

Reactive	Programming	with	Swift

Table	of	Contents

Reactive	Programming	with	Swift
Credits
About	the	Author
About	the	Reviewer
www.PacktPub.com

Why	subscribe?
Free	access	for	Packt	account	holders

Preface
What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Conventions
Reader	feedback
Customer	support

Downloading	the	example	code
Downloading	the	color	images	of	this	book
Errata
Piracy
Questions

1.	Introduction	to	Reactive	Programming
What	is	reactive	programming?

The	history	of	reactive	programming
Paradigms	-	declarative	versus	imperative
What	is	functional	programming?

Choosing	reactive	programming
Swift	-	interactive,	safe,	and	fast
The	ReactiveCocoa	project

ReactiveCocoa	extensions
Migrating	to	ReactiveCocoa

The	future	of	reactive	programming
Summary

2.	Installing	ReactiveCocoa	and	Using	It	with	Playground
The	ReactiveCocoa	website
Exploring	ReactiveCocoa
Installing	ReactiveCocoa	via	CocoaPods

Installing	CocoaPods	without	administrator	permission
Installing	CocoaPods	with	Carthage

Using	Playground
Summary

3.	Performing	UI	Events	with	ReactiveCocoa
An	overview	of	the	project

Setting	up	the	project
Creating	a	validator	class
Validating	text	fields
Enabling	and	disabling	the	button
Using	UIDatePicker
Selecting	the	gender	of	the	user
Adding	more	information
Getting	the	right	input	type
Using	bidirectional	channels
Displaying	your	horoscope
Summary

4.	Network	and	Change	Propagation
Overviewing	the	project
Setting	up	the	project
Searching	for	a	movie

Creating	signals
Handling	errors

Filling	in	the	table	view
Model-View-ViewModel	bindings
Displaying	movie	posters
Improving	your	code	for	a	second	scene
Filling	in	the	movie	form
Implementing	the	genre	signal
Changing	a	few	details	in	the	first	scene
Summary

5.	Enhance	Your	Application	Using	RAC	Extensions
An	overview	of	the	project
Setting	up	the	project	and	installing	extensions
Mocking	up	the	first	scene
Retrieving	information	from	GPS

Signaling
Taking	pictures	with	a	camera
Using	gesture	recognizers
Storing	pictures

Saving	pictures	to	the	photo	library
Storing	coordinates
Showing	coordinates
Summary

6.	Using	the	ReactiveCocoa	4	Style
An	overview	of	the	project
Setting	up	the	project
Developing	the	Currency	class
Creating	the	Currency	Manager
Creating	the	Product	class
Implementing	a	shopping	cart

Resuming	the	ViewController	class
Creating	the	checkout	scene
Testing	the	application
Summary

7.	Testing	Your	Application
Checking	the	expected	results
Creating	unit	tests

Using	signals	for	checking	the	results
Testing	an	asynchronous	signal

Testing	the	UI
Profiling	with	Instruments
Summary

8.	Migrating	a	Real	Application	to	ReactiveCocoa
Knowing	the	application
Creating	a	new	framework
Replacing	the	airplane	delegate
Reorganizing	the	signals
Checking	the	dark	side
Splitting	the	signal	again
Waiting	for	10	seconds
Reversing	the	geolocation
Avoiding	repeated	calls
Summary

Reactive	Programming	with	Swift

Reactive	Programming	with	Swift
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in
any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief
quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information
presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,	either	express	or
implied.	Neither	the	author,	nor	Packt	Publishing,	and	its	dealers	and	distributors	will	be	held	liable	for
any	damages	caused	or	alleged	to	be	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and
products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot
guarantee	the	accuracy	of	this	information.

First	published:	April	2016

Production	reference:	1210416

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham

B3	2PB,	UK.

ISBN	978-1-78588-426-9

www.packtpub.com

http://www.packtpub.com

Credits
Author

Cecil	Costa

Copy	Editor

Sonia	Cheema

Reviewer

Maksim	Mikheev

Project	Coordinator

	Nidhi	Joshi

Commissioning	Editor

Neil	Alexander	Singh

Proofreader

Safis	Editing

Acquisition	Editor

Rahul	Nair

Indexer

Mariammal	Chettiyar

Content	Development	Editor

Aishwarya	Pandere

Graphics

Disha	Haria

Technical	Editor

Rahul	C.	Shah

Production	Coordinator

Conidon	Miranda

About	the	Author
Cecil	Costa,	also	know	as	Eduardo	Campos	in	Latin	countries,	is	a	Euro-Brazilian	freelance	developer
who	has	been	learning	about	computers	since	getting	his	first	286	in	1990.	From	then	on,	he	kept	learning
about	programming	languages,	computer	architecture,	and	computer	science	theory.

Learning	and	teaching	are	his	passions;	this	is	the	reason	why	he	worked	as	a	trainer	and	an	author.	He
has	been	giving	on-site	courses	for	companies	such	as	Ericsson,	Roche,	TVE	(a	Spanish	television
channel),	and	lots	of	others.	He	is	also	the	author	of	Swift	Cookbook	First	Edition	and	Swift	2
Blueprints,	both	by	Packt	Publishing.	He	will	soon	publish	an	iOS	10	programming	video	course.

Nowadays,	Cecil	Costa	teaches	through	online	platforms,	helping	people	from	across	the	world.

In	2008,	he	founded	his	own	company,	Conglomo	Limited	(http://www.conglomo.es),	which	offers
development	and	training	programs	both	on-site	and	online.

Throughout	his	professional	career,	he	has	created	projects	by	himself	and	also	worked	for	different
companies	from	small	to	big	ones,	such	as	IBM,	Qualcomm,	Spanish	Lottery,	and	DIA%.

He	develops	a	variety	of	computer	languages	(such	as	Swift,	C++,	Java,	Objective-C,	JavaScript,	Python,
and	so	on)	in	different	environments	(iOS,	Android,	Web,	Mac	OS	X,	Linux,	Unity,	and	so	on)	because	he
thinks	that	a	good	developer	needs	to	learn	all	kinds	of	programming	languages	to	open	their	mind;	only
after	this	will	they	really	understand	what	development	is.

Nowadays,	Cecil	is	based	in	the	UK,	where	he	is	progressing	in	his	professional	career	as	an	iOS	team
lead.

I	would	like	to	thank	Mr.	Isaac	Newton	for	discovering	his	third	law:	For	every	user	action	there
is	a	ReactiveCocoa	reaction.

I	would	like	to	thank	Mr.	Robert	William	Bemer	for	creating	the	escape	key,	and	my	son,	Gabriel
Campos	Oliveira,	for	bringing	happiness	into	my	life.

http://www.conglomo.es

About	the	Reviewer
Maksim	Mikheev	is	an	experienced	iOS	developer,	who	specializes	in	native	development	with	Swift
and	Objective-C.	He	has	worked	with	all	major	iOS	releases	starting	with	iOS	4.	He	has	gathered	a	solid
expertise	in	all	aspects	of	developing	apps	for	Apple's	mobile	platform,	starting	from	the	idea	to	the
development	of	the	app	to	publishing	the	app	in	the	App	Store.	Maksim	has	worked	in	different	types	of
companies—small-scale	businesses,	start-ups,	and	large-scale	companies.	He	also	owned	a	web
development	consultancy	company.	He	developed	mobile	apps	for	major	Russian	companies	and
government	bodies,	including	a	Russian	leading	consulting	company,	Strategy	Partners	Group,	and	the
largest	Russian	bank,	Sberbank.

Maksim	is	a	longtime	blogger,	writing	primarily	about	mobile	development	and	other	IT	topics.	He	is
also	the	host	of	two	successful	Russian	podcasts	concerning	different	kinds	of	hobbies.	In	his	free	time,
Maksim	is	either	reading	or	programming	for	one	of	his	pet	projects.	He	is	a	huge	fan	of	science	and
follows	the	latest	scientific	and	technological	news	and	developments.	Being	a	geek,	he	is	always
interested	in	modern	gadgets	and	devices.	He	tweets	a	lot	about	mobile	development,	IT,	and	science.
You	can	reach	him	on	Twitter	at	@maxmikheev.

He	aspires	to	reach	the	next	level	as	a	software	developer,	which	is	why	he	is	constantly	working	on
improving	his	skills	and	expertise.

www.PacktPub.com
For	support	files	and	downloads	related	to	your	book,	please	visit	www.packtpub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and	ePub	files
available?	You	can	upgrade	to	the	eBook	version	at	www.packtpub.com	and	as	a	print	book	customer,
you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with	us	at	<service@packtpub.com>	for
more	details.

At	www.packtpub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up	for	a	range	of
free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books	and	eBooks.

	

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt's	online	digital	book	library.	Here,
you	can	search,	access,	and	read	Packt's	entire	library	of	books.

http://www.packtpub.com
http://www.packtpub.com
mailto:service@packtpub.com
http://www.packtpub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.packtpub.com,	you	can	use	this	to	access	PacktLib	today	and
view	9	entirely	free	books.	Simply	use	your	login	credentials	for	immediate	access.

http://www.packtpub.com

Preface
Apps	nowadays	are	not	just	sequences	of	code	that	are	executed	synchronously;	they	are	more	like	a
collection	of	code	that	is	executed	asynchronously,	making	it	difficult	to	follow	one	order.	Reactive
Programming	(or	even	better,	Functional	Reactive	Programming)	is	trending	due	to	it	being	prepared	for
this	new	way	of	app	development.	This	book	will	show	to	you	how	to	use	ReactiveCocoa,	the	most
extended	Reactive	Programming	framework	for	iOS	and	OS	X.

What	this	book	covers
Chapter	1,	Introduction	to	Reactive	Programming,	gives	you	a	brief	introduction	to	what	Reactive
Programming	and	Functional	Programming	are,	where	they	come	from,	and	why	you	should	used	them.

Chapter	2,	Installing	ReactiveCocoa	and	Using	It	with	Playground,	shows	you	three	different	ways	of
installing	ReactiveCocoa:	using	the	git	submodule,	CocoaPods,	and	Carthage.	Finally,	it	also	explains
how	to	use	it	on	Playground	for	performing	fast	tests.

Chapter	3,	Performing	UI	Events	with	ReactiveCocoa,	gives	you	the	first	approach	of	using	Reactive
Programming.	You	will	see	how	you	can	validate	a	form	with	ReactiveCocoa.

Chapter	4,	Network	and	Change	Propagation,	starts	with	the	concepts	of	using	asynchronous	calls	and
introduces	you	to	creating	your	own	signals	and	controlling	them.

Chapter	5,	Enhance	Your	Application	Using	RAC	Extensions,	shows	you	how	to	create	a	small	app	that
uses	Reactive	Cocoa	extensions.	A	good	feature	of	this	chapter	is	that	it	uses	different	versions	of
ReactiveCocoa	and	shows	you	how	to	deal	with	them.

Chapter	6,	Using	the	ReactiveCocoa	4	Style,	shows	you	how	to	use	ReactiveCocoa	in	a	safer	way.	Also,
you	will	learn	how	Signals	and	SignalProducers	replaced	RACSignal.

Chapter	7,	Testing	Your	Application,	teaches	you	how	to	create	unit	tests,	debug	an	app,	and	use
Instruments	with	ReactiveCocoa.

Chapter	8,	Migrating	a	Real	Application	to	ReactiveCocoa,	shows	you	how	to	convert	an	app	that	was
developed	without	Reactive	Programming	into	an	app	that	uses	it.

What	you	need	for	this	book
This	book	was	written	using	Xcode	7.2	and	ReactiveCocoa	4;	however,	its	code	should	work	with	newer
versions.

Only	a	few	parts	use	a	physical	device;	therefore,	having	one	is	optional	but	an	advantage.

Who	this	book	is	for
This	book	is	for	Swift	developers	who	want	to	start	making	more	powerful	and	efficient	applications.
You	need	a	basic	understanding	of	Swift	to	follow	along.	This	book	takes	a	first-principles	approach	to
what	Reactive	Programming	is	and	how	you	can	start	implementing	it	in	your	future	iOS	applications.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds	of	information.
Here	are	some	examples	of	these	styles	and	an	explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,	pathnames,	dummy
URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	"This	can	include	unsubscribing	the
observer	using	the	deinit	method."

A	block	of	code	is	set	as	follows:

	

func	changeSingletonValue(){

				let	singleton	=	Singleton.instance()

				singleton.setValue("New	Value",	forKey:	"MyKey")

}

	

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant	lines	or	items	are
set	in	bold:

private	func	signalForQuery(query:String)	->	RACSignal{	return	RACSignal.createSignal({
(subscriber:RACSubscriber!)	->	RACDisposable!	in	})	}

Any	command-line	input	or	output	is	written	as	follows:

cd	ReactiveCocoa

script/bootstrap

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	for	example,	in
menus	or	dialog	boxes,	appear	in	the	text	like	this:	"Now,	recompile	your	project,	and	click	on
Playground."

Note

Warnings	or	important	notes	appear	in	a	box	like	this.

Tip

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this	book-what	you
liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us	develop	titles	that	you	will	really	get
the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the	book's	title	in
the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a
book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help	you	to	get	the	most
from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at	http://www.packtpub.com.	If
you	purchased	this	book	elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have
the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using	the	latest	version
of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

http://www.packtpub.com
http://www.packtpub.com/support

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams	used	in	this	book.
The	color	images	will	help	you	better	understand	the	changes	in	the	output.	You	can	download	this	file
from
http://www.packtpub.com/sites/default/files/downloads/ReactiveProgrammingWithSwift_ColorImages.pdf

http://www.packtpub.com/sites/default/files/downloads/ReactiveProgrammingWithSwift_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do	happen.	If	you	find
a	mistake	in	one	of	our	books-maybe	a	mistake	in	the	text	or	the	code-we	would	be	grateful	if	you	could
report	this	to	us.	By	doing	so,	you	can	save	other	readers	from	frustration	and	help	us	improve	subsequent
versions	of	this	book.	If	you	find	any	errata,	please	report	them	by	visiting
http://www.packtpub.com/submit-errata,	selecting	your	book,	clicking	on	the	Errata	Submission	Form
link,	and	entering	the	details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be
accepted	and	the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to	https://www.packtpub.com/books/content/support	and
enter	the	name	of	the	book	in	the	search	field.	The	required	information	will	appear	under	the	Errata
section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At	Packt,	we	take
the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come	across	any	illegal	copies	of	our
works	in	any	form	on	the	Internet,	please	provide	us	with	the	location	address	or	website	name
immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable	content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at	<questions@packtpub.com>,
and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Introduction	to	Reactive
Programming
Every	day,	you'll	find	something	new	to	explore	in	terms	of	computer	programming	languages.	These	can
be	in	the	form	of	a	new	programming	language,	framework,	methodology,	or	even	a	new	paradigm.	You
can	work	with	all	of	these	to	solve	a	problem	or	improve	a	development	process.	Reactive	programming
is	a	new	paradigm	that	is	no	exception	to	this.	The	philosophy	behind	this	new	paradigm	is	that	an
application	needs	to	focus	on	what	to	do	and	not	how	to	do	it.	This	chapter	introduces	what	this	paradigm
is	about,	where	it	came	from,	and	what	ReactiveCocoa	is.

In	this	chapter	we	will	cover:

What	is	reactive	programming?
The	history	of	reactive	programming
Paradigms	–	imperative	versus	declarative
What	is	functional	programming?
Choosing	reactive	programming
Swift	–	interactive,	safe,	and	fast
ReactiveCocoa	extensions
Migrating	to	ReactiveCocoa
The	future	of	reactive	programming

What	is	reactive	programming?
Reactive	programming	is	a	computer	programming	paradigm	that's	based	on	the	propagation	of	change.
What	does	this	mean?	A	short	answer	to	this	can	be	that	when	something	changes	(the	value	of	a	text	field,
variable	value,	and	so	on),	other	objects	that	depend	on	this	value	must	be	notified	and	react	according	to
the	new	value.

To	visualize	it,	let's	take	a	look	at	an	example.	Imagine	that	you	have	a	home	automation	application.	Your
application	must	react	according	to	the	device's	state;	for	example,	if	the	front	door	is	open,	your
application	must	know	that	someone	is	coming	in.	Therefore,	it	can	then	switch	on	the	light.	When	the	light
is	switched	on	(it	doesn't	matter	whether	it	is	done	because	someone	has	opened	the	door	or	manually
switched	it	on),	the	security	camera	must	search	for	the	person	in	the	room	and	try	to	recognize	them.	If
the	person	has	not	been	recognized,	the	alarm	should	ring,	but	if	the	person	is	recognized,	the	alarm	must
react	by	shutting	down.	The	following	diagram	explains	this	idea	to	you	in	a	more	visual	way:

	

	

	

Keep	in	mind	that	everything	works	like	a	chain.	When	the	lights	are	on,	your	application	must	also	react
by	changing	its	switch	state	and	icon,	the	camera	preview	button	must	be	enabled,	and	so	on.

Once	you	have	understood	the	previous	example,	you	will	have	a	basic	idea	of	what	reactive
programming	is;	however,	you	may	think	that	this	application	can	also	be	used	without	including	reactive
programming.	You	can,	of	course,	do	this,	but	the	problem	lies	in	how	you	do	it.

The	traditional	style	of	programming	is	based	on	how	to	do	things.	This	means	that	you	have	to	create
many	observers,	making	development	more	difficult	and	fragile	as	you	have	to	be	aware	of	every	part	of

the	chain,	especially	when	adding	new	requirements.

Reactive	programming	is	based	on	a	different	way	of	development.	Basically,	you	just	have	to	create
rules	and	when	anything	happens,	the	rules	are	to	be	followed.	It	is	different	from	the	traditional	way	as
you	have	to	think	about	how	everything	works	and	then	create	rules.	Continuing	with	the	previous
example,	in	the	traditional	way	of	programming,	you	have	to	worry	about	whether	the	light	switch	icon	is
on	the	screen	or	not.	Therefore,	when	you	return	to	the	screen	where	this	icon	shows	up,	you	have	to
check	its	status	using	the	viewDidAppear	method.	With	reactive	programming,	you	usually	don't	have	to
worry	about	this.

When	developing	on	iOS,	you	have	to	remember	a	few	patterns,	such	as	MVC,	KVO,	and	notifications,
making	the	developer's	life	a	bit	complex	as	it	is	necessary	to	remember	every	detail	of	each	pattern.	This
can	include	unsubscribing	the	observer	using	the	deinit	method.	Reactive	programming	tries	to	merge
these	patterns	and	make	everything	work	in	the	same	way.

In	a	nutshell,	an	application	can	have	a	lot	of	states.	With	traditional	programming,	you	have	to	be	aware
of	all	of	these	states,	making	development	very	complex	and	hard	to	follow.	Reactive	programming
creates	a	new	approach	where	the	developer	doesn't	need	to	be	worried	about	the	complexity	of	states
and	their	internal	details;	they	just	need	to	know	the	main	idea	behind	the	application	flow.	Here's	one
definition	of	reactive	programming:	it	involves	programming	around	data	flows	and	the	propagation	of
change.

This	propagation	of	change	is	mainly	based	on	two	concepts,	signals	and	streams,	which	are	going	to	be
explained	in	the	upcoming	chapters.

The	history	of	reactive	programming
Since	the	time	that	computers	were	invented,	human	beings	have	started	looking	for	better	ways	of
programming	with	the	understanding	that	this	would	solve	their	problems.	Some	of	the	traditional
problems	in	computer	programming	include	performance,	maintenance,	development	speed,	and	so	on.

When	some	programming	languages	(mainly	object-oriented	programming	languages)	were	being	created
with	abstraction	as	their	main	feature,	at	that	time	it	was	very	questionable	because	some	people	couldn't
accept	that	hiding	the	internal	implementation	would	create	a	better	software.	Nowadays,	developers	and
companies	understand	that	abstraction	is	important	as	most	of	the	time,	there	is	no	sense	developing	at	a
very	low-level.	Besides	this,	a	function	or	method	implementation	can	be	changed	completely	without
changing	its	header	or	class	definition.

In	the	90s,	design	patterns	were	presented	to	the	world	in	a	book	called	Design	Patterns,	written	by	the
"Gang	of	Four"	(Erich	Gamma,	Richard	Helm,	Ralph	Johnson,	and	John	Vlissides)	by	Pearson.	The
idea	behind	these	patterns	was	to	create	templates	that	could	speed	up	development	and	make	software
maintenance	easier.	An	example	of	a	famous	design	pattern	is	(Model-View-Controller	(MVC).

The	MVC	pattern	could	also	mean	Massive	View	Controller;	therefore,	a	new	pattern	had	to	be	created.
Microsoft	created	a	new	pattern	called	Model-View-ViewModel	(MVVM)	in	the	late	noughties.	This
pattern	was	based	on	binding	data	with	a	view.

After	MVVM	was	created,	Microsoft	created	a	framework	called	(Reactive	Extensions	(Rx).	The	idea
behind	this	framework	was	to	make	it	possible	to	perform	reactive	programming	with	.NET	mainly	by
propagating	it	with	the	changes	made	using	LINQ.	This	is	the	reason	why	searching	for	reactive
programming	on	the	Internet	might	take	you	to	some	websites	that	use	the	following	logo:

	

	

	

Nowadays,	you	can	develop	software	using	reactive	programming	in	different	languages;	for	example,
you	can	use	ReactiveX	and	Rx.PHP	if	you	develop	on	PHP,	RxPY	if	you	develop	on	Python,	or	even
Reflex	if	you	develop	on	Perl.

Tip

Some	frameworks	are	based	on	Rx	and	some	are	not.	Before	using	a	specific	reactive	framework	for	your
programming	language,	it	is	a	good	idea	to	check	its	features	and	other	users'	opinions.	Remember	that
reactive	programming	is	a	relatively	new	programming	concept;	therefore,	some	frameworks	are	still
quite	young.

Paradigms	-	declarative	versus	imperative
When	we	talk	about	programming,	it	is	mostly	understood	that	we	are	talking	about	the	imperative
paradigm,	where	a	developer	tells	the	machine	how	to	perform	a	task	step	by	step.	C,	for	example,	is	an
imperative	programming	language	as	you	have	to	write	every	instruction	in	order	to	retrieve	the	desired
result.

The	declarative	paradigm,	in	contrast,	tells	you	that	you	have	to	code	what	you	want	in	order	to	make	the
machine	do	what	you	want	it	to	do,	but	it	doesn't	matter	how	you	do	this.	You	can	look	at	SQL	as	a
declarative	programming	language	as	you	don't	really	know	how	data	is	stored.	All	you	have	to	do	is
write	a	statement,	such	as	the	SELECT	statement,	and	then	you	receive	your	result.

For	a	more	visual	result,	let's	compare	some	code:	one	using	the	imperative	paradigm	and	the	other	one
using	the	declarative	paradigm.	Imagine	that	you	want	to	apply	VAT	to	the	prices	that	are	in	an	array	using
imperative	programming.	To	do	this,	you	may	have	to	iterate	through	every	element	in	the	array	and
remember	some	details;	for	example,	an	array	in	Swift	starts	at	position	0,	and	the	count	property	is
beyond	the	bounds	of	the	array.	Have	a	look	at	the	following	code:

let	prices:[Double]	=	[10,	8.1,	20.15]	

var	pricesVAT:[Double]	=	[Double]()	

	

for	i	in	0..<prices.count	{	

				var	newPrice:Double	=	prices[i]	*	1.2	

								pricesVAT.append(newPrice)	

}	

Now,	let's	create	the	equivalent	code	to	this	using	the	declarative	programming	approach.	Basically,	we
are	going	to	use	the	map	function	to	make	the	final	code	more	readable:

var	pricesVAT	=	[10,	8.1,	20.15].map	{	(element)	->	Double	in	

				return	element	*	1.2	

}	

In	the	preceding	code,	we	just	describe	what	we	want	to	do,	rather	than	how	to	do	it,	how	an	array	works,
and	so	on.

If	you've	understood	the	difference	between	the	code,	remember	that	reactive	programming	is	a	branch	of
declarative	programming.	This	means	that	it	can	be	simple	for	a	new	developer	or	a	bit	hard	for	a
developer	who	has	been	working	with	imperative	programming	for	a	long	time.

Note

If	you	explore	declarative	programming	and	reactive	programming	further,	you	will	see	that	between	them
there's	another	category	called	dataflow.

This	paradigm	is	based	on	values	that	change	over	time.	A	typical	example	of	this	is	the	comparison	of
variables	with	a	spreadsheet.	Let's	assume	we	have	the	following	code:

var	a	=	9	

var	b	=	15	

var	c	=	a	+	b	

As	you	see,	the	value	of	variable	c	is	24.	What	happens	to	the	value	of	variable	c	if	we	change	the	value
of	a	or	b?	The	answer,	as	you	know,	is:	it	remains	the	same.	Let's	pretend	that	our	application	has	a
shopping	cart:	variables	a	and	b	represent	the	prices	of	two	products	and	c	is	the	amount	to	be	paid.
Variables	a	and	b	can	change	their	value	over	time:	this	can	be	due	to	a	change	in	product,	discount
voucher,	or	some	other	reason.	In	such	a	case,	we	have	to	remember	to	update	the	value	of	variable	c,
which	can	make	development	a	bit	fragile.

Now,	let's	visualize	this	sample	on	a	spreadsheet.	Let's	add	value	9	to	cell	A1	and	15	to	cell	B1.	These
cells,	therefore,	represent	variables	a	and	b	from	our	previous	code.	Cell	C1	has	a	formula	that	represents
the	sum	of	A1	with	B1,	something	that	looks	like	this:	C1=A1+B1.	Any	changes	made	in	A1	or	B1	will
automatically	update	the	result	of	C1,	and	if	any	other	cells	reference	C1,	they	will	also	be	updated.	The
following	screenshot	shows	this	example	in	a	visual	way:

	

	

	

After	comparing	the	first	code	with	this	spreadsheet	example,	you	can	now	understand	what	dataflow	is
all	about.	Today's	applications	change	values	very	frequently	over	a	period	of	time.	This	can	be	because	a
device	has	changed	its	state	(it's	lost	a	network	connection,	for	example),	some	information	was	received
from	the	network,	an	animation	has	finished,	and	so	on.	Each	of	these	events	may	change	the	application's
status	and	update	the	UI.

Some	people	think	that	declarative	programming	has	a	lower	rate	of	performance	than	imperative
programming,	but	the	reality	is	a	bit	different.	Let's	perform	some	benchmarking	to	check	which	one	is
faster.	Create	a	new,	single	view	project,	and	add	the	following	code	to	the	viewDidLoad	method:

override	func	viewDidLoad()	{	

								super.viewDidLoad()	

								let	array1:[Double]	=	[9,15.5,	3,	18,	7.9,	5.5,	2.2,	1.89,	995,	123.3,	4,	

6.2,	12.12,	7,45,	6.61,	7.1,	2.9,	3.5,	52.1,	90,	82.2]	

								var	array2:[Double]	

	

								let	start	=	CFAbsoluteTimeGetCurrent()	

								array2	=	[Double]()	

								for	i	in	0..<array1.count	{	

												let	element	=	array1[i]	*	3.3	

												array2.append(element)	

								}	

								print(CFAbsoluteTimeGetCurrent()	-	start)	

				}	

Execute	this	code,	and	take	note	of	the	execution	time	when	it's	in	imperative	mode.	On	a	MacBook	Pro
with	a	2.6	GHz	i5	processor,	it	took	0.000124990940093994	seconds.	Now,	update	the	code	to	be	a
declarative	one	by	replacing	your	current	code	with	the	highlighted	one:

override	func	viewDidLoad()	{	

								super.viewDidLoad()	

								let	array1:[Double]	=	[9,15.5,	3,	18,	7.9,	5.5,	2.2,	1.89,	995,	123.3,	4,	

6.2,	12.12,	7,45,	6.61,	7.1,	2.9,	3.5,	52.1,	90,	82.2]	

								var	array2:[Double]	

									

								let	start	=	CFAbsoluteTimeGetCurrent()	

								array2	=	array1.map({	(element)	->	Double	in	

												return	element	*	3.3	

								})	

								print(CFAbsoluteTimeGetCurrent()	-	start)	

				}	

Execute	the	code	again	using	the	same	simulator,	and	take	note	of	the	execution	time.	Using	the	machine
and	simulator	we	saw	previously,	it	took	0.0000889897346496582	seconds.

Why?	The	reason	for	this	is	that	a	declarative	function	might	be	optimized	by	the	compiler	or	built-in
libraries,	while	when	using	an	imperative	function,	you	have	to	optimize	yourself.

This	reasoning	behind	this	is	simple	logic:	if	you	compare	the	execution	of	a	SQL	SELECT	statement	with
code	that's	built	from	scratch	you	can	think	about	which	one	has	a	better	performance.	How	long	does	the
SELECT	statement	take	to	filter	50,000	records	from	a	table	of	1,000,000	records?	How	long	would	it	take
if	you	had	to	write	an	equivalent	filter	using	imperative	programming?

What	is	functional	programming?
Once	you	read	up	on	reactive	programming,	you	will	also	find	something	called	functional	reactive
programming	(FRP).	Functional	programming	is	a	declarative	programming	paradigm	that	avoids	the
changing	of	variable	status	and	mutable	data.

Functional	programming	has	a	few	features,	such	as	first-class	functions	(you	can	send	functions	as
arguments,	like	you	do	in	Haskell),	immutable	data,	reducing,	pipelining,	recursing,	currying	(functions
with	multiple	parameters),	and	monads.	However,	some	authors	prefer	describing	it	as	programming	with
functions	that	have	no	side	effects,	which	means	that	a	function	doesn't	change	any	data	outside	of	it.

Let's	take	a	look	at	a	sample	of	nonfunctional	programming	for	a	better	understanding.	Have	a	look	at	the
following	code,	and	pay	attention	to	how	it	changes	an	external	value:

func	changeSingletonValue(){	

				let	singleton	=	Singleton.instance()	

				singleton.setValue("New	Value",	forKey:	"MyKey")	

}	

This	code	is	a	side	effect,	and	this	is	what	you	have	to	try	to	avoid	when	using	functional	programming;
try	to	use	more	deterministic	functions	that	don't	use	global	variables.

Using	methods,	such	as	map	(as	we	saw	in	a	previous	sample),	reduce,	sort,	filter,	and	other	samples
of	functional	programming,	ensures	that	you	send	functions	as	arguments	and	don't	use	external	stuff.

To	sum	up,	there	are	frameworks	that	are	reactive	but	not	based	on	functional	programming,	and	there	are
other	frameworks,	such	as	ReactiveCocoa,	that	are	reactive	and	functional.

Choosing	reactive	programming
One	difficult	question	you	may	ask	yourself	is,	"When	do	I	have	to	use	reactive	programming?"	Basically,
there	is	no	right	or	wrong	answer	to	this	question;	however,	there	are	some	questions	that	you	have	to	ask
yourself.	If	your	application	(or	framework)	needs	to	synchronize	asynchronous	calls,	if	you	would	like	to
merge	different	patterns	(MVC,	KVO,	notifications,	and	so	on)	into	one,	or	if	your	application	needs	to
check	a	lot	of	rules	before	before	performing	some	operations,	reactive	programming	is	probably	right	for
you.

Different	industries	have	started	using	reactive	programming,	such	as	the	robotics	industry,	the	health
industry,	the	tourism	industry,	the	gaming	industry,	and	even	traditional	mobile	applications	that	need	to
use	different	asynchronous	features.	These	may	include	GPS	and	other	sensors.

Another	good	news	about	using	reactive	programming,	and	in	this	case,	ReactiveCocoa,	is	that	it	is	ready
for	failures.	When	using	imperative	languages,	such	as	C	or	Pascal,	the	developer	needs	to	check	for
errors	very	frequently	and	changing	the	application	status	can	be	a	hard	task.	Object-oriented
programming	(OOP)	usually	works	with	exception	propagation,	which	is	a	better	approach,	but	it	can
sometimes	also	be	hard	to	use.	ReactiveCocoa	usually	considers	two	calls	when	trying	to	perform	a	task:
the	first	one	deals	with	how	to	react	in	case	of	success,	and	the	second	deals	with	how	to	react	in	case	of
an	error.

When	should	you	not	use	reactive	programming?	This	is	hard	to	answer.	There	may	not	be	a	particular
reason	for	not	using	reactive	programming.	Only	if	it	conflicts	with	any	other	library	that's	used	on	your
project	should	you	not	consider	using	it.

Swift	-	interactive,	safe,	and	fast
The	Swift	programming	language	was	announced	by	Apple	in	the	middle	of	2014.	The	idea	was	to	create
a	new	programming	language	that	would	replace	Objective-C.	This	way,	it	could	have	a	cleaner	and	safer
language	without	the	limitation	of	retaining	C's	language	syntax.	This	new	programming	language	needed
to	be	compatible	with	Objective-C	as	they	would	basically	share	the	same	space	for	a	long	time;
however,	Swift	borrows	some	features	from	other	programming	languages	(such	as	Haskell),	allowing
you	to	program	more	like	a	functional	paradigm.

Swift	is	now	open	source;	this	means	that	more	people	can	improve	this	language	by	adding	new	features,
fixing	bugs,	and	optimizing	it.	One	point	of	view	is	that	it	is	good	that	this	language	is	continuously
evolving,	but	on	the	other	hand,	the	syntax	also	changes	frequently.	If	you	check	the	first	Worldwide
Developers	Conference	(WWDC)	2014	when	Swift	was	first	announced,	you	will	see	a	few	features,

such	as	the	following	ones,	that	are	out	of	date:	

	

Some	people	say	that	Apple	will	stop	supporting	Objective-C	soon	or	later,	and	other	people	say	that
there	will	be	features	that	are	available	only	for	Swift.	This	actually	already	holds	true	for	a	protocol-
oriented	feature,	for	example.	It	doesn't	matter	whether	these	rumors	are	true	or	not.	It	is	very	clear	that
Apple	will	be	focusing	more	on	Swift	than	Objective-C	from	now	on.

Keeping	this	fact	in	mind,	take	care	when	updating	Xcode	to	ensure	that	the	version	of	ReactiveCocoa	is
compatible	with	the	newest	version	of	Swift.	In	case	of	compiler	errors,	remember	that	you	can	always
try	to	update	your	project	and	the	ReactiveCocoa	framework	by	clicking	on	the	Edit	menu,	opening	the
Convert	option,	and	then	selecting	the	To	Latest	Swift	Syntax...	submenu,	as	shown	in	the	following

screenshot:	

	

If	you	have	problems	with	ReactiveCocoa	and	the	new	version	of	Swift,	first	check	whether	there	is	a
new	version	of	the	framework	before	trying	to	fix	it	by	yourself.

There	are	different	ways	to	program	with	Swift;	therefore,	it	is	considered	a	multiparadigm	programming
language.	FRP	with	Swift	requires	knowledge	about	closures	more	than	using	a	target-action	pattern,
which	is	based	on	the	selector	of	object	methods.

The	ReactiveCocoa	project
Since	the	time	reactive	programming	has	increased	in	popularity,	a	variety	of	languages	have	started	their
own	framework	that	allows	programmers	to	develop	using	reactive	programming;	Swift	is	no	exception	to
this.	This	project	was	created	by	Josh	Abernathy	and	Justin	Spahr-Summers,	two	GitHub	employees	who
realized	tha	GitHub	client	on	Mac	had	many	network	calls	and	they	could	solve	some	bugs	related	to	it	in
a	different	way.	The	authors	of	ReactiveCocoa	define	it	as	a	Cocoa	framework	that	helps	compose	and
transform	streams	of	values.	This	project,	also	called	RAC,	has	the	following	image	as	its	logo:

	

	

	

This	project	was	started	in	March	2012	by	Josh	Abernathy.	As	Swift	did	not	exist	at	the	time,	it	was
developed	for	Objective-C.	After	the	popularity	of	the	Swift	programming	language,	a	new	branch	was
created	and	ReactiveCocoa	was	then	ported	to	Swift.	When	the	process	was	completed,	version	3.0	of
ReactiveCocoa	was	released	with	Swift	as	its	main	language.

If	you	still	have	projects	that	use	Objective-C	and	you	would	like	to	use	ReactiveCocoa,	don't	worry:	you
can	still	do	this	as	Swift	and	Objective-C	can	exchange	calls	between	each	other.	You	can	read	more
about	this	bridging	at
https://github.com/ReactiveCocoa/ReactiveCocoa/blob/master/Documentation/ObjectiveCBridging.md.

An	alternative	to	using	ReactiveCocoa	is	RxSwift.	The	main	difference	between	them	is	that	RxSwift	was
a	port	of	Microsoft	Rx	to	the	Swift	programming	language.	ReactiveCocoa	was	inspired	by	Rx;	however,
it	is	an	independent	project,	and	the	idea	does	not	revolve	around	the	porting	of	Rx.

https://github.com/ReactiveCocoa/ReactiveCocoa/blob/master/Documentation/ObjectiveCBridging.md

ReactiveCocoa	extensions
Is	ReactiveCocoa	alone?	No,	it	is	not.	Today,	there	are	many	frameworks	that	are	based	on
ReactiveCocoa;	thus,	you	don't	have	to	worry	about	whether	the	required	frameworks	are	compatible	with
ReactiveCocoa.	They	are	probably	third-party	extensions	of	your	frameworks	already.

In	Chapter	5,	Enhance	Your	Application	Using	RAC	Extensions,	you	will	learn	how	to	use
ReactiveCoreData	(RCD),	a	framework	that	combines	Core	Data	with	ReactiveCocoa;	however,	this	is
not	the	only	framework	that's	based	on	the	idea	behind	ReactiveCocoa.	Here	are	a	few	frameworks	that
are	based	on	ReactiveCocoa.

ReactiveCocoaLayout	(RCL):	This	describes	a	way	of	creating	layouts	with	code	in	a	reactive
way.	This	project	is	still	in	the	alpha	phase,	and	some	people	have	complained	that	everything	you
do	is	based	on	code,	not	on	Interface	Builder	(IB).	However,	for	people	who	think	that	code	is
everything,	it	might	be	a	great	solution.	Check	out	this	project	at
https://github.com/ReactiveCocoa/ReactiveCocoaLayout.
ReactiveAnimation:	This	is	a	framework	to	create	animations	for	iOS	and	OS	X.	You	will	find	a
good	example	of	it	for	Mac.	For	more	information	on	this	framework,	visit
https://github.com/ReactiveCocoa/ReactiveAnimation.
ReactiveCocoaIO:	This	is	a	file	manager	that's	based	on	reactive	programming.	This	framework
replaces	NSFileManager,	and	because	it	works	in	an	asynchronous	way,	it	is	supposed	to	be	faster.
For	more	information	on	this	framework,	take	a	look	at
https://github.com/ReactiveCocoa/ReactiveCocoaIO.

https://github.com/ReactiveCocoa/ReactiveCocoaLayout
https://github.com/ReactiveCocoa/ReactiveAnimation
https://github.com/ReactiveCocoa/ReactiveCocoaIO

Migrating	to	ReactiveCocoa
A	question	you	might	ask	yourself	is,	"How	painful	is	it	to	migrate	to	ReactiveCocoa?"	This,	of	course,
depends	on	the	size	of	your	project,	its	complexity,	structure,	and	and	so	on;	however,	there	are	some
rules	that	you	can	follow	to	make	it	easier.

The	process	of	converting	an	application	code	into	an	application	that's	developed	with	ReactiveCocoa	is
called	RACify.	This	process	has	no	restrictive	rule.	What	you	have	are	some	steps	that	you	can	follow	to
create	the	right	type	of	signal	or	stream.

We	are	going	to	learn	more	about	this	process	in	Chapter	7,	Testing	Your	Application,	where	we	are	going
to	take	a	framework	and	convert	it	into	one	that	uses	ReactiveCocoa.

The	future	of	reactive	programming
Reactive	programming	is	a	relatively	new	paradigm;	therefore,	not	every	project	uses	it.	However,	it	is
now	being	accepted	by	a	lot	of	new	real-world	projects.

Imagine	that	day	by	day,	applications	are	becoming	more	complex	for	different	reasons:	smartphones	are
more	powerful	now,	they	come	with	a	lot	of	sensors,	and	working	with	asynchronous	calls	is	becoming
increasingly	common.

When	smartphones	first	started	gaining	popularity	with	the	first	iPhone	and	a	few	Android	devices,	their
applications	were	very	simple,	and	some	sensors	weren't	too	accurate.	Nowadays,	however,	companies
have	started	investing	in	mobile	applications,	and	you	can,	for	example,	request	a	taxi	with	your
smartphone,	make	payments	by	replacing	your	credit	card,	use	your	phone	as	a	boarding	pass,	and	so	on.

So,	what's	coming	up	next	in	terms	of	smartphones?	You'll	see	a	lot	more	features,	and	something	that	has
just	started	gaining	popularity	is	the	Internet	of	Things	(IoT),	a	concept	that	allows	you	to	control	home
devices	through	your	phone,	as	represented	in	the	following	figure:

	

This	new	concept,	as	you	can	imagine,	works	very	asynchronously.	You	can	try	it	out	for	yourself	using
the	HomeKit	framework.	This	type	of	development	can	be	controlled	through	a	simple	application;
however,	when	it	progresses	into	becoming	a	complex	application,	you	might	need	a	better	methodology
in	place.	Reactive	programming	is	considered	the	perfect	framework	for	developing	this	kind	of	an
application.

Health	sensors	may	also	be	the	next	generation	of	new	sensors	on	devices.	The	Apple	Watch	already
comes	with	a	heartbeat	sensor,	which	submits	information	to	your	phone,	and	you	can	access	it	through	the
HealthKit.	This	information	can	also	be	accessed	asynchronously,	especially	if	you	can	compare	it	with
data	on	the	Internet.

A	health	application	is	a	good	example	of	an	application	that	can	be	used	with	reactive	programming.
Every	time,	a	user's	health	information	changes,	the	application	reacts	in	a	different	way,	displaying
accurate	diagnostics:

	

What	about	learning?	Or	better	yet,	e-learning?	Believe	it	or	not,	there	will	come	a	time	when	we	will
have	to	explain	to	our	children	that	when	we	were	young,	we	had	to	physically	go	to	school.	Imagine	an
application	that	teaches	you	how	to	play	the	piano	at	home	with	other	remote	students.	In	such	a	case,
many	asynchronous	calls	can	be	made:	when	you	press	or	release	a	key	on	your	piano,	signals	are	sent	to
your	device	while	it	synchronizes	with	other	students	and	the	individual	scores.

Summary
In	this	chapter,	we	learned	what	functional	reactive	programming	is,	where	it	comes	from,	and	the
advantages	of	using	it.	Now,	you	can	appreciate	that	this	new	paradigm	has	had	a	long	history,	but	it
started	out	as	a	mature	concept	not	too	long	ago.

This	type	of	programming	paradigm	is	trending	these	days	as	it	fits	the	needs	of	the	applications	of	today.
This	also	makes	the	jobs	of	developers	a	lot	easier	easier.

Now	that	you	have	a	better	idea	about	reactive	programming	and	ReactiveCocoa,	be	prepared	because
we	are	going	to	start	working	with	the	two.	Don't	worry	if	you	think	that	some	concepts	look	different
because	actually	they	are.

Chapter	2.	Installing	ReactiveCocoa	and	Using	It
with	Playground
Sometimes	software	acts	like	a	do-it-yourself	product:	you've	just	bought	something	that	you	are	very
excited	about	using	as	soon	as	you	can,	but	before	doing	this,	you	have	to	put	together	some	stuff	first.	At
this	point,	you	might	want	to	use	the	ReactiveCocoa	framework;	however,	it	is	first	necessary	to	install	it.

There	are	a	few	ways	of	installing	ReactiveCocoa;	in	this	chapter,	we	are	going	to	learn	about	some	of
them.	We	are	also	going	to	test	the	ReactiveCocoa	framework	using	Playground;	this	will,	therefore,	give
us	a	basic	idea	of	how	it	works.

