
Real-Time Web
Application
Development

With ASP.NET Core, SignalR,
Docker, and Azure
—
Rami Vemula

www.allitebooks.com

http://www.allitebooks.org

Real-Time Web
Application

Development
With ASP.NET Core, SignalR,

Docker, and Azure

Rami Vemula

www.allitebooks.com

http://www.allitebooks.org

Real-Time Web Application Development

Rami Vemula
Visakhapatnam, Andhra Pradesh, India

ISBN-13 (pbk): 978-1-4842-3269-9		 ISBN-13 (electronic): 978-1-4842-3270-5
https://doi.org/10.1007/978-1-4842-3270-5

Library of Congress Control Number: 2017960937

Copyright © 2017 by Rami Vemula

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image, we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Nikhil Karkal
Development Editor: Matthew Moodie
Technical Reviewer: Mohana Krishna G and Yogesh Sharma
Coordinating Editor: Prachi Mehta
Copy Editor: Sharon Wilkey

Distributed to the book trade worldwide by Springer Science + Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC, and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM
Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web
page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-3269-9. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3270-5
www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/
rights-permissions
http://www.apress.com/
rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/978-1-4842-3269-9
http://www.apress.com/source-code
http://www.allitebooks.org

Dedicated to my maternal grandmother, Kanaka Maha Lakshmi, and in loving memory of
my grandparents—my maternal grandfather, Rowgi; my paternal grandfather, Venkaiah;

and my paternal grandmother, Raghavamma

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Author�� xi

About the Technical Reviewers�� xiii

Acknowledgments��xv

Introduction��xvii

■■Chapter 1: Designing a Modern Real-World Web Application�������������������������������� 1

Overview of Application Development Strategies and Processes������������������������������������� 2

Introduction to the Automobile Service Center Application��� 4

Scope of the Application��� 6

Technologies Used in Building the Application�� 7

Logical Architecture of the Application�� 8

Continuous Integration and Deployment Architecture��� 10

Software Prerequisites�� 12

Summary��� 13

■■Chapter 2: The New Era of .NET Core�� 15

Introduction to .NET Core�� 15

Introduction to ASP.NET Core��� 17

Versions and Roadmap of .NET Core and ASP.NET Core�� 19

Creating the Automobile Service Center Application��� 20

Understanding the ASP.NET Core Web Project Artifacts�� 28

Setting Up the Application Configuration�� 31

Using Dependency Injection in the ASP.NET Core Application��� 37

Summary��� 39

References�� 39

www.allitebooks.com

http://www.allitebooks.org

﻿■ Contents

vi

■■Chapter 3: Designing a Theme by Using Material Design������������������������������������� 41

Responsive Design and New Approaches��� 41

About Materialize CSS��� 43

Materialize CSS Themes�� 44

Using Materialize CSS in the Automobile Service Center Application����������������������������� 45

Adding a Master Layout��� 48

Designing a Layout for Secure Pages�� 54

Summary��� 60

Reference�� 60

■■Chapter 4: Overview of Azure Storage��� 61

Introduction to Azure Storage�� 62

Getting Started with Azure SDK and Storage Emulator��� 64

Azure Table Storage Unit of Work Pattern��� 69

Sample CRUD Operations�� 77

Auditing Data Through Snapshots��� 79

Create the Unit of Work Project in the Automobile Service Center Solution�������������������� 82

Summary��� 86

Reference�� 86

■■Chapter 5: Test-Driven Approach Using xUnit.net�� 87

Test-Driven Development Life Cycle��� 88

Understanding xUnit.net�� 89

Getting Started with xUnit.net and MOQ��� 90

Setting Up Session-State Middleware and Its Unit-Testing Fake������������������������������������ 99

Summary��� 107

■■�Chapter 6: Securing the Application with ASP.NET Core Identity and
the OAuth 2.0 Protocol��� 109

Creating and Setting Up the Admin Account��� 110

Creating Login and Logout Screens�� 117

www.allitebooks.com

http://www.allitebooks.org

﻿■ Contents

vii

Retrieving User Information from ClaimsPrincipal�� 129

Resetting a Password Through MailKit E-mail Library Integration�������������������������������� 131

Developing a Forgot Password Option�� 143

Creating and Managing Service Engineers��� 145

Understanding the OAuth 2.0 Protocol�� 164

Using a Gmail Authentication Provider for Customer Authentication���������������������������� 166

Exercise 1�� 184

Exercise 2�� 185

Exercise 3�� 186

Summary��� 186

References�� 187

■■Chapter 7: Master Data Management Using Azure Table Storage���������������������� 189

Managing Master Data in Azure Tables��� 189

Importing Master Data to Azure Tables from Excel��� 223

Enabling Redis Memory Caching��� 233

Summary��� 241

■■Chapter 8: Logging and Exception Handling��� 243

Creating a Logging Framework��� 243

Capturing User Activity Through an Action Filter��� 250

Implementing Global Exception Handling�� 253

Configuring Status Code Pages��� 256

Summary��� 262

■■Chapter 9: Creating Areas and Navigation by Using View Components������������� 263

Implementing Areas for the Automobile Service Center Application����������������������������� 264

Creating a Dynamic JSON-Driven Navigation Menu�� 273

Using Bundling and Minification��� 286

Summary��� 292

www.allitebooks.com

http://www.allitebooks.org

﻿■ Contents

viii

■■Chapter 10: Forms and Validations�� 293

Service Request Workflow�� 293

Service Request Form��� 295

Dashboard View�� 306

Service Request Details View�� 326

Custom Validations using DataAnnotation Attributes�� 340

Adding Internationalization Support�� 345

Exercise 1�� 353

Exercise 2�� 354

Summary��� 355

■■Chapter 11: Real-Time Communication with SignalR��� 357

Introducing SignalR��� 358

Enabling Two-Way Communication Between Customers and Service Engineers��������� 359

Configure Automobile Service Center with SignalR��� 360

Create SignalR Hub to Enable-Two Way Communication Using JQuery�� 362

Enable User Online/Offline Notifications Using SignalR��� 376

Providing Service Updates via Text and Web Notifications�� 386

Send SMS Notifications to Customers by Using Twilio API�� 386

Enable Web Notifications to Customers by Using SignalR��� 399

Notifying Customers with Promotions��� 401

Build the Promotional Offers Capability��� 401

Display Promotional Offers to Customers�� 417

Enable Web Notifications to Customers on New Promotions�� 419

Summary��� 423

Reference�� 424

■■Chapter 12: Code Version Control Using GitHub Platform���������������������������������� 425

Getting Started with GitHub��� 426

Managing Local GitHub Credentials and Adding Collaborators to
GitHub Repository�� 432

www.allitebooks.com

http://www.allitebooks.org

﻿■ Contents

ix

Managing Automobile Service Centre source code using Git Bash������������������������������� 437

Create and commit source code to a Local Git Repository�� 437

Create and push source code to a Remote Git Repository�� 440

Branching and merging source code��� 442

Reset an unwanted commit from Local Repository��� 451

Reset an unwanted commit from Remote Repository��� 453

Resolve merge conflicts in source code�� 455

Using GitHub with Visual Studio�� 467

Summary��� 486

References�� 487

■■Chapter 13: Configuring a Continuous Build with Travis CI�������������������������������� 489

Introducing Travis CI�� 490

Creating a Travis CI Account and Associating It with the GitHub Repository����������������� 491

Configuring the GitHub Repository with Travis.yml��� 495

Displaying the Travis Build Status at the GitHub Repository Home Page���������������������� 502

Enabling Travis Build Notifications to Users�� 505

Summary��� 507

References�� 508

■■�Chapter 14: Preparing an Application for Production and Creating a
Docker Image��� 509

Exploring Docker��� 510

Installing Docker and Reviewing Prerequisites��� 511

Preparing the Application with an Azure Key Vault Configuration��������������������������������� 516

Set Up Azure Key Vault and Configure the Access Policy�� 517

Set Up Azure Table Storage and Azure Redis Cache Services��� 525

Create Secrets at Azure Key Vault��� 530

Integrate Application Code with Azure Key Vault��� 531

Creating a Docker File��� 533

Summary��� 541

Reference�� 542

www.allitebooks.com

http://www.allitebooks.org

﻿■ Contents

x

■■�Chapter 15: Continuous Deployment to Azure Linux Virtual Machines
by Using Docker Cloud�� 543

Introduction to Docker Cloud��� 544

Create Azure Nodes for Continuous Deployment��� 547

Docker Cloud Continuous Integration with GitHub Repository�������������������������������������� 552

Continuous Deployment to Azure Nodes from Docker Cloud��� 555

Bring Our Own Node for Docker Integration�� 570

Automobile Service Center and .NET Core 2.0�� 587

Recommended Exercises�� 588

Summary��� 589

The Final Word��� 590

Reference�� 590

Index�� 591

www.allitebooks.com

http://www.allitebooks.org

xi

About the Author

Rami Vemula is a technology consultant who has more than seven years of experience in delivering scalable
web and cloud solutions using Microsoft technologies and platforms, including ASP.NET MVC/Web API,
.NET Core, ASP.NET Core, JQuery, C#, Entity Framework, SQL Server, and Azure. He is currently working
for Deloitte India (Offices of the US) as a senior consultant, where he leads a team of talented developers.
As a part of his work, he architects, develops, and maintains technical solutions for various clients in the
public sector.

Although web technologies are his primary area of focus, he also has worked on other projects such as
big data analytics using HDInsight, Universal Windows Platform apps, and more. Nowadays he is promoting
open source technologies, platforms, and tools to build cross-platform solutions. He is also interested in
providing streamlined DevOps integration flows through which development teams can achieve greater
productivity.

He is a Microsoft Certified ASP.NET and Azure developer. He was a Microsoft ASP.NET MVP from 2011
to 2014 and an active trainer. In his free time, he enjoys answering technical questions at StackOverflow and
forums.asp.net. He loves to share his technical experiences through his blog at http://intstrings.com/
ramivemula. Apart from technology, his other interests include movies, drama, and theater arts.

He holds a master’s degree in electrical engineering from California State University, Long Beach.
He lives with his wife, child, and parents in Hyderabad, India.

You can reach Rami at rami.ramilu@gmail.com or https://twitter.com/RamiRamilu.

http://intstrings.com/ramivemula
http://intstrings.com/ramivemula
mailto:rami.ramilu@gmail.com
https://twitter.com/RamiRamilu

xiii

About the Technical Reviewers

Yogesh Sharma is a software engineer who loves to work at the cutting edge of web technologies. He focuses
his time and effort on the development of software that can help other people learn. His most recent project
involving the MEAN stack is an NLP system that is currently under active development. He completed
his bachelor’s degree in Information Technology at the Vidyalankar School of Information Technology in
Mumbai. He currently works for Mphasis as a senior infrastructure engineer on Microsoft Azure Cloud
Services. He can be reached at www.linkedin.com/in/yogisharma24/.

Mohana Krishna Gundumogula is a full-stack developer in a multinational software engineering firm.
He is a Microsoft Certified Professional for Developing Microsoft SharePoint Server 2013 Core Solutions.
His expertise includes Microsoft web technologies, collaborative platforms such as Microsoft SharePoint,
cloud platforms such as Microsoft Azure, as well as the AngularJS and ReactJS frameworks.

https://www.linkedin.com/in/yogisharma24/#_blank

xv

Acknowledgments

I would like to thank my parents, Ramanaiah and RajaKumari; my wife, Sneha; my two-year-old daughter,
Akshaya; and the rest of my family—aunts, uncles, cousins, and kids—for their patience and support
throughout my life and for helping me achieve many wonderful milestones and accomplishments. Their
consistent encouragement and guidance gave me strength to overcome all the hurdles and kept me moving
forward.

I would like to thank my longtime friend Sanjay Mylapilli for always pushing me toward great heights
and excellence. Thanks to Mahadevu Durga Prasad for always encouraging me to explore new opportunities.
Special thanks to uncle VSN Sastry for believing in and supporting me.

I could not imagine achieving all this success and passion in my life without the coaching and help I’ve
received from my mentors. I would like to thank Srikanth Pragada for introducing me to the world of .NET
and teaching me how to deliver technical solutions with the utmost discipline. Special thanks to Venu Yerra
and RK Vadlani of Idea Entity Tech Solutions for trusting me and giving me my first professional opportunity,
where I was introduced to real-world problems and technical challenges.

My heartfelt thanks to Vishwas Lele, Rajesh Agarwal, and Nasir Mirza of Applied Information Sciences
(AIS) for introducing me to Microsoft’s Azure platform. The extensive training provided by Vishwas not
only gave me experience in providing cloud optimized solutions but also changed the way I thought about
architecting those solutions. Special thanks to Gaurav Mantri (Cerebrata) for introducing me to the fantastic
world of cloud technology.

I would like to thank all my friends at Deloitte for having lengthy conversations about modern
technologies and supporting me in reaching my goals.

Thanks to Nikhil Karkal, Prachi Mehta, Matt, and other amazing people at Apress for this wonderful
opportunity and making this a memorable journey. Thanks to my technical reviewers, Yogesh and Mohana,
for their valuable suggestions.

Sincere thanks to all my friends, especially C.O. Dinesh Reddy, to the developers and architects at
Microsoft, and to the open source contributors who are working extensively to deliver great products,
frameworks, and next-generation platforms that create various innovation opportunities. The consistent
effort by Microsoft communities to keep documents up-to-date and provide prompt responses to technical
queries is unprecedented.

Last but not least, I would like to thank all my readers for spending their time and effort in reading this
book. Please feel free to share your feedback, which will help me to deliver better content in the future. I look
forward to your comments and suggestions.

xvii

Introduction

In this modern era of technology, businesses strive to grow at a rapid pace by exploring technical
opportunities that cater to a diverse customer base. With the evolution of the open source community,
technologies are evolving at a faster cadence, and new ones are quickly emerging to bridge the gaps
between platforms. While cloud platforms continued to advance in offering the most affordable and
greatest computational power, the focus is being shifted to develop and deliver cross-platform solutions by
leveraging a hybrid cloud infrastructure.

Real-Time Web Application Development with ASP.NET Core, SignalR, Docker, and Azure is going to take
you through the journey of designing, developing and deploying a real-world web application by leveraging
modern open source technologies. ASP.NET Core is the latest open source web framework from Microsoft
that is capable of building cross-platform web applications, and SignalR enriches applications by enabling
real-time communication between the server and clients. Material Design concepts will deliver the state-
of-the-art look and feel for the application, which supports multiple devices with different form factors.
Azure, Microsoft’s cloud computing platform, is used in this book to demonstrate data storage and hosting
capabilities.

Code version control using GitHub, along with Travis CI builds, will help developers, software
engineers, system administrators, and architects in building a robust and reliable development ecosystem.
Docker’s container technology and its seamless integration with GitHub are used to package the application
and provide continuous deployment to Azure’s IaaS platform.

This book will empower you to gain deeper insights in developing cross-platform applications by
combining various open source technologies. By the end of this book, you will be equipped to take on any
real-world challenge and provide reliable solutions. The rich code samples from this book can be used to
retrofit or upgrade existing ASP.NET Core applications.

