
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Raspberry Pi®

3rd Edition

by Sean McManus and Mike Cook

www.allitebooks.com

http://www.allitebooks.org

Raspberry Pi® For Dummies®, 3rd Edition
Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2017 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River
Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written
permission. Raspberry Pi is a registered trademark of Raspberry Pi Foundation All other trademarks are the property of
their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES
OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED
IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION
THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2017950656

ISBN: 978-1-119-41200-7; 978-1-119-41202-1  (ebk); 978-1-119-41201-4  (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

www.allitebooks.com

http://www.wiley.com
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com
http://www.allitebooks.org

Contents at a Glance
Introduction. . 1

Part 1: Setting Up Your Raspberry Pi. . 7
CHAPTER 1:	 Introducing the Raspberry Pi . . 9
CHAPTER 2:	 Downloading the Operating System. . 23
CHAPTER 3:	 Connecting Your Raspberry Pi . . 35

Part 2: Getting Started with Linux. . 57
CHAPTER 4:	 Using the Desktop Environment . . 59
CHAPTER 5:	 Using the Linux Shell . . 87

Part 3: Using the Raspberry Pi for Both Work and Play. . . 125
CHAPTER 6:	 Being Productive with the Raspberry Pi. . 127
CHAPTER 7:	 Editing Photos on the Raspberry Pi with GIMP. 139
CHAPTER 8:	 Playing Audio and Video on the Raspberry Pi. . 149

Part 4: Programming the Raspberry Pi . . 161
CHAPTER 9:	 Introducing Programming with Scratch. . 163
CHAPTER 10:	Programming an Arcade Game Using Scratch 183
CHAPTER 11:	Writing Programs in Python. . 207
CHAPTER 12:	Creating a Game with Python and Pygame Zero 239
CHAPTER 13:	Programming Minecraft with Python. . 257
CHAPTER 14:	Making Music with Sonic Pi. . 281

Part 5: Exploring Electronics with the Raspberry Pi. 297
CHAPTER 15:	Understanding Circuits . . 299
CHAPTER 16:	Taking Control of Your Pi’s Circuitry . . 321
CHAPTER 17:	Lots of Multicolored LEDs. . 357
CHAPTER 18:	Old McDonald’s Farm and Other RFID Adventures. 389

Part 6: The Part of Tens. . 425
CHAPTER 19:	Ten Great Software Packages for the Raspberry Pi 427
CHAPTER 20:	Ten Inspiring Projects for the Raspberry Pi. . 437

Appendix A: Troubleshooting and Configuring
the Raspberry Pi. . 445

Index. . 459

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents v

Table of Contents
INTRODUCTION . . 1

About This Book. . 1
Why You Need This Book. . 2
Foolish Assumptions. . 3
Icons Used in This Book. . 3
Beyond the Book. . 4
Where to Go from Here. . 4

PART 1: SETTING UP YOUR RASPBERRY PI 7

CHAPTER 1:	 Introducing the Raspberry Pi. . 9
Getting Familiar with the Raspberry Pi. . 11
Figuring Out What You Can Do with a Raspberry Pi. 14
Getting Your Hands on a Raspberry Pi. . 15
Determining What Else You Need. . 16

CHAPTER 2:	 Downloading the Operating System. 23
Introducing Linux . . 24
Creating a NOOBS Card. . 25

Downloading NOOBS. . 25
Formatting the SD card. . 26
Copying NOOBS to the SD or MicroSD card 30

Using Your NOOBS Card. . 32
Flashing an SD or MicroSD card . . 32

CHAPTER 3:	 Connecting Your Raspberry Pi. 35
Inserting the SD Card. . 37
Connecting the Raspberry Pi Camera Module 39

Connecting the camera on a Pi Zero W. . 40
Connecting the camera on other Raspberry Pi models. 40

Preparing Your Pi Zero or Zero W. . 41
Connecting a Monitor or TV. . 41

Connecting an HDMI or DVI display. . 42
Connecting a television using composite video. 42

Connecting a USB Hub. . 43
Connecting a Keyboard and Mouse. . 44
Connecting Audio . . 44
Connecting to Your Router. . 45
Connecting the Power and Turning on the Raspberry Pi 46

www.allitebooks.com

http://www.allitebooks.org

vi Raspberry Pi For Dummies

Logging In. . 50
Configuring Your Raspberry Pi in Raspbian. . 50
Configuring Your Wi-Fi . . 53
Configuring Bluetooth Devices. . 54
Testing the Camera Module. . 54
Setting Up the Data Partition. . 56
Taking Your Next Steps with the Raspberry Pi. 56

PART 2: GETTING STARTED WITH LINUX. . 57

CHAPTER 4:	 Using the Desktop Environment. . 59
Navigating the Desktop Environment . . 60

Using the Applications menu. . 60
Running programs that are not on the menu. 63
Resizing and closing program windows. . 63

Using the Task Manager. . 64
Using File Manager. . 65

Navigating File Manager. . 66
Copying and moving files and folders . . 69
Selecting multiple files and folders. . 70
Creating new folders and blank files . . 71
Deleting files and folders. . 71
Changing how files are displayed. . 72
Opening a folder in the terminal. . 73

Browsing the Web. . 74
Using Chromium to browse the web. . 74
Searching within web pages . . 76
Using tabbed browsing. . 76
Adding and using bookmarks. . 76
Protecting your privacy. . 77

Sending and Receiving Email with Claws Mail. . 78
Using the Image Viewer. . 79
Using the Text Editor. . 81
Customizing the Desktop. . 82
Finding and Installing New Applications . . 83
Backing Up Your Data. . 84
Logging Out from PIXEL and Shutting Down. . 85

CHAPTER 5:	 Using the Linux Shell. . 87
Understanding the Prompt. . 88
Exploring Your Linux System. . 88

Listing files and directories . . 88
Changing directories. . 89
Checking file types. . 89

www.allitebooks.com

http://www.allitebooks.org

Table of Contents vii

Changing to the parent directory. . 90
Understanding the directory tree. . 91
Using relative and absolute paths. .94
Investigating more advanced listing options. 96

Understanding the Long Listing Format and Permissions 99
Slowing Down the Listing and Reading Files with the
Less Command . . 102
Speeding Up Entering Commands. . 103
Using Redirection to Create Files . . 104
Creating Directories . . 106
Deleting Files . . 107
Using Wildcards to Select Multiple Files. . 108
Removing Directories. . 110
Copying and Renaming Files. . 111
Installing and Managing Software on Your Raspberry Pi 113

Updating the cache. . 114
Finding the package name. . 114
Installing software. . 115
Running software . . 116
Upgrading the software. . 116
Removing software and freeing up space. 117
Finding out what’s installed. . 118

Managing User Accounts on Your Raspberry Pi. 118
Learning More about Linux Commands . . 120
Customizing the Shell with Your Own Linux Commands 122
Shutting Down and Rebooting Your Raspberry Pi. 124

PART 3: USING THE RASPBERRY PI FOR BOTH
WORK AND PLAY. . 125

CHAPTER 6:	 Being Productive with the Raspberry Pi. 127
Installing LibreOffice on Your Raspberry Pi. . 128
Working with LibreOffice on the Raspberry Pi 128

Saving your work. . 129
Writing letters in LibreOffice Writer. . 129
Managing your budget in LibreOffice Calc. 131
Creating presentations in LibreOffice Impress. 134
Creating a party invitation with LibreOffice Draw 136

CHAPTER 7:	 Editing Photos on the Raspberry Pi with GIMP. . . . 139
Working with GIMP. . 140

Understanding the GIMP screen layout. . 140
Resizing an image in GIMP. . 142
Cropping your photo. . 144

www.allitebooks.com

http://www.allitebooks.org

viii Raspberry Pi For Dummies

Rotating and flipping your photo . . 145
Adjusting the colors. .145
Fixing imperfections. . 146
Converting images between different formats. 147

Finding Out More about GIMP. . 147

CHAPTER 8:	 Playing Audio and Video on the Raspberry Pi 149
Setting Up Your Media Center. . 149
Navigating the Media Center. . 150
Adding Media. . 151

Adding music. . 152
Adding videos. . 153
Adding pictures. . 154
Streaming media. . 155

Playing Music. . 155
Playing Videos . . 156
Viewing Photos . . 157
Changing the Settings. . 157
Using a Remote Control. . 158
Turning Off Your Media Center. . 158
Playing Music in the Desktop Environment. . 158

PART 4: PROGRAMMING THE RASPBERRY PI 161

CHAPTER 9:	 Introducing Programming with Scratch. 163
Understanding What Programming Is. . 164
Working with Scratch . . 164

Understanding the Scratch screen layout. 165
Positioning and resizing your sprite. . 166
Making your sprite move. . 167
Changing your sprite’s appearance . . 172
Adding sounds and music . . 176
Creating scripts . . 178
Using the Wait block to slow down your sprite. 180
Saving your work. . 180

What’s new in Scratch 2. . 181

CHAPTER 10:	Programming an Arcade Game Using Scratch 183
Starting a New Scratch Project and Deleting Sprites. 184
Changing the Background. . 185
Adding Sprites to Your Game . . 185
Drawing Sprites in Scratch. . 186
Naming Your Sprites. . 189

www.allitebooks.com

http://www.allitebooks.org

Table of Contents ix

Controlling When Scripts Run. . 190
Using the green flag to start scripts. . 190
Using the Forever Control block. . 191
Enabling keyboard control of a sprite . . 192
Enabling a sprite to control another sprite. 193

Using Random Numbers . . 195
Detecting When a Sprite Hits Another Sprite 196
Introducing Variables. . 197
Making Sprites Move Automatically. . 199
Fixing the Final Bug. . 201
Adding Scripts to the Stage . . 203
Duplicating Sprites . . 203
Playing Your Game. . 204
Adapting the Game’s Speed. . 204
Taking It Further with Scratch. . 205

CHAPTER 11:	Writing Programs in Python. . 207
Working with Python. . 208

Entering your first Python commands. . 208
Using the shell to calculate sums. . 210

Creating the Times Tables Program. . 212
Creating and running your first Python program. 213
Using variables. . 214
Accepting user input. . 216
Printing words, variables, and numbers together 216
Using for loops to repeat. . 218

Creating the Chatbot Program . . 221
Introducing lists. . 222
Using lists to make a random chat program. 225
Adding a while loop. . 227
Using a loop to force a reply from the user. 228
Using dictionaries . . 229
Creating your own functions. . 231
Creating the dictionary look-up function. . 234
Creating the main conversation loop. . 236
Final thoughts on Chatbot. . 236
The final Chatbot program. . 237

CHAPTER 12:	Creating a Game with Python
and Pygame Zero. . 239
Collecting Your Sounds and Images. . 240
Setting Up Your Folders. . 241

x Raspberry Pi For Dummies

Creating and Running Your First Program. . 241
Detecting mouse clicks. . 244
Animating your actors. .245
Using random numbers. . 247
Adding more clouds . . 248
Making the clouds regenerate. . 250
Enabling multiple clouds to be clicked. . 251
Adding the timer. . 253
Adjusting the game difficulty. . 253
The final game listing . . 254

Exploring Pygame Zero Further . . 256

CHAPTER 13:	Programming Minecraft with Python. 257
Playing Minecraft. . 258

Moving around. . 258
Making and breaking things. . 259

Preparing for Python. .260
Using the Minecraft Module . . 261

Understanding coordinates in Minecraft. . 261
Repositioning the player. . 262
Adding blocks. . 263
Stopping the player from changing the world 264
Setting the maze parameters . . 265
Laying the foundations. . 266
Placing the maze walls. . 267
Understanding the maze algorithm. . 268
Setting up the variables and lists . . 269
Creating the functions . . 270
Creating the main loop. . 271
Adding a ceiling. . 274
Positioning the player. . 274
The final code. . 275

Adapting the Program . . 279

CHAPTER 14:	Making Music with Sonic Pi. . 281
Understanding the Sonic Pi Screen Layout. . 282
Playing Your First Notes. . 283
Using Note and Chord Names. . 285
Writing Shorter Programs . . 286
Composing Random Tunes Using Shuffle. . 287
Changing the Random Number Seed. . 287
Using List Names in Your Programs. . 288
Playing Random Notes. . 288

Table of Contents xi

Experimenting with Live Loops. . 289
Using Samples. . 291
Adding Special Effects. . 292
Synchronizing with Your Drumbeat. . 293
Bringing It All Together. . 293
Next Steps with Sonic Pi. . 295

PART 5: EXPLORING ELECTRONICS
WITH THE RASPBERRY PI . . 297

CHAPTER 15:	Understanding Circuits. . 299
Discovering What a Circuit Is. . 300

Understanding the nature of electricity. . 300
Determining how a component needs to be treated. 307

Getting Familiar with the GPIO. . 308
Putting the general purpose in GPIO. . 309
Understanding what GPIOs do. . 309
Putting an output pin to practical use . . 311
Using GPIOs as inputs. . 313
Learning which end is hot: Getting to grips with a
soldering iron. . 314
Making a soldered joint . . 316

Looking at Ready-Made Add-On Boards. . 317
The Sense HAT. . 318
The Skywriter HAT. . 318
The Xtrinsic Sense board. . 319
Other boards. . 319

CHAPTER 16:	Taking Control of Your Pi’s Circuitry 321
Accessing Raspberry Pi’s GPIO Pins . . 321

Soldering the GPIO pins onto Pi Zero. . 323
Getting at all the pins with one connector. 324
Connecting things together. . 326

Your First Circuit . . 327
Bringing your LED to life. . 328
Using Scratch 1.4. . 328
Control the flashing speed with an input. . 329
Using Python . . 331
Using GPIO ZERO. . 334

Starting Out with a Dice Display. . 337
A dice display. . 337
The project. . 340
The numbers . . 340
The display. . 341
Taking it further. . 346

xii Raspberry Pi For Dummies

Pedestrian Crossing . . 347
The Pedestrian Crossing hardware. . 351
The Pedestrian Crossing software . . 352
Taking it further. . 356

CHAPTER 17:	Lots of Multicolored LEDs. . 357
Making Colors . . 359

Using diffusers. . 359
Making more colors . . 360

The Way Forward. . 362
Bit-banging the APA102C protocol. . 365
Creating a class . . 366

Rainbow Invaders. . 370
Keepy Uppy . . 375
LEDs Galore . . 378

Current limits. . 379
Signals and memory. . 379
Display update. . 381
Getting more LEDs . . 381

CHAPTER 18:	Old McDonald’s Farm and
Other RFID Adventures. . 389
How RFID Work. . 390

A MIFARE card’s structure . . 393
A simple RFID jukebox . . 395
A better RFID jukebox. . 397
Taking it further. . 401

Dressing Up a Paper Doll. . 401
Runway time. . 406

Old McDonald’s Farm. . 410
Making sound samples. . 411
Making the graphics. . 413

PART 6: THE PART OF TENS. . 425

CHAPTER 19:	Ten Great Software Packages for the
Raspberry Pi. . 427
Penguins Puzzle. . 428
FocusWriter . . 429
Mathematica . . 429
XInvaders 3D . . 431
Fraqtive. . 431
Tux Paint. . 432
Grisbi. . 433

Table of Contents xiii

Beneath a Steel Sky. . 434
Sense HAT Emulator. . 435
Brain Party. . 436

CHAPTER 20:	Ten Inspiring Projects for the Raspberry Pi. 437
One-Button Audiobook Player. . 437
Weather Station. . 438
Heart Rate Monitor. . 439
Electric Skateboard. . 439
T-Shirt Cannon. . 439
Panflute Hero. . 440
Magic Mirror. . 440
Pi in the Sky . . 441
Raspberry Turk . . 442
Sound Fighter. . 443

APPENDIX A: TROUBLESHOOTING AND
CONFIGURING THE RASPBERRY PI. . 445

INDEX. . 459

Introduction 1

Introduction

The Raspberry Pi is at the forefront of the maker movement, where people
make their own inventions using a mixture of traditional craft skills and
modern coding and electronics knowledge. It’s also given more and more

people access to a computer that provides a gateway into programming, electron-
ics, and the world of Linux — the technically powerful (and free) rival to Windows
and Mac OS. As a supercheap computer, the Raspberry Pi is also being pressed into
service in media centers and as a family computer for games, music, photo edit-
ing, and word processing.

Although the Raspberry Pi presents new opportunities to everyone, it can also be
a daunting prospect. It comes as a bare circuit board, so to do anything with it, you
need to add an operating system on an SD or microSD card and connect it up to a
screen, mouse, and keyboard. To get started, you need to learn a few basics of
Linux, or at least get acquainted with PIXEL, the graphical desktop. You might be
a geek who relishes learning new technologies, or you might be someone who
wants a new family computer to use with the children. In either case, Raspberry Pi
For Dummies, 3rd Edition, helps you get started with your Raspberry Pi and teaches
you about some of the many fun and inspiring things you can do with it.

About This Book
Raspberry Pi For Dummies, 3rd Edition, provides a concise and clear introduction to
the terminology, technology, and techniques that you need to get the most from
your Pi. With this book as your guide, you’ll learn how to

»» Connect your Raspberry Pi.

»» Change its settings so that it works optimally for you.

»» Discover and install great free software you can use on your Raspberry Pi.

»» Use the desktop environment to run programs, manage files, surf the web,
and view photos.

»» Use the Linux command line to manage your Raspberry Pi and its files.

»» Use the Raspberry Pi as a productivity tool.

2 Raspberry Pi For Dummies

»» Edit photos.

»» Play music and video.

»» Create animations and arcade games with the child-friendly Scratch program-
ming language.

»» Write your own games and other programs using the Python programming
language.

»» Compose music by programming with Sonic Pi.

»» Get started with electronics, from an introduction to soldering to the design
and creation of electronic projects controlled by the Raspberry Pi.

Incidentally, within this book, you may note that some web addresses break across
two lines of text. If you’re reading this book in print and want to visit one of these
web pages, simply key in the web address exactly as it’s noted in the text, pre-
tending as though the line break doesn’t exist. If you’re reading this as an ebook,
you’ve got it easy — just click or tap the web address to be taken directly to the
web page.

Why You Need This Book
After you shake the Raspberry Pi out of the little electrostatic bag it comes in, what
next?

This book answers that question. It enables you to get your Raspberry Pi up and
running and also introduces you to some of the great things you can do with it,
through satisfying practical projects. With this book as your companion, you can
write games and other programs and create your own electronic gadgets, all with
no prior programming knowledge.

The Raspberry Pi is most likely a bit different compared to other computers you’ve
used, so this book also helps you to do some of the things on your Pi that you
expect of every computer, such as play music and edit documents.

You can learn a lot of this through trial and error, of course, but that can be a
frustrating way to spend your time. Using this book as a reference, you can more
quickly start using your Raspberry Pi, whatever you plan to do with it.

Introduction 3

Foolish Assumptions
Raspberry Pi For Dummies, 3rd Edition, is written for beginners, by which we mean
people who have never used a similar computer. However, we do have to make a
few assumptions in writing this book, because we wouldn’t have enough space for
all its cool projects if we had to start by explaining what a mouse is! Here are our
assumptions:

»» You are familiar with other computers, such as Windows or Apple
computers. In particular, we assume that you’re familiar with using windows,
icons, and the keyboard and mouse, and that you know the basics of using
your computer for things like browsing the Internet, writing letters, or
copying files.

»» The Raspberry Pi is not your only computer. At times, you’ll need to have
access to another computer — for example, to create your SD or microSD
card for the Pi. (See Chapter 2.) When it comes to networking, we assume you
already have a router set up with an Internet connection and a spare port that
you can plug the Raspberry Pi into.

»» The Raspberry Pi is your first Linux-based computer. If you’re a Linux
ninja, this book still gives you a solid reference on the Raspberry Pi and the
version of Linux it uses, but no prior Linux knowledge is required.

»» You share our excitement. The Raspberry Pi can open up a world of
possibilities to you!

Other than these assumptions, we hope this book is approachable for everyone.
The Raspberry Pi is being adopted in classrooms and youth groups, and this book
is a useful resource for teachers and students. The Raspberry Pi is also finding its
way into many homes, where people of all ages (from children to adults) are using
it for education and entertainment.

Icons Used in This Book
If you’ve read other For Dummies books, you know that they use icons in the mar-
gin to call attention to particularly important or useful ideas in the text. In this
book, we use four such icons:

The Tip icon highlights expert shortcuts or simple ideas that can make life easier
for you.

4 Raspberry Pi For Dummies

Arguably, the whole book talks about technical stuff, but this icon highlights
something that’s particularly technical. We’ve tried to avoid unnecessary jargon
and complexity, but some background information can give you a better under-
standing of what you’re doing, and sometimes we do need to get quite techy,
given the sophistication of the projects you’re doing. Paragraphs highlighted with
this icon might be worth rereading, to make sure you understand, or you might
decide that you don’t need to know that much detail. It’s up to you!

Although we’d like to think that reading this book is an unforgettable experience,
we’ve highlighted some points that you might want to particularly commit to
memory. They’re either important takeaways, or they’re fundamental to the proj-
ect you’re working on.

As you would do on the road, slow down when you see a Warning icon. It high-
lights an area where things could go wrong.

Beyond the Book
In addition to what you’re reading right now, this book comes with a free access-
anywhere Cheat Sheet with tips on installing software and using Scratch. To get
this Cheat Sheet, simply go to www.dummies.com and type Raspberry Pi Dummies
Cheat Sheet in the Search box.

Also be sure to check out this book’s companion website (www.dummies.com/
extras/raspberrypi3e), where you can download the code listings that appear
throughout this book, as well as two bonus appendices (one on The GPIO on the
Raspberry Pi and one on the RISC OS) as well as a bonus chapter on Mathematica,
a mathematical program.

Both of us maintain our own personal websites too, which contain some addi-
tional information on the Raspberry Pi. Mike’s is at www.thebox.myzen.co.uk/
Raspberry/Punnet.html, and Sean’s is at www.sean.co.uk.

Where to Go from Here
It’s up to you how you read this book. It’s been organized to take you on a journey
from acquiring and setting up your Raspberry Pi to learning the software that
comes with it, and from writing your own programs to finally creating your own

http://www.dummies.com/
http://www.dummies.com/extras/raspberrypi3e
http://www.dummies.com/extras/raspberrypi3e
http://www.thebox.myzen.co.uk/Raspberry/Punnet.html
http://www.thebox.myzen.co.uk/Raspberry/Punnet.html
http://www.sean.co.uk

Introduction 5

electronics projects. Some chapters build on knowledge gained in earlier chapters,
especially the sections on Scratch and Python — and all of Part 5.

We understand, though, that some projects or topics might interest you more than
others, and you might need help in some areas right now. When a chapter assumes
knowledge from elsewhere, we include cross-references to help you quickly find
what you might have missed. We also include some signposts to future chapters,
so you can skip ahead to a later chapter if it provides the quickest answer for you.

If you haven’t set up your Pi yet, start with Part 1. If you have your Pi up and
running, Part 2 shows you how to use the software on it. Part 3 covers productiv-
ity, creativity, and entertainment software. To flex your programming muscles,
perhaps for the first time, read Part 4. You can learn Scratch, Python, or Sonic Pi
here, and feel free to start with any one of those languages. The Python chapters
provide a good foundation for Part 5, where you can start building your own
electronics projects.

1Setting Up Your
Raspberry Pi

IN THIS PART . . .

Get to know the Raspberry Pi and what other
equipment you will need to be able to use it.

Download the Linux operating system and prepare an
SD or MicroSD card for use on your Raspberry Pi.

Connect your Raspberry Pi to the power, USB hub,
keyboard, mouse, and screen.

Install and test the Raspberry Pi Camera Module.

Change the settings on your Raspberry Pi.

CHAPTER 1 Introducing the Raspberry Pi 9

Chapter 1

IN THIS CHAPTER

»» Getting up close and personal with
the Raspberry Pi

»» Taking stock of your Raspberry Pi

»» Determining its limitations

»» Purchasing your very own Raspberry Pi

»» Figuring out what else you need

Introducing the
Raspberry Pi

The Raspberry Pi is perhaps the most inspiring computer available today.
Although most of the computing devices being used (including phones,
tablets, and game consoles) are designed to stop people from tinkering with

them, the Raspberry Pi is exactly the opposite. From the moment you see its shiny
green circuit board, it invites you to prod it, play with it, and create with it. It
comes with the tools you need to start creating your own software (or program-
ming), and you can connect your own electronic inventions to it. It’s cheap enough
that if you break it, it won’t break the bank, so you can experiment with
confidence.

Lots of people are fired up about its potential, and they’re discovering exciting
new ways to use it. Dave Akerman (www.daveakerman.com) and friends attached
one to a weather balloon and sent it nearly 40 kilometers high to take pictures of
the Earth from near space using a webcam. (You can read about Dave’s ballooning
project in Chapter 20.)

Professor Simon Cox and his team at the University of Southampton connected
64 Raspberry Pi boards to build an experimental supercomputer, held together by
Lego bricks. In the supercomputer (see Figure 1-1), the Raspberry Pis work
together to solve a single problem. The project has been able to cut the cost of a

http://www.daveakerman.com/

10 PART 1 Setting Up Your Raspberry Pi

supercomputer from millions of dollars to thousands or even hundreds of dollars,
making supercomputing much more accessible to schools and students. Others
have also experimented with combining the processing power of multiple Pis.
There’s even an off-the-shelf kit you can use to combine four Raspberry Pi Zeros
with a full-size Raspberry Pi (the Cluster HAT from Pimoroni) so that you can
experiment with running programs across multiple Pis at the same time.

The Pi is also being used to make weather stations, fitness gadgets, gaming
devices, audiobook players, electric skateboards, and much more, as you discover
in Chapter 20.

Although those projects are grabbing headlines, another story is less visible but
more important: the thousands of people of all ages who are taking their first
steps in computer science, thanks to the Raspberry Pi.

Both of the authors of this book used computers in the 1980s, when the notion of
a home computer first became a reality. Back then, computers were less friendly
than they are today. When you switched them on, you were faced with a flashing
cursor and had to type something in to get it to do anything. As a result, though,
a whole generation grew up knowing at least a little bit about how to give the
computer commands, and how to create programs for it. As computers started to
use mice and windows, people didn’t need those skills any more, and they lost
touch with them.

FIGURE 1-1:
Two of the

Raspberry Pi
boards used in

the University of
Southampton’s

supercomputer,
with the rest of
the supercom-

puter in the
background.

Courtesy of Simon Cox and Glenn Harris, University of Southampton.

CHAPTER 1 Introducing the Raspberry Pi 11

Eben Upton, designer of the Raspberry Pi, noticed the slide in skill levels when he was
working at Cambridge University’s computer laboratory in 2006. Students applying
to study computer science started to have less experience with programming than
students of the past did. Upton and his university colleagues hatched the idea of cre-
ating a computer that would come supplied with all the tools needed to program
it — and would sell for a target price of $25 (about £20). It had to be able to do other
interesting things, too, so that people were drawn to use it, and it had to be robust
enough to survive being pushed in and out of school bags hundreds of times.

That idea started a six-year journey that led to the Raspberry Pi you probably
have on your desk you as you read this book. It was released in February 2012, and
sold half a million units by the end of the quarter. By July 2017, there were more
than 14 million Raspberry Pis in homes, schools and workplaces, 10 million of
them made in the UK. It is, by a large margin, the best-selling British computer of
all time.

Getting Familiar with the Raspberry Pi
When your Raspberry Pi arrives, you’ll see that it’s a circuit board, with compo-
nents and sockets stuck on it, as shown in Figure 1-2. In an age when most comput-
ing devices are sleek and shiny boxes, the spiky Pi, with tiny codes printed in white
all over it, seems alien. That’s a big part of its appeal, though: Many of the cases you
can buy for the Raspberry Pi are transparent because people love the look of it.

FIGURE 1-2:
The Raspberry Pi

3 Model B (top
left), Model A+

(top right), and Pi
Zero W (bottom).

12 PART 1 Setting Up Your Raspberry Pi

Over the years, the Raspberry Pi has evolved, increasing its memory, improving its
performance, and adding features. So which one should you get? Here’s an over-
view designed to help you decide:

»» Raspberry Pi 3 Model B: The third generation of the Raspberry Pi, it repre-
sents the best all-round Raspberry Pi at the time of writing. According to
the Raspberry Pi Foundation, it is 50 to 60 percent faster than the previous
model, and ten times faster than the original Raspberry Pi. It includes 1GB of
memory, four USB ports, built-in Wi-Fi and Bluetooth, and an Ethernet port for
a wired Internet connection. It has 40 General Purpose Input/Output (GPIO)
pins, which you can use to connect to your own electronics projects. Like
previous Pi models, it’s about the size of a credit card. As with any current
Raspberry Pi, it uses a MicroSD card for storage. If you’re not sure which
model to get and your budget allows, get this one. It represents the fastest
performance, and offers the best experience on the desktop. Its price is
around $35 (about £30).

It’s called the Model B, incidentally, as a tribute to the BBC Microcomputer that
was popular in the U.K. in the 1980s. It’s sobering to think that the BBC Micro
cost about ten times the price of a Raspberry Pi, which, thanks to 35 years of
progress in computer science, has more than 7,800 times more memory.

»» Raspberry Pi 1 Model A+: A cut-down model, it is ideal for projects that need
lower power consumption — typically battery-based projects. It is suitable for
robots and projects in remote locations, where a wired electricity supply isn’t
viable and batteries must be used instead. It does not have an Ethernet
socket, and only has one USB port, although you can connect it to a USB hub
to use more devices simultaneously. It does have the full complement of
40 GPIO pins, though, so you should find that your projects and add-ons
work with it. Like the Model B, it includes an audio output (headphones-style)
socket. This model has 512MB of memory and a price of $20 (or £20). The
Model A+ is slightly shorter on the long side than the Raspberry Pi 3, measur-
ing 6.5 centimeters by 5.5 centimeters.

»» Raspberry Pi Zero: The Raspberry Pi Foundation astounded everyone when it
gave this computer away with the print edition of its magazine The MagPi. The
Raspberry Pi Zero measures 6.5 centimeters by 3 centimeters, is extremely
lightweight, and has 512MB of memory and one Micro USB port. If you want
to use the GPIO, you’ll need to solder or affix your own pins, available
separately. (You can read about adding GPIO pins to the Pi Zero in
Chapter 16.) You’ll also need a converter for the Mini HDMI socket, and for the
Micro USB socket, so you should expect to spend a bit more than the price of
the Pi (and have a bit more complexity in your setup). Billed as the $5
computer, the Raspberry Pi Zero has at times been difficult to get hold of,
which is perhaps not surprising given the phenomenal demand for it.

CHAPTER 1 Introducing the Raspberry Pi 13

»» Raspberry Pi Zero W: Released in February 2017, the Raspberry Pi Zero W
added Wi-Fi and Bluetooth, and compatibility with the Raspberry Pi Camera
Module. The Pi Zero W costs around $10 (or about £10). If you’re happy to
solder your own GPIO pins, or you don’t need them, the Raspberry Pi Zero or
Zero W represents a great entry point to the Raspberry Pi family. After the
Raspberry Pi Model 3, the Pi Zero W is our recommended best buy.

Of course, the older Raspberry Pis are still out there. Recent models usually remain
in production while there is demand, and you can buy secondhand versions online
from websites such as eBay. Generally speaking, the newer the model, the faster
its performance. Memory upgrades have made a difference, as well as the use of
more powerful processors, as the Pi has evolved. There are plenty of uses for the
Pi that don’t need especially fast performance, though, so you might find that an
older Pi is perfect for your project. The older models are described in this list:

»» Raspberry Pi 1 Model B with 256MB memory: Although it’s called Model B,
this was the first Raspberry Pi to be released, in February 2012. The Raspberry
Pi Model B features an Ethernet connection for the Internet and two USB
ports. It uses an SD card for storage.

»» Raspberry Pi 1 Model B with 512MB memory: Released in October 2012,
the Raspberry Pi Model B had twice the memory capacity. This improved the
speed of some software, especially applications that used images heavily.

»» Raspberry Pi 1 Model A: The Model A, released in February 2013, is a
stripped-down version of the Model B. It has just one USB port and doesn’t
have an Ethernet port for connecting to the Internet. It has 256MB of memory.

»» Raspberry Pi 1 Model B+: The Model B+, released in July 2014, has been
described by the Raspberry Pi Foundation as “the final evolution of the
original Raspberry Pi.” It runs all the same software as the previous versions of
the Raspberry Pi, but it has four USB ports, more GPIO pins for connecting
electronics projects to the Pi, and lower power consumption and better audio
than the Model B. In common with the Model B, it has 512MB of memory.
Although all previous versions use SD cards for data storage, the Model B+
introduced the smaller MicroSD cards, which are now standard on the
Raspberry Pi.

»» Raspberry Pi 2 Model B: Launched in February 2015, this model doubled the
memory on the Model B+ to 1GB. It increased performance, compared to the
Model B+, while retaining its physical features. Over the years the Pi’s
performance has been improved through new software releases as well as
updates to the hardware. The Pi 2 represents an immediately noticeable
speed-up, compared to the Model B+.

14 PART 1 Setting Up Your Raspberry Pi

If you’re using anything earlier than the Model B+, you’ll need full-size SD cards
(not MicroSD) for storage, and you’ll only have 26 GPIO pins to play with. Current
add-ons are unlikely to be compatible with the early boards, so check their
requirements before you buy.

In this book, we offer guidance on older models where possible but will assume
you’re using at least a Model B+ for the projects. For best performance, we recom-
mend using a current model, if possible.

You’ll also see the Raspberry Pi Compute Module in the online stores alongside the
Raspberry Pi, but this is something quite different. It’s aimed at engineers creat-
ing industrial applications (known as embedded systems) or products based on
Raspberry Pi technology. We only mention it here in case you wonder what it is:
It’s not covered further in this book, and it’s almost certainly not what you want
to buy for your first Raspberry Pi.

The Raspberry Pi was made possible in part by the advances in mobile computer
chips that have happened in recent years. At its heart is a Broadcom chip (BCM2835,
BCM2836, or BCM2837) that contains an ARM central processing unit (CPU) and a
Videocore IV graphics processing unit (GPU). The CPU and GPU share the memory
between them. The GPU is powerful enough to be able to handle Blu-ray quality
video playback.

Instead of running Windows or Mac OS, the Raspberry Pi uses an operating system
called Linux. It’s a leading example of open source, a completely different philoso-
phy to the commercial software industry. Rather than being created within the
heavily guarded walls of a company, with its design treated as a trade secret, Linux
is built by companies and expert volunteers working together. Anyone is free to
inspect and modify the source code (a bit like the recipe) that makes it work. You
don’t have to pay to use Linux, and you’re allowed to share it with other people, too.

You probably won’t be able to run the software you have on your other computers
on your Raspberry Pi. It won’t run Windows or Mac software, and not all Linux
software works on the Raspberry Pi. But a lot of Linux software that is compatible
with the Raspberry Pi is available and is free of charge.

Figuring Out What You Can Do
with a Raspberry Pi

The Raspberry Pi is a fully featured computer, and you can do almost anything
with it that you can do with a desktop computer.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 Introducing the Raspberry Pi 15

It has a graphical windows desktop to start and manage programs (see Chapter 4)
as well as a shell for accepting text commands. (See Chapter 5.) You can use it for
browsing the Internet (see Chapter 4), or for word processing and spreadsheets
(see Chapter 6), or for editing photos. (See Chapter 7.) You can use it for playing
back music or video (see Chapter 8) or for playing games. (See Chapter 19.) You
can use the built-in software to write your own music, too. (See Chapter 14.) It’s
the perfect tool for homework, but it’s also a useful computer for writing letters,
managing your accounts, and paying bills online.

The Raspberry Pi is at its best, however, when it’s being used to learn how com-
puters work, and how you can create your own programs or electronics projects
using them. It comes with Scratch (see Chapter 9), which enables people of all
ages to create their own animations and games while learning some of the core
concepts of computer programming along the way.

It also comes with Python (see Chapter 11), a professional programming language
used by YouTube, Google, and Industrial Light & Magic (the special effects gurus
for the Star Wars films), among many others.

It has GPIO pins on it that you can use to connect up your own circuits to the
Raspberry Pi, so you can use your Raspberry Pi to control other devices and to
receive and interpret signals from them. In Part 5, we show you how to build some
electronic projects controlled by the Raspberry Pi.

Getting Your Hands on a Raspberry Pi
One of the great things about the Raspberry Pi is that it’s established a
community of businesses that have created products for it, or have shared in its
success by selling it. You can now buy the Raspberry Pi from a wide range of
electronics companies for hobbyists. Global retailers include Pimoroni
(www.pimoroni.com), The Pi Hut (https://thepihut.com), and Adafruit
(www.adafruit.com). It’s also available from the Raspberry Pi’s distributors, RS
Components (www.rs-components.com) and Element14 (www.element14.com).

You might also be able to buy it from your local computer or electronics store,
although you’ll probably find it’s only available as part of a kit there. Shops often
bundle the Raspberry Pi with other items you need to use it. It can be convenient
to get everything at once, but it might not represent the cheapest way to get
started.

http://www.pimoroni.com/
https://thepihut.com/
https://www.adafruit.com/
http://www.rs-components.com/
http://www.element14.com/

16 PART 1 Setting Up Your Raspberry Pi

Determining What Else You Need
The creators of Raspberry Pi have stripped costs to the bone to enable you to own
a fully featured computer for less than $35, so you’ll need to scavenge or buy a few
other bits and pieces in order to use your Pi. We say scavenge because the things
you need are exactly the kind of things many people have lying around their house
or garage already, or can easily pick up from friends or neighbors. In particular, if
you’re using a Raspberry Pi as your second computer, you probably have most of
the peripherals you need. That said, you might find they’re not fully compatible
with the Raspberry Pi and you need to buy replacements to use with the Pi.

Here’s a checklist of what else you might need:

»» Monitor: The Raspberry Pi has a high-definition video feed and uses an HDMI
(high-definition multimedia interface) connection for it. If your monitor has an
HDMI socket, you can connect the Raspberry Pi directly to it. If your monitor
does not support HDMI, it probably has a DVI socket, and you can get a simple
and cheap converter that enables you to connect an HDMI cable to it. Older
VGA (video graphics array) monitors require a device to convert the HDMI
signal into a VGA one. If you’re thinking of buying a converter, check online first
to see whether it works with the Raspberry Pi. A lot of cheap cables are just
cables, when what you need is a device that converts the signal from HDMI
format to VGA, not one that just fits into the sockets on the screen and your
Raspberry Pi. These converters can be quite expensive, so Gert van Loo has
designed a device that uses the Raspberry Pi’s GPIO pins to connect to a VGA
monitor. He’s published the design specs so that anyone can build one, and
sell it if she wants to, too. Take a look at eBay if you need one, and you might
well find what you need. For more information, check out www.raspberrypi.
org/blog/gert-vga-adapter. (If your monitor is connected using a blue plug
and the connector has three rows of five pins in it, it’s probably a VGA monitor.)

»» TV: You can connect your Raspberry Pi to a high-definition TV using the HDMI
socket and should experience a crisp picture. If you have an old television in
the garage, you can also press it into service for your Raspberry Pi. The Pi can
send a composite video signal, so it can use a TV as its display. When we tried
this, it worked but the text lacked definition, which made it difficult to read. If
a TV is your only option, see Appendix A for advice on tweaking the settings to
get the clearest possible picture. It’s better to use a computer monitor if you
can, though. You’ll need to get a cable with the right connector to fit your Pi:
The Model A and Model B have a dedicated RCA video socket, but later
models use the headphone socket for RCA video output, too.

»» USB hub: The Raspberry Pi has one, two, or four USB sockets (depending on
the model you get). Consider using a powered USB hub, for two reasons.

https://www.raspberrypi.org/blog/gert-vga-adapter/
https://www.raspberrypi.org/blog/gert-vga-adapter/

CHAPTER 1 Introducing the Raspberry Pi 17

Firstly (and especially if you have a Model A, A+, B, or Zero), you’re going to
want to connect other devices to your Pi at the same time as your keyboard
and mouse, which need two sockets. And secondly, a USB hub provides
external power to your devices and minimizes the likelihood of experiencing
problems using your Raspberry Pi, especially if connecting relatively power-
intensive devices such as hard drives. Make sure your USB hub has its own
power source, independent of the Raspberry Pi.

»» USB keyboard and mouse: The Raspberry Pi only supports USB keyboards
and mice, so if you’re still using ones with PS/2 connectors (round rather than
flat), you need to replace them.

When the Raspberry Pi behaves unpredictably, it can be because the key-
board is drawing too much power, so avoid keyboards with too many flashing
lights and features.

»» MicroSD card or SD card: The Raspberry Pi doesn’t have a hard drive built into
it, so it uses a MicroSD card (current models) or SD card (older models,
excluding the Model B+) as its main storage. You probably have some SD cards
that you use for your digital camera, although you might need to get a higher-
capacity one. We recommend an 8GB card as a minimum, but you can use a
4GB card if you use a media center operating system (OS) like LibreELEC. (See
Chapter 8 for a guide to LibreELEC.) Even that isn’t much space compared to
the hard drive on a modern computer, but you can use other storage devices
such as external hard drives with your Raspberry Pi, too. SD and MicroSD cards
have different class numbers that indicate how fast you can copy information
to and from them. The Raspberry Pi Foundation recommends its branded Class
6 card as a good value and high-performing solution, although online retailers
often sell a Class 10 card for this purpose. You will be fine with a Class 6 or
higher. The easiest way to get started with the Raspberry Pi is to buy a card with
the NOOBS software already on it. (See Chapter 2 for more on NOOBS.) Online
retailers, including those mentioned earlier for buying the Pi itself, usually sell
an 8GB or 16GB MicroSD card that has the NOOBS software preloaded on it. It
comes with an SD card adapter, shown in Figure 1-3, so the card fits the older
models (with the adapter) and newer models (without it).

»» SD or MicroSD card writer: Many PCs today have a slot for SD or MicroSD
cards, so you can easily copy photos from your camera to your computer. If
yours doesn’t, you might want to consider getting an SD or MicroSD card
writer to connect to your computer. You can use it to copy software to an SD
card for use with your Raspberry Pi, but you won’t be able to use it to copy
files from your Raspberry Pi to a Windows computer. Alternatively, as we’ve
said, you can buy a MicroSD card with an SD adapter that has the Raspberry Pi
software already on it. You can also use the card writer to create a backup
copy of your Raspberry Pi’s files and software. (You can read about making
back-ups in Chapter 4.)

18 PART 1 Setting Up Your Raspberry Pi

»» USB key: A USB key (also known as flash drive or memory stick) can be fairly
cheap and high-capacity now (a 64GB USB key is readily affordable), which
makes it an ideal complement to your Raspberry Pi. You can transfer files
between your PC and your Raspberry Pi using a USB key, too.

»» USB Wi-Fi adapter: The Model A and A+ don’t have an Ethernet socket, so if
you want to connect to the Internet, you’ll need a USB Wi-Fi adapter. You
might already have one of these from a laptop. Some are incompatible with
the Raspberry Pi, but companies that sell the Pi usually sell a compatible Wi-Fi
adapter, too. There is an official Raspberry Pi Wi-Fi adapter, available from the
usual Pi retailers.

»» External hard drive: If you want lots of storage, perhaps so that you can use
your music or video collection with the Raspberry Pi, you can connect an
external hard drive to it over USB. You’ll need to connect your hard drive
through a powered USB hub, or use a hard drive that has its own external
power source.

»» Raspberry Pi Camera Module: The Raspberry Pi has stimulated entrepre-
neurs to create all kinds of add-ons for it, but the Camera Module is a product
that originated at the Raspberry Pi Foundation. This 8-megapixel, fixed-focus
camera can be used to shoot HD video and take still photos. There is also a
version without an infrared filter (the PiNoIR Camera), which can be used for
wildlife photography at night or weird special effects by day.

FIGURE 1-3:
A NOOBS card.

The MicroSD card
fits into the SD

card adapter. The
MicroSD card
works on the

current Pi models,
and inside the

adapter it also fits
the older Model A

and Model B.

CHAPTER 1 Introducing the Raspberry Pi 19

»» Speakers: The Raspberry Pi has a standard audio out socket, compatible with
headphones and PC speakers that use a 3.5mm audio jack. You can plug
headphones directly into it, or use the audio jack to connect to speakers, a
stereo, or a TV. If you’re using a TV or stereo for sound, you can get a cable
that connects the 3.5mm audio jack and the audio input(s) on your television
or stereo. You won’t always need speakers: If you’re using an HDMI connec-
tion, the audio is sent to the screen with the video signal, so you won’t need
separate speakers — but note that this doesn’t work if you use a DVI monitor.

»» Power supply: The Raspberry Pi uses a Micro USB connector for its power
supply, and is theoretically compatible with a lot of mobile phone and tablet
chargers. In practice, many of these can’t deliver enough current (up to 700
milliamperes for a Model A+ and up to 2500 milliamperes for a Raspberry Pi
3 Model B), which can make the Raspberry Pi perform unreliably. It’s worth
checking to see whether you have a 5V charger that might do the job (it should
say on it how much current it provides), but for best results, we recommend
buying a compatible charger from the same company that you buy your
Raspberry Pi from. There is an official Raspberry Pi power supply available,
which works in the U.K., Europe, the U.S./Japan, and Australia/China. For
mobile applications, it’s possible to power the Raspberry Pi using a battery
pack designed for mobile phone charging. Don’t try to power the Pi by
connecting its Micro USB port to the USB port on your PC with a cable, because
your computer probably can’t provide enough power for your Pi. You can also
power the Pi through the GPIO pins, but you could damage the Raspberry Pi if
there is a spike in current or the wrong voltage is applied. If you want to
provide power through the GPIO pins, a safer approach is to use a HAT device
(Hardware Attached on Top) designed to sit on the GPIO pins and provide the
consistent power you need while protecting the Pi underneath. The Raspberry
Pi Foundation advises that you should only use batteries to power your
Raspberry Pi if you know what you’re doing, because there’s a risk of damaging
your Raspberry Pi. For more details on the power requirements of various
Raspberry Pi models, consult the FAQ at www.raspberrypi.org/help/faqs/.

»» Case: It’s safe to operate your Raspberry Pi as is, but many people prefer to
protect it from spills and precariously stacked desk clutter by getting a case
for it. You can buy plastic cases on eBay (www.ebay.com), many of which are
transparent, so you can still admire the circuitry and see the Pi’s LED lights.
These cases typically come supplied as simple kits for you to assemble. The
Pibow Coupe (https://shop.pimoroni.com/collections/pibow) is one of
the most attractively designed cases, assembled from layers of colored plastic.
(See Figure 1-4.) It’s designed by Paul Beech, who designed the Raspberry Pi
logo. There are also official red-and-white cases for the Raspberry Pi 3
(compatible with the B+ and later models) and the Raspberry Pi Zero. The case
for the Pi Zero includes three different tops, so you can either seal it, leave a
camera hole, or have access to the GPIO pins. You don’t have to buy a case,

https://www.raspberrypi.org/help/faqs/
http://www.ebay.com/
https://shop.pimoroni.com/collections/pibow

20 PART 1 Setting Up Your Raspberry Pi

though. You can go without or make your own using cardboard or Lego
bricks. Whatever case you go with, make sure you can still access the GPIO
pins so that you can experiment with connecting your Pi to electronic circuits
and try the projects in Part 5 of this book.

»» Cables: You’ll need cables to connect it all up, too. In particular, you need an
HDMI cable (if you’re using an HDMI or DVI monitor), an HDMI-to-DVI adapter
(if you’re using a DVI monitor), an RCA cable (if you’re connecting to an older
television), an audio cable (if you’re connecting the audio jack to your stereo),
and an Ethernet cable (for networking on models with an Ethernet port). Note
that current Raspberry Pi models send the RCA video signal through a 3.5mm
jack (headphone socket), and earlier ones had a dedicated RCA socket. You will
need a different cable, depending on which version of the Pi’s design you have.
If you have a Raspberry Pi Zero, you will also need a converter for the Mini
HDMI socket, and for the Micro USB socket. You can get these cables from an
electrical-components retailer and might be able to buy them at the same time
as you buy your Raspberry Pi. Any other cables you need (for example, to
connect to PC speakers or a USB hub) should come with those devices.

FIGURE 1-4:
The Pibow Coupe

case for the
Raspberry Pi 3,

Pi 2, and
Model B+.

CHAPTER 1 Introducing the Raspberry Pi 21

The Raspberry Pi has been designed to be used with whatever accessories you have
lying around, to minimize the cost of getting started, but in practice not all devices
are compatible. In particular, incompatible USB hubs, keyboards, and mice can
cause problems that are hard to diagnose. USB hubs that feed power back into your
Raspberry Pi through the Pi’s USB port (known as backpowering) could potentially
cause damage to the Raspberry Pi if they feed in too much power.

A list of compatible and incompatible devices is maintained at http://elinux.
org/RPi_VerifiedPeripherals, and you can check online reviews to see whether
others have experienced difficulties using a particular device with the Raspberry Pi.

If you’re buying new devices, you can minimize the risk by buying recommended
devices from Raspberry Pi retailers.

In any case, you should set a little bit of money aside to spend on accessories. The
Raspberry Pi is a cheap device, but buying a keyboard, mouse, USB hub, and cables
can easily double or triple your costs, and you might have to resort to that if what
you have on hand turns out not to be compatible.

http://elinux.org/RPi_VerifiedPeripherals
http://elinux.org/RPi_VerifiedPeripherals

CHAPTER 2 Downloading the Operating System 23

Chapter 2

IN THIS CHAPTER

»» Introducing Linux

»» Downloading NOOBS

»» Preparing the MicroSD or SD card

»» Copying NOOBS to the MicroSD
or SD card

»» Flashing your MicroSD or SD card

Downloading the
Operating System

Before you can do anything with your Raspberry Pi, you need to provide it
with an operating system (OS). The operating system software enables you
to use the computer’s basic functions and looks after activities such as

managing files and running applications, like word processors or web browsers.
Those applications use the operating system as an intermediary to talk to the
hardware, and they won’t work without it. This concept isn’t unique to the
Raspberry Pi. On your laptop, the operating system might be Microsoft Windows
or Mac OS. On iPads or iPhones it’s iOS, and on other devices it might be Android.

In this chapter, we introduce you to Linux, the operating system most frequently
used on the Raspberry Pi, and we show you how to create an SD or MicroSD card
with an operating system on it. You’ll need to use another computer to set up the
SD or MicroSD card. It doesn’t matter whether you use a Windows, Mac OS, or
Linux machine, but you need to have the ability to write to SD or MicroSD cards
using it and a connection to the Internet.

24 PART 1 Setting Up Your Raspberry Pi

Introducing Linux
The operating system used on the Raspberry Pi is GNU/Linux, or often just Linux.
The Raspberry Pi might be the first Linux computer you’ve used, but the operating
system has a long and honorable history.

Richard Stallman created the GNU Project in 1984 with the goal of building an
operating system that users were free to copy, study, and modify. Such software
is known as free software, and although this software is often given away, the
ideology is about free as in “free speech” rather than free as in “free beer.”
Thousands of people have joined the GNU Project, creating software packages
that include tools, applications, and even games. Stallman aimed to make his
operating system compatible with Unix, an operating system that was created by
AT&T’s Bell Labs and that started to gain popularity in the 1970s. That would
make it easy for existing Unix users to switch to using the GNU Project.

In 1991, Linus Torvalds released the central component of Linux, the kernel, which
acts as a conduit between the applications software and the hardware resources,
including the memory and processor. He still works on the Linux kernel,
sponsored by the Linux Foundation, which is the nonprofit consortium that pro-
motes Linux and supports its development. The Linux Foundation reports that
over 11,800 people from almost 1,200 different companies have contributed to the
kernel since 2005.

GNU/Linux brings together the Linux kernel with the GNU components it needs to
be a complete operating system, reflecting the work of thousands of people on
both the GNU and Linux projects. That so many people could cooperate to build
something as complex as an operating system, and then give it away for anyone
to use, is a modern miracle.

Because GNU/Linux can be modified and distributed by anyone, lots of different
versions of it exist. They’re called distributions, or distros, but not all of them are
suitable for the Raspberry Pi. The recommended distribution of Linux for the
Raspberry Pi is Raspbian. (See Chapter 3.) Software created for one version of
Linux usually works on another version, but Linux isn’t designed to run Windows
or Mac OS software.

Strictly speaking, Linux is just the kernel in the operating system, but as is com-
monly done, we refer to GNU/Linux as Linux in the rest of this book.

CHAPTER 2 Downloading the Operating System 25

Creating a NOOBS Card
The easiest way to get started with the Raspberry Pi is to use the NOOBS software.
NOOBS is short for new-out-of-box software, although it’s also a pun on the term
noob, sometimes used to describe beginners in any field of computing. Don’t
underestimate the power of this software, though, especially if you’re a more
experienced user: NOOBS is easy to copy to the SD or MicroSD card, but provides
you with a simple menu for installing a number of different operating systems,
including different versions of Linux and the Kodi media center software. The
options are described in more depth in Chapter 3.

As we say in Chapter 1, you can buy a card with NOOBS already on it, and that
might be the quickest way to get started. If you’ve got one of these, you can skip
ahead to Chapter 3 — but maybe read through this chapter while you’re waiting
for the OS to install. It’s useful to know how to create your own NOOBS cards: It
means you can get started with a new card in about 20 minutes, rather than hav-
ing to wait for the postman to deliver one to you.

You can also find links to download a specific operating system (including
Raspbian) at the Raspberry Pi website and install that OS on the SD or MicroSD
card. In that case, the download is in a special format (an image file) that describes
all the different files that need to be created on the SD or MicroSD card. To convert
the image file into an SD or MicroSD card that will work on the Raspberry Pi, you
need to flash the card, and you can’t just copy the file across. (See the section on
flashing your card at the end of this chapter.)

Downloading NOOBS
In your web browser, visit www.raspberrypi.org/downloads/noobs. Two
versions of NOOBS are available: The main version of NOOBS includes Raspbian,
the officially supported operating system, so you can use it even if you don’t have
a network connection on your Raspberry Pi; NOOBS also includes a menu for
choosing other operating systems to download and install from the Raspberry Pi,
if you have a network connection. We recommend you download NOOBS for your
first operating system.

NOOBS Lite leaves out the Raspbian software download and includes a menu to
download whichever operating system you want to use. It’s a smaller initial
download, and it’s ideal if you don’t plan to use Raspbian. It needs a network con-
nection on your Raspberry Pi to download an operating system, though.

http://www.raspberrypi.org/downloads/noobs

26 PART 1 Setting Up Your Raspberry Pi

Formatting the SD card
For best results, you need to format the SD or MicroSD card. You can use a pro-
gram, available from the SD Association, called SD Card Formatter on Mac and
Windows, and you can find it at www.sdcard.org/downloads/formatter_4. You
need to read and accept the license agreement before you can download.

If you’re using Linux, you can use GParted to format the card, as we will show you.

Earlier models of the Pi used a physically larger SD card, but later ones use a
MicroSD card. Make sure you have the right sort. The MicroSD cards often come
with a holder to make them look and work like SD cards. (Refer to Figure 1-3, in
Chapter 1.) You might have to plug the MicroSD card into this holder to format it
on your desktop or laptop computer.

Whichever computer you’re using, you need to be extremely careful in doing this.
When you format an SD or MicroSD card, its previous contents are completely
erased, so make copies of any files or photos you might need from the card before
you begin. Make sure you have a backup of your hard drive, and disconnect any
removable disks before you start, to minimize the potential damage from acciden-
tally formatting the wrong disk.

Using Windows
The Windows SD Card Formatter software downloads as an executable (.exe) file,
so double-click it to run the installation program. Click Next to work through the
steps. The program suggests where to install SD Card Formatter, but you can
change this location if you want. Finally, click the Install button. You may receive
an alert from Windows telling you that a program is trying to make changes to
your computer and asking whether this is allowed.

After installing SD Card Formatter, you can use the Windows Search feature to
find it and run it. On Windows 10, click in the box on the taskbar in the bottom left
of the screen to start the search. If you’re using Windows 8.1, move the mouse to
the top-right corner and click the magnifying glass to open the search. In either
version of Windows, type SD and then click the program name when it appears.
(On older versions of Windows, run SD Card Formatter from the Start menu in the
bottom left of the screen.) When you run the program you might be prompted to
confirm it is allowed to make changes to your computer.

Figure 2-1 shows the SD Card Formatter software on Windows. Where it says Select
card, select the drive that contains the SD or MicroSD card. If no drive is shown, try
clicking Refresh. Check the drive displayed here, and double-check it as often as
you need to, because SD Card Formatter erases everything on this drive. It’s a
sensible precaution to disconnect USB drives and any other removable storage
devices, to protect them from accidental deletion before you go any further.

https://www.sdcard.org/downloads/formatter_4/

CHAPTER 2 Downloading the Operating System 27

The Quick Format option is fast but not secure, so you’ll receive a warning that
data might still be recoverable after formatting. (Don’t count on being able to do
so, though!) Click OK to start the formatting. On Sean’s computer, this took a few
seconds.

Using a Mac
The Mac version of SD Card Formatter downloads as an installation package.
Double-click this package to install the software. The software installs by default
into the Applications folder. Note: You will need to enter your Mac’s password to
do this, and also every time you run this utility.

Insert the SD or MicroSD card into your Mac’s slot, or into a card reader connected
to your Mac, and then double-click the SD Card Formatter icon in the Applications
folder. When the software opens, the main screen looks like Figure 2-2.

Make sure the Select Card drop-down menu shows the SD or MicroSD card you
want to use. This is the drive that will be wiped, so check this as often as you need
to for you to be certain. If the right card isn’t shown, use the drop-down menu to
choose the right one.

Next, click the Overwrite Format option to select it. Click the Format button, and
SD Card Formatter starts to format the card. Note that there is no need to enter
anything into the Volume Label box. That will be completed automatically.

FIGURE 2-1:
SD Card

Formatter, used
to format the SD
or MicroSD card,

on Windows.

28 PART 1 Setting Up Your Raspberry Pi

This is a great time to have a cup of tea, because the card takes about half an hour
to format. You can still use your Mac while the process is running, although it
might take a bit longer to format if you do. When the formatter is finished, you see
the icon of the SD or MicroSD card on the desktop. Note that if the SD card has
been formatted before or comes preformatted, clicking the Quick Format option
will save you some time.

Using Linux
We’re using Ubuntu, the most popular desktop distribution, so you might see
some variations if you prefer a different distribution. These steps should give you
the guidance you need in any case.

Because this process involves completely erasing a disk (the SD card), make sure
you have a recent backup of your computer before you proceed, just in case you
accidentally wipe the wrong disk.

Follow these steps:

1.	 You use a utility called GParted to set up the SD card on Ubuntu. If you
don’t already have it installed, start by installing it from the terminal.
Enter the following commands:

sudo apt-get update

sudo apt-get install gparted

You can open a terminal window by using Dash Home in Ubuntu, the applica-
tions menu in your distribution, or a keyboard shortcut (Ctrl+Alt+T in Ubuntu).

FIGURE 2-2:
SD Card

Formatter, used
to format the SD
or MicroSD card,

on a Mac.

CHAPTER 2 Downloading the Operating System 29

2.	 You use a utility called GParted to set up the SD card on Ubuntu. It needs
to be run with root permissions, so start it by issuing a command from
the terminal. Enter the following:

sudo gparted

Figure 2-3 shows GParted running on the desktop.

3.	 Click in the top right to choose the correct disk, the SD card.

Take particular care here. You can cause serious damage to your hard drive if
you choose the wrong disk. We know this is our SD card because it’s showing a
capacity of 7.4GB and our hard drive has a capacity of 500GB.

4.	 The main window shows the partitions on the card. You want to delete
them, so click them in turn and then click the Delete icon on the toolbar.

The Delete icon looks like a No Entry sign, or the international No symbol. This
won’t take effect yet: You queue up the actions you want to carry out and then
trigger them all when you’ve finished. (If you can’t set a partition to delete
because it has a Key icon beside it, right-click the partition and choose
Unmount from the menu that appears.)

FIGURE 2-3:
GParted, running

on the Ubuntu
desktop.

30 PART 1 Setting Up Your Raspberry Pi

5.	 Click the unallocated partition and click the Add Partition button
(the one on the toolbar that has a picture of a blank page with a
plus sign on it).

The pop-up window, which you can see in the foreground in Figure 2-3,
appears.

6.	 Click the menu to change the file system to fat32, and then click the
Add button.

Again, this doesn’t take effect yet.

7.	 Click the tick (or check mark) button on the toolbar to carry out the
actions you’ve queued up — removing the existing partitions and adding
a single new FAT32 partition.

Copying NOOBS to the SD or MicroSD card
You should now have a formatted SD or MicroSD card and the .zip file for NOOBS
that you downloaded from the Raspberry Pi website. To install NOOBS on the SD
or MicroSD card, you simply copy the files inside the .zip file to the card.

On a Windows PC, double-click the NOOBS .zip file to open it, select all the files
in it, and then copy them to the formatted SD card. You can do this by using Ctrl+A
to select the files and Ctrl+C to copy them, navigating to the SD card, and then
using Ctrl+V to paste them.

On a Mac, double-click the NOOBS .zip file and you will see a folder containing
all the files you need. From the Edit menu, choose Select All and drag all the files
onto the SD Card icon on the desktop. It takes about 15 minutes to copy everything
across. When it’s finished, eject the SD card by dragging it into the trash can,
which has now transformed into an Eject icon.

On Linux, you can use the desktop environment (where available) to copy the
NOOBS files to the SD card. In Ubuntu, you can simply go to the NOOBS .zip file,
double-click it to open it, select all the files in it, and drag them to the SD card to
copy them across.

Alternatively, you can follow these steps to unzip and copy the files using the
Linux command line:

1.	 Remove and reinsert the card so that it mounts automatically.

2.	 Open a terminal window.

You can do this by using Dash Home in Ubuntu, the applications menu in your
distribution, or a keyboard shortcut (Ctrl+Alt+T in Ubuntu).

CHAPTER 2 Downloading the Operating System 31

3.	 Enter sudo fdisk -l, where the last character is the letter l.

This gives you a list of available disks, as shown in Figure 2-4.

4.	 Study this list to find the SD or MicroSD card.

In Figure 2-4, the screen lists two disks, with the information about each one
starting with the word Disk. The file size is usually a good indicator of which is
the SD card. The first one (Disk /dev/sda) is 500.1GB, which is a hard drive.
The second one (Disk /dev/sdd) is just 7948MB. That’s roughly 8GB, so that’s
the SD card. Note the card’s partition name, which in this case is sdd1.

5.	 Find out where the card is mounted.

Use the mount command and search for the directory where the card has been
mounted in the file system. In this case, the card’s partition name is sdd1, so
enter the following:

mount | grep -i sdd1

Figure 2-4 shows the output from this, which tells you where the card is
mounted. In this case, it’s mounted on /media/65E8-9564.

FIGURE 2-4:
A list of

available disks.

32 PART 1 Setting Up Your Raspberry Pi

6.	 Use cd to go to the directory where the card is mounted:

cd /media/65E8-9564

7.	 Unzip the NOOBS download onto the card.

This NOOBS download was stored in the folder /home/ubuntu/Downloads, so
we can unzip it onto the SD card using this command:

unzip /home/ubuntu/Downloads/NOOBS_v2_3_0.zip

You can usually type the first couple of characters of each part of the path and
then tap the Tab key on the keyboard to have Linux complete it for you, so you
don’t have to remember the whole filename. It might take five minutes or so to
unzip and copy the files across to the card.

Using Your NOOBS Card
After you have a card with NOOBS on it, you’re ready to set up your Raspberry Pi.
In the next chapter, we show you how to connect your Raspberry Pi up, insert the
SD or MicroSD card, and finish installing the operating system.

Flashing an SD or MicroSD card
If you’ve got a NOOBS card, you’re all set and can proceed to Chapter 3. Some
operating systems may not be available through NOOBS, though, including RISC
OS, which we cover in Appendix B on this book’s companion website. (At the time
of writing, RISC OS is available through NOOBS for the Raspberry Pi 2, but not for
the Pi 3.) To create a card for such operating systems, you can’t use NOOBS and
must instead download the operating system as an image file, and then use a
process called flashing your card to convert that single image file into all the files
you need on your MicroSD or SD card.

You can find links to download operating system images at www.raspberrypi.
org/downloads. You can also download Raspbian as an image file, if you prefer
not to use NOOBS to install it.

To flash your card (also called burning an image to the card), you can use Etcher,
which is available for Windows, Mac and Linux. Download it at https://etcher.io/.

http://www.raspberrypi.org/downloads
http://www.raspberrypi.org/downloads
https://etcher.io/

CHAPTER 2 Downloading the Operating System 33

After installing Etcher, run it and you’ll see an elegant and simple interface. (See
Figure 2-5.) Follow these steps to flash your card:

1.	 On the left side of the interface, choose the image file you want to copy
to the card.

Image files sometimes download inside a .zip file, and Etcher can burn those
images without you needing to extract them from the .zip file first.

2.	 In the central pane, choose the drive that contains the card you want to
burn your image to.

This process will erase the disk you burn to, so check it carefully. It’s a sensible
precaution to disconnect any drives that you don’t currently need connected to
avoid the risk of accidentally wiping them.

3.	 Click the Flash! button on the right.

The image file is copied to your card and converted into all the files you’ll need
to run your OS.

FIGURE 2-5:
Etcher enables

you to burn
operating system

images to your
SD card.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 Connecting Your Raspberry Pi 35

Chapter 3

IN THIS CHAPTER

»» Inserting the SD or MicroSD card

»» Connecting a monitor or TV,
keyboard, and mouse

»» Connecting to your router or Wi-Fi

»» Connecting and testing the Raspberry
Pi Camera Module

»» Using Raspi-config to set up your
Raspberry Pi

Connecting Your
Raspberry Pi

The thought of being faced with a bare circuit board might strike you as
rather daunting, but it’s actually quite easy to connect your Raspberry Pi
and get it up and running. You might need to change some of its configura-

tion (see Appendix A), but many people find that their Raspberry Pi works well the
moment they connect it all together.

Before we start, make sure you have the Raspberry Pi facing the right way around,
at least as far as these directions are concerned. The top of your Raspberry Pi is the
side that has the most components and sockets sticking out of it, and is shown in
Figures 3-1, 3-2 and 3-3. The back is relatively flat. Arrange your Raspberry Pi so
that the spiky GPIO pins are in the top left, or in the case of a Pi Zero or Zero W
without pins, so that the 40 holes are in the top left.

Figure 3-1 shows the ports and sockets you will need to use to connect up an origi-
nal Model B Raspberry Pi. The Model A is the same as Figure 3-1 except that it has
no Ethernet connection in the bottom right.

36 PART 1 Setting Up Your Raspberry Pi

Figure 3-2 shows the connection points on the Raspberry Pi 3 Model B. This layout
also applies to the Raspberry Pi 2 Model B, and the Model B+. At first glance, the
Model A+ looks quite different because it’s a smaller board, but it’s the same lay-
out except for the right edge, where there is no Ethernet socket and just the one
USB port.

FIGURE 3-1:
The original

Model B
Raspberry Pi.

The Model A is
the same, except

that it has no
Ethernet.

FIGURE 3-2:
The Raspberry Pi

3 Model B. The
same layout

applies to the
Raspberry Pi 2

Model B, the
Model B+, and
the Model A+

(with changes on
the right).

CHAPTER 3 Connecting Your Raspberry Pi 37

Figure 3-3 shows the Raspberry Pi Zero W. The Raspberry Pi Zero looks the same,
except that it is missing the camera socket on the right.

Chapter 1 lists everything you might need in order to use your Raspberry Pi,
including the various cables.

Inserting the SD Card
To start up, the Raspberry Pi requires an SD or MicroSD card with the operating
system on it. If you don’t have one, see Chapter 2 for advice on downloading the
operating system and copying it to an SD or Micro SD card.

To insert a MicroSD card in a Model 2, 3, A+, or B+, turn your Raspberry Pi over, as
shown in Figure 3-4, so that you’re looking at its underside. The metal MicroSD
card socket is labeled and is on the left edge of the board. Slide your MicroSD card
into the slot face up. On the Raspberry Pi 3 Model B, the card will slide into place.
On the other models, it will click into place. The card will overhang the board
slightly.

To insert an SD card in a Model A or Model B, flip your Raspberry Pi over. (See
Figure 3-5.) On one of the short sides is a plastic fixture for your SD card. Slide the
SD card in with the label side facing you, and gently press the card home to make
sure it’s well connected. The fixture is not big enough to cover your SD card, so
most of the card will stick out from the side of the board and will be visible when
you turn your Pi back over again. You can remove the card by just pulling it
out again.

FIGURE 3-3:
The Raspberry Pi

Zero W. The same
layout applies to
the Raspberry Pi

Zero, except
that there is

no camera
connector.

38 PART 1 Setting Up Your Raspberry Pi

The Pi Zero and Zero W have the MicroSD card socket mounted on the top surface
of the board. Insert the card with the label side facing you, as shown in
Figure 3-6.

To remove the card again, just pull it if you have a Raspberry Pi 3 Model B or a Pi
Zero. For the other models, press the card in and the spring will push it back out
toward you. You can then pull it out.

FIGURE 3-4:
The MicroSD

card, lined up for
insertion in a

Raspberry Pi 3
Model B.

FIGURE 3-5:
The SD card,

correctly aligned
with the socket

on the underside
of the Model A.

CHAPTER 3 Connecting Your Raspberry Pi 39

To avoid data loss, you should only insert and remove SD and MicroSD cards with
the power switched off.

Connecting the Raspberry Pi
Camera Module

There are lots of accessories and add-ons available for the Raspberry Pi, but the
Raspberry Pi Camera Module has the rare status of being an official product from
the Raspberry Pi Foundation, so we show you how to connect it. The camera mod-
ule is a small circuit board, with a strip of ribbon cable that plugs directly into the
Raspberry Pi board. (See Figure 3-7.) It’s easiest to connect the camera before you
plug your Raspberry Pi into any cables.

On the board of your Raspberry Pi is a connector for the camera. You can see it
labeled in Figures 3-1, Figure 3-2, and 3-3. (Remember that the Pi Zero does not
have a camera connector).

As you can see in Figure 3-7, the lens has a plastic film over it, to protect it. Pull
the green plastic tab to remove the film.

At the end of this chapter, we show you how you can check to ensure that your
camera is connected correctly and working.

FIGURE 3-6:
The MicroSD

card, lined up
for insertion

in a Raspberry
Pi Zero.

40 PART 1 Setting Up Your Raspberry Pi

Connecting the camera on a Pi Zero W
The Pi Zero W camera socket uses a different width of cable to the main Raspberry
Pi boards. You can buy the cable separately, or get it with the official Pi Zero case.

The camera and the Pi board have similar sockets for the cable. You press the con-
nector between your thumb and finger and gently pull to open the connector. The
parts don’t separate, but there’s enough of a gap to remove and insert the cable.
On the Raspberry Pi, the camera connector is on the right of the board. (Refer to
Figure 3-3.)

On the camera, insert the cable with the shiny contacts facing the camera front,
and then press the socket closed again. On the Raspberry Pi Zero W, insert the
cable with the shiny contacts facing the bottom of the board (the flat side). When
the cable is flat, the camera will be facing down, but you can bend the cable so that
the camera sits on top of the board and faces up. One of the covers for the official
Pi Zero case has a hole in it for the camera lens.

Connecting the camera on other
Raspberry Pi models
To open the camera connector on your Raspberry Pi board, hold the ends between
your finger and thumb and gently lift. The plastic parts don’t separate, but they
move apart to make a gap. This is where you insert the camera’s cable.

FIGURE 3-7:
The Raspberry Pi
Camera Module.

CHAPTER 3 Connecting Your Raspberry Pi 41

At the end of the camera’s cable are silver connectors on one side. Hold the cable
so that this side faces to the left, away from the side with the USB socket(s). Insert
the cable into the connector on the board and press it gently home, and then press
the socket back together again.

Preparing Your Pi Zero or Zero W
The Pi Zero models use Mini HDMI and Micro USB sockets. As a first step, you
need to plug in converters that will enable you to connect to standard HDMI and
USB devices. Figure 3-8 shows the Micro-USB-to-USB converter cable and the
Mini-HDMI-to-HDMI converter.

Plug the HDMI converter into the Mini HDMI socket indicated in Figure 3-3. The
USB converter goes into the Micro USB socket, indicated in Figure 3-3 and labeled
as USB on the board. Take care with this one because it also fits in the power
socket.

Connecting a Monitor or TV
You can connect a display device to your Raspberry Pi in one of two ways, depend-
ing on the type of screen you have available. This means one of the Raspberry Pi’s
display sockets will always be unconnected.

FIGURE 3-8:
The micro-USB-

to-USB converter
cable and the

Mini-HDMI-to-
HDMI converter
for the Pi Zero.

42 PART 1 Setting Up Your Raspberry Pi

We assume here that you’re using a monitor or TV, but there is also an official
Raspberry Pi touchscreen that connects using the Display socket on the left of the
board (not available on the Pi Zero or Zero W).

Connecting an HDMI or DVI display
On the top surface of your board, on the bottom edge, is the HDMI connector.
(Refer to Figures 3-1, 3-2 and 3-3.) If you’re using a Raspberry Pi Zero, you should
have an adapter to convert the Mini HDMI to an HDMI socket. Insert your HDMI
cable in the Raspberry Pi board or the Pi Zero converter, and then insert the other
end into your monitor.

If you have a DVI display rather than a HDMI display, you need to use an adapter
on the screen end of the cable. The adapter itself is a simple plug, so you just plug
the HDMI cable into the adapter and then plug the adapter into your monitor
and turn the silver screws on the adapter to hold the cable in place. Figure 3-9
shows the HDMI cable lined up for insertion into the DVI adapter.

Connecting a television using
composite video
If your television has an HDMI socket, use that socket for optimal results. Alter-
natively, you can use the composite video socket. On the Model A and B, it’s a
round, yellow-and-silver socket on the top edge of the board. (Refer to Figure 3-1.)

FIGURE 3-9:
How the HDMI

cable is inserted
into the DVI

converter.

CHAPTER 3 Connecting Your Raspberry Pi 43

On the Raspberry Pi 3, Pi 2, and Model B+, it’s the same socket as the audio output
on the bottom of the board. You’ll need to use a special RCA cable for this socket
and you can’t just connect an audio cable.

Connect your RCA cable to the socket, and the other end to the Video In socket on
your television, which is likely to be silver-and-yellow.

You might need to use your TV’s remote control to switch your television over to
view the external signal coming from the Raspberry Pi. If you’re using HDMI on
your TV, you might need to turn on the TV so that the Raspberry Pi can detect it
when you switch it on.

If you’re using NOOBS, it will try to use an HDMI monitor by default, even if there
isn’t one connected. To force NOOBS to use the RCA cable, you need to go into the
recovery options for NOOBS and then press 3 for a PAL screen (common in the
U.K.) or 4 for an NTSC screen (common in the U.S.). If you have an HDMI screen
or TV that you can plug in just while you set up your Pi, that’s probably the easiest
option. Otherwise, you need to switch on the Pi, wait a few seconds, and then
press and hold Shift for about ten seconds when it’s telling you to do so, and then
press the number key for your output options when it’s gone into the recovery
menu. It’s difficult to get the timing right on this when you can’t see anything on
your screen yet! Sean tried it a few times before resorting to plugging in an HDMI
screen at the same time as the TV screen.

Note that the Pi Zero and Zero W do not have a composite video socket, but
they do have composite video output. You can solder your own connector to the
board where it’s labelled TV. For instructions, see www.raspberrypi.org/magpi/
rca-pi-zero.

Connecting a USB Hub
Your Raspberry Pi’s USB socket(s) can be found on the right of the circuit board if
you have a full-size board. (Refer to Figure 3-1 and Figure 3-2.) If you’re using a
Pi Zero, you will instead have a converter cable that goes from the Micro USB
socket and has a USB socket on the end of it. Your USB hub should have a USB cable
that connects snugly into one of these sockets.

It’s important to use a USB hub that has its own power source, so plug your USB
hub into a wall socket (mains electricity) using the power supply unit that came
with it.

Figure 3-10 shows a USB hub that works with the Raspberry Pi. You plug the USB
cable coming out of it into your Raspberry Pi’s USB socket, and you can then plug

https://www.raspberrypi.org/magpi/rca-pi-zero/
https://www.raspberrypi.org/magpi/rca-pi-zero/

44 PART 1 Setting Up Your Raspberry Pi

your other devices (such as your keyboard and mouse) into the USB hub. Look for
a tiny round hole on the front of this USB hub where its power supply is connected.
USB hubs come in lots of different shapes and sizes: This one has four sockets
(two on each long side), but you can get compatible hubs with seven sockets, too.

Connecting a Keyboard and Mouse
Your keyboard and mouse can be connected directly to the USB socket(s) on your
Raspberry Pi, and they should work fine on the Model B+, Raspberry Pi 2, and
Raspberry Pi 3. For earlier models, we recommend connecting the keyboard and
mouse to an externally powered USB hub that is connected to the Pi. It reduces the
risk of problems caused by the devices drawing too much power from the Pi.

If you have a Pi Zero, Model A, or Model A+, you need to connect the keyboard and
mouse using a USB hub because only one USB socket is available. You can set up
Bluetooth devices after you have entered the desktop environment. See the
“Configuring Bluetooth devices” section, later in this chapter, for more info.

Connecting Audio
If you’re using an HDMI television, the sound is routed through the HDMI cable to
the screen, so you don’t need to connect a separate audio cable.

FIGURE 3-10:
A USB hub that
works with the

Raspberry Pi.

CHAPTER 3 Connecting Your Raspberry Pi 45

Otherwise, the audio socket of your Raspberry Pi is a small black or blue box stuck
along the top edge of the board on the Model A and B (refer to Figure 3-1), and on
the bottom edge of the board on the Model B+, Raspberry Pi 2, and Raspberry Pi 3.
(Refer to Figure 3-2.) If you have earphones or headphones from a portable music
player, you can plug them directly into this socket.

Alternatively, you can plug a suitable cable into this socket to feed the audio into
a television, stereo, or PC speakers for a more impressive sound. Figure 3-11
shows such a cable with the Pi’s 3.5mm audio jack on the right of the picture, and
the two stereo plugs that feed audio into many stereos shown on the right. The
cable you need might be different, depending on the input sockets on your audio
equipment.

If you’re using PC speakers, note that they need to have their own power supply.

Connecting to Your Router
The Raspberry Pi Model A, A+, and Zero have no wired network connection on the
board. The other Raspberry Pi models have an Ethernet socket on the right edge of
the board, indicated in Figures 3-1 and 3-2. Use this socket to connect your
Raspberry Pi to your Internet router with a standard Ethernet cable.

FIGURE 3-11:
A cable for

connecting your
Raspberry Pi to

your stereo.

46 PART 1 Setting Up Your Raspberry Pi

The Raspberry Pi automatically connects to the Internet when used with a router
that supports the Dynamic Host Configuration Protocol (DHCP), which means it
works with most domestic routers. For advice on troubleshooting your Internet
connection, see Appendix A.

If you have a Wi-Fi adapter, you can plug it into a USB socket so that it’s ready for
when you switch on your Raspberry Pi.

Connecting the Power and Turning
on the Raspberry Pi

The last thing you should do is connect the power. The Micro USB power socket is
indicated in Figures 3-1, Figure 3-2, and 3-3.

The Raspberry Pi Foundation warns against using battery power unless you know
what you’re doing, because it’s easy to damage your Pi unless you provide a steady
5 volts (5v) of power. Some cellphone emergency battery chargers can be used to
provide that steady power, but you should proceed with caution.

The Raspberry Pi has no on/off switch, so when you connect the power, it starts
working. To turn it off again, you disconnect the power. To avoid losing data, you
should shut down first (see Chapters 4 and 5) and wait for that process to finish.
Sean plugs his USB hub and Raspberry Pi into power sockets on an extension lead,
so he can switch them both on simultaneously by switching on the power to that
extension lead. It’s less clumsy than removing or inserting the plug in the wall
socket or the power lead in the Raspberry Pi all the time. It can also help to prevent
backpowering, where the USB hub feeds power back into the Raspberry Pi with the
possible risk of causing damage to your Pi if there is a power surge.

If you’re using the Lite version of NOOBS, you need a network connection to
download the operating system you wish to install. You can plug a network cable
into the Ethernet port on the Pi, configure the onboard Wi-Fi on the Raspberry Pi
3 Model B or Pi Zero, or plug a Wi-Fi dongle into a USB port. You will be prompted
to set this up when NOOBS runs, but you can get back to the settings by clicking
the onscreen Wi-Fi networks button or pressing W on the keyboard.

When you switch on your Raspberry Pi, the screen shows a rainbow of color briefly
and then starts to run the NOOBS software on the SD or MicroSD card, as shown
in Figure 3-12. The software gives you a choice of operating systems to install, and
language and keyboard options at the bottom of the screen.

CHAPTER 3 Connecting Your Raspberry Pi 47

To select an operating system, select the box beside it. The options in NOOBS Lite
include:

»» Raspbian: The distribution that the Raspberry Pi Foundation recommends is
called Raspbian. It’s a version of a Linux distribution called Debian that has
been optimized for the Raspberry Pi. It includes graphical desktop software
(see Chapter 4), a web browser (see Chapter 4), and various development and
programming tools. This is the quickest way to get up and running with your
Raspberry Pi, and for most users, this is the one you’ll want to use. For the rest
of this book, except where noted otherwise, we assume you’re using
Raspbian. There are two versions available: one with the PIXEL desktop and
one that is a more minimal installation (called Raspbian Lite). We recom-
mend that you choose the one with the desktop unless you need the other
one for a particular project.

»» LibreELEC and OSMC: These are versions of the Kodi media center for playing
music and video. See Chapter 8 for a guide to using this.

»» RISC OS: Most people run Linux on the Raspberry Pi, but you can also use an
alternative operating system called RISC OS, which has a graphical user
interface. RISC OS dates back to 1987, when Acorn Computers created it for
use with the upmarket Archimedes home computer. Today it’s maintained
and managed by RISC OS Open Limited. At the time of writing, RISC OS is not
available in NOOBS if you are using a Raspberry Pi 3, but you can download it
and prepare your own SD or MicroSD card (see the section on flashing a card
in Chapter 2). See Appendix B on this book’s companion website for some tips
on getting started with RISC OS.

FIGURE 3-12:
Your operating
system choices

in NOOBS.

48 PART 1 Setting Up Your Raspberry Pi

»» Data partition: This option adds a data partition you can use for storing data
that can be accessed by different Linux distributions.

»» Lakka: This retrogaming system includes emulators for a range of vintage
home computers (including the Commodore 64 and Amiga, Amstrad CPC,
various Atari machines, and the ZX Spectrum), as well as game consoles
(including a number of Nintendo machines and the Sony PlayStation). The
Multi Arcade Machine Emulator (MAME) option can be used to play games
from classic coin-operated arcade machines, too. To use Lakka, you’ll need to
get the games separately, unless you want to play the 2048 and Bomberman
clones that are included (among the game system cores). A number of games
have been released by their creators for free distribution online (including
games for MAME at http://mamedev.org/roms, and Sean’s Amstrad games
at www.sean.co.uk/books/amstrad/index.shtm).

The easiest way to get games into Lakka is to plug in a USB key with the game
files on it. In the menu system, you use the cursor keys to move, Enter to
select, and the Backspace (Delete) key to go back. In the Lakka jargon, a game
system is called a core, and a game is called content, so start by choosing Load
Content from the main menu. Choose Start Directory, and then choose your
USB key to see the games on it. You’ll be given a choice of which core you
want to use your chosen game in. If you’re using MAME, press 5, 6, 7, or 8 to
insert a coin (for player 1, 2, 3, or 4), and then press Enter or a number from 1
to 4 (for the number of players) to start. Cursor keys move, and the Fire keys
can vary by game (try Z, X, space and the Ctrl, Alt, and Shift keys for Player 1).
You can quit your game and return to the main menu by pressing the Esc key.
If you’re using keyboard controls, you may find that your game doesn’t work
correctly, because Lakka uses many keys to control factors like the emulator
speed. To reconfigure the keys that Lakka uses, return to the main menu, tap
the right arrow to get to the settings, choose Input, and then choose Input
Hotkey Binds.

»» Recalbox: This is another games system, with emulators for the SNES, NES,
Game Boy Advance, Sega Master System, and PC Engine. It also includes the
shareware version of the famous run-and-gun game Doom. All of the
emulators include demonstration games, so an afternoon’s arcade action is
built in. In the menu system, use the cursor keys to move through the options;
press S to confirm and A to go back. Check the bottom of the screen for hints
on the controls, and tap the Windows Start key (if your keyboard has one) to
enter the settings. In the games, press Enter to start. Controls may vary, but
generally you can use the cursor keys to move and Z or X to fire and/or jump.
Press Esc to quit. Both Lakka and Recalbox are compatible with the USB
gamepad created by The Pi Hut, similar to the classic SNES controller (direc-
tion keys on the left thumb; A, B, X, and Y buttons on the right thumb).

http://mamedev.org/roms/
http://www.sean.co.uk/books/amstrad/index.shtm

CHAPTER 3 Connecting Your Raspberry Pi 49

»» Screenly Open Source Edition (OSE): This is a digital signage system that
enables you to use a Raspberry Pi and connected HD screen as a digital sign. It
enables videos, images and web pages to be displayed on the screen, and is
suitable for showing information and advertisements in public areas such as
shops, offices, and schools.

»» Windows 10 IoT Core: This isn’t the Microsoft Windows desktop experience
you’re probably familiar with. It’s a version of Windows designed to support
the Internet of Things (IoT), or devices that connect to the Internet. When we
installed this, we had the option of an RTM (release to manufacturing) or
pre-release version. The RTM version of software is generally the more stable
version, so we would recommend it. The Raspberry Pi took a long time to start
up when we tried Windows IoT Core on it, and at times it looked like it had
crashed, so don’t reach to power-off too soon. You’ll need to use Microsoft
Visual Studio on a Windows PC to write your programs and then copy them to
your Raspberry Pi using Wi-Fi, Ethernet, or Internet Connection Sharing. The
software on your Raspberry Pi includes a tutorial to help you get started, and
you can find out more at www.windowsondevices.com.

»» TLXOS: This is a trial version of ThinLinX’s thin client software, which enables a
Raspberry Pi to work as a virtual desktop, interacting with software that is
running on a different computer. The ThinLinX Management Software also
enables one or more Raspberry Pis to be centrally managed. If you’re using
lots of Raspberry Pis for a project such as digital signage or to implement a
number of virtual desktops, this could help to streamline the process of
managing them. When the trial expires, you will need to buy a license for the
software, currently priced at $10.

You can install multiple operating systems as long as they will fit on the card.
Keep an eye on the disk space needed and how much is available, shown at the
bottom of the window. Remember to leave room for your own files too. When
you’ve chosen the operating systems you want to use, click the Install button in
the top left.

Be sure to include Raspbian with PIXEL among your choices so that you can follow
our instructions in the rest of this book.

Installing an operating system deletes everything else on that SD or MicroSD card.

If you’re using NOOBS Lite, the software downloads from the Internet and is then
installed on your SD card. If you’re using the offline version of NOOBS, Raspbian
is installed using the files you copied to the card.

http://www.windowsondevices.com

50 PART 1 Setting Up Your Raspberry Pi

When the software has finished installing your operating system (be patient!),
you see a message telling you that it’s been successful. If you installed just one
operating system, your Raspberry Pi then starts that operating system.

If you installed more than one operating system, you’re given the option of which
one you want to start (or boot). Double-click it to choose it. Each time you start up
your Raspberry Pi, you’re given a choice of operating systems. If you don’t choose
something, it boots into your previous choice again.

To install or reinstall an operating system using NOOBS, you can hold down the
Shift key when you start up your Raspberry Pi. Remember that installing or rein-
stalling operating systems deletes all files on your SD or MicroSD card.

Logging In
When you switch on your Raspberry Pi, you might be asked for a username and
password, depending on which operating system version you use. The default
username and password differ depending on which version of Linux you’re using,
but for the Raspbian distribution, the username is pi and the password is rasp-
berry. Both of these are case-sensitive, so you can’t type in PI, for example. When
using the shell, you receive no feedback on the screen as you enter the password.
It not only hides your password but also doesn’t show you that a key press hap-
pened, which is a bit unsettling the first time. Press on regardless, and you should
find that your login details are accepted.

After logging in, you may be shown the command-line prompt followed by a
blinking line:

pi@raspberrypi ~ $

This means your Raspberry Pi is ready for you to use and you can enter Linux
commands now, to manage your files and programs. (For information about using
the command line to give your Pi instructions, see Chapter 5.)

Configuring Your Raspberry Pi in Raspbian
For most of the rest of this book, we assume that you’re using Raspbian with the
PIXEL desktop. It’s the most user-friendly option and the best way to get started
with the Pi.

CHAPTER 3 Connecting Your Raspberry Pi 51

When your Pi has finished booting, you should be in the desktop environment.
You’ll learn more about this topic in Chapter 4, but for now, let’s take a look at
how you use it to finish setting up your Pi.

Click the button in the top left, with the Raspberry Pi logo on it, to open the menu.
Move down to Preferences and choose Raspberry Pi Configuration. The tool that
opens is shown in Figure 3-13.

By default, the tool opens to its System tab. The options here include

»» Change the password. The default password for the username pi is
raspberry.

»» Change the hostname (which is the name used for this Raspberry Pi on the
network).

»» Control whether it boots into the desktop or the command line interface (CLI),
explained in Chapter 5.

»» Set whether the pi user is automatically logged in.

»» Set the Pi to wait for the network at the start.

»» Display the graphical splash screen that shows when the Pi is booting.

»» Configure the screen resolution.

»» Enable or disable underscan. Underscan and overscan change the size of the
displayed screen image to optimally fill the screen. Underscan should be
disabled to fill the screen if you see a black border around your screen, and
enabled if the desktop does not all fit on the screen.

FIGURE 3-13:
The Raspberry Pi

Configuration
tool in the PIXEL

desktop.

52 PART 1 Setting Up Your Raspberry Pi

The tool’s Interfaces tab enables you to enable or disable various connection
options on your Raspberry Pi. This is where you enable the Raspberry Pi camera.
Other options here include SSH (short for Secure Shell), which is a way of setting
up a secure connection between computers, usually so that you can control one
computer from another computer. (For more on SSH, see Appendix A.) The
RealVNC software enables remote access to your Raspberry Pi with a graphical
interface and is also enabled here. The other interfaces are SPI, I2C, Serial, 1-Wire,
and Remote GPIO (which enables another machine on the network to access the
Pi’s GPIO pins). In most cases, you only need to change these settings if you’re
using a particular add-on or working on a project that requires them.

The tool’s Performance tab gives you access to options for overclocking and
changing the GPU memory.

So, what is overclocking, anyway? It’s when you make a computer work faster than
the manufacturer recommends, by changing some of its settings. That said, the
options offered to you within this tool have been chosen by the Raspberry Pi
Foundation, and they have previously said they don’t expect overclocking to cause
any measurable reduction in your Pi’s lifetime. The speed of the CPU is measured
in MHz, and the highest overclocking setting increases the speed to 1000 MHz.
You won’t necessarily be able to use the top setting: It depends on your Pi and
your power supply. Overclocking is not currently supported on the Raspberry Pi 3.

As for changing the GPU memory, here’s the lowdown on that particular option:
Your Raspberry Pi’s memory is shared between the central processing unit (CPU)
and the graphics processing unit (GPU). These processors work together to run
the programs on your Raspberry Pi, but some programs are more demanding of
the CPU, and others rely more heavily on the GPU. If you plan to do lots of
graphics-intensive work, including playing videos and 3D games, you can improve
your Raspberry Pi’s performance by giving more of the memory to the GPU.
Otherwise, you may be able to improve performance by stealing some memory
from the GPU and handing it over to the CPU. Raspbian allocates 64MB to the
graphics processor and gives the rest to the CPU. In most cases, this setting will
work fine, but if you experience problems, you can change how the memory is
shared between the two processors. The configuration menu asks how much
memory you want to give to the GPU and fills the entry box with the current value
as a guide. The rest of the memory is allocated to the CPU. You can safely experi-
ment with the memory split to see which works best for the kind of applications
you like to use.

The options on the tool’s Localisation tab enable you to set the character set used
in your language (the locale), your time zone, the keyboard setup you want to use,
and your Wi-Fi country. If you’re using the Raspberry Pi outside its home country

CHAPTER 3 Connecting Your Raspberry Pi 53

of the U.K., you may find you need to adjust settings here, especially if you see
unexpected results when using the keyboard.

You can adjust the mouse and keyboard sensitivity separately by going through
the main menu to the mouse and keyboard settings, also in the Preferences
folder.

If you’re using Raspbian without the PIXEL desktop, you can find an alternative
tool for configuration options by typing sudo raspi-config on the command line.
Note that you can’t use the mouse to move through its menus. You use up- and
down-arrow keys to select different options on the screen, and left- and right-
arrow keys (or Tab, which is usually above the Caps Lock key) to select actions
such as OK, Cancel, Select, and Finish. Press Enter to confirm a choice.

