has been normalized to a fixed size so every
image has the same number of pixels. The first column contains the actual digit
label, and the remaining are pixel darkness values, to be used for classification. The
downloaded files, called train.csv and test.csv, were placed in the same folder
as the R scripts, so they can easily be read in. If you put them in different folders, just
change the paths accordingly.

Building a neural network
To get started, we will first load our packages, by calling source() on the script where
we loaded them, and set the checkpoint for the versions to use. Then we can read in
the training data downloaded from Kaggle, and take a quick look at what it is like:

source("checkpoint.R")

output omitted

digits.train <- read.csv("train.csv")

dim(digits.train)

[1] 42000 785

head(colnames(digits.train), 4)

[1] "label" "pixel0" "pixel1" "pixel2"

tail(colnames(digits.train), 4)

[1] "pixel780" "pixel781" "pixel782" "pixel783"

head(digits.train[, 1:4])

 label pixel0 pixel1 pixel2

1 1 0 0 0

2 0 0 0 0

3 1 0 0 0

https://www.kaggle.com/c/digit-recognizer

Chapter 2

[21]

4 4 0 0 0

5 0 0 0 0

6 0 0 0 0

We will convert the labels (the digits 0 to 9) to a factor so R knows that this is a
classification not a regression problem. If this were a real-world problem, we would
want to use all 42,000 observations but, for the sake of reducing how long it takes
to run, we will select just the first 5,000 for these first examples of building and
training a neural network. We also separate the data into the features or predictors
(digits.X) and the outcome (digits.Y). We are using all the columns except the
labels as the predictors here:

convert to factor

digits.train$label <- factor(digits.train$label, levels = 0:9)

i <- 1:5000

digits.X <- digits.train[i, -1]

digits.y <- digits.train[i, 1]

Finally, before we get started building our neural network, let's quickly check the
distribution of the digits. This can be important as, for example, if one digit occurs very
rarely, we may need to adjust our modeling approach to ensure that, even though it is
rare, it is given enough weight in performance evaluation if we care about accurately
predicting that digit as well. The following code snippet creates a bar plot showing the
frequency of each digit label (Figure 2.1). They are fairly evenly distributed so there is
no real need to increase the weight or importance given to any particular one:

barplot(table(digits.y))

Figure 2.1

Training a Prediction Model

[22]

Now let's build and train our first neural network using the nnet package through
the caret package wrapper. First, we use the set.seed() function and specify a
specific seed so that the results are reproducible. The exact seed is not important.
This same approach is also used in later examples repeating the same seed, because
what matters is that the same seed is used for the same model, not whether different
models have different or similar seeds. The train() function first takes the feature
or predictor data, the x argument, and then the outcome variable, the y argument.
The train() function can work with a variety of models, determined via the
method argument. Although many aspects of machine learning models are learned
automatically, some parameters have to be set. These vary by the method used;
for example, in neural networks one parameter is the number of hidden units. The
train() function provides an easy way to try a variety of these tuning parameters as
a named data frame to the tuneGrid argument. It returns the performance measures
for each set of tuning parameters and returns the best trained model. We will start
with just five hidden neurons in our model, and a modest decay rate, sometimes
also called the learning rate. The learning rate controls how much each iteration
or step can influence the current weights. Another argument, trControl, controls
additional aspects of train(), and is used, when a variety of tuning parameters are
being evaluated, to tell the caret package how to validate and pick the best tuning
parameter.

For this example, we will set the method for training control to "none" as we only
have one set of tuning parameters being used here. Finally, at the end we can specify
additional, named arguments that are passed on to the actual nnet() function (or
whatever algorithm is specified). Because of the number of predictors (784), we
increase the maximum number of weights to 10,000 and specify a maximum of 100
iterations. Due to the relatively small amount of data, and the paucity of hidden
neurons, this first model does not take too long to run:

set.seed(1234)

digits.m1 <- train(x = digits.X, y = digits.y,

 method = "nnet",

 tuneGrid = expand.grid(

 .size = c(5),

 .decay = 0.1),

 trControl = trainControl(method = "none"),

 MaxNWts = 10000,

 maxit = 100)

Chapter 2

[23]

The predict() function generates a set of predictions for data. When called on the
results of a model without specifying any new data, it just generates predictions on
the same data used for training. After calculating and storing the predicted digits,
we can examine their distribution, shown in Figure 2.2. Even before looking at the
performance measures for this first model, given the actual distribution (Figure 2.1) it
is clear this model is not optimal:

digits.yhat1 <- predict(digits.m1)

barplot(table(digits.yhat1))

Figure 2.2

Graphically examining the distribution is just a simple check of the predictions.
A more formal evaluation of model performance is possible using the
confusionMatrix() function in the caret package. Because there is a function
by the same name in the RSNNS package, they are masked so we use the special
caret:: code to tell R which version of the function to use. The input is simply a
frequency cross tab between the actual digits and the predicted digits. The remaining
performance metrics are calculated from these.

Training a Prediction Model

[24]

Because we had multiple digits, there are three main sections to the performance
output. First, the actual frequency cross tab is shown. Correct predictions are on the
diagonal, with various frequencies of misclassification on the off diagonals. Next
are the overall statistics, which refer to the model performance across all classes.
Accuracy is simply the proportion of cases correctly classified, along with a 95%
confidence interval, which can be useful especially for smaller datasets where there
may be considerable uncertainty in the estimate. The No Information Rate refers
to what accuracy could be expected without any information by merely guessing
the most frequent class, in this case, 1, which occurred 11.16% of the time. The
p-value tests whether the observed accuracy (44.3%) is significantly different than
the No Information Rate (11.2%). Although statistically significant, this is not
very meaningful for digit classification where we would expect to do far better than
simply guessing the most frequent digit! Finally, individual performance metrics for
each digit are shown. These are based on calculating that digit versus every other
digit, so that each is a binary comparison. The following 2 x 2 table contains all the
information needed to calculate the various measures, and the formulae for all the
measures are shown here:

Positive Negative
Predicted positive True positive (TP) False positive (FP)
Predicted negative False negative (FN) True negative (TN)

TPSensitivity
TP FN

=
+

TNSpecificity
TN FP

=
+

() TPPositive PredictiveValue PPV
TP FP

=
+

() TNNegative PredictiveValue NPV
FN TN

=
+

Chapter 2

[25]

TPDetection Rate
TP FN FP TN

=
+ + +

TP FPDetection Prevalence
TP FN FP TN

+
=

+ + +

For example, the sensitivity for digit 0 can be interpreted as meaning that 78.5%
of zero digits were captured or correctly predicted to be zeroes. The specificity for
digit 0 can be interpreted as meaning that 95.2% of cases that were predicted to be a
digit other than zero were not zero. The detection rate is just the percentage of true
positives, and finally the detection prevalence is the proportion of cases predicted to
be positive, regardless of whether they actually are or not. The balanced accuracy is
the mean of the sensitivity and specificity. The remaining columns present the same
information for each of the remaining digits:

caret::confusionMatrix(xtabs(~digits.yhat1 + digits.y))

Confusion Matrix and Statistics

 digits.y

digits.yhat1 0 1 2 3 4 5 6 7 8 9

 0 388 2 40 41 7 75 23 4 23 2

 1 0 495 3 0 0 3 0 4 3 4

 2 0 0 0 0 0 0 0 0 0 0

 3 51 30 36 379 6 329 3 18 290 38

 4 0 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0 0

 6 44 5 304 9 131 29 484 9 16 19

 7 11 26 162 51 333 33 6 470 145 415

 8 0 0 0 0 0 0 0 0 0 0

 9 0 0 0 0 0 0 0 1 0 0

Training a Prediction Model

[26]

Overall Statistics

 Accuracy : 0.4432

 95% CI : (0.4294, 0.4571)

 No Information Rate : 0.1116

 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.3805

 Mcnemar's Test P-Value : NA

Statistics by Class:

 Class: 0 Class: 1 Class: 2 Class: 3 Class: 4

Sensitivity 0.7854 0.8871 0.000 0.7896 0.0000

Specificity 0.9518 0.9962 1.000 0.8228 1.0000

Pos Pred Value 0.6413 0.9668 NaN 0.3212 NaN

Neg Pred Value 0.9759 0.9860 0.891 0.9736 0.9046

Prevalence 0.0988 0.1116 0.109 0.0960 0.0954

Detection Rate 0.0776 0.0990 0.000 0.0758 0.0000

Detection Prevalence 0.1210 0.1024 0.000 0.2360 0.0000

Balanced Accuracy 0.8686 0.9416 0.500 0.8062 0.5000

 Class: 5 Class: 6 Class: 7 Class: 8 Class: 9

Sensitivity 0.0000 0.9380 0.9289 0.0000 0.0000

Specificity 1.0000 0.8738 0.7370 1.0000 0.9998

Pos Pred Value NaN 0.4610 0.2845 NaN 0.0000

Neg Pred Value 0.9062 0.9919 0.9892 0.9046 0.9044

Prevalence 0.0938 0.1032 0.1012 0.0954 0.0956

Detection Rate 0.0000 0.0968 0.0940 0.0000 0.0000

Detection Prevalence 0.0000 0.2100 0.3304 0.0000 0.0002

Balanced Accuracy 0.5000 0.9059 0.8329 0.5000 0.4999

Chapter 2

[27]

Now that we have some basic understanding of how to set up, train, and evaluate
model performance, we will try a few different models, increasing the number of
hidden neurons, which is one key way to improve model performance, at the cost
of greatly increasing the model complexity. Recall from Chapter 1, Getting Started
with Deep Learning, that every predictor or feature connects to each hidden neuron,
and each hidden neuron connects to each outcome or output. With 784 features,
each additional hidden neuron adds a substantial number of parameters, which also
results in longer run times. Depending on your computer, be prepared to wait a
number of minutes for these next models to finish:

set.seed(1234)

digits.m2 <- train(digits.X, digits.y,

 method = "nnet",

 tuneGrid = expand.grid(

 .size = c(10),

 .decay = 0.1),

 trControl = trainControl(method = "none"),

 MaxNWts = 50000,

 maxit = 100)

digits.yhat2 <- predict(digits.m2)

barplot(table(digits.yhat2))

Figure 2.3

Training a Prediction Model

[28]

caret::confusionMatrix(xtabs(~digits.yhat2 + digits.y))

Confusion Matrix and Statistics

 digits.y

digits.yhat2 0 1 2 3 4 5 6 7 8 9

 0 395 0 14 23 0 120 6 12 15 5

 1 2 518 35 10 0 7 0 10 8 4

 2 23 23 323 15 8 37 30 1 15 2

 3 0 4 24 337 0 49 0 12 37 5

 4 3 0 0 0 10 14 2 0 0 0

 5 44 0 20 60 0 146 10 1 235 9

 6 1 1 25 2 0 3 327 0 3 0

 7 3 1 7 3 3 11 7 392 3 19

 8 0 0 0 0 0 0 1 0 0 0

 9 23 11 97 30 456 82 133 78 161 434

Overall Statistics

 Accuracy : 0.5764

 95% CI : (0.5626, 0.5901)

 No Information Rate : 0.1116

 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.5293

 Mcnemar's Test P-Value : NA

Statistics by Class:

 Class: 0 Class: 1 Class: 2 Class: 3 Class: 4

Sensitivity 0.7996 0.9283 0.5927 0.7021 0.02096

Chapter 2

[29]

Specificity 0.9567 0.9829 0.9654 0.9710 0.99580

Pos Pred Value 0.6695 0.8721 0.6771 0.7201 0.34483

Neg Pred Value 0.9776 0.9909 0.9509 0.9684 0.90606

Prevalence 0.0988 0.1116 0.1090 0.0960 0.09540

Detection Rate 0.0790 0.1036 0.0646 0.0674 0.00200

Detection Prevalence 0.1180 0.1188 0.0954 0.0936 0.00580

Balanced Accuracy 0.8782 0.9556 0.7790 0.8366 0.50838

 Class: 5 Class: 6 Class: 7 Class: 8 Class: 9

Sensitivity 0.3113 0.6337 0.7747 0.0000 0.9079

Specificity 0.9164 0.9922 0.9873 0.9998 0.7632

Pos Pred Value 0.2781 0.9033 0.8731 0.0000 0.2884

Neg Pred Value 0.9278 0.9592 0.9750 0.9046 0.9874

Prevalence 0.0938 0.1032 0.1012 0.0954 0.0956

Detection Rate 0.0292 0.0654 0.0784 0.0000 0.0868

Detection Prevalence 0.1050 0.0724 0.0898 0.0002 0.3010

Balanced Accuracy 0.6138 0.8130 0.8810 0.4999 0.8356

Increasing from 5 to 10 hidden neurons improved our in-sample performance from
an overall accuracy of 44.3% to 57.6%, but this is still quite some way from ideal
(imagine character recognition software that mixed up 42.4% of all the characters!).
We increase again, this time to 40 hidden neurons, and wait even longer for the
model to finish training:

set.seed(1234)

digits.m3 <- train(digits.X, digits.y,

 method = "nnet",

 tuneGrid = expand.grid(

 .size = c(40),

 .decay = 0.1),

 trControl = trainControl(method = "none"),

 MaxNWts = 50000,

 maxit = 100)

Training a Prediction Model

[30]

digits.yhat3 <- predict(digits.m3)

barplot(table(digits.yhat3))

Figure 2.4

caret::confusionMatrix(xtabs(~digits.yhat3 + digits.y))

Confusion Matrix and Statistics

 digits.y

digits.yhat3 0 1 2 3 4 5 6 7 8 9

 0 461 0 7 3 0 20 16 2 3 7

 1 0 521 3 4 0 2 2 6 10 2

 2 17 3 469 30 2 13 16 10 39 2

 3 1 5 11 352 2 43 2 9 48 5

 4 1 0 6 1 394 7 0 4 3 36

 5 3 4 2 23 1 334 12 1 51 6

 6 6 1 19 3 15 10 455 1 3 1

 7 0 2 8 7 5 5 2 411 6 35

 8 2 20 10 46 4 28 9 10 297 23

 9 3 2 10 11 54 7 2 52 17 361

Chapter 2

[31]

Overall Statistics

 Accuracy : 0.811

 95% CI : (0.7999, 0.8218)

 No Information Rate : 0.1116

 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.7899

 Mcnemar's Test P-Value : NA

Statistics by Class:

 Class: 0 Class: 1 Class: 2 Class: 3 Class: 4

Sensitivity 0.9332 0.9337 0.8606 0.7333 0.8260

Specificity 0.9871 0.9935 0.9704 0.9721 0.9872

Pos Pred Value 0.8882 0.9473 0.7804 0.7364 0.8717

Neg Pred Value 0.9926 0.9917 0.9827 0.9717 0.9818

Prevalence 0.0988 0.1116 0.1090 0.0960 0.0954

Detection Rate 0.0922 0.1042 0.0938 0.0704 0.0788

Detection Prevalence 0.1038 0.1100 0.1202 0.0956 0.0904

Balanced Accuracy 0.9602 0.9636 0.9155 0.8527 0.9066

 Class: 5 Class: 6 Class: 7 Class: 8 Class: 9

Sensitivity 0.7122 0.8818 0.8123 0.6226 0.7552

Specificity 0.9773 0.9868 0.9844 0.9664 0.9651

Pos Pred Value 0.7643 0.8852 0.8545 0.6615 0.6956

Neg Pred Value 0.9704 0.9864 0.9790 0.9604 0.9739

Prevalence 0.0938 0.1032 0.1012 0.0954 0.0956

Detection Rate 0.0668 0.0910 0.0822 0.0594 0.0722

Detection Prevalence 0.0874 0.1028 0.0962 0.0898 0.1038

Balanced Accuracy 0.8447 0.9343 0.8983 0.7945 0.8601

Using 40 hidden neurons has improved performance dramatically again, up to 81.1%
overall. Model performance for 3s, 5s, 8s, and 9s is still not great, but the remaining
digits are quite good. If this were a real research or business problem, we might
continue trying additional neurons, tuning the decay rate, or modifying features in
order to try to boost model performance further, but for now we will move on.

Training a Prediction Model

[32]

Next, we will take a look at how to train neural networks using the RSNNS package.
This package provides an interface to quite a variety of possible models using the
Stuttgart Neural Network Simulator (SNNS) code; however, for a basic, single-
hidden-layer, feed-forward neural network, we can use the mlp() convenience
wrapper function, which stands for multi-layer perceptron. The RSNNS package is
a bit more finicky to use than the convenience of nnet via the caret package, but one
benefit is that it can be far more flexible and allows for many other types of neural
network architectures to be trained, including recurrent neural networks, and also
has a greater variety of learning functions.

One difference between the nnet and RSNNS package is that for multi-class
outcomes (such as digits), RSNNS requires a dummy coded matrix, so each
possible class is represented as a column coded as 0/1. This is facilitated using the
decodeClassLabels() function, and a bit of the output is shown next:

head(decodeClassLabels(digits.y))

 0 1 2 3 4 5 6 7 8 9

[1,] 0 1 0 0 0 0 0 0 0 0

[2,] 1 0 0 0 0 0 0 0 0 0

[3,] 0 1 0 0 0 0 0 0 0 0

[4,] 0 0 0 0 1 0 0 0 0 0

[5,] 1 0 0 0 0 0 0 0 0 0

[6,] 1 0 0 0 0 0 0 0 0 0

Since we had reasonably good success with 40 hidden neurons, we will use the
same size here. Rather than standard propagation as the learning function, we will
use resilient propagation, based on the classic work of Riedmiller, M., and Braun, H.
(1993). Note also that, because a matrix of outcomes is passed, although the predicted
probability will not exceed 1 for any single digit, the sum of predicted probabilities
across all digits may exceed 1 and also may be less than 1 (that is, for some cases, the
model may not predict they are very likely to represent any of the digits). As before,
we can get in-sample predictions, but here we have to use another function, fitted.
values(). Because this again returns a matrix where each column represents a single
digit, we use the encodeClassLabels() function to convert back into a single vector
of digit labels to plot (Figure 2.5) and evaluate model performance:

set.seed(1234)

digits.m4 <- mlp(as.matrix(digits.X),

 decodeClassLabels(digits.y),

 size = 40,

Chapter 2

[33]

 learnFunc = "Rprop",

 shufflePatterns = FALSE,

 maxit = 60)

digits.yhat4 <- fitted.values(digits.m4)

digits.yhat4 <- encodeClassLabels(digits.yhat4)

barplot(table(digits.yhat4))

Figure 2.5

Once we have the predicted probabilities, evaluating model performance is virtually
the same as when using the nnet and caret packages. The only catch is that, when
the output is encoded back into a single vector, by default the digits are labeled 1 to
k, where k is the number of classes. Because the digits are 0 to 9, to make them match
the original digit vector, we subtract 1. Next we can see that, using the learning
algorithms from the RSNNS package, we obtained a somewhat higher performance
with the same number of hidden neurons. Next we turn to generating predictions for
out-of-sample data:

caret::confusionMatrix(xtabs(~ I(digits.yhat4 - 1) + digits.y))

Confusion Matrix and Statistics

 digits.y

I(digits.yhat4 - 1) 0 1 2 3 4 5 6 7 8 9

 0 451 0 0 1 0 2 3 2 1 1

Training a Prediction Model

[34]

 1 0 534 4 2 3 1 0 7 11 2

 2 6 3 496 17 3 4 2 4 20 1

 3 9 5 11 406 3 21 0 2 13 10

 4 2 1 6 0 415 7 4 4 9 24

 5 12 2 0 14 3 376 8 4 23 13

 6 4 4 2 2 3 12 493 2 9 1

 7 3 0 10 7 4 1 1 460 1 37

 8 5 9 14 28 12 31 5 8 375 13

 9 2 0 2 3 31 14 0 13 15 376

Overall Statistics

 Accuracy : 0.8764

 95% CI : (0.867, 0.8854)

 No Information Rate : 0.1116

 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.8626

 Mcnemar's Test P-Value : NA

Statistics by Class:

 Class: 0 Class: 1 Class: 2 Class: 3 Class: 4

Sensitivity 0.9130 0.9570 0.9101 0.8458 0.8700

Specificity 0.9978 0.9932 0.9865 0.9836 0.9874

Pos Pred Value 0.9783 0.9468 0.8921 0.8458 0.8792

Neg Pred Value 0.9905 0.9946 0.9890 0.9836 0.9863

Prevalence 0.0988 0.1116 0.1090 0.0960 0.0954

Detection Rate 0.0902 0.1068 0.0992 0.0812 0.0830

Detection Prevalence 0.0922 0.1128 0.1112 0.0960 0.0944

Balanced Accuracy 0.9554 0.9751 0.9483 0.9147 0.9287

 Class: 5 Class: 6 Class: 7 Class: 8 Class: 9

Sensitivity 0.8017 0.9554 0.9091 0.7862 0.7866

Specificity 0.9826 0.9913 0.9858 0.9724 0.9823

Pos Pred Value 0.8264 0.9267 0.8779 0.7500 0.8246

Neg Pred Value 0.9795 0.9949 0.9897 0.9773 0.9776

Chapter 2

[35]

Prevalence 0.0938 0.1032 0.1012 0.0954 0.0956

Detection Rate 0.0752 0.0986 0.0920 0.0750 0.0752

Detection Prevalence 0.0910 0.1064 0.1048 0.1000 0.0912

Balanced Accuracy 0.8921 0.9734 0.9474 0.8793 0.8845

Generating predictions from a neural network
Up until now, we have only generated in-sample predictions on the same data used
to train the neural network, and we have accepted all the defaults for obtaining the
classifications. However, there are actually several options, even once the model is
trained. For any given observation, there can be a probability of membership in any
of a number of classes (for example, an observation may have a 40% chance of being
a "5", a 20% chance of being a "6", and so on). For evaluating the performance of the
model, some choices have to be made about how to go from the probability of class
membership to a discrete classification. In this section, we will explore a few of these
options in more detail, and also take a look at generating predictions on data not
used for training.