This book will deep dive into the following topics:

•	 Designing and developing real-world ASP.NET Core applications with Materialize
CSS and Azure Storage

•	 Implementing security and data persistence using OAuth 2.0 external social logins
and Azure Storage

•	 Orchestrating real-time communication using SignalR

•	 Performing source version control with GitHub and continuous integration with the
Travis CI build service

•	 Containerizing and providing continuous deployment using Docker and Azure Linux
virtual machines

Chapter 1 will introduce you to the real-world Automobile Service Center application, which we are
going to build throughout this book. Chapter 1 also discusses the technology stack and prerequisites that will
be used in building the application along with its technical architecture. Chapters 2 through 5 will take you
through the basic concepts of .NET Core, ASP.NET Core, Material Design techniques, Azure Table Storage
and xUnit.net test cases. In Chapter 6, we will work on securing the application with ASP.NET Core Identity,
and enabling customer authentication using Gmail and the OAuth 2.0 protocol.

http://dx.doi.org/10.1007/978-1-4842-3270-5_1
http://dx.doi.org/10.1007/978-1-4842-3270-5_1
http://dx.doi.org/10.1007/978-1-4842-3270-5_2
http://dx.doi.org/10.1007/978-1-4842-3270-5_5
http://dx.doi.org/10.1007/978-1-4842-3270-5_6

﻿■ Introduction

xviii

Chapters 7 and 8 will discuss the implementation of master data, caching, exception handling, and
logging. We will use Azure Table Storage to persist all the application data along with logs. In Chapters 9 and
10, we will develop the application pages using ASP.NET Core and related concepts including data validation
and internationalization. We will implement real-time communication and notifications for the application in
Chapter 11 by using the SignalR framework and enable SMS notifications using the Twilio API.

In Chapter 12, we will integrate version control for application code at the GitHub repository via Git
commands (and using Visual Studio). Continuous integration with a Travis build is described in Chapter 13
along with user notifications on successful/failed builds. Chapters 14 and 15 focus on containerization of
application code using Docker and deploying it to Azure Linux virtual machines.

As a last note, I encourage you to extend the Automobile Service Center application to support
functionalities such as used car sales, spare parts management, and financial accounting services. As
the digital world is transforming itself into microservices to serve a global audience, there is a need for
technologies to collaborate and deliver high-performance and scalable solutions. An optimistic collaboration
and automation can happen if technologies are open source, cross-platform, easy to adapt, and cloud ready.
This book narrates one of the most prospective collaborations; having said that, it is just the beginning of long
journey.

http://dx.doi.org/10.1007/978-1-4842-3270-5_7
http://dx.doi.org/10.1007/978-1-4842-3270-5_8
http://dx.doi.org/10.1007/978-1-4842-3270-5_9
http://dx.doi.org/10.1007/978-1-4842-3270-5_10
http://dx.doi.org/10.1007/978-1-4842-3270-5_11
http://dx.doi.org/10.1007/978-1-4842-3270-5_12
http://dx.doi.org/10.1007/978-1-4842-3270-5_13
http://dx.doi.org/10.1007/978-1-4842-3270-5_14
http://dx.doi.org/10.1007/978-1-4842-3270-5_15

1© Rami Vemula 2017
R. Vemula, Real-Time Web Application Development, https://doi.org/10.1007/978-1-4842-3270-5_1

CHAPTER 1

Designing a Modern Real-World
Web Application

In this modern era of the digital world, technology is no longer an auxiliary system but an integral part of the
entire social ecosystem. Our current-day sophisticated devices, along with cutting-edge technologies, have
made the entire world into a global village. People from different parts of the world, in spite of their diversity,
can collaborate and solve complex challenges. Over the past decade, the open source community has played
a pivotal role in evolving technology and setting the pace for innovation.

The ever-changing cadence of technology and tools has prompted a new generation of developers and
engineers to rely mostly on Internet resources to educate themselves and deliver solutions. Although that
approach still works in delivering solutions, it doesn’t help in providing a panoramic view of the software-
building process. Although different software development life cycle (SDLC) methodologies follow different
processes, the most important ones are detailing functional requirements, system design, implementation,
testing, deployment, and maintenance. Except for the testing part, this book will provide a holistic view of
the software development process using the latest open source technologies and tools.

In this chapter, you will learn the basic phases of the software development life cycle. We will simulate
a real-world business use case through a fictitious US company, Automobile Service Center. We will
brainstorm the typical day-to-day challenges faced by this company and propose prospective solutions
through a web application that we’ll build with the latest technologies throughout the rest of the book. We’ll
start by defining the technologies that we are going to use in building the application. Then we’ll design the
logical architecture followed by continuous integration and deployment pipeline of the application. Finally,
we will conclude the chapter by exploring the software prerequisites for our development environment.

■■ Note  My primary motive in writing this book is to introduce you to the experience of end-to-end software
application development using .NET Core, ASP.NET Core, SignalR, Docker, and Microsoft Azure. This book
provides a high-level overview of software development methodologies, and a detailed exploration is beyond
the scope of this book.

https://doi.org/10.1007/978-1-4842-3270-5_1

Chapter 1 ■ Designing a Modern Real-World Web Application

2

Overview of Application Development Strategies and
Processes
The incredible pace of the current generation's digital innovation is not only transforming the creative
process, but also influencing the incubation period for the latest technologies. Because of so many technical
options being available to solve any given unique business challenge, technologists need to be more
careful than ever before in offering prospective solutions. The current marketplace requires any technical
professional to be adept at three major tasks: exploring, understanding, and adopting.

Let’s look at an example of creating a next-generation e-commerce application. To serve a large global
audience, this application should be highly scalable and deliver optimistic performance, be available on
various devices, support a rich and clean user experience, include real-time data analytics and reports,
be cost-effective and easy to maintain, and more. To deliver this e-commerce solution, we could turn to a
wide range of technical options. We could use the traditional ASP.NET MVC in combination with JQuery,
SQL Server, HDInsight, and Power BI. Other options include a LAMP stack with Hadoop Spark or a MEAN
stack with R-powered analytics. The list goes on. We must carefully evaluate all potential solutions and then
continue with the design and development process.

Many proven methodologies in the software industry can help us in the various phases of application
development. These methodologies can be considered as frameworks for planning and controlling the
process of developing software. Popular methodologies include the waterfall model, rapid application
development, agile software development, and the prototype model. Different software organizations and
projects use different methodologies based on their engineering and operational criteria. In fact, some
organizations use their own tailored hybrid development methodologies and processes. Regardless of which
software methodology we follow, we have to adhere to certain phases that are common to all methodologies.
We will follow these phases, depicted in Figure 1-1, throughout this book as we journey through application
development.

Requirements
Gathering & Analysis

System DesignPlanning

Development Testing Deployment
Maintenance &

Operations

Figure 1-1.  Phases of the software development life cycle

Requirements Gathering and Analysis
In this phase, we capture all the functional requirements of the software that we are planning to build.
We create a brief functional specification document and then share it with all stakeholders.

Chapter 1 ■ Designing a Modern Real-World Web Application

3

Planning
During this phase, we start by augmenting staff and creating timelines for the project. Although it’s not
mandatory, we can organize all functionalities into logical groups and place them in different iterations, or sprints.
We document the proposed project plan along with critical timelines as part of this phase’s deliverables.

System Design
In this phase, we design the entire system’s architecture. We have to list all technologies, tools, and
commercial off-the-shelf (COTS) products that will be used during application development. The key
deliverables of this phase are the specifications for the logical and physical architecture.

Development
The actual coding and development of the software is done during this phase. This phase may follow its own
development strategies, such as test-driven development (TDD) or domain-driven development(DDD). In
TDD, we write unit tests before developing the application code; so at first, all the unit tests will fail, and then
we have to add or refactor application code to pass the unit tests. This is an iterative process that happens
every time a new functionality is added or an existing one is modified.

Testing
During this phase, we integrate all the components of the software (for example, a web application might
consume web API endpoints that are hosted differently, and these should be integrated as part of the testing
phase). Then we test the application. The testing process usually comprises system integration testing (SIT)
followed by user acceptance testing (UAT). Testing should be an iterative and ongoing activity that makes the
application more stable and robust.

Deployment
Deployment activity includes all the procedures required for hosting the application on staging and
production environments. Modern source-version-control systems support automated deployments to
configured environments. Having said that, manual monitoring (for example, DEV, SIT, UAT, STAG, and
PROD) should occur while promoting builds across various environments.

Maintenance and Operations
After the application is hosted and made available to the audience, unanticipated issues and errors (or even
code-level exceptions) may arise, for multiple reasons. Maintenance is the phase when we closely monitor
the hosted application for issues and then release hotfixes and patches to fix them. Operational tasks such as
software upgrades on servers and backups of databases are performed as part of the maintenance activity.

As this book walks you through the end-to-end development of a web application, it will touch on every
phase of application development except testing.

■■ Note  As mentioned previously, it is not my intention to proclaim that the cited methodologies are the
only widely accepted options. But the preceding application development phases are the most common and
frequently used practices for software projects.

Chapter 1 ■ Designing a Modern Real-World Web Application

4

Introduction to the Automobile Service Center Application
In this book, we’ll take a near-real-world business requirement and deliver an end-to-end technical
solution. I believe that this type of demonstration will help you understand the concepts better because
of their practical implementations. The step-by-step process of building the web application will help you
remember the concepts you’ve learned in each chapter.

The Automobile Service Center is a fictitious US company that provides all types of car maintenance
services to its customers. This company has more than 20 branches across the West Coast and serves more
than 3,000 customers a day. It provides a personalized experience to its end customers in all areas related to
car repairs and maintenance.

The Automobile Service Center provides car maintenance services in the following areas: Engine and
Tires, Air Conditioning, Auto and Manual Transmissions, Electrical Systems, Batteries, Brakes, and Oil
Changes. This Service Center also takes care of specific customer requests and complaints about the cars.
At times it provides additional services including towing, pickup and drop, insurance, and financial-related
offerings. This Service Center employs more than 1,500 professionals in various capacities. Most employees
are service engineers who are responsible for the daily service operations, while other employees take care
of responsibilities such as ordering spare parts, managing logistics, and running financial operations.

Today the Automobile Service Center is facing a major business challenge: maintaining good customer
communication. The company lacks an affordable and reliable method of real-time communication with
customers (for example, live chats between customers and service engineers, or e-mail/text notifications
about service updates). A majority of customers want real-time service updates and automated service
appointments. Currently, the company requires its customers to walk in to a Service Center branch and
discuss the services with an available service engineer, who opens a service job card that documents the
details. During the service work, all the communications between the service engineer and the customer
occur through phone calls, and the points discussed are attached back to the job card. After the service is
done, the customer pays the invoice amount, and the service engineer closes the job card. The Automobile
Service Center has identified that this entire process is inefficient and is diminishing its brand value for the
following reasons:

•	 Causes service delays because of a high dependency on the human factor

•	 Lack of transparency

•	 Creates opportunities for miscommunication

•	 Provides no precision in effort and estimations

•	 Doesn’t enable the company to reach out to customers and promote great deals,
discounts, and packages

Throughout this book, we’ll help the Automobile Service Center overcome these challenges by creating
a modern web application designed with cutting-edge technologies. By end of this book, we’ll have a fully
functional, production-ready web application, as shown in Figure 1-2.

Chapter 1 ■ Designing a Modern Real-World Web Application

5

Figure 1-2.  Home page of the Automobile Service Center application

Chapter 1 ■ Designing a Modern Real-World Web Application

6

Throughout this book, we are going to use the same business use case and enhance the web application
step-by-step. Let’s get started by defining the scope of the application.

Scope of the Application
Any business challenge—whether it’s simple or complex, big or small, mission-critical or optional—cannot
be solved unless we have clear understanding of the functional requirements. Identifying the core features of
an application is crucial for a successful implementation.

The Automobile Service Center application could have very complex requirements unless we carefully
control them by defining their scope. Table 1-1 depicts the requirements of the Automobile Service Center
application that are in the scope of this book’s demonstration.

Table 1-1.  Scope of Work for Automobile Service Center Application

Module Functionality

User Administration On the application’s startup, an Admin user should be provisioned. Admin is
a user who has access to the entire application and can manage other users;
for example, provisioning service engineers. The Admin user can manage all
customer information and the master data of the application.

The application should be capable of allowing customers to log in by using their
social media logins (for example, Gmail). On a user’s first successful login, a
local user account (specific to this application) should be created for moderation
purposes.

User management activities include customer registration, reminding users of or
changing passwords, deactivating users (the Admin user can perform this action),
signing out, assigning roles to service engineers and customers at registration.

The Admin user should be able to provision other employees into the system.

Service Requests
Management

The customer should be able to create a new service request. The Admin user
should associate the service to a service engineer. Whenever the status of a service
request changes, the customer should be notified via e-mail/text.

Based on the service progress, the Admin user and service engineer can modify
the job card details.

The customer, service engineers, and Admin user should have respective
dashboards displaying a summary of all activities and the latest updates.

Service Notifications The customer, service engineer, and Admin user can view the summary of the job card.

At any point during servicing, the customer, service engineer, and admin user can
have two-way communication about the service progress and queries.

The customer, service engineer, and Admin user can see the history of the job card
(all the changes that have happened since the card’s creation).

The Admin user should be able to review services that are marked as completed by
the service engineers.

Note: Invoices and payment processing are beyond the scope of this book.

Promotions The Admin user should be able to add details about new promotions and offers.
Customers should receive real-time notifications with these details.

Customers should be able to see all promotions and offers.

Chapter 1 ■ Designing a Modern Real-World Web Application

7

■■ Note  The requirements for this application are limited so that the application remains easy for you to
understand. The limited scope of requirements also gives me the liberty to emphasize the technological concepts.

Technologies Used in Building the Application
The fundamental power of the software industry comes from its diverse technical advancements
and offerings. During the last few years, the substantial growth of cloud computing and open source
communities contributed to a significant number of technical programming languages, frameworks, and
platforms. It is always difficult to learn a technology for a particular requirement because that requires a lot
of research and comparisons.

Microsoft open sourced its ASP.NET MVC, Web API, and Web Pages frameworks under the Apache 2.0
license. Microsoft also established the .NET Foundation, an independent organization that aims to improve
open source software development and collaboration around the .NET Framework. ASP.NET Core, the
latest release of ASP.NET under the .NET Foundation, is capable of building cross-platform web and cloud
solutions.

In this book, we’ll use ASP.NET Core (Long Term Support version, 1.0.3) in combination with C# to
build our web application for the Automobile Service Center. Materialize, an open source CSS framework
based on Material Design, is used to create CSS themes for the Automobile Service Center application.
JQuery will be used throughout this book to perform the necessary client-side activities. The SignalR library
will provide real-time, two-way communication between server and clients (browsers, in this case). The
OAuth 2.0 protocol is used to enable single sign-on from various external social media identity providers
such as Gmail, Twitter, and Facebook.