Configuring Your Wi-Fi
To set up your Wi-Fi, click the fan-shaped icon in the top right, shown in
Figure 3-14. It opens a menu that shows you the available networks, together with
an option to turn off Wi-Fi.

Click a network to select it and you’re prompted to enter the Pre Shared Key,
which is the Wi-Fi password. If the connection fails or drops, the Wi-Fi icon
changes to an icon with two red crosses on it.

You can test whether your connection is working by opening the web browser and
visiting a web page with it. (See Chapter 4.)

After you’ve set up a Wi-Fi network using the tool, your Raspberry Pi remembers
it, so it automatically reconnects whenever you restart your Raspberry Pi or recon-
nect after previously turning off Wi-Fi. You can also use the network connection
you have set up from the command line.

When you connect to a new network, the Pi doesn’t remember the previous net-
work’s password, so you need to reenter it if you want to reconnect to it later.

FIGURE 3-14:
The Wi-Fi and

Bluetooth
buttons.

54 PART 1 Setting Up Your Raspberry Pi

Configuring Bluetooth Devices
The Raspberry Pi 3 and Pi Zero W are Bluetooth-enabled, so you can use a wireless
Bluetooth keyboard and/or mouse with your Pi. You’ll need a wired USB mouse to
install the operating system first, but when you’re in the PIXEL desktop, you can
set up your Bluetooth devices.

Not all wireless devices are Bluetooth-enabled: keyboards and mice that come
with their own USB dongles typically don’t use Bluetooth.

The process of getting two Bluetooth devices to work together is called pairing
them. Check the instructions for your device to see how you make it discoverable
so that your Raspberry Pi can pair with it. This isn’t always obvious: On Sean’s
mouse, the process involved pushing and holding a button and then pushing the
two mouse buttons together and holding them until the mouse started flashing.

Once you have made your device discoverable, click the Bluetooth menu at the top
of the screen (refer to Figure 3-14) and choose Add Device. Your Raspberry Pi will
search for devices. When it finds your device, click it and then click the Pair but-
ton. When setting up a keyboard, we had to enter a code shown on the screen on
the new keyboard. With the mouse, we were asked to confirm that a code was
showing on the mouse (which it couldn’t be, because the mouse has no display),
but we confirmed that it was, to complete the setup.

Testing the Camera Module
If you have a Raspberry Pi Camera Module, you can test whether it’s working cor-
rectly now.

Make sure the camera is enabled: Go into the Raspberry Pi Configuration tool, click
Interfaces, and select Enabled beside the Camera option. For more information, see
the “Configuring Your Raspberry Pi in Raspbian” section, earlier in this chapter.

We’ll test the camera from the command line interface, which is covered in more
depth in Chapter 5. Click the Terminal icon at the top of the screen to start. It has
a >_ symbol on it. To take a still photo, type in this command:

raspistill -o testshot.jpg

You should see what the camera sees onscreen for a moment before it takes the
picture. You can verify that the image was created by looking at the files in your
directory with this command:

CHAPTER 3 Connecting Your Raspberry Pi 55

ls

You can use lots of different options to take still photos, too. This example takes a
shot with the pastel filter and flips the picture horizontally (-hf) and vertically
(-vf):

raspistill -ifx pastel -hf -vf -o testshot2.jpg

All those hyphens and letter combinations might seem a bit random to you now,
but after you read Chapter 5, they should make more sense. To see the documen-
tation for raspistill, type

raspistill 2>&1 | less

Use the down-arrow key to move through the information, and press Q to finish.

Your photos are stored in your pi directory. See Chapter 4 for instructions on how
to use File Manager to find your files and Image Viewer to see them.

To shoot video, you use raspivid. Enter this command to shoot a 5-second film:

raspivid -o testvideo.h264 -t 5000

You can view the video you made using

omxplayer testvideo.h264

The video footage is captured as a raw H264 video stream. For greater compatibil-
ity with media players, it’s a good idea to convert it to an MP4 file. Start by install-
ing MP4box using this command:

sudo apt-get install gpac

Then you can convert your video file (called testvideo.h264) into an MP4 file
(called testvideo.mp4) like this:

MP4Box -add testvideo.h264 testvideo.mp4

You can get help on using raspivid with

raspivid 2>&1 | less

There is also a library you can use in Python to access the camera from your own
Python programs. For more information on using the Raspberry Pi Camera Module,
see the documentation at www.raspberrypi.org/documentation/usage/camera.

http://www.raspberrypi.org/documentation/usage/camera/

56 PART 1 Setting Up Your Raspberry Pi

Setting Up the Data Partition
The data partition is an area on your SD or MicroSD card that can be shared by
different distributions, for example to transfer files between them.

The data partition has the label data, and you can use this to make a directory
point to it. If you want to do this, you are probably already experienced with Linux
and can follow this step list easily — if not, we suggest you come back to this after
you’ve read Chapter 5 and know how to use the command line:

1.	 Boot your Raspberry Pi into Raspbian, and click the Terminal icon in the
desktop to get to the command line.

2.	 Create a directory by typing the command mkdir sharedfolder after the
prompt.

3.	 Type sudo mount -L data sharedfolder to point the directory to the shared
partition.

4.	 Type sudo chown $USER: sharedfolder to set the permissions so that you
can write in this folder.

5.	 Type cd sharedfolder to go into your shared folder.

Any files you copy into that folder or create there will be available to other distri-
butions that can access the data partition.

Taking Your Next Steps with
the Raspberry Pi

Now you have your Raspberry Pi set up and working. What next?

Chapter 4 shows you how to use the desktop environment, which uses windows
and icons, and how you can use it to browse the web, manage your files, view your
images, edit text files, and more.

Chapter 5 shows you how you can use the Linux command line to manage your
Raspberry Pi and its files.

2Getting Started
with Linux

IN THIS PART . . .

Use the PIXEL desktop environment to manage the
files and start the programs on your Raspberry Pi.

Surf the web and manage bookmarks for your favorite
sites.

Watch slide shows with the Image Viewer and use it to
rotate your photos.

Explore your Linux system and get to know the
directory tree and file structure.

Back up your Raspberry Pi’s SD or MicroSD card.

Use the Linux shell to organize, copy, and delete files
on your SD or MicroSD card, and to manage user
accounts.

Use the desktop or the shell to discover, download,
and install new software.

CHAPTER 4 Using the Desktop Environment 59

Chapter 4

IN THIS CHAPTER

»» Using the desktop environment to
manage your Pi

»» Using external storage devices in the
desktop environment

»» Copying, moving, and managing files
and their permissions

»» Viewing web pages on the Raspberry Pi

»» Using some of the built-in
applications on your Raspberry Pi

»» Customizing the desktop with your
preferred settings

Using the Desktop
Environment

The quickest way to start playing with your Raspberry Pi is to use the more
visual desktop environment, which is called PIXEL (short for Pi Improved
Xwindows Environment, Lightweight). PIXEL is part of the recommended

Raspbian Linux distribution for the Raspberry Pi (see Chapter 3), and by default it
is what will appear when your computer finishes starting up. It’s based on an open
source desktop called LXDE, which the Raspberry Pi Foundation has redesigned.
(LXDE is short for Lightweight X11 Desktop Environment, in case you were
wondering.)

The desktop environment works in a similar way to the Windows and Mac OS
operating systems, which let you use icons and the mouse to find and manage
files and operate programs. That makes it relatively intuitive to navigate, and it
means you can easily find and try out some of the software that comes with your
Linux distribution.

60 PART 2 Getting Started with Linux

In this chapter, we talk you through using the desktop environment and introduce
you to some of its programs.

Navigating the Desktop Environment
Figure 4-1 shows the PIXEL desktop environment. The photo in the middle of the
screen is just a wallpaper (a decorative background image on the screen), so don’t
worry if you see a different image there.

The strip along the top of the screen is called the taskbar, and this is usually visible
in whatever program you’re using.

Using the Applications menu
For most of the programs you might want to run, you use the Applications menu.
At the top left of the screen is the Raspberry Pi icon. Click it and you’ll see the
menu appear, similar to the one shown in Figure 4-2.

FIGURE 4-1:
The desktop

environment,
PIXEL.

LXDE Foundation e.V. / Raspberry Pi Foundation; wallpaper photo by Greg Annandale of the Raspberry Pi Foundation

CHAPTER 4 Using the Desktop Environment 61

As you move the mouse cursor over the categories of programs, a submenu appears
on the right, showing you the programs in that category. Click one of these once
to start it.

If you right-click a program on the menu, you can add its icon to the desktop so
that you can start it more quickly in the future.

Buried among the submenus in the Applications menu, you’ll find a wealth of
programs including the following:

»» Claws Mail: You can use this email package for sending and receiving
messages on your Raspberry Pi. We tell you more about it later in this chapter.
It’s in the Internet part of the Applications menu.

»» Debian Reference: The Raspbian version of Linux is a Pi-specific version of
the Debian distribution, so this icon gives you a guide to using Linux on
your Pi. The documentation is stored on your SD card, but appears in a web
browser, like a website. To get started, click the icon and then click the HTML
(Multi-Files) link at the top of the screen. You probably won’t need to use this
resource often, but it’s good to know it’s there if you get stuck. To find this
reference guide, go through the Help section of the Applications menu.

FIGURE 4-2:
The Applications

menu.
LXDE Foundation e.V. / Raspberry Pi Foundation

62 PART 2 Getting Started with Linux

»» LibreOffice: This popular suite of productivity applications includes word
processing, spreadsheets, and presentations. See Chapter 6 for a guide to
getting started with them, and you can find them in the Office section of the
Applications menu.

»» Mathematica: Mathematica, which is based on the Wolfram programming
language, is used for scientific and technical computing. (See the bonus
chapter online for more information on Mathematica.) This book’s introduc-
tion explains how to access the online materials on the companion website.
There’s also a short introduction to Mathematica in Chapter 19. Mathematica
is in the Programming section of the Applications menu.

»» Minecraft Pi: This is the Raspberry Pi version of the world-building game
Minecraft, which you can program using Python, as you see in Chapter 13.
Minecraft is in the Games section of the Applications menu.

»» Python 2 and Python 3: See Chapters 11 and 12 for advice on using these
and getting started with programming in the Python language. There is also
the Thonny IDE, which provides an alternative way of creating Python
programs. All of these tools can be found under Programming in the
Applications menu.

»» Python games: These games, created by Al Sweigart, are demonstrations of
Python, but they also provide entertainment. Games include Reversi, Four in a
Row, a sliding puzzle game, and a snake game. You can choose any of 13
games to play from a simple menu. You can find the Python Games in the
Games section of the Applications menu.

»» Scratch: This is a simple programming language, approachable for people of
all ages, which can be used to create games and animations and to manage
electronics projects. Chapters 9 and 10 introduce you to Scratch and show
you how to make your own game. Find Scratch in the Programming section of
the Applications menu.

»» Sense HAT emulator: The Sense HAT is an add-on for the Raspberry Pi that
you can use for creating experiments and other projects based on its built-in
sensors. See Chapter 19 for more information on it. This emulator is also in
the Programming section of the Applications menu.

»» Shutdown: When you’ve finished using the Raspberry Pi, use this icon to
switch it off before you remove the power. There are also options here to log
out and restart (reboot) your Pi. This is a top-level option in the Applications
menu.

»» Sonic Pi: This is a programming language for creating music. See Chapter 14
for a guide to making your own tunes with it. You can find Sonic Pi in the
Programming section of the Applications menu.

CHAPTER 4 Using the Desktop Environment 63

»» Terminal: Terminal opens a window you can use to issue instructions from a
command line (see Chapter 5) without leaving the desktop environment. You
can find the terminal in the Accessories part of the Programs menu, and there
is also a button on the taskbar to go straight to the terminal.

»» Wolfram: This is a programming language that aims to incorporate knowl-
edge into it so that programmers can get results more quickly. You can find
out more about it at www.wolfram.com/language. Wolfram is filed under
Programming in the Applications menu.

The top-left corner of the screen also includes some buttons (refer to Figure 4-2)
that you can use to gain quick access to (from left to right) the web browser,
File Manager, terminal, Mathematica, and Wolfram.

Running programs that are
not on the menu
Some programs will install but won’t appear on the Applications menu. In that
case, you can run them using the Run option on the menu. Here’s how:

1.	 Click the icon in the top left of the desktop to open the Applications menu.

2.	 Select the menu’s Run option.

3.	 In the dialog box that appears, type the name of the program and press
Enter.

The autocomplete option can help you to find the correct program name.
For example, typing pengu autocompletes to penguinspuzzle.

Resizing and closing program windows
You’ll probably want to use more than one program in a PIXEL session, so you
need to know how to close programs when you’ve finished with them and how to
rearrange programs on the screen.

The program windows in PIXEL have controls similar to the ones in Microsoft
Windows that enable you to resize and close them. Figure 4-3 shows the Task
Manager application, with these controls in the top right:

»» X button: Closes the application.

»» Maximize button: Enlarges the application so that it fills the screen. After you
click this button, you can click the new button that appears in its place to
return the window to its original size (just like in Windows).

http://www.wolfram.com/language/

64 PART 2 Getting Started with Linux

»» Minimize button: Hides the program from view but doesn’t stop it from
running. You can return to the program by clicking its name on the taskbar at
the top of the screen.

It’s easy to change the size of windows — so that you can see more than one at a
time, for example. Move the mouse cursor to one of the edges until the Mouse icon
changes, and you can click and drag it inward or outward to reshape the window.
You can also click and drag a corner to change the window’s height and width at
the same time. To arrange the windows side by side, you can move them around
by clicking and dragging the title bars at the top of them.

Using the Task Manager
If your Raspberry Pi doesn’t seem to be responding, it might just be very busy. At
the top right of the taskbar is the CPU Usage Monitor, which tells you how heavily
the Raspberry Pi’s processor is being used. It’s a bar chart that scrolls from right

FIGURE 4-3:
The Task
Manager
in PIXEL.

LXDE Task Manager, written by Hong Jen Yee, Jan Dlabal; derived from Xfce4 Task Manager,
by Johannes Zellner

CHAPTER 4 Using the Desktop Environment 65

to left, so the rightmost edge shows the latest information. A gray bar that fills the
height of the graph indicates that your Raspberry Pi is working flat out, so it
might take a moment or two to respond to you, especially when starting pro-
grams. In our experience, the Raspberry Pi doesn’t crash often, but older models
can sometimes be overwhelmed to the extent that it looks like it has. It’s usually
worth being patient.

You can see which programs are running on your Raspberry Pi by running the
Task Manager. (Refer to Figure 4-3.) You can find it on the Applications menu in
the Accessories folder, but you can also go straight to it by holding down the Ctrl
and Alt keys and pressing Delete.

If you have a program that is not responding, you can stop it by using the Task
Manager. To terminate the program, right-click it in the task list and choose Term
from the menu that appears. This sends a request to the program and gives it a
chance to shut down safely, closing any files or other programs it uses. Alterna-
tively, you can choose Kill. It terminates the program immediately, with the pos-
sible loss of data.

You should use the Task Manager to close programs only as a last resort. Most of
the tasks you see in the Task Manager are system tasks, which need to be running
for PIXEL to work properly. Avoid closing programs you don’t recognize — that
might crash PIXEL and result in losing data in any open applications.

Using File Manager
You can manage your files using the command line (see Chapter 5), but it’s often
easier to do it in PIXEL. File Manager (see Figure 4-4) is used to browse, copy,
delete, rename, and otherwise manage the files on your Raspberry Pi or connected
storage devices.

You start File Manager by either clicking its button at the top left of the desktop or
using the Applications menu, where it is among the system tools.

In Linux, people usually talk of storing files in directories, but PIXEL uses the
term folders instead, which is probably familiar to you from other computers
you’ve used. A folder is just a way of grouping a collection of files or programs and
giving that collection a name. You can put folders inside other folders too.

66 PART 2 Getting Started with Linux

Navigating File Manager
On the right of File Manager, you can see the files (and any folders) that are inside
the folder you’re looking at. Each file has an icon indicating the type of file it is,
except for image files, which have a small representation of the picture itself. In
Figure 4-4, you can see the different files that make up the Python games that
come with your Raspberry Pi, including pictures of game characters and back-
grounds, and sound effects that are shown with a Musical Note icon.

You can double-click a folder in this area to open it, and you can double-click a file
to open it with the default program for that file type, if one is set up. An image file
opens using the Image Viewer, for example, and a Scratch file opens in Scratch. If
you want to choose which program to open a file in instead, you can right-click
the file’s icon to bring up an option called Open With. Select it to bring up a menu
of all of the programs available on your Raspberry Pi, and then make your choice.

FIGURE 4-4:
The PIXEL File

Manager on the
Raspberry Pi.

LXDE File Manager, written by Hong Jen Yee / Raspberry Pi Foundation

CHAPTER 4 Using the Desktop Environment 67

On the left is the directory tree, which you can use to navigate to any folder on
your Raspberry Pi. Click a folder here to view its contents on the right. You can
click the Minus (–) icon beside a folder name to close that folder, and hide the
subfolders inside it. To expand a folder and show the folders inside it, click the
plus sign (+) beside it.

The pi folder, at the top of the left pane in File Manager, is where you are expected
to store most of your files, such as documents and photos. It is the only place you
have permission to write and edit files as an ordinary user. In Chapter 5, we look
at Linux and its directory structure in more detail, but for now the key thing is to
store your files and folders only in the pi folder, or in any folder inside it.

The Desktop folder, inside the pi folder, shows you the programs and files that are
on the desktop. If you repeatedly edit a document and you want it to be on the
desktop for easy access, simply move it into the Desktop folder.

When you’re using the desktop environment, you can plug in external USB storage
devices, such as external hard drives or USB keys (also known as flash drives), and
the Raspberry Pi automatically recognizes them. Figure 4-5 shows you the win-
dow that appears when you connect a device. You can then view the device in File
Manager to access its files. To find your external storage devices, click the + beside
the / (forward slash) symbol to open the directory tree, and then open the media
folder, and then open the pi folder. Earlier, in Figure 4-4, Sean’s USB key is shown
as the folder FlashDisk. Before removing an external storage device, you should
use the button on the far right of the taskbar to open the menu for ejecting devices.
As you might know from other computers you’ve used, this curiously named
process doesn’t propel your drive across the room: it makes it safe to remove
without data loss.

Chapter 5 tells you more about the different folders on your Raspberry Pi.

Across the top of File Manager is a menu bar, including File, Edit, View, Book-
marks, Go, Tools, and Help menus. Many of the activities in these menus can be
carried out in other ways with File Manager, as we show you, but if you get stuck,
this menu is a good way to quickly get back on track.

If there are folders you use particularly often, you can bookmark them — an idea
borrowed from web browsers, and from (in the dim, distant past) print books
before that. A bookmark makes it easy for you to go straight back to where you
were. To add a bookmark to the folder you’re viewing, click Bookmarks on the
menu at the top of File Manager and then choose Add to Bookmarks from the
menu that appears. To see your bookmarks, click Bookmarks on the menu again.
Click one of these bookmarks to go straight to its folder.

68 PART 2 Getting Started with Linux

The View menu enables you to change the side pane in File Manager so that it
shows you the simplified places view instead of the directory view. This provides
you with easy access to your home folder (the pi folder), the desktop, the waste-
basket, and any external storage devices you have plugged in. These are the loca-
tions you’ll need most often. If you have a lot of folders in your home folder, the
directory tree might be easier to use than double-clicking the folders in the right
pane to open them. In most cases, though, the places view will make File Manager
easier to use.

Underneath File Manager’s menu bar is an icon bar that includes a number of use-
ful shortcuts (refer to Figure 4-4):

»» Add Tab: Tabs are particularly useful if you’re carrying out work that involves
more than one folder. You might want to quickly switch between the source
and destination folders if you’re copying files, for example. The tab metaphor
comes from paper filing cabinets, with cardboard tabs sticking out of the
folders at the top so that you can easily find the one you’re looking for. In web
browsers today, it’s common to find tabs that you use to switch between
different web pages open in the browser. It’s similar in File Manager: The tabs
enable you to have two different folders open at the same time. You simply
click the tabs to switch between them. Within each tab, you can use File
Manager as usual, navigating between the different folders. In Figure 4-4, you
can see we have three tabs open: the pi folder, the FlashDisk folder, and the
python_games folder. To close a tab and its associated folder, click the X icon
on the tab.

»» Previous Folder: File Manager keeps a history of the folders you view, and the
Previous Folder button works a bit like a web browser’s Back button. It takes

FIGURE 4-5:
Removable

storage attached
to your Raspberry
Pi is automatically

detected.
LXDE Foundation e.V. / Raspberry Pi Foundation

CHAPTER 4 Using the Desktop Environment 69

you back to the last folder you accessed on that tab. You can click it repeatedly
to keep going back.

»» Next Folder: After you’ve used the Previous Folder button, you can use the
Next Folder button to go forward through your history again, taking you back
to a folder you visited after the one you’re looking at now. If you click the
Previous Folder button and then the Next Folder button, you’ll end up where
you started.

»» Folder History: Click the Folder History button to open a menu showing you
a list of the folders you have visited. You can go straight to one of them by
clicking it. That saves you from wearing out your clicking finger by repeatedly
clicking the Previous Folder or Next Folder button!

»» Up a Level: A folder might be inside another folder, known as a parent folder.
The Desktop folder is inside your pi folder, for example, so pi is the parent
folder for Desktop. Click the Up a Level button to go to the parent folder.
Pressing the Backspace key (usually used when typing to delete a single
character to the left of the cursor) has the same effect as clicking this button.

»» Home: This button takes you back to your pi folder so that you have quick
access to your work.

»» Path: The path is a text description of the location of the folder you’re looking
at, including a list of the folders above it. Chapter 5 covers paths in depth, but
if you know a path, you can type it and then press the Enter key to go straight
to it in File Manager.

Copying and moving files and folders
File Manager makes it easy to copy and move your files and folders, without the
need for any text commands.

When you right-click a file or folder in File Manager, a menu opens that enables
you to rename the file, move it to the wastebasket, or cut or copy it.

If you cut a file, it is moved to wherever you choose to paste it. If you copy the file,
a duplicate copy of it is placed where you paste it. You paste by going to the folder
where you want the file to be stored and then right-clicking an empty space inside
a folder and choosing Paste from the menu that appears. (If you copy or cut a file
without pasting it, nothing happens to it.)

You can also drag files onto a folder’s icon to move them into it.

70 PART 2 Getting Started with Linux

Selecting multiple files and folders
There are several ways to select more than one file at a time so that you can delete,
copy, or move them all at the same time:

»» Hold down the Ctrl key and click each of the files in turn to select them.

»» To select a group of consecutive icons (read from left to right, top to bottom),
click the first icon, hold down the Shift key, and then click the last icon.

»» Click the mouse on the background of File Manager and hold the button down
while you lasso the files you want to select.

After you’ve selected a group of files, you can drag them all into a different folder
by clicking one of the selected files and dragging it into the folder. You can also
right-click one of your selected files and choose to cut or copy the whole group, as
shown in Figure 4-6.

PIXEL supports some keyboard shortcuts that might be familiar to you from
Microsoft Windows. You can use Ctrl+A to select all files and folders, Ctrl+C to
copy, Ctrl+V to paste, and Ctrl+X to cut selected files and folders in PIXEL. It’s
worth remembering, however, that Ctrl+C is used to cancel an operation on the
Linux command line (see Chapter 5) and in Python (see Chapter 11), so the Copy
shortcut isn’t universal on your Raspberry Pi the way it is in Windows.

If you’re selecting almost all the files, it’s probably easiest to use Ctrl+A to select
all and then hold down the Ctrl key and click to deselect the files you don’t want.
There’s also an option on the Edit menu to invert your selection (also available
with Ctrl+I), so you can select the files you don’t want and then use this option to
flip your choice so that everything else is selected instead.

FIGURE 4-6:
Right-clicking

a file in File
Manager brings

up a menu
of options.

LXDE File Manager, written by Hong Jen Yee / Raspberry Pi Foundation

CHAPTER 4 Using the Desktop Environment 71

Creating new folders and blank files
Organizing your files in folders makes it easier to manage them. You can more
easily see what files you have where, go straight to a file when you need it, and
back up a group of files by copying the folder to an external storage device.

It’s easy to make a new folder. First go to the location where you want the new
folder to be stored. Typically, it’s in your pi folder or one of its subfolders, such as
your Desktop. Right-click a blank space in the right pane of File Manager and
hover the mouse cursor over the words Create New. Click Folder on the menu that
appears and you’ll be prompted to enter a name and click OK to confirm. If you
change your mind, click Cancel instead.

You can also click the File menu at the top left of File Manager, find Create New,
and then click Folder.

Both options also enable you to create an empty file. If you want to practice
creating folders and moving files around, you can create a few blank files so
that you can do this safely, without worrying about moving anything you didn’t
intend to.

Deleting files and folders
To delete a file or a folder, right-click it in File Manager and choose Move to
Wastebasket from the menu that appears. As you see when copying files, you can
hold down the Ctrl key when you click to select several files or folders at the same
time, and you can click the background of the File Manager window and drag
the mouse to lasso files you want to delete, too. You can also send files to the
wastebasket by selecting them and then pressing the Delete key on the keyboard
(usually marked Del or Delete, and not to be confused with the Backspace key).

The wastebasket is used as a temporary place to put any folders or files you plan to
remove. You can find it on the desktop (refer to Figure 4-1), and can double-click
the Bin icon to see what’s inside. You can empty the wastebasket, and delete any
files or folders in it, by right-clicking it and choosing Empty Wastebasket.

If you put something in the wastebasket that you change your mind about, right-
click its icon in the wastebasket and choose to restore it to where it was before.
(This is especially useful if you’ve forgotten where it used to be!) You can also cut
or copy it so that you can paste it wherever you want.

72 PART 2 Getting Started with Linux

Changing how files are displayed
When you right-click an empty space in the right pane in File Manager, a menu
opens with an option to change how the files there are sorted. You can sort files by
name, modification time, size, or file type, in either ascending or reverse order.

You can change how files and folders are shown in File Manager, so you can strike
a balance between how many you can see at one time and how easy they are to see.
The View menu on the menu bar at the top of File Manager gives you the choice of
four different ways to display the files and folders in the Folder View Mode options.
By default, File Manager uses the icon view, which strikes a good balance between
the number of files you can see at a time and the size of each icon. The thumbnail
view is particularly useful in a folder of images because it enlarges the preview
that takes the place of a generic icon for picture files. To see as many files as pos-
sible at one time, use the compact view, which lists the files and folders in col-
umns with a small icon and the filename.

The detailed list view (see Figure 4-7) reveals more information about each file,
showing a short description, its size, and when it was last modified. You can click
the column headings to sort the view by the filename, description (which groups
similar files), size, or modification date. If you click the column heading again, the
sort order is reversed.

FIGURE 4-7:
The detailed list

view in File
Manager.

LXDE File Manager, written by Hong Jen Yee / Raspberry Pi Foundation

CHAPTER 4 Using the Desktop Environment 73

Sometimes you might need to refresh the view of File Manager to reflect your
latest changes. To do that, tap the F5 key on the keyboard or choose Reload Folder
from the View menu.

Opening a folder in the terminal
Linux has a rigorous permissions structure that governs who can access all its
files and whether they have permission to modify them or run them. It’s a good
thing, because it means it’s relatively difficult for you to do any real harm to your
Raspberry Pi’s operating system accidentally. You’re free to use File Manager to
explore all the files your operating system uses, but if you try to delete an essen-
tial file, you’ll be told you don’t have permission, as shown in Figure 4-8.

If you want to explore your system, go to your pi folder, click the Up a Level but-
ton twice (refer to Figure 4-4), and then take a look in the folders there. Chapter 5
covers some of these folders in more depth.

The Tools menu has an option to open the current folder in the terminal. This
enables you to use Linux commands (see Chapter 5) to make changes to the folder.
Often, this is the quickest way to accomplish something, especially after you’ve
mastered the finer points of Linux. While you’re using File Manager, you can also
use the keyboard shortcut F4 to access the terminal.

FIGURE 4-8:
Whoops! Denied

permission to
delete a file from

the Raspberry Pi’s
boot folder.

LXDE Foundation e.V. / Raspberry Pi Foundation

74 PART 2 Getting Started with Linux

Browsing the Web
When it comes to browsing the web on your Raspberry Pi, you really are spoiled
for choice, with four browsers to choose from. The recommended browser,
accessed from the Globe icon in the top left of the screen, is Chromium. Raspbian
also has three other browsers, which you can start by typing their names into the
Run option on the Applications menu:

»» Dillo: This browser is fast, but web pages look different than intended on it
because it can’t handle sophisticated layout instructions or JavaScript, the
language used for creating interactive web pages. Several websites we tried
were rendered as a single deep column because Dillo couldn’t understand
where the header box, sidebars, main page content, and bottom box should
go. You can switch off images from the Tools menu, which can greatly speed
up downloads of complex pages. If you’re accessing mainly text information
or you have a particularly slow web connection, this browser might be a good
choice, but you won’t benefit from much of the work that website owners put
into creating web page designs that are easy to use.

»» Netsurf: This one is capable of handling more sophisticated layouts than
Dillo, but it also lacks support for JavaScript. Many websites look as they do on
a PC or Mac browser, but any sites that require JavaScript (including Facebook)
won’t work. Netsurf offers a friendlier experience than Dillo for most websites.

»» Epiphany: Before Chromium, this was the recommended browser on the
Raspberry Pi. This browser has been optimized for the Raspberry Pi, including
hardware decoding of video. Epiphany supports JavaScript, and is better able
to re-create the richer experience you have with websites using other devices.
Sites like Facebook and Google Maps work, but might be noticeably slower
than what you’re used to.

At present, Flash only works on the Raspberry Pi 2 and 3. Flash is used for online
games and videos, so if you’re using an older Raspberry Pi, these often won’t
work.

Using Chromium to browse the web
Figure 4-9 shows the Chromium browser in use. Its layout is similar to other
browsers you might have used in the past, with a thin toolbar at the top and most
of the screen given over to the web page you’re viewing. To get started with it,
either run it from the Applications menu or click the Web Browser button in the
top left of the screen. (Refer to Figure 4-2.)

CHAPTER 4 Using the Desktop Environment 75

If you know the address of the website you want to visit, you can type it into the
Address bar, as shown in Figure 4-9. When you start to type an address, a menu
under the Address bar suggests pages you’ve previously visited that might match
what you want. Click one of these to go straight to it, or carry on typing. When
you’ve finished typing the address, press the Enter key.

You can scroll the page using the scroll bar on the right side of the browser or the
scroll wheel on your mouse.

When the mouse pointer is over a link, the pointer changes to a small hand. You
can then click the left mouse button to follow that link to another web page. The
browser keeps a list of the web pages you visit (called your history), so you can
click the Back button (refer to Figure 4-9) to retrace your steps and revisit the
pages you browsed before the current one. The Forward button beside it takes you
forward through your history again.

Some web pages update frequently with new information, so you can click the
Reload button to download the current page again and see any updates since you

FIGURE 4-9:
The Chromium

browser.
©2017 The Chromium Authors

76 PART 2 Getting Started with Linux

first opened it. While a page is downloading, this button becomes a Stop button.
Click it to halt the download.

Chromium includes an ad-blocker to strip advertising from the pages you visit.
You can change the settings using the button shown in Figure 4-9.

Searching within web pages
To find a word or phrase within a web page, press Ctrl+F after the page has loaded.
The Find bar opens at the top of the screen, with a box for you to type into. The
first occurrence of the text you’re looking for is highlighted on the page in orange,
and you can press the Enter key or click the Down button in the Find bar to move
to the next one. You can close the Find bar again by clicking the Close button
(an X) on the far right end of the Find bar or pressing the ESC key.

Using tabbed browsing
Like many other browsers today, Chromium uses tabs to enable you to switch
between several websites you have open at the same time. Click the empty tab
(refer to Figure 4-9) to add a new tab, which opens to show your most often
visited websites. You can click to visit one of these or type an address on the
Address bar.

To switch to a page, just click its tab above the main web page area. In Figure 4-9,
Facebook and Sean’s website are open, and we can click the tabs to flick between
those pages instantly. To close a tab, click the Close button to the right of its name.

If you hold down the Ctrl key while you click a link, the link opens in a new tab.

Adding and using bookmarks
Bookmarks make it easy to revisit your favorite web pages. You can add a book-
mark by using the menu in the top right, using Ctrl+D, or clicking the star inside
the Address bar on the right.

The window for adding a new bookmark looks like Figure 4-10. The default name
for a bookmark is the web page’s title, but you can edit it. Folders can be used to
organize your bookmarks so that they’re easier to use. The Folder menu includes
an option to create a new folder. You can also choose to store a bookmark in the
Bookmarks Bar folder. The Bookmarks bar is a bar that is displayed underneath
the Address bar, giving you one-click access to your favorite websites at all times.
To display the Bookmarks bar, click the button in the top right to open the

CHAPTER 4 Using the Desktop Environment 77

Chromium menu, hover over Bookmarks, and then select Show Bookmarks Bar
from the options that appear. There’s a keyboard shortcut too: Ctrl+Shift+B.

To add the bookmark, you click the Finished button. (See Figure 4-10.)

To access your bookmarks while you’re browsing, click the Menu button in the top
right (refer to Figure 4-9) and choose Bookmarks. The bookmarks on the
Bookmarks bar are shown on the menu that opens, and others can be found by
hovering over Other Bookmarks on this menu. You can visit a website on the
Bookmarks bar by displaying the bar (Ctrl+Shift+B) and clicking its entry on the
bar, and there’s easy access to your other bookmarks on the right of this bar too,
in the Other Bookmarks folder.

To manage your bookmarks, go to the Bookmarks manager with Ctrl+Shift+O. Hover
over a bookmark there, and click the menu button on the right of it to see options
to edit or delete the bookmark.

If you sign in to Google while using Chromium on your Raspberry Pi, it can syn-
chronize your bookmarks across your different devices.

One of the best Chromium features is the ability to save all open web pages into
bookmarks, in their own folder. It’s handy if you’re doing some research in dif-
ferent tabs to be able to store all the pages you’re looking at in one place. To do
this, open the Chromium menu, hover over Bookmarks, and then select Bookmark
Open Pages from the menu that appears. You can enter a new name for the folder,
and then click Save.

Protecting your privacy
As you know, your browser stores the history of web pages you visit. If you want
to make a visit to a website without any traces being left in the browser — perhaps
to plan your Christmas shopping without the risk of other family members

FIGURE 4-10:
Adding a

bookmark in
Chromium.

©2017 The Chromium Authors

78 PART 2 Getting Started with Linux

coming across the websites you’ve visited — open a new, incognito window first.
You do this from the menu in the top right. When you close the private browsing
window, your secret session stops.

When information has already been stored in the browser, you can delete it by
opening the Chromium menu in the top right and clicking Settings. Scroll down
and then click Show Advanced Settings, and there is an option to clear your
browsing data. From the menu in the top right, you can also visit your browser
history and delete any entries.

Sending and Receiving Email
with Claws Mail

Claws Mail is an open source email program that is preinstalled on your
Raspberry Pi. Find it in the Internet category of the Applications menu.

If you want to use email on your Raspberry Pi, you need to know the details of the
server for sending and receiving your email. Your email provider most likely pub-
lishes this information on its website. You also need to know your user ID and
password, which are likely to be the same as you use when logging on with
webmail.

When you start Claws Mail for the first time, it walks you through a configuration
wizard to add an account. If you experience any difficulties, you can edit the
account settings, delete an account, or add a new account by using the Configura-
tion menu. There is an Auto-configure option, but this didn’t work for our account
when we tried it, so be prepared to do the extra work of putting all the information
in the boxes manually if it doesn’t work for you, either.

When you’re set up, click the Get Mail button in the top left to download your
email. Claws Mail is similar to many other email clients, including Thunderbird
and Outlook. Your mail folders are shown on the left, and your messages are listed
on the right, at the top. You can use the message preview pane at the bottom right
to read messages, or you can double-click a message to open it in its own
window.

Across the top is a menu bar with options for composing a new message, replying
to a message, replying to all people copied on that message, and forwarding the
message. There’s also a Wastebin button you can use to delete a message.

CHAPTER 4 Using the Desktop Environment 79

Using the Image Viewer
It’s easy to look at your digital photos and other images using PIXEL. Among the
accessories on the Applications menu is the Image Viewer. You can start it from
the menu (in the Accessories folder) or by double-clicking or right-clicking an
image file.

The Image Viewer displays the picture, with a toolbar underneath it, as you can
see in Figure 4-11. From left to right, this is what the buttons do:

»» Previous: Goes to the previous photo in the folder. Note that any unsaved
changes (such as rotation) are lost. You can also use the left-arrow key on
the keyboard.

»» Next: Goes to the next photo in the folder. As with the Previous button,
clicking this discards any unsaved changes you’ve made to the current photo.
You can also use the right-arrow key on the keyboard.

»» Start Slide show: Begins a slide show of all photos in the folder. The interval
between photos is set at 5 seconds, but you can change it in the preferences.
You can also press the W key to start a slide show. There might be a short
delay before the slide show begins.

»» Zoom Out: Reduces the magnification of the image. The keyboard shortcut is
the Minus (–) key.

»» Zoom In: Increases the magnification of the image. Scroll bars appear if the
image becomes too big to fit in the Image Viewer, and you can use these to
see different parts of the picture. The keyboard shortcut is the plus sign (+)
key, with no need to use Shift.

»» Fit Image to Window: Shrinks a large image to make it fit the Image Viewer
snugly. If an image is smaller than the Image Viewer window, it won’t be blown
up to fill it, though. This button (or its keyboard shortcut, F) is a good way to
recover if you get lost zooming in or out.

»» Go to Original Size: Resets any zooming by showing the image at its full
original size. This might be bigger than the Image Viewer window, in which
case scroll bars appear, to enable you to move around the image. The
keyboard shortcut is G.

»» Full Screen: Expands the image to fill the monitor, so you lose the Image
Viewer controls. Right-click the image to open a menu with all the same
options. To revert to using the Image Viewer in a window, choose Full Screen
from the menu or press ESC. You can also use the F11 key to switch the full
screen view on and off.

80 PART 2 Getting Started with Linux

»» Rotate Left: Rotates the image 90 degrees counterclockwise. The keyboard
shortcut is L.

»» Rotate Right: Rotates the image 90 degrees clockwise. The keyboard
shortcut is R.

»» Flip Horizontally: Mirrors the image horizontally and can also be done with
the H key.

»» Flip Vertically: Turns the image upside down. The V key does the same.

»» Open File: Opens a new image file. You can also drag and drop an image on
the Image Viewer from a folder in File Manager. This doesn’t move the file — it
just opens it.

»» Save File: Saves the image (including any rotations or mirroring you have
done) and replaces the original image. You get a warning before it happens.
Keyboard shortcut: S.

»» Save File As: Saves the image with a new filename so that it doesn’t overwrite
the original image. (You can also press the A key to do this.) Use the menu at
the bottom of the Save File As window to choose the image format.

FIGURE 4-11:
Sean in China, as
seen through the

Image Viewer.
GpicView, written by Hong Jen Yee / Raspberry Pi Foundation

CHAPTER 4 Using the Desktop Environment 81

»» Delete: Deletes an image from your storage device. If you delete an image, it’s
not sent to the wastebasket: It’s deleted and cannot be recovered. You get one
warning, but then it’s toast! You can also use the Delete key.

»» Preferences: Holds the settings you can change for Image Viewer so that you
can customize it for your needs. You can turn off the warnings you get before
overwriting or deleting an image, set Image Viewer to automatically save
rotated images, change the background colors of Image Viewer, and change
the slide show interval. There’s also an option to rotate images by changing
their orientation value in the EXIF tag, which changes some of the information
stored with the image to say which way up the camera was, instead of actually
rotating the image content itself. It’s okay to keep this selected, but this is
where you disable it, if you prefer.

»» Exit Image Viewer: Closes the Image Viewer application. You can also close
the window by clicking the X in the top right as you would with any other
window.

Using the Text Editor
Among the accessories on the Applications menu is Leafpad, which is a simple
text editor. (See Figure 4-12.) To find it, click Text Editor in the Accessories part
of the Applications menu. You can use Leafpad for writing and word processing,
but it’s not ideal for creating print-ready documents. It’s most useful for editing
documents intended to be read by computers, such as web pages and configura-
tion files.

The menus are logically organized, and if you’ve ever used a text editor on another
computer, you’ll find your way around in Leafpad easily.

The File menu is used to start new documents and open, save, and print files.
There’s also an option to quit here, although you can just close the Leafpad
window.

The Edit menu gives you tools for undoing and redoing your work and for cutting,
copying, pasting, deleting, and selecting all your text. Leafpad uses Windows
shortcuts too, so you can use Ctrl+C to copy, Ctrl+V to paste, Ctrl+X to cut, and
Ctrl+A to select all text.

82 PART 2 Getting Started with Linux

The Search menu has options to find a particular word or phrase, jump to a
particular line in the document, or replace a chosen word or phrase with an alter-
native. You can click the box to replace all in one go, or step through them indi-
vidually. The search-and-replace feature highlights all occurrences in yellow, and
highlights in blue the occurrence that it’s currently focused on. You can use the
Search menu to move forward or backward through the list of results.

The Options menu (refer to Figure 4-12) has options to change the font (although
the choices available are more limited than you’re probably used to), switch on
word wrap (which means text starts a new line when it reaches the edge of the
window, instead of a horizontal scroll bar appearing), and switch on line numbers
(refer to Figure 4-12). The auto-indent feature means that any indentation used
on one line is automatically applied to the next line when you press Enter.

Customizing the Desktop
You can do quite a few things to stamp your identity on PIXEL and make it easier
to use. As with other desktop computers you might have used, you can change the
look and feel of it. To find the options for this, click Appearance Settings in the
Preferences section of the Applications menu.

In the desktop options, you can change the picture used as a backdrop (the wall-
paper), change the desktop color if you’re not using wallpaper, and change
the color of icon descriptions (the text color). You can tick a box to display your
Documents folder and mounted disks on the desktop, which makes it easier to find
your files. The Menu Bar tab gives you options for changing the size, position, and

FIGURE 4-12:
The Leafpad

text editor.
Leafpad, written by Tarot Osuji, with artwork by Lapo Calamandrei / Raspberry Pi Foundation

CHAPTER 4 Using the Desktop Environment 83

color of the menu bar that is usually at the top of the screen. The System tab
enables you to change the default font used throughout the desktop environment
and the colors used in the title bars of windows.

You can also get to the appearance settings by right-clicking the desktop and
choosing Desktop Preferences from the menu that appears.

To adjust the sensitivity of the keyboard and mouse, use the mouse and keyboard
settings in the Preferences section of the Applications menu. For left-handers,
you can swap the left and right mouse buttons, too.

Finding and Installing New Applications
You can discover new software to install using the command line (see Chapter 5),
but there’s also a friendly menu system you can use in the desktop environment.
On the Applications menu, hover over the Preferences option and click Add/
Remove Software to get started. You need to have an active Internet connection.

Figure 4-13 shows you the menu. In the top left is a search box, where you can
enter the name of a program you’re looking for, or a phrase such as puzzle games
to explore what’s available. On the left are categories you can click to see your
options.

FIGURE 4-13:
The Add/Remove

Software menu.
Raspberry Pi Foundation

84 PART 2 Getting Started with Linux

The main pane shows you the packages, with a scroll bar on the right that you can
use to see the full list. Those that are already checked (or ticked) and shown in
bold are already installed on your Raspberry Pi. You can click a package to see
its description below. To select a package for installation, tick the box beside it.
To remove it, untick it.

When you’ve finished choosing your software, click the OK button to install and
remove the applications. You will be prompted to enter your password (which is
raspberry, unless you’ve changed it). It can take some time to download and install
the software, so it’s a good idea to choose a few applications and leave them to
install in one batch while you do something else.

The menu ensures that any applications that your chosen application requires also
get installed. When I installed Brain Party (see Chapter 19), for example, the menu
automatically installed its separate data package for me.

The menu makes it easy to install software, but you might find that not all the
software works well on the Raspberry Pi. It’s easy enough to try something,
though, and remove it if it doesn’t do what you need. It’s all free.

Backing Up Your Data
If you want to back up your files, you can easily copy them to a USB key using
File Manager as described earlier in this chapter, or using shell commands. (See
Chapter 5 on file copying, and Appendix A for more on mounting external storage
devices.) If you’ve got a lot of files on the MicroSD card, though, and you’ve spent
time customizing it with your preferred settings and software, you might prefer to
make a backup copy of the entire card. There’s an application to do this, called SD
Card Copier, which you can find in the Accessories section of the Applications menu.

To use SD Card Copier effectively, you need a USB MicroSD card reader, which will
enable you to read and write additional MicroSD cards from your Raspberry Pi,
using a device plugged into one of the USB ports. If you don’t have a MicroSD card
reader, you can use the application to back up to a USB flash drive; you would need
a card reader, though, to restore the backup to a MicroSD card so that you can use
it in your Raspberry Pi.

The MicroSD card or the USB key that you back up to will be totally erased. Ensure
that there’s nothing on it you need before you begin.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 Using the Desktop Environment 85

The application is shown in Figure 4-14. It has two menus, where you choose
which device to copy from and which device to copy to. If you’re not sure which
MicroSD card contains your operating system (the one the Pi is currently using),
check the Copy To Device menu: It won’t be listed there, because you can’t use
this application to write to the card the Raspberry Pi is using for its operating
system.

The application should work with NOOBS and Raspbian images, but may not work
with other operating systems or card formats.

The backup might take some time, during which it can look like nothing’s hap-
pening, so be patient.

Logging Out from PIXEL and
Shutting Down

When you’ve finished using your Raspberry Pi, shut it down before removing the
power supply. The options to shut down or restart (reboot) your Pi are on the
Applications menu, under Shutdown. You can also log out, which will prompt you
to log in again. The default username and password are pi and raspberry.

After your Pi has shut down, you can disconnect the power. When you reconnect
it, your Pi will start up again.

FIGURE 4-14:
The SD Card

Copier
application.

Raspberry Pi Foundation

CHAPTER 5 Using the Linux Shell 87

Chapter 5

IN THIS CHAPTER

»» Exploring the Linux file system

»» Creating, removing, and browsing
files and directories

»» Discovering and installing great free
software

»» Managing user accounts on your
Raspberry Pi

»» Customizing the shell with your own
commands

Using the Linux Shell

The Linux shell is the text-based way of issuing instructions to your Raspberry
Pi. The shell on the Raspberry Pi is called Bash, which is used in most other
Linux distributions too. Its name is short for Bourne Again Shell, a pun

because it was created to replace the Bourne shell.

In this chapter, you learn how to use the shell to manage your Raspberry Pi. There
are several reasons why it’s a good idea to learn how to use the shell. Most impor-
tantly, it’s a faster solution for certain tasks than the desktop environment is.
Learning Linux is also a useful skill in itself: Linux is a powerful and popular
operating system, and the Raspberry Pi can provide an accessible introduction to
the basics. It also gives you some understanding of what’s going on behind the
scenes on your Raspberry Pi.

To open a shell window, click the Terminal icon at the top of the screen, which has
a >_ prompt on it. Alternatively, you can find the Terminal in the Accessories
section of the Applications menu. Either approach opens a window on the desktop
that you can use to access the shell.

If the screen goes blank while you’re using the shell, don’t worry: You can get it
back again by pressing any key on the keyboard.

88 PART 2 Getting Started with Linux

Understanding the Prompt
When you log in to your Raspberry Pi, you see a prompt that looks like this, with
a cursor beside it that’s ready for you to enter a command:

pi@raspberrypi ~ $

At first glance, that prompt can look quite foreign and unnecessarily complicated
(why doesn’t it just say OK or Ready?), but it actually contains a lot of information.
This is what the different bits mean:

»» pi: This is the name of the user who is logged in. Later in this chapter, we
show you how to add different users to your Raspberry Pi, and if you log in as
a different user, you see that user’s name here instead.

»» raspberrypi: This is the hostname of the machine, which is the name other
computers might use to identify the machine when connecting to it.

»» ~ : In Linux, people talk about organizing files in directories rather than folders, but
it means the same thing. This part of the prompt tells you which directory you’re
looking at (the current working directory). The tilde symbol (a horizontal wiggly
line) is shorthand for what is known as your home directory, and its presence in
the prompt here shows that you’re currently working in that directory. As we
explain in Chapter 4, this is where you should store your work and other files.
An ordinary user doesn’t have permission to put files anywhere except for his or
her home directory or any directories inside that home directory.

»» $: The dollar sign means that you’re a humble, ordinary user and not an
all-powerful superuser. If you were a superuser, you would see a # symbol
instead.

Exploring Your Linux System
It’s perfectly safe to take a look at any of the files and directories on your Raspberry
Pi. As an ordinary user, you’re blocked from deleting or damaging any essential
files in any case, so you can explore without fear of deleting anything important.

Listing files and directories
The command for listing files and directories is ls. Because you start in your
home directory, if you enter it now, you see the folders and files (if any) in your
home directory. Here’s what the output looks like on Sean’s Raspberry Pi — in

CHAPTER 5 Using the Linux Shell 89

this chapter, we use bold text for the bits you type and use normal text for the
computer’s output:

pi@raspberrypi ~ $ ls
Desktop Downloads Pictures python_games Videos
Documents Music Public Templates

Linux is case-sensitive, which means LS, ls, Ls, and lS are completely different
instructions. Linux doesn’t see that uppercase and lowercase letters are related to
each other, so an S and an s look like completely different symbols to the com-
puter, in the same way that an A and a Z look different to humans. If you get the
capitalization wrong in your command, it won’t work, and that applies to every-
thing in the shell. If you misplace a capital letter in a filename, Linux thinks the
file you want doesn’t exist. When you come to use more-advanced command
options later, you might find that some commands use upper- and lowercase
options to mean different things.

Changing directories
The output is all blue, which means these are all directories, so you can go into
them to take a look at the files they have inside. The command to change a direc-
tory is cd, and you use it together with the name of the directory you would like to
go into, like this:

pi@raspberrypi ~ $ cd python_games

The prompt changes to show the directory you have changed to after the tilde
character, and you can double-check that the current directory has changed by
using ls to view the files there.

Checking file types
If you want to find out more about a particular file, you can use the file com-
mand. After the command name, put the name of the file you’d like more infor-
mation on. You can list several files in one command by separating them with
spaces, like this:

pi@raspberrypi ~/python_games $ file boy.png match0.wav wormy.py
boy.png: PNG image data, 50 x 85, 8-bit/color RGBA, non-

interlaced
match0.wav: RIFF (little-endian) data, WAVE audio, Microsoft

PCM, 16 bit, mono 44100 Hz
wormy.py: Python script, ASCII text executable

90 PART 2 Getting Started with Linux

The file command can tell you quite a lot about a file. You not only learn what
kind of data is in the first two files (an image and an audio recording), but also
how big the image is (50×85 pixels) and that the audio is mono.

If you’re an experienced computer user, you might have been able to guess what
kind of files those were from the file extensions (the .png, .wav, and .py on the
end of the filenames). Linux doesn’t require files to have extensions like that,
however, so the file command can sometimes be a huge help. (In practice, a lot
of applications choose to use file extensions, and users often prefer to do so
because it’s more user-friendly than having filenames without any context for the
file type.)

You can also use the file command on a directory. For example, when you’re in
your pi directory, you can find out about Desktop and python_games like this:

pi@raspberrypi ~ $ file Desktop python_games
Desktop: directory
python_games: directory

That confirms to us that both of these are directories. It might seem counterintui-
tive to use a command called file to find out about a directory, but it illustrates
an important feature of Linux: Linux considers everything to be a file, including
hard drives and network connections. It’s all just a bunch of files, according to
Linux.

Changing to the parent directory
In this chapter so far, we’ve used cd to change into a directory that’s inside the
current working directory. However, you will often want to change into the direc-
tory above the current working directory, which is known as its parent directory.
The python_games directory is inside the pi directory, for example, so the pi
directory is the parent directory for it.

To change to the parent directory, you use cd with two dots. You can use that
command while in python_games to change your home directory (indicated by a ~
symbol in the command prompt):

pi@raspberrypi ~/python_games $ cd ..
pi@raspberrypi ~ $

The ~ symbol is really just shorthand for your home directory. The directory’s real
name is the same as your username, which means it is usually pi, the default

CHAPTER 5 Using the Linux Shell 91

username. The parent directory of your home directory is, rather confusingly,
called home, and it’s used to store the home directories of all users of the
computer.

When you’re in your home directory, try using cd .. to go into the directory called
home. If you use it again, you will find yourself at the highest directory of your
operating system, known as the root and indicated with a / in the command
prompt. Try navigating through the parent directories to get to the root and then
listing what’s there, like this:

pi@raspberrypi ~ $ cd ..
pi@raspberrypi /home $ cd ..
pi@raspberrypi / $ ls
bin debian-binary etc lib man mnt proc run srv tmp var

boot dev home lost+found media opt root sbin sys usr

Feel free to use the cd command to nose around these directories. You can use ls
to see what’s in the directory, cd to change into a directory you come across, and
file to investigate any files you find.

Understanding the directory tree
When people think about how the directories are organized on a computer, they
often use the metaphor of a tree. A tree has a single trunk with many branches
that come off it, secondary branches that sprout from those branches, and so on
until you get down to twigs.

Your Raspberry Pi has a single root directory, with directories that come off it, and
subdirectories inside those, and maybe subdirectories inside those too.

Figure 5-1 shows a partial picture of the directory tree on your Raspberry Pi. It
doesn’t show all the subdirectories in the root, and it doesn’t show all their
subdirectories either, but it does show you where your home directory is, relative
to other directories and the root. You can think of it as a map. If you’re at the root
and you want to get to the python_games directory, the tree shows you need to go
through the home and pi directories to get there.

When you get to the root, you see approximately 20 directories there. All the
programs, files, and operating system data on your Raspberry Pi are stored in
these directories, or in their subdirectories. It’s safe to go into the various direc-
tories and have a look around, and to use file to investigate any files you find.

92 PART 2 Getting Started with Linux

You will rarely need to use any of these directories, but in case you’re curious,
here’s what some of them are used for:

»» bin: This is short for binaries, and it contains small programs that behave like
commands in the shell, including ls and mkdir, which you will use to make
directories later.

»» boot: This contains the Linux kernel, the heart of the operating system, and
also contains configuration files that store various technical settings for the
Raspberry Pi. Appendix A shows you how you can edit the config.txt file
here to change some of your computer’s settings.

»» dev: This stores a list of devices (such as disks and network connections) that
the operating system understands.

»» etc: This is used for various configuration files that apply to all users on the
computer.

»» home: As already discussed, this directory contains a directory for each user,
and that is the only place a user is allowed to store or write files by default.

»» lib: This directory contains libraries (shared programs) that are used by
different operating system programs.

»» lost+found: The name looks intriguing, but hopefully you’ll never have to
deal with this directory. It’s used if the file system gets corrupted and recovers
partially.

»» media: When you connect a removable storage device like a USB key and it is
automatically recognized in the desktop environment, its details are stored in
the media directory.

FIGURE 5-1:
Part of the

directory
tree on your

Raspberry Pi.

CHAPTER 5 Using the Linux Shell 93

»» mnt: This directory is used to store the details of removable storage devices
that you mount yourself. (See the section about mounting external storage
devices in Appendix A.)

»» opt: This directory is used for optional software on your Raspberry Pi. Usually
in Linux, this directory is used for software you install yourself, but on the
Raspberry Pi, many programs install into /usr/bin instead.

»» proc: This directory is used by the Linux kernel to give you information about
its view of the system. Most of this information requires expertise to interpret,
but it’s fun to take a peek anyway. Try entering less /proc/cpuinfo to see how
the kernel views the Raspberry Pi’s processors, or less /proc/meminfo to see
how much memory your Raspberry Pi has and how it’s being used. (You’ll
learn how to use less fully later, but for now, you just need to know that you
press Q to quit.) If you use the file command to look at these files, they
appear to be empty, which is a peculiarity that arises because they’re being
constantly updated.

»» root: You don’t have permission to change into this directory as an ordinary
user. It’s reserved for the use of the root user, which in Linux is the all-powerful
user account that can do anything on the computer. The Raspberry Pi discour-
ages the use of the root account and instead encourages you to use sudo to
issue specific commands with the authority of the root user (sometimes called
the superuser). Later in this chapter, we show you how this is used to install
software. (See “Installing software.”)

»» run: This directory, a relatively recent addition to Linux, provides a place
where programs can store data they need and have confidence it will be
available when the operating system starts up. Data in the tmp folder is
vulnerable to being removed by disk cleanup programs, and the usr directory
might not always be available at start-up on all Linux systems. (It can be on a
different file system.)

»» sbin: This directory contains software that is typically reserved for the use of
the root user.

»» srv: This is empty by default, and is sometimes used in Linux for storing data
directories for services such as FTP, which is used to copy files over the Internet.

»» sys: This directory is used for Linux operating system files.

»» tmp: This directory is used for temporary files.

»» usr: This directory is used for the programs and files that ordinary users can
access and run.

»» var: This directory stores files that fluctuate in size (or are variable), such
as databases and log files. You can see the system message log with the
command less /var/log/messages. (Use the arrow key to move down,
and press Q to quit.)

94 PART 2 Getting Started with Linux

Using relative and absolute paths
We’ve been discussing how to move between directories that are immediately
above or below each other on the directory tree, a bit like the way you might work
in a desktop environment. You click to open one folder, click to open the folder
inside it, and click to open the folder inside that. It’s easy (which is why it’s popu-
lar), but if you’ve got a complex directory structure, it soon gets tedious.

If you know where you’re going, the shell enables you to go straight there by
specifying a path, which is a description of a file’s location. There are two types of
paths: relative and absolute. A relative path is a bit like giving directions to the
directory from where you are now (go up a directory, down through the Desktop
directory, and there it is!). An absolute path is more like a street address: It’s
exactly the same wherever you are.

Absolute paths are usually measured from the root, so they start with a / and then
they list the directories you go through to find the one you want. For example, the
absolute path to the pi directory is /home/pi. Whichever directory you’re in, you
can go straight to the pi directory using

cd /home/pi

If you wanted to go straight to the Desktop directory, you would use

cd /home/pi/Desktop

To go straight to the root, just use a slash by itself, like this:

cd /

Besides using the root as a reference point for an absolute path, you can also use
your home directory, which you represent with a tilde (~). You can use it by itself
to jump back to your home directory:

cd ~

Alternatively, you can use it as the start of an absolute path to another directory
that’s inside your home directory, like this:

cd ~/Desktop

CHAPTER 5 Using the Linux Shell 95

Relative paths use your current working directory as the starting point. It’s shown
in the command prompt, but you can also check it by entering the command

pwd

Whereas the command prompt uses the tilde (~) character if you’re in your home
directory, pwd tells you where that actually is on the directory tree and reports it
as /home/pi.

A relative path that refers to a subdirectory below the current one just lists the
path through the subdirectories in order, separating them with a slash. For exam-
ple, in Figure 5-1, you can see a directory called home, with a directory called pi
inside it, and a directory called Desktop inside that. When you’re in the directory
with the name home, you can change into the Desktop directory by specifying a
path of pi/Desktop, like this:

pi@raspberrypi /home $ cd pi/Desktop
pi@raspberrypi ~/Desktop $

You can change into any directory below the current one in this way. You can also
have a relative path that goes up the directory tree by using .. to represent the
parent directory. Referring to Figure 5-1 again, imagine that you want to go from
the Desktop directory into the python_games directory. You can do that by going
through the pi directory using this command:

pi@raspberrypi ~/Desktop $ cd ../python_games
pi@raspberrypi ~/python_games $

As the prompt shows, you’ve moved from the Desktop directory into the python_
games directory. You started in Desktop, went into its parent directory (pi), and
then changed into the python_games directory there. You can go through multiple
parent directories to navigate the tree. If you wanted to go from the pi directory
to the boot directory, you could use

pi@raspberrypi ~ $ cd ../../boot
pi@raspberrypi /boot $

That takes you into the parent directory of pi (the directory called home), takes
you up one more level to the root, and then changes into the boot directory.

You can choose to use an absolute or relative path, depending on which is most
convenient. If the file or directory you’re referring to is relatively close to your
current directory, it might be simplest to use a relative path. Otherwise, it might
be less confusing to use an absolute path. It’s up to you. Paths like this aren’t used

96 PART 2 Getting Started with Linux

only for changing directories. You can also use them with other commands and to
refer to a specific file by adding the filename at the end of the path. For example,
you can use the file command like this:

file /boot/config.txt

As you discover more commands in this chapter that work with files, you’ll be able
to use your knowledge of paths to refer to files that aren’t in the same directory as
your current working directory.

Be careful not to confuse absolute and relative paths. In particular, pay attention
to where you use a slash. You should only use a / at the start of the path if you
intend to use an absolute path starting at the root.

If you want to change into a directory for a quick look around and then go back
again, you can use a shortcut to change back to the previous directory:

cd -

If you enter this, the shell shows you the previous directory you were in and then
changes your current working directory to that.

You can also change to your home directory quickly by using the cd command
alone, like this:

pi@raspberrypi /boot $ cd
pi@raspberrypi ~ $

Investigating more advanced
listing options
You can use ls to look inside any directory outside the current working directory
by specifying its path, like this:

pi@raspberrypi ~ $ ls /boot

Although you’re in your home directory, that command gives you a listing from
the /boot directory.

When we provide information for a command to process like this, such as a
filename or a path, it’s called an argument. Many Linux commands can accept

CHAPTER 5 Using the Linux Shell 97

arguments in this way (including the cd and file commands). Some commands
can also accept options. Options tell the command how to do its work, and they
have the format of a hyphen followed by a code that tells the command which
option(s) to use.

There are several options you can use with ls to change its results, shown in
Table 5-1. For example, change into your home directory and use

pi@raspberrypi ~ $ ls -R

This lists all the contents in your home directory, and then all the contents in the
folders that are inside your home directory. You can use the scroll bar on the right
side of the shell window to see them all.

When you’re using options and arguments together, the options come before the
arguments, so the format of the typical Linux command is

command -options arguments

For example, try using the -X option to list the contents of the python_games
folder. All the .png, .py, and .wav files will be grouped together, so it’s easier to
see what’s there. The command to use is

pi@raspberrypi ~ $ ls –X ~/python_games

You can use several options together by adding all the option codes after a single
hyphen. For example, if you want to look in all your directories under your current
directory (option R) and you want to group the results by file type (option X)
and use symbols to indicate directories and executables beside their filenames
(option F), you would use

pi@raspberrypi ~ $ ls -RXF

Figure 5-2 shows the resulting output. We’ve scrolled up using the scroll bar, so
you’re looking at the start of the results, not the end. One thing you might notice
is that a single period (full stop) is used to refer to the current directory in the
pathnames, so the path for the first set of results is simply a period. This short
code for the current directory is similar to the two periods used to refer to the par-
ent directory.

When you’re experimenting with ls (or at any other time, come to that), use the
command clear to empty the screen if it gets messy and hard to follow.

98 PART 2 Getting Started with Linux

FIGURE 5-2:
This listing

includes all
subdirectories,

sorted by file
type, with a

forward slash
used to indicate

folders.

TABLE 5-1	 Options for the ls Command
Option Description

-1 Outputs the results in a single column instead of a row. Note that this option is a number 1 and
not a letter l.

-a Displays all files, including hidden files. The names of hidden files start with a single period (full
stop). Hidden files are usually put there (and required) by the operating system, so they’re best
left alone. You can create your own hidden files by using filenames that start with a period.

-F Adds a symbol beside a filename to indicate its type. When you use this option, directories have
a / after their names, and executables have a * after their names.

-h In the long format, expresses file sizes using kilobytes, megabytes, and gigabytes to save you
the mental arithmetic of working them out. It’s short for human-readable.

-l Displays results in the long format, which shows information about the permissions of files,
when they were last modified, and their size. Note that this option uses a letter l, short for long.

-m Lists the results as a list separated by commas.

-R The recursive option; as well as listing files and directories in the current working directory,
opens any subdirectories and lists their results too, and keeps opening subdirectories and
listing their results, working its way down the directory tree. You can look at all the files on your
Raspberry Pi using ls -R from the root. Be warned: It takes a while. To cancel when you get
bored, use Ctrl+C.

CHAPTER 5 Using the Linux Shell 99

Option Description

-r The reverse option; displays results in reverse order. By default, results are in alphabetical
order, so this shows them in reverse alphabetical order. Note that -r and -R are completely
different options.

-S Sorts the results by their size.

-t Sorts the results according to the date and time they were last modified.

-X Sorts the results according to the file extension.

Understanding the Long Listing
Format and Permissions

One of the most useful ls options is long format, which provides additional infor-
mation on a file, compared to a standard listing. You trigger it using the option –l
(the letter l) after the ls command, like this:

pi@raspberrypi ~ $ ls -l
total 152
-rw-r--r-- 1 pi pi 256 Nov 18 13:53 booknotes.txt
drwxr-xr-x 2 pi pi 4096 Oct 28 22:54 Desktop
drwxr-xr-x 5 pi pi 4096 Oct 28 22:35 Documents
drwxr-xr-x 2 pi pi 4096 Oct 28 22:54 Downloads
drwxr-xr-x 2 pi pi 4096 Oct 28 22:54 Music
drwxr-xr-x 2 pi pi 4096 Oct 28 22:54 Pictures
drwxr-xr-x 2 pi pi 4096 Oct 28 22:54 Public
drwxrwxr-x 2 pi pi 4096 Nov 17 22:35 python_games
drwxr-xr-x 2 pi pi 4096 Nov 3 17:43 seanwork
-rw-r--r-- 1 pi pi 20855 Nov 12 2010 spacegame.sb
drwxr-xr-x 2 pi pi 4096 Oct 28 22:54 Templates
drwxr-xr-x 2 pi pi 4096 Oct 28 22:54 Videos

This listing includes some of Sean’s work files on the Raspberry Pi (booknotes.
txt, spacegame.sb, and the directory seanwork), which we can use to show you
how different files are described.

This layout might look a bit eccentric, but it’s easier to follow if you read it from
right to left. Each line relates to one file or directory, with its name on the
right and the time and date it was last modified next to that. For older files,
the date’s year appears in place of the modification time, as you can see for the file
spacegame.sb in the preceding list.

100 PART 2 Getting Started with Linux

The number in the middle of the line is the size of the file. Three of the entries
(Desktop, python_games, and seanwork) are directories that have the same file
size (4096 bytes), although they have vastly different contents. That’s because
directories are files too, and the number here is telling you how big the file is that
describes the directory, and not how big the directory’s contents are. The file size
is measured in bytes, but you can add the –h option to give you more meaningful
numbers — translating 4096 bytes into 4K, for example.

The rest of the information concerns permissions, which refer to who is allowed to
use the file and what they are allowed to do with it. Linux was designed from the
start to offer a secure way for multiple users to share the same system, and so
permissions are an essential part of how Linux works.

Many people find they can use their Raspberry Pi without needing to know too
much about permissions, but permissions tell you a lot about how Linux works,
and you might find the knowledge useful if you want to be a bit more
adventurous.

The permissions on a file are divided into three categories: things the file’s owner
can do (who is usually the person who created the file), things that group owners
can do (people who belong to a group that has permission to use the file), and
things that everyone can do (known as the world permissions).

In the long listing, you can see that the word pi is shown twice for each file. These
two columns represent the owner of the file or directory (the leftmost of the two
columns) and the group that owns the file. These both have the same name here
because Linux creates a group for each user with just that user in it, and with the
same name as the user. In theory, the group could be called something like stu-
dents and include all students who have usernames for the computer.

The leftmost column contains a code that explains what type of file each file is,
and what the permissions are on that file. To make sense of the code, you need to
break it down into four chunks, as in Table 5-2, which represents the code shared
by booknotes.txt and spacegame.sb in our long listing.

The two main file types you’re likely to come across are regular files and directo-
ries. Regular files have a hyphen (–) for their file type at the start of their code,

TABLE 5-2	 Understanding Permissions
File type Owner Group World

- rw- r-- r--

CHAPTER 5 Using the Linux Shell 101

and directories have a d. You can see both of these symbols used in our long direc-
tory listing.

Next come the permissions for the owner, group, and world. These are the three
different types of permission someone can have:

»» Read permission: The ability to open and look at the contents of a file, or to
list a directory

»» Write permission: The ability to change a file’s contents, or to create or delete
files in a directory

»» Execute permission: The ability to treat a file as a program and run it, or to
enter a directory using the cd command

That probably seems logical and intuitive, but there are two potential catches:
First, you can only read or write in a directory if you also have execute permis-
sion for that directory; and, second, you can rename or delete a file only if the
permissions of its directory allow you to do so, even if you have write permission
for the file.

The permissions are expressed using the letters r (for read), w (for write), and x
(for execute), and these make up a 3-letter code in that order. Where permission
has not been granted, the letter is replaced with a hyphen. So in Table 5-2, you can
see that the owner can read and write the file, but the group owner and world
(everyone else) can only read it.

The code for the Desktop folder in our long listing is drwxr-xr-x. The first letter
tells you it’s a directory. The next three letters (rwx) tell you that the owner can
read it, write to it, and execute it, which means they have freedom to list its con-
tents (read), add or delete files (write), and enter the directory in the first place to
carry out those actions (execute). The next three characters (r-x) tell you that
group owners may enter the directory (execute) and list its contents (read), but
may not create or delete files. The final three characters (r-x) tell you that every-
one else (the world) has been granted those same read-only permissions.

Several commands are used to change the permissions of a file (including chmod
to change the permissions, chown to change a file’s owner, and chgrp to change
the file’s group owner). We don’t have space to go into detail here, but see “Learn-
ing More about Linux Commands,” later in this chapter, for guidance on how to
get help with them. The easiest way to change permissions, in any case, is through
the desktop environment. Right-click a file in File Manager (see Chapter 4) and
choose Properties from the menu that appears. You can then use the Permissions
tab in the File Properties window that appears (see Figure 5-3) to change the per-
missions associated with a file.

102 PART 2 Getting Started with Linux

Slowing Down the Listing and Reading
Files with the Less Command

The problem with ls is that it can deluge you with information that flies past your
eyes faster than you can see it. If you open a shell window from the desktop envi-
ronment, you can use a scroll bar to review information that has scrolled off the
screen.

The more usual solution, however, is to use a command called less, which takes
your listing and enables you to page through it, one screen at a time. To send the
listing to the less command, you use a pipe character (|) after your listing com-
mand, like this:

ls -RXF | less

When you’re using less, you can move through the listing one line at a time using
the up- and down-arrow keys, or one page at a time using the Page Up (or b) and
Page Down (or space) keys. You can search by pressing / and then typing what
you’d like to search for and pressing Enter. When you’ve finished, press the Q key
(upper- or lowercase) to quit.

You can cancel a Linux command, including an overwhelming listing, by pressing
Ctrl+C.

FIGURE 5-3:
Changing file
permissions

using File
Manager.

Raspberry Pi Foundation

CHAPTER 5 Using the Linux Shell 103

You can also use less to view the contents of a text file by giving it the filename
as an argument, like this:

less /boot/config.txt

This is a great way to read files you find as you explore Linux. The less command
warns you if the file you want to read might be a binary file, which means it’s
computer code and likely to be unintelligible, so you can try using the less
command on anything and bow out gracefully if you get the warning. Displaying
binary code onscreen can result in some strange results, including distorting the
character set in the shell.

If you want to see the first ten lines of a file, perhaps just to check what version it
is, you can use the command head followed by the filename.

Now you have all the tools you need to explore your Linux operating system!

Speeding Up Entering Commands
Now that you’ve learned a few basic commands, we can teach you a few tricks to
speed up your use of the shell.

First of all, the shell keeps a record of the commands you enter, called your history,
so you can save retyping if you want to reuse a command. If you want to reuse the
last command, just type in two exclamation marks and press Enter. If you want to
use an earlier command, tapping the up arrow brings back your previous com-
mands in order (most recent first) and puts them after your prompt. The down
arrow moves through your history in the other direction if you overshoot the
command you want. You can edit the command before pressing Enter to issue it.

The shell also tries to guess what you want to type and automatically completes
it for you if you tap the Tab key. You can use it for commands and files. For
example, type

cd /bo

and then press the Tab key, and the path is completed as /boot/.

This technique is particularly helpful if you’re dealing with long and complicated
filenames. If it doesn’t work, you haven’t given the shell enough of a hint, so you
need to give it more letters to be sure what you mean.

104 PART 2 Getting Started with Linux

Using Redirection to Create Files
Before you look at how you delete files and copy them, you should prepare some
files to play with.

It’s possible to send the results from a command to a file instead of to the screen;
in other words, to redirect them. You could keep some listing results in a file, for
example, so you have a permanent record of them or so you can analyze them
using a text editor. You turn screen output into a file by using a greater-than sign
and the filename you’d like to send the output to, like this:

ls > ~/listing.txt

You don’t need to have the file extension of .txt for it to work in Linux, but it’s a
useful reminder for yourself, and it helps if you ever copy the file back to a
Windows machine.

Try using this command twice from two different directories and then looking at
the contents of listing.txt with the less command. You’ll see just how
unforgiving Linux is. The first time you run the command, the file listing.txt is
created. The second time you do it, it’s replaced without warning. Linux trusts you
to know what you’re doing, so you need to be careful not to overwrite files.

If you want a bit of variety, you can use other commands to display content
onscreen:

»» echo: This displays whatever you write after it onscreen. You can use it to
solve mathematics problems if you put them between two pairs of brackets
(parentheses) and put a dollar sign in front, for example:

echo $((5*5))

»» date: This shows the current time and date.

»» cal: This shows the current month’s calendar, with today highlighted. You can
see the whole year’s calendar using the option –y.

If you want to add something to the end of an existing file, you use two greater-
than signs, as you can see in this example:

pi@raspberrypi ~ $ echo I made this file on > testfile.txt
pi@raspberrypi ~ $ date >> testfile.txt
pi@raspberrypi ~ $ cal >> testfile.txt
pi@raspberrypi ~ $ echo $((20+30+31+5)) Days until my ↩

birthday! >> testfile.txt

CHAPTER 5 Using the Linux Shell 105

pi@raspberrypi ~ $ less testfile.txt
I made this file on
Sat 11 Mar 10:50:53 UTC 2017
 March 2017
Su Mo Tu We Th Fr Sa
 1 2 3 4
 5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
86 Days until my birthday

You can use redirection like this to create some files you can use to practice copy-
ing and deleting. If you don’t want to spend time creating the file contents, you
can make some empty files by redirecting nothing, like this:

> testfile1.txt

TOP TIPS FOR NAMING YOUR FILES
If you plan to use the shell, you can follow a few guidelines when creating files that will
make your Linux life much easier. These tips apply even if you’re creating files using
the desktop environment, but it only really matters when you start working with files in
the shell.

Here’s our advice:

•	Only use lowercase so that you don’t have to remember where the capital letters
are in a filename.

•	Don’t use filenames with spaces. They have to be treated differently in the shell (put
inside single or double quote marks); otherwise, Linux thinks each of the words in
the filename is a different file. An underscore is a good substitute.

•	Don’t use filenames that start with a hyphen. They’re liable to get confused with
command options.

•	Don’t use the / character anywhere in a filename.

•	Avoid using an apostrophe (’), question mark (?), asterisk (*), quotation (or speech)
marks (”), backslash (\), square brackets ([]), or curved braces ({}). If they appear in a
filename in the shell, you’ll need to either put a \ character before each one or put
the whole filename in speech marks (assuming that it doesn’t already have any).
You can’t use a forward slash (/) at all.

106 PART 2 Getting Started with Linux

Creating Directories
As you may know from other computers you’ve used, it’s a lot easier to manage
the files on your computer if they’re organized into directories (or folders). You
can easily create a directory in your home directory using the command mkdir:

mkdir work

To save time, use one command to create several directories, like this:

pi@raspberrypi ~ $ mkdir work college games
pi@raspberrypi ~ $ ls
Downloads python_games work college Music Desktop Pictures

Documents games Public Templates Videos

You might see additional files here, especially if you followed the earlier examples
to make some text files, but the important thing is that one command made three
new directories for you.

The mkdir command’s ability to make several directories at the same time isn’t
unusual: Many other commands can also take several arguments and process
them in order. You can see the listing of two different directories like this, for
example:

ls ~ /boot

The mkdir command doesn’t give you a lot of insight into what it’s doing by
default, but you can add the -v option (short for verbose), which gives you a run-
ning commentary as each directory is created. You can see what that looks like in
the next code snippet.

If you want to make some directories with subdirectories inside them, it would be
a nuisance to have to create a directory, go inside it, create another directory, go
inside that, and so on. Instead, use the -p option, like this:

pi@raspberrypi ~ $ mkdir –vp work/writing/books
mkdir : created directory 'work'
mkdir : created directory 'work/writing'
mkdir : created directory 'work/writing/books'

The command keeps you informed of any changes it makes, but if the work
directory already exists, you won’t see the first line of output shown here.

CHAPTER 5 Using the Linux Shell 107

Deleting Files
After experimenting with creating files and directories, you probably have odd bits
of file and meaningless directories all over the place, so it’s time to tidy up.

To delete files in Linux, you use the rm command, short for remove. Use it very
carefully. There’s no trash can or recycle bin to recover your file from again, so
when it’s gone, it’s gone. Actually, expert Linux users might be able to get it back
using specialized software and huge amounts of time and patience, so it’s not a
secure deletion. But for an average user without access to such software and
expertise, when you tell Linux to remove a file, it acts fast and decisively.

The rm command has this format:

rm options filename

As with mkdir, the command doesn’t tell you what it’s doing unless you use the
verbose option (-v). As an example, you could remove a file called letter.txt
using

pi@raspberrypi ~ $ rm –v letter.txt
removed 'letter.txt'

Like mkdir, running the rm command can take several arguments, which means it
can remove several files at once if you list all their names, for example:

pi@raspberrypi ~ $ rm –v letter.txt letter2.txt
removed 'letter.txt'
removed 'letter2.txt'

This is where you need to be extremely careful. Imagine that you have two files
called old index.html and index.html. The latter is your new website home page,
which you’ve toiled over all weekend. (You can see where this is going, can’t you?)
You want to clear out the old development file, so you issue this command:

pi@raspberrypi ~ $ rm –v old index.html
rm : cannot remove 'old': No such file or directory
removed 'index.html'

Arrrggh! Because of that space in the old index.html filename, the rm command
thinks that you wanted to remove two files — one called old and the other called
index.html. It tells you it can’t find the file called old, but goes right ahead and
wipes out index.html. Nasty!

108 PART 2 Getting Started with Linux

To pin up a safety net, use the -i option (for interactive), which tells you which
file(s) will be deleted and prompts you to confirm each deletion. Using that would
have avoided this mistake, as shown here:

pi@raspberrypi ~ $ rm -vi old index.html
rm : cannot remove 'old': No such file or directory
rm : remove regular file 'index.html'?

No, no, no! When prompted, you enter Y to confirm the deletion or N to keep the
file and move on to the next one (if any).

The risk of deleting the wrong file is one reason you should avoid files with spaces
in their names. For the record, the correct way to remove a file whose name con-
tains a space would be to enclose it in quotes:

pi@raspberrypi ~ $ rm –vi 'old index.html'

Using Wildcards to Select Multiple Files
Often, a directory contains lots of files that have similar filenames. Sean’s digital
camera, for example, creates files with names like these:

img_8474.jpg
img_8475.jpg
img_8476.jpg
img_8477.jpg
img_8478.jpg

If you want to delete a group of them, or to copy them or do anything else with
them, you don’t want to repeat the command by typing out each filename in turn.
Computers are good at repetition, so it’s better to leave the donkey work to the
shell.

Wildcards enable you to do that. Instead of giving a specific filename to a com-
mand, you can give it a pattern to match, such as all files that begin with img or
all the files that have the extension .jpg. The asterisk wildcard replaces any
number of any character, so *.jpg returns any filenames that end with .jpg,
no matter how long they are and no matter how many of them there are. The
question mark asterisk replaces just one character, so img?.jpg would select
img1.jpg, img2.jpg, and imgb.jpg but ignore img11.jpg or any other longer
filenames.

CHAPTER 5 Using the Linux Shell 109

If you want to choose files that begin with a particular letter, you can use the
square brackets wildcard. To choose any files beginning with the letters a, b, or c,
you would use [abc]*. To narrow that down to just those that end with .jpg, you
would use [abc]*.jpg.

Table 5-3 provides a quick reference to the wildcards you can use, with
examples.

You can use wildcards anywhere you would usually use a filename. For example,
you can delete all your files starting with the letters img, like this:

rm –vi img*

To delete all files ending with the extension .txt, use

rm –vi *.txt

TABLE 5-3	 Raspberry Pi Wildcards
Wildcard What It Means Usage Example What Is Selected in the Example

? Any single character photo?.jpg Any files that start with photo and have
exactly one character after it before the .jpg
extension. For example, photo1.jpg or
photox.jpg but not photo10.jpg.

* Any number of
characters (including no
characters)

photo Any files that have the word photo in their
filenames.

[...] Matches any one of the
characters in brackets

[abc]* All files that start with the letter a, b, or c.

[^...] Matches any single
character that isn’t
between the brackets

[^abc]* Any files that do not start with the letter
a, b, or c.

[a-z] Matches any single
character in the
range specified

[a-c]*.jpg Any files that start with a letter a, b, or c and
end with the .jpg extension.

[0-9] Matches any single
character in the
range specified

photo[2-5].jpg Matches photo2.jpg, photo3.jpg,
photo4.jpg, and photo5.jpg.

110 PART 2 Getting Started with Linux

Be especially careful about where you insert spaces when you’re using wildcards.
Imagine that you add a sneaky space in the previous example, like this:

rm –vi * .txt

Doh! The shell thinks you want it to delete *, which is a wildcard for every file, and
then to delete a file called .txt. Luckily, you’ve used the -i option, so you’ll be
prompted before deleting each file — though people often omit that when they’re
deleting a lot of files, because otherwise they spend a long time confirming each
deletion, which is almost as tedious as not using wildcards in the first place.

One way you can test which files match a wildcard is to use the file command
with it before you delete using it. For example:

file *.txt | less

Take care that you don’t introduce any spaces between testing with file and
removing with rm!

Another thing to be careful about is using wildcards with hidden files. Hidden files
begin with a period (full stop), so you might think that .* would match all the
hidden files. It does, but it also matches the current directory (.) and its parent
directory (..), so .* matches everything in the current directory and the directory
above it.

Removing Directories
You can use two commands for removing directories. The first one, rmdir, is the
safer of the two because it refuses to remove directories that still have files or
directories inside them. Use it with the name of the directory you want to
remove — for example, books, — like this:

rmdir books

If you want to prune a whole branch of the directory tree, you can use the rm com-
mand to remove a directory and delete anything inside it and its subdirectories.
Used with the recursive option (-R), it works its way down the directory tree, and
with the force option (-f), it deletes any files in its way. It’s a rampaging beast of
a command. Here’s an example:

rm –Rf books

CHAPTER 5 Using the Linux Shell 111

It acts silently and swiftly, deleting the books directory and anything in it.

You can add the interactive option to cut the risk, which prompts you for confir-
mation of each deletion, as you can see in this example where we’ve left a file in
the folder work/writing/books:

pi@raspberrypi ~ $ rm –Rfi work
rm: descend into directory 'work'? Y
rm: descend into directory 'work/writing'? Y
rm: descend into directory 'work/writing/books'? Y
rm: remove regular file 'work/writing/books/rapidplan.txt'? Y
rm: remove directory 'work/writing/books'? Y
rm: remove directory 'work/writing'? Y
rm: remove directory 'work'? Y

You can use wildcards when removing directories, but take special care with them
and make sure you don’t introduce any unwanted spaces that result in your
removing * (everything). If you use rm –Rf .* to try to remove hidden directories,
you also match the current directory (.) and the parent directory (..). That means
it deletes every file in the current directory (hidden or not), all its subdirectories
and their contents (hidden or not), and everything in the parent directory, includ-
ing its subdirectories (again, whether or not they are hidden).

Our own experience of the Linux community has been that it’s friendly and sup-
portive, and people welcome newcomers who want to join. But occasionally, you
might come across some joker online advising inexperienced users that the solu-
tion to their problems is to issue the command rm -Rf /* as root, which attempts
to delete everything, starting at the root.

Copying and Renaming Files
One of the fundamental things you’ll want to do with your files is copy them, so
let’s take a look at how to do that. The command you need to use is cp, and it takes
this form:

cp [options] copy_from copy_to

Replace copy_from with the file you want to copy, and copy_to for where you
want to copy it to.

112 PART 2 Getting Started with Linux

For example, if you wanted to copy the file config.txt from the /boot directory
to your home directory (~) so that you can safely play with it, you would use

cp /boot/config.txt ~

If you wanted to copy the file into your current working directory, wherever that
is, you could use

cp /boot/config.txt .

You can also specify a path to an existing folder to send the file to by using

cp /boot/config.txt ~/files/

Your original file and the copy don’t have to have the same name. If you specify a
different filename, the copy takes that name. For example:

cp /boot/config.txt ~/oldconfig.txt

That copies config.txt from the /boot directory to your home directory and
renames it as oldconfig.txt. This same technique enables you to keep a safe
copy of a file you’re working on, in case you want to revert to an old version later.
The paths are optional, so if you were in your home directory, you could create a
backup copy of the file timeplan.txt there using

cp timeplan.txt timeplan.bak

You can use several options with cp, some of them familiar from the rm command.
The cp command overwrites any files in its way without asking you, so use the -i
option to force it to ask you before it overwrites any existing files with the new
copies. The -v option gives you an insight into what the command has done, as it
does with rm.

You can use wildcards, so you can quickly copy all your files, or all your files that
match a particular pattern. If you want it to copy subdirectories too, however, you
need to use the recursive option, like this:

cp -R ~/Documents/* ~/homebak

That command copies everything in your Documents directory (including any sub-
directories) into a folder called homebak in your home directory. The homebak
directory must exist before you run the command for it to work. For advice on
using the shell to copy to external storage devices, see Appendix A.

CHAPTER 5 Using the Linux Shell 113

If you don’t want to make a copy of a file, but instead want to move it from one
place to another, use the mv command. For example, if you misfiled one of your
images and you want to move it from the australia directory to the japan one, both
in your home directory, you would use

mv ~/australia/itinerary.txt ~/japan

That works as long as the destination directory exists. If it doesn’t, the command
assumes that you want the file to have the new filename of japan, and so the file
stops being itinerary.txt in the australia directory, and becomes a file called
japan in the home directory. It’s confusing if you do it by mistake, but this quirk
is how you rename files in Linux. You move them from being the old name into
being the new name, usually in the same folder, like this:

mv oldname newname

There’s no recursive option with the mv command because it moves directories as
easily as it moves files by default.

Installing and Managing Software
on Your Raspberry Pi

Linux distributions come with thousands of packages, which are software pro-
grams that are ready to download from the Internet and install on your computer.
In this chapter, we show you how to use the command line to install software.
There is also a simple menu for installing software on the Raspberry Pi within the
desktop environment, as described in Chapter 4. You might find it useful to know
what’s going on in the background, though, and the command line gives you more
of a sense of that.

Some packages require other packages to work successfully, but luckily a program
called a package manager untangles all these dependencies and takes responsibility
for downloading and installing the software you want, together with any other
software it needs to work correctly. On the Raspberry Pi, the package manager is
called apt.

Installing software requires the authority of the root user or superuser of the
computer. The Raspberry Pi doesn’t come with a root account enabled, in common
with some other Linux distributions. One school of thought says that a root
account is a security threat because people are inclined to use it all the time rather
than log in and out of it when they need it. That leaves the whole system and its

114 PART 2 Getting Started with Linux

files vulnerable, including to any malicious software that might get in. Instead of
using a root account, you use the word sudo before a command on the Raspberry
Pi to indicate that you want to carry it out with the authority of the root user. You
can’t use it before all commands, but it’s essential for installing software.

If you ever get an error message that tells you something can be done only
with the authority of the root, try repeating the command but putting sudo in
front of it.

Updating the cache
The first step in installing software is to update the cache, which is the list of
packages the package manager knows about. You do that by entering the following
command:

sudo apt-get update

You need to have a working Internet connection for this to work, and it’s likely to
take some time. Consider leaving the Raspberry Pi to get on with it while you have
a cup of tea — or a slice of raspberry pie, perhaps.

Finding the package name
The package manager cache (the apt cache, in Linux terminology) contains an
index of all the software packages available. You can search it to find the software
you want using a tool called apt-cache. For example, you can find all the games
by using

sudo apt-cache search game

The list is huge, so you might want to use less to browse it, like this:

sudo apt-cache search game | less

The screen output looks like this (I left out a couple of additional packages near
the top of this list relating to 0ad):

pi@raspberrypi ~ $ sudo apt-cache search game
0ad - Real-time strategy game of ancient warfare
2048-qt - mathematics based puzzlegame
3dchess - Play chess across 3 boards!

CHAPTER 5 Using the Linux Shell 115

4digits - guess-the-number game, aka Bulls and Cows
7kaa-data - Seven Kingdoms Ancient Adversaries - game data
a7xpg - chase action game
a7xpg-data - chase action game - game data
abe - Side-scrolling game named "Abe's Amazing Adventure"
abe-data - Side-scrolling game named "Abe's Amazing Adventure"
[list continues...]

The bit before the hyphen tells you the name of the package, which is what you
need to be able to install it. That might not be the same as the game’s title or its
popular name. For example, there are lots of solitaire card games you can install,
but none of them has the package name solitaire. To find the package name for
a solitaire game, you would use

sudo apt-cache search solitaire

This search returns 22 results, and the first one is

ace-of-penguins - penguin-themed solitaire games

Installing software
If you know the name of the package you would like to install, the following com-
mand downloads it from the Internet and installs it, together with any other
packages it needs to work correctly (known as dependencies):

sudo apt-get install ace-of-penguins

The last bit is the name of the package we found by searching the cache.

When you’re searching the cache, you use apt-cache in the command, and when
you’re installing software, you use apt-get. It’s easy to get these two commands
mixed up, so if your instruction doesn’t work, double-check that you’re using the
right one.

Note that not all of the software available in the packages works well on the
Raspberry Pi. It’s easy enough to try, though, and remove it again if it doesn’t
work for you.

116 PART 2 Getting Started with Linux

Running software
Some programs can be run directly from the command line by just typing their
names, such as

penguinspuzzle

which runs the Penguins Puzzle game. (See Chapter 19.) This game doesn’t show
up on the menus in the desktop environment.

Most end-user applications require the X server, which means you need to be in
the desktop environment to run them. After installing them, you can find them on
the Applications menu.

Whether a program should be run from the command line or in the desktop envi-
ronment depends on the program, so consult its instructions if you can’t work out
how to start it.

Upgrading the software
The package manager’s responsibility doesn’t end once it has installed software.
It can also be used to keep that software up to date, installing the latest enhance-
ments and security improvements. You can issue a single command to update all
the software on your Raspberry Pi:

sudo apt-get upgrade

Update the cache first to make sure apt installs the latest updates to your installed
packages. You can combine both commands into a single line, like this:

sudo apt-get update && sudo apt-get upgrade

The && means that the second command should be carried out only if the first one
succeeds. If the update to the cache doesn’t work, it won’t attempt to upgrade all
the software.

The upgrading process often ties up your Raspberry Pi for some time.

If you want to update just one application, you do that by issuing its install com-
mand again. Imagine that you’ve already installed Ace of Penguins and you enter

sudo apt-get install ace-of-penguins

CHAPTER 5 Using the Linux Shell 117

That prompts apt to check for any updates to that package and install them.
If there are none, it tells you that you’re already running the latest version.

Removing software and freeing up space
The package manager can also be used to remove software from your Raspberry Pi.
For example:

sudo apt-get remove ace-of-penguins

This particular command leaves traces of the applications, which might include
user files and any files containing settings. If you’re sure you won’t need any of
this information, you can completely remove and clean up after an application
using

sudo apt-get purge ace-of-penguins

You can do two other things to free up some precious space on your SD or MicroSD
card and clean up your system. First, you can automatically remove packages that
are no longer required. When a package is installed, other packages it requires are
usually installed alongside it. These packages can remain after the original pro-
gram has been removed, so there’s a command to automatically remove packages
that are no longer required. It is

sudo apt-get autoremove

It lists the packages that will be removed and tells you how much space it will free
up before prompting you to enter a Y to confirm that you want to continue.

When you install a package, the first step is to download its installation file to
your Raspberry Pi. After the package has been installed, its installation file remains
in the directory /var/cache/apt/archives. Over time, as you try out more and
more packages, this can amount to quite a lot of space on your SD or MicroSD card.
Take a look in that directory to see what’s built up there. These files aren’t doing
much. If you reinstall a program, you can always download the installation
file again.

The second thing you can do to clean up your SD card is remove these files using

sudo apt-get clean

118 PART 2 Getting Started with Linux

Finding out what’s installed
To find out what software is installed on your Raspberry Pi, you can use

dpkg --list

This command doesn’t need root authority to run, so it doesn’t require you to put
sudo at the start.