So long as there are no perfect ties, the simplest method may be to classify
observations based on the high predicted probability. Another approach, which the
RSNNS package calls the winner takes all (WTA) method, is to choose the class with
the highest probability so long as there are no ties, the highest probability is above
a user-defined threshold (the threshold could be zero), and the remaining classes
all have a predicted probability under the maximum minus another user-defined
threshold. Otherwise, observations are classified as unknown. If both thresholds are
zero (the default), this equates to saying that there must be one unique maximum.
The advantage of such an approach is that it provides some quality control. In the
digit classification example we have been exploring, there are 10 possible classes.
Suppose nine of the digits had a predicted probability of 0.099, and the remaining
class had a predicted probability of 0.109. Although one class is technically more
likely than the others, the difference is fairly trivial and we may conclude that the
model cannot with any certainty classify that observation. A final method, called
402040, classifies if only one value is above a user-defined threshold, and all other
values are below another user-defined threshold; if multiple values are above
the first threshold, or any value is not below the second threshold, it treats the
observation as unknown. Again, the goal here is to provide some quality control. It
may seem like this is unnecessary because uncertainty in predictions should come
out in the model performance. However, it can be helpful to know if your model was
highly certain in its prediction and right or wrong, or uncertain and right or wrong.

www.allitebooks.com

http://www.allitebooks.org

Training a Prediction Model

[36]

Finally, in some cases not all classes are equally important. For example, in a medical
context where a variety of biomarkers and genes are collected on patients and
used to classify whether they are healthy or not, at risk of cancer, or at risk of heart
disease, even a 40% chance of having cancer may be enough to warrant further
investigation, even if they have a 60% chance of being healthy. This has to do with
the performance measures we saw earlier where, beyond overall accuracy, we can
assess aspects such as sensitivity, specificity, and positive and negative predictive
values. There are cases where overall accuracy is less important than making sure
no one is missed.

The following code shows the raw probabilities for the in-sample data, and the
impact these different choices have on the predicted values:

digits.yhat4.insample <- fitted.values(digits.m4)

head(round(digits.yhat4.insample, 2))

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0.00 0.89 0.00 0.01 0.00 0.00 0.00 0.00 0.21 0

[2,] 0.99 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0

[3,] 0.00 1.00 0.09 0.00 0.00 0.00 0.00 0.05 0.00 0

[4,] 0.00 0.00 0.00 0.00 0.22 0.00 0.02 0.05 0.00 0

[5,] 1.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0

[6,] 0.99 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0

table(encodeClassLabels(digits.yhat4.insample,

 method = "WTA", l = 0, h = 0))

 1 2 3 4 5 6 7 8 9 10

461 564 556 480 472 455 532 524 500 456

table(encodeClassLabels(digits.yhat4.insample,

 method = "WTA", l = 0, h = .5))

 0 1 2 3 4 5 6 7 8 9 10

569 448 544 497 400 429 366 499 463 379 406

table(encodeClassLabels(digits.yhat4.insample,

Chapter 2

[37]

 method = "WTA", l = .2, h = .5))

 0 1 2 3 4 5 6 7 8 9 10

658 443 542 490 393 408 358 493 460 364 391

table(encodeClassLabels(digits.yhat4.insample,

 method = "402040", l = .4, h = .6))

 0 1 2 3 4 5 6 7 8 9 10

907 431 526 472 363 383 326 475 448 301 368

We can easily generate predicted values for new data using the predict() function.
For this, we will use the next 5,000 observations. Note that even generating these
predictions took a couple of minutes on a new desktop:

i2 <- 5001:10000

digits.yhat4.pred <- predict(digits.m4,

 as.matrix(digits.train[i2, -1]))

table(encodeClassLabels(digits.yhat4.pred,

 method = "WTA", l = 0, h = 0))

 1 2 3 4 5 6 7 8 9 10

449 570 531 518 476 442 522 533 468 491

Having generated predictions on out-of-sample data (that is, data that was not used
to train the model), we can now proceed to examine problems related to overfitting
the data and the impact on the evaluation of model performance.

The problem of overfitting data – the
consequences explained
A common issue in machine learning is the problem of overfitting data. Generally,
overfitting is used to refer to the phenomenon where, in the data used to train the
model, the model performs better than it does on data not used to train the model
(holdout data, future real use, and so on). Overfitting occurs when a model fits what is
essentially noise in the training data. It appears to become more accurate as it accounts
for the noise, but because the noise changes from one dataset to the next, this accuracy
does not apply to any data but the training data—it does not generalize.

Training a Prediction Model

[38]

Overfitting can occur at any time but tends to become more severe as the ratio of
parameters to information increases. Usually, this is can be thought of as the ratio of
parameters to observations, but not always (for example, suppose the outcome is a
rare event that occurs in 1 in 5 million people, a sample size of 15 million may still
only have 3 people experiencing the event and would not support a complex model
at all—information is low even though the sample size is large). To consider a simple
but extreme case, imagine fitting a straight line to two data points. The fit will be
perfect, and in those two training data your linear regression model will appear to
have fully accounted for all variations in the data. However, if we then applied that
line to another 1,000 cases, we might not expect it to fit very well at all.

In the previous section, we generated out-of-sample predictions for the RSNNS
model we trained. We know that, in-sample, the accuracy was 87.6%. How good
is that estimate? We can examine how well the model generalizes by checking the
accuracy on the out-of-sample predictions using code that is by now quite familiar.
Next we can see that it is still doing fairly well, but the accuracy is reduced to 83.6%
on the holdout data. Here there appears to have been approximately a 4% loss; or,
put differently, using training data to evaluate model performance resulted in an
overly optimistic estimate of the accuracy, and that overestimate was 4%:

caret::confusionMatrix(xtabs(~digits.train[i2, 1] +

 I(encodeClassLabels(digits.yhat4.pred) - 1)))

Confusion Matrix and Statistics

 I(encodeClassLabels(digits.yhat4.pred) - 1)

digits.train[i2, 1] 0 1 2 3 4 5 6 7 8 9

 0 429 0 13 16 4 9 8 4 9 5

 1 0 515 9 3 0 2 2 2 4 0

 2 4 7 427 17 2 3 12 10 12 6

 3 0 2 20 416 2 28 5 11 40 5

 4 0 6 6 8 392 7 13 2 19 37

 5 8 2 4 24 15 335 11 7 21 10

 6 2 1 8 1 1 9 460 0 3 2

 7 1 14 22 9 8 2 2 459 3 13

 8 4 23 19 11 16 27 8 5 348 12

 9 1 0 3 13 36 20 1 33 9 401

Chapter 2

[39]

Overall Statistics

 Accuracy : 0.836

 95% CI : (0.826, 0.847)

 No Information Rate : 0.114

 P-Value [Acc > NIR] : <2e-16

 Kappa : 0.818

 Mcnemar's Test P-Value : NA

Statistics by Class:

 Class: 0 Class: 1 Class: 2 Class: 3 Class: 4

Sensitivity 0.9555 0.904 0.8041 0.8031 0.8235

Specificity 0.9851 0.995 0.9837 0.9748 0.9783

Pos Pred Value 0.8632 0.959 0.8540 0.7864 0.8000

Neg Pred Value 0.9956 0.988 0.9769 0.9772 0.9814

Prevalence 0.0898 0.114 0.1062 0.1036 0.0952

Detection Rate 0.0858 0.103 0.0854 0.0832 0.0784

Detection Prevalence 0.0994 0.107 0.1000 0.1058 0.0980

Balanced Accuracy 0.9703 0.949 0.8939 0.8889 0.9009

 Class: 5 Class: 6 Class: 7 Class: 8 Class: 9

Sensitivity 0.7579 0.8812 0.8612 0.7436 0.8167

Specificity 0.9776 0.9940 0.9834 0.9724 0.9743

Pos Pred Value 0.7666 0.9446 0.8612 0.7357 0.7756

Neg Pred Value 0.9766 0.9863 0.9834 0.9735 0.9799

Prevalence 0.0884 0.1044 0.1066 0.0936 0.0982

Detection Rate 0.0670 0.0920 0.0918 0.0696 0.0802

Detection Prevalence 0.0874 0.0974 0.1066 0.0946 0.1034

Balanced Accuracy 0.8678 0.9376 0.9223 0.8580 0.8955

Training a Prediction Model

[40]

Since we fitted several models earlier of varying complexity, we could examine
the degree of overfitting or overly optimistic accuracy from in-sample versus out-
of-sample performance measures across them. The code is not shown as it is just
a repetition of what we have already done, but it is available in the code bundle
provided with the book. The results are shown in Figure 2.6:

Figure 2.6

Use case – build and apply a neural
network
To close out the chapter, we will discuss a more realistic use case for neural
networks. We will use a public dataset by Anguita, D., Ghio, A., Oneto, L., Parra, X.,
and Reyes-Ortiz, J. L. (2013) that uses smartphones to track physical activity. The data
can be downloaded here: http://archive.ics.uci.edu/ml/datasets/Human+Ac
tivity+Recognition+Using+Smartphones. The smartphones had an accelerometer
and gyroscope from which 561 features from both time and frequency were used.

http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones

Chapter 2

[41]

The smartphones were worn during walking, walking upstairs, walking downstairs,
standing, sitting, and lying down. Although this data came from phones, similar
measures could be derived from other devices designed to track activity such as
various fitness tracking watches or bands. So this data can be useful if we want to sell
devices and have them automatically track how many of these different activities the
wearer engages in.

This data has been normalized to range from -1 to +1; however, usually we might
want to perform some normalization. After downloading the data, the files can be
unzipped and we can then locate them in the working directory or modify the paths
in the following code to point to the correct location. We can read in the training and
testing data, as well as the labels, and to recap take a quick look at the distribution of
the outcome (Figure 2.7):

use.train.x <- read.table("UCI HAR Dataset/train/X_train.txt")

use.train.y <- read.table("UCI HAR Dataset/train/y_train.txt")[[1]]

use.test.x <- read.table("UCI HAR Dataset/test/X_test.txt")

use.test.y <- read.table("UCI HAR Dataset/test/y_test.txt")[[1]]

use.labels <- read.table("UCI HAR Dataset/activity_labels.txt")

barplot(table(use.train.y))

Figure 2.7

Training a Prediction Model

[42]

We are going to evaluate a variety of tuning parameters to show how we might
experiment with different approaches to try to get the best possible model. Because
the models can take some time to train and as currently shown only use a single
core, we can evaluate the models using different tuning parameters simultaneously
using parallel processing. First, we need to add some additional packages to our
checkpoint.R file and re-run that:

Chapter 2
library(parallel)
library(foreach)
library(doSNOW)

Now we can pick our tuning parameters and set up a local cluster as the backend for
the foreach R package for parallel for loops. Note that, if you do this on a machine
with fewer than five cores, you should change makeCluster(5) to a lower number:

choose tuning parameters

tuning <- list(

 size = c(40, 20, 20, 50, 50),

 maxit = c(60, 100, 100, 100, 100),

 shuffle = c(FALSE, FALSE, TRUE, FALSE, FALSE),

 params = list(FALSE, FALSE, FALSE, FALSE, c(0.1, 20, 3)))

setup cluster using 5 cores

load packages, export required data and variables

and register as a backend for use with the foreach package

cl <- makeCluster(5)

clusterEvalQ(cl, {

 library(RSNNS)

})

clusterExport(cl,

 c("tuning", "use.train.x", "use.train.y",

 "use.test.x", "use.test.y")

)

registerDoSNOW(cl)

Now we are ready to train all the models. The following code shows a parallel for
loop, using code that is similar to what we have already seen, but this time setting
some of the arguments based on the tuning parameters we previously stored in the list:

Chapter 2

[43]

use.models <- foreach(i = 1:5, .combine = 'c') %dopar% {

 if (tuning$params[[i]][1]) {

 set.seed(1234)

 list(Model = mlp(

 as.matrix(use.train.x),

 decodeClassLabels(use.train.y),

 size = tuning$size[[i]],

 learnFunc = "Rprop",

 shufflePatterns = tuning$shuffle[[i]],

 learnFuncParams = tuning$params[[i]],

 maxit = tuning$maxit[[i]]

))

 } else {

 set.seed(1234)

 list(Model = mlp(

 as.matrix(use.train.x),

 decodeClassLabels(use.train.y),

 size = tuning$size[[i]],

 learnFunc = "Rprop",

 shufflePatterns = tuning$shuffle[[i]],

 maxit = tuning$maxit[[i]]

))

 }

}

Because generating out-of-sample predictions can also take some time, we will do
that in parallel as well. However, first we need to export the model results to each of
the workers on our cluster, and then we can calculate the predictions:

clusterExport(cl, "use.models")

use.yhat <- foreach(i = 1:5, .combine = 'c') %dopar% {

 list(list(

 Insample = encodeClassLabels(fitted.values(use.models[[i]])),

 Outsample = encodeClassLabels(predict(use.models[[i]],

 newdata = as.matrix(use.
test.x)))

))

}

Training a Prediction Model

[44]

Finally, we can merge the actual and fitted or predicted values together into a
dataset, calculate performance measures on each one, and store the overall results
together for examination and comparison. We can repeat almost identical code as
follows to generate out-of-sample performance measures. That code is not shown
in the book, but is available in the code bundle provided with the book. Some
additional data management is required here as sometimes a model may not predict
each possible response level, but this can make for non-symmetrical frequency cross
tabs, unless we convert the variable to a factor and specify the levels. We also drop
0 values, which indicate the model was uncertain how to classify an observation:

use.insample <- cbind(Y = use.train.y,

 do.call(cbind.data.frame, lapply(use.yhat, `[[`, "Insample")))

colnames(use.insample) <- c("Y", paste0("Yhat", 1:5))

performance.insample <- do.call(rbind, lapply(1:5, function(i) {

 f <- substitute(~ Y + x, list(x = as.name(paste0("Yhat", i))))

 use.dat <- use.insample[use.insample[,paste0("Yhat", i)] != 0,]

 use.dat$Y <- factor(use.dat$Y, levels = 1:6)

 use.dat[, paste0("Yhat", i)] <- factor(use.dat[, paste0("Yhat", i)],
levels = 1:6)

 res <- caret::confusionMatrix(xtabs(f, data = use.dat))

 cbind(Size = tuning$size[[i]],

 Maxit = tuning$maxit[[i]],

 Shuffle = tuning$shuffle[[i]],

 as.data.frame(t(res$overall[c("AccuracyNull", "Accuracy",
"AccuracyLower", "AccuracyUpper")])))

}))

If we print the in-sample and out-of-sample performance, we can see how each of
our models did and the effect of varying some of the tuning parameters. The output
is shown in the following code. The fourth column (null accuracy) is dropped as
it is not as important for this comparison. Note that the code for the out-of-sample
performance is not shown in this book but is left as an exercise for the reader (an
easy adaptation of the code for in-sample performance) and is provided in the code
bundle:

performance.insample[,-4]

 Size Maxit Shuffle Accuracy AccuracyLower AccuracyUpper

Chapter 2

[45]

1 40 60 FALSE 0.99 0.98 0.99

2 20 100 FALSE 0.99 0.99 0.99

3 20 100 TRUE 0.99 0.99 0.99

4 50 100 FALSE 0.99 0.99 1.00

5 50 100 FALSE 1.00 1.00 1.00

performance.outsample[,-4]

 Size Maxit Shuffle Accuracy AccuracyLower AccuracyUpper

1 40 60 FALSE 0.93 0.92 0.94

2 20 100 FALSE 0.92 0.91 0.93

3 20 100 TRUE 0.92 0.91 0.93

4 50 100 FALSE 0.91 0.90 0.92

5 50 100 FALSE 0.92 0.91 0.93

First of all, these results show that we are able to classify the types of activity people
are engaged in quite accurately based on the data from their smartphones. It also
seems from the in-sample data that the more complex models do better. However,
examining the out-of-sample performance measures, the reverse is actually true!
Thus, not only are the in-sample performance measures biased estimates of the
models' actual out-of-sample performance, they do not even provide the best way
to rank order model performance to choose the best performing model. We will
get into ways to combat this overfitting in the next chapter as we prepare to go
into deep neural networks where there are multiple hidden layers.

Despite the slightly worse out-of-sample performance, the models still do
well—far better than chance alone—and, for our example use case, we could
pick the best model (number 1) and be quite confident that using this will
provide a good classification of a user's activities.

Summary
This chapter showed how to get started building and training neural networks to
classify data including image recognition and physical activity data. One pitfall in
machine learning is that more complex models will be more likely to overfit the
training data, so that evaluating performance in the same data used to train the
model results in biased, overly optimistic estimates of the model performance.
Indeed, this can even make a difference as to which model is chosen as the best.
Overfitting is also an issue for deep neural networks, and in the next chapter we will
discuss various techniques used to prevent overfitting—termed regularization—and
obtain more accurate estimates of model performance.

[47]

Preventing Overfitting
In the previous chapter, we learned how to train a basic neural network. We also
saw the diminishing returns from further training iterations or a larger neural
network in terms of its predictive ability on holdout or validation data not used
to train the model. This highlights how, although a more complex model will
almost always fit the data it was trained on better, it may not actually predict new
data better. This chapter shows different approaches that can be used to prevent
models from overfitting the data to improve generalizability, called regularization
on unsupervised data. More specifically, whereas models are typically trained by
optimizing parameters in a way that reduces the training error, regularization is
concerned with reducing testing or validation errors so that the model performs well
with new data as well as training data.

The first part of the chapter provides a conceptual overview of a variety of
regularization strategies. The chapter closes with an example use case using
regularization to improve out-of-sample performance. It covers the following topics:

•	 L1 penalty
•	 L2 penalty
•	 Ensembles and model averaging
•	 Use case – improving out-of-sample model performance using dropout

Preventing Overfitting

[48]

L1 penalty
The basic concept of the L1 penalty, also known as the Least Absolute Shrinkage
and Selection Operator (lasso)—(Hastie, T., Tibshirani, R., and Friedman, J. (2009)),
is that a penalty is used to shrink weights towards zero. The penalty term uses the
sum of the absolute weights, so the degree of penalty is no smaller or larger for small
or large weights, with the result that small weights may get shrunken to zero, a
convenient effect as, in addition to preventing overfitting, it can be a sort of variable
selection. The strength of the penalty is controlled by a hyperparameter, λ, which
multiplies the sum of the absolute weights, and can be set a priori or, as with other
hyperparameters, optimized using cross validation or some similar approach.

Mathematically, it is easier to start with an Ordinary Least Squares (OLS) regression
model. In regression, a set of coefficients or model weights are estimated using the
least squared error criteria, where the weight/coefficient vector, B, is estimated
such that it minimizes: (Y – XB)T(Y – XB) where Y is the outcome or dependent
variable, X is a k + 1 column design matrix with k columns for the predictors and one
constant column for the intercept (also called an offset sometimes). The difference
between the observed outcome and the predicted values (the product of the design
matrix post multiplied by the weight vector) is a vector of the errors or residuals.
In this framework, one way to think about the L1 penalty is that it is a constrained
estimator, where the weight vector, B, is estimated subject to the constraint that the
sum of the absolute weights is less than or equal to some (user-chosen) threshold, λ.

Typically, the intercept or offset term is excluded from this constraint (for example,
by pre-centering all data and dropping the intercept or by selectively applying the
constraint). Another way of viewing the L1 penalty is to see it as a modification to
the function minimized, from (Y – XB)T(Y – XB) to (Y – XB)T(Y – XB) + λ||B||1,
where ||B||1 represents the sum of the absolute weights. If λ = 0, then the L1
penalty reduces to the regular OLS estimator. The user may choose λ, or more
commonly it is treated as a hyperparameter and optimized by evaluating a range of
possible λ values (for example, through cross validation). Although outside the scope
of this book, the L1 penalty may also be viewed through a Bayesian perspective, the
final posterior estimates are a function of the estimates from the data and the prior,
and the shrinkage that occurs from the penalty term is accomplished by setting a
prior with varying degrees of certainty. Technically, the parameters could be shrunk
towards any arbitrary value, but they are almost always shrunk towards zero.

Chapter 3

[49]

Even if the theory behind why and how the L1 penalty works is not so clear, there
are a number of practical implications that are straightforward. First, it may be
obvious that the effect of the penalty depends on the size of the weights, and the
size of the weights depends on the scale of the data. Therefore, data is typically
standardized to have unit variance first (or at least to make the variance of each
variable equal). The L1 penalty has a tendency to shrink small weights to zero (for
explanations as to why this happens, see Hastie, T., Tibshirani, R., and Friedman,
J. (2009)). If you only consider variables for which the L1 penalty leaves non zero
weights, it can essentially function as feature selection, a primary motivation of
another name commonly used for the L1 penalty, the Least Absolute Shrinkage and
Selection Operator, or lasso. Even outside the usage of strict feature selection, the
tendency for the L1 penalty to shrink small coefficients to zero can be convenient for
simplifying the interpretation of the model results.

When considering the L1 penalty as constrained optimization, it is easy to see how it
effectively limits the complexity of the model. Even if many predictors are included,
the sum of the absolute weights cannot exceed the defined threshold. One result of
this is that, using the L1 penalty, it is actually possible to include more predictors
than cases or observations, so long as there is a sufficiently strong penalty term; the
apparently (by number of weights) over-parameterized model becomes uniquely
estimable through the constraints.

With these basics on the L1 penalty, we will now briefly consider how the L1
penalty can apply to neural networks, the main use case we are concerned with in
this book. Let X represent our inputs, Y our outcome or dependent variable, and
B our parameters, and F, the objective function which will be optimized to obtain
B. Specifically: F(B; X, Y). In neural networks, parameters may be biases or offsets
(essentially intercepts from regression) and the weights. The L1 penalty modifies the
objective function to be: F(B; X, Y) + λ||w||1, where w represents only the weights
(that is, typically offsets are ignored). Considering the gradient, we can show that
the additional penalty term is λ * sign(w). This highlights the fact that the penalty is
constant regardless of the magnitude of the weight. This will be an important point
of distinction compared with the L2 penalty, which we will discuss next. Further, it
is part of the way in which the L1 penalty tends to result in a sparse solution (that is,
more zero weights) as small and larger weights result in equal penalties, so that at
each update of the gradient the weights are moved towards zero.