Microsoft Azure Storage is an enterprise-grade cloud storage service that provides reliable, scalable, and
durable data-storage services. In this book, we’ll primarily use Azure Table storage to store all application
data in NoSQL format. Figure 1-3 shows all the technologies and platforms that we’ll use in designing and
developing the Automobile Service Center application.

Chapter 1 ■ Designing a Modern Real-World Web Application

8

The Automobile Service Center application’s code is versioned using GitHub, a distributed version-
control and source-code management platform. To ensure code quality, we use Travis CI to build and test
the source code from GitHub.

Docker is a container technology used to build software packages that can be deployed in any
environment. The Automobile Service Center application is packaged using Docker by continuous
integration with GitHub. Docker Cloud, which supports continuous deployment to any infrastructure, is
used to deploy our web application containers to Azure Linux Virtual Machines.

Logical Architecture of the Application
The logical architecture is a design specification that depicts all the logical code components of the
application and their interactions. Figure 1-4 illustrates the logical architecture of the Automobile Service
Center technical solution.

Figure 1-3.  Technologies used in building our Automobile Service Center application

Chapter 1 ■ Designing a Modern Real-World Web Application

9

Figure 1-4.  Logical architecture of the Automobile Service Center technical solution

Chapter 1 ■ Designing a Modern Real-World Web Application

10

The base foundation of the application is the Microsoft .NET Core runtime and its libraries. On top of
.NET Core, we use the ASP.NET Core framework, which provides all the features related to web development.
Microsoft designed the entire .NET Core ecosystem to be modular; everything is driven by NuGet packages,
and we can choose which packages we need for the application. So the next step in the hierarchy is to get all
the required NuGet packages to build the application.

The next layer in the hierarchy is custom application code, written by developers, that is required for
web development. This layer contains all the artifacts related to MVC such as views, controllers, filters,
and stylesheets. This layer also holds the key implementations such as session management, logging, and
exception handling. This layer also houses the test project, which will hold all the xUnit.net test cases for the
entire application.

Next is the Business Components layer, which holds all the code related to business requirements.
This layer has a modular design by segregating the relevant code through interfaces into multiple physical
projects. For example, storage operations and business functions are driven through interface design.

Azure Storage, the last layer of the hierarchy, is responsible for all data operations. This API is a C#
wrapper for HTTP REST service calls to the Azure Storage infrastructure that’s provided by Microsoft through
a NuGet package.

The Automobile Service Center application is going to be a loosely coupled system; the Business
Components layer requires Azure Storage dependencies, and the Web layer is dependent on business
components. These dependencies are injected using dependency injection at runtime (ASP.NET Core
supports dependency injection by default). This way, there is no need to create the instances of the
dependencies within the code, as they are created and managed by the IoC containers.

■■ Note  The detailed implementation steps of each layer, along with dependency injection, are covered in
Chapter 2.

Continuous Integration and Deployment Architecture
In today’s application development, continuous integration (CI) and continuous deployment (CD) are the
key DevOps practices. These operations will prevent manual effort and repetitive tasks on every build, and
thereby reduce the possibility of human error, improve the quality of the build, and increase the efficiency of
the overall life cycle of developing, testing, and deploying.

The Automobile Service Center application is going to use the latest CI and CD technologies and tools,
as shown in Figure 1-5. The process begins with the developer, who designs and develops the application
on a local machine by connecting to the local machine’s Azure Storage emulator. On successful completion
of a feature, the developer commits the code to the Dev branch (which is not depicted in the image) of the
GitHub source-code repository. On a successful commit, the Travis CI service triggers a build to validate
the entire source code for errors and to run xUnit test cases. If the build fails, the developer and all other
stakeholders are notified via e-mail, and it is the developer’s responsibility to correct the error and commit
the code back to the Dev branch. This is an iterative process for all the developers during the development
phase.

http://dx.doi.org/10.1007/978-1-4842-3270-5_2

Chapter 1 ■ Designing a Modern Real-World Web Application

11

At a given logical time, when we decide to roll out the completed features to production servers, the Dev
branch will be merged with the master branch. The Travis CI service builds again kicks off on master branch
and validates the build. The same iterative process continues on the master branch as well.

■■ Note  The concepts described in this book are one way to achieve CI and CD. There are many ways to
achieve CI and CD using different technologies. I advise developers to do thorough research and analysis of
the contemporary CI and CD technologies and tools and to check their relevance in a project context before
implementing these mission-critical strategies.

Deployments to production servers are triggered from the master branch. In this book, we use Docker
technology to create application containers and deploy them to Azure Linux Virtual Machines. Whenever
a merge or commit happens at the master branch at GitHub, Docker Cloud will take the latest source code,
build a Docker image, create a Docker container, and finally push the container to the associated Azure
Virtual Machine nodes.

■■ Note  The implementation details of CI and CD processes for an ASP.NET Core application are described in
a later chapter.

Figure 1-5.  Continuous integration and deployment architecture

Chapter 1 ■ Designing a Modern Real-World Web Application

12

Software Prerequisites
Before we start the development process, let’s check all the software prerequisites and quickly set up the
development machine.

■■ Note  The software prerequisites listed in this section are the preliminary and basic software required to
get started. I will discuss in detail the required technologies and tools in their respective chapters. This way,
every chapter is self-contained, and your need to search for relevant content throughout the book is reduced.

I am using the following development machine:
Dell Latitude E7450 x64-based PC with Intel Core i7-5600U CPU @ 2.60GHz, 2594MHz, 2 cores, 4 logical

processors, 8GB physical memory, 476GB SSD hard drive.

■■ Note  It is not mandatory to have the same configuration as my development machine.

The operating system should be 64-bit Windows 10 Pro, Enterprise or Education (version 1511,
November update, Build 10586 or later).

■■ Note  The Windows 10 OS Build version (Build 10586 or later) is crucial for running Docker on the Windows
platform. One more important point is that Windows 10 Virtual Machine on Azure can’t be used for Docker
development because it doesn’t support nested virtualization (at the time of writing this chapter).

Download and install Visual Studio Community 2017 from www.visualstudio.com. I am using the 15.1
(26403.7) release.

We need to install the following Visual Studio workloads: ASP.NET Web Development, Azure
Development, and .NET Core Cross-Platform Development.

■■ Note  It is always advisable to sign into Visual Studio. Signing in will always sync your Visual Studio
settings to your Microsoft account, and these settings can be retrieved later on any other machine by signing in
with the same account. Starting from Visual Studio 2017, the new Roaming Extension Manager will keep track
of all your favorite extensions across all development environments and sync them with Visual Studio sign-in.

We also need to have the following accounts created:

•	 GitHub (https://github.com/)

•	 Travis CI (https://travis-ci.org/): Associate Travis CI with GitHub by signing in
with GitHub credentials.

•	 Docker (www.docker.com)

•	 Microsoft Azure Subscription (https://azure.microsoft.com/): Create a free Azure
Account.

https://www.visualstudio.com/
https://github.com/
https://travis-ci.org/
https://www.docker.com/
https://azure.microsoft.com/

Chapter 1 ■ Designing a Modern Real-World Web Application

13

Other tools are required for development, including Docker for Windows, the latest .NET Core SDK, and
the Azure Storage emulator. The details of these tools and SDKs are discussed in corresponding chapters.

Summary
In this chapter, you learned about the importance of, and paradigm shift toward, open source communities
and cloud platforms in developing modern software applications. You also learned about the major software
development strategies and procedures. Regardless of which software methodology we use, the basic
processes remain the same, with a little tweak in implementation.

You were introduced to the business requirements of the fictitious Automobile Service Center. We
defined the scope of the development work for the rest of the book.

You briefly looked at the technical stack—the combination of ASP.NET Core, SignalR, Azure Storage,
GitHub, Travis CI, and Docker—which we are going to use to develop the application. We designed the
logical architecture and CI/CD pipeline of the application. Finally, the chapter concluded with the details of
the required environment and software prerequisites.

15© Rami Vemula 2017
R. Vemula, Real-Time Web Application Development, https://doi.org/10.1007/978-1-4842-3270-5_2

CHAPTER 2

The New Era of .NET Core

Over the last decade, the open source development model gained significant adoption and tremendous
growth because of its ability to change and improve software products by making them available under a
free license to the general public. The process of ideation and innovation in software development is at its
peak because people around the world have been able to collaborate and create new products from open
source code.

Microsoft’s move toward the open source world started two years ago. Its strong commitment to the
open source community was demonstrated by joining the Linux Foundation at the end of 2016. Microsoft’s
efforts— in adapting Linux on Azure Platform, running Bash on Windows, making the developer IDEs such
as Visual Studio and VS Code available on various OSs, and enabling compatibility with SQL Server on
Linux—made an extraordinary impact on open source communities and provided opportunities to create
modern-day frameworks and tools. By far, Microsoft’s decision to open source its .NET Framework was a
game changer in the software industry, and .NET Core is the kickstarter of its open source journey.

In this chapter, you will learn the key features of .NET Core and ASP.NET Core, especially the
advantages these frameworks offer compared to their predecessors. We will create an ASP.NET Core project
that will serve as the baseline version of the Automobile Service Center application. You will learn the
important project artifacts. You’ll also see how to set up the configuration of the Automobile Service Center
web project through the Appsettings.json file. Finally, we will conclude this chapter by exploring the new
dependency injection system provided by the ASP.NET Core framework.

Introduction to .NET Core
.NET Core is an open source development platform maintained by Microsoft and the .NET community at
GitHub under the .NET Foundation. (The .NET Foundation is an independent organization that supports
open source development and collaboration around the .NET ecosystem.)

.NET Core possesses the following primary features:

•	 Cross-platform: Runs on Windows, macOS, and Linux. If the application’s
requirement is to run across multiple platforms, .NET Core is the obvious choice
among Microsoft frameworks.

•	 Compatible: .NET Core is compatible with .NET Framework, Xamarin, and Mono, via
the .NET Standard library.

•	 Open source: The .NET Core platform is open source under MIT and Apache 2 licenses.

•	 Modular design: In .NET Core, everything is a package. Unlike getting everything,
even when it’s not required for an application, we get only the required packages. All
package dependencies can be retrieved from NuGet.

https://doi.org/10.1007/978-1-4842-3270-5_2

Chapter 2 ■ The New Era of .NET Core

16

•	 Command-line-style development: .NET Core is designed for the command-line
interface (CLI). It provides command-line tools available on all supported platforms,
enabling developers to build and test applications with a minimal installation on
developer and production machines.

•	 Container support: .NET Core by default provides support to container technologies
such as Docker.

•	 Performance: .NET Core is designed to deliver optimistic performance and high
scalability for an application.

•	 Microservices-oriented design: .NET Core is built to support microservices and can
easily get along with other microservices built using .NET Framework or Java, for
example.

•	 Side-by-side support to other .NET versions at an application level: .NET Core supports
easy, side-by-side installation of different versions on the same machine. This allows us
to run multiple services on the same server, targeting different versions of .NET Core.

•	 Microsoft support: .NET Core is supported by Microsoft.

■■ Note O rganizations should perform careful research and analysis before opting for .NET Core over .NET
Framework.

As of now, .NET Core is a subset of .NET Framework, and not all the .NET Framework APIs are ported to .NET
CoreFX libraries.

.NET Core doesn’t support all the workloads, such as ASP.NET Web Forms or WPF.

.NET Core is relatively new, and most of the third-party NuGet packages and platforms don’t support .NET Core yet.

Figure 2-1 shows the.NET ecosystem.

Figure 2-1.  .NET ecosystem architecture

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ The New Era of .NET Core

17

In this architecture diagram, the bottom layer corresponds to languages and their compilers, runtime
components (for example, JIT and garbage collectors), and build and CLI tools required to build any .NET
application.

On top of that layer, we have the .NET Standard library, which is a specification of .NET APIs that
make up a uniform set of contracts with underlying implementations for each .NET runtime. Typically,
in a traditional .NET system, this layer constitutes most of the APIs from mscorlib.dll. If application
code targets a version of.NET Standard, that application is guaranteed to run on any .NET runtime that
implements that version.

The top layer consists of various runtimes of the .NET ecosystem (for example, .NET Core, .NET
Framework, and Mono for Xamarin). The .NET Core runtime supports ASP.NET Core and Universal
Windows Platform workloads. Similarly, the traditional .NET Framework runtime supports ASP.NET, WPF,
and Windows Forms. The Mono runtime is used by Xamarin to build cross-platform mobile applications for
Android and iOS platforms.

Introduction to ASP.NET Core
ASP.NET Core is a new, open source, cross-platform framework for building modern web applications.
It is designed from the ground up to empower applications for the Web, IoT, cloud, and mobile services.
As depicted in Figure 2-2, the other major advantage of an ASP.NET Core application is its ability to run on
either .NET Core or the full .NET Framework. ASP.NET Core uses a modular design and is driven through
NuGet packages, so rather than housing all the unwanted references, we need to get only the packages that
are required for our application.

Figure 2-2.  Compatibility of ASP.NET Core with .NET Framework and .NET Core

ASP.NET Core provides the following foundational improvements and capabilities when compared with
the traditional .NET Framework–based ASP.NET Framework:

•	 Open source: ASP.NET Core is open source under the Apache 2 license.

•	 Cross-platform support: ASP.NET Core applications can be developed and run on
Windows, macOS, and Linux.

•	 Unified MVC and Web API approach: In ASP.NET Core, both the MVC and Web APIs
are driven with unified object model. A single namespace serves both the MVC and
Web APIs, which removes confusion from older versions of ASP.NET.

•	 Lightweight HTTP request pipeline: Compared to previous versions of ASP.NET, most
of the unwanted overhead has been removed from ASP.NET Core, resulting in a
lightweight HTTP pipeline. We can construct the HTTP pipeline by using the default
framework provided by middleware or through custom-developed middleware.

Chapter 2 ■ The New Era of .NET Core

18

•	 Modular design: Starting with ASP.NET Core, there is no need to manage any
unwanted packages or references in the project (there is no System.Web.dll). We
need to get only those references that we want for the application. In fact, ASP.NET
Core itself is a NuGet package.

•	 Integration with client-side frameworks: ASP.NET Core applications can easily
integrate with client-side frameworks such as AngularJS, KnockoutJS, Gulp, Grunt,
and Bower.

•	 Improved performance: ASP.NET Core’s modular design and lightweight HTTP
pipeline offer tremendous performance.

•	 Dependency injection: ASP.NET Core by default supports dependency injection.

•	 Cloud-ready solutions: ASP.NET Core solutions are optimized for cloud compatibility
through an easy configuration system.

•	 Runs on both .NET Framework and .NET Core: ASP.NET Core applications can
run on both .NET Framework and .NET Core runtimes. We have the flexibility of
using traditional .NET Framework APIs that are not yet available in .NET Core. If
the application is targeted for .NET Core runtime, it can support all the .NET Core
versions available on the server.

•	 Hosting: Easy to self-host the ASP.NET Core application. It also supports IIS hosting.

•	 Tooling: ASP.NET Core applications can be built using Visual Studio Code, the Visual
Studio IDE, or the .NET Core CLI. This new tooling enhances developer productivity
in building, publishing, and creating Docker containers.