If you want to find out whether a specific package is installed, use

dpkg --status packagename

For applications that are installed, this also provides a longer description than the
short apt-cache description, which might include a web link for further
documentation.

The Raspberry Pi includes many packages that come with the Linux operating
system and are required for its operation. If you didn’t deliberately install a pack-
age, exercise caution before removing it.

Managing User Accounts on
Your Raspberry Pi

If you want to share the Raspberry Pi with different family members, you could
create a user account for each one so that they all have their own home directory.
The robust permissions in Linux help to ensure that people can’t accidentally
delete each other’s files, too.

When we looked at the long listing format earlier in this chapter, we discussed
permissions. You might remember that users can be members of groups. On the
Raspberry Pi, groups control access to resources like the audio and video hard-
ware, so before you can create a new user account, you need to understand which
groups that user should belong to. To find out, use the groups command to see
which groups the default pi user is a member of:

pi@raspberrypi ~ $ groups pi
pi adm dialout cdrom sudo audio video plugdev games users input

netdev gpio i2c spi

CHAPTER 5 Using the Linux Shell 119

When you create a new user, you want to make him a member of most of these
groups, except for the group pi (which is the group for the user pi).

If you give users membership of the sudo group, they will be able to install soft-
ware, change passwords, and do pretty much anything on the machine (if they
know how). In a home or family setting, that should be fine, however. The per-
missions system still protects users from accidentally deleting data they shouldn’t,
as long as they steer clear of the sudo command.

To add a user, you use the useradd command with the -m option to create a home
directory for him and use the -G option to list the groups the user should be a
member of, like this:

sudo useradd –m –G [list of groups] [username]

For example:

sudo useradd –m –G adm,dialout,cdrom,sudo,audio,video,plugdev,
games,users,netdev,input,spi,gpio karen

Make sure the list of groups is separated with a comma and there are no spaces in
there.

You can do a quick check to confirm that a new home directory has been created
with the user’s name in directory /home, alongside the home directory for the
pi user:

ls /home

You also need to set a password for the account, like this:

sudo passwd [username]

For example,

sudo passwd karen

Usernames are case sensitive, so if you use any capital letters, you must do so
consistently. You’re prompted to enter the password twice, to make sure you don’t
mistype it, and you can use this command to change the password for any user.
There is no output on the screen as you type the password, which can be a bit off-
putting, but keep typing and it should work fine.

120 PART 2 Getting Started with Linux

You can test whether it’s worked and log in as the new user without restarting
your Pi by logging out from your current user account. Close the shell window and
select Shutdown from the Applications menu. Choose Logout from the options,
and you’ll be presented with the login screen, where you can test that the new
username is working. The default password for the pi account is raspberry.

If you use the passwd command to set a password for the username root, you will
be able to log on as the superuser, who has the power to do anything on the
machine. As a last resort, this might enable you to get some types of software
working, but we advise you against using it. It’s safer to take on the mantle of the
superuser only when you need it, by using sudo.

If you want to share the Raspberry Pi with different family members, you could
just give each user his own SD card to insert when he’s using the machine, and let
him log on with the pi username and password.

Learning More about Linux Commands
Lots of information about Linux is available on the Internet, but plenty of docu-
mentation is also hidden inside the operating system itself. If you want to dig
further into what Linux can do, this documentation can point you in the right
direction, although some of it is phrased in quite a technical way.

Commands in Linux can take several different forms. They might be built into the
shell itself, they might be separate programs in the /bin directory, or they could
be aliases (which are explained in the next section). If you want to look up the
documentation for a command, first find out what kind of command it is, using
the type command, like this:

pi@raspberrypi ~ $ type cd
cd is a shell builtin
pi@raspberrypi ~ $ type mkdir
mkdir is /bin/mkdir
pi@raspberrypi ~ $ type ls
ls is aliased to 'ls --color=auto'

If you want to find out where a particular program is installed, use the which
command together with the program name:

which mkdir

CHAPTER 5 Using the Linux Shell 121

To get documentation for shell built-ins, you can use the shell’s help facility. Just
enter help followed by the filename you’re looking for help with:

help cd

The help command’s documentation uses square brackets for different options
(which you may omit), and uses a pipe (|) character between items that are mutu-
ally exclusive, such as options that mean the opposite of each other.

For commands that are programs, such as mkdir, you can try using the command
with --help after it. Many programs are designed to accept this and to display
help information when it’s used. A usage example is

mkdir --help

When we used this approach on apt-get, the help page told us that “APT has
Super Cow Powers.” Try apt-get moo to see what it means!

There is also a more comprehensive manual (or man page) for most programs,
including program-based Linux commands and some applications such as Libre-
Office. (See Chapter 6.) To view the manual for a program, use

man program_name

For example:

man ls

The manual is displayed using less, so you can use the controls you’re familiar
with to page through it. This documentation can have a technical bent, so it’s not
as approachable to beginners as the help pages.

If you don’t know which command you need to use, you can search across all the
manual pages using the apropos command, like this:

pi@raspberrypi ~ $ apropos delete
argz_delete (3) - functions to handle an argz list
delete_module (2) - unload a kernel module
git-branch (1) - List, create, or delete branches
git-replace (1) - Create, list, delete refs to replace

objects
git-symbolic-ref (1) - Read, modify and delete symbolic refs
git-tag (1) - Create, list, delete or verify a tag

object signed wit ...

122 PART 2 Getting Started with Linux

groupdel (8) - delete a group
gvfs-rm (1) - Delete files
lppasswd (1) - add, change, or delete digest passwords.
rmdir (2) - delete a directory
shred (1) - overwrite a file to hide its contents,

and optionally ...
[list continues ...]

You can then investigate any of these programs further by looking at their man
pages or checking to see whether they can accept a --help request. The number in
brackets (parentheses) tells you which section of the man page contains the word
you searched for.

For a 1-line summary of a program, taken from its man page, use whatis:

pi@raspberrypi ~ $ whatis ls
ls (1) - list directory contents

If you’re not yet drowning in documentation, there’s an alternative to the man
page, which is the info page. Info pages are structured a bit like a website, with
a directory of all the pages at the top, and links between the various pages. You use
info like this:

info ls

The controls used to move around an info document are a bit different from those
in a man page. To call up the list of keys, tap ? (while pressing the Shift key) when
the info page opens.

Customizing the Shell with Your
Own Linux Commands

If you want to stamp your identity on your Raspberry Pi, you can make up your
own Linux commands for it. You can have fun inventing a command that shows a
special message if someone enters your name (use the echo command for this),
but it’s genuinely useful for making more memorable shortcuts so that you don’t
have to remember all the different options you might want to use. We show you
how to make a command for deleting files that uses the recommended options to
confirm each file that will be deleted, and to report on what’s been removed. We
call it pidel, a mashup of Pi and delete.

CHAPTER 5 Using the Linux Shell 123

The first step is to test whether your preferred command name is already in use.
If the type command tells you anything other than not found, you need to think up
another command name, or risk upsetting an existing command. Here’s our test:

pi@raspberrypi ~ $ type pidel
bash: type: pidel: not found

Now that you know that the command pidel is not yet taken, you can create your
command. To do that, make an alias, like this:

alias pidel='rm –vi'

Between the quote marks, put the Linux command that you want to execute when
you enter the pidel command. As you can see from this alias instruction, when
you use pidel, it behaves like rm -vi, but you will no longer have to remember
the letters for those options. For example:

pi@raspberrypi ~ $ pidel *.txt
rm: remove regular file 'fm.txt'? y
removed 'fm.txt'
rm: remove regular file 'toc.txt'? n
pi@raspberrypi ~ $

You can combine lists of commands in your alias definition by separating them
with semicolons. For example:

alias pidel='clear;echo This command removes files with the ↩
interactive and verbose options on.;rm –vi'

Your alias only lasts until the computer is rebooted, but you can make it perma-
nent by putting the alias instruction into the file .bashrc in your home directory.
To edit that file, use

nano ~/.bashrc

Nano is a simple text editor that is covered in more detail in Appendix A, but in
brief, you can edit your file, use Ctrl+O to save, and Ctrl+X to exit.

Your alias can go anywhere in the .bashrc file. For convenience, and to avoid the
risk of disturbing important information there, we suggest you add your aliases at
the top. Each one should be on its own line.

124 PART 2 Getting Started with Linux

Any commands added in .bashrc take effect when you next start up your
Raspberry Pi. (See the next section, “Shutting Down and Rebooting Your
Raspberry Pi.”)

Sometimes you might want to replace an existing command with an alias so that
your chosen options are enforced whenever you use it. If you look at the type for
ls, for example, it’s aliased so that it always uses the color option to classify files.

Shutting Down and Rebooting
Your Raspberry Pi

Usually, you would shut down and reboot your Raspberry Pi using the Applications
menu on the desktop. However, it’s possible to set the Pi to boot straight into the
command line (see Chapter 3) so that you don’t see the desktop. In that case, you
can turn off your Raspberry Pi safely in this way:

sudo halt

To switch on your Raspberry Pi again, disconnect and reconnect the power. This is
easiest to achieve, with minimal wear on your power supply or Raspberry Pi, if you
plug your power supply into a power socket that has a switch on it. You can then
use that switch to first remove and then, after a few seconds, restore the power to
your Raspberry Pi.

You can reboot (or restart) your Raspberry Pi without disconnecting and recon-
necting the power, like this:

sudo reboot

3Using the
Raspberry Pi
for Both Work
and Play

IN THIS PART . . .

Use LibreOffice to write letters, manage your budget in a
spreadsheet, create presentations, and design a party
invitation.

Use GIMP to edit your photos, including rotating and
resizing them, retouching imperfections, and cropping
out unnecessary detail.

Watch high-definition movies and play music on your
Raspberry Pi using LibreELEC, which turns your
Raspberry Pi into a media center.

CHAPTER 6 Being Productive with the Raspberry Pi 127

Chapter 6

IN THIS CHAPTER

»» Writing letters in LibreOffice Writer

»» Managing your budget in LibreOffice
Calc

»» Creating presentations in LibreOffice
Impress

»» Creating a party invitation with
LibreOffice Draw

Being Productive with
the Raspberry Pi

There comes a time in most people’s lives when they have to get down to
work, and when it’s your turn to get down to work, the Raspberry Pi
can help. Whether you need to do your homework or work from home,

you can use LibreOffice, a fully featured office suite that’s compatible with the
Raspberry Pi.

If you haven’t heard of LibreOffice, you might have heard of its ancestor,
OpenOffice. A team of developers took OpenOffice as a starting point and devel-
oped LibreOffice using its source code.

LibreOffice and Microsoft Office for Windows have lots of similarities between
them, so LibreOffice will probably feel familiar to you. You can copy files between
the two programs too, although you might lose some of the layout features when
you do that.

In this chapter, we show you how to use four of the programs in LibreOffice for
common household activities. You’ll learn how to write a letter, use a spreadsheet
to plan a budget, create a presentation, and design a simple party invitation.

128 PART 3 Using the Raspberry Pi for Both Work and Play

LibreOffice is free to download and distribute. If you’re feeling generous, the
charitable foundation that drives its development, The Document Foundation,
invites donations through its website at www.libreoffice.org.

Installing LibreOffice on Your Raspberry Pi
LibreOffice is included in Raspbian, so you should find that you already have it on
your Raspberry Pi. If you need to update it or you don’t have it on your Raspberry
Pi for some reason, you can install it by issuing the following two commands in
the Linux shell:

sudo apt-get update
sudo apt-get install libreoff ice

For further guidance on installing software, and an explanation of how these
commands work, see Chapter 5.

Working with LibreOffice
on the Raspberry Pi

When you enter the desktop environment (see Chapter 4), you should find Libre-
Office on the Applications menu, in the Office category, as shown in Figure 6-1.
The menu has separate entries for LibreOffice Base (databases), LibreOffice Calc
(spreadsheets), LibreOffice Draw (page layouts and drawings), LibreOffice Impress
(presentations), and LibreOffice Writer (word processing).

You can start a new LibreOffice file of any type from the File menu in one of the
applications, irrespective of which application you’re using. For example, you can
create a new spreadsheet from the word processor’s File menu. When you do this,
the correct application opens (Calc, in this case) with a blank file ready for you
to use.

In this chapter, we show you how to get started with Writer, Calc, Impress, and
Draw.

You can also start LibreOffice and open a file in it by double-clicking a LibreOffice
or Microsoft Office file in the desktop environment.

http://www.libreoffice.org

CHAPTER 6 Being Productive with the Raspberry Pi 129

If you’re a student or an academic and you have to write scientific or mathe
matical formulae, the suite also includes LibreOffice Math, which is used to lay
them out (but won’t generate the answers for you, we’re afraid). To use it, go to
the File menu in LibreOffice and choose New ➪ Formula.

Saving your work
In all LibreOffice applications, you save your work from the File menu. You have a
choice of formats. The ODF formats are the default, and can be read by other
applications, including Microsoft Office. You can also save in the normal file for-
mats of Microsoft Office.

Save frequently. The applications save automatically from time to time and have
some capabilities built in to recover files if the computer crashes, but it’s better to
catch the trapeze than to test the safety net.

Writing letters in LibreOffice Writer
LibreOffice Writer is a word processor, similar to Microsoft Word on Windows,
which makes it the perfect application to use to write a letter.

FIGURE 6-1:
The LibreOffice
entries, on the

Applications
menu.

130 PART 3 Using the Raspberry Pi for Both Work and Play

It can open Microsoft Word files, in fact, and its default file format, the ODF Text
Document (a .odt file), can be opened and saved by Word, too. For anything but
the most basic files, you’re likely to experience some corruption of the docu-
ment’s appearance when you open a Word document in LibreOffice, however. You
probably won’t have the same fonts on your Raspberry Pi, for example, and more
advanced layouts tend to get distorted.

Figure 6-2 shows LibreOffice Writer in action. If you’ve used other word process-
ing packages, it won’t take you long to find your feet here. The icons are similar
to those used in Microsoft Office, and if you hover the mouse cursor over an icon,
a tooltip appears and tells you what it does.

You can change the text appearance and the style using the icons and options on
the menu bars above your document and then type on the page using your chosen
formatting in the document. Alternatively, you can click and drag to highlight text
in your document and then click the menu bar to apply different formatting to
your selected text.

The pull-down menus at the top of the screen provide access to all of LibreOffice
Writer’s features. Browsing them is a good way to see what the application is
capable of.

FIGURE 6-2:
Writing a letter

with LibreOffice.

CHAPTER 6 Being Productive with the Raspberry Pi 131

The Insert menu enables you to add special characters, manual breaks (including
page breaks and line breaks), formatting marks (including nonbreaking hyphens),
document headers and footers, footnotes, bookmarks (they don’t appear onscreen,
but can help you to navigate the document), comments (useful if you are collabo-
rating on documents), frames (boxes for text that you can arrange where you want
on the page), and tables.

The Format menu includes options for character formatting (which includes font
and font effects, underlining, superscript, rotation, links, and background colors),
paragraph formatting (which includes indents and spacing, alignment, text flow,
and borders), bullets and numbering, page formatting (including paper size,
background colors and images, headers, and footers), columns (for multicolumn
layouts), and alignment.

Using those two menus, you can achieve most of what you need. The most com-
mon options are also replicated with icons on the menu bars at the top of the
screen.

If you use styles to structure your document (using Heading 1 for the most impor-
tant headings and Heading 2 for subheadings, for example), you can use the Navi-
gator to jump to different parts of your document easily. Tap F5 to open it. The
Navigator also enables you to jump to tables, links, and bookmarks.

Using the File menu, you can save your document as a PDF (.pdf) format file (or
export it). The great thing about this is that it preserves the formatting of the file,
so you can share your document with people who might not have the same fonts
or software as you, and guarantee they will see exactly what you see. Most people
have software for reading PDF files, but the drawback is that very few people have
software for editing them. For that reason, this format is really only suitable for
circulating final copies of documents you want people to read but not edit.

Managing your budget in LibreOffice Calc
LibreOffice Calc is a spreadsheet application, similar to Microsoft Excel. A good
way to try it out is to open one of your Excel spreadsheets using it. Your formulae
should work fine and the cell formats should carry over. The interface is similar to
LibreOffice Writer, with icons you can roll the mouse pointer over to find out what
they do. Figure 6-3 shows Sean’s holiday budget in LibreOffice Calc. We’ve used
the slider at the bottom of the screen to magnify the content so that it’s easy for
you to read.

More advanced Microsoft Excel spreadsheets that use macros might not be com-
patible with LibreOffice.

132 PART 3 Using the Raspberry Pi for Both Work and Play

We don’t have room to provide an in-depth guide to spreadsheets here, but we can
show you how to work out a simple holiday budget.

A spreadsheet is basically a grid of information, but it’s powerful because you can
use it to perform calculations using that information. The boxes on the spread-
sheet are called cells. To enter information into a cell, you just click it and then
type what you want to enter. Alternatively, you can click a cell and then type into
(or edit the contents of) the Formula bar at the top of the screen. (Refer to
Figure 6-3.)

Each cell has a grid reference, taken from the letter at the top of its column and
the number on the left of its row. The top-left cell is A1, and the next cell to the
right is B1, and the one below that is B2. (Refer to Figure 6-3.)

To start with, enter a list of the different expenses you’ll incur, working your way
down the screen in column A. Beside each item, in column B, enter how much it
costs. In column C, enter how many of that item you will need. For example, one
row of our example shows the name of the hotel in column A, how much it costs
per night (in column B on the same row), and then a 6 for the number of nights
Sean will stay there in column C on that row. In Figure 6-3, you can see we’ve also
written titles in the cells at the top of the columns of data so that we can easily see
what is in each column.

FIGURE 6-3:
How much?!

Planning a
holiday budget in

LibreOffice Calc.

CHAPTER 6 Being Productive with the Raspberry Pi 133

You can make a column wider so that you can more easily enter the descriptions
of your budget items. Click and drag the line between the letter at the top of the
column and the letter at the top of the column to its right.

To show a currency sign in a cell, click the Format menu, choose Cells, and then
change the category to Currency and the format to the layout and currency symbol
you would like to use. You can select a group of cells and format them at the same
time by clicking and dragging the cells before you go into the Format menu.

You can enter formulae (or calculations) into cells, and the answers will appear in
the spreadsheet. If you want to enter a formula into a cell, you type the equal sign
(=), followed by the formula. You use an asterisk (*) for multiplication and a slash
(/) for division. For example, click any empty cell and enter

=7*5

The result (35) appears in the cell on the spreadsheet where you entered the for-
mula. You can view or edit the formula itself by clicking the cell and then clicking
the formula bar above the spreadsheet, or by double-clicking the cell.

The magic happens when you start using the numbers in one cell to work out what
should go in another one. You do that by using the grid reference of a cell in your
formula. For the holiday budget, we want to multiply the cost of an item (such as
a night in a hotel) by how many of them we buy (six nights’ worth). The first of
those values is stored in column B, and the second one is beside it in column C,
both on the same row. After the titles and spacing at the top of the spreadsheet,
the first expense is on row 5. In column D5, we enter

=B5*C5

This multiplies the values in cell B5 (the price) and cell C5 (the quantity) and puts
the result (the total amount spent on that particular item) into cell D5. You can
click cell D5 and then copy its contents and paste them into the cells below. There
are options for copying and pasting on the Edit menu, but LibreOffice also sup-
ports Windows shortcuts, including Ctrl+C to copy and Ctrl+V to paste.

You might think the same number would go into those cells, but it actually copies
the formula and not the result, and it updates it for the correct row number as it
goes. If you copy the formula from cell D5 into cell D6 and then click D6 and look
on the Formula bar, you’ll see that it says

=B6*C6

134 PART 3 Using the Raspberry Pi for Both Work and Play

After you’ve copied the formula down the column, you will have a column of
results that shows the total cost of each expense item. The final step is to calculate
the grand total, adding up the values in those cells. To do that, you use a special
type of formula, called SUM, which adds up the values in a set of cells. To use that,
follow these steps:

1.	 Click a cell at the bottom of the cost column and type =sum(. Don’t press
Enter when you’ve finished.

2.	 Click the top cell in the column of expenses (D5), and hold down the
mouse button.

3.	 Drag the mouse down the screen until the red box encloses all your cost
entries.

4.	 Type a closing bracket — the right parenthesis — and then press Enter.

The grand total appears in that cell, and your budget is complete. A spreadsheet is
more than a glorified calculator because you can use it for planning and asking
“What if?” For example, you can see what happens if you use a more expensive
hotel. Just change the price of the hotel per night, and all the other cells are
calculated from that update automatically, including your total cost at the bottom.
Similarly, you can double the length of your stay at the hotel by changing the
number of nights in column B to see how that affects your budget total.

Creating presentations in
LibreOffice Impress
If you’re called upon to deliver a presentation, or if you want to force your
holiday-photo slide show on your friends, you can use LibreOffice Impress
to create your slides and play them back. You’re probably realizing that most
LibreOffice programs have a counterpart in the Microsoft Office suite, and Impress
is a bit like Microsoft PowerPoint. You can open PowerPoint presentations using
it, and although some of the nifty slide transitions are missing, we found that
quite sophisticated layouts can be carried across without a problem.

Figure 6-4 shows Sean’s holiday-photo slide show in Impress. To create a
presentation, simply follow these steps:

1.	 Start Impress, or choose to create a new presentation from the File menu
in any of the LibreOffice applications.

2.	 Click the slide you want to edit in the Slides panel on the left. When you
begin, this will be the single empty slide.

CHAPTER 6 Being Productive with the Raspberry Pi 135

In the panel on the right, you can see 12 different slide layouts to choose from.
You can also show the Layouts by clicking the Properties button from the
vertical menu on the right.

3.	 Click the slide layout you would like to use in the panel on the right.

4.	 In the panel in the middle, click the existing title text and replace it with
the title you’d like to use for the slide.

5.	 Your slide has up to six boxes for content.

Click one of these and start typing to add text in the box. Alternatively, in the
center of the content box are often four buttons you can click to add different
types of content, including a table, a chart, an image, or a video. If you want to
add a picture, click the bottom-left button and then choose the picture you’d
like to use. Note that if you click a different slide layout on the right, it is applied
to the slide you’re already working on. In the slide layouts, boxes with a blue line
in them are for text only, and those without can be used for any content type.

6.	 To add a new slide, right-click in an empty space in the Slides panel on
the left, or use the Insert menu.

There is a button on the top toolbar, toward the right (not shown in Figure 6-4
for space reasons), if you prefer to use that. You can also double-click an empty
space in the Slides panel to add a new slide.

FIGURE 6-4:
Creating a photo
slide show using

LibreOffice
Impress.

136 PART 3 Using the Raspberry Pi for Both Work and Play

7.	 Repeat Steps 2 to 5 to fill in the slide.

8.	 To edit a previous slide, click it in the Slides panel on the left.

You change the formatting of a title, piece of text, or picture by clicking it in the
main slide area and then clicking the options on the menu bar at the top of
the screen. The menu bar changes depending on whether the content is an image
or text.

For best results, avoid using image files that are much bigger than you need: They
can slow down the computer and can crash the software if you use too many on
an early Raspberry Pi. See Chapter 7 for guidance on resizing digital photos and
other images.

You can start the slide show from the Slide Show menu at the top of the screen or
by pressing F5.

When the slide show is playing, you can use the left and right cursor keys to
advance through the slide show and use the Escape key to exit.

Impress has lots of additional features to explore, including colorful templates
(click the Master Pages button on the vertical menu on the right), transitions that
animate the display of a slide (also found on this menu), and tools (similar to
those in LibreOffice Draw) for making shapes, including speech bubbles and stars.
(See the menu at the bottom of the screen.)

Creating a party invitation with
LibreOffice Draw
LibreOffice Draw is used for designing simple page layouts and illustrations and
can be used for making posters and invitations. Despite the application’s arty
name, the drawing tools are basic and are best suited to creating flowcharts and
simple business graphics, although children might enjoy the ease with which they
can add stars, smiley faces, and speech bubbles to their pictures.

We’ll show you how to use Draw to make an invitation. Refer to Figure 6-5, which
shows the LibreOffice Draw screen and our design, as you work through this quick
guide. To make an invitation using LibreOffice Draw:

1.	 Start Draw or choose to create a new drawing from the File menu in any
of the LibreOffice applications.

CHAPTER 6 Being Productive with the Raspberry Pi 137

2.	 Use the toolbar at the bottom of the screen to select a drawing tool. As
you move the cursor over the buttons, a short description appears.

For this example, click the Smiley Face drawing tool in the Symbol shapes on
the toolbar.

3.	 Move the mouse cursor to the page, and then click and hold the mouse
button as you drag the mouse down and to the right.

As you move the mouse, you see the face fill the space you’re making between
where you clicked the button and where the cursor is. When you release the
mouse button, the face is dropped in place. You might find it easier to simply
place the face anywhere onscreen and then reposition and resize it afterward.

4.	 After you have placed the face onscreen, you can reposition it by clicking
and dragging it. To resize it, click it and then click and drag one of the
blue boxes that appears on its edges.

5.	 Use a similar process to add a speech bubble from the group of items
called Callouts on the toolbar. (Click the bubble on the toolbar to select it,
and then click and drag the page to place it.)

When the speech bubble is on the page, you can resize and reposition it in the
same way you arranged the face. To move the tail of the speech bubble, click
and drag the yellow point at the end of it. Arrange it so that it points to the
smiley face.

FIGURE 6-5:
Making a party
invitation using

LibreOffice Draw.

138 PART 3 Using the Raspberry Pi for Both Work and Play

6.	 Click the speech bubble and type some text.

The text spills out of the bubble if there is too much of it, so press the Enter key
to start a new line when necessary, and resize the bubble to fit.

7.	 Some of the buttons have pop-up menus you can open by clicking the
small down arrow to the right of the icon. Click the pop-up menu beside
the Stars button to find the Vertical Scroll and position it on the page.
Add text to it in the same way you added text to the speech bubble.

8.	 To change the color of the scroll, face, or bubble, click it on the page and
then change the colors on the Style menu bar at the top of the screen.

Two colors are shown. The paint can on the left is the color of the outline, and
the menu on the right is the color of the background. Click the menu item that
says Color in it and you can select a gradient, hatching pattern, or bitmap
(colored pattern) instead of a solid color.

9.	 To change the color of the text in the speech bubble or scroll, click it,
press Ctrl+A to select it all, and then use the Font Color option on the far
right end of the style menu bar at the top of the screen.

You can also change the font and size of the text using the Style menu bar.

As you might expect, you can do lots more with Draw. The Text option (the T icon
on the toolbar at the bottom of the screen) enables you to place text boxes
anywhere, so you can create poster-like layouts. The Curve option enables you to
draw freehand by clicking and dragging on the page, and it smoothes your lines
for you. The Fontwork gallery gives you a choice of different bulging, curved, bent,
and circular text styles to choose from. After you’ve placed the Fontwork item,
click its default Fontwork text and type your words and press Enter to have them
inserted in the eccentric style of your choice. If you want to use your own pictures
or photos, the From File button on the menu at the bottom enables you to choose
an image file. (The button has a picture of a square, circle and triangle on it.)
When your image loads, you can resize and reposition it to fit your design.

CHAPTER 7 Editing Photos on the Raspberry Pi with GIMP 139

Chapter 7

IN THIS CHAPTER

»» Installing GIMP

»» Understanding the GIMP screen
layout

»» Resizing, cropping, rotating, and
flipping your photos

»» Adjusting the colors and fixing
imperfections

»» Converting images between different
formats

Editing Photos on the
Raspberry Pi with GIMP

We live in probably the best-documented era in our history. Not only do
we write about our daily lives in blogs and on Facebook, but many
people also carry cameras everywhere they go, built into their phones

or other electronic devices. More serious photographers might have dedicated
digital cameras. Whatever you use, and whatever you do with your day, photogra-
phy is a great way to record your life and express yourself creatively.

The Raspberry Pi can play a part in this activity, enabling you to edit photos to
improve their composition and quality. The photos generated by digital cameras
are quite large files, however, so a Raspberry Pi with just 256MB of memory
struggles to process them, and often becomes impractically slow or crashes when
processing large images, in our experience. The 512MB edition of the Pi, which
you own if you bought a Model B after October 15, 2012, delivers much better
performance, although you still need to be patient at times. The performance on
the Raspberry Pi 2 or 3 is greatly improved, and you should find that you can carry
out image manipulations easily with them.

140 PART 3 Using the Raspberry Pi for Both Work and Play

In this chapter, we introduce you to GIMP, one of the most popular image-editing
packages, and we give you some tips for editing your photos with it. You learn how
to resize, crop, rotate, and flip your photos. We also tell you how to change colors
and fix any imperfections, such as dust or unwanted details, in your shots.

Some of the skills we describe here are valuable for working on other projects in
this book, too. In particular, resizing images so that they’re smaller cuts the
amount of memory they require and makes it easier to use them in other pro-
grams, including LibreOffice (see Chapter 6) and Scratch (see Chapter 9).

Working with GIMP
The program we use is the GNU Image Manipulation Program, known as GIMP for
short. It’s a highly sophisticated tool, and it’s available for free download not just
on Linux but on Windows and Mac computers as well.

To install GIMP on your Raspberry Pi, enter the following at the shell:

sudo apt-get install gimp

If you experience any difficulties, consult Chapter 5 for advice on installing
software.

After installation is complete, you can start GIMP from the Graphics category on
the Applications menu in the desktop environment. (See Chapter 4 for more on the
Applications menu.)

Understanding the GIMP screen layout
Figure 7-1 shows the screen layout of GIMP. GIMP can be used in such a way
that each pane of tools or content is a separate window onscreen — though we
find it easier to arrange everything in a single window, especially when we’re
using a smaller screen. If your layout looks different from the one shown in
Figure 7-1, click to open the Windows menu at the top of the screen and select
Single Window Mode.

When GIMP opens, the large area in the middle is empty, with a picture of Wilber,
the GIMP mascot, in the background. We’ve used the File menu in the top left to
open a photo for editing, which you can see in the center pane.

CHAPTER 7 Editing Photos on the Raspberry Pi with GIMP 141

Across the top of the screen is a bar with menus for File, Edit, Select, View, Image,
Layer, Colours, Tools, Filters, Windows, and Help. You can browse these menus to
get an idea of what the program can do, and to find options quickly if you don’t
know which icons they use on the toolbar.

On the left is a pane that contains icons for the tools at the top and the tool options
at the bottom. When you roll the cursor over a tool’s icon, a tooltip pops up to tell
you what it does. When you click a tool to select it, the options at the bottom of the
pane change, depending on the tool you’re using. For example, if you’re using the
paintbrush, the options cover properties such as opacity and the brush type.

The pane on the right is also divided into halves. The top half has tabs for Layers,
Channels, Paths, and History. Of these, the Layers and History tabs (refer to
Figure 7-1) are most important for new users because they enable you to edit your
photos safely.

FIGURE 7-1:
GIMP enables

you to edit
photos on your

Raspberry Pi.
©1995–2012 Spencer Kimball, Peter Mattis, and the GIMP Development Team

142 PART 3 Using the Raspberry Pi for Both Work and Play

The History tab enables you to retrace your steps if you make changes you
don’t like.

Layers are used for adding new elements to an image without disturbing whatever
is underneath. For example, if you want to add text to an image, you do that in a
new layer on top of the old one. If you change your mind, you can just remove the
layer, and the picture underneath is unchanged. The Text tool (which has an A as
its icon) automatically adds text in a new layer when you use it. If you intend to
use the drawing tools, add a layer for each part of the drawing by clicking the New
Layer button under this pane (refer to Figure 7-1). New layers appear on top of
older layers, but you can change the order of layers by dragging them up or down
in the pane on the right. Those near the top of this pane appear nearer the fore-
ground in the image. To hide a layer temporarily, click the Eye icon next to it in
the pane.

The bottom half of the right pane is for brushes, patterns, and gradients. The
brushes are used when you’re drawing or painting on the image. The patterns and
gradients are used for the Fill tool, which fills in a part of the image with a
particular color or pattern.

You can change the width of the left and right panes, as we have in Figure 7-1, to
make it easier to see all the tabs. Put the mouse cursor at the edge of the pane
adjoining the central image area. When the cursor turns into a two-headed arrow,
click and drag left or right to resize the pane.

Resizing an image in GIMP
One of the most useful things you can do in GIMP is to resize an image. All com-
puter images are made up of pixels, which are tiny colored dots. Sean’s camera
produces images that are 4,272 pixels wide and 2,848 pixels high. High-quality
images like these are great for printing photos, but if you just want to use pictures
onscreen, quality comes at a price. That level of detail requires a large file size,
and big files can significantly slow down your Raspberry Pi. Often, you can use a
lower-quality image without noticeably affecting the end result, assuming that it
will be displayed only on the screen.

Here’s how you can resize an image using GIMP:

1.	 Click to open the Image menu at the top of the screen, and click Scale
Image.

A window like the one in Figure 7-2 opens.

CHAPTER 7 Editing Photos on the Raspberry Pi with GIMP 143

2.	 In the Width box, enter in pixels the width you want the final image to be.
Press Enter when you’ve finished entering the width.

If you want to put a holiday snap on your website, you probably wouldn’t want
it to be more than 500 pixels wide. If you want to use a photo as a Scratch
background (see Chapter 10), the ideal size is 480 by 360 pixels.

When you enter a new value for the width and press Enter or Tab, the height is
updated automatically, so the image stays in proportion and doesn’t become
stretched. You can also enter a value for the height and have the width
calculated automatically. If you want to be able to adjust the width and height
independently, click the chain to the right of their boxes to break it.

3.	 Alternatively, instead of using absolute values for the width and height,
you can resize the image to a certain percentage. Click the Units drop-
down list box (it says px) and choose Percent.

The values in the Width and Height boxes will then be percentages. For
example, you would enter 50% to shrink the image by half. The size of the
image in pixels is shown under the Height box.

4.	 When you’ve set the size, click the Scale button.

At the bottom of the screen, underneath the Image pane, you can see some infor-
mation about the file, including the current zoom level, which is how much the
image has been magnified or reduced for you to view it. If you set this to 100%,
you can get an idea of how much detail is in the image now, and it’s easier to
edit too.

FIGURE 7-2:
The scale options

in GIMP.
©1995–2012 Spencer Kimball, Peter Mattis,

and the GIMP Development Team

144 PART 3 Using the Raspberry Pi for Both Work and Play

Resizing an image reduces its quality. This would be noticeable if you tried to
create a high-quality print of it later. Don’t overwrite an existing image with a
resized version. Instead, save the resized image by choosing Save As from the File
menu at the top of the screen and giving it a different filename.

Cropping your photo
If your photo has excessive space around an edge, or if you’d like to change the
composition of the picture, you can cut off the sides, or crop it. To do that, follow
these steps:

1.	 Click the icon that looks like an art knife, or press Shift+C to choose the
Crop tool.

2.	 Click the image in the top left of the area you’d like to keep, hold down
the mouse button, and drag the mouse down and to the right.

When you release the mouse button, a box appears on the image, as you can
see in Figure 7-3.

The inside of the box shows which bits of the image will be kept. Anything
outside the box is cut off when you crop the image. You don’t have to get the
position or size of the box right first time, because it’s easy to adjust.

3.	 Click one of the corners and drag the mouse to change the size and shape
of the box. You can also click and drag along an edge inside the box to
adjust the width or height.

4.	 To reposition the box, click and drag in its center.

5.	 To crop the image, click inside the box or press the Enter key.

FIGURE 7-3:
Cropping a photo

in GIMP.
©1995–2012 Spencer Kimball, Peter Mattis,

and the GIMP Development Team

CHAPTER 7 Editing Photos on the Raspberry Pi with GIMP 145

If you make a mistake, you can use Ctrl+Z to undo, or use the History pane (refer
to Figure 7-1) to go back to a previous version of the image.

Rotating and flipping your photo
If you rotate your camera sideways to take a picture, you might need to rotate the
resulting image too. The easiest way to do this is to click to open the Image menu
and then use the Rotation options on the Transform submenu there. You can
rotate clockwise or anticlockwise (counterclockwise) by 90 degrees, rotate the
image by 180 degrees, and flip it horizontally or vertically.

For a simple rotation like this, it’s quicker to rotate a photo using the desktop’s
Image Viewer. (See Chapter 4.)

If you have a photo that’s slightly wonky, you can manually adjust it in GIMP. Click
the Rotate tool (or press Shift+R) and you can enter an angle for rotation, or click
and drag the image to rotate it. To change the pivot point about which the picture
rotates, click the circle in the middle of the image and drag it.

This Rotate tool (unlike the options in the Transform menu) only works on the
currently selected layer. (You can select a layer by clicking it in the top pane on the
right.) If you plan to make other modifications to your photo, we recommend you
correct its rotation before you add other layers.

Adjusting the colors
In common with other image editing programs, GIMP has options for adjusting
the colors in a photo. You can find all these options on the Colours menu at the top
of the screen. If your picture has a tint of color you don’t want, or if you would like
to add a tint, use the Colour Balance settings to alter the amount of cyan, magenta,
and yellow in the image. The Brightness and Contrast settings can help to bring
out detail in shadows, or to give the image more impact.

There are also options on this menu (farther down, under Auto) to automatically
adjust the colors using six different methods. These can give strange and undesir-
able results, but you can always undo them with Ctrl+Z if you don’t like them. The
Normalize option can be a quick fix for images that look wishy-washy, and the
White Balance option can fix pictures that don’t already have strong black and
white areas.

The Color options only affect the currently selected layer. If you have added layers
to your image, click the Photo layer in the top pane on the right before adjusting
the color.

146 PART 3 Using the Raspberry Pi for Both Work and Play

Fixing imperfections
On Sean’s holiday to Australia, he found a beautiful unspoiled beach in Darwin. He
took a picture of it: a lone tree in the foreground, the shimmering sea, and wisps
of cloud in a light blue sky. When he got home, he noticed that some idiot had left
a crushed beer can in the foreground.

Thankfully, in GIMP, you can use a handy tool called the Clone tool to make little
details like this vanish. It enables you to use part of the image as a pattern that you
spray over another part of the image. In Sean’s case, he can use a clean piece of
beach as the pattern and spray it on top of the litter. Hey, presto! The rubbish
vanishes.

Here’s how you use the Clone tool:

1.	 Zoom in to the image using the menu underneath it, and then use the
scroll bars at the side of the Image pane to position the image so that you
have a clear view of the imperfection.

2.	 Click the Clone tool, which looks like a rubber stamp, or press the C key.

3.	 Move the cursor to an unspoiled part of the image you would like to use
as the pattern, or clone source.

This needs to be somewhere as plain as possible, more of a texture than a
shape, with no obvious prominent details or lines. Sky, grass, or sand is perfect.

4.	 Hold down the Ctrl key and click the mouse button.

A Crosshair icon appears on your image at that spot.

5.	 In the tool options, at the bottom of the left pane, you can see the brush
that is being used. Click the shape (a circle, by default) if you want to
change it.

For the best results, use a brush with a fading edge rather than a solid edge.
You can change the size of the brush in this pane, too, by clicking the Size box
and typing your preferred value. The bigger the brush you use, the bigger the
pattern.

6.	 Move the cursor to the imperfection in the image, and click the mouse
button.

This copies an area the size of the brush from the clone source to the place
where you clicked.

If you’ve done it right, the imperfection should appear to vanish. If you see
unwanted picture details included in the pattern, either reduce the size of
the brush or move the clone source. Repeat this step until the imperfection
is gone.

CHAPTER 7 Editing Photos on the Raspberry Pi with GIMP 147

You can hold down the mouse button as you move the mouse to clear larger
areas, but be aware that the clone source also moves as you move the mouse.
If you replace a large area, you’re likely to stray into a distinctive part of the
image with the clone source, which will break the effect.

7.	 Adjust the magnification at the bottom of the Image pane to view the
image at 100%.

Check whether you can see any evidence of your handiwork. If so, you might
need to try another clone source or brush size. Otherwise, you’ve succeeded!

Converting images between
different formats
There are several different file formats that can be used for images, but not all
programs can open all files. If you want to use a picture as a background in Scratch
(see Chapter 10), for example, you need to use .jpg files, which usually deliver the
best quality for photos, or .png or .gif files, which are optimal for illustrations.

The default format used by GIMP is .xcf, which stores additional information
about your editing session along with the picture, but this format isn’t widely
used in other programs.

You can use GIMP to save the picture in a more widely used format, or to convert
a picture between different file formats. First, open the image from the File menu,
and then select that menu’s Export As option. The Export As window looks a lot
like the Save window, but here you can click Select File Type (By Extension) at the
bottom and choose the file format you’d like to convert the image into.

The conversion is quite memory-intensive, so on an older Raspberry Pi you might
need to resize (shrink) a digital photo before you convert it.

Finding Out More about GIMP
There’s much more you can do with GIMP, and you can find detailed documenta-
tion on its website. To access it, click Help at the top of the screen, and click User
Manual to open a menu showing the different sections. When you select one, it
opens in your browser. Alternatively, in any browser, go to http://docs.gimp.
org/2.8/en.

http://docs.gimp.org/2.8/en/
http://docs.gimp.org/2.8/en/

CHAPTER 8 Playing Audio and Video on the Raspberry Pi 149

Chapter 8

IN THIS CHAPTER

»» Using LibreELEC to turn your Pi into a
media center

»» Playing music and video stored on
USB devices or networked devices

»» Viewing photos in the media center

»» Playing music in the desktop
environment

Playing Audio and Video
on the Raspberry Pi

I
n this chapter, we show you how you can turn your Raspberry Pi into a media
center, capable of playing high-definition video files and music.

To do that, we use dedicated media player software based on the Kodi software
that powers some set-top boxes and smart TVs. You can use it to play music and
video you have on storage devices connected to your Raspberry Pi, or to play back
media from other devices on your home network. To a more limited degree, you
can also use it to play back streaming TV shows and radio stations from the
Internet.

At the end of this chapter, we also show you how to play music on your Raspberry
Pi in the desktop environment.

Setting Up Your Media Center
The Raspberry Pi can play back full HD 1080p video, which makes it ideal as the
heart of a cheap and low-powered media center. The NOOBS software includes
two Linux distributions, both based on Kodi, that turn your Raspberry Pi into a

150 PART 3 Using the Raspberry Pi for Both Work and Play

media center. The choices are OSMC and LibreELEC. Because they’re both based on
the Kodi core, they have many similarities. In this chapter, we use LibreELEC
because it uses the default Kodi design (or skin), so it’s more likely to resemble
other Kodi systems you have used. It’s also a more lightweight option, so it may
perform better on lower-powered Raspberry Pi models.

If you’re using OSMC, the design looks different, but you should still be able to
follow along in this chapter. To make it easier, you can choose the default Kodi
skin by clicking Settings on the left, choosing Interface from the menu that
appears, and then choosing Skin. Click Skin in the main part of the screen to open
the options and choose Estuary, which is the Kodi default. You can change back to
the OSMC skin from Estuary by clicking the Cogwheel icon at the top of the menu
on the left, choosing Interface Settings from the menu that appears, hovering over
Skin on the left, and then clicking Skin in the main part of the screen. You can exit
any of the menus by pressing Esc.

To start setting up your media center, create an SD or MicroSD card with
NOOBS Lite on it (see Chapter 2), and then use that card to install LibreELEC (see
Chapter 3).

When you first boot up LibreELEC, you’ll be guided through its main settings,
including its name on the network, the network connection itself, and the remote
access settings (so that you can access files on your device over the network).

Navigating the Media Center
The Kodi screen looks like Figure 8-1. LibreELEC uses Kodi’s simple interface,
which is designed to work with only a remote control. In this chapter, we assume
you’re using a mouse, but we give you some pointers on using remote controls in
the section “Using a Remote Control,” later in this chapter. If you’re using a
remote control, you should find the interface intuitive.

The menu on the left side of the screen gives you access to the different content
types, including movies, TV shows, music, and music videos. When you hover the
mouse pointer over one of these options, the main screen area on the right shows
you options and submenus for accessing your content. The Music section, for
example, shows you categories you can browse, recently played albums, recently
added albums, random albums, random artists, unplayed albums, and most played
albums. You can use the cursor keys to move around the options; or the mouse,
with the scroll wheel moving between the options within a menu. To exit a menu,
press the Escape key.

CHAPTER 8 Playing Audio and Video on the Raspberry Pi 151

To select an item and start to play it, simply click it. You can pause playback by
tapping the spacebar, and tap Escape to get back to the menu.

To use the TV and radio features, you’ll need to have a separate tuner device and
TV signal decoding software. For more information, see http://kodi.wiki/view/
PVR_backend.

At the top of the menu on the left are buttons for switching off your Pi, accessing
the settings menus (the Cogwheel icon), and searching for content (the magnify-
ing glass).

Adding Media
Before you can play back content, you need to tell Kodi where it can find it. You
have several options for providing it:

»» USB drive: You can plug a USB drive that stores your movies or music directly
into your Pi or its USB hub. A message appears in the top right, confirming

FIGURE 8-1:
The main menu
on the left and

the empty
library area on
the right. This

shows how Kodi
appears before
media is added.

http://kodi.wiki/view/PVR_backend
http://kodi.wiki/view/PVR_backend

152 PART 3 Using the Raspberry Pi for Both Work and Play

that the USB device is being mounted, which means it’s being prepared
so that you can use it.

»» Networked media: You can connect your Pi to your home network and then
access other devices on the same network. Sean, for example, was able to
connect his Pi to his Windows PC over the network and use Kodi on the Pi to
play back the music and movies stored there. You might have a router with
a built-in media server, so it can share any files on USB devices you connect
to it. These networked devices most likely use the UPnP (Universal Plug and
Play) standard.

Kodi can create a library of your media and index it to provide you with easy access
to it. You’ll need to add your content to the library first to benefit from this.

Adding music
To add music to your library, follow these steps:

1.	 Hover over Music in the menu on the left.

If you’ve already added music, you’ll see options to browse it by artist, album,
and year, among other categories.

2.	 Choose Files from the Categories menu at the top of the screen. (Use the
scroll wheel to scroll this menu horizontally until you find it.)

This will show you the folders you have added to your library already, and any
connected storage devices.

3.	 Choose Add Music.

4.	 Choose Browse in the Add Music Source dialog box that opens and use
the options to find where your music is stored. (See Figure 8-2.)

If you’ve connected a USB drive to your Pi, you can find it by clicking Root
filesystem, media, and then the name of your USB device. To find media
connected on your network, try the Windows Network (SMB) or Network File
System options.

You may need to enter your username and password, and you should enable
the option to remember them for this path if you don’t want to have to enter
them whenever you access your media. Click folders to open them. The .. (two
dots) option at the top takes you up a level in the folder structure.

5.	 Click OK when you have navigated to the folder that contains all the
music folders or files you want to add.

CHAPTER 8 Playing Audio and Video on the Raspberry Pi 153

6.	 In the Add Music Source dialog box enter a name for the media source, if
you want.

This will help you to identify the source on the menus.

7.	 Click OK.

8.	 When prompted, confirm that you’d like to add the media to your library.

Content that Kodi doesn’t recognize, including home recordings, won’t be added
to the library, but you can still view them in the folder you added by using
the browser. Start by choosing Music from the menu on the left, choose Files (as
you did when adding media), and then select the folder that contains your
added media. From there, you can open the folders and select the music files to
play them.

Adding videos
To add movies to your library, follow these steps:

1.	 Click Movies from the menu on the left.

If you can’t see it, it’s probably off the top of the screen. Hover the mouse
cursor over the menu and use the scroll wheel to bring the Movies option
back again.

If you’ve already added some films, you’ll see a list of them with .. (two dots) at
the top of the list. In that case, click .. twice to go up a level and then choose
Files. This will show you the folders you have added to your library already.

FIGURE 8-2:
The browsing

options for
adding media to

your Kodi
installation.

154 PART 3 Using the Raspberry Pi for Both Work and Play

2.	 Choose Add Videos at the bottom of the folder list.

3.	 Choose Browse and use the options to find where your films are stored.

If you’ve connected a USB drive to your Pi, you can find it by clicking Root
filesystem, media, and then clicking the name of your USB device. To find media
connected on your network, try the Windows Network (SMB) or Network File
System options. Click folders to open them. The .. option at the top takes you
up a level in the folder structure.

4.	 Click OK when you have navigated to the folder that contains all the
video folders or files you want to add.

5.	 In the Set Content options that open, click where it says This directory
contains and select Movies.

6.	 (Optional) If your movies are stored in separate folders that match the
movie title — a common way of organizing them — turn that option on.

7.	 Click OK.

If prompted, confirm that you’d like to refresh items in this path.

Content that Kodi doesn’t recognize, such as your home movies, won’t be added
to the library, but you can still view them in the folder you added by using the
browser. Start by clicking Movies on the left, clicking .. twice, choosing Files, and
then selecting the folder that contains your added media. From there, you can
open the folders and select the movie files to play them.

You can add TV shows or music videos using a similar process — just change the
media type to TV Shows or Music Videos in Step 5.

Adding pictures
To add photos, you follow a similar process to adding music and movies. Start by
clicking Pictures from the main menu on the left, and then choose Add Pictures
from the menu that appears. You can then add a folder of photos.

To view the folder, hover over Pictures on the main menu on the left and then
select the folder name. You can use the left- and right-arrow keys to navigate
your photos and hover over options in the bottom left to open a menu that enables
you to display a slide show.

If you’re in a folder and you want to view a different folder or add more pictures,
click .. at the start of the photo folder.

CHAPTER 8 Playing Audio and Video on the Raspberry Pi 155

Streaming media
Streaming media means that the content flows into your Raspberry Pi over the
Internet as you watch it or listen to it. As a result, streaming services only work
when you have a good Internet connection.

To enable streaming, you use add-ons, which are third-party applications that
access sources of content online. Music add-ons, for example, enable you to listen
to Internet radio stations and access some online music services. Video add-ons
can give you access to online TV stations. The availability of add-ons varies over
time as new services launch and older services disappear. The music and video
add-ons can be particularly short-lived and unreliable because broadcasters are
often keen to keep viewers using their own software and gateways.

To install an add-on, hover over Add-ons on the main menu on the left, and then
choose Install from Repository from the menu at the top of the screen. From the
new menu that appears, choose Kodi Add-On Repository to find add-ons from the
official Kodi repository, which offers a range of add-ons that have undergone
basic testing.

As well as music and video add-ons, there are options for a weather forecast pro-
vider, screensavers (in the Look and Feel category), and picture add-ons. Note
that if you add a screensaver, you’ll also need to enable it in the Interface
settings.

Playing Music
To get started with playing music, hover over Music on the main menu to show
your music collection in the main part of the screen. You can use the Categories
menu at the top to browse by genre, artist, album, or song, among others. You can
also choose Files from the Categories menu to go to the music folders you have
added. In the main part of the screen are options for recently played or added
albums, and random artists and albums too. Click a song to play it.

When music is playing, click the Options button in the bottom left to open a menu
with options to pause, stop, or skip the track. From this menu or from the top of
the main menu, click the icon showing four arrows, like a compass, to view the
song full screen, where there are additional options for repeating or random song
order. Note that there is a screensaver, so the screen display disappears after a
moment or two. Press Escape to go back to the menu. You can tap the spacebar to
pause or unpause the audio.

156 PART 3 Using the Raspberry Pi for Both Work and Play

You can continue to browse your music while it is playing, and queue songs or
albums to play next, by right-clicking them and choosing Queue Item from the
menu that appears.

The Playlists option in the Categories section of the Music menu enables you to
create lists of songs for playback that you can save and play whenever you want.
Start by clicking New Playlist in the Playlists option to create a new playlist. To
add a song from the Playlist browser, right-click its name and click Add from the
menu that opens. When you’ve finished creating your playlist, choose Save from
the menu on the left.

You can also make smart playlists, which are playlists that are generated from
rules, such as songs that belong to particular years, genres, or artists. You need to
add your rules before you can give your playlist a name. You use a simple menu
system to set up your playlist rules.

Smart playlists can only contain songs that have been added to the music library,
but standard playlists can contain songs from any of your connected media
devices.

Playing Videos
Use the Movies, TV Shows, Music Videos, and Videos options to view your video
content. What’s available under each option will depend on the media you added
in each section, and what type of media you told Kodi it was at the time (such as
movie or TV show).

The Kodi software supports the H.264 video format to 1080p, which means you’ll
be able to watch most .mp4, .m4v, and .avi files in high definition. Note that con-
tent protected by digital rights management, including files bought from iTunes,
can’t be played in Kodi.

If you want to watch other formats, you might be able to buy a license from the
official Raspberry Pi website at www.raspberrypi.org. Licenses to watch MPEG2
and VC1 format videos are available and cost a couple of pounds or dollars apiece.
Each license is valid for one Raspberry Pi. You need to add your license number to
the config.txt file (see Appendix A), which is easiest to do if you boot from a
different SD card and then use a card reader on the Pi to modify your Kodi card.
The config.txt file is stored in the top-level folder of your Kodi card, not in the
boot folder, where you might usually expect to find it.

To play films, hover over Movies on the main menu to see options for different
categories, recently added movies, random films, and unwatched movies. Click a

http://www.raspberrypi.org

CHAPTER 8 Playing Audio and Video on the Raspberry Pi 157

film to start watching it. You can also click Movies on the main menu to see a list
of your films, together with artwork and a synopsis downloaded from the Inter-
net. Click the .. option at the top of this menu, and then click it again on the next
menu to get to your files if you want to play media that isn’t indexed in the library.
As with audio, you can tap the spacebar to pause or unpause a film.

Viewing Photos
Click Pictures from the main menu to see a simple file browser that you can use to
access your pictures, with your added folders listed. The media center software
supports standard image formats, including JPEG, BMP, and TIFF, and generates
thumbnails of your photos and folders. Navigate to a photo and click it. You use
the left and right keys to move through your photos, and the Escape key (or right-
click the mouse) to return to the menu.

Changing the Settings
The cogwheel at the top of the main menu gives you access to the settings for
Kodi, divided into several sections. They include, among others:

»» Player settings, covering options such as whether the next song or video
plays automatically, whether there is cross-fading between songs, and the
use of subtitles.

»» Media settings, which enable you to manage your sources of media in the
library and choose information providers for artist and album information.

»» Interface settings, which enable you to choose a skin (or design) for Kodi,
your region, and a screensaver. If you install a screensaver add-on, you’ll need
to enable it here.

»» System settings, which can be used to choose the correct audio output
device, configure notification sounds in Kodi, and configure power and the
Internet connection.

»» LibreELEC, which includes options for managing the Internet connections
available to the system and for enabling Secure Shell (SSH) for remote access
to your Pi.

»» File Manager, which enables you to copy files between different folders and
storage devices.

158 PART 3 Using the Raspberry Pi for Both Work and Play

By default, the sound is set to pass through your HDMI cable. If you want to use
your Raspberry Pi’s audio output (and speakers) but you’re using HDMI for your
screen, you’ll need to change the audio setting from HDMI to Analog. You’ll find
this option on Kodi’s System Settings menu. When you’re viewing the settings
menu, select Audio on the left and select Audio Output.

Using a Remote Control
Considering all the functionality we’ve covered in this chapter, you’re not that far
away from running a low-power home media center. To complete it, you can use
a remote control.

There are many ways to remotely control your Raspberry Pi media center. You can
use a USB device, a cheap infrared remote, a keyboard remote, or even your Xbox
controller, if you have one. Or you can use the existing Kodi remote app (available
for iOS and Android operating systems) to control Kodi on your Raspberry Pi.

You can find the remote-control settings on Kodi’s System Settings menu, and
then under Input. You might find that your remote control works without needing
to change any settings, so try it first.

If you have a television that supports the HDMI CEC (Consumer Electronics Coun-
cil) standard, a neat option is to enable your existing television remote to control
your Pi. To do this, connect your networked Pi to your television’s HDMI socket.
XMBC appears as a new input. Use the TV’s remote control to change to this input,
and your Home screen then appears on the television.

Turning Off Your Media Center
To turn off your media center properly, click the Shutdown button in the top left of
the Kodi main menu. You can just switch off the power supply, but you minimize
the risk of corrupting your SD card or MicroSD card by shutting down properly.

Playing Music in the Desktop Environment
Looking for musical inspiration while you program? The good news is that you
can also play music and video from the Raspbian desktop environment. (See
Chapter 4.) If you’re still using LibreELEC or OSMC, shut down your Raspberry Pi

CHAPTER 8 Playing Audio and Video on the Raspberry Pi 159

using the Shutdown icon in the top left and then reboot into Raspbian. You will
need to either swap SD or MicroSD cards or, if you’re using NOOBS, choose to use
Raspbian when you reboot.

VLC Media Player is a music and video player that works on the PIXEL desktop.
You can install VLC at the command line (see Chapter 5) using:

sudo apt-get install vlc

After VLC has been installed, you can find it in the Sound and Video category of the
Applications menu and click its name there to start it up.

On the Media menu of VLC are options to open a file or directory. Usually, you’ll
want to open a directory so that you can play a whole album. By default, VLC
shows you the album artwork (where available), but you can open the View menu
and choose Playlist to see a list of songs so that you can pick another to play (as
shown in Figure 8-3). In the box on the left, you can pick a device to play from,
including several Internet services for streaming music. Choose Playlist from the
View menu again to revert to the full-window artwork.

The playback controls to pause, play, skip, shuffle, and repeat songs are at the
bottom left of the window. The volume control is at the bottom right.

FIGURE 8-3:
Playing music in

VLC Media Player.
Written by Hong Jen Yee and Juergen Hoetzel; icon by Arnaud Didry.

4Programming
the Raspberry Pi

IN THIS PART . . .

Get familiar with the Scratch interface and how you can
use it to create your own simple animations or games
programs.

Use Scratch to build an arcade game, which you can
customize with your own artwork.

Learn how to use Python to create a times table
calculator and Chatbot, a program that simulates basic
artificial intelligence.

Use Pygame Zero with Python to create a simple arcade
game that you can customize with your own sounds and
artwork.

Discover how you can use Python to build worlds in
Minecraft, including a maze you can explore.

Use Sonic Pi to compose your own computer music on
your Raspberry Pi.

CHAPTER 9 Introducing Programming with Scratch 163

Chapter 9

IN THIS CHAPTER

»» Starting Scratch

»» Understanding the Scratch screen
layout

»» Positioning and resizing your sprite

»» Making your sprite move

»» Changing your sprite’s appearance

»» Adding sounds and music

Introducing
Programming
with Scratch

The Raspberry Pi was created partly to inspire the next generation of
programmers, and Scratch is the perfect place to start. With it, you can
make your own cartoons and games and discover some of the concepts that

professional programmers use every day.

Scratch is designed to be approachable for people of all ages. The visual interface
makes it easy to see what you can do at any time, without having to remember any
strange codes, and you can rapidly achieve great results. Scratch comes with a
library of images and sounds, so it takes only a few minutes to write your first
Scratch program.

In this chapter, we introduce you to Scratch so that you can start to experiment
with it. In Chapter 10, we show you how to use Scratch to make a simple
arcade game.

164 PART 4 Programming the Raspberry Pi

Understanding What Programming Is
Before we dip into Scratch, we should clear up some of the jargon surrounding it.
A program is a repeatable set of instructions to make a computer do something,
such as play a game. Those instructions can be extremely complicated because they
have to describe what the computer should do in detail. Even a simple bouncing-
ball game requires instructions for drawing the ball, moving it in different direc-
tions, detecting when it hits something, and then changing its direction to make it
bounce.

Programming is the art and science of creating programs. You can create programs
in lots of different ways, and Scratch is just one of them. In Chapter 11, you read
about Python, another one.

Scratch and Python are both programming languages, different ways of writing
instructions for the computer. Different programming languages are best suited
for different tasks. Scratch is ideal for making games, for example, but it’s not
much use if you want to create a word processor. Using Python to create games
takes longer, but it is more powerful than Scratch and gives you much more flex-
ibility in the type of things you can get the computer to do.

Working with Scratch
There are two versions of Scratch installed in Raspbian:

»» Scratch: This is the original version of Scratch, widely known as Scratch 1.4.

»» Scratch 2: This is an implementation of the newer version of Scratch, widely
known as Scratch 2.0. If you use the online version of Scratch (at https://
scratch.mit.edu), Scratch 2 is the version you are familiar with. Scratch 2
adds some features that are not available in the original Scratch, including the
ability for sprites (which are, roughly speaking, game characters) to create
copies of themselves, and a feature to make your own blocks (or instructions).
(Both are described at the end of this chapter.) Because Scratch 2 requires the
Flash software to work, it only runs on the Raspberry Pi 2 and Raspberry Pi 3.
Some programs, especially action games, run significantly slower in this
version of Scratch, because of all the layers of software required to run Flash
on the Raspberry Pi. Simple programs will run fine, but if you want to make
games, you will soon notice a performance difference.

https://scratch.mit.edu
https://scratch.mit.edu

CHAPTER 9 Introducing Programming with Scratch 165

Both versions of Scratch have been enhanced with features for controlling elec-
tronics projects with your Raspberry Pi, as you will see in Chapter 16.

If you’re a newcomer to Scratch, we recommend you start by using the original
Scratch, because your programs will run much more quickly. If you’re already
familiar with Scratch from the online version, or you’re building programs that
could use the additional features of Scratch 2, you might prefer to choose that ver-
sion instead.

Because of the speed issues associated with Scratch 2, and the fact that it doesn’t
run on the Model B+ or earlier Pi models, we’re going to use the original Scratch
in our examples. We will, however, introduce you to both versions in this chapter
so you can find your way around Scratch 2 as you build your own projects.

You can take files you create in Scratch and use them in Scratch 2, but you can’t
take Scratch 2 files and open them in Scratch.

You access Scratch from the desktop environment.

To start Scratch, select your chosen version from the Applications menu in the top
left of the screen. You can find Scratch and Scratch 2 in the Programming folder.

Understanding the Scratch
screen layout
Scratch divides the screen into four main areas, as you can see in Figures 9-1
and 9-2. The Stage is where you can see your game or animation take shape.
There’s a cat on it already, so you can get started straightaway by making it do
things, as you see in a minute. In Scratch, the Stage is in the top right, and in
Scratch 2, it’s in the top left.

Underneath the Stage is your Sprite List. You can think of sprites as the characters
in your game. They’re images that you can make do things, such as move around
or change their appearance. For now, there’s just the cat, which has the name
Sprite1 in Scratch and Cat1 in Scratch 2.

You create a Scratch program by snapping together blocks, which are short instruc-
tions. You find the blocks in the Blocks Palette, which is on the left in Scratch and
in the middle in Scratch 2. In both cases, it displays the Motion blocks by default.
They include instructions to move ten steps, rotate, go to a particular grid refer-
ence, and point in a particular direction.

The Scripts Area is where the magic happens! You assemble your program in this
space by dragging blocks into it from the Blocks Palette. The Scripts Area is in the

166 PART 4 Programming the Raspberry Pi

middle in the original Scratch and on the right in Scratch 2. In the original Scratch,
you can use two buttons in the top right (refer to Figure 9-1) to toggle the Stage
between full size and small. In Scratch 2, click the Edit menu to find the option for
Small Stage Layout. When the Stage is small, the Scripts Area is bigger, so you
might find that useful when you’re writing scripts later in this chapter.

Positioning and resizing your sprite
You can drag and drop your sprite (the cat) around the Stage to position it where
you would like it to be at the start of your program.

You can also resize the sprite. Two buttons above the Stage (refer to Figures 9-1
and 9-2) are used to enlarge or shrink a sprite. Click one of them, and the
mouse pointer changes to arrows pointing outward (for enlarging) or inward (for
shrinking). Click your sprite on the Stage repeatedly to change its size.

FIGURE 9-1:
The screen layout

in the original
Scratch.

Scratch is developed by the Lifelong Kindergarten Group at the MIT Media Lab. See http://scratch.mit.edu.

http://scratch.mit.edu

CHAPTER 9 Introducing Programming with Scratch 167

When you’ve finished resizing, click something that isn’t a sprite to return the
mouse pointer to normal and stop resizing.

Making your sprite move
Experimenting with Scratch is easy. To try out different blocks, just click them in
the Blocks Palette. For example, try clicking the Move 10 Steps block, and you
should see the cat move to the right. You can also turn the sprite 15 degrees in
either direction by clicking the appropriate blocks.

If your cat goes somewhere that you don’t want it to (don’t they always?), you can
click it on the Stage and drag it back to where you want it. You can reset rotation
in the original Scratch, too, by clicking the tiny cat at the top of the Scripts Area,
holding down the mouse button, and rolling the mouse in a circle pattern on the
desk until the sprite is at the angle you want. In Scratch 2, you can correct a

FIGURE 9-2:
The screen layout

in Scratch 2.

Scratch is developed by the Lifelong Kindergarten Group at the MIT Media Lab. See http://scratch.mit.edu.

http://scratch.mit.edu

168 PART 4 Programming the Raspberry Pi

sprite’s rotation by clicking the sprite’s i button in the Sprite List, and then click-
ing and dragging the blue line on the direction indicator. When you’ve finished,
click the back arrow to show the Sprite List again.

Not all of the blocks will work at the moment because some of them need to be
combined with other blocks. There’s no harm in experimenting, however. If you
click something that doesn’t work, you might get an error message, but you won’t
cause any harm to Scratch or your Raspberry Pi.

Next, we talk you through the different Motion blocks you can use.

Using directions to move your sprite
You can use two different methods to position and move sprites. The first is to
make your sprite “walk,” and to change its direction when you want it to walk the
other way. The other is using grid coordinates, which we cover in the next section.

Here are the five blocks you use to move your sprite in this way (see Figure 9-3):

»» Move 10 Steps: This makes your sprite walk in the direction it is facing. If your
sprite has been rotated, the steps taken could move it in a diagonal line across
the Stage. You can click the number in this block and then type another
number to increase or decrease the number of steps taken, but bigger
numbers spoil the illusion of animation. It stops looking like the sprite is
walking across the screen when the number of steps taken is too big.

»» Turn Right or Left 15 Degrees: This block rotates your sprite. As with the
number of steps, you can edit the number to change the degree by which
your sprite is rotated. It walks in the direction it is facing when you use the
Move 10 Steps block.

FIGURE 9-3:
The directional-

movement
blocks.

Scratch is developed by the Lifelong
Kindergarten Group at the MIT

Media Lab. See http://
scratch.mit.edu.

http://scratch.mit.edu
http://scratch.mit.edu

CHAPTER 9 Introducing Programming with Scratch 169

»» Point in Direction 90: Whatever direction your sprite is facing, this block
points it in the direction you want it to face. Use this block as is to reset your
sprite to face right. You can change the number in this block to change the
direction you want your sprite to face, and the numbers are measured in
degrees from the position of facing up. (See Figure 9-4.) It helps to think of it
like the hands of a clock: When the hand is pointing right, it’s 90 degrees from
the 12 o’clock position; when it’s pointing down, it’s 180 degrees from the top.
To point left, you use –90. When you click the arrow in the right of the number
box, it gives you a menu from which you can select the four main directions —
but you can enter any number.

You might be wondering whether you can enter 270 to point left, and the
answer is that it works, but it can cause errors in your programs. If you turn
your cat to direction 270 and then ask Scratch which way the cat is facing, it
tells you –90. To avoid any inconsistencies like this, keep direction numbers in
the range from –179 to 180.

»» Point Towards: You can also tell the sprite to point toward the mouse pointer
or another sprite. Use the menu in this block to choose what you would like
your sprite to point toward.

FIGURE 9-4:
The number of

degrees used to
face in different

directions.

170 PART 4 Programming the Raspberry Pi

If you’re changing the number value in a block, you still need to click the block to
run it.

Using grid coordinates to move
and position your sprite
The second way you can move and position your sprite is to use grid coordinates.
That makes it easy to position your sprite at an exact place on the screen, irre-
spective of where it is now.

Every point on the Stage has two coordinates: an X position (indicating where it is
horizontally) and a Y position (indicating where it is vertically). The X positions
are numbered from –240 at the far left to 240 at the far right. The Y positions are
numbered from –180 at the bottom edge of the Stage to 180 at the top edge. That
means the Stage is a total of 480 units wide and 360 units tall. The center point of
the screen, where your cat begins its day, is where X equals 0 and Y equals 0.
Figure 9-5 provides a quick visual reference of how the coordinates work.

When you move the mouse over the Stage, the grid reference of your mouse
pointer is shown just underneath the Stage on the right.

Seven Motion blocks use the X and Y coordinates (see Figure 9-6):

»» Go to x:0 y:0: You can use this block to position your sprite at a specific point
on the Stage. By default, it returns a sprite to the center of the screen (x=0,
y=0). Edit the numbers for X and Y to position your sprite somewhere else.

FIGURE 9-5:
The grid

coordinates on
the Stage.

CHAPTER 9 Introducing Programming with Scratch 171

»» Go to: Use this block to move your sprite to the mouse pointer’s location, or
to the location of another sprite, if you have more than one.

»» Glide 1 secs to x:0 y:0: When you use the Go To block, your sprite just jumps
to its new position. The Glide block makes your sprite float there smoothly
instead. You can change the number of seconds the glide takes, including
using decimals for part of a second (for example, 0.5 for half a second).

»» Change X by 10: This moves your sprite ten units to the right. You can change
the number of units and use a negative number if you want to move left
instead. Note that this doesn’t affect your sprite’s vertical position and is
independent of which way around your sprite is facing.

»» Set X to 0: This changes the horizontal position of your sprite on the Stage,
without affecting its vertical position. The value 0 returns it to the center of the
screen horizontally, and you can edit the number to position it left or right of
that. Use a negative number for the left half of the screen and a positive
number for the right half.

»» Change Y by 10: This moves your sprite ten units up the Stage, without
affecting its horizontal position, and irrespective of which direction it is facing.
You can change the number of units and use a negative number to move the
sprite down the screen instead.

»» Set Y to 0: This changes the vertical position of your sprite on the Stage
without affecting its horizontal position, and without regard to which way it
faces. Use a positive value for the top half of the Stage and a negative value
for the lower half.

FIGURE 9-6:
The blocks used

for moving
sprites using grid

coordinates.
Scratch is developed by the Lifelong

Kindergarten Group at the MIT
Media Lab. See http://

scratch.mit.edu.

http://scratch.mit.edu
http://scratch.mit.edu

172 PART 4 Programming the Raspberry Pi

You need to run a block to actually see its effect on your sprite. Do this by
clicking it.

Showing sprite information on the Stage
It can be hard to keep track of where your sprite is and in which direction it’s fac-
ing, but you can show the values for its X position, Y position, and direction on the
Stage. Select the boxes at the bottom of the Blocks Palette to do this, as shown in
Figure 9-7. They clutter the screen a bit, but they can be essential tools for testing
when you’re creating a game.

Changing your sprite’s appearance
As well as moving your sprite around the screen, you can change what it looks like.

Using costumes
One way to think of sprites is as the characters in a game (although they can be
used for lots of other objects, too, such as obstacles). Each sprite can have a num-
ber of costumes, which are different pictures of it. If the costumes look fairly simi-
lar, you can create the illusion of animation by switching between them. Your cat
sprite comes with two costumes, and when you switch between them, it looks like
the cat is running. You can think of a costume as being one image in an animation
sequence (an animation frame).

You can see the costumes for your sprite by clicking the Costumes tab at the top of
the Scripts Area, as shown in Figure 9-8. If you want to modify the cat’s appear-
ance, you can click the button to edit one of the costumes in Scratch or simply
click the sprite in Scratch 2 and use the editing canvas to its right. If you want to
create a new animation frame, you can click the Copy button beside a costume in
Scratch, or in Scratch 2 you can right-click the costume and choose duplicate from
the menu that opens. You can then edit the bits you want to change.

FIGURE 9-7:
The blocks used

to show sprite
information on

the Stage.
Scratch is developed by the Lifelong

Kindergarten Group at the MIT
Media Lab. See http://

scratch.mit.edu.

http://scratch.mit.edu
http://scratch.mit.edu

CHAPTER 9 Introducing Programming with Scratch 173

It doesn’t matter much when you’re experimenting with sprites, but when you
make your own games and animations, you can save yourself a lot of brain ache
by giving your sprites meaningful names. It’s much easier to remember that the
costume with the name game over should be shown when the player is defeated
than it is to remember it’s called costume7. To rename a costume, click the Cos-
tumes tab to show the costumes, and then click the costume’s current name (refer
to Figure 9-8) and type its new name. In Scratch 2, the costume’s name is shown
above the editing canvas.

In the Blocks Palette, there are two blocks you can use to switch between
costumes. (See Figure 9-9.) Click the Looks button above the Blocks Palette to
show them:

»» Switch to Costume: If you want to switch to a particular costume, choose its
name from the menu in this block and then click the block.

»» Next Costume: Each time you use this block, the sprite changes to its next
costume. When the costumes run out, it goes back to the first one again.

You can show a sprite’s costume number on the Stage, too, so that it’s easier for
you to work out what’s going on. Just select the check box next to Costume # in
the Blocks Palette.

Using speech and thought bubbles
Scratch includes four blocks you can use to show a speech bubble or a thought
bubble onscreen. (Refer to Figure 9-9.) To see them, and to see the other blocks
that change a sprite’s appearance, click the Looks button above the Blocks Palette.
The speech and thought bubbles are great for giving a message to the player or

FIGURE 9-8:
You can change a

sprite’s appear-
ance by giving it a

new costume.
(Image shows the
original Scratch.)

Scratch is developed by the
Lifelong Kindergarten Group

at the MIT Media Lab. See
http://scratch.mit.edu.

http://scratch.mit.edu

174 PART 4 Programming the Raspberry Pi

viewer. You can edit the word in the block (Hello! or Hmm . . .) to change the text in
the bubble. Figure 9-10 shows the speech bubbles (top row) and thought bubbles
(bottom row) in action.

If you use one of the options with a length of time in it, the sprite pauses for that
length of time and the bubble disappears when it has elapsed.

If you use a block without a length of time, you can make the bubble disappear
again by using the Say or Think block again but editing the text so that the text
box in the block is empty.

FIGURE 9-9:
Some of the

Looks blocks you
can use to change

your sprite’s
appearance

(image shows the
original Scratch).

Scratch is developed by the Lifelong
Kindergarten Group at the MIT

Media Lab. See http://
scratch.mit.edu.

FIGURE 9-10:
The different

graphic effects
you can apply to

your sprite.
Scratch is developed by the Lifelong Kindergarten Group at

the MIT Media Lab. See http://scratch.mit.edu.

http://scratch.mit.edu
http://scratch.mit.edu
http://scratch.mit.edu

CHAPTER 9 Introducing Programming with Scratch 175

Using graphic effects
You can apply several graphic effects to your sprite using Looks blocks.
In Figure 9-10, we’ve used eight sprites to demonstrate them on the Stage. The
Color effect changes the sprite’s Color Palette, turning orange to green in the case
of the cat. The Fisheye effect works like a fish-eye lens, making the central parts
of the sprite appear bigger. Whirl distorts the sprite by twisting its features around
its middle. Pixelate makes the sprite blocky. Mosaic shrinks the sprite and repeats
it within the space it usually occupies. The Brightness and Ghost effects can
sometimes look similar, but the Brightness effect increases the intensity of the
colors (turning the cat’s black outline silver while softening the orange), and the
Ghost effect fades out all colors evenly.

Here are the three blocks you use to control graphic effects:

»» Change Color Effect by 25: You can select the effect you want to change (by
default, it’s the color effect) and enter the amount of it you want to add. You
can use negative numbers to reduce the extent to which the effect is applied
to your sprite. The color effect has 200 different levels (from 0 to 200), and the
other effects typically look best with levels in the range from –100 to 100.
Experiment!

»» Set Color Effect to 0: Use this block to set a chosen effect to a specific level.
Choosing 0 turns the effect off again. You can use any of the seven effects
with this block.

»» Clear Graphic Effects: This block removes all graphic effects you’ve applied to
a particular sprite so that it looks normal again.

The graphic effects look great, but they are quite slow on a Raspberry Pi Model B+
or older. They’re best used in moderation for special moments in your animation
or game; otherwise, they might make it appear unresponsive.

Resizing your sprite
Earlier in this chapter, we show you how to change the starting size of your sprite
on the Stage. You can use blocks to issue instructions to change its size, too, so
you could make it grow larger as the game progresses, for example.

There are two blocks you can use to resize your sprite:

»» Change Size by 10: This block enables you to change the size of your sprite by
a certain number of units, relative to its current size. As usual, you can edit the
number. If you want to decrease the sprite’s size, use a negative number.

176 PART 4 Programming the Raspberry Pi

»» Set Size to 100%: This block sets the size to a percentage of its original size,
so with the default value of 100 percent, it effectively resets any resizing
you’ve done.

You can also select the check box beside the Size block to show the sprite’s size on
the Stage, in the same way you display other sprite information there. (See “Show-
ing sprite information on the Stage,” earlier in this chapter.) This can be useful
for testing purposes.

Changing your sprite’s visibility
Sometimes, you might not want your sprite to be seen on the Stage. If a spaceship
is blown up in your game, for example, you want it to disappear from view. These
two blocks give you control over whether a sprite is visible:

»» Hide: Use this block to make your sprite invisible on the Stage. If a sprite is
hidden, Scratch won’t detect when it touches other sprites, but you can still
move a hidden sprite’s position on the Stage so that it’s in a different place
when you show it again.

»» Show: By default, your sprite is visible, but you can use this block to reveal it
again after you have hidden it.

Sometimes, sprites might get on top of each other. You can use the Go to Front
block to make a sprite appear on top of all the others. To push a sprite backward
and allow others to appear on top of it, use the Go Back 1 Layers block.

Adding sounds and music
As well as changing a sprite’s appearance, you can give it some sound effects.
Scratch comes with sounds, including slurps, sneezes, and screams; ducks, geese,
and owls; and pops, whoops, and zoops. You can find effects for most occasions,
and many of them are natural partners for one of the sprites that Scratch
provides.

To add a sound to your sprite, you have to do one task first: Import the sound to
your sprite. Here’s how you’d do that:

1.	 Click the Sounds tab above the Scripts Area, as shown in Figure 9-11, and
then click the Import button.

In the original Scratch, it’s labelled Import, but in Scratch 2, the button looks like
a tiny speaker: Don’t confuse it with the large speaker used to represent any
existing sound effect on the sprite.

CHAPTER 9 Introducing Programming with Scratch 177

2.	 In the file browser that appears, browse the provided sounds.

3.	 (Optional) In Scratch, click a file once to hear a preview of it. In Scratch 2,
click the play button beside the file to hear it.

4.	 Click a file twice to bring it into your sprite.

5.	 (Optional) After you’ve imported a sound, you can preview it. Click the
speaker beside it in Scratch, or the play button in the Sounds Area in
Scratch 2. In both versions of Scratch, click the X button to delete a sound
from your project.

If you a delete a sound in this way, it remains on your SD card so that you can
import it again later.

After a sound has been imported, you use one of the Sound blocks to play a sound.
To see all available Sound blocks, click the Sound button at the top of the Blocks
Palette first.

The Play Sound block enables you to choose which sound you’d like to play from
those you have imported. The Play Sound Until Done block stops the program
from running any blocks joined underneath this one until the sound has finished
playing.

The sound is imported to a particular sprite, so if you can’t see it as one of the
choices in the Play Sound block, be sure you’ve imported it to the correct sprite. In
Chapter 10, we cover how to use multiple sprites in a project.

FIGURE 9-11:
Adding sound
effects to your

sprite (Image
shows original

Scratch).
Scratch is developed by the Lifelong Kindergarten Group at the

MIT Media Lab. See http://scratch.mit.edu.

http://scratch.mit.edu

178 PART 4 Programming the Raspberry Pi

There are also blocks that let you use virtual drums and pitched instruments to
create music using Scratch. Notes are numbered: C is 60, C# is 61, D is 62, and so
on. There’s a block called Play Note 60 for 0.5 Beats that plays a note with a par-
ticular number for a certain duration. When you click the menu in this block to
specify which note to play, a piano opens that you can use to select the note.

If you’re new to music, you can generally get a good result by starting with C,
sticking to the white notes, and making sure no two consecutive notes are too far
apart on the piano.

You can use a block called Set Instrument to 1 to change the instrument, but if you
want to use this, you need to install the different instruments first if you’re using
the original Scratch. To do so, click the Terminal icon on the task bar at the top of
the desktop and then issue these commands in the Terminal window (explained in
greater depth in Chapter 5):

sudo apt-get update
/usr/share/scratch/timidityinstall.sh

Finally, in order to finish installing the instruments, you need to reboot your
Raspberry Pi. Save your work in any open applications first, and then open the
Applications menu, click Shutdown, and choose Reboot.

The note numbers used in Scratch are the same as those used in Sonic Pi. (See
Table 14-1, in Chapter 14.)

Creating scripts
Clicking blocks in the Blocks Palette is one way to issue commands to Scratch, but
if that’s all you’re doing, you’re not really programming. The fact is, if you have
to click each block every time you want to run it, you’re doing all the hard work of
remembering the instructions, and the computer can work only as fast as you can
click the blocks.

A program is a reusable set of instructions that can be carried out (or run) when-
ever you want. To start to create a program, you drag blocks from the Blocks Pal-
ette and drop them in the Scripts Area in the middle of the screen. Most blocks
mentioned so far in this chapter have a notch on the top and a lug on the bottom,
so they fit together like jigsaw pieces. You don’t have to align them perfectly:
Scratch snaps them together for you if they’re close enough when you release the
mouse button.

CHAPTER 9 Introducing Programming with Scratch 179

You put your blocks in the order you want Scratch to run them, starting at the top
and working your way down. It’s a bit like making a to-do list for the computer.

A group of blocks in the Scripts Area is called a script, and you can run the script by
clicking anywhere on it. Its border is highlighted, and you’ll see the cat move
around the Stage as you’ve instructed it to.

You can have multiple different scripts in the Scripts Area, so you could have one
to make the cat walk left and another to make it walk right, for example. When
you add multiple sprites (see Chapter 10), each sprite has its own Scripts Area and
scripts there to control it.

If you want to tidy up the Scripts Area, you can move a script by dragging its top
block. If you drag a block that is lower down in the script, it is separated from the
blocks above it and carries with it all of the blocks below it. If you want to delete a
block or set of blocks, drag it back to the Blocks Palette on the left.

The moonwalk is the dance, popularized by Michael Jackson, that makes you look
like you’re walking forward while you’re actually moving backward. Figure 9-12
shows a script to make your cat moonwalk across the Stage. The first two lines in
the script reset the cat to the middle of the screen, facing right. The cat tells you that
it loves to moonwalk and then lets out a little whoop like Michael Jackson’s, which
it continues for the duration of the dance. The costume switch changes the position
of the cat’s legs, and it then glides 150 units to the left. Close the speech bubble by
using the Say block with nothing in it, and then switch back to the other costume,
which makes the cat’s legs move back to their default position. Give it a go!

FIGURE 9-12:
This is how you

make a cat
moonwalk. Ow!

Scratch is developed by the Lifelong Kindergarten Group at the
MIT Media Lab. See http://scratch.mit.edu.

http://scratch.mit.edu

180 PART 4 Programming the Raspberry Pi

Using the Wait block to
slow down your sprite
As you put your script together, you might find that some movements happen so
fast that you can hardly see what’s going on.

If you click the Control button at the top of the Blocks Palette, you can find a set
of yellow blocks that are used to govern when particular things happen. You can
read more about these in Chapter 10, but for now it’s worth knowing that a block
here enables you to wait for a certain number of seconds. Drag this into your script
where necessary to introduce a delay so that you can see each of your blocks in
action. The length of the delay is 1 second by default, but you can change it to
whatever you want, including parts of a second (for example, 0.5 for half a
second).

The Say Hello! for 2 Secs block can be also be used to force the script to pause
before running any more blocks.

Saving your work
Remember to save your work so that you can come back to it later. You can find
the option to save on the File menu, at the top of the screen, or you can click the
Floppy Disk icon in the top left in the original Scratch.

In the original Scratch, when the Save Project dialog box opens (see Figure 9-13),
you see buttons on the left to choose from various places you could save your file,
although you might not have permission to use all of them. (See Chapter 5 for
more on permissions.) We recommend that you use the Scratch folder inside your
pi directory. On the right, you can add your name and some project notes to
remind you later what the project was about. You can see and edit the project
notes associated with a file by using the File menu when you’re working on a
program.

When you save in Scratch 2, you see a file browser that enables you to choose
where to save. Again, we recommend saving in your Scratch folder inside your pi
directory.

CHAPTER 9 Introducing Programming with Scratch 181

What’s new in Scratch 2
The two versions of Scratch on your Raspberry Pi share the same core blocks, but
there are a few differences in Scratch 2 to be aware of:

»» Events blocks: This is a new category of blocks introduced in Scratch 2. It
includes blocks that were categorized as Control blocks in the older version of
Scratch. If the block name starts with “when” or “broadcast,” you’ll probably
find it in the Events part of the Blocks Palette in Scratch 2. (The exception is
When I Start As a Clone, which remains a Control block.)

»» Cloning: There’s a new feature in Scratch 2 to enable sprites to create copies
(or clones) of themselves. Those clones can then run scripts that start when
the clone is created. You can find the blocks to experiment with cloning in the
Control part of the Blocks Palette.

»» More Blocks: Scratch 2 enables you to build your own blocks by combining
existing blocks. It’s a great way to make programs that are easier to read. Click
the More Blocks button above the Blocks Palette to try it.

»» Data: The Variables part of the Blocks Palette has been renamed to Data in
Scratch 2. It is otherwise the same. We cover variables in Chapter 10.

Despite these differences, you should find that programs written for the original
Scratch will work in Scratch 2, so you can use tutorials and books based on them.
For more guidance on Scratch 2, see our recommended resources at the end of
Chapter 10.

FIGURE 9-13:
Saving your work

so that you can
come back to it

later (image
shows the

original Scratch).
Scratch is developed by the Lifelong Kindergarten Group at the MIT Media Lab. See http://scratch.mit.edu.

http://scratch.mit.edu

CHAPTER 10 Programming an Arcade Game Using Scratch 183

Chapter 10

IN THIS CHAPTER

»» Adding sprites to your game

»» Drawing and naming sprites

»» Controlling when scripts are run

»» Using random numbers

»» Detecting when a sprite hits another
sprite

»» Introducing variables

»» Making sprites move automatically

»» Adding scripts to the Stage

Programming an Arcade
Game Using Scratch

In this chapter, we show you how to use Scratch to create and play an arcade
game. You get a chance to customize the game with your own graphics, but
more importantly, you learn how to put a game project together so that you can

invent your own games.

In this sample game, you control a flying saucer as it defends its planet from inva-
sion. Grumpy-looking aliens zoom in from above, but you can stop them by hurl-
ing fireballs at them. If they get to you, it’s game over — not just for you, but for
your entire planet . . .

This chapter explains the Control blocks that enable you to coordinate the actions
of different sprites with each other and with the player. The chapter assumes a
basic understanding of the Scratch interface and how you use blocks to build a
script, so refer to Chapter 9 for a refresher, if you need it.

184 PART 4 Programming the Raspberry Pi

In this chapter, we will be using the original Scratch. The game works in Scratch 2,
but it’s much slower than in the original Scratch. We also want those with older
Raspberry Pis to have a chance to build this project, and Scratch 2 only works on
the latest Pi models. If you decide to build this project using Scratch 2, see our
notes at the end of Chapter 9 on what’s new in Scratch 2. They will help you to find
the blocks you need as you make this game.

You can download the Scratch file for this chapter’s arcade game from this book’s
companion website. (See the Introduction for more on how to access the book’s
online content.) You might find it helpful to look at the color-coded script onscreen
while you read this chapter. You can use the File menu at the top of the Scratch
window to open the project when you download it.

Starting a New Scratch Project
and Deleting Sprites

If you’ve been playing with Scratch and have blocks and scripts scattered all over
the screen, you can start a new project by clicking File on the menu at the top of
the screen and then choosing New.

All projects start with the Cat sprite in them, so the first thing you need to do is
delete it. Here are the three ways you can delete a sprite:

»» Right-click the sprite on the Stage, and then choose Delete from the menu
that appears.

»» Right-click the sprite in the Sprite List in the bottom right of the screen, and
then choose Delete from the menu you see in Figure 10-1.

»» Click the Scissors icon above the Stage and then click the sprite on the Stage
or in the Sprite List.

Take care with the Scissors icon: In most art packages, it means Cut, and you can
use Paste to replace what you’ve removed. In Scratch, it means Delete, so you lose
your sprite completely. If you delete a sprite accidentally, go straight to the Edit
menu at the top of the Scratch window and use Undelete to bring it back.

Deleting a sprite is not the same as hiding it. If you hide a sprite, it’s still part of
your project, but it’s not visible. You can bring it back later by showing it. If you
delete a sprite, its scripts, costumes, and sounds are removed from your project
altogether.

CHAPTER 10 Programming an Arcade Game Using Scratch 185

Changing the Background
You can change the Stage’s background to something more inspiring than the
plain white space you see when you start Scratch. The Sprite List contains an entry
for the Stage. (Refer to Figure 10-1). The Stage can have scripts and different
images, just like a sprite can. The Stage’s images are called backgrounds rather
than costumes. Click the Stage’s icon in the Sprite List, and then click the Back-
grounds tab at the top of the Scripts Area to see the Backgrounds Area.

You can choose to paint a new background, using the built-in art package (see the
section “Drawing Sprites in Scratch,” a little later in this chapter). Alternatively,
you can use an existing image file (or import it, in Scratch-speak). Scratch comes
with a number of backgrounds you can choose from, or you can use your own
photo. Scratch can open images in .jpg, .gif, or .png format.

For the background for this chapter’s game, we’ve used a photo Sean took of
Lanzarote’s barren landscape, which looks almost like it could have been beamed
back from Mars.

Adding Sprites to Your Game
There wouldn’t be much demand for a programming language that could only be
used to create games about cats. (Actually, given the popularity of cat videos
online, maybe there would.) In any case, Scratch gives you three ways to bring

FIGURE 10-1:
The Sprite List,

with the
right-click menu
open on the Cat

sprite.
Scratch is developed by the Lifelong Kindergarten Group at the MIT Media

Lab. See http://scratch.mit.edu.

http://scratch.mit.edu

186 PART 4 Programming the Raspberry Pi

new sprites into your game. You can find the buttons for all three at the top of the
Sprite List — refer to Figure 10-1):

»» Paint New Sprite: This opens the Paint Editor so that you can draw your
sprite in Scratch.

»» Choose New Sprite from File: You can use this button to bring one of the
preset sprites into your project or to bring in a graphic you’ve created using a
different art package. Scratch comes with a wide range of sprites, including
dancing people, flying hippos, and fire-breathing dragons. Our kind of party!

»» Get Surprise Sprite: Looking for some inspiration? This button fires up your
creativity by bringing in a randomly chosen sprite from those that Scratch
comes with. It’s also a quick way to get started if you want to experiment with
scripting. If you don’t like the sprite you get, you can always delete it and try
another surprise.

Drawing Sprites in Scratch
One of the most distinctive ways to put your fingerprint on your game is to draw
your own sprites for it. Even if it plays the same as a well-known game, it’ll look
unique if you hand-craft your images. Figure 10-2 shows the Paint Editor in Scratch.

FIGURE 10-2:
The Paint Editor

in Scratch.

Scratch is developed by the Lifelong Kindergarten Group at the MIT Media Lab.
See http://scratch.mit.edu.

http://scratch.mit.edu

CHAPTER 10 Programming an Arcade Game Using Scratch 187

The checkered area on the right is the Canvas. The checkered pattern has a special
meaning and is used to indicate parts of the image that are transparent, where the
background will show through. Usually, you want everything outside the outline
of your sprite to be transparent and everything inside it to be another color. Choose
the color you want to use, or the checkered transparent “ink,” by using the Color
Palette at the bottom left of the Paint Editor. (Refer to Figure 10-2.)

Above the Color Palette, you can see your drawing and editing tools. Click one to
select it, and you can then use it on the Canvas. The icon for your chosen tool is
tinted blue so that you can easily see which tool you’re using. Underneath the tool
icons is the Options Area. (Refer to Figure 10-2.) This is where you can choose how
to use a particular tool. The main tools are described (from left to right, top row
first) in this list:

»» Paintbrush: Hold down the mouse button as you move over the Canvas to
leave a line. In the Options Area, you can select the brush size.

»» Eraser: Click the mouse button to delete part of the image. You can hold
down the button and move the mouse if you want to delete large parts of the
image, or to delete small sections but have a steady hand. In the Options
Area, you can choose the eraser size.

»» Fill: Click inside a shape on the image to fill it with your chosen color.

In the Options Area, you can choose a graduated pattern to use with your
chosen color. To the right of the Color Palette are two overlapping squares
that show the selected colors. To choose a different color to fade into, click the
right-angled arrow between the two squares to change the one you’ve
selected, and then click the second color you want to use in the Color Palette.

»» Rectangle: Click and hold the mouse button to mark one corner of the
rectangle, and then drag your mouse to the opposite corner and release the
button. In the Options Area, choose whether you want a filled rectangle or an
empty one.