In	this	chapter,	we	will	cover	the	following	topics:

Cloning	ReactiveCocoa	framework
Installing	ReactiveCocoa	via	CocoaPods
Installing	CocoaPods	with	Carthage
Using	ReactiveCocoa	with	Playground

The	ReactiveCocoa	website
When	you	install	a	new	framework,	the	first	step	is	to	install	it	and	then	investigate	its	official	website.
This	is	usually	the	best	place	to	start	looking	for	documentation	or	any	other	starter	information.	Many
projects	have	websites	along	with	their	own	domains,	and	this	is	the	reason	that	you	will	find	a	few	links
leading	to	http://reactivecocoa.io.	This	is	a	website	without	very	much	information,	as	you	can	see	in	the
following	screenshot:

http://reactivecocoa.io

	

This	website	may	not	be	what	you	expect	it	to	be,	but	if	you	click	on	philosophy,	you	will	be	introduced
to	reactive	programming.	Once	you	have	read	the	philosophy	behind	reactive	programming,	you	will	be
willing	for	something	to	download;	in	this	case,	you	will	have	to	go	to	another	website	hosted	by	GitHub.

Open	your	web	browser	and	type	https://github.com/ReactiveCocoa/ReactiveCocoa.	If	you	have	already
downloaded	something	from	GitHub,	you	may	know	about	the	layout	of	the	website,	but	if	you	don't,	let's
take	a	quick	tour	of	it.

First,	take	a	look	at	the	Branch	drop-down	menu	that	is	located	before	the	files,	click	on	it	to	list	the
available	branches,	and	then	search	for	a	specific	branch.	Usually,	you	will	have	to	select	the	master
branch.	However,	sometimes,	if	you	are	working	with	a	feature	that	is	in	progress,	such	as	a	new	Swift
version,	you	may	need	to	change	it	by	clicking	on	this	drop-down	menu,	filtering	it	by	the	branch	name
and	selecting	the	desired	branch.	The	following	screenshot	shows	an	example	of	how	you	can	switch
branches:

	

Scroll	down	to	take	a	look	at	the	website,	and	you	will	then	see	the	initial	documentation,	originally	from
a	file	called	README.md,	which	gives	you	a	basic	idea	of	how	to	use	this	framework.	It	is	important	to
read	this	file	as	it	will	sometimes	give	you	crucial	information	of	the	current	version;	for	example,	if	you
read	this	file	when	version	3.0	of	ReactiveCocoa	was	released,	you	would	have	noticed	that	this	file
would	give	you	an	explanation	of	how	it	was	to	be	used	with	Swift	instead	of	Objective-C.

Tip

The	Swift	programming	language	is	still	changing	very	frequently.	To	know	more,	visit
https://developer.apple.com/swift/blog/?id=14,	https://developer.apple.com/swift/blog/?id=22,
https://developer.apple.com/swift/blog/?id=29,	and
https://en.wikipedia.org/wiki/Swift_%28programming_language%29.

In	the	directory	called	Documentation,	as	its	name	suggests,	there	are	files	that	represent	the
ReactiveCocoa	documentation,	which	should	be	checked	in	case	of	any	doubts	or	to	learn	about	new
concepts.	It	is	a	good	practice	to	check	whether	there	are	any	updates	by	taking	a	look	at	the	recent
developments	in	this	folder,	located	above	the	files,	as	highlighted	in	the	following	screenshot:

https://github.com/ReactiveCocoa/ReactiveCocoa
https://developer.apple.com/swift/blog/?id=14
https://developer.apple.com/swift/blog/?id=22
https://developer.apple.com/swift/blog/?id=29
https://en.wikipedia.org/wiki/Swift_%28programming_language%29

	

Back	to	the	root	directory.	On	the	right-hand	side,	you	will	see	some	components	that	allow	you	to
download	the	current	source	code,	something	that	is	very	common	when	you	want	a	project	without	its
history.	Here,	you	have	a	text	field	with	a	URL	and	two	buttons	under	it,	as	demonstrated	in	the	following
screenshot:

	

The	text	field	contains	the	URL	used	to	check	the	source	code	with	its	history	using	Git.	The	Clone	in
Desktop	button	does	the	same	thing,	but	you	must	have	a	desktop	application	installed	in	your	computer.

Note

There	are	many	desktop	applications	that	you	can	use	to	control	Git's	repositories;	however,	if	you	are	not
contributing	to	the	ReactiveCocoa	project,	you	may	not	need	to	worry	about	these	programs.

The	third	button,	Download	ZIP,	is	to	download	the	source	code	without	any	GitHub	links.	This	option	is
very	common	when	you	just	want	to	download	a	project	without	any	links	to	GitHub;	however,	the
ReactiveCocoa	installation	needs	this	link.	Therefore,	it	is	not	common	to	use	this	option	for
ReactiveCocoa.

Exploring	ReactiveCocoa
In	this	section,	we	will	learn	how	to	install	ReactiveCocoa	by	checking	out	its	GitHub	repository.	To	do
this,	we	will	first	create	a	simple	project	in	Xcode	and	then	add	ReactiveCocoa	to	it.

Open	Xcode,	and	select	the	Create	a	new	Xcode	project	option,	as	shown	in	the	following	screenshot:

	

On	the	left-hand	side	of	the	window,	as	shown	in	the	following	screenshot,	select	the	Application
subsection	under	the	iOS	section,	and	choose	Single	View	Application	as	the	project	template:

	

From	now	on,	every	time	a	new	project	needs	to	be	created	and	nothing	else	is	specified,	we	will	assume
that	it	is	Single	View	Application.

Tip

You	can	use	ReactiveCocoa	to	develop	with	OS	X;	however,	this	book	will	focus	only	on	iOS
development.

In	this	dialog	box,	set	Product	Name	to	RAC	from	GitHub,	and	make	sure	that	the	main	Language	is	set
as	Swift:

	

Select	a	folder	in	order	to	save	your	project,	and	make	sure	that	the	option	to	create	the	Git	repository	is
checked:

	

Once	the	project	is	open,	we'll	open	an	old	friend	called	Terminal.	Open	the	finder	window,	and	use	the
command	+	shift	+	U	combination	key	to	go	to	the	Utilities	folder.	Scroll	down	until	you	are	able	to
see	the	Terminal	icon	and	double-click	on	it:

	

After	opening	the	terminal,	we	need	to	switch	to	our	project	folder.	If	you	are	already	familiar	with	the
terminal,	you	can	change	it	using	the	cd	command,	followed	by	your	project	folder.	If	you	are	not	used	to
the	terminal	or	you	just	want	to	change	the	directory	through	a	simple	method,	just	type	cd	and	a
whitespace	(do	not	press	enter	yet)	and	return	to	Xcode.	In	Project	Navigator,	right-click	on	the	project,
and	when	the	menu	appears,	select	Show	in	Finder,	as	demonstrated	in	the	following	screenshot:

	

Now,	you	have	to	click	on	the	folder	icon	that	is	shown	on	the	top	bar	and	drag	it	to	your	terminal
window.	It	will	complete	your	cd	command,	and	you	can	then	press	enter:

	

At	this	point,	we	are	ready	to	take	a	look	at	the	ReactiveCocoa	project.	As	we	already	have	a	Git
repository,	we	don't	have	to	clone	the	framework's	repository,	we	just	need	to	create	a	submodule	of	it.
To	do	this,	we	will	use	the	git	command	submodule	with	the	add	option	for	-b	to	specify	the	branch
followed	by	ReactiveCocoa's	URL.	In	this	case,	we	will	use	the	master	branch,	but	be	aware	that	you
might	need	another	branch;	for	example,	when	Swift	2	was	released,	you	had	to	use	the	swift2	branch.
Our	final	command	will	be	like	this:

				git	submodule	add	-b	master	https://github.com/ReactiveCocoa/ReactiveCocoa

You	will	see	a	few	lines	displaying	the	progress	on	the	screen;	it	may	take	a	few	seconds	for	this
command	to	complete	as	it	needs	to	download	some	files	from	the	Internet.	When	the	command	finishes,
you	can	check	whether	a	new	folder,	called	ReactiveCocoa,	has	been	created.	Navigate	to	this	folder	by
typing	cd	ReactiveCocoa.	Check	whether	you	have	changed	the	script/bootstrap	directory	type,
which	is	a	script	that	checks	for	download	dependencies.	Again,	you	will	have	to	wait	a	few	seconds.

When	the	prompt	returns,	open	the	current	folder	with	the	open	.	command	(the	dot	character	belongs	to
the	command).	A	finder	window	will	appear;	here,	you	will	only	have	to	drag	the
ReactiveCocoa.xcodeproj	file	into	Xcode	Project	Navigator.

Note

If	you	are	working	with	workspaces,	you	should	move/drag	the	.xcodeproj	files	to	the	workspace	rather
than	your	project.

Once	you've	done	this,	you	will	have	to	repeat	the	operation	for	two	more	files.	Return	to	the	terminal
window,	type	open	Carthage/Checkouts/Box,	drag	the	Box.xcodeproj	file	to	your	project,	type	open

Carthage/Checkouts/Result/,	and	drag	the	Result.xcodeproj	file	into	your	Xcode	project.	The
final	result	of	the	project	should	be	similar	to	the	following	screenshot:

	

As	you	can	see,	the	project	file	has	an	alphabet	M	attached	to	it	as	it	was	modified	but	no	other	file	was
marked	with	any	change.

Tip

The	Box	framework	was	removed	in	the	Swift	2	branch;	you	will	probably	need	to	ignore	the	steps	that
mention	it.

Go	to	the	your	Project	Navigator,	click	on	the	RAC	from	GitHub	project,	click	on	the	General	tab,
scroll	down	to	the	Embedded	Binaries	section,	and	click	on	the	plus	(+)	sign	that	is	located	under	it:

	

A	dialog	will	appear	asking	you	to	choose	the	frameworks;	select	ReactiveCocoa.framework,
Box.framework,	and	Result.framework.	They	are	duplicated	because	one	of	them	is	the	Mac	version
and	the	other	one	is	the	iOS	version.	The	iOS	version	is	usually	the	second	one,	but	bear	in	mind	that	it
may	not	be	the	same	in	different	versions.	So,	you	have	to	choose	one,	and	if	it	doesn't	work,	replace	it
with	another.

	

This	should	be	enough.	There	is	only	one	more	step	to	be	performed	in	the	case	of	developing	only	with
Objective-C.	This	includes	going	to	the	building	settings	of	your	project	and	ensuring	that	the	Embedded
Content	Contains	Swift	Code	option	is	set	to	YES	(nowadays,	this	is	the	value	by	default).

Now,	it	is	time	to	test	our	application!	It	looks	like	everything	is	working	already,	but	we	need	to	make
sure	of	this.	Go	to	your	storyboard,	and	add	the	only	scene	that	we	have	with	UITextField	on	top	of	the
screen	and	UILabel	under	it.	Add	the	constraints	that	you	think	are	necessary,	and	open	Assistant	Editor
with	Option	+	command	+	,	(comma).	Connect	the	text	field	to	a	property	called	textField	and	the	label
to	a	property	called	label.	This	will	be	the	final	code:

@IBOutlet	weak	var	textField:	UITextField!	

				@IBOutlet	weak	var	label:	UILabel!	

If	you	want,	change	the	text	field	placeholder	on	its	Attribute	Inspector	to	Type	something	here....
This	will,	therefore,	make	this	simple	application	more	user	friendly.

Go	to	the	ViewController.swift	file,	and	start	importing	the	ReactiveCocoa	framework	using	the
following	code.

import	ReactiveCocoa	

Now,	we	only	need	to	add	a	simple	code	in	the	viewDidLoad	method	to	make	sure	that	we	are	able	to	use
the	ReactiveCocoa	framework.	Don't	worry	about	the	meaning	of	this	code,	we	will	explain	it	in	the
upcoming	chapters;	for	now,	just	add	the	highlighted	code	in	your	viewDidLoad	method:

override	func	viewDidLoad()	{	

								super.viewDidLoad()	

								textField.rac_textSignal().subscribeNext	{	text	in	

												self.label.text	=	text	as?	String	

								}	

				}	

The	code	is	now	complete.	Press	play	or	command	+	R	(build	and	run)	if	you	like	shortcuts,	and	type
something	in	the	text	field.	The	final	result	shows	that	the	text	will	be	copied	onto	the	label:

	

Great,	now	ReactiveCocoa	is	installed.	However,	this	is	not	the	only	way	that	you	can	install	it.	In	the
next	section,	you	will	learn	about	a	very	popular	way	to	use	CocoaPods.

Installing	ReactiveCocoa	via	CocoaPods
During	the	last	few	years,	every	programming	language	has	had	its	own	package	control	system,	such	as
PHP	with	PEAR,	Perl	with	CPAN,	Ruby	with	Gem,	and	Lua	with	Rocks.	The	reason	for	this	is	that	some
packages	(such	as	libraries,	frameworks,	and	so	on)	have	dependencies,	these	dependencies	may	also
have	other	dependencies,	and	so	on.	Besides	this,	if	you	are	using	a	certain	version	of	a	library,	the
dependencies	must	be	in	a	version	that	the	library	is	compatible	with.

For	these	reasons,	a	project	called	CocoaPods	was	created.	This	program	allows	you	to	easily	download
a	framework	with	its	dependencies,	and	this	is	an	alternative	way	of	installing	ReactiveCocoa.

Note

Although	you	can	install	ReactiveCocoa	with	CocoaPods,	it	is	not	officially	supported	by	the
ReactiveCocoa	team.

If	you	have	never	installed	CocoaPods	on	your	machine,	you	have	to	start	by	installing	it.	Firstly,	you	need
administration	permission	to	do	this;	if	you	are	using	a	standard	user,	you	have	to	switch	to	an
administrator	account.	There	is	another	way	to	install	it	without	administrator	permission,	which	will	be
explained	afterwards.

Open	a	finder	window,	use	the	command	+	shift	+	U	combination	to	open	the	Utilities	folder,	and	then
open	the	terminal	as	we	did	earlier.	Now,	just	type	the	following	command	to	install	CocoaPods:

sudo	gem	install	cocoapods

This	command	will	prompt	your	password,	as	sudo	is	a	Unix	command.	When	you	type	your	password,
no	character	will	echo	for	security	reasons.

Installing	CocoaPods	without	administrator	permission
If	for	any	reason,	you	can't	use	an	administrator's	account,	you	can	specify	a	directory	for	its	installation;
but	remember,	the	CocoaPods	program	will	only	be	installed	for	the	current	user,	other	users	will	need	to
repeat	the	operation.

Note

When	the	first	version	of	OS	X	10.11	(El	Capitan)	was	released,	there	was	an	issue	when	installing	it
with	the	sudo	command;	to	solve	this	problem,	you	had	to	install	it	by	specifying	a	user	path.

Open	a	finder	window,	go	to	the	Utilities	folder,	and	open	the	terminal.	Create	a	folder,	called	Gems,
in	your	HOME	directory	using	the	following	command:

				mkdir	-p	$HOME/Gems

After	this,	create	a	bash	variable	to	let	the	gem	program	know	the	location	to	store	the	software	it	has
downloaded.	This	variable	must	be	called	GEM_HOME,	and	you	have	to	set	its	value	using	the	following
command:

				export	GEM_HOME=$HOME/Gems

Now,	you	can	use	the	gem	command	without	using	sudo:

				gem	install	cocoapods

You	now	have	CocoaPods	installed	but	only	for	the	current	user.	The	command	line	has	no	idea	that	the
Gems	directory	or	any	of	its	subdirectories	has	any	program	installed.	We	have	to	let	the	command	line
know	that	programs	inside	the	Gems/bin	directory	must	be	executed	if	called.	To	do	this,	let's	add	a	line
to	the	.profile	file	as	this	file	is	executed	every	time	we	open	the	terminal	by	typing	the	following
commands	in	it:

				echo	'export	PATH=$PATH:$HOME/Gems/bin'	>>	$HOME/.profile

				chmod	700	$HOME/.profile

Next,	exit	the	terminal	and	open	it	again.

Tip

Another	way	of	installing	a	standard	user	is	using	the	--user-install	option.	Here,	you	don't	have	to
specify	a	destination	directory,	and	it	will	also	update	the	.profile	file	for	you.	This	method	is	also
acceptable;	however,	it	will	install	into	a	folder	called	.gem,	which	is	supposed	to	be	hidden.

At	this	point,	it	doesn't	matter	if	you've	installed	CocoaPods	as	an	administrator	or	a	standard	user.	You
just	have	to	type	pod	in	the	terminal,	and	you'll	see	an	output	similar	to	what	is	shown	in	the	following

screenshot:

	

	

	

Now,	open	Xcode,	create	a	new	Single	View	Application,	and	call	it	RAC	from	Pod.	The	only	difference
between	the	previous	process	of	creating	projects	and	this	one	is	Project	Name,	as	you	can	see	in	the
following	sample	dialog:

	

	

	

Return	to	the	terminal,	and	switch	over	to	your	project	directory	as	discussed	earlier.	We	have	to	create	a
file	called	Podfile,	and	use	the	TextEdit	editor	to	edit	it	using	the	following	commands:

				touch	Podfile

				open	-e	Podfile

Once	TextEdit	is	open,	you	have	to	add	this	content	to	it:

platform	:ios,	'8.0'	

use_frameworks!	

	

target	'RAC	from	Pod'	do	

	

pod	'ReactiveCocoa',	'4.0.4-alpha-4'	

	

end	

Save	the	file	using	command	+	S	and	close	TextEdit	with	command	+Q.	Now,	use	the	pod	install
command	to	install	it.	You	will	see	a	message	at	the	end	such	as	From	now	on	use	`RAC	from
Pod.xcworkspace`.	Once	you've	received	the	message,	close	your	Xcode	project	and	open	the	new
workspace.	Here,	you	can	repeat	the	same	test	we	performed	in	our	first	project.

Installing	CocoaPods	with	Carthage
Carthage	is	another	package	system	that	is	developed	for	OS	X	and	iOS.	Some	people	prefer	Carthage
over	CocoaPods	as	it	is	simpler	and	less	intrusive,	while	others	may	prefer	CocoaPods	due	to	its
completeness	and	flexibility.	This	debate	is	out	of	the	scope	of	this	book.	The	important	part	that	you	have
to	consider	is	that	ReactiveCocoa	doesn't	support	CocoaPods	officially.	Rather,	it	supports	Carthage,	and
this	reason	will	be	explained	in	this	section.

Carthage	can	be	installed	by	downloading	the	latest	version	of	it	from
https://github.com/Carthage/Carthage/releases/.	When	the	file	with	the	.pkg	extension	has	been
downloaded,	you	just	have	to	double-click	on	it	and	follow	the	instructions.	You	will	need	administrator
permission	to	do	this.

Another	way	of	doing	this	is	using	Homebrew,	another	package	manager	for	OS	X.	If	you	don't	have	brew
installed	in	your	computer,	you	can	install	it	opening	the	terminal	and	typing	the	following	command:

				ruby	-e	"$(curl	-fsSL	

https://raw.githubusercontent.com/Homebrew/install/master/install)"

You	will	now	get	a	Password	prompt.	To	install	brew	as	the	administrator,	just	feed	the	password	into
this	prompt.	Wait	for	a	few	seconds	until	the	installation	is	done.	Now,	just	type	the	following	command
and	brew	will	install	Carthage	for	you:

				brew	install	carthage

Great!	Carthage	is	installed!	We	now	have	to	use	it	in	a	project.	Open	Xcode,	and	create	a	new	Single
View	Application	called	RAC	from	Carthage:

	

https://github.com/Carthage/Carthage/releases/

	

	

Return	to	the	terminal,	and	use	the	cd	command,	as	we	learned	earlier	in	this	chapter,	to	switch	to	your
project	directory.

Here,	we	have	to	create	a	file	called	Cartfile,	and	specify	the	framework	that	we	want	to	download	and
compile.	You	can	do	this	using	the	following	commands:

				touch	Cartfile

				open	-e	Cartfile

TextEdit	will	open	with	an	empty	file.	The	syntax	for	this	file	is	bit	easy.	First,	you	have	to	tell	the
repository	about	the	source	of	your	framework.	As	GitHub	is	currently	the	only	framework	supported	by
Carthage,	you	only	have	to	write	github.	After	this,	you	have	to	specify	the	path	of	the	framework	or
library	that	you	want	to	download;	in	this	case,	we	have	to	specify	"ReactiveCocoa/ReactiveCocoa".
Finally,	you	can	optionally	specify	the	version	that	you	want	to	download;	for	example,	if	you	want	the
version	for	Swift	2,	you	just	have	to	write	swift2.	This	will	be	the	final	line	of	code:

github	"ReactiveCocoa/ReactiveCocoa"	"swift2"	

Save	the	file	using	command	+	S,	and	close	TextEdit	using	command	+	Q.	In	the	terminal,	type	the
following	command	to	download	the	ReactiveCocoa	framework:

				carthage	update

This	will	take	a	few	seconds	to	complete.	When	it	finishes,	you	will	see	a	folder	called	Carthage,	with	a
subfolder	called	Checkouts	inside	it.	Here,	you	can	open	the	ReactiveCocoa	folder	with	the	open
Carthage/Checkouts/ReactiveCocoa	command,	and	drag	the	ReactiveCocoa.xcodeproj	file	into
your	project.	Do	the	same	for	the	Result	framework.

Go	to	Xcode,	click	on	your	project,	select	the	application	target,	scroll	down	to	Embedded	Binaries,
click	on	the	the	plus	(+)	sign,	and	select	the	ReactiveCocoa	and	Result	frameworks.

Now,	repeat	the	same	process	that	we	performed	in	the	first	example	by	adding	a	text	field	and	label	to
the	scene	and	placing	the	same	code	on	the	View	Controller.	Press	play	and	test	the	application	and	...
voilà!	You	will	see	that	ReactiveCocoa	has	been	installed	again.

Using	Playground
Since	Swift	was	released,	Xcode	comes	with	a	feature	called	Playground.	This	is	used	to	test	Swift	code
in	real	time	in	a	way	that	allows	you	to	see	the	results	without	the	need	to	execute	the	whole	application.

The	advantage	of	using	Playground	is	that	it	is	much	faster	to	test	than	if	you	create	new	applications	or
unit	tests	when	you	have	small	tasks,	such	as	testing	the	result	of	a	signal	or	mutable	property.

In	this	section,	we	are	going	to	use	Playground	to	test	the	ReactiveCocoa	framework.

Start	by	creating	a	new	Single	View	Application	called	RAC	Playground.	As	usual,	check	whether	Swift
is	the	main	programming	language	for	this	project:

	

Choose	your	favorite	way	of	installing	ReactiveCocoa	and	then	install	it	(time	to	practice!).	Once
everything	is	done,	select	the	ReactiveCocoa	project	from	Project	Navigator	(not	your	application),	and
add	a	playground	to	it	by	using	the	command	+	N	shortcut	in	order	to	add	a	new	file.	When	the	dialog
requesting	you	to	choose	a	template	appears,	select	Playground,	as	demonstrated	in	the	following

screenshot:

	

When	the	name	is	asked,	call	it	Reactive	Playground,	and	then	save	it.	It	is	very	important	to	check	the
iOS	framework	in	the	Save	dialog.

	

According	to	your	Xcode	version,	if	you	start	importing	ReactiveCocoa	into	your	playground,	you	will
see	that	Playground	doesn't	recognize	it	as	a	framework.

Click	on	the	ReactiveCocoa	project	in	Project	Navigator,	select	the	ReactiveCocoa-iOS	target,	click
on	the	Build	Settings	tab,	and	then	change	the	Architectures	record	to	arm64,	as	shown	in	the	following
screenshot:

	

Now,	recompile	your	project,	and	click	on	Playground.	Replace	the	sample	code	with	the	following	one:

import	ReactiveCocoa	

	

let	myString	=	MutableProperty<String>("")	

myString.producer.startWithNext({	(text)	->	()	in	

			print("Result")	

			print("myString	has	changed	to	value	\(text)")	

})	

myString.value	=	"My	new	value"	

In	the	second	line	of	the	print	statement	move	your	mouse	pointer	to	the	right	until	it	reaches	the	the	eye
icon,	which	is	also	called	Quick	Look.	Click	on	it,	and	you	will	see	that	the	text	printed	contains	your
new	value:

	

Congratulations,	now	you	can	test	ReactiveCocoa	with	Playground!

Summary
In	this	chapter,	we	learned	about	the	different	ways	of	installing	ReactiveCocoa	in	a	project.	You	took	a
look	at	a	project	as	a	submodule	of	your	Git	repository.	By	doing	this,	you	can	apply	the	latest	changes
made	by	the	ReactiveCocoa	team.

You	also	learned	to	use	CocoaPods.	This	is	a	very	common	method	for	installing	different	frameworks
and	controlling	the	version	used	by	your	project.	If	your	project	uses	frameworks	that	are	already	being
installed	via	CocoaPods,	it	might	be	a	good	idea	to	install	ReactiveCocoa	this	way.

There	is	also	another	way	of	installing	ReactiveCocoa:	by	using	Carthage.	This	is	very	similar	to
CocoaPod,	and	it	is	officially	supported	by	the	ReactiveCocoa	team.

In	each	case	that	we	looked	at,	we	had	to	use	the	terminal.	However,	once	it	is	installed,	you	need	not	use
the	terminal	again	for	ReactiveCocoa's	purposes;	however,	it	is	recommended	that	you	know	how	to	use
the	terminal	since	other	frameworks	require	it.

Finally,	we	took	a	look	at	a	small	example	in	order	to	test	the	ReactiveCocoa	framework	using
Playground.	This	way,	you	could	perform	small	tests	before	coding	the	application.

In	the	next	chapter,	we	are	going	to	work	with	a	sample	application	and	learn	the	basics	of
ReactiveCocoa.

Chapter	3.	Performing	UI	Events	with
ReactiveCocoa
Programming	is	something	that	can	be	done	in	different	ways.	Someone	who	programs	only	with	an
assembly	language	(also	called	a	dinosaur)	may	be	very	impressed	when	they	start	learning	a	procedural
language	such	as	C.	They	are	most	likely	to	devise	a	new	way	of	performing	their	tasks.	A	person	who
only	programs	with	a	procedural	language	may	also	have	the	same	reaction	when	they	start	learning
object-oriented	programming.	In	this	chapter,	we	are	going	experience	this	as	well	by	switching	to	the
reactive	paradigm.

In	this	chapter,	you	will	learn	how	to	create	a	simple	application,	but	instead	of	using	it	in	the	traditional
way,	we	will	use	the	reactive	programming	paradigm	using	signals	rather	than	selectors.	You	will
experience	a	different	way	of	programming	tasks,	and	you	will	realize	how	simple	this	can	be.

In	this	chapter,	we	will	cover	the	following	topics:

Using	signals
Combining	signals
Extending	RACSignal
Using	channels

An	overview	of	the	project
The	idea	behind	this	project	is	to	take	a	look	at	today's	horoscope	of	a	user,	and	to	do	this,	we	will	need
some	user	information.	We	can't	check	the	user's	horoscope	until	every	mandatory	field	is	filled	in
correctly.

This	application	is	only	made	for	iPhones	in	portrait	mode	in	order	to	make	it	easier	for	us	to	design	it
with	the	help	of	AutoLayout.	If	you	want	to	use	this	application	on	an	iPad	or	in	landscape	mode,	feel	free
to.	For	this	application,	we	are	not	going	to	focus	on	doing	this	as	we	don't	want	to	waste	time	with	stuff
that	is	not	relevant.

Note

Disclaimer

This	is	not	a	real	horoscope	application;	the	algorithm	used	here	has	been	invented.	The	idea	behind	this
application	is	to	create	a	sample	of	an	application	using	ReactiveCocoa.

Setting	up	the	project
Create	a	new	Single	View	Application	project	called	Chapter	3	Horoscope.	Ensure	that	Swift	is	the
main	programming	language	and	you	use	Git	as	your	version	control	system.	Install	ReactiveCocoa	using
your	favorite	method,	as	shown	in	the	previous	chapter.

Click	on	your	project	in	Project	Navigator,	select	the	General	tab,	and	leave	only	the	Portrait
orientation	checked,	as	as	shown	in	the	following	screenshot:	

	

Before	we	start	coding/adding	UI	components	to	the	storyboard,	we	have	to	add	some	resources	to	our
project.	Here,	we	will	want	to	add	two	pictures	that	will	represent	a	checked	and	an	unchecked	box,
which	will	be	used	in	our	form.	Download	the	resources	file	from	this	book's	website,	and	drag	the
checked.png	and	unchecked.png	files	into	the	Assests.xcassets	component,	which	is	located	in
Project	Navigator.

Check	whether	the	ReactiveCocoa	installation	is	working	by	going	to	ViewController.swift,	importing
the	framework	with	import	ReactiveCocoa,	and	recompiling	the	project	with	command	+	B.

Now,	we	scan	start	designing	the	layout	of	the	application.	Go	to	the	storyboard,	change	the	size	class
configuration	to	portrait	mode	for	all	iPhone	devices	by	clicking	on	the	configuration	location	in	the
center	of	the	bottom	of	the	storyboard	where	wAny	hAny	is	mentioned,	as	demonstrated	in	this

screenshot:	

	

To	start	this	application,	we	need	to	request	some	information	on	the	user,	otherwise,	the	user	won't	be
able	to	check	their	horoscope.	The	information	that's	required	is	the	username,	e-mail,	city	of	birth,
gender,	and	the	date	of	birth.	To	fill	in	this	information,	let's	add	three	labels	to	our	scene,	three	text
fields,	three	buttons,	and	a	date	picker.

Set	the	Text	property	of	these	labels	to	Full	name,	Email,	and	City	of	birth,	respectively.	Place	each	text
field	under	each	label.	Put	two	buttons	under	the	last	text	field,	change	their	image	to	unchecked,	and	set
Title	to	Woman	and	Man.

Under	the	buttons,	place	a	UIDatePicker	component.	Go	to	its	Attribute	Inspector	and	change	Mode	to
Date	instead	of	the	date	and	time,	which	appear	by	default:	

	

In	the	bottom-right	corner	of	the	screen,	place	the	last	button	and	change	its	Title	to	Check	your
horoscope.	The	final	result	should	be	a	view	that's	similar	to	what	is	shown	in	the	following	screenshot,
but	feel	free	to	modify	it	if	you	are	a	creative	person:

	

Once	the	layout	is	complete,	we	have	to	connect	the	UI	components	to	their	corresponding	properties.	You
can	use	Assistant	Editor	if	you	like	using	the	command	+	Option	+	enter	shortcut.	These	are	the
properties	that	you	have	to	connect	the	UI	components	to:	@IBOutlet	weak	var	nameTextField:
UITextField!	@IBOutlet	weak	var	emailTextField:	UITextField!	@IBOutlet	weak	var	cityTextField:
UITextField!	@IBOutlet	weak	var	womanButton:	UIButton!	@IBOutlet	weak	var	manButton:	UIButton!
@IBOutlet	weak	var	datePicker:	UIDatePicker!	@IBOutlet	weak	var	checkButton:	UIButton!

Creating	a	validator	class
As	mentioned	earlier,	the	user	can't	continue	to	the	next	step	if	their	username	is	not	written	or	the	e-mail
ID	is	wrong.	So,	we	need	to	create	a	class	that	can	validate	some	fields.	We	will	call	this	class
DataValidator	(very	creative,	indeed).

Add	a	new	file	to	your	project	with	command	+	N,	select	a	Swift	file	when	the	dialog	appears,	and	set	its
name	to	DataValidator.swift.	Here,	we	have	to	start	creating	a	class	with	two	methods	of	validating:
one	for	the	username	(and	also	for	the	name	of	the	city)	and	the	other	one	to	check	whether	the	e-mail	ID
is	valid.

Starting	with	the	name	validator,	we	are	going	to	consider	that	a	name	is	valid	if	it	contains	more	than	two
characters	(I	know,	there	is	a	city	in	France	called	Y;	this	is	just	a	sample,	so	feel	free	to	change	it	if	you
like),	and	it	contains	only	words	with	letters	or	words	that	end	with	a	period	(such	as	J.R.R.	Tolkien).	To
do	this,	we	are	going	to	use	regular	expressions.	Type	the	following	code	in	a	new	file	in	order	to	create
the	first	validator:

class	DataValidator	{	

				class	func	validName(name:String)	->	Bool	{	

								if	let	regex	=	

												try?	NSRegularExpression(pattern:	"^\\w+(\\w+\\.?)*$",	options:	

.CaseInsensitive)	{	

																return	name.lengthOfBytesUsingEncoding(NSUTF8StringEncoding)	>	2	&&		

																				regex!.matchesInString(name,	options:	

NSMatchingOptions.ReportProgress,	range:	NSMakeRange(0,	

name.lengthOfBytesUsingEncoding(NSUTF8StringEncoding))).count	>	0	

								}	

								return	false	

				}	

Once	you've	understood	the	idea	behind	this	validator,	the	second	one	should	be	very	straightforward	as
we	just	need	to	use	another	regular	expression:

class	func	validEmail(email:String)		->	Bool{	

								if	let	regex	=	

												try?	NSRegularExpression(pattern:	"^\\S+@\\S+\\.\\S+$",	options:	

.CaseInsensitive){	

																return	regex!.matchesInString(email,	options:	

NSMatchingOptions.ReportProgress,	range:	NSMakeRange(0,	

email.lengthOfBytesUsingEncoding(NSUTF8StringEncoding))).count	>	0	

								}	

								return	false	

				}	

}	//	end	DataValidator	

Tip

These	regular	expressions	are	just	reduced	expressions;	use	expressions	that	are	more	complete	when
you're	working	with	a	real	application.

Validating	text	fields
Until	now,	everything	is	quite	traditional	with	regard	to	developing	with	Xcode,	but	now	we	are	going	to
start	using	the	ReactiveCocoa	framework.	Let's	start	with	only	the	username	text	field.	If	it	is	valid,	its
border	must	change	to	green.	This	way,	the	user	will	know	that	they	have	introduced	a	valid	value.

Click	on	your	ViewController.swift	file	and	take	a	look	at	the	viewDidLoad	method.	Here,	we	are
going	to	check	whether	the	ReactiveCocoa	signals	are	working	and	try	to	understand	the	concept	behind
them	first.	Type	the	following	highlighted	code	in	viewDidLoad	and	run	your	code	using	command	+	R:

override	func	viewDidLoad()	{	

								super.viewDidLoad()	

								nameTextField.rac_textSignal().subscribeNext	{	(input)	->	Void	in	

												print(input)	

							}	

				}	

Once	the	application	starts	running,	tap	on	the	username	text	field	and	start	typing	your	name.	Have	a	look
at	the	log	console	and	ensure	that	each	letter	typed	in	the	console	prints	the	content	of	the	text	field.	You
might	get	a	result	similar	to	the	following	screenshot:

	

When	you	call	the	rac_textSignal	function,	it	returns	an	object	of	the	RACSignal	type.	A	signal	is	any
sequence	of	event	that	can	be	observed.	In	this	case,	we	are	using	the	text	signal	to	observe	when	the	text
changes	in	the	user	text	fields.	After	receiving	this	object,	we	add	a	subscriber	to	it	that	prints	the	current

content	on	the	screen	by	calling	the	subscribeNext	method.

Make	sure	that	everything	is	done	on	one	line	by	chaining	the	function's	calls;	this	is	where
ReactiveCocoa	uses	the	fluent	pattern.	Another	detail	that	you	must	keep	in	mind	is	that	the	input	argument
is	of	the	AnyObject	type,	not	String,	and	other	methods	also	return	AnyObject.	Be	careful	about	this	as
you	will	usually	need	to	cast	some	arguments.

The	next	step	is	to	check	whether	the	name	is	valid	or	not.	Right	now,	we	can	continue	by	just	adding	code
to	the	subscribeNext	method;	however,	this	doesn't	showcase	the	magic	of	ReactiveCocoa.	We	need	a
similar	signal,	but	instead	of	receiving	text	as	input,	we	need	a	Boolean	value	that	represents	the	validity
of	the	text	field.	To	do	this,	we	can	convert	one	signal	to	another	using	the	map	function.

The	usage	of	the	map	function	is	very	simple:	we	just	need	to	take	the	input,	in	this	case,	the	text,	and
return	a	new	value	that	represents	something	that	we	need	for	the	signal.	In	our	case,	we	have	to	return	a
Boolean	value,	which	represents	whether	the	text	is	valid.	The	result	is	a	new	signal	that	can	have	its	own
subscribers.	Replace	the	code	we	had	earlier	with	the	following	one:

let	nameSignal:RACSignal	=	nameTextField.rac_textSignal().map	{	(text)	->	

AnyObject!	in	

												return	DataValidator.validName(text	as!	String)	

								}	

Now,	we	have	a	new	signal	called	nameSignal,	which	works	the	same	way	as	the	first	code	we	had	but
sends	the	validity	of	the	text	to	the	log	console.	Again,	let's	perform	a	test	by	printing	some	output;
continue	our	code	by	adding	a	subscriber	using	the	following	code:

nameSignal.subscribeNext	{	(valid)	->	Void	in	

												if	valid	as!	Bool	{	

																print("Valid")	

												}else	{	

																print("Not	valid")	

												}	

								}	

Click	on	play	and	type	your	name	in	the	text	field;	take	a	look	at	the	log	console	while	you	type	your
name.	You	will	now	receive	a	log	similar	to	what	is	shown	in	the	following	screenshot:

	

Now	that	we	have	explored	the	philosophy,	we	can	do	something	more	real.	The	user	is	not	going	to
check	the	log	console	when	using	the	application;	thus,	we	have	to	change	something	on	the	phone	screen.
We	will	add	a	green	border	to	the	text	field	when	the	text	is	valid,	and	remove	this	border	when	the	result
is	not.	Again,	we	could	do	this	inside	the	subscribeNext	method,	but	that's	not	part	of	ReactiveCocoa's
style.	Map	the	signal	to	a	border	color,	and	then	call	subscribeNext.	Replace	the	previous	code	with	the
following	one:

nameSignal.map	{	(valid)	->	AnyObject!	in	

												if	valid	as!	Bool	{	

																return	UIColor.greenColor()	

												}	else	{	

																return	UIColor.clearColor()	

												}	

								}.subscribeNext	{	(color)	->	Void	in	

												self.nameTextField.layer.borderWidth	=	1	

												self.nameTextField.layer.borderColor	=	(color	as!	UIColor).CGColor	

								}	

Here,	we've	just	taken	nameSignal,	created	another	signal	that	converts	a	Boolean	value	into	UIColor,
and	then	the	subscriber	receives	the	border	color	and	applies	it.	Now,	test	the	application	again,	and	make
sure	that	when	you	type	your	name,	the	color	green	is	applied	to	the	text	field	or	remove	it	when	the	text	is
not	valid,	for	example,	when	you	press	the	spacebar	key	but	you	haven't	started	yet	with	the	next
name/surname:

	

With	this	simple	example,	you	can	see	some	differences	between	using	reactive	programming	and	the
traditional	MVC	pattern.	Ensure	that	everything	is	set	in	the	viewDidLoad	method	in	a	way	that	can	be
easily	be	read	with	just	a	few	lines	of	code.	It	is	also	divided	into	different	steps	rather	than	a	single
function	that	contains	everything.

Let's	optimize	our	code	a	little	bit:	as	the	border	width	is	always	1,	we	can	move	it	outside	the	subscriber
and	place	it	at	the	beginning	of	the	viewDidLoad	method.	By	default,	the	color	of	the	border	is	black,	but
if	you	start	the	application,	you	will	see	that	it	starts	with	a	clear	color.	Why?	The	reason	for	this	is	very
simple:	when	this	signal	starts,	it	triggers	a	sequence	of	events	as	an	empty	string	is	not	considered	a
valid	value	in	our	sample;	it	is	mapped	to	a	clear	color	when	the	application	starts.

Great!	We	have	other	two	text	fields	that	follow	the	same	rule,	so	let's	follow	the	same	steps	we've
followed	for	the	name	text	field.	To	begin	with,	they	will	need	a	border	width.	This	means	that	we	just
need	to	set	their	borders	to	1	after	the	username	border	by	adding	the	following	highlighted	code:

override	func	viewDidLoad()	{	

								super.viewDidLoad()	

									

								nameTextField.layer.borderWidth	=	1	

								emailTextField.layer.borderWidth	=	1	

								cityTextField.layer.borderWidth	=	1	

Now,	we	can	retrieve	their	signals	in	the	same	way	as	the	username.	As	we	already	know	that	the	value
returned	by	the	map	function	is	RACSignal,	this	time	we	are	not	going	to	specify	it	(this	is	how	you	will
usually	find	samples).	Just	place	the	highlighted	code	and	compare	it	with	the	earlier	one:

let	nameSignal:RACSignal	=	nameTextField.rac_textSignal().map	{	(text)	->	

AnyObject!	in	

												return	DataValidator.validName(text	as!	String)	

								}	

								let	emailSignal	=	emailTextField.rac_textSignal().map	{	(text)	->	

AnyObject!	in	

												return	DataValidator.validEmail(text	as!	String)	

								}	

								let	citySignal	=	cityTextField.rac_textSignal().map	{	(text)	->	AnyObject!	

in	

												return	DataValidator.validName(text	as!	String)	

								}	

To	finish	off,	we	are	going	to	add	an	equivalent	code	to	add	the	green	border.	The	code	for	these	text
fields	is	very	similar	to	the	username	code;	however,	this	time,	we	will	use	the	?:	operator;	this	way,	we
can	have	shorter	and	easier-to-read	code:

emailSignal.map	{(valid)	->	AnyObject!	in	

												return	valid	as!	Bool	?	UIColor.greenColor()	:	UIColor.clearColor()	

								}.subscribeNext	{	(color)	->	Void	in	

												self.emailTextField.layer.borderColor	=	(color	as!	UIColor).CGColor	

								}	

								citySignal.map	{(valid)	->	AnyObject!	in	

												return	valid	as!	Bool	?	UIColor.greenColor()	:	UIColor.clearColor()	

												}.subscribeNext	{	(color)	->	Void	in	

																self.cityTextField.layer.borderColor	=	(color	as!	UIColor).CGColor	

								}	

Let's	test	the	application	again.	As	you	might	have	expected,	each	text	field	has	its	own	green	border	when
it	has	a	valid	value:

	

Basically,	the	flow	of	these	text	fields	is	very	simple:	every	time	the	user	types	something,	we	map	the
text	to	a	Boolean	value	that	represents	its	validity.	Then,	we	map	this	validity	into	a	color,	and	finally,	we
apply	the	color	to	the	text	field	border,	as	shown	in	the	following	diagram:

	

Enabling	and	disabling	the	button
The	next	part	is	enabling	and	disabling	the	button	that	allows	the	user	to	check	their	horoscope.	The	idea
is	to	leave	this	button	disabled	if	there	anything	that	is	missing	or	wrong	in	the	form	and	enabling	it	only
when	we	have	a	valid	state	to	check	the	horoscope.	But	when	should	this	button	be	enabled	or	disabled?
At	this	point	of	the	application,	the	button	must	be	enabled	when	every	text	field	is	valid.

Right	now,	each	text	field	works	individually;	they	don't	have	any	relationships.	This	is	when	reactive
programming	starts	getting	interesting.	We	need	another	signal	that	is	basically	the	combination	of	the
other	three	signals.	In	such	cases,	the	RACSignal	class	has	a	class	method	called	combineLatest.

Using	combineLatest	is	very	simple;	we	just	need	to	send	an	array	of	signals	as	an	argument	(actually,	it
requests	an	NSFastEnumeration	object).	In	this	case,	we	have	to	send	nameSignal,	emailSignal,	and
citySignal.	What	next?	In	the	first	stage,	we	are	going	to	add	a	subscriber	that	logs	the	word
Typing...;	this	way,	we	can	be	sure	that	the	signal	is	caught	independently	of	the	text	field	that	is	in	use.
Place	the	following	code	before	closing	the	viewDidLoad	method:

RACSignal.combineLatest([nameSignal,	emailSignal,	citySignal]).subscribeNext	{	

(input)	->	Void	in	

												print("Typing...")	

								}	

Now,	recompile	your	application	and	run	it	again.	Start	typing	in	any	text	field,	and	you	will	start
receiving	some	feedback	in	the	log	console	like	this:

	

	

	

Great!	Now	you	have	a	signal	that	can	be	generated	by	any	of	the	three	initial	signals;	however,	what	are
we	receiving	in	the	input	argument?	As	you	know,	this	argument	is	defined	as	AnyObject,	but	if	you
inspect	it	properly,	you	will	see	that	it	is	an	object	of	the	RACTuple	type.