From a development perspective, many new features and groundbreaking changes have been
introduced in ASP.NET Core. Some of the features are as follows.

•	 The ASP.NET Core Visual Studio project file is a rewrite from the ground up in a new
format.

•	 There is no Global.asax or application startup events in ASP.NET Core. All
configuration and streamlining of the HTTP pipeline is done at the Startup.cs class.

•	 Writing custom middleware is very easy in ASP.NET Core applications.

•	 The ASP.NET Core application is a pure console application. It has an application
main entry point at the Program.cs file.

•	 ASP.NET Core uses a Kestrel server designed specifically for ASP.NET Core.

•	 The static content (such as JavaScript, stylesheets, and images) are now placed under
the wwwroot folder of the application in ASP.NET Core.

•	 Bundling and minification is achieved through the bundleconfig.json file.

•	 The Roslyn compiler is used for in-memory compilation.

•	 Tag helpers and view components promote more robust, reusable, server-side HTML
generation.

•	 Default support is provided for dependency injection, which can manage various
object lifetime scopes.

•	 Attribute-based routing supports new controller and action tokens.

Chapter 2 ■ The New Era of .NET Core

19

•	 Configuration based on Appsettings.json.

•	 New _ViewImports.cshtml file, which can be a common place for all namespaces
across different views.

•	 New filter types and much better control on filter execution.

•	 Creating and managing unit tests is much easier.

•	 New way to manage secure information on development machine using user secrets.

•	 Better support for different caching providers.

•	 Data access using Entity Framework Core.

•	 Configuring authentication and authorization is easy using ASP.NET Core Identity.

•	 New improvement to internationalization, logging, and exception handling.

■■ Note  We cover most of these ASP.NET Core features in subsequent chapters.

Versions and Roadmap of .NET Core and ASP.NET Core
The development of .NET Core and ASP.NET Core is happening at a rigorous pace. There are many reasons
for this fast-paced development; because .NET Core is a relatively new market offering, a lot of effort is going
toward stabilizing the framework and adding new features and APIs. At the same time, .NET Core is open
source and has to extend its footprint to multiple OS distributions.

■■ Note  My primary goal in writing this section is to help you understand the rapid cadence of .NET Core and
familiarize you with the direction of its future releases. The complete release history of .NET Core, along with
release notes, can be found at https://github.com/dotnet/core/blob/master/release-notes/README.md.

.NET Core has three major versions: 1.0., 1.1, and 2.0. The primary difference between .NET Core 1.0
and .NET Core 1.1 is the support for new operating system distributions and a new set of APIs added with
the new .NET Standard. Both versions of .NET Core support side-by-side installation and adoption. .NET
Core 2.0 targets .NET Standard 2.0, which has an extensive 32,000+ APIs. .NET Core 2 introduces a new
development model to develop pages using Razor, which removes the dependency on ASP.NET controllers.
There are lot of other performance improvements in .NET Core 2.0.

The rapid cadence in releasing new versions of .NET Core not only gave developers the flexibility of a
new set of APIs, but also made them go through a roller coaster ride for the following reasons:

•	 The initial releases of .NET Core don’t cover the exhaustive list of .NET Framework
APIs.

•	 VS tooling is not fully feature rich, compared to regular .NET Framework
development.

https://github.com/dotnet/core/blob/master/release-notes/README.md

Chapter 2 ■ The New Era of .NET Core

20

•	 Major changes occurred in the .NET project system, such as moving away from a
Project.json-based approach to a csproj-based approach.

•	 Different versions of .NET Core support different OS distributions.

Similar to .NET Core, ASP.NET Core versions significantly improved over time. The following are some
of the major changes in ASP.NET Core 2.0:

•	 Support for NET Standard 2.0.

•	 Microsoft.AspNetCore.All meta package, which will house all the packages
required to build an ASP.NET Core application.

•	 Support for .NET Core 2.0 Runtime Store and automatic Razor view precompilation
during publish.

•	 Performance improvements to the Kestrel server.

•	 New improvements to ASP.NET Core Identity.

•	 Enhancements to configuration, caching, Razor, diagnostics, and logging.

Developers should watch out for GitHub repositories of both .NET Core and ASP.NET Core for new
changes and should plan development strategies in advance. One way to plan things for upcoming releases
is to become familiar with the daily builds of the .NET Core SDK (which gives the latest up-to-date .NET
Core runtime) and MyGet packages (which are, again, daily builds of packages, and NuGet houses stable
versions) and do proof-of-concepts in order to understand what is coming in subsequent releases.

■■ Note  Every developer should be aware that working with daily builds might result in unexpected behavior
of an application. Bottlenecks can occur from VS tooling or the .NET Core CLI. Sporadic behavior could occur
in the development environment, which might require uninstalling and reinstalling stable SDK versions and VS
tooling.

Having said ups and downs, the recent releases of both .NET Core and ASP.NET Core are very stable,
support numerous OS distributions, and offer an exhaustive set of APIs. The current releases were supported
with great tooling from Visual Studio 2017 and the .NET Core CLI.

Creating the Automobile Service Center Application
In this section, we’ll create an ASP.NET Core web application that will be used as the base solution for our
Automobile Service Center application.

To get started with an ASP.NET Core application, we need the .NET Core SDK installed on a local
machine.

By default, the .NET Core SDK will be installed with VS 2017. We can check the .NET Core SDK version
as shown in Figure 2-3.

dotnet --version

Chapter 2 ■ The New Era of .NET Core

21

■■ Note  New versions of the .NET Core SDK will be released on a regular basis. Install the new version by
downloading it from www.microsoft.com/net/download/core. Download the x64 version of Windows Installer
as shown in Figure 2-4.

Figure 2-3.  dotnet version

Figure 2-4.  .NET Core downloads (at the time of writing)

Examine the sample usage of the dotnet new command shown in Figures 2-5 and 2-6.

dotnet new --help

■■ Note  The initial run will populate the local package cache to improve performance.

https://www.microsoft.com/net/download/core

Chapter 2 ■ The New Era of .NET Core

22

Figure 2-5.  dotnet new command usage

Figure 2-6.  dotnet new command usage

Chapter 2 ■ The New Era of .NET Core

23

Open VS 2017. Create a new solution with the name ASC.Solution, as shown in Figure 2-7.

Figure 2-7.  New Visual Studio solution

Create a new ASP.NET Core Web Application Project with the name ASC.Web in the solution we created
(right-click the solution and select Add New Project, as shown in Figure 2-8).

Figure 2-8.  New ASP.NET Core project in Visual Studio

Chapter 2 ■ The New Era of .NET Core

24

Click OK. A pop-up, shown in Figure 2-9, appears to allow the user to select the version of the ASP.
NET Core framework and web template. Make sure to select ASP.NET Core 1.1 as the framework and Web
Application template.

Figure 2-9.  ASP.NET Core framework version and template

Figure 2-10.  Change authentication for the ASP.NET Core project

Click the Change Authentication button to access the Change Authentication dialog box. Change the
Authentication mode from none to individual user accounts, as shown in Figure 2-10. Then click OK.

Chapter 2 ■ The New Era of .NET Core

25

After making sure all the settings are correct, click OK, and VS 2017 will create the web project that is
shown in Figure 2-11.

Figure 2-11.  ASP.NET Core project

To run the web application, click IIS Express from the VS 2017 standard menu, as shown in Figure 2-12.

Figure 2-12.  Debug an ASP.NET Core project

The application will be executed and opens in the default browser, as shown in Figure 2-13.

Chapter 2 ■ The New Era of .NET Core

26

■■ Note  A web application project can also be created using the .NET Core CLI.

To create a project by using the .NET Core CLI, we need to execute the following commands in order
(make sure to run CMD as Administrator):

mkdir ASC.Solution
cd ASC.Solution
dotnet new sln --name ASC.Solution
dotnet new mvc --name ASC.Web --framework netcoreapp1.1 --auth Individual
dotnet sln add ASC.Web\ASC.Web.csproj

Here we create a directory and set it as the working directory for the command-line prompt. Using the
.NET Core CLI, we then create a blank solution and an ASP.NET Core Web project with the MVC template,
ASP.NET Core 1.1 framework, and authentication mode set to Individual. Finally, add the web project to the
solution file, as shown in Figure 2-14.

Figure 2-13.  Index page of ASP.NET Core application running from VS

Chapter 2 ■ The New Era of .NET Core

27

To run the application, we need to execute the following commands:

cd ASC.Web
dotnet restore
dotnet build
dotnet run

First we need to restore all the dependencies from nuget.org; this is a one-time activity that is required
to resolve all dependencies. Then we build the application to make sure there are no errors. Finally, we run
the application as shown in Figure 2-15.

Figure 2-14.  Creating the ASP.NET Core project using the .NET Core CLI

Chapter 2 ■ The New Era of .NET Core

28

Navigate to http://localhost:5000 and you should see our application up and running.

■■ Note  By default, the .NET Core CLI always runs the application at port 5000. To change the default port,
follow the tutorial at www.intstrings.com/ramivemula/articles/jumpstart-40-change-default-5000-
port-of-dotnet-run-command/.

Understanding the ASP.NET Core Web Project Artifacts
The .NET Core project system is a rewrite compared to previous versions of .NET Framework. In the new
.NET Core project system and especially in the ASP.NET Core project, we have a lot of new files (such as
bundleconfig.json and Program.cs) that were added and old files (such as Global.asax) that were
removed. In this section, we will demystify the project structure of ASP.NET Core web applications so you
can understand the importance and relevance of each artifact.

Figure 2-15.  Restore, build, and run an ASP.NET Core application

http://www.intstrings.com/ramivemula/articles/jumpstart-40-change-default-5000-port-of-dotnet-run-command/
http://www.intstrings.com/ramivemula/articles/jumpstart-40-change-default-5000-port-of-dotnet-run-command/

Chapter 2 ■ The New Era of .NET Core

29

Dependencies
The Dependencies node displays all the dependencies of the project. These dependencies are categorized
into client-side Bower dependencies, NuGet package dependencies, and the actual .NET Core framework.
All the dependencies will be restored initially when the project is created and loaded for the first time.
Whenever the csproj file changes, dependencies will be restored automatically.

Properties and launchSettings.json
This node holds the profiles that are used to launch the project. Typically, for a web project, we have
executable profiles based on IIS Express and the .NET Core CLI. The Properties node can be used to
maintain web server settings such as Enable Authentication. Project-specific environment variables
can be set by double-clicking the Properties node. Any changes to project settings will be saved to the
launchSettings.json file.

wwwroot
The wwwroot folder contains all static files of the project. These include HTML, image, JavaScript, and CSS
files. These files will be served to the user directly. Custom JQuery files will go into the js folder, and all
JQuery library files will go into the lib folder.

Controllers
The Controllers folder will hold all the MVC/Web API controllers in the ASP.NET Core project. It is the
same as a traditional ASP.NET MVC 4 project.

Data
The Data folder will hold all the code files related to the Entity Framework Database Context and
migrations.

■■ Note  As Individual Authentication mode is used while creating the project, the Data folder was created
with the required ASP.NET Core Identity tables and migrations. During the course of this book, we are going to
change the implementation to Azure Table Storage.

Models
All the web application View models are placed in this folder. A View model is typically used by the view for
displaying data and submitting it.

Services
By default, all the custom interfaces and business logic will be created in this folder.

Chapter 2 ■ The New Era of .NET Core

30

■■ Note  We will not use the Services folder to hold business logic. Instead, separate class libraries will be
created for business and data storage operations.

Views
The Views folder holds all the cshtml files. It follows the same convention as does the traditional ASP.NET
MVC 4 project, by placing views corresponding to a controller under the same folder with the controller
name. Also, this folder holds shared views (such as partials) in the Shared folder. This folder contains a new
file called _ViewImports.cshtml, which serves as a common place to add all namespaces that are used
by all views, along with tag helpers. This folder contains _ViewStart.cshtml, which is used to execute the
common view code at the start of each view's rendering.

appsettings.json
This file can be used to store configuration key/value pairs (just like appsettings in the web.config file of
traditional ASP.NET projects) for the project. This file is also used to hold connection strings, log settings,
and so forth.

bower.json
Client-side asset files (for example, JavaScript, stylesheets, images, and HTML) are managed through
bower.json. By default, Bootstrap and JQuery files are loaded. The .bowerrc file holds the location
(typically, wwwroot/lib) where Bower needs to save the downloaded packages.

bundleconfig.json
This file is used for the bundling and minification of JQuery and CSS files. In this file, we specify different
input files and a corresponding output file. We need to refer to the BundlerMinifier.Core NuGet package
and use dotnet bundle to trigger the bundle and minification operation.

Program.cs
Program.cs is the starting point of an ASP.NET Core web application. It contains the program entry point
Static Void Main(), making the ASP.NET Core web application a truly console application. The ASP.NET
Core application requires a host to start the application and manage the application’s lifetime. Program.cs
creates a new instance of WebHostBuilder, which is used to configure and launch the host. A Kestrel server
is used to host the application. Finally, WebHostBuilder’s Build method is called to create the host, and then
the Run method is used to start it.

Startup.cs
Startup.cs configures the environment for the ASP.NET Core web application. In its constructor, it
configures the configuration of the application. In its ConfigureServices method, framework services
(for example, EF, MVC, and authentication) and custom services (business specific) will be added and
resolved using dependency injection. One more method, Configure, is used to build the ASP.NET HTTP
pipeline with middleware.

Chapter 2 ■ The New Era of .NET Core

31

As we continue our journey of building a web application for the Automobile Service Center, we
will explore more artifacts and new concepts of different .NET Core project types. We will also customize
and modify most of the default artifacts to serve the Automobile Service Center application’s business
requirements.

Setting Up the Application Configuration
Before we deep-dive into the Automobile Service Center web application design and development, you need
to understand some important concepts related to the ASP.NET Core web project. This way, you will get
used to the new .NET Core project system and gain confidence in application development.

A configuration system is one of the important changes in the ASP.NET Core project. In previous
versions of ASP.NET, web.config was primarily used to hold configurations in its appsettings section.
In the new ASP.NET Core system, appsettings.json is used to hold the configurable values. Appsettings.
json is a lightweight configuration file that stores all settings in JSON format; just as in web.config, we can
have different configuration files for different environments. Accessing this configuration data can be done
through the Options pattern, and ASP.NET Core provides default middleware to achieve this functionality.

■■ Note  In previous versions of ASP.NET, web.config supported transformations to different environments
and build configurations. Similarly, in ASP.NET Core, we will have different JSON files for different
environments and builds.

Listing 2-1 is the default appsettings.json file created by ASP.NET Core.

Listing 2-1.  Default appsettings.json File

{
 "ConnectionStrings": {
 "DefaultConnection": "Default connection string"
 },
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Warning"
 }
 }
}

Update the appsettings.json file as shown in Listing 2-2.