»» Ellipse: This is similar to the Rectangle tool. Click to indicate the point where
lines from the top and left of the ellipse would meet, and then drag the mouse
to the opposite side before releasing the button. Again, you have options to
draw a filled or empty shape. You can create a perfect curved line by drawing
an ellipse and then deleting some of it.

»» Line: Click and hold the mouse button at the start of the line, move the mouse
to the end of the line, and then release the mouse button. Your options let
you choose the brush size, or line thickness.

188 PART 4 Programming the Raspberry Pi

»» Text: To reposition the text, click and drag the small black box that appears to
the left of the cursor on the canvas. You can choose different fonts and sizes
in the Options Area, and press Enter to start a new line.

»» Select: Use this to select a rectangular area of your image that you would like
to modify or remove. Click and hold the mouse button in one corner and drag
to the opposite corner, and then release the mouse button. You can drag your
selected area to move it to a different part of the image or use the buttons at
the top of the Paint Editor to enlarge or shrink, rotate anticlockwise (counter-
clockwise) or clockwise, flip horizontally, or flip vertically. You can also press
Delete on your keyboard to delete the selected area.

»» Stamp: Use this tool to copy and paste part of your image. Click and hold the
mouse button to mark one corner of the area and then drag your mouse to
the opposite corner and release the button. A copy of that area follows your
mouse cursor. Click the mouse button to stamp it (or paste it) at that position
on the Canvas.

»» Eyedropper: Use this tool to choose a color that’s already on your Canvas. If
you want to amend part of your sprite and need to use the same ink you used
earlier, this tool saves you from having to remember which ink that was.

The Clear button clears the Canvas (except for text), irrespective of what you’ve
selected. If you make a mistake, click Undo. (Refer to Figure 10-2.)

When you’ve finished drawing your image, click Set Costume Center at the bottom
left of the Paint Editor and then drag the crosshairs to the middle of your image.
This is important because it controls the point around which your sprite rotates if
you use rotation in your game.

Don’t forget to save your game frequently. It’s a good idea to save a new copy of
your game with a new filename as you reach each significant point in its develop-
ment. It means you can go back if you introduce an unexpected error, and it also
protects you against losing too much of your work if a file gets corrupted (as
happened to Sean once while creating this game!).

If you want to edit your picture later, click your sprite’s Costumes tab (see
Figure 10-3) and then click Edit beside the costume you want to change. If you
want to create additional costumes for a sprite, you can also do that in your sprite’s
Costumes tab.

CHAPTER 10 Programming an Arcade Game Using Scratch 189

Naming Your Sprites
Whenever you’re programming, you should give things meaningful names so that
you (and others) can easily understand what your program does. Scratch gives
your sprites names like Sprite1 and Sprite2, but you can rename them. To rename a
sprite, click its name above the Scripts Area (refer to Figure 10-3) and then type
its new name. Your sprite’s costumes are called costume1, costume2, and so on. If
you’ve created different costumes for your sprite, you should also give them
sensible names so that you can easily tell which is which. Go to your sprite’s
Costumes tab, click the name beside a costume (refer to Figure 10-3), and type the
new name.

For the space game, you need to create a flying saucer sprite named ship and a
sprite named fireball to represent the ship’s weapon. The baddie, a sprite called
alien, should have two costumes: alienok, which shows it looking menacing, and
alienhit, which shows the same entity after it’s been hit by the fireball.

To make it easier to see what you’re doing, we recommend you drag your ship to
the bottom of the screen, drag the alien to the top, and put the fireball somewhere
in the middle. That roughly reflects where they will be in the finished game.

FIGURE 10-3:
Changing the

names of sprites
and costumes.

Scratch is developed by the Lifelong
Kindergarten Group at the MIT Media Lab.

See http://scratch.mit.edu.

http://scratch.mit.edu

190 PART 4 Programming the Raspberry Pi

Controlling When Scripts Run
In Chapter 9, we show you how to start scripts by clicking them in the Scripts
Area. Most of the time, you’ll want your scripts to run automatically when certain
things happen, such as a player pressing the Fire key.

This is where the Control blocks come in: They allow you to trigger scripts to run
when a particular event happens, such as a sprite being clicked or a key being
pressed. You use the Control blocks to craft the rules and instructions that govern
how your game works.

Using the green flag to start scripts
One of the Control blocks is particularly useful for starting your game and syn-
chronizing your scripts across all your sprites. Above the Stage are two buttons: a
green flag and a red Stop button. The green flag is used to start scripts running,
and you can use a Control block to detect when it’s clicked. This Control block has
a curved top on it — because no other block can go above it— but it has a notch
underneath so that you can join Motion, Looks, Sound, or other blocks to it. You
can put scripts that are triggered by the green flag being clicked into all your
sprites so that clicking the flag makes it easy to start scripts on different sprites
at the same time.

At the end of a game, aliens and the ship could be anywhere, so at the start of the
game, you need to reset each sprite to its starting position. For the player’s ship,
you need to reset the X position to the center of the screen, set the Y position near
the bottom of the screen, reset the ship’s direction, and bring the ship to the front
so that any other sprites are behind it. Later on, this makes the fireball come from
behind the ship, so it looks like it’s being fired from inside rather than appearing
on top of it.

Figure 10-4 shows the script you should assemble to reset your ship when the
green flag is clicked. If you’re making your own graphics, the Y position might
need to be higher, depending on the size of your sprite.

When you have multiple sprites in your project, make sure you’re adding blocks to
the correct one (the ship, in this case). Each sprite has its own Scripts Area. To
choose a sprite, click it in the Sprite List in the bottom right.

CHAPTER 10 Programming an Arcade Game Using Scratch 191

Using the Forever Control block
Computers are great at repetitive tasks, and a game program often requires the
computer to do the same things over and over again until the game is finished.

Repeated bits of program like this are called loops.

You can use two main Control blocks to make the computer repeat a set of blocks.
The Repeat block enables you to specify how many times you want a block or set
of blocks to be run. The Forever block runs a block or set of blocks repeatedly until
the program is stopped.

Both blocks are shaped like a bracket, so they can enclose the blocks you want to
repeat inside them. The Forever block doesn’t have a notch on the bottom because
it doesn’t make sense to put any other blocks after it: They would never be run,
because forever never comes to an end.

For the ship in this space game, you need to continue checking for key presses
until the game is finished. Without the Forever loop, the script would check once
for a key press and then finish.

You can find the Forever block by clicking the Control button at the top of the
Blocks Palette to reveal all the Control blocks, and then looking down the list. Drag
it into the script for your ship at the end of your green flag script. The first time
you use it, we recommend you test how it works by dragging a Motion block into
its bracket. Figure 10-5 shows a script that makes the ship sprite rotate for as long
as the program runs. You’ve already built some of this script, so just add the new
blocks at the end. Click the green flag to start it, but don’t forget to take that rota-
tion block out again when you’ve finished testing.

FIGURE 10-4:
Using a green flag

Control block to
reset your sprite.

Scratch is developed by the Lifelong
Kindergarten Group at the MIT Media Lab.

See http://scratch.mit.edu.

http://scratch.mit.edu

192 PART 4 Programming the Raspberry Pi

Enabling keyboard control of a sprite
For our space game, the player needs to be able to move the ship sprite left and
right using the arrow keys. In plain English, you need to use a set of blocks that
says, “If the player presses the left-arrow key, move the ship left.” And, you need
to put those blocks inside a Forever block so that Scratch keeps checking and
moving the sprite all the way through the game. You need a similar set of blocks
that move the sprite right, too.

The If block is a Control block that enables a set of blocks to be run only under
certain conditions. For that reason, it’s often called a conditional statement in pro-
gramming. Like the Forever block, it’s shaped like a bracket, so you can put other
blocks inside it. In the case of the If block, the blocks inside are ones you want to
run only in certain circumstances. Drag the If block into the Scripts Area, inside
the Forever block.

Scratch is designed like a jigsaw puzzle, so it gives you visual hints about what
blocks can go where if the program is to make sense. The If block has a diamond-
shaped hole in it, which is where you describe the circumstances under which you
want its blocks to run. There are diamond-shaped Operator and Sensing blocks as
well, and we use both in this program.

The block you need for keyboard control is a Sensing block called Key Space
Pressed? — it detects a tap on the spacebar. If you want it to detect the pressing
of a key other than the spacebar, use its menu to set the key. In this case, you want
it to detect the left-arrow key. You can drag and drop this Sensing block into the
diamond-shaped hole in the If block in the Scripts Area.

FIGURE 10-5:
The Forever block

can be used to
make the ship

rotate the
entire time the
program runs.

Scratch is developed by the Lifelong
Kindergarten Group at the MIT Media Lab.

See http://scratch.mit.edu.

http://scratch.mit.edu

CHAPTER 10 Programming an Arcade Game Using Scratch 193

Figure 10-6 shows the piece of script you need to move the ship left. We’ve used a
Motion block to change its X position by –10 units, and we’ve also adjusted its
direction, which makes it tilt toward the direction it’s moving. You could change
its costume so that it looks different when it’s moving left or right, or add any
other visual effects or sounds here.

Enabling a sprite to control another sprite
In programming, you can often choose between several ways to achieve the same
effect. The game’s firing mechanism is one such example. You could sense the
spacebar (the Fire key) being pressed using a script on the fireball, for example,
and then use that to trigger the fireball’s ascent.

We use the firing mechanism as an opportunity to show you how you can make
one sprite control another sprite, however. You can’t actually make the ship move
the fireball, but you can send a message from the ship to tell the fireball you want
it to move itself.

There are two parts to this: The first is that you need to use the Broadcast block on
the ship to send a message to all the other sprites. You only want to do this when
the spacebar (the Fire button in this game) is pressed, so you need to drag an If
block to the Scripts Area of your ship, add a diamond Sensing block to check
whether the spacebar is pressed, and, finally, put the Broadcast block inside the If
block’s bracket.

The Broadcast block, which is one of the Control blocks, has a menu built into it.
Click the menu and click New to create a new message. We’ve called our message
fire.

This approach has a couple of advantages. First, you can keep all your game con-
trol scripts on one sprite (the ship), which makes the program easier to manage.
Second, it’s an efficient way to coordinate multiple sprites. We could, for example,
make our alien look terrified when the Fire button is pressed, by just changing its
costume, and that requires only two blocks: A Control block for when the message

FIGURE 10-6:
The If block is

used to enable
keyboard

movement of
the sprite.

Scratch is developed by the Lifelong Kindergarten
Group at the MIT Media Lab. See http://

scratch.mit.edu.

http://scratch.mit.edu
http://scratch.mit.edu

194 PART 4 Programming the Raspberry Pi

fire is received, and the block to change to a new costume which shows the alien
looking scared. It’s much more efficient than having to look out for the Fire button
on the alien, too.

Figure 10-7 shows the script for the ship. When the green flag is clicked, it resets
the ship’s position and then enters a loop where it moves the ship left if the left-
arrow key is pressed, moves the ship right if the right-arrow key is pressed, sends
the fire message if the spacebar is pressed, and then keeps checking for those
keys forever. You can run this script to confirm that the ship moves as expected.

If your script doesn’t behave as expected, check your brackets. You’re allowed to
put an If block inside another If block, but that doesn’t make sense here, and it
will stop the game’s controls from working properly. If you put the bracket for
detecting the Fire key inside the bracket for detecting the right-arrow key, the
game will check for the Fire key only when the right-arrow key is pressed.

Click the fireball sprite in the Sprite List. You can now add scripts to that sprite.
A Control block called When I Receive fire is used to trigger a script when the fire
message is broadcast. This script is quite simple: You move the fireball sprite to
where the ship is, show the fireball sprite (although it will be behind the ship),
play a suitably sci-fi sound from the effects included with Scratch, glide the sprite
to the top of the screen, and then hide it again.

FIGURE 10-7:
The script for
resetting and

then controlling
the ship.

Scratch is developed by the Lifelong Kindergarten
Group at the MIT Media Lab. See
http://scratch.mit.edu.

http://scratch.mit.edu

CHAPTER 10 Programming an Arcade Game Using Scratch 195

In the Glide block, you can drop a block called X Position in place of entering a
number for the X position. That means you can keep the X position the same as it
already is while changing the Y position with a gliding movement. The result is
that the fireball moves vertically.

The other script you need on the fireball sprite is one to hide it when the green flag
is clicked, just in case it’s onscreen from the previous game when a new game
starts.

Make sure you’re adding scripts to the correct sprite.

Figure 10-8 shows the scripts for the fireball sprite. Remember to add the Laser1
sound effect using the sprite’s Sounds tab before creating this script. It’s in the
Electronic folder. After you’ve added this script, you can confirm that it works
by tapping the spacebar.

Using Random Numbers
Games wouldn’t be much fun if they were always exactly the same, so Scratch
enables you to use random numbers in your scripts. To keep players on their toes,
you can make the alien appear at a random X position at the top of the screen.

Click your alien in the Sprite List, and then drag in the Green Flag Control block.
As with the other sprites, you need to create a script that resets the alien to its
starting position. In the case of the alien, the sprite switches to a different

FIGURE 10-8:
The scripts for

the fireball sprite.
Scratch is developed by the Lifelong Kindergarten Group at the

MIT Media Lab. See http://scratch.mit.edu.

http://scratch.mit.edu

196 PART 4 Programming the Raspberry Pi

costume when it’s hit, so you should make sure it is using its normal costume at
the start of a new game and that it is visible onscreen.

For its screen position, the alien needs to have a Y coordinate of 150, which is near
the top of the screen. You don’t want to use the full width of the Stage, because it
looks odd when half the alien is off the edge of the Stage. From experimentation,
we have found that the ideal starting X position for our alien is between -180 and
180, but yours might vary, depending on its size.

Drag in the Motion block you used previously to go to a particular X and Y position.
If you click Operators at the top of the Blocks Palette, you can find a block to pick
a random number from 1 to 10. Drag this block into the hole where you would
normally type the X position, and then change the numbers in the random num-
ber block to –180 and 180.

Figure 10-9 shows the initial script for the alien. You can use the green flag to test
whether it works and positions the alien at a random point at the top of the screen
each time.

Detecting When a Sprite
Hits Another Sprite

There’s no point in throwing flaming fireballs at an alien if it won’t even raise an
eyebrow. To make this game fun, you need to make the alien sprite react whenever
it’s hit. Most games involve sprites hitting each other (bats and balls, targets and
weapons, chasing and catching), so collision detection, as it is often called, is a
staple of game design.

You can detect whether the fireball is touching the alien sprite from the fireball,
but it is the alien that must react, so that’s where you need to put your script.

FIGURE 10-9:
The script to reset

the alien at the
start of the game.

Scratch is developed by the Lifelong Kindergarten Group at the MIT
Media Lab. See http://scratch.mit.edu.

http://scratch.mit.edu

CHAPTER 10 Programming an Arcade Game Using Scratch 197

You can use a Sensing block to check whether a sprite is touching another sprite
and then combine that with an If block to trigger a reaction when the alien and the
fireball touch each other.

As with the key press detection for the ship, you should keep checking for the alien
being hit throughout the game, so you should put the If block inside a Forever
block. (See Figure 10-10 in the next section.) Inside the first If block are the
instructions for what to do when the alien is touching the fireball: Change the
alien’s costume to what it looks like when it’s been hit, make it say “Arggh!” in a
speech bubble, play a sound effect, and then hide the alien. After a random delay
of a few seconds, the alien is repositioned at the top of the screen, switched back
to its normal costume, and shown so that the horrible cycle of invasion and
destruction can begin again.

Introducing Variables
Variables are a way of storing information in a program so that you can refer back
to it later or reuse it. You give that piece of information a name, and then you can
refer to it by that name in your script. For example, if you want to keep a running
tally of the score, you use a variable to do that. They’re called variables because
their values can change over time. The score is zero at the start of the game, for
example, but it goes up each time the player zaps an alien out of the sky.

You can tell your script to reset the score to zero, increase it when an alien is hit,
and display the score at the end. Each time, you just refer to it as score, and the
program works out what number that refers to.

To create a variable, click the Variables button above the Blocks Palette. In the
Blocks Palette itself is a button called Make a Variable. Click that, and you will be
asked to enter a name for the variable — in this case, use score.

You’re also asked whether this variable should be for all sprites or only the sprite
you’re working on now. It’s important to get this right. For the score, you want to
make a variable that all your sprites can see. If you have a variable that’s used by
only one sprite, it’s better to create a variable that’s only for that sprite, because
it stops other sprites from being able to interfere with it. When you duplicate a
sprite, all its scripts and variables are duplicated with it too, so you might find that
you have sprites that use variables sharing the same name, but that you want to
use independently of each other. You see an example of this later in this chapter,
when we tell you how to add extra aliens.

198 PART 4 Programming the Raspberry Pi

When you create a variable, new blocks appear in the Blocks Palette that you can
use to change the variable’s value and show or hide it on the Stage. If you want the
score to go up by 50 each time the alien is hit (be generous — it’s not an easy
game!), you drag the Change score by 1 block into your script and edit the number
in it to 50. This block needs to go inside the If bracket that detects whether the
alien touches the fireball, as you can see in Figure 10-10.

In Chapter 9, you see how you can display a sprite’s position and direction on the
Stage. By default, the values of variables are shown on the Stage, too. They appear
in the top left, but you can drag them wherever you want them. This can be useful
for tracing and fixing problems, but it can get in the way of the game. We recom-
mend that you deselect the check box beside your new score variable in the Blocks
Palette to remove the score from the Stage again.

In the finished game, the alien comes down the screen toward the ship, and the
game ends when the alien catches the player’s flying saucer. At this point, you
want to show the score variable on the Stage and use a special Control block that

FIGURE 10-10:
Setting up the

alien and
detecting when

it’s hit.
Scratch is developed by the Lifelong Kindergarten Group at the

MIT Media Lab. See http://scratch.mit.edu.

http://scratch.mit.edu

CHAPTER 10 Programming an Arcade Game Using Scratch 199

stops all scripts so that the program comes to an end. Figure 10-10 also includes
the blocks that do this, which use a similar pattern to the blocks used for detecting
when the alien is hit.

Making Sprites Move Automatically
If you’re wondering why we left the alien’s movement to the end, it’s because it
makes it easier to test the game. You now have a spaceship that the player can
move, a working firing mechanism, and an alien that dies and then regenerates
when shot. You can test all that at your leisure and fix any problems without hav-
ing to keep up with the alien.

The alien moves from left to right and then from right to left, and then back again.
Each time it changes direction, it moves down the screen a little. This is quite
sophisticated behavior, but you can create most of it using the blocks you’ve
already used in this chapter. The art of programming is partly about working out
how you use the different blocks or commands at your disposal to achieve what
you want to.

To start, you need to make a new variable and call it leapsize. When you create
the leapsize variable, you’re asked whether this variable should apply to all
sprites or to this sprite only (the alien). Make sure you click the button to make it
apply only to this sprite. Untick the box beside its name in the Blocks Palette to
hide it on the Stage.

Each time Scratch goes around the alien’s Forever loop, it moves the sprite and
then checks to see whether it’s touching a fireball or the spaceship. The leapsize
variable is used to store how much the alien’s X position should change by each
time the alien moves. If the alien is going right, the leapsize variable is 20, and
if it’s going left, it’s -20.

If you don’t make the leapsize variable for this sprite only, you’ll have problems
when you duplicate the sprite later — because the aliens will use the same
leapsize variable. The leapsize variable is personal to each sprite, and its cor-
rect value depends partly on where a sprite is on the screen. If you have sprites
stuck at the edge of the screen, they are probably interfering with each other’s
variables.

When the alien reaches the edge of the screen, the leapsize variable is changed
so that the alien goes back in the other direction and the alien is moved down the
screen by 20 units.

200 PART 4 Programming the Raspberry Pi

Figure 10-11 shows the movement script you need to insert into your alien’s For-
ever loop as its first blocks. You’ll find it easiest to assemble this set of blocks to
the side of your main script and then drag it into the brackets of the Forever block
in your main script.

The green Operators blocks enable you to build more sophisticated instructions.
They include the capability to do sums, check how one value compares to another
value, and combine different conditions in an If block. They can be hard to under-
stand, because you can often put other blocks inside them.

The If blocks in our alien’s movement script use Operator blocks to compare the
X position with a number so that they can detect when the alien reaches the edge
of the screen. We have found that -200 and 200 represent the minimum and
maximum desirable X positions if you want to avoid the alien slipping partly off
the Stage. The comparison blocks are diamond-shaped, so they slot into the hole
in the If block. You can use one to check whether the X position is more than (>)
200 and another to check whether it is less than (<) -200. (You shouldn’t check for
an exact match with 200 or -200 because the alien starts at a random position, and
its steps increase by 20 units. If it started at X position 170, for example, it would
go to 190 and 210 but never 200.)

You also need to insert a block to set the starting value of leapsize to 20; other-
wise, it will be zero and your alien won’t move. In the Blocks Palette, drag the
block for setting a variable’s value to the start of your script, and edit it to set
leapsize to 20. This block must go inside your alien’s green flag script but out-
side your Forever loop. You can insert it as the first block under the When Green
Flag Clicked block.

FIGURE 10-11:
The alien’s

movement script.
Scratch is developed by the Lifelong

Kindergarten Group at the MIT Media Lab.
See http://scratch.mit.edu.

http://scratch.mit.edu

CHAPTER 10 Programming an Arcade Game Using Scratch 201

Fixing the Final Bug
In many commercial software development projects, most of the time and money
is spent testing programs to make sure they work as expected, and then fixing
them when they don’t. Errors in programs are often called bugs, and even in the
simple game in this chapter, we have a bug that would enable the player to cheat.

If the fireball is moving up the screen and the player presses the Fire key again,
the firing sequence starts over. That means the fireball that was traveling through
the air disappears, and a new one is sent up from the ship. That doesn’t make any
logical sense, and it means players suffer no consequences if they misfire: They
can just fire again and it’s as if the misfired shot never happened.

You can use a variable to keep note of when the fireball is moving up the screen so
that you can stop the ship from allowing a fireball to be fired again at that time.
Variables like this, which are used only to keep track of whether something is
happening, are called flags. The firing flag needs to be able to say whether the
fireball is in play or not, so it has two values. While the fireball is onscreen, give
the firing flag a value of 1. When it isn’t, give the firing flag a value of 0.

Let’s set up the firing flag on the fireball sprite. Start by clicking that sprite in the
Sprite List. Click the Variables button at the top of the Blocks Palette, and click the
option to make a variable. Give it the name firingflag and make sure the button
is selected so that it’s available for all sprites. Untick the box beside its name in
the Blocks Palette to hide it on the Stage.

After you’ve created the variable, you can drag in a block from the Variables
section of the Blocks Palette to set its value to 1 at the start of the fireball’s firing
sequence, and to 0 at the end again. You should also update the fireball’s green
flag script so that it resets the firing flag to 0 at the start of a game, in case a game
ended while the fireball was onscreen. Figure 10-12 shows the final scripts for the
fireball.

You also need to modify the script for the ship so that it fires only if the firingflag
variable is 0 at the time the spacebar is pressed. This is a little bit complicated
because you need to lock together lots of different blocks to express this idea.

Go back to the ship’s script. You need to modify the If block that checks whether
the spacebar is pressed. Figure 10-13, read from top to bottom, shows how to
modify your If block. For simplicity’s sake, we’ve emptied the instructions from
inside the If block and separated it out from the rest of the script.

202 PART 4 Programming the Raspberry Pi

FIGURE 10-12:
The final scripts
for the fireball,

including the
firing flag.

Scratch is developed by the Lifelong Kindergarten Group at the
MIT Media Lab. See http://scratch.mit.edu.

FIGURE 10-13:
How to build the

If block that
checks whether

the ship
should fire.

Scratch is developed by the Lifelong Kindergarten Group at the MIT
Media Lab. See http://scratch.mit.edu.

http://scratch.mit.edu
http://scratch.mit.edu

CHAPTER 10 Programming an Arcade Game Using Scratch 203

Start by dragging the Sensing block for the spacebar out of the If block’s
diamond-shaped hole. In its place, drag the And Operator block. This means the
blocks inside the If block’s bracket are run only if two things are true. The first is
that the spacebar must be pressed, so drag your Sensing block for the spacebar
into the diamond-shaped hole inside the And statement. The second is that we
need to make sure the firingflag is 0. Drag the '=0' Operator block into the And
Operator block on the right, and then drag the firingflag variable into the other
side of the And Operator block.

This should ensure that the ship can fire only one fireball at a time. They might be
aliens, but they still deserve a fair fight!

Adding Scripts to the Stage
As well as sprites, you can add scripts to the Stage. Click the Stage in the Sprite
List and you’ll find that it has its own Scripts Area. It’s a real pain to have to hunt
through your sprites to find where you put a particular block so that you can
change it, so this is a good place to put scripts that affect the whole game and that
aren’t associated with a particular sprite.

For this game, you should add a block to the Stage to set the score to 0 when the
green flag is clicked. Otherwise, the score will increase ever higher with each suc-
cessive game, and it will never be set back to 0 when a new game starts. You can
also add a block to hide the score when the game begins, to tidy up the Stage. The
alien will show it again when the game ends. Figure 10-14 shows what we mean.

Duplicating Sprites
Because of the way the alien is created in this chapter, with the leapsize variable
applying to only that one sprite, you can add more aliens by simply duplicating the
first one. Each alien will have its own leapsize variable that works independently
of the other alien’s variable. Right-click the alien in the Sprite List and choose
Duplicate. Having two aliens adds a nail-biting aspect to the game.

FIGURE 10-14:
The scripts for

the Stage.

204 PART 4 Programming the Raspberry Pi

Playing Your Game
To play your game without the distraction of your scripts and other clutter on the
screen, near the top right of the screen, click the Easel icon that says Switch to
Presentation Mode when you hover over it. The Stage enlarges to fill the screen.
You can use the green flag to play as usual. To close the full-screen view again,
click the arrow in the top left. Figure 10-15 shows the final game, though yours
might look quite different with your own art in it.

Adapting the Game’s Speed
This game runs at a challenging but playable speed on Sean’s Raspberry Pi, and it
runs faster now than it did when the first edition of this book was written. That’s
because a lot of work has been done to improve the speed of Scratch over the past
couple of years. If the game is too challenging on your Raspberry Pi using the lat-
est software, you can slow down the aliens by reducing the size of the leapsize
variable (including after the alien changes direction) or by changing the amount
by which the alien’s Y position decreases when the sprite changes direction. You
can also put a small Wait into the alien’s loop, although that might mean the col-
lision detection is less accurate. The game also slows down if you add more aliens
or other sprites to it, which would be a creative way to adjust the gameplay to take
advantage of the increased speed.

FIGURE 10-15:
Got it! The

final game.

CHAPTER 10 Programming an Arcade Game Using Scratch 205

Taking It Further with Scratch
In this chapter, we cover many fundamental concepts that are used in program-
ming, including loops, operators, and variables. We’ve described how you can use
Scratch to design your own games, where sprites interact with each other and
respond to the player’s control. You can do lots of things to customize this game —
draw your own sprites or change the speed of the aliens each time they’re shot, or
the way they move. But your next real adventure is to use Scratch and the skills
learned in this chapter, perhaps with some of the other blocks we haven’t had the
space to cover, to make your own game.

To find out more about Scratch, and to find games and animations that others
have made, visit the website at http://scratch.mit.edu. You can also share your
own work there and get feedback from other Scratch fans. There is a supportive
forum where you can get help with your scripts at https://scratch.mit.edu
discuss too.

To dig deeper into Scratch and find more programs to build, see Sean’s books
Scratch Programming in Easy Steps and Cool Scratch Projects in Easy Steps.

http://scratch.mit.edu/
https://scratch.mit.edu

CHAPTER 11 Writing Programs in Python 207

Chapter 11

IN THIS CHAPTER

»» Using variables, strings, lists, and
dictionaries

»» Accepting user input and printing to
the screen

»» Using for and while loops

»» Using conditional statements for
decision-making

»» Creating and using your own
functions

Writing Programs
in Python

I
n this chapter, we introduce you to Python, a powerful programming language
that’s widely used commercially.

One of the best ways to learn programming is to study other people’s programs,
so in this chapter, we talk you through two different programs: One is a simple
calculator for multiplication tables; the other is an artificial intelligence simula-
tion that enables you to chat with your Raspberry Pi.

You’ll probably find Python easiest to learn if you create the examples with us, but
you can also download the finished programs from this book’s website. For more
information on accessing the website, see the Introduction.

In a book of this size, it’s not possible to cover everything you can do with Python,
but this chapter gets you started with your first programs. As you work through
these examples, you’ll learn about some of the fundamental principles in
Python and in programming generally, and you’ll gain an understanding of how
Python programs are put together.

208 PART 4 Programming the Raspberry Pi

You’ll be able to draw upon this knowledge when exploring the electronics
programs in Part 5 of this book and when creating an arcade game with Pygame
Zero in Chapter 12.

Some lines of code are too wide for the page. We use a curving arrow at the end of
a line of code to indicate that a line continues. When you see the curving arrow,
just carry on typing and ignore the indent on the next line.

Working with Python
The Raspberry Pi has two versions of Python installed on it: Python 2 and Python 3.
Usually, when software or programming languages are updated, the new version
is compatible with the old version. Python 3 was intentionally designed not to be
compatible, however, so programs written for Python 2 might not work with
Python 3, and vice versa. In this book, we use Python 3 because it’s the newer
version of Python.

Programmers often use something called an integrated development environment
(IDE), which is a set of tools for creating and testing programs. The default Python
IDE is called IDLE, and two versions of it are on your Raspberry Pi — one apiece
for Python 2 and Python 3.

There is also an IDE called Thonny on your Raspberry Pi. This is more user friendly
than IDLE and enables you to create and test Python programs with less switching
between windows. It also has some features built in to help you to write your
programs. We’ll use Thonny in this book, but the Python examples in this book
can be built and run using IDLE if you prefer.

Click the Applications menu, select the Programming category, and then click the
Thonny Python IDE icon to get started.

Entering your first Python commands
When you start Thonny, a window opens with two boxes in it — the window
should look something like Figure 11-1.

The top box is the editor, and we show you how to use that to make programs later
in this chapter. For now, you can ignore it.

CHAPTER 11 Writing Programs in Python 209

The bottom box is the Python shell, and the three arrows are called the prompt,
and indicate that Python is ready for you to enter a command. You can test this by
entering the license() command, which shows you a history of Python, before
displaying the terms and conditions of using it. If you don’t want to get bogged
down in legalese, abort by typing q and then pressing Enter when prompted.

You can increase the size of the shell to make it easier to read the output. Click
and drag the bottom border of the editor box above to adjust the amount of space
dedicated to each of the two boxes. Use the button in the top right of the Thonny
title bar to maximize the window too. (See Chapter 4.)

One of the most basic commands in any programming language is the one that
tells the computer to put some text on the screen. In Python, this command is
print(), and you use it like this:

>>> print("hello world")
hello world
>>>

A simple program like this one that displays a greeting on the screen is often
called a “hello world” program. It’s the starting point for learning most program-
ming languages.

FIGURE 11-1:
The Python

shell, just after
it opens.

Copyright © 2017 Aivar Annamaa.

210 PART 4 Programming the Raspberry Pi

The brackets are used to enclose whatever you want to output to the screen. The
quotes are used to mark the start and end of the text you want to show.

As you type, you might notice that Thonny highlights your text using different
colors. Gray is used to highlight a section that still needs a closing bracket, and
green is used to highlight a section that still needs a closing quote mark. This
highlighting is a feature of Thonny that helps Python beginners avoid common
mistakes. Don’t press Enter yet if your code is still highlighted: You’ve left some-
thing out.

Whatever you type in the quotes after the print() command is “printed” on the
screen, and Python then returns you to the prompt so that you can enter another
command.

Like the Linux shell, Python is case-sensitive — it won’t work if you use capital
letters where you shouldn’t. The command print() must be entered in lowercase;
otherwise, Python tells you you’ve made a name error, because what you entered
hasn’t been defined. You can mess around with the word in quotes as much as you
like, however: This is the text that you want to appear onscreen. Take a look at
these examples:

>>> PRINT("Hello Leo!")
Traceback (most recent call last):
File "<pyshell>", line 1, in <module>
NameError: name 'PRINT' is not defined
>>> Print("Hello Leo!")
Traceback (most recent call last):
File "<pyshell>", line 1, in <module>
NameError: name 'Print' is not defined
>>> print("Hello Leo!")
Hello Leo!

If you make a mistake entering something, you can press Ctrl+C to get back to the
prompt and start over. In particular, if you make a mistake with brackets, Python
might expect you to enter a multiline command and not give you a result or a
prompt when you press Enter. The way out is Ctrl+C.

Using the shell to calculate sums
You can also use the shell to carry out simple calculations. Table 11-1 shows
you the mathematical operators you can use. Just put the sum after the print()
command, like this:

CHAPTER 11 Writing Programs in Python 211

>>> print(5 + 5)
10
>>> print(9 - 4)
5
>>> print(7 * 7)
49
>>> print(10 / 2)
5.0

Don’t use quotes around the sum in the print() command. What would happen if
you did? Python would put on the screen literally whatever characters you asked
it to, like this:

>>> print("5 + 5")
5 + 5

If you want to force a rounding effect to remove any decimal portion from
your answer after dividing a number, you can use the floor division (//) operator,
like this:

>>> print(10 / 3)
3.3333333333333335
>>> print(10 // 3)
3

TABLE 11-1	 Mathematical Operators in Python
Operator Description

+ Addition

– Subtraction

* Multiplication

/ Division

// Division, discarding any decimal portion

% Modulo, which shows the remainder after a division

212 PART 4 Programming the Raspberry Pi

An operator you might not have come across before is modulo: It uses the % sign
and tells you the remainder after a division. Here are some examples:

>>> print(10 % 3)
1
>>> print(10 % 2)
0

You can use the modulo operator to tell whether one number is divisible by another
(the modulo is 0, if so).

These sums are quite basic, but you can enter more advanced sums by stringing
together numbers and operators. As in algebra, you use parentheses to surround
the bits of the sum that belong together and should be carried out first. You still
need to put parentheses around the whole sum for the print() command. For
example:

>>> print((10/3) * 2)
6.666666666666667
>>> print(10 / (3*2))
1.6666666666666667

You can also do mathematics in the shell by entering the sums without a print()
command, but it’s essential to use the command when you’re creating programs,
as you see shortly.

The spaces we’ve used around the mathematical operators are optional. They help
with readability and, in that last example, help to show which parts of the sum
belong together.

Creating the Times Tables Program
In this section, we show you how to make a program that generates multiplication
tables. For example, if the user requests a multiplication table for the number 7,
the program outputs the sequence 7, 14, 21, and so on. The program is only a few
lines long, but it teaches you how to create programs, use variables to store num-
bers, ask the user for information, and create loops — sections of program that
repeat. You build on your understanding of the print() command to do all this,
and if you’ve read Chapters 9 and 10 (on Scratch), some of the ideas should be
familiar to you.

CHAPTER 11 Writing Programs in Python 213

Creating and running your first
Python program
The problem with entering instructions in the shell is that you have to enter them
each time you want to use them. The commands are carried out straightaway, too,
which limits the sophistication of the kinds of things you can do. You can solve
these problems by creating a program, a set of repeatable instructions that you can
save as a file and use again.

To create a program, you use the editor, which is the box above the shell that says
<untitled> on its tab.

When you enter commands in the editor, they’re not carried out straightaway. The
editor acts like a simple text editor; it enables you to enter your list of commands
(or program) and gives you control over when those commands are carried out.

Enter the following commands in the editor, using Enter to start a new line:

simple times table program
print("This program calculates times tables")
print("It is from Raspberry Pi For Dummies")

The window should now look like Figure 11-2. The two print() commands should
look familiar to you, though the first line is new. In Python, anything after a hash
mark (#) on the same line is ignored by the computer. The hash mark indicates a
comment, used to add notes to programs so that you can understand them later.
The very best programs are written in such a way that you can understand them
easily anyway, but it’s a good idea to leave little messages to your future self (or
other people) so that you can quickly understand important aspects of the pro-
gram. We’ve put a 1-line summary at the start of the program here so that if we
open it later, we can immediately see what it does.

To save your program, click the File menu at the top of the Thonny window and
choose Save. You use this same menu to reopen previously saved programs, too.
You can also use the icons on the menu bar: the paper file represents opening a
new file, and the arrow pointing to the filing cabinet drawer represents saving
your file.

The term used for starting a program is running it, so click the Run menu and then
click Run Current Script to see your program in action. Alternatively, the keyboard
shortcut to run the program is F5, or you can click the button in the menu bar that
looks like a triangular “play music” icon. When you run the program, you see
those two lines of text printed out on the screen.

214 PART 4 Programming the Raspberry Pi

Congratulations! You’ve just written your first Python program!

Before you can run your program, you must save it. If you’ve made changes since
the last time it was saved, your program will be automatically saved for you. This
overwrites the previous version of the program. On the File menu is an option to
save a copy of the program or to save it using a different filename (Save As), which
can be useful if there is a chance you might want to revert to an earlier version.

Using variables
The next step in the program is to ask the user which multiplication table to gen-
erate. You store this number in a variable. A variable is a way of storing a number
or a piece of text so that you can refer to it later. (We talk more about variables in
Chapter 10, where it plays a role in our Scratch discussion.)

For example, you might have a variable that stores your bank balance. It might go
up (ka-ching!) or it might go down (sadly, more often), but you can always refer
to it as your bank balance. Variables are one of the basic building blocks of pro-
gramming, and not just in Python.

FIGURE 11-2:
Using the editor.

Copyright © 2017 Aivar Annamaa.

CHAPTER 11 Writing Programs in Python 215

In the example of a bank balance, you can create a variable in Python for your bank
balance called balance by just giving it a value, like this:

balance = 500

(If you want to try this, enter the commands in the shell. This isn’t part of our
Times Tables program.) You can vary the value later (which is why it’s called a
variable) by just giving it a new value:

balance = 250

More often, you’ll want to do sums with the balance, such as taking some money
off the total when money is withdrawn or adding money to it when a deposit is
received. To do that, you change the variable’s value to a number that’s calculated
from its current value. Here’s an example:

balance = balance − 250

This example takes the value of the balance variable, knocks 250 off, and then
puts the answer back into the variable balance. You can display the value of a vari-
able onscreen using the print() command with the variable name:

print(balance)

Programmers often use a shorthand form when they’re adding numbers to, or
subtracting them from, a variable. The shorthand is += for addition and -= for
subtraction. Here’s an example:

balance = 500
balance += 20
print(balance)

If you run this tiny program, or enter these instructions in the shell, Python prints
520 on the screen.

Here’s another example:

balance = 500
balance –= 70
print(balance)

This program subtracts 70 from the initial balance of 500, so it shows 430
onscreen. This shorthand is an elegant way and concise way to express the idea of
changing a variable’s value, and you’ll see it used widely in Python.

216 PART 4 Programming the Raspberry Pi

Accepting user input
Before we go any further, we should clarify one piece of jargon: function.
A function is a set of commands that do a particular job, and lots of them are built
in to Python. You’ve already seen one of them: print(). Later on, you’ll learn how
to make your own, too. (See “Creating your own functions,” later in this chapter.)
To use a function, enter its name, followed by parentheses. If you want to send it
any information to work with, you put that inside the parentheses, as you already
have with print().

When the program runs, we want to ask the user which multiplication table to
generate and then store that number in a variable that we call tablenum. To do
that, we set up the tablenum variable using a built-in function called input(),
which asks the question, waits for the user to enter something, and then puts
whatever is entered into the variable.

Here’s how the input() function works:

tablenum = input("Which multiplication table shall I ↩
generate for you? ")

We’ve inserted a space after the question mark and before the closing quotation
mark, because, otherwise, the cursor would appear right next to the question
mark. That extra space separating the question and the user’s answer makes
things look clear and more professional.

Add the preceding line of code to your program and run it, and you’ll see that the
program displays the question in the shell and then displays a cursor and waits for
you to enter a number. Enter any number to try it out. The program doesn’t do
anything else yet, however, because you haven’t told it to do anything with the
number you enter.

Printing words, variables, and
numbers together
It’s time to make your program do something with its user input. Start by having
the program print a title for the multiplication table the user has requested. This
requires something we haven’t discussed before: the capability to print text and
variables on the same line of text. The print() function can be used to print more
than one thing in a line, if they’re separated by commas, so you can combine text
and the variable tablenum, like this:

print("\nHere is your", tablenum, "times table:")

CHAPTER 11 Writing Programs in Python 217

The first two characters here, \n, have a special meaning. They’re known as an
escape sequence, and they’re used to start a new line. Here they create a bit of space
between the question asking for input and the resulting heading.

Any characters that appear between the quote marks are printed onscreen. If you
put the variable name tablenum between quotes, you’ll see the word tablenum
onscreen instead of the number the user typed.

Now you need to print a line for each entry in the times table, from 1 to 12. As you
know, you can use variables in sums, and you can print sums, so you could display
the times table like this:

print("1 times", tablenum, "is", tablenum)
print("2 times", tablenum, "is", tablenum * 2)
print("3 times", tablenum, "is", tablenum * 3)
print("4 times", tablenum, "is", tablenum * 4)

What happens when you run it? You might be surprised:

1 times 7 is 7
2 times 7 is 77
3 times 7 is 777
4 times 7 is 7777

That’s not the result you were looking for! The problem is that the variable
tablenum is being treated as a string, or a group of letters and other characters,
rather than a number. This is what happens by default with the input() function.
The user could enter anything when prompted for a number, and the program
would give a similar result — simply repeating whatever was entered. (If you
want to read a rap by your Raspberry Pi, try entering yeah.)

To fix that problem, you need to convert the user’s input, stored in tablenum, into
an integer, using the int function. If you cast your mind back to your mathematics
lessons in school, you might remember integers are whole numbers, which have
no decimal portion. The int function can be used to convert numbers into integers,
or to turn a string into an integer. Add the following line after the input() line:

tablenum = int(tablenum)

It works, as you can see in Figure 11-3. But it’s still not really a good solution. For
each line of output, you’re entering a new line in the program and adding a new
sum at the end of it. (Even using the Editor’s Copy and Paste commands (in the Edit
menu), we ran out of patience at Line 4.) What if you want to create a times table
that goes up to 50? Or 500? Or 5,000? Clearly, you need a more scalable solution.

218 PART 4 Programming the Raspberry Pi

Using for loops to repeat
To save you from the slog of entering all those print commands, and to make our
program more flexible, you can use a for loop. This enables you to repeat a section
of program a set number of times, and to increase a variable each time the code
repeats. That’s exactly what you need for the Times Table program: You want to
display one line for each number from 1 to 12, showing the result of multiplying
that number by the figure the user entered.

Here’s how the code looks that makes it happen:

for i in range(1, 13):
 print(i, "times", tablenum, "is", i * tablenum)

This tiny program snippet introduces several new programming concepts. First,
take a look at the range function. It’s used to create a sequence of numbers, and
you give it a number to start at (1) and the end point (13). The end point is never
included in the sequence, so we had to use 13 to make the multiplication tables go
up to 12.

FIGURE 11-3:
The Times Table

program, in
development.

Copyright © 2017 Aivar Annamaa.

CHAPTER 11 Writing Programs in Python 219

If you add a third number between the brackets (parentheses) of the range()
function, it’s used to specify the size of the gap between numbers. To show only
the odd numbers (starting at 1 and adding 2 each time the program repeats), you’d
use range(1, 13, 2). (You don’t need to do that now, but you can experiment
with the ranges later.) The rest of the line containing the range() function sets up
the start of the bit to be repeated and says that the variable i should be given the
next value from the number sequence each time it repeats. The first time around,
i has a value of 1, the first number in the sequence. The second time around, i has
a value of 2, which is the second number in the sequence. This goes all the way up
to the last repetition, when i has a value of 12.

You tell Python which commands should be repeated by indenting them. The
print() command we’ve used has four spaces in front of it, and in Python these
spaces are meaningful. Many languages let you space programs out however you
want, but in Python the spacing is often part of how the computer understands
your intentions. By enforcing the use of indentations like this, Python makes it
easier to read programs because you can see at a glance which bits belong together.
They’re all indented to the same depth.

You can repeat multiple commands by indenting them all:

for i in range(1, 13):
 print(i, "times", tablenum, "is", i * tablenum)
 print("------------------")
print("Hope you found that useful!")

If you can’t get your loop to work, make sure you’ve included the colon at the end
of the for line.

The previous snippet works its way through numbers 1 to 12 and prints the times
table line for each one, followed by a line of dashes to space it out. When it has
finished all 12 lines, it prints Hope you found that useful! just once because
that command isn’t indented with the others in the loop.

Pulling it all together, the final program looks like this:

simple times table program

print("This program calculates times tables")
print("It is from Raspberry Pi For Dummies")

220 PART 4 Programming the Raspberry Pi

tablenum = input("\nWhich multiplication table shall I↩
generate for you? ")

tablenum = int(tablenum)

print("\nHere is your", tablenum, "times table:\n")

for i in range(1, 13):
 print(i, "times", tablenum, "is", i * tablenum)
 print("------------------")

print("\nHope you found that useful!")

Although an indentation at the start of a line has special meaning, you can use
blank lines to help lay out your program however you want. We’ve used some blank
lines here to make it easier to see which bits of program go together. We’ve also
added some extra \n escape sequences in the print and input commands to add
blank lines in the screen output.

Many people find that they learn best from actually typing in programs, but you
can download this program from the book’s website to save time or if you can’t
get the program to work. See the Introduction for more on accessing the website.

Figure 11-4 shows what the screen looks like when the program runs. If you want
to experiment with the program, there are a few things you can try. How about
making it go up to 20, or making it show only the odd lines (1, 3, 5) in the times
table? You can make both these changes by playing with the range() function
used in the loop. You can customize the screen output, too, to provide more in-
depth instructions, or to strip them out entirely. Perhaps you can use keyboard
characters such as dashes and bars to put your multiplication table into a box.

If the Run button on the menu bar is faded out, check whether your program is
already running before attempting to run it again. You can stop a running pro-
gram using the red Stop button on the menu bar.

If you get unexpected results, you can open the Variables pane in Thonny to see
what’s stored in each of your variables. This can be extremely helpful when track-
ing down errors in programs, especially as the programs you create become longer
and more sophisticated. Open the View menu and select Variables to reveal the
pane. Use the same process to hide the pane again.

CHAPTER 11 Writing Programs in Python 221

Creating the Chatbot Program
Do you ever find yourself talking to your computer? Wouldn’t it be great if it could
chat back? The next program in this chapter, Chatbot, enables you to have a con-
versation with your computer onscreen. Using a few tricks, we make the program
appear to be intelligent — and able to learn from what you type in. It’s not actual
artificial intelligence, of course — that discipline of computer science is highly
evolved, and this is a simple demo program. Chatbot can throw out some sur-
prises, however, and you can expand its vocabulary to make it smarter. For a
sneak preview of what Chatbot can do, look ahead at Figure 11-5, at the end of this
chapter.

As you build this Chatbot program, you’ll deepen your understanding of Python.
In particular, you’ll learn about conditional statements, lists, dictionaries, and
random choices.

The program works like this:

1.	 Chatbot introduces itself and then invites the user to respond.

2.	 The user types something in.

FIGURE 11-4:
The finished

multiplication
table. Now, what

was 8 times
7 again?

Copyright © 2017 Aivar Annamaa.

222 PART 4 Programming the Raspberry Pi

3.	 If the user types in bye, the computer replies with a message to say thanks for
chatting and then finishes the program.

4.	 The program has stock responses for certain words, so it checks to see
whether it recognizes any of the words the user has entered. If it does, it uses
one of the appropriate stock responses. If more than one stock response
applies, the computer chooses one at random.

5.	 If none of the words is recognized, the program chooses a random phrase for
its reply. To stop the random phrases from repeating, it replaces the phrase
that’s used with what the user typed in. Over time, the program learns from
the user and starts to talk like her.

6.	 The program keeps chatting with the user until the user types in bye.

Now that you know the final goal, take your first steps toward it by setting up the
random responses.

You can download the finished program from this book’s website. See the Intro-
duction for more on accessing the website.

Introducing lists
There are several different ways you can organize information in Python, and one
of the most fundamental is called a list. We’ll use lists to store the computer’s
random responses in the Chatbot program.

The following code shows you how to create a list that has the name shopping_
list. You can enter this code in the shell or create a program in the editor so that
you can more easily edit and refine it. To start a new program in the editor, use the
File menu and select New. Your new file opens in a new tab in the editor. If you
create a program, make sure you run it, so that the shopping list is set up.

If you enter the instructions in the shell, you can press Enter at the end of each
line to go to a new line. Python will know you’re not finished if you haven’t given
it the final bracket yet.

shopping_list = ["eggs",
 "bacon",
 "tomatoes",
 "bread",
 "tin of beans",
 "milk"]

CHAPTER 11 Writing Programs in Python 223

It’s similar to the way you create a variable. After the list name comes an equal
sign, and then square brackets that contain the list. Each item in the list is sepa-
rated by a comma. Because each item is a piece of text (or a string), you put quotes
around it so that Python knows where it starts and ends.

Python doesn’t mind whether you use double quotes or single quotes around the
strings in your list, but we recommend that you use double quotes. That’s because
strings often include apostrophes. If you’re using a single quote mark (the same
symbol as an apostrophe) to close the string, Python thinks it has reached the end
of the string when it hits the apostrophe. If you do need to use an apostrophe
inside a string that’s marked at each end with a single quote, put a slash (\) in
front of the apostrophe (for example, 'Mum\'s custard'). It’s easier to just use
double quotes for strings.

You can put all list items on one line, but the program is easier to read if you put
each item on a new line. Using the editor, if you press Enter at the end of a list
item, it indents the next line to the same depth as the item above it, so your list
looks neat, as in the previous example.

When you’re entering lists, pay particular attention to the commas; otherwise
your program might not work: One should appear after every list item except for
the last one. This is another reason it’s a good idea to put list items on separate
lines: You can more easily see at a glance when a comma is missing. Your program
is color-coded, so the black commas stand out against the strings, which makes it
easier to spot errors.

You can print a list to the screen in the same way you print a variable to the screen.
Try this in the shell:

>>> print(shopping_list)
['eggs', 'bacon', 'tomatoes', 'bread', 'tin of beans',↩

'milk']

Python uses single quotes around the strings in your list, irrespective of the kind
of quotes you used to set it up. To find out how many items are in a list, use the
len() function, like this:

>>> print(len(shopping_list))
6

224 PART 4 Programming the Raspberry Pi

What if you’ve forgotten something? You can easily add items to the end of the list
by using the append() function. Here’s an example:

>>> print(shopping_list)
['eggs', 'bacon', 'tomatoes', 'bread', 'tin of beans',↩

'milk']
>>> shopping_list.append("fish")
>>> print(shopping_list)
['eggs', 'bacon', 'tomatoes', 'bread', 'tin of beans',↩

'milk', 'fish']

Each item in the list has a number, starting at 0, which means the second item is
number 1 and the third item is number 2, and so on. You can refer to a particular
item by putting the item number (known as the item’s index) in square
brackets:

>>> print(shopping_list[3])
bread

That gives you the fourth item in the list (remember?) because the first item has
the index 0. You can also change items in the list by using their index numbers.
For example, if you want to change the fourth item from bread to a baguette, you
would use

>>> shopping_list[3] = "baguette"

For Chatbot, that’s everything you need to know about lists, but they’re an incred-
ibly flexible way of organizing information and there’s much more you can do
with one. Table 11-2 provides a cheat sheet covering some of the other functions,
if you want to experiment.

TABLE 11-2	 Additional List Operations
Action Code to Use Notes

Sort a list. shopping_list.sort() Sorts alphabetically, or from low to high in lists of numbers.

Sort a list in
reverse order.

shopping_list.
sort(reverse=True)

Sorts in reverse alphabetical order, or from high to low in
lists of numbers.

Delete a list
item.

del shopping_list[2] Deletes the list item with the index number specified. List
items after it move up the list, so there is no gap.

Remove an
item from
the list.

if "eggs" in ↩
shopping_list:

 shopping_list.↩
remove("eggs")

Deletes the list item that matches the item given. Results in
an error if the item isn’t in the list, so use the if command
to avoid this.

CHAPTER 11 Writing Programs in Python 225

For other projects you work on, it’s worth knowing that lists can include numbers
as well as strings, and can even include a mixture of strings and numbers.

For example, here’s a list of answers to quiz questions:

my_quiz_answers = ["Isambard Kingdom Brunel", ↩
	 1945, 2012, "Suffragettes", ↩
	 7500, "Danny Boyle"]

A list can have any items in any order. Python doesn’t understand what the list
contents mean or how they’re organized. To make sense of it, you need to write a
program that interprets the list.

Using lists to make a random chat program
After you’ve mastered the list structure, you can create a simple chat program. For
this first version, you take some input from the user, display a random response,
and then replace that random response with whatever the user types in.

Here’s the program that does that. It introduces a few new ideas, but we talk you
through them all shortly:

Chatbot – random-only version
Example program from Raspberry Pi For Dummies

import random

random_replies = ["Oh really?",
 "Are you sure about that?",
 "Hmmmmm.",
 "Interesting...",
 "I'm not sure I agree with that...",
 "Definitely!",
 "Maybe!",
 "So what are you saying, exactly?",
 "Meaning what?",
 "You're probably right.",
 "Rubbish! Absolute nonsense!",
 "Anyway, what are your plans for tomorrow?",
 "I was just thinking exactly the same.",
 "That seems to be a popular viewpoint.",
 "A lot of people have been telling me that.",

226 PART 4 Programming the Raspberry Pi

 "Wonderful!",
 "That could be a bit embarrassing!",
 "Do you really think so?",
 "Indeed...",
 "My point exactly!",
 "Perhaps..."]

print("What's on your mind?")
user_says = input("Talk to me: ")
reply_chosen = random.randint(1, len(random_replies)) - 1
print(random_replies[reply_chosen])
random_replies[reply_chosen] = user_says

The first two lines are comments — quick reminders of what the program does.

Python has been designed to be easily extended, so the next line, import random,
tells Python you want to use the extension for generating random numbers.
Extensions like this one are called modules, and you use several different modules
as you play with the projects in this book. The modules provide prewritten func-
tions you can reuse in your programs, so they simplify and accelerate your own
programming. The random module includes functions for generating random
numbers and will be essential when you want to pick a random response for the
computer to display.

The next part of the program creates a list called random_replies, which contains
statements the computer can output in response to whatever the user enters. You
can personalize this by changing the responses or by adding more. The more
responses there are, the more effective the illusion of intelligence is, but for this
demo, we’ve kept the list fairly short. It doesn’t matter what order the responses
are in, but keep an eye on those commas at the end of each line. After printing a
short line that invites the user to share with the computer what’s on her mind, you
request input from her using the input() function. Whatever the user enters is
stored in a variable called user_says. The next line picks an index number for the
random response. To understand how this works, it helps to break it down. First,
you need to know how to generate random numbers. You give the random.
randint() function two integer numbers to work with (or arguments). The two
numbers specify how big you want your random number to be: The first figure is
the lowest possible value, and the second figure is the highest possible number. For
example, if you want to display a random number between 1 and 10, you would use

print(random.randint(1, 10))

You can try this multiple times to confirm that it works. Sometimes the numbers
repeat, but that’s the nature of random numbers. It’s like rolling the dice in
Monopoly: Sometimes you’re stuck in jail, and sometimes you throw doubles.

CHAPTER 11 Writing Programs in Python 227

The range of numbers you want to use for the random number is the size of the
random_replies list. You can use the len() function to see what this is, so you
can add things to your list or remove them without having to worry about updat-
ing this part of your program. In the random.randint() statement, you replace
the second number with the length of the list:

print(random.randint(1, len(random_replies)))

You don’t want to just print the result onscreen, however, so you store the number
chosen in a variable called reply_chosen.

There’s one, final twist: Because list indexes start counting at 0, you need to
subtract 1 from the random number. Otherwise, the program would never choose
the first list item, and would try instead to choose one at the end of the list that
isn’t there. Here’s the final command to use:

reply_chosen = random.randint(1, len(random_replies)) - 1

The final two lines print the randomly selected list item and then replace that list
item with whatever the user entered:

print(random_replies[reply_chosen])
random_replies[reply_chosen] = user_says

You can run the program to test it, but one thing is missing. At the moment, it gives
you only one turn before finishing. To fix that, you need to master the while loop.

Adding a while loop
Previously, we showed you how to use the for loop to repeat a piece of code a set
number of times. For this program, we want the computer to keep the conversation
going until the user types in bye, so you need to use something called a while loop.

The section we want the computer to repeat begins with the line that requests the
user’s input and finishes where the program currently ends, with the user’s entry
going into the list of random replies.

To repeat this section, you add two lines at the top of the section (see the bold
lines in the following code) and then indent the rest of the section by adding four
spaces at the start of each line so that Python knows which commands to repeat:

user_says = ""
while user_says != "bye":
 user_says = input("Talk to me: ")

228 PART 4 Programming the Raspberry Pi

 reply_chosen = random.randint(1, len(random_replies)) - 1
 print(random_replies[reply_chosen])
 random_replies[reply_chosen] = user_says

The while command tells Python to repeat the indented block below as long as the
second half of the while command is true. The != operator means not equal to. In
our Chatbot program, the second half of the while command is user_says !=
"bye", which means the block below should keep repeating as long as the contents
of the variable user_says are not equal to bye. The while command ends with a
colon, so if you see an error message, be sure that you’ve included it.

To use the user_says variable in the while command, you have to set it up first
because it triggers an error if you try to use a variable that doesn’t exist yet in a
while command. Immediately before the while command, you create the variable
and give it a blank value (user_says = "") just to get the program past the while
command and into the loop. Almost immediately, it changes when the user types
something in — but that doesn’t matter.

If you run the program now, you should find that the conversation rambles on
until you type in bye. Remember that you can improve the quality of the experi-
ence by adding more random sayings in the program’s list of random replies.

Using a loop to force a reply from the user
Another trick you can perform with the while loop is to make sure that the user
doesn’t press Enter without typing anything in, either accidentally or deliberately.
That protects the extremely high quality of the random replies list (ahem!) by
preventing empty entries from being added to it. In more complex programs, a
quality-control check like this one can be essential for preventing errors.

You can put loops inside loops, which is called nesting them. In this case, we’ll
have a small loop that keeps asking for input until it receives it, running inside
the bigger loop that repeats the whole process of the conversation until the user
enters bye.

To see whether something is equal to something else, use two equal signs together
(==). This can be confusing to new programmers, but a single equal sign is only
used to assign a value to something, such as when putting a value into a variable.
When you want to compare the value of two things to see whether they’re the
same, you use two equal signs together. In English, we use the same word, but
they’re completely different ideas when you think about it, and Python certainly
considers them as separate and unique concepts.

The following code puts a while loop around the input so that it repeats as long as
the user_says variable is empty. If the user doesn’t type anything in and just

CHAPTER 11 Writing Programs in Python 229

presses Enter, he is prompted to enter something again — and again, and again,
if necessary:

user_says = ""
while user_says != "bye":
 user_says = ""
 while user_says == "":
 user_says = input("Talk to me: ")
 reply_chosen = random.randint(1, len(random_replies)) - 1
 print(random_replies[reply_chosen])
 random_replies[reply_chosen] = user_says

Notice how we indented the input command, so that Python knows what should
be repeated while the user_says string is empty.

You might read this program code and wonder why we’ve set up user_says as an
empty variable twice. (Notice the new line that now appears between the while
commands.) The first time is necessary because the while command can’t refer-
ence a variable that doesn’t exist yet. The second time is a special case: If you
don’t reset the value to nothing, the second time around the loop user_says still
contains what the user typed in the first time. The way a while loop works means
that the block underneath, the input() function, isn’t run because user_says
already has something in it. That code only runs if user_says is empty. This is a
nice example of a logic error. The program works in that Python doesn’t complain
or crash. The program chatters away to itself, however, not letting you get a word
in, so it doesn’t work as intended.

Using dictionaries
Besides lists, there is another data structure that we use in our program, called a
dictionary. To access an item in a list, you use an index number, which represents
its position in the list. Dictionaries are different because you access an item using
its key — a string or a number that uniquely identifies it. The idea is used a lot in
computing. Your bank account number, for example, belongs to you and only you,
so it’s a unique key for your data. Unlike with a list, you don’t need to know where
that item is in the dictionary to be able to use it — you just need to know the key
that identifies it.

Dictionaries use curly braces, and contain pairs of items, which are the keys and
the values for those keys. If that sounds confusing, here’s an example that won’t
seem too different from the paper dictionary on your bookshelf:

chat_dict = {"happy": "I'm happy today too!",
 "sad": "Tell me all about it.",
 "raspberry": "Oh yum! I love raspberries!",

230 PART 4 Programming the Raspberry Pi

 "computer": "Computers will take over the ↩
world! You're already talking to one",

 "music": "Have you heard the latest ↩
Depeche Mode album?",

 "art": "But what is art really, anyway?",
 "joke": "I only know this joke: How do you↩

kill a circus? Go for the juggler.",
 "python": "I hate snakes!",
 "stupid": "Who are you calling stupid, ↩

jelly brain?",
 "weather": "I wonder if the sun will shine↩

on Saturday?",
 "you": "Leave me out of this!",
 "certain": "How can you be so confident?",
 "talk": "You're all talk! Do something!",
 "think": "You can overthink these things, ↩

though.",
 "hello": "Why, hello to you too, buddy!",
 "wearing": "I don't wear clothes. I don't ↩

even come with a case."}

In this example, we’ve given the dictionary the name chat_dict, but you can call it
anything. You can have more than one dictionary in your program too, if you give
them different names.

In this dictionary, we look up a word to see what the reply to it should be. For
example, if someone uses the word happy, the computer should reply, “I’m happy
today too!” If you look up the word hello, you can see that the computer’s response
should be, “Why, hello to you too, buddy!” Each dictionary entry is made up of the
key and its value, separated by a colon; for example, the key happy and its value,
which is the computer’s response to that word. The entries are separated from
each other with a comma.

The punctuation here is quite fiddly, so take care; otherwise your program might
not work. The text strings have quotes around them, but the colon between the
keys and their values must be outside the quotes. Each pair needs to end with a
comma except the last one, and we use curly braces to enclose everything. (You
can usually find curly braces on your keyboard on the same key as the square
brackets.)

Dictionaries only work if every key is unique. You can’t have two entries in there
for the word happy, for example; otherwise, Python wouldn’t know which one to
choose.

CHAPTER 11 Writing Programs in Python 231

Dictionaries only work one way around: You can’t use the value to look up the key.
One way to remember this is to think of a real paper dictionary. It would be almost
impossible to trace a particular definition back to a word because you wouldn’t
know on which page you could find the definition. Finding definitions from the
words is simple, though.

Here’s how to print a value from the dictionary:

>>> print(chat_dict["hello"])
Why, hello to you too, buddy!
>>> print(chat_dict["weather"])
I wonder if the sun will shine on Saturday?

If you try to use a key that doesn’t exist in the dictionary, you trigger an error.
Later in this chapter (see “Creating the dictionary look-up function”), we show
you how to test whether a key is in the dictionary.

In the real program, we’ve extended the vocabulary to cover some other words,
too, and this is where you can stamp your identity on the program most clearly.
The words you put into the vocabulary, and the responses you give to go with
them, are what gives the chat character its intelligence and personality. After
you’ve got the demo working, it’s worth spending time refining the language
here. When you try playing with the finished program, remember the kinds of
words you type in, and the kinds of things you want to chat about, and use that
understanding to shape your Chatbot’s vocabulary.

You can use the responses you give here to steer the conversation. We’ve included
a joke for when users ask the computer to tell them one (as they inevitably do).
Our full definition list also recognizes the word funny because that is reasonably
likely to come up in the user’s response to the joke. (Possibly in the context of
“not very,” but heigh-ho!)

Creating your own functions
One of the things you can do in Python, and many other programming languages,
is parcel up a set of instructions into a function. A function can receive some infor-
mation from the rest of the program (one or more arguments), work on it, and
then send back a result. In our Chatbot program, we use a function to look up
whether any words that are entered are in the dictionary of known words and
responses.

Before you can use a function, you have to define it, which you do using a def
statement. To tell Python which instructions belong in the function, you indent

232 PART 4 Programming the Raspberry Pi

them underneath the def statement. Here’s a program to familiarize you with the
idea of functions and how we’ll be using it:

Example of functions

def dictionary_check(message):
 print("I will look in the dictionary for", message)
 return "hello"

dictionary_check("blue")

result = dictionary_check("red")
print("Reply is:", result)

We talk you through that program in a moment, but here’s a glimpse of what is
shown onscreen when you run it:

I will look in the dictionary for blue
I will look in the dictionary for red
Reply is: hello

This is a short but powerful program because it tells you nearly everything you
need to know about functions. As you can see, we defined the function at the start
of the program, with this line:

def dictionary_check(message):

This sets up a function with the name dictionary_check() but also sets it up to
receive a piece of information from the rest of the program and to put it into the
variable called message. The next line prints out a statement saying, “I will look
in the dictionary for” followed by the contents of the variable message. That
means it prints out whatever information is sent to the function. The next line
starting with return exits the function and sends a message back, which in the
example is hello.

Functions are self-contained units, so the variable message can’t be used by the
rest of the program. (It’s known as a local variable.) When you’re writing your own
functions, you should give them a job to do and then use return to send the result
back to the rest of the program.

Functions aren’t run until you specifically tell the program to run them, so when
Python sees the function definition, it just remembers it for when it needs it later.
That time comes shortly afterward, when you issue the command:

dictionary_check("blue")

CHAPTER 11 Writing Programs in Python 233

This runs the dictionary_check() function and sends it the text “blue” to work
with. When the function starts, Python puts “blue” into the function’s variable
called message and then prints onscreen the text that contains it. The text “hello”
is sent back by the function, but you don’t have a way to pick up that message.

The next code snippet shows you how you can pick up information coming back
from a function. Instead of just running the function, you set a variable to be equal
to its output, like this:

result = dictionary_check("red")
print("Reply is:", result)

When the text “hello” is sent back by the function, it goes into the variable result,
and the main program can then print it on the screen.

This simple example illustrates a few reasons why functions are a brilliant idea
and have become fundamental building blocks in many programming languages:

»» Functions enable you to reuse parts of your program. For example, we’ve
used our function to display two different messages here, just by sending the
function a different argument each time. When you use more sophisticated
programs, being able to reuse parts of your program makes your program
shorter, simpler, and faster to write.

»» Functions make understanding the program easier because they give a
name and a structure to a set of instructions. Whenever someone sees
dictionary_check() in our program, she can make a good guess at what’s
going on. So far, our programs haven’t been particularly complex, but as you work
on bigger projects, you’ll find that readability becomes increasingly important.

»» Functions make it easier to maintain and update your program. You can
easily find which bits of the program to change, and all the changes you need
to make will be in the same part of the program. If you think of a better way to
do a dictionary look-up later, you can just modify the function, without
disturbing the rest of the program.

»» Functions make testing and development easier. We’ve built an experi-
mental program that takes some text and sends back a message. That’s what
the finished dictionary_check() function will do, except that this one just
sends the same message back every time, and the finished one will send
different messages back depending on what the user said. You could build the
rest of the program around this simple test function to ensure that it works,
and then go back and finish the dictionary_check() function.

234 PART 4 Programming the Raspberry Pi

Creating the dictionary look-up function
Now that you know how to create a function, we’re going to tell you how to build
a function that takes the user’s text and checks for any relevant responses. To do
this, you’ll use what you already know about dictionaries and functions, and we’ll
add some new ideas relating to loops, strings, and decision-making.

The function is only 12 lines long, but it’s quite sophisticated. It needs to take
what the user entered and check each word in it to see whether the dictionary has
a response for that word. The user might use more than one word that’s in the
dictionary. For example, if the user says “I love pop music,” both the words love
and music might be in the dictionary. We’ll deal with that eventuality by showing
one of the possible responses, chosen at random. Alternatively, the user might use
no words that the program recognizes, so you need to design the function to cope
with that situation, too.

Before we start to break it down, here’s the function in its entirety so that you can
see how all the bits fit together:

def dictionary_check(message):
 message = message.lower()
 user_words = message.split()
 smart_replies = []
 for each_word in user_words:
 if each_word in chat_dict:
 answer = chat_dict[each_word]
 smart_replies.append(answer)
 if smart_replies:
 reply_chosen = random.randint (1, len(smart_replies)) - 1
 return smart_replies[reply_chosen]
 else:
 return ""

The function definition is the same as we used earlier in our function example.
When we use it, we send it what the user has typed in, so this goes into the vari-
able called message.

The next two lines introduce something new: string methods. These are like built-
in functions that are attached to a string and transform it in some way. The
lower() method converts a string into lowercase. This is important because if a
user uses capital or mixed-case letters, they won’t match the lowercase words
used in the dictionary keys. As far as Python is concerned, hello and Hello aren’t
the same thing. The split() method takes a string and splits it into a list of its
constituent words. The first two lines in the function, then, turn the contents of

CHAPTER 11 Writing Programs in Python 235

the message variable into a lowercase version of itself and then create a new list of
the words the user entered, called user_words.

We store possible replies to the user in a list called smart_replies, so we create
that as an empty list. The next step is to set up a loop that goes through the list of
words that the user entered. When you used a for loop previously, you worked
your way through a sequence of numbers. This time, you work your way through
a list of words. Each time around the loop, the variable each_word contains the
next item from the list of words the user entered.

The next line introduces a new idea, the conditional statement, which starts with
if. A conditional statement is used to enable the computer to make a decision about
whether it should carry out certain instructions, and you’ll come across one in
almost every program you write. Here, it’s being used to prevent the program from
stopping and reporting an error if you try to use a key that isn’t in the dictionary:

if each_word in chat_dict:
 answer = chat_dict[each_word]
 smart_replies.append(answer)

The each_word variable contains one of the words the user entered, so the if
statement checks to see whether that word is in the dictionary and carries out the
next two instructions only if they are. Notice how indenting (by a further four
spaces) is used here to show which commands belong together — in this case,
which commands are controlled by the if statement. If the word is in the diction-
ary, the program looks it up and adds the resulting response to the smart_replies
list, using append().

This process is repeated for every word the user entered, but that’s all that hap-
pens in the loop. The next line is not indented below the for statement, so it’s not
controlled by it.

When the program comes out of the loop, it checks to see whether the list smart_
replies has anything in it, by using simply

if smart_replies:

In English, this means “if smart_replies has content in it.” The commands
indented underneath are carried out only if some entries were added to the smart_
replies list, which only happens if one or more of the words the user entered
were found in the dictionary. In that event, you want to return one of the items in
the smart_replies list to the main program, so the program picks one at random
from the list and uses return to send it back to the main program and exit the
function.

236 PART 4 Programming the Raspberry Pi

After that, you use the else command. In plain English, this means otherwise, and
it’s joined to the if command, so it’s lined up with it. If smart_replies has con-
tent in it, the commands are carried out to send back an appropriate reply, chosen
at random. If none of the user’s words was found in the dictionary and so smart_
replies is empty, the instructions indented underneath the else command are
carried out instead. The function sends an empty message ("") back to the main
program and exits the function.

Creating the main conversation loop
We previously showed you how to create a version of Chatbot that could only pro-
vide random responses. Now you need to change the main conversation loop so
that it checks for words in the dictionary and shows an intelligent response if
they’re found; and if not, shows a random response and replaces it with what the
user entered. This final version brings together all the ideas we’ve helped you
explore as you’ve built this program.

After the command that accepts the user’s input, you put the following:

smart_response = dictionary_check(user_says)
if smart_response:
 print(smart_response)
else:
 reply_chosen = random.randint (1,len(random_replies)) - 1
 print(random_replies[reply_chosen])
 random_replies[reply_chosen] = user_says

This starts by using the dictionary_check() function (or calling it, to use the
jargon), sending it whatever the user typed in and putting the response from the
function into the variable smart_response.

The next line checks to see whether smart_response has any content in it (or is
not empty) and, if so, prints it onscreen. Otherwise, the instructions under the
else command are used to show a random response from the list of random
replies, and to replace it with what the user entered. Those last three instructions
were in the previous version of your program, but they need indenting now, by
adding four spaces at the start of each line.

Final thoughts on Chatbot
That completes the Chatbot program. Along the way, you’ve learned how to use
variables, lists, loops, random choices, dictionaries, conditional statements (if
and else), and functions. You’ve learned how to take input from the user and

CHAPTER 11 Writing Programs in Python 237

print responses onscreen, and you’ve created the skeleton of a chat program that
you can flesh out with your own personality.

Figure 11-5 shows a sample run of the program, albeit a fairly contrived one to
show the program at its best, using lots of words it knows. There are a few bits
where the computer clearly hasn’t understood, but this can be improved by
extending the vocabulary. As you expand the vocabulary in the dictionary and
include more random replies in the list, you’ll find that the program can often
surprise you with its apparent intelligence. You’re never alone with a Raspberry Pi!

The final Chatbot program
For your reference, here’s a final listing of the Chatbot program, ready for you to
customize with your own responses:

Chatbot
Example program from Raspberry Pi For Dummies
import random

Following list is heavily abbreviated
to save space in the book. Should be 20+ entries.

FIGURE 11-5:
Having a

conversation with
Chatbot.

Copyright © 2017 Aivar Annamaa.

238 PART 4 Programming the Raspberry Pi

random_replies = ["Oh really?",
 "Are you sure about that?",
 "Perhaps..."]

Following dictionary is also heavily abbreviated
chat_dict = {"happy": "I'm happy today too!",
 "sad": "Cheer up, mate!",
"computer": "Computers will take over the world! ↩

You're already talking to one"}

def dictionary_check(message):
 message = message.lower()
 user_words = message.split()
 smart_replies = []
 for each_word in user_words:
 if each_word in chat_dict:
 answer = chat_dict[each_word]
 smart_replies.append(answer)
 if smart_replies:
 reply_chosen = random.randint (1, len(smart_replies)) - 1
 return smart_replies[reply_chosen]
 else:
 return ""

print("What would you like to talk about today?")

user_says = ""
while user_says != "bye":
 user_says = ""
 while user_says == "":
 user_says = input("Talk to me: ")

 smart_response = dictionary_check(user_says)
 if smart_response:
 print(smart_response)
 else:
 reply_chosen = random.randint (1, len(random_replies)) - 1
 print(random_replies[reply_chosen])
 random_replies[reply_chosen] = user_says

print("Goodbye. Thanks for chatting today. Drop in again soon!")

CHAPTER 12 Creating a Game with Python and Pygame Zero 239

Chapter 12

IN THIS CHAPTER

»» Using Pygame Zero to display images
and play sounds

»» Making a simple click-the-clouds
game

»» Using a list to manage multiple
images

»» Animating your images

»» Adding a countdown timer

Creating a Game with
Python and Pygame Zero

Developing games is one of the best ways to explore programming. It gives
you rapid, visual results, so you can easily see what’s going on and you get
to have some fun playing your creation at the end. Game development also

makes it easy to think of fresh coding challenges to solve, as you dream up new
features to add.

One of the most popular tools for making games in Python is called Pygame: It’s
a set of functions that makes it easier to manage your images and sounds, among
other things. Pygame has a few complexities, though, and can be difficult to get
started with.

That inspired Daniel Pope to make Pygame Zero, a library of routines that simpli-
fies Pygame so that you can get started more easily. It also includes a number of
built-in functions that manage animations, loops, and images. Pygame Zero was
designed for education, but is great fun for anyone to tinker with.

Pygame Zero is also available for Mac and Windows, so the games you make on
the Raspberry Pi can be enjoyed by your friends even if they have different
computers.

240 PART 4 Programming the Raspberry Pi

In this chapter, we show you how to make a game called Cloudbusting, where you
have to “pop” the clouds as they drift up the screen. You have ten seconds to click
as many as you can. The game works on the Model B+, but is a noticeably smoother
experience on the Raspberry Pi 2 or 3.

Collecting Your Sounds and Images
To follow the examples in this chapter, you need the sounds and images described
in the following list. You can either create your own or download our examples.
(See the Introduction for more on downloading our supporting files.) This simple
game works equally well whatever images you use.

Here are the assets needed for the Cloudbusting game:

»» Six images, named target0.png to target5.png: In our game, we use
colored clouds, but you could use anything. Our images measure about
100 pixels by 90 pixels, and you should aim for a similar size, give or take 10 or
20 pixels in either direction. (We’ve noticed that it adds a sense of depth to the
game if a couple of the images are a slightly different size from the rest, so
you may want to try that out.) Use a transparent background so that your
images can overlap without their backgrounds blocking out the images
behind them. The PNG format is recommended, but Pygame Zero can also
use GIF and JPEG images (although JPEGs don’t support transparency). The
simplest way to make your own images is to use the built-in Paint Editor in
Scratch (refer to Chapter 10) and then right-click a costume in the Costumes
Area and choose to save it from the menu that appears. (This is known as
exporting in Scratch 1.4 and saving to a local file in Scratch 2.0.)

»» One image named pop.png: This image is shown when the target is hit. Ours
is a cartoon-style spiky bubble with "Pop!" written in it. We made this image in
Scratch too.

»» Two sound effects — one for the popping of a target and the other to
play when the game ends: We’re using a sound effect we found online called
blop.ogg for when a cloud bursts, and a tune Sean made on the iPad called
whoops.ogg for when the game ends.

The .ogg format is a sound format often used in open source software. You
can also use a .wav file in Pygame Zero. If you’re using sound effects different
from ours, change the filenames in the programs to your choices.

CHAPTER 12 Creating a Game with Python and Pygame Zero 241

As always, you can download the code for this chapter, too, if you have any diffi-
culties getting it working or you don’t want to type the examples yourself. See the
Introduction for instructions on downloading the supporting materials. You can
also see the full listing for this game at the end of this chapter.

Setting Up Your Folders
Pygame Zero lays down strict rules about what your files can be called and where
they should be saved. Filenames must be in all lowercase, which helps to ensure
that they work across different computers. Your images must be stored in a folder
called images, and your sounds in a folder called sounds.

Let’s set up those folders now. Follow these steps:

1.	 In the desktop environment, click the taskbar’s File Manager icon.

For more on the taskbar and the File Manager, see Chapter 4.

2.	 In the pi folder, right-click, and then choose Create New ➪   Folder from
the contextual menu that appears.

3.	 Name your folder images.

4.	 Repeat Step 2, but this time name your new folder sounds.

5.	 Copy your image files into the images folder, and your sounds into the
sounds folder.

Remember that when you download files with your web browser, they will be
saved in your Downloads folder, which is also in your pi folder. You may need
to extract them from a .zip file, by double-clicking the .zip file and then
clicking the Extract Files button when Xarchiver opens. After extracting the files,
you can copy them to the images and sounds folders. For guidance on using
the File Manager to copy and move files, see Chapter 4.

Creating and Running Your First Program
The lines of code in Listing 12-1 show your very first Pygame Zero program, which
puts an image in the center of the window. Type it into Thonny or Python 3 (IDLE)
and save it in your pi folder as cloud1.py. See Chapter 11 for more on integrated
development environments, such as Thonny and IDLE.

242 PART 4 Programming the Raspberry Pi

LISTING 12-1:	 Your First Pygame Zero Program

WIDTH = 500
HEIGHT = 500

cloud = Actor('target5')
cloud.x = 250
cloud.y = 250

def draw():
 screen.clear()
 cloud.draw()

To run a Pygame Zero game, you need to use the command line. Follow these
steps:

1.	 Using File Manager, navigate to your pi folder. (For more on navigating
File Manager, see Chapter 4.)

You should see your cloud1.py file there, and the folder that contains your
target images.

2.	 Choose Tools from the File Manager main menu, and then select Open
Current Folder in Terminal from the menu that appears.

You can also use F4 as a keyboard shortcut for this.

3.	 In the terminal, enter pgzrun cloud1.py after the prompt.

You should see something like Figure 12-1, with an image in the middle of a new
window that opens. You might need to wait a moment for the window to open.
When you’ve finished with it, you can click the Close button in the top right of
the window or use Ctrl+C in the command line to quit. Don’t close the command
line window; you can save time by keeping it open so that you can use it to start
your next Pygame Zero program or to run this one again after modifying it.

Looking at the code shows you how easy it is to use images in Pygame Zero.

The WIDTH and HEIGHT variables are used to set up the size of the window — in our
case, a square of 500 pixels.

Pygame Zero introduces the idea of actors, which are like sprites in Scratch. An
actor stores an image and its position in one place, which makes it easier to man-
age the characters and obstacles in your games. This kind of thing is already built
into Scratch, but it’s not part of Python, or even Pygame. The use of actors in
Pygame Zero makes it much easier to move from programming in Scratch to using
Python.

CHAPTER 12 Creating a Game with Python and Pygame Zero 243

To create an actor, you give it a name and tell it which filename to use for the
actor’s picture, like this:

cloud = Actor('target5')

Here you’ve created an actor called cloud that uses the image target5.png. Note
that you don’t need to give Pygame Zero the file extension of the image; that’s
another way it keeps things simple.

The coordinates are measured from the top left of the window, so they go from 0
to 500 from left to right (the x direction), and from 0 to 500 down the window (in
the y direction). If you want to change the x position of the cloud actor, you can
assign it a new value, like this:

cloud.x = 250

Because the window is 500 pixels across and the actor’s position is measured from
its center, changing the actor’s x position to 250 centers it in the window.

The last thing you need to do is draw the sprite. The draw() function is run regu-
larly by Pygame Zero, and it’s where you tell it what to draw on the screen. (See
Chapter 11 for more on how functions work and are defined.) When things start
moving around, they’ll leave a trail if you don’t remove the previous images before
drawing each screenful, so you start this function by clearing the screen with this
instruction:

screen.clear()

FIGURE 12-1:
Your first Pygame

Zero program
puts an image

in the middle of
the screen.

244 PART 4 Programming the Raspberry Pi

In this case, you just want to draw the cloud actor at its current position, so
you use

cloud.draw()

Can you work out how to add another cloud to the program and position it to the
left of the first one? Call it cloud2, and remember to change its x position and to
draw it when you’ve finished. Listing 12-2 shows one possible answer. You could
use a different number for the x position of cloud2. Again, you run this from the
command line with pgzrun and use the filename of your new program:

LISTING 12-2:	 Adding a Second Cloud

WIDTH = 500
HEIGHT = 500

cloud = Actor('target5')
cloud.x = 250
cloud.y = 250

cloud2 = Actor('target5')
cloud2.x = 80
cloud2.y = 250

def draw():
 screen.clear()
 cloud.draw()
 cloud2.draw()

Detecting mouse clicks
Pygame Zero makes it easy to respond to mouse clicks. Add the following function
to the end of your existing program. It doesn’t matter whether you’re using the
one-cloud or two-cloud program from Listing 12-2:

def on_mouse_down(pos):
 if cloud.collidepoint(pos):
 cloud.image = 'pop'
 sounds.blop.play()

This function runs when the mouse button is clicked, and stores the position of
the mouse pointer in pos, which is something called a tuple.

CHAPTER 12 Creating a Game with Python and Pygame Zero 245

You don’t need to know this to use Pygame Zero, but if you’re curious, a tuple is a
sequence a bit like a list. The main differences are that you can’t change the items
in it, and it’s defined using parentheses () instead of using square brackets []. The
pos tuple used in this function contains the x and y values for the mouse pointer.

Using the mouse position stored in pos, we can work out whether the player
clicked on the actor. Collision detection is all about working out whether one
sprite is touching another or touching the mouse pointer. It can often be tricky to
code, but Pygame Zero includes some features built in to do it for you. You can
check whether the mouse pointer (in pos) is touching the cloud actor using the if
command together with the collidepoint() function, as shown earlier. If so, you
can change the image of the actor to the pop.png image using

 cloud.image = 'pop'

Again, you don’t need the file extension of the image file.

This function for detecting mouse clicks also shows how to play a sound: blop is
the name of our sound file, minus the extension (.ogg), which Pygame Zero works
out for itself. The rest of the line that plays the sound would be the same for any
sound. You might find that a simple program like this one is a useful template
when you’re building your own programs.

Run the program. Save it to your pi folder as cloud3.py and use pgzrun cloud3.py
from the command line to run it.

When you click the background, nothing happens. When you click the cloud in the
center of the screen, though, you see it change to a “Pop!” image. One thing you
might notice is that you can click near, but not on, the image and it will some-
times register as a hit. That’s because an actor is always rectangular. The cloud
has rounded corners, but the empty spaces in those corners are still part of the
rectangular image, as far as collision detection is concerned.

When you’re making your own images, try to stretch the image out to a rectangle
shape as much as possible, and trim any unused space from the edges. That helps
your collision detection look accurate. With fast-moving images, nobody will
notice if the collision detection is slightly off. If your game includes lots of circles,
though, the unused corners of the image will also register a hit, which might feel
unfair or unrealistic when playing the game.

Animating your actors
Pygame Zero includes a simple function for animating your actors so that they can
move across the screen automatically. This is another way it makes Python more

246 PART 4 Programming the Raspberry Pi

accessible for people who have previously used Scratch: Usually, movement is
achieved by having a loop that repeatedly changes the x or y position of the image.
Pygame Zero handles all that complexity for you.

Here’s an example of the animate() function:

animate(cloud, tween='linear', duration=5, pos= ↩
(cloud.x, -200))

It breaks down like this:

»» Give it the name of the actor you want to animate first — in this case, cloud.

»» Tell it the type of animation you want to use. This describes whether the actor
speeds up or slows down over the course of the animation. You can consult
the documentation for a list of options (see the “Exploring Pygame Zero
Further” section at the end of this chapter), but we are using 'linear' so that
the animation is an even speed throughout.

»» The duration is how long the animation will take, measured in seconds.

»» The pos is the finishing position. You give it the x and y position in brackets,
like this: (x, y). As with the mouse position, this is a tuple. I’ve used the
existing x position (cloud.x), and set the y position to be -200, which is
off the top of the screen. As a result, the cloud will drift up the screen in a
straight line until it’s no longer visible.

Try this animation by adding the preceding line of code into the section where you
set up your cloud actor, in the following snippet. The new instruction is shown in
bold. Note that what you see in this example isn’t the full program: You need to
keep the WIDTH and HEIGHT instructions, and the draw() and on_mouse_down(pos)
functions from your previous program:

cloud = Actor('target5')
cloud.x = 250
cloud.y = 250
animate(cloud, tween='linear', duration=5, pos= ↩

(cloud.x, -200))

You need the second bracket at the end of the new line. One pair of brackets
encloses the position, and another goes around everything given to the animate
function.

When the program runs, the cloud actor will be set up as before, but this time its
animation will be started. Each time the draw() function runs, it draws the cloud
in its latest position, making it appear to move up the screen.

CHAPTER 12 Creating a Game with Python and Pygame Zero 247

You can still click the cloud to make it pop, so you have the engine for a basic
game here. Next, let’s add an element of chance.

Using random numbers
Chapter 11 shows you how you can use the random.randint() function to pick a
random integer (whole number) in a certain range. You can also pick a random
floating-point number, with a decimal point in it, using random.uniform. To pick
a random floating-point number between 1 and 3, for example, you can use

random.uniform(1, 3)

You can try this in the shell window (without making a program) if you type

>>> import random
>>> for i in range(10):

print(random.uniform(1, 3))

Remember the colon at the end of the second instruction there, and you’ll find
that the next line is indented for you and that Python waits for you to enter it
before doing anything. Enter a blank line at the end to tell Python you’ve finished,
and then you’ll see ten numbers that look like a bit like this:

2.660707438900764
1.5292264804300049
2.9317931171330924

Now you can add some random numbers into the animation to make it less pre-
dictable, and to make it feel more “floaty.” Add this line at the start of your pro-
gram to import the random module:

import random

Now edit the animation line in your program as shown here:

animate(cloud, tween='linear', duration=random.↩
uniform(1, 3), pos=(cloud.x + ↩
random.randint(10, 100), -200))

Here the duration is set to a random floating-point number between 1 and
3 seconds. While we were making this game, we tried using a random integer first,
but it made the clouds bunch up, and it looked fake when they obviously moved at
the same speed. With a random floating-point number between 1 and 3, the clouds

248 PART 4 Programming the Raspberry Pi

all move at different speeds, sometimes overtaking each other but also with a pace
that makes sense for gameplay.

We’ve also added a random whole number between 10 and 100 to the x coordinate
of the end point of the animation. This makes the cloud drift sideways slightly.
Run the program a few times to see the difference. It’s fairly subtle, but it makes
it feel much more organic when there are several clouds moving up the screen.

If you find the game too fast, you can change the numbers between the random.
uniform brackets. The first number is the minimum time taken to move up the
screen. The second one is the maximum. Changing it to random.uniform(3, 5),
for example, will give you between 3 and 5 seconds to catch each cloud. Experi-
ment to find a speed you’re comfortable with.

Adding more clouds
Chapter 11 shows you how to create a list to store strings, but you can also use a
list to store actors, which means you can have several in your game and manage
them using loops. In this game, you’ll use six clouds in total. When one goes off
the top of the screen, you’ll put it back at the bottom again, if there is still time
left on the timer.

We’ll be building on the ideas and code presented earlier, but you might find it
easier to start a new file to make this program, to avoid the risk of overlooking
some of the changes we’ve made.

Listing 12-3 shows the first part of the program.

LISTING 12-3:	 Adding Yet More Clouds

import random

WIDTH = 500
HEIGHT = 500
score = 0
timer = 10
clouds = list()

for i in range(6):
 filename = 'target' + str(i)
 clouds.append(Actor(filename))
 this_cloud = clouds[i]

CHAPTER 12 Creating a Game with Python and Pygame Zero 249

 this_cloud.x = random.randint(int(this_cloud.↩
width / 2), int(WIDTH - this_cloud.width / 2))

 this_cloud.y = HEIGHT + this_cloud.height
 animate(this_cloud, tween='linear', ↩

duration=random.uniform(1, 3), ↩
pos=(this_cloud.x + random.randint(10, ↩
100), -200))

def draw():
 screen.clear()
 for i in range(6):
 this_cloud = clouds[i]
 this_cloud.draw()

 screen.draw.text("Score: " + str(score), (2, 2), ↩
color="orange")

 screen.draw.text("Timer: " + str(timer), (WIDTH ↩
- 70, 2), color="orange")

 if timer == 0:
 screen.draw.text(str(score), (130, 120), ↩

color="white", fontsize=300)

This program sets up some new variables for the score and the timer, which we’ll
use later. It also creates a new list called clouds.

The loop at the start sets up the multiple clouds. It loops six times, giving the
variable i the values 0 to 5 in turn. It creates the filename for this actor’s image,
by joining 'target' to i, making the filenames target0, target1, and so on. The
program has to use the str() function to convert i from a number to a string
before it can be joined to the 'target' string. The program then adds a new actor
to the clouds list, using that filename for the image.

To make the program easier to read, it uses a variable called this_cloud to refer
to the cloud it’s currently setting up. Its x position is set to a random position
in the window. To make sure it won’t spill off the edge, the program uses the
image’s width to work out minimum and maximum possible values for the
x position. The image is positioned from its center, so half its width is the mini-
mum x position for it all to fit on the screen. If the image is 100 pixels wide, for
example, its center must be at least 50 pixels from the left to fit in. On the right,
the program makes a similar calculation, but it subtracts half the image’s width
from the WIDTH of the window. The x position that’s chosen is a random integer
between those minimum and maximum positions on the left and right.

250 PART 4 Programming the Raspberry Pi

The y position is set to be the HEIGHT of the window plus the height of the image
itself, which puts it comfortably off the bottom of the screen.

As the program sets up each cloud, it also animates it so that it starts to float up
the window.

The draw() function uses a loop to extract each actor in turn from the clouds list,
put it into this_cloud, and then draw it.

This function also now draws the score in the top left and the timer in the top
right. Because the clouds are drawn first and the text is drawn afterward, the text
appears on top of the clouds. That makes it look like the clouds float behind the
text, which is a cool effect. The text is drawn using the screen.draw.text()
function, which takes the text you want to draw, the (x, y) position for it, and its
color as arguments. Optionally, you can add the font size, which we’ve used for
the final score when the timer reaches 0, making the score unmissably big in the
middle of the window.

When you run this program, you see six clouds drift up the screen. (See
Figure 12-2.) Although they all start at the same time, their different animation
durations make them quickly spread out.

Making the clouds regenerate
The way your code works right now, the clouds disappear off the top of the
window, and that’s the last you see of them. Add the following function to your

FIGURE 12-2:
Clouds drifting up

the screen.