RACTuple,	as	the	name	suggests,	is	a	representation	of	a	tuple	of	elements.	In	this	case,	it	is	a	tuple	where
the	first	element	is	a	Boolean	value	that	comes	from	nameSignal,	the	second	element	is	a	Boolean	value
that	comes	from	emailSignal,	and	the	third	element	is	a	Boolean	value	that	comes	from	citySignal.	To
access	these	values,	this	object	has	properties	called	first,	second,	third,	and	so	on.

Once	we	have	understood	this	concept,	we	will	retrieve	these	values	and	enable	or	disable
checkButton.	To	do	this,	replace	the	previous	code	with	the	following	one:

RACSignal.combineLatest([nameSignal,	emailSignal,	citySignal]).subscribeNext	{	

(input)	->	Void	in	

												let	tuple	=	input	as!	RACTuple	

												let	validName	=	tuple.first	as!	Bool	

												let	validEmail	=	tuple.second	as!	Bool	

												let	validCity	=	tuple.third	as!	Bool	

												self.checkButton.enabled	=	validName	&&	validEmail	&&	validCity	

								}	

Recompile	your	application	and	run	it	again.	Ensure	that	the	button	at	the	bottom	is	enabled	when	the	three
text	fields	are	green	and	disabled	otherwise:

	

	

	

This	code	works	perfectly	well;	however,	the	subscriber	code	style	is	imperative.	In	such	cases,	you
usually	have	to	map	the	signal,	giving	only	the	required	information	to	the	subscriber.	Thus,	update	your
code	like	this:

RACSignal.combineLatest([nameSignal,	emailSignal,	citySignal])	

												.map	{	(input)	->	AnyObject!	in	

												let	tuple	=	input	as!	RACTuple	

												let	validName	=	tuple.first	as!	Bool	

												let	validEmail	=	tuple.second	as!	Bool	

												let	validCity	=	tuple.third	as!	Bool	

												return	validName	&&	validEmail	&&	validCity	

												}.subscribeNext	{	(valid)	->	Void	in	

																self.checkButton.enabled	=	valid	as!	Bool	

								}	

Now,	our	code	is	more	functional.	Can	we	improve	it?	In	cases	where	every	tuple	member	is	of	the	same
type,	you	can	use	a	method	called	allObjects.	This	method	returns	an	array	of	AnyObject,	but	we	can
easily	cast	it	as	an	array	of	Bool.	Once	we	have	this	array	of	Boolean	values,	how	we	should	evaluate
them?	The	easiest	way	to	do	this	is	with	a	for	loop,	but	in	functional	programming,	it	is	preferable	to	use
the	reduce	function	that	is	built	into	the	array	type.

Note

If	you	want	to	know	the	power	of	the	map	and	reduce	functions,	there	are	some	NoSQL	databases	whose

querying	systems	are	based	on	these	functions.

The	reduce	function	is	performed	in	order	to	converting	the	elements	of	an	array	into	new	values.	It
receives	an	initial	value	and	one	function	that	combines	the	previous	value	with	the	current	one.	Now,	our
code	can	be	even	simpler	when	you	replace	it	with	the	following:

RACSignal.combineLatest([nameSignal,	emailSignal,	citySignal])	

												.map	{	(input)	->	AnyObject!	in	

												let	tuple	=	input	as!	RACTuple	

												let	validityValues	=	tuple.allObjects()	as!	[Bool]	

												return	validityValues.reduce(true,	combine:	{	(previousValue,	

currentValue)	->	Bool	in	

																return	previousValue	&&	currentValue	

												})	

												}.subscribeNext	{	(valid)	->	Void	in	

																self.checkButton.enabled	=	valid	as!	Bool	

								}	

This	type	of	mapping	is	very	common	as	it	is	normal	to	use	combineLatest	with	signals	that	have
mapped	the	values	to	a	Boolean	array	and	then	send	the	and	operation	between	every	element	to	the
subscriber.	In	this	case,	we	validate	a	form	that	can	be	used,	for	example,	for	a	multiplayer	game.	This	is
used	in	instances	when	we	try	to	figure	out	whether	every	player	has	reached	the	goal	or	when	the
application	checks	whether	the	phone	status	is	fine	for	continuous	work	(for	example,	whether	there's	an
Internet	connection,	the	application	is	in	the	foreground,	and	so	on).	In	such	cases,	we	can	reduce	our
code	even	more	using	a	method	called	and	rather	than	map.	The	final	result	is	a	code	that's	as	simple	as
this:

RACSignal.combineLatest([nameSignal,	emailSignal,	citySignal])	

												.and().subscribeNext	{	(valid)	->	Void	in	

																self.checkButton.enabled	=	valid	as!	Bool	

								}	

Rebuild	your	application,	and	check	whether	everything	is	working	as	it	should.	A	button	must	be	enabled
when	every	text	field	is	green	and	disabled	when	one	of	them	isn't.	To	summarize	this	process,	the
following	diagram	gives	you	an	idea	of	the	current	flow:

	

	

	

Using	UIDatePicker
Until	now,	we	have	used	text	fields,	receiving	their	signals	through	the	rac_textSignal	method,	but	text
fields	are	not	the	only	UI	components	that	the	user	can	interact	with.	In	this	case,	we	have	UIDatePicker,
which	allows	the	user	to	choose	their	date	of	birth.

It's	obvious	that	UIDatePicker	doesn't	have	a	text	signal;	therefore,	we	need	to	use	a	different	one.	Here,
we	have	to	use	an	equivalent	for	the	ValueChanged	event.	ReactiveCocoa	provides	us	with	a	function	for
every	object	that	inherits	from	UIControl,	called	rac_signalForControlEvents.

We	need	to	map	this	signal	to	a	Boolean	value	by	checking	whether	the	user	has	entered	a	valid	date	every
time	they	change	a	row.	The	map	function,	when	used	after	rac_signalForControlEvents,	receives	the
UI	component	itself	as	an	argument.	For	the	date	of	birth,	we	will	assume	that	any	date	until	today	is
valid,	and	only	future	dates	are	invalid.	Let's	take	a	look	by	adding	the	following	code	just	before	the
combineLatest	call:

let	dateSignal	=	

datePicker.rac_signalForControlEvents(UIControlEvents.ValueChanged).map	{	(input)	-

>	AnyObject!	in	

												let	datePicker	=	input	as!	UIDatePicker	

												return	

datePicker.date.timeIntervalSinceDate(NSDate(timeIntervalSinceNow:	0))	<	0	

								}	

Once	we've	got	this	signal,	it	is	necessary	to	include	it	in	the	list	of	signals	in	the	combineLatest	call.
Have	a	look	at	the	highlighted	code:

RACSignal.combineLatest([nameSignal,	emailSignal,	citySignal,	dateSignal])	

												.and().subscribeNext	{	(valid)	->	Void	in	

																self.checkButton.enabled	=	valid	as!	Bool	

								}	

In	this	case,	the	order	of	the	signals	doesn't	matter	as	they	are	processed	with	the	and	function;	however,
you	use	RACTuple	with	the	first,	second...	properties,	so	the	order	does	matter.

Let's	test	this	part	and	check	its	current	behavior.	Build	and	run	your	application,	and	when	the	scene
appears,	check	whether	you	can	find	anything	weird.	Right,	the	button	is	enabled	even	if	you	type	an
invalid	e-mail;	for	example,	the	button	that	shows	the	horoscope	is	still	enabled.	After	changing	the	date
for	the	first	time,	the	button	starts	responding	according	to	our	rules.	Why?

The	reason	is	very	obvious	once	you	know	it.	We	map	the	date	after	changing	its	value;	when	the
application	starts,	this	event	hasn't	even	been	performed	yet;	therefore,	combineLatest	can't	process	the
latest	date	signal	as	it	hasn't	happened	yet.	So,	the	and	function	is	not	even	called.

How	can	we	solve	this	problem?	We	just	need	to	start	the	signal	with	an	initial	value;	in	this	case,	we	can
just	send	the	date	picker	as	the	initial	value.	To	set	this	initial	value,	a	function	called	startWith
receives	the	initial	value.	Complete	the	code	by	adding	the	highlighted	call:

let	dateSignal	=	

datePicker.rac_signalForControlEvents(UIControlEvents.ValueChanged).map	{	(input)	-

>	AnyObject!	in	

												let	datePicker	=	input	as!	UIDatePicker	

												return	

datePicker.date.timeIntervalSinceDate(NSDate(timeIntervalSinceNow:	0))	<	0	

								}.startWith(datePicker)	

Build	and	run	the	application.	Now,	you	will	see	that	we	have	the	right	behavior.	The	button	starts	when
it's	disabled,	and	when	every	text	field	and	the	date	picker	has	valid	values,	the	button	gets	enabled.

Should	we	add	a	green	border	to	the	date	picker?	This	is	the	typical	question	that	you	have	to	ask	a	User
Experience	(UX)	guy;	he	is	the	one	who	needs	to	decide	the	look	and	feel	of	our	application.	Imagine	that
he	says	that	we	need	to	apply	the	green	border	to	the	date	picker.	How	can	we	do	this?	As	you	know,	we
just	need	to	take	the	signal,	map	it	to	a	color,	and	add	a	subscriber.	Place	the	following	code	just	before
the	combineLastest	call:

dateSignal.map	{	(valid)	->	AnyObject!	in	

												return	valid	as!	Bool	?	UIColor.greenColor()	:	UIColor.clearColor()	

												}.subscribeNext	{	(color)	->	Void	in	

																self.datePicker.layer.borderWidth	=	1	

																self.datePicker.layer.borderColor	=	(color	as!	UIColor).CGColor	

								}	

Rebuild	the	application,	and	then	run	and	appreciate	a	good	crash.	Why?	When	we	assigned	the	value	of
dateSignal,	it	received	the	value	from	the	last	call	in	the	chain,	in	this	case	from	the	startWith	call,
which	returns	a	signal	based	on	its	input,	a	date	picker.	How	can	we	fix	this	problem?

Here,	we	have	to	switch	calls:	startWith	must	come	first,	and	after	this,	we	can	map	it	to	a	Boolean
value.	Thus,	fix	the	code	by	replacing	the	current	dateSignal	assignation	in	this	way:

let	dateSignal	=	

datePicker.rac_signalForControlEvents(UIControlEvents.ValueChanged).startWith(dateP

icker).map	{	(input)	->	AnyObject!	in	

												let	datePicker	=	input	as!	UIDatePicker	

												return	

datePicker.date.timeIntervalSinceDate(NSDate(timeIntervalSinceNow:	0))	<	0	

								}	

Now,	you	can	build	the	application	and	test	it	again.	It	works	perfectly,	and	moments	like	these	are	when
you	realize	that	you	are	very	proud	of	your	code.	You	then	show	it	to	your	boss	and	he	asks	you,	"Why
does	the	date	picker	start	with	a	green	border?"

	

	

	

The	answer	for	this	is	logical.	Since	the	date	picker	starts	with	the	current	date,	which	is	a	valid	date,	it
therefore	starts	with	a	green	border.	This	explanation	is	okay,	but	imagine	when	we	receive	the	typical
answer:	no	green	border	when	the	application	starts,	and	do	not	change	the	initial	date.	This	case
basically	means	that	the	first	time,	the	subscriber	mustn't	act.	For	cases	like	this,	we	have	a	method	called
skip.

The	skip	method	takes	an	integer	as	an	argument;	it	represents	the	number	of	times	that	the	subscriber
should	ignore	the	signal.	Once	we	have	understood	this,	we	only	need	to	insert	the	highlighted	code:

dateSignal.map	{	(valid)	->	AnyObject!	in	

												return	valid	as!	Bool	?	UIColor.greenColor()	:	UIColor.clearColor()	

												}.skip(1).subscribeNext	{	(color)	->	Void	in	

																self.datePicker.layer.borderWidth	=	1	

																self.datePicker.layer.borderColor	=	(color	as!	UIColor).CGColor	

								}	

Great!	Now,	test	the	application,	and	check	whether	it	is	working	as	it	did	earlier	along	with	the	initial
green	border.

Selecting	the	gender	of	the	user
So	far,	the	application	has	control	for	the	text	fields	and	the	date	picker,	but	it	still	needs	to	ask	the	user
their	gender.	To	fix	this,	we	have	two	buttons	with	an	image	of	an	empty	circle	on	them.	These	buttons
work	as	radio	buttons;	when	one	of	them	is	selected,	the	other	one	should	be	deselected.	Why	don't	we
use	a	switch	instead?	A	switch	has	two	states,	on	and	off,	and	here,	we	would	like	a	third	state	that	is	not
is	selected,	which	means	that	there	is	no	gender	selected	by	default.

Once	the	user	has	tapped	on	the	gender	button,	it	doesn't	matter	which	one,	the	corresponding	signal	must
be	valid.	How	can	we	do	this?	It's	very	easy:	first,	we	have	to	take	the	TouchUpInside	signal	of	each
button,	and	map	it	to	the	true	value	of	a	Boolean.	Let's	visualize	it	by	placing	the	following	code	before
the	combineLatest	call:

let	womanSignal	=	womanButton.rac_signalForControlEvents(.TouchUpInside).map	{	

(signal)	->	AnyObject	in	

												return	true	

								}	

When	is	this	signal	going	to	be	false?	Right	now,	the	answer	is	never.	If	we	add	this	signal	to	the
collection	of	validations,	we	will	have	the	same	problem,	wherein	it	will	block	the	evaluation.	Again,	we
can	solve	this	problem	using	the	startWith	method.	Complete	the	previous	code	we	had	with	the
following	code;	here,	we	have	the	code	for	both	buttons:

let	womanSignal	=	womanButton.rac_signalForControlEvents(.TouchUpInside).map	{	

(signal)	->	AnyObject	in	

												return	true	

								}.startWith(false)	

									

								let	manSignal	=	manButton.rac_signalForControlEvents(.TouchUpInside).map	{	

(signal)	->	AnyObject	in	

												return	true	

								}.startWith(false)	

Now,	we	have	to	add	these	signals	to	the	array	that	is	sent	to	the	combineLatest	function;	however,	if	we
add	both	buttons,	the	behavior	of	the	application	will	be	wrong	as	we	are	using	the	and	operator,	which
would	require	both	buttons	to	be	true	in	order	to	return	a	valid	state.	This	problem	can	be	easily	fixed	by
combining	both	signals	with	the	or	operator	in	the	same	way	we	learned	earlier	in	this	chapter.	Place	the
following	code	to	create	a	combination	of	both	of	these	signals:

let	genderSignal	=	RACSignal.combineLatest([womanSignal,	manSignal]).or()	

Great,	now	add	this	signal	to	the	main	combineLastest	call.	Rerun	your	code	to	check	whether	the
button	that	allows	us	to	check	the	horoscope	is	enabled	only	when	the	user	has	filled	in	every	text	field
correctly,	chosen	a	valid	date	of	birth,	and	selected	their	gender:

RACSignal.combineLatest([nameSignal,	emailSignal,	citySignal,	dateSignal,	

genderSignal])	

												.and().subscribeNext	{	(valid)	->	Void	in	

After	testing,	you	will	notice	that	the	application	is	working	perfectly	fine;	however,	there	are	a	couple	of
details	that	need	to	be	solved.	First,	we	are	not	changing	the	icon	of	the	tapped	button.	Second,	whenever
you	need	to,	you	can	take	the	text	fields'	values	and	the	date	on	the	date	picker,	but	the	buttons	will	not
store	this	information.

For	the	first	detail,	we	could	add	the	corresponding	code	inside	the	subscriber	of	each	button,	but	this
wouldn't	be	too	maintainable.	Imagine	a	similar	case	where	you	have	an	application	with	five	or	six
buttons	on	the	screen;	would	we	have	to	repeat	the	same	operation	for	every	button?

For	the	second	detail,	we	can	create	an	optional	property	of	the	Boolean	type.	Again,	the	solution	is	valid,
but	it	will	not	work	in	reactive	programming.	Changing	a	Boolean	value	doesn't	make	propagation	easier,
which	means	that	changing	its	value	doesn't	change	the	button's	status.	Changing	the	propagation	will
change	the	variable	value	and	notify	other	observers	about	such	a	change.

The	solution	for	both	issues	is	the	same:	we	have	to	create	a	property	of	the	MutableProperty	type.	This
generic	class	works	like	a	traditional	value	but	with	the	advantage	of	propagating	its	changes	through	a
subscriber.

Let's	declare	a	new	property	before	starting	the	viewDidLoad	method	with	the	following	code:

let	gender	=	MutableProperty<Bool?>(nil)	

As	you	can	see,	gender	can	have	three	values:	nil,	true,	and	false.	It	starts	with	nil,	and	represents
that	no	gender	is	selected;	after	this,	if	the	user	clicks	on	the	Woman	button,	it	shall	take	the	false	value,
and	if	the	user	presses	the	Man	button,	it	shall	take	the	true	value.	Once	we	know	it,	we	have	to	update
the	signal	of	both	buttons	by	setting	the	value	property	of	the	gender	property.	Update	your	code	by
adding	the	following	highlighted	code	to	it:

let	womanSignal	=	womanButton.rac_signalForControlEvents(.TouchUpInside).map	{	

(signal)	->	AnyObject	in	

												self.gender.value	=	false	

												return	true	

												}.startWith(false)	

									

								let	manSignal	=	manButton.rac_signalForControlEvents(.TouchUpInside).map	{	

(signal)	->	AnyObject	in	

												self.gender.value	=	true	

												return	true	

												}.startWith(false)	

A	MutableProperty	has	two	properties:	value,	which	was	just	explained	and	contains	the	current	value,
and	producer,	which	is	a	signal	producer	and	something	like	a	signal	but	with	some	added	details.	We
are	going	to	learn	more	about	the	signal	producer	in	the	next	chapter.

How	can	we	set	a	subscriber	to	a	signal	producer?	We	just	need	to	call	the	start	method	with	the	next
argument.	This	argument	is	a	closure	that	receives	the	new	value	and	returns	nothing.	As	this	property	is
of	the	Bool?	type,	the	new	value	will	be	of	the	same	type.	Here,	we	can	use	a	switch	to	check	out	the

current	scenario	and	act	accordingly	by	setting	the	right	image	for	each	button.	Add	the	following	code
after	the	declaration	of	the	genderSignal	constant:

self.gender.producer.startWithNext	{	newValue	in	

												switch	newValue	{	

												case	nil:	

																self.womanButton.setImage(UIImage(named:	"unchecked"),	forState:	

.Normal)	

																self.manButton.setImage(UIImage(named:	"unchecked"),	forState:	

.Normal)	

												case	.Some(true):	//	Man	

																self.womanButton.setImage(UIImage(named:	"unchecked"),	forState:	

.Normal)	

																self.manButton.setImage(UIImage(named:	"checked"),	forState:	

.Normal)	

												case	.Some(false):	//	Woman	

																self.womanButton.setImage(UIImage(named:	"checked"),	forState:	

.Normal)	

																self.manButton.setImage(UIImage(named:	"unchecked"),	forState:	

.Normal)	

												}	

								}	

Once	again,	test	the	application,	and	check	whether	it	is	working	as	expected.	What	do	we	have	to	do
now?	We	just	need	to	display	something	when	the	horoscope	button	is	tapped.	How	can	we	do	this?	Just
add	a	subscriber.	Add	the	following	code	before	closing	the	viewDidLoad	method:

checkButton.rac_signalForControlEvents(.TouchUpInside).subscribeNext	{	(button)	->	

Void	in	

												let	alertController	=	UIAlertController(title:	"Horoscope",	message:	

"You	will	have	a	wonderful	day!",	preferredStyle:	.Alert)	

												self.presentViewController(alertController,	animated:	true,	completion:	

nil)	

								}	

Run	this	final	version	of	our	application,	and	check	that	when	the	horoscope	button	is	enabled,	you	can	tap
it	so	that	you	receive	this	message:

	

	

	

Adding	more	information
Let's	imagine	that	the	current	information	is	not	enough	to	calculate	the	horoscope,	and	we	need	to	request
a	little	more	data	from	the	user,	for	example,	their	current	emotional	status.

In	order	to	do	this,	we	will	need	to	add	a	new	image	to	our	project,	which	is	the	heart.png	file	and	is
located	in	this	book's	resources.	Click	on	your	Assets.xcassets	project,	and	add	your	file	to	this	folder.

Return	to	the	storyboard,	and	add	a	new	scene	to	it.	Here,	we	have	to	add	one	label	to	the	top	where	you
see	How	do	you	feel	right	now?	Then,	you	will	see	a	section	with	a	stepper	and	an	Image	View,	which
indicate	the	passion	level.	Select	Image	View,	go	to	its	Attribute	Inspector,	and	set	its	image	to	heart,	as
shown	here:

	

After	setting	its	image,	add	a	Height	Constraint	and	set	its	value	to	10.	You	can	refer	to	this	sample:

	

Under	the	passion	level,	we	will	add	UISlider	and	UISwitcher,	which	will	represent	your	happiness
level.	Add	a	few	labels	that	you	think	that	are	necessary	for	the	user.	In	the	bottom-left	corner	of	the
scene,	add	another	button	saying,	Check	your	horoscope,	as	we	did	on	the	first	scene.	The	final	layout
for	this	scene	should	look	similar	to	what	is	shown	here:

	

Before	continue,	we	will	configure	the	stepper.	The	stepper	will	increase	the	heart	size;	therefore,	we	can
use	values	that	are	more	likely	to	be	present	in	this	feature.	Suppose	the	minimum	value	is	20,	the
maximum	value	is	100,	and	every	step	will	be	increased	by	20.	This	means	that	we	will	have	the	values
20,	40,	60,	80,	and	100.	Go	to	the	Attribute	Inspector	of	our	stepper	and	set	its	configuration	according
to	this:

	

Once	the	scene	is	done,	we	need	to	create	a	class	that	inherits	from	UIViewController.	Add	a	new	file
to	your	project	with	the	combination	command	+	N,	and	select	the	Cocoa	Touch	Class	option	in	the	first
dialog.	In	the	second	dialog,	set	the	class	name	to	SecondViewController,	and	ensure	that	it	is	a
subclass	of	UIViewController.	Here,	you	can	see	the	correct	configuration:

	

Right	now,	this	class	has	no	relationship	with	the	last	scene	we	created,	so	we	have	to	return	to	the
storyboard,	select	the	Identity	Inspector	of	the	second	scene	by	selecting	the	scene,	and	using	the
command	+	option	+	3	combination,	set	its	class	to	SecondViewController,	as	shown	here:

	

Now	we	can	open	the	Assistant	Editor	and	connect	the	stepper,	slider,	switch,	button,	and	the	image
height	constraint	(yes,	the	constraint	that	represents	the	height,	not	the	image	view)	with	their

corresponding	attributes:

				@IBOutlet	weak	var	passionStepper:	UIStepper!

				@IBOutlet	weak	var	happinessSlider:	UISlider!

				@IBOutlet	weak	var	happySwitch:	UISwitch!

				@IBOutlet	weak	var	checkButton:	UIButton!

				@IBOutlet	weak	var	imageHeight:	NSLayoutConstraint!

	

Then,	we	can	start	developing	the	signal	subscriptions.	Firstly,	we	will	ask	the	user	for	their	passion
level,	which	will	be	displayed	according	to	the	heart	size	that	is	displayed	on	the	screen;	therefore,	we
can	start	developing	the	viewDidLoad	method	with	a	signal	that	detects	a	value	that's	changed	from	the
stepper	with	the	following	code:

passionStepper.rac_signalForControlEvents(.ValueChanged)

												.subscribeNext	{	(input:	AnyObject!)	in

												let	stepper	=	input	as!	UIStepper

												self.imageHeight.constant	=	CGFloat(stepper.value)

								}

Run	your	app,	and	check	whether	the	heart	size	increases	when	you	tap	the	plus	sign	or	decreases	when
you	tap	the	minus	sign.

Getting	the	right	input	type
Until	now,	you	could	appreciate	that	every	time	we	used	methods	such	as	subscribeNext,	map,	or
filter,	we	received	an	argument	of	the	AnyObject	type,	and	the	first	task	we	had	to	undertake	was	to
convert	this	argument	into	its	corresponding	value.

The	reason	for	this	is	that	RACSignal	was	written	in	Objective-C,	a	language	that	doesn't	have	generics
as	a	feature;	thus,	the	only	way	of	creating	functions	in	which	the	input	type	can	vary	is	using	a	type	called
ID	,	which	is	similar	to	AnyObject	in	Swift.

If	Swift	has	the	generics	feature,	why	not	using	it?	Of	course,	this	is	something	that	we	can	do.	Colin
Eberhardt	has	a	proposal	that	includes	extending	the	RACSignal	class	with	some	new	methods	such	as
subscribeNextAs,	filterAs,	and	mapAs.	This	extension	must	be	written	in	Swift	as	it	takes	advantage
of	generics.

How	can	we	add	this	extension	to	our	project?	It	is	not	complicated:	just	add	a	new	Swift	File	to	your
project,	call	it	RACSignalExtension.swift,	and	paste	the	following	code	made	by	Mr.	Eberhardt:

import	ReactiveCocoa

extension	RACSignal	{

				func	subscribeNextAs(nextClosure:(T)	->	())	->	()	{

								self.subscribeNext	{

												(next:	AnyObject!)	->	()	in

												let	nextAsT	=	next	as!	T

												nextClosure(nextAsT)

								}

				}

				

				func	filterAs(nextClosure:(T!)	->	Bool)	->	(RACSignal)	{

								return	self.filter	{

												(next:	AnyObject!)	->	Bool	in

												if(next	==	nil){

																return	nextClosure(nil)

												}else{

																let	nextAsT	=	next	as!	T

																return	nextClosure(nextAsT)

												}

								}

				}

				

				func	mapAs(nextClosure:(T!)	->	AnyObject!)	->	(RACSignal)	{

								return	self.map	{

												(next:	AnyObject!)	->	AnyObject!	in

												if(next	==	nil){

																return	nextClosure(nil)

												}else{

																let	nextAsT	=	next	as!	T

																return	nextClosure(nextAsT)

												}

								}

				}

}

Have	a	look	at	this	code:	what	it	does	is	simply	wrap	the	corresponding	method	(mapAs	wraps	up	a	map,
for	example)	but	through	the	use	of	closures	that	receive	a	specific	type;	this	way,	we	can	have	cleaner
code.	Once	we	have	understood	this	idea,	we	can	replace	the	previous	signal	call	with	this	one:

passionStepper.rac_signalForControlEvents(.ValueChanged)

												.subscribeNextAs	{	(stepper:	UIStepper)	in

												self.imageHeight.constant	=	CGFloat(stepper.value)

								}

Great,	run	your	project	again	and	check	whether	it	works	like	it	did	earlier;	however,	now	we	don't	need
to	cast	the	input	as	it	already	comes	with	its	own	type.	In	this	book,	we	will	eventually	learn	about	the
new	features	of	ReactiveCocoa	3	and	4;	this	will	also	remove	the	usage	of	AnyObject	as	an	argument.

What	about	the	first	View	Controller?	Shall	we	change	all	the	calls	to	this	new	format?	It	is	up	to	you!	If
you	like,	do	it	as	an	exercise	or	homework.

Using	bidirectional	channels
In	this	part	of	the	app,	the	user	can	tell	whether	they	feel	happy	or	not.	There	are	two	ways	of	doing	this:
the	first	one	is	through	a	slider,	which	allows	the	user	to	convey	their	happiness	level	with	some	kind	of
accuracy.	Moving	the	slider	to	the	far	left	means	that	the	user	is	really	sad,	and	moving	it	to	the	far	right
means	that	the	user	is	extremely	happy.

However,	not	everybody	would	want	to	express	their	happiness	with	that	kind	of	accuracy.	Some	people
can	only	say	that	they	are	happy	or	sad;	for	this	reason,	we	have	an	alternative	switch	where	the	user	can
just	express	whether	they	are	happy	or	not.

The	main	detail	we	have	to	consider	is	that	when	the	slider	is	on	the	half-left,	the	switch	must	be	off,	and
if	the	slider	is	on	the	half-right,	the	switch	must	automatically	turn	on.	What	if	the	user	user	prefers
pressing	the	switch	button?	In	this	case	the	slider	needs	to	move	to	a	position	where	it	indicates	whether
the	user	is	happy	or	sad.	As	the	switch	doesn't	have	very	much	accuracy,	we	can	set	the	slider	to	0.25
when	the	user	is	sad	or	0.75	when	the	user	is	happy.

After	going	through	this	theory,	have	you	noticed	that	something	redundant?	Notice	that	one	UI	component
is	changing	more	than	the	other.	Doesn't	this	sound	like	recursion?	For	cases	like	this,	Reactive	Cocoa	has
a	feature	called	RACChannel.

RACChannel	allows	us	to	use	bidirectional	data	binding;	this	means	that	we	can	use	a	channel	for
communication,	switching	from	one	component	to	another.	These	channels	allow	the	UI	components	to
send	or	receive	a	value.	To	use	it,	let's	start	by	asking	the	slider	to	create	a	channel	with	a	method	called
rac_newValueChannelWithNilValue,	and	start	by	continuing	with	viewDidLoad:

let	happinessSliderChannel	=	happinessSlider.rac_newValueChannelWithNilValue(0)

On	the	other	hand,	the	switch	needs	to	create	another	channel.	UISwitch	can	can	create	a	channel	through
a	method	called	rac_newOnChannel.	Continue	implementing	the	viewDidLoad	with	the	following	code:

let	happySwitchChannel	=	happySwitch.rac_newOnChannel()

When	the	switch	changes,	we	have	to	map	the	switch	value.	In	this	case,	when	the	value	is	false,	we	will
map	it	to	0.25,	and	when	it	is	true,	we	will	map	it	to	0.75.	We	can	use	map	as	we	use	to	do	with
RACSignal,	and	thus	continue	with	the	following	code:

let	happyChannelTerminal	=	happySwitchChannel.map	{

												(value:	AnyObject!)	->	AnyObject!	in

												if	let	active	=	value.boolValue	where	active	{

																return	0.75

												}

												return	0.25

								}

Now	that	we	have	the	channels,	we	can	tell	this	mapped	channel	(called	happyChannelTerminal)	that
the	slider	channel	(called	happinessSliderChannel)	will	be	its	subscriber	using	the	subscribe

method.	What	does	it	mean?	It	means	that	when	the	switcher	changes	its	values,	it	will	be	mapped	and
sent	directly	as	a	new	value	of	the	slide.	Place	the	following	code	to	make	this	possible:

happyChannelTerminal.subscribe(happinessSliderChannel)

At	this	point,	we	can	rebuild	our	app	and	test	it	again.	Right	now,	you	can	move	the	slider	freely;
however,	when	you	change	the	switcher	from	sad	to	happy,	you	will	see	that	it's	set	to	0.75,	and	when	the
switcher	is	set	to	sad	(false,	off),	the	slider	is	automatically	set	to	0.25.

Now,	we	need	it	to	work	the	other	way	around:	whenever	the	slider	moves	to	a	position	where	its	value
is	greater	than	0.5,	the	switcher	must	be	turned	on	(happy);	otherwise,	it	must	be	off	(sad).

The	logic	is	the	same	as	the	previous	one.	We	have	to	start	mapping	the	slider	threshold	into	a	Boolean
value.	Do	this	using	the	following	code:

let	happinessChannelTerminal	=	happinessSliderChannel.map	{

												(value:AnyObject!)	->	AnyObject!	in

												return	value	!=	nil	&&		value.doubleValue	>=	0.5

								}

Finally,	we	can	make	the	switch	channel	a	subscriber	of	the	slider	channel	using	the	subscribe	function:

happinessChannelTerminal.subscribe(happySwitchChannel)

The	code	is	done,	so	now	it	is	time	to	test	our	app	again.	Fill	the	first	and	second	form;	once	you	are
happy	with	it,	you	can	move	to	the	last	step,	which	basically	displays	the	horoscope	result.

Displaying	your	horoscope
After	testing	the	application	and	checking	whether	it	is	working	as	expected,	what	do	we	do	now?	We	just
need	to	display	something	when	the	horoscope	button	is	tapped.	How	can	we	do	this?	Just	add	a
subscriber.	Add	the	following	code	before	closing	the	viewDidLoad	method:

checkButton.rac_signalForControlEvents(.TouchUpInside).subscribeNext	{	(button)	->	

Void	in

												let	alertController	=	UIAlertController(title:	"Horoscope",	message:	

"You	will	have	a	wonderful	day!",	preferredStyle:	.Alert)

												self.presentViewController(alertController,	animated:	true,	completion:	

nil)

								}

Run	this	final	version	of	our	application,	and	verify	that	when	the	horoscope	button	is	enabled,	you	can
tap	it	so	that	you	receive	this	message:

	

Summary
In	this	chapter,	you	learned	the	basics	of	reactive	programming.	You	can	now	appreciate	how	it	works
with	a	fluent	pattern	by	chaining	calls.

You	took	a	look	at	how	everything	is	based	on	signals.	These	signals	could	be	mapped	by	converting	a
current	value	into	another	value,	after	which	the	final	result	is	a	new	signal.

You	also	learned	how	to	combine	these	signals	and	avoid	some	pitfalls.

Finally,	you	took	a	look	at	the	propagation	of	changes,	which,	in	this	case,	was	done	with	the	gender
property.	Every	time	it	was	updated,	it	updated	a	button's	images	as	well.

If	you	were	a	good	observer,	you	would	have	noticed	that	we	had	almost	no	variables	(only	those	that
were	required	by	Interface	Builder	(IB));	everything	else	was	in	the	form	of	constants.	Constants	can	be
optimized	to	a	greater	extent	by	a	compiler.	Furthermore,	we	had	almost	no	if/switch	statements	or	loop
controls,	and	everything	could	be	done	inside	the	viewDidLoad	method,	avoiding	the	creation	of	new
methods	in	order	to	remember	where	they	are	connected.

In	the	second	scene,	we	learned	how	to	extend	RACSignal,	with	the	advantage	of	using	Swift's	features,
such	as	generics,	and	avoiding	the	casting	of	every	input.	At	the	end	of	this	chapter,	we	also	learned	how
to	use	RACChannel,	which	is	a	way	of	mapping	the	value	of	a	component	directly	as	the	value	of	some
other	component.	In	our	example,	we	mapped	the	slider	values	to	a	switch	value	and	vice	versa.

You	can	develop	the	same	application	without	using	reactive	programming	and	compare	both	sets	of	code.
Simply	check	which	one	has	fewer	lines	of	code	and	is	easier	to	maintain.

In	the	next	chapter,	you	are	going	to	learn	how	to	work	with	asynchronous	calls,	mainly	by	performing
network	requests.	We	are	also	going	to	use	table	views	with	ReactiveCocoa.	You	will	see	that	performing
some	tasks,	such	as	updating	table	view	cell	pictures,	can	be	easy	and	safe	using	this	framework.

Chapter	4.	Network	and	Change	Propagation
In	the	previous	chapter,	you	learned	about	the	basics	of	ReactiveCocoa	and	how	to	use	it	with	form
validation.	As	mentioned	in	Chapter	1,	Introduction	to	Reactive	Programming,	reactive	programming	is
the	perfect	fit	when	you	use	it	for	asynchronous	calls.

What's	a	better	example	of	asynchronous	calls	than	a	network?	That's	right,	nowadays,	it	is	very	common
to	exchange	messages	with	a	server	in	order	to	receive	information	from	it.	Now,	you	are	going	to	learn
how	to	make	some	HTTP	requests	with	the	help	of	JSON	messages	(also	called	AJAX	in	a	web
environment)	and	ReactiveCocoa.	In	this	application,	a	user	will	be	able	to	search	for	their	favorite
movie	and	receive	some	information	about	it.

In	this	chapter,	we	will	cover	these	topics:

Using	ReactiveCocoa	with	network	streaming
Using	ReactiveCocoa	as	a	fail-safe	alternative
Creating	signals
Observing	a	property
Lifting	selectors
More	RACSignal	options

Overviewing	the	project
The	next	project	is	about	searching	for	information	about	a	movie.	A	user	will	be	able	to	type	the	name	of
a	movie	in	the	search	box	and	receive	a	result	with	the	movies	found	according	to	their	enquiry.

Using	a	public	API,	we	can	simplify	our	work	as	we	don't	need	to	register	any	movie	information	on	a
database	or	create	a	server	with	its	own	database	and	HTTP	server.

Setting	up	the	project
Before	we	start	creating	the	application,	we	have	to	register	on	a	website	that	has	an	API	connected	to	a
movie	database;	once	there,	we	will	be	able	to	query	for	a	movie	and	retrieve	some	information	about	it.
The	website	that	offers	us	this	public	API	is	called	The	Movie	Database	(TMDb).

Open	your	favorite	web	browser	and	type	https://www.themoviedb.org	in	the	address	bar.	Once	the
website	has	been	loaded,	click	on	the	Sign	Up	button,	as	shown	in	the	following	screenshot:	

	

Fill	in	the	form	that	comes	up	next,	and	click	on	the	Sign	Up	button.	After	this,	you	need	to	verify	your	e-
mail	address	by	opening	the	e-mail	that	TMDb	sends	you,	and	click	on	the	link	that	verifies	your	e-mail
address.

Once	you	have	verified	your	e-mail	address,	you	can	sign	into	your	account,	and	click	on	the	API	option
that	is	on	the	left-hand	side	of	your	panel.	Click	on	detail,	and	register	for	a	new	API	key.	Again,	you	have
to	fill	in	a	form	explaining	your	application	and	so	on,	and	wait	until	it	is	approved.

Note

If	you	want	to	distribute	an	application	that	uses	the	TMDb	API,	you	can	do	it	for	free;	however,	the
number	of	requests	are	limited	to	30	requests	every	10	seconds,	and	you	also	have	to	show	that	it	used
TMDb	somewhere	in	your	application.

Once	your	key	request	is	approved,	you	have	to	copy	the	keys	as	these	will	be	needed	in	our	application.

Now,	you	can	open	your	Xcode,	and	create	a	new	Single	View	Application.	Call	it	Chapter	4	Movies,
and	ensure	that	Swift	is	the	main	language,	as	demonstrated	in	the	following	screenshot:	

https://www.themoviedb.org

	

Select	a	destination	folder	and	save	your	project.	Install	ReactiveCocoa	in	your	favorite	way,	as	shown	in
Chapter	1,	Introduction	to	Reactive	Programming.

Once	your	project	has	the	ReactiveCocoa	framework	installed,	set	your	project	orientation	to	Portrait
only,	and	go	to	the	storyboard	and	change	the	size	class	to	portrait,	as	we	did	in	the	previous	chapter.	The
final	result	should	be	similar	to	what	is	shown	in	the	following	screenshot.

Add	add	a	label,	text	field,	and	a	table	view	to	your	scene.	Set	the	label	Title	property	to	Movie	Search,
and	organize	these	UI	components	as	shown	in	the	following	screenshot.	Don't	forget	to	add	the
AutoLayout	constraints.

	

Connect	the	text	field	and	the	table	view	to	their	respective	attributes,	as	shown	in	this	code:

@IBOutlet	weak	var	textField:	UITextField!	

				@IBOutlet	weak	var	tableView:	UITableView!	

Great!	Everything	is	prepared	to	start	coding.

Searching	for	a	movie
Now,	it	is	time	to	start	coding.	We	are	going	to	start	with	one	basic	code	where	we	will	just	subscribe	to
the	text	field.	Eventually,	we	will	improve	this	code	according	to	our	needs.	Go	to	the	viewDidLoad
method,	and	add	one	subscriber	to	the	text	that	logs	what	the	user	is	typing.	To	do	this,	use	the	following
code:

override	func	viewDidLoad()	{	

								super.viewDidLoad()	

								textField.rac_textSignal().subscribeNext({	(input)	->	Void	in	

												print(input)	

								})	

				}	

That	was	easy,	but	now	we	need	to	think	about	the	requirements.	Every	time	the	user	types	a	letter,	a
request	should	be	made.	Imagine	that	the	user	types	just	the	letter	"a";	this	is	a	very	small	letter	that's	taken
to	perform	any	query.	Remember	that	a	request	implies	consuming	broadband,	processing	its	response,
and	displaying	the	result.	It's	not	worth	doing	it	for	just	one	letter.	(I'm	sorry	for	films	like	Z	and	Q.)

What	we	have	to	do	is	filter	the	signal	so	that	the	subscriber	acts	only	when	the	user	types	a	word	that	is
two	or	more	letters	long.	We	will	do	this	with	a	method	called	filter.	This	method	receives	a	closure
with	the	signal	input	(in	this	case,	the	user	text)	and	returns	a	Boolean	value	that	indicates	whether	the
current	value	is	accepted	or	not.	Let's	update	our	code	by	adding	the	following	highlighted	code:

textField.rac_textSignal()	

												.filter({	(input)	->	Bool	in	

																let	text	=	input	as!	String	

																return	text.characters.count	>=	2	

												})	

												.subscribeNext({	(input)	->	Void	in	

												print(input)	

								})	

Rebuild	and	run	your	application,	type	a	movie	name,	and	take	a	look	at	the	log	console;	you	will	see	that
a	few	lines	will	be	printed	out,	except	one-letter	lines.	The	following	screenshot	shows	the	result	when
searching	for	Monsters:

	

	

	

If	you	think	that	each	line	is	a	new	request,	we	still	have	too	many.	Increasing	the	number	of	letters	in	the
filter	function	won't	help	us	very	much	as	there	are	movie	titles	that	are	two	letters	long,	such	as	Up	or
It.	A	better	solution	for	this	is	to	request	only	when	the	user	stops	typing,	which	means	that	the	application
must	wait	a	little	bit	after	the	last	received	signal,	and	then	it	must	be	processed.

That's	when	throttle	comes	into	the	picture.	This	method	takes	a	number	of	the	NSTimeInterval	type
as	an	argument,	also	known	as	Double,	that	represents	the	number	of	seconds	that	need	to	be	passed
before	the	last	signal	in	order	to	call	the	next	part.	In	this	case,	we	are	going	to	set	this	time	to	0.6	and	see
what	happens.	Feel	free	to	change	this	value	according	to	your	preference.	Let's	complete	our	code	by
adding	the	following	highlighted	code:

textField.rac_textSignal()	

												.filter({	(input)	->	Bool	in	

																let	text	=	input	as!	String	

																return	text.characters.count	>=	2	

												})	

												.throttle(0.6)	

												.subscribeNext({	(input)	->	Void	in	

												print(input)	

								})	

Now,	rebuild	and	run	the	application.	Once	it	is	open,	type	the	name	of	any	movie	that	you	would	like	to
search	for	again,	and	take	a	look	at	the	log	console	and	to	check	whether	we	can	reduce	a	few	lines;	now,
your	result	will	be	similar	to	what	is	shown	in	the	following	screenshot:

	

	

	

Finally,	we	can	start	concentrating	on	performing	our	request.	We	are	going	to	do	this	in	two	different
ways.

Creating	signals
The	first	method	to	create	a	signal	is	by	creating	it	ourselves;	this	way,	we	can	see	how	to	deal	with
different	occasions	when	there	is	no	specific	signal	for	a	task.	The	second	one	is	by	using	the	existing
method.

First,	let's	see	how	to	create	our	own	signal.	In	this	case,	we	will	create	a	signal	for	the	request	in	a
different	method.	To	do	this,	start	by	adding	a	new	method	to	the	current	View	Controller.	We	will	call
this	method	requestSignal;	it	will	receive	a	string	that	contains	the	user	query,	and	it	will	return	a
signal.	Let's	start	by	adding	the	following	code	to	our	View	Controller:

private	func	signalForQuery(query:String)	->	RACSignal{	

				}	

As	we	need	to	return	a	signal,	we	have	to	instantiate	one.	To	do	this,	you	just	need	to	call	the
createSignal	method,	which	belongs	to	the	RACSignal	class.	This	method	receives	as	argument	on
closure	that	has	RACSubscriber	as	its	argument	and	returns	RACDisposable.	Once	we	have	this
information,	we	can	start	with	the	instantiation	by	adding	the	following	highlighted	code	to	our	method:

private	func	signalForQuery(query:String)	->	RACSignal{	

								return	RACSignal.createSignal(

												{	(subscriber:RACSubscriber!)	->	RACDisposable!	in	

								})	

				}	

RACSubscriber,	as	you	already	know,	is	an	observer	that	acts	according	to	the	signal	response.	It	can
receive	a	next	message,	which	means	that	the	signal	has	sent	some	information,	an	error	message,	which
means	that	something	has	gone	wrong,	or	a	complete	message,	which	means	that	the	signal	is	complete.