Listing 2-2.  Add a New JSON Setting to appsettings.json

{
 "AppSettings": {
 "ApplicationTitle" : "Automobile Service Center Application"
 },
 "ConnectionStrings": {
 "DefaultConnection": "Default connection string"
 },

Chapter 2 ■ The New Era of .NET Core

32

 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Warning"
 }
 }
}

To use the configuration settings, we have to make sure that the appsettings.json file is loaded to
Configuration Builder, which is used to build the configuration of key/value-based settings. Go to the
Startup.cs file, and make sure we have the lines in Listing 2-3 to load and run the Configuration Builder.

Listing 2-3.  Load the appsettings.json File by Using the Configuration Builder

 public Startup(IHostingEnvironment env)
 {
 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json", optional: false, reloadOnChange: true)
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true);

 if (env.IsDevelopment())
 {
 builder.AddUserSecrets<Startup>();
 }

 builder.AddEnvironmentVariables();
 Configuration = builder.Build();
 }

 public IConfigurationRoot Configuration { get; }

We can get all the configuration settings in the form of strongly typed objects. Create a Configuration
folder in the web project and place the ApplicationSettings class to hold the configuration values
(Listing 2-4).

Listing 2-4.  ApplicationSettings Class

namespace ASC.Web.Configuration
{
 public class ApplicationSettings
 {
 public string ApplicationTitle { get; set; }
 }
}

■■ Note  Whereever we are planning to use the ApplicationSettings class, we have to resolve the
dependency for ASC.Web.Configuration.

Chapter 2 ■ The New Era of .NET Core

33

Now to make the instance of the ApplicationSettings class to hold the actual configuration values,
we need to inject IOptions (basically, the Options pattern injected to every controller, view, and so forth)
and configure the ApplicationSettings instance to hold the value from the AppSettings section of
appsettings.json. Modify the ConfigureServices method of the Startup class as shown in Listing 2-5.

Listing 2-5.  Configure Dependency Injection for IOptions Pattern

public void ConfigureServices(IServiceCollection services)
 {
 // Add framework services.
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));

 services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

 services.AddMvc();

 services.AddOptions();
 services.Configure<ApplicationSettings>(Configuration.GetSection("AppSettings"));

 // Add application services.
 services.AddTransient<IEmailSender, AuthMessageSender>();
 services.AddTransient<ISmsSender, AuthMessageSender>();
 }

To use the configuration in a view, inject the IOptions<ApplicationSettings> into the view as
described in Listing 2-6. We will modify _Layout.cshtml to display the Automobile Service Center
application name in navigation.

Listing 2-6.  Inject IOptions<ApplicationSettings> into a View

@using Microsoft.Extensions.Options;
@using ASC.Web.Configuration;
@inject IOptions<ApplicationSettings> _configurationSettings
<!DOCTYPE html>
<html>
<head>

As shown in Listing 2-7, make the highlighted change in the Nav bar.

Listing 2-7.  Updated Nav Bar

<nav class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">
 <�button type="button" class="navbar-toggle" data-toggle="collapse"

data-target=".navbar-collapse">
 Toggle navigation

Chapter 2 ■ The New Era of .NET Core

34

 </button>
 <a asp-area="" asp-controller="Home" asp-action="Index" class="navbar-brand">
 @_configurationSettings.Value.ApplicationTitle

 </div>
 <div class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 <a asp-area="" asp-controller="Home" asp-action="Index">Home
 <a asp-area="" asp-controller="Home" asp-action="About">About
 <a asp-area="" asp-controller="Home" asp-action="Contact">Contact

 @await Html.PartialAsync("_LoginPartial")
 </div>
 </div>
 </nav>

Run the application. You should see Automobile Service Center Application as the application name, as
shown in Figure 2-16.

Figure 2-16.  Index page displaying application title through dependency injection

To use the configuration in any controllers, we have to inject IOptions<ApplicationSettings> as
shown in Listing 2-8.

Listing 2-8.  Dependency Injection in Controllers

private IOptions<ApplicationSettings> _settings;
 public HomeController(IOptions<ApplicationSettings> settings)
 {
 _settings = settings;
 }

 public IActionResult Index()
 {

Chapter 2 ■ The New Era of .NET Core

35

 // Usage of IOptions
 ViewBag.Title = _settings.Value.ApplicationTitle;
 return View();
 }

■■ Note  Don’t forget to add the using statement for Microsoft.Extensions.Options to resolve the
IOptions<> pattern.

Now let’s see how to maintain different configuration files for different environments. Create an
appsettings JSON file (as shown in Listing 2-9) with the name appsettings.Production.json at the root of
the project. This settings file will act as a production environment configuration.

Listing 2-9.  appsettings.Production.json File

{
 "AppSettings": {
 "ApplicationTitle": "Automobile Service Center Production Application"
 },
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Debug",
 "System": "Information",
 "Microsoft": "Information"
 }
 }
}

Add the Production appsettings file to Configuration Builder, as shown in Listing 2-10. It will
load the appsettings JSON file based on the environment variable that we set at the project properties.
Configuration Builder will pick up both appsettings files (appsettings.json and appsettings.
Production.json), and the second file settings will override the settings of the first one for the properties
that are available in both; otherwise, the corresponding settings from each file will be persisted.

Listing 2-10.  Add the appsettings.production.json File to Configuration Builder

 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json", optional: false, reloadOnChange: true)
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true);

■■ Note  Make sure to add environment variables to Configuration Builder by using builder.
AddEnvironmentVariables(). These environment variables are used across the application at multiple places
to get the desired functionality for specific environments. One example is the bundling and minification of
JavaScript files; we usually bundle and minify them only in Production environments.

Chapter 2 ■ The New Era of .NET Core

36

To set environment variables, right-click the web project and select Properties. Go to the Debug tab and
set the ASPNETCORE_ENVIRONMENT variable to Production, as shown in Figure 2-17. Similarly, we can add any
environment variables.

■■ Note  Make sure to add environment variables for all profiles that will be used for debugging.

Figure 2-18.  Application updated with the title from the Production configuration

Figure 2-17.  Setting environment variables for an ASP.NET Core project

Run the application. You should see the title updated from the Production configuration file, as shown
in Figure 2-18.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ The New Era of .NET Core

37

Using Dependency Injection in the ASP.NET Core Application
Dependency injection (DI) is a software pattern through which a software application can achieve loosely
coupled layers. Instead of directly creating objects at different layers of the application, dependency
injection will inject the dependent objects in different ways (for example, constructor injection or property
injection). This pattern uses abstractions (usually interfaces) and containers (it’s essentially a factory that is
responsible for providing instances of types) to resolve dependencies at runtime.

In previous ASP.NET versions, there was no built-in support for dependency injection. We used to get
DI functionality through third-party frameworks such as Ninject and StructureMap. But starting from ASP.
NET Core, we have built-in support for dependency injection (through the IServiceProvider interface).

In ASP.NET Core, the ConfigureServices method in Startup.cs is used to configure containers (as
shown in Listing 2-11). By default, ASP.NET Core provides extensions to configure services such as Identity,
Entity Framework, Authentication, and Caching. We can configure our custom business services by using
any of the following extensions:

•	 Transient: A new instance of the object will be created every time a call is made for
that type.

•	 Scoped: Only one instance of the object will be created, and it will be served for every
call made for the type in the same request.

•	 Singleton: Only one instance of the object will be created, and it will be served for
every call made for the type for all requests.

Listing. 2-11.  Dependency Injection Container Configuration

 // This method gets called by the runtime. Use this method to add services to the container.
 public void ConfigureServices(IServiceCollection services)
 {
 // Add framework services.
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlite(Configuration.GetConnectionString("DefaultConnection")));

 services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

 services.AddOptions();
 services.Configure<ApplicationSettings>(Configuration.GetSection("AppSettings"));

 services.AddMvc();

 // Add application services.
 services.AddTransient<IEmailSender, AuthMessageSender>();
 services.AddTransient<ISmsSender, AuthMessageSender>();
 }

In Listing 2-11, the Entity Framework Core is configured by using the AddDbContext extension,
ASP.NET Core Identity is configured using the AddIdentity extension, configuration options are configured
using the AddOptions extension, and MVC is configured by using the AddMvc extension. All these extension
methods configure and add the services to the IServiceCollection collection. In a similar way, we can
add our custom services (in Listing 2-11, we have configured IEmailSender and ISmsSender services).
IServiceProvider is the default container provided by ASP.NET Core that is used to fetch the services
at runtime.

Chapter 2 ■ The New Era of .NET Core

38

Configured services can be accessed throughout the application in many ways. We can pass the
dependencies through the constructor injection. We should define all dependencies as parameters in the
constructor and later use them as shown in Listing 2-12.

Listing 2-12.  Consuming Services Configured Using Dependency Injection

 private IOptions<ApplicationSettings> _settings;
 public HomeController(IOptions<ApplicationSettings> settings)
 {
 _settings = settings;
 }

 public IActionResult Index()
 {
 // Usage of IOptions
 ViewBag.Title = _settings.Value.ApplicationTitle;
 return View();
 }

Another approach is to pass specific dependencies to Action methods. We have to explicitly use
FromServices to tell ASP.NET Core that this parameter should be retrieved from configured services
(see Listing 2-13).

Listing 2-13.  Access Dependencies by Using the FromServices Attribute

 public IActionResult Index([FromServices] IEmailSender emailSender)
 {
 // Usage of IOptions
 ViewBag.Title = _settings.Value.ApplicationTitle;
 return View();
 }

One more option for retrieving services is to use the RequestServices extension of HttpContext, as
shown in Listing 2-14. It is not advisable to use this approach because it makes code less testable and is hard
to maintain.

Listing 2-14.  Usage of the RequestServices Extension of HttpContext

 var emailService = this.HttpContext.RequestServices
 .GetService(typeof(IEmailSender)) as IEmailSender;

We have to be careful in designing services that are configured for dependency injection. In the
Automobile Service Center application, we are going to use dependency injection extensively to resolve all
dependencies related to business and storage operations.

Chapter 2 ■ The New Era of .NET Core

39

Summary
In this chapter, you learned about the .NET Core platform and its advantages. You briefly looked at the
.NET Core platform architecture and key considerations to make before choosing .NET Core over .NET
Framework. You also learned about the ASP.NET Core framework and its advantages. You learned about the
new concepts and groundbreaking changes in ASP.NET Core as compared to previous versions of ASP.NET.
You briefly looked at the history of .NET Core and ASP.NET Core, followed by proposed future changes and
releases.

We created the base project for the Automobile Service Center web application by using both VS 2017
and the .NET Core SDK. We explored all the artifacts of the ASP.NET Core project system. You learned how
to set up the basic configuration in an ASP.NET Core project and how to do transformation of configuration
files based on environments. Finally, you looked at the dependency injection pattern and how ASP.NET Core
leverages its new Service collection and Service provider to configure services and resolve dependencies at
runtime.

References
	 1.	 https://docs.microsoft.com/en-us/dotnet/articles/standard/components

	 2.	 https://github.com/dotnet/core/blob/master/release-notes/README.md

	 3.	 https://github.com/dotnet/core/blob/master/roadmap.md

https://docs.microsoft.com/en-us/dotnet/articles/standard/components
https://github.com/dotnet/core/blob/master/release-notes/README.md
https://github.com/dotnet/core/blob/master/roadmap.md

41© Rami Vemula 2017
R. Vemula, Real-Time Web Application Development, https://doi.org/10.1007/978-1-4842-3270-5_3

CHAPTER 3

Designing a Theme by Using
Material Design

The success of any software application depends on many key factors. One prominent factor is the
user experience and presentation. Lately, a significant drift has occurred in software design patterns:
professionals and organizations are looking to deliver solutions by limiting page transitions with
asynchronous server interactions. This paradigm demands a rich user experience—and without it, any
application could easily fall apart by failing to meet expectations. Fortunately, today’s browsers, along
with the continuous innovation of the CSS and JQuery frameworks, are providing unprecedented visual
presentations to end users.

The relevance and importance of jQuery-powered CSS frameworks has grown for multiple reasons.
Here are some of the important ones:

•	 One-stop solution for supporting different devices

•	 Compatible with multiple browsers and platforms

•	 Design single-page applications

•	 Support for various application design models such as PhoneGap and
Windows Store apps

In this chapter, we are going to walk through creating a good user experience by using Google’s Material
Design language. In the process of learning about Materialize CSS, we will create the CSS template for our
Automobile Service Center application.

Responsive Design and New Approaches
This decade by far has experienced explosive growth in manufacturing smart devices to cater to various
requirements. The evolution of laptops, smartphones, tablets, wearables, game consoles, and virtual reality
devices has triggered challenges for developers to provide one-stop intuitive solutions that support most
devices. Responsive web design is a new approach in designing a web solution to ensure that users have a
good viewing experience no matter what type of device they’re using. Responsive design primarily uses
HTML along with CSS and JS languages to deliver optimized visual experiences for a specific device browser.

Responsive web design enables web applications to render efficiently on different devices, screen
sizes, orientations, browsers, resolutions, and operating systems. Responsive design can be achieved using
techniques such as media queries, fluid grids, and fluid images.

https://doi.org/10.1007/978-1-4842-3270-5_3

Chapter 3 ■ Designing a Theme by Using Material Design

42

Media queries let us design various layouts for the same web page for different media types such as
screen, print, or handheld devices. Depending on the media type in conjunction with the width and height
variants of the browser and device, we can configure the style, font, and other elements of the page. Using
fluid grid design, all the elements are maintained in relative proportion to the base element. Instead of
specifying the height and width in pixels, they are indicated in percentages with respect to the holding
container. Images are not scalable by default, so they will fall apart when the screen size changes. The fluid
image technique will ensure that images are resized proportionately based on screen size; using low-
resolution images for smaller devices is suggested.

Fortunately, all of these techniques are provided by most CSS frameworks powered by JavaScript.
Bootstrap is a popular open source front-end web framework that supports great responsive and mobile-
first designs. It is often considered a pioneer in the marketplace. Other frameworks such as Foundation
and Semantic UI offer similar capabilities. Most of these CSS frameworks use dynamic stylesheet languages
such as LESS and SASS that are processed into CSS stylesheets. Dynamic stylesheet languages provide great
advantages, including reusable CSS schemes for responsive designs, preprocessing capability for complex
and large stylesheets, inheritance, and feature exports, and fewer HTTP requests required from the browser
to the server.

Trends in responsive web design are evolving. Some of the key trends are as follows:

•	 Precise and simple: The main concept of the web application should be precise.
It should be communicated in a simple and short message that’s clearly
communicated through the theme of the web application.

•	 Great typography and icons: Using great fonts and icons to present the content will
always engage users.

•	 Vibrant themes and unique presentation: Most modern web applications use vibrant
and new color combinations along with placing content in the right places.

•	 Elegant design of input controls: All HTML controls should have an elegant design
provided by modern design techniques from, for example, Material Design.

•	 Simplified navigation: Easy-to-use navigation always yields good results

•	 Content with infinite scrolling: Users prefer getting information through a feed-based
approach, like that of Facebook.

•	 Push notifications: Real-time notifications help users stay connected with the
application.