Preventing Overfitting

[50]

We have discussed λ as a constant, controlling the degree of penalty or regularization.
However, it is possible to set different values. Although not commonly done in a
single layer neural network (it is atypical to seek to differentially regularize specific
weights), it becomes more useful with deep neural networks, where varying degrees
of regularization can be applied to different layers. One reason for considering such
differential regularization is that it is sometimes desirable to allow a greater number of
parameters (say by including more neurons in a particular layer) but then counteract
this somewhat through stronger regularization. Despite this, as these hyperparameters
are typically optimized through cross validation or other empirical techniques,
it can be quite computationally demanding to allow them to vary for every layer
of a deep neural network, as the number of possible values grows exponentially;
so most commonly a single value is used across the entire model. After exploring
the L1 penalty practically in R, we move on to consider another common form of
regularization, the L2 penalty.

L1 penalty in action
To see how the L1 penalty works, we can use a simulated linear regression problem.
First, we will add the R package glmnet to the checkpoint.R file to load the relevant
library and use a reproducible version, as before:

library(glmnet)

Next we can simulate the data, using a purposefully pathologically correlated set of
predictors:

set.seed(1234)

X <- mvrnorm(n = 200, mu = c(0, 0, 0, 0, 0),

 Sigma = matrix(c(

 1, .9999, .99, .99, .10,

 .9999, 1, .99, .99, .10,

 .99, .99, 1, .99, .10,

 .99, .99, .99, 1, .10,

 .10, .10, .10, .10, 1

), ncol = 5))

y <- rnorm(200, 3 + X %*% matrix(c(1, 1, 1, 1, 0)), .5)

Chapter 3

[51]

Next, we can fit an OLS regression model to the first 100 cases, and then use the
lasso. To use the lasso, we use the glmnet() function from the glmnet package. This
function can actually fit the L1 or the L2 (discussed in the next section) penalties,
and which occurs is determined by the argument, alpha. When alpha = 1, it is
the L1 penalty (that is, the lasso), and when alpha = 0 it is the L2 penalty (that is,
ridge regression). Further, because we do not know the value of lambda we should
pick, we can evaluate a range of options and tune this hyperparameter automatically
using cross validation, accomplished by using the cv.glmnet() function:

m.ols <- lm(y[1:100] ~ X[1:100,])

m.lasso.cv <- cv.glmnet(X[1:100,], y[1:100], alpha = 1)

We can plot the lasso object to see the mean squared error for a variety of lambda
values:

plot(m.lasso.cv)

Figure 3.1

One thing that we can see from the graph is that, when the penalty gets too high,
the cross-validated model error increases. Indeed, the lasso seems to do well
with very low lambda values, perhaps indicating the lasso does not help improve
out-of-sample performance/generalizability much. For the sake of this example,
we will continue but in actual use this might give us pause to consider whether the
lasso was really helping.

Preventing Overfitting

[52]

Finally, we can compare the OLS coefficients with those from the lasso:

cbind(

 OLS = coef(m.ols),

 Lasso = coef(m.lasso.cv)[,1])

 OLS Lasso

(Intercept) 2.958 2.99

X[1:100,]1 -0.082 1.41

X[1:100,]2 2.239 0.71

X[1:100,]3 0.602 0.51

X[1:100,]4 1.235 1.17

X[1:100,]5 -0.041 0.00

Notice that the OLS coefficients are noisier and also that, in the lasso, predictor 5 is
penalized to 0. Recall from the simulated data that the true coefficients are 3, 1, 1, 1, 1,
and 0. The OLS estimates have much too low a value for the first predictor and much
too high a value for the second, whereas the lasso has more accurate values
for each.

L2 penalty
The L2 penalty, also known as ridge regression, is similar in many ways to the L1
penalty, but instead of adding a penalty based on the sum of the absolute weights,
the penalty is based on the squared weights. This has the effect of providing a varied
penalty, with larger (positive or negative) weights resulting in a greater penalty. In
the context of neural networks, this is sometimes referred to as weight decay. If you
examine the gradient of the regularized objective function, there is a penalty such
that, at every update, there is a multiplicative penalty to the weights. As for the L1
penalty, although they could be included, biases or offsets are usually excluded
from this.

From the perspective of a linear regression problem, the L2 penalty is a modification
to the objective function minimized, from (Y – XB)T(Y – XB) to (Y – XB)T(Y – XB) +
0.5λBTB. As with the L1 penalty, the L2 penalty can allow otherwise undetermined
problems to be solved, particularly when the covariance matrix of the predictors
is singular. The reason for this is that the effect of the L2 penalty is essentially to
increase the variance of each variable. In OLS, the normal equations for B in matrix
form are inv(XTX)XTy but solving the regularized OLS objective function shown
earlier, obtain, inv(XTX + λI)XTy, where I is the identity matrix.

Chapter 3

[53]

Since XTX is the variance-covariance matrix for the design matrix, adding λI will
have the effect of increasing the diagonal, but leaving the off diagonals unchanged.
That is, the variances are increased but covariances unchanged, resulting in
shrinking the correlations (standardized covariances) towards zero. A sufficiently
strong penalty will result in otherwise singular covariance matrices being uniquely
estimable, and can also help stabilize estimates when there are strongly correlated
predictors.

L2 penalty in action
To see how the L2 penalty works, we can use the same simulated linear regression
problem we used for the L1 penalty. To fit a ridge regression model, we use the
glmnet() function from the glmnet package. As mentioned previously, this function
can actually fit the L1 or the L2 penalties, and which occurs is determined by the
argument, alpha. When alpha = 1, it fits the lasso, and when alpha = 0, it fits
ridge regression. This time, we choose alpha = 0. Again, we evaluate a range of
lambda options and tune this hyperparameter automatically using cross validation,
accomplished by using the cv.glmnet() function:

m.ridge.cv <- cv.glmnet(X[1:100,], y[1:100], alpha = 0)

We plot the ridge regression object to see the error for a variety of lambda values:

plot(m.ridge.cv)

Figure 3.2

Preventing Overfitting

[54]

Although the shape is different from the lasso in that the error appears to asymptote
for higher lambda values, it is still clear that, when the penalty gets too high, the
cross-validated model error increases. As with the lasso, the ridge regression model
seems to do well with very low lambda values, perhaps indicating the L2 penalty
does not much help improve out-of-sample performance/generalizability.

Finally, we can compare the OLS coefficients with those from the lasso and the ridge
regression model:

cbind(

 OLS = coef(m.ols),

 Lasso = coef(m.lasso.cv)[,1],

 Ridge = coef(m.ridge.cv)[,1])

 OLS Lasso Ridge

(Intercept) 2.958 2.99 3.002

X[1:100,]1 -0.082 1.41 0.958

X[1:100,]2 2.239 0.71 0.964

X[1:100,]3 0.602 0.51 0.924

X[1:100,]4 1.235 1.17 0.949

X[1:100,]5 -0.041 0.00 0.011

Although ridge regression does not shrink the coefficient for the fifth predictor to
exactly zero, it is smaller than in the OLS, and the remaining parameters are all
slightly shrunken, but quite close to their true values of 3, 1, 1, 1, 1, and 0.

Weight decay (L2 penalty in neural networks)
Without knowing it, we have actually already seen regularization in action in
Chapter 2, Training a Prediction Model. The neural network we trained using the caret
and nnet package used a weight decay of 0.10. We can investigate the use of the
weight decay by varying it, and tuning it using cross-validation. First we load the
data as before. Then we create a local cluster to run the cross validation in parallel.
Note that, as before, rather than load the libraries directly, we need to source()
the checkpoint.R file so that each of the workers in our cluster is using the same R
package version:

same data as from previous chapter

digits.train <- read.csv("train.csv")

Chapter 3

[55]

convert to factor

digits.train$label <- factor(digits.train$label, levels = 0:9)

i <- 1:5000

digits.X <- digits.train[i, -1]

digits.y <- digits.train[i, 1]

try various weight decays and number of iterations

register backend so that different decays can be

estimated in parallel

cl <- makeCluster(4)

clusterEvalQ(cl, {

 source("checkpoint.R")

})

registerDoSNOW(cl)

Next we train a neural network on the digit classification, and vary the weight decay
penalty at 0 (no penalty) and 0.10. We also loop through two sets of the number of
iterations allowed: 100 or 150. Note that this code is computationally intensive and
depending on hardware may take some time to run:

set.seed(1234)

digits.decay.m1 <- lapply(c(100, 150), function(its) {

 train(digits.X, digits.y,

 method = "nnet",

 tuneGrid = expand.grid(

 .size = c(10),

 .decay = c(0, .1)),

 trControl = trainControl(method = "cv", number = 5, repeats =
1),

 MaxNWts = 10000,

 maxit = its)

})

Preventing Overfitting

[56]

Examining the results, we see that, when we limit to only 100 iterations, the non-
regularized model (Accuracy = 0.63) outperforms the regularized model (Accuracy
= 0.60) based on cross-validated results (although neither is doing well absolutely,
particularly on this data):

digits.decay.m1[[1]]

Neural Network

5000 samples

 784 predictor

 10 classes: '0', '1', '2', '3', '4', '5', '6', '7', '8', '9'

No pre-processing

Resampling: Cross-Validated (5 fold)

Summary of sample sizes: 4000, 3999, 4000, 4001, 4000

Resampling results across tuning parameters:

 decay Accuracy Kappa Accuracy SD Kappa SD

 0.0 0.63 0.59 0.052 0.058

 0.1 0.60 0.56 0.061 0.068

Tuning parameter 'size' was held constant at a value of 10

Accuracy was used to select the optimal model using the

 largest value.

The final values used for the model were size = 10 and decay = 0.

Next we can examine the model with 150 iterations and see whether the regularized
or non-regularized model performs better:

digits.decay.m1[[2]]

Neural Network

5000 samples

 784 predictor

 10 classes: '0', '1', '2', '3', '4', '5', '6', '7', '8', '9'

Chapter 3

[57]

No pre-processing

Resampling: Cross-Validated (5 fold)

Summary of sample sizes: 4002, 4000, 4000, 3999, 3999

Resampling results across tuning parameters:

 decay Accuracy Kappa Accuracy SD Kappa SD

 0.0 0.65 0.61 0.049 0.055

 0.1 0.66 0.62 0.071 0.078

Tuning parameter 'size' was held constant at a value of 10

Accuracy was used to select the optimal model using the

 largest value.

The final values used for the model were size = 10 and decay = 0.1.

Overall, the model with more iterations outperforms the model with fewer iterations,
regardless of the regularization. However, comparing both models with 150
iterations, the regularized model is superior (Accuracy = 0.66) to the non-regularized
model (Accuracy = 0.65), although here the difference is relatively small.

These results highlight the point that regularization is often most helpful with more
complex models that have greater flexibility to fit (and overfit) the data, and that
(in models that are appropriate or overly simplistic for the data) regularization may
actually decrease performance. In the next section, we will discuss ensemble and
model averaging techniques, the last forms of regularization we will highlight in this
book.

Ensembles and model averaging
Another approach to regularization involves creating ensembles of models and
combining them, such as by model averaging or some other algorithm for combining
individual model results. As with many of the previous regularization methods,
model averaging is a fairly simple concept. If you have different models that each
generate a set of predictions, each model may make errors in its predictions, but
they might not all make the same errors. Where one model predicts too high a value,
another may predict one that's too low, so that, if averaged, some of the errors
cancel out resulting in a more accurate prediction than would have been otherwise
obtained.

Preventing Overfitting

[58]

To better understand model averaging, let's consider a couple of different but
extreme examples. In the first case, suppose that the models being averaged are
identical or at least generate identical predictions (that is, perfectly correlated).
In that case, the average will result in no benefit, but also no harm. In the second
case, suppose that the models being averaged each independently perform equally
well, and their predictions are uncorrelated (or have very low correlations). Then
the average will be far more accurate as it gains the strengths of each model. The
following code gives an example using simulated data. In this small example, we
only have three models, but they illustrate the point:

simulated data

set.seed(1234)

d <- data.frame(

 x = rnorm(400))

d$y <- with(d, rnorm(400, 2 + ifelse(x < 0, x + x^2, x + x^2.5), 1))

d.train <- d[1:200,]

d.test <- d[201:400,]

three different models

m1 <- lm(y ~ x, data = d.train)

m2 <- lm(y ~ I(x^2), data = d.train)

m3 <- lm(y ~ pmax(x, 0) + pmin(x, 0), data = d.train)

In sample R2

cbind(

 M1 = summary(m1)$r.squared,

 M2 = summary(m2)$r.squared,

 M3 = summary(m3)$r.squared)

 M1 M2 M3

[1,] 0.33 0.60 0.76

We can see that the predictive value of each model, at least in the training data,
varies quite a bit. Evaluating the correlations among fitted values in the training data
can also help to indicate how much overlap there is among the model predictions:

correlations in the training data

cor(cbind(

Chapter 3

[59]

 M1 = fitted(m1),

 M2 = fitted(m2),

 M3 = fitted(m3)))

 M1 M2 M3

M1 1.00 0.11 0.65

M2 0.11 1.00 0.78

M3 0.65 0.78 1.00

Next we generate predicted values for the testing data, the average of the predicted
values, and again correlate the predictions along with reality in the testing data:

generate predictions and the average prediction

d.test$yhat1 <- predict(m1, newdata = d.test)

d.test$yhat2 <- predict(m2, newdata = d.test)

d.test$yhat3 <- predict(m3, newdata = d.test)

d.test$yhatavg <- rowMeans(d.test[, paste0("yhat", 1:3)])

correlation in the testing data

cor(d.test)

 x y yhat1 yhat2 yhat3 yhatavg

x 1.000 0.44 1.000 -0.098 0.60 0.55

y 0.442 1.00 0.442 0.753 0.87 0.91

yhat1 1.000 0.44 1.000 -0.098 0.60 0.55

yhat2 -0.098 0.75 -0.098 1.000 0.69 0.76

yhat3 0.596 0.87 0.596 0.687 1.00 0.98

yhatavg 0.552 0.91 0.552 0.765 0.98 1.00

From the results we can see that indeed the average of the three models' predictions
performs better than any of the models individually. However, this is only
guaranteed to be true when each model performs similarly well. For example,
consider a pathological case where one model predicts the outcome perfectly and
another is random noise that is completely uncorrelated with the outcome. In this
case, averaging the two would certainly result in worse performance than just using
the good model. In general, it is good to check that the models being averaged have
similar performance, at least in the training data. The second lesson is that, given
models with similar performance, it is desirable to have lower correlations between
model predictions, as this will result in the best performing average.

Preventing Overfitting

[60]

Ensemble methods are methods that employ model averaging. One common
technique is known as bootstrap aggregating, where the data is sampled with
replacement to form equally sized datasets, a model is trained on each, and then
these results are averaged. Because the data is sampled with replacement, some cases
may show up multiple times or not at all in each dataset. Because a model is trained
on each dataset, if a particular variation is unique to just a few cases or a rare quirk
of the data, it may only emerge in one model; when the predictions are averaged
across many models trained on each of the resampled datasets, such overfitting will
tend to be reduced. This process is known as bagging (bootstrap aggregating). In
some contexts (for example, decision trees), further steps may be taken to attempt
to reduce the correlations among the different models. For example, random forests
are decision trees that use bootstrap aggregating but also randomly select a subset of
features at each node split in order to try to reduce model to model correlations and
thus improve the overall average performance.

Bagging and model averaging is not used as frequently in deep neural networks
because the computational cost of training each model can be quite high and thus
repeating the process many times becomes prohibitively expensive in terms of
time and compute resources. However, the dropout process discussed in the next
section serves a very similar function to the way many subset models are trained,
by dropping specific neurons, and then the results of these models are averaged.
Nevertheless, it is still possible to use model averaging in the context of deep neural
networks, even if perhaps it is on only a handful of models rather than hundreds, as
is common in random forests and some other approaches.

Use case – improving out-of-sample
model performance using dropout
Dropout is a relatively novel approach to regularization that is particularly valuable
for large and complex deep neural networks. For a much more detailed exploration
of dropout in deep neural networks, see Srivastava, N., Hinton, G., Krizhevsky, A.,
Sutskever, I., and Salakhutdinov, R. (2014). The concept behind dropout is actually
quite straightforward. During the training of the model, units (for example, inputs,
hidden neurons, and so on) are probabilistically dropped along with all connections
to and from them. For example, Figure 3.3 is an example of what might happen at
each step of training for a model where hidden neurons and their connections are
probabilistically dropped with a probability of 1/3. The grayed out and dashed
neurons and connections are the ones that were dropped. Importantly, it is not that
some neurons are dropped during the entirety of training, but that they are only
dropped for a step/update:

Chapter 3

[61]

Figure 3.3

One way to think about dropout is that it forces models to be more robust to
perturbations. Although many neurons are included in the full model, during
training they are not all simultaneously present, and so neurons must operate
somewhat more independently than they would have to otherwise. It is also worth
noting that inputs can be dropped as well as hidden neurons, but typically this is
either not done or done to a much lesser extent.

Preventing Overfitting

[62]

Another way of viewing dropout is that, if you have a large model with N weights
between hidden neurons, but 50% are dropped during training, although all N weights
will be used during some stages of training, you have effectively halved the total
model complexity as the average number of weights will be halved. This reduces
model complexity, and hence may help to prevent overfitting of the data. Because
of this feature, if the proportion of dropout is p, Srivastava, N., Hinton, G., Krizhevsky,
A., Sutskever, I., and Salakhutdinov, R. (2014) recommend scaling up the target model
complexity by 1/p in order to end up with a roughly equally complex model.

Although neurons can be randomly dropped during training, during testing it
is computationally inconvenient to calculate many predictions based on models
dropping some neurons and then average the predictions from each model. Instead,
it has been suggested (and this seems to perform well) that we should use an
approximate average based on scaling the weights from a single neural network
based on each weight's probability of being included (that is, 1 – p, although this can
be done empirically rather than theoretically).

In addition to working well, this approximate weight re-scaling is a fairly trivial
calculation. Thus, the primary computational cost of dropout comes from the fact
that a model with more neurons and weights must be used because so many (a
commonly recommended value is around 50% for hidden neurons) are dropped
during each training update.

Although dropout is fairly computationally cheap, it can be slower as, because of the
dropout, a larger model may be required, and larger models typically are slower or
more computationally demanding to train. To counteract this, a higher learning rate
can be used so that fewer iterations are required. One potential downside of such an
approach is that, with fewer neurons and a faster learning rate, some weights may
become quite large. Fortunately, it is possible to use dropout along with other forms
of regularization, such as the L1 or L2 penalty. Taken together, the result is a larger
model that that can quickly (a faster learning rate) explore a broader parameter
space, but is regularized through dropout and a penalty to keep the weights in check.

To show the use of dropout in a neural network, we will return to the Modified
National Institute of Standards and Technology (MNIST) dataset (that we
downloaded in Chapter 2, Training a Prediction Model, from Kaggle) we worked with
previously. We will use the nn.train() function from the deepnet package, as it
allows for dropout. As in the previous chapter, we will run the four models in parallel
to reduce the time it takes. Specifically, we compare four models, two with and two
without dropout regularization and with either 40 or 80 hidden neurons. For dropout,
we specify the proportion to dropout separately for the hidden and visible units. Based
on the rule of thumb that about 50% of hidden units (and 80% of observed units)
should be kept, we specify the dropout proportions at .5 and .2, respectively:

Chapter 3

[63]

Fit Models

nn.models <- foreach(i = 1:4, .combine = 'c') %dopar% {

set.seed(1234)

 list(nn.train(

 x = as.matrix(digits.X),

 y = model.matrix(~ 0 + digits.y),

 hidden = c(40, 80, 40, 80)[i],

 activationfun = "tanh",

 learningrate = 0.8,

 momentum = 0.5,

 numepochs = 150,

 output = "softmax",

 hidden_dropout = c(0, 0, .5, .5)[i],

 visible_dropout = c(0, 0, .2, .2)[i]))

}

Next, we can loop through the models and obtain predicted values and get the
overall model performance:

nn.yhat <- lapply(nn.models, function(obj) {

 encodeClassLabels(nn.predict(obj, as.matrix(digits.X)))

})

perf.train <- do.call(cbind, lapply(nn.yhat, function(yhat) {

 caret::confusionMatrix(xtabs(~ I(yhat - 1) + digits.y))$overall

}))

colnames(perf.train) <- c("N40", "N80", "N40_Reg", "N80_Reg")

options(digits = 4)

perf.train

 N40 N80 N40_Reg N80_Reg

Accuracy 0.9050 0.9546 0.9212 0.9396

Kappa 0.8944 0.9495 0.9124 0.9329

AccuracyLower 0.8965 0.9485 0.9134 0.9326

Preventing Overfitting

[64]

AccuracyUpper 0.9130 0.9602 0.9285 0.9460

AccuracyNull 0.1116 0.1116 0.1116 0.1116

AccuracyPValue 0.0000 0.0000 0.0000 0.0000

McnemarPValue NaN NaN NaN NaN

When evaluating the models in the in-sample training data, it seems that the
40-neuron model performs better with regularization than without it, but that the
80-neuron model performs better without regularization than with regularization. Of
course the real test comes on the testing or hold out data:

i2 <- 5001:10000

test.X <- digits.train[i2, -1]

test.y <- digits.train[i2, 1]

nn.yhat.test <- lapply(nn.models, function(obj) {

 encodeClassLabels(nn.predict(obj, as.matrix(test.X)))

})

perf.test <- do.call(cbind, lapply(nn.yhat.test, function(yhat) {

 caret::confusionMatrix(xtabs(~ I(yhat - 1) + test.y))$overall

}))

colnames(perf.test) <- c("N40", "N80", "N40_Reg", "N80_Reg")

perf.test

 N40 N80 N40_Reg N80_Reg

Accuracy 0.8652 0.8684 0.8868 0.9014

Kappa 0.8502 0.8537 0.8742 0.8904

AccuracyLower 0.8554 0.8587 0.8777 0.8928

AccuracyUpper 0.8746 0.8777 0.8955 0.9095

AccuracyNull 0.1074 0.1074 0.1074 0.1074

AccuracyPValue 0.0000 0.0000 0.0000 0.0000

McnemarPValue NaN NaN NaN NaN

Chapter 3

[65]

The testing data highlights quite well the fact that, in the non-regularized model,
the additional neurons do not meaningfully improve the performance of the model
on the testing data. In addition, the in-sample performance was overly optimistic
(Accuracy = 0.9546 versus Accuracy = 0.8684 for the 80-neuron, non-regularized
model in training and testing data, respectively). However, here we see the
advantage of the regularized models for both the 40- and the 80-neuron models.
Although both still perform worse in the testing data than they did in the training
data, they perform better than the equivalent non-regularized models in the testing
data. This difference is particularly important for the 80-neuron model as there is a
0.0862 drop in overall accuracy from training to testing data, but in the regularized
model the drop is only 0.0382, resulting in the regularized 80-neuron model having
the best overall performance.