An	RACDisposable	object	contains	information	on	what	to	do	when	the	signal	is	destroyed.	For	example,
if	you	have	a	KVO	subscription	in	a	View	Controller,	you	have	to	remove	the	observer	when	the	View
Controller	is	dismissed.	In	this	case,	as	we	are	executing	an	HTTP	request,	we'll	have	to	cancel	such	a
task.

After	understanding	these	concepts,	we	can	create	the	URL	following	the	instructions	of	the	TMDb	API.
The	URL	for	this	search	is	https://api.themoviedb.org/3/search/movie,	the	method	is	GET,	and	it
has	two	parameters:	api_key	and	the	user	query.	We	will	leave	the	API	key	as	a	constant;	just	copy	it
from	the	Web,	and	replace	the	following	one	with	the	one	that	TMDb	has	given	you:

private	func	signalForQuery(query:String)	->	RACSignal{	

								let	apiKey	=	"a22160e11a5de46dc792f6d2fa8b434a"	

Although	we	the	user	query	as	an	argument,	we	have	to	consider	some	URL	requirements.	For	example,
URLs	don't	accept	whitespace;	instead,	you	have	to	convert	every	whitespace	to	its	corresponding
percentage	code,	which	is	%20.

We	can	perform	this	conversion	manually	by	iterating	through	every	character	in	the	query	string;

however,	there	is	an	easier	and	faster	way	of	doing	this.	Strings	have	a	method	called
stringByAddingPercentEncodingWithAllowedCharacters,	which	already	performs	this	task	for	us.
Thus,	we	can	create	another	constant,	which	is	the	encoded	user	query:

let	encodedQuery	=	

query.stringByAddingPercentEncodingWithAllowedCharacters(.URLHostAllowedCharacterSe

t())!	

Finally,	we	can	create	a	constant	that	represents	the	full	URL	based	on	the	previous	constants:

let	url	=	NSURL(string:	"https://api.themoviedb.org/3/search/movie?api_key=\

(apiKey)&query=\(encodedQuery)")!	

Great!	Right	now,	we	have	the	required	constants	and	the	call	needed	to	create	a	signal;	therefore,	we	can
retrieve	the	URL	session	object	and	its	task:

return	RACSignal.createSignal(

												{	(subscriber:RACSubscriber!)	->	RACDisposable!	in	

																let	session	=	NSURLSession.sharedSession()	

																let	task	=	session.dataTaskWithURL(url,	completionHandler:	{	(data,	

urlResponse,	error)	->	Void	in	

																})	

								})	

What	should	we	do	inside	the	completion	handler?	Firstly,	we	have	to	detect	whether	there	were	any
errors;	if	so,	we	can	send	this	error	to	the	subscriber	using	the	sendError	method.	In	this	case,	we	are
going	to	send	the	object	that	we	received	as	an	argument;	however,	there	are	cases	where	you	have	to
create	a	custom	NSError.	Add	the	following	code	to	the	completion	handler	to	send	the	error	to	the
subscriber:

if	let	error	=	error	{	

																								subscriber.sendError(error)	

																				}	

If	there	were	no	errors,	we	have	to	convert	the	result,	which	is	assumed	to	be	a	JSON	message,	into	a
native	object.	Again,	we	can	have	another	error	as	the	JSON	conversion	might	fail.	If	it	doesn't	fail,	we
just	need	to	send	the	converted	object	to	the	subscriber	with	the	sendNext	method.	Place	the	following
code	after	the	last	if	statement	we	had:

else	{	

																								do	{	

																												let	json	=	try	

NSJSONSerialization.JSONObjectWithData(data!,	options:	

NSJSONReadingOptions(rawValue:	0))	

																												subscriber.sendNext(json)	

																													

																								}catch	let	raisedError	as	NSError	{	

																												subscriber.sendError(raisedError)	

																								}	

																				}	

It	doesn't	matter	whether	there	was	an	error	or	not;	we	must	report	to	the	subscriber	that	the	signal	has

been	completed	and	it	shouldn't	expect	any	other	message.	To	do	this,	we	have	to	call	the	sendCompleted
method	after	the	closed	brackets	of	the	else	statement:

subscriber.sendCompleted()	

The	task	handler	is	complete,	but	as	you	know,	you	have	to	call	the	resume	method	to	make	it	work.
Finally,	we	have	to	return	RACDisposable;	in	this	case,	you	may	wonder	what	should	be	done	when	this
signal	is	destroyed	and	the	task	is	still	running.	The	answer	to	this	is	very	easy:	we	have	to	cancel	the
task.	Add	the	following	code	outside	the	completion	handler	but	inside	the	signal	creation:

task.resume()	

																return	RACDisposable(block:	{	()	->	Void	in	

																				task.cancel()	

																})	

Can	we	test	this	code?	Not	yet,	we	still	need	to	call	this	function	inside	the	signal	chain	we	had.	But	if	we
already	had	a	signal,	how	could	we	switch	the	signal	with	this	new	one?	Signals	have	a	method	called
flattenMap,	which	receives	the	current	input,	but	it	must	return	a	signal	that	takes	control	from	now	on.

Return	to	the	viewDidLoad	method.	Here,	we	have	to	complete	the	signal	chain	by	calling	the
flattenMap	method	after	throttle.	Its	handler	is	very	simple;	just	call	the	method	that	we've	created
and	return	its	signal.	Update	your	code	by	adding	the	following	highlighted	lines	of	code:

.throttle(0.6)	

												.flattenMap({	(input)	->	RACStream!	in	

																let	text	=	input	as!	String	

																return	self.signalForQuery(text)	

												})	

												.subscribeNext({	(input)	->	Void	in	

																print(input)	

												})	

Rebuild	and	run	your	application.	Now,	if	you	are	running	under	iOS	9,	you	will	receive	a	weird	message
complaining	that	the	HTTP	connection	has	failed:

				NSURLSession/NSURLConnection	HTTP	load	failed	(kCFStreamErrorDomainSSL,	-9802)

The	reason	for	this	is	that	Apple	has	decided	to	accept	connections	that	are	very	secure	in	terms	of	signed
certificates.	As	we	can't	change	the	certificates	from	TMDb,	we	have	to	solve	this	problem	in	a	different
way.

Handling	errors
As	we	are	receiving	an	error,	we	will	take	advantage	of	it	to	trap	it	and	display	it	to	the	user.	The
subscribeNext	method	can	be	called	with	a	second	argument	that	contains	the	action	that	the	application
has	to	perform	when	something	goes	wrong;	in	this	case,	we	are	going	to	show	UIAlertController	with
an	error	description.	Return	to	viewDidLoad,	and	add	the	highlighted	argument	to	the	subscribeNext
method:

.subscribeNext({	(input)	->	Void	in	

																print(input)	

																},	error:	{	(error)	->	Void	in	

																				let	alertController	=	UIAlertController(title:	"Error",	

																								message:	error.localizedDescription,	

																								preferredStyle:	.Alert)	

																				let	alertAction	=	UIAlertAction(title:	"Dismiss",	

																								style:	.Cancel,	handler:	nil)	

																				alertController.addAction(alertAction)	

																				self.presentViewController(alertController,	

																								animated:	true,	completion:	nil)	

												})	

Is	there	something	missing	in	this	code?	Let's	see:	HTTP	requests	are	usually	not	executed	on	the	main
thread,	but	the	alert	controller,	as	part	of	the	UI	components,	must	be	executed	on	the	main	thread.	For	this
kind	of	case,	we	have	to	ask	to	deliver	the	signal	on	a	different	thread	using	the	deliveryOn	method,
otherwise,	you	might	get	a	crash.	Place	the	following	highlighted	code	before	the	subscribeNext
method:

})	

												.deliverOn(RACScheduler.mainThreadScheduler())	

												.subscribeNext({	(input)	->	Void	in	

Once	we	test	the	errors	that	can	be	trapped,	we	have	to	fix	the	known	issue	as	we	need	to	receive
information	from	the	server.	Go	to	a	file	called	Info.plist	in	Project	Navigator	and	click	on	the	plus
(+)	sign	located	on	the	right-hand	side	of	the	Information	Property	List	record,	as	shown	in	the
following	screenshot:

	

	

	

When	the	new	record	appears,	change	its	key	to	NSAppTransportSecurity	and	press	enter.	The	Key
record	will	be	automatically	replaced	with	its	full	name,	App	Transport	Security	Settings.	Expand	this
new	record	by	clicking	on	the	triangle	located	to	its	left-hand	side.	Click	on	the	plus	(+)	sign	of	this	new
record	and	a	subrecord	will	appear.	Select	the	Allow	Arbitrary	Loads	option	and	set	its	value	to	YES.
This	step	is	done	only	once	as	it	is	saved	in	the	Info.plist	file.	The	final	result	will	look	similar	to
what	is	shown	here:

	

	

	

Finally,	now	is	the	time	we	have	been	waiting	for:	the	execution	of	our	application.	This	time,	you	will
appreciate	that	the	server	answers	JSON	messages.	The	way	we	used	to	execute	a	request	was	the
traditional	way,	using	NSURLSession,	but	the	same	logic	can	be	applied	if	you	use	a	framework	such	as
Alamofire.

This	section	is	done;	in	the	next	one,	we	are	going	to	fill	in	the	table	view	with	the	result	provided	by	the
server.	Thus,	we	will	be	able	to	watch	our	requested	movies	on	the	screen.

Filling	in	the	table	view
There	are	some	UI	components	that	are	very	commonly	used	in	our	applications,	such	as	UIButton,
UIDatePicker	and	UITableView,	which	is	perfect	to	display	different	options	to	the	user.	This
components	works	with	two	different	protocols:	UITableViewDataSource,	which	provides	cells	to	the
table	view,	and	UITableViewDelegate,	which	controls	some	actions	and	cell	settings.

As	some	table	view	functions	were	not	written	to	work	in	a	reactive	way,	we	can't	do	too	much	with
them.

Note

The	data	source	in	this	application	will	be	executed	in	the	traditional	way	and	delegate	in	the	reactive
way.

Scroll	up	to	your	ViewController.swift	file,	and	add	the	following	protocols	to	the	ViewDidLoad
class:

class	ViewController:	UIViewController,	UITableViewDataSource,	UITableViewDelegate	

{	

After	this,	we	need	to	add	a	new	property	where	we	are	going	to	store	the	list	of	movies	that	are
retrieved.	This	property	is	an	array	of	dictionaries,	and	it	will	be	filled	in	when	we	receive	a	response
from	the	server:

lazy	var	movieResult	=	[[String:AnyObject]]()	

Now,	inside	viewDidLoad,	we	have	to	set	the	delegate	as	the	current	object.	Add	this	highlighted	code	to
set	it:

override	func	viewDidLoad()	{	

								super.viewDidLoad()	

								self.tableView.dataSource	=	self	

Then,	we	can	update	our	subscriber	by	setting	the	movieResult	property	and	reloading	its	data.	Remove
the	previous	print	command	as	we	don't	need	it	anymore:

.subscribeNext({	(input)	->	Void	in	

																let	result	=	input	as!	[String:AnyObject]	

																self.movieResult	=	result["results"]	as!	[[String:AnyObject]]	

																self.tableView.reloadData()	

																},	

Finally,	we	have	to	implement	the	required	method	from	the	UITableViewDataSource	protocol.	Place
these	methods	at	the	end	of	the	ViewController	class:

func	tableView(tableView:	UITableView,	numberOfRowsInSection	section:	Int)	->	Int	

				{	

								return	movieResult.count;	

				}	

					

				func	tableView(tableView:	UITableView,	cellForRowAtIndexPath	indexPath:	

NSIndexPath)	->	UITableViewCell	{	

								var	cell	=	tableView.dequeueReusableCellWithIdentifier("cell")	

								if	cell	==	nil	{	

												cell	=	UITableViewCell(style:	.Default,	reuseIdentifier:	"cell")	

								}	

								cell?.textLabel?.text	=	movieResult[indexPath.row]["original_title"]	as?	

String	

								return	cell!	

				}	

This	part	is	done;	confirm	that	everything	is	working	as	expected	by	rebuilding	and	running	the
application.	If	not,	return	to	the	section	where	it	seems	to	be	failing,	and	check	your	code	again.	Then,
write	a	word	in	the	text	field,	and	check	whether	some	movie	titles	are	displayed	in	the	table	view	like
this:

	

	

	

Once	the	table	view	displays	data,	we	can	detect	whether	the	user	has	selected	any	movies.	The	strategy
when	dealing	with	this	kind	of	a	signal	is	detecting	whether	one	selector	(a	certain	method)	was	called.
The	rac_signalForSelector	method	creates	a	signal	based	on	a	selector	call.

The	method	we	want	to	trap	is	one	that	is	called	when	the	user	taps	on	the	table	view	that
(didSelectRowAtIndex)	belongs	to	the	UITableViewDelegate	protocol	and	where	the	current	View
Controller	is	our	table	view	delegate;	the	method	and	this	rac_signalForSelector	method	will	be
called	from	self	(not	self.tableview).

The	signalForSelector	method	has	two	ways	of	being	called:	the	first	one	is	by	passing	a	selector	as
an	argument,	and	the	second	involves	specifying	the	selector	and	the	protocol	where	the	method	comes
from.	In	this	case,	it	comes	from	a	specific	protocol	(UITableViewDelegate)	that	we	shall	use	to	specify
both	arguments.	Once	we've	received	the	signal,	we	will	just	print	the	user's	action	to	check	whether	it	is
working.	Place	the	following	code	at	the	end	of	the	viewDidLoad	method:

self.rac_signalForSelector(Selector("tableView:didSelectRowAtIndexPath:"),	

fromProtocol:	UITableViewDelegate.self).subscribeNext	{	(input)	->	Void	in	

												print("Tap")	

								}	

Is	this	all?	The	answer	is	no.	We	still	need	to	set	the	current	View	Controller	as	the	table	view	delegate,
and	this	assignment	must	be	done	after	the	signal	creation.	Why?	This	is	not	ReactiveCocoa's	fault;	the
problem	is	that	internally	when	the	table	view	receives	a	delegate,	it	optimizes	it	assuming	that	no
modification	will	be	made	afterwards.	That's	the	reason	you	must	add	the	following	assignment	after	the
rac_signalForSelector	method:

self.tableView.delegate	=	self	

In	case	you're	using	a	class	that	inherits	from	another	that	already	assigns	the	table	view	delegate,	such	as
UITableViewController,	you	have	to	set	the	delegate	to	nil	and	then	you	have	to	set	it	to	self	again.

Build	and	run	your	application,	and	check	whether	when	you	tap	on	any	movie	the	log	console	prints	Tap.
Once	you've	checked	that	it	is	working,	you	have	to	think	about	how	you	can	receive	the	movie	title.	The
subscribeNext	method	receives	an	input	that	is	specified	as	AnyObject;	however,	if	you	go	into	this	in
detail,	you	will	see	that	it	is	an	RACTuple,	where	each	tuple's	item	represents	an	argument	that's	sent	to
the	selector.

The	argument	we	need	is	the	second	one,	which	is	of	the	NSIndexPath	type.	As	we	learned	in	the
previous	chapter,	we	can	access	it	through	the	second	property	and	cast	it	to	the	right	object	type.	Update
your	implementation,	replacing	the	previous	log	with	the	following	code:

self.rac_signalForSelector(Selector("tableView:didSelectRowAtIndexPath:"),	

fromProtocol:	UITableViewDelegate.self).subscribeNext	{	(input)	->	Void	in	

												let	arguments	=	input	as!	RACTuple	

												let	indexPath	=	arguments.second	as!	NSIndexPath	

											let	title	=	self.movieResult[indexPath.row]["original_title"]	as!	String		

												print("You	have	chosen	the	movie:	\(title)")	

								}	

Again,	test	your	application	by	running	it,	searching	for	a	movie,	and	selecting	one.	Now,	the	log	console
will	display	the	movie	you	have	chosen,	as	shown	in	the	following	screenshot:

	

	

	

Model-View-ViewModel	bindings
So	far,	every	time	we	receive	a	new	movie	list,	we	have	to	reload	the	table	view	with	reloadData.	This
is	okay,	but	imagine	how	we	could	also	receive	some	results	using	different	channels,	such	as	loading
from	a	file.	We	need	to	remember	that	the	table	view	needs	to	reload	the	data	again,	and	there	will	be
many	reloadData	throughout	our	code.	This	is	when	the	Model-View-ViewModel	(MVVM)	pattern
comes	into	the	picture.

MVVM	is	a	pattern	that	connects	directly	to	a	property	with	a	view.	It	was	created	with	the	idea	that	when
a	value	is	changed,	its	graphical	representation	should	automatically	change	as	well,	and	this	what	we	are
going	to	do	with	the	movieResult	property.

The	first	step	is	to	add	the	dynamic	modifier	to	the	movieResult	property;	it	will	make	this	property
observable.	What	are	observable	properties?	These	are	properties	that	can	be	observed	when	we	request
them	with	the	addObserver:forKeyPath:options:context	method.	Then,	every	time	such	a	property
is	modified,	the	observeValueForKeyPath	method	will	be	called.	ReactiveCocoa	wraps	it	up	in	an
easier	way,	which	we're	going	to	take	a	look	at.	Add	this	modifier	to	the	following	sample:

lazy	dynamic	var	movieResult	=	[[String:AnyObject]]()	

Now,	the	movieResult	property	is	able	to	be	observed	with	the	help	of	the	KVO	pattern.	ReactiveCocoa
allows	us	to	create	a	signal	that	internally	uses	KVO	by	calling	a	method	called	rac_valuesForKeyPath.
Using	this	method	is	very	simple:	you	just	need	to	send	a	string	with	a	property	name	and	an	observer
(such	as	KVO).	Let's	create	our	signal	by	appending	the	following	line	of	code	before	the	text	field	signal:

let	movieResultSignal	=	self.rac_valuesForKeyPath("movieResult",	observer:	self)	

Now	that	we	have	the	signal,	we	just	need	to	add	a	subscriber;	in	this	case,	the	subscriber	will	ask	the
table	view	to	reload	its	data.	As	it	was	already	doing	this	earlier,	here,	we	are	going	to	add	another	log	to
make	sure	that	this	signal	is	being	called	correctly.	Place	the	following	code	after	the	assignation	of
movieResultSignal:

movieResultSignal.subscribeNext	{	(input)	->	Void	in	

												print("Reloading	data...")	

												self.tableView.reloadData()	

								}	

Now,	we	have	to	remove	the	reloadData	call	from	its	previous	location	by	deleting	the	corresponding
line:

.subscribeNext({	(input)	->	Void	in	

																let	result	=	input	as!	[String:AnyObject]	

																self.movieResult	=	result["results"]	as!	[[String:AnyObject]]	

																self.tableView.reloadData()	//	DELETE	THIS	LINE	

																},	error:	{	(error)	->	Void	in	

Finally,	we	have	to	test	our	code,	rebuild	it,	and	then	run	the	application.	Check	whether	the	table	view

continues	with	the	same	behavior,	but	now	you	will	receive	a	log	message	saying	Reloading	data....

Displaying	movie	posters
TMDb	provides	us	with	movie	posters,	which	is	something	that	the	user	might	like.	Who	doesn't
remember	Casablanca's	poster?	Here,	we	are	going	to	take	a	look	at	a	better	example	of	what	we	have
learned	and	also	of	the	idea	of	change	propagation.

To	retrieve	any	posters,	firstly,	we	have	to	call	another	endpoint	that	gives	us	the	URL	and	sizes	accepted
by	the	server.	This	endpoint	is	/configuration,	which	replies	to	a	JSON	message.	The	images	key	in
this	JSON	message	contains	a	dictionary	with	the	information	needed	to	download	images	from	the
TMDb	website.	Inside	the	images'	dictionary,	you	can	find	secure_base_url,	which	contains	the	base
path	to	download	a	picture,	and	poster_sizes,	which	contains	arrays	of	different	sizes;	we	will	use	the
first	element	of	this	array.

As	the	key	is	the	same,	move	the	apiKey	constant	from	the	outside	of	signalForQuery,	which	is	now	a
property	of	the	ViewController	class.	Then,	create	a	new	method	called	getPosterSignal,	which
returns	RACSignal,	as	shown	here:

private	func	getPosterSignal()	->	RACSignal{	

				}	

The	implementation	of	this	method	could	be	very	similar	to	signalForQuery;	however,	this	time	we	are
going	to	do	this	in	a	different	way.	NSURLSession	has	an	extension	that	contains	a	method	called
rac_dataWithRequest,	which	returns	SignalProducer.	A	signal	producer	is	very	similar	to	a	signal
except	that	it	doesn't	do	anything	if	there	is	no	subscriber.	In	this	case,	we	are	going	convert	it	into
RACSignal	with	the	following	code:

let	url	=	NSURL(string:	"https://api.themoviedb.org/3/configuration?api_key=\

(apiKey)")!	

								let	request	=	NSURLRequest(URL:	url)	

								let	producer	=	NSURLSession.sharedSession().rac_dataWithRequest(request)	

								return	RACSignal.createSignal	{	subscriber	in	

												let	selfDisposable	=	producer.start	{	event	in	

																switch	event	{	

																case	let	.Next(value,	_):	

																				subscriber.sendNext(value)	

																case	let	.Failed(error):	

																				subscriber.sendError(error)	

																case	.Completed:	

																				subscriber.sendCompleted()	

																case	.Interrupted:	

																				break	

																}	

												}	

													

												return	RACDisposable	{	

																selfDisposable.dispose()	

												}	

								}	

Have	a	look	at	this	code,	and	think	about	the	kind	of	problems	we	can	encounter.	Sometimes,	network

requests	fail.	This	may	be	because	the	device	switches	between	networks,	the	server	is	overloaded,	or
any	other	reason.	So,	in	case	of	receiving	an	error	instead	of	handling	it	and	telling	the	user	that	there	was
an	error,	we	might	have	another	try.	The	retry	method	is	executed	for	cases	like	this,	and	we	can	use	it
now	that	we	know	that	we	may	come	across	such	problems.	If	we	get	an	error,	we	could	ask	to	retry	it	up
to	five	times;	this	is	the	reason	we	are	going	to	call	the	retry	method.	Place	the	following	code	after	the
subscribeOn	call:

.retry(5)	

So	far,	the	signal	has	only	NSData,	which	we	know	contains	a	JSON	message;	now,	we	can	map	this
NSData	into	a	Swift	object.	Again,	we	have	to	call	our	friend,	the	map	function:

.map({	(input)	->	AnyObject!	in	

												let	data	=	input	as!	NSData	

												let	json	=	try!	NSJSONSerialization.JSONObjectWithData(data,	options:	

NSJSONReadingOptions(rawValue:	0))	

												return	json	

								})	

The	dictionary	returned,	but	the	map	function	is	okay	and	we	can	work	with	it;	however,	we	are	more
interested	in	a	string	with	the	base	URL	already	composed	for	us.	Thus,	we	have	to	map	the	dictionary
into	a	string	again:

.map	{	(input)	->	AnyObject!	in	

																let	dictionary	=	input	as!	[String:AnyObject]	

																let	images	=	dictionary["images"]	as!	[String:AnyObject]	

																let	baseUrl	=	images["secure_base_url"]	as!	String	

																let	posterSizes	=	images["poster_sizes"]	as!	[String]	

																return	"\(baseUrl)\(posterSizes[0])"	

								}	

This	method	is	done.	The	next	part	involves	using	this	signal	to	store	its	result	in	a	property.	Create	a	new
property	called	posterUrl	of	the	optional	String	type.	This	property	must	be	dynamic	as	once	it	is
changed,	it	might	start	requesting	for	the	posters.	Create	this	property	like	this:

dynamic	var	posterUrl:String?	

Now,	we	can	subscribe	to	the	poster	signal,	and	when	we	get	a	reply,	we	can	just	set	the	posterUrl
property.	Inside	the	viewDidLoad	method,	after	setting	the	data	source,	we	can	set	the	subscription	with
the	following	code:

self.getPosterSignal()	

												.subscribeNext	{	(input)	->	Void	in	

												let	url	=	input	as!	String	

												self.posterUrl	=	url	

								}	

If	we	have	the	poster	URL,	it	means	that	we	are	able	to	download	them.	Who	knows	which	posters	need
to	be	downloaded?	The	posters	have	to	be	downloaded	according	to	the	cells	that	are	being	displayed	on
the	screen;	therefore,	every	time	we	create	a	new	cell	for	the	table	view,	it	must	subscribe	to	the
posterUrl	property.	When	the	property	has	a	value	different	from	nil,	we	must	request	for	the	posters,

and	when	the	request	is	made,	we	can	update	the	current	cell.	Easy,	isn't	it?

Scroll	down	to	the	tableView:cellForRowAtIndexPath:	method;	here,	we	have	to	indicate	that	we
want	to	observe	the	posterUrl	property,	and	for	every	change,	we	would	like	to	try	to	download	the
poster.	First,	let's	observe	this	property	by	calling	rac_valuesForKeyPath	after	assigning	the	movie
title:

self.rac_valuesForKeyPath("posterUrl",	observer:	self)	

Then,	we	have	to	map	the	poster's	URL	with	the	final	image.	Calling	the	map	function	might	resolve	it	very
easily	as	we	can	create	NSData	with	a	URL	and	UIImage	with	NSData:

.map	{	(input)	->	AnyObject!	in	

																if	let	baseUrl	=	input	as?	String,	poster	=	

self.movieResult[indexPath.row]["poster_path"]	as?	String,	url	=	NSURL(string:	

baseUrl	+	poster),	

																				data	=	NSData(contentsOfURL:	url)	{	

																								return	UIImage(data:	data)	

																}	

																return	UIImage()	

												}	

What	do	we	do	next?	We	have	to	apply	the	received	image	into	the	current	cell.	Remember	that	once	it	is
set,	we	have	to	setNeedsLayout	to	apply	the	new	image:

.subscribeNext	{	(input)	->	Void	in	

																let	image	=	input	as!	UIImage	

																let	cell	=	tableView.cellForRowAtIndexPath(indexPath)	

																cell?.imageView?.image	=	image	

																cell?.setNeedsLayout()	

								}	

Is	anything	wrong	here?	Not	necessarily	wrong,	but	something	can	be	improved.	Have	a	look	at	the	map
code,	and	check	whether	it	how	much	time	is	taken	to	download	each	poster.	If	this	is	done	in	the	main
thread,	the	UI	might	get	clunky.	How	can	we	solve	this	problem?	If	we	tell	the	signal	that	it	has	to	be
created	and	executed	in	a	low-priority	queue,	everything	will	be	solved.	To	do	this,	we	have	another
method	called	subscribeOn,	which	receives	the	queue	(this	is	called	RACScheduler	here)	where	the
signal	will	be	executed.	Place	the	highlighted	code	between	rac_valuesForKeyPath	and	the	map	call:

self.rac_valuesForKeyPath("posterUrl",	observer:	self)	

												.subscribeOn(RACScheduler(priority:	RACSchedulerPriorityLow))	

												.map	{	(input)	->	AnyObject!	In	

We've	solved	one	problem	and	created	another	one:	now	the	subscription	is	executed	in	a	background
thread,	but	changing	the	UI	is	something	that	must	be	done	in	the	main	thread.	The	solution	for	this	is	to
call	the	deliverOn	method,	which	can	switch	queues.	Type	the	highlighted	code	between	the	map	and
subscribeNext	calls:

}	

												.deliverOn(RACScheduler.mainThreadScheduler())	

												.subscribeNext	{	(input)	->	Void	in	

Does	this	work?	Of	course,	it	does!	Press	play	and	search	for	a	movie;	try	to	search	for	your	favorite	one,
and	you	should	get	some	posters	in	the	table	view.	The	following	screenshot	demonstrates	this:

	

	

	

Someone	might	think	that	it	is	working	because	the	poster	URL	is	received	before	we	receive	any	results.
This	is	not	true,	and	there	is	a	simple	way	that	we	can	test	it.	Before	subscribing	to	the	poster	signal,	let's
wait	for	20	seconds	using	the	delay	method.	This	gives	us	enough	time	to	allow	us	to	search	for	movies
and	receive	some	results;	then,	all	you	have	to	do	is	wait	a	little	bit	and	voilà!	The	posters	appear.	Place
the	highlighted	code	to	perform	this	test:

self.getPosterSignal()	

												.delay(20)	

												.subscribeNext	{	(input)	->	Void	in	

Something	magical	has	just	happened;	here,	it	doesn't	matter	what	comes	first,	they	can	be	synchronized
afterwards.

Improving	your	code	for	a	second	scene
The	code	works	fine	but,	as	you	know,	a	real	app	always	require	new	features,	fixing	bugs,	new	UI...blah
blah	blah.	Imagine	that	in	this	case	our	boss/client/stakeholder/wife	tells	us	that	displaying	the	movie
details	is	crucial.

How	can	we	do	this?	Firstly,	let's	add	a	new	empty	scene	to	the	storyboard.	Click	on	the	storyboard	file
and	add	a	new	View	Controller	to	it.	Then,	open	the	document	outline	and	right-click	from	the	first	View
Controller	to	the	View	Controller	of	the	new	scene,	as	is	shown	in	the	following	screenshot:

	

	

	

When	the	pop-up	menu	appears,	select	the	Show	option.	You	will	notice	that	a	new	segue	has	been
created	from	the	first	scene	to	the	new	one.	Select	the	created	segue	(the	arrow	that	connects	both	view
controllers),	go	to	its	Attribute	Inspector	with	command	+	option	+	4,	and	set	its	identifier	to
movie_detail,	as	shown	in	the	following	screenshot:

	

	

	

	

Now,	go	back	to	ViewController.swift.	Here,	we	are	going	to	split	the	table	view	selection	into	two
parts;	the	first	one	is	the	signal	itself	and	the	second	one	is	creating	of	the	subscriber.	The	idea	is
basically	mapping	this	signal	into	a	signal	that	sends	the	selected	movie	dictionary.

	

Once	we	have	this	in	mind,	we	can	start	replacing	the	previous	code	(the	one	that	recognizes	the	selector
tableView:didSelectRowAtIndexPath:)	with	this	one:

	

let	tableViewSignal	=	

self.rac_signalForSelector(Selector("tableView:didSelectRowAtIndexPath:"),	

fromProtocol:	UITableViewDelegate.self).map({	(input:AnyObject!)	->	AnyObject!	in

												let	arguments	=	input	as!	RACTuple

												let	indexPath	=	arguments.second	as!	NSIndexPath

												return	self.movieResult[indexPath.row]

								})

								

								tableViewSignal.subscribeNext	{	(input)	->	Void	in

												let	movie	=	input	as!	[String	:	AnyObject]

												let	title	=	movie["original_title"]	as!	String

												print("You	have	chosen	the	movie:	\(title)")

								}

Someone	might	ask,	"What's	is	the	difference?"	As	you	can	see,	first	we	just	create	a	signal	for	the
tableView:didSelectRowAtIndexPath:	selector	and	map	its	result	to	a	dictionary	that	represents	the
selected	movie.	In	a	separated	instruction,	we	get	this	signal	and	use	it	for	printing	the	selected	movie.

In	the	subscribeNext	function,	we	could	call	a	method	named	performSegueWithIdentifier.	Our
code	would	end	with	something	similar	to	the	following	(don't	make	this	change;	it	is	just	an	example):

tableViewSignal.subscribeNext	{	(input)	->	Void	in

												let	movie	=	input	as!	[String	:	AnyObject]

												let	title	=	movie["original_title"]	as!	String

												print("You	have	chosen	the	movie:	\(title)")

											self.performSegueWithIdentifier("movie_detail",	sender:	self)

								}

This	code	is	fine	and	it	works;	however,	the	new	question	is	this:	is	there	a	more	Reactive	way	of	doing
it?	The	answer	is:	yes,	there	is.	Remove	this	whole	subscribeNext	code,	and	we	will	replace	it	with
something	called	rac_liftSelector.

What	does	rac_liftSelector	do,	and	how	does	it	work?	Lift	selector	is	the	equivalent	way	of	calling	a
method	in	ReactiveCocoa;	the	difference	is	that	rather	than	calling	the	method	immediately,	it	calls	it
every	time	the	arguments,	which	are	signals,	send	the	next	value.

Once	we	have	understood	its	concept,	we	can	call	it	just	in	the	same	place	where	we	were	calling	the
subscribeNext	method	by	adding	the	following	code:

self.rac_liftSelector(Selector("performSegueWithIdentifier:sender:"),	

withSignalsFromArray:		[])

This	code	isn't	complete	yet—the	array	signal	is	empty.	How	should	we	fill	it?	Basically,	we	have	to	add
signals	whose	values	are	equivalent	to	the	selector	argument.	In	this	case,	the	first	argument	should	be	a
signal	that	returns	the	segue	identifier,	which	is	always	movie_detail.

How	can	we	create	a	signal	that	always	returns	a	constant?	The	answer	is	very	simple:	RACSignal	has	a
method	called	return,	which	basically	returns	a	value	repeated	times.	Now	that	we	know	about	this,	we
can	start	completing	our	code	by	adding	the	following	highlighted	code:

self.rac_liftSelector(Selector("performSegueWithIdentifier:sender:"),	

withSignalsFromArray:		[RACSignal.return("movie_detail")])

Try	to	compile,	and	oops,	there	is	an	error!	The	reason	for	this	error	is	that	the	function	return	was	created
in	Objective-C	and	here	in	Swift,	the	compiler	interprets	it	as	a	reserved	word.	We	can	solve	this
problem	by	surrounding	the	method	name	with	back	ticks,	like	the	following	code:

self.rac_liftSelector(Selector("performSegueWithIdentifier:sender:"),	

withSignalsFromArray:		[RACSignal.`return`("movie_detail")])

The	array	is	not	completely	filled	yet;	we	still	need	to	add	the	second	argument,	which	is	the	sender.
Here,	we	can	use	a	small	trick:	the	sender	won't	be	used	for	anything;	therefore,	we	can	send	the	movie
detail	as	a	sender.	Therefore,	the	final	code	is	this:

self.rac_liftSelector(Selector("performSegueWithIdentifier:sender:"),	

withSignalsFromArray:		[RACSignal.`return`("movie_detail"),	tableViewSignal])

If	you	don't	like	this	trick	of	using	the	movie	information	as	a	sender,	you	can	solve	it	by	creating	an
intermediate	method,	but	this	task	will	be	left	as	homework.

Press	play	and	check	whether	the	second	scene	is	called	whenever	a	movie	is	selected.	Of	course,	at	this
stage	of	the	app,	it	doesn't	display	any	movie	information;	thus,	that's	our	next	task.

Filling	in	the	movie	form
As	you	might	imagine,	we	have	to	display	the	movie	information	in	the	new	scene;	this	way,	the	user	will
see	more	detailed	information	about	the	movie	he	has	chosen.	Start	by	adding	a	new	file,	then	select	a
new	Cocoa	Touch	Class,	and	then,	on	the	next	dialog,	set	the	class	name	to
MovieDetailViewController	and	ensure	that	it	inherits	from	UIViewController	and	its	programming
language	is	Swift,	as	shown	the	following	screenshot:

	

For	this	scene,	we	have	to	think	about	what	we	are	going	to	display	to	the	user.	The	title	is	something
essential,	the	poster	is	good	to	show	(people	love	pictures),	the	genre	is	useful	information	as	it	tells	you
which	type	of	movie	we	have	selected,	and	the	movie	overview,	which	contains	the	movie's	description.
Remember	that	a	Dismiss	button	is	also	important;	this	way,	the	user	can	return	to	the	previous	scene.

Once	we	have	a	good	idea	about	what	we	want	to	display,	we	can	go	to	the	storyboard	to	design	our
scene.	Start	by	selecting	the	new	scene	and	going	to	its	Identity	Inspector	by	using	the	combination
command	+	option	+	3.	Set	its	class	to	MovieDetailViewController,	as	shown	in	the	following
screenshot:

	

	

Then,	we	can	start	adding	new	UI	components	to	this	scene.	Place	four	labels,	one	image	view,	one	text
view,	and	one	button	into	this	new	scene.	Organize	these	components	and	add	the	needed	constraints	until
you	get	a	layout	similar	to	this	one:

	

After	adding	the	UI	components,	we	have	to	connect	some	of	them	with	their	corresponding	attributes.
Open	the	assistant	editor	with	command	+	option	+	enter	and	connect	the	label	that	represents	the	title,
the	one	that	represents	the	genre,	the	text	view,	and	the	button	with	the	following	attributes:

@IBOutlet	weak	var	titleLabel:	UILabel!

				@IBOutlet	weak	var	posterImage:	UIImageView!

				@IBOutlet	weak	var	genreLabel:	UILabel!

				@IBOutlet	weak	var	overviewText:	UITextView!

				@IBOutlet	weak	var	dismissButton:	UIButton!

Do	we	need	any	other	attributes?	At	least	the	movie	details,	which	as	we	know	is	a	dictionary	of	String
and	AnyObject	values.	Add	the	following	line	to	your	MovieDetailViewController	class:

var	movieDetail:[String:AnyObject]!

Eventually,	we	will	need	to	request	the	movie's	poster	and	its	genre;	therefore,	we	will	also	need	the
poster	URL,	which	can	be	sent	from	the	previous	screen,	and	the	API	key:

let	apiKey	=	"a22160e11a5de46dc792f6d2fa8b434a"

				var	posterUrl:String?

Now,	we	can	start	developing	the	viewDidLoad	method;	starting	with	the	attributes	that	don't	need	to	be
reactive,	we	can	set	the	movie	title	and	the	overview	by	just	assigning	them	with	the	following	code:

override	func	viewDidLoad()	{

								super.viewDidLoad()

								titleLabel.text	=	movieDetail["title"]	as?	String

								overviewText.text	=	movieDetail["overview"]	as?	String

The	poster	should	also	be	something	very	straightforward	as	we	just	need	to	assign	one	image,	which	is
usually	small	sized;	therefore,	we	can	continue	with	the	following	code:

if	let	baseUrl	=	posterUrl,	posterPath	=	movieDetail["poster_path"]	as?	String,		

url	=	NSURL(string:	baseUrl	+	posterPath),

												data	=	NSData(contentsOfURL:	url)	{

																self.posterImage.image	=	UIImage(data:	data)

								}

The	next	step	can	be	the	Dismiss	button.	To	dismiss	the	current	View	Controller,	we	have	to	call	the
dismissViewControllerAnimated	method,	which	receives	as	argument	a	boolean	value	that	indicates
whether	the	View	Controller	should	disappear	with	an	animation	or	not	and	a	second	argument	that	is	the
completion	handler,	which	in	this	case	will	always	be	nil.

We	can	use	rac_liftSelector	again	for	this	process.	Although	the	second	argument	is	always	nil,	which
can	be	easily	achieved	using	RACSignal.return,	the	first	argument	is	not	that	straightforward,	even
knowing	that	it	will	be	always	a	true	value.	If	we	create	a	return	signal,	which	means	that	whenever	the
scene	starts,	it	will	be	dismissed	immediately,	we	have	to	synchronize	it	with	the	event	of	tapping	on	the
button.	Although,	when	we	press	a	button,	a	signal	is	thrown,	but	its	value	is	not	a	boolean.	So	what's	the

solution?	What	if	we	map	the	button's	touch-up	signal	into	a	boolean?	Problem	solved;	now	we	can
continue	the	viewDidLoad	method	with	the	following	code:

let	buttonSignal	=	dismissButton

												.rac_signalForControlEvents(.TouchUpInside)

												.map	{	(input:	AnyObject!)	->	AnyObject!	in

												return	true

								}

								

self.rac_liftSelector(Selector("dismissViewControllerAnimated:completion:"),	

withSignalsFromArray:	[buttonSignal,	RACSignal.`return`(nil)])

Finally,	we	need	a	signal	for	the	genre.	First,	we	have	to	understand	that	we	have	only	an	array	of	IDs	that
represent	the	genre;	these	IDs	are	integers	that	don't	represent	anything	to	the	user.	We	have	to	request	a
list	of	possible	genres	and	check	their	names	against	this	list.

To	make	life	easier,	we	will	develop	a	separated	method	only	for	requesting	the	genre	list.	Right	now,	we
will	assume	that	this	method	will	be	called	getGenreSignal;	that	way,	we	can	finish	with	the
viewDidLoad	method.

Assuming	that	this	signal	will	be	an	HTTP	request,	we	have	to	ensure	that	it	is	delivered	on	the	main
thread;	otherwise,	we	might	have	problems	updating	the	UI	components.	Based	on	this	assumption,	we
can	start	coding	with	the	following	line:

getGenreSignal().deliverOn(RACScheduler.mainThreadScheduler())

Then	we	can	subscribe	to	this	signal	with	subscribeNext:

.subscribeNext	{	(input:AnyObject!)	->	Void	in

Next,	we	need	to	receive	the	input;	if	you	check	the	JSON	result,	it	comes	with	only	one	field	called
genres	and	it	is	an	array	of	objects.	Each	of	these	objects	contains	two	fields,	ID	and	name;	thus,	all	we
have	to	do	is	filter	the	objects	that	are	valid	to	us	and	create	an	array	with	only	the	genre	names.	The
following	code	shows	exactly	how	it	works:

let	json	=	input	as!	[String:[[String:AnyObject]]]

																let	genres	=	self.movieDetail["genre_ids"]	as!	[Int]

																let	genre	=	json["genres"]?.filter({	(element:	[String	:	

AnyObject])	->	Bool	in

																				let	id	=	element["id"]	as!	Int

																				return	genres.contains(id)

																}).map({	(element:	[String	:	AnyObject])	->	String	in

																				return	element["name"]	as!	String

																})

Do	these	map	and	filter	functions	belong	to	ReactiveCocoa?	No;	however,	they	belong	to	functional
programming,	and	you	should	get	used	to	this	type	of	solution	rather	than	using	traditional	loops.

Finally,	we	can	create	a	new	string	with	the	genres	that	belong	to	the	current	movie	by	using
joinWithSeparator;	once	this	is	done,	the	viewDidLoad	method	has	reached	its	end:

self.genreLabel.text	=	genre?.joinWithSeparator(",	")

								}	//	end	subscribeNext

				}	//	end	viewDidLoad

Have	a	look	at	this	viewDidLoad	method;	how	many	var	declarations	do	we	have?	The	answer	is	none
inside	this	method.

Implementing	the	genre	signal
Finally,	we	have	to	create	the	getGenreSignal	function,	which	was	used	in	the	previous	section.	Here,
as	we	know,	this	is	a	private	function	that	returns	a	RACSignal	and	it	will	do	a	request	to	a	specific	URL;
thus,	we	can	start	opening	this	function	with	the	following	code:

private	func	getGenreSignal()	->	RACSignal	{

								let	url	=	NSURL(string:	"https://api.themoviedb.org/3/genre/movie/list?

api_key=\(self.apiKey)")!