CHAPTER 12 Creating a Game with Python and Pygame Zero 251

latest program to make the clouds reappear at the bottom when they go off
the top:

def update():
 for i in range(6):
 this_cloud = clouds[i]
 if this_cloud.y < 0 - this_cloud.height:
 this_cloud.y = HEIGHT + this_cloud.height
 if timer > 0:
 this_cloud.x = ↩

random.randint(int(this_cloud.width / 2), ↩
int(WIDTH - this_cloud.width / 2))

 this_cloud.image = 'target' + str(i)
 animate(this_cloud, tween='linear', ↩

duration=random.uniform(1, 3), ↩
pos=(this_cloud.x + random.randint(10,↩
100), -200))

The update() function is like Pygame Zero’s draw() function in that it is auto-
matically run regularly. It’s where you put the instructions to change the position
of your actors, or to otherwise update the game’s progress. The update() function
in this game uses a loop to look at each cloud in turn, and uses the variable this_
cloud as shorthand for each cloud while it works with it. If the cloud is fully off
the screen (its y position is less than 0 minus its height), then the function resets
the y position to the bottom of the screen. In fact, this creates some margin
because the program only needs to subtract half the height from the cloud’s y
position, which is in the middle of the image, to be certain it’s off the screen. But
doing it as we show you here is simpler, and also makes it look more like a stream
of clouds — and less like the same clouds keep wrapping around the screen. If
there is still time on the clock, we also reset it and start it moving again. We set its
x position randomly and reset its image to the target image, because in some
cases the cloud will have become a 'pop' image if it was clicked. (We’ll add that
code shortly.) We also start a new animation, using the same instruction as we did
at the start of the program.

You can run the program now to see an unending stream of clouds floating up the
window.

Enabling multiple clouds to be clicked
We’ve already described how you can make one cloud respond to a click, and how
you can create, display, and update multiple clouds. We’ll combine those ideas in

252 PART 4 Programming the Raspberry Pi

a new function that enables you to click multiple clouds. Add this to the end of
your program so far:

def on_mouse_down(pos):
 global score
 for i in range(6):
 this_cloud = clouds[i]
 if this_cloud.collidepoint(pos) and timer > 0 ↩

and this_cloud.image != 'pop':
 this_cloud.image = 'pop'
 sounds.blop.play()
 score += 1

This function runs when the mouse button is clicked. When that happens, the
function goes through a loop, checking to see whether each cloud has been hit.
You only want to pop the cloud if these conditions are true:

»» It’s been hit by the mouse, expressed as this_cloud.collidepoint(pos).

»» There’s still time on the clock for the player to catch clouds, expressed as
timer > 0.

»» The cloud hasn’t already been popped, which you can check by making sure
its image isn’t 'pop', expressed as this_cloud.image != 'pop'.

If all these conditions are true, the program changes the cloud’s image to the
'pop' image, plays the sound, and increases the score by 1. After the image
changes to 'pop', the cloud continues to float up and off the screen.

Variables used within a function belong only to that function, by default, and are
called local variables. This isolation stops functions from changing the data that
other functions are using by accident. Global variables are variables that can be
used by any functions. The score, for example, needs to be used in this function
(where the program changes it) and the draw() function (where the program dis-
plays it), so it’s a global variable. If you want to change a global variable inside a
function, you have to start the function by telling Python you intend to use that
global variable, so that’s what the first line in this function does.

At this point, you should be able to play the game almost fully: You can click mul-
tiple clouds, see your score increase in the top left, and see the clouds keep coming
around at the bottom of the screen again. It can be quite hypnotic. Let’s add a time
limit, before you fall into a trance.

CHAPTER 12 Creating a Game with Python and Pygame Zero 253

Adding the timer
Pygame Zero includes the ability to schedule a function to run regularly, which
you can use to run a timer. You’ve already set the timer variable to 10 at the start
of the program. You just need to create a function to decrease it by 1 each time it
runs, and then schedule that to run every second. Here’s what that code looks like.
You need to add it to the end of your existing program:

def countdown():
 global timer
 timer -= 1
 if timer == 0:
 clock.unschedule(countdown)
 sounds.whoops.play()

clock.schedule_interval(countdown, 1)

The line at the end isn’t part of any function. You can tell because it’s not indented.
As a result, this instruction runs when the game begins. The clock.schedule.
interval() function sets another function to run at regular intervals. In our case,
we’re running the countdown() function every 1 second. Note that we don’t use
brackets after countdown here. We have to put this clock.schedule_
interval(countdown, 1) line after the function because it can only be used to
schedule a function that has been defined earlier in the program.

The countdown() function itself reduces the global variable timer by 1 each time
it runs. If the timer is now 0, it uses clock.unschedule to stop countdown() from
running regularly and then plays the Game Over music.

When you run the game, you should now see the timer counting down in the top
right. When the timer runs out, no new clouds will appear on the screen, although
those that are already there will drift off the top in the usual way. When the time
is up, your score will be shown large in the middle of the window.

Adjusting the game difficulty
There are several things you can do to adjust the game and its difficulty:

»» Change the size or shape of the window by changing the WIDTH and HEIGHT
variables at the start. A wider window makes them harder to catch, but a taller
window gives you more time.

254 PART 4 Programming the Raspberry Pi

»» Change the speed of the moving clouds, by changing their duration in the
animate() functions. Remember that there’s one animate() function at the
start, and one when they reappear at the bottom of the screen.

»» Increase the amount of time on the clock.

The final game listing
To help you find your way around creating this program, and provide you with it
all in one place, here’s the final listing (Listing 12-4):

LISTING 12-4:	 The final Cloudbusting game

Cloudbusting game
From Raspberry Pi For Dummies 3rd Edn
By Sean McManus - www.sean.co.uk
Run with: pgzrun cloudbusting.py

import random

WIDTH = 500
HEIGHT = 500
score = 0
timer = 10
clouds = list()

for i in range(6):
 filename = 'target' + str(i)
 clouds.append(Actor(filename))
 this_cloud = clouds[i]
 this_cloud.x = random.randint(int(this_cloud.↩

width / 2), int(WIDTH - this_cloud.width / 2))
 this_cloud.y = HEIGHT + this_cloud.height
 animate(this_cloud, tween='linear', ↩

duration=random.uniform(1, 3), ↩
pos=(this_cloud.x + random.randint(10, ↩
100), -200))

def draw():
 screen.clear()
 for i in range(6):
 this_cloud = clouds[i]
 this_cloud.draw()

http://www.sean.co.uk

CHAPTER 12 Creating a Game with Python and Pygame Zero 255

 screen.draw.text("Score: " + str(score), (2, 2), ↩
color="orange")

 screen.draw.text("Timer: " + str(timer), (WIDTH ↩
- 70, 2), color="orange")

 if timer == 0:
 screen.draw.text(str(score), (130, 120), ↩

color="white", fontsize=300)

def update():
 for i in range(6):
 this_cloud = clouds[i]
 if this_cloud.y < 0 - this_cloud.height:
 this_cloud.y = HEIGHT + this_cloud.height
 if timer > 0:
 this_cloud.x = ↩

random.randint(int(this_cloud.width / 2), ↩
int(WIDTH - this_cloud.width / 2))

 this_cloud.image = 'target' + str(i)
 animate(this_cloud, tween='linear', ↩

duration=random.uniform(1, 3), ↩
pos=(this_cloud.x + random.randint(10, ↩
100), -200))

def on_mouse_down(pos):
 global score
 for i in range(6):
 this_cloud = clouds[i]
 if this_cloud.collidepoint(pos) and timer > 0 ↩

and this_cloud.image != 'pop':
 this_cloud.image = 'pop'
 sounds.blop.play()
 score += 1

def countdown():
 global timer
 timer -= 1
 if timer == 0:
 clock.unschedule(countdown)
 sounds.whoops.play()

clock.schedule_interval(countdown, 1)

256 PART 4 Programming the Raspberry Pi

Exploring Pygame Zero Further
We hope this project has given you a taste for what Pygame Zero can do. As well
as supporting mouse clicks, you can use it to detect keypresses, making it possible
to make more conventional games with characters moving under keyboard con-
trol. As such, it’s a good foundation for most types of game.

To find out more, we recommend that you check out the following resources:

»» Daniel Pope’s blog post announcing Pygame Zero: http://mauveweb.
co.uk/posts/2015/05/pygame-zero.html

»» The Pygame Zero documentation, including simple examples: http://
pygame-zero.readthedocs.io/en/latest

»» The Pygame Zero built-in objects list, with information about actors,
images, sounds and the clock: http://pygame-zero.readthedocs.io/
en/latest/builtins.html

You can also read Sean’s book Mission Python to see how Pygame Zero can be used
as the foundation for a 3D adventure game.

http://mauveweb.co.uk/posts/2015/05/pygame-zero.html
http://mauveweb.co.uk/posts/2015/05/pygame-zero.html
http://pygame-zero.readthedocs.io/en/latest/
http://pygame-zero.readthedocs.io/en/latest/
http://pygame-zero.readthedocs.io/en/latest/builtins.html
http://pygame-zero.readthedocs.io/en/latest/builtins.html

CHAPTER 13 Programming Minecraft with Python 257

Chapter 13

IN THIS CHAPTER

»» Exploring the Minecraft world

»» Manipulating the Minecraft world
in Python

»» Generating a random Minecraft
maze in Python

Programming Minecraft
with Python

Minecraft appeals to the Lego fan in everyone. It enables you to build
immersive 3D worlds from blocks of materials, and it has fired up imagi-
nations to the extent that over 100 million copies have been sold across

various platforms, including the PC and Xbox.

A version of Minecraft is available for the Raspberry Pi. It features only the Cre-
ative mode, where you can build items peacefully without the threat of monster
attacks or starvation. The best feature is that you can program it using multiple
languages, including Python. This means that you can build a grand palace with-
out having to manually place every block, and you can write programs that can
invent original new structures for you to roam around and explore, as you see in
this chapter.

The project in this chapter uses a Python program to build a maze in Minecraft.
Each time you run the program, it builds a new maze for you, and you can control
how big you want it to be and which materials you want it to be made of. During
the course of this project, you’ll find out how to place and remove blocks in Mine-
craft using Python so that you’ll have the skills to write your own programs that
supercharge your construction work.

At the time of writing, Minecraft: Pi Edition is alpha software, which means that it’s
a very early test version (less well developed than a beta version). We had only a

258 PART 4 Programming the Raspberry Pi

minor issue with it: The cursor misbehaved when we maximized the window. You
might also experience issues with the screen display not being aligned with the
window correctly, and there is no sound.

See the Introduction for details of where you can download the code for this
chapter. The full listing is at the end of the chapter, which can help you to find
your way around the code as you build this project.

Playing Minecraft
Minecraft is preinstalled in Raspbian. You start it by clicking it on the Applications
menu at the top left of the screen, where Minecraft Pi is filed under Games. When
you start Minecraft on the Raspberry Pi, the title screen gives you two options:

»» Start Game: Generates your own game world to explore. You can also use
this option to choose a previously generated world to revisit, when you replay
Minecraft later. To choose between the different worlds, click and drag them
left and right to position your chosen one in the middle, and then click it
to open it.

»» Join Game: Lets you join other players in a game on a local network.
A discussion of this option is outside the scope of this chapter, but this
option can enable collaborative or competitive play in a Minecraft world.

Click Start Game and choose Create New, and Minecraft then generates a new
world for you, with its own, distinctive terrain of mountains, forests, and oceans.
When it’s finished, you see a first-person view of it. (See Figure 13-1.)

You can change your perspective to show the player’s character in the game. Press
the Esc key to open the Game menu, and then click the icon beside the Speaker
icon in the top left to change the perspective.

When you’ve finished playing, you can exit the game by pressing the Esc key to
open the Game menu and then choosing Quit To Title.

Moving around
Minecraft is easiest to play using two hands — one on the mouse and one on the
keyboard. Use the mouse to look around you and change your direction, sliding it
left and right to turn sideways, and forward and backward on the desk to look up
and down. To move, you use the keys W and S for forward and backward, and A
and D to take a sidestep left and right. Those keys form a cluster on the keyboard,
which makes it easy to switch between them.

CHAPTER 13 Programming Minecraft with Python 259

You character automatically jumps onto low blocks if you walk into them, but you
can deliberately jump by pressing the spacebar.

For the best view of your world, take to the skies by double-tapping the spacebar.
When you’re flying, hold the spacebar to go higher, and the left Shift key to go
lower. Double-tap the spacebar to stop flying and drop to the ground. There’s no
health or danger in this edition of Minecraft, so you can freefall as far as you like.

Making and breaking things
To break blocks in your world, use the mouse to aim the crosshair at the block you
want to destroy, and click and hold the left mouse button. Some blocks are easier
to break than others. There’s a limit on how far away you can be, so move closer
if you can’t see chips flying off the blocks as you attempt to smash them.

The panel at the bottom of the window shows the blocks you can place in the
world. (Refer to Figure 13-1.) You choose between them using the scroll wheel on
the mouse or by pressing a number between 1 and 8 to pick one (from left to
right). Press E to open your full inventory, and then you can use the movement
keys (W, A, S, D) to navigate around it or Enter to choose a block — or you can
simply click your chosen block with the mouse.

To position a block, right-click where you would like to place it. You can put a
block on top of another one only if you can see the top of it, so you might need to
fly to make tall structures.

FIGURE 13-1:
Minecraft
on the Pi.

260 PART 4 Programming the Raspberry Pi

You can build towers and rise into the air on them by looking down and repeatedly
jumping and placing a block under you.

Although Python makes it much easier to build things, we recommend that you
spend some time familiarizing yourself with how players experience the world. In
particular, it’s worth experimenting with how blocks interact with each other.
Stone blocks can float in the air unsupported, but sand blocks fall to the ground.
Cacti can’t be planted in grass, but can be placed on top of sand. If you chip away
at the banks of a lake, the water flows to fill the space you made. You can’t place
water and lava source blocks within the game, although you can program them
using Python and they can cascade down and cover a wide area. When water and
lava come into contact with each other, water sometimes cools lava into stone.

Preparing for Python
One of the peculiarities of Minecraft is that it takes control of the mouse, so you
have to press Tab to take back control when you want to use any other programs
on your desktop. To start using the mouse in Minecraft again, click the Minecraft
window. You’ll soon become used to pressing Tab before you try to do any
programming. Press Tab now to leave Minecraft running but bring the mouse
cursor back into the desktop. To make your Minecraft programs, you’ll use
Thonny, so open the Applications menu in the top left, click Programming, and
choose Thonny. (If you prefer, you can use Python 3 (IDLE), also in the Program-
ming part of the Applications menu.) You might have to click the top of the Mine-
craft window and drag it out of the way first, or click the first button in the top
right of its window to minimize it.

One of the first things you’ll notice is that Minecraft sits on top of other windows,
and your Python window might well be underneath it, so a certain amount of
reorganization is necessary. If your screen is big enough, you might be able to
show the Minecraft and Thonny windows on screen at the same time.

If your screen isn’t big enough, you’ll have to switch between the windows as
necessary. To hide Minecraft, click it on the taskbar at the top of the desktop
and then click the button in Minecraft’s title bar (at the top of its window) to
minimize it. To bring Minecraft back or activate it, click it on the taskbar again. If
you can’t see Minecraft’s title bar, it won’t respond to the mouse and keyboard
controls, so you need to click it on the taskbar. (See Chapter 4 for a guide to using
the desktop.)

CHAPTER 13 Programming Minecraft with Python 261

Using the Minecraft Module
For your first Python program for Minecraft, we will show you how to send a mes-
sage to the Chat feature in the game.

We’ll use the editor in Thonny (the top part of the window). Enter the following,
use the File menu to save it in your pi folder, and then press F5 or click the Run
button to run it (note that you must have a Minecraft game session running for
this to work):

import sys, random
from mcpi import minecraft
mc = minecraft.Minecraft.create()
mc.postToChat("Welcome to Minecraft Maze!")

Your first line of code imports the sys and random modules. The random module,
you’ll need later to build a random maze as you develop this program.

To issue Python commands to Minecraft, you use the minecraft.Minecraft.
create() function and then add the command at the end. For example, to put a
greeting in the Chat window, you might use the following:

minecraft.Minecraft.create().postToChat("Welcome to ↩
Minecraft Maze!")

That soon gets hard to read, so in the program you’re working with, you set up mc
so that you can use it as an abbreviation for minecraft.Minecraft.create(). As a
result, you can use the shorter line that you see in the program to post a message.

If your code isn’t working, pay particular attention to the case. Python is case-
sensitive, so you have to use upper- and lowercase exactly as shown here. Look
out for the mixed upper- and lowercase in postToChat, and the capital M in
minecraft.Minecraft.create().

When you run the program, switch back to Minecraft to see your message on
screen. It disappears after about 10 seconds.

Understanding coordinates in Minecraft
As you might expect, everything in the Minecraft world has a map coordinate.
Three axes are required in order to describe a position in the game world:

»» x: This axis runs parallel to the ground. The world measures 255 blocks in this
direction.

262 PART 4 Programming the Raspberry Pi

»» y: This axis runs vertically and could be described as the height. You can fly at
least as high as 500 blocks, but you can’t see the ground from higher than
about 70 blocks, so there’s not much point. Sea level is 0. You can break blocks
to tunnel under the sea too. We made it down to about –70 before we fell out
of the world and died. This is the only way we’ve seen that you can die in
Minecraft on the Pi.

»» z: This is the other axis parallel to the ground. The world measures 255 blocks
in this direction too.

We put the axes in this order deliberately because that’s the order that Minecraft
uses. If, like us, you often use x and y to refer to positions in 2D (as you do in
Scratch), it takes a short while to get your head around the fact that y represents
height. Most of the time in this chapter, you’ll use the x and z coordinates to
describe a wall’s position (which differs depending on the wall), and the y coordi-
nate to describe its height (which doesn’t).

As you move in the game, you can see the player’s coordinates in the top left of
the Minecraft window change. If you try to move outside the game world, you hit
a wall of sky that you can’t penetrate, like in The Truman Show (except that he had
a door).

Repositioning the player
You can move your character to any position in the Minecraft world, using this
command:

mc.player.setTilePos(x, y, z)

For example, to parachute into the world, use

mc.player.setTilePos(0, 100, 0)

You don’t have to put this command into a program and run it. If you’ve already
run the program to set up the Minecraft module, you can type commands to move
the player and add blocks in the Python shell.

Assuming that the game is not in Flying mode, you’ll drop from the sky into the
world. If it is in Flying mode, click Minecraft on the taskbar and double-tap the
spacebar to turn it off and start your descent.

Note that this coordinate won’t always be in the middle of the world, even though
worlds are the same size. In one of our worlds, the coordinates run from –85.7 to
169.7 in the x plane and from –98.7 to 156.7 in the z plane.

CHAPTER 13 Programming Minecraft with Python 263

You can put the player anywhere in the game world, and sometimes that means
she’ll appear in the middle of a mountain or another structure, where she can’t
move. If that happens, reposition the player using code. Putting her somewhere
high is usually a reasonably safe bet because she can fall to the highest ground
from there.

Adding blocks
To add a block to the world, you use this command:

mc.setBlock(x, y, z, blockTypeId)

blockTypeId is a number that represents the material of the block you’re
adding. You can find a full list of materials at www.minecraftwiki.net/wiki/
Data_values_(Pocket_Edition). (Take the number from the Dec column in the
table on that page. You want the decimal number rather than the hexadecimal
one.) Any number from 0 to 108 is valid, and a few higher numbers are as well.
Table 13-1 shows some of the materials you might find most useful for this project
and for experimentation.

If you use the water and lava blocks, you could flood your world, so create a new
world to experiment with.

There is another command you can use to create a large, cuboid shape built of
blocks of the same material. To use it, you provide the coordinates of two opposite
corners and the material you’d like to fill the space with, like this:

mc.setBlocks(x1, y1, z1, x2, y2, z2, blockTypeId)

You can quickly build a brick shelter by making a large cuboid of brick and then
putting a cuboid of air inside it. Air replaces any other block, effectively deleting it
from the world. Here’s an example:

mc.setBlocks(0, 0, 0, 10, 5, 7, 45) #brick
mc.setBlocks(1, 0, 1, 9, 5, 6, 0) #air

These lines build a shelter that is 10 × 7 blocks in floor space and 5 blocks high,
starting at coordinate 0, 0, 0. The walls have a thickness of 1 block because you fill
with air the space from 1 to 9 on the x-axis, from 1 to 6 on the z-axis, and from 0
to 5 on the vertical axis, leaving intact 1 block of brick from the original cuboid on
four sides and the roof open.

http://www.minecraftwiki.net/wiki/Data_values_(Pocket_Edition)
http://www.minecraftwiki.net/wiki/Data_values_(Pocket_Edition)

264 PART 4 Programming the Raspberry Pi

If your Minecraft window goes black when you try this, you’ve probably built the
walls on top of the player. Reposition the player using code to get the view back.

The # symbol represents a comment that’s there only as a reminder for you. The
computer ignores anything on the same line after the #.

Although players can have coordinate positions with decimal portions (such as 1.7),
when you place a block, its position is rounded down to the nearest whole number.

Stopping the player from
changing the world
We know you wouldn’t cheat, but there’s no fun in a maze that you might
accidentally just hack your way through, is there? To stop players from being able
to destroy or place blocks in the world, use the following:

TABLE 13-1	 Materials in Minecraft: Pi Edition
blockTypeId Block Type

0 Air

1 Stone

2 Grass

3 Dirt

5 Wooden plank

8 Water

10 Lava

12 Sand

20 Glass brick

24 Sandstone

41 Gold brick

45 Brick

47 Bookshelf

53 Wooden stairs

57 Diamond block

64 Wooden door

81 Cactus

CHAPTER 13 Programming Minecraft with Python 265

mc.setting("world.immutable", True)

The word immutable is often used in programming, and it means
“unchangeable.”

Setting the maze parameters
Now that you know how to place blocks in the world and use the air block to
remove them again, you’re ready to start making the maze program. In this pro-
gram, you’ll use a number of constants to keep track of important information
about the maze. Constants are just variables that you decide not to change the
values of as the program is running, so their values are always the same. It’s con-
ventional to use uppercase letters for the names of constants to signal your intent
to others reading the program, and to remind yourself that you’re not supposed
to be letting the program change these values. Replacing numbers in your
program with constants makes it easier to customize your program later, but also
makes it much easier to read your program and understand what different
numbers represent.

Variable names are case sensitive, so Python would think SIZE and size were two
different variables. You’d be mad to use both in the same program, though!

The program starts by setting up these constants:

SIZE = 10
HEIGHT = 2
MAZE_X = 0
GROUND = 0
MAZE_Z = 0
MAZE_MATERIAL = 1 #stone
GROUND_MATERIAL = 2 #grass
CEILING = False

To build the maze, you start with a grid of walls with 1-block spaces (or cells)
between them, which looks a bit like a waffle. (See Figure 13-2.) Each cell starts
with four walls, and the program knocks down walls to create paths between them
and build the maze. The maze is square, and its SIZE is measured in cells. A maze
with a SIZE of 10 will have 10 cells in the x and z dimensions, but will occupy
double that space in the Minecraft world (that is, 20 blocks by 20 blocks) because
there is a 1-block wall between each cell. This becomes clearer as you start to build
the maze. We’ve tried mazes as big as 40, but they take some time to build and
ages to explore. Ten is big enough for now.

266 PART 4 Programming the Raspberry Pi

The HEIGHT is how many blocks tall the maze walls are. We chose 2 because a value
of 1 means that the player can just walk over the maze. (The player automatically
steps onto blocks 1 unit high.) Higher values obscure any mountains in the
distance that can otherwise give a nice visual hint to the player.

The constants MAZE_X, GROUND, and MAZE_Z are used for the starting coordinates of
the maze. The MAZE_MATERIAL is stone (1), and the GROUND_MATERIAL is grass (2).
We’ve added an option for a ceiling, to stop players from just flying out of the top
of the maze, but we’ve turned it off for now so that you can freely explore the
maze as you’re building it.

The program stops with an error if there isn’t enough room for all of the maze in
your world. In that case, you can try using a smaller maze, try moving the MAZE_X
and MAZE_Z coordinates, or try using a different world.

A maze of bookshelves (MAZE_MATERIAL=47) looks great!

Laying the foundations
One of the first things you need to do before you build the maze is make sure that
you’re building on solid land. Because Minecraft worlds are dynamically gener-
ated, you might find that, otherwise, you’re building a maze inside a mountain or
in the sea.

You’ll need to clear, as well as the area the maze will occupy, an area of ten blocks
all the way around it so that the players can approach it easily and walk around the
outside of it. First you clear the area by filling it with air blocks, which will wipe

FIGURE 13-2:
The starter grid.

CHAPTER 13 Programming Minecraft with Python 267

out anything else in that space. Then you add the floor, a layer of blocks made of
the ground material.

The maze occupies a ground space measured in blocks from MAZE_X to MAZE_
X+(SIZE*2), and from MAZE_Z to MAZE_Z+(SIZE*2). (Remember: * is the symbol
for multiplication.) The number of blocks is twice the number of cells (SIZE)
because each cell has a wall on its right and below it. The middle of the maze in
the Minecraft world is MAZE_X+SIZE, MAZE_Z+SIZE.

You need to clear 10 blocks farther in each direction. The following code clears
everything as high as 150 above the ground level of the maze, to stop the risk of
any remaining mountain blocks falling from the sky into the maze, and then lays
the floor:

mc.setBlocks(MAZE_X-10, GROUND, MAZE_Z-10, ↩
MAZE_X+(SIZE*2)+10, GROUND+150, MAZE_Z+(SIZE*2)+10, 0)

mc.setBlocks(MAZE_X-10, GROUND, MAZE_Z-10, ↩
MAZE_X+(SIZE*2)+10, GROUND, MAZE_Z+(SIZE*2)+10, ↩
GROUND_MATERIAL)

We recommend adding a block to indicate the starting corner of the maze (where
MAZE_X and MAZE_Z are). You will find it useful when writing and debugging the
program, because it will enable you to tell which way around the maze is as you
fly around it. To do so, use the following:

mc.setBlock(MAZE_X, GROUND+HEIGHT+1, MAZE_Z, ↩
MAZE_MATERIAL)

Put your player character above the middle of the maze, too, so that you can watch
it being built by looking down, as follows — if you’re not flying, you’ll fall onto
the maze wall, but you can just fly up again:

mc.player.setTilePos(MAZE_X+SIZE, GROUND+25, MAZE_Z+SIZE)

Placing the maze walls
To make the waffle-like grid, use the following code:

for line in range(0, (SIZE+1)*2, 2):
 mc.setBlocks(MAZE_X+line, GROUND+1, MAZE_Z,↩

MAZE_X+line, GROUND+HEIGHT, MAZE_Z+(SIZE*2), ↩
MAZE_MATERIAL)

268 PART 4 Programming the Raspberry Pi

 mc.setBlocks(MAZE_X, GROUND+1, MAZE_Z+line, ↩
MAZE_X+(SIZE*2), GROUND+HEIGHT, MAZE_Z+line, ↩
MAZE_MATERIAL)

The for loop gives the variable line the values of even numbers starting at 0 and
finishing at SIZE*2, in turn. Note that you have to add 1 to SIZE before doubling
it, because the range function doesn’t include the last number in the sequence.
If you use range(1, 10), for example, you get the numbers 1 to 9. The 2 at the
end of the range function is the step size, so it adds 2 each time it goes around
the loop, and only gives you the even numbers. That means you leave a gap for
the cell between each wall. Each time around the loop, it uses cuboids to draw
two walls that stretch across the maze from edge to edge in the x and z dimen-
sions. It doesn’t matter that the same block is set twice where those lines inter-
sect. You build the wall starting at GROUND+1, so the grass is still underneath
when you knock down the walls to make paths.

Don’t forget the colon at the end of the for statement, and that the next two lines
should each be indented by four spaces to tell Python that they belong to the loop.

You should now have a grid that looks like Figure 13-3.

Understanding the maze algorithm
Before you dig into the code that turns your waffle into a maze, let us tell you how
it works. You’re going to make what’s known as a perfect maze (that’s a
technical term, not us bragging): That means there are no loops in it and every

FIGURE 13-3:
Your grid in

Minecraft.

CHAPTER 13 Programming Minecraft with Python 269

part of the maze can be visited. There is only one path between any two points in
the maze.

An algorithm is a set of rules or a process for solving a particular problem. It is
typically performed by a computer, but you could carry out the maze making algo-
rithm using paper and pencil, and an eraser to wipe out the walls as you go. Here’s
how it works:

1.	 You start with the “waffle” you’ve built, with every cell having all four walls.

2.	 You pick a random cell in the maze to start at.

3.	 You look at your current cell’s neighbors and make a list of all those that have
all four walls intact. These are the cells that have not yet been visited.

4.	 If you found some unvisited neighbors, you pick one at random, knock down
the wall between it and your current cell, and then move into that cell, making
it your current cell.

5.	 If your current cell has no unvisited neighbors, you go back one cell in the path
you’ve taken, and make that your current cell.

6.	 Repeat Steps 3 to 5 until you’ve visited every cell.

Setting up the variables and lists
To implement this algorithm, you’ll use the following variables:

»» numberOfCells: This is the total number of cells in the maze, which will be
SIZE*SIZE.

»» numberOfVisitedCells: This keeps track of how many cells you’ve visited.
When this is the same as the numberOfCells, every cell has been visited and
had a wall demolished, and is therefore reachable. The maze is finished.

»» xposition: This remembers your x position as you move through the maze
generating it. It’s measured in cells, and it starts as a random number between
1 and the maze SIZE.

»» zposition: This remembers your z position as you move through the maze
generating it, also measured in cells and also starting as a random number.

»» cellsVisitedList[]: This is a list that stores the path you’ve taken so that
the program can retrace its steps. When you set it up, you put your starting
position into it using the append() list method.

»» playerx and playerz: These are used to remember the starting position, so
you can put the player there when the maze has been built.

270 PART 4 Programming the Raspberry Pi

When an algorithm like this is implemented (it’s called a depth-first maze
generation algorithm), it often requires a list or similar data structure to store the
locations of walls. You don’t need that, because you have actual walls in Minecraft
you can look at. The game world stores your maze, if you like.

The following code lines set up your starting variables:

numberOfCells = SIZE * SIZE
numberOfVisitedCells = 1 # 1 for the one you start in
cellsVisitedList = []

xposition = random.randint(1, SIZE)
zposition = random.randint(1, SIZE)
playerx = xposition
playerz = zposition
showMaker(xposition, zposition)
see the next section, "Creating the functions"
cellsVisitedList.append((xposition, zposition))

Creating the functions
There are a number of basic functions you will need for your program:

»» realx(x) and realz(z): These convert coordinates in the maze (measured
in cells) into coordinates in the Minecraft world (measured in blocks and offset
from the maze’s starting position).

»» showMaker(x,z) and hideMaker(x, z): These functions use a gold block to
show which cell the program has reached as it builds the maze. It’s fun to
watch from above and is useful while building and debugging the program.

»» demolish(realx, realz): This knocks down a wall in the maze and takes
real x and z coordinates in the Minecraft world as its parameters.

»» testAllWalls(cellx, cellz): This checks whether the four walls on a cell
are intact. If all of them are, it returns True. Otherwise, it returns False. It
uses the command mc.getBlock(x, y, z), which tells you the blockTypeId
at a particular location. You use two equal signs, as usual, to test whether a
block in a wall position is the same as the MAZE_MATERIAL, which means that
there’s a wall there.

Add these function definitions at the start of your program, right after where you
set up the Minecraft module:

CHAPTER 13 Programming Minecraft with Python 271

def realx(x):
 return MAZE_X + (x*2) - 1

def realz(z):
 return MAZE_Z + (z*2) - 1

def showMaker(x, z):
 mc.setBlock(realx(x), GROUND+1, realz(z), 41) # 41=gold

def hideMaker(x, z):
 mc.setBlock(realx(x), GROUND+1, realz(z), 0)

def demolish(realx, realz):
 mc.setBlocks(realx, GROUND+1, realz, realx, ↩

HEIGHT+GROUND, realz, 0)

def testAllWalls(cellx, cellz):
 if mc.getBlock(realx(cellx)+1, GROUND+1,↩

realz(cellz))==MAZE_MATERIAL and mc.getBlock↩
(realx(cellx)-1, GROUND+1, realz(cellz))==MAZE_MATERIAL↩
and mc.getBlock(realx(cellx), GROUND+1, realz(cellz)+1)== ↩
MAZE_MATERIAL and mc.getBlock(realx(cellx), GROUND+1,↩
realz(cellz)-1)==MAZE_MATERIAL:

 return True
 else:
 return False

If you have an error, check for missing colons at the end of your def and if
statements.

Creating the main loop
Your maze algorithm runs until you’ve visited every cell, so it starts with the
following statement:

while numberOfVisitedCells < numberOfCells:

You need to test whether your current cell’s neighbor cells have all their
walls intact. To do that, you check each direction in turn, using the testAllWalls
(x, z) function. When you find a cell with all the walls intact, you add its
direction to the list possibleDirections[] using the append() list method.

272 PART 4 Programming the Raspberry Pi

This implements Step 3 in the algorithm — and keep in mind that it’s all indented
underneath the while statement:

possibleDirections = []

if testAllWalls(xposition - 1, zposition):
 possibleDirections.append("left")

if testAllWalls(xposition + 1, zposition):
 possibleDirections.append("right")

if testAllWalls(xposition, zposition - 1):
 possibleDirections.append("up")

if testAllWalls(xposition, zposition + 1):
 possibleDirections.append("down")

The values of up, down, left, and right are somewhat arbitrary in 3D space, but
we’ve used them because they’re easy to understand. If you fly into the air and
look down on the maze as it’s being generated and you have the block identifying
the starting corner of the maze (MAZE_X, MAZE_Z) in the top left, these directions
will look correct to you.

Incidentally, you might have noticed that there’s no check for whether these cell
positions are inside the maze borders. What happens if you look for a cell off the
left edge of the maze, or off the bottom edge? No problem. The program imple-
mentation automatically respects the borders of the maze because when it looks
at “cells” outside the borders, they don’t have all four walls (their only wall is the
maze’s border), so they are never visited.

Step 4 in the algorithm is to pick a random direction if you found any unvisited
neighbors, knock down the wall in that direction, and move into that cell. To
decide whether you found any possible directions, you check the length of the
possibleDirections list and act if it is not equal to 0 (expressed as !=0). All of
this should be indented under the while loop. (If you get lost in the indenting,
consult the full code in Listing 13-1, near the end of this chapter.)

Before you start moving your position, you hide the gold brick that shows where
you are in the maze:

hideMaker(xposition, zposition)
if len(possibleDirections) != 0:
 directionChosen=random.choice(possibleDirections)

CHAPTER 13 Programming Minecraft with Python 273

 if directionChosen == "left":
 demolish(realx(xposition) - 1, realz(zposition))
 xposition -= 1

 if directionChosen == "right":
 demolish(realx(xposition) + 1, realz(zposition))
 xposition += 1

 if directionChosen == "up":
 demolish(realx(xposition), realz(zposition) - 1)
 zposition -= 1

 if directionChosen == "down":
 demolish(realx(xposition), realz(zposition) + 1)
 zposition += 1

After you’ve moved into a new cell, you need to increase your tally of cells visited
by one, and add the new cell to the list that stores the path taken. This is also a good
time to show the gold block in the cell to highlight how the maze is being built:

numberOfVisitedCells += 1
cellsVisitedList.append((xposition, zposition))
showMaker(xposition, zposition)

The way you’ve stored the list of cells visited deserves some explanation. You’ve
put the xposition and zposition in parentheses, which are used to indicate a
tuple. A tuple is a data sequence, a bit like a list, with a key difference that you
can’t change its values. (It’s immutable.) So cellsVisitedList is a list that con-
tains tuples, which in turn contain pairs of x and z coordinates. You can use the
Python shell to take a look inside this list. Here’s an example from one run of the
program, showing a path taken through the maze:

>>> print(cellsVisitedList)
[(6, 6), (6, 7), (6, 8), (5, 8), (4, 8), (3, 8), (3, 7)]

For Step 5 in the algorithm, you go back to the previous position in the path if your
cell has no unvisited neighbors. This involves taking the last position out of the
list. There’s a list method called pop() that you can use. It takes the last item from
a list and deletes it from that list. In your program, you put it into a variable called
retrace, which then stores a tuple for the x and z positions in the maze. As with
a list, you can use index numbers to access the individual elements in a tuple. The
index numbers start at 0, so retrace[0] will hold your previous x position, and

274 PART 4 Programming the Raspberry Pi

retrace[1] will hold your previous z position. Here’s the code, including a line to
show the gold block in its new position:

else: # do this when there are no unvisited neighbors
 retrace = cellsVisitedList.pop()
 xposition = retrace[0]
 zposition = retrace[1]
 showMaker(xposition, zposition)

Note that the else statement should be in line with the if statement it’s paired
with — in this case, the one that tests whether you found any possible directions
to move in.

Step 6 in the algorithm has already been implemented because the while loop will
keep repeating the indented code underneath it until every cell has been visited.

Adding a ceiling
Personally, we think it’s more fun to leave the ceiling open and be free to fly up
and marvel at your maze and then drop into it at any point. If you want to build a
game around your maze, though, and stop people from cheating, you can add a
ceiling using the following code. Just change the variable CEILING to True at the
start of the program. We’ve made the ceiling out of glass bricks, so it doesn’t get
too dark in there:

if CEILING == True:
 mc.setBlocks(MAZE_X, GROUND+HEIGHT+1, MAZE_Z, ↩

MAZE_X+(SIZE*2), GROUND+HEIGHT+1, MAZE_Z+(SIZE*2), 20)

Positioning the player
Finally, let’s place the player at the random position where you started generating
the maze. You could put the player anywhere, but this seems as good a place as
any, and it uses random numbers you have already generated:

mc.player.setTilePos(realx(playerx), GROUND+1, ↩
realz(playerz))

Now you’re ready to play! Figure 13-4 shows the maze from the inside.

CHAPTER 13 Programming Minecraft with Python 275

The final code
Listing 13-1 shows the final and complete code:

LISTING 13-1:	 The Minecraft Maze Maker

import sys, random
from mcpi import minecraft
mc = minecraft.Minecraft.create()

mc.postToChat("Welcome to Minecraft Maze!")

def realx(x):
 return MAZE_X + (x*2) - 1

def realz(z):
 return MAZE_Z + (z*2) - 1

def showMaker(x, z):
 mc.setBlock(realx(x), GROUND+1, realz(z), 41) # 41=gold

def hideMaker(x, z):
 mc.setBlock(realx(x), GROUND+1, realz(z), 0)

FIGURE 13-4:
Finding your way

around the maze.

(continued)

276 PART 4 Programming the Raspberry Pi

def demolish(realx, realz):
 mc.setBlocks(realx, GROUND+1, realz, realx,↩

HEIGHT+GROUND, realz, 0)

def testAllWalls(cellx, cellz):
 if mc.getBlock(realx(cellx)+1, GROUND+1, ↩

realz(cellz))==MAZE_MATERIAL and mc.getBlock↩
(realx(cellx)-1, GROUND+1, realz(cellz))==MAZE_MATERIAL ↩
and mc.getBlock(realx(cellx), GROUND+1, realz(cellz)+1)==↩
MAZE_MATERIAL and mc.getBlock(realx(cellx), GROUND+1, ↩
realz(cellz)-1)==MAZE_MATERIAL:

 return True
 else:
 return False

mc.setting("world_immutable", True)

Configure your maze here
SIZE = 10
HEIGHT = 2
MAZE_X = 0
GROUND = 0
MAZE_Z = 0
MAZE_MATERIAL = 1 # 1=stone
GROUND_MATERIAL = 2 # 2=grass
CEILING = False

clear area
mc.setBlocks(MAZE_X-10, GROUND, MAZE_Z-10, MAZE_X+↩

(SIZE*2)+10, GROUND+150, MAZE_Z+(SIZE*2)+10, 0) # air

lay the ground
mc.setBlocks(MAZE_X-10, GROUND, MAZE_Z-10, MAZE_X+↩

(SIZE*2)+10, GROUND, MAZE_Z+(SIZE*2)+10, GROUND_MATERIAL)

origin marker
mc.setBlock(MAZE_X, GROUND+HEIGHT+1, MAZE_Z, MAZE_MATERIAL)

LISTING 13-1:	 (continued)

CHAPTER 13 Programming Minecraft with Python 277

move player above middle of maze
mc.player.setTilePos(MAZE_X+SIZE, GROUND+25, MAZE_Z+SIZE)

mc.postToChat("Now building your maze...")

build grid of walls
for line in range(0, (SIZE+1)*2, 2):
 mc.setBlocks(MAZE_X+line, GROUND+1, MAZE_Z, ↩

MAZE_X+line, GROUND+HEIGHT, MAZE_Z+(SIZE*2), MAZE_MATERIAL)
 mc.setBlocks(MAZE_X, GROUND+1, MAZE_Z+line, MAZE_X+↩

(SIZE*2), GROUND+HEIGHT, MAZE_Z+line, MAZE_MATERIAL)

setup of variables for creating maze
numberOfCells = SIZE * SIZE
numberOfVisitedCells = 1 # 1 for the one you start in
cellsVisitedList = []

xposition = random.randint(1, SIZE)
zposition = random.randint(1, SIZE)
playerx = xposition
playerz = zposition
showMaker(xposition, zposition)
cellsVisitedList.append((xposition, zposition))

while numberOfVisitedCells < numberOfCells:
 possibleDirections = []

 if testAllWalls(xposition - 1, zposition):
 possibleDirections.append("left")

 if testAllWalls(xposition + 1, zposition):
 possibleDirections.append("right")

 if testAllWalls(xposition, zposition - 1):
 possibleDirections.append("up")

 if testAllWalls(xposition, zposition + 1):
 possibleDirections.append("down")

 hideMaker(xposition, zposition)
(continued)

278 PART 4 Programming the Raspberry Pi

 if len(possibleDirections) != 0:
 directionChosen=random.choice(possibleDirections)

 #knock down wall between cell in direction chosen
 if directionChosen == "left":
 demolish(realx(xposition) - 1, realz(zposition))
 xposition -= 1

 if directionChosen == "right":
 demolish(realx(xposition) + 1, realz(zposition))
 xposition += 1

 if directionChosen == "up":
 demolish(realx(xposition), realz(zposition) - 1)
 zposition -= 1

 if directionChosen == "down":
 demolish(realx(xposition), realz(zposition) + 1)
 zposition += 1

 numberOfVisitedCells += 1
after the move, increase number of visited cells
 cellsVisitedList.append((xposition, zposition))
 showMaker(xposition, zposition)

 else: # do this when there are no unvisited neighbors
 retrace = cellsVisitedList.pop()
 xposition = retrace[0]
 zposition = retrace[1]
 showMaker(xposition, zposition)

if CEILING == True:
 mc.setBlocks(MAZE_X, GROUND+HEIGHT+1, MAZE_Z, ↩

MAZE_X+(SIZE*2), GROUND+HEIGHT+1, MAZE_Z+(SIZE*2), 20)

mc.postToChat("Your maze is ready!")
mc.postToChat("Happy exploring!")
mc.player.setTilePos(realx(playerx), GROUND+1, ↩

realz(playerz))

LISTING 13-1:	 (continued)

CHAPTER 13 Programming Minecraft with Python 279

Adapting the Program
When the maze is built, the gold brick is left showing, so you could try to solve the
maze to find the brick. You could also plant other objectives in the maze and time
how long it takes the player to find them. The mc.player.getTilePos() com-
mand checks where the player is in the Minecraft world and gives you a result in
the form x,y,z.

You could add an entrance and exit in a random position in the border of the maze
so that the goal is to travel from one side to the other. You could make huge mazes
more playable by adding landmarks. (Try using different wall materials or putting
blocks on top of some walls.) After the maze has been generated, you could knock
out random walls so that there are some shortcuts through the maze. Or maybe
just replace them with glass blocks, to provide a tantalizing glimpse into another
corridor. What about a multistory maze, with stairs between the levels? The pos-
sibilities are — ahem! — amazing.

CHAPTER 14 Making Music with Sonic Pi 281

Chapter 14

IN THIS CHAPTER

»» Playing notes and melodies using
Sonic Pi

»» Creating random computer-
generated music

»» Adding samples to your compositions

»» Synchronizing your tunes with
drumbeats and samples

Making Music with
Sonic Pi

For much of the music we hear today, computers are at least as important in
the studio as microphones are, and they have been for many years. Using
Sonic Pi, you can start composing your own computer music by program-

ming your Raspberry Pi. It enables you to put together simple programs that play
synthesizer melodies and sampled sounds, generating your own distinctive
instrumental music.

Sam Aaron, who created Sonic Pi, says: “Sonic Pi has two concurrent goals: to be
simple to learn and yet also powerful enough for professional musicians. You
might think that sounds a bit ambitious, but it exactly describes a piano.”

Sam has performed concerts using Sonic Pi at international festivals including
Moogfest 2016, a celebration of electronic music. While people listen to Sam’s
music at a performance, they can see how he is creating and editing his code on
the screen on the stage. Music magazine Rolling Stone described Sam’s music as
sounding like “Electric Café-era Kraftwerk, a little bit of Aphex Twin skitter and
some Eighties electro.”

Sonic Pi runs from the desktop environment (see Chapter 4) and is pre-installed
in Raspbian.

282 PART 4 Programming the Raspberry Pi

You run Sonic Pi by clicking the Applications Menu button in the top-left of the
screen, clicking Programming, and then clicking the entry for Sonic Pi.

Understanding the Sonic Pi Screen Layout
Figure 14-1 shows the screen layout for Sonic Pi. You might see some differences
between your screen layout and ours, but the fundamentals should be the same.
Click to enlarge the window if necessary. (See the section on resizing and closing
your program windows in Chapter 4.) On the left is the Editor, where you type in
your code. On the right is the Log, where Sonic Pi tells you what it’s doing as it
plays your music. At the bottom is the Help pane.

Sonic Pi uses ten buffers, which you access by clicking the buttons at the bottom
of the Editor. You can think of each buffer as like having a different file open for
editing, but you can play music from different buffers at the same time. This can
be particularly useful for live performance: You might set up a loop in one buffer
and then experiment with code to add notes on top in another buffer. When you
exit Sonic Pi, the content of your buffers is saved for you, and it’s loaded when you
come back again. You can also save the content of a buffer to a text file using the
Save button in the menu bar at the top of the screen.

FIGURE 14-1:
The Sonic Pi

screen layout.

CHAPTER 14 Making Music with Sonic Pi 283

At the top of the screen are buttons to run your program (play your music) and
stop it. They use symbols similar to any audio player: a triangle to play and a
square to stop. There are also buttons to adjust the text size, show or hide the
oscilloscope (which displays waveforms as your music plays), show the info
window, and show or hide the Help pane at the bottom of the screen.

There is also a Preferences button to the right of the Help button. The Preferences
window provides a volume control and enables you to force the audio output to go
through headphones or through the HDMI cable. It also has options for adjusting
the Editor display and checking for any updates. If you use other electronic instru-
ments or music software, you can connect to Sonic Pi using the MIDI or OSC pro-
tocols, which are configured in the IO preferences.

You can adjust the size allocated to the panes by clicking and dragging the divid-
ing lines between them.

If you are performing with Sonic Pi, you can use the dark mode for a color scheme
based on a black background, which will be more comfortable to use in a club or
concert venue with low lights. There’s also a Pro icons setting, which replaces the
buttons with stripped-back icons for a more streamlined interface. Find both
settings in the Editor preferences.

Playing Your First Notes
Click in the Editor and type the following:

play 60

Nothing happens because you’ve entered your program but haven’t run it yet.
Click the Run button and you will hear a middle C note sound. At the same time,
you’ll see the Log update.

The note numbers used are standard MIDI note numbers, widely used in elec-
tronic instruments. You’ve already seen them in Scratch. Higher-sounding notes
use higher numbers, and lower-sounding notes use lower numbers.

Try adding some more notes to your program:

play 60
play 64
play 67

284 PART 4 Programming the Raspberry Pi

When you click the Run button, you still hear just one sound, but three different
notes are playing at the same time. It’s actually a C chord you hear, which uses the
notes C (60), E (64), and G (67). If you want to play the notes separately, you can
add a pause between them using the sleep command:

play 60
sleep 0.5
play 64
sleep 0.5
play 67
sleep 0.5
play 72

There is an extra higher C note on the end of that sequence to make it sound like
a fanfare. You can experiment with writing your own tunes. Just put together a
sequence of notes.

Table 14-1 shows the standard MIDI notes, which run from 0 to 127. In practice,
they sound extremely tinkly at the high end and descend into indistinct soft thuds
at the low end. For best results, we recommend you keep your numbers between
48 and 96, but feel free to experiment to find out what sounds good to you.

TABLE 14-1	 MIDI Notes
Note 0 1 2 3 4 5 6 7 8 9

C 0 12 24 36 48 60 72 84 96 108 120

C# 1 13 25 37 49 61 73 85 97 109 121

D 2 14 26 38 50 62 74 86 98 110 122

D# 3 15 27 39 51 63 75 87 99 111 123

E 4 16 28 40 52 64 76 88 100 112 124

F 5 17 29 41 53 65 77 89 101 113 125

F# 6 18 30 42 54 66 78 90 102 114 126

G 7 19 31 43 55 67 79 91 103 115 127

G# 8 20 32 44 56 68 80 92 104 116

A 9 21 33 45 57 69 81 93 105 117

A# 10 22 34 46 58 70 82 94 106 118

B 11 23 35 47 59 71 83 95 107 119

CHAPTER 14 Making Music with Sonic Pi 285

As you can see, the numbers in the table count from top to bottom, and from left
to right. Notes get higher as you go down the table and as you move from left to
right across the columns. The next highest note after B (at the bottom of the table)
is the C at the top of the next column to the right. It’s like a piano, where the same
key layout (running from C to G, then A to B, and then starting from C again)
repeats all the way along it.

If you don’t know much about music, stick to the notes that don’t have a sharp
symbol (#) on them and avoid too many huge leaps. Try moving a few notes up or
down a column and dip into a neighboring column when you’re near the top or
bottom of your column. By following those simple guidelines, you should end up
with a jolly little ditty.

Using Note and Chord Names
Sonic Pi enables you to use proper note names instead of MIDI numbers by using
the name of the note (a letter from A to G), plus the number of the octave it’s in.
You can see those numbers labeling the columns in Table 14-1.

For example, to play a middle C, you can use

play :c4

To play the B one note before it, which is in the next lowest octave, you would use

play :b3

The Log shows that Sonic Pi plays notes 60 and 59 respectively. You can check the
note names and numbers in Table 14-1 to confirm that this is what you expected.

Here’s how you could code a fanfare using note names instead of numbers:

play :c4
sleep 0.5
play :e4
sleep 0.5
play :g4
sleep 0.5
play :c5

If you want to use a sharp note, insert the letter s in the note name (for example,
play :cs4) and use b for a flat note (play :cb4).

286 PART 4 Programming the Raspberry Pi

You can also use names to play chords. You tell Sonic Pi the lowest note in the
chord and add which type of chord you want (try :major, :minor, or :diminished).
There are also options for :major7, :minor7, :diminished7, and :dom7, among
others. For a complete list, click Lang in the Help pane, and then select Chord.
Try this:

play chord(:a3, :major)
sleep 1
play chord(:a3, :minor)

In each case, it plays three notes at the same time. If you look at the note numbers
in the Log, you can see that the middle note was one pitch lower in the second
chord because it’s a minor chord. Again, you can use Table 14-1 to check the note
numbers Sonic Pi displays against the musical note names.

The chord is returned as a list, and you can use play_pattern to hear the notes of
the chord in a sequence, like this:

play_pattern chord(:a3, :major)
play_pattern chord(:a3, :minor)

Writing Shorter Programs
There is a more efficient way you can play a sequence of notes and specify the
time, in beats, between each one: Use the play_pattern_timed command. Click a
button to go to a new buffer and try this:

play_pattern_timed [:c4, :e4, :g4, :c5], [0.5, 0.5, 1]

Pay careful attention to the brackets and commas here. This command takes two
different sets of information, and each set is between square brackets. The first
set is the notes you want to play, and they are the same notes as we used in our
fanfare earlier. The second set of information is separated from the first set by a
comma, and it is the length of the pause between the notes. There are four notes,
but just three gaps between them, so the second set of brackets has fewer items
in it. The numbers we’ve used here put a half-beat pause between the first and
second notes, and the second and third notes, but double that to build up the
suspense (such as it is) before the final note sounds.

CHAPTER 14 Making Music with Sonic Pi 287

Composing Random Tunes Using Shuffle
The bracketed sections are lists, similar to lists in Python. You can add different
instructions (or methods) to the lists to change the order of the items in them. For
example, try this, using the reverse method:

play_pattern_timed [:c4, :e4, :g4, :c5], [0.5, 0.5, 1]
play_pattern_timed [:c4, :e4, :g4, :c5].reverse, [0.5, 0.5, 1]

You’ll hear the notes of the fanfare played forward and then backward, but with
the same timing each time. You can use the shuffle method, which changes the
order of the items in a list, to hear a random tune. Try this:

play_pattern_timed [:c4, :d4, :e4, :f4, :g4, :a4, :c5].shuffle, ↩
[0.5, 0.5, 1, 0.5, 0.5, 1]

We’ve used a simple rhythm there: two short notes and then a long note. It’s a
cheery melody, but it’s a bit short, so get Sonic Pi to repeat it. Here’s how:

4.times do
 play_pattern_timed [:c4, :d4, :e4, :f4, :g4, :a4, :c5].shuffle, ↩

[0.5, 0.5, 1, 0.5, 0.5, 1, 2]
end
play :c4

This example wraps the tune playing code in a loop that repeats it four times. The
start of the loop is 4.times do, and the end of the repeating section is marked,
appropriately enough, with the word end. Sonic Pi automatically indents your
musical code by two spaces to show it’s the part that is to be repeated. If you want
to repeat more or less than four times, change the number 4 at the start.

There are some other changes here, too: First, we added a timing value for the last
note in the sequence. It’s the 2 that has sneaked inside the last square bracket.
We’ve also added a final note, :c4. Whatever randomness happens in the rest of
the tune, this sequence of notes always sounds good when it ends on a C, because
all the notes in the sequence are from the C major scale.

Changing the Random Number Seed
Each time you run the program, it uses the same sequence of notes, even though
that sequence was generated randomly. Sonic Pi ensures that your music sounds
the same each time you run it, and wherever it runs, even if it incorporates

288 PART 4 Programming the Raspberry Pi

random elements. That ensures that you remain in control as a composer and
know what the music will sound like for your listeners, even with an element of
chance in the composition.

If you want to change the sequence to a different one, you can change the seed,
which is the starting point for generating random numbers. By default it’s set to
0. Add the line below at the start of your program for generating random tunes
using shuffle, and then run your program:

use_random_seed 10

Try changing the seed to different numbers, and run the program again to see how
the sequence changes.

Using List Names in Your Programs
The lists of notes and values can make your program look cluttered, but you can
tidy your program up by giving the lists names and using those names in place
of the lists. You can streamline your previous program like this:

use_random_seed 10
note_pitches = [:c4, :d4, :e4, :f4, :g4, :a4, :c5]
note_timings = [0.5, 0.5, 1, 0.5, 0.5, 1, 2]
4.times do
 play_pattern_timed note_pitches.shuffle, note_timings
end
play 60

Playing Random Notes
You can play random note numbers, like this:

lowest_note = 60
highest_note = 84
6.times do
 play rrand_i(lowest_note, highest_note)
 sleep 0.5
end

CHAPTER 14 Making Music with Sonic Pi 289

Try this program in a new buffer. In this program, lowest_note and highest_
note are variables. The rrand_i() function gives you a random whole number (or
integer). You give the function the lowest and highest possible number you want
the computer to pick from. As with the shuffle method, each time you run the
program, it generates the same random numbers, so the music sounds the same.
You can change the random seed to get a new melody. (See the section in this
chapter on creating random tunes with shuffle.)

The problem with generating random note numbers is that not all notes sound
good together. Before this example, we’ve been using the notes from the white
keys on the piano (the scale of C major) and none of the sharp notes. When you
start throwing in sharp notes, as the random music can do, it starts to sound too
chaotic. An alternative way to pick a random note is to create a list of the notes you
like (the scale of C major we’ve been using) and then use the choose() method to
pick a random note from it. Here’s an example:

note_pitches = [:c4, :d4, :e4, :f4, :g4, :a4, :c5]
loop do
 play note_pitches.choose()
 sleep 0.5
end

That program uses a loop that repeats forever, so it’ll keep improvising until you
click the Stop button.

The Log shows you the note numbers that are played, so you can use this to see
which notes are being chosen and confirm that your program is behaving as you
expect.

Experimenting with Live Loops
One of the best features of Sonic Pi is the live loop, which enables you to change
your music while it repeats.

The following program modifies the previous example by turning it into a live
loop and adding tempo (BPM is short for beats per minute), synth, and option
choices. Changing the synth is like changing the instrument the notes are played
on. Options (or opts) can be added after the instruction to play a note and affect
how the note is played on that instrument. The attack option changes how long a
note takes to reach its full volume, for example.

290 PART 4 Programming the Raspberry Pi

The new lines are in bold in the following code:

note_pitches = [:c4, :d4, :e4, :f4, :g4, :a4, :c5]
live_loop :endless_notes do

use_bpm 120
use_synth :dull_bell

 play note_pitches.choose(), attack: 0.01
 sleep 0.5
end

Take care with where you put spaces around colons. In Sonic Pi, colons are used
immediately before the name of something (such as a live loop, sample, synth, or
chord). The program won’t work if you put a space between the colon and the
synth name. Colons are also used to separate a parameter (or something you can
change) from its value. In this example, attack is a parameter. The colon must go
immediately after the parameter name.

Note that you need to give a live loop a name. This program uses :endless_notes,
but you could choose something else if you prefer.

When you run the program, you’ll hear the new synth sound (:dull_bell), and
notice the new tempo.

The clever bit is that you can make changes to the program and have them
incorporated seamlessly into the music. For example, try changing the synth to
:chipbass and clicking the Run button. The tune changes instrument, but every-
thing remains in time. Try changing the BPM to 60 and clicking the Run button to
hear the music slow down. Change the attack value to 1, and you’ll hear the sharp
percussive sound of the instrument change to a slow drone, almost like a church
organ. You can add more options to the same play instruction, as long as you
separate them with a comma.

To tell Sonic Pi that you’ve finished making changes and to hear them in your
music, you must click Run again.

The Help pane includes a list of synths you can choose from. Show the Help pane
and then click Synths at the bottom. For each synth, there is information about
the available options, and useful number values to try.

For more fluid experimentation, the autocomplete feature can be used while
you’re writing your code. When you want to change synth, for example, delete the
name of the current synth, including the space before it, and then tap space after
use_synth to see the list of available synths in the autocomplete menu. (See
Figure 14-2.) Click one in the menu, or highlight it using the cursor keys and
select it by pressing Tab or Enter. This is a quick way to enter your code, but also
a great way to explore the synths and options available.

CHAPTER 14 Making Music with Sonic Pi 291

If you press Run multiple times in a program that doesn’t use a live loop, you will
hear multiple instances of the music at the same time, with no synchronization
between them.

Using Samples
The programs you’ve made so far are an interesting way to explore computer
music, especially when the computer starts surprising you with its random
compositions.

Sonic Pi can also use samples, which are snippets of music that you can manipu-
late, such as by changing their speed or adding effects to them. Sonic Pi includes
a wide range of samples, and you can see a list of them by showing the Help pane
and then using the Sample button in the bottom left. They’re especially useful for
adding drum loops to your music.

Here’s one of our favorites:

sample :loop_industrial

Put that into a new buffer and click Run to hear it. You can speed it up or slow
it down by changing its rate. Here’s how you make it play at half its normal
speed:

sample :loop_industrial, rate: 0.5

We can repeat that sample to make a continuous rhythm. Like we did when we
were playing notes, we use the sleep command to put a pause between each
repetition. Samples can be different lengths, however, which can make it difficult
to work out how long to sleep. Luckily, Sonic Pi provides a feature in the language

FIGURE 14-2:
Choosing a

synth using the
autocomplete

feature.

292 PART 4 Programming the Raspberry Pi

to stretch a sample over a certain number of beats, which solves this problem. You
can use it like this:

loop do
 sample :loop_industrial, beat_stretch: 2
 sleep 2
end

Now the sample is stretched over 2 beats, and there is a 2-beat pause between
each repetition. As a result, you can hear a continuous rhythm. As you saw when
experimenting with live loops, you can change the tempo with the use_bpm
command.

Adding Special Effects
You can play a sample and add effects to it, including distortion, echo, and reverb.
There is a full list of effects (also known as Fx) in the Help pane, and you can also
find them using the autocomplete feature. This is how you add distortion to one of
the guitar samples:

with_fx :distortion do
 sample :guit_e_fifths
end

You can adjust how the effect is applied to the sound using options. There are
several options for distortion, including distort, which controls how much the
sound is distorted, and mix, which controls the balance between the original sound
and the distorted version. In both cases, the value should be between 0 and 1.
Here’s how you use them:

with_fx :distortion, distort: 0.9, mix: 0.5 do
 sample :guit_e_fifths
end

Try using different values for those options and running the code to see how the
sound changes. Experiment with other effects too.

To see the full options for this or any other effect, click Fx in the Help pane, or
click the effect name in your code and then use Ctrl+I to jump to its entry (if avail-
able) in the Help. You can also use Ctrl+I to get help on commands in your code.

CHAPTER 14 Making Music with Sonic Pi 293

Synchronizing with Your Drumbeat
You now know how to play a repeating rhythm, and how to play other samples
and synth melodies. You can play multiple live loops at the same time. One of the
challenges is to synchronize all the different parts of the music so they play in
time. To do that, you can provide an option to synchronize the start of a live loop
with the name of another live_loop. Here’s an example that synchronizes a
cymbal beat with the main drum loop:

live_loop :drums do
 sample :loop_industrial, beat_stretch: 2
 sleep 2
end

live_loop :cymbals, sync: :drums do
 4.times do
 sample :elec_cymbal
 sleep 1
 end
 sleep 8
end

When you play that example, you’ll hear that the cymbal plays four times, in per-
fect sync with the main drumbeat. It then rests for 8 beats before playing again.

Take care with the colons when setting the sync option for your live loop; other-
wise, the program won’t work. The first colon (after sync) goes between the
option and its parameter and touches the option name, and the second colon
(before drums) marks the start of the loop name you want to synchronize with.

Bringing It All Together
Listing 14-1 brings together the ideas in this chapter. It uses the loop_industrial
sample as the backbone, with the other live loops synchronized to start in time
with it. There is a melody live loop, which plays random notes from the list pro-
vided. The list includes the same note several times, so the song tends toward
using the C note more often. There is a loop that plays higher notes more quickly
over the top, and a bass part that is played using the play_pattern_timed instruc-
tion you saw earlier in this chapter. Finally, there is another live loop that adds the
amen drumbeat on top, in bursts. It plays 8 times, but the sleep command is used
to stop the beat from starting immediately, and to put a gap between each burst.

294 PART 4 Programming the Raspberry Pi

LISTING 14-1:	 Bringing it all together

Robot jam by Sean McManus
Music example from Raspberry Pi For Dummies, 3rd Edition

live_loop :drums do
 with_fx :krush do
 sample :loop_industrial, beat_stretch: 2
 end
 sleep 2
end

live_loop :melody, sync: :drums do
 note_pitches = [:c3, :c3, :c3, :d3, :g3, :g3, :a3, :c4, :c4]
 use_synth :saw
 with_fx :wobble do
 play note_pitches.choose()
 sleep 2
 end
end

live_loop :plinks, sync: :drums do
 plink_pitches = [:c4, :d4, :e4, :g4, :a4]
 use_synth :chiplead
 play plink_pitches.choose()
 sleep 0.25
end

live_loop :bass, sync: :drums do
 use_synth :tb303
 play_pattern_timed [:c2, :c2, :c2, :c2, :c2, :c2, :g2, :a2], ↩

[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
end

live_loop :amen, sync: :drums do
 sleep 16
 8.times do
 sample :loop_amen, beat_stretch: 2
 sleep 2
 end
end

CHAPTER 14 Making Music with Sonic Pi 295

You can use this piece as the basis for your own experiments. Because the sections
use live loops, you can modify the effects, options, synths, and notes and then
click the Run button to hear your changes.

Next Steps with Sonic Pi
We hope that this chapter has inspired you to experiment with making music on
the Raspberry Pi. You’ve learned how to play melodies using different synths.
You’ve also discovered several different ways to create improvised music, using
random note numbers, and random notes picked from a list. We’ve shown you
how to bring it all together, too, combining and synchronizing samples and synth
melodies. Using the code in this chapter, and the rich range of samples and tools
that Sonic Pi provides, you can compose your own music.

There’s much more you can do with Sonic Pi, including using it with Minecraft
and using MIDI signals to connect to other electronic instruments and music
software. The Help pane includes a tutorial and a series of articles that were
previously published in The MagPi magazine, so there’s plenty of support when
you’re ready to take Sonic Pi further.

Whether you like dance, prog, pop, or rock, Sonic Pi deserves to be in your band.

5Exploring
Electronics with
the Raspberry Pi

IN THIS PART . . .

Discover the fundamentals of electricity, how to calculate
current, and how to solder.

Find out how the Raspberry Pi can reach out through its
GPIO pins.

Learn how to control LEDs and read push buttons.

Create an electronic dice and make a pedestrian
crossing simulator.

Explore the thousands of colors you can make from LEDs.

Make a Rainbow Invaders game.

Use RFID (Radio Frequency IDentification) cards to make
a jukebox and dress up a doll.

Make your Raspberry Pi sing a world-record-length
version of Old McDonald Had a Farm.

CHAPTER 15 Understanding Circuits 299

Chapter 15

IN THIS CHAPTER

»» Discovering what a circuit is

»» Getting familiar with GPIO

»» Coming to grips with a soldering iron

»» Looking at ready-made add-on
boards

Understanding Circuits

Part 5 of this book deals with what is known as physical computing, or making
your program reach out beyond the confines of keyboard and screen and
into the physical world. You discover how you can use your Scratch and

Python programming skills to sense what is happening in the outside world
and to control lights, motors, and, in fact, anything else that uses electricity.
However, before you can do this safely, without risking damage to you or your Pi,
you need to look at a little bit of background electrical theory so that you have a
foundation to build on.

In this chapter, we show you the relevant concepts that allow you to understand
why the projects look like they do and what you should avoid doing. Next, we
introduce you to the concept of GPIO connections, explain what they are, and look
at why they are included in the Raspberry Pi computer. We also discuss in general
how you can use them.

Although you can make the projects in Chapter 16 without soldering, in order to
make most things in electronics, you have to be able to use a soldering iron. We
show you how to go about this and discuss safety concerns. Finally, we introduce
you to the concept of ready-made add-on boards because they can make building
stuff a lot simpler (albeit at the cost of a bit more money).

300 PART 5 Exploring Electronics with the Raspberry Pi

Discovering What a Circuit Is
The first thing you have to understand is that a circuit is something where elec-
tricity can flow; it is a path, or a conduit. It is continuous; that is, it’s a loop with
no dead ends. If you have a dead end, you don’t have a circuit. Electricity has to be
able to flow. So let’s be more specific in what we mean by electricity. It can be
complex stuff and because it’s invisible, you have to do a bit of imagining to
appreciate what is going on.

There are two aspects of electricity: current and voltage:

»» Current is what actually flows.

»» Voltage is what forces the current round a circuit.

Voltage can’t flow and current doesn’t exist in the absence of a voltage. However,
voltage can exist in the absence of current. You’ve no doubt felt the effects of
static electricity, which is the build-up of voltage that occurs when insulators
(materials that don’t normally conduct electricity) are rubbed together.

It’s kind of like how rubbing a balloon on wool can make the hairs on the back of
your hand stand up. You can feel it, but only because you feel your hairs being
lifted. You aren’t feeling the electricity itself. You only feel static electricity when
it stops being static and a current flows. At a very high voltage, a little current can
hurt a lot. You’ve probably felt the static-discharge shock of touching a metal
object after walking on a nylon carpet.

Understanding the nature of electricity
So, what is electric current? It is a flow of electrons past a point, just like a flow of
cars past a motorway sign. With electric circuits, you measure current in amps. One
amp of current is about 6.24 × 1018 electrons per second passing a point, or 624
followed by 16 zeros. That’s a big number, and, fortunately, we don’t have to count
all those zeroes. The bigger the voltage, the more current is forced through a circuit,
but circuits have a property that resists the flow of current. We call this the resistance
of a circuit. This resistance depends on the materials the circuit is made from and is
measured in a unit called ohms. So, because we know how to define an amp in terms
of electron flow, we can define these other two properties in terms of an amp:

One volt is the voltage you need to drive one amp through a circuit with a resistance of
one ohm.

You can advance a long way in electronics by knowing just that single fact. In fact,
that definition is contained in what is known as Ohm’s law:

CHAPTER 15 Understanding Circuits 301

Volts = Amps × Ohms

However, it would be too easy to just use that as a formula. People would under-
stand it straight off, and that would never do! You have to build up a mystique.
Imagine how you would feel about a doctor if he actually told you in plain English
what was wrong with you. No, it needs to be dressed up so that not everyone can
understand it. Ohm’s law becomes

E = I × R

where E is the electromotive force measured in volts, I is the current measured in
amps, and R is the resistance measured in ohms.

This is the formula you see in books and all over the Internet, but remember —
it’s just

voltage = current × resistance

Connecting things to the Raspberry Pi involves juggling voltage and current, and
often you need to use a resistor to limit the current a voltage pushes through a
device in a circuit. Using Ohm’s law is the simple way to work out what you need.
Later on in this chapter, we show you how to use this to make sure you drive
light-emitting diodes (LEDs) correctly.

Resistance is not the only thing we can calculate. If we know two of the quantities
in a circuit, we can calculate the other one. We do this by rearranging this simple
formula to find any one of the quantities if we know the other two. We like the
Ohm’s law triangle, which gives the three formulas in one go:

302 PART 5 Exploring Electronics with the Raspberry Pi

When scientists were first discovering electricity, they knew that it flowed from
one terminal to the other. They said the flow was from the positive to the nega-
tive, but which was which? Experiments with making a current flow through a
solution of water and copper sulphate showed that copper was dissolved from one
wire and deposited on the other. So they quite reasonably assumed that the metal
was flowing with the flow of electricity and named the dissolving wire an anode or
positive and the wire receiving the metal the cathode or negative. They were wrong:
The electrons that constitute the current actually flow the other way. However,
this notion became so entrenched that today we still use it. We call it conventional
current, and it flows from the positive to the negative.

In a way, it doesn’t matter which direction we think of it as flowing. It’s the fact
that it is flowing that is important, and we use the terms positive and negative so
we know what way round it is flowing. A common mistake beginners make in
thinking about electricity is to think that the direction of flow matters because “it
first flows through one component and then through another.” This leads to the
erroneous thought that the first component it meets will “use up” some or all of
the electricity and then pass on what is left to the next one. This is simply wrong,
because current flows through all components equally in any one path. You might
also hear the phrase “electricity finds the path of least resistance and flows
through that.” Again this is nonsense. Electricity always flows through all avail-
able paths at the same time — it is just that the resistance of a path determines
how much current flows through that path.

Power sources, like batteries and power supplies, are all marked with positive and
negative symbols so that you can connect it the correct way. This is known as
direct current (DC) because the current flows in only one direction.

The other sort of power supply you can get drives the current round in one
direction for a short length of time and then reverses the direction for a short
time. This is known as alternating current (AC). A favorite trick that electricians
play on their apprentices is to send them to the store to fetch the nonexistent AC
battery.

Switches are used to make or break circuits, so an early name for a switch was a
breaker.

Putting theory into practice
To see how this works, consider a simple circuit. To make things a bit clearer and
easy to draw, we use symbols to represent components and use lines to represent
wires that connect the components together, as shown in Figure 15-1.

CHAPTER 15 Understanding Circuits 303

Take a switch. Its symbol (refer to Figure 15-1) is simple. There are two types of
switches: single throw and double throw. In the single throw, a connection is made
or not made through the switch, depending on the switch position. In the double-
throw switch, a common connector is connected to one or the other switch con-
tact, depending on the switches’ position. That is, when the switch is one way,
there is a connection through the switch from one connection to the common
connection. When the switch is the other way, the connection is between the other
connection and the common connection.

It’s called a double-throw switch, or sometimes a changeover switch, because the
switch changes over which terminal is connected to the common one. The figures
in this section help explain this concept. However, the important thing to note
is that we use the same symbol for a switch, no matter what the physical switch
looks like. Figure 15-2 shows just some of the many physical forms a switch
can take.

FIGURE 15-1:
Two circuit

symbols
representing

a switch.

FIGURE 15-2:
Just a few of the

many different
physical forms a
switch can take.

304 PART 5 Exploring Electronics with the Raspberry Pi

Figure 15-3 shows the symbols for a battery, a small flashlight or torch bulb, and
a resistor. Note that there are two symbols for a resistor: one for the U.S. and one
for Europe. In the U.K., we used to use the U.S. symbol until the late 1960s. Today,
both are understood.

The world’s simplest circuit is shown in Figure 15-4. While the switch is open,
there is no complete circuit, so there is no current flow and no lighting of the bulb.

However, when the switch is closed as shown in Figure 15-5, a path for the current
to flow along is created and the bulb lights up. Note that this diagram has a
different symbol for a closed switch than the one used in Figure 15-4. This is so
that you can more easily see what is going on. Normally, you have to imagine the
switch in the open and closed positions and visualize the resulting circuit or
break in the circuit. We call this a series circuit because all the circuit elements are
in a line, one after the other, and the same current flows through all elements of
the circuit.

FIGURE 15-3:
Schematic

symbols for some
components.

FIGURE 15-4:
A schematic of a

simple circuit.

CHAPTER 15 Understanding Circuits 305

So, for a circuit like this, there is only one value of current. When the switch is
closed, current flows from the positive end of the battery through the switch,
through the bulb lighting it up, and, finally, back into the batteries’ negative ter-
minal. Note here that the actual electrons are returned to the battery. The battery
loses energy because it has to push them round the circuit. The positive and nega-
tive terminals of a battery show the direction it will push the current, from the
positive to the negative. In this circuit with an incandescent light bulb, the direc-
tion of the current doesn’t matter; however, this is rare in electronics. In most
circuits, the current must be sent round the circuit in the right direction.

Communicating a circuit to others
You should use circuit symbols in schematics because they constitute a universal
language and make it easy to see what is going on. Many people waste their time
using diagrams that show the physical appearance of components and wires and
their interconnection. Although this might appear at first to be attractive, espe-
cially to a beginner, physical layout diagrams like this are almost impossible to
follow in all but the most trivial circuits. Despite the initial small hurdle of learn-
ing to read the symbols, a schematic is a much simpler way of defining a circuit.
Physical layout diagrams are a dead-end for anything more than a trivial circuit
and should be avoided.

Some time ago, Mike was visiting Russia and bought his son an electronic con-
struction set. Even though the words were in Russian and incomprehensible to
them both, the diagrams were in the language of schematic and perfectly
understandable.

To show the units of resistance, we can use various symbols. We can say 18 ohms,
18 Ω, or, as we shall use in this book, 18 R.

FIGURE 15-5:
A schematic

of a circuit with
switch closed.

306 PART 5 Exploring Electronics with the Raspberry Pi

Although the units for calculation are volts, amps, and ohms, 1 amp (A) is in
practice a lot of current, and it’s more common to talk of milliamps, or mA. There
are 1,000 mA in 1A. Similarly, 1000 R is one kilohm, or 1 K.

Calculating circuit values
Although the circuit shown in Figure 15-5 is all very well because it describes
what’s actually wired up, it’s not useful for calculating anything using Ohm’s law
because it shows no resistances. However, each real component has associated
with it a resistance. We say it has an equivalent circuit. These are shown in
Figure 15-6. All components, even the wires, have some series resistance. In other
words, they behave like they have a resistor in line with the component. Some-
times this is important, and sometimes it is not. The trick is in knowing when to
ignore them.

When resistors are placed in series, or in line with each other, you can find the
resistance by simply adding up all the individual resistance values. Figure 15-6
shows our circuit with the series resistance values shown. If we add up all the
values around the circuit, we get 18R105. (That’s 18.105 ohms.) Note that virtually
all of the resistance in the circuit comes from the bulb. The series resistance of the
switch is negligible, as is the series resistance of the battery. This is not always
the case. So, with 18R resistance and 6V, we can calculate that the current through
the circuit should be

I = E/R -->
Current = 6/18 = 0.333 Amps or 333mA

FIGURE 15-6:
A circuit with
the effective

series resistance
values shown.

CHAPTER 15 Understanding Circuits 307

Determining how a component
needs to be treated
How do we know the series resistance of a component? Well, it is normally in that
component’s data sheet, the document that the manufacturers of all components
produce to exactly define the component and its properties. However, it’s not
always given as a straightforward value. Take a bulb, for instance. This is nor-
mally “rated” as a voltage and a current; that is, we would say that the bulb is 6V
at 0.33 amps. If we need to know the equivalent resistance, we use Ohm’s law.
Other bulbs, especially big ones, are given a power rating in watts. Current multi-
plied by voltage is equal to the power in watts.

The other point is that a bulb doesn’t have a constant resistance. We say it’s a
nonlinear device; that is, the resistance changes depending on what current is going
through it. This is because a bulb is just a coil of wire. As current passes through
it, the wire heats up. This causes the resistance to increase, thus limiting the
current. An equilibrium point is reached where the temperature reaches a point
where the resistance is such that the current is limited to the design value at the
design voltage. We use this concept of a nonlinear resistance later in this chapter
when we come to calculate what resistor we need to use with an LED.

When dealing with units like volts and ohms that include a decimal point, often
the point is missed out and the letter of the unit is substituted, so 3.3 volts becomes
3V3, or 4.7K becomes 4K7. This is done to make it clear that there is a decimal
point that otherwise might be lost in small print. While this is not an officially
approved standard, it is widely used in the electronics industry.

The series resistance of a battery — or any power supply, for that matter — is an
important concept in that it limits the current the battery can deliver. This is all
wrapped up in the chemistry of the battery, but its effects can be summed up by a
theoretical series resistance. A battery that can deliver a lot of current has a low
series resistance. This is sometimes known as the output impedance of the battery.

TESTING CIRCUITS WITH SIMULATORS
Nowadays, there are circuit simulators that allow you to test a circuit before you build it.
This is a great idea to make sure you are not doing anything silly. However, some simu-
lators have a steep learning curve, and others use ideal components instead of real
ones. This can give some misleading results with simple circuits, but on the whole they
are a very good idea. One simulator written especially for the Raspberry Pi is free. Find
out more at www.raspberrypi.org/archives/1917.

http://www.raspberrypi.org/archives/1917

308 PART 5 Exploring Electronics with the Raspberry Pi

These concepts may seem like they have nothing to do with the Raspberry Pi, but
as you shall see in later chapters, these concepts are the ones you need in order to
get the Pi to interact with the world outside the keyboard and screen.

Getting Familiar with the GPIO
The original Raspberry Pi Model 1, and the Pi Zero are made from a BCM2835, a
single-core system on a chip. The Pi Model 2 uses the BCM2836, and the Model 3
uses the BCM2837 — both are quad core. Basically, a core is a processor, so the
later models have four processors that, in theory, can work on four different
processes at the same time, although this capability is not presently fully exploited
by the operating system. The cores in the Pi Model 3 are more powerful than the
cores in the Pi 2, but again the full power of this processor has yet to be exploited
by the operating system. This is because it will mean having a version of the
operating system for each type of core, and at the moment there is just the one
version of each operating system for all three processor chips.

Unlike traditional microprocessors, these chips are designed to be used in an
embedded system. An embedded system is a device that has a computer inside it,
but you don’t use it as a computer — things like mobile phones, GPS displays,
digital cameras, and TV set-top boxes. These chips have a number of connections
to them in order for the software in them to control things like push buttons and
displays and getting sound in and out. All the processors used for the Pi have54
such signals. They are called General Purpose Input/Output pins (GPIO), and they
can be controlled by software. Some of these signals are used to build and control
the peripheral devices that turn the chip into a computer, like the SD card reader,
the USB, and the Ethernet. The rest are free — that is, not needed to make the
Pi — so they are surplus to requirements.

Rather than just ignore these surplus GPIO lines, the designers of the Raspberry Pi
have routed some of them out of the chip and to the connector called P1 on the
board for you to play with. It’s a bonus. This sets the Pi apart from mainstream
computers and laptops in this respect. However, they have not routed all the spare
pins out to this connector. Some go to other connectors — the camera socket, for
example, or the display socket — and some are not even connected to anything.
This is because the family of chips used to make the Raspberry Pi are housed in a
package called a BGA, or Ball Grid Array, with connections less than a millimeter
apart. So close are they that you can only have enough room for one trace (PCB
wire) between the connectors.

This means that, to get some of the inner connections out to other components,
you need to use a printed circuit board (PCB) that has a number of extra layers of

CHAPTER 15 Understanding Circuits 309

wiring inside the board. You might think the Pi’s board has just a top side and an
underside, but in fact it is made from several boards sandwiched together to give
six layers of wiring.

Even with this many layers, there is not enough room to route out all 54 GPIO
signals. Adding more layers would significantly increase the price of the PCB and
make the bonus cost something instead of being free. (You are no doubt aware
that the price point of the Pi is one of its major features.) However, over successive
hardware revisions, an increasing number of these pins have been brought out to
use. There were 17 on the original board, but Revision 2 saw some rearrangement
and another socket bring the total to 21; and, finally, the Model B+, and Revision
3, saw this increase to 28, all on one 40-pin header. This still leaves 8 GPIO pins
not routed out or used internally on the board. This has remained the same for
both the Model 2 and Model 3 of the Raspberry Pi as well as for the Zero models.
While 28 GPIO pins on a 40-pin header might sound a little odd, the extra pins
carry ground connections (8 pins), 5V (2 pins), and 3V3 (2 pins), which are very
useful when it comes to connecting external circuits.

Putting the general purpose in GPIO
GPIO pins are called general purpose because you can use them for anything you
want under the control of a program. They’re called input/output pins because the
software can configure them to be either an input or an output. When a pin is an
input, the program can read whether a high voltage or a low voltage is being put
on the pin. When the pin is an output, the program can control whether a high
voltage or low voltage appears on that pin. In addition, many pins have one or
more superpowers — alternative functions as a secret identity, like so many comic
book heroes. These powers are not shared by all pins, but are specialist functions
able to do things without software intervention. They act as ways to tap directly,
deep into the computer’s inner workings. When you switch to these functions,
they stop being general-purpose pins and do a specific job. For example, one pin
can be used to output a continuous stream of high and low voltage levels in alter-
nation, that, after they get going, continue without any further intervention from
the program. So, if you connect that pin to a speaker or an amplifier, you can
generate a tone that keeps on sounding until you command it to stop.

Understanding what GPIOs do
GPIOs are the gateway to interaction with the outside world and are, in essence,
quite simple.

Figure 15-7 shows the equivalent circuit of a Raspberry Pi GPIO pin when it is
configured as an output. You can see it is simply a double-throw switch that can

310 PART 5 Exploring Electronics with the Raspberry Pi

be connected between the computer’s power supply of 3V3 or ground (that’s 0V).
This is sometimes called the common ground or reference, and it is the basis of all
measurements in a circuit. Basically, it’s the other end of the battery — the
negative terminal, if you will. Between this switch and the output is in effect a
series resistor, one that is in line with the voltage coming from the Pi. It limits the
current you can get through the output pin.

On the Pi, the value of this resistor can be changed over a limited range. The
default value is 31R, but note that this resistor, by itself, is insufficient to protect
the Pi from giving too much current if you connect it to too low a resistance load.
If you did this, then your Pi would be permanently damaged. So an output pin can
switch between only two voltages — 0V and 3V3. These are known as logic levels,
and they have a number of names: high and low, true and false, zero and one, and
even up and down.

FIGURE 15-7:
A GPIO when

used as an
output.

FINDING A SAFE VALUE OF CURRENT
There is a value of current that would instantly destroy at least the output circuitry of
the pin, if not the whole Pi itself. But, there is also a value of current that would not
instantly kill the Pi but would damage the circuitry and lead it to fail prematurely. Lower
that current, and the damage is lowered, until you get to a point where no damage
occurs. However, these values are not known for the chip used on the Pi. In fact, they
are not known for the vast majority of chips. It’s best to stick to the “safe” value or lower.

Beware of people who say that they have a circuit that takes 30mA or more from a pin
and it’s still working. They tend to be idiots who confuse whether a pin is dead yet with
whether a pin is safe. It’s just like smoking: You can do it and it doesn’t kill you immedi-
ately, but it does do harm and eventually it can kill, if nothing else gets you first. No one
would pretend that it’s safe.

CHAPTER 15 Understanding Circuits 311

Although the logic voltage levels on the Pi are simple, the current that these out-
puts can supply is more complex, with a current limit of about 16mA. This limit is
how much current the Pi should supply into a load, not how much it can supply or
will supply. That depends on the resistance of the load connected to the pin. We
say that the limit is about 16mA, but this is a bit of a gray area. This value is con-
sidered safe for the Pi to supply, but that is not to say a value of 17mA would be
considered dangerous or excessive.

Putting an output pin to practical use
What can you do with a switched output? Well, you can drive a small current
through a load, or you can control another device that can control a bigger current
through a load. Put like that, it doesn’t sound exciting, but it’s what physical
computing is all about — it is the gateway to all control. The load can be a light, a
motor, a solenoid (an electromagnetic plunger used to prod or strike things), or
anything that uses electricity. Because that includes most everything in the
modern world, it is safe to say that if it uses electricity, it can be controlled and,
more importantly for our purposes, controlled by a Pi.

Take a look at controlling a light — not the current-heavy flashlight bulb we
looked at earlier, but rather a component known as a light-emitting diode (LED).
These can light up from just a tiny bit of current, and the 16mA we have available
is more than enough for that task. In fact, you’re going to limit the current to less
than 10mA by adding a 330R-series resistor.

For the moment, just look at the circuit in Figure 15-8. This shows two ways to
wire up an LED — or any other load — directly to a GPIO pin. Here we just show
the GPIO pin and not the equivalent series resistance of the power source as
discussed earlier — in the context of a 330R resistor, 31R is negligible.

The first way to wire it, called current sourcing, is perhaps the way a beginner might
think of as natural. When the GPIO pin is set by the program to produce a high
voltage (that is, when the switch is set to connect the 3V3 line to the output pin),
current flows from the pin through the LED, through the resistor and to ground,
thus completing the circuit, causing current to flow and so lighting up the
LED. When the GPIO pin is set by the program to produce a low voltage (that is,
when the switch is set to connect the 0V or ground line to the output pin), no
current flows and the LED is not lit. This method is known as current sourcing
because the source of the current — the positive connection of the power — is the
GPIO pin.

312 PART 5 Exploring Electronics with the Raspberry Pi

The second way of wiring (refer to Figure 15-8) is known as current sinking. When
the GPIO pin is set by the program to produce a low voltage, the current
flows through the LED, through the resistor, and to ground, through the GPIO pin.
To turn off the LED, set the output to a high voltage. There’s no way current can
flow round the circuit, because both ends of the load (LED and resistor) are
connected to 3V3 — so there is no voltage difference to push the current through
the components.

Note in both circuits that the position of the resistor and LED can be
interchanged — it makes no difference. You might like to think of these two
approaches as switching the plus and switching the ground.

Now an LED is a non-liner device in a similar way to the filament of a flashlight
bulb, but in the case of an LED we need a resistor to limit the current to a safe
value; it will not self-limit, like the bulb. The important thing to know is the
LED’s voltage drop — the voltage that will appear across it when the LED is on.
This drop changes with different colours of LED, so to get the same current down
two LEDs of different colours, you need different resistors.

Getting the same brightness is not the same thing as getting the same current,
because different LEDs have different current-to-light efficiencies. Modern LEDs
are a lot more efficient that they used to be, so you need less current.

With a red LED, there is about a 2V2 voltage drop across it. This leaves the
remaining voltage from the GPIO pin (3.3–2.2 = 1.1V) to be dropped across the
resistor. With a 330R resistor, Ohm’s law tells you the current will be –1.1 / 330 =
3.3mA, which is plenty bright to see.

FIGURE 15-8:
Two ways of

driving an LED.

CHAPTER 15 Understanding Circuits 313

Don’t try to run the LEDs at too much current. Although most will be able to
take 20mA, if you did this then your GPIO pin would be supplying too much cur-
rent and your Pi could be damaged. There should be no need to run an LED any
harder than 10mA.

Using GPIOs as inputs
The other basic mode of operation for a GPIO pin is as an input. In this case, you
don’t have to worry about the current, because when the pin is an input, it has a
very high input impedance, or a high value of series resistance, and therefore little
or no current can flow with normal logic level voltages. A resistance is a special
form of impedance, which, as its name implies, impedes the flow of electricity.
There is a bit more to impedance than simple resistance, but at this stage, you can
think of them as the same sort of thing. They are both measured in ohms.

Resistance is the property of a material, whereas impedance is the property of a
circuit and includes how it behaves with AC as well as DC. So an input pin has a
very high impedance. It allows hardly any current to flow through it, so much so
that we can connect it directly to either 0V or 3V3 directly with no extra resistors.
In fact, an input is so high-impedance that if you leave it unconnected, it picks up
very tiny radio waves and other forms of interference and gives random values
when you try to read it.

In fact, the human body can act as an antenna when close to or touching a high-
impedance input, causing any readings to go wild. This often amazes beginners,
who think that they have discovered something mysterious. They haven’t. In fact,
the tiny amounts of energy in the radio waves that are all around us are not
absorbed by the high-impedance circuits as they would be by low-impedance cir-
cuits. A low impedance would cause current to flow, but it would easily absorb all
the power, leaving minuscule amounts of voltage. Just the fact that you have a
wire carrying AC power (mains) close by is enough for that wire to radiate radio
wave interference.

To explain why this is so, consider that interference of, say, 2V is enough to over-
ride the signal from a chip and cause it to malfunction. With a low resistance —
say, 1K — in order to develop 2V across, it needs to have a current of 2mA (Ohm’s
law) flowing through it. This represents a power (volts × current) of I×V=4mW of
interference. However, with a resistance of 1M, you can get 2V across it by only
having 2uA flowing through it. This represents a power of 4uW. So, a high resis-
tance is much more sensitive to interference because it requires less power from
the interfering source to develop the same voltage. Therefore, weaker fields pro-
duce enough interfering voltage to disrupt a circuit.

This underlines an important fact about inputs: They can’t simply be left alone.
They must be driven to one voltage state or the other; that is, either 3V3 (known

314 PART 5 Exploring Electronics with the Raspberry Pi

as high) or 0V (known as low). If you connect an input to the output from some
other chip, that’s fine, but if you want to detect whether a switch is made or
broken, you have to give the input pin some help. This is normally done with a
resistor connected from the input to either the 3V3 or the ground.

When a resistor is used in this way, it’s called a pull-up or pull-down resistor, as
shown in Figure 15-9. Of the two arrangements, a pull-up is preferable, mainly
because switches are normally on the end of long runs of wire and it is safer to
have a ground than a 3V3 voltage on a wire. This is because it tends to cause less
damage if you accidentally connected a ground wire to the wrong place than a
power wire. This arrangement of pull-up or pull-down resistors is so common
that the computer processor in the Pi has them built-in, and there is a software
method for connecting or enabling internal pull-up or pull-down resistors. We
show you in Chapter 16 how to control this from software.

Learning which end is hot: Getting
to grips with a soldering iron
Although you can do some interfacing without resorting to the soldering iron to
join components together, to get serious, you’ll have to do some soldering at some
stage or the other. This often induces fear and panic in the newcomer, but even a
child can solder successfully. In fact, Mike had his first soldering iron at the age
of nine and by and large taught himself. Soldering involves two parts, the solder,
which is an alloy of two or more metals, and the flux, a chemical cleaning agent.
If you are soldering something like a gas pipe, you would apply the flux round the
joint, heat the joint up with a blow torch, and apply the rod of solder to the

FIGURE 15-9:
Two ways of
using a GPIO

as in input.

CHAPTER 15 Understanding Circuits 315

hot joint. The job of the flux when it is heated is to clean the surface and make the
solder flow. It does this by breaking down the surface tension on the molten
solder. Without it, the solder would clump together in round globs held by the
tight surface tension.

Water has surface tension as well, and to reduce that we use soap, which allows the
water to wet things. You can’t use soap with solder because it wouldn’t stand the
heat, so you need something else. Most fluxes for heavy jobs are made from nasty
chemicals like hydrochloric acid, or phosphoric acid. These are too corrosive
to be used with electronics, so what is normally used is some sort of rosin flux.
Although you can get this in a pot, by far the best thing is to use Multicore solder,
where the flux is built into the solder wire as five very thin strands. That way, the
right amount of flux is always delivered with whatever amount of solder you use.

COMPLYING WITH ENVIRONMENTAL
REGULATIONS
There is a further complication nowadays with the advent of the Reduction of Hazardous
Substances (RoHS) Act, which bans the use of certain metals and plasticizers in certain
classes of electrical equipment in the European Union, the most prominent of which is
lead. In fact, some people think RoHS is entirely about being lead-free, but it’s not. You
can get lead-free solders, but they are expensive because they have a large amount of
silver in them and they are difficult to work with; they also tend to produce a product
with a shorter lifetime. They require a hotter iron and so are potentially more harmful
to the components.