Although these numbers are by no means record-setting, they do show the value of
using dropout, or regularization more generally, and how one might go about trying to
tune the model and dropout parameters to improve the ultimate testing performance.

Summary
This chapter showed several approaches to preventing overfitting including common
penalties, the L1 penalty and L2 penalty, ensembles of simpler models, and dropout
where variables and/or cases are dropped to make the model noisy and prevent
overfitting. We examined the role of penalties in regression problems and for neural
networks. In the next chapter, we will move into deep learning and deep neural
networks and see how to push the accuracy and performance of our predictive
models even further.

[67]

Identifying Anomalous Data
In this chapter we will delve into deep neural networks and deep learning models.
This chapter will focus on auto-encoder models, which can be used to learn the
features of a dataset. The first part of the chapter introduces unsupervised learning
where there is no specific outcome to be predicted. The next section provides a
conceptual overview of auto-encoder models in a machine learning and deep neural
network context in particular. The main core of the chapter will show how to build
and apply an auto-encoder model to identify anomalous data. Such atypical data
may simply be bad data or outliers, but these techniques are also used for fraud
detection; for example, when an individual's credit card spending pattern differs
from their usual behavior, it may be a red flag that something is wrong. Finally,
the chapter closes with some exploration of how to fine-tune the models, including
the use of different regularization strategies discussed in the previous chapter. In
addition to being useful in its own right, this chapter will provide important building
blocks for using and training deep learning models.

This chapter will cover the following topics:

•	 What is unsupervised learning?
•	 How do auto-encoders work?
•	 Training an auto-encoder in R
•	 Use case – building and applying an auto-encoder model
•	 Fine-tuning auto-encoder models

Identifying Anomalous Data

[68]

Getting started with unsupervised
learning
So far we have focused on models and techniques that broadly fall under the
category of supervised learning. Supervised learning is supervised in the sense
that the task is for the machine to learn the relationship between a set of variables
or features and one or more outcomes. Often, there is only a single outcome. For
example, a company may wish to predict whether someone is likely to become a
customer, in which case the outcome of whether an individual becomes a customer
coded as yes/no. In this chapter, we will delve into methods of unsupervised
learning. In contrast with supervised learning, where there is an outcome variable(s)
or labeled data is used, unsupervised learning does not require any outcomes or
labeled data. Unsupervised learning uses only input features for learning. A common
example of unsupervised learning is cluster analysis, such as K-means clustering,
where the machine learns hidden or latent clusters in the data to minimize a criterion
(for example, the smallest variance within a cluster).

Another way to think about unsupervised learning is that the goal is to predict the
inputs. An example of this is shown in Figure 4.1. At first this is counter-intuitive
as it may seem relatively unhelpful to learn a sophisticated model whose only
purpose is to reproduce the inputs fed into it. However, there are a number of useful
features. One common use of unsupervised learning is dimension reduction. The
goal of dimension reduction is for a set of p variables to find a set of latent variables,
k, so that k < p, but with the k latent variables the p raw variables can be reasonably
reproduced. This is always a trade-off and balancing act, as typically the greater the
dimension reduction, the greater the simplicity, but at the cost of accuracy:

Figure 4.1

Chapter 4

[69]

Perhaps the most common example of dimension reduction is principal component
analysis. Principal component analysis uses an orthogonal transformation to go
from the raw data to the principal components. In addition to being uncorrelated,
the principal components are ordered from the component that explains the most
variance to that which explains the least. Although all principal components can be
used (in which case the dimensionality of the data is not reduced), only components
that explain a sufficiently large amount of variance (for example, based on high
eigenvalues) are included and components that account for relatively little variance
are dropped as noise or unnecessary.

A variety of other methods for unsupervised learning are covered in Chapter 14 of
Hastie, T., Tibshirani, R., and Friedman, J. (2009). The remainder of this chapter will
focus on unsupervised methods for deep learning, specifically on auto-encoders.

How do auto-encoders work?
Auto-encoders are neural networks and may be shallow or deep, as with other
neural networks we have discussed so far. What distinguishes auto-encoders from
other forms of neural network is that auto-encoders are trained to reproduce or
predict the inputs. Thus the hidden layers and neurons are not maps between an
input and some other outcome, but are self (auto)-encoding.

Unlike the more common cases of neural networks where the outcome is some
variable we are interested in predicting; given sufficient complexity, auto-encoders
can simply learn the identity function and the hidden neurons will exactly mirror the
raw data, resulting in no meaningful benefit. Because the outcome used for training is
the same as the inputs, the best auto-encoder is not necessarily the most accurate one,
but one that reveals some meaningful structure or architecture in the data or one that
reduces noise, identifies outliers or anomalous data, or some other useful side effect
that is not necessarily directly related to accurate predictions of the model inputs.

One way to use auto-encoders is to perform dimension reduction. Auto-encoders
with a lower dimensionality than the raw data are called undercomplete; by using
an undercomplete auto-encoder, one can force the auto-encoder to learn the most
salient or prominent features of the data. These new hidden features can then
be used for further analysis or work. For example, an important and common
application of auto-encoders is to pre-train deep neural networks or other supervised
learning models. In addition, it may be possible and of interest to directly interpret
the hidden features themselves; for example, they may provide insight into the key
characteristics or structures in the data.

Identifying Anomalous Data

[70]

Using an undercomplete model is effectively a way to regularize the model.
However, it is also possible to train overcomplete auto-encoders where the
hidden dimensionality is greater than the raw data, so long as some other form of
regularization is used. We will discuss different forms of regularization in more
depth in the next section.

As with regular neural networks, there are broadly two parts to auto-encoders. First,
an encoding function, f(∙), encodes the raw data, x, to the hidden neurons, H. Second,
a decoding function, g(∙), decodes H back to x.

Regularized auto-encoders
An undercomplete auto-encoder is, in a way, a form of regularized auto-encoder,
where the regularization occurs through using a shallower (or in some other way
lower) dimensional representation than the data. However, regularization can be
accomplished through other means as well.

Penalized auto-encoders
As we have seen in Chapter 3, Preventing Overfitting, one approach is to use penalties.
In general, our goal is to (as simply as possible) minimize the re-construction
error. If we have an objective function, F, traditionally, we may optimize F(y, f(x)),
where f(∙) encodes the raw data inputs to generate predicted or expected y values.
For auto-encoders, we have F(x, g(f(x))), so that the machine learns the weights
and functional form of f(∙) and g(∙) to minimize the discrepancy between x and the
reconstruction of x, namely g(f(x)). If we want to use an overcomplete auto-encoder,
we need to introduce some form of regularization to force the machine to learn a
representation that does not simply exactly mirror the input. For example, we might
add a function that penalizes based on complexity, so that, instead of optimizing F(x,
g(f(x))), we optimize F(x, g(f(x))) + P(f(x)), where the penalty function, P, depends
on the encoding or the raw inputs, f(∙). Such penalties differ somewhat from those
we have seen before, however, in that the penalty is designed to induce sparseness
not of the parameters but rather of the latent variables, H, which are the encoded
representations of the raw data. The goal is to learn a latent representation that
captures the essential features of the data.

Another type of penalty that can be used to provide regularization is one based on
the derivative. Whereas sparse auto-encoders have a penalty that induces sparseness
of the latent variables, penalizing the derivatives results in the model learning a form
of f(∙) that is relatively insensitive to minor perturbations of the raw input data, x, or
rather it forces a penalty on functions where the encoding varies greatly for changes
in x, preferring regions where the gradient is relatively flat.

Chapter 4

[71]

Denoising auto-encoders
Denoising auto-encoders remove noise or denoise data, and are a useful technique
for learning a latent representation of raw data (Vincent, P., Larochelle, H., Bengio, Y.,
and Manzagol, P. A. (2008, July); Bengio, Y., Courville, A., and Vincent, P. (2013)). We
said the general task of an auto-encoder was to optimize: F(x, g(f(x))). However, for a
denoising auto-encoder, the task is to recover x from a noisy or corrupted version of
x, denoted as . So the task becomes optimizing .

Although denoising auto-encoders are used to try to recover the true representation
from corrupted data or data with noise, this technique can also be used as a
regularization tool. As a method of regularization, rather than having noisy or
corrupted data and attempting to recover the truth, the raw data is purposefully
corrupted. This forces the auto-encoder to do more than merely learn the identity
function, as the raw inputs are no longer identical to the output (x). The process
is shown in Figure 4.2:

N |)(x x

error
X-Xhat Xhat

g(h)

F()

x h

x
x

Figure 4.2

The remaining choice is what the function, N(∙), which adds the noise or corrupts x,
should be. Two choices are to add noise through a stochastic process or for any given
training iteration to only include a subset of the raw x inputs. In the next section, we
will explore how to actually train auto-encoder models in R.

Training an auto-encoder in R
To train our first auto-encoder, we first need to get R set up. In addition to the other
packages in our checkpoint.R file, we will add the data.table package to facilitate
data management, as shown in the following code:

library(data.table)

Identifying Anomalous Data

[72]

Now we can source the checkpoint.R file to set up the R environment for analysis,
as follows:

source("checkpoint.R")
options(width = 70, digits = 2)

For these first examples, we will use the Modified National Institute of Standards
and Technology (MNIST) digits image data. The following code loads the necessary
data, as in previous chapters, and sets up the H2O cluster for analysis. We use the
first 20,000 rows of data for training and the next 10,000 rows for testing. In addition
to loading the data and setting up the H2O cluster, the data need to be transferred to
H2O, which is done using the as.h2o() function:

data and H2O setup

digits.train <- read.csv("train.csv")

digits.train$label <- factor(digits.train$label, levels = 0:9)

cl <- h2o.init(

 max_mem_size = "20G",

 nthreads = 10)

h2odigits <- as.h2o(

 digits.train,

 destination_frame = "h2odigits")

i <- 1:20000

h2odigits.train <- h2odigits[i, -1]

itest <- 20001:30000

h2odigits.test <- h2odigits[itest, -1]

xnames <- colnames(h2odigits.train)

Chapter 4

[73]

For analysis, we use the h2o.deeplearning() function, which has many options
and provides all the deep learning features available in H2O. Before we get into how
to write the code for the model, however, a brief comment on reproducibility is in
order. Often it is possible to set random seeds in order to make the results of running
code exactly replicable. H2O uses a parallelization approach known as Hogwild!,
that parallelizes stochastic gradient descent optimization, how the weights for the
model are optimized/determined (see Hogwild!: A Lock-Free Approach to Parallelizing
Stochastic Gradient Descent by Niu, F., Recht, B., Ré, C., and Wright, S. J. (2011) at
https://www.eecs.berkeley.edu/~brecht/papers/hogwildTR.pdf). Because of
the way that Hogwild! works, it is not possible to make the results exactly replicable.
Thus, when you run these codes, you may get slightly different results.

In the h2o.deeplearning() function call, the first argument is the list of x, or input,
variable names. The training frame is the H2O dataset used for model training. The
validation frame is only used to evaluate the performance of the model in data not
trained on. Next we specify the activation function to use here: "Tanh", which will be
discussed in further detail in the next chapter on deep learning prediction. By setting
the autoencoder = TRUE argument, the model is an auto-encoder model, rather
than a regular model, so that no y or outcome variable(s) need to be specified.

Although we are using a deep learning function, to start with we use a single
layer (shallow) of hidden neurons, with 50 hidden neurons. There are 20 training
iterations, called epochs. The remaining arguments just specify not to use any form of
regularization for this model. Regularization is not needed as there are hundreds of input
variables and only 50 hidden neurons, so the relative simplicity of the model provides all
the needed regularization. Finally, all the results are stored in an R object, m1:

m1 <- h2o.deeplearning(

 x = xnames,

 training_frame= h2odigits.train,

 validation_frame = h2odigits.test,

 activation = "Tanh",

 autoencoder = TRUE,

 hidden = c(50),

 epochs = 20,

 sparsity_beta = 0,

 input_dropout_ratio = 0,

 hidden_dropout_ratios = c(0),

 l1 = 0,

 l2 = 0

)

https://www.eecs.berkeley.edu/~brecht/papers/hogwildTR.pdf

Identifying Anomalous Data

[74]

The remaining models are similar to the first model, m1, but adjust the complexity of
the model by increasing the number of hidden neurons and adding regularization.
Specifically, model m2a has no regularization, but increases the number of hidden
neurons to 100. Model m2b uses 100 hidden neurons and also a sparsity beta of .5.
Finally, model m2c uses 100 hidden neurons and a 20% dropout of the inputs (the
x variables), which results in a form of corrupted inputs, so model m2c is a form of
denoising auto-encoder:

m2a <- h2o.deeplearning(

 x = xnames,

 training_frame= h2odigits.train,

 validation_frame = h2odigits.test,

 activation = "Tanh",

 autoencoder = TRUE,

 hidden = c(100),

 epochs = 20,

 sparsity_beta = 0,

 input_dropout_ratio = 0,

 hidden_dropout_ratios = c(0),

 l1 = 0,

 l2 = 0

)

m2b <- h2o.deeplearning(

 x = xnames,

 training_frame= h2odigits.train,

 validation_frame = h2odigits.test,

 activation = "Tanh",

 autoencoder = TRUE,

 hidden = c(100),

 epochs = 20,

 sparsity_beta = .5,

 input_dropout_ratio = 0,

 hidden_dropout_ratios = c(0),

 l1 = 0,

Chapter 4

[75]

 l2 = 0

)

m2c <- h2o.deeplearning(

 x = xnames,

 training_frame= h2odigits.train,

 validation_frame = h2odigits.test,

 activation = "Tanh",

 autoencoder = TRUE,

 hidden = c(100),

 epochs = 20,

 sparsity_beta = 0,

 input_dropout_ratio = .2,

 hidden_dropout_ratios = c(0),

 l1 = 0,

 l2 = 0

)

By typing the name of the stored model objects into R, we can get a summary of the
model and its performance. To save space, much of the output has been omitted, but
for each model the following output shows the performance as the mean squared
error (MSE) in the training and validation data. A zero MSE indicates a perfect fit
with higher values indicating deviations between g(f(x)) and x.

In model m1, the MSE is fairly low and identical in the training and validation data.
This may be in part due to how relatively simple the model is (50 hidden neurons
and 20 epochs, when there are hundreds of input variables). In model m2a, there is
about a 45% reduction in the MSE, although both are low. However, with the greater
model complexity, a slight difference between the training and validation metrics is
observed. Similar results are noted in model m2b. Despite the fact that the validation
metrics did not improve with regularization, the training metrics were closer to
the validation metrics, suggesting the performance of the regularized training data
generalizes better. In model m2c, the 20% input dropout without additional model
complexity results in poorer performance in both the training and validation data.
Our initial model with 100 hidden neurons is too simple still to really need much
regularization:

m1

Training Set Metrics:

Identifying Anomalous Data

[76]

=====================

MSE: (Extract with `h2o.mse`) 0.014

H2OAutoEncoderMetrics: deeplearning

** Reported on validation data. **

Validation Set Metrics:

=====================

MSE: (Extract with `h2o.mse`) 0.014

m2a

Training Set Metrics:

=====================

MSE: (Extract with `h2o.mse`) 0.0076

H2OAutoEncoderMetrics: deeplearning

** Reported on validation data. **

Validation Set Metrics:

=====================

MSE: (Extract with `h2o.mse`) 0.0079

m2b

Training Set Metrics:

=====================

MSE: (Extract with `h2o.mse`) 0.0077

H2OAutoEncoderMetrics: deeplearning

** Reported on validation data. **

Validation Set Metrics:

Chapter 4

[77]

=====================

MSE: (Extract with `h2o.mse`) 0.0079

m2c

Training Set Metrics:

=====================

MSE: (Extract with `h2o.mse`) 0.0095

H2OAutoEncoderMetrics: deeplearning

** Reported on validation data. **

Validation Set Metrics:

=====================

MSE: (Extract with `h2o.mse`) 0.0098

Another way we can look at the model results is to calculate how anomalous
each case is. This can be done using the h2o.anomaly() function. The results are
converted to data frames, labeled, and joined together in one final data table object
called error:

error1 <- as.data.frame(h2o.anomaly(m1, h2odigits.train))

error2a <- as.data.frame(h2o.anomaly(m2a, h2odigits.train))

error2b <- as.data.frame(h2o.anomaly(m2b, h2odigits.train))

error2c <- as.data.frame(h2o.anomaly(m2c, h2odigits.train))

error <- as.data.table(rbind(

 cbind.data.frame(Model = 1, error1),

 cbind.data.frame(Model = "2a", error2a),

 cbind.data.frame(Model = "2b", error2b),

 cbind.data.frame(Model = "2c", error2c)))

Identifying Anomalous Data

[78]

Next we will use the data.table package to create a new data object, percentile, that
contains the 99th percentile for each model:

percentile <- error[, .(

 Percentile = quantile(Reconstruction.MSE, probs = .99)

), by = Model]

Combining the information on how anomalous each case is and the 99th percentile,
both by model, we can use the ggplot2 package to plot the results. The histograms
show the error rates for each case and the dashed line is the 99th percentile. Any
value beyond the 99th percentile may be considered fairly extreme or anomalous:

p <- ggplot(error, aes(Reconstruction.MSE)) +

 geom_histogram(binwidth = .001, fill = "grey50") +

 geom_vline(aes(xintercept = Percentile), data = percentile, linetype =
2) +

 theme_bw() +

 facet_wrap(~Model)

print(p)

The results of this are shown in Figure 4.3. Models 2a and 2b have the lowest error
rates, and you can see the small tails:

Figure 4.3

Chapter 4

[79]

If we merge the data in wide form, with the anomaly values for each model in
separate columns rather than in one long column with another indicating the model,
we can plot the anomalous values against each other. The results are shown in Figure
4.4, and shows a high degree of correspondence between the models, with cases that
tend to be anomalous for one model being anomalous for others as well:

error.tmp <- cbind(error1, error2a, error2b, error2c)

colnames(error.tmp) <- c("M1", "M2a", "M2b", "M2c")

plot(error.tmp)

Figure 4.4

Identifying Anomalous Data

[80]

Another way we can examine the model results is to extract the deep features
from the model. Deep features (layer by layer) can be extracted using the h2o.
deepfeatures() function. The deep features are the values for the hidden neurons
in the model. One way to explore these features is to correlate them and examine
the distribution of correlations, again using the ggplot2 package, as shown in the
following code. The results are shown in Figure 4.5. In general, the deep features
have small correlations, r, with an absolute value < .20, with only very few having
|r| > .20.

features1 <- as.data.frame(h2o.deepfeatures(m1, h2odigits.train))

r.features1 <- cor(features1)

r.features1 <- data.frame(r = r.features1[upper.tri(r.features1)])

p.hist <- ggplot(r.features1, aes(r)) +

 geom_histogram(binwidth = .02) +

 theme_classic()

print(p.hist)

Figure 4.5

Chapter 4

[81]

The examples so far show how auto-encoders can be trained, but have only
represented shallow auto-encoders with a single hidden layer. We can also have
deep auto-encoders with multiple hidden layers.

Given that we know the MNIST dataset consists of 10 different handwritten
digits, perhaps we might try adding a second layer of hidden neurons with only
10 neurons, supposing that, when the model learns the features of the data, 10
prominent features may correspond to the 10 digits.

To add this second layer of hidden neurons, we pass a vector, c(100, 10), to the
hidden argument, and update the hidden_dropout_ratios argument as well,
because a different dropout ratio can be used for each hidden layer:

m3 <- h2o.deeplearning(

 x = xnames,

 training_frame= h2odigits.train,

 validation_frame = h2odigits.test,

 activation = "Tanh",

 autoencoder = TRUE,

 hidden = c(100, 10),

 epochs = 30,

 sparsity_beta = 0,

 input_dropout_ratio = 0,

 hidden_dropout_ratios = c(0, 0),

 l1 = 0,

 l2 = 0

)

As we saw previously, we can extract the values for the hidden neurons. Here we
again use the h2o.deepfeatures() function, but we specify that we want the values
for layer 2. The first six rows of these features are shown next:

features3 <- as.data.frame(h2o.deepfeatures(m3, h2odigits.train, 2))

head(features3)

 DF.L2.C1 DF.L2.C2 DF.L2.C3 DF.L2.C4 DF.L2.C5 DF.L2.C6 DF.L2.C7

1 -0.16 0.01 0.61 0.610 0.7468 0.11 -0.3927

2 -0.28 -0.77 -0.82 0.563 -0.4422 -0.66 0.6042

3 -0.48 -0.23 0.24 -0.141 0.3252 0.42 -0.0088

4 -0.30 -0.37 0.42 -0.313 0.1896 -0.27 0.1442

Identifying Anomalous Data

[82]

5 -0.36 -0.73 -0.84 0.733 -0.4807 -0.62 0.6828

6 -0.24 0.16 -0.10 -0.037 -0.0064 -0.20 0.4794

 DF.L2.C8 DF.L2.C9 DF.L2.C10

1 0.023 -0.39 0.385

2 0.321 -0.39 -0.079

3 0.589 0.59 0.538

4 -0.224 -0.31 0.557

5 0.347 -0.62 -0.098

6 -0.592 0.11 0.253

Because there are no outcomes being predicted, these values are continuous and are
not probabilities of there being a particular digit, but just values on 10 continuous
hidden neurons.