Continue	creating	a	signal,	which	is	the	one	that	will	be	returned,	and	using	the	NSURLSession	for
requesting	the	genre	list	with	the	following	code:

return	RACSignal.createSignal({	(subscriber:	RACSubscriber!)	->	RACDisposable!	in

												let	task	=	NSURLSession.sharedSession().dataTaskWithURL(url)	{

																(data:NSData?,	response:	NSURLResponse?,	error:	NSError?)	->	Void	

in

Once	the	request	is	done,	we	have	to	validate	it.	We	can	use	the	guard	statement	for	controlling	the	input:

guard	error	==	nil	else	{

																				subscriber.sendError(error!)

																				return

																}

																guard	let	data	=	data	else	{

																				subscriber.sendError(NSError(domain:	"app",	code:	1,	userInfo:	

nil))

																				return

																}

Finally,	we	can	convert	the	received	data	into	a	Swift	object	(or	objects);	remember	that	this	conversion
can	still	fail,	which	will	make	us	trap	this	error	and	send	it	as	a	signal	error	rather	than	propagating	it	as
an	exception:

do	{

																				let	json	=	try	NSJSONSerialization.JSONObjectWithData(data,	

options:	NSJSONReadingOptions(rawValue:	0))

																				subscriber.sendNext(json)

																				subscriber.sendCompleted()

																}catch	let	raisedError	as	NSError	{

																				subscriber.sendError(raisedError)

																}

												}	//	end	dataTaskWithURL

As	you	know,	a	data	task	doesn't	do	anything	without	calling	the	resume	method,	and	we	all	agree	that	it
is	a	good	time	for	doing	this:

task.resume()

Finally,	we	can	return	the	disposable	that	is	required	by	the	function	definition.	In	this	case,	we	have	to
cancel	the	request	that	is	being	done.	After	that,	this	function	is	done:

return	RACDisposable(block:	{	()	->	Void	in

																task.cancel()

												})

								})

				}	//	end	getGenreSignal

}	//	end	MovieDetailViewController

This	View	Controller	is	already	done;	however,	as	you	can	see,	it	requires	some	information	that	need	to
be	sent	from	the	first	scene	to	the	second	one.

Changing	a	few	details	in	the	first	scene
The	second	scene	is	done,	but	now	we	have	to	adapt	the	first	scene	in	such	a	way	that	we	can	send	some
information	that	is	needed	by	the	MovieDetailViewController	method.	Click	on	the
ViewController.swift	file,	and	go	to	the	end	of	the	getPosterSignal	method.	As	you	can	see,	this
signal	returns	only	one	URL,	which	represents	the	poster;	however,	now	we	need	two	poster	sizes,	one
that	is	for	the	table	and	the	second	one	for	the	movie_detail	scene.

Swift	allows	us	to	return	more	than	one	variable	by	using	tuples;	however,	Swift	tuples	are	not
compatible	with	the	AnyObject	type.	A	good	solution	for	this	problem	is	using	RACTuple.	We	can	create
our	own	RACTuple	object	.	When	mapping	the	configuration	into	a	URL,	instead	of	returning	only	one
URL,	we	can	return	a	tuple	of	two	URLs.	Go	to	the	getPosterSignal	method	and	replace	the	return
statement	of	the	last	map	call	with	this	one:

return	RACTuple(objectsFromArray:	["\(baseUrl)\(posterSizes[0])",	"\(baseUrl)\

(posterSizes.last!)"])

As	you	can	see,	we	can	create	a	RACTuple	with	an	initializer	that	receives	an	array	as	an	argument:

Now	that	we've	changed	the	return	type	of	this	map	function,	we	have	to	change	where	it	was	called.	Go
to	the	viewDidLoad	method	and	look	at	subscribeNext	of	getPosterSignal,	and	now	replace	the
previous	implementation	with	this	one	that	stores	two	URLs:

self.getPosterSignal()

												.delay(20)

												.subscribeNext	{	(input)	->	Void	in

																let	tuple	=	input	as!	RACTuple

																let	url	=	tuple.first	as!	String

																let	urlBig	=	tuple.second	as!	String

																self.posterUrl	=	url

																self.posterUrlBig	=	urlBig

								}

There	is	a	new	attribute	in	the	scene;	it	means	that	we	have	to	declare	it.	Let's	do	it	by	adding	this	new
line	to	the	beginning	of	the	ViewController	class:

var	posterUrlBig:String?

Do	we	have	to	do	anything	else?	Actually,	we	need	to	do	another	step,	which	is	sending	the	information
from	the	current	scene	to	the	next	one.	How	can	we	do	it?	Again,	we	can	use	rac_signalForSelector,
but	this	time,	we	have	to	trap	the	selector	prepareForSegue:sender:.	This	method	is	called	every	time
we	switch	from	the	current	scene	to	the	next	one.	If	we	filter	it	for	ensuring	that	the	next	scene	is	the
MovieDetailViewController	(in	the	future,	we	might	have	more	scenes),	then	we	can	send	the	movie
details	and	the	poster	URL	with	the	following	code,	which	should	be	placed	at	the	end	of	the
viewDidLoad	method:

self.rac_signalForSelector(Selector("prepareForSegue:sender:"))

												.filter	{	(input:	AnyObject!)	->	Bool	in

																let	tuple	=	input	as!	RACTuple

																let	segue	=	tuple.first	as!	UIStoryboardSegue

																return	segue.destinationViewController	is	MovieDetailViewController	

&&	tuple.second	is	[String:AnyObject]

												}.subscribeNext	{	(input)	->	Void	in

																let	tuple	=	input	as!	RACTuple

																let	segue	=	tuple.first	as!	UIStoryboardSegue

																let	viewController	=	segue.destinationViewController	as!	

MovieDetailViewController

																viewController.movieDetail	=	tuple.second	as!	[String:AnyObject]

																viewController.posterUrl	=	self.posterUrl

								}

Great,	our	app	is	done!	Execute	it	and	search	for	your	favorite	movie.

Summary
In	this	chapter,	we	learned	some	new	concepts.	We	learned	how	to	create	a	signal	and	control	it	by
sending	it	next	values,	errors,	and	completion.	Using	it	in	asynchronous	calls	is	a	perfect	sample	of	the
benefits	of	reactive	programming.	Have	a	look	at	our	code,	and	make	sure	that	there	aren't	too	many
variables	or	if	statements.

A	good	sample	of	the	usage	of	Reactive	Programming	is	the	usage	of	rac_liftSelector,	which	is	a
different	way	of	calling	methods.	Using	this	function,	we	just	need	to	define	which	signal	combination	is
necessary	for	triggering	a	method—doesn't	matter	where	these	signals	were	sent.

We	also	learned	how	to	observe	a	property,	making	it	propagate	its	change	to	other	parts	of	the
application.	New	methods	were	also	displayed	here,	such	as	filter,	subscribeOn,	deliverOn,	retry,
and	delay.

Now	that	we	have	a	good	amount	of	knowledge	about	ReactiveCocoa,	let's	take	a	look	at	how	we	can	test
it	in	the	next	chapter.

Chapter	5.	Enhance	Your	Application	Using
RAC	Extensions
Even	if	there	is	nobody	at	home,	even	if	the	doors	and	windows	are	locked,	even	if	you	don't	hear
anything,	remember:	you	are	not	alone!	What	does	this	mean?	Though	you	may	know	how	to	develop
using	ReactiveCocoa,	you	have	to	remember	that	your	application	might	need	to	use	some	extra	features,
such	as	a	sensor,	frameworks,	and	so	on.

So	far,	we	have	learned	how	to	develop	an	application	with	ReactiveCocoa;	now,	we	are	going	to	learn
how	to	use	ReactiveCocoa's	extensions.	This	way,	we	can	add	more	features	to	our	application	and	still
use	it	with	the	reactive	way	of	programming.

In	this	chapter,	we	will	cover	the	following	topics:

Installing	Reactive	Extensions	(Rx)
Investigating	their	usage
Using	ReactiveCoreData

An	overview	of	the	project
In	this	chapter,	we	will	create	a	small	application	that	takes	some	pictures	automatically	when	we	move
at	a	certain	distance.	It	will	save	the	pictures	into	the	photo	gallery	and	record	the	coordinates	that	we
have	taken	these	pictures	at	so	that	we	can	check	the	path	afterwards.

For	this	project,	we	will	use	core	data	through	a	ReactiveCocoa	extension	called	ReactiveCoreData	and
other	auxiliary	extensions.	Here,	you	will	learn	how	to	deal	with	ReactiveCocoa	extensions	as	many	of
them	have	been	executed	for	different	ReactiveCocoa	versions,	and	due	to	this,	they	work	differently.

Setting	up	the	project	and	installing	extensions
Open	Xcode,	and	create	a	new	Single	View	Application.	Set	its	name	to	Chapter	5	RACExtensions,
ensure	that	Swift	is	the	main	language,	and	that	the	Use	Core	Data	checkbox	is	checked:

	

This	time,	we	are	going	to	install	ReactiveCocoa	using	CocoaPods	as	it	facilitate	installing	other
extensions.	As	we	learned	in	Chapter	2,	Installing	ReactiveCocoa	and	Using	It	with	Playground,	using
CocoaPods	requires	the	creation	a	file	with	the	pods	that	are	required	in	our	project.

Close	your	project	but	not	Xcode.	Create	a	new	file	with	Xcode	by	pressing	command	+N.	This	time,
select	an	Empty	file	that	is	located	in	the	Other	section,	as	shown	in	the	following	screenshot:

	

Call	this	file	Podfile,	and	place	it	in	the	same	folder	as	the	project	file	(Chapter	5
RACExtensions.xcodeproj).	Here,	we	have	to	set	the	pods	that	we	will	need	for	our	application:

ReactiveCocoa:	It	is	obvious	that	we	will	need	this	framework
DRPReactiveCoreLocation:	A	ReactiveCocoa	extension	that	uses	a	core	location	using	reactive
programming
UIGestureRecognizer	+	ReactiveCocoa:	A	ReactiveCocoa	extension	that	uses	gesture	without
selectors
RACPhotos:	A	framework	that	allows	us	to	save	and	retrieve	photos	from	a	gallery	using
ReactiveCocoa	signals
ReactiveCoreData:	An	extension	that	uses	Core	Data	with	ReactiveCocoa

Now	that	we	know	the	extensions,	we	can	complete	Podfile	with	the	following	lines	of	content:

use_frameworks!	

pod	'ReactiveCocoa',	'~>	4.0.4-alpha-1'	

pod	'DRPReactiveCoreLocation'	

pod	'ReactiveCoreData'	

pod	'UIGestureRecognizer+ReactiveCocoa'	

pod	'RACPhotos'	

Before	we	continue,	remember	that	there	are	a	few	details	that	we	have	to	bear	in	mind	when	installing
these	extensions	or	any	other	ReactiveCocoa	extension	(or	even	any	third-party	framework):

Some	extensions	were	executed	for	ReactiveCocoa	2	when	it	was	developed	for	Objective-C;
therefore,	you	might	have	to	use	some	methods	with	different	names.
ReactiveCocoa	updates	its	version	faster	than	most	of	its	extensions,	which	means	that	you
sometimes	have	to	change	the	extension's	code	to	make	it	compatible	with	the	new	ReactiveCocoa
version.	For	example,	ReactiveCocoa	3	used	to	have	the|>	operator;	now,	it	doesn't	exist	anymore
along	with	some	other	stuff,	such	as	replacing	occurrences	of	SinkOf<Event<T,	E>>	with
Event<T,	E>.Sink.
Sometimes,	the	extension	doesn't	have	a	podspec;	thus,	you	have	to	download	it	and	place	it	in	you
project	manually	or	use	the	carthage	package	system.
Swift	is	a	programming	language	that	mutates	very	frequently.	If	you	have	had	experience	with
updating	your	project	from	Swift	1	to	1.1	or	1.2,	or	from	1.x	to	2.0,	you	will	know	what	it	means
better	than	anyone	else.	So,	be	aware	that	you	may	need	to	upgrade	the	extension	yourself.

Now	that	we	know	about	the	possible	issues	that	we	might	across,	we	can	open	a	finder	window,	use	the
command	+	shift	+	U	combination	to	open	the	Utilities	folder,	and	then	open	the	terminal.

Go	to	your	project	folder,	as	we	learned	in	Chapter	2,	Installing	ReactiveCocoa	and	Using	It	with
Playground,	by	typing	cd	followed	by	the	project's	folder.

Tip

Remember	that	the	trick	to	receive	the	project	folder	in	the	terminal	is	dragging	it	from	the	finder	window
to	the	terminal.

Press	enter	to	enter	the	desired	folder,	and	type	pod	install	followed	by	the	enter	key.

The	process	will	take	a	few	seconds	to	complete.	Once	it	is	done,	you	can	open	the	current	folder	by
typing	open	.	in	the	terminal	(yes,	the	dot	has	to	be	typed	as	well).	A	new	finder	window	will	appear,
and	there,	you	have	to	look	for	the	file	called	Chapter	5	RACExtensions.xcworkpace.	Double-click
on	this	file	to	open	it.

Once	the	project	is	open,	you	will	notice	that	in	Project	Navigator,	you	have	your	project,	and	under	it,
you	have	another	project	called	Pods,	as	shown	in	the	following	screenshot:

	

Compile	your	project	with	command	+	B,	and	a	few	errors	will	appear	due	to	the	reasons	explained
earlier.	It	is	possible	that	you	may	have	to	change	the	angle	brackets	to	quotes,	for	example,	#import
<ReactiveCocoa.h>	may	have	to	be	changed	to	#import	"ReactiveCocoa.h".	When	making	this
change,	a	dialog	will	appear	confirming	whether	you	really	need	to	unlock	the	file	in	order	to	write	in	it.
Click	on	Unlock,	and	repeat	the	operation	every	time	it	is	necessary:

	

A	few	other	issues	might	occur	due	to	the	extension	version	that	you	are	using;	unfortunately,	not	all	of
them	are	trivial,	and	you	have	to	update	a	check	by	yourself	to	see	whether	it	works	or	not.

Tip

Don't	be	afraid	of	getting	errors;	in	the	real	world,	you	will	get	errors,	and	it's	your	job	to	fix	them.	Try	to
get	used	to	them	as	usually	the	issues	repeat.

Once	you've	fixed	every	error	and	the	application	is	compiled	and	executed,	we	can	say	that	the	setup	is
done.	It	is	a	good	time	to	commit	your	changes.

Mocking	up	the	first	scene
The	first	scene	for	this	application	is	very	basic,	and	it	has	almost	no	code.	The	only	features	that	we	need
are	two	buttons	to	open	the	next	few	scenes.	The	first	scene	allows	us	to	use	GPS	and	start	taking
pictures,	and	the	second	one	is	to	display	pictures.

Add	two	buttons	to	the	current	scene,	and	then	add	two	view	controllers	to	your	storyboard.	Change	the
first	button's	title	to	Take	Pictures	and	the	other	one	to	Show	Coordinates.	Now,	control-drag	from
one	button	to	one	of	the	new	view	controllers	added	to	the	scene,	and	select	show	when	the	options
appears.	Repeat	the	same	operation	with	the	second	button	together	with	the	second	View	Controller.	Add
some	constraints	to	place	the	buttons	correctly	on	the	screen.	The	current	storyboard	should	be	similar	to
what	is	shown	in	the	following	screenshot:

	

Note

Even	a	small	scene,	such	as	this	one,	can	have	some	artwork	in	order	to	make	it	more	user	friendly;
however,	this	task	(artwork/UX)	is	out	of	scope	of	this	book.	Feel	free	to	improve	the	visual	quality	of
any	application	in	this	book.

For	this	first	scene,	we	don't	have	to	do	anything	else;	therefore,	let's	move	on	to	the	next	scene.

Retrieving	information	from	GPS
In	this	application,	GPS	will	allow	us	to	track	where	the	user	has	been;	this	will	give	us	an	idea	about
where	the	pictures	might	have	been	taken.	As	we	are	going	to	use	GPS,	we	need	to	add	a	record	in
info.plist	that	gives	the	user	a	message	saying	that	we	are	going	to	use	this	sensor.	This	is	a
requirement	as	of	iOS	8.

Click	on	the	info.plist	file	located	in	your	Project	Navigator.	Add	a	new	record	and	set
NSLocationWhenInUseUsageDescription	as	key	and	as	value	a	phrase	like	This	app	needs
permission	for	using	GPS.	Here,	you	have	a	sample:

	

	

	

We	have	used	NSLocationWhenInUseUsageDescription	instead	of
NSLocationAlwaysUsageDescription	as	our	extension	uses	only	the	first	one.	If	you	need	to	use	the
second	one,	you	have	the	advantage	of	being	able	to	easily	change	DRPReactiveCoreLocation	in	the
source	code.

Now,	we	are	ready	to	create	a	new	View	Controller	that	will	use	GPS.	Using	command	+	N,	add	a	new
Swift	file	called	TakePicturesViewController.swift.	Just	add	the	basic	code	to	make	it	visible	from
the	storyboard;	this	means	that	you	have	to	import	UIKit	and	create	a	class	that	inherits	from
UIViewController,	as	shown	in	the	following	code:

import	UIKit	

class	TakePicturesViewController:	UIViewController	{	

}	

Return	to	the	storyboard.	Here,	we	have	to	set	the	right	class	for	the	scene	that	is	connected	to	the	button
titled	Take	Pictures;	otherwise,	it	will	be	connected	with	the	help	of	a	simple	UIViewController.	To
do	this,	click	on	such	a	scene,	and	go	to	Identity	Inspector	with	the	command	+Option	+	3	shortcut.
Change	the	class	name	to	TakePicturesViewController.	After	pressing	enter,	the	module	name	will
change	automatically,	which	is	a	good	sign	in	case	you	want	to	know	whether	you're	typing	a	valid	name
or	not:

	

	

	

Add	two	buttons	to	this	scene.	Place	the	first	one	in	the	center	of	the	scene	and	the	second	one	under	it.
For	the	first	button,	set	its	title	to	Start	tracking,	and	for	the	second	one,	just	set	it	to	Dismiss.
Connect	these	buttons	with	the	following	properties:

@IBOutlet	weak	var	startTrackingButton:	UIButton!	

				@IBOutlet	weak	var	dismissButton:	UIButton!	

Return	to	the	TakePicturesViewController.swift	file,	and	open	the	viewDidLoad	method.	Starting
with	a	simple	task,	let's	just	add	an	event	for	the	Dismiss	button.	Here,	we	just	need	to	dismiss	the	current
View	Controller	when	the	user	taps	this	button.	As	we	have	already	learned,	we	can	do	this	with	a	method
called	rac_signalForControlEvents.	Place	the	following	code	to	return	to	the	main	screen:

override	func	viewDidLoad()	{	

								super.viewDidLoad()	

										dismissButton.rac_signalForControlEvents(.TouchUpInside)	

												.subscribeNext({(_)	->	Void	in	

												self.dismissViewControllerAnimated(true,	completion:	nil)	

								})	

				}	

This	code	works,	but	are	we	missing	something?	Let's	have	a	look:	add	the	deinitializer	to	this	View
Controller	with	just	a	log	message:

deinit	{	

								print("deinit")	

				}	

Press	play,	open	the	new	scene,	and	click	on	the	Dismiss	button.	Was	deinit	called?	It	doesn't	look	so.	The
reason	is	that	we	have	a	retain	cycle.	This	problem	is	very	common	when	using	ReactiveCocoa	and	you
may	not	be	aware	of	it.	This	time,	lets	say	that	the	object	itself	is	not	owned	by	the	subscriber	handler.
Update	the	subscription	code	with	the	following	highlighted	code:

.subscribeNext({[unowned	self]	(_)	->	Void	in	

Repeat	the	test,	and	now	check	whether	the	View	Controller	is	dismissed	by	checking	the	log	window.

Once	this	concept	is	clear,	we	could	do	a	visible	example.	Bear	in	mind	that	we	are	going	to	use	it
everywhere.

Now,	we	can	start	coding	the	part	that	will	use	the	GPS	location.	If	you	go	to
DRPReactiveCoreLocation's	official	website,	which	is	hosted	by	GitHub,	you	won't	find	very	much
documentation;	therefore,	you	have	to	discover	how	it	works	by	reading	the	source	code	for	yourself.
Some	frameworks	offer	you	some	sample	code,	but	that's	not	the	case	here.

Note

Do	not	expect	to	find	good	documentation	or	any	documentation,	for	that	matter,	for	any	third-party
framework	(not	only	ReactiveCocoa	extensions).	Unfortunately,	figuring	out	how	a	framework	works	by
reading	its	code	is	a	task	that's	commonly	performed.

Import	the	DRPReactiveCoreLocation	framework	by	adding	the	following	line	of	code,	and	ensure	that
the	project	compiles:

import	DRPReactiveCoreLocation	

So	far,	we	know	that	we	can	use	this	framework.	Now,	we	can	retrieve	the	location	manager	provided	by
the	DRPReactiveCoreLocation	class	using	the	sharedLocationManager	method,	and	set	it	for	a
property	by	following	this	code:

let	locationManager	=	DRPReactiveCoreLocationManager.sharedLocationManager()	

Then,	we	can	start	requesting	updates	with	a	method	called	startUpdatingLocation.	This	method
should	be	called	outside	any	signal	as	it	also	requests	permissions.	When	the	track	button	is	pressed,	we
will	start	using	the	camera.	Next,	we	can	add	the	following	code	to	viewDidLoad:

self.locationManager.startUpdatingLocation()	

				startTrackingButton.rac_signalForControlEvents(.TouchUpInside)	

												.subscribeNext	{[unowned	self]	(_)	->	Void	in	

												//	TODO	complete	this	part	

								}	

The	location	manager	has	a	function	called	authorizationChangedSignal,	which	returns	a	signal	with
the	authorization	status	to	use	GPS.	Every	time	the	authorization	changes,	this	signal	is	triggered.	As	we
just	need	to	enable	the	tracking	button	when	we	have	authorization	for	that.	The	framework	we	use
accepts	only	AuthorizedWhenInUse,	and	this	is	what	we	should	map.	Here	is	the	final	code	for	this	part:

locationManager.authorizationChangedSignal()	

												.map({	(input)	->	AnyObject	in	

																let	status	=	input	as!	NSNumber	

																return	status	==	

NSNumber(int:CLAuthorizationStatus.AuthorizedWhenInUse.rawValue)	

												}).subscribeNext	{	[unowned	self](input)	->	Void	in	

																let	authorized	=	input	as!	Bool	

																self.startTrackingButton.enabled	=	authorized	

								}	

If	you've	never	worked	with	Core	Location	and	have	had	to	deal	with	its	authorization	system,	you	might

think	that	we've	typed	a	lot	of	code;	however,	if	you	have	experience	with	the	Core	Location	authorization
and	have	also	used	notifications	to	detect	whether	the	authorization	has	changed	(with	an	ugly	switch),
you	can	appreciate	that	we	haven't	written	very	much	code.

Why	was	it	necessary	to	use	the	filter	input	as	NSNumber	instead	of	using	it	as	an	enum?	The	answer	is
very	simple:	remember	that	this	framework	was	developed	in	Objective-C	where	it	is	very	common	to
use	integers	as	enum.	Have	a	look	at	the	CLAutorizationStatus	definition,	and	you	will	see	that	it	is
defined	with	this	code:

typedef	NS_ENUM(int,	CLAuthorizationStatus)	

Compile	the	project	and	run	it.	When	the	first	screen	opens,	click	on	the	Take	Pictures	button.	Here,	a
dialog	will	appear	asking	you	for	authorization	(take	a	look	at	the	following	screenshot),	and	after
accepting	the	authorization,	you	will	receive	a	log	message	saying	Authorized:

	

	

	

Signaling
Once	we	have	a	subscriber	for	the	authorization,	we	can	start	using	another	signal	for	the	current	position.
With	the	extension	that	we	are	using,	we	can	receive	this	signal	using	the	locationChangedSignal
method.

This	signal	is	triggered	every	time	we	receive	a	new	position;	however,	the	idea	is	to	take	pictures	at	a
certain	distance.	This	means	that	we	are	not	going	to	take	a	picture	for	every	received	coordinate,	rather,
we	have	to	compare	the	current	position	with	the	last	accepted	one	and	check	the	difference	in	their
distance.

One	easy	way	of	doing	this	is	by	adding	an	attribute	in	the	TakePicturesViewController	class;
however,	this	is	not	very	functional.	Here,	what	we	have	to	do	use	a	signal	method	called
scanWithStart.	This	method	receives	an	initial	value	as	an	argument,	which,	in	our	case,	is	the
coordinate	with	latitude	zero	and	longitude	zero.

The	second	argument	is	a	closure	that	receives	the	previous	value,	the	new	value,	and	needs	to	return	the
accepted	value.	We	may	have	to	check	whether	their	distance	is	greater	than	10	meters,	for	example;	if	so,
we	can	return	the	new	value.	If	not,	we'll	return	the	previous	one.

Returning	the	previous	value	hasn't	solved	very	much	so	far.	We	still	have	the	problem	of	receiving	too
many	coordinates.	What	if	we	accept	only	unique	coordinates?	Accepting	unique	coordinates	will	allow
us	to	take	pictures	only	once	at	each	coordinate.	Again,	we	could	solve	this	issue	by	adding	an	attribute	to
the	current	class;	however,	ReactiveCocoa	has	a	solution	for	this	called	distinctUntilChanged.

After	these	steps,	we	can	finally	subscribe	and	print	the	current	location	of	where	we	should	take	a
picture.	Remember	that	the	first	location	will	be	the	latitude	and	longitude	zero,	which	can	be	skipped	as
we	are	not	supposed	to	be	exactly	in	this	position.	Now,	place	the	following	code	at	the	beginning	of	our
current	viewDidLoad:

let	locationSignal	=	self.locationManager.locationChangedSignal()	

												.scanWithStart(CLLocation(latitude:	0,	longitude:	0))	

																{	(old,	new)	->	AnyObject!	in	

																				if	let	oldLocation	=	old	as?	CLLocation,	newLocation	=	new	as?	

CLLocation	

																								where	newLocation.distanceFromLocation(oldLocation)	>	10.0	

																				{	

																								return	new	

																				}	

																				return	old	

												}	

												.distinctUntilChanged()	

Can	you	see	anything	right	now?	Remember	that	the	signal	needs	a	subscriber	and	we	don't	have	it.	Now,
we	can	complete	our	tracking	button	by	adding	a	subscriber.	Replace	the	previous	comment	with	the
following	highlighted	code:

startTrackingButton.rac_signalForControlEvents(.TouchUpInside)	

												.subscribeNext	{[unowned	self]	(_)	->	Void	in	

												locationSignal.subscribeNext({[weak	self]	(input)	->	Void	in	

																print(input)	

												})	

								}	

Rerun	your	application,	and	check	whether	our	log	can	print	one	coordinate.	If	you	are	using	a	device
with	a	MacBook,	you	can	start	walking	with	them	and	check	whether	you	receive	a	log	after	walking	a
little	bit.	If	you	are	using	the	simulator,	open	the	Debug	menu,	go	to	the	Location	option,	and	select	the
Freeway	Drive	option;	you	will	see	that	some	coordinates	are	received	every	few	seconds.

Taking	pictures	with	a	camera
Now,	it's	time	to	use	a	camera;	therefore,	this	part	must	be	tested	with	a	physical	device.	To	use	the
camera,	we	will	need	the	help	of	UIImagePickerController	as	it	is	very	easy	to	use.	This	component	is
imported	in	UIKit,	but	eventually,	we	will	need	a	constant	that	is	defined	in	MobileCoreServices.	This
is	the	reason	we	have	to	import	this	framework:

import	MobileCoreServices	

Let's	add	an	image	picker	controller	as	the	property	of	TakePictureViewController:

let	imagePickerController	=	UIImagePickerController()	

As	we	now	have	an	instance	of	the	image	picker	controller,	we	can	set	it	up	and	leave	it	ready	to	take
pictures.	This	component	has	a	signal	called	rac_imageSelectedSignal,	which	is	triggered	when	a
picture	is	taken.	Right	now,	we	just	need	to	log	the	picture	information	to	make	sure	that	it	is	working.
Place	the	following	code	to	set	up	the	camera:

imagePickerController.sourceType	=	.Camera	

								imagePickerController.allowsEditing	=	false	

								imagePickerController.mediaTypes	=	[kUTTypeImage	as	String]	

								imagePickerController.showsCameraControls	=	false	

								imagePickerController.rac_imageSelectedSignal().subscribeNext	{	(input)	->	

Void	in	

												print("PICTURE	\(input)")	

								}	

When	should	the	camera	appear?	When	the	tracking	button	is	pressed!	Okay,	let's	do	this.	Just	call	the
presentViewController	method	when	the	button	is	pressed,	and	take	a	picture	every	time	a	new
coordinate	is	received;	hence,	you	will	have	to	update	the	subscriber	again	for	the	pressed	button	with	the
help	of	this	highlighted	code:

self.locationManager.startUpdatingLocation()	

startTrackingButton.rac_signalForControlEvents(.TouchUpInside)	

												.subscribeNext	{[unowned	self]	(_)	->	Void	in	

												self.presentViewController(self.imagePickerController,	animated:	true,	

completion:		{	()	->	Void	in	

												locationSignal.subscribeNext({[weak	self]	(input)	->	Void	in	

																self?.imagePickerController.takePicture()	

												})	

											}	

								}	

Run	the	application,	and	ensure	that	instead	of	printing	a	location,	we	print	the	picture	information.
Everything	looks	great	except	for	one	small	detail.	How	can	we	return	to	the	previous	scene?	Let's	solve
this	question	in	the	next	section.

Using	gesture	recognizers
We	will	need	to	go	back	to	the	previous	screen	when	we	have	finished	taking	the	pictures.	What	about
double	tapping?	To	do	this,	we	can	use	another	framework	called	UIGestureRecognizer+ReactiveCocoa,
which	was	included	in	our	pod	file.

This	framework	works	in	a	very	easy	way;	if	you	check	the	official	website
(https://github.com/kaiinui/UIGestureRecognizer-RACExtension),	you	can	take	a	look	at	the
documentation	and	see	that	it	is	not	very	difficult.	Basically,	you	have	to	call	a	function	called
rac_recognizer,	which	returns	a	signal	for	the	gesture	recognizer	and	also	uses	it	as	a	gesture
recognizer	for	the	setup.	As	we	need	a	double	tap,	we	just	need	to	set	numberOfTapsRequired,	and	add
this	gesture	recognizer	to	the	image	picker	overlay.	Once	you	have	received	the	signal,	you	can	dismiss
the	image	picker.	The	following	code	must	be	placed	at	the	end	of	viewDidLoad	to	add	the	tap
recognizer:

let	doubleTapRecognizer	=	UITapGestureRecognizer.rac_recognizer()	

								doubleTapRecognizer.numberOfTapsRequired	=	2	

								

self.imagePickerController.cameraOverlayView?.addGestureRecognizer(doubleTapRecogni

zer)	

								doubleTapRecognizer.rac_signal().subscribeNext	{[unowned	self]	(_)	->	Void	

in	

												self.imagePickerController.dismissViewControllerAnimated(false,	

completion:	nil)	

								}	

Test	your	application,	and	check	whether	everything	is	working	as	expected.	Can	we	improve	what	we've
done	so	far?	Let's	take	a	look.	When	removing	the	camera	from	the	screen,	we	have	to	unsubscribe	from
the	location	manager,	otherwise	it	will	continue	receiving	coordinates.

The	subscribeNext	method	returns	RACDisposable,	which	allows	us	to	dispose	of	the	subscription.	Go
to	the	top	of	viewDidLoad	and	create	a	variable	called	locationSubscription	as	an	optional	of	the
RACDisposable	type,	as	shown	in	the	following	line	of	code:

var	locationSubscription:RACDisposable?	

Now,	let's	assign	it.	When	executing	the	subscription,	the	track	button	is	pressed,	and	the	image	picker
appears	on	the	screen	by	adding	the	following	highlighted	code:

self.presentViewController(self.imagePickerController,	animated:	true,	completion:	

{	()	->	Void	in	

																				locationSubscription	=	locationSignal.subscribeNext({[weak	

self]	(input)	->	Void	in	

																								self?.imagePickerController.takePicture()	

																								})	

																})	

Finally,	we	can	dispose	this	when	dismissing	the	camera.	This	means	that	the	gesture	subscriber	needs	to
dispose	the	location	subscription	with	the	dispose	method.	Add	the	highlighted	line	to	dispose	the

https://github.com/kaiinui/UIGestureRecognizer-RACExtension

location	subscription:

doubleTapRecognizer.rac_signal().subscribeNext	{[unowned	self]	(_)	->	Void	in	

												locationSubscription?.dispose()	

self.imagePickerController.dismissViewControllerAnimated(false,	completion:	nil)	

								}	

Again,	test	your	application,	and	check	whether	everything	is	still	working.

Storing	pictures
So	far,	when	we	move	around	with	our	phone,	it	takes	some	pictures	but	they	are	just	dropped.	It	is	time
to	store	our	pictures	in	the	photo	gallery.	Here,	we	have	to	use	another	extension	called	RACPhotos,
which	was	created	by	Alejandro	Martinez.

RACPhotos	is	an	extension	that	allows	us	to	use	part	of	the	Apple	Photos	framework	(which	can	store
pictures	in	the	Photos	gallery)	with	ReactiveCocoa.

At	this	point,	this	application	starts	being	a	challenge.	RACPhotos	started	with	ReactiveCocoa	3.0,	and	it
was	updated	to	the	version	4.0,	which	is	different	compared	to	previous	versions.	Does	this	mean	that	we
can't	use	it	with	other	extensions?	No,	we	can	use	it	with	other	extensions.	Even	if	they	were	executed	for
different	versions,	we	just	need	to	be	aware	of	that	to	make	them	compatible.

Again,	not	much	documentation	is	provided;	however,	you	can	check	the	source	code	and	see	that	most	of
its	code	are	extensions	of	PHPhotoLibrary	and	PHAssetCollection.	Pay	attention	that	there	is	an
enumeration	for	errors	called	RACPhotosError.	There	is	also	a	sample	code	of	how	to	use	it,	which	can
be	useful.

The	Photos	framework,	like	the	Core	Location,	requires	a	user's	permission	to	use	it;	thus,	we	need	to
enable	the	track	button	only	when	both	permissions	are	accepted	by	the	user.

To	make	the	location	authorization	signal	compatible	with	ReactiveCocoa	4,	we	have	to	use	a	method
called	toSignalProducer,	which	returns	a	SignalProducer<AnyObject?,	NSError>.	Don't	worry
about	this	type	and	how	it	works.	We	will	take	a	more	detailed	look	at	this	in	the	next	chapter.	After	that,
we	will	take	the	same	map	function	we	had	earlier	but	return	Bool	instead	of	AnyObject.	The
subscribeNext	method	can	be	removed	now	because	this	signal	will	be	merged	with	the	photos
authorization	signal.	Once	you	have	understood	these	concepts,	we	can	replace	the	previous
authorizationChangedSignal	code	with	this	one:

let	locationAuthSignal	=	

locationManager.authorizationChangedSignal().toSignalProducer()	

												.map({	(input)	->	Bool	in	

																let	status	=	input	as!	NSNumber	

																return	status	==	

NSNumber(int:CLAuthorizationStatus.AuthorizedWhenInUse.rawValue)	

												})	

Then,	we	can	receive	the	authorization	signal	from	the	photos	library,	map	it	to	a	Boolean,	map	the	error,
and	then	observe	it.	Why	do	we	have	to	perform	these	last	few	steps?	Actually,	as	we	are	going	to	use
them	with	a	method	called	combineLatestWith,	it	requires	that	both	signals	be	compatible	in	terms	of
types	and	error	types.	This	is	the	reason	we	map	RACPhotoError	to	NSError.

The	error	observation	is	also	necessary	as	RACPhotos	considers	any	authorization	status	that's	different
from	the	authorized	one	to	be	an	error.	In	this	case,	we	have	to	disable	the	track	button.	Don't	forget	that
everything	that	is	done	with	the	UI	must	be	done	in	the	main	thread.	Now,	we	can	add	the	following	code
after	retrieving	the	location	authorization	signal:

let	photosAuthorization	=	PHPhotoLibrary.requestAuthorization()	

												.map({	(input:PHAuthorizationStatus)	->	Bool	in	

																return	input	==	.Authorized	

												}).observeOn(UIScheduler()).mapError	{	(racPhotosError:	RACPhotosError)	

->	NSError	in	

																return	NSError(domain:	"RACPhotosError",	code:	123,	userInfo:	nil)	

												}.on(error:	{[unowned	self]	(error:NSError)	->	()	in	

																self.startTrackingButton.enabled	=	false	

												})	

We	can	combine	both	signals,	map	the	result	with	an	AND	operation,	and	enable	the	button	with	a
subscriber.	These	few	last	steps	can	be	easily	performed	with	the	following	code:

photosAuthorization.combineLatestWith(locationAuthSignal).map	{	(photoAuthorized,	

locationAuthorized)	->	Bool	in	

												return	photoAuthorized	&&	locationAuthorized	

												}.startWithNext	{	(authorized)	->	()	in	

																self.startTrackingButton.enabled	=	authorized	

								}	

It's	time	to	test	the	application	again.

Note

The	track	button	will	be	enabled	only	if	you	accept	using	Core	Location	and	Photos.

Saving	pictures	to	the	photo	library
The	application	is	working	fine	so	far;	however,	it	is	not	doing	anything	with	the	pictures.	Now,	it	is	time
to	start	saving	them	in	the	photo	library.	To	do	this,	we	first	need	to	create	a	signal	to	create	a	collection
called	"Tracking	Collection".	Creating	a	collection	with	RACPhotos	is	not	difficult:	we	just	need	to
get	a	signal	with	a	method	called	createCollectionWithTitle	of	the	PHPhotoLibrary	class.	At	the
beginning	of	the	viewDidLoad	method,	let's	place	the	following	code	to	receive	the	signal:

let	collectionTitle	=	"Tracking	Collection"	

								let	collectionCreationSignal	=	

PHPhotoLibrary.sharedPhotoLibrary().createCollectionWithTitle(collectionTitle)	

The	signal	will	be	created	at	the	beginning	of	the	viewDidLoad	method;	however,	it	will	start	only	when
the	authorization	is	received.	To	do	this,	we	have	to	add	another	subscriber	to	the	photoAuthorization
signal.	As	we	are	only	interested	in	when	the	authorization	is	accepted,	we	are	going	to	filter	it	and	add	a
subscriber.	Complete	the	photoAuthorization	chain	with	the	highlighted	code	to	create	the	collection:

let	photosAuthorization	=	PHPhotoLibrary.requestAuthorization()	

...	

																})	

												.filter	{	(authorized)	->	Bool	in	

																				return	authorized	

												}.on	{	(authorized)	->	()	in	

																collectionCreationSignal.start()	

								}	

Now,	we	can	save	the	received	image	into	our	collection	by	replacing	the	previous	code	in
rac_imageSelectedSignal,	which	was	only	a	print,	with	a	new	one.	This	new	code	must	treat	the	input
as	a	dictionary,	search	for	the	UIImagePickerControllerOriginalImage	key,	which	contains	UIImage,
fetch	the	collection	that	we	created	earlier,	and	save	the	image	using	the	saveImage	method.	The	final
code	is	as	follows:

imagePickerController.rac_imageSelectedSignal()	

												.deliverOn(RACScheduler.mainThreadScheduler()).subscribeNext	{	(input)	

->	Void	in	

												let	metaData	=	input	as!	[String:AnyObject]	

												let	image	=	metaData["UIImagePickerControllerOriginalImage"]	as!	

UIImage	

												

PHAssetCollection.fetchCollectionWithTitle(collectionTitle).startWithNext({	

(collection:PHAssetCollection)	->	()	in	

																PHPhotoLibrary.sharedPhotoLibrary().saveImage(image,	

toCollection:collection).start()	

												})	

								}	

Another	test	must	be	performed	on	our	application.	Rebuild	the	application,	install	it	on	a	device,	and
walk	around	a	little	bit.	After	a	while,	press	the	home	button	to	return	to	the	home	screen,	and	open	the
Photos	application.	Make	sure	that	you	have	some	new	photos	there.

Storing	coordinates
Now,	it	is	time	to	leave	some	breadcrumbs.	At	this	point,	we	have	to	store	the	path	we	have	been	working
with	all	this	while.	For	this	feature,	we	will	use	Reactive	Core	Data,	which	is	a	ReactiveCocoa	extension
that	uses	Core	Data.

As	we	are	only	going	to	write	the	coordinates,	we	should	create	a	class	for	this	purpose.	Remember	that
the	objects	that	are	stored	using	Core	Data	must	inherit	from	NSManagedObject;	therefore,	let's	start
creating	this	new	class.

Use	command	+	N	to	add	a	new	file	in	your	project,	and	call	it	Coordinate.swift.	Start	importing	Core
Data	to	make	the	NSManagedObject	inheritance	possible:

import	CoreData	

Create	a	class	called	Coordinate	with	two	properties,	latitude	and	longitude.	Both	of	these	should
be	Double	with	the	@NSManaged	modifier	as	they	must	be	stored	in	the	database.	Add	the
@objc(Coordinate)	modifier	to	make	this	class	visible	with	the	help	of	Objective-C,	and	don't	forget
that	Reactive	Core	Data	was	written	in	Objective-C.	The	final	code	is	a	very	small	class	like	this	one:

@objc(Coordinate)	

class	Coordinate:NSManagedObject	{	

				@NSManaged	var	latitude:Double	

				@NSManaged	var	longitude:Double	

}	

Now,	we	have	to	model	this	data.	Click	on	the	Chapter_5_RACExtensions.xcdatamodeld	file,	which
will	display	a	different	panel	to	you.	Firstly,	you	have	to	create	an	entity	by	clicking	on	the	Add	Entity
button:

	

On	the	left-hand	side	of	the	panel,	a	new	entity	will	appear.	Change	its	name	to	Coordinate	and	press
enter.	The	left-hand	panel	must	look	like	what	is	shown	in	this	screenshot:

	

Select	this	new	entity,	and	go	to	Data	Model	Inspector	using	the	command	+	Option	+	3	key
combination.	Change	the	class	name	to	Coordinate	as	this	is	the	Objective-C	class	name	of	the	last	class
we	created.	Data	Model	Inspector	must	look	like	this:

	

Finally,	you	just	just	need	to	add	two	attributes.	Click	on	the	plus	(+)	sign	located	at	the	bottom	of	the
Attributes	section,	and	create	a	new	attribute	called	latitude	and	another	one	called	longitude.
Change	both	attribute	types	to	Double.	This	section	must	look	like	this:

	

The	modeling	is	done.	Return	to	the	TakePicturesViewController.swift	file	as	we	are	now	able	to
start	storing	data.

If	you've	worked	with	Core	Data	earlier,	you	might	know	that	there	are	a	few	objects	that	need	to	be	set
up.	Fortunately,	the	code	for	these	objects	is	already	executed	in	the	AppDelegate	class.	We	just	need	to
get	the	managed	object	context	and	set	it	as	the	main	context.	After	this,	we'll	be	able	to	use	Reactive
Core	Data.	To	do	this,	just	place	these	lines	at	the	beginning	of	viewDidLoad:

let	appDelegate	=	UIApplication.sharedApplication().delegate	as!	AppDelegate	

NSManagedObjectContext.setMainContext(appDelegate.managedObjectContext)	

This	code	can	be	inserted	in	the	ViewController.swift	file	if	you	like,	and	you	don't	need	to	repeat	it
in	the	show	coordinate	View	Controller;	however,	the	idea	behind	this	chapter	is	to	leave	it	close	to	the
rest	of	the	code;	this	way,	it	will	be	easier	to	recall.

Now,	we	just	need	to	complete	the	location	subscription	in	order	to	store	the	data.	Before	taking	the
picture,	we	just	need	to	create	a	new	coordinate	with	Coordinate.insert.	Next,	we	can	set	its	latitude
and	longitude	by	copying	both	from	the	input	argument.	Finally,	save	the	context	with	this	new	object.

Tip

If	you	need	better	performance,	you	may	prefer	saving	only	after	a	few	interactions.

After	understanding	the	steps	required	to	record	the	current	location,	we	just	need	to	complete
locationSubscription	with	the	following	highlighted	lines:

locationSubscription	=	locationSignal.subscribeNext({[weak	self]	(input)	->	Void	in		

																								let	location	=	input	as!	CLLocation	

																								let	coordinate	=	Coordinate.insert()	

																							coordinate.latitude	=	location.coordinate.latitude	

																								coordinate.longitude	=	location.coordinate.longitude	

																								try!	NSManagedObjectContext.currentContext().save()	

																									

																								self?.imagePickerController.takePicture()	

																								})	

The	scene	is	done!	Press	play	and	walk	through	your	home	street	for	a	bit.	Right	now,	you	can	see	the
Core	Data	result;	however,	if	the	application	doesn't	crash,	it	is	a	good	sign	that	everything	is	working
fine.