Today’s CSS frameworks are not only capable of providing these features but also support various
application models. Mobile development frameworks such as Adobe PhoneGap and Sencha Touch use
HTML, JS, and CSS to create typical mobile and tablet applications. Windows Store apps can be developed
using HTML, JS, and CSS frameworks. In any development model, the responsive CSS frameworks play a
pivotal role in the overall design and user experience.

Material Design is a visual design language developed by Google to focus more on the basic building
blocks of visual representation and to enhance them by using animations, transitions, and shadow effects.
The primary goals of Material Design are as follows:

•	 To create a visual language that produces a classic standard of design with innovative
principles of technology.

•	 To develop a single uniform platform that provides a unified experience.

Chapter 3 ■ Designing a Theme by Using Material Design

43

■■ Note B efore Material Design came into the world, web applications were designed using flat design
techniques. Flat design is not a multidimensional design technique and provides no textures, gradients, or
shadows.

Material Design uses features such as tactical surfaces (multiple layers stacked up on one another),
pixel density, and animations. In Material Design, typography, grids, space, scale, color, and imagery play a
crucial role in the entire design. Elements are placed in defined spaces with a clear hierarchy and are bold
in order to stand out in the design. Because of its multilayer structure, Material Design elements are easy
to interact with; the animations surrounding elements give the feel of interacting with a real object. New
open source CSS frameworks have been built using Material Design to offer responsive web design. These
frameworks provide a very good user experience for end users when interacting with web applications.

In this book, we’ll use one of the latest CSS frameworks that supports responsive web design and uses
Material Design concepts.

About Materialize CSS
Materialize CSS is a modern, responsive, front-end framework based on Material Design. It was developed
by a team of students from Carnegie Mellon University in 2014. It is an open source framework under the
MIT License.

■■ Note M ore information about the Materialize CSS authors can be found at http://materializecss.com/
about.html.

Just like Bootstrap, Materialize supports a 12-column responsive layout along with offsets. Materialize
supports various navigation menus and has great support for mobile navigation through its drag-out menu.
It uses Roboto font by default, which can be easily changed to any other font family. Materialize provides
a good set of helpers to format, align, and render text on various devices. It also has, by default, responsive
support for rendering media content such as images and videos.

Materialize CSS supports these additional features:

•	 Different form styles, buttons, and input controls. Built-in support for elements such
as carousels, collapsible panels, feature discovery prompts, dialog boxes, tabs, and
Scrollspy.

•	 Breadcrumbs to show the user’s current location, and progress indicators to show
the task status.

•	 Support for badges to show notifications, pushpins to fix positioning of messages,
and cards to display different content from different objects.

•	 Different styles for collections and pagination.

•	 Great support for media content, and a wide range of iconography.

•	 Built-in support for modal pop-ups.

•	 Effects and transitions such as image parallax, fade in/out, and waves.

Materialize can be applied to a web application in two ways: via CSS/JS or SASS files.

http://materializecss.com/about.html
http://materializecss.com/about.html

Chapter 3 ■ Designing a Theme by Using Material Design

44

■■ Note  Creating a stylesheet from Material Design is a lengthy and hard process. Materialize CSS fills that
gap by providing a great stylesheet implementation. In this book, we are going to use Materialize CSS to style
our Automobile Service Center application.

Materialize CSS Themes
So far, you have learned the concepts of Material Design and Materialize CSS. This section presents the
Materialize themes that are designed using Materialize CSS. Fortunately, there was good early adoption of
both Material Design and Materialize CSS by the open source community. As a result, several free and paid
themes have been developed by leveraging Materialize CSS. For the Automobile Service Center application,
we are going to use some of the open source developed themes and tailor them to our needs.

We are going to use the Parallax theme, shown in Figure 3-1, as the base theme for our Automobile
Service Center application. The Parallax template, a free template offered by the Materialize CSS team, is
the simplest template that we can start off with. We’ll customize it based on the Automobile Service Center
application’s requirements.

Figure 3-1.  Parallex theme developed by the Materialize CSS team

■■ Note T he Parallax theme can be found at http://materializecss.com/templates/parallax-template/
preview.html.

To support the Automobile Service Center application’s functionalities, we are going to customize the template.

http://materializecss.com/templates/parallax-template/preview.html
http://materializecss.com/templates/parallax-template/preview.html

Chapter 3 ■ Designing a Theme by Using Material Design

45

Using Materialize CSS in the Automobile Service Center
Application
In this section, we will apply Materialize CSS themes to our Automobile Service Center application. Based
on the requirements of our application, all the pages are divided into two categories: public pages and
secured pages. Public pages are available to all users without a login requirement (authentication is not
required). Secured pages are available only to authenticated users such as Administrator, Service Engineers
and registered customers.

To get started, we will implement the Parallax theme in the public pages. Download the Parallax
theme from http://materializecss.com/getting-started.html. Extract the zip contents to a folder as
shown in Figure 3-2.

Copy the following contents to the ASC.Web project:

	 1.	 All CSS files to the wwwroot/css directory. (Delete the default site.css provided
as part of the solution.)

	 2.	 Fonts to the wwwroot/fonts directory.

	 3.	 All JS files to the wwwroot/js directory.

	 4.	 Background images to the wwwroot/images directory. (Delete the default banner
SVG files.)

■■ Note I downloaded free background images from www.pexels.com/search/car/.

The logo is downloaded from www.iconfinder.com/icons/285807/auto_automobile_car_convertible_
vehicle_icon#size=128.

Figure 3-2.  Parallex theme contents

http://materializecss.com/getting-started.html
http://www.pexels.com/search/car/
http://www.iconfinder.com/icons/285807/auto_automobile_car_convertible_vehicle_icon#size=128
http://www.iconfinder.com/icons/285807/auto_automobile_car_convertible_vehicle_icon#size=128

Chapter 3 ■ Designing a Theme by Using Material Design

46

The solution structure should be as shown in Figure 3-3.

Figure 3-3.  Visual Studio solution structure

Public pages follow the design depicted in Figure 3-4. The top header, along with the Parallax container,
goes into the top section of the layout file. The content page will be rendered immediately after the top
section, using the standard ASP.NET MVC RenderBody. The footer section will be in the layout file.

Chapter 3 ■ Designing a Theme by Using Material Design

47

■■ Note  For public screens, we are going to refer directly to minified CSS and JS files in layout.

As part of the ASP.NET Core Web Application template, JQuery is already added to the project as a Bower
dependency. It can be found at wwwroot/lib/jquery/dist/jquery.min.js.

One more fantastic feature of ASP.NET Core is the capability to load different scripts for different
environments, as shown in Listing 3-1. We are going to ignore this feature for the public pages design, as we
are holding all the required files in the directory.

Listing 3-1.  Loading JQuery Scripts Based on Environment Variables

<environment names="Development">
 <script src="~/lib/jquery/dist/jquery.js"></script>
 </environment>
 <environment names="Staging,Production">
 <script src="https://ajax.aspnetcdn.com/ajax/jquery/jquery-2.2.0.min.js"
 asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
 asp-fallback-test="window.jQuery"
 crossorigin="anonymous"
 �integrity=�"sha384-K+ctZQ+LL8q6tP7I94W+qzQsfRV2a+AfHIi9k8z8l9ggpc8X+Ytst4yBo/

hH+8Fk">
 </script>
 </environment>

Figure 3-4.  Public pages design

Chapter 3 ■ Designing a Theme by Using Material Design

48

Adding a Master Layout
We create a master layout, _MasterLayout.cshtml, as shown in Listing 3-2, to hold all the references for CSS
and JS files. This listing provides the default layout, with html, head, and body tags; this default acts as the
base version for other layouts that we are going to create later in this chapter.

Listing 3-2.  Master Layout

@using Microsoft.Extensions.Options;
@using ASC.Web.Configuration;
@inject IOptions<ApplicationSettings> _configurationSettings

<!DOCTYPE html>
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 <�meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1.0,

user-scalable=no" />
 <title>@_configurationSettings.Value.ApplicationTitle</title>

 <!-- CSS -->
 <link href="https://fonts.googleapis.com/icon?family=Material+Icons" rel="stylesheet">
 <�link href="~/css/materialize.css" type="text/css" rel="stylesheet" media="screen,

projection" />
 <link href="~/css/style.css" type="text/css" rel="stylesheet" media="screen,projection" />

</head>
<body>
 <!-- Render Body -->
 @RenderBody()

 <script src="~/lib/jquery/dist/jquery.min.js"></script>
 <script src="~/js/materialize.min.js"></script>
 <script src="~/js/init.js"></script>

 @RenderSection("Scripts", required: false)
</body>
</html>

■■ Note  We can improve the physical structure of the solution and layout files by using areas. We will
implement areas in subsequent chapters.

Replace the markup of _Layout.cshtml with the code in Listing 3-3 to reflect the Parallax theme. We have
to specify _MasterLayout as the parent for this layout; by doing this, all the references from MasterLayout
are inherited to Layout. The layout will have a navigation bar that points to the login and contact pages. The
Parallax template’s container is the next section, which will display the first background image.

The middle section of the layout will hold ASP.NET’s RenderBody(), which will be used to render
different content pages. The last section of the layout is the footer section, which will display three
subsections: About Us, Additional Services, and Connect. The Additional Services subsection will hold links
to various topics at the Automobile Service Center application, whereas Connect will point to the company’s
social media channels.

Chapter 3 ■ Designing a Theme by Using Material Design

49

Listing 3-3.  Layout.cshtml Design

@{
 Layout = "_MasterLayout";
}
<header>
 <nav class="white" role="navigation">
 <div class="nav-wrapper container">

 <ul class="right hide-on-med-and-down">
 Login
 Contact

 <ul id="nav-mobile" class="side-nav">
 Login
 Contact

 <�a href="#" data-activates="nav-mobile" class="button-collapse">

<i class="material-icons">menu</i>
 </div>
 </nav>

 <div id="index-banner" class="parallax-container">
 <div class="section no-pad-bot">
 <div class="container">

 <h1 class="header center teal-text text-lighten-2">Automobile Service Center</h1>
 <div class="row center">
 <h5 class="header col s12 light ">Where Quality meets Safety</h5>
 </div>
 <div class="row center">
 <�a href="http://materializecss.com/getting-started.html" id="download-

button" class="btn-large waves-effect waves-light teal lighten-1">Get
Started

 </div>

 </div>
 </div>
 <�div class="parallax"><img src="~/images/background1.jpg" alt="Unsplashed background

img 1"></div>
 </div>
</header>

<!-- Render Body -->
<main>
 <div class="row margin-bottom-0px">
 <div class="col s12 padding-0px">
 @RenderBody()
 </div>
 </div>
</main>

Chapter 3 ■ Designing a Theme by Using Material Design

50

<!-- Footer -->
<footer class="page-footer teal">
 <div class="container">
 <div class="row">
 <div class="col l6 s12">
 <h5 class="white-text">About Us</h5>
 <p class="grey-text text-lighten-4">
 �Automobile Service Center is certified to perform car services. Our

workshop operations started in October 2010.
 �We primarily focus on providing better services to our customers, and as

a result of the hard work, we were awarded "Best Service" for 2008.
 </p>

 </div>
 <div class="col l3 s12">
 <h5 class="white-text">Additional Services</h5>

 Services
 Finance
 Used Cars
 Insurance
 Driving School

 </div>
 <div class="col l3 s12">
 <h5 class="white-text">Connect</h5>

 Facebook
 LinkedIn
 Twitter
 Youtube

 </div>
 </div>
 </div>
 <div class="footer-copyright">
 <div class="container">
 �Powered by

Materialize
 </div>
 </div>
</footer>

The home page is going to be a static content page. Replace the code of Views/Home/Index.cshtml
with the code shown in Listing 3-4. This static page will serve as the home page of the Automobile Service
Center application. The first section of the Index page will have a container section that is divided into three
subsections. Each subsection will display an icon followed by static content. These three subsections can be
used primarily to display the core values of the Automobile Service Center application.

The next sections on the page are two Parallax containers that are lined up one after the other; each one
of the containers will display a background image followed by static content. These sections can be used to
display the Automobile Service Center’s services and achievements.

Chapter 3 ■ Designing a Theme by Using Material Design

51

Listing 3-4.  Index.cshtml Design

<div class="container">
 <div class="section">
 <!-- Icon Section -->
 <div class="row">
 <div class="col s12 m4">
 <div class="icon-block">
 <h2 class="center brown-text"><i class="material-icons">group</i></h2>
 <h5 class="center">Who we are</h5>
 <�p class="light">We believe in providing seamless and high-quality services

to our customers. Our customer-first approach will offer a unique
personalized experience that will bring more value to your car through a
smarter and quicker process. We are committed to great quality.</p>

 </div>
 </div>
 <div class="col s12 m4">
 <div class="icon-block">
 <h2 class="center brown-text"><i class="material-icons">flash_on</i></h2>
 <h5 class="center">Our Competency</h5>
 <�p class="light">By utilizing the elements and principles of modern

mechanical engineering, we are able to resolve complex technical challenges
through innovative solutions. Additionally, our service engineers are
highly qualified, with advanced training in automobile engineering.</p>

 </div>
 </div>
 <div class="col s12 m4">
 <div class="icon-block">
 <h2 class="center brown-text"><i class="material-icons">settings</i></h2>
 <h5 class="center">Easy to work with</h5>
 <�p class="light">We provide detailed information and predictive analysis

to help our customers understand their cars. We maintain continuous
communication and are always open to feedback. We are always avaiable
to answer our customers' inquiries.</p>

 </div>
 </div>
 </div>
 </div>
</div>

<div class="parallax-container valign-wrapper">
 <div class="section no-pad-bot">
 <div class="container">
 <div class="row center">
 <�h5 class="header col s12 light">Commited to delivering unprecendented

quality to our customers</h5>
 </div>
 </div>
 </div>
 <�div class="parallax"><img src="~/images/background2.jpg" alt="Unsplashed background

img 2"></div>
</div>

Chapter 3 ■ Designing a Theme by Using Material Design

52

<div class="container">
 <div class="section">
 <div class="row">
 <div class="col s12 center">
 <h3><i class="mdi-content-send brown-text"></i></h3>
 <h4>Customer Value</h4>
 <�p class="left-align light">Automobile Service Center has always been a

value-driven company. Many of our values are based on years of research and
commitment. Our values reflect the manner in which we run our business.
We're proud of our professional ethics in dealing with our business
partners, investors, employees, and customers. We provide customer-valued
services built on our commitment to responsibility, sustainability,
trust, openness, diversity, reliability, determination, credibility, and
initiation. Our dedication in providing quality services is based on our
great engineering-compliance model and industry-standard inspection and
quality-control procedures.</p>

 </div>
 </div>
 </div>
</div>

<div class="parallax-container valign-wrapper">
 <div class="section no-pad-bot">
 <div class="container">
 <div class="row center">
 <�h5 class="header col s12 light">Humility, Empathy, Hard Work, and Technology

are our core drivers.</h5>
 </div>
 </div>
 </div>
 <�div class="parallax"><img src="~/images/background3.jpg" alt="Unsplashed background

img 3"></div>
</div>

Append the styles in Listing 3-5 to Style.css to support the logo image and small-screen resolution.