Next we can add in the actual digit labels from the training data, and use the melt()
function to reshape the data into a long dataset. From there, we can plot the means
on each of the 10 hidden layers by which digit a case actually belongs to. If the
10 hidden features roughly correspond to the 10 digit labels, for particular labels
(for example, 0, 3, etc.) they should have an extreme value on one deep feature,
indicating the correspondence between a deep feature and the actual digits. The
results are shown in Figure 4.6:

features3$label <- digits.train$label[i]

features3 <- melt(features3, id.vars = "label")

p.line <- ggplot(features3, aes(as.numeric(variable), value,

 colour = label, linetype = label)) +

 stat_summary(fun.y = mean, geom = "line") +

 scale_x_continuous("Deep Features", breaks = 1:10) +

 theme_classic() +

 theme(legend.position = "bottom", legend.key.width = unit(1, "cm"))

print(p.line)

Chapter 4

[83]

Figure 4.6

Although there does seem to be some correspondence (for example, zeros are
particularly high on deep features 4 and 7), in general the results are quite noisy
without particularly clear indication of a high degree of separation between deep
features and the actual digit labels.

Finally, we can take a look at the performance metrics for the model. With an MSE of
about 0.039, the model fits substantially worse than did the shallow model, probably
because having only 10 hidden neurons for the second layer is too simplistic to
capture all the different features of the data needed to reproduce the original inputs:

m3

Training Set Metrics:

Identifying Anomalous Data

[84]

=====================

MSE: (Extract with `h2o.mse`) 0.039

H2OAutoEncoderMetrics: deeplearning

** Reported on validation data. **

Validation Set Metrics:

=====================

MSE: (Extract with `h2o.mse`) 0.04

This section has shown the basics of training an auto-encoder model, the code, and
some ways of evaluating its performance. In the next section, we will examine a use
case: finding anomalous values using an auto-encoder.

Use case – building and applying an
auto-encoder model
For our use case, we are using the actigraphy data from smartphones we have
previously examined. These data include actimetry on a number of individuals while
sitting, standing, lying, walking, walking downstairs, and walking upstairs. Our goal
is to identify any anomalous values or values that are aberrant or otherwise unusual.

To start with, we will load the training and testing data into R and then convert it
over to H2O for analysis:

use.train.x <- read.table("UCI HAR Dataset/train/X_train.txt")

use.test.x <- read.table("UCI HAR Dataset/test/X_test.txt")

use.train.y <- read.table("UCI HAR Dataset/train/y_train.txt")[[1]]

use.test.y <- read.table("UCI HAR Dataset/test/y_test.txt")[[1]]

use.labels <- read.table("UCI HAR Dataset/activity_labels.txt")

h2oactivity.train <- as.h2o(

 use.train.x,

Chapter 4

[85]

 destination_frame = "h2oactivitytrain")

h2oactivity.test <- as.h2o(

 use.test.x,

 destination_frame = "h2oactivitytest")

With the data in, we are ready to train our model. The setup is fairly similar to the
initial models we trained. Here we use two layers with 100 hidden neurons each. For
the moment, there is no specific regularization used, although again, given that there
are significantly fewer hidden neurons than there are input variables, the model
simplicity may provide adequate regularization:

mu1 <- h2o.deeplearning(

 x = colnames(h2oactivity.train),

 training_frame= h2oactivity.train,

 validation_frame = h2oactivity.test,

 activation = "Tanh",

 autoencoder = TRUE,

 hidden = c(100, 100),

 epochs = 30,

 sparsity_beta = 0,

 input_dropout_ratio = 0,

 hidden_dropout_ratios = c(0, 0),

 l1 = 0,

 l2 = 0

)

Examining the performance of the model, it has a very low reconstruction error. This
suggests that the model is sufficiently complex to capture the key features of the
data. There is no substantial difference in model performance between the training
and validation data:

mu1

Training Set Metrics:

=====================

MSE: (Extract with `h2o.mse`) 0.001

H2OAutoEncoderMetrics: deeplearning

www.allitebooks.com

http://www.allitebooks.org

Identifying Anomalous Data

[86]

** Reported on validation data. **

Validation Set Metrics:

=====================

MSE: (Extract with `h2o.mse`) 0.0011

We can extract how anomalous each case is and plot the distribution. The results are
shown in Figure 4.7. Clearly, there are a few cases that are far more anomalous than
the rest, as shown by much higher error rates:

erroru1 <- as.data.frame(h2o.anomaly(mu1, h2oactivity.train))

pue1 <- ggplot(erroru1, aes(Reconstruction.MSE)) +

 geom_histogram(binwidth = .001, fill = "grey50") +

 geom_vline(xintercept = quantile(erroru1[[1]], probs = .99), linetype =
2) +

 theme_bw()

print(pue1)

Figure 4.7

Chapter 4

[87]

One way to try to explore these anomalous cases further is to examine whether
any of the activities tend to have more or less anomalous values. We can do this by
finding which cases are anomalous, here defined as the top 1% of error rates, and
then extracting the activities of those cases and plotting them. The results from this
are shown in Figure 4.8. The vast majority of anomalous cases come from walking
downstairs or lying down. With a high error in recreating the inputs, the deep
features may be a (relatively) poor representation of the input for those cases. In
practice if we were classifying based on these results, we might want to exclude
these cases as they do not seem to fit the features the model has learned:

i.anomolous <- erroru1$Reconstruction.MSE >= quantile(erroru1[[1]], probs
= .99)

pu.anomolous <- ggplot(as.data.frame(table(use.labels$V2[use.train.y[i.
anomolous]])),

 aes(Var1, Freq)) +

 geom_bar(stat = "identity") +

 xlab("") + ylab("Frequency") +

 theme_classic() +

 theme(axis.text.x = element_text(angle = 45, hjust = 1, vjust = 1))

print the ggplot2 plot object

print(pu.anomolous)

Figure 4.8

Identifying Anomalous Data

[88]

In this example, we used a deep auto-encoder model to learn the features of
actimetry data from smartphones. Such work can be useful for excluding unknown
or unusual activities, rather than incorrectly classifying them. For example, as part of
an app that classifies what activity you engaged in for how many minutes, it may be
better to simply leave out a few minutes where the model is uncertain or the hidden
features do not adequately reconstruct the inputs, rather than to aberrantly call an
activity walking or sitting when it was actually walking downstairs.

Such work can also help to identify where the model tends to have more issues.
Perhaps further sensors and additional data are needed to represent walking
downstairs or more could be done to understand why walking downstairs tends to
produce relatively high error rates.

These deep auto-encoders are also useful in other contexts where identifying
anomalies is important, such as with financial data or credit card usage patterns.
Anomalous spending patterns may indicate fraud or that a credit card has been
stolen. Rather than attempt to manually search through millions of credit card
transactions, one could train an auto-encoder model and use it to identify anomalies
for further investigation.

Fine-tuning auto-encoder models
In the previous sections of this chapter, we have learned how to train and use auto-
encoder models. This last section explores how to optimize and fine-tune an auto-
encoder model, examining issues such as how to pick the number of hidden neurons
or the number of layers.

Sometimes, there may be conceptual reasons to assume certain structures about the
data. However, if there are not, we may vary the values of these parameters to obtain
the best model. One dilemma that is exacerbated when trying several models and
choosing the best one is that, even if several models are equivalent, by chance in a
given sample one may outperform the others. To combat this, we can use techniques
such as cross-validation during training in order to optimize the parameter values
while only using the training data, and then only this final model needs to be
validated using the holdout or testing data. Currently, H2O does not support cross-
validation for auto-encoder models. If we really wanted to use cross-validation,
we could implement it manually. We can do this easily using the createFolds()
function from the caret package:

create 5 folds

folds <- createFolds(1:20000, k = 5)

Chapter 4

[89]

Next we can create a list of the hyperparameters we want to try for tuning. We do
this in the following code:

create parameters to try

hyperparams <- list(

 list(

 hidden = c(50),

 input_dr = c(0),

 hidden_dr = c(0)),

 list(

 hidden = c(200),

 input_dr = c(.2),

 hidden_dr = c(0)),

 list(

 hidden = c(400),

 input_dr = c(.2),

 hidden_dr = c(0)),

 list(

 hidden = c(400),

 input_dr = c(.2),

 hidden_dr = c(.5)),

 list(

 hidden = c(400, 200),

 input_dr = c(.2),

 hidden_dr = c(.25, .25)),

 list(

 hidden = c(400, 200),

 input_dr = c(.2),

 hidden_dr = c(.5, .25)))

Finally, we can loop through the hyperparameters and 5-fold cross-validation to
train all of the models. This may take several minutes to complete as we are training
6 x 5 or 30 models, some with hundreds of hidden neurons (note that, for this model
to run with increased speed, we changed the H2O cluster to one with 12GB of
memory and 5 cores):

fm <- lapply(hyperparams, function(v) {

 lapply(folds, function(i) {

 h2o.deeplearning(

Identifying Anomalous Data

[90]

 x = xnames,

 training_frame = h2odigits.train[-i,],

 validation_frame = h2odigits.train[i,],

 activation = "Tanh",

 autoencoder = TRUE,

 hidden = v$hidden,

 epochs = 30,

 sparsity_beta = 0,

 input_dropout_ratio = v$input_dr,

 hidden_dropout_ratios = v$hidden_dr,

 l1 = 0,

 l2 = 0

)

 })

})

Next we loop through the results and extract the MSE for the validation data, which
here is the single fold not used in the cross-validation:

fm.res <- lapply(fm, function(m) {

 sapply(m, h2o.mse, valid = TRUE)

})

We merge the results together into a data table to view and plot the performance
across the folds of the cross-validation:

fm.res <- data.table(

 Model = rep(paste0("M", 1:6), each = 5),

 MSE = unlist(fm.res))

head(fm.res)

 Model MSE

1: M1 0.014619734

2: M1 0.014655749

3: M1 0.014651761

4: M1 0.014310286

5: M1 0.014303792

6: M2 0.006781414

Chapter 4

[91]

Finally, we can make boxplots of the results to see how spread out they are or if any
of the cross-validated runs were especially aberrant. The results are shown in Figure
4.9, and it appears that the MSEs for each fold in the cross-validation are quite close
so that the mean/median is a reasonable summary:

p.erate <- ggplot(fm.res, aes(Model, MSE)) +

 geom_boxplot() +

 stat_summary(fun.y = mean, geom = "point", colour = "red") +

 theme_classic()

print(p.erate)

Figure 4.9

If we calculate the mean MSE by model and order from smallest to largest, these are
the results we get:

fm.res[, .(Mean_MSE = mean(MSE)), by = Model][order(Mean_MSE)]

 Model Mean_MSE

1: M4 0.006261764

2: M3 0.006276417

Identifying Anomalous Data

[92]

3: M2 0.006725956

4: M5 0.007768764

5: M6 0.007797575

6: M1 0.014508264

It appears that the fourth set of hyperparameters provided the lowest cross-
validated MSE. The fourth set of hyperparameters was a fairly complex model, with
400 hidden neurons, but also had regularization with 20% of the input variables
dropped and 50% of the hidden neurons dropped at each iteration, and this actually
outperforms (albeit only slightly) the third set of hyperparameters where the same
model complexity was used but without any dropout on the hidden layer. Although
not much worse, the deep models here with a second layer of 200 hidden neurons
perform worse than the shallow model.

With the best model selected, we can re-run using all training data and with our
actual testing data, using the fourth set of hyperparameters:

fm.final <- h2o.deeplearning(

 x = xnames,

 training_frame = h2odigits.train,

 validation_frame = h2odigits.test,

 activation = "Tanh",

 autoencoder = TRUE,

 hidden = hyperparams[[4]]$hidden,

 epochs = 30,

 sparsity_beta = 0,

 input_dropout_ratio = hyperparams[[4]]$input_dr,

 hidden_dropout_ratios = hyperparams[[4]]$hidden_dr,

 l1 = 0,

 l2 = 0

)

fm.final

Training Set Metrics:

=====================

MSE: (Extract with `h2o.mse`) 0.005880221

H2OAutoEncoderMetrics: deeplearning

Chapter 4

[93]

** Reported on validation data. **

Validation Set Metrics:

=====================

MSE: (Extract with `h2o.mse`) 0.006072476

We can see that the MSE in our testing data, which was not used at all during
training, is fairly close, though slightly worse than in the training data, and is
actually slightly less than the MSE estimated from cross-validation, in this case. To
the extent that we searched over a reasonable set of hyperparameters, this model is
now optimized, validated, and ready for use.

In practice, it is often difficult to balance the tradeoff between the possibility
of obtaining better performance with a different model or different set of
hyperparameters with the time it takes to run and train many different models.
Sometimes it can be helpful to explore the optimal model using a random subset of
all data, if the data is very large, in order to speed computation. For this book, the
example datasets we have been using are quite small compared to those commonly
used in deep learning where there may be millions or hundreds of millions of cases
and hundreds or thousands of variables or inputs. However, the approaches used here
will scale to larger datasets, but will simply take more time. It is also worth noting that,
though for these relatively small datasets we have been seeing good performance with
fairly simpler models, larger datasets may benefit more from complex models and
provide sufficient data to support learning a very complex structure.

Summary
This chapter introduced the distinction between supervised and unsupervised
learning. It covered how to use unsupervised learning (such as auto-encoders)
to learn the deep or hidden features of data. These hidden features may be used
on their own, such as to better understand the structure of data, or for other
applications. Two common applications of auto-encoders and unsupervised learning
are to identify anomalous data (for example, outlier detection, financial fraud) and
to pre-train more complex, often supervised, models such as deep neural networks.
In the next chapter, we will learn how to train and build deep neural networks to
develop prediction models (that is, supervised learning).

[95]

Training Deep Prediction
Models

In this chapter we will explore how to train and build deep prediction models. We
will focus on feedforward neural networks, which are perhaps the most common
type and a good starting point.

This chapter will cover the following topics:

•	 Getting started with deep feedforward neural networks
•	 Common activation functions: rectifiers, hyperbolic tangent, and maxout
•	 Picking hyperparameters
•	 Training and predicting new data from a deep neural network
•	 Use case – training a deep neural network for automatic classification

In this chapter, we will not use any new packages. The only requirements are to
source the checkpoint.R file to set up the R environment for the rest of the code
shown and to initialize the H2O cluster. Both can be done using the following code:

source("checkpoint.R")

options(width = 70, digits = 2)

cl <- h2o.init(

 max_mem_size = "12G",

 nthreads = 4)

Training Deep Prediction Models

[96]

Getting started with deep feedforward
neural networks
A deep feedforward neural network is designed to approximate a function, f(),
that maps some set of input variables, x, to an output variable, y. They are called
feedforward neural networks because information flows from the inputs through
each successive layer as far as the output, and there are no feedback or recursive
loops (models including both forward and backward connections are referred to as
recurrent neural networks).

Deep feedforward neural networks are applicable to a wide range of problems, and
are particularly useful for applications such as image classification. More generally,
feedforward neural networks are useful for prediction and classification where
there is a clearly defined outcome (what digit an image contains, whether someone
is walking upstairs or walking on a flat surface, the presence/absence of disease,
and so on). In these cases, there is no particular need for a feedback loop. Recurrent
networks are useful for cases where feedback loops are important, such as for natural
language processing. However, these are outside the scope of this book, which will
focus on training standard prediction models.

Deep feedforward neural networks can be constructed by chaining layers or functions
together. For example, a network with four hidden layers is shown in Figure 5.1:

Chapter 5

[97]

Figure 5.1

A different function is learned for each successive layer, and to finally map the
hidden layers to the outcome. If sufficient hidden neurons are included in a layer,
it can approximate to the desired degree of precision with many different types of
functions. Even if the mapping from the final hidden layer to the outcome is a linear
mapping with learned weights, feedforward neural networks can approximate non-
linear functions, by first applying non-linear transformations from the input layer to
the hidden layer. This is one of the key strengths of deep learning. In linear regression,
for example, the model learns the weights from the inputs to the outcome. However,
the functional form must be specified. In deep feedforward neural networks, the
transformations from the input layer to the hidden layer are learned as well as the
weights from the hidden layer to the outcome. In essence, the model learns the
functional form as well as the weights. In practice, although it is unlikely that the
model will learn the true generative model, it can (closely) approximate the true
model. The more hidden neurons, the closer the approximation. Thus for practical, if
not theoretically exact, purposes, the model learns the functional form.

Training Deep Prediction Models

[98]

Figure 5.1 shows a diagram of the model as a directed acyclic graph. Represented as a
function, the overall mapping from the inputs, X, to the output, Y, is a multi-layered
function. The first hidden layer is H1 = f(1)(X, w1, α1), the second hidden layer is H2
= f(2)(H1, w2, α2), and so on. These multiple layers can allow complex functions and
transformations to be built up from relatively simple ones.

The weights for each layer will be learned by the machine, but are also dependent on
decisions made, such as how many hidden neurons should be in each layer and the
activation function to be used, a topic explored further in the next section. Another
key piece of the model that must be determined is the cost or loss function. The two
most commonly used cost functions are cross-entropy and mean squared error
(MSE), which is quadratic.

Common activation functions – rectifiers,
hyperbolic tangent, and maxout
The activation function determines the mapping between inputs and a hidden
layer. It defines the functional form for how a neuron gets activated. For example,
a linear activation function could be defined as: f(x) = x, in which case the value for
the neuron would be the raw input, x, times the learned weight, a linear model.
A linear activation function is shown in the top panel of Figure 5.2. The problem
with making activation functions linear is that this does not permit any non-linear
functional forms to be learned. Previously, we have used the hyperbolic tangent
as an activation function, so f(x) = tanh(x). The hyperbolic tangent can work well in
some cases, but a potential limitation is that, at either low or high values, it saturates,
as shown in the middle panel of Figure 5.2.

Perhaps the most popular activation function currently, and a good first choice
(Nair, V., and Hinton, G. E. (2010)), is known as a rectifier. There can be different
kinds of rectifiers but, most commonly, linear rectifiers are used and are defined
by the function f(x) = max(0, x). Linear rectifiers are flat below some threshold and
are then linear; an example is shown in the bottom panel of Figure 5.2. Despite their
simplicity, linear rectifiers provide a non-linear transformation, and enough linear
rectifiers can be used to approximate arbitrary non-linear functions, unlike using
only linear activation functions.

A final type of activation function we will discuss is maxout (Goodfellow, I. J., Warde-
Farley, D., Mirza, M., Courville, A., and Bengio, Y. (2013)). A maxout unit takes the
maximum value of its inputs, although as usual this is after weighting so it is not the
case that the input variable with the highest value will always win. Maxout activation
functions seem to work particularly well with dropout.

Chapter 5

[99]

For the purposes of this chapter, we will focus on linear rectifiers. This is both
because they are a good default and perform well and also because we have already
shown the use of hyperbolic tangent in previous chapters:

Figure 5.2

Training Deep Prediction Models

[100]

Picking hyperparameters
The parameters of a model typically refer to things such as the weights or bias/
intercept parameters. However, there are many other parameters that must be
set at the offset and are not optimized or learned during model training. These
are sometimes referred to as hyperparameters. Indeed, even the choice of model
(for example, deep feedforward neural network, random forest, or support vector
machine) can be seen as a hyperparameter.

Even if we assume that somehow we have decided that a deep feedforward neural
network is the best modeling strategy, there are still many hyperparameters that
must be set. These hyperparameters may be explicitly specified by the user or
implicitly specified by using default values, where software provides them.

The values chosen for the hyperparameters can have a dramatic impact on the
accuracy and training speed of a model. Indeed, we have already seen examples
of trying different hyperparameters, such as trying different numbers of hidden
neurons in a layer or a different number of layers. However, other hyperparameters
also impact performance and speed. For example, in the following code, we set
up the R environment, load the Modified National Institute of Standards and
Technology (MNIST) data (images of handwritten digits) we have worked with,
and run two prediction models, only varying the learning rate:

source("checkpoint.R")

options(width = 70, digits = 2)

cl <- h2o.init(

 max_mem_size = "12G",

 nthreads = 4)

data setup

digits.train <- read.csv("train.csv")

digits.train$label <- factor(digits.train$label, levels = 0:9)

h2odigits <- as.h2o(

 digits.train,

 destination_frame = "h2odigits")

i <- 1:32000

h2odigits.train <- h2odigits[i,]

Chapter 5

[101]

itest <- 32001:42000

h2odigits.test <- h2odigits[itest,]

xnames <- colnames(h2odigits.train)[-1]

system.time(ex1 <- h2o.deeplearning(

 x = xnames,

 y = "label",

 training_frame= h2odigits.train,

 validation_frame = h2odigits.test,

 activation = "RectifierWithDropout",

 hidden = c(100),

 epochs = 10,

 adaptive_rate = FALSE,

 rate = .001,

 input_dropout_ratio = 0,

 hidden_dropout_ratios = c(.2)

))

system.time(ex2 <- h2o.deeplearning(

 x = xnames,

 y = "label",

 training_frame= h2odigits.train,

 validation_frame = h2odigits.test,

 activation = "RectifierWithDropout",

 hidden = c(100),

 epochs = 10,

 adaptive_rate = FALSE,

 rate = .01,

 input_dropout_ratio = 0,

 hidden_dropout_ratios = c(.2)

))

Training Deep Prediction Models

[102]

The first difference is that ex1 took 1.34 times as long to train as did ex2. Printing
each model shows a fairly large performance difference, as well. To save space in the
book, most of the output from typing ex1 and ex2 is omitted and only the test set
metrics are shown:

ex1

Test Set Metrics:

=====================

Metrics reported on full validation frame

MSE: (Extract with `h2o.mse`) 0.03326067

R^2: (Extract with `h2o.r2`) 0.9960457

Logloss: (Extract with `h2o.logloss`) 0.2021435

Confusion Matrix: Extract with `h2o.confusionMatrix(<model>, <data>)`)

===

 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 Error

0 984 0 1 0 0 3 13 2 6 2 0.02670623

1 0 1119 5 2 1 1 1 5 5 0 0.01755926

2 7 1 920 8 5 0 6 7 7 2 0.04465213

3 3 5 5 1006 1 13 1 7 7 1 0.04099142

4 0 7 3 0 896 2 5 2 4 13 0.03862661

5 6 2 4 17 5 835 7 1 10 5 0.06390135

6 5 2 1 0 6 8 966 1 2 0 0.02522704

7 2 2 8 7 3 1 0 1027 0 8 0.02930057

8 1 11 3 7 4 15 1 2 922 3 0.04850361

9 5 3 1 7 18 6 2 20 2 932 0.06425703

Totals 1013 1152 951 1054 939 884 1002 1074 965 966 0.03930000

ex2

Test Set Metrics:

=====================

Metrics reported on full validation frame

Chapter 5

[103]

MSE: (Extract with `h2o.mse`) 0.1264212

R^2: (Extract with `h2o.r2`) 0.9849702

Logloss: (Extract with `h2o.logloss`) 2.136629

Confusion Matrix: Extract with `h2o.confusionMatrix(<model>, <data>)`)

==

 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 Error

0 938 0 5 11 3 19 19 7 8 1 0.07220574

1 0 1105 6 6 2 6 1 8 5 0 0.02985075

2 18 7 757 54 20 9 47 36 5 10 0.21391485

3 1 2 22 887 10 36 0 50 30 11 0.15443279

4 1 7 0 1 854 7 13 8 5 36 0.08369099

5 11 6 4 45 16 767 8 5 29 1 0.14013453

6 13 5 5 1 6 63 887 5 6 0 0.10494450

7 2 8 3 3 4 7 0 1024 0 7 0.03213611

8 7 48 37 27 8 67 12 22 715 26 0.26212590

9 7 3 3 12 47 22 1 158 11 732 0.26506024

Totals 998 1191 842 1047 970 1003 988 1323 814 824 0.13340000

Although ex1 took longer to train, it performs substantially better on the test data
than does ex2. The higher learning rate is faster but sacrifices performance. This
highlights one of the decisions that needs to be made. However, as there are many
hyperparameters, the decision about one is not made in isolation from the rest. One
example of this is regularization. Often, relatively larger or more complex models are
used with many hidden neurons and possibly multiple layers, choices that will tend
to increase accuracy (at least within the training data) and reduce speed. However,
these complex models often include some form of regularization, such as dropout,
which would tend to reduce accuracy (at least within the training data) and improve
speed as only a subset of neurons are included in any given iteration.