Lead free solders also don’t “wet” as well, which means it’s harder to get the right
molten state you need in order to achieve the flow around the joint. Tin whiskers often
grow out of the joints, causing shorts years later. Home-built electronics are not
required to be lead-free in the United States or Europe, and there is no measurable
health effect in using solder that contains lead. RoHS was mainly brought in to stop lead
from accumulating in landfill sites from mass consumer electronics and potentially
polluting the water supply. Although there is no evidence that this can happen, it is
banned under the “precautionary principle.” In Europe, you are under no legal or health
requirements to use lead-free solder. However, if you start making stuff to sell in the
European Union, you’re legally required to make sure it’s RoHS-compliant. This is like
brewing beer at home: You can brew as much as you like, but you can’t sell any.

It’s always sensible to wash your hands after soldering and avoid putting solder in your
mouth. The same goes for the soldering iron when it is on. Mike was once responsible
for this sort of compliance in one job he had, so he had to know the legislation and
standards on these matters.

http://en.wikipedia.org/wiki/Hydrochloric_acid
http://en.wikipedia.org/wiki/Phosphoric_acid

316 PART 5 Exploring Electronics with the Raspberry Pi

We recommend using a good quality 60/40 tin/lead solder alloy, with a diameter
of 0.7mm and a built-in rosin-based flux core. Anything else is making life
difficult for yourself. We’ve found that solder with self-cleaning fluxes or non-
fuming fluxes are harder to work with, as well as being more expensive. Couple
the right kind of solder with a good soldering iron, preferably a temperature-
controlled one with a fine tip.

It is often said that you can use any old tool to learn on, and then get a good tool
when you get good at using it. This is rubbish. As a beginner, you are fighting how
to do the job, so you don’t want to be fighting your tools as well. A good iron
includes a stand and a place for a sponge, for removing flux that has accumulated
during the soldering process. If it were not removed, then it would form a glassy
layer that would prevent the iron from making good thermal contact with the
solder of joint. Use a proper soldering iron sponge — a natural one that won’t melt
on contact with the iron. Do not use a plastic foam sponge because your iron will
go straight through it.

Making a soldered joint
The first thing you should do when making a soldered joint is to make a mechani-
cal joint. For example, if you’re joining two wires, bend each end into a hook and
squeeze together lightly with pliers.

Wipe the tip of the iron on a damp sponge, and melt just a spot of solder on the tip.
This “wets” the tip and allows good thermal contact to take place between the tip
and the work. Then apply the iron, solder, and wires all together. The secret is
then to look at the joint and the solder closely, to see how it sits. Remove the sol-
der, but keep the iron on the joint until you see the solder flow around the joint
and see it seep into the cracks. Only then is the joint hot enough for you to with-
draw your iron. It is a quick process and needs a bit of practice.

Many beginners make the mistake of putting too much solder on a joint. Try to use
as little solder as possible. A joint is rarely bad because of too little solder, but it’s
often bad because of too much. When you are done, you see a small amount of
black flux residue around the iron tip. Wipe that away on a damp sponge before
returning the iron to its stand. Do not move the joint as the solder sets.

A good-quality iron is ready immediately for the next joint. A poor iron needs a
few seconds to come up to temperature again after making a joint.

CHAPTER 15 Understanding Circuits 317

Use some sort of fume extractor when soldering. A simple fan works to guide the
curl of smoke from the iron away from your face. Air currents from the warmth of
your body tend to attract the flux. Try not to breathe it in. This is more important
as you spend a long time (hours at a time) with a soldering iron in your hand. The
fumes are from the flux in the solder; they are not lead fumes.

Although Chapter 16 contains projects that can be made without the use of a
soldering iron by using solder-less bread boards, we recommend that you never
take that approach for a permanent project. When a project is meant to last more
than a day or two, you should always solder it up.

Looking at Ready-Made Add-On Boards
There are basically two types of ready-made boards: those designed for making it
easy to get access to the GPIO pins and those with components that have already
been soldered up. We will look at some of the latter type here and leave the former
types to Chapter 16.

Since the introduction of the Raspberry Pi in 2012, many companies have pro-
duced ready-made boards with all sorts of components already built on. They
normally come with sample code to show you how to use them, and many users
just stick to that. However, this can be a wasted opportunity because you can
always do more with a board than is shown in these examples. (Chapter 17 shows
you some examples of this.) Many of these boards contain sensors that allow your
Pi programs to measure things. New boards are constantly being developed and
produced.

Boards come in three styles:

»» Separate boards that connect to the GPIO pins via a ribbon cable or your
own wires.

»» Boards that plug into all the GPIO pins and cover most of the area of the
Raspberry Pi board. These are sometimes called shields or plates.

»» Boards similar to the shield/plate variety just mentioned but contain in
addition an identification and sometimes software so that the Pi can read
what they are on start-up and install some software and prepare the GPIO pins
automatically. These are called HATs — short for Hardware Attached on Top.
Read more about HATs at http://www.raspberrypi.org/introducing-
raspberry-pi-hats.

http://www.raspberrypi.org/introducing-raspberry-pi-hats/
http://www.raspberrypi.org/introducing-raspberry-pi-hats/

318 PART 5 Exploring Electronics with the Raspberry Pi

The Sense HAT
The Sense HAT was specifically designed for the Astro-Pi mission and two rug-
gedised versions were flown on the International Space Station from December
2015 running code written by school children. It has an 8×8 RGB LED matrix, a
5-button joystick, and sensors to measure acceleration, magnetism, temperature,
pressure, and humidity — as well as a gyroscope. (See Figure 15-10.) The Sense
HAT also has an extensive Python library associated with it, which allows for easy
access to this board. You can find comprehensive coverage of how to use the Sense
HAT on the Raspberry Pi Foundation’s website at https://www.raspberrypi.
org/learning/getting-started-with-the-sense-hat/.

The Skywriter HAT
The Skywriter HAT (see Figure 15-11) is an electric near-field 3D proximity sensor.
With it, you can make gestures with your hands waving above it, which can then
be detected by the library software, causing your own functions to run. Gestures
such as flicks right, left, up, and down can easily be detected along with a circular
motion of the finger. It also detects taps made directly to the HAT surface. It has

FIGURE 15-10:
The Sense HAT.

https://www.raspberrypi.org/learning/getting-started-with-the-sense-hat/
https://www.raspberrypi.org/learning/getting-started-with-the-sense-hat/

CHAPTER 15 Understanding Circuits 319

a range of about 5 centimeters and can be mounted behind any nonconducting
surface, such as an acrylic sheet.

The Xtrinsic Sense board
The Xtrinsic Sense board is a low-cost sensor board, in some ways similar to the
Sensor HAT but without the LEDs. It is made in partnership with the component
distributor and Raspberry Pi co-manufacturer Farnell. It contains a high-precision
pressure sensor in the range 50 to 110kPa, a 3-axis, digital accelerometer, and a
3D magnetometer. As you can see in Figure 15-12, it sits over less than half the
Raspberry Pi and can be used, among other things, with robots and high-altitude
balloons.

Other boards
There are many other boards available from small start-up manufacturers as well
as web-based projects for you to build. You can find a good starting point for
information on many of these at http://elinux.org/RPi_Expansion_Boards.

FIGURE 15-11:
The Skywriter

HAT.

http://elinux.org/RPi_Expansion_Boards

320 PART 5 Exploring Electronics with the Raspberry Pi

FIGURE 15-12:
The Xtrinsic

Sense board.

CHAPTER 16 Taking Control of Your Pi’s Circuitry 321

Chapter 16

IN THIS CHAPTER

»» Learning what GPIO pins you can use

»» Seeing how you can control GPIO pins
in Scratch and Python

»» Making a GPIO pin flash an LED and
read a push button

»» Building a working electronic dice
display

»» Building a working model of a
pedestrian crossing

Taking Control of Your
Pi’s Circuitry

Chapter 15 tells you all about what GPIO pins are, but in this chapter we want
to describe how to access them physically and how to control them with
software. We use both Scratch and Python to do this, but ultimately Python

is the much more capable language for input/output control.

Accessing Raspberry Pi’s GPIO Pins
The GPIO pins are the key to enabling the Raspberry Pi to take control of any
external circuit. They can be used as an output to switch on an LED or as an input
to sense the state of an external push button. These connections into the com-
puter, along with the fixed voltage power pins, are on a dual-row, 40-pin header
plug. There are many ways to physically access these pins, and often the least
expensive way isn’t always the easiest or the most convenient way. But what you
need to know first is which signals are on which pins. A top-down view of the pins
and their signals is shown in Figure 16-1.

322 PART 5 Exploring Electronics with the Raspberry Pi

There are two ways to label the pins. Figure 16-1 shows what is known as BCM
mode, which corresponds to the numbers used in the Broadcom data sheet that
defines the hardware. Another system was used in the early days — the BOARD
system — but it is falling out of favor now. BOARD referred to pins mainly by a
mixture of special function names and arbitrarily assigned “free” GPIO pin names.
The idea was that, as the pinout (what connections are on what pins) on the header
changed, the names could remain constant.

As it was, only the first issue of the Pi had a different pinout to all the rest, and
those were only for three pins. These are shown in Figure 16-1, on the left side.
Model 1 before the B+ had only 26 pins, whereas all subsequent models have
40 pins. You cannot buy the earlier models nowadays, so you have no need to
worry; the extra information is only given in case you have an older Pi.

FIGURE 16-1:
GPIO header

pins and their
function.

CHAPTER 16 Taking Control of Your Pi’s Circuitry 323

Now, it can be quite daunting to have to identify a single pin on a 40-pin header
to connect to it, so you can get or make a template to place over the pins that
labels them with their names. Figure 16-2 shows one of these templates in action.

This particular template is made of a thin, printed circuit board material that can
sit over the pins as you connect to them. We highly recommend this type if you’re
going for the option of individual wires to the GPIO pins. You can also find
full-scale drawings online, so you can print one out on paper and just push the
pins through. Or stick the paper on thick cardboard, and drill holes through for
the pins.

When making your own template, do not use any conducting material, like
aluminum.

Soldering the GPIO pins onto Pi Zero
The Pi Zero has exactly the same GPIO pins as all the other models of the
Raspberry Pi, but the challenge is that the 40-way pin header doesn’t come pre-
fitted. To use the GPIO pins, therefore, you need to buy and fit the header pins.
This presents an opportunity for you because it allows you to have a header socket
here instead of pins, if you want — or, in fact, any other style of connector. You
could even solder wires directly into these pins, if you want to build the Pi zero
permanently into a system.

FIGURE 16-2:
GPIO template

identifying
the pins.

324 PART 5 Exploring Electronics with the Raspberry Pi

What you should not do is attempt to use these holes by simply pushing wires into
them. This is an unreliable way of getting a connection that inevitably leads to
damaging your Pi.

Normally, this process would involve soldering, which some people might find
off-putting, so the people at Pimoroni have come up with a solution involving a
compression eyelet header and a hammer. See https://shop.pimoroni.com/
products/gpio-hammer-header.

However, a header isn’t too difficult to solder up yourself with a fine-tipped hot
iron. Though we cover soldering in general in Chapter 15, here are some extra tips
about soldering on a header strip. Push the header sockets into the holes and turn
the board upside down so that it rests on the pins. Use a large lump of blue tack to
make everything level and stable. Place an iron so that its tip touches both the pin
and the printed circuit board hole, and then apply a little solder. You should see
the solder flow round the hole. Keep the iron in place and after a half a second or
so, you’ll see the solder sucked into the hole by the capillary action of the hole and
molten solder. When you see that happen, remove the iron. Don’t move the joint
until it cools. If the solder isn’t pulled in, you either have too much solder, your
soldering iron isn’t hot enough.

Now, before you solder another pin, ensure that the whole header strip is lying flat
on the board. If it isn’t, melt the joint again, and push the header strip flat.
(Remember: You can’t correct a crooked connector after more than one pin has
been soldered.) Then proceed and solder the other joints.

If you have trouble with later joints, it’s probably because your soldering iron
has cooled a bit after making a joint. If so, allow a few seconds between joints for
it to warm up again. Wipe the iron on a damp sponge after each joint, to remove
any flux.

Though this all sounds complex when written down this way, in practice it’s much
easier and quicker. Figure 16-3 shows a close-up of a header in the process of
being soldered.

Getting at all the pins with one connector
Though a template is useful for identifying individual pins, you might want to
transfer all the pins to a solderless breadboard, which consists of rows of sockets
you can plug wires and other components into. This is a popular way of making a
temporary circuit that is quick to change. One way of doing this is with a device
called a cobbler, which consists of a ribbon cable and a printed circuit board.

https://shop.pimoroni.com/products/gpio-hammer-header
https://shop.pimoroni.com/products/gpio-hammer-header

CHAPTER 16 Taking Control of Your Pi’s Circuitry 325

Figure 16-4 shows one of the various types you can buy — a T-Cobbler Plus, from
Adafruit (www.adafruit.com). Many others are available, too.

One favorite of ours is the combined shield-and-bread-board from Dtronixs.
(Check out www.dtronixs.com.) It has a small piece of breadboard that mounts
directly over the Pi’s GPIO pins and, as a bonus, has three LEDs and two push
switches ready to be used, mounted on the side. This is shown in Figure 16-5.

FIGURE 16-3:
Soldering a

header pin to
a Pi Zero.

FIGURE 16-4:
A typical cobbler

connector, for
bringing out all

the pins to a
breadboard.

https://www.adafruit.com/
http://www.dtronixs.com/

326 PART 5 Exploring Electronics with the Raspberry Pi

Connecting things together
Once you know which pins are what, you have to connect them to other compo-
nents to make a circuit. The best way to do this is to use jumper wires with pre-
crimped connectors. Flexible wires often have their connectors crimped on, so the
joint between them is made by squashing together the wire and connector. This
method is more reliable than a soldered joint because no point of stress is created
at the point in the wire where the solder ends. This is where the flexing wire
breaks from metal fatigue. To be able to crimp successfully, the connector has a
specially designed end to allow the wire and connector to join securely when
squashed together with a special tool.

The proper name for the pin header on a Raspberry Pi is a Dupont connector; the
part that slips on the pins is known as a female connector, and the part that plugs
into a breadboard is a male connector. So, for connecting the header on the Pi into
a breadboard, you need a female-to-male jumper wire. These often come as rain-
bow ribbon wires, which separate easily by simply pulling them apart. You can
crimp the connectors yourself with the help of a crimping tool, but we recommend
that you get them already crimped. For interconnections between points on a
breadboard, you can use some male-to-male jumper wires, but most people use
solid-strand wire with the insulation cut back a little. Do not put too fat a wire
into a breadboard — you don’t want to stretch the connectors and make it too
loose to fit components later. To this end, we recommend using wire with a 0.5mm
diameter — otherwise known as 24 SWG (Standard Wire Gauge, used in the U.K.)
or 24 AWG (American Wire Gauge, used in the U.S. and Canada). It just so happens
that, at this size, the two standards use the same numbers. Or, in the international
IEC 60228 standard, which specifies a wire’s cross-sectional area, it’s 1.5mm2.

FIGURE 16-5:
The Dtronixs

combined
bread-board-

and-shield.

CHAPTER 16 Taking Control of Your Pi’s Circuitry 327

Though electricity doesn’t care about the color of the wire it’s flowing through, by
convention red or orange is used for a positive wire, and black, green, or blue is
used for a negative or ground wire.

Your First Circuit
The first thing anyone should do with a Pi system is to make an LED flash —
because it’s the hardware equivalent of the “hello world” program. To light an
LED, you need two components: the LED itself and a resistor to keep the current
down to a safe level for the Pi’s GPIO pins. The circuit diagram is shown in
Figure 16-6, along with a diagram of the physical layout.

Note: We have also added a push button input switch to this diagram, which we
will use later for controlling the behavior of the LED.

Notice two points here: the orientation of the LED and the orientation of the
switch.

LEDs are sensitive to the polarity of the current you put through them. The posi-
tive connects to the anode (the top flat bit of the triangle in the symbol), and the
cathode (the bar in the symbol) goes to the negative. That way, the LED lights up;
wire it the other way round, and it won’t. So, faced with an LED, how do you know
which wire is which? Well, on a new LED, the anode normally has the longest lead,
but what happens if the leads have been snipped? Well, examine closely the rim of
the LED and you will see a portion of the round housing that is not curved but flat

FIGURE 16-6:
An LED and

switch, wired to
the GPIO pins.

328 PART 5 Exploring Electronics with the Raspberry Pi

next to one lead. That lead is the cathode, or the negative end of the component.
You can see the flat on the layout diagram.

With the push button input switch, you must get it the right way round, but for a
different reason. Basically, there are only two contacts on a switch, and it doesn’t
matter which way the current flows through it. However, many popular, small
push buttons, known as tack switches, (short for tactile) have four leads for
mechanical stability, and each pair is connected together. In the layout and on the
switch, you can see that the leads are on opposite sides of the rectangular base,
with the other two sides not having a lead protracting from them. It’s the two
leads on the protracting side that make contact when the button is pressed. So you
need to orient the switch correctly — otherwise, it will act as if it were perma-
nently pressed. If you ever get confused, resort to wiring the switch up to opposite
corners, and that will ensure you wire it correctly.

As a general rule, you should never wire any circuit to the Pi when it’s powered-
up. Also, you should never plug something into the Pi when it’s powered-up. This
is because a circuit with incomplete wiring can present conditions that could
damage the Pi or its components. Plugging something into an already-powered
connector is known as hot-plugging, and special precautions must be taken to
ensure the order in which connections are made. A device designed for hot-
plugging, like a USB connector, will have the power and ground connectors longer
than the signal connectors, to ensure these are connected first.

Bringing your LED to life
Once you have your circuit wired and connected, it’s time to bring it to life with
software. Go ahead and boot up your Pi. (If you find that your Pi won’t boot up,
you have probably wired things up incorrectly, so immediately remove the power
and check the circuit.) We show you how to use Scratch and Python 3 to make your
LED blink.

Using Scratch 1.4
Scratch is a computer language we cover in more detail in Chapter 9, but the basic
idea is that it uses graphic function blocks that the user drags and joins together
to construct a program. It is very popular with children under 10 as it involves
little in the way of typing. Scratch uses the broadcast block to communicate with
the GPIO pins by using messages you type into the block. Open up Scratch, drag
out the when green flag clicked block from the control panel. Then scroll down to
the lower section of control blocks, and drag in a Broadcast. Click the down arrow
in this block, and select New/Edit from the menu that appears. In the resulting

CHAPTER 16 Taking Control of Your Pi’s Circuitry 329

input window, type gpioserveron and then click OK. This tells Scratch that you
want to use the GPIO pins and to prepare itself to broadcast messages to it.

Now drag in another broadcast block from the control panel, and again select the
New/Edit option from the drop-down menu and type in config4out. This makes
Pin 4 into an output, so you can control the logic level on it. We want you to make
this logic-level change between high and low. Because of the way the LED is wired,
when the pin is high (in other words, the voltage on that pin is +3V3), the current
will flow through the LED and resistor to make the LED light up. When the pin is
low (the voltage is 0 volts), the LED is off. So drag out a forever loop block and
drag a broadcast block into it. Into this broadcast block, type gpio4high. Then add
a wait block after the broadcast block, and change the time from 1 to 0.3 seconds.
Duplicate these two blocks, or drag some more in, and then change the broadcast
message to read gpio4low. That’s all there is to it. The Scratch program should
look like Figure 16-7. To try it out, click on the green flag and watch the LED blink.

You can change the numbers in the wait blocks to change the blink speed. Note
that the two wait block delays do not have to be the same; you can have a quick
0.3-second flash every second, if you want.

Control the flashing speed with an input
Using a GPIO pin as an input is simple: Just wire a push switch between the input
GPIO pin and ground. Then when the switch is pushed, the pin is connected to
ground, and when it is not, it isn’t connected to anything. As we demonstrate in
Chapter 15, when a pin isn’t connected to anything and the computer reads it,
then it can return any value because it picks up interference from the air. So, in
order for it to work correctly — and to not give random values, you need to switch
on the internal pull-up resistor. This connects the input to a logic high voltage

FIGURE 16-7:
Scratch program
to blink the LED.

330 PART 5 Exploring Electronics with the Raspberry Pi

through a resistor, so with nothing else electrically connected to the input, the pin
will read as a Logic One. This will be the case when the button isn’t pushed. When
the button is pushed, it connects the input to ground and so reads a Logic Zero.

Most of the time when you have an input, the code contains an if statement,
because the main point of having a switch is to determine what section of code is
to be run. Next, we show you how to write a program that selects one of two wait
times, depending on the state of an input push button.

Start by getting a when green flag clicked block from the control panel, and then
add a broadcast gpioserveon broadcast block, and a broadcast config4out block, as
you did in the Scratch LED blink program. Then add another broadcast block, this
time with a config24in message. This tells the GPIO to make the pin an input and
enable the pull-up resistors. (You could also use the messages config24input,
config24inpullup, or config24inputpullup — they all do the same thing, though
some are more explicit that the pull-up resistors are enabled.)

Now add a forever loop and place an if . . . else control inside it. Then go to the
Sensing controls list in Scratch and drag out a slider sensor value block. Use the
drop-down menu arrow to make a gpio24 message. Go to the Operators control
list in Scratch, and drag out a green comparison block — the one with two white
squares and an equal sign (=) between them. Now drag the sensor value block into
the white square on the left side and type 1 in the square on the right. Finally, drag
these two combined blocks into the If Condition indent.

If you do not see the gpio24 option in the drop-down list, click on the round red
stop button. This allows the option list to be refreshed, so try again.

Place a broadcast gpio4high block after the if block, and the wait 0.3 and wait
1 Second blocks in the if . . . else control. Finally, duplicate what is in the forever
loop so far, and change the last broadcast block to gpio4low. After you have done
this, you should see the program shown in Figure 16-8.

Click the green flag, and you should see the LED blink rapidly. When you press the
button, the blinking slows down. Now, here’s a test: Change the bottom if so that
it tests for being equal to 0, not 1. Before you try it, see if you can predict what will
happen. Then make the change and see if you were right.

There’s a lot more to Scratch than LEDs and push buttons; it has built-in functions
for driving things like servo motors, distance sensors, and even a camera. In addi-
tion, Scratch has functions for accessing the Internet to see weather reports. Some
ready-built devices, like sensor shields, are also supported, or partially supported.
For exploring other uses of GPIO pins that are built into Scratch, see the website
at www.raspberrypi.org/documentation/usage/scratch/gpio/README.md.

https://www.raspberrypi.org/documentation/usage/scratch/gpio/README.md

CHAPTER 16 Taking Control of Your Pi’s Circuitry 331

The use of GPIO pins is controlled by different blocks in Scratch 2.0. The main
incompatibility, however, is that it sets the GPIO pin’s internal resistors to pull
low by default. This means in place of connecting a push button switch between a
GPIO pin and ground, it should be placed between GPIO pin and 3V3. Care must be
taken not to connect it to 5V, or the Pi could be damaged.

Using Python
The Python language was introduced in Chapter 11 and, unlike Scratch’s graphic-
based program blocks, it uses entirely text-based instructions. Its great power is
that the basic Python language can be extended to do more things by the use of
libraries. These are functions that can be written in Python or any other language
to extend what Python can do.

When using Python to access the GPIO pins, you have a number of different librar-
ies you could choose that can give you access to them. They can provide not only
normal input/output access but also access to some of the special functions or
capabilities of certain pins. We have deliberately written the next two examples in
in a style to match, as closely as possible, the two Scratch examples we have just
presented, so that you can see how similar they are.

FIGURE 16-8:
Scratch program

to control the LED
blink rate with a

push button.

332 PART 5 Exploring Electronics with the Raspberry Pi

In the early days of the Raspberry Pi, the only access to the GPIO pins was if you
were running in Supervisor, or Root, mode. Fortunately, this has now been
changed so that you can run in normal User mode with most libraries.

While the newly introduced Thonny Python IDE (Integrated Development Envi-
ronment) is popular with beginners, our preferred environment for writing Python
is IDLE3 (it has more features), but either can be used. IDLE3 and Thonny can both
be accessed from the main Desktop Raspberry menu. So, pick the one of your
choice and create a new file, and then type in the program shown in Listing 16-1.
Remember that, in Python, the case of a word matters as does the spaces at the
start of a line, so be sure to get them right; otherwise, you will get errors when
trying to run your code.

LISTING 16-1:	 LED Blink

#!/usr/bin/python3
import time
import RPi.GPIO as io # using RPi.GPIO

io.setmode(io.BCM)
io.setup(4,io.OUT) # make pin into an output

print("LED blinker - By Mike Cook")
print("Ctrl C to quit")
while True:
 io.output(4,0)
 time.sleep(0.30)
 io.output(4,1)
 time.sleep(0.30)

Save the file and run it. Your LED blinks just like the Scratch example.

Take a look at Listing 16-1 line by line. The program starts by importing the sup-
port packages you need. In this case, it’s the time package we use to achieve a
Delay, or Wait, function, and the RPi.GPIO package to access the GPIO pins. Note
here that a lot of examples use as GPIO in the import statement — but we prefer
the simpler and shorter as io because it reduces the amount of typing and we
don’t have to keep switching to uppercase. Then you have to tell the library what
sort of numbering system you want to use. We’re using the now-standard BCM
system. The next line tells the GPIO pins that you want to use Pin 4 as an output.
The setup method takes two values: the pin number and a number that tells the
library to make that pin an output. This is conveniently hidden by the library, by

CHAPTER 16 Taking Control of Your Pi’s Circuitry 333

using a predefined constant that’s defined in the library — that’s why it’s pre-
fixed with io. Next, the loop forever of Scratch is carried out in Python with the
use of the while True statement, with all statements in this loop indented.

This loop then commands the GPIO Pin 4 to be a 0, turning the LED off. Then
there’s a delay (or sleep) for 300mS, followed by turning the LED on by making
Pin 4 go high. Finally, there’s another delay, so you can see the LED in the On
state. A common mistake is to leave out this last delay; as a result, the LED looks
to be off all the time. So, controlling a GPIO output is very simple.

Now, on to the second example of a switch-controlled blink speed. This is shown
in Listing 16-2, so open up a new file and type it in.

LISTING 16-2:	 An LED Blink Rate Controlled by a Push Button

#!/usr/bin/python3

io.setmode(io.BCM)
io.setup(4,io.OUT) # make pin into an output
io.setup(24,io.IN, pull_up_down=io.PUD_UP) # make pin an input

print("LED blinker - By Mike Cook")
print("Ctrl C to quit")
while True:
 io.output(4,0)
 if io.input(24) == 1:
 time.sleep(0.30)
 else :
 time.sleep(1.00)
 io.output(4,1)
 if io.input(24) == 1:
 time.sleep(0.30)
 else :
 time.sleep(1.00)

Listing 16-2 has the same commands for the output pin, but the input pin setup
is new. This command has three parameters: the number of the pin to use, a num-
ber in the form of a constant defined by the library, specifying that this pin should
function as an input, and, finally, some commands telling the computer to acti-
vate the internal pull-up resistor (although, to our ears, PUD_UP sounds more like
a mother calling children to tell them their pudding is being served). The LED is
first turned off as before, and then the input from the push button is read by the

334 PART 5 Exploring Electronics with the Raspberry Pi

input(24) method, which returns a value of 0 or 1, depending on whether the pin
is connected to the ground. This returned value is then compared to 1, and if it’s
equal, a 300mS delay is made; otherwise, it produces a 1-second delay. The LED is
turned on, and the Conditional Delay code is repeated.

Using GPIO ZERO
There’s a new kid on the block when it comes to accessing the GPIO pins in Python:
the GPIO Zero library. Don’t confuse this with the Pi Zero — the two are not
related. The GPIO Zero library takes the class method approach to control, as
opposed to the function method approach of RPi.GPIO and other, similar libraries.
Pins become Python objects, which must be set up before use. Despite this com-
plication, using this system is easy. For example, for our LED blink example, we
can use the code in Listing 16-3.

LISTING 16-3:	 Python LED Blink

#!/usr/bin/python3
import time, os
import gpiozero as io # using LED zero

led = io.LED(4) # make pin 4 into an output

print("LED blinker using gpiozero - By Mike Cook")
print("Ctrl C to quit")
while True:
 led.on()
 time.sleep(0.30)
 led.off()
 time.sleep(0.30)

Listing 16-3 at first looks very similar to the code in Listing 16-1 but only because
we have written it to be like this. The library uses only the BCM method of pin
numbering, so there’s no need to tell the library what system to use. An output pin
is known as an LED, irrespective of whether that pin controls an LED, a motor, or
a chip. So, the line that makes the pin an output is io.LED(4). This code segment
returns a reference to the class object. Classes and objects are topics we cover in
Chapter 17, where we describe how to write one, but basically, it’s a way to get the
same piece of code to handle different specific objects — in this particular case,
different GPIO pins. In order to know what it has to do, each thing/pin must be

CHAPTER 16 Taking Control of Your Pi’s Circuitry 335

declared separately, and when it is, the program gets a code number to use to
identify which specific thing it has to handle. That code number is placed into a
variable called led in the Listing 16-3 example, but could be called anything. (This
variable is known as the instance reference.) The class has methods associated with
it — things it can do, in other words — and these are called up by writing the
instance reference variable name, followed by a period or dot, followed by the
method name. So, turning an LED on or off is a simple process — you just write
led.on() or led.off(). However, in a way, this is a bit limiting. For example, you
cannot send a number in a variable that’s used to turn the LED on or off — it has
to be specifically spelt out as a method name. This is a limitation of how GPIO Zero
is written, not a limitation of using classes. There are ways round this, but at this
point, the simple system gets rather complex.

In fact, Listing 16-3 is written in a way that it looks a lot like the earlier listings.
The same thing could simply be written as shown in Listing 16-4.

LISTING 16-4:	 A Simple LED Blink

import gpiozeroled = LED(4)
led.blink()

And that’s all you need. We aren’t sure what you can learn from this, apart from
the wiring skills needed to attach the hardware, but it’s helpful for beginners.
That last statement can have some parameters in it to control the blink rate — so,
for example, to exactly match our other examples that last line could be:

led.blink(on_time = 0.3, off_time = 0.3)

This library has even more tricks up its sleeve. If you want to fade that LED up and
down instead of just blinking, that last line could say

led.blink(on_time = 2.0, off_time = 2.0, fade_in_time = 1.0,
fade_out_time = 1.0)

This is great if you only want to do that, and for a very young beginner, that’s
exactly what you want to do.

The blinking speed controlled by a push button can be written as shown in
Listing 16-5.

336 PART 5 Exploring Electronics with the Raspberry Pi

LISTING 16-5:	 A GPIO zero example of an LED Blink Controlled by Push Button

#!/usr/bin/python3
import time, os
import gpiozero as io # using GPIO Zero

led = io.LED(4) # make pin 4 into an output
push = io.Button(24) # make pin 24 into an input

print("LED blinker switch using gpiozero - By Mike Cook")
print("Ctrl C to quit")
while True:
 led.on()
 if push.is_pressed:
 time.sleep(0.30)
 else :
 time.sleep(1.00)
 led.off()
 if push.is_pressed:
 time.sleep(0.30)
 else :
 time.sleep(1.00)

The input works in a similar way to the output. In this case, you make an instance
of the Button class and put its reference in the variable push. Then you use
the is_pressed method of this class to determine the time delay in the blinking.
By default, the input pull-up resistor is enabled when you create the class
reference.

There are other options contained in this input class. It can specify whether a
press is to be auto-repeated or specify a debounce time — the time after a change
to ignore further changes. (We take another look at debouncing later in this
chapter.) As well as the is.pressed method, other class methods include is_held,
wait_for_press, wait_for_release, is_held, when_held, when_pressed, and
when_released. Rather than return any information about the input, these last
two cause a function to run when the button is pressed or released. This other
function runs in a separate thread — in effect, another separate program — with
this thread and the main code being swapped in and out alternately until the
function is complete. This gives a beginner access to complex concepts that they
need to understand only when something goes wrong. So, our controlled blink-
rate program could be written as shown in Listing 16.6.

CHAPTER 16 Taking Control of Your Pi’s Circuitry 337

LISTING 16-6:	 GPIO Zero-Specific LED Blink Controlled by Push Button

#!/usr/bin/python3
import gpiozero as io # using LED zero
from signal import pause
led = io.LED(4) # make pin 4 into an output
push = io.Button(24) # make pin 24 into an input

def blinkFast():
 led.blink(on_time = 0.3, off_time = 0.3)

def blinkSlow():
 led.blink(on_time = 1.0, off_time = 1.0)

push.when_pressed = blinkFast
push.when_released = blinkSlow

pause()

The pause function, in effect, ends the program, and the only thing that happens
is when the callback functions, as they are called, are invoked or triggered on the
push or release of the button.

A lot of the programming work involved in using GIPO Zero involves leafing
through the documentation to see what simple functions the authors have imple-
mented for you. GPIO Zero enables you to get results quickly, and without needing
to understand much of what is going on — which is helpful if a function does what
you need. However, we can’t help but feel that although some things can be done
simply, the skills learned are not exactly transferable. As you develop more com-
plex electronic projects, you might find GPIO Zero to be too limited for your needs.

Starting Out with a Dice Display
After you have the basic toolkit of dealing with the GPIO pins under your belt, it’s
time for a bit of fun with some projects. First off, let’s look at making a computer-
controlled dice.

A dice display
Now, before you get pedantic about our closing statement in the previous section
and state that there’s only one dice, so it should be called a die, let us point out that

338 PART 5 Exploring Electronics with the Raspberry Pi

in modern standard English, dice is both the singular and the plural. To throw the
dice could mean one, or more than one, dice. An online search will verify this
definition.

A dice display is a good project to start with because it not only makes a useful and
interesting replacement when you want to use one in playing a game but also
serves to introduce some important programming concepts. Basically, it’s simply
seven LEDs and a push button, so it isn’t much different from the circuit we
describe earlier in this chapter. However, the arrangements of the LEDs is vital to
the final effect, and it’s important to get the correct LEDs in the correct spatial
position. Figure 16-9 shows the basic schematic.

The actual GPIO pins you use for the LEDs doesn’t matter because the relation-
ship between the LEDs and the pins is defined in software — if you get it wrong,
you can correct it in the pattern lookup table. However, for a trouble-free
experience, follow our GPIO usage. Note that the schematic is quite clean and
straightforward. It follows the rules of positive signals at the top and ground
signals at the bottom, with a minimum number of wires (in this case, none)
crossing. Also, the signal flow is from left to right. This is a good example of a
schematic. When it comes to the physical layout, Figure 16-10 shows one way of
wiring this up on a breadboard.

You will instantly see that this layout is altogether more cluttered, which makes it
difficult to see what is happening, although it does show you where to place all the
parts and wires. Note that LED 2 and LED 4 have their legs bent slightly to allow
them to physically line up with LED 3 and get a good match to the die pattern.
Though it’s easy to go from the schematic to the layout in your head, it’s almost

FIGURE 16-9:
LED dice

schematic.

CHAPTER 16 Taking Control of Your Pi’s Circuitry 339

impossible to go in the other direction if the circuit is anything other than trivial.
We did cheat a bit here and pick the GPIO pins so that we could draw the physical
layout without having any wires cross, which would have made it even more
cluttered. You can’t always do that.

We strongly recommend that you don’t rely on physical layout diagrams, but
instead learn the simple process of converting the schematic into a layout. There’s
no need to plan it all out beforehand — just take it one wire at a time and build it
up. It’s a skill that’s easy to learn and that will pay you back handsomely as you
progress through your learning of this subject.

Figure 16-11 shows a photograph of the hardware for our project. We ended up
using 3mm diameter LEDs for it. Note how it’s even more messy than the layout
diagram. There are two causes for such messiness: First of all, you can’t easily
bend the wires out of the way so that they don’t obscure anything. Second, the
whole point of using breadboard is so that you can reuse its components. This
means you generally don’t snip the component leads to be short and close to the
board — you leave them sticking out high above the board.

FIGURE 16-10:
LED dice physical

layout.

340 PART 5 Exploring Electronics with the Raspberry Pi

The project
When doing any project, no matter how small, it always pays to take it one step at
a time and test as you go. So, the first thing to do is to test your hardware before
you get into anything fancy. You can simply extend the LED blink program to
blink all the LEDs or, if you aren’t up to that, simply take the LED blink program
and change the GPIO number to one number you’re using here. Run that and see
the correct LED flashes, and then stop the program and change to another number.
Repeat until all the LEDs (as well as the push button) have been tested.

The project splits up into two main parts: Generate the random number between
1 and 6 and then display it.

The numbers
There are two ways to generate the random numbers: Use the computer’s
random-number generator or use some random event. The problem with the
random-number generator is that it’s not really a random-number generator. It’s
a pseudo random-number generator — the sequence of numbers is fixed and will
repeat every time you run the program, unless you seed it by picking a random
starting point in this sequence. Because the sequence is very long, this approach
will appear to be a random number. (The Python random-number generator uses
as the seed the length of time the system has been powered on.)

However, a better way is to use something that is by its nature truly random: In
this case, we use the length of time the user has pressed the button, indicating a

FIGURE 16-11:
Photo of the LED

dice project.

CHAPTER 16 Taking Control of Your Pi’s Circuitry 341

new throw. You might not think this is random, because the user could just make
a long press or a short press and that would influence the number that’s produced.
However, this doesn’t take into account that the timing of a press can be very
accurate and that all six numbers are cycled through many thousands of times a
second. Controlling a button press with microsecond accuracy is simply not pos-
sible for us slow humans, so it’s a good source of random numbers. Therefore, in
our project, the number is generated by counting from 1 to 6 while a push button
is held down.

When a push button is first pushed, the contacts come together and then bounce
apart and then come together in a rapid sequence of contact make-and-break,
rather like a ping-pong ball falling onto a table. This happens on all mechanical
switches, but some designs are worse than others. A lot of the time in program-
ming, this isn’t important because other stuff happens after a contact is first
made. Other times, it could be a problem, but the solution can be quite simple —
just delay for a few milliseconds after the first contact before looking at the input
again. This strategy — known as debouncing an input — is what we show you how
to do in this project.

The display
Once you have generated a number, it must be displayed in the pattern of a
conventional dice. This involves turning on a specially selected pattern of LEDs.
This pattern is, of course, different for each number. Now, you could use a series
of if statements to test for each possible number, and when you find a match,
write a series of statements to turn on and off the appropriate LEDs. An example
of this for one number using the GPIO Zero library would look like the code in
Listing 16-7.

LISTING 16-7:	 Fragment of Code to Set a Pattern

the variable dice_number contains the number to display
if dice_number == 3: # make the three pattern
 led0.off()
 led1.on()
 led2.off()
 led3.on()
 led4.off()
 led5.on()
 led6.off()
 if dice_number == 4: #if the number is four then
 led0.on()
 and so on

342 PART 5 Exploring Electronics with the Raspberry Pi

You can see that this listing is easy to read, but it contains the most awful, turgid,
repetitive code and is much longer than necessary. (This is typical of what a
beginner might produce.)

Turgidness in not confined to the GPIO Zero library — you can write bad code like
this with any library.

You might wonder why it matters, as long as the code works. Well, if you can
understand the concepts of doing it properly, you can apply them in situations
where code like this will not work or is far too long. Even so, before you can begin
to write any code, you need to know what LEDs to turn on and off to display each
number. Figure 16-12 shows the patterns we have decided to use to represent the
dice pattern. Note that the main choice is which diagonal to use for representing
3 and 2. We think it’s best using the opposite diagonal for the two numbers, but
we have no preference for which diagonal to use.

Given the physical arrangement of LEDs shown, each number needs to be dis-
played by having certain LEDs on and off. This pattern can be summarised as a
sequence of 0s and 1s and is shown in the Binary Pattern column in Figure 16-12.
Binary is a way of writing numbers that exactly matches how those numbers are
stored in the computer as a sequence of 1s and 0s. A single digit is called a bit.
Everywhere the LED is on, there’s a 1 in the binary pattern, and there’s a 0 when
it’s off. This pattern can define the LED pattern, functioning as a concise store of
the pattern you need. In a program, it’s way easier to express this pattern as a
hexadecimal number, because with a little practice, you can convert from a pat-
tern to a number in your head — and it’s then easy to read the code. Hexadecimal
is a number system that groups a byte, or 8 bits, into two 4-bit groups. Each of the
two groups is then expressed as a single character — from 0 to 9 and then the
letters A to F. This gives 16 different characters that represent the 16 different
patterns of 1s and 0s you can get with four bits. This is shown in the Hex Pattern
column of Figure 16-12, as far as the computer is concerned, if you start a number
with 0x, it treats what follows as a hexadecimal number.

FIGURE 16-12:
LED dice display

patterns.

CHAPTER 16 Taking Control of Your Pi’s Circuitry 343

In Figure 16-12, we show — for the sake of completeness — the equivalent
number in decimal notation, which is the counting system we humans use. No
one in their right mind would dream of using it in a program — although it would
work because it follows the correct pattern, it’s almost impossible to know
what the pattern is by just looking at the number. In other words, it makes for
bad code.

Keep in mind that the actual numeric value of this pattern number has no mean-
ing at all — the meaning is in the binary bit pattern. Often, beginners ask how to
convert a number into binary, but there’s no need because any number stored in
the computer is already in binary format. Only when you need to do a task like
printing it out do you need to convert a number from binary into something else,
and the print statement does that for you. All you need now is some way to read
that “bit pattern number” and turn it into the action of switching the LEDs on and
off. In effect, you have to unpack that information and turn it into a pattern — and
do it efficiently without turgid code.

So let’s break this down and see if you can do this for only one bit of the pattern —
let’s say the least significant, or right-hand, bit. If it is 1, turn on the LED, and if
it’s 0, turn it off. You can handle that task with this line:

io.output(LEDnumber,pattern & 1)

The variable LEDnumber has, as you might suspect, the LED number you want to
control, and the variable called pattern has the bit pattern you’re trying to pro-
duce. The & symbol means the arithmetic AND operation. The AND operator takes
two numbers and considers the contents of each bit position individually. If both
numbers contain a 1 in the same position, the result is a 1. Otherwise, the result
for that position is 0. So, when you’re ANDing the number 1 with the pattern
number, the result is to zero, or remove, all bits except the least significant one,
which is left alone. In other words, it isolates a single bit in the pattern variable.
So if the least significant bit in the pattern variable was a 0, that operation returns
a 0. If it was a 1, that statement returns a 1 — which is just the number you need
to put in the output command to turn that LED on or off. (We say that the number
1 here is a mask because it masks out bits you don’t want.)

Now, what about the LEDnumber that changes every time we want to look at a dif-
ferent bit in the pattern? Instead of a single number here, we actually need a list.
The list is made up of the GPIO numbers that control each LED. So the first element
in the list is the GPIO number that controls LED 0, which, according to the sche-
matic, is GPIO 23. Finally, you need a way to move the bit pattern in the pattern
variable one place to the right so that the same instruction will do the same thing

344 PART 5 Exploring Electronics with the Raspberry Pi

for the next bit. You can do this with a shift-to-the-right operator (>>), so you
can have a little loop that generates the pattern:

LEDnumber = [23,4,25,10,17,8,22]
for i in range(0,len(LEDnumber));
 io.output(LEDnumber[i],pattern & 1)
 pattern = pattern >> 1

And that’s all there is to it — no turgid code at all. It’s short, concise, and easy to
write.

Finally, we have added the small, fun feature of a dice roll display. This shows
several random dice patterns in quick succession, to give the impression that the
dice is being rolled.

We’re all ready to show you how to write the full code. This is shown in
Listing 16-8.

LISTING 16-8:	 LED Dice

#!/usr/bin/python3
Electronic dice. By Mike Cook
import time, random
import RPi.GPIO as io

LEDnumber = [23,4,25,10,17,8,22]
dicePattern = [0,0x08,0x41,0x2A,0x63,0x6B,0x77]
pushButton = 7

def main():
 print("Electronic Dice Ctrl C to quit")
 initGPIO()
 number = 1
 while 1:
 displayRoll()
 displayNumber(number)
 number = generateNumber()

def displayRoll(): # pattern to show when rolling
 for i in range(0,20):
 displayNumber(random.randint(1,6))
 time.sleep(0.1)

CHAPTER 16 Taking Control of Your Pi’s Circuitry 345

def displayNumber(number):
 pattern = dicePattern[number]
 for i in range(0,len(LEDnumber)):
 io.output(LEDnumber[i],pattern & 1)
 pattern = pattern >> 1

def generateNumber(): # wait for a push
 throw = random.randint(1,6)
 while io.input(pushButton) == 1:
 pass
 time.sleep(0.030) # debounce delay
 while io.input(pushButton) == 0:
 throw += 1
 if throw >6: # wrap round the number
 throw = 1
 return throw

def initGPIO():
 io.setmode(io.BCM)
 io.setwarnings(False)
 for pin in range (0,len(LEDnumber)):
 io.setup(LEDnumber[pin],io.OUT) # make pin into an output
 io.setup(pushButton,io.IN,pull_up_down=io.PUD_UP) # make pin ↩

into an input

Main program logic:
if __name__ == '__main__':
 main()

When this code runs, it loads in the libraries, sets the global variables, defines all
the functions, and then, finally, starts running the main function. This is where
the action is coordinated, and it’s a good idea to make it as short as you can. The
main function prints out a message, initializes the GPIO pins and number to dis-
play, and then starts an infinite loop, displaying the roll pattern and the dice
number and then generating the next number when the button is pressed again.

Beginners often try to cram everything into the main function, but using some
well-named functions makes it much easier to see what’s going on. These func-
tions could, of course, be called anything, but for readability, make them as descrip-
tive as you can. This benefits not only others reading your code but also, more
importantly, you in six months’ time, when you have forgotten what is going on.

One thing that might puzzle you is that the dice pattern list starts off with a 0.
This was not shown in Figure 16-12, so why is it there? Well, all lists are numbered

346 PART 5 Exploring Electronics with the Raspberry Pi

starting at 0, and the first pattern you’re interested in is the pattern for a throw
of 1. So, in order to align the position of the pattern information with the position
in the list, you must start out with a blank entry — so that, for example, the
information for the number 4 is in the fourth position on the list. The rest of the
code ensures that 0 will never be required to be displayed.

Looking more closely at Listing 16-8, the displayRoll function is simply a loop
that calls the displayNumber function 20 times, giving it a random number
between 1 and 6. It shows each number for one-tenth of a second. The
displayNumber function should be familiar to you from earlier mentions in this
chapter. The one function that may need close examination is generateNumber. It
starts out generating a random number called throw, and then it waits in a while
loop until the push button is pressed. When this is detected, a 30ms delay ensures
that any contact bounce is finished before another while loop looks to see if the
button has been released. Though the program is in this loop, it increments
the throw variable, and when the maximum value of 6 is exceeded, the throw
variable is reset to one. The last line returns this throw value to the calling line.
The line in the main function

number = generateNumber()

ensures that this return value is placed in the variable called number.

Taking it further
We encourage you to play around with all the code you find in this book, by mak-
ing your own changes and extensions. One area that’s fun to play with is the roll
animation. Instead of showing random numbers, you can make any sort of display
you like in the same way as you defined the patterns for the dice display. As a
start, we have written an alternate function for the display roll, as shown in
Listing 16-9. You should use this code to replace the function of the same name in
Listing 16-8. You should save any changes you make using a different filename if
you want to keep them.

LISTING 16-9:	 An Alternate displayRoll Function

def displayRoll(): # pattern to show when rolling
 rollPattern = [0x01,0x03,0x07,0x0F,0x1F,0x3F,0x7F,0,0]
 for roll in range(0,len(rollPattern)):
 pattern = rollPattern[roll]
 for i in range(0,len(LEDnumber)):
 io.output(LEDnumber[i],pattern & 1)
 pattern = pattern >> 1
 time.sleep(0.2)

CHAPTER 16 Taking Control of Your Pi’s Circuitry 347

This has a new list of patterns to be used in the roll — called, appropriately
enough, rollPattern. You can write your own numbers in here and use as many
of them as you want. The code ensures that all pattern numbers you write in here
are displayed. Can you change the numbers in the rollPattern list so that a single
lit LED goes round the dice display? You could also change the speed of the dice
roll display, making it longer between display changes as it comes to an end. If
you want to use binary numbers to define the pattern, you can use

rollPattern = [0b1,0b11,0b111,0b1111,0b11111,0b111111,
0b1111111,0,0]

Note that there’s no need to specify leading 0s, but, personally, we find binary
much harder to read in a line of code than hex because it’s easy to lose your place
amongst all those 1s. If you like this project, we encourage you to put all
the electronics in a box and connect it up to the Pi with a multiway header and
ribbon cable.

Pedestrian Crossing
The dice project covered in the preceding section is all about displaying patterns.
The Pedestrian Crossing project is about time and sequences. It simulates a U.K.
pedestrian crossing — basically, a traffic-light–controlled crossing initiated by
the pedestrian’s pressing a button. These crossings are also common in the United
States, but a little of the detail may be different from state to state, so let’s first go
through the sequence we’re trying to simulate.

The crossing has a three-light traffic control — red, amber, and green — and the
pedestrian has a two-light system — Cross (or Walk), which is green, and Don’t
Cross (or Don’t Walk), which is red. The normal state of the crossing is that the
green light is on for the traffic and all the other lights are off. There’s a button at
the crossing for the pedestrian to request a stop, and a traffic sensor is buried
in the road. This sensor controls how quickly the crossing sequence will start after
the pedestrian presses the button. If no traffic has been detected recently, the
crossing sequence starts immediately; otherwise, there’s a delay. This ensures
that a busy road isn’t stopped too many times by pedestrians or jokers, whereas a
quiet road will not make pedestrians wait long before they can cross. Once the
Cross Request button is pressed, the Don’t Cross light immediately comes on.

When the crossing sequence begins, the green traffic light turns to amber and
then to red. Then the green crossing light comes on and, at many crossings, a
sounder “bleeps” to help blind people cross. After a period of time, it may be safe
to continue crossing but not be safe to start a crossing, so the green cross light and

348 PART 5 Exploring Electronics with the Raspberry Pi

the amber traffic light flashes, and the sounder no longer bleeps. Then the Don’t
Cross light comes on, with the traffic light remaining amber, and, finally, the
traffic light goes to green and all pedestrian lights go out.

This sounds straightforward on the face of it, but the traffic sensor needs to be
monitored through this sequence, to ensure that you don’t miss any traffic that
may drive up and stop during the crossing sequence and allow the next crossing
to occur too quickly. This means you can’t just use a simple time.sleep delay to
control the sequence; you need what is known as a state machine — this is a way
of juggling two or more processes while making it look like they’re happening at
the same time.

A state machine is an important technique — and one that you’ll need over and
over as you take on more projects.

The idea of a state machine is that most things do not need the processor’s full
attention. The LED blink program, for example, spends virtually all of the time in
the sleep function, just waiting for time to pass. Instead of burning that time, the
idea of a state machine is to spend it looking after other tasks. In order to do this,
you have to have some idea of when your tasks need attention, so you incorporate
a variable that specifies the time each task needs to be looked at next. This is made
possible by the time.time() method of the time library, which returns a floating-
point number (one with decimal places) of the time (in seconds) that the Pi has
been switched on. The thing is that you don’t actually care what this number is,
because you use it as a relative measure to find out when to do the task.

Let’s look at a simple example first — blinking two LEDs independently.

First of all, go ahead and wire up two LEDs and resistors, connecting them to GPIO
23 and 24, as shown in Figure 16-13.

FIGURE 16-13:
LED wiring for

independent
blinking.

CHAPTER 16 Taking Control of Your Pi’s Circuitry 349

Now we’ll describe how to blink these two LEDs at totally independent rates. The
state of each task is given by a state variable, with the two values 0 or 1. The
state variable shows if the light is on or off so that you know what you need to do
for the next stage of the blinking task. The time between each change of state of
the LEDs is controlled by a variable that gives the time the change must occur.
This time is calculated by adding the current time to the length of time you want
to elapse before the next LED state change. This can be the same for all states or
different for each state. The example in Listing 16-10 has the same time for the
on/off times of LED1, but a separate on/off time for LED2.

LISTING 16-10:	 Blinking Two LEDs at Different Rates

#!/usr/bin/python3
Two blinks By Mike Cook
import time
import RPi.GPIO as io

led1pin = 23
led2pin = 24
led1BlinkRate = 0.5 # the speed of blinking
led2onTime = 0.5 ; led2offTime = 0.51
led1State = 0
led2State = 0
blink1Time = time.time()
blink2Time = time.time()

def main():
 print("Two blinks Ctrl C to quit")
 initGPIO()
 while 1:
 if time.time() > blink1Time:
 blink1()
 if time.time() > blink2Time:
 blink2()

def blink1():
 global blink1Time, led1State
 if led1State == 0:
 io.output(led1pin,1)
 led1State = 1

(continued)

350 PART 5 Exploring Electronics with the Raspberry Pi

 else:
 io.output(led1pin,0)
 led1State = 0
 blink1Time = time.time() + led1BlinkRate

def blink2():
 global blink2Time, led2State
 if led2State == 0:
 io.output(led2pin,1)
 led2State = 1
 blink2Time = time.time() + led2onTime
 else:
 io.output(led2pin,0)
 led2State = 0
 blink2Time = time.time() + led2offTime

def initGPIO():
 io.setmode(io.BCM)
 io.setwarnings(False)
 io.setup(led1pin,io.OUT) # make pins into outputs
 io.setup(led2pin,io.OUT)

Main program logic:
if __name__ == '__main__':
 main()

The program spends most of its time in the while loop in the main function,
checking to see if it’s time to call any of the two functions blink1 and blink2.
(Note: You can, of course, have as many functions here as you want.) When
the functions are run, they do what they need to do given that task’s current state,
which, in our simple case, involves turning the LED on or off. Then you advance
the state counter and, finally, set the time when this function/task needs to
be done again. If the task is being advanced at a constant rate (like the blinking
LED1), then this is done at the end of the function. If each state needs to last a
specific length of time, that is set when the state count is advanced.

When you run the program, you see both LEDs blinking in unison; but, as time
goes by, the two become increasingly out of sync until they are seen to be blinking
alternately, and, in another minute, they will drift back in sync. This is because
the full cycle of LED2 is 0.01 seconds longer than LED1.

Play with these times to see how it changes things. Can you change the code to add
two more LEDs into the mix?

LISTING 16-10:	 (continued)

CHAPTER 16 Taking Control of Your Pi’s Circuitry 351

The Pedestrian Crossing hardware
After you have all the background information you need to make the Pedestrian
Crossing project, let’s start, as always, with the hardware. Figure 16-14 shows
how it should be wired up.

The diagram is quite similar to what we have shown you in this chapter, except
that it’s arranged differently. First, there are two push buttons for the traffic sen-
sor and cross request. Next are five LEDs connected to resistors and GPIO pins.
Note here, though, that you need different colours of LED — two red, two green,
and a yellow. Finally, there’s the sounder. We’re using a piezo electric sounder,
but a word of warning is in order here: There are two types of piezo electric sound-
ers, and there seems to be no universally accepted word to differentiate between
the two. The sort you want is one that generates sound when you apply a voltage
to it. These could be called self-drive sounders, but sometimes they are not. Other
times, they can be referred to as buzzers, but don’t confuse them with electrome-
chanical buzzers, which take a lot of current — too much current for the Pi.
A suitable one would work from 3V and take less than 10mA. The type you don’t
want is the one where you have to supply an electrical pulse train to it before it
makes a noise. This type is sometimes called a speaker-type sounder. A simple
test is to wire the sounder to the 3V3 output and ground of the Pi and then make
and break the contact. If it only clicks, it’s a speaker type. If it makes a sound, it’s
the type you want to use. (To be honest, in development, we replaced the sounder
with an LED and a resistor, to reduce the annoying bleeps.)

The layout of this circuit on a breadboard is shown in Figure 16-15. We have
arranged the traffic-control LEDs like traffic lights, and the cross indicators above
each other like you would find on a real-life crossing.

FIGURE 16-14:
Pedestrian

Crossing
schematic.

352 PART 5 Exploring Electronics with the Raspberry Pi

The Pedestrian Crossing software
Now let’s apply the multi task/state machine principle to our crossing project. We
need one task to look at the traffic sensor — if we see traffic activity, we want to
note the time it took place. Then we need one task to look at the cross request
button — if that button is pressed and the crossing sequence isn’t under way, we
need to start that sequence. Finally, if the crossing sequence has reached the
“cross phase,” we need a task to turn the sounder on and off, to make the bleeping
noise. (Note that we have reduced the times in the crossing sequence to be easy to
look at and see what is going on. In real life, some of the times would be much
longer.) The software for this project is shown in Listing 16-11.

LISTING 16-11:	 Pedestrian Crossing Project

#!/usr/bin/python3
#!/usr/bin/python3
Pedestrian crossing By Mike Cook
import time, random
import RPi.GPIO as io

LEDcontrol = [23,24,25,4,17,9]
GPIO for Traffic Red, amber, Green & noCross cross sounder
crossRequest = 7
trafficSensor = 18
nextSequenceTime = time.time()

FIGURE 16-15:
Layout of the

Traffic Crossing
circuit.

CHAPTER 16 Taking Control of Your Pi’s Circuitry 353

def main():
 global lastTraffic, state, bleep
 print("Pedestrian crossing simulator Ctrl C to quit")
 initGPIO()
 io.output(green,1) # Green light on to start
 state = 0
 bleepTime = time.time()
 bleep = False
 lastTraffic = time.time()
 while 1:
 checkTraffic()
 if checkRequest() and state == 0 :
 io.output(noCross,1) # turn on the no cross light
 if time.time() - lastTraffic > 10.0: #cross immediately
 state = 1
 else:
 time.sleep(10.0) # let traffic flow for a bit
 state = 1
 crossSequenceFunction()
 if bleep and time.time() > bleepTime:
 bleepTime = time.time() +0.3
 io.output(sounder,not(io.input(sounder)))

def checkTraffic():
 global lastTraffic
 if io.input(trafficSensor) == 0:
 lastTraffic = time.time()

def checkRequest():
 request = False
 if io.input(crossRequest) == 0:
 request = True
 return request

def crossSequenceFunction():
 global nextSequenceTime,countFlash,state,bleep
 if state == 0:
 nextSequenceTime = time.time() + 2.0
 return
 if time.time() > nextSequenceTime :
 if state == 1: # show amber
 #print("doing state",state)
 io.output(green,0)
 io.output(amber,1)

(continued)

354 PART 5 Exploring Electronics with the Raspberry Pi

 state = 2
 nextSequenceTime = time.time() + 2.0 #show amber time
 elif state == 2: # show red
 #print("doing state",state)
 io.output(amber,0)
 io.output(red,1)
 state = 3
 nextSequenceTime = time.time() + 2.0 # show red time
 elif state == 3: # show cross light
 #print("doing state",state)
 io.output(noCross,0)
 io.output(cross,1)
 bleep = True
 state = 4
 nextSequenceTime = time.time() + 5.0 #crossing time
 elif state == 4: # change to amber clear crossing
 #print("doing state",state)
 io.output(amber,1)
 io.output(red,0)
 bleep = False
 io.output(sounder,0) # turn off sounder
 state = 5
 nextSequenceTime = time.time() + 1.0
 elif state == 5: # flash amber and cross
 #print("doing state",state)
 io.output(amber,not(io.input(amber)))
 io.output(cross,not(io.input(cross)))
 nextSequenceTime = time.time() + 0.2 #flashing speed
 countFlash +=1
 if countFlash > 20 : #clear crossing time 20 * flash speed
 countFlash = 0
 state = 6
 elif state == 6: # hold amber
 io.output(cross,0)
 io.output(noCross,1)
 io.output(amber,1)
 state = 7
 nextSequenceTime = time.time() + 2.0 # hold amber time
 elif state == 7: # put on red light
 #print("doing state",state)
 io.output(amber,0)

LISTING 16-11:	 (continued)

CHAPTER 16 Taking Control of Your Pi’s Circuitry 355

 io.output(green,1)
 io.output(noCross,0)
 state = 0
 nextSequenceTime = time.time() + 1.0

def initGPIO():
 global red, amber, green, noCross, cross, countFlash, sounder
 io.setmode(io.BCM)
 io.setwarnings(False)
 for pin in range (0,len(LEDcontrol)):
 io.setup(LEDcontrol[pin],io.OUT) # make pin into an output
 io.output(LEDcontrol[pin],0) # set to zero
 io.setup(crossRequest,io.IN,pull_up_down=io.PUD_UP) # make pin

into an input
 io.setup(trafficSensor,io.IN,pull_up_down=io.PUD_UP)
 red = LEDcontrol[0]
 amber = LEDcontrol[1]
 green = LEDcontrol[2]
 noCross = LEDcontrol[3]
 cross = LEDcontrol[4]
 sounder = LEDcontrol[5]
 countFlash = 0

Main program logic:
if __name__ == '__main__':
 main()

Stepping through this program , first note that the GPIO pins are initialized and
that each pin in the list is given its own name. This makes the program easy to
read, although we could have used a “magic number” — a number that appears
for no immediately apparent reason — as an index in the GPIO list. In the infinite
while loop in the main function, traffic activity is first measured and then the
Cross Request button is looked at. The function checkRequest returns a value of
True if the button is being pressed. That means the function can be called directly
inside an if statement — there’s no need for any intermediate variables. Also, the
if statement looks to see if a cross sequence is in operation by looking at the
state variable. (It’s 0 if nothing is running.) If a cross request has been made, a
delay occurs if there has been some traffic activity in the last ten seconds, and
then the state variable is changed to a value of 1.

Next in the main loop, the crossSequenceFunction is called, which only returns
if the state variable is 0; otherwise, the function looks to see if it’s time to change

356 PART 5 Exploring Electronics with the Raspberry Pi

the state, and returns if it isn’t. Finally, in the main loop, the bleep variable is
looked at because it controls when the sounder should make a noise. This variable
is set at State 3 of the crossSequenceFunction and cleared at State 4. The
crossSequenceFunction, for most steps, simply turns on or off the various lights
according to the required sequence. The exception to this is in State 5, where both
the cross light and the amber light need to flash. We do this by toggling the two
lights. (Toggling means turning off a light that is on, and turning on a light that is
off.) Rather than use a variable to tell you if you set the light on or off last, you can
use a little trick: Read the state of a GPIO output pin. This then gives you the value
you last set it to, and you know you want to use the inverse of this state. There-
fore, the line

io.output(amber,not(io.input(amber)))

sets the amber light to the opposite state to its current state. Before you can get
out of State 5 and advance it to State 6, you must have ten flashes of the lights.
Finally, in State 7, you set the traffic lights to green for go and return the state
machine variable back to State 0, which indicates that the cross sequence is no
longer in progress.

Taking it further
There are a number of print statements we have commented out, to show the
state of the Cross sequence; you might like to uncomment them to see what is
going on, although the LEDs should tell you. You can go and measure the times on
an actual crossing and replace the times used in the program with realistic times.
You can extend the program so that there’s a more intelligent traffic-control
system, by counting the cars over a set interval — say, the last 20 seconds — and
graduating the Wait Before Crossing sequence delay is lengthened accordingly.

CHAPTER 17 Lots of Multicolored LEDs 357

Chapter 17

IN THIS CHAPTER

»» Finding out how to use an RGB LED

»» Discovering the APA102C integrated
LED and driver

»» Writing a class driver for the APA102C

»» Making a Rainbow Invaders game

»» Designing a Keepy Uppy football
game

»» Discovering more LED strip shapes

»» Creating a wearable colorful broach

Lots of Multicolored
LEDs

Chapter 16 shows you how to control LEDs in terms of both patterns and
sequences. Now we’re going to get colorful and look at multicolored LEDs.
We use different colors of LED in Chapter 16’s Pedestrian Crossing project,

where each LED has its own color. Another type of LED contains three different
colored LEDs in the same package. This type is known as an RGB LED because the
three colors are red, green, and blue.

RGB LEDs come in three basic forms: common anode, common cathode, and sep-
arate connections. This last type, the least common, only comes in a small, 6-pin,
surface-mount package. (This type is used in the Pimoroni Sense HAT, mentioned
in Chapter 15.) The internal configuration of the three types is shown in
Figure 17-1.

358 PART 5 Exploring Electronics with the Raspberry Pi

The dotted box around each LED is the way a schematic shows that they’re all in
one package. Note that the common anode and common cathode types have four
wires going into them instead of the normal two wires for a single-color LED. Each
LED can be treated by the software as a separate LED. To use common anode LEDs,
you have to wire them up so that the GPIO pins act as current sinks, that is making
the connection to ground. The wiring for the two common “something” LED types
is shown in Figure 17-2.

With a common cathode, the GPIO pins should be set to a logic high to turn the
LED on, and to a 0 to turn it off. (For more on logic highs and zeros, see Chapter 16.)
However, with a common anode LED, this situation is reversed, with a logic low
turning on the LED by sinking current and making a complete circuit that way.
When confronted by Figure 17-2, a beginner typically has this question: “Why do
I need to have three resistors? Why can’t I just have one in the common line?” —
to which the answer is, “Yes, you need all three resistors.”

FIGURE 17-1:
Three types of

basic RGB LEDs.

FIGURE 17-2:
Wiring common

anode and
common cathode

LEDs.

CHAPTER 17 Lots of Multicolored LEDs 359

Here’s why. If you only have one resistor, then the voltage level that the resistor
will drop depends on the current running through it. That means the brightness
will change depending on which LEDs are turned on. Even worse, if the red LED is
on, there’s not enough voltage across the other two LEDs to turn them on. This is
because each color of LED drops a different voltage when it is on, and red drops the
lowest voltage. It will appear that the other colors are not working — not good.

Making Colors
With the wiring schematics out of the way, it’s time to turn to the fun stuff: mix-
ing colors. Yes, you can turn on just one LED at a time, and that will give you one
of the three colors — red, blue, or green. However, turn two on and the colors will
mix in a way known as additive mixing. The primary colors are red, green, and blue.
Mixing them together gives you other colors, the so-called secondary colors. So a
red-and-green light together make a yellow one. A green-and-blue light make a
cyan color, and a red-and-blue light make magenta. Turn on all three LEDs
together and you make white — or, more precisely, they make a white tint.

In theory, all three LEDs on together will make white, but in practice this depends
on the exact brightness of the three separate lights. They have to be identical to
make a pure white; otherwise, the white looks tinted, which is not altogether a bad
thing. It’s not an easy task to do this, because each color has a different forward
voltage drop — you need different resistors to ensure the same current through
each LED. Not only that, each color of LED converts current to brightness with a
different efficiency, which complicates things tremendously.

You might be used to mixing colored paint, but keep in mind you get different
results doing this than mixing light. Paint mixing is known as subtractive mixing
because each paint color you put into the mix takes out (or subtracts) some
other color. This is how your color printer works. For subtractive mixing, the
primary colors are cyan, magenta, and yellow; red, green, and blue being the sec-
ondary colors.

Using diffusers
The light from three LEDs in the same package will still be seen as three separate
points of light, unless there is some sort of diffuser, which allows the light to mix
evenly. For individual RGB LEDs, this is sometimes provided by the package or body
of the LED itself. Viewing distance alone can provide enough diffusion to mix the
colors, but often a diffuser of some sort will help. Diffusers also reduce the bright-
ness per unit area of the LED, making it much easer to take a good color picture.

360 PART 5 Exploring Electronics with the Raspberry Pi

You can use anything that is translucent as a diffuser. Our favorite is a very thin
styrene sheet — about 0.5mm thickness is fine and is easy to work with, because
it can be cut with scissors. (A good alternative is a simple sheet of paper.) If you
have several LEDs and want to see the light from each distinctly, then you have to
have each one surrounded by a light baffle — sometimes known loosely as an egg
box, or waffle box. Without the baffle, the light from each LED mixes with those
adjacent to it and gives a soft focus effect that is not at all unpleasant. The degree
of diffusion you get is proportional to not only the diffusing material but also the
distance of that material from the LED. In most cases, a few millimeters is fine.

You can turn the clear-plastic housing LED into a diffuser by rubbing it gently
with very fine sandpaper or wire wool. Even better is to use a foam-backed sand-
ing block, because it gets round the curves much better than paper. These LED
housings are made of resin, so solvents like acetone do not affect the surface.

Making more colors
The trick to making more colors than the simple primary and secondary colors is
to have different brightness of each of the three colors. In that way, many more
subtle colors can be made. So how can you control the brightness of an LED? Well,
the answer might not be immediately apparent, but what you need to do is to turn
the LED on and off very rapidly. If you do this fast enough — that is, faster than
about 30 times a second — then the eye/brain sees this as a light that is constantly
on and not flickering. Furthermore, you perceive the brightness of the LED accord-
ing to the relative length of the On and Off times. That is, if the LED is on and off
for equal times, the LED appears to be only half as bright. This rapid switching
technique is known as PWM — short for Pulse-Width Modulation — and is the
way you control the LED’s brightness. The waveforms are shown in Figure 17-3.

FIGURE 17-3:
A PWM signal

controlling the
LED’s brightness.

CHAPTER 17 Lots of Multicolored LEDs 361

You can see that the three PWM signals go on an off at the same speed; however,
the one that spends more time being on is brighter than the one that spends only
half the time being on. Finally, the last waveform has a little time on but a long
time off and produces a dim LED. The ratio of the On time to the Off time is known
as the duty cycle of the waveform. Note that the frequency of this PWM signal does
not matter once it is above the rate where you see it flicker.

The RPi.GPIO library has the ability to make the GPIO pins output a PWM signal,
and the library can set both the frequency and duty cycle. If you wire up an RGB
LED according to Figure 17-3, you can test out the colors an RGB LED can produce
with the code in Listing 17-1.

LISTING 17-1:	 RGB Color Test

#!/usr/bin/python3
import time
import RPi.GPIO as io

io.setmode(io.BCM)
io.setup(17,io.OUT) # make pins into an output
io.setup(27,io.OUT)
io.setup(22,io.OUT)

ledR = io.PWM(17,60) # Set up outputs as PWM @ 60Hz
ledG = io.PWM(27,60)
ledB = io.PWM(22,60)

ledR.start(0) # start off the PWM
ledG.start(0)
ledB.start(0)

print("RGB color cycle an LED using RPi.GPIO - By Mike Cook")
print("Ctrl C to quit")
try:
 while(1):
 print("Start cycle")
 time.sleep(2.0)
 for stepR in range(0,100,5):
 for stepG in range(0,100,5):
 for stepB in range(0,100,5):
 ledR.ChangeDutyCycle(stepR)
 ledG.ChangeDutyCycle(stepG)
 ledB.ChangeDutyCycle(stepB)
 time.sleep(0.1) # Whole cycle 8000 times this

(continued)

362 PART 5 Exploring Electronics with the Raspberry Pi

 ledR.ChangeDutyCycle(0)
 ledG.ChangeDutyCycle(0)
 ledB.ChangeDutyCycle(0)

except KeyboardInterrupt:
 pass

ledR.stop(0) #stop the PWM
ledG.stop(0)
ledB.stop(0)
io.cleanup() # Restore default GPIO state

When you walk through this listing, you see that the first thing the code does is set
three GPIO pins to be outputs and then set them up to produce a PWM signal. The
value 60 in these opening lines of code is the frequency 60 Hz, which is the fre-
quency the PWM signal will go at. The duty cycle goes from 0, which is off all the
time, to 100, which is on all the time. The main part of the program consists of three
nested for loops, which ensure that all combinations of red, green, and blue are
produced in duty cycle steps of five. It takes 800 seconds — just over 13 minutes —
to do a complete cycle where 8,000 colors are produced. It might not look like that
many colors when you test your LED output running this code, but they are all
there. It’s just that many of them from this demonstration might look the same.
This has to do with the way people perceive colors — they’re much more sensitive
to the difference between two colors than to the colors themselves.

The Way Forward
The problem with individual LEDs used to be that they took up a lot of the Rasp-
berry Pi’s resources, both in terms of GPIO pins — three per LED — and the soft-
ware needed to generate the PWM cycles. This problem has been solved in the last
few years with the advent of LEDs that contain their own PWM generators that you
can control from the computer. You only need to tell these sorts of LEDs once what
color to produce and they will carry on producing it until you tell them to stop.
Even better, these LEDs can be chained: Once the LED has its instructions from the
computer, it passes any further instructions to the next LED down the line.

The two major types of LED with these capabilities are the WS2812b and the
APA102C. The Adafruit company brands these as NeoPixels and DotStar, respec-
tively. (They are known generically as addressable LEDs.) Note that the SK9822
LED is identical to the APA102C.

LISTING 17-1:	 (continued)

CHAPTER 17 Lots of Multicolored LEDs 363

Admittedly, these LEDs aren’t much to look at. They’re most commonly packaged
in 5mm-square surface-mount packages, as shown in Figure 17-4. The tiny black
squares are the actual chips containing the PWM generator and the memory to
hold the RGB values. The blank-looking areas are the parts where the light is
generated.

You can get NeoPixels in conventional leaded LED packages — not the surface
mount type, in other words — as well as the DotStar’s 5mm-square packages.
Both are available as individual parts as well as long strips of LEDs. But the major
difference between the two lies in how they take their commands from the com-
puter. The NeoPixel requires one signal wire, and the DotStar requires two. Given
that fact, you might be forgiven for thinking that the NeoPixels are easier to use.
The problem is twofold:

»» This one signal wire needs to be controlled to give a precisely timed pulse.

»» The Raspberry Pi, with its Linux operating system, is not good at precise
timing.

There are ways around this with the help of various libraries, but each work-
around comes at a price. The library from Adafruit only works with the original
Model 1 Raspberry Pi as well as the Pi Zero, and the one from Pimoroni, while
working on all models of Pi, uses the hardware resources that normally generate
the audio for the jack socket. (You can still get sound from the HDMI connector,
but not from the audio jack because it can cause the LEDs to flash randomly.)

FIGURE 17-4:
DotStar

(APA102C) and
NeoPixel

(WS2812b) LEDs.

364 PART 5 Exploring Electronics with the Raspberry Pi

The DotStar requires two signals and uses the sequence of transitions that these
signals make to drive the data transfer process. This is ideal for a system like the
Raspberry Pi, where, because of Linux, there might be a longer-than-expected
delay before the next line of your code is executed. The APA102C LEDs are wired
together in a chain, as shown in Figure 17-5, with the signals regenerated by each
LED. Therefore, the signals never “get tired," or, as we say in electronics, degrade.

Each LED has a Data In and a Data Out line as well as a Clock In and Clock Out. So
the inputs of the first chip are all that is connected to the GPIO pins of the Rasp-
berry Pi. Both types of LED work on the principle that once an LED has received
and stored its own data, any further data it receives is passed on to the next
LED. So, after the first set of data is sent to the first LED, there has to be some sort
of reset condition in place in order to recognize situations where new data is
meant for the first LED and is not just data for LEDs further down the chain. This
reset is done by pausing the data stream for greater than 50uS (micro seconds) on
the WS2812b LEDs and by sending a stream of start and end pulses in the case of
the APA102C LEDs. (The wiring of the WS2812b is very similar to the wiring of the
APA102C except that there’s only one data wire in and out.)

Figure 17-6 shows the timing diagram for each type of LED — a picture of how a
logic signal will change in order to indicate logic one, logic zero or the end of a
data set.

FIGURE 17-5:
Wiring of an

APA102C LED
chain.

FIGURE 17-6:
Timing diagrams
for the WS2812b

and APA102C
LEDs.

CHAPTER 17 Lots of Multicolored LEDs 365

For the WS2812b, in order for the single wire to write a Logic One to the LED, the
signal wire makes a jump to a Logic One and stops there for 3.5uS before jumping
down to a Logic Zero for 0.9uS. For a Logic Zero, the signal jumps to a one for
0.9uS and then drops to low for 3.5uS. This repeats until all the data has been
transferred to the LEDs. The end of the data transmission is signaled by a zero
being held for at least 50uS. These times have to be +/– 0.15uS to ensure correct
operation.

The APA102C, on the other hand, has two signals, called clock and data, which can
go at any speed. But the important point is that when the clock signal rises —
transitions from a zero to a one, in other words — whatever logic level on the data
input at that moment is treated as the logic input. Doing this requires nothing
special about the timing; you just have to put the GPIO pins at the correct logic
levels in the right order.

Programmers have a special name they use to describe implementing a protocol
like this — it’s known as bit-banging. (The technical term for this protocol is SPI,
or Serial Peripheral Interface.) There’s some hardware on the processor chip to do
this, but it requires a specific set of pins running in one of the alternative modes.
The great thing about bit-banging is that you can use any pins. Let’s see how we
can bit-bang this protocol on the GPIO bus.

Bit-banging the APA102C protocol
The LEDs used in our example are connected together in a string, where one LED
takes its input from the output of the previous one. The first LED in the string
takes its data from the Pi. Each LED along the string can be thought of as having
a number or an address. When we send out data, we have to send it to all the LEDs,
but we need to change the data only for those LEDs that we want to change. If the
data for an individual LED is the same as last time, it will not change. That way,
we can change individual LEDs by only changing data for those LEDs we want to
change and leaving the data for the others, the same as last time.

The APA102C — in addition to the normal red, green, and blue PWM values, which
control the brightness — has another brightness-controlling number, which con-
trols the current down the LED. This is the equivalent of changing the resistor
value. Valid brightness-control numbers here range from 0 to 31. Each LED needs
data consisting of four numbers: brightness plus red, green, and blue values. This
data needs to be stored in the computer in what is known as a buffer. In Python, we
can implement this buffer as a list. We can then manipulate this list — change the
numbers in it, in other words — to reflect what we want to see on each LED. When
we’re good and ready, we fire out the whole buffer to the string of LEDs.

366 PART 5 Exploring Electronics with the Raspberry Pi

Let’s look at what to put in this buffer, A complete data message has a header, used
to warn the LEDs that data is coming. That header consists of 32 bits of zero,
which means the data GPIO pin needs to be set at zero and the clock GPIO pin
needs to be pulsed up and down 32 times. Then the message data is pulled out of
the list, one number at a time. This is a 32-bit number — each bit in turn is placed
on the data output pin and the clock signal is set to High. When all the LEDs have
been fed, another series of zeros, known as the footer, are sent. This needs to con-
sist of a number of pulses — at least 32 plus half the number of LEDs, to be pre-
cise. The code in listing 17-2 is a fragment of code that would do this.

LISTING 17-2:	 Bit-Banging the Data to the LED

 io.output(da,io.LOW) # set data pin low
 for i in range(0,32): # send header
 io.output(ck, io.LOW) # pulse the clock pin
 io.output(ck, io.HIGH)
 for i in range(0,numLeds): # send data
 d = ledArray[i] # get a single LED's worth of data
 for j in range(0,32):
 io.output(ck, io.LOW)
 if d & 0x80000000 :
 io.output(da, io.HIGH)
 else:
 io.output(da, io.LOW)
 d = d << 1
 io.output(ck, io.HIGH)
 io.output(da, io.LOW)
 for i in range(0,33+(numLeds/2)): # send footer
 io.output(ck, io.LOW)
 io.output(ck, io.HIGH)

Note that this is a fragment only and not a complete program. Note also that this code
uses the shift operator (<<), which moves the data word, or pattern, one place to the
right so that the next byte to send is in the most significant bit of the word. This is the
same technique we show you how to use in forming the dice pattern in Chapter 16.

Creating a class
The bit-banging code is so useful that it could be included in all programs where
you want to use these LEDs. However, in order to make it convenient to use, we can
make this code into a class so that you don’t have to keep including these lines in
your own programs. This is just like the RPi.GPIO library, which is written as a class

CHAPTER 17 Lots of Multicolored LEDs 367

and installed in Python. You can write your own classes and have them included in
the language or, as we do here, just have the class file in the same folder as the
program that uses it and then call it up at the start of the program. As well as out-
putting the data to the GPIO pins, we can bundle other useful stuff in the class, like
ways to set the brightness, set an LED’s color, and set up the data buffer. These
functions of a class are known as methods and can be simply invoked. Listing 17-3
shows the implementation of a bit-banging class for the APA102 LED. Save it in a
file called apa102bang.py along with the other code from the rest of this chapter.

LISTING 17-3:	 Bit-Banging the APA102 Class

#!/usr/bin/env python3
Class for driving APA102 LEDs
#By Mike Cook

import RPi.GPIO as io
io.setwarnings(False)

class Apa102bang(): # Define our class

 def __init__(self,numberLeds,data,clock,bright):
 self.setBrightness(bright)
 self.da = data
 self.ck = clock
 self.numLeds = numberLeds
 io.setmode(io.BCM)
 io.setup(self.ck,io.OUT)
 io.setup(self.da,io.OUT)
 io.output(self.ck, io.HIGH)
 io.output(self.da, io.HIGH)
 self.ledArray = [self.br<<24 for i in range(0,self.numLeds)]

 def setBrightness(self,brightness):
 if brightness > 31:
 brightness = 31
 if brightness < 0:
 brightness = 0
 self.br = brightness | 0xE0

 def setLed(self,pos,col):
 if pos < self.numLeds and pos >= 0:
 self.ledArray[pos] = (self.br<<24)|(col[2]<<16)|(col[1] ↩

<<8)|col[0]

(continued)

368 PART 5 Exploring Electronics with the Raspberry Pi

 def setAll(self,col):
 for i in range(0,self.numLeds):
 self.ledArray[i] = (self.br<<24)|(col[2]<<16)|(col[1] ↩

<<8)|col[0]

 def show(self):
 io.output(self.da,io.LOW)
 for i in range(0,32): # send header
 io.output(self.ck, io.LOW)
 io.output(self.ck, io.HIGH)
 for i in range(0,self.numLeds):
 d = self.ledArray[i] # send data
 for j in range(0,32):
 io.output(self.ck, io.LOW)
 if d & 0x80000000 :
 io.output(self.da, io.HIGH)
 else:
 io.output(self.da, io.LOW)
 d = d << 1
 io.output(self.ck, io.HIGH)
 io.output(self.da, io.LOW)
 for i in range(0,33+(self.numLeds>>1)): # send footer
 io.output(self.ck, io.LOW)
 io.output(self.ck, io.HIGH)

Notice how the class name is nearly the same as the filename? The only difference
is that the filename is in all lowercase letters. Keeping this distinction is impor-
tant because it allows classes to be recognized correctly. Each method is defined
just like a function with a def statement, and the whole class is initialized with a
def __init__ function. The other thing you will notice is that a lot of the vari-
ables start with self. This is to tell the compiler that this variable is one that
belongs to the class itself and that these can actually have different values, if the
class has more than one instance.

You can usually tell what each method will do just by looking at the function
names. For example, when you use the setBrightness method, all that happens is
a variable is set that you can then use to set the brightness for future LED settings.
(Note that it will not affect the current brightness of all the LEDs.) You could write
a method that does set the current brightness, if you want — that would involve
adding the new brightness level to all LEDs in the list and calling the show method.

To see this in action, we use the Pimoroni Blinkt! LED strip, a low-cost strip of
eight APA102C LEDs that fits over all 40 GPIO header pins (even though it only

LISTING 17-3:	 (continued)

CHAPTER 17 Lots of Multicolored LEDs 369

uses two GPIO pins in addition to power [5V] and ground). Listing 17-4 shows a
program designed to use the class. (Be sure to save this to the same folder as the
class file.)

LISTING 17-4:	 Using the APA102 Class

#!/usr/bin/env python3
#demo1 using Apa102bang class driver

import time
from apa102bang import Apa102bang

length = 8 ; brightness = 4
dataPin = 23 ; clockPin = 24 # Blinkt! wiring
leds = Apa102bang(length,dataPin,clockPin,brightness)

def main():
 print("APA102 demo - Cnt C to stop")
 while True:
 for i in range(0,8):
 leds.setLed(i,(120,0,0)) # red
 leds.show()
 time.sleep(0.06)
 time.sleep(0.6)
 for i in range(0,4):
 leds.setLed(i,(0,120,0)) # green
 leds.show()
 time.sleep(0.06)
 time.sleep(0.6)
 for i in range(4,8):
 leds.setLed(i,(0,0,120)) # blue
 leds.show()
 time.sleep(0.06)
 time.sleep(0.6)
 for i in range(0,8):
 leds.setLed(i,(0,0,0)) # black
 leds.show()
 time.sleep(0.06)
 time.sleep(0.6)

Main program logic:
if __name__ == '__main__':
 main()

370 PART 5 Exploring Electronics with the Raspberry Pi

The code starts off by defining the number of LEDs you have, the brightness you
want to run them at, and the pins used for the data and clock lines. These lines are
determined by the way the Blinkt! is made, but these could be any two GPIO pins,
if you want to experiment with more LED strips connected to the Pi. The leds
variable is set to be the class reference — use this reference followed by a dot and
the method’s name to call up any method. The program simply sets each LED in
turn to the three primary colors and back again to black. Note how in the setLED
method the colors are given as three values in a tuple. It is the show method that
actually displays the contents of the data buffer on the LEDs. If you don’t call this
method, the LEDs do not change.

Though this is all very interesting, the results of running this program are not
very spectacular — so let’s make a game with this small LED strip.

Rainbow Invaders
Rainbow Invaders plays a bit like the old Space Invaders game, only in one dimen-
sion. The alien invaders drop bombs of various colors onto your base in an attempt
to destroy you, but you can neutralize these bombs by sending up a beam of the
same color. You have three buttons to choose from — red, green, and blue — and
pushing a button launches a beam of that color. Sounds easy, right? Not so fast.
The invaders can also drop bombs of the secondary colors as well as white, so you
have to press the right combination of your three buttons to generate the right
color beam. If three bombs get through, then your base is destroyed. As your base
gets more hits, its color changes. The higher up a bomb is when your beam hits it,
the higher you score. Add a few sound effects and this is the game.

To get this game off the ground, the first thing you have to do is to build the hard-
ware. In this case, this means adding three push buttons to the Blinkt! LED strip.
Unfortunately, this is a bit trickier that it could be. This is because the LED strip takes
up all the GPIO pins — even the ones it doesn’t use. There are two ways round this
problem: You could solder wires on the back of the Blinkt! and bring these out to
your push buttons, or you could use an extender board, like the Black HAT Hack 3R
or the Mini Black HAT Hack 3R. Figure 17-7 shows where to solder the wires to the
back of the Blinkt!, and Figure 17-8 shows the Black HAT Hack 3R extender board.

Your base in the game is the righthand LED, but with the Black HAT board, you
can position this LED so that your base is at the bottom of a vertical line.

We wrote the software using the Pygame framework that comes preloaded with
the Pi’s operating system, because it’s a great framework for handling sound
effects. You should store your sound samples in a directory you create and then
label sounds in the same directory as this game file. You can steal these sounds

CHAPTER 17 Lots of Multicolored LEDs 371

from the Scratch language: Just go to the directory /usr/share/scratch/Media/
Sounds; copy the sounds ComputerBeeps2, Laser1, and Screech one at a time; and
then, from the Electronic folder, put them in the sounds directory you created.
Do the same for the Pop sound from the Effects folder. The code for the game is
in Listing 17-5.

FIGURE 17-7:
Soldering wires to

the back of the
Blinkt! strip.

FIGURE 17-8:
Black HAT

Hack3R, giving
two sets of GPIO

pins.

372 PART 5 Exploring Electronics with the Raspberry Pi

LISTING 17-5:	 Rainbow Invaders Game

#!/usr/bin/env python3
Rainbow Invaders by Mike Cook

import RPi.GPIO as io
import pygame
import time, random
from apa102bang import Apa102bang

def main():
 global beam,gameOn,bombHeight,bombCol
 print("Rainbow Invaders")
 init()
 gameOn = True ; yourScore = 0
 bombHit = False ; bombHeight = 8
 hits = 3 ; sky.setLed(0,base[hits])
 sky.show() ; time.sleep(gameSpeed)
 nextBombMove = time.time()+gameSpeed
 bombCol = (0,0,0) ; setBombCol()
 while 1:
 while gameOn:
 if time.time()>nextBombMove:
 bombHeight -=1
 showBomb(bombHeight)
 nextBombMove = time.time()+gameSpeed
 yourScore = fireBeam(bombHeight,yourScore)
 if bombHeight == 0 :
 sky.setAll((0,0,0))
 sky.setLed(0,(255,0,0))
 sky.show() # explosion
 gameSound[3].play() # base hit
 time.sleep(2.5) # time to play
 hits -= 1
 if hits == 0:
 gameOn = False
 else:
 print("Base hit:-",hits,"from destruction")
 sky.setLed(0,base[hits])
 setBombCol()
 bombHeight = 8
 sky.show()
 print("Base destroyed:- your score",yourScore)
 time.sleep(gameSpeed * 10)
 print("Push any button for a new game")

CHAPTER 17 Lots of Multicolored LEDs 373

 while io.input(fireR) and io.input(fireG) and io.input(fireB):
 pass
 print("New game starting")
 hits = 3
 gameOn = True
 bombHeight = 8
 sky.setLed(0,base[hits])
 sky.show()
 setBombCol()
 while (not io.input(fireR)) | (not io.input(fireG)) | (not ↩

io.input(fireB)):
 pass

def getBeam():
 m = 128
 b = ((not io.input(fireR))*m,(not io.input(fireG))*m,(not io. ↩

input(fireB))*m)
 return b

def showBeam(col,limit):
 for i in range(1,limit):
 sky.setLed(i,col)
 sky.show()
 time.sleep(0.05)

def showBomb(pos):
 global bombCol
 showBeam((0,0,0),8)
 sky.setLed(pos,bombCol)
 sky.show()

def fireBeam(far,score):
 global beam,bombCol,bombHeight
 if getBeam() != beam: # laser fire
 beam = getBeam()
 if beam != (0,0,0):
 gameSound[1].play()
 showBeam(beam,far)
 if beam == bombCol : #hit OK
 time.sleep(0.2)
 gameSound[2].play() #hit sound
 score += far
 time.sleep(1.5) # allow hit to finish
 bombHeight = 8

(continued)

374 PART 5 Exploring Electronics with the Raspberry Pi

 setBombCol()
 return score

def setBombCol():
 global bombCol
 gameSound[0].play() # bomb incoming
 while 1 :
 r = random.randint(0,1) * 128
 g = random.randint(0,1) * 128
 b = random.randint(0,1) * 128
 if not(r==0 and g==0 and b==0) and bombCol != (r,g,b) : ↩
 break
 bombCol = (r,g,b)

def init():
 global fireR,fireG,fireB,beam,sky,gameSpeed,base,gameSound
 random.seed()
 io.setmode(io.BCM)
 fireR = 4 ; fireG = 3 ; fireB = 2
 io.setup([fireR,fireG,fireB],io.IN, pull_up_down=io.PUD_UP)
 beam = getBeam()
 length = 8 ; brightness = 4
 sky = Apa102bang(length,23,24,brightness)
 gameSpeed = 0.3 # the step speed of game in seconds
 pygame.mixer.quit()
 pygame.mixer.init(frequency=22050, size=-16, channels=2, ↩

buffer=512)
 base = [(0,0,0),(32,0,32),(0,64,0),(0,128,128)] # base colors
 soundEffects = ["ComputerBeeps2","Laser1","Pop","Screech"]
 gameSound = [pygame.mixer.Sound("sounds/"+ ↩

soundEffects[sound] + ".wav") ↩
 for sound in range(0,4)]

Main program logic:
if __name__ == '__main__':
 try:
 main()
 except KeyboardInterrupt:
 pass
turn off all LEDs
sky.setAll((0,0,0))
sky.show()

LISTING 17-5:	 (continued)

CHAPTER 17 Lots of Multicolored LEDs 375

The main function, consisting of two large loops, is where most of the action hap-
pens. The inner loop while gameOn runs a round of the game, where bombs are
sent down until there have been three hits to the base — when a bomb reaches a
bomb high of zero, in other words. The first if statement checks to see whether
enough time has passed to move the bomb another step closer to the base. The call
to the fireBeam function checks to see whether buttons are being pressed to gen-
erate a beam, and if they are, the beam is fired off and a laser sound is triggered.
If the beam color matches the bomb color, then the hit sound is triggered and the
current bomb height is added to your score. The round is then restarted by setting
the bomb height back to 8 and a new bomb color is generated. Then the program
returns to the main loop.

If a bomb is found to have reached the base, then the base is turned red and the
explosion sound is triggered. The hits variable is decremented, and if it has
reached zero, the round is over and the gameOn variable is set to false, thus end-
ing the current loop. Then the final lines of the while 1 loop displays the score
and waits until you have pressed a button before starting the game over again.

The array of LEDs here is called sky, which is descriptive enough, and the overall
speed of the game is controlled by the gameSpeed variable in the init function.
When you quit the game by pressing Ctrl and c (a Keyboard Interrupt), all LEDs are
turned off to clean up the display.

You can tinker with the game speed and the number of hits your base can stand,
but you can also make the game a lot harder. If you add a fourth push button, you
can make this a half-brightness button. That means to match the bomb color, you
have to press the right combination of red, green, and blue and also the bright-
ness. You also need to feed this variation in brightness into the generation of the
bomb color. It isn’t hard, but it does require a bit of thinking.