Listing 3-5.  Styles

/* Removes padding */
.padding-0px {
 padding: 0px !important;
}

/* Make logo fit in the header */
.nav-wrapper .brand-logo img {
 height: 64px;
}

@media (max-width: 600px) {
 .nav-wrapper .brand-logo img {
 height: 56px;
 }
}

Chapter 3 ■ Designing a Theme by Using Material Design

53

Run the application (either from Visual Studio by pressing F5, or from the command-line prompt by
typing dotnet run). The application will be launched and displayed in the browser, as shown in Figure 3-5.

Figure 3-5.  Automobile Service Center’s home page

Chapter 3 ■ Designing a Theme by Using Material Design

54

■■ Note  Materialize CSS can also be included in the ASP.NET Core web project by using Bower.

This chapter focused mainly on theme design. We will design the rest of the application pages in later chapters
as we cover relevant topics.

Designing a Layout for Secure Pages
So far, we have designed the templates for public pages. Now we will design the theme for secured pages.
We will not use any prebuilt or open source templates for this theme. Instead, we’ll use Materialize CSS and
its JavaScript components to create a simple and responsive theme. The main concept behind this theme is
to keep it simple and elegant, because the pages that are going to use this theme should highlight the data
and functionality rather than confusing the user with a lot of moving parts and images. The secure page
layout will be designed as shown in Figure 3-6.

Figure 3-6.  Secure page design

Create a new layout file with the name _SecureLayout.cshtml that will serve as the layout for all
secured pages. As shown in Figure 3-6, we design the HTML in sections. As with Layout, we inherit
SecureLayout from MasterLayout, as described in Listing 3-6.

The first section is the header section, which will display the title of the application. The header section
is followed by the left-navigation section, which is again divided into two subsections. The first subsection
will display the information related to the logged-in user. The second subsection will display the navigation
menu, which will help the user navigate to different secure pages in the application.

Chapter 3 ■ Designing a Theme by Using Material Design

55

The next section in the flow is the RenderBody() section, which will display the actual content page.
The footer section is the last section in the secure layout, and is similar to the footer section that we designed
for the public pages.

Listing 3-6.  Secure Layout Design

@{
 Layout = "_MasterLayout";
}

<!-- Header -->
<header class="secureLayout">
 <nav class="top-nav blue-grey lighten-1">
 <div class="nav-wrapper row valign-wrapper">
 <div class="col s12 valign-wrapper">
 <�a href="#" data-activates="nav-mobile" class="button-collapse top-nav full

hide-on-large-only white-text"><i class="material-icons">menu</i>
 <h5>Automobile Service Center</h5>
 </div>
 </div>
 </nav>

 <!-- Side NavBar -->
 <ul id="nav-mobile" class="side-nav fixed">

 <div class="userView">
 <div class="background blue-grey lighten-1"></div>

 John Doe
 jdandturk@gmail.com
 </div>

 <�li><i class="material-icons">dashboard</i>

Dashboard

 <ul class="collapsible collapsible-accordion">

 <�a class="collapsible-header">User Administration<i class="material-

icons">supervisor_account</i>
 <div class="collapsible-body">

 �Customers<i class="material-icons">

account_box</i>
 <�li>Provision User<i class="material-icons">

person_add</i>
 <�li>Deactivate User<i class="material-icons">

remove_circle</i>

 </div>

Chapter 3 ■ Designing a Theme by Using Material Design

56

 <�li><i class="material-icons">perm_data_
setting</i>Service Requests

 �<�li><i class="material-icons">message</i>
Service Notifications

 <�li><i class="material-icons">inbox</i>
Promotions

 <�li><i class="material-icons">settings</i>
Settings

 <�li><i class="material-icons">exit_to_app</i>
Logout

</header>

<!-- Render Body -->
<main class="secureLayout">
 <div class="row margin-bottom-0px">
 <div class="col s12">
 @RenderBody()
 </div>
 </div>
</main>

<!-- Footer -->
<footer class="page-footer blue-grey lighten-1 secureLayout">
 <div class="row">
 <div class="col l6 s12">
 <h5 class="white-text">About Us</h5>
 <p class="grey-text text-lighten-4">
 �Automobile Service Center is certified Company to perform car services. Our

Workshop operations started in the month of October, 2010.
 �We primarily focus on providing better services to our customers, and as a

result of the hard work we were awarded as the "Best Service" for the year
2008 and that too within a short period of time.

 </p>

 </div>
 <div class="col l3 s12">
 <h5 class="white-text">Additional Services</h5>

 Services
 Finance
 Used Cars
 Insurance
 Driving School

 </div>
 <div class="col l3 s12">
 <h5 class="white-text">Connect</h5>

 Facebook
 LinkedIn

Chapter 3 ■ Designing a Theme by Using Material Design

57

 Twitter
 Youtube

 </div>
 </div>
 <div class="footer-copyright row margin-bottom-0px">
 <div class="col s12">
 �Powered by

Materialize
 </div>
 </div>
</footer>

Append the styles in Listing 3-7 to Style.css.

Listing 3-7.  Styles

/* Adjusting padding to display Side Nav */
header.secureLayout, main.secureLayout, footer.secureLayout {
 padding-left: 300px;
}

@media only screen and (max-width : 992px) {
 header.secureLayout, main.secureLayout, footer.secureLayout {
 padding-left: 0;
 }
}

/* Selected Menu Item style*/
.side-nav li.active {
 background-color: #f5f5f5;
}

.margin-bottom-0px {
 margin-bottom: 0px;
}

Create a Dashboard action in the home controller, as shown in Listing 3-8. This action is used to display
a sample screen with the designed theme.

Listing 3-8.  Dashboard Action in Home Controller

 public IActionResult Dashboard()
 {
 return View();
 }

The Dashboard view is a simple view. For now, it just displays a message. The important part of the
Dashboard view is that it inherits SecureLayout.

Chapter 3 ■ Designing a Theme by Using Material Design

58

On mobile devices, the navigation will be hidden by default. Clicking the Menu icon will slide the
navigation from the left portion of the screen, as shown in Figure 3-8.

Listing 3-9.  Dashboard View

@{
 Layout = "_SecureLayout";
}
<div class="section">
 <div class="row">
 <div class="col s12 m4" style="height: 500px;">
 Content Page will be displayed here.
 </div>
 </div>
</div>

■■ Note I have downloaded free gender images from www.iconfinder.com.

Run the application (either from Visual Studio by pressing F5, or from the command-line prompt by
typing dotnet run). The application will be launched. Navigate to /Home/Dashboard, and you should see the
screen depicted in Figure 3-7.

Figure 3-7.  Dashboard view with secure layout

https://www.iconfinder.com/

Chapter 3 ■ Designing a Theme by Using Material Design

59

Figure 3-8.  Dashboard view in mobile devices

Chapter 3 ■ Designing a Theme by Using Material Design

60

■■ Note T he main intention of this chapter is to familiarize you with designing themes via Material Design.
Numerous other approaches and frameworks are available in the marketplace through which we can develop
different user experiences.

I recommend that you do some research on modern CSS frameworks and JS libraries. As part of this learning
exercise, I advise you to develop some themes to serve business requirements such as Patient Management
System or Air Cargo System.

To learn more about Material Design, visit https://material.io/guidelines/#introduction-goals.

For Materialize CSS concepts, visit http://materializecss.com/.

We will be using Materialize CSS extensively in the Automobile Service Center application. We have already
used the Parallax and Navbar components from Materialize CSS. Many other CSS and JS components are
available from Materialize CSS that are used for relevant functionalities in subsequent chapters.

Summary
You started this chapter by learning about the importance and relevance of providing a great user
experience and visual presentation. Responsive web design concepts can empower various application
models, especially web applications that need to render efficiently on different devices and present different
variations. The latest JavaScript-powered CSS frameworks offer great responsive web design solutions.

You also learned about Material Design, which is a visual design language developed by Google that
enhances the user experience by providing basic building blocks of visual representation. You also explored
Materialize CSS, which is the latest CSS framework developed by leveraging Material Design and responsive
web design.

Material Design is widely accepted by the open source community, and free open source themes have
been developed using Materialize CSS. For our Automobile Service Center application, we have customized
the Parallax theme for its public pages. For the secured pages, we developed a theme using the Materialize
CSS vertical Navbar, which will ensure responsive navigation on different devices.

Reference
	 1.	 https://www.elegantthemes.com/blog/resources/how-to-test-your-

wordpress-website-for-responsive-design

https://material.io/guidelines/#introduction-goals
http://materializecss.com/
https://www.elegantthemes.com/blog/resources/how-to-test-your-wordpress-website-for-responsive-design
https://www.elegantthemes.com/blog/resources/how-to-test-your-wordpress-website-for-responsive-design

61© Rami Vemula 2017
R. Vemula, Real-Time Web Application Development, https://doi.org/10.1007/978-1-4842-3270-5_4

CHAPTER 4

Overview of Azure Storage

Data is undoubtedly the most important output generated by a software product or platform. As the
current generation quickly adapts to the new application development models based on numerous devices
and technologies, generating enormous amounts of data is possible. Gone are the days when software
professionals dealt with gigabytes of information. Present-day application models such as the Internet
of Things (IoT) and event hubs have created new channels of large datasets ranging from terabytes to
petabytes.

New collaborative business workflows between different organizations and professionals, changing
demands of customers, and modern environmental conditions are increasing the need for quick data
analysis and immediate action. Although prompt action is the primary goal, decisions are becoming
increasingly complex as companies compete in the global marketplace. The new cloud infrastructure, along
with Business Intelligence (BI) tools, help businesses process a high volume of data and generate complex
reports that help in mission-critical decision making.

A smart application design should include resilient storage that offers the following important features:

•	 Scalability, durability, and redundancy

•	 High availability and disaster recovery

•	 Easy to manage and maintain

•	 Support for various data formats and heterogeneous application models

•	 Security with controlled access

•	 Cost-optimized environment for big-data solutions

•	 Seamless integration and migration options

These features are offered by most new database and storage systems. Compared to on-premises
storage options, the new cloud computing platforms offer more features and reliable storage options at a
very low cost. The Microsoft Azure Cloud platform provides numerous offerings for data storage, including
databases, distributed file systems, binary data, queues, big-data platforms and extensions, and NoSQL
databases.

This chapter presents the basic concepts of Azure Table storage and implements a simple CRUD
(Create, Read, Update and Delete) operations. We will create a UnitOfWork pattern with a generic repository
implementation of Azure Table storage that will provide a reusable and loosely coupled data access layer for
the Automobile Service Center application.

https://doi.org/10.1007/978-1-4842-3270-5_4

Chapter 4 ■ Overview of Azure Storage

62

Introduction to Azure Storage
Azure Storage is a storage-as-a-service offering from Microsoft for modern applications that require scalable,
durable, and highly available storage for their data. Developers can use Azure Storage to build large-scale
applications targeting cloud, mobile, server, and desktop options. Using Azure Storage, we can store and
process terabytes to petabytes of data to support the big-data scenarios required by scientific, financial
analysis, and media applications. At the same time, Azure Storage attracts many small-business applications
throughout the world because of its affordable pricing model, in which we pay only for the data we are
storing and for the transactions we perform on it.

Azure Storage can be scaled massively to support high-volume transactions on large amounts of data.
It uses an autopartitioning system that automatically load-balances the data by allocating appropriate
resources to serve the requests.

Azure Storage supports diverse operating systems and a variety of programming languages for
development. Azure Storage also exposes data resources via simple REST APIs, which are available to
any client capable of sending and receiving data via HTTP/HTTPS. As shown in Figure 4-1, Azure storage
supports various types of storage.

Figure 4-1.  Storage services offered by Azure Storage

Blob storage is used to store unstructured object data. A blob can be of any type—for example, binary
data such as a document or media file. Table storage is used to store structured datasets. Table storage is
a NoSQL key/attribute data store, which allows for rapid development and fast access to large quantities
of data. Queue storage provides reliable messaging for workflow processing and enables communication
between components of cloud services. File storage is a service that offers shared storage for files in the
cloud by using the standard Server Message Block (SMB) protocol. Applications running in Azure Virtual
Machines or cloud services or from on-premises clients can mount a file share in the cloud and start using
it. Legacy applications that typically rely on file shares can now easily migrate to Azure quickly and without
any rework.

Azure Storage services are available in two types of performance tiers:

•	 A standard storage performance tier for storing tables, queues, files, blobs, and Azure
virtual machine disks

•	 A premium storage performance tier for storing Azure virtual machine disks

The main advantage of Azure Premium Storage compared with Standard Storage is that it delivers high-
performance, low-latency disk support for I/O-intensive operations running on Azure Virtual Machines.
With Azure Premium Storage, you can attach multiple persistent data disks (SSD disks) to a virtual machine
and configure them to deliver maximum I/O and performance.

Chapter 4 ■ Overview of Azure Storage

63

■■ Note W e use Microsoft Azure Table as a persistence medium for the Automobile Service Center application.
We can also use Azure SQL Database as the back end, but I opted to use Azure Storage to demonstrate a
different design technique instead of the regular traditional SQL Server and Entity Framework combination.

By default, Storage account services are accessible to only the account owner. They also provide two
private access keys, which are used for authentication by connected applications. The reason for having two
keys, primary and secondary, is to prevent downtime for storage services, especially while we regenerate the
keys (the secondary can be used while the primary is being regenerated). To allow controlled access to other
users, a shared access signature (SAS) is used. There are two types of SAS keys: one at the service level (for
access to a particular storage service such as Blob or Queue) and the other at the account level (for access
to multiple storage services). An account-level SAS can delegate access to a service-level SAS with access
modifiers such as read, write, and delete operations.

Azure Storage provides four replication options to support high availability:

•	 Locally redundant storage: Three copies of data are replicated within the same
datacenter in the same region.

•	 Zero redundant storage: Data is replicated three times across two to three
datacenters, either within a single region or across two regions.

•	 Geo redundant storage: Six copies of data are replicated across primary and secondary
regions. In case of failure, all requests will be failed over to the secondary region.

•	 Read-access geo redundant storage: This is exactly similar to geo redundant storage,
but it provides read access from both primary and secondary storage at the same time.

Azure storage services are consistently being upgraded from year to year to support enhancements with
respect to size of the data, querying the data through the API, availability through different regions, security,
migration and bulk copy.

Azure achieves scalability of storage services through partitioning logic. Whenever the size and load of
a partition changes to a high value, that partition will be moved on to other machines that can deliver high
throughput.

Azure Table storage holds data as collections of entities. Entities are similar to rows. An entity has a
row key, partition key, and a set of properties; every property has both a type and a value. There is no fixed
schema requirement for Azure Table storage. So two entities in the same table may have different sets of
properties. A table may contain any number of entities.

PartitionKey and RowKey are system properties that are automatically included for every entity in
a table, and they play a crucial role in partitioning. Azure Storage creates a partition of all entities in a
consecutive range of the same partition-key value. The partition key is a unique identifier for the partition
within a given table, specified by the PartitionKey property. The partition key forms the first part of an
entity's primary key. The second part of the primary key is the RowKey. The RowKey is a unique identifier for
an entity within a given partition. Together, the PartitionKey and RowKey uniquely identify every entity
within a table.