Showing	coordinates
Now,	we	just	need	to	show	the	coordinates.	To	do	this,	we	will	need	a	new	class	as	the	View	Controller.
Add	a	new	Swift	file	to	your	project	and	call	it	ShowCoordinatesViewController.swift.	Import
UIKit,	the	Core	Data	frameworks	and	ReactiveCocoa:

import	UIKit	

import	CoreData	

import	ReactiveCocoa	

Create	a	class	called	ShowCoordinatesViewController	that	inherits	from	UIViewController	and
implements	the	UITableViewDataSource	protocol.	This	class	will	have	a	property	that	is	an	array	of
coordinates,	which	will	be	displayed	on	the	screen;	thus,	we	can	start	coding	this	class	with	the	following
code:

class	ShowCoordinatesViewController:UIViewController,	UITableViewDataSource	{	

					

				lazy	var	coordinates	=	[Coordinate]()	

}	

At	this	point,	the	compiler	will	start	complaining	about	some	missing	implementations	for
UITableViewDataSource.	Let's	start	with	numberOfRowsInSection;	it	must	be	the	same	as	the
coordinates'	array	size:

func	tableView(tableView:	UITableView,	numberOfRowsInSection	section:	Int)	->	Int{	

								return	coordinates.count	

				}	

Next,	we	need	to	populate	the	table	view	with	cells;	we	just	need	to	use	the	traditional	code	that	receives
a	value	from	the	array	and	use	it	to	set	the	text	for	the	cell:

func	tableView(tableView:	UITableView,	cellForRowAtIndexPath	indexPath:	

NSIndexPath)	->	UITableViewCell{	

								var	cell	=	tableView.dequeueReusableCellWithIdentifier("cell")	

								if	cell	==	nil	{	

												cell	=	UITableViewCell(style:	.Default,	reuseIdentifier:	"cell")	

								}	

									

								let	coordinate	=	coordinates[indexPath.row]	

								cell?.textLabel?.text	=	"Lat:	\(coordinate.latitude),	Long:	\

(coordinate.longitude)"	

					

								return	cell!	

				}	

Return	to	the	storyboard,	and	add	a	table	view	and	button	to	the	blank	scene	we	have.	Add	the	required
constraints	and	change	its	class	to	ShowCoordinatesViewController.	Open	Assistant	Editor	with
command	+	Option	+	enter,	and	link	the	table	view	and	button	with	two	new	properties	called
tableView	and	backButton,	respectively:

@IBOutlet	weak	var	tableView:	UITableView!	

				@IBOutlet	weak	var	backButton:	UIButton!	

Return	to	the	class	source	code	file	and	open	the	viewDidLoad	method.	Here,	we	can	start	with
backButton	as	it	just	needs	to	dismiss	the	View	Controller:

override	func	viewDidLoad()	{	

								super.viewDidLoad()	

								backButton.rac_signalForControlEvents(.TouchUpInside)	

												.subscribeNext	{[unowned	self]	(input)	->	Void	in	

												self.dismissViewControllerAnimated(true,	completion:	nil)	

								}	

				}	

After	the	backButton	action,	set	the	current	object	as	the	tableview's	data	source:

tableView.dataSource	=	self	

Set	the	main	context	for	the	Core	Data	with	the	AppDelegate	managed	object	context	as	we	did	in	the
previous	scene:

let	appDelegate	=	UIApplication.sharedApplication().delegate	as!	AppDelegate	

NSManagedObjectContext.setMainContext(appDelegate.managedObjectContext)	

Now,	the	coordinate	class	can	give	us	a	signal	to	retrieve	every	object	of	this	entity;	to	do	this,	we	just
need	to	call	the	findAll	method.	This	signal	sends	the	predicate	to	request	for	the	objects.	Then,	we	can
continue	with	another	signal	by	calling	the	executeRequest	method	from	NSManagedObjectContext.
We	can	chain	it	with	flattenMap.	Finally,	the	subscriber	will	receive	an	array	of	coordinates	and	reload
the	data.	Here's	the	final	code	for	this	chain:

Coordinate.findAll()	

												.flattenMap({	(input)	->	RACStream!	in	

																let	fetchRequest	=	input	as!	NSFetchRequest	

																return	

NSManagedObjectContext.currentContext().executeRequest(fetchRequest)	

												}).subscribeNext({[unowned	self]	(input)	->	Void	in	

																self.coordinates	=	input	as!	[Coordinate]	

																self.tableView.reloadData()	

																})	

Run	the	application	again	and	open	the	second	scene.	Make	sure	that	the	table	view	is	populated	with	the
coordinates	that	you've	already	taken	a	look	at.

Summary
In	this	chapter,	you	learned	how	to	use	a	few	ReactiveCocoa	extensions.	Extensions	allow	us	to	use
features	that	weren't	available	in	first	instance	using	ReactiveCocoa.	There	are	many	of	them,	and	some	of
them	were	written	using	old	versions	of	RAC	along	with	a	couple	of	new	ones;	however,	they	can	still	be
used	together.

We	learned	how	to	investigate	an	extension	even	if	there	wasn't	very	much	documentation.	This	is	a	good
practice	as	it	can	give	us	some	idea	of	how	to	develop	with	RAC.

In	the	next	chapter,	we	will	learn	how	to	use	ReactiveCocoa	in	a	more	modern	way,	which	is	done	using
Swift.

Chapter	6.	Using	the	ReactiveCocoa	4	Style
The	first	version	of	ReactiveCocoa	for	Swift	was	3.0;	however,	it	still	worked	like	the	Objective-C	way
of	programming,	except	for	a	few	operators	and	some	other	stuff.	For	this	reason,	the	ReactiveCocoa	team
decided	to	create	another	version	quickly	taking	the	advantages	of	the	new	features	of	Swift	2.

In	this	chapter,	we	will	cover	the	following	topics:

Creating	a	signal
Using	a	signal	producer
Using	the	new	scheduler

An	overview	of	the	project
It	is	time	to	use	a	shopping	cart.	Have	you	ever	learned	about	a	programming	language	without	a	shopping
cart?	Of	course	not.	After	hello	world,	the	shopping	cart	was	invented,	and	it	is	now	time	to	develop	it
with	ReactiveCocoa,	which	will	make	the	building	of	our	application	more	interesting.

In	this	project,	we	will	have	a	shopping	application	that	allows	a	user	to	add	products	to	their	shopping
cart.	Here,	we	have	to	consider	that	the	products'	prices	will	be	set	in	Great	Britain	Pounds	(GBP),	also
called	Sterling,	but	the	user	can	change	the	currency	if	they	wish	to.

The	currency	exchange	rate	is	retrieved	from	an	API	called	fixer.io.	Here,	we	have	to	remember	a	few
details:

If	there	is	no	Internet	connection,	the	option	to	change	the	currency	should	be	disabled.	No	Internet
means	no	currency	change.
When	changing	the	currency	in	order	to	buy	a	product,	everything	that	is	being	displayed	(and	that
will	be	displayed)	on	the	screen	must	be	updated	to	new	values.

Once	we	have	understood	these	requirements,	we	can	start	working	on	our	project.

Setting	up	the	project
Open	Xcode,	and	create	a	new	project	called	Chapter	6	Shop	Cart.	As	usual,	ensure	that	Swift	is	the
main	programming	language.	Install	ReactiveCocoa	in	your	favorite	way;	just	ensure	that	version	4	is
installed.	For	example,	if	you	use	CocoaPods,	make	sure	that	you	specify	that	it's	version	4.

Once	you	have	set	up	the	project,	go	to	the	storyboard.	Here,	we	will	start	by	adding	a	layout	where	the
user	can	see	the	whole	supermarket	catalog	on	a	table	view,	the	Total	label	in	the	bottom-left	corner,	and
the	Checkout	button	in	the	bottom-right	corner.	Of	course,	a	label	with	a	screen	title	would	be	fine	to
make	it	more	visible	to	the	user.	In	short,	you	can	have	a	simple	layout,	as	shown	here:	

	

Now,	we	have	to	think	about	how	to	display	the	products.	We	will	have	to	display	a	picture,	its	price,
description,	a	label	with	the	quantity	that	was	added	to	the	shopping	cart,	a	button	to	add	one	unit	of	the
product,	and	a	button	to	remove	it.

To	do	this,	just	add	a	table	view	cell	in	the	only	table	that	we	have	on	the	screen.	Place	an	image	view,
three	labels	(one	for	the	product	name,	its	price,	and	the	quantity	in	the	basket),	and	two	buttons	in	the
cell.	Set	the	buttons'	images	to	minus	(-)	and	plus	(+).	You'll	find	these	images	in	this	book's	resources.
The	final	cell	layout	will	be	similar	to	what	is	shown	in	the	following	screenshot.	Feel	free	to	change	this
layout	if	you	are	a	creative	person:	

	

Using	Assistant	Editor,	cU	ct	the	table	view,	the	Total	label,	and	the	Checkout	button	with	their
corresponding	properties	in	the	ViewController	class:	@IBOutlet	weak	var	catalogTableView:
UITableView!	@IBOutlet	weak	var	totalLabel:	UILabel!	@IBOutlet	weak	var	checkoutButton:	UIButton!

Finally,	let's	create	a	class	for	the	table	view	cell	that	we	have	created.	Add	a	new	file	to	your	project
called	ProductCell.swift.	Import	UIKit,	and	create	an	empty	class	that	inherits	from
UITableViewCell	with	this	code

import	UIKit	

class	ProductCell:UITableViewCell	{	

}	

Return	to	the	storyboard,	select	the	table	view	cell,	go	to	its	Identity	Inspector	with	command	+	Option
+	3,	and	change	its	class	to	ProductCell,	as	demonstrated	here:	

	

Now,	using	command	+	Option	+	4,	go	to	Attribute	Inspector,	and	change	the	cell	identifier	to

productcell:

	

Open	Assistant	Editor,	and	connect	the	UI	cell	components	to	their	corresponding	attributes:

@IBOutlet	weak	var	nameLabel:UILabel!	

				@IBOutlet	weak	var	priceLabel:UILabel!	

				@IBOutlet	weak	var	productImage:UIImageView!	

				@IBOutlet	weak	var	addButton:UIButton!	

				@IBOutlet	weak	var	removeButton:UIButton!	

				@IBOutlet	weak	var	numberOfItemsLabel:UILabel!	

Great,	the	basic	setup	for	the	first	screen	is	done.	Now,	let's	start	implementing	our	shopping	cart.

Developing	the	Currency	class
In	this	application,	Currency	is	an	important	class.	The	output	on	the	screen	will	change	according	to	the
user's	currency.	The	only	stored	properties	we	will	need	are	the	name,	which	is	a	three	letter	code,	such
as	USD	for	US	Dollar	and	GBP	for	Great	Britain	Pounds,	and	its	rate	according	to	the	base	currency.

As	mentioned	in	the	beginning	of	this	chapter,	the	base	currency	will	be	GBP;	however,	you	can	easily
change	it	if	you	like	by	changing	the	setting	of	the	static	attribute	called	baseCurrency.	The	final	code	for
this	class	is	as	simple	as	this	one:

class	Currency:NSObject{	

				var	name:String	

				var	rate:Double	

					

				static	var	baseCurrency:Currency	=	{	

								return	Currency(name:"GBP",	rate:	1.0)	

				}()	

					

				init(name:	String,	rate:Double){	

								self.name	=	name	

								self.rate	=	rate	

				}	

}	

Why	does	this	class	inherit	from	NSObject?	The	reason	for	this	is	that	objects	of	the	Currency	type	can
only	be	marked	as	dynamic	if	they	are	Objective-C	ready;	to	do	this,	you	just	need	to	inherit	from
NSObject.	We've	already	seen	in	previous	chapters	how	properties	that	are	marked	as	dynamic	can	be
observed	when	they	are	changed.	As	we	are	interested	in	observing	when	a	currency	changes,	we	must
prepare	it	to	be	dynamic.

Creating	the	Currency	Manager
In	this	application,	we	need	a	singleton	class	that	controls	everything	related	to	currencies,	such	as
available	currencies,	the	base	currency,	and	the	user's	currency.	Add	a	new	file	to	your	project	called
CurrencyManager.swift	and	open	it.	As	it	is	a	singleton	class,	let's	start	by	creating	the	class	with	its
initializer:

final	class	CurrencyManager:NSObject	{	

				private	static	var	instance:CurrencyManager?	

				private	static	var	dispatch_once_token:dispatch_once_t	=	0	

					

				static	func	sharedCurrencyManager()	->	CurrencyManager	{	

								dispatch_once(&dispatch_once_token)	{	()	->	Void	in	

												CurrencyManager.instance	=	CurrencyManager()	

								}	

								return	instance!	

				}	

				private	init(){	

								super.init()	

				}	

}	

What	else	do	we	have	to	add	to	this	class:	we	need	to	know	the	default	currency,	which	is	GBP,	and	also
the	current	currency.	The	current	currency	can	be	changed,	and	every	time	it	changes,	a	signal	is	triggered.
This	is	the	reason	we	have	to	add	a	dynamic	modifier.	The	next	code	must	be	added	after	the	dispatch
token:

dynamic	lazy	var	currentCurrency:Currency	=	Currency(name:	"GBP",	rate:	1.0)	

				var	defaultCurrency:Currency	{	

								return	Currency(name:	"GBP",	rate:	1.0)	

				}	

Now,	we	need	to	detect	when	the	current	currency	changes.	The	best	way	to	do	this	is	via	a	signal,	which
we	can	retrieve	through	a	function;	therefore,	we	can	create	a	function	that	returns	a	signal	that	observes
when	the	current	currency	has	changed.

Note

As	mentioned	in	previous	chapters,	we	have	to	use	the	rac_valuesForKeyPath	method	for	observing	a
value	change;	however,	it	returns	RACSignal,	which	is	the	classic	way	of	using	signals.	You	can	convert
this	object	into	SignalProducer;	the	philosophy	of	SignalProducer	is	similar	to	RACSignal	but	it
works	a	bit	differently.

Firstly,	SignalProducer	is	not	a	class.	It	is	a	struct	that	has	different	limitations,	such	as	you	can't	inherit
from	a	struct,	every	attribute	is	considered	immutable,	and	so	on.	Secondly,	SignalProducer	takes
advantage	of	generics,	which	is	good	since	instead	of	receiving	input	in	the	form	of	AnyObject,	we	can
map	it	to	the	correct	type,	making	our	code	safer	and	easier	to	maintain:

Add	the	following	code	to	create	a	signal	producer	for	the	currency	change:

func	currencyChangedSignalProducer()	->	SignalProducer<Currency,	NSError>	{	

								return	self.rac_valuesForKeyPath("currentCurrency",	observer:	self)	

												.toSignalProducer()	

												.map({	(input:AnyObject?)	->	Currency	in	

												return	input	as!	Currency	

								})	

				}	

Does	this	class	have	to	do	anything	else?	We	need	to	retrieve	the	available	currencies	from	fixer.io.	To	do
this,	we	are	going	to	create	a	private	method	to	receive	data	from	NSURLSession.	Here,	we	are	going	to
create	a	signal	rather	than	a	signal	producer.	The	difference	is	that	a	signal	starts	whenever	it	is	created,
but	a	signal	producer	needs	a	call	to	the	start	method.

As	we	are	creating	our	own	signal,	we	will	call	a	static	method	named	pipe.	This	method	returns	two
values:	the	signal	itself	and	an	observer,	which	can	send	an	operation	(next,	fail,	complete,	and	so	on)
whenever	it	is	necessary.

Once	we	have	received	the	signal	and	the	observer,	we	can	request	for	the	URL.	When	the	response	is
received,	we	can	check	whether	there	is	any	error	and	resend	it	with	the	sendFailed	function.	Then,	we
send	the	received	value	to	the	subscriber	with	sendNext.	In	both	cases,	this	signal	is	complete	with
sendComplete.	Now	that	we	have	understood	the	theory,	let's	put	it	into	practice	by	adding	the	following
code	at	the	end	of	the	CurrencyManager	class:

private	func	signalForUrl(url:NSURL)	->	Signal<NSData,	NSError>	{	

								let	(signal,	observer)	=	Signal<NSData,	NSError>.pipe()	

								let	task	=	NSURLSession.sharedSession().dataTaskWithURL(url)	{	

(data:NSData?,	response:NSURLResponse?,	error:NSError?)	->	Void	in	

												if	let	error	=	error	{	

																observer.sendFailed(error)	

												}else	{	

																observer.sendNext(data!)	

												}	

												observer.sendCompleted()	

								}	

								task.resume()	

								return	signal	

				}	

After	this	method,	we	can	create	a	new	method	to	convert	the	received	NSData	into	an	array	of
currencies.	Have	a	look	at	how	the	map	input	is	not	an	object	of	the	AnyObject	type;	it	now	comes
according	to	the	result	of	the	previous	operation.	Don't	forget	that	we	need	to	add	the	default	currency	in
our	array	as	it	is	not	returned	in	the	JSON	message:

func	signalForRates()	->	Signal<[Currency],	NSError>	{	

								let	url	=	NSURL(string:	"http://api.fixer.io/latest?base=GBP")!	

								let	signal	=	self.signalForUrl(url)	

												.map	{	(input:NSData)	->	[String:AnyObject]	in	

												let	json	=	try!	NSJSONSerialization.JSONObjectWithData(input,	options:	

NSJSONReadingOptions.MutableContainers)	

																return	json["rates"]	as!	[String:	AnyObject]	

												}.map	{	(input:[String	:	AnyObject])	->	[Currency]	in	

																var	currencies	=	[Currency]()	

																currencies.append(self.defaultCurrency)	

																for	(key,	value)	in	input	{	

																				let	currency	=	Currency(name:	key,	rate:	value	as!	Double)	

																				currencies.append(currency)	

																}	

												return	currencies	

								}	

								return	signal	

				}	

The	code	for	Currency	Manager	is	now	complete,	and	we	are	able	to	detect	when	the	user	has	changed	the
currency	and	apply	it	anywhere	in	the	application	code.

Creating	the	Product	class
A	product	is	something	that	is	not	complex;	it	just	needs	a	few	properties,	such	as	the	unit	type	(a	bag,	can,
bottle,	and	so	on),	its	name,	code,	image	and	its	price.	However,	we	have	to	remember	that	a	product	has
a	base	price,	which	is	based	on	the	default	currency	and	the	user	price.	This	is	the	price	in	the	current
user's	currency.

Add	a	new	file	called	Product.swift,	and	start	adding	a	basic	code.	Import	the	ReactiveCocoa
framework,	and	create	an	enumeration	to	define	its	unit:

import	ReactiveCocoa	

	

enum		ProductUnitType	{	

				case	Unknown	

				case	Bag	

				case	Can	

				case	Bottle	

				case	DozenLikeWhenYouBuyBananas	

}	

Now,	we	have	to	start	creating	the	Product	class.	This	class	must	inherit	from	NSObject	as	we	will	need
to	call	some	ReactiveCocoa	operations,	such	as	rac_valuesForKeyPath.	If	the	product	price	varies,	the
price	that	is	shown	to	the	user	in	the	desired	currency	also	varies;	therefore,	it	must	be	observable
(dynamic).	When	the	user's	price	changes,	the	total	of	the	shopping	cart	also	changes;	this	means	that	the
user	price	must	also	be	observable.	The	following	is	the	start	code	for	the	Product	class	with	its
properties:

class	Product:NSObject	{	

				var	code:String	

				var	name:String?	

				dynamic	var	price:Double	=	0	

				dynamic	var	userPrice:Double	=	0	

				var	type:ProductUnitType	=	.Unknown	

				var	imageName:String?	

				var	priceSignal:SignalProducer<Double,	NSError>!	

				var	userPriceSignal:SignalProducer<Double,NSError>!	

The	last	two	signals	return	NSError,	which	is	the	default	error	type	when	you	convert	RACSignal	to	a
signal	producer;	however,	you	can	use	NoError	in	cases	like	this	as	no	errors	are	expected.

Another	property	that	can	help	us	is	the	product	description,	which	can	be	implemented	by	overriding	the
computed	property	description.	This	belongs	to	the	CustomStringConvertible	protocol,	which	is
already	a	part	of	NSObject:

override	var	description:	String	{	

								let	unit:String	

								switch	self.type	{	

								case	.Bag:	

												unit	=	"Bag	of	"	

								case	.Bottle:	

												unit	=	"Bottle	of	"	

								case	.Can:	

												unit	=	"Can	of	"	

								case	.DozenLikeWhenYouBuyBananas:	

												unit	=	"Dozen	of	";	

								default:	

												unit	=	""	

								}	

									

								let	name:String	=	self.name	??	""	

									

								return	"\(unit)\(name)"	

				}	

Next,	we	will	initialize	the	object.	The	only	mandatory	field	is	the	product's	code	as	the	other	properties
are	optional	or	they	are	already	initialized	due	to	their	declaration;	so,	let's	start	by	taking	a	look	at	its
code:

init(code:String){	

								self.code	=	code	

								super.init()	

Continuing	with	priceSignal,	we	observe	the	price	property,	map	it	to	a	Double	value,	and	every	time
the	price	changes,	we	update	the	user	price:

self.priceSignal	=	self.rac_valuesForKeyPath("price",	observer:	

self).toSignalProducer().map({	(input)	->	Double	in	

												return	input	as!	Double	

								})	

									

								priceSignal.startWithNext	{[weak	self]	(price)	->	()	in	

												self?.refreshUserPrice()	

								}	

Note

Make	sure	we	haven't	used	subscribeNext	since	we	need	to	use	startWithNext.	Remember	that
priceSignal	is	SignalProducer,	which	needs	to	call	any	start	method	to	make	it	work.

After	understanding	this	concept,	we	can	execute	the	same	task	with	CurrencyManager.	Whenever	the
currency	changes,	the	user	price	must	be	changed	too:

CurrencyManager.sharedCurrencyManager()	

												.currencyChangedSignalProducer()	

												.startWithNext	{	[weak	self](currency:Currency)	->	()	in	

												self?.refreshUserPrice()	

								}	

The	last	part	of	the	initializer	involves	creating	a	signal	producer	for	the	user	price;	the	idea	behind	this	is
the	same	as	price,	but	we	use	the	userPrice	property	instead:

self.userPriceSignal	=	self.rac_valuesForKeyPath("userPrice",	observer:	self)	

												.toSignalProducer()	

												.map({	(input:AnyObject?)	->	Double	in	

												return	input	as!	Double	

								})	

				}//	end	init	

We	have	to	create	a	method	called	refreshUserPrice.	This	method	is	very	straightforward	as	we	just
need	to	check	the	current	currency	rate	and	update	the	user	price.	Just	add	the	following	code	after	the
initializer:

func	refreshUserPrice	(){	

								let	rate	=	CurrencyManager.sharedCurrencyManager().currentCurrency.rate	

								self.userPrice	=	rate	*	self.price	

				}	

}//	end	Product	

The	Product	class	is	now	complete.	The	objects	of	the	Product	type	will	initially	be	stored	in	a	class
called	Catalog;	this	class	should	be	just	an	array	wrapper.	Create	a	new	file	called	Catalog.swift,	and
add	the	following	code	for	this	wrapper:

class	Catalog	{	

				private	var	items	=	[Product]()	

				var	count:Int	{	

								return	items.count	

				}	

					

				init()	{	

								var	product	=	Product(code:	"1")	

								product.name	=	"Peas"	

								product.price	=	0.95	

								product.type	=	.Bag	

								product.imageName	=	"peas"	

								self.items.append(product)	

									

								product	=	Product(code:"2")	

								product.name	=	"Eggs"	

								product.price	=	2.10	

								product.type	=	.DozenLikeWhenYouBuyBananas;	

								product.imageName	=	"eggs";	

								self.items.append(product)	

									

								product	=	Product(code:"3")	

								product.name	=	"Milk"	

								product.price	=	1.30	

								product.type	=	.Bottle	

								product.imageName	=	"milk"	

								self.items.append(product)	

									

								product	=	Product(code:"4")	

								product.name	=	"Beans"	

								product.price	=	0.73;	

								product.type	=	.Can;	

								product.imageName	=	"beans";	

								self.items.append(product)	

				}	

	

				subscript(index:Int)	->	Product	{	

								return	items[index]	

				}	

	

				func	indexForCode(code:String)	->	Int?	{	

								for	(index,	value)	in	items.enumerate()	{	

												if	value.code	==	code	{	

																return	index	

												}	

								}	

								return	nil	

				}	

}	

In	this	code,	we	have	implemented	the	subscript	function,	which	allows	us	to	use	the	catalog	as	an	array,
such	as	catalog[1],	which	will	give	us	the	second	product	in	the	catalog.	We	are	now	ready	for	the	most
crucial	step:	dealing	with	the	shopping	cart!

Implementing	a	shopping	cart
A	catalog	is	a	collection	of	products;	however,	it	doesn't	control	the	number	of	items	that	the	user	has
chosen.	Thus,	we	need	a	new	class	that	acts	as	a	collection	of	products,	knows	the	number	of	items	in	it,
and	has	the	feature	of	adding	and	removing	a	product.	This	class	is	the	shopping	cart!	The	shopping	cart,
like	the	product,	has	a	total	that's	based	on	the	default	currency	and	another	total	based	on	the	user's
currency;	therefore,	it	needs	two	dynamic	properties.	Items	will	be	stored	in	NSCountedSet	as	the	order
that	the	product	was	chosen	in	doesn't	matter,	only	the	number	of	times	it	was	added	to	the	shopping	cart.

After	knowing	these	basic	concepts,	we	can	start	coding	the	shopping	cart.	Add	a	new	file	called
ShopCart.swift,	import	the	ReactiveCocoa	framework,	create	the	ShopCart	class,	and	then	create	its
properties:

import	ReactiveCocoa	

	

class	ShopCart:NSObject{	

				dynamic	var	total:Double	=	0	

				dynamic	var	userTotal:Double	=	0	

				var	items:NSCountedSet	=	NSCountedSet()	

	

				private	var	totalSignal:SignalProducer<Double,	NSError>!	

				private	var	userTotalSignal:SignalProducer<Double,	NSError>!	

Continuing	with	the	initializer,	the	first	thing	we	can	do	is	update	the	total	every	time	the	currency
changes.	To	do	this,	we	just	need	to	take	the	currency	signal	producer	and	add	a	subscriber	with
startWithNext:

override	init(){	

								super.init()	

									

								CurrencyManager.sharedCurrencyManager()	

												.currencyChangedSignalProducer()	

												.startWithNext	{	[weak	self](currency:Currency)	->	()	in	

												self?.refreshUserTotal()	

								}	

Now,	we	need	a	function	to	add	and	remove	a	product	from	the	shopping	cart.	In	both	cases,	we	need	to
update	the	total	and	return	the	number	of	items	that	we	have	in	the	cart:

func	addProduct(product:Product)	->	Int{	

								let	currentValue	=	self.items.countForObject(product)	

								items.addObject(product)	

								let	finalValue	=	self.items.countForObject(product)	

								self.total	+=	Double(finalValue	-	currentValue)	*	product.userPrice;	

								return	finalValue	

				}	

	

				func	removeProduct(product:	Product)	->	Int{	

								let	currentValue	=	self.items.countForObject(product)	

								items.removeObject(product)	

								let	finalValue	=	self.items.countForObject(product)	

								self.total	-=	Double(currentValue	-	finalValue)	*	product.userPrice	

								return	finalValue	

				}	

A	quick	question:	have	we	used	ReactiveCocoa	here?	Yes,	we	have.	Whenever	you	change	the	total,	the
total	signal	is	automatically	triggered,	which	updates	the	user	total	and	triggers	the	user	total	signal.

As	we've	set	the	user	signal	as	private,	we	have	to	create	a	method	to	access	it.	It	should	be	as	easy	as
this	code:

func	signalForUserTotal()	->	SignalProducer<Double,	NSError>	{	

								return	self.userTotalSignal;	

				}	

Finally,	we	have	to	implement	refreshUserTotal,	which	follows	the	same	algorithm	as	one	for	the
product	we	saw	earlier:

private	func	refreshUserTotal()	{	

								let	rate	=	CurrencyManager.sharedCurrencyManager().currentCurrency.rate	

								self.userTotal	=	self.total	*	rate;	

				}	

}//	end	ShopCart	

The	models	are	complete.	Now,	we	can	return	to	the	graphical	part.

Resuming	the	ViewController	class
The	ViewController	class	has	been	incomplete	until	now.	We	have	the	implementation	of	ShopCart	and
Catalog,	so	it	might	be	good	to	start	adding	them	as	properties.	Go	to	the	ViewController	class,	and
add	the	following	properties:

var	catalog	=	Catalog()	

				var	shopCart	=	ShopCart()	

Now,	we	have	to	subscribe	to	the	ShopCart	signal.	Here,	we	have	to	be	aware	that	the	total	might	not	be
delivered	on	the	main	thread	as	we	don't	know	what	caused	a	change	in	the	total.	To	ensure	that	we	are
going	to	act	in	the	right	thread,	we	use	the	observeOn	method,	which	is	equivalent	to	deliveryOn	used	in
RACSignal.	In	this	situation,	we	use	RACScheduler;	however,	we	now	need	an	object	that	implements	the
SchedulerType	protocol.	In	this	case,	there	is	a	class	specifically	for	this	purpose	called	UIScheduler.

Note

There	are	more	schedulers,	such	as	QueueScheduler,	which	implement	the	DateSchedulerType
protocol	and	support	scheduling	for	a	future	date,	ImmediateScheduler	that	just	executes	it,	and
TestScheduler	that	is	used	for	testing.

Now,	we	can	start	the	viewDidLoad	method	by	updating	the	Total	label	whenever	the	currency	changes:

override	func	viewDidLoad()	{	

								super.viewDidLoad()	

									

								self.shopCart.signalForUserTotal()	

												.observeOn(UIScheduler())	

												.startWithNext	{[weak	self]	(input:Double)	->	()	in	

																let	currency	=	

CurrencyManager.sharedCurrencyManager().currentCurrency	

																if	let	weakSelf	=	self	{	

																				let	totalText	=	String(format:"Total:	%.02f	%@",	

weakSelf.shopCart.userTotal,		currency.name)	

																				weakSelf.totalLabel.text	=	totalText	

																}	

								}	

What	else	should	we	do	in	viewDidLoad?	We	have	set	the	table	view	data	source	to	the	current	object:

self.catalogTableView.dataSource	=	self	

				}//end	viewDidLoad	

Next,	we	have	to	create	the	table	view	data	source	methods.	Starting	with	the	number	of	rows	in	a	section,
we	just	need	to	return	the	number	of	items	in	the	catalog.	The	final	code	is	as	easy	as	this:

func	tableView(tableView:	UITableView,	numberOfRowsInSection	section:	Int)	->	Int{	

								return	self.catalog.count	

				}	

Now,	let's	get	to	the	other	mandatory	method:	cellForRowAtIndexPath.	Here,	we	have	to	do	a	few

things.	Firstly,	we	have	to	receive	the	current	cell,	the	product	for	this	cell,	and	then	assign	its	description
to	the	cell	label:

func	tableView(tableView:	UITableView,	cellForRowAtIndexPath	indexPath:	

NSIndexPath)	->	UITableViewCell{	

								let	cell	=	tableView.dequeueReusableCellWithIdentifier("productcell",	

forIndexPath:	indexPath)	as!	ProductCell	

								let	product	=	self.catalog[indexPath.row]	

								cell.nameLabel.text	=	product.description	

Once	we	these	constants,	every	time	the	user's	price	changes,	we	refresh	the	Price	label.	Remember	that
this	is	a	UI	operation,	and	it	must	be	executed	on	the	main	thread.	Take	a	look	at	this	code	to	detect	when
there	is	a	price	change:

//	Every	time	the	price	changes	we	have	to	refresh	the	price	label	

								product.userPriceSignal	

												.observeOn(UIScheduler())	

												.startWithNext	{	[weak	cell]	(double:Double)	->	()	in	

												let	currency	=	CurrencyManager.sharedCurrencyManager().currentCurrency	

												let	priceText	=	String(format:"For	only	%.02f	%@",	product.userPrice,	

currency.name)	

												cell?.priceLabel.text	=	priceText	

								}	

We	also	need	to	set	the	plus	(+)	button	action.	To	do	this,	we	are	going	to	use	the
rac_signalForControlEvents	method	as	we	did	in	the	previous	chapters,	convert	RACSignal	into
SignalProducer,	add	the	subscriber	with	the	method	on,	and	start	the	signal	with	the	start	method.	The
following	code	receives	RACSignal	for	the	TouchUpInside	event,	and	then	it	converts	it	into
SignalProducer.	Then,	it	sets	the	next	action,	which	is	adding	the	product	to	the	shopping	cart	and
updating	the	numberOfItems	label,	and	it	finally	starts	the	signal:

//	add	product	

								cell.addButton	

												.rac_signalForControlEvents(.TouchUpInside)	

												.toSignalProducer()	

												.on(next:{[weak	self,	weak	cell]	(_)	->	()	in	

																if	let	weakSelf	=	self	{	

																				let	numberOfItems	=	weakSelf.shopCart.addProduct(product)	

																				cell?.numberOfItemsLabel.text	=	String(format:"%d",	

numberOfItems)	

																				cell?.numberOfItemsLabel.sizeToFit()	

																}	

																})	

												.start()	

Could	we	have	used	startWithNext?	Of	course,	we	could.	This	is	just	another	way	of	using	a	signal
producer.	You	can	use	the	on	method	to	set	the	next	action	as	well	as	the	complete,	failure,	and	other
actions.	Once	your	producer	is	prepared	to	be	used,	you	can	enable	it	with	the	start	method.	The	remove
button	works	using	this	code:

//	remove	product	

								cell.removeButton	

												.rac_signalForControlEvents(.TouchUpInside)	

												.toSignalProducer()	

												.on(next:	{[weak	self,	weak	cell]	(_)	->	()	in	

												if	let	weakSelf	=	self	{	

																let	numberOfItems	=	weakSelf.shopCart.removeProduct(product)	

																cell?.numberOfItemsLabel.text	=	String(format:"%d",	numberOfItems)	

																cell?.numberOfItemsLabel.sizeToFit()	

												}	

												})	

												.start()	

Finally,	we	can	set	the	cell	image	if	it's	available	and	return	the	cell:

if	let	imageName	=	product.imageName	{	

												cell.productImage.image	=	UIImage(named:imageName)	

								}	

								return	cell	

				}	//	end	cellForRowAtIndexPath	

}	//	end	ViewController	

The	first	scene	is	done;	now	it's	time	to	test	it.	Have	a	look	at	whether	you	can	add	and	remove	products
from	your	basket;	make	sure	that	the	total	and	the	number	of	products	are	automatically	updated:

	

	

	

The	application	works	but	something	isn't	right.	The	currency	is	always	the	same.	This	problem	will	be
solved	on	the	next	scene.

Creating	the	checkout	scene
The	checkout	scene	has	a	layout	similar	to	the	first	one.	The	difference	is	that	in	the	table	view,	we	will
show	products	in	the	shopping	cart,	and	it	will	allow	the	user	to	change	the	current	currency.

Firstly,	add	a	new	Swift	file	to	you	project,	and	call	it	CheckoutViewController.swift.	Here,	we	just
need	to	create	a	class	to	let	the	storyboard	know	which	class	the	second	scene	belongs	to.	Go	ahead	and
import	UIKit	and	the	ReactiveCocoa	framework.	After	this,	create	a	class	that	inherits	from
UIViewController	and	implements	UITableViewDataSource,	as	demonstrated	here:

import	UIKit	

import	ReactiveCocoa	

	

class	CheckoutViewController:	UIViewController,UITableViewDataSource	{	

}	

Return	to	the	storyboard,	and	add	a	new	View	Controller	to	it.	Select	the	new	View	Controller,	and
change	its	Class	to	CheckoutViewController	by	going	to	Identity	Inspector	using	command	+
Option	+	3	and	updating	the	Class	field,	as	demonstrated	here:

	

	

	

You	need	to	control-drag	from	the	Checkout	button	of	the	first	scene	to	the	second	scene,	and	select	the
Show	option	when	the	menu	appears;	it	will	make	the	second	scene	appear	when	the	Checkout	button	is
pressed.	Place	two	labels	in	the	new	scene	(one	for	the	scene	title	and	one	for	the	total),	one	table	view,
and	two	buttons	(one	to	change	the	currency	and	the	other	to	return	to	the	first	scene).	The	final	layout
should	be	similar	to	what	is	shown	here:

	

	

	

Open	Assistant	Editor	with	command	+	Option	+	enter,	and	connect	the	UI	components	to	their
corresponding	properties	using	this	code:

@IBOutlet	weak	var	backButton:	UIButton!	

				@IBOutlet	weak	var	changeCurrencyButton:UIButton!	

				@IBOutlet	weak	var	productsTableView:UITableView!	

				@IBOutlet	weak	var	totalLabel:UILabel!	

Return	to	standard	editor	with	command	+	enter,	and	set	the	constraints	that	you	think	are	necessary.	Once
you	are	happy	with	your	constraints,	go	to	the	CheckoutViewController	file.

Besides	UI	properties,	we	will	create	an	array	with	products	and	their	quantities	and	a	shopping	cart.	For
the	products	and	their	quantities,	we	will	create	a	new	private	class;	this	will	make	our	lives	easier
when	using	the	table	view.	The	shop	cart	will	be	taken	from	the	previous	scene.

In	viewDidLoad,	we	can	start	by	converting	NSCountedSet	into	an	array	of	PurchasedProducts;	you
can	do	this	using	the	traditional	for	loop,	but	if	you	prefer	using	a	more	functional	way,	you	can	use	the
reduce	loop	like	this:

self.purchasedProducts	=	shopCart.items	

												.reduce([PurchasedProduct](),	

																combine:	{	(var	purchasedProducts:[PurchasedProduct],	

item:AnyObject)	->	[PurchasedProduct]	in	

																				let	product	=	item	as!	Product	

																				let	quantity	=	self.shopCart.items.countForObject(product)	

																				let	purchasedProduct	=	PurchasedProduct(product:	product,	

quantity:	quantity)	

																				purchasedProducts.append(purchasedProduct)	

																				return	purchasedProducts	

												})	

Next,	we	can	set	backButton	using	rac_signalForControlEvents,	converting	it	to	a	signal	producer
and	subscribing	to	it	using	startWithNext:

self.backButton	

												.rac_signalForControlEvents(.TouchUpInside)	

												.toSignalProducer()	

												.startWithNext	{	[weak	self](_)	->	()	in	

												self?.dismissViewControllerAnimated(true,	completion:	nil)	

								}	

Our	changeCurrencyButton	is	a	little	bit	more	complicated	as	it	needs	to	continue	the	signal	with	the
help	of	another	signal.	With	RACSignal,	we	used	a	method	called	flattenMap,	but	the	signal	producers
use	one	called	flatMap,	which	is	very	similar,	except	that	it	receives	a	new	argument	(the	first	one)
called	a	strategy.	In	this	case,	we	will	use	Concat;	this	means	that	the	producers	should	be	concatenated
so	that	their	values	are	sent	in	the	order	of	the	producers	themselves.	Alternatively,	you	can	use	Merge	or
Latest.

Now,	the	on	method	will	handle	two	events:	the	failed	method,	which	for	any	reason	shows	that	we
couldn't	retrieve	information	from	the	server,	and	the	traditional	subscriber.	After	the	on	method	is
complete,	we	can	start	the	signal.	The	final	code	looks	like	this:

self.changeCurrencyButton	

												.rac_signalForControlEvents(.TouchUpInside)	

												.toSignalProducer()	

												.flatMap(FlattenStrategy.Concat)	{	(_)	->	Signal<[Currency],	NSError>	

in	

																return	CurrencyManager.sharedCurrencyManager().signalForRates()	

												}	

												.observeOn(UIScheduler())	

												.on(failed:	{	[weak	self]	(_:NSError)	->	()	in	

																self?.showNoInternet()	

																})	{	[weak	self]	(input:[Currency])	->	()	in	

																				self?.showRates(input)	

												}	

												.start()	

From	the	shopping	cart,	we	have	to	observe	the	user's	price;	don't	forget	that	after	changing	the	currency,
the	total	of	the	shopping	cart	will	change	as	well,	and	the	user	should	be	updated	about	it:

self.shopCart	

												.signalForUserTotal()	

												.observeOn(UIScheduler())	

												.startWithNext	{	[weak	self]	(input:Double)	->	()	in	

																if	let	weakSelf	=	self	{	

																				let	currency	=	

CurrencyManager.sharedCurrencyManager().currentCurrency	

																				let	totalText	=	String(format:"Total:	%.02f	%@",	

weakSelf.shopCart.userTotal,	currency.name)	

																				weakSelf.totalLabel.text	=	totalText;	

																}	

								}	

The	last	part	of	viewDidLoad	is	simply	the	assigning	of	the	table	view	data	source:

self.productsTableView.dataSource	=	self	

				}	//	end	viewDidLoad	

For	numberOfRowsInSection,	we	can	just	implement	this	easy	method:

//	MARK:	-	Table	view	data	source	

				func	tableView(tableView:	UITableView,	numberOfRowsInSection	section:	Int)	->	

Int{	

								return	self.purchasedProducts.count	

				}	

For	cellForRowAtIndexPath,	it	is	a	bit	more	tricky.	The	cell	needs	to	be	updated	when	the	user	changes
the	currency.	Here,	we	will	use	the	on	method	without	tags;	it	is	the	same	as	using	the	next:	tag:

func	tableView(tableView:	UITableView,	cellForRowAtIndexPath	indexPath:	

NSIndexPath)	->	UITableViewCell{	

								var	cell	=	tableView.dequeueReusableCellWithIdentifier("cell")	

								if	cell	==	nil	{	

												cell	=	UITableViewCell(style:	.Subtitle,	reuseIdentifier:	"cell")	

								}	

								let	purchasedProduct	=	self.purchasedProducts[indexPath.row]	

									

								//	observing	any	price	changing	

								purchasedProduct.product.userPriceSignal	

												.observeOn(UIScheduler())	

												.on	{	[weak	cell](input:Double)	->	()	in	

												let	currency	=	CurrencyManager.sharedCurrencyManager().currentCurrency	

												let	total	=	purchasedProduct.product.userPrice	*	

Double(purchasedProduct.quantity)	

												cell?.textLabel?.text	=	String(format:	"%d	%@	for	%.02f	

%@",purchasedProduct.quantity,	purchasedProduct.product.description,	total,	

currency.name)	

								}.start()	

									

								return	cell!	

				}	

We	still	need	to	implement	two	methods.	The	first	one,	called	showRates,	shows	the	user	different
currency	options.	Whenever	the	user	chooses	a	currency,	it	must	be	assigned	to	the	Currency	Manager:

//	MARK:	-	Private	

				private	func	showRates(rates:[Currency])	{	

								let	alertController	=	UIAlertController(title:	"Change	Currency",	message:	

"Please	choose	your	currency",	preferredStyle:	.ActionSheet)	

									

								for	currency	in	rates	{	

												let	action	=	UIAlertAction(title:	currency.name,	style:	.Default,	

handler:	{	(_)	->	Void	in	

																CurrencyManager.sharedCurrencyManager().currentCurrency	=	currency	

												})	

												alertController.addAction(action)	

								}	

									

								let	action	=	UIAlertAction(title:	"Cancel",	style:	.Cancel,	handler:	nil)	

								alertController.addAction(action)	

								self.presentViewController(alertController,	animated:	true,	completion:	

nil)	

				}	

We	are	once	again	using	ReactiveCocoa	implicitly.	When	you	set	the	currency,	it	changes	the	products	and
the	shopping	cart,	which	changes	the	label	that	displays	the	total.