Keepy Uppy
Another game you can play on exactly the same hardware is Keepy Uppy, the well-
known football pastime and skill demonstration where you have to keep a football
in the air all the time, just by kicking it up. The ball is a moving LED, but unlike
the game in the previous section, it’s a fixed color and you have to press a single
button during the time when the ball is on your “foot” — the bottom LED, in
other words. If you time it right, the ball moves up again until it reaches the top
and then descends. A further challenge in playing is that if the player’s actual but-
ton press is in the second half of the time allotted (that is, just in time), then the
game speed increases, making it harder to kick the ball as soon as it can be kicked.
Kick it in the first half of the allotted time and the game speed reverts to the

376 PART 5 Exploring Electronics with the Raspberry Pi

original speed. This makes it more interesting and difficult to play. The code for
the game is in Listing 17-6.

LISTING 17-6:	 Keepy Uppy Game

#!/usr/bin/env python3
KeepyUppy by Mike Cook

import RPi.GPIO as io
import time, random
from apa102bang import Apa102bang
stripLength = 8

def main():
 global beam,gameOn,ballHeight,ballCol
 print("Keepy Uppy")
 init()
 gameOn = True
 ballDirection = -1; ballHeight = stripLength
 foot = 0 ; kicks = 0
 currentGameSpeed = gameSpeed
 leds.setLed(0,footCol[foot]) # foot color
 leds.show()
 time.sleep(gameSpeed)
 nextBallMove = time.time()+gameSpeed
 lastKickMade = not(io.input(kick))
 while 1:
 while gameOn:
 kickMade = not(io.input(kick))
 if kickMade and not(lastKickMade) :
 if ballHeight == 0: # kick
 ballDirection = ballDirection * -1
 #speed up if you are late pressing
 if nextBallMove - time.time() < currentGameSpeed/2 :
 currentGameSpeed = currentGameSpeed / 2
 else:
 currentGameSpeed = gameSpeed
 nextBallMove = time.time()-1.0
 foot = 1
 kicks += 1 # add to your score
 else:
 foot = 2
 if time.time()>nextBallMove:

CHAPTER 17 Lots of Multicolored LEDs 377

 leds.setLed(ballHeight,(0,0,0))
 ballHeight +=ballDirection
 leds.setLed(0,footCol[foot])
 leds.setLed(ballHeight,ballCol)
 foot = 0
 nextBallMove = time.time()+currentGameSpeed
 if ballHeight >= stripLength-1 :
 ballDirection = -1
 if ballHeight < 0: #missed the ball
 gameOn = False
 lastKickMade = kickMade
 leds.show()
 print("Ball missed your score",kicks)
 while not(io.input(kick)):
 pass
 time.sleep(gameSpeed* 5)
 print("Press kick for a new game")
 while not(io.input(kick)):
 pass
 kicks = 0
 gameOn = True
 ballHeight = stripLength
 ballDirection = -1
 leds.show()
 currentGameSpeed = gameSpeed
 while io.input(kick):
 pass

def init():
 global kick,ball,leds,gameSpeed,footCol,ballCol
 random.seed()
 io.setmode(io.BCM)
 kick = 4
 io.setup(kick,io.IN, pull_up_down=io.PUD_UP)
 brightness = 4
 dataPin = 23 ; clockPin = 24 # Blinkt! wiring
 leds = Apa102bang(stripLength,dataPin,clockPin,brightness)
 gameSpeed = 0.3 # step speed of game
 ballCol = (128,128,0)
 footCol = [(32,32,32),(128,0,0),(0,0,128)] # foot colors

Main program logic:
if __name__ == '__main__':
 try:

(continued)

378 PART 5 Exploring Electronics with the Raspberry Pi

 main()
 except KeyboardInterrupt:
 pass
turn off all LEDs
leds.setAll((0,0,0))
leds.show()

Here, again like the previous program, the main structure of the code can be found
in the two while loops in the main function. One issue that needs to be addressed
is that the push button could just be held down so that it would register as being
pressed all the time — and so always kick the ball at the right time. To prevent
this from happening, you have to implement a state-change detector on the but-
ton. This involves looking at the current state of the push button and comparing
it with the previously read value. Only if the previous value indicated Unpushed
and the current value equals Pushed does the program recognize that the button
has just become pushed. We say this is an edge detection because, rather than look
at the simple state of the push button, we can detect when the state changes. (If
this is drawn on a diagram, this transition looks like an edge.)

For each successful kick, you get one point added to your score, just like in the real
game. The nextBallMove variable is the time the ball moves next. By subtracting
the current time from this, you can tell how quickly the kick has been detected in
the time period allotted to make a successful kick. This is used to speed up or
restore the original speed of the ball movement.

If you want to take things further, one thing you can do is make the strip longer.
The game was designed for an 8-LED strip, but simply by changing the
stripLength variable at the start of the code and adding a longer strip, you can
make the ball go higher. You can get much longer strips than the simple Blinkt!
8-LED strips, as you shall soon see.

LEDs Galore
The great thing about LEDs like the APA102C is that you can control lots of LEDs
with just the two connections, “almost” without limit. So, before you consider
projects that involve hundreds of LEDs, let’s look at some of those limits, and
some ways round them.

LISTING 17-6:	 (continued)

CHAPTER 17 Lots of Multicolored LEDs 379

Current limits
Current is the first and biggest limitation when trying to drive lots of LEDs. Sure,
one LED only draws a small amount of current, but any small number when mul-
tiplied by a big number starts to be important. Suppose that you’re running your
Raspberry Pi off a 2A power supply —roughly twice the peak current that the Pi
needs. You should never take the maximum rated current out of a power supply.
Instead, always keep the maximum current at about 80 percent of rated current.
With a 2A power supply, that ends up being 1.6A. It is therefore reasonable to say
that you have 0.6A, or 600mA (milliamps), of current capacity in a typical setup.
If each LED takes 60mA, that is 20mA for each color. With that setup, you can
drive a maximum of 10 LEDs with a white color at full power.

Now, APA102C LEDs are very bright and would be overpowering at close range.
Luckily, there are two ways to control the brightness, and if it’s controlled, you
use less current and so can drive more LEDs. The first way is to scale down the
PWM values, so instead of using a value of 255 for a red, you’d simply use 128 and
that will use half the current.

Easy enough to say, but programming mistakes can easily happen and put unin-
tended values into the PWM control. It’s also the case that using PWM doesn’t limit
the peak current the LED takes — only the average current. Nevertheless, the PWM
control is capable of splitting the 20mA current per LED into 78uA (microamp) steps.

A better way of controlling the brightness of the APA102C is by using the bright-
ness control. This applies to each LED individually along with the PWM values. So
far, we have just showed you how to set the brightness at a fixed level and then
ignored it — this is a good strategy because it means you have a great deal of pro-
tection from programming errors. The brightness control actually limits the cur-
rent through the LEDs and is controllable in 31 steps. Full current is given by a
brightness value of 31, and other values of brightness give the number of 31ths of
full current. So, if a single LED takes a maximum of 60mA, then with a brightness
of 8, it will only take a maximum 15.48mA. So, the spare 600mA can drive
38 LEDs. Even so, a brightness of 8 is very bright when looking directly at an LED.
A brightness of 2 pushes up that number to 155 LEDs and still looks good.

Anything over 155 LEDs and you will have to resort to an external power supply.
It’s quite easy to use: You just supply the 5V and ground to the LEDs and make sure
the ground of the power supply is connected to the ground of the Raspberry Pi.

Signals and memory
The two other limitations you have to deal with concern signals and memory.
Fortunately for you, there’s no shortage of memory on the Raspberry Pi, unlike

380 PART 5 Exploring Electronics with the Raspberry Pi

other embedded controller boards, like the Arduino. There is cause for concern,
however, when it comes to signals. The Blinkt! board used earlier in this chapter
connected the GPIO signals directly into the chain of LEDs. The problem is that the
LEDs, because they’re powered with 5V, need a 5V logic-level signal to drive them.
It just so happens that the LED’s specifications state that the minimum level suf-
ficient to be seen as a Logic One is 0.7 times the supply voltage. For a 5V supply
voltage, this means a logic high of 3.5V, which is just over the 3.3 volts you get
from a GPIO pin. It turns out that it does seem to work despite this, but the prob-
lem is that it isn’t guaranteed to work in all conditions and temperatures. That
means a driver circuit is often included to boost the clock and data signals to
5V. This becomes more important the further away the first LED is from the Pi —
and the more interference there is in the local environment from things like
motors or fluorescent light fittings. Figure 17-9 shows a signal driver you can
make yourself with a 74LS14 or a 74AHCT14 chip.

Basically, this chip acts as an inverting buffer, but we don’t need to invert the
signals, so we just pass each signal through two buffers to keep it the right way
up. As we now have a 5V signal, there’s a chance that, if the supply voltage on the
LEDs drops, then a series resistor will keep the signals from damaging the first
LED. There are ready-built drivers around, with most based on the 74HTC125 chip.
Note the large capacitor across the external power supply. The value is not too
critical, and you can make it much bigger than shown here.

FIGURE 17-9:
APA102C driver

circuit.

CHAPTER 17 Lots of Multicolored LEDs 381

Display update
Finally, you have to deal with the update question, or how fast the patterns shown
by the LEDs can be changed. Using the bit-banging technique we described earlier
in this chapter, it can take between 0.45 and 0.23mS to send out the data to a
single LED. This time difference occurs because Linux steals time from any run-
ning program, and so the time for a refresh depends on what the operating system
is doing at the moment. If this interruption occurs in that crucial time when the
program is bit-banging the data out to the LEDs, then the bit banging data refresh
takes longer. This means that for 144 LEDs, you can update the pattern they show
about 15 times per second, at the slowest. Once updated, they require no further
intervention from the Raspberry Pi until you need to update them again.

Getting more LEDs
There are various ways you can get more LEDs to play with, and perhaps the most
exciting is the series of shapes you can get from the RasPiO Inspiring program-
mable LED boards. Shapes range from straight strips, circles, semicircles to tri-
angles and squares. There’s also a driver board for producing the correct voltage
signals and, as a bonus, a socket on this driver board allows you to plug in an
analogue-to-digital converter chip. That means you can measure analogue volt-
ages for items like control knobs and sensors. Figure 17-10 shows the triangle and
straight strip.

FIGURE 17-10:
Some shapes

from the RasPio
Inspiring LED

strip range.

382 PART 5 Exploring Electronics with the Raspberry Pi

The great thing about these shapes is that they’re easy to set up. Each strip has a
plug and socket on it, for input and output, thus enabling you to easily chain
together as many strips as you want. The triangle is our favorite — use two or
three to make a 3D LED pyramid. In addition to working great with your Raspberry
Pi, they can be used on a number of other controllers.

LED strips
Another popular way of getting lots of these LEDs already wired together is to get
them on a flexible, printed circuit strip. These come in various lengths, from half
a meter to 4 meters. Be sure to get the APA102 type and not the cheaper WS2812b
type, to ensure that they work with all the code in this book. You can get 30, 60,
or 144 LEDs per meter — as you’d expect, the cost is related to the number of
LEDs. These circuit strips also come in a variety of options — black or white back-
ing PCB, bare, coated in silicon, or in a waterproof silicon tube. You can easily cut
these strips into lengths, if need be, with a sharp blade.

In addition to the RGB LED format, the APA102 comes in a white-only LED variant.
These are good for domestic lighting and can be dimmed very easily.

LED matrix
One more form you can get these LEDs in is an LED matrix. Adafruit sells a num-
ber of different configurations — the biggest (and most expensive) model is a
240mm ridged disk. If that’s not what you need, you can get an 8 x 32 grid, 16 x
16 grid, or 8 x 8 grid, all on a flexible backing board. However, our favorite is a
high-density 8 x 8 grid, on a ridged board. Its main feature is that, instead of
using the 5 x 5mm standard LED, it uses a tiny 1.8 x 1.8mm package. That means
the whole grid can be fitted into a display an inch square. These tiny LEDs only
take 40mA when fully on, so they take less current than the normal-size LEDs.
However, this does add up to a maximum of 2.5A. At that amount of current, the
board will get quite warm as well. Nevertheless, they can be very bright, so keep
the brightness down. You need to do a bit of soldering to connect the wires and the
supplied capacitor to the back of the board, but these are all marked. We also wired
the 5V and ground output to the 5V and ground input, to get a better power distri-
bution on the board. This is shown in Figure 17-11.

Such a small matrix has many applications, one of which is to make a smart deco-
rative broach. We thought we would like to have a go at this, and so we came up
with some colorful moving-display patterns.

We’re all spoiled these days when it comes to graphics, because all their primitive
functions — things like drawing lines and squares — are built into most lan-
guages. However, when faced with a display like this matrix, it is necessary to
write your own.

CHAPTER 17 Lots of Multicolored LEDs 383

When we address the LEDs in a strip, they’re numbered from zero to the length of
the strip, and basically a matrix is just the same. However, when thinking about a
matrix, it’s much more convenient to consider the x and y address of an LED; so
one of the fundamental routines when driving a matrix is to convert an x / y coor-
dinate pair into an LED number. The actual conversion involved depends on how
the LED chain is bent into a matrix. The Adafruit matrix uses what is called a row
bottom-up raster arrangement. The LEDs start off at zero in the lower-left of the
matrix (known as the origin) and increase along the x-axis as the LED number
increases. When the end of the x LEDs is reached, the next LED number is directly
above the original origin. This repeats along the second row, and the third, and so
on until the end of the strip. (The other fundamental way of wiring a matrix is
known as a serpentine raster, where the strip zigzags up the display. You can see
these two different schemes in Figure 17-12.)

Converting to LED numbers for the simple raster is quite easy and is given by

LedNumber = X + (Xmax * Y)

FIGURE 17-11:
Adafruit’s

high-density
matrix display.

FIGURE 17-12:
Making a matrix

with raster wiring
and serpentine

raster wiring.

384 PART 5 Exploring Electronics with the Raspberry Pi

given that X and Y are the coordinates you want to get the LED number for and that
Xmax is the number of LEDs in a row. Of course, this assumes that both coordinates
are within the confines of the matrix. In practice, it is necessary to check the coor-
dinates before calculating the LED number.

The serpentine raster is physically easier to wire up, but a little more complicated
to work out an LED number for. This is because the preceding conversion only
works on odd-numbered rows. For even-numbered rows, you need to use this:

LEDNumber = (Xmax - X - 1) + (Y * Xmax)

That means any conversion routine must first test to see if the y-coordinate is
indicating an odd or even row before choosing the formula to use. This is simply
done by looking at the least significant bit — the right hand most bit in the
number — of the y-coordinate.

Other graphics primitives can help you draw things on a matrix. Perhaps the most
fundamental is line drawing, where, given a start and an end coordinate pair, you
can draw a line of lit LEDs between them. Of course, on such a small matrix, only
horizontal, vertical, and 45-degree diagonal lines will look good; all other lines
will be stepped, or jagged. The trick here is to work out the difference between the
start and end points; the axis with the biggest difference is given an increment
value of 1, with the smaller axis change given an increment value of the smaller
length over the larger length. Then the x-y coordinate to plot starts off at the ini-
tial point of the line, and subsequent points are found by repeatedly adding the
increments to the respective coordinates. One of the increments will be 1, and the
other a fractional value. It is only when the size of this fractional coordinate
exceeds a whole number that the coordinate is changed.

We implemented two other graphics primitives: the square and the filled square.
In fact, the code for only an outline of a square is longer than a filled square. We
could have used the line primitive to implement these two functions, but drawing
horizontal and vertical lines is much quicker with a simple loop because no divi-
sion operation is needed.

We made three different pattern displays that change automatically after a fixed
amount of time. The program is shown in Listing 17-7.

LISTING 17-7:	 Matrix Broach

#!/usr/bin/env python3
Adafruit 8X8 matrix broach

import time, random

CHAPTER 17 Lots of Multicolored LEDs 385

from apa102bang import Apa102bang

dataPin = 23 ; clockPin = 24
lenX = 8 ; lenY = 8
length = lenX * lenY ; brightness = 1
half = int(length / 2)
patternDuration = 8.0
leds = Apa102bang(length, dataPin, clockPin, brightness)

def main():
 print("APA102 8 by 8 matrix broach - Cnt C to stop")
 nextChange = time.time() + patternDuration
 pattern = 1
 while True:
 if pattern == 1:
 pattern1()
 if pattern == 2:
 pattern2()
 if pattern == 3:
 pattern3()
 if time.time() > nextChange:
 nextChange = time.time() + patternDuration
 pattern +=1
 if pattern > 3:
 pattern = 1

def pattern1():
 for side in range(1,lenX):
 for i in range(0,lenX):
 square(i,i,side,randCol())
 leds.show()
 time.sleep(0.1)
 time.sleep(0.6)
 leds.setAll((0,0,0))
 leds.setAll((0,0,0))
 time.sleep(0.6)

def pattern2():
 start = 0
 for side in range(lenX-1,0,-2):
 square(start,start,side,randCol())
 leds.show()

(continued)

386 PART 5 Exploring Electronics with the Raspberry Pi

 time.sleep(0.08)
 start += 1
 #time.sleep(0.6)
 #leds.setAll((0,0,0))

def pattern3():
 col = randCol()
 for t in range(1,8):
 line(0,0,t,0,col)
 hold()
 for t in range (1,8):
 line(0,0,8,t,col)
 hold()
 for t in range (8,0,-1):
 line(0,0,t,8,col)
 hold()
 for t in range(7,0,-1):
 line(0,0,0,t,col)
 hold()

def hold():
 leds.show()
 time.sleep(0.08)
 leds.setAll((0,0,0))

def matrix(x,y,col):
 pixel = x + y*8
 if pixel < length and x < lenX:
 leds.setLed(pixel,col)

def squareFill(x,y,side,col):
 for xp in range(x,x+side):
 for yp in range(y,y+side):
 matrix(xp,yp,col)

def square(x,y,side,col):
 for xp in range(x,x+side):
 matrix(xp,y,col)
 for xp in range(x,x+side+1):
 matrix(xp,y+side,col)
 for yp in range(y,y+side):
 matrix(x,yp,col)

LISTING 17-7:	 (continued)

CHAPTER 17 Lots of Multicolored LEDs 387

 for yp in range(y,y+side):
 matrix(x+side,yp,col)

def line(xs,ys,xe,ye,col):
 xl = xe - xs
 yl = ye - ys
 if xl > yl:
 xinc = 1.0
 yinc = yl/xl
 else:
 yinc = 1.0
 xinc = xl/yl
 x= float(xs) ; y = float(ys)
 while x != xe or y != ye:
 matrix(int(x),int(y),col)
 x += xinc
 y += yinc

def randCol():
 r = 0; g =0; b=0
 while r+g+b == 0:
 r = random.randint(0,2) * 64
 g = random.randint(0,2) * 64
 b = random.randint(0,2) * 64
 return (r,g,b)

Main program logic:
if __name__ == '__main__':
 try:
 main()
 except KeyboardInterrupt:
 pass
turn off all LEDs
leds.setAll((0,0,0))
leds.show()

The program uses a variable called pattern to determine what to display. When
it has been displayed for the time given by the patternDuration variable, the
pattern value is changed. This patternDuration variable is only looked at when
the pattern function returns, so long patterns like pattern1 will always complete
at least one cycle of the pattern.

388 PART 5 Exploring Electronics with the Raspberry Pi

The three patterns use the different pattern primitives to display a sequence of
patterns in random colors given by the randCol function. This function generates
a mix of two levels of color for each of the three components but excludes black.
The first pattern generates a sequence of squares whose lower corners are on the
diagonal of the display. These squares start off small and then increase each time
the diagonal is filled, until it uses an 8 x 8 square.

The next pattern displays a series of nested squares in changing colors. And the
final display shows a “straight” line sweep, from the bottom corner round the
display counterclockwise.

Given the fact that you’ve created a broach, it can be made into a wearable device
by running it off a battery-powered Pi Zero. Or you can just have it as a desktop
display. You can customize the timing of the display by adjusting the sleep times.
Note that the solid square function is not used; you can add that to one of the pat-
terns to make them more complex. However, our main hope is that you will write
your own patterns and have even more of them added to the sequence.

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 389

Chapter 18

IN THIS CHAPTER

»» Finding out what makes an RFID
card work

»» Discovering how to read data from
a card

»» Making an RFID-powered jukebox

»» Creating onscreen dress-up doll and
choosing the outfits with RFID cards

»» Getting your Raspberry Pi to sing the
world’s longest version of “Old
McDonald’s Farm”

Old McDonald’s Farm
and Other RFID
Adventures

The RFID card (short for Radio Frequency IDentification card) is becoming
ubiquitous. It’s being used these days for not only building-access control
but also travel cards, prepayments at cafeterias, and even antiforgery pro-

tection on tickets. They can also be used in amusement park wristbands, and even
blood donor cards. When your pet is chipped, a small glass-encapsulated RFID tag
is injected just under the skin at the neck of the animal.

Given all the things that can be done using RFID , you might think they are com-
plex devices, and you would be right. However, if you pack away the complexity in
a very smart chip and hide the interaction with that chip in a good class driver,
actually using them in a project is remarkably easy. There are lots of fun things
you can do with RFID cards, and we’re going to show you a few of them in this
chapter.

390 PART 5 Exploring Electronics with the Raspberry Pi

How RFID Work
There are basically three different types of RFID systems available on the market,
mainly distinguished by which frequency range they use. All systems consist of
two parts: a tag or card and a reader. The reader extracts binary bits from a tag or
card using radio waves, so no wires are needed between the reader and the tag or
card. These tags normally known as passive tags — tags that apparently require no
source of power — although a small number are active tags that require fitting
with a small watch battery. These active tags are used when you need a much
longer read range.

The reader sends out a radio signal, and the tag picks it up and uses the power in
that radio signal to activate a microchip. That microchip then sends back a num-
ber of pulses to the reader, which is interpreted as a number. The way the tag
sends the data back is different on different types of tag, but the main way is
transmitting the data back to the reader on a different frequency.

Here’s a list of available tags, with their frequency ranges:

»» 125–135 KHz tags: These tags are the ones used in chipping pets and also in a
lot of access control systems. They have a limited storage capacity and are
normally restricted to holding a serial number only of 64 or 128 bits. The tags
and cards used most widely today conform to the EM4100 / EM4200 stan-
dard. Most of the tags are read-only, but a few (the Hitag tags, for example)
allow you to store data using a special programmer.

»» 13.56 MHz tags: These are the so-called smart cards, capable of storing not
only a serial number but also some data that can be read or written. There is a
measure of security built into the cards so that the data is not accessible to
those who don’t know the encryption key. There are many different types of
cards, but by far the most common is the one known as a MIFARE classic card.

»» UHF (860–960MHz): Unlike the other two RFID types, UHF readers are capable
of reading more than one tag at the same time. They are also quite long-
range, typically 10 to 30 feet. They’re designed for bulk inventory taking. Each
item on a palette can be recorded and counted at the same time. The readers
have a very high-power transmitter in them, so much so that they’re a health
hazard, requiring strict time limits for workers operating them in order to
avoid long-term radiation exposure. There are other, higher-frequency
systems in this class as well.

We use the MIFARE classic card in the projects in this chapter — to give it its
Sunday name, the ISO/IEC 14443 A/MIFARE mode protocol. The readers are cheap,
and the tags come in various shapes ranging from key fobs to cards. It’s the cards

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 391

that are most convenient for these projects, but it’s not essential to use these.
Figure 18-1 shows the block diagram of what an RFID system looks like
electronically.

The antenna used are formed from coils of very thin wire or even metal foil. Read-
ers for these cards come in all price ranges and interfaces. We use one of the
cheapest — the RFID-RC522 — which can be had for less than $13 for three on
popular electronics and auction sites. They’re based on the MFRC522 chip from
NXP Semiconductors (formerly Phillips), and though this chip is capable of being
connected to a computer in a number of different ways, the way these low-cost
boards are designed, they’re restricted to an SPI interface only. In Chapter 17, we
explain how we could “bit-bang” the SPI protocol, but in this chapter we use the
Raspberry Pi’s built-in hardware SPI interface, which can use only specific pins
on the GPIO connector.

When you get these RFID readers, they come with a choice of two types of header
pins. You need to solder on the right-angled pins. Then you can either make up a
lead or mount it vertically on a breadboard, as shown in Figure 18-2.

We feel it’s much better to mount it vertically because it’s away from the metal
forming the internal clips of the breadboard, and metal affects the resonant fre-
quency of the antenna coil — and thus the tag read range. Figure 18-3 shows both
the schematic and layout diagram of how to wire up the reader to the Raspberry Pi.

For a really neat job, mount the reader in a wooden or plastic box, preferably using
nylon screws because close metal reduces the reading range.

After you attach the reader to the Pi, it’s time to get the software you need to read
it. First off, you have to install the python-dev system by typing sudo apt-get
install python-dev into a terminal window of a Raspberry Pi connected to the
Internet.

FIGURE 18-1:
Block diagram of
an RFID system.

392 PART 5 Exploring Electronics with the Raspberry Pi

FIGURE 18-2:
Mounting a
reader on a

breadboard.

FIGURE 18-3:
Schematic and

layout for
attaching to a Pi.

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 393

There is a fair chance that you have the latest version already installed, but it’s
best to check. Next, you need to install the SPI-Py library, which allows you to use
the hardware SPI as a C extension for Python. Again in a terminal window, you
enter the following:

 git clone https://github.com/lthiery/SPI-Py.git
 cd SPI-Py
 sudo python setup.py install
 sudo python3 setup.py install

This installs the code that allows you to use the SPI hardware from both Python 2
and Python 3. Finally, go to the Desktop menu and choose Preferences, then select
the Raspberry Pi Configuration application. When the application opens, click on
the Interfaces tab and make sure that the SPI interface is enabled. If it isn’t, click
to enable it and reboot your Pi.

A MIFARE card’s structure
A MIFARE card consists of 64 blocks of data, with each block 16 bytes long. Some
blocks are for user data, and others hold authentication keys, UID numbers, and
manufacturers’ ID numbers. (A UID, or Unique IDentification number, is 4 bytes
long. In fact, despite its name, a UID might not actually be unique, but chances of
finding a duplicate are many thousands of times less likely than your winning a
big lottery. So, for all practical considerations, it can be considered unique.)

Here’s a short list of the first 12 sectors of a card:

Sector 0 [203, 58, 164, 213, 128, 8, 4, 0, 98, 99, 100, 101,
102, 103, 104, 105]

Sector 1 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Sector 2 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Sector 3 [0, 0, 0, 0, 0, 0, 255, 7, 128, 105, 255, 255, 255,

255, 255, 255]
Sector 4 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Sector 5 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Sector 6 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Sector 7 [0, 0, 0, 0, 0, 0, 255, 7, 128, 105, 255, 255, 255,

255, 255, 255]
Sector 8 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Sector 9 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Sector 10 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Sector 11 [0, 0, 0, 0, 0, 0, 255, 7, 128, 105, 255, 255, 255,

255, 255, 255]

394 PART 5 Exploring Electronics with the Raspberry Pi

The first sector’s first four bytes contain the UID that, along with the other bytes
in that sector, cannot be changed. Attempts to write to it will fail. The sectors
containing all zeros are the sectors you can write data to. Each group of four sec-
tors is preceded by a sector that contains two keys that allow read and write access
to the following sectors. You don’t write directly into these, but writing to the
sectors can change these values. They’re initially set up, as shown here, with the
default key values. When you plan a project, be aware that you can only write data
to those sectors that are not key sectors.

Key sectors not to write to are

0, 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63

All that remains is to include the Rc522rfid class file in the folder being used for
your RFID projects. This can be downloaded from the book’s website. (See the
Introduction for more on how to access the site.) We have not printed it here
because it’s long, and you won’t get much from reading it. It also automatically
blocks you from trying to write to key sectors.

Talking to the reader chip over the SPI interface is somewhat complex, and not
really necessary to understand in order to use an RFID reader in a system. It
involves mainly putting numbers into internal chip registers or memory locations
in the correct sequence, as laid out in the chip’s data sheet. However, we have
added five methods at the end of the class in order for you to be able to easily tap
in and communicate with the reader. The methods you need to know about are
described in this list:

»» RC522_WaitForCardRemoved: Ensures that the code pauses until a card has
been removed from the reader — reading of a card can be quick. This is
complicated by the fact that, with a card held permanently on a reader, every
other call to the detect a card function returns falsely, saying that there
is no card on the reader. This is a function of how the chip works, and so to
work around it, this method waits until two successive attempts at reading a
card both return no card present. (Note that this is known as blocking code in
that, once it’s called, nothing else can happen until the card is removed.)

»» RC522_ReadCard: Reads and returns the UID number of the card at the
reader. If there’s no card or there’s a reading error, this method returns a
value of –1.

»» RC522_GetCard: Waits until there is no card at the reader and then waits
again until a card is presented and read, and then it returns the card’s UID
number. This is blocking code in that nothing else can happen until a valid
card is read.

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 395

»» RC522_GetSector: Reads a 16-byte sector block of data from a card and
returns it. You supply the sector number, the authorization key, and the sector
number you want to read. This is blocking code in that nothing else can
happen until a valid card is read.

»» RC522_WriteSector: Writes a 16-byte block of data to a sector number. You
supply the sector number, the authorization key, and the sector number you
want to write to. This is blocking code in that nothing else can happen until a
valid card is presented. It will not, however, allow you to write directly to key
sectors.

So, let’s see how this works in practice. Listing 18-1 shows some code to simply
read out the UID of a card.

LISTING 18-1:	 Reading the Card’s UID

#!/usr/bin/python3
Token reader by Mike Cook

from rc522rfid import Rc522rfid

rfidReader = Rc522rfid()

print ("Card token reader")
print ("Press Ctrl-C to stop.")
while 1: # repeat forever
 cardNumber = rfidReader.RC522_GetCard()
 print(hex(cardNumber))

The UID, as a 16-bit number, is printed out in hexadecimal format. (Printing it in
decimal format doesn’t make sense, because there will be a mixture of positive
and negative numbers, depending on the state of the most significant bit.) So you
can now look at the card’s number, which is not so exciting, but what if you could
get that card number to make something happen — like play a sound file?

A simple RFID jukebox
We can simply use the RFID cards to trigger playing music from the default Music
folder, or from anywhere else, if you like. For this example, you can either copy
over some music loops from the :/usr/share/scratch/Media/Sounds/Music
Loops folder into the /home/pi/Music folder or copy over any MP3 files you may

396 PART 5 Exploring Electronics with the Raspberry Pi

have lying around. Next, get as many RFID cards as you have files, and, using
the code in Listing 18-1, write down the card number of each one on a sheet of
paper and put the cards next to their numbers. Then load up the program in
Listing 18-2.

LISTING 18-2:	 Simple RFID Jukebox

#!/usr/bin/python3
Simple RFID Jukebox by Mike Cook

from rc522rfid import Rc522rfid
import pygame

pygame.mixer.quit()
pygame.mixer.init(frequency=22050, size=-16, channels=2, buffer=512)
rfidReader = Rc522rfid()
tokens = [0xf6690ebb, 0xcb3aa4d5, 0x9c35fddd, 0x8cd32dde, 0xc682ade,

0x1cb413de]
files = ["Drum", "DrumMachine", "DrumSet1", "DrumSet2", "Eggs",

"DripDrop"]

def main():
 print ("Simple RFID Jukebox reader")
 print ("Press Ctrl-C to stop.")
 while 1: # repeat forever
 cardNumber = rfidReader.RC522_GetCard()
 pygame.mixer.music.stop()
 for i in range(0,len(tokens)):
if cardNumber == tokens[i]:
 try :
 pygame.mixer.music.load("/home/pi/Music/↩

"+str(files[i])+".mp3")
 pygame.mixer.music.play()
 print("Playing:- "+str(files[i])+".mp3")
 except :
 print("No file:-/home/pi/Music/" + str(files[i]) + ↩

".mp3")

Main program logic:
if __name__ == '__main__':
 try:
 main()
 except KeyboardInterrupt:
 pass

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 397

You have to change the tokens list to the token numbers of the cards you have,
and the files list to match the sound files you have. The program automatically
appends the .mp3 prefix. So, when you present a card, the file plays through the
Pygame sound system. What is going on here is that the connection between a file
and an RFID card’s number is fixed in the code by the position of the filename and
the card’s number in a list. That means the first number in the list will trigger the
first file in the list.

This is all well and good, but it means that every time you want to change things,
you have to edit the code. It would work much better if the card itself carried the
filename.

A better RFID jukebox
You can make the card carry the filename, but you need a program to handle this
task. In other words, you need some way of enrolling the cards. In the example in
the previous section, this enrolling was done by reading the card’s number and
putting it in a list. It also involved copying down the filenames in the target folder
and adding them to a list. In a much better system, all that could be done by an
enrolling program.

The idea here is that there are two programs: one to play files in response to a card
and the other to save the filename into the data segments of the card. The enroll
program we came up with reads all the files in your Music folder and then offers
them for selection one by one, giving you the choice of whether to enroll them. If
you choose to enroll a card, the filename, including any extension, is stored in
segments 4 and 5 of the card. (This means the filenames must be no longer than
32 bytes.) The enrolling program is shown in Listing 18-3.

LISTING 18-3:	 RFID Jukebox Enrolling Program

#!/usr/bin/python3
#RFID Jukebox Enroll -
puts music files names on sectors 4&5
by Mike Cook

from rc522rfid import Rc522rfid
import os

rfidReader = Rc522rfid()

def main():
 print ("RFID Jukebox card enroller")

(continued)

398 PART 5 Exploring Electronics with the Raspberry Pi

 print ("Press Ctrl-C to stop.")
 getFiles()
 for file in range(0,len(soundList)):
 action = ""
 print(soundList[file])
 print("Enroll (e) or just Return to Skip")
 action =input()
 if action == "e" :
 enroll(soundList[file])

def enroll(name):
 print("Enrolling", name, "place a card on the reader")
 data1 = []
 data2 = []
 for i in range(0,16): # fill with all zeros
 data1.append(0)
 data2.append(0)
 for i in range(0,len(name)):
 if i < 16:
 data1[i] = ord(name[i])
 else:
 data2[i-16] = ord(name[i])
 # This is the (default) key for authentication
 key = [0xFF,0xFF,0xFF,0xFF,0xFF,0xFF]
 rfidReader.RC522_WriteSector(key,4,data1)
 rfidReader.RC522_WriteSector(key,5,data2)
 print("finished enrolling\n")

def getFiles():
 global soundList
 path = os.path.abspath("/home/pi/Music/")
 #get a list of files
 soundList = [fn for fn in next(os.walk(path))[2]]
 list.sort(soundList) # put in alphabetical order
 print (len(soundList),"files found")

Main program logic:
if __name__ == '__main__':
 try:
 main()
 except KeyboardInterrupt:
 pass

LISTING 18-3:	 (continued)

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 399

The getFiles function targets a specific folder in the path variable and then
searches that folder, making a list of all the files it finds using the os.walk method.
The list is then sorted into alphabetical order to get an ordered list to use for enroll
selection. Then the main function displays these filenames one at a time, and you
can press e (and then Enter) to enroll the card or just press the Enter key to skip
to the next file. The enroll function takes the filename and splits it into two
16-byte blocks before writing them to the card.

Having enrolled a card like this, it’s best if you mark the card in some way to show
which file you have enrolled. You can do this in many ways, from a simple hand-
written stick-on label to a complex design with the artist’s name — and maybe
even artwork from the album. Print this out on a color printer and stick it to the
card with spray glue. Finish off the card by covering it with the sort of transparent
plastic film that is used to cover and protect books, much used in libraries.

After you have your cards, you need a new program to play them back. This is
shown in Listing 18-4.

LISTING 18-4:	 RFID Jukebox Enrolled Card Playback

#!/usr/bin/python3
RFID Jukebox2 with track names on the card by Mike Cook

from rc522rfid import Rc522rfid
import pygame

pygame.mixer.quit()
pygame.mixer.init(frequency=22050, size=-16, channels=2, buffer=512)
rfidReader = Rc522rfid()

def main():
 print ("RFID Jukebox using enrolled cards")
 print ("Press Ctrl-C to stop.")
 while 1: # repeat forever
 toPlay = readFileName()
 pygame.mixer.music.stop()
 try :
 pygame.mixer.music.load("/home/pi/Music/"+toPlay)
 pygame.mixer.music.play()
 print("Playing:- "+toPlay)
 except :
 print("No file:-/home/pi/Music/"+toPlay)
 rfidReader.RC522_WaitForCardRemoved()
 (continued)

400 PART 5 Exploring Electronics with the Raspberry Pi

def readFileName():
 # This is the (default) key for authentication
 key = [0xFF,0xFF,0xFF,0xFF,0xFF,0xFF]
 block1 = rfidReader.RC522_GetSector(key,4)
 block2 = rfidReader.RC522_GetSector(key,5)
 if block1 != -1 and block2 != -1:
 fileToPlay = getString(block1,block2)
 return fileToPlay
 else:
 return("Error in reading card")

def getString(s1,s2): # make string from two sectors
 name = ""
 i = 0
 notDone = True
 while notDone and i < 32:
 if i<16:
 c = s1[i]
 else:
 c = s2[i-16]
 i+=1
 if c !=0:
 name = name + chr(c)
 else:
 notDone = False
 return name

Main program logic:
if __name__ == '__main__':
 try:
 main()
 except KeyboardInterrupt:
 pygame.mixer.quit()

The main function waits until a card is presented and then stores the filename on
that card, into the variable toPlay. It then stops any sound already being played
and attempts to play the new file. If the file doesn’t exist, a simple message is
displayed and the program waits until the card has been removed. The read
FileName function uses the default key to get sectors 4 and 5 from the card and
the getString function assembles these into a filename variable.

LISTING 18-4:	 (continued)

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 401

Taking it further
You can change the folder that the files are in quite easily. However, a project you
might consider is a story time bear: a teddy bear or another cuddly toy with the
RFID reader embedded into it — in its paw or chest, for example. Then your child
has a set of bedtime story cards and can choose which one is read to them. For
added realism, you can also embed a speaker into the toy.

Dressing Up a Paper Doll
Paper dolls have been around for a long time, but they’re still popular with chil-
dren of all ages. With the help of RFID technology, you can make an up-to-date
version of this toy that outperforms the original. The idea is that you have a basic
doll and a number of different outfits and accessories. These are normally pasted
onto thin cardboard and cut out. Then, by use of tabs on the clothes, you can dress
your doll in a mix-and-match style. With RFID, you can have a card specify each
item of clothing and construct your dressed doll on the screen with a degree of
seamless integration you just can’t get with the paper version.

There are many clothing sheets to cut out online that are free for personal use, as
well as patterns you can buy. You can also draw them yourself — if you’re better
at drawing dolls than we are. Given the fact that we’re not too hot at this drawing
business, we teamed up with Imani Osmon, a young artist, to provide the artwork
we use as an example here. (We still think it may be just as exciting finding or
drawing your own.)

You start off with the basic sheet, and you’ll need a drawing package in order to
prepare your artwork. Your package should be able to scale images and also add a
transparent background. Being able to touch up and change colors could also be
useful, though it’s not essential. This prep work can be done on a laptop using
established packages like Photoshop, or on the Pi itself using Inkscape or Gimp.
(For more on using GIMP, see Chapter 7.)

If you decide to go with GIMP, here’s what you need to do:

1.	 Start off with the full sheet, and scale it so that the doll will fit into a
Pygame window on your monitor.

The sheet should be about 600 pixels high.

402 PART 5 Exploring Electronics with the Raspberry Pi

2.	 Start chopping out the clothes.

Use GIMP’s Select rectangle to pick out each piece, and then choose
Edit ➪ Copy from the main menu. Don’t worry if adjacent bits of graphics are
also included at this stage. Then choose File ➪ Create ➪ From Clipboard to get
that piece on its own. Then work on the image with a square paintbrush, to
remove any tabs and other bits of image until it sits in a white background.
Next, use the Fuzzy Selection tool to select this white background. Choose
Layer Transparency ➪ Add Alpha Channel from the main menu, and then
choose Edit ➪ Clear. Finally, choose File ➪ Export As to save this as a .png file,
using the default ticked options. Finally, close the image window and click the
Discard Changes option.

3.	 Repeat this process until the doll and all the accessories have been saved
in separate .png files in a folder called doll, which you have created
inside your working RFID folder.

4.	 Rename the doll file to start with an ampersand.

This is important because the ampersand ensures that this file appears first in
an alphabetically ordered list. We use this so that the program knows it’s the
doll file.

Now it’s time to enroll the RFID cards. We use two blocks here — one to hold the
filename and the other to hold the position for drawing the file on screen. Now
type in and run the code in Listing 18-5.

If the graphics files are put on through a network or downloaded, then some com-
puters can place invisible files into folders that the program here might mistake for
a graphics file and try to load. The Macintosh computer puts a file called. DS_Store
and a folder called .AppleDouble in every folder it sees. On an enroll program, this
file will produce an error message saying unsupported image format. If this hap-
pens, use the File Manager to navigate to the folder, then go to the View menu and
turn on the Show Hidden option. You can then delete this normally hidden file —
the hidden folder does no harm.

LISTING 18-5:	 Dress Up Doll Enroll

#!/usr/bin/python3
Dress Up Enroll by Mike Cook

from rc522rfid import Rc522rfid
import pygame
import os

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 403

pygame.init() # initialise graphics interface

os.environ['SDL_VIDEO_WINDOW_POS'] = 'center'
pygame.display.set_caption("Dress Up")
pygame.event.set_allowed(None)
pygame.event.set_allowed([pygame.KEYDOWN,pygame.QUIT])
pygame.key.set_repeat(500, 80)

screenWidth = 240
screenHeight = 550
screen = pygame.display.set_mode ([screenWidth,screenHeight], 0, 32)
needsRedraw = True
enrol = False

rfidReader = Rc522rfid()

def main():
 global xPlot,yPlot,done,enrol,needsRedraw
 print ("Dress up doll - Enrolling Cards")
 print ("Space - next one, e - Enroll card")
 init()
 xPlot = int(screenWidth / 4)
 yPlot = int(screenHeight / 4)
 while 1:
 checkForEvent()
 for i in range(1,len(clothes)):
 done = False
 needsRedraw = True
 while not done:
 checkForEvent()
 if needsRedraw:
 drawScreen(i)
 if enrol :
 enrol = False
 print("enrolling")
 enrolCard(cList[i])

def drawScreen(i):
 global needsRedraw
 pygame.draw.rect(screen, (210,210,210),(0,0,screenWidth, ↩

screenHeight), 0)
 screen.blit(clothes[0],(0,0))
 screen.blit(clothes[i],(xPlot,yPlot))
 pygame.display.update()

(continued)

404 PART 5 Exploring Electronics with the Raspberry Pi

 needsRedraw = False

def init():
 global clothes,cList
 path = os.path.realpath(__file__)
 path = os.path.dirname(path) + "/doll/"
 #get a list of files
 cList = [fn for fn in next(os.walk(path))[2]]
 list.sort(cList) # put in alphabetical order
 print("files found",cList)
 clothes = [pygame.image.load("doll/"+cList[i]).convert_alpha()
 for i in range(0,len(cList))]

def enrolCard(name):
 print("Enrolling", name, "place a card on the reader")
 data1 = [] ; data2 = []
 for i in range(0,16): # fill with a sectors worth of zeros
 data1.append(0) ; data2.append(0)
 for i in range(0,len(name)):
 data1[i] = ord(name[i])
 #save position of this item
 data2[0] = xPlot >> 8
 data2[1] = xPlot & 0xFF
 data2[2] = yPlot >> 8
 data2[3] = yPlot & 0xFF

 # This is the (default) key for authentication
 key = [0xFF,0xFF,0xFF,0xFF,0xFF,0xFF]
 rfidReader.RC522_WriteSector(key,8,data1)
 rfidReader.RC522_WriteSector(key,9,data2)
 print("finished enrolling\n")

def terminate(): # close down the program
 print ("Closing down")
 pygame.quit() # close pygame
 os._exit(1)

def checkForEvent(): # see if we need to quit
 global xPlot,yPlot,needsRedraw,done,enrol
 event = pygame.event.poll()
 if event.type == pygame.QUIT :
 terminate()
 if event.type == pygame.KEYDOWN :

LISTING 18-5:	 (continued)

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 405

 if event.key == pygame.K_ESCAPE :
 terminate()
 if event.key == pygame.K_SPACE :
 done = True
 enroll = False
 if event.key == pygame.K_e :
 done = True
 enrol = True
 if event.key == pygame.K_UP :
 yPlot -= 1
 needsRedraw = True
 if event.key == pygame.K_DOWN :
 yPlot += 1
 needsRedraw = True
 if event.key == pygame.K_RIGHT :
 xPlot += 1
 needsRedraw = True
 if event.key == pygame.K_LEFT :
 xPlot -= 1
 needsRedraw = True

Main program logic:
if __name__ == '__main__':
 main()

You need to make only one change: Set the dimensions of the window to the
dimensions of your doll image. Double-click on the doll file to bring up a viewing
window that specifies the image size in pixels in the top window bar. Make sure
those numbers are used to set the values of the screenWidth and screenHeight
variables in the code.

When you run the code, you will see your doll and the first piece of clothing. Use
the cursor keys to maneuver this piece into the exact spot where you want it to
appear on the doll. Then place a card on the reader and press the E key, to store
the filename in Sector 8 and the position in Sector 9. Remove the card and press
the spacebar for the next piece of clothing.

Keep pressing the spacebar to cycle through the clothes until you find the one you
want to enroll. This way, if you find a piece that isn’t quite right, you can go and
enroll just that piece again. Also, if you add to the files in the doll folder, you can
just enroll the new piece on a new card.

406 PART 5 Exploring Electronics with the Raspberry Pi

Finally, print out each piece of clothing onto paper and use spray glue to mount it
onto each card. Cover the card with a transparent plastic film and trim off any
surplus with a sharp blade, holding the card face down on a cutting mat. Some of
our cards are shown in Figure 18-4.

Runway time
Now it’s time to actually dress up the doll. The program for doing this is in
Listing 18-6.

LISTING 18-6:	 Dress Up Doll

#!/usr/bin/python3
Dress Up by Mike Cook

from rc522rfid import Rc522rfid
import pygame
import os

pygame.init() # initialise graphics interface

os.environ['SDL_VIDEO_WINDOW_POS'] = 'center'

FIGURE 18-4:
Doll clothes RFID

cards.
Reproduced by permission of Imani Osmon

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 407

pygame.display.set_caption("Dress Up")
pygame.event.set_allowed(None)
pygame.event.set_allowed([pygame.KEYDOWN,pygame.QUIT])
pygame.key.set_repeat(500, 80)

screenWidth = 240
screenHeight = 550
screen = pygame.display.set_mode([screenWidth, screenHeight], 0,32)
xPlot=[0] ; yPlot=[0] ; garment=[0] # list of what to display

rfidReader = Rc522rfid()

def main():
 global xPlot,yPlot,done,enroll
 print ("Dress up doll")
 print ("Space bar to start over")
 init()
 drawScreen()
 while 1:
 checkForEvent()
 readCard()
 if needsRedraw:
 drawScreen()
 rfidReader.RC522_WaitForCardRemoved()

def readCard():
 global needsRedraw
 status = -1
 while status == -1:
 checkForEvent() # allow pygame a look in while waiting
 status = rfidReader.RC522_ReadCard()
 # This is the (default) key for authentication
 key = [0xFF,0xFF,0xFF,0xFF,0xFF,0xFF]
 block1 = rfidReader.RC522_GetSector(key,8)
 block2 = rfidReader.RC522_GetSector(key,9)
 if block1 != -1 and block2 != -1: # if data OK
 x = block2[0] << 8 | block2[1]
 y = block2[2] << 8 | block2[3]
 lookAtNew(block1,x,y)
 needsRedraw = True
 return -1

(continued)

408 PART 5 Exploring Electronics with the Raspberry Pi

 else:
 return("Error in reading card")

def lookAtNew(s1,x,y): # look at the new element
 global garment, xPlot, yPlot
 name = ""
 i = 0
 notDone = True
 while notDone and i < 16:
 c = s1[i]
 i+=1
 if c !=0:
 name = name + chr(c)
 else:
 notDone = False
 #Look up name in list of files
 for i in range(1,len(cList)):
 if cList[i] == name: # find the name on the card
 # remove if already in the list
 if i in garment:
 place = garment.index(i)
 del garment[place]
 del xPlot[place]
 del yPlot[place]
 else: # otherwise add it
 garment.append(i)
 xPlot.append(x)
 yPlot.append(y)

def drawScreen():
 global needsRedraw
 pygame.draw.rect(screen, (210,210,210), (0,0, screenWidth,

screenHeight), 0)
 for g in range(0,len(garment)):
 screen.blit(clothes[garment[g]], (xPlot[g],yPlot[g]))
 pygame.display.update()
 needsRedraw = False

def init():
 global clothes,cList

LISTING 18-6:	 (continued)

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 409

 path = os.path.realpath(__file__) # path of this program
 path = os.path.dirname(path) + "/doll/" # path of images
 #get a list of files
 cList = [fn for fn in next(os.walk(path))[2]]
 list.sort(cList) # put in alphbetical order
 clothes =
 [pygame.image.load("doll/"+cList[i]).convert_alpha()
 for i in range(0,len(cList))]

def terminate(): # close down the program
 print ("Closing down")
 pygame.quit() # close pygame
 os._exit(1)

def checkForEvent(): # see if we need to quit
 global xPlot,yPlot,garment
 event = pygame.event.poll()
 if event.type == pygame.QUIT :
 terminate()
 if event.type == pygame.KEYDOWN :
 if event.key == pygame.K_ESCAPE :
 terminate()
 if event.key == pygame.K_SPACE :
 xPlot = [0] ; yPlot = [0]
 garment = [0] # clear lists
 drawScreen()

Main program logic:
if __name__ == '__main__':
 main()

Again, make sure that the values of the screenWidth and screenHeight variables
are set to the same values as in the enroll code. Presenting an enrolled card places
that piece of clothing on the doll; presenting it again removes it. Pressing the
spacebar starts again from scratch. Note that the clothes are drawn in the order
that the clothes are presented. This might look odd if one item is meant to par-
tially cover another. The doll should be dressed as in real life, with garments that
are worn under other items first. It’s fun to build up your own collection of dolls
and accessories. Figure 18-5 shows some of the dressed-up dolls we created.

410 PART 5 Exploring Electronics with the Raspberry Pi

Old McDonald’s Farm
So far in this chapter, we have shown you how to associate information on an
RFID tag to a sound with the jukebox, and how to associate an image with a dress-
up paper doll. Now we combine the two techniques to create the ultimate in chil-
dren’s songs: “Old McDonald Had a Farm.” The unique algorithm used to generate
the chorus of this song ensures that the length of the song grows exponentially
with every animal added. Also the point of this song is to include not only well-
known farmyard animals but also unusual ones. (Truth be told, Mike’s wife said
that is only a boy thing.)

FIGURE 18-5:
Dolls we created.

Reproduced by permission of Imani Osmon

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 411

As with the other projects in this chapter, we present just a start that can easily be
extended, almost without limit, simply by placing more files in folders. Just like
the Dress Up Doll project, there are two programs: an enroll program and a play
program. The idea is that fragments of the song are recorded, and the program
puts together these fragments into the ever-lengthening song. What’s more, the
computer never forgets what is on the farm, and each verse is sung with the same
enthusiasm of the first. (You can’t always say that about singing “Old McDonald’s
Farm” in real life.) The child, or the parent themselves, should record at least
some of the sound samples.

Making sound samples
The sound samples can be recorded on a laptop and moved over to the Pi by using
a USB memory stick. However, with a bit of work, it’s possible to do the whole
thing on the Pi itself. The Raspberry Pi can record sound, but it has no built-in
microphone interface, so you have to provide one in the form of a USB sound card.
You can purchase one for less than $10 (about £8) and you can find suitable ones
listed at http://elinux.org/RPi_VerifiedPeripherals - USB_Sound_Cards.

It’s best to look at the installation details for the specific card you have. After it’s
plugged in and connected to a microphone, go to the Desktop menu and choose
the Preferences submenu, and then select Audio Device Settings. From the drop-
down menu that appears, choose your USB sound card.

Next, you need some software to record the sound. By far, the best free software
to do this is Audacity. To install it on your Pi, go to a terminal window and enter
the following:

sudo apt-get update
sudo apt-get install audacity

After Audacity installs, it’s available from the Desktop menu, under the Sound &
Video entry. The screen is shown in Figure 18-6.

You can find versions of Audacity for the Macintosh and Windows operating
systems as well.

Audacity can not only record sound but also edit it — and even add effects. The
controls are just like a tape recorder, with a round, red Record button and a square
Stop button. If you’ve never used it, have a play with it first: Just click the Record
button and say something (you’ll see the waveform plotted), and then press the
Stop button, press Rewind, and press the triangular Play button.

http://elinux.org/RPi_VerifiedPeripherals#USB_Sound_Cards

412 PART 5 Exploring Electronics with the Raspberry Pi

Whenever you make a recording, you need to “top and tail it” — that is to say,
remove the silences at the start and end. In Audacity, use the Magnifying Glass
icon to enlarge the waveform, and then click and drag over the opening silence to
highlight it. Then you remove it by simply pressing the Delete key on the key-
board. Do the same for the end silence. With that out of the way, you then need to
make sure that a sample begins and ends on the zero line, running through the
middle of the displayed waveform. If it does not, you will hear clicks when you
play it back. To ensure that it does begin and end on the zero line, highlight a
small section at the start of the sample, and select Fade In from the Effects menu.
Do the same for the end of the sample, but this time select Fade Out. Finally, select
the whole sample and select Normalize from the Effects menu. With the top two
options checked, select O. This last step ensures that all samples have the same
overall sound level.

To save your sample, start by choosing File ➪ Export Audio from the main menu,
and then choose Ogg Vorbis File from the drop-down menu in the lower right.
Type in your chosen filename with a .ogg extension and select Save. The .ogg
format is Python’s native sound format and is the best supported. Close the
Audacity window and do not bother with the Save Changes option.

So, after seeing how to make a sample, you need to know what samples to record.
Make a folder called farmSounds in your working RFID folder, and inside that,
make another one called fixed. You will store the skeleton of the song there.

Table 18-1 shows the sound samples you need to make.

FIGURE 18-6:
Audacity.

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 413

Back in the farmSounds folder, you need two samples for each animal you use. For
example, if you have a chicken, you need a sample of you singing the word chickens,
called chicken, and then another sample of the noise that animal makes, having the
name chickenSound. So in general that is two files “name” and “nameSound.”

It’s important that you use this exact naming scheme or the program will not work.

Making the graphics
You have lots of choices when it comes to how you want your farm to look. You can
buy a packet of farm animal stickers and scan them in or photograph them and
use the stickers for the RFID cards. You can draw your own animals or get some
clip art from the Internet. However, we chose to go with photographs we had
taken of the various farm inhabitants. For this demonstration, we chose a chicken,
a cow, a sheep, a pig, and a dalek. (Yes, we know — it’s a boy thing.)

Each animal is isolated on a transparent background, just like we did for the
clothes in the Dress Up Doll project. This time, we kept a full-resolution version
for printing on the cards, and a scaled version for the screen. The scaled versions
should be between 30 to 100 pixels high, depending on the relative size of the
animal. These pictures should be stored in a folder called farmPictures and have
exactly the same name as the sung word in the farmSounds folder. So the chicken

TABLE 18-1	 Old McDonald’s Farm Sound Samples
Sample Name Sung Words

start “Old McDonald had a farm ee eye ee eye oh”

and “and on this farm he had some”

ee_eye_oh “ee eye ee eye oh”

witha “with a”

here “here”

anda “and a”

there “there”

herea “here a”

therea “there a”

everywherea “everywhere a”

well “well”

end “Old McDonald had a farm ee eye-e-e, ee eye-e-e, o-o-o-h (and feel free to extend those
last few notes)”

414 PART 5 Exploring Electronics with the Raspberry Pi

picture is called chicken.png, and the corresponding sound files are chicken.ogg
and chickenSound.ogg.

Remember that fixed folder you created inside the farmPictures folder? That’s
where you’ll want to add two files — one called farm.png for the backdrop of the
farm and the other called fence.png on a transparent background, to act as the
fence at the front of the screen.

Each animal appears five times on the screen on each chorus of the song, so you
must enroll not only the basic animal name on the card but also the position of
each of its appearances. The program to do this is in Listing 18-7.

The potential hidden file problem with the Dress Up Doll enroll program can also
apply here.

LISTING 18-7:	 Old McDonnell’s Farm Enroll

#!/usr/bin/python3
Old McDonald's Farm card enrolling - by Mike Cook

from rc522rfid import Rc522rfid
import pygame, time, os

pygame.init() # initialise graphics interface
os.environ['SDL_VIDEO_WINDOW_POS'] = 'center'
pygame.display.set_caption("Old McDonald's Farm Enroll")
pygame.event.set_allowed(None)
pygame.event.set_allowed([pygame.KEYDOWN,pygame.QUIT])
screenWidth = 723 ; screenHeight = 369
screen = pygame.display.set_mode([screenWidth,screenHeight], 0,32)
pygame.key.set_repeat(500, 20)

rfidReader = Rc522rfid()
needsRedraw = True
enroll = False
seeAll = False

def main():
 global xPlot, yPlot, done, enroll, needsRedraw, currentA, ↩

currentType
 print ("Old McDonald's Farm - Enrolling Cards")
 print ("Space - position next animal, cursor keys to move ↩

animals")
 print ("a - toggle see all animals, Return to change animal, ↩

e - Enroll card")

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 415

 init()
 drawScreen(0,0)
 while 1:
 checkForEvent()
 for i in range(0,len(animalNames)):
 currentType = i
 done = False
 needsRedraw = True
 while not done:
 checkForEvent()
 if needsRedraw:
 drawScreen(i,currentA)
 if enroll :
 enroll = False
 print("enrolling")
 enrollCard(animalNames[i])

def drawScreen(cType,Cindex):
 global needsRedraw
 pygame.draw.rect(screen,(255,255,255), (0,0,screenWidth, ↩

screenHeight),0)
 screen.blit(farmBuilding,(0,0))
 if seeAll:
 for j in range(0,len(animalNames)):
 for i in range(0,5):
 screen.blit(animalPictures[j],(xPlot[j][i], yPlot[j] ↩

[i]))
 else:
 for i in range(0,5):
 screen.blit(animalPictures[cType],(xPlot[cType][i], ↩

yPlot[cType][i]))
 screen.blit(farmFence,(0,270))
 pygame.display.update()
 needsRedraw = False

def init():
 global animalNames, animalPictures, farmBuilding, farmFence
 global xPlot,yPlot,currentType,currentA, animalTypesNumber
 path = os.path.realpath(__file__)
 path = os.path.dirname(path) + "/farmPictures/"
 #get a list of files
 animalNames = [fn for fn in next(os.walk(path))[2]]
 list.sort(animalNames) # put in alphabetical order
 animalTypesNumber = len(animalNames)
 print("you have these animals\n",animalNames)

(continued)

416 PART 5 Exploring Electronics with the Raspberry Pi

 animalPictures= [pygame.image.load("farmPictures/" + ↩
animalNames[i]).convert_alpha()

 for i in range(0,len(animalNames))]
 farmBuilding = pygame.image.load("farmPictures/fixed/ ↩

farm.png").convert_alpha()
 farmFence = pygame.image.load("farmPictures/fixed/ ↩

fence.png").convert_alpha()
 xPlot = [[144,144,144,144,144] for i in range(0,len(animalNames))]
 yPlot = [[200,200,200,200,200] for i in range(0,len(animalNames))]
 currentType = 0 ; currentA = 0

def enrollCard(name):
 print("Enroling", name, "place a card on the reader")
 data1 = [] ; data2 = [] ; data3 = []
 for i in range(0,16): # fill with a sectors worth of zeros
 data1.append(0) ; data2.append(0) ; data3.append(0)
 for i in range(0,len(name)):
 data1[i] = ord(name[i])
 #save position of these animals
 k = 0
 for i in range(0,4):
 data2[k] = xPlot[currentType][i] >> 8
 data2[k+1] = xPlot[currentType][i] & 0xFF
 data2[k+2] = yPlot[currentType][i] >> 8
 data2[k+3] = yPlot [currentType][i] & 0xFF
 k+=4
 data3[0] = xPlot[currentType][4] >> 8
 data3[1] = xPlot[currentType][4] & 0xFF
 data3[2] = yPlot[currentType][4] >> 8
 data3[3] = yPlot [currentType][4] & 0xFF
 # This is the (default) key for authentication
 key = [0xFF,0xFF,0xFF,0xFF,0xFF,0xFF]
 rfidReader.RC522_WriteSector(key,12,data1)
 rfidReader.RC522_WriteSector(key,13,data2)
 rfidReader.RC522_WriteSector(key,14,data3)
 print("finished enrolling\n")

def terminate(): # close down the program
 print ("Closing down please wait")
 pygame.mixer.quit()
 pygame.quit() # close pygame
 os._exit(1)

LISTING 18-7:	 (continued)

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 417

def checkForEvent(): # see if we need to quit
 global xPlot, yPlot, needsRedraw,done, enroll, currentA
 global currentType, seeAll
 event = pygame.event.poll()
 if event.type == pygame.QUIT :
 terminate()
 if event.type == pygame.KEYDOWN :
 if event.key == pygame.K_ESCAPE :
 terminate()
 if event.key == pygame.K_RETURN :
 currentA += 1
 if currentA >= 5:
 currentA = 0
 enroll = False
 if event.key == pygame.K_SPACE :
 done = True
 enroll = False
 if event.key == pygame.K_e :
 done = True
 enroll = True
 if event.key == pygame.K_a :
 seeAll = not seeAll
 needsRedraw = True
 if event.key == pygame.K_UP :
 yPlot[currentType][currentA] -= 1
 needsRedraw = True
 if event.key == pygame.K_DOWN :
 yPlot[currentType][currentA] += 1
 needsRedraw = True
 if event.key == pygame.K_RIGHT :
 xPlot[currentType][currentA] += 1
 needsRedraw = True
 if event.key == pygame.K_LEFT :
 xPlot[currentType][currentA] -= 1
 needsRedraw = True
 if event.key == pygame.K_s :
 print (xPlot[currentType][currentA], yPlot[currentType] ↩

[currentA])

Main program logic:
if __name__ == '__main__':
 main()

418 PART 5 Exploring Electronics with the Raspberry Pi

The screenWidth and screenHeight variables must be set to the size of the farm.
png image.

To start enrolling, use the cursor keys to position the first occurrence of an ani-
mal. When it’s in the right position, press Return and position the next one. After
all animals of the one type have been positioned, press the spacebar to move on to
the next animal. At any time, you can see all the animals at the same time by
pressing the A key. After you have defined the position of all your animals, you can
use the spacebar to step through them, pressing the E key to enroll each one. After
you have enrolled all the cards, it’s ready for your sing-song. The final program is
shown in Listing 18-8.

It has been reported that this program does not exit properly using Thonny and
just hangs at the end. Running this under IDLE3 works perfectly.

LISTING 18-8:	 Old McDonald’s Farm Sing-Song

#!/usr/bin/python3
Old McDonald's Farm -- a song by Mike Cook

from rc522rfid import Rc522rfid
import pygame, time, os

pygame.init() # initialise graphics interface
pygame.mixer.quit()
pygame.mixer.init(frequency=22050, size=-16, channels=2, buffer=512)
os.environ['SDL_VIDEO_WINDOW_POS'] = 'center'
pygame.display.set_caption("Old McDonald's Farm")
pygame.event.set_allowed(None)
pygame.event.set_allowed([pygame.KEYDOWN,pygame.QUIT])
screenWidth = 723 ; screenHeight = 369
screen = pygame.display.set_mode([screenWidth,screenHeight],0,32)

rfidReader = Rc522rfid()

farm = [] # what animals are on the farm today
play = False
cardsRead = -1
verse = 0

def main():
 global play,xPlot,yPlot,cardsRead,farm
 print ("Old McDonald's Farm")
 print ("Present cards then Press - p = Play - n = New")

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 419

 init()
 while 1:
 drawScreen(-1,0,0)
 while not play:
 checkForEvent()
 if readCard() == 0:
 print("Farm now contains ",end="")
 for i in range(0,len(farm)):
 print(rawNames[farm[i]]," ",end="")
 print()
 rfidReader.RC522_WaitForCardRemoved()
 singSong()
 play = False
 farm = [] ; xPlot = [] ; yPlot = []
 cardsRead = -1
 print("Place cards to populate farm")

def drawScreen(n,level,ind):
 screen.blit(farmBuilding,(0,0))
 if cardsRead != -1 and n != -1:
 if verse > 0 and level >0: # draw previous animals
 i = verse
 while i > ind:
 k = farm[i]
 for j in range(0,5):
 screen.blit(anamalPictures[k],(xPlot[i][j], ↩

yPlot[i][j]))
 i -=1
 k = farm[ind]
 for j in range(0,n): # draw latest animal
 screen.blit(anamalPictures[k],(xPlot[ind][j], ↩

yPlot[ind][j]))

 screen.blit(farmFence,(0,270))
 pygame.display.update()

def readCard():
 status = rfidReader.RC522_ReadCard()
 if status == -1:
 return -1
 # This is the (default) key for authentication
 key = [0xFF,0xFF,0xFF,0xFF,0xFF,0xFF]
 block1 = rfidReader.RC522_GetSector(key,12)
 block2 = rfidReader.RC522_GetSector(key,13)

(continued)

420 PART 5 Exploring Electronics with the Raspberry Pi

 block3 = rfidReader.RC522_GetSector(key,14)
 if block1 != -1 and block2 != -1 and block3 != -1: # if data OK
 lookAtNew(block1,block2,block3)
 return 0
 else:
 print("Error in reading card")
 rfidReader.RC522_WaitForCardRemoved()

def lookAtNew(s1,s2,s3): # look at the new element
 global xPlot,yPlot, cardsRead
 name = ""
 i = 0
 notDone = True
 while notDone and i < 16: # generate name
 c = s1[i]
 i+=1
 if c !=0:
 name = name + chr(c)
 else:
 notDone = False
 for i in range(0,len(animalNames)):
 if animalNames[i] == name: # find the name on the card
 farm.append(i)
 xPlot.append([0,0,0,0,0])
 yPlot.append([0,0,0,0,0])
 cardsRead += 1
 k = 0
 for j in range(0,4):
 xPlot[cardsRead][j] = s2[k]<< 8 | s2[k+1]
 yPlot[cardsRead][j] = s2[k+2]<< 8 | s2[k+3]
 k += 4
 xPlot[cardsRead][4] = s3[0]<< 8 | s3[1]
 yPlot[cardsRead][4] = s3[2]<< 8 | s3[3]

def init():
 global animalNames, anamalPictures, farmBuilding, farmFence, ↩

animals
 global xPlot,yPlot, noises, rawNames, fixed
 path = os.path.realpath(__file__)
 path = os.path.dirname(path) + "/farmPictures/"
 #get a list of files
 animalNames = [fn for fn in next(os.walk(path))[2]]
 list.sort(animalNames) # put in alphabetical order

LISTING 18-8:	 (continued)

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 421

 rawNames = []
 for i in range (0,len(animalNames)): # remove file extension
 rawNames.append(animalNames[i][0:len(animalNames[i])-4])
 #load in the sounds
 animals = [pygame.mixer.Sound("farmSounds/" +rawNames ↩

[sound]+".ogg")
 for sound in range(0,len(rawNames))]
 noises = [pygame.mixer.Sound("farmSounds/"+ rawNames ↩

[sound]+"Sound.ogg")
 for sound in range(0,len(rawNames))]
 files = ["start","and","ee_eye_oh","witha","here","anda", ↩

"there","herea","therea","everywherea","end", "well"]
 fixed = [pygame.mixer.Sound("farmSounds/fixed/" +files ↩

[sound]+".ogg")
 for sound in range(0,len(files))]
 #load in the pictures
 anamalPictures= [pygame.image.load("farmPictures/" ↩

+animalNames[i]).convert_alpha()
 for i in range(0,len(animalNames))]
 farmBuilding = pygame.image.load("farmPictures/fixed/ ↩

farm.png").convert_alpha()
 farmFence = pygame.image.load("farmPictures/fixed/ ↩

fence.png").convert_alpha()
 xPlot = [] ; yPlot = []

def singSong():
 global verse
 verse = 0
 while verse < len(farm): # repeat for each verse
 for i in range(0,3): # start part
 fixed[i].play()
 waitFinish()
 if i == 1:
 animals[farm[verse]].play()
 waitFinish()
 if i == 2:
 farmYard(verse,verse)
 verse += 1

def farmYard(index,verse): # sing verse
 numDisplayed = 0
 level = 0
 while index != -1:
 for i in range(3,10):

(continued)

422 PART 5 Exploring Electronics with the Raspberry Pi

 fixed[i].play()
 waitFinish()
 if i == 3 or i==5 or i==9:
 noises[farm[index]].play()
 numDisplayed +=1
 drawScreen(numDisplayed,level,index)
 waitFinish()
 noises[farm[index]].play()
 waitFinish()
 if i == 7 or i == 8:
 noises[farm[index]].play()
 numDisplayed +=1
 drawScreen(numDisplayed,level,index)
 waitFinish()
 index -=1
 level +=1
 numDisplayed = 0
 if verse < len(farm)-1: # more verses
 fixed[0].play()
 waitFinish()
 time.sleep(0.2)
 fixed[11].play() # well
 drawScreen(-1,0,0) # clear the farm
 else: # end of song
 fixed[10].play()
 waitFinish()
 time.sleep(0.3)

def waitFinish():
 while pygame.mixer.get_busy():
 checkForEvent()

def terminate(): # close down the program
 print ("Closing down please wait")
 pygame.mixer.quit()
 pygame.quit() # close pygame
 os._exit(1)

def checkForEvent(): # see if we need to quit
 global play, farm, cardsRead
 event = pygame.event.poll()
 if event.type == pygame.QUIT :
 terminate()

LISTING 18-8:	 (continued)

CHAPTER 18 Old McDonald’s Farm and Other RFID Adventures 423

 if event.type == pygame.KEYDOWN :
 if event.key == pygame.K_ESCAPE :
 terminate()
 if event.key == pygame.K_p :
 play = True
 if event.key == pygame.K_n :
 farm = []
 cardsRead = -1

Main program logic:
if __name__ == '__main__':
 main()

To play, first present — one at a time — all the cards for animals you want on the
farm. Then press the P key to play the song. Repeat this action to play the song
again, maybe with different animals or in a different order. Figure 18-7 shows
some of the occupants of our farm.

FIGURE 18-7:
Old McDonald’s

farm.

6The Part of Tens

IN THIS PART . . .

Download and install ten great software packages for
your Raspberry Pi, including games, an art package, and
productivity tools.

Be inspired by ten innovative projects for the Raspberry
Pi, including a heart rate monitor, T-shirt cannon, and
chess-playing robot.

Troubleshoot common problems on the Raspberry Pi,
change more advanced settings, and connect external
storage devices using the Linux shell.

CHAPTER 19 Ten Great Software Packages for the Raspberry Pi 427

Chapter 19

IN THIS CHAPTER

»» Downloading and playing games

»» Discovering educational software

»» Using email, accounts systems, and
other productivity tools

Ten Great Software
Packages for the
Raspberry Pi

One of the best things about the Raspberry Pi is that you can easily
download so many software packages over the Internet and install them.
In this chapter, we give you some pointers to ten software packages to

get you started, including a few you might have missed that are already on your
Raspberry Pi.

Before you start, issue the following command in the shell to make sure your
software cache is up to date:

sudo apt-get update

The software you run on your computer is as much a matter of taste as the music
you listen to, so we hope you use this list as a starting point and then make your
own software discoveries. For a full explanation of finding and installing software
on your Raspberry Pi, see Chapters 4 and 5.

428 PART 6 The Part of Tens

Penguins Puzzle
Penguins Puzzle, shown in Figure 19-1, is a 3D puzzle game where you are tasked
with safely escorting a penguin to the exit without letting it fall off the iceberg and
into the freezing water. You use the cursor keys to move around, press Z to zoom
out for a wider-angle view, and press R to reset the level. The game has 50 levels
to test your mettle. When you’ve finished playing, press Esc to exit.

The game is preinstalled with Raspbian. If you need to install or update it, find it
on the Add/Remove Software menu, located in the Preferences section of the
Applications menu, or, in the shell, use

sudo apt-get install penguinspuzzle

You start the game from the shell by typing penguinspuzzle. The software is char-
ityware, which means you’re invited to make a donation to charity if you enjoy
playing it. For more information on Penguins Puzzle, see the website at http://
penguinspuzzle.appspot.com/.

FIGURE 19-1:
Penguins Puzzle

is a cute 3D
puzzle game.

Peter de Rivaz

http://penguinspuzzle.appspot.com/
http://penguinspuzzle.appspot.com/

CHAPTER 19 Ten Great Software Packages for the Raspberry Pi 429

FocusWriter
Whether you’re writing the next blockbuster from your bedroom or you just need
to get your work done without distraction, FocusWriter might be the application
for you. It’s a word processor that is designed to be distraction-free. Most of the
time when you’re using it, the only thing onscreen is your writing.

When you move the mouse to the top of the screen, the menus for changing the
settings and saving your files appear. To keep your motivation up, you can set a
daily goal in the Preferences settings for time spent writing or (better still) words
written per day. When you move the mouse to the bottom of the screen, you can
see the word count and your progress toward your daily goal.

To install FocusWriter, search for focuswriter on the Add/Remove Software menu
or, in the shell, use

sudo apt-get install focuswriter

To start FocusWriter, go into your desktop environment and click the program’s
entry in the Office category of your Applications menu. You can find out more
about the application at http://gottcode.org/focuswriter/.

Mathematica
Mathematica is what is known as a symbolic package, or a CAS (Computer Algebra
System), and it’s preinstalled in Raspbian. It is one of the best systems for
exploring anything to do with numbers, from mathematics to complex multidi-
mensional graphics and music.

To get started, click the Applications menu, choose the Programming category,
and click the Mathematica icon. You see a splash screen, and then two windows
open: a blank notebook and, in front of it, an invitation to visit three websites.
Click the notebook to bring it to the front. Type 2^8 and press Return. This expres-
sion says “two to the power of eight,” but you don’t see an answer. You’ve entered
the expression into Mathematica, but in order to tell the program to evaluate it
(and give you the answer), you use Shift+Return.

Mathematica can expand equations for you:

Expand[(1+x)^6]
1 + 6x + 15x2 + 20x3 + 15x4 + 6x5 + x6

http://gottcode.org/focuswriter/

430 PART 6 The Part of Tens

It can plot graphs, such as these parametric plots:

For[n=1, n<4, n++,
ParametricPlot[{Sin[n t], Sin[(n+1) t]}, {t, 0, 2Pi}] //↩

Print]

Graphical output might take a moment to render, so be patient, if necessary.
Mathematica even plots 3D graphics:

SphericalPlot3D[Sin[t] Cos[t] Sin[f], {t, 0, Pi}, {f, 0, 2 Pi}]

The bottom of Figure 19-2 shows what Mathematica comes up with given this
input.

One of Mike’s favorite shapes is generated by the following code:

Plot3D[Sin[Sqrt[x^2 + y^2]]/Sqrt[x^2 + y^2],
{x, -6 Pi, 6 Pi}, {y, -6 Pi, 6 Pi},
Boxed -> False, Mesh -> False, PlotPoints -> 60,
PlotRange -> All, Axes -> False]

FIGURE 19-2:
Two plot

examples from
Mathematica.

©1988–2014 Wolfram Research Inc.

CHAPTER 19 Ten Great Software Packages for the Raspberry Pi 431

Try it out to see what it looks like! This book’s Introduction explains how to
access the online materials on the companion website, where you can find a bonus
chapter about Mathematica.

XInvaders 3D
If you’re a fan of classic arcade cabinets from the 1970s and 1980s, you’ll have a
blast with XInvaders 3D. The game uses line graphics (like the classic game Aster-
oids) to put a fresh spin on Space Invaders. The 3D rendering makes the aliens
move progressively closer to you, and you move in four directions to line up your
shots. It’s good, clean, retro fun. Move using the cursor keys, and fire by pressing
the spacebar.

To install XInvaders 3D, search for xinvaders on the Add/Remove Software menu
or, in the shell, use

sudo apt-get install xinv3d

To run XInvaders 3D, click the icon on the taskbar to go into the Terminal and
then enter xinv3d.

Fraqtive
Fractals are patterns generated using mathematical formulae that are self-similar.
That means if you zoom in on the Mandlebrot set (shown on the left in Figure 19-3),
for example, you’ll find that the same shape repeats in its nooks and crannies,
and you can zoom in again and again and again. Fraqtive is a program for explor-
ing fractals and generating images. You can save the images and use them as
wallpaper on your Raspberry Pi. (See Chapter 4.) The software has a tutorial to get
you started.

To install Fraqtive, search for fraqtive on the Add/Remove Software menu or, in
the shell, use

sudo apt-get install fraqtive

After installation, you can find Fraqtive in the Education category of your Applica-
tions menu. For more information on Fraqtive, visit the creator’s website at
http://fraqtive.mimec.org/.

http://fraqtive.mimec.org/

432 PART 6 The Part of Tens

Tux Paint
Tux Paint, shown in Figure 19-4, is a simple drawing program for children, with
tools that help them to quickly create art on the Raspberry Pi. As well as enabling
freehand drawing and the placement of shapes and lines in common with most art
packages, Tux Paint has a Magic tool. This can be used to create effects such as
brick walls, flowers, snowballs, rainbows, waves, and various creative image
distortions. The Stamp tool is used to stamp clip art onto the screen, including
animals, penguins, hats, food, and musical instruments.

Tux Paint is named in tribute to Tux, the penguin who is the official mascot of the
Linux kernel. The application has been created with the help of more than 300
contributors worldwide and has been downloaded tens of millions of times.

To install Tux Paint, search for tuxpaint on the Add/Remove Software menu or, in
the shell, use

sudo apt-get install tuxpaint

FIGURE 19-3:
Generate colorful

fractal images
easily using

Fraqtive.
Michał Mȩciński

CHAPTER 19 Ten Great Software Packages for the Raspberry Pi 433

After you’ve installed Tux Paint, you can start it from the Education category of
your Applications menu. The official website for Tux Paint can be found at www.
tuxpaint.org.

Grisbi
If you want to manage your home accounts on your Raspberry Pi, Grisbi is a free
application you can use to keep track of your regular and one-off payments.
Although other programs are also available, Grisbi is the easiest one we’ve tried,
both to set up and keep updated. Many banks enable you to download your bank
statements in a format that can be used in Grisbi, so you might be able to analyze
your financial situation without too much rekeying.

To install Grisbi, search for grisbi on the Add/Remove Software menu or, in the
shell, use

sudo apt-get install grisbi

You can find it in the Office category of your Applications menu.

FIGURE 19-4:
Tux Paint turns

every child
into an artist.

And us, too.
The Tuxpaint Project (www.tuxpaint.org)

http://www.tuxpaint.org
http://www.tuxpaint.org
http://www.tuxpaint.org

434 PART 6 The Part of Tens

Beneath a Steel Sky
The Beneath a Steel Sky game tells a science fiction story about Robert Foster, a
boy who survived a helicopter crash and was raised by indigenous Australians in a
wasteland called The Gap. Many years later, when Robert has grown up, armed
forces arrive in another helicopter, kidnap him, and fly him back to the city. He
escapes, and you pick up the controls to guide him on his journey of discovery.
Why is he here? Who is in charge?

It’s a point-and-click adventure game, shown in Figure 19-5, which means you
solve puzzles and interact with the environment using the mouse cursor and
clicking objects and people. The left mouse button is used to examine things and
the right mouse button is used to take an action (such as opening or closing a
door, picking up an object, or looking through a window). You can talk to
characters in the game by clicking them and choosing from the provided phrases.
When you move the cursor to the top of the screen, the inventory of items you’re
carrying appears so that you can use items you’re carrying. To walk through an
exit, click it.

The game’s fantastic opening sequence and witty dialogue draw you in, and the
solution is available online if you’d like to experience the full story but get stuck
on one of the puzzles.

FIGURE 19-5:
Beneath a

Steel Sky, an
interactive

science fiction
story.

Revolution Software Ltd.

CHAPTER 19 Ten Great Software Packages for the Raspberry Pi 435

This hit game from 1994 was officially released as freeware in 2003 and is now
available for you to install on your Raspberry Pi. Search for steel sky on the Add/
Remove Software menu or, in the shell, enter:

sudo apt-get install beneath-a-steel-sky

It installs into the Games category of your Applications menu.

Sense HAT Emulator
The Sense HAT is an official Raspberry Pi product, originally designed to run edu-
cational experiments on the International Space Station. Like all HATs (short for
hardware attached on top), it plugs onto the GPIO pins of your Raspberry Pi. The
Sense HAT includes an 8×8 grid of multicolored LEDs, a five-button joystick, and
a range of sensors for temperature, pressure, humidity, and orientation. You can
develop programs for it using Python.

You can try out the Sense HAT using the emulator (shown in Figure 19-6), which
is included in the Raspbian operating system. On the PIXEL desktop, you’ll find it
in the Programming section of the Applications menu.

The emulator enables you to simulate the input and output of the Sense HAT
so that you can test how your programs work. It has a number of sample programs
to get you started too, which you can find by clicking the File menu.

When you’ve made something you like, you can take it into the real world by buy-
ing a Sense HAT (which costs about $40, or £30).

FIGURE 19-6:
The Sense HAT

emulator.
The Raspberry Pi Foundation

436 PART 6 The Part of Tens

Brain Party
If you fancy a few minutes of gaming to tune up your brain between programming
sessions, Brain Party is here for you. It’s a series of fun minigames, designed to
stretch the gray matter. You complete five randomly selected tests to get your
“brain weight” score, and can practice each minigame when you’ve unlocked it in
a test. Puzzles will challenge your memory, observation skills, logic skills, and
reactions. It’s family friendly too.

You can install it by searching for brain party on the Add/Remove Software menu
(the game is listed as “36 puzzle games for all the family”) or install it at the
command line, like this:

sudo apt-get install brainparty

You can run Brain Party from the Applications menu (find it under Games) or from
the command line by typing in brainparty.

CHAPTER 20 Ten Inspiring Projects for the Raspberry Pi 437

Chapter 20

IN THIS CHAPTER

»» Finding the inspiration to get started

»» Understanding what the Pi can do

»» Discovering sources of more project
information

Ten Inspiring Projects for
the Raspberry Pi

If you’ve read the rest of this book and worked through the projects, you now
know how to program and how to create your own electronics projects on the
Raspberry Pi. What you learn next, and what you create with that knowledge, is

up to you.

It’s amazing to see what people of all ages are doing with their Raspberry Pis. In
this chapter, we’ve collected some of the most interesting and inspiring projects
we’ve come across. Each one has a link so that you can find out more and perhaps
follow instructions to replicate the project — or get some advice for similar proj-
ects of your own.

One-Button Audiobook Player
http://blogs.fsfe.org/clemens/2012/10/30/the-one-button-

audiobook-player

http://blogs.fsfe.org/clemens/2012/10/30/the-one-button-audiobook-player/
http://blogs.fsfe.org/clemens/2012/10/30/the-one-button-audiobook-player/

438 PART 6 The Part of Tens

Michael Clemens has used the Raspberry Pi to create an audiobook player for his
wife’s grandmother, who is visually impaired and finds digital audio players
difficult to use.

This project requires some electronics work — you add transistors, an LED, a pair
of speakers, and a large button to a plastic case and link the button and LED to the
Raspberry Pi’s GPIO pins.

A Python script enables the button to control the media player software: Pressing
the button pauses or plays the audiobook, and holding it down for 4 seconds sends
it back one track.

To change the audiobook, you just plug in a USB drive with the new audiobook
on it. It’s automatically copied across to the Raspberry Pi, replacing the old
audiobook.

Look for instructions, Python code, and photos on Michael’s blog.

Weather Station
http://stevewardell.wordpress.com/tag/raspberrypi

When Steve Wardell heard about the development of the Raspberry Pi, he decided
that it could be the ideal computer to connect to his WS2350 weather station,
replacing his Windows PC. One challenge he had to overcome was to find an
adapter that would enable the weather station, which has a serial port, to connect
to the Raspberry Pi’s USB port. He tried a couple that didn’t work before finding
one with an FT232RL chip that did.

The Raspberry Pi gathers information from the weather station using Open2300,
a package of tools for reading data from the weather station. Steve’s written a
Python script that converts this data into a tweet and posts it on Twitter, and he
is now looking at using the Raspberry Pi to post weather updates on his website.

On Steve’s blog, you can find a couple of articles explaining what he’s done and
how he overcame some of the technical hurdles of integrating all the different
systems.

http://stevewardell.wordpress.com/tag/raspberrypi/

CHAPTER 20 Ten Inspiring Projects for the Raspberry Pi 439

Heart Rate Monitor
www.raspberrypi.org/magpi/heartbeat-monitor

Daniel Fernandez connected a heart monitor to a Raspberry Pi so that he could
have more flexibility in capturing and using its data. The aim was to be able to see
a graph showing the results while he ran on the treadmill, and to be able to export
the results in a standard format for in-depth analysis, such as CSV, which can be
read by Excel or LibreOffice.

He used a Polar H7 heartbeat sensor and a Raspberry Pi 3 with a 3½-inch screen,
which displays an easy-to-read graph as he runs. Everything was packaged in a
protective case.

Electric Skateboard
www.youtube.com/watch?v=2WLEur3M8Yk

You can use a Raspberry Pi as the guidance system on a motorized skateboard, as
TheRaspberryPiGuy demonstrated on YouTube. He attached an Alien Power Sys-
tems motor to the skateboard and used a Pi Zero to control it.

Acceleration is controlled using a remote control from Nintendo’s Wii console,
sending signals to the Pi over Bluetooth. In his video, you can see him speeding
through the streets of Cambridge, U.K., hometown of the Raspberry Pi Founda-
tion. His top speed is 30 kilometers an hour, and he estimates that the battery
power is enough for at least 10 kilometers.

As an upgrade, you could add a Pi-powered speedometer, as shown in this tuto-
rial, which also shows you how to build the board itself: www.instructables.
com/id/The-Longboard-Speedometer.

T-Shirt Cannon
http://drstrangelove.net/2014/01/raspberry-pi-powered-t-shirt-

cannon

David Bryan and Lucas Saugen turned to the Raspberry Pi when they were asked to
repair the T-shirt cannon used at the Minnesota RollerGirls’ roller derby matches.

https://www.raspberrypi.org/magpi/heartbeat-monitor/
http://www.youtube.com/watch?v=2WLEur3M8Yk
http://www.instructables.com/id/The-Longboard-Speedometer
http://www.instructables.com/id/The-Longboard-Speedometer
http://drstrangelove.net/2014/01/raspberry-pi-powered-t-shirt-cannon/
http://drstrangelove.net/2014/01/raspberry-pi-powered-t-shirt-cannon/

440 PART 6 The Part of Tens

The cannon is used to fire T-shirts into the audience during the timeouts, which
last for up to about a minute-and-a-half. They wanted a design that would enable
more than one T-shirt to be fired in that period, and that would also enable the
cannon to tweet a photo when a T-shirt was fired.

The resulting design uses four clear PVC tubes for the barrels, and compressed air
to fire the T-shirts. The cannon has three buttons: one to choose which barrel to
fire from, and the other two that are pressed together to fire a shirt. As an addi-
tional safety measure, a key is required to disarm the cannon. The Raspberry Pi is
used to control the device, with software written in Python that uses the GPIO
Python libraries.

To find out more about how the cannon was built, watch videos, and download the
code, visit David’s website.

Panflute Hero
www.raspberrypi.org/archives/5924

At the 2013 Way Out West Hackathon in Gothenberg, Sweden, a team created a
game in which you are challenged to play some panpipes in time with the music.
They made the fake panpipes by sticking together some short bamboo canes and
added Arduino sound sensors to them to detect when the player blows each pipe.
Those sensors were connected to the Raspberry Pi’s GPIO, and read using the
Python package RPi.GPIO. The Raspberry Pi was mounted on the back of the
panpipes.

This inspired and eccentric game runs on a desktop PC and pulls in panpipe music
from Spotify, challenging players to blow on the pipes at the right time to simu-
late playing the music.

Magic Mirror
www.raspberrypi.org/archives/5275

For London Fashion Week, Photobot.Co created a photo booth for The Body Shop
that’s guaranteed to capture your best side. They built three vertical panels, each
of which has five Raspberry Pis and Raspberry Pi cameras in it. Together, they
make a Magic Mirror (see Figure 20-1) that compiles full-body portraits of sub-
jects, angled from the left, the right, and face-on.

http://www.raspberrypi.org/archives/5924
http://www.raspberrypi.org/archives/5275

CHAPTER 20 Ten Inspiring Projects for the Raspberry Pi 441

The photo booth was triggered when somebody tweeted the booth to say what
color she was wearing. The composite photo, a single image that showed all three
angles, was tweeted back to her. The tweet also included a response that was
appropriate for the color she said she was wearing if it was one of the hundred
recognized color names. The system used a Mac Mini as the central controller
(although the developers say they later found that a Raspberry Pi could have done
this job, too). The controller ran software in Python that listened for tweets, told
the Raspberry Pis to capture images and send them to it, and then created the
composite image. The controller connected to the Raspberry Pis using Secure Shell
(SSH), so it could control them remotely and access their image data.

Pi in the Sky
www.pi-in-the-sky.com

Dave Akerman uses the Raspberry Pi for high-altitude ballooning, using
hydrogen-filled balloons. The balloons go high enough to photograph a slight
curvature in the earth, with the darkness of space visible above the atmosphere.
After two or three hours of ascent, the balloons burst and release their payload to
fall to Earth on a parachute.

FIGURE 20-1:
The design for

the Magic Mirror,
showing where

the Raspberry Pi
cameras

(the small circles)
are mounted in

the mirror
surfaces.

http://www.pi-in-the-sky.com/

442 PART 6 The Part of Tens

Dave’s favorite experience was sending Babbage, the teddy bear mascot of the
Raspberry Pi, up to 39 kilometers and releasing it for freefall. “The first attempt
failed due to a combination of factors — a windy launch meant Babbage’s support
line wasn’t in the right place around the heated resistor that was to cut him free,
and for weight reasons I’d been overcautious in using a smaller and less powerful
battery pack than was ideal,” says Dave. “Success is always sweeter after an initial
failure, and it was a lovely moment when I knew for sure that he’d been released
properly on the second flight.”

Dave’s early projects involved hand-building systems for tracking flights using
GPS and for transmitting positioning signals, photos, and other data to the ground.
The Pi in the Sky kit is now available to provide these features off the shelf. You
can also use the kit in combination with the Sense HAT (see Chapter 19) to send
sensor data back to the ground. Among other things, Dave’s used the Pi to predict
the landing position on the way down. Part of the challenge of high-altitude
ballooning is recovering the payload, given that predictions can be off by 5 miles
or more.

High-altitude ballooning can be a satisfying hobby, but it’s one that requires plan-
ning and commitment. You will most likely need permission for each flight so that
you don’t endanger aircraft, and you’ll need to budget several hundred dollars or
pounds for the equipment, and a couple of hundred for the balloon, gas, and fuel
for the chase vehicle on each flight. Plenty of help is available, though, to help you
make a success of it: Start by reading Dave’s tutorial at www.daveakerman.
com/?p=1732, join the #highaltitude channel at https://webchat.freenode.net,
and visit the UK High Altitude Society website (www.ukhas.org.uk).

Raspberry Turk
www.raspberryturk.com

You might have heard of the Mechanical Turk, an elaborate illusion that was
claimed to be a chess-playing robot from 1770 until 1854. In fact, a chess master
was hidden inside the table, making the moves and controlling the dummy of a
man in Turkish dress who appeared to be playing the game. The Mechanical Turk
went on to give its name to a service from Amazon where people complete tasks
over the Internet, and now to Raspberry Turk, a genuine chess-playing robot.

Raspberry Turk is built around the open source Stockfish chess engine, which
plays the games. A Raspberry Pi is used to control a robot arm that moves the
chess pieces. A Raspberry Pi Camera Module is used with computer vision soft-
ware to see when it’s the computer’s turn to play, by checking for the player’s

http://www.daveakerman.com/?p=1732
http://www.daveakerman.com/?p=1732
https://webchat.freenode.net/
http://www.ukhas.org.uk/
http://www.raspberryturk.com/

CHAPTER 20 Ten Inspiring Projects for the Raspberry Pi 443

move on the board. The whole thing is built into a table, which has the chess board
painted onto its surface.

You can find out more about this project, which combines elements of artificial
intelligence, robotics and computer vision, at the project’s website.

Sound Fighter
www.foobarflies.io/pianette

To mark the reopening of the Maison de la Radio in Paris as a cultural centre, Jean
Weessa and Mélanie Pennec had the idea of creating an installation that uses two
upright pianos as game controllers for Street Fighter on the PlayStation.

Eric Redon and Cyril Chapellier brought the idea to life using a Raspberry Pi Model
B+ as the brains of the operation, receiving all the piano keypresses, and piezo
sensors attached to the piano hammers that detect when a key is struck. The
project also required them to create custom-printed circuit boards, and use an
Arduino Uno to feed the keypresses into the PlayStation. Their code was written in
Python 3.