One of the most important decisions has to do with the architecture of the model.
For example, decisions must be made as to how many layers there should be,
how many hidden neurons should be in each layer, whether there should be any
skipping patterns or each layer should only have sequential connections, and so on.
Unfortunately, there are no simple rules to follow to resolve many of these questions.
Good choices may rely on having a knowledge of the subject domain or prior
analytical work may provide reasonable starting points.

Training Deep Prediction Models

[104]

In the absence of subject domain expertise or prior models, designing an effective
architecture requires some trial and error. This trial and error can be a manual or an
automated process. In theory, just as parameters are optimized, so hyperparameters
could also be optimized. However, in practice this may not be feasible
computationally as it can require running many variations of models, each of which
requires substantial compute resources and time to complete.

Understanding what each hyperparameter does can help to inform your decisions.
For example, if you start with a model and its performance is worse than is
acceptable hyperparameters should be changed to allow greater capacity and
flexibility in the model, for example, adding more hidden neurons, additional layers
of hidden neurons, more training epochs, and so on. If there is a large difference
between the model's performance on the training data and testing data, this may
suggest the model is overfitting the data, in which case hyperparameters may be
tweaked to reduce capacity or add more regularization. In some cases, it may be that
more data is required to support fitting a more complex model needed to adequately
predict the outcome. We will discuss some ways to refine model architecture
(including more analytical approaches) in greater detail in Chapter 6, Tuning and
Optimizing Models.

Training and predicting new data from a
deep neural network
In this section we will learn how to train deep neural networks and use them to
generate predictions on new data. The examples for this section will use the activity
data we have worked with before, and the following code simply sets up the data:

use.train.x <- read.table("UCI HAR Dataset/train/X_train.txt")

use.test.x <- read.table("UCI HAR Dataset/test/X_test.txt")

use.train.y <- read.table("UCI HAR Dataset/train/y_train.txt")[[1]]

use.test.y <- read.table("UCI HAR Dataset/test/y_test.txt")[[1]]

use.train <- cbind(use.train.x, Outcome = factor(use.train.y))

use.test <- cbind(use.test.x, Outcome = factor(use.test.y))

use.labels <- read.table("UCI HAR Dataset/activity_labels.txt")

Chapter 5

[105]

h2oactivity.train <- as.h2o(

 use.train,

 destination_frame = "h2oactivitytrain")

h2oactivity.test <- as.h2o(

 use.test,

 destination_frame = "h2oactivitytest")

We have already learned the components of training a deep prediction model. We
use the h2o.deeplearning() function as we did for the auto-encoder models, but
specify the variable names for both the x and y arguments. Before, we included the
testing data to automatically get performance metrics on both training and testing
data. However, to show how to generate predictions on new data, we do not include
it in the call to h2o.deeplearning(). The activation function used is a linear rectifier
with dropout both on the input variables (20%) and the hidden neurons (50%). This
little example is a shallow network with only 50 hidden neurons and 10 training
iterations. The cost (loss) function is cross-entropy:

mt1 <- h2o.deeplearning(

 x = colnames(use.train.x),

 y = "Outcome",

 training_frame= h2oactivity.train,

 activation = "RectifierWithDropout",

 hidden = c(50),

 epochs = 10,

 loss = "CrossEntropy",

 input_dropout_ratio = .2,

 hidden_dropout_ratios = c(.5), ,

 export_weights_and_biases = TRUE

)

We show the stored object by simply typing its name in the R console. The first
information is about the type of model. The outcome has six discrete levels so a
multinomial model is used. The model includes a total of 28,406 weights/biases.
Biases are like intercepts or constant offsets. Because this is a feedforward neural
network, there are only weights between adjacent layers. Input variables do not have
biases, but hidden neurons and outcomes do. The 28,406 weights are made up from
561 * 50 = 28,050 weights between the input variables and the first layer of hidden
neurons, 50 * 6 = 300 weights between the hidden neurons and the outcome (6
because there are different levels of the outcome), 50 biases for the hidden neurons,
and 6 biases for the outcome.

Training Deep Prediction Models

[106]

The output also shows the number of layers and the number of units in each
layer, the type of each unit, the dropout percentage, and other regularization and
hyperparameter information:

mt1

Model Details:

==============

H2OMultinomialModel: deeplearning

Model ID: DeepLearning_model_R_1451894068318_16

Status of Neuron Layers: predicting Outcome, 6-class classification,
multinomial distribution, CrossEntropy loss, 28,406 weights/biases, 406.9
KB, 73,520 training samples, mini-batch size 1

 layer units type dropout l1 l2 mean_rate

1 1 561 Input 20.00 %

2 2 50 RectifierDropout 50.00 % 0.000000 0.000000 0.001891

3 3 6 Softmax 0.000000 0.000000 0.004912

 rate_RMS momentum mean_weight weight_RMS mean_bias bias_RMS

1

2 0.002408 0.000000 0.000172 0.062088 0.347545 0.114483

3 0.015856 0.000000 -0.009241 0.755695 -0.029887 0.294392

The next set of output reports performance metrics on the training data, including
the mean squared error (lower is better), R2 (higher is better), and the log loss (lower
is better):

H2OMultinomialMetrics: deeplearning

** Reported on training data. **

Description: Metrics reported on temporary (load-balanced) training frame

Training Set Metrics:

=====================

Metrics reported on temporary (load-balanced) training frame

MSE: (Extract with `h2o.mse`) 0.023

R^2: (Extract with `h2o.r2`) 0.99

Logloss: (Extract with `h2o.logloss`) 0.082

Chapter 5

[107]

Finally, a confusion matrix is printed, which shows the actual outcome against the
predicted outcome. The observed outcome is shown on the rows, and the predicted
outcome is shown on the columns. The diagonal indicates correct classification, and
the error rate by outcome level is shown:

Confusion Matrix: Extract with `h2o.confusionMatrix(<model>,train =
TRUE)`)

===

 X1 X2 X3 X4 X5 X6 Error Rate

1 1216 10 0 0 0 0 0.0082 10 / 1,226

2 3 1070 0 0 0 0 0.0028 3 / 1,073

3 2 11 973 0 0 0 0.0132 13 / 986

4 0 1 0 1236 40 9 0.0389 50 / 1,286

5 0 0 0 146 1228 0 0.1063 146 / 1,374

6 0 0 0 0 0 1407 0.0000 0 / 1,407

Totals 1221 1092 973 1382 1268 1416 0.0302 222 / 7,352

Hit Ratio Table: Extract with `h2o.hit_ratio_table(<model>,train = TRUE)`

===

Top-6 Hit Ratios:

 k hit_ratio

1 1 0.969804

2 2 0.999728

3 3 1.000000

4 4 1.000000

5 5 1.000000

6 6 1.000000

We can extract and look at the features of the model using the h2o.deepfeatures()
function, specifying the model, data, and layer we want to extract. The following
code extracts features and looks at the first few rows. The outcome is also included
by default. Note the zeros in the features; these are there because we used a linear
rectifier, so values below zero are censored at zero:

f <- as.data.frame(h2o.deepfeatures(mt1, h2oactivity.train, 1))

f[1:10, 1:5]

Training Deep Prediction Models

[108]

 Outcome DF.L1.C1 DF.L1.C2 DF.L1.C3 DF.L1.C4

1 5 0.00 5.9 0.091 2.1

2 5 0.00 4.7 0.000 1.7

3 5 0.00 4.4 0.102 1.5

4 5 0.00 4.9 0.000 1.9

5 5 0.00 5.0 0.000 1.8

6 5 0.00 4.9 0.000 2.0

7 5 0.00 4.9 0.000 1.6

8 5 0.00 4.6 0.000 1.8

9 5 0.00 5.0 0.000 1.6

10 5 0.13 5.1 0.000 1.3

Just as we extracted the features, we can extract weights from each layer. The
following code extracts weights and makes a heatmap so we can see if there are any
clear patterns of certain input variables having higher weights to particular hidden
neurons:

w1 <- as.matrix(h2o.weights(mt1, 1))

plot heatmap of the weights

tmp <- as.data.frame(t(w1))

tmp$Row <- 1:nrow(tmp)

tmp <- melt(tmp, id.vars = c("Row"))

p.heat <- ggplot(tmp,

 aes(variable, Row, fill = value)) +

 geom_tile() +

 scale_fill_gradientn(colours = c("black", "white", "blue")) +

 theme_classic() +

 theme(axis.text = element_blank()) +

 xlab("Hidden Neuron") +

 ylab("Input Variable") +

 ggtitle("Heatmap of Weights for Layer 1")

print(p.heat)

Chapter 5

[109]

There does not seem to be any particularly clear pattern to the effect that particular
neurons are made up predominantly of a few inputs as seen in the Figure 5.3:

Figure 5.3

For all their complexity, once they are trained feedforward neural networks are
straightforward to score and to use to generate predictions on data. There are built-
in functions to do this, but to get a better understanding of the model we will work
through one example manually.

Training Deep Prediction Models

[110]

As noted earlier, feedforward networks are constructed by layering functions
together. We already extracted the weights for the first layer. However, in order
to construct the neurons for hidden layer 1, we will also need the input data and
the biases. Because we need to add the same constant term to an entire column to
construct the deep features (even though the biases are stored as a vector with one
bias for each hidden neuron), we replicate the biases and convert them into a matrix
with dimensions matching the input data:

input data

d <- as.matrix(use.train[, -562])

biases for hidden layer 1 neurons

b1 <- as.matrix(h2o.biases(mt1, 1))

b12 <- do.call(rbind, rep(list(t(b1)), nrow(d)))

Now we can construct the features for layer 1, the hidden neurons. First, we need
to standardize each column of the input data, which we can do by applying the
scale() function in R to the data by columns (the second dimension of a matrix):

d.scaled <- apply(d, 2, scale)

Next we post multiply the scaled data by the weights we extracted earlier, and then
add the bias matrix.

d.weighted <- d.scaled %*% t(w1) + b12

Because we included dropout on the hidden layer, we need to apply a correction.
This is just a multiplicative correction based on the proportion of hidden units that
are included at any iteration—that is: 1 – dropout proportion:

d.weighted <- d.weighted * (1 - .5)

Finally, for each column, we only want to take values that are zero or higher, because
we used a linear rectifier. We accomplish this in R by applying the pmax() function
to the weighted data by columns:

d.weighted.rectifier <- apply(d.weighted, 2, pmax, 0)

We can check whether our work was correct by comparing it to the features extracted
by H2O. We use the all.equal() function for comparison with some tolerance for
slight numerical differences due to floating point arithmetic:

all.equal(

 as.numeric(f[, 2]),

Chapter 5

[111]

 d.weighted.rectifier[, 1],

 check.attributes = FALSE,

 use.names = FALSE,

 tolerance = 1e-04)

In a similar fashion, we can extract the weights and biases for the next layer,
which is the output layer. We create the predicted outcome just like we created the
predicted hidden neurons, by multiplying by the weights and adding the biases.
However, these operations are not applied to the raw data, but rather to the features
we constructed in the first stage. As before, we need to expand the biases to the
appropriate dimensions:

w2 <- as.matrix(h2o.weights(mt1, 2))

b2 <- as.matrix(h2o.biases(mt1, 2))

b22 <- do.call(rbind, rep(list(t(b2)), nrow(d)))

yhat <- d.weighted.rectifier %*% t(w2) + b22

To construct the hidden neurons, we used a linear rectifier activation function. For
the outputs, a softmax function is used, which normalizes all the predictions to
be within [0, 1] and ensures that they sum to one, like a predicted probability. We
know to use the softmax function both because it is common and because, earlier
in the model output, H2O indicated that softmax was the function linking to the
output layer. The softmax function is defined for each case, and is the exponentiated
predictions divided by the sum of the exponentiated predictions for that case:

yhat <- exp(yhat)

normalizer <- do.call(cbind, rep(list(rowSums(yhat)), ncol(yhat)))

yhat <- yhat / normalizer

Finally, we can derive a predicted classification by choosing the output column with
the highest predicted probability, using the which.max() function, and append this
to our prediction dataset:

yhat <- cbind(Outcome = apply(yhat, 1, which.max), yhat)

Training Deep Prediction Models

[112]

Via the h2o.predict() function, we can also extract predictions using the built-in
function, and we can compare these with the predictions we generated manually:

yhat.h2o <- as.data.frame(h2o.predict(mt1, newdata = h2oactivity.train))

xtabs(~ yhat[, 1] + yhat.h2o[, 1])

 yhat.h2o[, 1]

yhat[, 1] 1 2 3 4 5 6

 1 1216 0 0 0 0 0

 2 0 1122 0 0 0 0

 3 0 0 948 0 0 0

 4 0 0 0 1316 0 0

 5 0 0 0 0 1344 0

 6 0 0 0 0 0 1406

Our manual process matches that of H2O exactly. Of course, in practice one would
not re-implement the prediction function manually, and the code that demonstrates
doing it manually is not particularly computationally efficient. However, working
through examples like this can help to clarify exactly what pieces go into the model
and how they are used. If we had many hidden layers of neurons, the process would
be very similar, just repeating the steps to generate features for each layer, and
always building on top of the results from the previous layer.

Use case – training a deep neural
network for automatic classification
For our use case, we use data from a subset of the Million Song Dataset, from the
University of California Irvine online dataset repository (Lichman, M. (2013)). There
are 515,345 cases, with the first 463,715 being training cases and the last 51,630 cases
used for testing. The first column of the dataset contains the year and the remaining
columns are features from the timbre of the song. Download and decompress the
data from here: http://archive.ics.uci.edu/ml/datasets/YearPredictionMSD.
Our goal is to predict the year each song was released.

First we need to download the data and then unzip it, which we can do using the
following code:

download.file(
"http://archive.ics.uci.edu/ml/machine-learning-databases/00203/
YearPredictionMSD.txt.zip", destfile = "YearPredictionMSD.txt.zip")

http://archive.ics.uci.edu/ml/datasets/YearPredictionMSD

Chapter 5

[113]

unzip("YearPredictionMSD.txt.zip")

Now we can read data into R using fread() from the data.table package. The
fread() function is preferable to read.csv() here because it can be orders-of-
magnitude faster, and it still took 30 seconds on a high-end desktop with a solid state
hard drive:

d <- fread("YearPredictionMSD.txt", sep = ",")

First we can take a quick look at the distribution of the outcome, the year of release.
The following code creates a histogram that is shown in Figure 5.4:

p.hist <- ggplot(d[, .(V1)], aes(V1)) +

 geom_histogram(binwidth = 1) +

 theme_classic() +

 xlab("Year of Release")

print(p.hist)

Figure 5.4

Training Deep Prediction Models

[114]

One possible concern is that the relatively extreme values may exert an undue
influence on the model. We can reduce this by reflecting the distribution and taking
the square root. We could also exclude a small amount of the more extreme cases,
such as by excluding the bottom and top 0.5% (1% of data total). Checking the
quantiles (in the following code) would include the years 1957 to 2010:

quantile(d$V1, probs = c(.005, .995))

0.5% 100%

1957 2010

The following code trims the data and converts the training and testing datasets for
H2O:

d.train <- d[1:463715][V1 >= 1957 & V1 <= 2010]

d.test <- d[463716:515345][V1 >= 1957 & V1 <= 2010]

h2omsd.train <- as.h2o(

 d.train,

 destination_frame = "h2omsdtrain")

h2omsd.test <- as.h2o(

 d.test,

 destination_frame = "h2omsdtest")

To get started and provide some baseline performance levels, we can build a linear
regression model:

summary(m0 <- lm(V1 ~ ., data = d.train))$r.squared

[1] 0.24

cor(

 d.test$V1,

 predict(m0, newdata = d.test))^2

[1] 0.23

Although not great, linear regression accounts for 24% of the variance in years in the
training data and 23% in the testing data; these results provide a benchmark for us to
beat with the feedforward neural network.

Chapter 5

[115]

Our first network is shallow with a single hidden layer and is fairly small. This is
a larger dataset than some of the previous ones we have worked with, but it is still
small enough that it is easy to work with all of it. To make performance scoring
occur on the full dataset, we use the special value, 0, passed to the score_training_
samples and score_validation_samples arguments. On the 10-core H2O cluster
setup, the model took 79 seconds to train, recorded using the system.time()
function:

m1 <- h2o.deeplearning(

 x = colnames(d)[-1],

 y = "V1",

 training_frame= h2omsd.train,

 validation_frame = h2omsd.test,

 activation = "RectifierWithDropout",

 hidden = c(50),

 epochs = 100,

 input_dropout_ratio = 0,

 hidden_dropout_ratios = c(0),

 score_training_samples = 0,

 score_validation_samples = 0,

 diagnostics = TRUE,

 export_weights_and_biases = TRUE,

 variable_importances = TRUE

)

The results from this simple model show a marked improvement over the linear
regression model. The feedforward neural network, even though it only had a single
layer with 50 hidden neurons, accounted for 32% of the variance in release year in
the testing data, up from 23% using only linear regression.

Because the model was small and had fewer hidden neurons than input variables, no
dropout or other regularization was used. However, the performance discrepancy
between the training and testing data (R2 = 0.37 versus R2 = 0.32, respectively),
indicates that some regularization may be helpful:

m1

Model Details:

==============

Training Deep Prediction Models

[116]

H2ORegressionModel: deeplearning

Model ID: DeepLearning_model_R_1451972322936_5

Status of Neuron Layers: predicting V1, regression, gaussian
distribution, Quadratic loss, 4,601 weights/biases, 72.5 KB, 13,702,476
training samples, mini-batch size 1

 layer units type dropout l1 l2 mean_rate

1 1 90 Input 0.00 %

2 2 50 RectifierDropout 0.00 % 0.000000 0.000000 0.009403

3 3 1 Linear 0.000000 0.000000 0.000218

 rate_RMS momentum mean_weight weight_RMS mean_bias bias_RMS

1

2 0.007939 0.000000 -0.018219 0.598229 -2.199141 2.245173

3 0.000202 0.000000 -0.042807 0.103305 -0.767868 0.000000

H2ORegressionMetrics: deeplearning

** Reported on training data. **

Description: Metrics reported on full training frame

MSE: 76

R2 : 0.37

Mean Residual Deviance : 76

H2ORegressionMetrics: deeplearning

** Reported on validation data. **

Description: Metrics reported on temporary (load-balanced) validation
frame

MSE: 80

R2 : 0.32

Mean Residual Deviance : 80

Chapter 5

[117]

Although our shallow neural network model was an improvement over linear
regression, it still did not perform well and there is clearly room for improvement.
Next, we will try a larger, deep feedforward neural network. In the model code next,
we have three layers of hidden neurons, with 200, 200, and 400 hidden neurons,
respectively. We will also introduce a modest amount of dropout on the hidden (but
not input) layer. This model took 843 seconds to train:

m2 <- h2o.deeplearning(

 x = colnames(d)[-1],

 y = "V1",

 training_frame= h2omsd.train,

 validation_frame = h2omsd.test,

 activation = "RectifierWithDropout",

 hidden = c(200, 200, 400),

 epochs = 100,

 input_dropout_ratio = 0,

 hidden_dropout_ratios = c(.2, .2, .2),

 score_training_samples = 0,

 score_validation_samples = 0,

 diagnostics = TRUE,

 export_weights_and_biases = TRUE,

 variable_importances = TRUE

)

Examining the performance of the model shows a noticeable improvement from the
small and shallow model we tried first. In the testing data, the shallow model had an
R2 of 0.32 whereas the deep model has an R2 of 0.35.