Finally,	you	can	implement	the	method	that	displays	a	message	telling	you	that	an	error	has	occurred:

private	func	showNoInternet()	{	

								let	alertController	=	UIAlertController(title:	"Error",	message:	"Unable	to	

retrieve	currencies",	preferredStyle:	.Alert)	

								let	action	=	UIAlertAction(title:	"Dismiss",	style:	.Cancel,	handler:	nil)	

								alertController.addAction(action)	

								self.presentViewController(alertController,	animated:	true,	completion:	

nil)	

				}	

	

}	//	end	Checkout	View	Controller	

Is	the	application	complete	now?	The	answer	is	yes.	We	still	need	to	send	the	shopping	cart	from	one
scene	to	another.	Return	to	ViewController.swift,	go	to	the	viewDidLoad	method,	and	add	this	code
before	the	data	source	assignation:

self.rac_signalForSelector(Selector("prepareForSegue:sender:"))	

												.toSignalProducer()	

												.map({	(input:AnyObject?)	->	RACTuple	in	

																return	input	as!	RACTuple	

												})	

												.map({	(arguments:RACTuple)	->	UIStoryboardSegue	in	

																return	arguments.first	as!	UIStoryboardSegue	

												})	

												.filter({	(segue:UIStoryboardSegue)	->	Bool	in	

																return	segue.destinationViewController	is	CheckoutViewController	

												})	

												.startWithNext	{	(segue)	->	()	in	

																let	checkoutViewController	=	segue.destinationViewController	as!	

CheckoutViewController	

																				checkoutViewController.shopCart	=	self.shopCart	

	

								}	

This	code	checks	when	the	prepareForSegue	method	is	called,	which	means	that	the	next	scene	will
appear,	and	whenever	it	does,	we	take	the	first	argument.	The	first	argument	is	UIStoryboardSegue,	and
if	its	destination	View	Controller	is	of	the	CheckoutViewController	type,	we	can	set	its	shopCart
property	before	loading	such	a	View	Controller.	Actually,	this	application	doesn't	need	to	check	the	View
Controller	class	as	there	is	no	other	possibility	of	a	new	scene;	however,	we	must	develop	applications
that	are	prepared	for	future	changes.

What	have	we	done	with	this	code?	The	rac_signalForSelector	method	observes	when	the
prepareForSegue	selector	is	called,	and	then	we	convert	RACSignal	to	SignalProducer.	The	input	is
RACTuple	with	the	method	arguments	in	it;	this	refers	to	the	storyboard	segue	and	sender.	As	we	don't
need	the	sender,	we	just	map	the	segue.	Knowing	that	there	is	no	other	possible	View	Controller	apart
from	CheckoutViewController,	it	is	a	good	idea	to	filter	it	to	avoid	future	problems.	Finally,	the
subscriber	can	transfer	the	shopping	cart	from	the	current	View	Controller	to	the	next	one.

Testing	the	application
The	application	is	complete;	however,	we	can't	say	that	our	work	is	done	until	we	test	the	application	and
ensure	that	everything	is	working	as	expected.	Run	the	application,	add	some	items	to	the	basket,	and
press	Checkout;	you	should	see	a	view	similar	to	what	is	shown	in	this	screenshot:

	

Now,	try	to	change	the	currency.	If	you	are	testing	using	iOS	9,	you	will	receive	our	error	message;	this	is
a	good	sign.	It	means	that	the	fail	subscriber	has	worked	as	expected:

	

Let's	fix	this	error	by	going	to	the	Info.plist	file,	which	is	located	in	the	Project	Navigator.	Add	a
new	record	with	the	App	Transport	Security	Settings	key	and	a	subrecord	with	the	Allow	Arbitrary
Loads	key.	Set	the	subrecord	value	to	YES,	as	demonstrated	here:

	

Rerun	your	application,	add	some	items	to	the	basket,	press	Checkout	and	then	tap	Change	Currency.
Now,	a	list	of	currencies	is	displayed	on	the	screen.	Choose	one,	and	make	sure	that	every	price	on	the
screen	changes	according	to	the	user's	currency:

	

Tap	the	Back	button,	and	ensure	that	the	whole	catalog	has	been	updated	as	well	as	the	first	Total	label:

	

Congratulations,	your	shopping	cart	is	complete!

Summary
In	this	chapter,	you	learned	a	new	way	of	development	using	ReactiveCocoa.	We	used	signal	and
SignalProducer	rather	than	RACSignals.	These	structs	work	with	different	methods	from	RACSignal,
and	they	have	a	few	advantages,	for	example,	the	usage	of	generics	make	it	easier	to	know	the	input	type.

Now,	we	can	use	UISchedule	for	executing	the	subscription	on	the	main	thread	and	also	create	our	own
type	of	schedule	if	necessary.

We	also	took	a	look	at	how	signal	and	SignalProducer	are	very	similar;	with	SignalProducer,	we
only	define	a	signal	until	it	starts.

In	the	next	chapter,	you	will	learn	how	to	debug	and	profile	with	ReactiveCocoa,	something	that	is	not	as
trivial	as	it's	made	out	to	be.

Chapter	7.	Testing	Your	Application
Imagine	one	day	you	deliver	everything	on	time,	no	issues	are	found,	there	are	no	memory	leaks,	no	client
complaints,	no	specification	changes,	and	suddenly...you	wake	up.	Let's	face	the	reality:	it	doesn't	matter
what	framework,	philosophy,	or	methodology	you	use,	there	is	always	something	to	fix,	and	it	is	necessary
to	test	the	application	and	debug	it.

Reactive	programming	is	considered	a	good	way	of	programming;	however,	some	people	say	that	it	is
harder	to	debug.	This	is	not	exactly	true;	in	this	chapter,	we	are	going	to	see	that	you	can	debug	it	like	any
other	application.

This	chapter	assumes	that	you	are	using	ReactiveCocoa	4.0,	which	requires	Swift	2.	If	you	are	using	a
previous	version	of	ReactiveCocoa	or	a	previous	version	of	Swift,	don't	worry,	the	concepts	are	the
same;	you	just	need	to	adapt	the	current	code	to	according	to	your	version.

In	this	chapter	we	will	cover:

Checking	the	expected	results
Unit	tests
UI	tests
Profiling	with	Instruments

Checking	the	expected	results
When	developing	with	ReactiveCocoa,	you	will	probably	need	to	use	some	functions	that	combine
multiple	signals,	such	as	combineLatest	or	zip.	You	can	investigate	the	results	of	these	functions	using	a
page	called	RAC	Marbles,	whose	URL	is	http://neilpa.me/rac-marbles/.	So	how	does	this	page	work?

It	is	very	simple:	first,	you	have	to	choose	the	function	whose	operation	you	want	to	check.	After	this,	you
will	see	a	diagram	with	arrows	that	represent	the	timeline	and	some	circles	that	represent	the	time	when
the	signal	is	received.	Underneath	the	function's	name,	you	can	see	another	timeline	with	other	circles	that
represent	the	results.

Let's	see	an	example	of	how	it	works:	imagine	that	you	want	to	know	the	behavior	of	a	function	called
sampleOn.	Click	on	this	function	name	on	the	left-hand	side,	and	a	diagram	will	appear.	Have	a	look	at
the	numbers	contained	inside	the	input	circles	and	their	respective	values	in	the	output:

	

	

	

As	you	can	see,	the	sampleOn	method	works	by	propagating	the	signal	only	when	the	second	signal	also
sends	a	next	call;	in	this	case,	you	can	observe	that	signals	1,	2,	and	4	have	a	next	signal	that	comes
before	the	main	signal	propagates	a	new	next	call.

The	vertical	line	that	crosses	each	timeline	arrow	at	the	end	represents	sendComplete.	As	you	can	see,
just	after	the	first	signal	sends	the	value	5,	the	second	signal	triggers	sendComplete,	and	it	also
propagates	the	value.

Value	number	3	is	dropped	as	number	4	arrives	before	the	second	signal	sends	a	next	call.	The	second
signal	also	sends	a	next	call,	which	is	not	propagated;	have	a	look	at	the	third	circle:	it	doesn't	re-
propagate	signal	2	since	it	was	already	consumed.

What	happens	if	the	first	signal	completion	happens	before	the	second	completion?	Will	signal	5	be
propagated	or	not?	What	happens	if	the	second	signal	starts	first?	Whenever	you	have	doubts	about	this,
you	just	need	to	move	the	signals	and	the	complete	signal,	and	you	will	have	the	result	immediately.	As
you	can	see	in	the	next	diagram,	it	doesn't	matter	if	the	first	signal	sends	its	completion	before	the	second
one;	the	signal	is	still	propagated,	and	the	second	signal	starting	before	the	first	one	isn't	a	problem	either.

http://neilpa.me/rac-marbles/

The	behavior	is	still	the	same:

	

	

	

Great,	now	you	have	a	good	friend	who	can	help	you	with	the	signals'	behavior	by	displaying	the
expected	result!	Unfortunately,	not	every	signal	method	or	function	is	available	on	this	page;	there	are	a
few	of	them	that	are	on	the	to-do	list.

Creating	unit	tests
Performing	unit	tests	is	the	traditional	way	of	testing	your	application	and	trying	to	detect	failures	when	a
commit	is	pushed	to	the	server.	This	way,	you	can	reduce	the	number	of	bugs	in	your	application	and	also
ensure	that	your	software	is	working	as	expected.	Basically,	it	consists	of	creating	functions	that	call	your
object	methods	and	check	whether	the	final	result	is	the	one	expected.

There	also	are	methodologies	based	on	unit	tests,	such	as	test-driven	development	and	behavior-driven
development.	These	methodologies	assume	that	for	every	development	cycle,	you	have	to	create	the	unit
tests	first.

Xcode	comes	with	a	built-in	framework	called	XCTest,	which	is	the	one	we	are	going	to	use	in	this
section.	If	you	prefer	using	a	different	framework,	feel	free	to	do	so;	the	concepts	should	be	similar.	The
steps	for	creating	unit	tests	are	as	follows:

1.	 Open	Xcode	and	create	a	new	project	called	Chapter	7	Testing.	Ensure	that	Swift	is	the	main
language	and	the	checkboxes	for	Include	Unit	Tests	and	Include	UI	Tests	are	checked,	as
demonstrated	in	this	screenshot:

	

	

	
2.	 Install	ReactiveCocoa	using	your	favorite	method;	after	this,	you	can	verify	that	your	project	has	two

groups	for	testing,	one	called	Chapter	7	Testing	Tests	and	the	other	called	Chapter	7
Testing	UITests:

	

	

	
3.	 In	this	section,	we	are	going	to	work	with	non-UI	tests;	therefore,	don't	expect	any	graphical	result.

Click	on	the	file	Chapter_7_TestingTests.swift;	here,	you	will	see	a	class	called
Chapter_7_TestingTests	with	a	few	methods	to	be	implemented.

4.	 The	method	setUp	is	called	before	each	test	is	executed;	it	is	used	for	initializing	objects	that	are
commonly	used	in	the	test	functions	for	this	test	case.	If	you	are	testing	a	signal,	you	can	create	it	in
the	setUp	function.

5.	 There	is	another	method	called	tearDown,	which	is	called	after	each	test	execution.	Here,	you	can
release	some	resources	or,	for	example,	send	a	completion	message	ensuring	that	a	signal	is	not	on
halfway.

6.	 The	test	function	itself	just	comprises	methods	that	receive	no	arguments	and	return	void.	These
methods	must	start	their	names	with	the	word	test,	such	as	testExample	and
testPerformanceExample,	which	are	functions	created	by	default.

If	a	test	function	reaches	its	end	without	any	interruption	from	XCTAssert	functions,	it	is	considered	a
successful	test.	What	are	XCTAssert	functions?	An	XCTAssert	function	is	a	function	that	receives	a
Boolean	value	as	argument;	if	it	is	false,	it	interrupts	the	test	and	marks	it	as	a	failed	test.	There	are	other
functions	that	receive	other	arguments	rather	than	receiving	a	Boolean	to	check	whether	the	current	value

or	values	are	the	expected	ones,	such	as	XCAssertEqual,	which	expects	that	the	two	values	passed	as
arguments	are	valid	if	they	are	equal.

Use	the	following	steps	for	this	example:

1.	 First,	import	ReactiveCocoa	at	the	beginning	of	the	current	file:

	

import	ReactiveCocoa

	
2.	 Add	a	new	method	called	testMutableValue;	here,	we	are	going	to	confirm	the	status	of	a	value

and	ensure	that	the	final	value	is	something	based	on	the	values	of	a	mutable	property	that	propagated
its	value.	Start	implementing	this	function	by	creating	two	mutable	properties	with	the	following
code:

func	testMutableValue(){	let	firstValue	=	MutableProperty<Int>(10)	let	secondValue	=
MutableProperty<Int>(0)

3.	 Then,	create	a	signal	for	the	first	value,	which	adds	its	new	value	to	the	second	value	every	time	we
have	a	change	in	the	first	value:

firstValue.producer.startWithNext	{	(input:Int)	->	()	in	

												secondValue.value	+=	input	

								}	

4.	 After	this,	we	have	to	remember	that	startWithNext	adds	a	subscriber	to	the	signal	and	also
triggers	it;	this	means	that	secondValue	will	be	increased	by	the	current	value,	which	is	10;
therefore,	if	the	secondValue	is	10,	we	can	consider	the	test	successful	until	now:

XCTAssertEqual(secondValue.value,	10)	

								}	//	end	testMutableValue	

5.	 You	can	run	the	current	test	by	clicking	on	the	play	icon	located	on	the	left-hand	side	of	the	method
header,	like	the	following	screenshot:

	

	

	
6.	 You	can	also	execute	the	test	case	using	the	key	combination	command	+	U;	however,	it	will	execute

every	test	function,	which	can	take	too	long	if	you	have	many	of	them.
7.	 After	executing	the	test	function,	you	will	see	that	the	play	icon	transforms	into	a	green	icon	with	a

tick,	which	means	that	the	test	has	finished	successfully;	however,	if	you	get	a	red	icon	with	a	cross

inside,	it	means	that	the	test	has	failed,	and	the	failed	assertion	will	be	highlighted.
8.	 If	you	think	that	your	test	is	still	incomplete,	you	can	check	what	else	you	can	do	in	your	test	to

complete	it.	Remember	that	continuing	with	the	test	function	makes	sense	only	if	you	can	add	more
assertions.	In	this	case,	we	can	check	whether	if	we	continue	changing	the	value	of	firstValue	it
still	changes	secondValue.	Add	the	following	code	to	the	test	function	in	order	to	ensure	that	the
signal	still	continues	changing	the	second	variable:

XCTAssertEqual(secondValue.value,	10)	

								firstValue.value	*=	5	

								firstValue.value	=	secondValue.value	/	10	

								XCTAssertEqual(secondValue.value,	66)	

								}	//	end	testMutableValue	

9.	 Run	your	test	and	check	its	result;	once	you	are	happy	with	it,	you	can	move	on	to	the	next	test
function.

Note

Ideally,	test	cases	must	be	run	on	a	continuous	integration	server	every	time	you	push	your	code	to	the
version	control	system.	There	are	many	continuous	integration	servers	on	the	market,	such	as	Jenkins,
Team	City,	and	Go	Server.	Configuring	these	servers	is	out	of	the	scope	of	this	book,	but	it	is	worth
having	a	look	at	them.

Don't	think	that	running	the	test	cases	only	once	is	enough;	every	time	you	add	a	new	code	into	your
application	or	library,	you	should	rerun	your	unit	tests.

Tip

If	you	want	to	add	your	unit	test	on	a	continuous	integration	server,	have	a	look	at	the	command	line
xcodebuild	test.

Using	signals	for	checking	the	results
Let's	imagine	that	we	are	developing	a	class	that	extracts	numbers	from	a	file.	Every	time	a	number	is
found,	a	next	call	is	done.	When	we	reach	the	file's	end,	a	completion	call	is	sent.	How	can	we	develop
and	test	this	class?	We	can	do	this	by	performing	the	following	steps:

1.	 Firstly,	we	have	to	add	a	new	file	to	our	project	(not	in	the	test	units)	and	name	it
FileNumbersReader.swift.	Start	by	importing	ReactiveCocoa	with	the	following	line:

import	ReactiveCocoa
2.	 Now,	open	this	class	and	create	a	method	called	signalProducerForFile.	This	method	returns	a

signal	producer,	which	will	send	the	numbers	found	on	the	file	whose	name	is	passed	as	the
argument.	Once	we	have	understood	the	idea	of	this	class,	we	can	create	its	skeleton	with	the
following	code:

class	FileNumbersReader	{	func	signalProducerForFile(filePath:String)	->	SignalProducer	<Int,
NSError>	{	}	//	end	signalProducerForFile	}	//	end	FileNumbersReader

3.	 We	can	now	create	the	signal	producer	with	an	initializer	that	receives	a	start	handler	as	an
argument;	this	way,	we	can	specify	when	the	events	are	sent.	Place	the	following	code	inside	the
signalProducerForFile	method:

return	SignalProducer<Int,	NSError>	{	(observer:	Observer<Int,	NSError>,	disposable:
CompositeDisposable)	->	()	in	}	//	end	SignalProducer

4.	 The	first	part	of	the	implementation	of	this	signal	is	specifying	what	should	be	done	when	this
method	finishes.	It	doesn't	matter	whether	we	return	from	this	handler	with	an	error	or	no	errors;	both
cases	must	send	a	completion	event.	Swift	allows	us	to	specify	this	once	with	a	statement	called
defer.	Place	the	following	code	at	the	beginning	of	the	signal	producer	initializer	handler:

defer	{	

														observer.	d()	

										}	

5.	 Using	NSFileManager,	we	can	retrieve	the	full	contents	of	the	argument	file.	If	the	file	doesn't	exist
or	can't	be	opened	for	whatever	reason,	we	have	to	send	an	error	event;	otherwise,	we	can	continue
with	the	handler	implementation.	For	cases	like	this,	Swift	gives	us	the	guard	statement,	which
checks	for	a	current	status,	and	if	it	is	not	valid,	it	exits	from	the	current	function:

let	fileManager	=	NSFileManager.defaultManager()	guard	let	content	=
fileManager.contentsAtPath(filePath)	else	{	let	error	=	NSError(domain:	"FileNumbersReader",
code:	100,	userInfo:	[NSLocalizedDescriptionKey:	"Can't	open	file"])	observer.sendFailed(error)
return	}

6.	 As	the	file	content	is	returned	as	NSData,	we	have	to	convert	it	to	String.	If	the	conversion	is	not
possible	for	whatever	reason,	another	error	must	be	sent;	thus,	we	can	continue	with	our	code	with
another	guard	statement:

guard	let	stringContent	=	String(data:	content,	encoding:	NSUTF8StringEncoding)	else	{	let	error
=	NSError(domain:	"FileNumbersReader",	code:	101,	userInfo:	[NSLocalizedDescriptionKey:	"File

content	is	not	a	text"])	observer.sendFailed(error)	return	}
7.	 Finally,	we	can	split	the	string	into	an	array	of	strings	and	convert	each	of	these	tokens	into	an

integer.	If	the	conversion	is	possible,	we	send	a	next	event;	if	it	is	not,	we	just	ignore	it.	Place	this
code	at	the	end	of	the	signal	producer	initializer	handler:

let	tokens	=	stringContent.characters.split	{	$0	==	"	"}.map(String.init)	tokens.forEach	{
(value:String)	->	()	in	if	let	number	=	Int(value)	{	observer.sendNext(number)	}	}

If	you've	never	used	this	method	for	splitting	a	string,	here's	an	explanation:	we	basically	convert	a	string
into	another	class	called	String.CharacterView,	which	is	a	collection	of	characters.	The	split	method
returns	the	character	sequence	until	the	handler	method	returns	true;	in	this	case,	this	is	when	it	finds	a
whitespace.	These	sequences	can	be	recast	again	to	string	using	the	map	method	with	the	string	initializer
as	an	argument.	This	whole	process	doesn't	change	the	initial	string;	we	are	just	using	functional
programming	again.	Our	method	is	done;	now	we	can	think	about	the	tests	that	we	have	to	do	to	make	sure
that	this	code	works	as	expected.	Basically,	we	can	have	three	tests:

Test	whether	the	signal	triggers	an	error	when	a	file	doesn't	exist
Test	whether	the	signal	triggers	an	error	when	the	file	content	is	not	convertible	to	String
Test	whether	the	subscription	is	triggered	with	the	correct	values

Once	you	have	this	in	mind,	we	can	proceed	with	the	test	development	using	the	following	steps:

1.	 Add	a	new	file	to	your	target,	Chapter	7	TestingTests.	This	time,	instead	of	choosing	a	Swift
file	or	a	Cocoa	Touch	class,	select	Cocoa	Unit	Test	Case	Class,	as	demonstrated	in	the	next
screenshot:

	

	

	
2.	 In	the	next	dialog,	set	the	class	name	to	FileNumbersReaderTests,	make	it	a	subclass	of

XCTestCase,	and	use	the	Swift	programming	language,	like	in	the	following	sample	screenshot:

	

	

	
3.	 The	last	dialog	asks	you	where	to	save	your	file,	the	group	it	belongs	to,	and	its	targets.	Save	the	file

with	the	rest	of	the	Swift	files	that	belong	to	this	project;	the	group	should	be	Chapter	7
TestingTest	and	the	target	has	to	be	Chapter	7	TestingTest	only.	Before	pressing	the	Create
button,	ensure	that	your	settings	are	like	the	next	screenshot	shows:

	

	

	
4.	 A	new	test	case	class	is	created	with	two	test	functions.	Remove	both	functions	as	we	are	not	going

to	use	them,	and	import	the	module	Chapter_7_Testing	at	the	beginning	of	the	file;	this	will	allow
us	to	access	the	application's	classes	and	use	them	in	our	test	case	class:

@testable	import	Chapter_7_Testing
5.	 Now,	create	a	new	test	in	your	test	case	class	and	call	it	testFileNotFound.	Here,	we	have	to

obtain	the	signal	producer	for	a	nonexisting	file	and	ensure	that	the	next	subscription	is	not	called
and	the	fail	subscription	is	triggered	with	an	error	with	the	code	100.	The	first	approach	can	be	using
the	following	code:

func	testFileNotFound()	{	let	fileNumbersReader	=	FileNumbersReader()	let	signalProducer	=
fileNumbersReader.signalProducerForFile	("nonexistingfile.txt")	signalProducer.on(failed:	{
(error:NSError)	->	()	in	XCTAssertEqual(100,	error.code,	"Wrong	error	code")	})	{	(_:Int)	->	()	in
XCTAssert(false,	"Wrong	way")	}.start()	}

Is	anything	missing	in	this	test?	Actually,	this	test	is	not	100%	reliable.	Imagine	that	the	expected	failure	is
not	triggered:	this	test	won't	fail.	This	doesn't	mean	that	it	is	wrong;	it	just	means	that	it	can	be	improved.

How	can	we	improve	this	test?	The	first	idea	could	be	to	add	a	print	function	with	some	message,	and
then	we	can	check	whether	the	message	is	printed	or	not.	This	idea	might	be	interesting	when	creating	the
test	as	a	developer;	however,	it	is	not	very	useful	if	you	are	running	this	test	with	continuous	integration	as
it	won't	detect	whether	the	message	is	printed	or	not.

Is	there	any	other	solution?	As	this	test	is	a	synchronous	test,	we	can	add	a	Boolean	variable	that	starts
with	false	and	switches	to	true	inside	the	failure	handler.	At	the	end	of	this	test,	we	have	to	perform	an
assertion	that	checks	whether	such	variables	end	with	the	right	value.	Complete	this	test	by	adding	the
following	highlighted	code:

func	testFileNotFound()	{	

								var	errorFound	=	false	

								let	fileNumbersReader	=	FileNumbersReader()	

								let	signalProducer	=	

fileNumbersReader.signalProducerForFile("nonexistingfile.txt")	

								signalProducer.on(failed:	{	(error:NSError)	->	()	in	

																XCTAssertEqual(100,	error.code,	"Wrong	error	code")	

																errorFound	=	true	

												})	{	(_:Int)	->	()	in	

																XCTAssert(false,	"Wrong	way")	

								}.start()	

								XCTAssertTrue(errorFound,	"No	error	was	triggered")	

				}	

Now	this	test	is	more	reliable.	Run	it	and	check	that	it	gets	a	successful	result.	This	test	is	done;	it	is	time
to	start	the	second	test.	Check	if	we	get	an	error	whenever	the	file	can't	be	converted	into	a	string.

The	idea	is	that	this	test	is	similar	to	the	previous	one;	however,	we	need	to	have	a	file	made	only	for	this
test.	Any	file	that	can't	be	converted	to	UTF8	should	be	sufficient,	such	as	a	picture.

Drag	the	file	called	pato.png	located	in	this	book's	resources	to	your	tests;	if	you	haven't	downloaded
this	file,	you	can	download	any	image	from	the	Internet,	as	we	are	just	trying	to	use	a	file	that	fails	to	be
converted	to	a	String.	When	copying	the	file,	ensure	that	its	target	is	Chapter	7	TestingTests,	not	the
application	target.	Don't	add	files	to	your	application	that	are	only	required	for	the	unit	test;	it	will	make
your	application	grow	unnecessarily.	The	next	screenshot	shows	an	example	of	how	this	file	should	be	set
when	you	copy	it	into	your	project:

	

	

	

Once	the	file	has	been	copied,	return	to	FileNumbersReaderTests.swift.	Create	a	new	test	function
called	testBinaryFile.	This	test	is	very	similar	to	the	previous	one	except	for	two	details:	the	expected
error	has	the	code	101	rather	than	100	and	the	file	can't	just	be	set	with	its	name.	As	we	have	copied	this
file	on	the	test	target,	we	have	to	use	its	location	on	the	bundle	specific	for	this	target.	To	do	this,	we	can
instantiate	an	NSBundle	object	and	ask	for	its	resourcePath	property.	Add	the	following	code	to	your
test	case,	and	pay	attention	to	the	highlighted	code,	which	marks	the	lines	that	are	different	from	the
previous	test:

				func	testBinaryFile()	{	

								var	errorFound	=	false	

								let	fileNumbersReader	=	FileNumbersReader()	

									

								let	path	=	NSBundle(forClass:	self.classForCoder).resourcePath!	

								let	fullPath	=	"\(path)/pato.png"	

									

								let	signalProducer	=	fileNumbersReader.signalProducerForFile(fullPath)	

								signalProducer.on(failed:	{	(error:	NSError)	->	()	in	

												XCTAssertEqual(101,	error.code,	"Wrong	error	code")	

												errorFound	=	true	

												})	{	(value:Int)	->	()	in	

																XCTAssert(false,	"Wrong	way")	

												}.start()	

								XCTAssertTrue(errorFound,	"No	error	was	triggered")	

				}	

The	second	test	is	done;	run	it	and	check	whether	it	is	working	and	finishing	with	a	success	status.

The	third	test	is	a	bit	more	complex	as	we	need	to	test	each	value,	and	it	requires	another	file,	which	is
considered	a	valid	file.	Let's	start	with	the	file:	you	just	need	to	drag	the	file	numbers.txt	into	your	test's
target	folder.

Return	to	the	FileNumbersReaderTests.swift	file	and	import	the	ReactiveCocoa	framework	by	adding
the	following	code	to	the	beginning	of	the	file:

import	ReactiveCocoa	

Here,	we	will	add	a	new	test	case	called	testValues.	How	can	we	do	this?	It's	very	simple:	we	just
need	to	sync	up	the	signal	that	we	are	testing	with	another	signal	that	sends	the	values	in	the	expected
order.

How	can	we	do	this?	Start	by	opening	the	function	and	creating	a	new	signal	producer	that	just	sends	the
expected	values	in	their	corresponding	order.	This	signal	is	created	based	on	an	array	iteration,	with	the
following	code:

func	testValues(){	

								let	signalValues	=	SignalProducer<Int,	NSError>{	(observer:	Observer<Int,	

NSError>,	disposable:	CompositeDisposable)	->	()	in	

												[10,	20,	30,	40].forEach({	(value:Int)	->	()	in	

																observer.sendNext(value)	

												})	

												observer.sendCompleted()	

								}	

Then,	create	the	signal	producer	for	the	file	numbers.txt,	similar	to	the	way	we	did	in	the	previous	test:

let	fileNumbersReader	=	FileNumbersReader()	

								let	path	=	NSBundle(forClass:	self.classForCoder).resourcePath!	

								let	fullPath	=	"\(path)/numbers.txt"	

								let	signalProducer	=	fileNumbersReader.signalProducerForFile(fullPath)	

Now	we	can	set	the	fail	subscription	with	a	handler	that	marks	the	test	as	failed,	because	we	are	not
expecting	any	failure	at	this	point:

signalProducer.on(failed:	{	(error:	NSError)	->	()	in	

												XCTAssert(false,	"Unexpected	error:	\(error.localizedDescription)")	

												})	

Then,	we	have	to	sync	this	signal	with	the	first	one,	meaning	that	for	each	event	of	one	signal,	we	have	to
merge	it	with	one	event	of	the	other	signal	and	see	whether	they	have	the	same	value.	For	cases	like	this,
we	have	a	method	called	zipWith,	which	pairs	the	results	of	two	signals:

.zipWith(signalValues)	

Finally,	we	can	start	the	signal	with	a	subscription.	As	the	signal	was	zipped	before,	the	input	now	is	two
arguments,	one	of	each	signal;	therefore,	we	just	need	to	check	whether	they	are	the	same	or	not	with	an
assertion,	with	this	final	code:

.startWithNext	{	(value:Int,	expectedValue:Int)	->	()	in	

																XCTAssertEqual(value,	expectedValue,	"Value	\(value)	is	different	

from	it's	expectation	\(expectedValue)")	

								}	

				}	//	end	testValues	

Run	this	test	and	check	whether	it	returns	a	successful	result.

Testing	an	asynchronous	signal
The	previous	tests	where	synchronous,	which	means	that	when	starting	the	signal,	we	expect	to	receive
every	call	to	the	signal	subscriber	and	the	test	completion;	only	after	this	does	the	test	function	continues
executing.	As	we	know,	reactive	programming	is	very	commonly	used	when	we	have	asynchronous	calls,
which	means	that	when	we	start	a	signal,	it	doesn't	block	the	code	following	it.

A	good	example	of	an	asynchronous	signal	is	an	HTTP	request.	Here,	we	are	going	to	create	another	class
in	our	application	called	JokerRequester.	As	its	name	says,	it	is	going	to	request	a	joke	with	an	API	and
return	its	JSON	object.

Add	to	your	application	a	new	file	called	JokerRequester.swift.	Here,	we	are	going	to	create	a	class
with	only	one	method	called	signalProducerForJoke.	This	method	will	perform	an	HTTP	request,
similar	to	the	one	we	did	in	the	previous	chapter,	but	using	a	different	URL.	Place	this	code	in	your	file	to
create	the	URL	request:

import	ReactiveCocoa	

	

class	JokeRequester{	

				func	signalProducerForJoke(id:Int)	->	SignalProducer<[String:AnyObject],	

NSError>	{	

								return	SignalProducer<[String:AnyObject],	NSError>{	

(observer:Observer<[String	:	AnyObject],	NSError>,	composite:CompositeDisposable)	-

>	()	in	

												let	url	=	NSURL(string:	"http://api.icndb.com/jokes/\(id)")!	

												let	session	=	NSURLSession.sharedSession()	

												session.dataTaskWithURL(url,	completionHandler:	{	(data:NSData?,	

response:NSURLResponse?,	error:NSError?)	->	Void	in	

																defer	{	observer.sendCompleted()	}	

																guard	error	==	nil	else	{	

																				observer.sendFailed(error!)	

																				return	

																}	

																do	{	

																				let	json	=	try	NSJSONSerialization.JSONObjectWithData(data!,	

options:	NSJSONReadingOptions(rawValue:	0))	as!	[String:AnyObject]	

																				observer.sendNext(json)	

																}catch	let	error	{	

																				observer.sendFailed(error	as	NSError)	

																}	

												}).resume()	

								}	

				}	

}	

This	code	basically	creates	SignalProducer,	which	calls	a	website,	and	whenever	we	get	the	response,
we	convert	it	to	a	JSON	message	and	send	it	with	sendNext.	If	any	errors	happen	halfway,	we	propagate
the	error	with	sendError.

Build	your	application	with	command	+	B	to	check	that	you	have	no	syntax	errors.	Then,	return	to	your
unit	test	group	and	add	a	new	unit	test	called	JokeRequesterTest.	Import	the	application	module	with

the	following	code:

@testable	import	Chapter_7_Testing	

Now,	you	can	add	a	new	test	to	your	test	case	called	testJoke40,	which	will	request	the	joke	with	the	ID
number	40,	expecting	the	following	JSON	message:

{	"type":	"success",	"value":	{	"id":	40,	"joke":	"A	handicapped	parking	sign	does	

not	signify	that	this	spot	is	for	handicapped	people.	It	is	actually	in	fact	a	

warning,	that	the	spot	belongs	to	Chuck	Norris	and	that	you	will	be	handicapped	if	

you	park	there.",	"categories":	[]	}	}	

Basically,	all	you	have	to	do	is	to	instantiate	a	new	JokerRequester	object,	get	the	signal	producer	for
joke	number	40,	and	perform	some	assertions	on	its	subscriber.	These	three	steps	are	done	with	this	code:

func	testJoke40()	{	

								let	jokeRequester	=	JokeRequester()	

								let	signalProducer	=	jokeRequester.signalProducerForJoke(40)	

								signalProducer.startWithNext	{	(input:[String	:	AnyObject])	->	()	in	

												XCTAssertNotNil(input["value"],	"no	value	field")	

												if	let	value	=	input["value"]	as?	[String:AnyObject]	{	

																XCTAssertEqual(value["joke"]	as?	String,	"A	handicapped	parking	

sign	does	not	signify	that	this	spot	is	for	handicapped	people.	It	is	actually	in	

fact	a	warning,	that	the	spot	belongs	to	Chuck	Norris	and	that	you	will	be	

handicapped	if	you	park	there.")	

												}else	{	

																XCTAssertTrue(false,	"can't	convert	the	'value'	field")	

												}	

								}	

				}	

Run	this	test	and	check	whether	it	ends	successfully.	However,	is	this	test	really	being	tested?	Let's	check
again	by	adding	a	Boolean	variable	that	ensures	that	the	subscriber	was	called.	Add	the	highlighted	code
to	your	test	for	this	improvement:

func	testJoke40()	{	

								var	tested	=	false	

								let	jokeRequester	=	JokeRequester()	

								let	signalProducer	=	jokeRequester.signalProducerForJoke(40)	

								signalProducer.startWithNext	{	(input:[String	:	AnyObject])	->	()	in	

												XCTAssertNotNil(input["value"],	"no	value	field")	

												if	let	value	=	input["value"]	as?	[String:AnyObject]	{	

																XCTAssertEqual(value["joke"]	as?	String,	"A	handicapped	parking	

sign	does	not	signify	that	this	spot	is	for	handicapped	people.	It	is	actually	in	

fact	a	warning,	that	the	spot	belongs	to	Chuck	Norris	and	that	you	will	be	

handicapped	if	you	park	there.")	

												}else	{	

																XCTAssertTrue(false,	"can't	convert	the	'value'	field")	

												}	

												tested	=	true	

								}	

								XCTAssertTrue(tested,	"invalid	test")	

				}	

What	happened?	Your	test	failed	because	it	ended	before	the	request	was	completed.	How	can	we	solve
this	problem?	Actually,	XCTest	has	a	feature	called	an	expectation.	An	expectation	is	a	variable	that	can
tell	whether	the	test	has	reached	its	end.

How	does	it	work?	Firstly,	you	have	to	create	an	expectation	with	a	method	called
expectationWithDescription;	after	this,	you	have	to	check	where	your	test	should	be	considered
finished	and	call	an	expectation	method	called	fulfill.	Finally,	you	have	to	call	a	method	called
waitForExpectationsWithTimeout	at	the	end	of	your	test;	this	will	wait	until	the	fulfill	method	is
called	or	until	it	reaches	a	timeout.	Five	seconds	for	the	timeout	are	more	than	enough.	Remove	the
previously	amended	code	and	replace	it	with	this	new	highlighted	code:

func	testJoke40()	{	

								let	expectation	=	expectationWithDescription("Expectation")	

								let	jokeRequester	=	JokeRequester()	

								let	signalProducer	=	jokeRequester.signalProducerForJoke(40)	

								signalProducer.startWithNext	{	(input:[String	:	AnyObject])	->	()	in	

												XCTAssertNotNil(input["value"],	"no	value	field")	

												if	let	value	=	input["value"]	as?	[String:AnyObject]	{	

																XCTAssertEqual(value["joke"]	as?	String,	"A	handicapped	parking	

sign	does	not	signify	that	this	spot	is	for	handicapped	people.	It	is	actually	in	

fact	a	warning,	that	the	spot	belongs	to	Chuck	Norris	and	that	you	will	be	

handicapped	if	you	park	there.")	

																expectation.fulfill()	

												}else	{	

																XCTAssertTrue(false,	"can't	convert	the	'value'	field")	

												}	

								}	

								waitForExpectationsWithTimeout(5,	handler:	nil)	

				}	

Now	run	this	test	and	have	a	look	at	something	interesting.	The	test	code	is	correct;	however,	it	indicates
that	there	is	a	failure	on	our	application,	as	the	request	couldn't	be	performed	because	we	haven't	set
Application	Transport	Security	in	the	application's	info.plist	file.	Fix	it	in	a	way	that	we	learned	in
the	previous	chapter,	run	the	test	again,	and	check	whether	it	finishes	correctly.	This	is	a	good	example	of
when	a	unit	test	can	help	you	find	incorrect	behaviors	in	your	application.

Testing	the	UI
As	we	learned	at	the	beginning	of	this	book,	you	can	use	ReactiveCocoa	to	change	UI	components
whenever	necessary.	Unit	tests	are	excellent	for	testing	non-UI	components;	however,	they	lack	support
for	UI	components.

Until	Xcode	6,	the	default	way	of	testing	the	UI	was	using	an	instrument	for	automation.	Now,	Xcode	7
brings	to	you	a	new	way	of	testing	the	UI,	where	you	can	record	your	UI	usage	and	complete	the	test	by
changing	or	adding	only	a	small	part	of	the	code	if	necessary.

To	perform	this	test,	we	need	an	application	with	something	in	the	UI.	Let's	try	something	simple:	what
about	an	application	where	I	can	press	a	button	and	a	new	joke	appears?

The	jokes	to	be	presented	are	going	to	have	their	IDs	stored	in	a	file;	thus,	you	have	to	add	a	new	empty
file	(not	a	Swift	file)	called	selectedjokes.txt	to	your	application.	Open	it	and	just	add	the	following
numbers:

15	21	29	3	

Feel	free	to	add	more	numbers,	which	are	joke	IDs,	if	you	want	to	have	more	fun.	Now	go	to	your
storyboard	and	add	a	button	and	label	to	the	only	view	we	have.	Connect	both	UI	components	to	the	View
Controller,	with	the	following	names:

@IBOutlet	weak	var	jokeLabel:	UILabel!	

				@IBOutlet	weak	var	requesterButton:	UIButton!	

Now,	we	have	to	go	to	the	ViewController.swift	file,	import	ReactiveCocoa,	and	complete	the	method
viewDidLoad.	Firstly,	we	have	to	retrieve	the	signal	producer	for	the	file	reader.	This	operation	is
similar	to	the	one	we	had	in	the	unit	tests:

override	func	viewDidLoad()	{	

								super.viewDidLoad()	

								let	fileNumbersReader	=	FileNumbersReader()	

								let	path	=	NSBundle(forClass:	self.classForCoder).resourcePath!	

								let	fullPath	=	"\(path)/selectedjokes.txt"	

								let	fileNumbersReaderSignal	=	

fileNumbersReader.signalProducerForFile(fullPath)	

After	that	we	can	get	the	button	signal	producer	and	keep	it	on	a	constant.

let	buttonSignal	=	requesterButton.rac_signalForControlEvents(.TouchUpInside)	

												.toSignalProducer()	

These	signals	need	to	be	unified.	This	means	that	every	time	we	read	a	joke	number,	it	shouldn't	be
displayed	except	when	the	button	is	pressed,	and	vice	versa.	What	does	this	sound	like?	The	reality	is	that
it	is	again	a	use	of	zipWith.	Let's	combine	both	signals	with	the	following	code:

fileNumbersReaderSignal.zipWith(buttonSignal)	

Is	that	all?	Of	course	not;	this	combination	of	signals	must	continue	with	a	new	signal,	which	is	the	signal

producer	from	JokeRequester.	We	can	use	the	flatMap	method	to	indicate	that	the	JokeRequester
signal	is	the	one	that	will	continue	from	now	on.	As	we	just	want	jokeNumber,	we	can	ignore	the	second
signal	input	by	naming	it	with	an	underscore:

.flatMap(.Latest)	{	

																(jokeNumber:Int,	_:AnyObject?)	->	

SignalProducer<[String:AnyObject],	NSError>	in	

												let	jokeRequester	=	JokeRequester()	

												return	jokeRequester.signalProducerForJoke(jokeNumber)	

												}	

We	can	discard	most	of	the	JSON	object	returned	by	the	server;	the	only	part	that	we	are	interested	in	is
the	joke	itself,	which	is	a	string.	Let's	do	this	JSON-to-string	conversion	by	adding	the	following	map:

.map	{	(input:[String	:	AnyObject])	->	String	in	

																let	value	=	input["value"]	as!	[String:AnyObject]	

																let	joke	=	value["joke"]	as!	String	

																return	joke	

												}	

One	last	detail	before	presenting	it	on	the	screen:	the	joke	is	returned	with	an	HTTP	request,	which	runs
in	the	background;	therefore,	before	presenting	it,	we	have	to	send	it	to	the	main	thread	using
UIScheduler,	which	is	the	object	that	sends	the	execution	to	the	UI	thread,	which	as	we	know	is	the	main
thread:

.observeOn(UIScheduler())	

Finally,	we	can	get	the	joke	and	present	it	on	the	only	label	that	we	have	on	the	screen,	and	that's	all	for
this	application:

.startWithNext	{[weak	self]	(joke:String)	->	()	in	

																self?.jokeLabel.text	=	joke	

								}	

				}//	end	viewDidLoad	

Run	the	application,	and	when	you	press	the	button,	a	new	joke	will	appear	until	we	have	no	more	jokes.
Your	final	screen	should	look	something	like	the	following	screenshot:

	

	

	

Now,	it	is	time	to	create	a	UI	test	for	this	application.	Go	to	the	UI	test	group	and	click	on	the
Chapter_7_TestingUITests.swift	file.	Rename	testExample	as	testBasicOperation,	like	this
code:

func	testBasicOperation()	{	

								//	Use	recording	to	get	started	writing	UI	tests.	

				}	

The	next	step	is	recording	UI	usage.	To	do	this,	click	on	the	red	button	located	on	the	debug	bar:

	

	

	

Ready	to	record?	I	hope	so,	as	the	application	will	start	and	once	it	starts,	you	just	have	to	click	on	the
next	button	and	the	label	until	you	get	the	last	joke.	Stop	recording	by	clicking	again	on	the	record	button,
and	check	the	generated	code,	which	should	be	similar	to	this:

func	testBasicOperation()	{	

									

								let	app	=	XCUIApplication()	

								let	nextJokeButton	=	app.buttons["Next	joke"]	

								nextJokeButton.tap()	

								app.staticTexts["When	Chuck	Norris	goes	to	donate	blood,	he	declines	the	

syringe,	and	instead	requests	a	hand	gun	and	a	bucket."].tap()	

								nextJokeButton.tap()	

								app.staticTexts["Chuck	Norris	doesn't	shower,	he	only	takes	blood	

baths."].tap()	

								nextJokeButton.tap()	

								app.staticTexts["Teenage	Mutant	Ninja	Turtles	is	based	on	a	true	story:	

Chuck	Norris	once	swallowed	a	turtle	whole,	and	when	he	crapped	it	out,	the	turtle	

was	six	feet	tall	and	had	learned	karate."].tap()	

								nextJokeButton.tap()	

									

								let	

chuckNorrisDoesnTReadBooksHeStaresThemDownUntilHeGetsTheInformationHeWantsStaticTex

t	=	app.staticTexts["Chuck	Norris	doesn't	read	books.	He	stares	them	down	until	he	

gets	the	information	he	wants."]	

								

chuckNorrisDoesnTReadBooksHeStaresThemDownUntilHeGetsTheInformationHeWantsStaticTex

t.tap()	

								nextJokeButton.tap()	

								

chuckNorrisDoesnTReadBooksHeStaresThemDownUntilHeGetsTheInformationHeWantsStaticTex

t.tap()	

								//	Use	recording	to	get	started	writing	UI	tests.	