To create a gameplay experience that made good pianists good gamers, and also
made it sound as musical as possible, player movements were assigned to the left-
hand keys, actions were assigned to the right-hand keys and both pianos played
in the same musical scale. Later modifications of the project include using the foot
pedals for long button presses and expansion to the additional games Tekken5
(another beat-’em-up) and Crash NitroKart (a racing game).

You can read about the challenges involved in building this project, and how they
were overcome, at the website. You can also find the code and designs if you want
to replicate the project.

http://www.foobarflies.io/pianette/

APPENDIX A Troubleshooting and Configuring the Raspberry Pi 445

Appendix A

IN THIS CHAPTER

»» Troubleshooting and fixing common
problems

»» Adjusting the settings on your
Raspberry Pi

»» Fixing audio problems

»» Mounting external storage devices in
the Linux shell

»» Fixing software installation issues

»» Troubleshooting your network
connection

»» Connecting using SSH

Troubleshooting and
Configuring the
Raspberry Pi

Many people find that they can just connect up their Raspberry Pi, and
everything works fine the first time. Fingers crossed that this will apply
to you!

Sometimes people experience problems, however, or want to make more advanced
changes to their computer’s settings (also known as configuring it).

In this appendix, we show you how to resolve some common complaints and how
to change some of the settings. Hopefully, you won’t need to consult this appen-
dix much, but it might prove valuable if you experience undesirable behavior
when you first set up the Pi or if you have an unusual setup.

446 Raspberry Pi For Dummies

Whatever you’re doing on the Raspberry Pi (or any computer, come to that), save
your work regularly. If it crashes, you’ll be able to pick things up from your last
saved version, which will hopefully prevent you from losing too much work.

Troubleshooting the Raspberry Pi
When Sean first started using his Raspberry Pi, he couldn’t connect to the Internet
in the desktop environment, although it was working fine in the Linux command
line. The problem, it turned out, was an incompatible keyboard. That’s something
he never would normally have suspected from the symptom he was seeing. For
that reason, we recommend you work your way through this entire 12-point
checklist, whatever the problem is and however unlikely it might seem that these
steps will fix things. Humor us, and you might be pleasantly surprised!

These steps are listed in a rough order of priority, with the quickest tests and
simplest solutions first. You can try any of these solutions at any time, but if you
respect this order (more or less), you can minimize any expense and hassle.

1.	 Be patient.

With the huge increase in performance over the years, this is less of an issue
than it was when the Pi first came out, but it’s worth saying nonetheless: When
your Raspberry Pi is busy, it can appear to be unresponsive, so you might think
it’s crashed. Often, if you wait, it recovers when it finishes its tasks. If it’s not
doing anything you particularly care about, you can always just restart the
machine, but that loses any data in memory, and it’s not a good idea to reset
during operations like software installations (if you can avoid it), because it
leaves them half-finished. There is also a risk of corrupting the SD card if you
don’t shut down properly. Note that the Raspberry Pi has a screensaver built
in, so you can recover the Pi from a blank screen by wiggling the mouse (when
in the desktop environment) or pressing any key (in the command line). You
can use the Shift key so that nothing appears onscreen.

2.	 Restart your Raspberry Pi.

Very occasionally, the machine has crashed in a way that we haven’t been able
to replicate, so a simple reset can sometimes do the trick. To reset, remove the
power, pause a moment, and then reconnect it.

3.	 Check your connections.

Switch off your Raspberry Pi and make sure that all its cables are firmly fixed in
the right sockets. Start with the source of the problem: For example, if the
screen is blank, check the video cable; if the keyboard is unresponsive, check
its connection. Chapter 3 is a guide to setting up your Raspberry Pi, including
connecting its peripherals and cables.

APPENDIX A Troubleshooting and Configuring the Raspberry Pi 447

4.	 Ensure that your MicroSD or SD card is inserted correctly.

If your Raspberry Pi’s red PWR light comes on but the green OK light does not
flicker or light, the Raspberry Pi is having difficulty using the SD or MicroSD
card. In the first instance, check to see that the card is correctly inserted. (See
Chapter 3.)

5.	 Try a new SD or MicroSD card.

If the red light comes on but the green one still won’t, try a new card. We’ve
occasionally had problems with SD cards or MicroSD cards, and with adapters
that convert a MicroSD card to fit an SD card slot. You can find a list of SD
cards that have been reported as compatible with the Raspberry Pi at
http://elinux.org/RPi_SD_cards.

6.	 Disconnect peripherals.

Try disconnecting the USB hub, keyboard, and mouse and then restart.
Obviously, this won’t help much if the problem you’re experiencing requires
input devices for you to replicate it, but it can help to identify any device
incompatibilities that might stop the Pi from starting up correctly. If you need
to use a keyboard to test whether the problem reoccurs, try connecting it
directly to the Raspberry Pi. You could try disconnecting it again after you’ve
entered the password or started whatever programs you need to test. If the Pi
works fine without anything connected, use the process of elimination
(connecting devices one at a time and restarting) to identify which one is
causing problems.

7.	 Try new peripherals.

If possible, try a new keyboard, mouse, and USB hub, ideally chosen from the list
of devices at http://elinux.org/RPi_VerifiedPeripherals that are known
to work. Many of the problems people experience are the result of using incom-
patible devices with the Raspberry Pi, so replacing the keyboard, mouse, and
USB hub can resolve a wide range of apparently different problems (including
the strange experience Sean had with his Internet connection, mentioned
earlier). The previous step can help you to identify which peripherals might be
causing problems.

8.	 Try new cables.

Especially if you’re having problems with the network connection and audio or
visual output, try using new cables to rule out faulty cables as the cause of the
problem.

9.	 Try a new screen.

If you can’t see anything on the screen but the Raspberry Pi appears to be
powering up (the red light comes on and the green light flickers), try connect-
ing to a different monitor or TV. See Chapter 3 for advice on this.

http://elinux.org/RPi_SD_cards
http://elinux.org/RPi_VerifiedPeripherals

448 Raspberry Pi For Dummies

10.	Update your software.

Assuming your Internet connection is working, you can update the operating
system and other software on your Raspberry Pi (without overwriting any of
your work files) using this Linux command (see Chapter 5):

sudo apt-get update && sudo apt-get upgrade

11.	Try a new power supply.

We’ve put this near the end of our steps list because it’s probably hardest to do,
although dodgy power has been reported to cause a wide range of different
problems. If you have a friend with a Raspberry Pi and hers works fine, try using her
power supply to see whether it fixes the issues you’re seeing on yours. Alternatively,
you might need to buy a new power supply. Note that the Raspberry Pi 3 needs
more power than earlier models, so if you’ve upgraded your Pi but not your power
supply, you might experience problems. In the PIXEL desktop, a lightning bolt in
the top right of the screen means the Pi is underpowered, and a thermometer
means it is over temperature. See Chapter 1 for advice on buying a power supply.

12.	Check online for a solution.

It’s not possible to cover every eventuality here, so if you’re still experiencing
difficulties, check the rest of this appendix and then see the troubleshooting
guide at http://elinux.org/R-Pi_Troubleshooting, search the forums
at www.raspberrypi.org, or search the web with Google or DuckDuckGo
(www.duckduckgo.com) for a solution. You’re highly likely to find that someone
else has already overcome any difficulties you encounter.

Adjusting the Settings on Your
Raspberry Pi

The settings that your Raspberry Pi uses are stored in files on the MicroSD or SD
card, and many of them are in a file called config.txt that’s in the /boot direc-
tory. You can edit this file directly to change your computer’s settings using a
simple text editor called Nano that is preinstalled on your Raspberry Pi.

You might not need to adjust the settings manually. Try using the menus on the
PIXEL desktop (see Chapter 3) or running the Raspi-config program, which gives
you a menu for changing some of the most frequently used options, including
some that are not included in the desktop tool. You can run the program at any
time using the following command in the shell:

sudo raspi-config

http://elinux.org/R-Pi_Troubleshooting
http://www.raspberrypi.org
http://www.duckduckgo.com

APPENDIX A Troubleshooting and Configuring the Raspberry Pi 449

Raspi-config can help with

»» Keyboard configuration: Under Internationalisation Options, you can
select your keyboard type. You can also use the Localisation options in the
Raspberry Pi Configuration tool, as described in Chapter 3.

»» Camera problems: Ensure the camera is enabled in Raspi-config. You can
also enable the camera from the Interfaces section of the Raspberry Pi
Configuration tool. (See Chapter 3.)

»» Audio problems: In Advanced Options, you can force the audio to use the
headphone jack or HDMI output.

»» Missing space on the card: If you created your card by imaging it, a different
process to NOOBS that involves copying a snapshot of the software to the
card, you might need to expand the file system to use all the space available.
Under Advanced Options, choose Expand Filesystem.

The shell is covered in Chapter 5, but, in brief, it is the way of giving text instruc-
tions to your Raspberry Pi. You can open the shell by clicking the Terminal icon
at the top of the screen in the desktop environment.

Raspi-config and the Raspberry Pi Configuration tool can make changes for you
without your having to edit any configuration files, so it’s more convenient than
editing config.txt yourself, and there is less risk of error too. If the option you
need isn’t covered on the Raspi-config menu, you need to edit the configuration
file manually.

Before you start tampering with the config.txt file, make sure you’ve backed up
any important data on your Raspberry Pi. (See “Mounting External Storage
Devices” later in this appendix and the section about backing up your data
in Chapter 4.) There is a risk that you could, for example, render the screen
display unreadable, which would make it difficult to use the Raspberry Pi to access
your files.

Using Nano to edit config.txt
To open the config.txt file in the Nano editor, enter the following command in
the shell, all in lowercase:

sudo nano /boot/config.txt

The Nano text editor, with config.txt open, looks like Figure A-1.

450 Raspberry Pi For Dummies

Use the cursor keys to move around the document. At the bottom of the window is
a menu explaining Nano’s controls, where the upward arrow represents the
Control key. The shortcuts here are different to what you might be used to, but the
main ones you should know about are

»» Ctrl+W: Search for a word or phrase. This option (short for Where Is?) enables
you to jump straight to the configuration option you want to edit.

»» Ctrl+V: Next page.

»» Ctrl+Y: Previous page.

»» Ctrl+K: Cut the current row of text.

»» Ctrl+U: Uncut text, which means paste the text you previously cut at the
cursor’s location.

»» Ctrl+G: Get help, which provides more detailed instructions.

»» Ctrl+O: Write out, or save, the current file.

»» Ctrl+X: Exit Nano and return to the shell.

The first thing you’ll notice about config.txt is that the # (hash mark) symbol is
used at the start of most lines. This symbol has a special meaning to the computer,

FIGURE A-1:
The Nano text

editor with the
config.txt file

open.

APPENDIX A Troubleshooting and Configuring the Raspberry Pi 451

which is “ignore the rest of this line.” You might wonder why anyone would enter
information into a computer that he wants it to ignore, but this concept is often
used (not often enough, some would say) to help the human users of a particular
program or file. Any line with a # symbol at the start of it isn’t actually doing
anything, but it’s there to guide you as you edit config.txt. Lines like this are
called comments. (They are also used in Python, as you see in Chapter 11.)

The first two lines in config.txt say

uncomment if you get no picture on HDMI for a ↩
default "safe" mode

#hdmi_safe=1

The first line is obviously intended for you to read, but the second line shows the
settings you need to use to turn the HDMI Safe mode on. This takes the form that
all settings in config.txt do — namely:

setting_name=value

Each setting needs a line of its own. If you wanted to turn the HDMI Safe mode on,
you would remove the comment symbol (the hash mark) before the second line,
or “uncomment” that line, so that the first two lines now read

uncomment if you get no picture on HDMI for a ↩
default "safe" mode

hdmi_safe=1

Don’t remove the # symbol from the line of instructions. It remains a comment
that’s intelligible only to human readers. You should remove the # symbol only
from lines you want the computer to do something with.

Just taking out that single hash mark makes all the difference! Save the file
(Ctrl+O) and reboot the computer, and Safe mode is activated. You can reboot the
Raspberry Pi with the following command:

sudo reboot

If you need to disable a setting, you can just put a # symbol in front of it again to
turn its line into a comment that the computer will ignore.

You can add your own comments too. It’s a good idea to add a line starting with a #
symbol to remind yourself what you changed and when, in case you need to change
the settings back later.

452 Raspberry Pi For Dummies

Troubleshooting screen display issues
The Raspberry Pi can be used with a wide variety of TVs and monitors, but that
wide compatibility means you might need to tinker with the settings to get your
Pi working with your choice of display. The computer should automatically adjust
its output to the screen in use, but there might be times when you want to
fine-tune its settings, override its defaults, or force your own preference.

If you’re experiencing difficulties getting a consistent and clear image, try adjust-
ing one or more of the settings in Table A-1.

TABLE A-1	 Troubleshooting Screen Display Issues
Symptom or Issue Setting to Change Values to Use

Image spills off left
of screen.

overscan_left Overscan is a feature that changes the size of the
screen image to fill the screen. The overscan settings
are all set using pixels, the smallest dots the display
recognizes. For example, overscan_left=50.

Image spills off right
of screen.

overscan_right The overscan is set using pixels. For example,
overscan_right=50.

Image spills off top
of screen.

overscan_top The overscan is set using pixels. For example,
overscan_top=50.

Image spills off bottom
of screen.

overscan_bottom The overscan is set using pixels. For example,
overscan_bottom=50.

Image has a black
border around it.

disable_overscan Use a value of 1 to disable overscan, like this:
disable_overscan=1.

You can also use negative numbers with overscan_
left and other options above to adjust the border
on each side.

Text or other content
is too small.

framebuffer_width

framebuffer_height

See “Adjusting the screen display,” later in
this appendix.

Text or other content
is too big.

framebuffer_width

framebuffer_height

See “Adjusting the screen display,” later in
this appendix.

Picture fails when
using an analog TV.

sdtv_mode The composite video output is NTSC by default, which
is used in North America. You may need to change
this setting for use in other regions. Valid values are 0
for NTSC, 1 for NTSC, -J for Japan, 2 for PAL (used in
the U.K. and most of Europe), or 3 for PAL-M (used in
Brazil). For example, sdtv_mode=2.

APPENDIX A Troubleshooting and Configuring the Raspberry Pi 453

You can change multiple settings at the same time, but each setting must be on its
own line. Most of these settings have text you can edit in config.txt already, but
don’t forget to remove the # symbol.

We’re assuming here that the screen display is plugged in, switched on, and tuned
in correctly. Before changing configuration settings, it’s always a good idea to
double-check that.

Symptom or Issue Setting to Change Values to Use

Picture is stretched or
squashed on
TV. Aspect ratio
looks wrong.

sdtv_aspect The aspect ratio of the image is the ratio between the
width and height of the image. There are three valid
values for this setting: 1 (for the aspect ratio 4:3), 2
(for the aspect ratio 14:9), and 3 (for the aspect
ratio of 16:9). Usage example: sdtv_aspect=2.

HDMI screen is blank. hdmi_force_hotplug If the Raspberry Pi can’t detect a HDMI monitor, you
can force it to output through the HDMI connector
anyway by setting this value to 1, like this: hdmi_
force_hotplug=1.

DVI monitor image is
snowy or blown out.

hdmi_drive This setting adjusts the output of the HDMI port. If
you’re using a DVI monitor, try a value of 1. If you’re
using a HDMI monitor, try a value of 2. Usage
example: hdmi_drive=1.

No audio through
computer monitor.

hdmi_drive Use a value of 2 to force HDMI mode and send the
audio down the HDMI cable, like this: hdmi_drive=2.

Picture blanks, has
interference, or
is missing.

config_hdmi_boost Typical values range from 1 to 7 and define how
much power is output through the HDMI port. Try
increasing this value progressively. The HDMI safe
mode uses a value of 4 for this setting. If you’re using
a long cable, you could use the maximum value of 11,
but the Raspberry Pi Foundation advises against
using high values unless strictly required. Usage
example: config_hdmi_boost=4.

Any problems using
HDMI monitor.

hdmi_safe If you experience any problems using an HDMI
monitor, try using Safe mode. This sets hdmi_force_
hotplug to 1 to force output on the HDMI port, sets
config_hdmi_boost to 4 to boost the power,
enables overscan, and sets the additional hdmi_mode
and hdmi_group settings to a generally safe
combination. Those settings are used to override the
HDMI screen resolution. For more details on those
settings, see http://elinux.org/RPi_config.
txt. To enable the HDMI Safe mode, use:
hdmi_safe=1.

http://elinux.org/RPi_config.txt
http://elinux.org/RPi_config.txt

454 Raspberry Pi For Dummies

Adjusting the screen display
You can adjust the width and height of the screen display, measured in pixels.
When the width and height values are smaller, the onscreen content appears
bigger. The screen display is adjusted using the settings framebuffer_width
and framebuffer_height. To change the screen display size to 1024×768, for
example, use

framebuffer_width=1024
framebuffer_height=768

There is a comment for these settings in the config.txt file, so you can edit the
lines that are already there. As well as changing the values to your chosen width
and height, don’t forget to remove the # symbol at the start of both lines to activate
these settings.

These settings can also be adjusted from the desktop using the Raspberry Pi
Configuration tool (see Chapter 3). Select Set Resolution.

Exploring more advanced settings
There are many more settings you can control on the Raspberry Pi through the
config.txt file, but we don’t have space to document them all here. You can find
a more detailed list at http://elinux.org/RPi_config.txt.

Fixing Audio Problems
In the desktop environment, you can use the Speaker icon in the top right to adjust
the volume of sound and mute or unmute it. In the command line, you can call up
a utility to adjust the sound using this instruction:

sudo alsamixer

Use the cursor keys or the mouse scroll wheel to adjust the volume level.

The sound output device is automatically detected. Note that if you’re using HDMI
to connect to a screen, the audio might be directed there by default, even if the
monitor does not have speakers. You can use the audio options in Raspi-config
(found under Advanced Options) to direct the audio to the headphone jack or the
HDMI cable. In LibreELEC (see Chapter 8), you can click the cogwheel at the top of

http://elinux.org/RPi_config.txt

APPENDIX A Troubleshooting and Configuring the Raspberry Pi 455

the menu to go into Settings, choose System Settings, and click Audio to find the
option to change the output device.

Mounting External Storage Devices
When you plug in an external storage device such as a USB key or flash drive, the
desktop environment recognizes it automatically and opens it in File Manager for
you. Not so when using the shell. You need to mount the device yourself, which
means you need to connect the device to a folder in the directory tree where you
want to browse its contents.

If your only goal is to back up your data to an external storage device, it’s probably
easier to use File Manager or the SD Card Copier application in the desktop envi-
ronment. (See Chapter 4.)

To use external storage in the shell, you first need to create a directory that will be
the mount point for the USB key, which means when you look in that directory, you
are actually looking at the contents of the external storage device. You can reuse
this directory, but the first time you mount a device, you need to create the
directory. You can create this directory anywhere (including inside your home
directory), but it’s conventional to mount temporary devices in the /mnt directory:

sudo mkdir /mnt/usbdrive

Next, you need to investigate the device you’re connecting. To do that, connect
your storage device and then enter this command:

sudo fdisk -l

The last character of this command is a letter l (lowercase L), and not a number 1.
The output should look something like this:

Disk /dev/mmcblk0: 4025 MB, 4025483264 bytes

4 heads, 16 sectors/track, 122848 cylinders, total 7862272 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x000714e9

 Device Boot Start End Blocks Id System

/dev/mmcblk0p1 8192 122879 57344 c W95 FAT32 (LBA)

/dev/mmcblk0p2 122880 7862271 3869696 83 Linux

456 Raspberry Pi For Dummies

Disk /dev/sda: 16.0 GB, 16037969920 bytes

32 heads, 63 sectors/track, 15537 cylinders, total 31324160 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x1707001e

 Device Boot Start End Blocks Id System

/dev/sda1 * 63 31322591 15661264+ c W95 FAT32 (LBA)

This lists the different storage devices that are connected to the Pi. In the preced-
ing example, you can see the first disk (Disk /dev/mmcblk0) is 4025 MB, which is
a 4GB SD card, and the second one (Disk /dev/sda) is 16GB, which is a USB key
we’ve connected. The important information we need from this is the device name
and the partition number, which is shown at the bottom of the output and is sda1.

To mount the drive for the user pi (uid=pi) and the group pi (gid=pi), we then use

sudo mount -o uid=pi,gid=pi /dev/sda1 /mnt/usbdrive

To view the contents of the USB key, you can then use

ls /mnt/usbdrive

To back up your home directory to the USB key, use

cp -R ~/* /mnt/usbdrive

Fixing Software Installation Issues
The apt package manager should enable you to cleanly install and remove soft-
ware. If software isn’t working, try removing it and then reinstalling it as described
in Chapter 5.

Packages often require other packages (called dependencies) to work. The package
manager looks after these dependencies for you, but in the event they get broken,
you can fix dependencies using

sudo apt-get -f install

APPENDIX A Troubleshooting and Configuring the Raspberry Pi 457

Troubleshooting Your
Network Connection

In the desktop environment, you can easily test whether your network is working
by using the web browser. In the Linux shell, you can test whether it’s working
with the ping command:

ping -c 5 www.google.com

This makes five attempts to connect with Google and reports on its success. You
should see that five packets were transmitted and five were received if the net-
work is working perfectly. If this fails, try substituting another website address to
rule out the possibility that the problem is on Google’s end. Firewalls can some-
times interfere with the ping command, but this is rare. If the command works,
it’s a guarantee that the Pi is connected to the Internet.

You can query the network devices on your Raspberry Pi using ifconfig. This
shows you the information for eth0 (your Ethernet connection), wlan0 (your
Wi-Fi connection, if available), and the local loopback, which is how the Rasp-
berry Pi refers to itself and which you can safely ignore. If there is an inet addr
entry (this is not the same as the inet6 addr entry) for eth0 or wlan0, it means
your Raspberry Pi has connected to the router and been assigned an IP address
successfully.

The Ethernet connection should be automatically activated, but in the event it
isn’t, you can manually activate it like this:

sudo ifup eth0

You can deactivate the Ethernet connection using

sudo ifdown eth0

Your Raspberry Pi should automatically connect to home routers using Dynamic
Host Configuration Protocol (DHCP), but these tips can help you to identify where
the problem lies if you experience difficulties.

If you experience network problems, try a new cable to rule out problems with the
physical connection, and make sure your power supply is strong enough for the
Raspberry Pi. (See Chapter 1 for more on power supplies.)

See Chapter 3 for advice on configuring your Wi-Fi connection.

458 Raspberry Pi For Dummies

Connecting Using SSH
If your Raspberry Pi has a network connection, you should be able to access it with
another computer on the same network using Secure Shell (also known as SSH),
which is a way to make a secure connection between computers. This can be help-
ful if you have set up your Pi to use it headerless (without a screen). Here’s how to
set it up:

1.	 Change your password.

To prevent unauthorized access to your Raspberry Pi after a remote connec-
tion is enabled, start by changing your password. You can use the Raspberry Pi
Configuration tool (see Chapter 3), or see Chapter 5 for instructions on
changing the password in the command line.

2.	 Enable SSH on your Pi.

Use the Raspberry Pi Configuration tool (see Chapter 3) to enable SSH on the
Interfaces tab. Alternatively, use this instruction to create an empty file in the
boot directory called ssh and then reboot your Pi:

sudo touch /boot/ssh

3.	 Get your Pi’s IP address.

Use ifconfig in the command line to get your Raspberry Pi’s IP address
(shown as inet addr).

4.	 Connect from your other device.

On a Windows PC, for example, you’ll need to download an SSH client such as
Putty. In Putty, you input the IP address of your Raspberry Pi and click the
Open button. You can then use the command line on the Raspberry Pi to
manage and fix files, viewing it through your PC screen and using your PC
keyboard. Clients are also available for the iPhone/iPad and Android. The
Mac doesn’t need any additional software, but works through the terminal
window. You can find fuller instructions for using SSH on your other machine
at www.raspberrypi.org/documentation/remote-access/ssh.

You can only use SSH to access the Raspberry Pi command line, not the desktop.

https://www.raspberrypi.org/documentation/remote-access/ssh/

Index 459

Symbols and Numerics
’ (apostrophe), 105
* (asterisk) operator, 105, 109, 211
\ (backslash), 105
: (colon), 268, 271
{} (curly braces), 105, 230
. (current directory), 110, 111
$ (dollar sign), 88
&& (double ampersand), 116
== (double equal sign), 228
// (double slash) operator, 211
(hash mark), 213, 450, 451
- (hyphen) operator, 88, 97, 100–101, 105, 211
. . . (parent directory), 90–91, 110, 111
% (percent) operator, 211
| (pipe) character, 121
+ (plus) operator, 211
? (question mark) wildcard, 105, 109
” (quotation (speech) marks), 105
<< (shift operator), 366
/ (slash) operator, 105, 211
[] (square brackets), 105, 245
~ (tilde) symbol, 90–91, 94–95
13.56 MHz tags, 390
125-135 KHz tags, 390

A
absolute paths, 94–96
AC (alternating current), 302
accepting user input, 216
accessing

bookmarks, 77
Scratch, 165

accessories, 16–21
Acorn, 47
active tags, 390
actors, animating, 245–247

Adafruit (website), 15, 325
adapting

appearance of sprites in Scratch,
172–176

audiobook, 438
background in Scratch, 185
colors in GIMP, 145
desktop wallpaper, 60
directories in Linux Shell, 89
displays for files, 72–73
game speed, 204
parent directory in Linux Shell, 90–91
perspective in Minecraft, 258
screen display, 452–454
sensitivity of keyboard/mouse, 83
settings, 448–454
settings in media center, 157–158
sprite visibility in Scratch, 176

Add Tab (File Manager), 68
adding

blocks in Minecraft, 263–264
bookmarks, 67, 76–77
ceilings in Minecraft, 274
clouds, 248–250
media to media center, 151–155
music, 152–153
music in Scratch, 176–178
pictures, 154
scripts to Stage, 203
sounds in Scratch, 176–178
special effects in Sonic Pi, 292
sprites to games, 185–186
timers, 253
users, 119
videos, 153–154

additive mixing, 359
add-ons, 155
addressable LEDs, 362–365

Index

460 Raspberry Pi For Dummies

adjusting
appearance of sprites in Scratch, 172–176
audiobook, 438
background in Scratch, 185
colors in GIMP, 145
desktop wallpaper, 60
directories in Linux Shell, 89
displays for files, 72–73
game difficulty, 253–254
game speed, 204
parent directory in Linux Shell, 90–91
perspective in Minecraft, 258
random number seed, 287–288
screen display, 452–454
sensitivity of keyboard/mouse, 83
settings, 448–454
settings in media center, 157–158
sprite visibility in Scratch, 176

advanced listing options, 96–99
advanced settings, 454
Akerman, Dave (developer), 9, 441
altering

appearance of sprites in Scratch, 172–176
audiobook, 438
background in Scratch, 185
colors in GIMP, 145
desktop wallpaper, 60
directories in Linux Shell, 89
displays for files, 72–73
game speed, 204
parent directory in Linux Shell, 90–91
perspective in Minecraft, 258
screen display, 452–454
sensitivity of keyboard/mouse, 83
settings, 448–454
settings in media center, 157–158
sprite visibility in Scratch, 176

alternating current (AC), 302
animate() function, 246
animating actors, 245–247
anode, 302
APA102C protocol

about, 362–365
bit-banging, 365–366

apostrophe (’), 105
appearance, changing of sprites in Scratch, 172–176
append() function, 224, 271
applications, finding and installing, 83–84
Applications folder, 27
Applications menu, 60–63
apropos command, 121
apt, 116
apt-cache, 115
apt-get, 121
arcade game, programming

about, 183–184, 205
adding scripts to Stage, 203
adding sprites, 185–186
adjusting game speed, 204
changing background, 185
controlling scripts, 190–195
deleting sprites, 184–185
detecting when sprites hit, 196–197
drawing sprites, 186–189
duplicating sprites, 203
fixing bugs, 201–203
making sprites move automatically, 199–200
naming sprites, 189
playing game, 204
starting new project, 184–185
using random numbers, 195–196
variables, 197–199

arguments, 226
ARM processor, 14
asterisk (*) operator, 105, 109, 211
Audacity, 411
audio. See also media center

about, 149
connecting, 44–45
fixing problems, 454–455

audio socket, 45
audiobook player, 437–438
[a-z] wildcard, 109

B
background, changing in Scratch, 185
backing up data, 84–85

Index 461

backpowering, 21
backslash (\), 105
ball grid array (BGA) package, 308
battery power, 46
BCM2835, 308
Beech, Paul (designer), 19
Beneath a Steel Sky, 434–435
BGA (ball grid array) package, 308
bin directory, 92
binary number, 347
bit-banging

about, 365
APA102C protocol, 365–366

Blinkt! board, 380
blocks

adding in Minecraft, 263–264
breaking in Minecraft, 259–260
creating music with, 176–178
positioning in Minecraft, 259
in Scratch, 165–166
in Scratch 2, 181

Blocks Palette (Scratch), 165–166, 173, 201
Bluetooth devices, configuring, 54
bookmarks, 67, 76–77
boot directory, 92
Brain party, 436
breaking blocks in Minecraft, 249–260
Brightness and Contrast settings (GIMP), 145
Brightness effect (Scratch), 175
Broadcast block, 193–194
Broadcom BCM2835 chip, 14
browsing, web

about, 74
bookmarks, 76–77
privacy, 77–78
searching within web pages, 76
tabbed browsing, 76

Bryan, David (developer), 439–440
bugs, fixing, 201–203
building

chatbot program, 221–238
classes, 366–370
colors, 359–362

computer-controlled dice, 337–347
dictionary look-up function, 231–236
directories in Linux Shell, 106
files using redirection in Linux Shell, 104–105
files/folders, 71
folders, 71
functions in Minecraft, 270–271
graphics, 413–423
invitations in LibreOffice Draw, 136–138
main conversation loop, 236
main loop in Minecraft, 271–274
NOOBS card, 25–32
presentations in LibreOffice Impress, 134–136
programs, 241–255
scripts in Scratch, 178–179
sound samples, 411–413
times tables program, 212–221
variables, 197

bytes, 342

C
cables

about, 20
replacing, 447

cache, updating, 114
cal command, 104
calculating

circuit values, 306
sums with Python Shell, 210–212

calling functions, 236
canceling Linux commands, 102
Canvas (Scratch), 188
case, 19–20
case-sensitivity

of Linux, 89
of Python, 10, 261

Cat sprite, 184
cathode, 302
cd directory, 89, 90–91
ceilings, adding in Minecraft, 274
cellsVisitedList[] variable, 269
changeover switch, 303

462 Raspberry Pi For Dummies

changing
appearance of sprites in Scratch, 172–176
audiobook, 438
background in Scratch, 185
colors in GIMP, 145
desktop wallpaper, 60
directories in Linux Shell, 89
displays for files, 72–73
game difficulty, 253–254
game speed, 204
parent directory in Linux Shell, 90–91
perspective in Minecraft, 258
random number seed, 287–288
screen display, 452–454
sensitivity of keyboard/mouse, 83
settings, 448–454
settings in media center, 157–158
sprite visibility in Scratch, 176

Chapellier, Cyril (developer), 443
chatbot program

about, 221–222, 236–237
adding while loop, 227–228
creating dictionary look-up function, 231–236
creating main conversation loop, 236
dictionaries, 229–231
final listing, 237–238
forcing replies from players, 228–229
lists, 222–227

Cheat Sheet (website), 4
checking

connections, 446
file types in Linux Shell, 89–90
MicroSD card, 447
SD card, 447
what’s installed, 118

checkRequest function, 355
chgrp command, 101
chmod command, 101
choose() method, 289
choosing

files/folders, 70, 108–110
multiple files using wildcards, 108–110

chord names, using, 285–286
Chromium, web browsing with, 74–76

circuits
about, 299–300
components, 307–308
connecting together, 326–327
creating computer-controlled dice, 337–347
electricity, 300–306
GPIO, 308–317
Pedestrian Crossing project, 347–356
ready-made add-on boards, 317–320
testing with simulators, 307
your first, 327–337

classes, creating, 366–370
Claws Mail, 61, 78
Clear button (Scratch), 188
Clemens, Michael (developer), 438
clock signal, 365
Clone tool (GIMP), 146–147
cloning, in Scratch 2, 181
closing program windows, 63–64
Cloudbusting game

adding clouds, 248–250
adding timer, 253
adjusting difficulty, 253–254
animating actors, 245–247
collecting sounds and images, 240–241
creating programs, 241–255
detecting mouse clicks, 244–245
enabling multiple clouds to be clicked, 251–252
final listing, 254–255
regenerating clouds, 250–251
running programs, 241–255
setting up folders, 241
using random numbers, 247–248

clouds
adding, 248–250
enabling multiples to be clicked, 251–252
regenerating, 250–251

collidepoint() function, 245
colon (:), 268, 271
Color effect (Scratch), 175
Color Palette (Scratch), 175
colors

adjusting in GIMP, 145
creating, 359–362

Index 463

Colour Balance settings (GIMP), 145
columns, resizing in LibreOffice Calc, 133
commands
apropos, 121
cal, 104
chgrp, 101
chmod, 101
cp, 111–113
date, 104
echo, 104, 122
else, 236
entering, 103
file, 89–90, 110
groups, 118
input, 220
less, 102–103, 121
Less, 102–103
license(), 209
Linux, 102, 120–124
ls, 97–99
mc.player.getTilePos(), 279
mkdir, 106, 107, 121
passwd, 120
pidel, 123
ping, 457
print, 209, 210–212, 213–215, 216–218, 219
Python, 208–210
rm, 107
rmdir, 110
sleep, 284, 291–292
sync, 293
type, 120
useradd, 119
which, 120
while, 229

commas, in Sonic Pi, 216
common ground/reference, 310
compatible devices, 21
components, of circuits, 307–308
composing random tunes using shuffle

method, 287
composite video socket, 42–43
Compute Model, 14
computer-controlled dice, creating, 337–347

conditional statement, 235
config.txt file, opening, 449
configuring

Bluetooth devices, 54
Raspberry Pi in Raspbian, 50–53
Wi-Fi, 53

connecting
about, 35–37
audio, 44–45
checking connections, 446
configuring Wi-Fi, 53
inserting SD card, 37–39
keyboard, 44
logging in, 50
monitor, 41–43
mouse, 44
power, 46–50
Raspberry Pi Camera Module, 39–41
router, 45–46
testing Raspberry Pi Camera Module, 54–55
TV, 41–43
USB hub, 43–44
using SSH, 458

Control block, 190–191
controlling

scripts, 190–195
software, 113–118
user accounts, 118–120

conventional current, 302
conversation loop, creating, 236
converter chips, 381
converting images between formats in

GIMP, 147
Cool Scratch projects in Easy Steps

(McManus), 205
coordinates, Minecraft, 261–262
copying

files in Linux Shell, 111–113
files/folders, 69
NOOBS to SD or MicroSD card, 30–32

costumes, in Scratch, 172–173
countdown() function, 253
Cox, Simon (professor), 9
cp command, 111–113

464 Raspberry Pi For Dummies

creating
chatbot program, 221–238
classes, 366–370
colors, 359–362
computer-controlled dice, 337–347
dictionary look-up function, 231–236
directories in Linux Shell, 106
files using redirection in Linux Shell, 104–105
files/folders, 71
functions in Minecraft, 270–271
graphics, 413–423
invitations in LibreOffice Draw, 136–138
main conversation loop, 236
main loop in Minecraft, 271–274
NOOBS card, 25–32
presentations in LibreOffice Impress, 134–136
programs, 241–255
scripts in Scratch, 178–179
sound samples, 411–413
times tables program, 212–221
variables, 197

cropping photos in GIMP, 144–145
Ctrl key, 71, 76, 123, 145, 450
curly braces ({}), 105, 230
currency sign, showing in LibreOffice Calc, 133
current

defined, 300
value of, 3103

current directory (.), 110, 111
current sourcing, 311
customizing

desktop environment, 82–83
with Linux commands, 122–124

cutting files, 69

D
data

backing up, 84–85
in Scratch 2, 181

data label, 56
data loss, avoiding, 39
data partition, setting up, 56
Data partition option (NOOBS Lite), 48

data sheet, 307
data word, 366
date command, 104
DC (direct current), 302
Debian Reference icon, 61
debounce time, 336
def statement, 231–232, 368
Delete button (Image Viewer), 81
deleting

directories in Linux Shell, 110–111
files and folders, 71
files in Linux Shell, 107–108
software, 117
sprites in Scratch, 184–185

demolish() function, 270
dependencies, 115, 456
depth-first maze generation algorithm, 270
desktop environment

about, 59–60
Applications menu, 60–63
changing displays for files, 72–73
closing program windows, 63–64
copying files/folders, 69
creating files/folders, 71
creating folders, 71
customizing, 82–83
File Manager, 65–73
icons, 59–60
Image Viewer, 79–81
Leafpad Text Editor, 81–82
moving files/folders, 69
navigating, 60–64
opening folders as root or in terminal, 73
playing music in, 158–159
Programs menu, 63
resizing program windows, 63–64
selecting files/folders, 70
starting, 59
Task Manager, 64–65
using external storage devices in, 67
web browsing, 74–78

Desktop folder, 67
desktop wallpaper, changing, 60
detailed list view (File Manager), 72

Index 465

detecting
mouse clicks, 244–245
when sprites are hit, 196–197

dev directory, 92
devices, Bluetooth, 54
DHCP (Dynamic Host Configuration Protocol),

46, 457
dictionaries, 229–231, 231–236
dictionarycheck() function, 232, 233, 236
diffusers, 359–360
Dillo browser, 74
diode, 301
direct current (DC), 302
directions, moving sprites in Scratch with, 168–170
directories

changing in Linux Shell, 89
creating in Linux Shell, 106
listing, 88–89
removing in Linux Shell, 110–111

directory tree, 91–93
disconnecting peripherals, 447
display socket, 41–42
displaying

currency sign in LibreOffice Calc, 133
sprite information on Stage, 172

displayRoll function, 346
displays, changing for files, 72–73
distribution (distros), 24
documents, saving as PDF, 131
dollar sign ($), 88
DotStar, 362–365
double ampersand (&&), 116
double equal sign (==), 228
double slash (//) operator, 211
double-throw switch, 303
downloading

NOOBS, 25
operating system, 23–33

draw() function, 243, 246, 250, 251, 252
drawing sprites in Scratch, 186–189
drumbeat, synchronizing with in Sonic Pi, 293
Dtronixs (website), 325
Dummies (website), 4
duplicate copy, 69
duplicating sprites, 203

DVI display, 42
Dynamic Host Configuration Protocol (DHCP), 46, 457

E
Easel icon, 204
eBay (website), 19
echo command, 104, 122
edge detection, 378
Edit menu (Leafpad Text Editor), 81
editing photos. See GIMP
egg box, 360
Electric Skateboard project, 439
electricity, nature of, 300–306
Element14 (website), 15
Ellipse tool (Scratch), 187
else command, 236
else statement, 274
email, sending and receiving with Claws Mail, 78
embedded system, 308
enabling

HDMI safe mode, 451
keyboard control, 192–193
multiple clouds to be clicked, 251–252
sprites to control sprites, 193–195

enroll function, 399
entering

commands, 103
Python commands, 208–210

environmental regulations, 315
Epiphany browser, 74
equivalent circuit, 306
Eraser tool (Scratch), 187
escape sequence, 217
etc directory, 92
Ethernet connection, 457
Ethernet socket, 45
Events block, in Scratch 2, 181
execute permission, 101
Exit Image Viewer button (Image Viewer), 81
external storage devices

about, 18
mounting, 455–456
using in desktop environment, 67

Eyedropper tool (Scratch), 188

466 Raspberry Pi For Dummies

F
Farnell, 319
Fernandez, David (website), 439
file command, 89–90, 110
File Manager

about, 65–66
changing file displays, 72–73
copying files/folders, 69
creating blank files, 71
creating folders, 71
moving files/folders, 69
navigating, 66–69
opening folders as roots or in terminals, 73
selecting files/folders, 70

File menu, 128, 131
File menu (Leafpad Text Editor), 81
FileName function, 400
files and folders

bookmarking, 67
changing displays for, 72–73
checking types in Linux Shell, 89–90
copying, 69, 111–113
copying in Linux Shell, 111–113
creating, 71, 104–105
creating using redirection in Linux Shell,

104–105
cutting, 69
defined, 65
deleting, 71, 107–108
deleting in Linux Shell, 107–108
listing, 88–89
moving, 69
naming, 105
opening, 65, 73
opening as root or in terminal, 73
renaming in Linux Shell, 111–113
selecting, 70, 108–110
selecting using wildcards, 108–110
setting up, 241

Fill tool (Scratch), 187
finding

applications, 83–84
package name, 114–115

firing mechanism, 193–195
firingflag variable, 201
Fisheye effect (Scratch), 175
Fit Image to Window button (Image Viewer), 79
fixing

bugs, 201–203
software installation issues, 456

flags, 201
Flash, 74
flashing SD cards, 32–33
Flip Horizontally button (Image Viewer), 80
Flip Vertically button (Image Viewer), 80
flipping photos in GIMP, 145
flux, 314–315
FocusWriter, 429
Folder History (File Manager), 69
folders and files

bookmarking, 67
changing displays for, 72–73
checking types in Linux Shell, 89–90
copying, 69, 111–113
copying in Linux Shell, 111–113
creating, 71, 104–105
creating using redirection in Linux Shell,

104–105
cutting, 69
defined, 65
deleting, 71, 107–108
deleting in Linux Shell, 107–108
listing, 88–89
moving, 69
naming, 105
opening, 65, 73
opening as root or in terminal, 73
renaming in Linux Shell, 111–113
selecting, 70, 108–110
selecting using wildcards, 108–110
setting up, 241

Fontwork text, 138
footer, 366
for loop, 218–221
for statement, 268
Forever block, 191–192
format, long listing, 99–102

Index 467

Format menu (LibreOffice Writer), 131
formatting

MicroSD card, 26–30
presentations in LibreOffice Impress,

134–136
SD card, 26–30

foundations, laying in Minecraft, 266–267
Fraqrive, 431–432
free software, 24
freeing up space, 117
Full Screen button (Image Viewer), 79
functions
animate(), 246
append(), 224, 271
calling, 236
checkRequest, 355
collidepoint(), 245
countdown(), 253
creating in Minecraft, 270–271
demolish(), 270
dictionarycheck(), 232, 233, 236
displayRoll, 346
draw(), 243, 246, 250, 251, 252
enroll, 399
FileName, 400
getString, 400
hideMaker(), 270
input(), 216, 226, 229
len(), 223
main, 345, 350, 378
pattern, 387
pause, 337
randCol, 388
random.randint(), 226, 247
range(), 219, 220
realx(), 270
realz(), 270
rrand_i(), 289
screen.draw.text(), 250
showMaker(), 270
str(), 249
testAllWalls(), 270, 271
time.sleep(), 348
update(), 251

G
games, playing, 204
General Purpose Input/Output (GPIO) pins

about, 308–309
on Raspberry Pi, 321–327
soldering, 314–316
soldering onto Pi Zero, 323–324
uses for, 309
using as inputs, 313–314
using output pins, 311–313
what they do, 309–311

generating
chatbot program, 221–238
dictionary look-up function, 231–236
directories in Linux Shell, 106
files using redirection in Linux Shell,

104–105
files/folders, 71
folders, 71
functions in Minecraft, 270–271
invitations in LibreOffice Draw, 136–138
main conversation loop, 236
main loop in Minecraft, 271–274
NOOBS card, 25–32
presentations in LibreOffice Impress, 134–136
scripts in Scratch, 178–179
times tables program, 212–221
variables, 197

getString function, 400
Ghost effect (Scratch), 175
GIMP (GNU Image Manipulation Program)

about, 139–140
adjusting colors, 145
converting images between formats, 147
cropping photos, 144–145
flipping photos, 145
installing, 140
repairing photos, 146–147
resizing images, 142–144
rotating photos, 145
screen layout, 140–142
starting, 140
website, 147

468 Raspberry Pi For Dummies

Glide block, 195
global variables, 252
GNU Image Manipulation Program (GIMP)

about, 139–140
adjusting colors, 145
converting images between formats, 147
cropping photos, 144–145
flipping photos, 145
installing, 140
repairing photos, 146–147
resizing images, 142–144
rotating photos, 145
screen layout, 140–142
starting, 140
website, 147

GNU Project, 24
GNU/Linux. See Linux
Go to Original Size button (Image Viewer), 79
GParted, 26
GPIO (General Purpose Input/Output) pins

about, 308–309
on Raspberry Pi, 321–327
soldering, 314–316
soldering onto Pi Zero, 323–324
uses for, 309
using as inputs, 313–314
using output pins, 311–313
what they do, 309–311

GPIO Zero, creating LED flash using, 334–337
graphic effects (Scratch), 175
graphics, creating, 413–423
green flag, 190–191
grid coordinates, moving sprites in Scratch with,

170–172
Grisbi, 433
groups command, 118

H
hard drive, external, 18
hash mark (#), 213, 450, 451
HAT board, 317–319
HDMI (high definition multimedia interface), 16
HDMI cable, 42

HDMI CEC (Consumer Electronics Council)
standard, 158

HDMI converter, 41
HDMI display, 42
HDMI safe mode, enabling, 451
Heart Rate Monitor project, 439
help facility, 121
Hide block (Scratch), 176
hideMaker() function, 270
high definition multimedia interface (HDMI), 16
#highaltitudechannel (website), 442
History pane (GIMP), 141–142
Home (File Manager), 69
home directory, 92
hyphen (-) operator, 88, 97, 100–101, 105, 211

I
icon bar (File Manager), 68–69
icons

desktop, 50–60
Easel, 204
explained, 3–4
IDLE 3, 260
scissors, 184

IDE (integrated development environment), 208
IDLE (Python IDE), 208, 223, 260
IDLE 3 icon, 260
If block, 194
if statement, 274, 330, 375
image files, in LibreOffice Impress, 135
Image Viewer, using, 79–81
incompatible devices, 21
indentations, 220
index number, 229
info page, 122
input command, 220
input() function, 216, 226, 229
input/output pins, 309
inputs, using GPOPs as, 313–314
Insert menu (LibreOffice Writer), 131
inserting

MicroSD card, 37–39
SD card, 37–39

Index 469

installing
applications, 83–84
Beneath a Steel Sky, 434
FocusWriter, 429
Fraqrive, 431
GIMP, 140
Grisbi, 433
LibreOffice, 128
multiple operating systems, 49
Penguins Puzzle, 428
software, 113–118, 115
Tux Paint, 432
XInvaders 3D, 431

integrated development environment (IDE), 208
Internet connection, troubleshooting, 446
Internet resources

Adafruit, 15, 325
advanced settings, 454
Akerman, Dave, 9, 442
Bryan, David, 439
Cheat Sheet, 4
Clemens, Michael, 437
compatible devices, 21
Dtronixs, 325
Dummies, 4
eBay, 19
Electric Skateboard project, 439
Element14, 15
Fernandez, David, 439
FocusWriter, 429
GIMP (GNU Image Manipulation Program), 147
HAT boards, 317
#highaltitudechannel, 442
incompatible devices, 21
LibreOffice, 128
Minecraft Wiki, 263
online help, 448
photobooth, 440
Pi Hut, 15
Pibow, 19
Pimoroni, 15
Pope, Daniel (blog), 256
Pygame Zero built-in objects list, 256
Pygame Zero ducmnentation, 256

Raspberry Pi, 25, 156
Raspberry Pi Camera Module, 54–55
RS Components, 15
Scratch, 205
SD cards, 447
SDFormatter, 26
simulator, 307
Tux Paint, 433
UK High Altitude Society, 442
updates, 4
Wardell, Steve, 438
Way Out West Hackathon, 440

J
Jackson, Michael (singer), 179
Jukebox project, 395–400
jumper wires, 326

K
Keepy Uppy, 375–378
key, USB, 18
keyboard

adjusting sensitivity, 83
connecting, 44
enabling control of, 192–193
USB, 17

keyboard shortcuts, 70
Kodi system, 150

L
Lakka option (NOOBS Lite), 48
Layers pane (GIMP), 141–142
Leafpad Text Editor, 81–82
leapsize variable, 199–200, 203
LED flash

about, 327–328
controlling flashing speed, 329–331
using GPIO Zero, 334–337
using Python, 331–334
using Scratch 1.4, 328–329

LED matrix, 382–388
LED strips, 382

470 Raspberry Pi For Dummies

LEDs (light-emitting diodes)
about, 311–312, 378
current limits, 379
display update, 381
getting more, 381–388
memory, 379–380
signals, 379–380

len() function, 223
less command, 102–103, 121
Less command, 102–103
lib directory, 92
LibreELEC, 150
LibreELEC option (NOOBS Lite), 47
LibreOffice icon, 62

about, 127
installing, 128
LibreOffice Calc, 131–134
LibreOffice Draw, 136–138
LibreOffice Impress, 134–136
LibreOffice Math, 129
LibreOffice Writer, 129–131
saving work in, 129
starting, 128–129
website, 128

license() command, 209
light-emitting diodes (LEDs)

about, 311–312, 378
current limits, 379
display update, 381
getting more, 381–388
memory, 379–380
signals, 379–380

Lightweight X11 Desktop Environment (LXDE), 59
line drawing, 382–388
Line tool (Scratch), 187
Linux

about, 14, 24
copying NOOBS to SD or MicroSD cards, 30–32
SD cards and, 28–30

Linux commands
about, 120–122
canceling, 102
customizing with, 122–124

Linux Foundation, 24
Linux Shell

about, 87
absolute paths, 94–96
advanced listing options, 96–99
calculating sums with, 210–212
changing directories, 89
changing parent directory, 90–91
checking file types, 89–90
copying files, 111–113
creating directories, 106
creating files using redirection, 104–105
customizing with Linux commands, 122–124
deleting files, 107–108
directory tree, 91–93
entering commands, 103
installing software, 113–118
Less command, 102–103
Linux commands, 120–122
listing files/directories, 88–89
long listing format and permissions, 99–102
managing software, 113–118
managing user accounts, 118–120
naming files, 105
prompt, 88
rebooting, 124
relative paths, 94–96
removing directories, 110–111
renaming files, 111–113
selecting multiple files using wildcards, 108–110
shutting down, 124

list names, using in programs, 288
listing files/directories, 88–89
lists

about, 222–225
creating random chat program using, 225–227
setting up in Minecraft, 269–270

Lite version (NOOBS), 46
live loops, 289–291
local variable, 252
Log, 289
logging in, 50
logging out, from PIXEL, 85

Index 471

logic levels, 310
long listing, format and permissions, 99–102
Looks button (Scratch), 173–174
loops

creating Minecraft, 271–274
defined, 212

lost+found directory, 92
ls command, 97–99
LXDE (Lightweight X11 Desktop Environment), 59

M
mA (milliamps), 306
Mac

copying NOOBS to SD or MicroSD cards, 30
SDFormatter software, 27–28

Mac Mini, 441
Magic Mirror project, 440–441
main function, 345, 350, 378
making

chatbot program, 221–238
dictionary look-up function, 231–236
directories in Linux Shell, 106
files using redirection in Linux Shell, 104–105
files/folders, 71
folders, 71
functions in Minecraft, 270–271
invitations in LibreOffice Draw, 136–138
main conversation loop, 236
main loop in Minecraft, 271–274
NOOBS card, 25–32
presentations in LibreOffice Impress, 134–136
scripts in Scratch, 178–179
times tables program, 212–221
variables, 197

managing
scripts, 190–195
software, 113–118
user accounts, 118–120

Mathematica, 429–431
Mathematica icon, 62
Maximize button, 63
maze algorithm (Minecraft), 268–269

maze parameters, setting in Minecraft,
265–266

maze walls, placing in Minecraft, 267–268
McManus, Sean (author)

Cool Scratch projects in Easy Steps, 205
Mission Python, 256
Scratch Programming in Easy Steps, 205

mc.player.getTilePos() command, 279
Mechanical Turk, 442
media center

adding media, 151–155
adding music, 152–153
adding pictures, 154
adding to media center, 151–155
adding videos, 153–154
changing settings, 157–158
navigating, 150–151
playing music, 155–156
playing music in desktop environment,

158–159
playing videos, 156–157
remote control, 158
setting up, 149–150
streaming media, 155
turning off, 158
viewing photos, 157

media directory, 92
memory, 379–380
menu bar

File Manager, 67
GIMP, 141
media center, 150–151

Micro USB socket, 41
MicroSD card

about, 17
checking, 447
copying NOOBS to, 30–32
formatting, 26–30
inserting, 37–39
replacing, 447

MicroSD card writer, 17
Microsoft Excel. See LibreOffice, LibreOffice Calc
MIDI note numbers, 283–284

472 Raspberry Pi For Dummies

MIFARE card, 393–395
milliamps (mA), 306
Minecraft

breaking blocks, 259–260
changing perspective in, 258
minecraft module, 261–278
moving around in, 258–259
playing, 258–260
preparing for Python, 260
starting, 258

Minecraft Maze Maker code, 275–278
minecraft module

about, 261
adding blocks, 263–264
adding ceilings, 274
coordinates, 261–262
creating functions, 270–271
creating main loop, 271–274
laying foundations, 266–267
maze algorithm, 268–269
placing maze walls, 267–268
positioning players, 274
repositioning players, 262–263
setting maze parameters, 265–266
setting up variables and lists, 269–270
stopping players from changing world,

264–265
Minecraft Pi

about, 257–258
icon, 62

Minecraft: Pi Edition, 257–258
minecraft.Minecraft.create(), 261
Mini HDMI socket, 41
Minimize button, 64
Mission Python (McManus), 256
mkdir command, 106, 107, 121
mnt directory, 93
Model 2, inserting SD cards in, 37–39
Model A

about, 13, 36
audio socket, 45
connecting to Internet, 53
inserting SD cards in, 37–39
network connections, 45

Model A+
about, 12, 36
inserting SD cards in, 37–39
network connections, 45

Model B
about, 12, 13, 36
audio socket, 45
Ethernet socket, 46
inserting SD cards in, 37–39

Model B+, 13
about, 36
audio socket, 45
inserting SD cards in, 37–39

Model Zero
about, 12
Ethernet socket, 46
inserting SD cards in, 38–39
network connections, 45
soldering GPIO pins onto, 323–324

Model Zero W
about, 12, 37
connecting camera on, 39
inserting SD cards in, 38–39

modifying
appearance of sprites in Scratch, 172–176
audiobook, 438
background in Scratch, 185
colors in GIMP, 145
desktop wallpaper, 60
directories in Linux Shell, 89
displays for files, 72–73
game speed, 204
parent directory in Linux Shell, 90–91
perspective in Minecraft, 258
screen display, 452–454
sensitivity of keyboard/mouse, 83
settings, 448–454
settings in media center, 157–158
sprite visibility in Scratch, 176

modules, 226
monitor

about, 16
connecting, 41–43

Mosaic effect (Scratch), 175

Index 473

Motion block, 196
mounting external storage devices, 455–456
mouse

adjusting sensitivity, 83
connecting, 44
USB, 17

mouse clicks, detecting, 244–245
moving

around in Minecraft, 258–259
files/folders, 69
sprites automatically, 199–200
sprites in Scratch, 167–172

MPEG2 format, 156
music. See also Sonic Pi

adding, 152–153
adding in Scratch, 176–178
composing using shuffle method, 287
playing in desktop environment, 158–159
playing in media center, 155–156

N
naming

files, 105
sprites, 189

Nano text editor, 449–451
navigating

desktop environment, 60–64
File Manager, 66–69
media center, 150–151

negative, 302
NeoPixels, 362–365
Netsurf browser, 74
network connection, troubleshooting, 457
networked media, adding to media center, 151–155
New Bookmark window, 76
new-out-of-box software. See NOOBS
Next button (Image Viewer), 79
Next Folder (File Manager), 69
nonlinear device, 307
NOOBS

copying to SD or MicroSD card, 30–32
downloading, 25
Lite version, 46

NOOBS card
creating, 25–32
using, 32

NOOBSLite, 49
Normalize option (GIMP), 145
note names (Sonic Pi), 285–286
note numbers (Scratch), 176–178
notes, playing in Sonic Pi, 283–285, 288–289
numberOfCells variable, 269
numberOfVisitedCells variable, 269
numbers, printing, 216–218

O
ODF Text Document (.odt), 130
offline and network install version, of

NOOBS, 25
.ogg sound format, 240
ohms, 300
Old McDonald’s Farm, 410–423
13.56 MHz tags, 390
125-135 KHz tags, 390
One-Button Audiobook Player project,

437–438
online help, 448
on/off switch, 46
Open File button (Image Viewer), 80
opening

config.txt file, 449
folders, 65
folders as root or in terminal, 73

operating system
about, 23
creating NOOBS card, 25–32
installing multiple, 49
Linux, 24
using NOOBS card, 32

opt directory, 93
options, for ls command, 98–99
Options menu (Leafpad Text Editor), 82
OSMC option (NOOBS Lite), 47
output impedance, 307
outputs, using GPIO pins as, 311–313
overclocking, 52

474 Raspberry Pi For Dummies

P
package manager, 113
package name, finding, 114–115
Paint Editor (Scratch), 186–189
Paintbrush tool (Scratch), 187
panes (GIMP), 141–142
Panflute Hero project, 440
paper dolls, 401–410
parent directory (. . .), 90–91, 110, 111
passive tags, 390
passwd command, 120
Path (File Manager), 69
pattern function, 387
pause function, 337
PDF, saving documents as, 131
Pedestrian Crossing project, 347–356
Penguins Puzzle, 428
Pennec, Mélanie (developer), 443
percent (%) operator, 211
peripherals, 447
permissions, long listing, 99–102
perspective, in Minecraft, 258
photo editing. See GIMP
photobooth, 440–441
Photobot.Co, 440–441
photos

converting between formats in GIMP, 147
cropping in GIMP, 144–145
flipping in GIMP, 145
repairing in GIMP, 146–147
rotating in GIMP, 145
viewing in media center, 157

physical computing, 299
pi, 88
pi folder, 67
Pi Hut (website), 15
Pi in the Sky project, 441–442
Pi Model 2, inserting SD cards in, 37–39
Pi Model A

about, 13, 36
audio socket, 45
connecting to Internet, 53
inserting SD cards in, 37–39
network connections, 45

Pi Model A+
about, 12, 36
inserting SD cards in, 37–39
network connections, 45

Pi Model B
about, 12, 13, 36
audio socket, 45
Ethernet socket, 46
inserting SD cards in, 37–39

Pi Model B+, 13
about, 36
audio socket, 45
inserting SD cards in, 37–39

Pi Model Zero
about, 12
Ethernet socket, 46
inserting SD cards in, 38–39
network connections, 45
soldering GPIO pins onto, 323–324

Pi Model Zero W
about, 12, 37
connecting camera on, 39
inserting SD cards in, 38–39

Pibow (website), 19
pictures, adding, 154
pidel command, 123
Pimoroni (website), 15
ping command, 457
pipe (|) character, 121
PIXEL

about, 59–60
logging out from, 85

Pixelate effect (Scratch), 175
players

forcing replies from, 228–229
positioning in Minecraft, 274
repositioning in Minecraft, 262–263
stopping form changing world in Minecraft,

264–265
playerx variable, 269
playerz variable, 269
playing

games, 204
Minecraft, 258–260

Index 475

music in desktop environment, 158–159
music in media center, 155–156
notes in Sonic Pi, 283–285
random notes in Sonic Pi, 288–289
videos in media center, 156–157

playlists, 156
plus (+) operator, 211
Polar H7 heartbeat sensor, 439
pop() method, 23
Pope, Daniel (developer), 239

blog, 256
positioning

blocks in Minecraft, 259
players in Minecraft, 274
sprites in Scratch, 166–167

positive, 302
power supply

about, 19
connecting, 46–50
replacing, 448

Preferences button (Image Viewer), 81
presentations. See LibreOffice, LibreOffice Impress
Previous button (Image Viewer), 79
Previous Folder (File Manager), 68–69
print command, 209, 210–212, 213–215,

216–218, 219
printing words, variables, and numbers, 216–218
privacy, protecting, 77–78
proc directory, 93
programming. See also Scratch

about, 164
arcade game. See arcade game, programming
Minecraft with Python. See Minecraft
in Python. See Python

programs. See also specific programs
creating, 241–255
running, 63, 213–214, 241–255
stopping, 64–65
using list names in, 288
writing in Sonic Pi, 286

Programs menu, 63
projects, 437–443. See also specific projects
prompt (Linux Shell), 88

protecting privacy, 77–78
protocols, 283
pull-up/down, 314
Pulse-Wodth Modulation (PWM), 360–361
punctuation, 230
PWM (Pulse-Wodth Modulation),

360–361
Pygame/Pygame Zero, 239–240. See also

Cloudbusting game
Python. See also Cloudbusting game

about, 207–208
calculating sums with Shell, 210–212
creating chatbot program, 221–238
creating LED flash using, 331–334
creating times table program, 212–221
entering commands, 208–210
Minecraft. See Minecraft
starting Python, 207–208

Python games icon, 62
Python icons, 62

Q
quality (image), 144
question mark (?) wildcard, 105, 109
quotation (speech) marks ("), 105
quotes, in Python, 223

R
Radio Frequency IDentification card (RFID)

about, 389
how it works, 390–401
Old McDonald’s Farm, 410–423
paper dolls, 401–410

Rainbow Invaders, 370–375
randCol function, 388
random module, 261
random number seed, adjusting, 287–288
random numbers

using in arcade game programming, 195–196
using in Cloudbuster game, 247–248

random.randint() function, 226, 247
range() function, 219, 220

476 Raspberry Pi For Dummies

Raspberry Pi. See also specific topics
about, 9–11
accessories for, 16–21
getting, 15
GPIO, 321–327
projects. See specific projects
troubleshooting, 446–448
turning on, 46–50
upgrading software on, 116–117
uses for, 14–15
versions, 11–14
website, 25, 156

Raspberry Pi Camera Module
about, 18
connecting, 39–41
testing, 54–55

Raspberry Turk project, 442–443
raspberrypi, 88
Raspbian, 25

configuring Raspberry Pi in, 50–53
Raspbian option (NOOBS Lite), 47
Raspi-config, 448–449
raspistill, 54–55
raspivid, 55
RCA cable, 43
read permission, 101
ready-made add-on boards, 317–320
realx() function, 270
realz() function, 270
rebooting, 124
Recalbox option (NOOBS Lite), 48
receiving email with Claws Mail, 78
Rectangle tool (Scratch), 187
redirection, creating files using, 104–105
Redon, Eric (developer), 443
Reduction of Hazardous Substances (RoHS), 315
regenerating clouds, 250–251
relative paths, 94–96
Reload button, 75
Remember icon, 4
remote control, 43, 158
removing

directories in Linux Shell, 110–111
files in Linux Shell, 107–108

software, 117
sprites in Scratch, 184–185

renaming files in Linux Shell, 111–113
repairing photos in GIMP, 146–147
replacing

cables, 447
MicroSD card, 447
peripherals, 447
power supply, 448
screen, 447
SD card, 447

repositioning players in Minecraft, 262–263
resistance, 300, 306
resizing

columns in LibreOffice Calc, 133
images in GIMP, 142–144
panes in GIMP, 142
program windows, 63–64
sprites in Scratch, 166–167, 175–176

resources, Internet
Adafruit, 15, 325
advanced settings, 454
Akerman, Dave, 9, 442
Bryan, David, 439
Cheat Sheet, 4
Clemens, Michael, 437
compatible devices, 21
Dtronixs, 325
Dummies, 4
eBay, 19
Electric Skateboard project, 439
Element14, 15
Fernandez, David, 439
FocusWriter, 429
GIMP (GNU Image Manipulation Program), 147
HAT boards, 317
#highaltitudechannel, 442
incompatible devices, 21
LibreOffice, 128
Minecraft Wiki, 263
online help, 448
photobooth, 440
Pi Hut, 15
Pibow, 19

Index 477

Pimoroni, 15
Pope, Daniel (blog), 256
Pygame Zero built-in objects list, 256
Pygame Zero ducmnentation, 256
Raspberry Pi, 25, 156
Raspberry Pi Camera Module, 54–55
RS Components, 15
Scratch, 205
SD cards, 447
SDFormatter, 26
simulator, 307
Tux Paint, 433
UK High Altitude Society, 442
updates, 4
Wardell, Steve, 438
Way Out West Hackathon, 440

restarting, 446
RFID (Radio Frequency IDentification card)

about, 389
how it works, 390–401
Old McDonald’s Farm, 410–423
paper dolls, 401–410

RGB LEDs
about, 357–359
creating colors, 359–362

ribbon cable, 317
right-clicking folders, 69
RISC OS option (NOOBS Lite), 47
rm command, 107
rmdir command, 110
RoHS (Reduction of Hazardous Substances), 315
root, opening folders as, 73
root directory, 93
Rotate Left button (Image Viewer), 80
Rotate Right button (Image Viewer), 80
rotating photos in GIMP, 145
router, connecting, 45–46
rrand_i() function, 289
RS Components (website), 15
run directory, 93
running

programs, 63, 213–214, 241–255
software, 116

S
samples

defined, 291–292
using in Sonic Pi, 291–292

Saugen, Lucas (developer), 439–440
Save File As button (Image Viewer), 80
Save File button (Image Viewer), 80
saving

documents as PDF, 131
work in LibreOffice, 129
work in Scratch, 180–181

sbin directory, 93
scissors icon, 184
Scratch. See also arcade game, programming

about, 163
adding sounds and music, 176–178
changing appearance of sprites, 172–176
creating scripts, 178–179
drawing sprites in, 186–189
moving sprites, 167–172
positioning sprites, 166–167
resizing sprites, 166–167
saving work in, 180–181
screen layout, 165–166
starting, 165
tools, 187–188
using wait block to slow down sprites, 180
website, 205

Scratch 1.4, 328–329
Scratch 2, new features in, 181
Scratch icon, 62
Scratch Programming in Easy Steps

(McManus), 205
screen, replacing, 447
screen display

adjusting, 452–454
troubleshooting, 452–453

screen layout
Scratch, 165–166
Sonic Pi, 282–283

screen.draw.text() function, 250
Screenly Open Source Edition (OSE) option

(NOOBS Lite), 49

478 Raspberry Pi For Dummies

scripts
adding to Stage, 203
Control block, 190–191
controlling, 190–195
creating in Scratch, 178–179
enabling keyboard control, 192–193
enabling sprites to control sprites,

193–195
Forever block, 191–192
green flag, 190–191

Scripts Area (Scratch), 165–166
scrollbar, 75
SD Association, 26
SD card writer, 17
SD cards

about, 17
checking, 447
copying NOOBS to, 30–32
flashing, 30–32
formatting, 26–30
inserting, 37–39
Linux and, 28–30
replacing, 447

SDFormatter software
for Mac, 27–28
website, 26
for Windows, 26–27

Search menu (Leafpad Text Editor), 82
searching, within web pages, 76
Secure Shell (SSH), 458
Select tool (Scratch), 188
selecting

files/folders, 70, 108–110
multiple files using wildcards, 108–110

sending email with Claws Mail, 78
Sense HAT, 318
Sense HAT Emulator, 435
Sense HAT emulator icon, 62
Sensing block, 193, 197, 203
sensitivity, adjusting, 83
series circuit, 304
settings

adjusting, 448–454
advanced, 454

changing in media center, 157–158
maze parameters in Minecraft, 265–266

setup
data partition, 56
folders, 241
lists in Minecraft, 269–270
media center, 149–150
variables in Minecraft, 269–270

Shell. See Linux Shell
shift operator (<<), 366
Show block (Scratch), 176
showing

currency sign in LibreOffice Calc, 133
sprite information on Stage, 172

showMaker() function, 270
shuffle method, 287, 289
Shutdown icon, 62
shutting down, 85, 124
signals, 379–380
simulators, testing circuits with, 307
SIZE, 265
Skywriter HAT, 318–319
slash (/) operator, 105, 211
sleep command, 284, 291–292
smart playlists, 156
sockets, 41
software

installing, 113–118, 115
managing, 113–118
recommended, 427–436
removing, 117
running, 116
troubleshooting, 456
updating, 448
upgrading on Raspberry Pi, 116–117

soldering
about, 299
General Purpose Input/Output (GPIO) pins, 314–316
GPIO pins onto Pi Zero, 323–324

solitaire package name, 115
Sonic Pi

about, 281–282
adding special effects, 292
changing random number seed, 287–288

Index 479

composing random tunes using shuffle, 287
live loops, 289–291
playing notes, 283–285
playing random notes, 288–289
screen layout, 282–283
synchronizing with drumbeat, 293
using chord names, 285–286
using list names in programs, 288
using note names, 285–286
using samples, 291–292
writing programs, 286

Sonic Pi icon, 62
Sound Fighter project, 443
sounds

adding in Scratch, 176–178
creating samples, 411–413

space, freeing up, 117
speakers, 19
special effects, adding in Sonic Pi, 292
speech bubbles (Scratch), 173–174
speed, adjusting for game, 204
split() method, 234
Spotify, 440
spreadsheet, 131–134
Sprite List (Scratch), 165–166
sprites

adding to games, 185–186
changing appearance of in Scratch, 172–176
changing visibility of in Scratch, 176
deleting in Scratch, 184–185
detecting when hit, 196–197
drawing in Scratch, 186–189
duplicating, 203
enabling to control sprites, 193–195
moving automatically, 199–200
moving in Scratch, 167–172
naming, 189
positioning in Scratch, 166–167
resizing in Scratch, 166–167, 175–176
slowing down with wait block, 180

square brackets ([]), 105, 245
srv directory, 93
SSH (Secure Shell), 458
Stage (Scratch), 165–166, 172, 203

Stallman, Richard (developer), 24
Stamp tool (Scratch), 188
Start Slideshow button (Image Viewer), 79
starting

desktop environment, 59
File Manager, 65
FocusWriter, 429
GIMP, 140
LibreOffice, 128–129
Mathematica, 429
Minecraft, 258
Penguins Puzzle from shell, 428
projects in Scratch, 184–185
Python, 207–208
Scratch, 165
Tux Paint, 432

state machine, 348
statements, conditional, 235. See also specific

statements
stopping

players from changing worlds in Minecraft,
264–265

programs, 64–65
str() function, 249
streaming media, using in media center, 155
string methods, 234
SUM formula (LibreOffice Calc), 134
sums, calculating with Python Shell, 210–212
switches, 302–305
switching between tabs, 76
switching off Raspberry Pi, 151
switching on Raspberry Pi, 124
sync command, 293
synchronizing, with drumbeat in Sonic Pi, 293
sys directory, 93, 261

T
tabbed browsing, 76
tablenum variable, 216–218, 218–221
tack switch, 328–329
tags, 390
task bar, 178
Task Manager, 64–65

480 Raspberry Pi For Dummies

taskbar, 60
Technical Stuff icon, 4
terminal, opening folders in, 73
Terminal icon, 63
testAllWalls() function, 270, 271
testing

circuits with simulators, 307
Raspberry Pi Camera Module, 54–55

Text tool (Scratch), 188
Thonny Python IDE, 332
thought bubbles (Scratch), 173–174
thumbnail view (File Manager), 72
tilde (~) symbol, 90–91, 94–95
timers, adding, 253
times tables program

about, 212
accepting user input, 216
creating, 212–221
printing words, variables, and numbers, 216–218
using for loops, 218–221
using variables, 214–215

time.sleep() function, 348
Tip icon, 3
TLXOS option (NOOBS Lite), 49
tmp directory, 93
tools (Scratch), 187–188
Tools menu, 73
Torvalds, Linus (developer), 24
troubleshooting Raspberry Pi, 446–448
T-Shirt Cannon project, 439–440
tuple, 244
turning off media center, 158
turning on, 46–50
Tux Paint, 432–433
TV

about, 16
connecting, 41–43

.txt, 104, 110
type command, 120

U
Ubuntu, 28–30
UHF (860-960MHz), 390
UID (Unique IDentification number), 393–394

UK High Altitude Society (website), 442
Undelete option (Scratch), 184
Unique IDentification number (UID), 393–394
Up a Level (File Manager), 69
update() function, 251
updating

cache, 114
Penguins Puzzle, 428
software, 448
website for, 4

upgrading software on Raspberry Pi, 116–117
Upton, Eben (designer), 11
USB device, adding media to media center from,

151–152
USB hub

about, 16–17
connecting, 43–44

USB key, 18
USB keyboard/mouse, 17
USB socket, 43–44
USB Wi-Fi adapter, 18
user accounts, managing, 118–120
user input, accepting, 216
useradd command, 119
users, adding, 119
usr directory, 93

V
value of current, 310
van Loo, Gert (designer), 16
var directory, 93
variables

about, 197–199
cellsVisitedList[], 269
creating, 197
firingflag, 201
global, 252
leapsize, 199–200, 203
local, 252
numberOfCells, 269
numberOfVisitedCells, 269
playerx, 269
playerz, 269
printing, 216–218

Index 481

setting up in Minecraft, 269–270
tablenum, 216–218, 218–221
using, 214–215
xposition, 269
zposition, 269

Variables button (Scratch), 201
VC1 format, 156
verifying

connections, 446
file types in Linux Shell, 89–90
MicroSD card, 47, 447
SD card, 447
what’s installed, 118

versions
Python, 208
Raspberry Pi, 11–14

VGA (video graphics array), 16
video, 153–154, 156–157. See also media center
video graphics array (VGA), 16
Videocore IV graphics processing unit (GPU), 14
View menu (File Manager), 72
viewing photos in media center, 17
visibility, changing of sprites in Scratch, 176
VLC Media Player, 159
voltage, 300
voltage drop, 312

W
waffle box, 360
wait block, slowing down sprites with, 180
wallpaper, 60
wallpaper, changing, 60
Wardell, Steve (developer), 438
Warning! icon, 4
Way Out West Hackathon, 440
Weather Station project, 438
web browsing

about, 74
bookmarks, 76–77
with Chromium, 74–76
privacy, 77–78
searching within web pages, 76
tabbed browsing, 76

web pages, searching within, 76
websites

Adafruit, 15, 325
advanced settings, 454
Akerman, Dave, 9, 442
Bryan, David, 439
Cheat Sheet, 4
Clemens, Michael, 437
compatible devices, 21
Dtronixs, 325
Dummies, 4
eBay, 19
Electric Skateboard project, 439
Element14, 15
Fernandez, David, 439
FocusWriter, 429
GIMP (GNU Image Manipulation Program), 147
HAT boards, 317
#highaltitudechannel, 442
incompatible devices, 21
LibreOffice, 128
Minecraft Wiki, 263
online help, 448
photobooth, 440
Pi Hut, 15
Pibow, 19
Pimoroni, 15
Pope, Daniel (blog), 256
Pygame Zero built-in objects list, 256
Pygame Zero ducmnentation, 256
Raspberry Pi, 25, 156
Raspberry Pi Camera Module, 54–55
RS Components, 15
Scratch, 205
SD cards, 447
SDFormatter, 26
simulator, 307
Tux Paint, 433
UK High Altitude Society, 442
updates, 4
Wardell, Steve, 438
Way Out West Hackathon, 440

Weessa, Jean (developer), 443
which command, 120

482 Raspberry Pi For Dummies

while command, 229
while loop, 227–228, 274, 350
Whirl effect (Scratch), 175
Wi-Fi, configuring, 53
Wi-Fi adapter, 18
wildcards, selecting files using, 108–110
windows

closing, 63–64
resizing, 63–64

Windows 10 IoT Core option (NOOBS Lite), 49
Windows PC

copying NOOBS to SD or MicroSD cards, 30
SDFormatter software, 26–27

Wolfram icon, 63
words, printing, 216–218
workspaces (Sonic Pi), 282–283
write permission, 101
writing

programs in Python. See Python
programs in Sonic Pi, 286

WS2350 weather station, 438
WS2812b, 362–365

X
X button, 63
X server, 116
XInvaders 3D, 431
xposition variable, 269
Xtrinsic Sense, 319–320

Z
Zero

about, 12
Ethernet socket, 46
inserting SD cards in, 38–39
network connections, 45
soldering GPIO pins onto, 323–324

Zero W
about, 12, 37
connecting camera on, 39
inserting SD cards in, 38–39

Zoom In button (Image Viewer), 79
Zoom Out button (Image Viewer), 79
zposition variable, 269

About the Authors
Sean McManus is an expert technology and business author. His other books
include Mission Python, Coder Academy, Cool Scratch Projects in Easy Steps, Scratch
Programming in Easy Steps, and Web Design in Easy Steps. His novel for adults,
Earworm, goes undercover in the music industry, exposing a conspiracy to replace
bands with computer-generated music. His tutorials and articles have appeared in
magazines including The MagPi, Internet Magazine, Internet Works, Business 2.0,
Making Music, and Personal Computer World. He has been a Code Club volunteer,
helping children at a local school to learn computer programming. Visit his
website at www.sean.co.uk for bonus content from his books.

Mike Cook has been making electronic things since he was at school. A former
lecturer in physics at Manchester Metropolitan University, he wrote more than
300 computing and electronics articles in the pages of computer magazines for
20 years starting in the 1980s. Leaving the University after 21 years when the
physics department closed down, he got a series of proper jobs where he designed
digital TV set-top boxes and access control systems. His other books include
Raspberry Pi Projects, Raspberry Pi Projects for Dummies, and Arduino Music and Audio
Projects. He also works with Drake Music Labs North, a charity for disabled
musicians, developing accessible music equipment.

Now retired and freelancing, he spends his days surrounded by wires, patrolling
the forums as Grumpy Mike.

Dedication
To my wife, Karen, with thanks for all her support throughout this project and
always. And to Leo, our wonderful son. —Sean

To my wife, Wendy, who always acts delighted whenever I show her yet another
blinking LED. And also to the late Leicester Taylor, World War II radar researcher
and inspirational supervisor of my post-graduate research at the University of
Salford. —Mike

http://www.sean.co.uk/

Author’s Acknowledgments
Thank you to my co-author, Mike, for bringing his electronics expertise and
fantastic project ideas. Thank you to Craig Smith for commissioning us to write
the first edition of this book; and to Katie Mohr, our acquisitions editor on the
second and third editions. Thanks also to Linda Morris for her editing support
on the first two editions; and to Paul Levesque, our project editor, and Becky
Whitney, our copy editor on this third edition. Our technical editors Jason E Geist-
weidt (3rd edition), Ryan Walmsley (2nd edition), and Paul Hallett (1st edition)
cast a careful eye over the text and code and made much appreciated suggestions.
Olivier Engler, who translated the first edition into French, provided helpful feed-
back too. Thanks also to Lorna Mein and Natasha Lee in marketing, and to the . . .
For Dummies team for making it all happen.

Many people helped with research or permissions requests, including Karen
McManus, Sam Aaron, Eben Upton, Liz Upton, Leo McHugh, Mark Turner, Peter
Sayer, John Hartnup, Bill Kendrick, Simon Cox, Jon Williamson, Paul Beech, Peter
de Rivaz, Michał Męciński, Ruairi Glynn, Stephen Revill, Lawrence James, Bram
Stolk, Adam Kemeny, Will Jessop, and David Bryan. We wouldn’t have a book to
write if it weren’t for the wonderful work of the Raspberry Pi Foundation, the
manufacturers who took a gamble on it, and the many thousands of people who
have contributed to the Raspberry Pi’s software. —Sean

I would like to thank Sean McManus for inviting me to contribute to this book and
the staff at Wiley for making the process of producing this book as painless as
possible. —Mike

Publisher’s Acknowledgments

Acquisitions Editor: Katie Mohr

Project Editor: Paul Levesque

Copy Editor: Becky Whitney

Technical Editor: Jason Geistweidt

Editorial Assistant: Owen Kaelble

Senior Editorial Assistant: Cherie Case

Production Editor: Magesh Elangovan

Cover Image: © Courtesy of Raspberry Pi
Foundation

for everyone
Computing is

Find out more about the Raspberry Pi
Foundation, and how you can get involved

in our community, at

raspberrypi.org

The Raspberry Pi Foundation UK registered charity 1129409

Raspberry Pi

http://raspberrypi.org

Leverage the power
Dummies is the global leader in the reference category and one
of the most trusted and highly regarded brands in the world. No
longer just focused on books, customers now have access to the
dummies content they need in the format they want. Together
we’ll craft a solution that engages your customers, stands out
from the competition, and helps you meet your goals.

Connect with an engaged audience on a powerful multimedia site,
and position your message alongside expert how-to content.
Dummies.com is a one-stop shop for free, online information
and know-how curated by a team of experts.

• Targeted ads
• Video
• Email Marketing

• Microsites
• Sweepstakes

sponsorship

Advertising & Sponsorships

MILLION
PAGE VIEWS

M IL L I O N

NEWSLETTER

300,000 UNIQUE INDIVIDUALS
EVERY WEEK

UNIQUE

SUBSCRIPTIONS

EVERY SINGLE MONTH

15

700,000

20

43%
OF ALL VISITORS
ACCESS THE SITE
VIA THEIR MOBILE DEVICES

VISITORS PER MONTH

TO THE INBOXES OF

of dummies

you from competitors, amplify your message, and encourage customers to make a
buying decision.

Leverage the strength of the world’s most popular reference brand to reach new
audiences and channels of distribution.

For more information, visit dummies.com/biz

• Apps
• Books

• eBooks
• Video

• Audio
• Webinars

Custom Publishing

Brand Licensing & Content

http://dummies.com/biz

9781119187790
USA $26.00
CAN $31.99
UK £19.99

9781119179030
USA $21.99
CAN $25.99
UK £16.99

9781119293354
USA $24.99
CAN $29.99
UK £17.99

9781119293347
USA $22.99
CAN $27.99
UK £16.99

9781119310068
USA $22.99
CAN $27.99
UK £16.99

9781119235606
USA $24.99
CAN $29.99
UK £17.99

9781119251163
USA $24.99
CAN $29.99
UK £17.99

9781119235491
USA $26.99
CAN $31.99
UK £19.99

9781119279952
USA $24.99
CAN $29.99
UK £17.99

9781119283133
USA $24.99
CAN $29.99
UK £17.99

9781119287117
USA $24.99
CAN $29.99
UK £16.99

9781119130246
USA $22.99
CAN $27.99
UK £16.99

PERSONAL ENRICHMENT

9781119311041
USA $24.99
CAN $29.99
UK £17.99

9781119255796
USA $39.99
CAN $47.99
UK £27.99

9781119293439
USA $26.99
CAN $31.99
UK £19.99

9781119281467
USA $26.99
CAN $31.99
UK £19.99

9781119280651
USA $29.99
CAN $35.99
UK £21.99

9781119251132
USA $24.99
CAN $29.99
UK £17.99

9781119310563
USA $34.00
CAN $41.99
UK £24.99

9781119181705
USA $29.99
CAN $35.99
UK £21.99

9781119263593
USA $26.99
CAN $31.99
UK £19.99

9781119257769
USA $29.99
CAN $35.99
UK £21.99

9781119293477
USA $26.99
CAN $31.99
UK £19.99

9781119265313
USA $24.99
CAN $29.99
UK £17.99

9781119239314
USA $29.99
CAN $35.99
UK £21.99

9781119293323
USA $29.99
CAN $35.99
UK £21.99

PROFESSIONAL DEVELOPMENT

dummies.com

http://dummies.com

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Why You Need This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part 1 Setting Up Your Raspberry Pi
	Chapter 1 Introducing the Raspberry Pi
	Getting Familiar with the Raspberry Pi
	Figuring Out What You Can Do with a Raspberry Pi
	Getting Your Hands on a Raspberry Pi
	Determining What Else You Need

	Chapter 2 Downloading the Operating System
	Introducing Linux
	Creating a NOOBS Card
	Downloading NOOBS
	Formatting the SD card
	Copying NOOBS to the SD or MicroSD card

	Using Your NOOBS Card
	Flashing an SD or MicroSD card

	Chapter 3 Connecting Your Raspberry Pi
	Inserting the SD Card
	Connecting the Raspberry Pi Camera Module
	Connecting the camera on a Pi Zero W
	Connecting the camera on other Raspberry Pi models

	Preparing Your Pi Zero or Zero W
	Connecting a Monitor or TV
	Connecting an HDMI or DVI display
	Connecting a television using composite video

	Connecting a USB Hub
	Connecting a Keyboard and Mouse
	Connecting Audio
	Connecting to Your Router
	Connecting the Power and Turning on the Raspberry Pi
	Logging In
	Configuring Your Raspberry Pi in Raspbian
	Configuring Your Wi-Fi
	Configuring Bluetooth Devices
	Testing the Camera Module
	Setting Up the Data Partition
	Taking Your Next Steps with the Raspberry Pi

	Part 2 Getting Started with Linux
	Chapter 4 Using the Desktop Environment
	Navigating the Desktop Environment
	Using the Applications menu
	Running programs that are not on the menu
	Resizing and closing program windows

	Using the Task Manager
	Using File Manager
	Navigating File Manager
	Copying and moving files and folders
	Selecting multiple files and folders
	Creating new folders and blank files
	Deleting files and folders
	Changing how files are displayed
	Opening a folder in the terminal

	Browsing the Web
	Using Chromium to browse the web
	Searching within web pages
	Using tabbed browsing
	Adding and using bookmarks
	Protecting your privacy

	Sending and Receiving Email with Claws Mail
	Using the Image Viewer
	Using the Text Editor
	Customizing the Desktop
	Finding and Installing New Applications
	Backing Up Your Data
	Logging Out from PIXEL and Shutting Down

	Chapter 5 Using the Linux Shell
	Understanding the Prompt
	Exploring Your Linux System
	Listing files and directories
	Changing directories
	Checking file types
	Changing to the parent directory
	Understanding the directory tree
	Using relative and absolute paths
	Investigating more advanced listing options

	Understanding the Long Listing Format and Permissions
	Slowing Down the Listing and Reading Files with the Less Command
	Speeding Up Entering Commands
	Using Redirection to Create Files
	Creating Directories
	Deleting Files
	Using Wildcards to Select Multiple Files
	Removing Directories
	Copying and Renaming Files
	Installing and Managing Software on Your Raspberry Pi
	Updating the cache
	Finding the package name
	Installing software
	Running software
	Upgrading the software
	Removing software and freeing up space
	Finding out what’s installed

	Managing User Accounts on Your Raspberry Pi
	Learning More about Linux Commands
	Customizing the Shell with Your Own Linux Commands
	Shutting Down and Rebooting Your Raspberry Pi

	Part 3 Using the Raspberry Pi for Both Work and Play
	Chapter 6 Being Productive with the Raspberry Pi
	Installing LibreOffice on Your Raspberry Pi
	Working with LibreOffice on the Raspberry Pi
	Saving your work
	Writing letters in LibreOffice Writer
	Managing your budget in LibreOffice Calc
	Creating presentations in LibreOffice Impress
	Creating a party invitation with LibreOffice Draw

	Chapter 7 Editing Photos on the Raspberry Pi with GIMP
	Working with GIMP
	Understanding the GIMP screen layout
	Resizing an image in GIMP
	Cropping your photo
	Rotating and flipping your photo
	Adjusting the colors
	Fixing imperfections
	Converting images between different formats

	Finding Out More about GIMP

	Chapter 8 Playing Audio and Video on the Raspberry Pi
	Setting Up Your Media Center
	Navigating the Media Center
	Adding Media
	Adding music
	Adding videos
	Adding pictures
	Streaming media

	Playing Music
	Playing Videos
	Viewing Photos
	Changing the Settings
	Using a Remote Control
	Turning Off Your Media Center
	Playing Music in the Desktop Environment

	Part 4 Programming the Raspberry Pi
	Chapter 9 Introducing Programming with Scratch
	Understanding What Programming Is
	Working with Scratch
	Understanding the Scratch screen layout
	Positioning and resizing your sprite
	Making your sprite move
	Changing your sprite’s appearance
	Adding sounds and music
	Creating scripts
	Using the Wait block to slow down your sprite
	Saving your work

	What’s new in Scratch 2

	Chapter 10 Programming an Arcade Game Using Scratch
	Starting a New Scratch Project and Deleting Sprites
	Changing the Background
	Adding Sprites to Your Game
	Drawing Sprites in Scratch
	Naming Your Sprites
	Controlling When Scripts Run
	Using the green flag to start scripts
	Using the Forever Control block
	Enabling keyboard control of a sprite
	Enabling a sprite to control another sprite

	Using Random Numbers
	Detecting When a Sprite Hits Another Sprite
	Introducing Variables
	Making Sprites Move Automatically
	Fixing the Final Bug
	Adding Scripts to the Stage
	Duplicating Sprites
	Playing Your Game
	Adapting the Game’s Speed
	Taking It Further with Scratch

	Chapter 11 Writing Programs in Python
	Working with Python
	Entering your first Python commands
	Using the shell to calculate sums

	Creating the Times Tables Program
	Creating and running your first Python program
	Using variables
	Accepting user input
	Printing words, variables, and numbers together
	Using for loops to repeat

	Creating the Chatbot Program
	Introducing lists
	Using lists to make a random chat program
	Adding a while loop
	Using a loop to force a reply from the user
	Using dictionaries
	Creating your own functions
	Creating the dictionary look-up function
	Creating the main conversation loop
	Final thoughts on Chatbot
	The final Chatbot program

	Chapter 12 Creating a Game with Python and Pygame Zero
	Collecting Your Sounds and Images
	Setting Up Your Folders
	Creating and Running Your First Program
	Detecting mouse clicks
	Animating your actors
	Using random numbers
	Adding more clouds
	Making the clouds regenerate
	Enabling multiple clouds to be clicked
	Adding the timer
	Adjusting the game difficulty
	The final game listing

	Exploring Pygame Zero Further

	Chapter 13 Programming Minecraft with Python
	Playing Minecraft
	Moving around
	Making and breaking things

	Preparing for Python
	Using the Minecraft Module
	Understanding coordinates in Minecraft
	Repositioning the player
	Adding blocks
	Stopping the player from changing the world
	Setting the maze parameters
	Laying the foundations
	Placing the maze walls
	Understanding the maze algorithm
	Setting up the variables and lists
	Creating the functions
	Creating the main loop
	Adding a ceiling
	Positioning the player
	The final code

	Adapting the Program

	Chapter 14 Making Music with Sonic Pi
	Understanding the Sonic Pi Screen Layout
	Playing Your First Notes
	Using Note and Chord Names
	Writing Shorter Programs
	Composing Random Tunes Using Shuffle
	Changing the Random Number Seed
	Using List Names in Your Programs
	Playing Random Notes
	Experimenting with Live Loops
	Using Samples
	Adding Special Effects
	Synchronizing with Your Drumbeat
	Bringing It All Together
	Next Steps with Sonic Pi

	Part 5 Exploring Electronics with the Raspberry Pi
	Chapter 15 Understanding Circuits
	Discovering What a Circuit Is
	Understanding the nature of electricity
	Determining how a component needs to be treated

	Getting Familiar with the GPIO
	Putting the general purpose in GPIO
	Understanding what GPIOs do
	Putting an output pin to practical use
	Using GPIOs as inputs
	Learning which end is hot: Getting to grips with a soldering iron
	Making a soldered joint

	Looking at Ready-Made Add-On Boards
	The Sense HAT
	The Skywriter HAT
	The Xtrinsic Sense board
	Other boards

	Chapter 16 Taking Control of Your Pi’s Circuitry
	Accessing Raspberry Pi’s GPIO Pins
	Soldering the GPIO pins onto Pi Zero
	Getting at all the pins with one connector
	Connecting things together

	Your First Circuit
	Bringing your LED to life
	Using Scratch 1.4
	Control the flashing speed with an input
	Using Python
	Using GPIO ZERO

	Starting Out with a Dice Display
	A dice display
	The project
	The numbers
	The display
	Taking it further

	Pedestrian Crossing
	The Pedestrian Crossing hardware
	The Pedestrian Crossing software
	Taking it further

	Chapter 17 Lots of Multicolored LEDs
	Making Colors
	Using diffusers
	Making more colors

	The Way Forward
	Bit-banging the APA102C protocol
	Creating a class

	Rainbow Invaders
	Keepy Uppy
	LEDs Galore
	Current limits
	Signals and memory
	Display update
	Getting more LEDs

	Chapter 18 Old McDonald’s Farm and Other RFID Adventures
	How RFID Work
	A MIFARE card’s structure
	A simple RFID jukebox
	A better RFID jukebox
	Taking it further

	Dressing Up a Paper Doll
	Runway time

	Old McDonald’s Farm
	Making sound samples
	Making the graphics

	Part 6 The Part of Tens
	Chapter 19 Ten Great Software Packages for the Raspberry Pi
	Penguins Puzzle
	FocusWriter
	Mathematica
	XInvaders 3D
	Fraqtive
	Tux Paint
	Grisbi
	Beneath a Steel Sky
	Sense HAT Emulator
	Brain Party

	Chapter 20 Ten Inspiring Projects for the Raspberry Pi
	One-Button Audiobook Player
	Weather Station
	Heart Rate Monitor
	Electric Skateboard
	T-Shirt Cannon
	Panflute Hero
	Magic Mirror
	Pi in the Sky
	Raspberry Turk
	Sound Fighter

	Appendix A Troubleshooting and Configuring the Raspberry Pi
	Index
	EULA