There is also a degree of overfitting. The difference in R2 between the training and
testing data is 0.05, which is comparable to the simpler model where the difference
was also 0.05. The more complex model improves performance, with little difference
in overfitting, perhaps due to the dropout used:

m2

Model Details:

==============

Training Deep Prediction Models

[118]

H2ORegressionModel: deeplearning

Model ID: DeepLearning_model_R_1452031055473_5

Status of Neuron Layers: predicting V1, regression, gaussian
distribution, Quadratic loss, 139,201 weights/biases, 1.6 MB, 22,695,351
training samples, mini-batch size 1

 layer units type dropout l1 l2 mean_rate

1 1 90 Input 0.00 %

2 2 200 RectifierDropout 20.00 % 0.000000 0.000000 0.011513

3 3 200 RectifierDropout 20.00 % 0.000000 0.000000 0.014861

4 4 400 RectifierDropout 20.00 % 0.000000 0.000000 0.054338

5 5 1 Linear 0.000000 0.000000 0.001258

 rate_RMS momentum mean_weight weight_RMS mean_bias bias_RMS

1

2 0.004978 0.000000 0.000848 0.207373 -0.254659 0.321144

3 0.012359 0.000000 -0.032566 0.104347 1.017329 0.341556

4 0.036596 0.000000 -0.031768 0.072171 0.651546 0.292565

5 0.000505 0.000000 0.001421 0.020867 -0.596303 0.000000

H2ORegressionMetrics: deeplearning

** Reported on training data. **

Description: Metrics reported on full training frame

MSE: 66

R2 : 0.40

Mean Residual Deviance : 66

H2ORegressionMetrics: deeplearning

** Reported on validation data. **

Description: Metrics reported on temporary (load-balanced) validation
frame

MSE: 70

R2 : 0.35

Mean Residual Deviance : 70

Chapter 5

[119]

To see whether the performance on the testing data can be improved further, we
will try one additional model including substantially more hidden neurons in each
layer, more training iterations (epochs), and with a higher degree of regularization.
Readers may not wish to run the following code (the model took over 10 hours to
complete on the 10-core H2O cluster):

m3 <- h2o.deeplearning(

 x = colnames(d)[-1],

 y = "V1",

 training_frame= h2omsd.train,

 validation_frame = h2omsd.test,

 activation = "RectifierWithDropout",

 hidden = c(500, 500, 1000),

 epochs = 500,

 input_dropout_ratio = 0,

 hidden_dropout_ratios = c(.5, .5, .5),

 score_training_samples = 0,

 score_validation_samples = 0,

 diagnostics = TRUE,

 export_weights_and_biases = TRUE

)

The performance of this model on the testing data was actually worse than either of
the previous two models, though still superior to the linear regression:

m3

Model Details:

==============

H2ORegressionModel: deeplearning

Model ID: DeepLearning_model_R_1451972322936_15

Status of Neuron Layers: predicting V1, regression, gaussian
distribution, Quadratic loss, 798,001 weights/biases, 9.2 MB, 47,002,720
training samples, mini-batch size 1

 layer units type dropout l1 l2 mean_rate

1 1 90 Input 0.00 %

2 2 500 RectifierDropout 50.00 % 0.000000 0.000000 0.028872

Training Deep Prediction Models

[120]

3 3 500 RectifierDropout 50.00 % 0.000000 0.000000 0.047632

4 4 1000 RectifierDropout 50.00 % 0.000000 0.000000 0.084886

5 5 1 Linear 0.000000 0.000000 0.001238

 rate_RMS momentum mean_weight weight_RMS mean_bias bias_RMS

1

2 0.014727 0.000000 0.000941 0.069018 0.417255 0.048082

3 0.020226 0.000000 -0.007515 0.049535 0.968111 0.054521

4 0.062396 0.000000 -0.009451 0.038735 0.929930 0.032726

5 0.000445 0.000000 0.000538 0.014785 -0.478095 0.000000

H2ORegressionMetrics: deeplearning

** Reported on training data. **

Description: Metrics reported on full training frame

MSE: 84

R2 : 0.30

Mean Residual Deviance : 84

H2ORegressionMetrics: deeplearning

** Reported on validation data. **

Description: Metrics reported on temporary (load-balanced) validation
frame

MSE: 85

R2 : 0.28

Mean Residual Deviance : 85

Our best model then is still the deep model, but with fewer hidden neurons per
layer. One way that we can try to see if that model can be improved is to try training
for additional epochs or iterations. In the model output, there is a model ID. For the
best performing model, this was: DeepLearning_model_R_1452031055473_5. This
can be passed to the checkpoint argument of the h2o.deeplearning() function so
that training begins using the weights from the previous model. Note that the model
ID will be different every time you run the code; thus, when running it on your own
computer or servers, you will need to use the model ID from your run.

Chapter 5

[121]

As long as the general architecture—the number of hidden neurons, layers, and
connections—remains the same, using the checkpoint can be a great time saver.
This is not only true because the previous training iterations can be re-used, but also
because it tends to take longer for earlier than later iterations. The following example
shows how to run the model, changing the epochs from 500 to 1,000 (since 500 have
already been done) and starting from the previous model run by specifying the
model name as a character string to the checkpoint argument:

m2b <- h2o.deeplearning(

 x = colnames(d)[-1],

 y = "V1",

 training_frame= h2omsd.train,

 validation_frame = h2omsd.test,

 activation = "RectifierWithDropout",

 hidden = c(200, 200, 400),

 checkpoint = "DeepLearning_model_R_1452031055473_5",

 epochs = 1000,

 input_dropout_ratio = 0,

 hidden_dropout_ratios = c(.2, .2, .2),

 score_training_samples = 0,

 score_validation_samples = 0,

 diagnostics = TRUE,

 export_weights_and_biases = TRUE,

 variable_importances = TRUE

)

However, in the end, the additional epochs did not improve the model performance.
In fact, it became slightly worse:

m2b

Model Details:

==============

H2ORegressionModel: deeplearning

Model ID: DeepLearning_model_R_1452031055473_81

Training Deep Prediction Models

[122]

Status of Neuron Layers: predicting V1, regression, gaussian
distribution, Quadratic loss, 139,201 weights/biases, 1.6 MB, 30,054,531
training samples, mini-batch size 1

 layer units type dropout l1 l2 mean_rate

1 1 90 Input 0.00 %

2 2 200 RectifierDropout 20.00 % 0.000000 0.000000 0.008598

3 3 200 RectifierDropout 20.00 % 0.000000 0.000000 0.012581

4 4 400 RectifierDropout 20.00 % 0.000000 0.000000 0.025138

5 5 1 Linear 0.000000 0.000000 0.000895

 rate_RMS momentum mean_weight weight_RMS mean_bias bias_RMS

1

2 0.004485 0.000000 -0.004116 0.473692 -1.601533 1.060434

3 0.017790 0.000000 -0.040249 0.239924 0.767950 1.305716

4 0.022843 0.000000 -0.048592 0.105753 0.360921 0.439503

5 0.000582 0.000000 -0.001778 0.029287 -0.065273 0.000000

H2ORegressionMetrics: deeplearning

** Reported on training data. **

Description: Metrics reported on full training frame

MSE: 62

R2 : 0.43

Mean Residual Deviance : 62

H2ORegressionMetrics: deeplearning

** Reported on validation data. **

Description: Metrics reported on temporary (load-balanced) validation
frame

MSE: 72

R2 : 0.33

Mean Residual Deviance : 72

Chapter 5

[123]

Working with model results
It is easy to save models in R but, when calling H2O from R, most results are not
actually stored in R; instead they are stored in the H2O cluster. Thus, only saving the
R object will merely save the reference to the model in the H2O cluster and, if that is
shut down and lost, the full model results will not be saved. To avoid this and save
the full model results, we use the h2o.saveModel() function and specify the model
to be saved (by passing the R object), the path, and whether to overwrite files if
already there (using force = TRUE):

h2o.saveModel(

 object = m2,

 path = "c:\\Users\\jwile\\DeepLearning",

 force = TRUE)

This will create a directory with all of the files needed to load and use the model
again. Once you have saved a model, you can load it back into a new H2O cluster
using the h2o.loadModel() function. Note that you also must specify the folder
name for the model results to load.

In addition to just saving the model results to be loaded again into an H2O cluster,
models can be saved as a Plain Old Java Object (POJO). Saving models as a POJO is
useful as they can be embedded in other applications and used to score results. H2O
models can be saved as a POJO using the h2o.download_pojo() function, with the
same arguments.

Another useful function is h2o.scoreHistory(). The score history shows the
performance of the model across iterations as well as a time stamp and the duration
for each epoch. The following code shows how to use it and the results:

h2o.scoreHistory(m2)

Scoring History:

 timestamp duration training_speed epochs

1 2016-01-06 23:20:18 0.000 sec 0.00000

2 2016-01-06 23:20:26 15.537 sec 13922 rows/sec 0.21687

3 2016-01-06 23:21:51 1 min 40.761 sec 22603 rows/sec 4.11902

4 2016-01-06 23:23:15 3 min 4.790 sec 25030 rows/sec 8.66890

5 2016-01-06 23:24:39 4 min 28.208 sec 26347 rows/sec 13.43506

6 2016-01-06 23:26:00 5 min 49.401 sec 27540 rows/sec 18.41458

Training Deep Prediction Models

[124]

7 2016-01-06 23:27:21 7 min 10.032 sec 28317 rows/sec 23.39553

8 2016-01-06 23:28:40 8 min 29.325 sec 28928 rows/sec 28.37323

9 2016-01-06 23:29:59 9 min 48.908 sec 29354 rows/sec 33.34907

10 2016-01-06 23:31:21 11 min 10.056 sec 29771 rows/sec 38.54472

11 2016-01-06 23:32:41 12 min 30.532 sec 30130 rows/sec 43.73626

12 2016-01-06 23:34:04 13 min 53.652 sec 30444 rows/sec 49.14818

13 2016-01-06 23:34:12 14 min 1.667 sec 30442 rows/sec 49.14818

 iterations samples training_MSE training_deviance

1 0 0.000000

2 1 100145.000000 73.50950 73.50950

3 19 1902057.000000 65.90201 65.90201

4 40 4003071.000000 66.39865 66.39865

5 62 6203960.000000 63.97995 63.97995

6 85 8503375.000000 65.20361 65.20361

7 108 10803448.000000 62.67372 62.67372

8 131 13102020.000000 63.91678 63.91678

9 154 15399734.000000 60.31355 60.31355

10 178 17798949.000000 60.15803 60.15803

11 202 20196268.000000 61.71012 61.71012

12 227 22695351.000000 58.34747 58.34747

13 227 22695351.000000 65.90201 65.90201

 training_r2 validation_MSE validation_deviance validation_r2

1

2 0.32564 73.67272 73.67272 0.30763

3 0.39543 69.57711 69.57711 0.34612

4 0.39087 71.70615 71.70615 0.32611

5 0.41306 70.45211 70.45211 0.33790

6 0.40184 71.98921 71.98921 0.32345

Chapter 5

[125]

7 0.42505 70.90519 70.90519 0.33364

8 0.41364 72.69913 72.69913 0.31678

9 0.44670 70.49905 70.49905 0.33746

10 0.44812 70.76801 70.76801 0.33493

11 0.43389 72.22494 72.22494 0.32124

12 0.46473 70.55234 70.55234 0.33696

13 0.39543 69.57711 69.57711 0.34612

So far we have only examined the overall performance of the model. Although this
is a useful summary, it provides less than a complete picture. Examining the model
residuals can help us understand whether the model performs consistently across the
range of the data and any anomalous residuals; it also helps us to generally assess
performance more comprehensively. We can calculate residuals by getting predicted
values for all cases using the h2o.predict() function and then taking the difference
between the observed values and the predictions. The following code extracts
predictions, joins them with observed values, and plots them. A residual of zero
indicates a perfect prediction, with either positive or negative residuals indicating
over- or under-prediction. Since years are discrete, we can visualize the data using
boxplots of the residuals for each actual year of song release, using the following
code. This is shown in Figure 5.5:

yhat <- as.data.frame(h2o.predict(m1, h2omsd.train))

yhat <- cbind(as.data.frame(h2omsd.train[["V1"]]), yhat)

p.resid <- ggplot(yhat, aes(factor(V1), predict - V1)) +

 geom_boxplot() +

 geom_hline(yintercept = 0) +

 theme_classic() +

 theme(axis.text.x = element_text(

 angle = 90, vjust = 0.5, hjust = 0)) +

 xlab("Year of Release") +

Training Deep Prediction Models

[126]

 ylab("Predicted Year of Release")

print(p.resid)

Figure 5.5

The results show a marked pattern of decreasing residuals in later years or,
conversely, show extremely aberrant model predictions for the earlier years. In part,
this may be due to the distribution of the data. With most cases coming from the
mid 1990s to 2000s, as we saw earlier in Figure 5.4 the model will be most sensitive to
accurately predicting these values, and the comparatively fewer cases before 1990 or
1980 will have less influence.

Chapter 5

[127]

Because we used the variable_importances argument, we can extract the relative
importance of each variable for the model using the h2o.varimp() function.
Although it is difficult to accurately apportion the importance of each variable, it
can be helpful to provide a rough sense of which variables tend to make a larger
contribution to the prediction than others. This can be a helpful way to exclude
some variables that contribute very little, for example. The following code extracts
the important variables, prints the top 10 (the dataset is sorted from most to least
important), and makes a graph of the results to display the distribution, shown in
Figure 5.6:

imp <- as.data.frame(h2o.varimp(m2))

imp[1:10,]

 variable relative_importance scaled_importance percentage

1 V2 1.00 1.00 0.039

2 V3 0.66 0.66 0.026

3 V4 0.53 0.53 0.020

4 V14 0.47 0.47 0.018

5 V24 0.47 0.47 0.018

6 V7 0.44 0.44 0.017

7 V37 0.40 0.40 0.016

8 V6 0.39 0.39 0.015

9 V59 0.35 0.35 0.014

10 V26 0.34 0.34 0.013

p.imp <- ggplot(imp, aes(factor(variable, levels = variable),
percentage)) +

 geom_point() +

 theme_classic() +

 theme(axis.text.x = element_blank()) +

 xlab("Variable Number") +

Training Deep Prediction Models

[128]

 ylab("Percentage of Total Importance")

print(p.imp)

Figure 5.6

From the description of the dataset, the first 12 variables represented various timbres
of the music, with the next 78 being the unique elements of a covariance matrix from
the first 12. Thus it is interesting that, in the top variables, the first three are all the
timbres, not from the covariances. If, for example, the later 78 variables were costly
or difficult to collect, we might consider what performance is possible using only the
first 12 predictors. The following model tests that approach using a simple shallow
model:

mtest <- h2o.deeplearning(

 x = colnames(d)[2:13],

 y = "V1",

 training_frame= h2omsd.train,

Chapter 5

[129]

 validation_frame = h2omsd.test,

 activation = "RectifierWithDropout",

 hidden = c(50),

 epochs = 100,

 input_dropout_ratio = 0,

 hidden_dropout_ratios = c(0),

 score_training_samples = 0,

 score_validation_samples = 0,

 diagnostics = TRUE,

 export_weights_and_biases = TRUE,

 variable_importances = TRUE

)

mtest

H2ORegressionModel: deeplearning

Model ID: DeepLearning_model_R_1452082402089_15

Status of Neuron Layers: predicting V1, regression, gaussian
distribution, Quadratic loss, 701 weights/biases, 13.6 KB, 27,398,762
training samples, mini-batch size 1

 layer units type dropout l1 l2 mean_rate

1 1 12 Input 0.00 %

2 2 50 RectifierDropout 0.00 % 0.000000 0.000000 0.003773

3 3 1 Linear 0.000000 0.000000 0.000985

 rate_RMS momentum mean_weight weight_RMS mean_bias bias_RMS

1

2 0.007925 0.000000 0.004197 0.504967 -0.679546 0.965184

3 0.000926 0.000000 -0.106522 0.286619 -1.400430 0.000000

H2ORegressionMetrics: deeplearning

** Reported on training data. **

Description: Metrics reported on full training frame

Training Deep Prediction Models

[130]

MSE: 82

R2 : 0.24

Mean Residual Deviance : 82

H2ORegressionMetrics: deeplearning

** Reported on validation data. **

Description: Metrics reported on temporary (load-balanced) validation
frame

MSE: 83

R2 : 0.22

Mean Residual Deviance : 83

The results show an R2 of only 0.24 for the training and 0.22 for the testing data. This
is still comparable to the linear regression with all variables, but quite a bit lower
than the 0.32 or 0.35 obtained using neural networks on the full set of predictors.
Even though many of the variables have a fairly small importance, combined they
add up to a noticeable difference.

Summary
In this chapter, we covered what deep neural networks are in more detail,
particularly how to use them to train prediction models. Even though deep
feedforward neural networks can seem quite complex, they can be broken down into
a sequence of layers, each of which is fairly simple, with one set of inputs and one set
of outputs, along with weights and biases to map between the two.

We have also seen the improvement in predictive performance possible using deep
learning. In the use case example, using linear regression alone accounted for 23%
of the variance in the testing data; however, by using a deep feedforward neural
network, we were able to account for 35% of the variance in the year of song release.
Although still far from perfect, it is a dramatic improvement over regression,
and the low performance probably has more to do with lacking the data to explain
year-to-year differences than the model itself (in other words, even with the best
model achieving 99% variance accounted for is unlikely without more/better
predictors). The next and final chapter will cover how to tune and optimize models,
including how to address some common challenges such as missing data or poor
model accuracy/performance.

[131]

Tuning and Optimizing
Models

In this final chapter, we will discuss a few approaches to tuning models. We will
cover ways of addressing missing data. Although we have used example datasets
without any missing data, in the real world missing data is a common occurrence.
We will also discuss what can be done when a model is performing poorly, including
a detailed examination of how to search for and optimize model hyperparameters.

This chapter will cover the following topics:

•	 Dealing with missing data
•	 Solutions for models with low accuracy

In this chapter, we make use of two new packages: the gridExtra package for
graphics and the mgcv package for fitting generalized additive models at the end.
These new packages should be added to the checkpoint.R file, and the file should
be sourced to set up the R environment for the rest of the code shown. R can be set
up and an H2O cluster initialized using the following code:

source("checkpoint.R")

options(width = 70, digits = 2)

cl <- h2o.init(

 max_mem_size = "12G",

 nthreads = 4)

Tuning and Optimizing Models

[132]

Dealing with missing data
When working with real-world applications, we often must contend with missing
data. H2O includes a function to impute variables using the mean, median, or mode,
and optionally to do so by some other grouping variables.

To examine how to impute missing data this way, we will use the small Iris dataset
on flowers. In particular, we will set the petal width and length values to missing for
the species "setosa" and then impute their values:

setup iris data with some missing

d <- as.data.table(iris)

d[Species == "setosa", c("Petal.Width", "Petal.Length") := .(NA, NA)]

h2o.dmiss <- as.h2o(d, destination_frame="iris_missing")

h2o.dmeanimp <- as.h2o(d, destination_frame="iris_missing_imp")

First, we will do a simple mean imputation. This has to be done one column at a
time:

mean imputation

missing.cols <- colnames(h2o.dmiss)[apply(d, 2, anyNA)]

for (v in missing.cols) {

 h2o.dmeanimp <- h2o.impute(h2o.dmeanimp, column = v)

}

One problem with imputing the overall non-missing mean is that, if there are any
systematic differences, these will be missed; also, if we could get better predictions
about the missing data from any of the non-missing data, this is also missed.

Instead of a simple mean imputation, we could use a simple prediction model. The
following code builds a random forest model to predict each missing column. All
default values are used. If random forests take too long, a glm model could also be
used:

random forest imputation

d.imputed <- d

prediction model

for (v in missing.cols) {

 tmp.m <- h2o.randomForest(

Chapter 6

[133]

 x = setdiff(colnames(h2o.dmiss), v),

 y = v,

 training_frame = h2o.dmiss)

 yhat <- as.data.frame(h2o.predict(tmp.m, newdata = h2o.dmiss))

 d.imputed[[v]] <- ifelse(is.na(d.imputed[[v]]), yhat$predict,
d.imputed[[v]])

}

To compare the different methods, we can create a scatter plot of petal length against
petal width, with the color and shape of the points determined by the flower species.
This graph has three panels. The top panel is the original data. The middle panel is
the data using mean imputation. The bottom panel is the data using random forest
imputation. The following code creates the graph shown in Figure 6.1:

grid.arrange(

 ggplot(iris, aes(Petal.Length, Petal.Width,

 color = Species, shape = Species)) +

 geom_point() +

 theme_classic() +

 ggtitle("Original Data"),

 ggplot(as.data.frame(h2o.dmeanimp), aes(Petal.Length, Petal.Width,

 color = Species, shape = Species)) +

 geom_point() +

 theme_classic() +

 ggtitle("Mean Imputed Data"),

 ggplot(d.imputed, aes(Petal.Length, Petal.Width,

 color = Species, shape = Species)) +

 geom_point() +

 theme_classic() +

 ggtitle("Random Forest Imputed Data"),

 ncol = 1)

Tuning and Optimizing Models

[134]

Figure 6.1

Chapter 6

[135]

In this case, the mean imputation creates aberrant values quite removed from reality.
If needed, more advanced prediction models could be generated. In statistical
inferences, multiple imputation is preferred over single imputation (regardless of
the method) as the latter fails to account for uncertainty—that is, when imputing the
missing values there is some degree of uncertainty as to exactly what those values are.
However, in most use cases for deep learning, the datasets are far too large and the
computational time too demanding to create multiple datasets with different imputed
values, train models on each, and pool the results; thus, these simpler methods (such
as mean imputation or using some other prediction model) are common.

Solutions for models with low accuracy
One of the most challenging, but also potentially important, aspects of optimizing
a model is choosing the values for the hyperparameters. In theory, we want to
choose the best combination and, although we are unlikely to ever truly find the
global maximum, the techniques in this section can help to find better values for the
hyperparameters. Better hyperparameters can often improve the accuracy of a model.

Sometimes, however, a model has poor accuracy due to lacking the variables
required for good prediction or because there is not enough data to support training
a complex enough model to accurately predict or classify the data. In these cases,
either acquiring additional variables/features that can be used as predictors and/or
additional cases may be required. This book cannot help you collect more data, but it
can present ways to tune and optimize hyperparameters. We'll deal with this next.