				}	

Run	this	test	the	same	way	you	run	other	tests,	and	check	whether	the	result	is	a	success.	Change	any
number	in	selectednumbers.txt	and	see	that	the	UI	test	now	fails	as	you	don't	receive	the	same	texts.

Profiling	with	Instruments
Unit	tests	are	not	everything;	they	cannot	be	done	to	localize	problems	such	as	memory	leaks.	Here	is
where	another	tool	comes	to	help	us	find	other	kinds	of	problems:	Instruments.	ReactiveCocoa	comes
with	two	templates	for	Instruments:	one	of	them	is	called	Disposable	Growth	and	the	other	is	called
Signal	Events;	both	of	them	are	located	in	a	subfolder	called	Instruments	in	your	ReactiveCocoa
directory.

Their	usage	is	not	very	intuitive	and	you	have	to	get	used	to	them	for	them	to	start	being	useful.

Click	on	both	instrument	templates;	we	have	to	start	like	this	to	be	able	to	locate	both	Instruments	in	the
library,	so	you	can	close	Instruments	now	if	you	want	to.	Go	to	Xcode	and	go	to	the	Edit	Scheme...
section,	as	demonstrated	in	the	following	screenshot:

	

In	the	Profile	section,	unselect	the	option	Use	the	Run	action's	action	arguments	and	environment
variables,	and	add	a	new	environment	variable	called	RAC_DEBUG_SIGNAL_NAMES	and	set	its	value	to	1,
as	shown	in	this	screenshot:

	

Start	profiling	with	command	+	I;	it	might	take	some	seconds	as	it	needs	to	recompile	and	open
Instruments.	Select	the	Blank	instrument,	as	our	template	won't	appear	on	this	screen:

	

Once	you	have	Instruments	open,	go	to	your	library	(if	it	is	not	visible,	press	command	+	L)	and
double-click	on	both	Disposable	Growth	and	Signal	Events:

	

Press	the	record	button,	which	is	located	at	the	top	left	corner	of	Instruments,	and	click	on	it	once	or
twice	to	retrieve	some	information.

While	you	interact	with	the	simulator	(these	Instruments	don't	work	on	devices),	you	will	start	receiving
information	about	what	is	going	on;	this	way,	you	can	have	a	better	idea	of	how	many	signals	there	are	and
where	you	are	receiving	them:

	

Great,	now	we	know	how	to	use	two	more	Instruments,	and	they	will	help	us	when	we	try	to	detect	bugs
or	when	something	is	not	behaving	well	in	our	application.

Summary
In	this	chapter,	we	learned	how	to	use	different	tools	for	debugging.	We	started	with	RAC	Marbles,	which
is	a	tool	that	allows	us	to	visualize	the	behavior	of	a	ReactiveCocoa	method.

Then,	we	learned	how	to	write	unit	tests,	which	is	a	common	procedure	for	detecting	bugs	when	some
code	has	changed.	Some	development	methodologies	are	based	on	unit	tests,	such	as	TDD.

Next,	we	had	a	session	on	doing	UI	tests,	which	are	very	similar	to	unit	tests	but	are	focused	on	checking
whether	the	user	operation	works	as	expected.

Finally,	we	had	a	look	at	Instruments,	which	can	give	us	more	information	about	the	application's
status.	Even	if	everything	looks	fine,	you	should	use	Instruments	for	checking	what's	going	on	behind
the	scenes,	such	as	memory	leaks	or	low	performance.	ReactiveCocoa	comes	with	two	templates	for
Instruments.

In	the	next	chapter,	we	will	learn	how	to	convert	a	traditional	application	into	an	application	that	is
ReactiveCocoa-based.

Chapter	8.	Migrating	a	Real	Application	to
ReactiveCocoa
We	have	learned	how	to	use	ReactiveCocoa.	However,	let's	face	reality:	we	don't	start	a	new	project
everyday;	therefore,	you	may	need	to	upgrade	your	existing	project	to	use	reactive	programming.	Now,	it's
time	to	learn	about	how	you	can	add	ReactiveCocoa	to	an	existing	project	like	we	did	when	we	migrated
an	application	to	ReactiveCocoa.

Here,	we	will	use	an	existing	application	with	its	source	code,	analyze	it,	and	make	the	necessary	changes
to	make	it	work	with	reactive	programming.

In	this	chapter,	we	will	cover	the	following	topics:

Analyzing	an	existing	code
Migrating	to	ReactiveCocoa

Knowing	the	application
For	this	chapter,	you	have	to	download	the	application,	Chapter	8	Airplane,	from	this	book's
resources.	This	application	is	about	an	airplane	that	flies	over	cities,	and	every	time	this	airplane	starts
flying	over	a	new	city,	it	requests	information	about	this	city	on	the	Internet	and	displays	it	on	the	left
panel.

The	airplane	can	be	controlled	by	the	user	using	the	accelerometer;	this	means	that	you	have	to	turn	your
physical	device	to	turn	the	airplane.	This	detail	is	important	as	it	shows	us	that	we	shouldn't	use	this
application	with	the	simulator;	otherwise,	it	may	be	a	bit	restricted.

Download	the	application	and	run	it,	ensure	that	it	is	working	and	you	can	see	the	airplane	moving	and
displaying	information	like	in	the	following	screenshot:

	

	

	

Once	you	have	checked	whether	the	application	is	working,	we	need	to	know	how	it	was	developed.
There	is	no	sign	of	any	Podfile	or	Carthage;	however,	it	uses	a	local	Git	repository.	There	is	no	sign	of
usage	of	Core	Data.	There	is	only	one	View	Controller	that	uses	Core	Location,	Geocoder,	MapKit,	and
WebView.	This	View	Controller	works	as	a	delegate	of	the	Core	Location	manager,	of	the	map	view,	and

also	as	the	delegate	of	the	airplane.

You	can	see	there	is	an	image	on	Assets.XCAssets	called	Airplane	that	contains	a	class	that	represents
an	airplane	and	a	protocol	that	represents	its	delegate.	This	class	uses	Core	Motion	to	detect	the	device's
rotation	and	NSTimer	to	move	the	airplane.

There	is	also	another	file	called	UIImageExtension.swift,	which	contains	an	extension	for	UIImage
that	allows	us	to	rotate	the	image.	As	it	is	only	one	method	and	doesn't	work	asynchronously,	we	will	not
worry	about	it.

After	these	notes,	we	more	or	less	have	an	idea	about	the	asynchronous	calls	that	we	have	in	this
application,	how	this	application	works,	and	how	we	can	make	these	changes.

Something	that	is	also	important	is	profiling	the	current	application.	Take	a	look	at	its	current	status,	such
as	the	amount	of	memory	that	this	application	consumes,	the	CPU	usage,	and	so	on.	This	step	is	important:
imagine	that	you	detect	a	memory	leak	during	half	migration;	it	will	be	much	easier	to	find	its	origin	if	we
know	that	it	is	only	related	to	the	new	code.

Tip

Don't	think	that	because	one	application	is	working	this	means	that	it	has	no	internal	problems	adding
ReactiveCocoa.

First,	you	have	to	install	ReactiveCocoa	into	your	application.	Ensure	that	every	change	is	committed,	so
if	for	any	reason	you	have	to	perform	a	rollback,	then	it	will	be	easy.

As	this	application	doesn't	use	CocoaPods	or	Carthage,	you	should	investigate	why.	Even	if	it	is	not	very
often,	some	applications	don't	use	CocoaPods	or	Carthage	for	any	problem	that	they	had	in	the	past.	If	this
is	not	the	case	and	your	team	is	okay	with	using	these	package	systems,	then	go	on	and	install	it	using	your
favorite	one.	However,	if	there	is	anything	that	blocks	you	from	using	these	package	systems,	use	the
traditional	way	(git	submodule).	For	this	example,	we	will	use	the	git	submodule	command.	Open
your	terminal,	go	to	this	project's	folder	as	we	learned	in	Chapter	2,	Installing	ReactiveCocoa	and	Using
It	with	Playground,	and	add	the	submodule	with	the	following	command:

				git	submodule	add	https://www.github.com/ReactiveCocoa/ReactiveCocoa

This	process	may	take	a	while.	Once	the	shell	returns	the	prompt	for	you,	you	can	enter	the
ReactiveCocoa	folder	and	call	the	bootstrap	with	the	following	commands:

				cd	ReactiveCocoa

				script/bootstrap

Open	the	Xcode	project	and	the	current	folder	on	a	finder	window	with	the	open	.	(open	and	a	dot)
command.	Add	ReactiveCocoa	and	Result	projects	to	your	application	project.

As	this	application	doesn't	contain	any	Objective-C	code,	you	don't	have	to	worry	about	setting	the

Embedded	Content	Contains	Swift	Code	record	in	the	Build	Settings	section	to	YES.	If	you	do	this,	it
won't	hurt.	However,	you	still	have	to	go	to	the	general	settings	and	add	ReactiveCocoa	and	Result	as
embedded	binaries	for	this	project.

You	can	finish	your	installation	by	going	to	the	ViewController.swift	file	and	import	the
ReactiveCocoa	framework	by	adding	the	following	line	before	the	class	declaration:

import	ReactiveCocoa	

It	doesn't	matter	right	now	if	this	file	will	need	the	ReactiveCocoa	framework,	this	is	just	to	test	and
ensure	that	the	installation	worked.	You	can	commit	your	files	again.

Creating	a	new	framework
Do	you	think	that	it	is	easier	fighting	against	a	lion	or	against	20	kittens?	Here,	we	have	the	same	problem.
Changing	a	small	application	such	as	this	one	is	not	difficult;	however,	changing	a	huge	application	may
be	very	complicated.	However,	what	if	we	divided	the	application	into	small	chunks?

One	good	starting	point	is	changing	parts	of	your	application	and	making	it	work	with	ReactiveCocoa,	and
a	good	way	to	do	this	is	creating	a	framework.	It	is	also	a	good	idea	to	create	this	framework	to	reuse
your	code	for	future	developments.

Note

As	Swift	doesn't	support	static	libraries,	this	option	mustn't	be	provided	when	using	ReactiveCocoa.

Set	a	new	target	for	your	project,	but	this	time	pay	attention	as	you	have	to	select	the	Framework	&
Library	section,	and	select	the	Cocoa	Touch	Framework	option	as	it	is	demonstrated	in	the	following
screenshot:

	

	

	

When	the	dialog	that	requests	data	for	this	framework	appears,	you	have	to	set	a	few	details.	Call	this
framework	AirplaneFramework.	Now,	ensure	that	Swift	is	the	main	language,	check	Include	Unit	Tests
because	this	is	a	good	way	to	test	a	specific	feature	as	we	saw	in	Chapter	7,	Testing	Your	Application.	Of
course,	this	project	has	to	be	Chapter	8	Airplane,	and	Embed	in	Application	should	be	Chapter	8
Airplane	as	you	can	see	in	the	following	screenshot:

	

	

	

Starting	with	the	GPS,	we	can	create	an	extension	for	the	CLLocationManager	class.	The	easiest	method
to	do	this	is	the	authentication	method.	We	can	start	by	trying	to	detect	whether	the	authentication	has
changed,	and	then	we	can	request	it	if	it	is	necessary.

Add	a	new	file	to	AirplaneFramework	called	CLLocationManagerExtension.swift.	Start	importing
ReactiveCocoa	and	Core	Location,	as	we	will	need	both	of	them:

import	CoreLocation	

import	ReactiveCocoa	

Now,	open	an	extension	for	the	CLLocationManager	class,	indicating	that	it	now	implements	the
CLLocationManagerDelegate	protocol.	This	is	important	as	we	want	to	get	rid	of	this	delegate	pattern;

therefore,	each	location	manager	needs	to	assign	itself	as	delegate:

extension	CLLocationManager:	CLLocationManagerDelegate	{	

Now,	we	need	a	function	that	returns	the	corresponding	signal	producer,	which	will	trigger	every	time	the
authorization	status	has	changed.	Let's	call	this	rac_authStatusChanged.	This	function	must	be	public	as
it	will	be	used	outside	the	framework.

Tip

Try	to	name	your	ReactiveCocoa	functions	with	the	prefix	rac_.	This	will	make	it	easy	for	you	to	locate
them	when	typing	them.

Create	a	function	header	that	returns	a	signal	producer	based	on	the	value	of	CLAuthorizationStatus.
Paste	the	following	code	to	open	the	function:

public	func	rac_authStatusChanged()	->	SignalProducer<CLAuthorizationStatus,	

NSError>	{	

Due	to	the	selector	for	the	authorization,	changed	will	be	called	only	if	there	is	a	delegate	set.	We	have	to
start	by	checking	whether	this	is	nil.	In	this	case,	we	have	to	set	the	current	object	as	its	own	delegate:

if	delegate	==	nil	{	

												self.delegate	=	self	

								}	

Now,	we	can	detect	when	the	selector	for	authorization	is	called;	this	will	return	the	following
RACSignal	object	for	us:

return	self.rac_signalForSelector(

												Selector("locationManager:didChangeAuthorizationStatus:"),	

												fromProtocol:	CLLocationManagerDelegate.self)	

This	RACSignal	will	be	converted	to	a	signal	producer	with	toSignalProducer.	This	way,	we	can
develop	using	the	new	ReactiveCocoa	way	of	development.	Then,	we	have	to	map	it	to
CLAuthorizationStatus:

.toSignalProducer()	

												.map	{	(input:AnyObject?)	->	CLAuthorizationStatus	in	

																let	tuple	=	input	as!	RACTuple	

																if	let	value	=	tuple.second	as?	NSNumber{	

																				return	CLAuthorizationStatus(rawValue:	value.intValue)!	

																}else	{	

																				return	CLAuthorizationStatus.NotDetermined	

																}	

								}	

Now	that	this	function	is	done,	we	have	to	update	the	code	on	the	application.	First,	remove	the	code	that
sets	the	location	manager,	the	request	for	authorization,	and	the	didChangeAuthorizationStatus
method.

Then,	we	have	to	add	the	equivalent	code	to	the	one	that	was	just	deleted.	The	difference	is	that	the	code

now	will	use	a	signal	producer	instead	of	the	MVC	pattern.	Your	viewDidLoad	method	now	should	look
like	the	following:

override	func	viewDidLoad()	{	

								super.viewDidLoad()	

	

								mapView.delegate	=	self	

								airplane.delegate	=	self	

									

								let	authChanged	=	locationManager.rac_authStatusChanged()	

									

								authChanged.filter({	(input:CLAuthorizationStatus)	->	Bool	in	

												return	input	==	.NotDetermined	

								}).startWithNext	{	[weak	self](auth:CLAuthorizationStatus)	->	()	in	

												self?.locationManager.requestWhenInUseAuthorization()	

								}	

									

								authChanged.filter	{	(input:CLAuthorizationStatus)	->	Bool	in	

												return	input	==	.AuthorizedWhenInUse	

												}.startWithNext	{	[weak	self](auth:CLAuthorizationStatus)	->	()	in	

																self?.locationManager.startUpdatingLocation()	

																self?.mapView.showsUserLocation	=	false	

								}									

				}	

Can	we	test	this?	For	this	specific	test,	we	can	use	the	simulator	as	you	can	just	reset	the	simulator
contents	(on	the	simulator	menu	and	by	selecting	the	Reset	Contents	and	Settings...	option)	if	anything
fails	and	try	again.	Run	your	application	on	the	simulator	and	you	will	see	that	the	authorization	request
works.	However,	something	else	is	broken	now:	the	location	updates.

It	is	part	of	the	process	to	break	stuff	while	performing	the	migration,	but	the	important	part	is	how	to
continue.	If	you	are	creating	signals	for	the	location	manager,	then	just	focus	on	this	and	do	not	start	on
other	signals;	otherwise,	fixing	the	application	may	get	complicated.

In	case	of	needing	many	functions	for	a	delegate,	you	may	need	to	create	signals	for	all	of	them	and	test
them	with	unit	tests.

Tip

Migrating	by	writing	unit	tests	first,	like	people	do	in	Test-Driven	Development	(TDD),	is	a	good	way
to	ensure	that	you	have	everything	that	you	need.	It	is	good	practice.

Once	we	have	understood	this	principle,	return	to	CLLocationManagerExtension.swift.	Here,	we	just
need	to	follow	the	example	of	the	previous	method	and	create	a	similar	one:

public	func	rac_updateLocation()	->	SignalProducer<[CLLocation],	NSError>	{	

								if	delegate	==	nil	{	

												self.delegate	=	self	

								}	

								return	

self.rac_signalForSelector(Selector("locationManager:didUpdateLocations:"),	

fromProtocol:	CLLocationManagerDelegate.self)	

												.toSignalProducer()	

												.map({	(input:	AnyObject?)	->	[CLLocation]	in	

																let	tuple	=	input	as!	RACTuple	

																return	tuple.second	as!	[CLLocation]	

	

								})	

				}	

Now,	we	just	need	to	return	to	View	Controller,	delete	the	current	implementation	of	the
didUpdateLocations	method,	and	add	the	equivalent	code	in	viewDidLoad.	Remember	that,	in	this
case,	we	want	only	one	location	for	the	start	position.	This	is	somewhat	important,	as	the	migration
should	not	only	be	replacing	code,	but	also	trying	to	understand	the	idea	of	the	code.	In	this	case,	we	can
use	the	take	function	to	ensure	that	we	will	call	this	subscriber	only	once.	Add	the	following	code	at	the
end	of	viewDidLoad:

locationManager.rac_updateLocation()	

												.filter({	(locations:[CLLocation])	->	Bool	in	

																return	locations.count	>	0	

												})	

												.take(1)	

												.startWithNext	{	[weak	self](locations:[CLLocation])	->	()	in	

																if	self	!=	nil	{	

																				self!.locationManager.stopUpdatingLocation()	

																				let	span	=	MKCoordinateSpanMake(180	/	pow(2,	10)	*	

Double(self!.mapView.frame.size.height)	/	256.0,	0)	

																				

self!.mapView.setRegion(MKCoordinateRegionMake(locations.first!.coordinate,	span),	

animated:false)	

																				self!.airplane.takeOffFrom(locations.first!)	

																				self!.mapView.addAnnotation(self!.airplane.annotation!)	

																}	

								}	

Run	the	application	now,	and	it	should	work	as	it	did	before.	This	means	that	the	first	step	to	migrate	this
application	is	done.

Replacing	the	airplane	delegate
Checking	the	airplane	code,	you	can	figure	out	that	it	has	its	own	delegate.	This	delegate	is	called	every
fifth	of	a	second.	How	can	we	replace	this	code	with	a	reactive	one?	First,	you	have	to	check	that
NSTimer	calls	a	selector,	which	is	not	the	philosophy	of	ReactiveCocoa,	and	then	this	selector	does	some
stuff.

This	time,	we	need	to	create	two	signals:	one	for	NSTimer,	and	another	one	for	the	airplane.	Why	don't
we	create	only	one	signal?	Whenever	you	have	the	opportunity,	try	to	make	your	code	more	modular
because	this	will	make	your	code	easier	to	maintain.	Creating	a	signal	for	NSTimer	allows	you	to	reuse
this	signal	in	future	versions	of	this	software	or	even	in	a	different	project.

Add	a	new	file	to	AirplaneFramework	and	call	it	NSTimerExtension.swift.	Here,	we	can	add	a	new
public	function	that	creates	a	signal,	which	is	triggered	every	time	the	timer	is	fired.	When	the	subscriber
is	called,	it	is	not	necessary	to	send	any	information;	this	is	the	reason	that	this	signal	is	based	on	the	void
value.	Add	the	following	code	to	create	this	signal	producer:

import	ReactiveCocoa	

	

extension	NSTimer	{	

				public	class	func	rac_signalWithRepeatedInterval(interval:NSTimeInterval)	->	

SignalProducer<Void,	NoError>{	

								return	SignalProducer<Void,	NoError>(

												{	(observer:Observer<Void,	NoError>,	disposable:CompositeDisposable)	->	

()	in	

																let	fireDate	=	CFAbsoluteTimeGetCurrent()	

																let	timer	=	CFRunLoopTimerCreateWithHandler(kCFAllocatorDefault,	

fireDate,	interval,	0,	0,	{	(timer:NSTimer!)	->	Void	in	

																				observer.sendNext()	

																})	

																CFRunLoopAddTimer(CFRunLoopGetCurrent(),	timer,	

kCFRunLoopCommonModes)	

								})	

				}	

}	

The	previous	code	basically	creates	a	new	signal	producer,	which	calls	the
CFRunLoopTimerCreateWithHandler	function,	which	creates	a	timer	with	the	specified	time.	Whenever
this	timer	is	called,	we	call	the	sendNext	function.

Excellent,	at	this	point,	the	signal	done.	Now,	it	is	time	to	change	the	take	off	function.	Again,	we	have	to
analyze	the	behavior	of	this	function.	The	original	code	when	the	airplane	took	off	triggered	a	timer,	and
this	timer	called	the	airplane	delegate.	The	idea	is	simple,	but	now	we	need	to	think	about	how	we	can
refactor	it.

If	we	start	with	one	void	signal	(the	NSTimer	signal),	then	it	needs	to	continue	with	another	signal	that
sends	the	current	airplane	with	its	position	to	the	next	subscriber.	Starting	with	one	signal	and	continuing
with	another	one	sounds	like	the	usage	of	the	flatMap	method.	That's	right,	whenever	you	have	a	case	of
starting	with	one	signal	and	continuing	with	another,	think	about	flatMap.	Let's	see	how	we	can

implement	this.

Go	to	the	Airplane.swift	file.	Here,	we	will	start	creating	a	new	method	that	will	replace	the	takeOff
method.	Start	by	creating	its	header	that,	as	we	know,	requires	the	start	position	and	returns	a	signal
producer:

func	rac_takeOffSignal(location:CLLocation)	->	SignalProducer<Airplane,	NSError>{	

To	make	things	easier,	move	the	accelerometer	updates	to	the	top	of	this	function.	This	way,	we	can
ensure	that	it	will	be	called	only	once	and	not	every	time	the	timer	is	fired:

self.location	=	location	

								motionManager.startAccelerometerUpdates()	

Then,	we	can	return	the	signal	that	comes	from	NSTimer,	respecting	the	same	time	interval	(0.2	seconds).
If	you	think	that	you	have	to	change	this	interval,	then	try	do	it	eventually.	It's	safer	keeping	the	same
constants	and	trying	to	achieve	the	same	behavior	because	if	anything	acts	differently,	then	we	would	have
to	check	whether	it	was	caused	due	to	the	constant	change	or	for	any	other	reasons:

return	NSTimer.rac_signalWithRepeatedInterval(0.2)	

Once	this	signal	is	triggered,	we	need	to	convert	the	signal	error	from	NoError	to	NSError.	This	is	where
we	have	to	use	the	flatMapError	function.	In	this	function,	we	can	just	instantiate	a	new	signal	with	the
NSError	error	type,	and	it	starts	with	the	current	signal	value.	As	the	timer	signal	is	void-based,	we	just
need	to	send	a	void	value	with	parenthesis:

.flatMapError({	(error:NoError)	->	SignalProducer<(),	NSError>	in	

																return	SignalProducer<(),	NSError>(value:	())	

												})	

Now,	this	signal	must	be	converted	to	the	correct	signal	producer	type.	Here,	we	have	to	use	the	flatMap
function,	as	follows:

.flatMap(FlattenStrategy.Latest,	transform:	{	[weak	self]()	->	

SignalProducer<Airplane,	NSError>	in	

This	transform	handler	needs	to	return	a	signal	producer	that	can	be	instantiated	with	a	handler	that
receives	the	observer	to	send	the	next	signal:

return	SignalProducer<Airplane,NSError>({[weak	self]	(observer:Observer<Airplane,	

NSError>,	disposable:CompositeDisposable)	->	()	in	

Now,	this	is	very	straightforward	as	the	code	is	basically	the	same	as	the	original	take	off	function;
however,	at	the	end,	we	have	to	send	the	current	object	to	the	next	subscriber:

if	self	!=	nil	{	

																								let	directionRadians	=	self!.direction	*	M_PI	/	180.0	

																									

																								let	xOffset	=	cos(directionRadians)	*	self!.speed	

																								let	yOffset	=	sin(directionRadians)	*	self!.speed	

																									

																								let	longitude	=	

self!.location.coordinate.longitude.advancedBy(xOffset)	

																								let	latitude	=	

self!.location.coordinate.latitude.advancedBy(yOffset)	

																								self!.location	=	CLLocation(latitude:	latitude,	longitude:	

longitude)	

																									

																								if	let	accelerationData	=	

self!.motionManager.accelerometerData	{	

																												if	abs(accelerationData.acceleration.y)	>	0.25	{	

																																if	accelerationData.acceleration.y	>	0{	

																																				self!.turnLeft()	

																																}	else	{	

																																				self!.turnRight()	

																																}	

																												}	

																								}	

																								observer.sendNext(self!)	

																				}	

If	for	any	reason	the	self	variable	is	nil,	then	this	means	that	the	airplane	object	was	already
destroyed.	In	this	case,	we	have	to	send	the	completion.	After	this	is	done,	the	code	for
rac_takeOffSignal	is	over:

else{	

																								observer.sendCompleted()	

																				}	

																				})	

																})	

				}	//	end	rac_takeOffSignal	

The	takeOffSignal	implementation	is	completed;	now	it	can	be	started	whenever	we	get	the	first
location.	If	you	are	developing	any	unit	test,	then	now	would	be	a	good	moment	to	implement	it.	In	this
case,	we	have	to	return	to	the	ViewController.swift	file.

Remove	AirplaneDelegate	from	the	View	Controller	header.	This	is	important,	because	we	are
ensuring	that	when	running	or	testing	the	application,	the	old	code	is	not	being	used.	At	this	point,	the
class	header	should	be	like	the	following	line:

class	ViewController:	UIViewController,	MKMapViewDelegate	{	

Go	to	the	viewDidLoad	method	and	remove	the	line	that	sets	the	airplane	delegate	and	the	takeOff	and
addAnnotation	calls.	Then,	at	the	end	of	the	location	subscriber,	we	can	start	calling	the	new	take	off
method:

self!.airplane.rac_takeOffSignal(locations.first!)	

This	signal	needs	a	subscriber	for	each	time	that	the	signal	is	called	because	this	means	that	the	airplane
has	moved.	Continue	the	last	code	with	the	following	line	to	add	the	next	subscriber:

.startWithNext({[weak	self]	airplane	in	

For	a	safe	code,	we	have	to	start	checking	whether	self	is	different	from	nil.	This	shouldn't	happen	as

self	represents	the	only	View	Controller	that	we	have	on	our	application	and	it	won't	be	dismissed.
However,	remember	that	software	development	is	always	a	box	of	surprises.	Therefore,	we	have	to
ensure	that	this	handler's	contents	are	wrapped	with	an	if	statement:

if	self	!=	nil	{	

Inside	this	if	statement,	we	can	start	by	removing	the	previous	annotation,	which	contains	the	last
airplane	position,	and	adding	it	again	as	this	will	refresh	the	airplane	icon	on	the	map:

self!.mapView.removeAnnotation(airplane.annotation!)	

						self!.mapView.addAnnotation(airplane.annotation!)	

After	adding	the	annotation,	we	can	continue	by	setting	the	mapView	information:

let	span	=	MKCoordinateSpanMake(180	/	pow(2,	10)	*	

Double(self!.mapView.frame.size.height)	/	256.0,	0)	

self!.mapView.setRegion(MKCoordinateRegionMake(airplane.annotation!.coordinate,	

span),	animated:true)	

Then,	we	have	to	check	whether	we	had	an	interval	of	10	seconds	or	more.	Why	is	this	application	doing
this?	As	mentioned	before,	we	have	to	understand	the	code	meaning.	This	will	allow	us	to	perform	a
better	analysis	when	refactoring	this	part.	We	are	going	to	use	the	geocoder	reverse	location,	which	works
receiving	a	coordinate	as	input	and	returning	the	corresponding	address	(or	addresses).	If	we	make	a
request	too	many	times,	then	the	geocoder	starts	rejecting	the	requests	and	replies	with	NSError.

Now,	we	can	continue	with	the	original	code,	but	bear	in	mind	that	there	is	a	pending	task	that	is
controlling	this	geocoder	timer	elapse:

if	self!.lastTimeGeocoder	==	nil	||	self!.lastTimeGeocoder!.timeIntervalSinceNow	<	

-10	{	

				self!.lastTimeGeocoder	=	NSDate()	

				self!.geocoder	

				.reverseGeocodeLocation(airplane.location)	{	[weak	self]	(placemarks:

[CLPlacemark]?,	error:NSError?)	->	Void	in	

								if	let	error	=	error	{	

												print(error.localizedDescription)	

												return	

								}	

								if	let	placemark	=	placemarks?.first,	

															addressDictionary	=	placemark.addressDictionary,	

															city	=	addressDictionary["City"]	as?	String	

															{	

																			if	city	!=	self?.previousCity	{	

																							self?.previousCity	=	city	

																							if	let	url	=	NSURL(string:	"https://www.google.com/search?

btnI=I&q=wikipedia%20\(city)"){	

																											let	request	=	NSURLRequest(URL:	url)	

																											self?.webview.loadRequest(request)	

																			}	

																}	

													}	

											}	

									}	

						}	

				})	//	end	rac_takeOffSignal	

		}//	end	startWithNext	

Remove	the	hasMoved	method,	which	belongs	to	airplaneDelegate.	Thus,	we	can	be	confident	that	the
code	that	is	running	has	nothing	to	do	with	the	airplane	delegate.	Rebuild	your	application	and	run	it
again.	Test	it	by	rotating	your	phone	and	flying	from	one	city	to	another.	Remember	that	now	you	have	to
test	this	on	a	physical	device,	as	the	simulator	has	no	feature	that	allows	us	to	test	the	accelerometer.	It	is
a	good	time	to	commit	your	changes.

Reorganizing	the	signals
The	current	code	works	perfectly.	However,	there	is	a	small	detail	that	can	make	this	even	better.	We	will
start	a	signal	and	its	subscriber	starts	another	signal.	There	is	nothing	wrong	with	this.	However,	cases
like	this	one	usually	mean	that	from	one	signal	we	must	switch	to	another.	This	is	a	good	advantage	of
using	functional	programming	because	we	are	taking	advantage	of	a	chain	pattern.

Once	we	know	our	new	goal,	we	can	call	the	flatMap	function	between	the	take(1)	and
startWithNext	calls.	The	idea	is	to	stop	updating	the	GPS	(as	we	don't	need	it	anymore),	take	its
coordinates	and	continue	with	the	take	off	signal.	Start	updating	your	code	by	adding	the	following
highlighted	code:	.take(1)	.flatMap(FlattenStrategy.Latest,	transform:	{	[weak	self](locations:
[CLLocation])	->	SignalProducer<Airplane,	NSError>	in	})	.startWithNext({[weak	self]	airplane	in

Now,	we	have	to	fill	this	flatMap	method.	Basically,	its	implementation	is	already	done,	it	is	on
startWithNext.	You	just	need	to	move	its	code	until	the	rac_takeOffSignal	call	to	flatMap.

Now,	we	have	a	new	case	that	should	never	happen,	but	we	have	to	consider	it	for	compilation	and	code
security	reasons:	when	self	is	nil.	In	this	case,	we	can	just	return	an	empty	signal.	What	is	an	empty
signal?	It	is	a	signal	that	whenever	it	is	created,	it	calls	the	completion	method	without	calling	any
subscriber.	After	knowing	how	we	have	to	implement	the	flatMap	handler,	we	can	do	this	by	adding	the
following	highlighted	code:	.flatMap(FlattenStrategy.Latest,	transform:	{	[weak	self](locations:
[CLLocation])	->	SignalProducer<Airplane,	NSError>	in	if	self	!=	nil	{
self!.locationManager.stopUpdatingLocation()	let	span	=	MKCoordinateSpanMake(180	/	pow(2,	10)
*	Double(self!.mapView.frame.size.height)	/	256.0,	0)
self!.mapView.setRegion(MKCoordinateRegionMake(locations.first!.coordinate,	span),
animated:false)	return	self!.airplane.rac_takeOffSignal(locations.first!)	}	return
SignalProducer<Airplane,	NSError>.empty	})

Remember	that	this	is	not	a	new	code,	this	code	was	moved	from	startWithNext.	Therefore,	the
beginning	of	this	method	now	should	be	like	this:

.startWithNext({[weak	self]	airplane	in	

										if	self	!=	nil	{	

												self!.mapView.removeAnnotation(airplane.annotation!)	

												self!.mapView.addAnnotation(airplane.annotation!)	

Again,	you	can	rebuild	your	application	and	test	it.	Make	sure	that	everything	is	working	as	it	did	before.

Checking	the	dark	side
Until	now,	we	resettled	some	codes	and	this	seems	to	be	working.	However,	at	this	point,	we	have	to	do
something	very	important:	profiling.	Why?	Remember	that	sometimes	we	can	have	some	unexpected
surprises	such	as	memory	leaks.

Tip

Don't	migrate	the	whole	application	without	profiling	it.	This	will	make	it	more	difficult	to	detect	where
the	problem	is.

Run	your	application,	and	while	running	it,	return	to	Xcode.	Using	the	key	combination,	command	+	6,
you	will	go	to	the	Debug	Navigator.	Click	on	the	Memory	section	and	make	sure	that	the	application
contains	a	similar	graph	as	it	used	to	have	with	its	original	code.	The	memory	should	keep	plain	for	a
long	time,	and	when	we	switch	from	one	city	to	another,	the	memory	first	decreases	and	then	increases.
You	may	have	some	results	like	the	following	screenshot:

	

	

	

If	you	detect	that	something	is	worse	than	before,	profile	this	application	on	instruments	and	try	to	detect
where	the	leak	comes	from.	Don't	forget	to	run	the	ReactiveCocoa	Instruments	templates,	as	we	learned	to

do	in	the	previous	chapter.

Once	the	memory	is	checked,	do	the	same	with	the	CPU	and	the	other	sections.	If	any	results	are	similar
but	you	know	that	they	can	be	improved,	such	as	the	CPU	has	too	much	consumption	in	this	application,
then	this	is	okay.	Right	now,	this	is	not	time	to	achieve	a	better	performance,	the	idea	is	only	migrating	the
current	application	to	ReactiveCocoa.	A	better	performance	should	be	attempted	only	when	the	whole
application	is	migrated.

After	profiling,	commit	your	changes	and	start	looking	for	the	next	step.

Splitting	the	signal	again
After	flatMap,	we	need	to	update	the	annotation	on	the	map	by	removing	the	current	one	and	reinserting	it
on	the	map	(this	is	the	way	map	view	works).	This	will	make	us	create	another	flatMap	call	again.
Another	flatMap	call	can	be	made,	as	we	can	update	the	mapView	property	and	send	the	next	signal.

This	idea	is	similar	to	the	previous	one,	we	just	need	to	move	some	code	from	startWithNext	and	add	it
to	a	new	flatMap	function.	Move	this	code	according	to	the	following	sample:

.flatMap(FlattenStrategy.Merge,	transform:	{	[weak	self](airplane:Airplane)	->	

SignalProducer<Airplane,	NSError>	in	

																if	self	!=	nil	{	

																				return	SignalProducer<Airplane,	NSError>({	[weak	self]	

(observer:Observer<Airplane,	NSError>,	disposable:CompositeDisposable)	->	()	in	

																								if	self	!=	nil	{	

													self!.mapView.removeAnnotation(airplane.annotation!)	

													self!.mapView.addAnnotation(airplane.annotation!)	

													let	span	=	MKCoordinateSpanMake(180	/	pow(2,	10)	*	

Double(self!.mapView.frame.size.height)	/	256.0,	0)	

self!.mapView.setRegion(MKCoordinateRegionMake(airplane.annotation!.coordinate,	

span),	animated:true)	

													observer.sendNext(airplane)	

																								}	

																								})	

																}	

																return	SignalProducer<Airplane,	NSError>.empty	

																})	

Test	your	application	again	and	check	whether	everything	is	still	working.

Waiting	for	10	seconds
As	mentioned	before,	the	reverse	geocoder	will	be	updated	every	10	seconds.	We	can	do	this	using	the
NSTimer	signal	that	we	have	completed.	However,	let's	try	something	different	now.	What	about	using
another	scheduler?

We	learned	in	the	previous	chapter	how	to	use	UIScheduler.	However,	there	are	more	schedulers.

ReactiveCocoa	brings	a	protocol	called	DateSchedulerType,	which	is	used	to	trigger	the	signal
according	to	time	intervals.	As	it	is	a	protocol,	we	can't	instantiate	it.	We	have	to	use	a	class	that
implements	this	protocol.

There	is	one	class	called	QueueScheduler	that	implements	DateSchedulerType.	The	only	detail	that	we
have	to	give	to	this	class	is	the	GCD	queue	that	we	desire	to	use.	Here,	we	are	going	to	use	the	main
queue.	However,	for	better	performance,	you	can	try	to	create	your	own	queue	afterwards.

Scroll	up	to	the	beginning	of	the	viewDidLoad	method	and	create	a	signal	that	is	fired	every	10	seconds,
called	tenSecondsSignal,	with	the	following	code:

let	tenSecondsSignal	=	SignalProducer<Void,	NoError>(value:	())	

												.delay(10,	onScheduler:	QueueScheduler(queue:	

dispatch_get_main_queue()))	

Great!	Now	we	have	the	new	signal	that	is	triggered	every	10	seconds.	How	can	this	signal	sync	up	with
takeOffSignal	that	we	already	have?	The	answer	is	very	easy;	we	just	need	to	use	the	sampleOn
function.	This	function	works	with	two	signals.	The	main	signal	can	trigger	any	number	of	calls.	However,
all	of	them	are	dropped	until	we	receive	a	call	from	the	second	signal.	When	we	receive	a	call	from	the
second	signal,	it	merges	with	the	last	call	from	the	first	signal.

So,	what	do	we	have	to	do	to	use	sampleOn?	It	is	very	easy,	we	just	need	to	add	the	following	call	before
startWithNext:

.sampleOn(tenSecondsSignal)	

Delete	the	lastTimeGeocoder	property,	as	we	are	not	using	this	method	anymore.	Test	your	application
again,	and	check	whether	there	is	any	difference	between	this	method	and	the	original	code.

As	you	can	see,	there	is	one	difference.	When	the	application	starts,	it	doesn't	try	to	load	a	website	as	it
needs	to	wait	for	10	seconds	to	start	loading	it.	At	this	point,	you	have	to	decide	if	this	new	behavior	is
acceptable	or	not.	If	it	is	not	acceptable,	then	search	for	another	solution.	Implementing	your	class	of	type
DateSchedulerType	could	be	one	possible	solution.	If	it	is	acceptable,	then	just	use	it	as	is	and	step	to
the	next	level.

Reversing	the	geolocation
Now,	we	need	to	move	the	geocoder	into	another	flatMap	function.	Every	time	we	receive	new
information,	we	can	resend	it	as	a	string.	This	way	we	can	check	whether	the	user	is	still	in	the	same	city
or	if	they	already	changed	to	another	one.	This	string	is	the	current	city	name.	Therefore,	the	new	flatMap
should	be	this	one	and	must	be	placed	before	the	startWithNext	call:

.flatMap(FlattenStrategy.Latest,	transform:	{	[weak	self]	(airplane:Airplane)	->	

SignalProducer<String,	NSError>	in	

																return	SignalProducer<String,	NSError>({	[weak	self]

(observer:Observer<String,	NSError>,	disposable:CompositeDisposable)	->	()	in	

																				if	self	!=	nil	{	

																								self!.geocoder	

																												.reverseGeocodeLocation(airplane.location)	{	

(placemarks:[CLPlacemark]?,	error:NSError?)	->	Void	in	

																																if	let	error	=	error	{	

																																				print(error.localizedDescription)	

																																				return	

																																}	

																																if	let	placemark	=	placemarks?.first,	

																																				addressDictionary	=	

placemark.addressDictionary,	

																																				city	=	addressDictionary["City"]	as?	String	

																																{	

																																				observer.sendNext(city)	

																																}	

																								}	

																				}	

																				})	

																})	

Again,	test	the	code	and	check	whether	it	is	working	as	expected.

Tip

Don't	forget	to	commit	your	changes	if	you	are	using	a	version	control	system.

Avoiding	repeated	calls
Every	time	we	call	the	next	subscriber,	we	have	to	check	whether	the	city	has	changed	using	a	property
called	previousCity.	Our	final	goal	is	removing	this	property.	Remember	that	functional	programming
doesn't	use	many	variables,	but	how	can	we	remove	this	property	and	still	avoid	calling	the	same	website
again	and	again?	The	answer	is	very	easy:	signal	producers	have	a	method	called	skipRepeats,	which
has	the	same	functionality	that	we	want	with	this	property.	Thus,	the	final	change	will	be	this	code:
.skipRepeats()	.startWithNext({[weak	self]	city	in	if	let	url	=	NSURL(string:
"https://www.google.com/search?btnI=I&q=wikipedia%20\(city)"){	let	request	=	NSURLRequest(URL:
url)	self?.webview.loadRequest(request)	}	})//	end	startWithNext

Summary
This	is	the	last	chapter	of	this	book.	We	learned	an	important	task:	how	to	add	ReactiveCocoa	to	an
existing	application.	As	you	can	appreciate,	we	had	to	perform	this	upgrade	step	by	step,	starting	with
analyzing	the	code	and	creating	signals	and	functions	in	some	independent	parts.

We	should	try	to	reduce	the	usage	of	the	MVC	pattern	and	test	the	application	frequently.	Once	this
application	is	done,	try	to	review	it.	You	will	probably	find	something	that	can	be	fixed	or	improved.

That's	all	for	this	book.	I	hope	you	enjoyed	it	and	wish	that	after	reading	this	book,	you	will	want	to	start	a
new	project	with	ReactiveCocoa.

	Reactive Programming with Swift
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Introduction to Reactive Programming
	What is reactive programming?
	The history of reactive programming
	Paradigms - declarative versus imperative
	What is functional programming?
	Choosing reactive programming
	Swift - interactive, safe, and fast
	The ReactiveCocoa project
	ReactiveCocoa extensions
	Migrating to ReactiveCocoa
	The future of reactive programming
	Summary
	2. Installing ReactiveCocoa and Using It with Playground
	The ReactiveCocoa website
	Exploring ReactiveCocoa
	Installing ReactiveCocoa via CocoaPods
	Installing CocoaPods without administrator permission
	Installing CocoaPods with Carthage
	Using Playground
	Summary
	3. Performing UI Events with ReactiveCocoa
	An overview of the project
	Setting up the project
	Creating a validator class
	Validating text fields
	Enabling and disabling the button
	Using UIDatePicker
	Selecting the gender of the user
	Adding more information
	Getting the right input type
	Using bidirectional channels
	Displaying your horoscope
	Summary
	4. Network and Change Propagation
	Overviewing the project
	Setting up the project
	Searching for a movie
	Creating signals
	Handling errors
	Filling in the table view
	Model-View-ViewModel bindings
	Displaying movie posters
	Improving your code for a second scene
	Filling in the movie form
	Implementing the genre signal
	Changing a few details in the first scene
	Summary
	5. Enhance Your Application Using RAC Extensions
	An overview of the project
	Setting up the project and installing extensions
	Mocking up the first scene
	Retrieving information from GPS
	Signaling
	Taking pictures with a camera
	Using gesture recognizers
	Storing pictures
	Saving pictures to the photo library
	Storing coordinates
	Showing coordinates
	Summary
	6. Using the ReactiveCocoa 4 Style
	An overview of the project
	Setting up the project
	Developing the Currency class
	Creating the Currency Manager
	Creating the Product class
	Implementing a shopping cart
	Resuming the ViewController class
	Creating the checkout scene
	Testing the application
	Summary
	7. Testing Your Application
	Checking the expected results
	Creating unit tests
	Using signals for checking the results
	Testing an asynchronous signal
	Testing the UI
	Profiling with Instruments
	Summary
	8. Migrating a Real Application to ReactiveCocoa
	Knowing the application
	Creating a new framework
	Replacing the airplane delegate
	Reorganizing the signals
	Checking the dark side
	Splitting the signal again
	Waiting for 10 seconds
	Reversing the geolocation
	Avoiding repeated calls
	Summary