Grid search
For more information on tuning hyperparameters, see Bengio, Y. (2012), particularly
Section 3, Hyper-Parameters, which discusses the selection and characteristics of
various hyperparameters. Aside from manual trial and error, two other approaches
to improving hyperparameters are grid searches and random searches. In a
grid search, several values for hyperparameters are specified and all possible
combinations are tried. This is perhaps easiest to see. In R we can use the expand.
grid() function to create all possible combinations of variables:

expand.grid(

 layers = c(1, 2, 4),

 epochs = c(50, 100),

 l1 = c(.001, .01, .05))

 layers epochs l1

Tuning and Optimizing Models

[136]

1 1 50 0.001

2 2 50 0.001

3 4 50 0.001

4 1 100 0.001

5 2 100 0.001

6 4 100 0.001

7 1 50 0.010

8 2 50 0.010

9 4 50 0.010

10 1 100 0.010

11 2 100 0.010

12 4 100 0.010

13 1 50 0.050

14 2 50 0.050

15 4 50 0.050

16 1 100 0.050

17 2 100 0.050

18 4 100 0.050

Grid searching is excellent when there are only a few values for a few parameters.
However, although this is a comprehensive way of assessing different parameter
values, when there are many values for some or many parameters, it quickly
becomes unfeasible. For example, even with only two values for each of eight
parameters, there are 28 = 256 combinations, which quickly becomes computationally
impracticable. In addition, if there are no interactions between parameters and
model performance, or at least the interactions are small relative to the main effects,
then grid searches are an inefficient approach because many parameter values
are repeated so that only a small set of values is sampled, even though many
combinations are tried.

Chapter 6

[137]

Random search
An alternative approach is searching through random sampling. Rather than pre-
specifying all the values to try and creating all possible combinations, one can
randomly sample values for the parameters, fit a model, store the results, and repeat.
To get a very large sample size, this too would be computationally demanding, but
does make it straightforward to specify just how many different models you are
willing to run.

For random sampling, all that needs to be specified are the values to randomly
sample or distributions to randomly draw from. Typically, some limits would also be
set. For example, although a model could theoretically have any integer number of
layers, some reasonable number (such as 1 to 10) is used rather than sampling integers
from 1 to a billion.

To do random sampling, we will write a function that takes a seed and then
randomly samples a number of hyperparameters, stores the sampled parameters,
runs the model, and returns the results. Even though we are doing a random search
to try to find better values, we are not sampling from every possible hyperparameter.
Many remain fixed at values we specify or their defaults.

For some parameters, specifying how to randomly sample values can take a bit of
work. For example, when using dropout for regularization, it is common to have a
relatively smaller amount of dropout for the input variables (around 20% commonly)
and a higher amount for hidden neurons (around 50% commonly). Choosing the
right distributions can allow us to encode this prior information into our random
search. The following code plots the density of two beta distributions, and the results
are shown in Figure 6.2. By sampling from these distributions, we can ensure that
our search, while random, focuses on small proportions of dropout for the input
variables and in the 0 to 0.50 range for the hidden neurons with a tendency to over-
sample from values closer to 0.50:

par(mfrow = c(2, 1))

plot(

 seq(0, .5, by = .001),

 dbeta(seq(0, .5, by = .001), 1, 12),

 type = "l", xlab = "x", ylab = "Density",

 main = "Density of a beta(1, 12)")

plot(

 seq(0, 1, by = .001)/2,

Tuning and Optimizing Models

[138]

 dbeta(seq(0, 1, by = .001), 1.5, 1),

 type = "l", xlab = "x", ylab = "Density",

 main = "Density of a beta(1.5, 1) / 2")

Figure 6.2

Chapter 6

[139]

Now we can write our function, called run(). All it requires is a seed, which is used
to make the parameter selection reproducible. A name can be specified, although
there is a default based on the seed, and there is an optional (logical) argument, run,
to control whether or not the model is run. This can be helpful if you want to check
the hyperparameter values sampled.

We sample the depth or number of layers from 1 to 5 and the number of neurons in
each layer from 20 to 600; by default each will have an equal probability. The runif()
function samples from a uniform distribution in the specified range, and we have
already seen the beta distribution, which we sample from using the rbeta() function.

Two new arguments we also randomly sample are rho and epsilon. These are used
because, rather than specifying the learning rate and momentum manually, we are
using (as H2O does by default) the ADADELTA algorithm (Zeiler, M. D. (2012)) to
automatically tune the learning rate. ADADELTA only has two hyperparameters
that need to be specified: rho and epsilon. ADADELTA works in part by examining
the previous gradients but, rather than store all previous gradients, a weighted
cumulative average is used. The rho parameter is used to weight the gradients
prior to the current iteration and 1 – rho is used to weight the gradient at the current
iteration. If rho = 1, then the current gradient is not used and it is completely based
on the previous gradients. If rho = 0, the previous gradients are not used and it is
completely based on the current gradient. Typically, values between .9 and .999
are used.

The epsilon parameter is a small constant that is added when taking the root mean
square of previous squared gradients to improve conditioning (it is ideal to avoid
this becoming actually zero) and is typically a very small number. Further details are
available from the paper presenting ADADELTA (Zeiler, M. D. (2012)):

run <- function(seed, name = paste0("m_", seed), run = TRUE) {

 set.seed(seed)

 p <- list(

 Name = name,

 seed = seed,

 depth = sample(1:5, 1),

 l1 = runif(1, 0, .01),

 l2 = runif(1, 0, .01),

 input_dropout = rbeta(1, 1, 12),

 rho = runif(1, .9, .999),

Tuning and Optimizing Models

[140]

 epsilon = runif(1, 1e-10, 1e-4))

 p$neurons <- sample(20:600, p$depth, TRUE)

 p$hidden_dropout <- rbeta(p$depth, 1.5, 1)/2

 if (run) {

 model <- h2o.deeplearning(

 x = colnames(use.train.x),

 y = "Outcome",

 training_frame = h2oactivity.train,

 activation = "RectifierWithDropout",

 hidden = p$neurons,

 epochs = 100,

 loss = "CrossEntropy",

 input_dropout_ratio = p$input_dropout,

 hidden_dropout_ratios = p$hidden_dropout,

 l1 = p$l1,

 l2 = p$l2,

 rho = p$rho,

 epsilon = p$epsilon,

 export_weights_and_biases = TRUE,

 model_id = p$Name

)

 ## performance on training data

 p$MSE <- h2o.mse(model)

 p$R2 <- h2o.r2(model)

 p$Logloss <- h2o.logloss(model)

 p$CM <- h2o.confusionMatrix(model)

 ## performance on testing data

 perf <- h2o.performance(model, h2oactivity.test)

 p$T.MSE <- h2o.mse(perf)

 p$T.R2 <- h2o.r2(perf)

 p$T.Logloss <- h2o.logloss(perf)

Chapter 6

[141]

 p$T.CM <- h2o.confusionMatrix(perf)

 } else {

 model <- NULL

 }

 return(list(

 Params = p,

 Model = model))

}

Before we can run the models, we need to load our data, which for this example is
the activity data:

use.train.x <- read.table("UCI HAR Dataset/train/X_train.txt")

use.test.x <- read.table("UCI HAR Dataset/test/X_test.txt")

use.train.y <- read.table("UCI HAR Dataset/train/y_train.txt")[[1]]

use.test.y <- read.table("UCI HAR Dataset/test/y_test.txt")[[1]]

use.train <- cbind(use.train.x, Outcome = factor(use.train.y))

use.test <- cbind(use.test.x, Outcome = factor(use.test.y))

use.labels <- read.table("UCI HAR Dataset/activity_labels.txt")

h2oactivity.train <- as.h2o(

 use.train,

 destination_frame = "h2oactivitytrain")

h2oactivity.test <- as.h2o(

 use.test,

 destination_frame = "h2oactivitytest")

In order to make the parameters reproducible, we specify a list of random seeds,
which we loop through to run the models:

use.seeds <- c(403L, 10L, 329737957L, -753102721L, 1148078598L,
-1945176688L,

-1395587021L, -1662228527L, 367521152L, 217718878L, 1370247081L,

Tuning and Optimizing Models

[142]

571790939L, -2065569174L, 1584125708L, 1987682639L, 818264581L,

1748945084L, 264331666L, 1408989837L, 2010310855L, 1080941998L,

1107560456L, -1697965045L, 1540094185L, 1807685560L, 2015326310L,

-1685044991L, 1348376467L, -1013192638L, -757809164L, 1815878135L,

-1183855123L, -91578748L, -1942404950L, -846262763L, -497569105L,

-1489909578L, 1992656608L, -778110429L, -313088703L, -758818768L,

-696909234L, 673359545L, 1084007115L, -1140731014L, -877493636L,

-1319881025L, 3030933L, -154241108L, -1831664254L)

The models can be run (although it takes some time) simply by looping through
the seeds:

model.res <- lapply(use.seeds, run)

Once the models are done, we can create a dataset, and plot the mean squared error
(MSE) against the different parameters, using the following code. The results are
shown in Figure 6.3:

model.res.dat <- do.call(rbind, lapply(model.res, function(x)
with(x$Params,

 data.frame(l1 = l1, l2 = l2,

 depth = depth, input_dropout = input_dropout,

 SumNeurons = sum(neurons),

 MeanHiddenDropout = mean(hidden_dropout),

 rho = rho, epsilon = epsilon, MSE = T.MSE))))

p.perf <- ggplot(melt(model.res.dat, id.vars = c("MSE")), aes(value,
MSE)) +

 geom_point() +

 stat_smooth(color = "black") +

 facet_wrap(~ variable, scales = "free_x", ncol = 2) +

 theme_classic()

print(p.perf)

Chapter 6

[143]

Figure 6.3

Tuning and Optimizing Models

[144]

In addition to viewing the univariate relations between parameters and the model
error, it can be helpful to use a multivariate model to simultaneously take different
parameters into account.

To fit this (and allow some non-linearity), we use a generalized additive model,
using the gam() function from the mgcv package. We specifically hypothesize an
interaction between the model depth and total number of hidden neurons, which
we capture by including both of those terms in a tensor expansion using the te()
function, with the remaining terms given univariate smooths, using the s() function.
The specifics here are not so important. The key is to somehow model the relation
between the hyperparameters and model performance in order to decide what
values should be chosen:

m.gam <- gam(MSE ~ s(l1, k = 4) +

 s(l2, k = 4) +

 s(input_dropout) +

 s(rho, k = 4) +

 s(epsilon, k = 4) +

 s(MeanHiddenDropout, k = 4) +

 te(depth, SumNeurons, k = 4),

 data = model.res.dat)

Now we can visualize the results. The first six univariate terms we plot on one graph,
using the following code; this is shown in Figure 6.4. The constant term is not shown,
so these values are not directly MSE estimates, but the key is to find the lowest point
for each hyperparameter:

par(mfrow = c(3, 2))

for (i in 1:6) {

 plot(m.gam, select = i)

}

Chapter 6

[145]

Figure 6.4

Tuning and Optimizing Models

[146]

Finally, we plot the interaction term with the following code:

plot(m.gam, select = 7)

The results are shown in Figure 6.5. This is a contour plot and shows each variable in
the interaction on the x and y axes. The actual MSE is not shown, but is labeled on the
lines. Because of the interaction, it is possible to get the same estimated MSE using
different combinations of the predictors. In general, it seems that, the more layers
there are, the more neurons are required to achieve a comparable performance:

Figure 6.5

Chapter 6

[147]

Based on these graphs, we chose hyperparameters and specify an optimized model in
the following code:

model.optimized <- h2o.deeplearning(

 x = colnames(use.train.x),

 y = "Outcome",

 training_frame = h2oactivity.train,

 activation = "RectifierWithDropout",

 hidden = c(300, 300, 300),

 epochs = 100,

 loss = "CrossEntropy",

 input_dropout_ratio = .08,

 hidden_dropout_ratios = c(.50, .50, .50),

 l1 = .002,

 l2 = 0,

 rho = .95,

 epsilon = 1e-10,

 export_weights_and_biases = TRUE,

 model_id = "optimized_model"

)

After training, we can estimate the model performance in the validation data by
using the h2o.performance() function and passing the optimized model and the
testing data as arguments:

H2OMultinomialMetrics: deeplearning

Test Set Metrics:

=====================

MSE: (Extract with `h2o.mse`) 0.053

R^2: (Extract with `h2o.r2`) 0.98

Logloss: (Extract with `h2o.logloss`) 0.18

Confusion Matrix: Extract with `h2o.confusionMatrix(<model>, <data>)`)

===

 X1 X2 X3 X4 X5 X6 Error Rate

1 491 0 5 0 0 0 0.010 5 / 496

2 12 457 1 0 1 0 0.030 14 / 471

Tuning and Optimizing Models

[148]

3 32 47 341 0 0 0 0.188 79 / 420

4 0 2 0 434 55 0 0.116 57 / 491

5 0 0 0 38 494 0 0.071 38 / 532

6 0 0 0 0 15 522 0.028 15 / 537

Totals 535 506 347 472 565 522 0.071 208 / 2,947

Hit Ratio Table: Extract with `h2o.hit_ratio_table(<model>, <data>)`

===

Top-6 Hit Ratios:

 k hit_ratio

1 1 0.929420

2 2 0.993892

3 3 0.998643

4 4 0.999661

5 5 1.000000

6 6 1.000000

Finally, we can compare the performance of our optimized model against the single
best model from the random search. Using the optimized parameters, we were able
to achieve an MSE of 0.053 in the testing data, a reduction of approximately 21%
from the single best model found during the random search:

model.res.dat[which.min(model.res.dat$MSE),]

 l1 l2 depth input_dropout SumNeurons MeanHiddenDropout

18 0.0024 0.00011 5 1e-04 2186 0.39

 rho epsilon MSE

18 0.96 3e-06 0.067

In this section we showed how to search a variety of hyperparameters and, using
graphs and some modeling, how to attempt to choose better hyperparameters. It
is also possible to optimize hyperparameters more formally, such as by using the
Spearmint library for Bayesian optimization of hyperparameters, available online
here: https://github.com/HIPS/Spearmint. Although these fine tuning and
optimization examples have only been shown for deep prediction models, they can
be applied to both prediction and anomaly detection.

https://github.com/HIPS/Spearmint

Chapter 6

[149]

Summary
With the techniques in Chapter 4, Identifying Anomalous Data and Chapter 5, Training
Deep Prediction Models, you should be able to set up and use deep auto-encoders to
learn features in data, identify outliers or anomalous values, and deep-feed forward
neural networks to predict new outcomes or classify data, such as images, speech, or
other data. Although just an introduction, the ideas and code from this book can get
you started using deep learning to solve real-world, practical problems.

Deep learning and artificial intelligence are very active areas of research. New tools
and techniques are coming out all the time and this book has only provided an
introduction to some of the standard and commonly used models in deep learning. It
is an exciting time to learn about this field, and I hope that this book has helped you
begin your journey.

[151]

Bibliography
The following are the references for all the citations throughout the book:

•	 Anguita, D., Ghio, A., Oneto, L., Parra, X., and Reyes-Ortiz, J. L. (2013). A
Public Domain Dataset for Human Activity Recognition Using Smartphones. 21th
European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning, ESANN 2013. Bruges (Belgium), 24-26 April 2013.

•	 Bengio, Y. (2012). Practical Recommendations for Gradient-Based Training of Deep
Architectures. In Neural Networks: Tricks of the Trade (pp. 437-478). Springer
Berlin Heidelberg. (Also on the arXiv: http://arxiv.org/pdf/1206.5533.
pdf)

•	 Bengio, Y., Courville, A., and Vincent, P. (2013). Representation Learning: A
Review and New Perspectives. Pattern Analysis and Machine Intelligence, IEEE
Transactions, 35(8), 1798-1828.

•	 Bergmeir, C., and Benítez, J. M. (2012). Neural Networks in R Using the Stuttgart
Neural Network Simulator: RSNNS. Journal of Statistical Software, 46(7), 1-26.

•	 Bishop, C. M. (2006). Pattern Recognition and Machine Learning, Springer.
•	 Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y. (2013).

Maxout Networks. arXiv preprint arXiv:1302.4389.
•	 Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. Second Edition. Springer.
•	 Hinton, G. E., Osindero, S., and Teh, Y. W. (2006). A fast learning algorithm for

deep belief nets. Neural Computation, 18 (7), 1527-1554.
•	 Kuhn, M. (2008). Building Predictive Models in R Using the caret Package. Journal

of Statistical Software, 28 (5), 1-26.

http://arxiv.org/pdf/1206.5533.pdf
http://arxiv.org/pdf/1206.5533.pdf

Appendix

[152]

•	 Kuhn, M. and Johnson, K. (2013). Applied Predictive Modeling. New York:
Springer.

•	 Lichman, M. (2013). UCI Machine Learning Repository (http://archive.ics.
uci.edu/ml). Irvine, CA: University of California, School of Information and
Computer Science.

•	 Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT press.
•	 Nair, V., and Hinton, G. E. (2010). Rectified Linear Units Improve Restricted

Boltzmann Machines. In Proceedings of the 27th International Conference on
Machine Learning (ICML-10) (pp. 807-814).

•	 Riedmiller, M., and Braun, H. (1993). A Direct Adaptive Method for Faster
Backpropagation Learning: The RPROP Algorithm. In Neural Networks, 1993,
IEEE International Conference.

•	 Schmidhuber, J. (2015). Deep Learning in Neural Networks: An Overview. Neural
Networks, 61, 85-117.

•	 Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting. The
Journal of Machine Learning Research, 15(1), 1929-1958.

•	 Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S-Plus.
Fourth Edition. Springer.

•	 Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P. A. (2008, July).
Extracting and Composing Robust Features with Denoising Autoencoders.
In Proceedings of the 25th International Conference on Machine Learning
(pp. 1096-1103). ACM.

•	 Zeiler, M. D. (2012). ADADELTA: An Adaptive Learning Rate Method. arXiv
preprint arXiv:1212.5701.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

[153]

Index
A
ADADELTA algorithm 139
auto-encoders

applying 88
building 84-88
data.table package, adding 71
denoising 71
models, fine-tuning 88-93
overcomplete 70
penalized 70
regularized 70
training, in R 71-83
undercomplete 69
use case 84
working 69

automatic classification
deep neural network, training for 112-121

B
bagging 60
bibliography 151, 152

C
caret package 19
Classification and Regression Training 19
Comprehensive R Archive Network

(CRAN)
about 9
URL 9

Convolutional Neural Network (CNN) 8

D
darch package 13
datasets

linking, to H2O cluster 15-17
Deep Belief Networks (DBNs) 6
deep feedforward neural networks 96-98
deep learning

about 2
deep neural network (DNN) 6-8
neural networks 2-5

deep learning, R packages
about 8
darch package 13
deepnet package 12
H2O package 13
neural networks 12
reproducible results, setting up 9-12

deep neural network (DNN)
about 6
model results, working with 123-130
new data, predicting 104-112
new data, training 104-112
training, for automatic

classification 112-121
URL 112

dropout
defining 60-64

E
Emacs Speaks Statistics (ESS) 8
ensembles

and model averaging 57-60
epochs 73

[154]

F
feedforward neural networks 96

G
ggplot2 package 78
glmnet 50
grandmother cell 2
gridExtra package 131

H
H2O

about 1, 13
datasets, linking 15, 16
initializing 14, 15
URL 9

H2O package 13
hidden neurons 4
Hogwild!

URL 73
hyperbolic tangent 98
hyperparameters

picking 100-103

I
inputs 4
integrated development environment

(IDE) 8
Iris dataset 132

K
Kaggle 20
K-means clustering 68

L
L1 penalty

defining 48, 49
working 50-52

L2 penalty
defining 52
weight decay 54-56
working 53, 54

learning rate 22

Least Absolute Shrinkage and Selection
Operator (lasso) 48

M
maxout 98
mean squared error (MSE) 75, 142
mgcv package 131
Million Song Dataset 112
missing data

dealing with 132-135
model averaging

and ensembles 57-60
models

grid search 135, 136
random search 137-148
with low accuracy, solutions 135

Modified National Institute of Standards
and Technology (MNIST) 62, 72, 100

N
neural network (NN)

about 2-6
applying 40-45
building 20-33, 40-45
in R 19, 20
predictions, generating from 35-37

nnet 19

O
Ordinary Least Squares (OLS) 48
overfitting data problem

about 37
consequences 38-40

P
predictions

about 2
generating, from neural network 35-37

R
R

and H2O, connecting 13
rectifier 98

[155]

Recurrent Neural Network (RNN) 8, 96
Restricted Boltzmann Machine (RBM) 6
R package checkpoint 9
RSNNS 12, 19
Rstudio 8

S
Spearmint library

URL 148
Stuttgart Neural Network Simulator

(SNNS) 12, 32
supervised learning 68

U
unsupervised learning 68, 69

V
Vincent Goulet

URL 8

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with
Deep Learning
	What is deep learning?
	Conceptual overview of neural networks
	Deep neural networks

	R packages for deep learning
	Setting up reproducible results
	Neural networks
	The deepnet package
	The darch package
	The H2O package

	Connecting R and H2O
	Initializing H2O
	Linking datasets to an H2O cluster

	Summary

	Chapter 2: Training a Prediction Model
	Neural networks in R
	Building a neural network
	Generating predictions from a neural network

	The problem of overfitting data – the consequences explained
	Use case – build and apply a neural network
	Summary

	Chapter 3: Preventing Overfitting
	L1 penalty
	L1 penalty in action

	L2 penalty
	L2 penalty in action
	Weight decay (L2 penalty in neural networks)

	Ensembles and model averaging
	Use case – improving out-of-sample model performance using dropout
	Summary

	Chapter 4: Identifying Anomalous Data
	Getting started with unsupervised learning
	How do auto-encoders work?
	Regularized auto-encoders
	Penalized auto-encoders
	Denoising auto-encoders

	Training an auto-encoder in R
	Use case: building and applying an
auto-encoder model
	Fine-tuning auto-encoder models
	Summary

	Chapter 5: Training Deep Prediction Models
	Getting started with deep feedforward neural networks
	Common activation functions – rectifiers, hyperbolic tangent, and maxout
	Picking hyperparameters
	Training and predicting new data from a deep neural network
	Use case – training a deep neural network for automatic classification
	Working with model results

	Summary

	Chapter 6: Tuning and Optimizing Models
	Dealing with missing data
	Solutions for models with low accuracy
	Grid search
	Random search

	Summary

	Appendix: Bibliography
	Index