RowKey and PartitionKey properties should be included in every insert, update, and delete operation.
These properties are of the string type with a maximum allowed size of 1KB.

There is one more important property, Timestamp, which is used internally by Azure Storage to maintain
optimistic concurrency. This property holds the last modified time of the entity. This property should not be
set on insert or update operations (even if it is set, the value will be ignored).

Chapter 4 ■ Overview of Azure Storage

64

Getting Started with Azure SDK and Storage Emulator
To use Azure Storage services for application development, we have the following prerequisites:

■■ Note  As stated in Chapter 1, create a Microsoft Azure subscription: (https://azure.microsoft.com/). 

•	 Azure development prerequisites

•	 Azure Storage emulator

■■ Note  As shown in Chapter 1, we installed Azure SDKs and development tools as part of the VS 2017
installation.

Azure Storage emulator runs on the developer’s local machine and provides a local environment that
emulates the Azure Blob, Queue, and Table services for development purposes. Storage emulator is helpful
during development, when we do not want to test the storage-related code against actual Azure Storage
services.

To start a Storage emulator, execute the following commands, also shown in Figure 4-2:

cd C:\Program Files (x86)\Microsoft SDKs\Azure\Storage Emulator
AzureStorageEmulator.exe start

Figure 4-2.  Azure Storage emulator

To test the connectivity to Storage emulator, we will create a simple .NET Core console application,
shown in Figure 4-3. Then we’ll create a test table with sample data.

http://dx.doi.org/10.1007/978-1-4842-3270-5_1
https://azure.microsoft.com/
http://dx.doi.org/10.1007/978-1-4842-3270-5_1

Chapter 4 ■ Overview of Azure Storage

65

Figure 4-3.  .NET Core console application

Once the solution is created in VS 2017, right-click the project and select the Manage NuGet Packages
option. Search for the WindowsAzure.Storage NuGet package and install it as shown in Figure 4-4.

Figure 4-4.  Installing the WindowsAzure.Storage NuGet package

Create a base type of Table Entity, which will hold common properties such as CreatedDate,
UpdatedDate, CreatedBy, UpdatedBy, and IsDeleted shared by all entities (see Listing 4-1). These properties
are useful for tracking the user account through which the entity is being inserted or modified. The
IsDeleted property is useful for soft-deleting an entity.

Chapter 4 ■ Overview of Azure Storage

66

Listing 4-1.  Base Entity with Common Properties

 public class BaseEntity : TableEntity
 {
 public bool IsDeleted { get; set; }
 public DateTime CreatedDate { get; set; }
 public DateTime UpdatedDate { get; set; }
 public string CreatedBy { get; set; }
 public string UpdatedBy { get; set; }
 }

Create a Book entity by inheriting BaseEntity, as shown in Listing 4-2. We’ll use this entity to perform
sample data operations against the Storage emulator.

Listing 4-2.  Book Entity

 public class Book : BaseEntity
 {
 public Book()
 {
 }

 public Book(int bookid, string publisher)
 {
 this.RowKey = bookid.ToString();
 this.PartitionKey = publisher;
 }

 public int BookId { get; set; }
 public string BookName { get; set; }
 public string Author { get; set; }
 public string Publisher { get; set; }
 }

Open the Program.cs file and add the namespaces shown in Listing 4-3 to support the storage
operations API.

Listing 4-3.  Azure Storage Namespaces

// Azure Storage Namespaces
using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Table;

Next, we update the Main method to support Table storage operations as shown in Listing 4-4.

Listing 4-4.  Main Method of .NET Core Console Application

 class Program
 {
 static void Main()
 {
 // Azure Storage Account and Table Service Instances
 CloudStorageAccount storageAccount;
 CloudTableClient tableClient;

Chapter 4 ■ Overview of Azure Storage

67

 // Connnect to Storage Account
 storageAccount = CloudStorageAccount.Parse("UseDevelopmentStorage=true");

 // Create the Table 'Book', if it not exists
 tableClient = storageAccount.CreateCloudTableClient();
 CloudTable table = tableClient.GetTableReference("Book");
 table.CreateIfNotExistsAsync();

 // Create a Book instance
 �Book book = new Book() { Author = "Rami", BookName = "ASP.NET Core With Azure",

Publisher = "APress" };
 book.BookId = 1;
 book.RowKey = book.BookId.ToString();
 book.PartitionKey = book.Publisher;
 book.CreatedDate = DateTime.UtcNow;
 book.UpdatedDate = DateTime.UtcNow;

 // Insert and execute operations
 TableOperation insertOperation = TableOperation.Insert(book);
 table.ExecuteAsync(insertOperation);

 Console.ReadLine();
 }
 }

We first create the instances of the Azure Storage account and Table service. Using the
CloudStorageAcccount instance, we can connect to the Azure Storage account based on the connection
string. In this sample, we get connected to a local storage emulator.

■■ Note  UseDevelopmentStorage=true is the connection string to be used to perform storage operations on
the Storage emulator.

We created a Book instance and saved it to table storage by using the ExecuteAsync method.

■■ Note  CreateIfNotExisitsAsync and ExecuteAsync trigger asynchronous operations. The invoking
method should be an async method with the return type of Task. Await should be used to suspend the
execution of the invoking method until the awaited task completes.

Run the program, and it should execute successfully.

Chapter 4 ■ Overview of Azure Storage

68

Figure 4-5.  Visual Studio Cloud Explorer option

To explore the contents of Azure Storage, open the Cloud Explorer view in VS 2017, as shown in Figure 4-5.

Chapter 4 ■ Overview of Azure Storage

69

■■ Note V isual Studio’s Cloud Explorer can connect with both an Azure Storage account and a local emulator.
It can display tables, blobs, and queues.

Azure Table Storage Unit of Work Pattern
The atomicity, consistency, isolation, and durability (ACID) properties are considered the basic prerequisite
for any storage platform. These properties ensure that storage will always be in a stable state and thereby
provide reliable application design models. The sequence of storage operations that follows ACID properties
can be labeled as a single logical operation called a transaction.

Different databases such as SQL Server and Oracle follow different approaches to provide transactional
support to data operations. Azure Storage by default provides transaction support to entity groups with
following key requirements:

	 1.	 All entities must have the same PartitionKey value.

	 2.	 An entity can appear only once in the transaction, and only one operation may
be performed against it.

	 3.	 The transaction can include at most 100 entities, and its total payload may be no
more than 4MB in size.

You can see the inserted Book entity in the Cloud Explorer view, as shown in Figure 4-6.

Figure 4-6.  Cloud Explorer displaying the Book entity from local storage

Chapter 4 ■ Overview of Azure Storage

70

Azure storage has no support for transactions that span across multiple tables. To achieve transaction
support across multiple Azure Storage tables, we need to write our own custom code. We will use the Unit
of Work design pattern along with the Generic Repository pattern to build a simple transaction system for
Azure Table Storage services.

■■ Note  The Unit of Work pattern is used to group one or more operations (usually database operations) into
a single transaction, or unit of work, so that all operations either pass or fail as one batch.

A normal repository class provides extension methods, usually for CRUD operations, for a given Table entity,
whereas a generic repository can be used for all the entities to perform the same operations. This is useful in
achieving reusable code.

We get started by creating an IRepository interface using generics. This interface defines the basic
operations for inserting, updating, deleting, and reading data from Azure Table storage, as shown in Listing 4-5.

Listing 4-5.  IRepository<T> Interface

using Microsoft.WindowsAzure.Storage.Table;
using System;
using System.Collections.Generic;
using System.Text;
using System.Threading.Tasks;

namespace ASC.DataAccess.Interfaces
{
 public interface IRepository<T> where T : TableEntity
 {
 Task<T> AddAsync(T entity);
 Task<T> UpdateAsync(T entity);
 Task DeleteAsync(T entity);
 Task<T> FindAsync(string partitionKey, string rowKey);
 Task<IEnumerable<T>> FindAllByPartitionKeyAsync(string partitionkey);
 Task<IEnumerable<T>> FindAllAsync();
 Task CreateTableAsync();
 }
}

Implement IRepository<T> onto Repository<T>, as shown in Listing 4-6. In the constructor of the
Repository<T> class, we create the instances of CloudStorageAccount and CloudTableClient. We will also
get the reference of CloudTable and hold it in a private variable.

■■ Note  The constructor of Repository<T> will take the IUnitOfWork instance as a parameter. This is
required to keep track of all storage operations performed using the repository, which will be used to roll back
the entire transaction in case of exceptions. The ConnectionString that is required to create an instance of the
Azure Storage instance is passed by using the UnitOfWork instance.

More details on IUnitOfWork are be discussed later in the chapter.

Chapter 4 ■ Overview of Azure Storage

71

Listing 4-6.  Respository<T> Class

using ASC.DataAccess.Interfaces;
using ASC.Models.BaseTypes;
using ASC.Utilities;
using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Table;
using System;
using System.Collections.Generic;
using System.Threading.Tasks;
using System.Reflection;

namespace ASC.DataAccess
{
 public class Repository<T> : IRepository<T> where T : TableEntity, new()
 {
 private readonly CloudStorageAccount storageAccount;
 private readonly CloudTableClient tableClient;
 private readonly CloudTable storageTable;

 public IUnitOfWork Scope { get; set; }

 public Repository(IUnitOfWork scope)
 {
 storageAccount = CloudStorageAccount.Parse(scope.ConnectionString);

 tableClient = storageAccount.CreateCloudTableClient();
 CloudTable table = tableClient.GetTableReference(typeof(T).Name);

 this.storageTable = table;
 this.Scope = scope;
 }
 }
}

By default, transactions are not supported by Azure Table storage operations. If an exception occurs
while performing insert/update/delete actions on multiple entities in one transaction, we have to revert the
entire transaction so that Azure Table storage will not be left with partial entities. For the Automobile Service
Center application, we will create custom rollback logic, as shown in Listing 4-7.

We will create a reverse action for every insert, update, and delete action and store the reverse action in
a queue. In situations of transient exceptions, we have to execute all the reverse actions from the queue so
that the committed entities will be rolled back.

The CreateRollbackAction method does the actual work of creating a rollback action—which is
typically to delete for an insert, set the IsDeleted flag to false for a delete, or replace the updated entity with
the original entity for an update operation.

Chapter 4 ■ Overview of Azure Storage

72

Listing 4-7.  Extended Respository<T> Class

private async Task<Action> CreateRollbackAction(TableOperation operation)
{
 if (operation.OperationType == TableOperationType.Retrieve) return null;

 var tableEntity = operation.Entity;
 var cloudTable = storageTable;
 switch (operation.OperationType)
 {
 case TableOperationType.Insert:
 return async () => await UndoInsertOperationAsync(cloudTable, tableEntity);
 case TableOperationType.Delete:
 return async () => await UndoDeleteOperation(cloudTable, tableEntity);
 case TableOperationType.Replace:
 �var retrieveResult = await cloudTable.ExecuteAsync(TableOperation.

Retrieve(tableEntity.PartitionKey, tableEntity.RowKey));
 �return async () => await UndoReplaceOperation(cloudTable, retrieveResult.Result

as DynamicTableEntity, tableEntity);
 default:
 �throw new InvalidOperationException("The storage operation cannot be

identified.");
 }
}

private async Task UndoInsertOperationAsync(CloudTable table, ITableEntity entity)
{
 var deleteOperation = TableOperation.Delete(entity);
 await table.ExecuteAsync(deleteOperation);
}

private async Task UndoDeleteOperation(CloudTable table, ITableEntity entity)
{
 var entityToRestore = entity as BaseEntity;
 entityToRestore.IsDeleted = false;

 var insertOperation = TableOperation.Replace(entity);
 await table.ExecuteAsync(insertOperation);
}

�private async Task UndoReplaceOperation(CloudTable table, ITableEntity originalEntity,
ITableEntity newEntity)
{
 if (originalEntity != null)
 {
 if (!String.IsNullOrEmpty(newEntity.ETag)) originalEntity.ETag = newEntity.ETag;

 var replaceOperation = TableOperation.Replace(originalEntity);
 await table.ExecuteAsync(replaceOperation);
 }
}

Chapter 4 ■ Overview of Azure Storage

73

As shown in Listing 4-8, we will implement the AddAsync, UpdateAsync, DeleteAsync, FindAsync,
FindAllAsync, and FindAllByPartitionKeyAsync methods to create the respective TableOperation instance.
FindAsync and FindAllAsync return a specific entity and all entities in a storage partition, respectively.
The transaction’s scope is limited to insert, update, and delete operations. So AddAsync, UpdateAsync, and
DeleteAsync methods use a common ExecuteAsync method that will perform the insert, update, and delete
actions and create a rollback action that will be stored in the queue of the IUnitOfWork instance. We will
implement the CreateTableAsync method to create the table if it doesn’t exist in Azure Storage.

Listing 4-8.  Extended Respository<T> Class

public async Task<T> AddAsync(T entity)
{
 var entityToInsert = entity as BaseEntity;
 entityToInsert.CreatedDate = DateTime.UtcNow;
 entityToInsert.UpdatedDate = DateTime.UtcNow;

 TableOperation insertOperation = TableOperation.Insert(entity);
 var result = await ExecuteAsync(insertOperation);
 return result.Result as T;
}

public async Task<T> UpdateAsync(T entity)
{
 var entityToUpdate = entity as BaseEntity;
 entityToUpdate.UpdatedDate = DateTime.UtcNow;

 TableOperation updateOperation = TableOperation.Replace(entity);
 var result = await ExecuteAsync(updateOperation);
 return result.Result as T;
}

public async Task DeleteAsync(T entity)
{
 var entityToDelete = entity as BaseEntity;
 entityToDelete.UpdatedDate = DateTime.UtcNow;
 entityToDelete.IsDeleted = true;

 TableOperation deleteOperation = TableOperation.Replace(entityToDelete);
 await ExecuteAsync(deleteOperation);
}

public async Task<T> FindAsync(string partitionKey, string rowKey)
{
 TableOperation retrieveOperation = TableOperation.Retrieve<T>(partitionKey, rowKey);
 var result = await storageTable.ExecuteAsync(retrieveOperation);
 return result.Result as T;
}

public async Task<IEnumerable<T>> FindAllByPartitionKeyAsync(string partitionkey)
{
 �TableQuery<T> query = new TableQuery<T>().Where(TableQuery.GenerateFilterCondition("Part

itionKey", QueryComparisons.Equal, partitionkey));

Chapter 4 ■ Overview of Azure Storage

74

 TableContinuationToken tableContinuationToken = null;
 �var result = await storageTable.ExecuteQuerySegmentedAsync(query, tableContinuation

Token);
 return result.Results as IEnumerable<T>;
}

public async Task<IEnumerable<T>> FindAllAsync()
{
 TableQuery<T> query = new TableQuery<T>();
 TableContinuationToken tableContinuationToken = null;
 �var result = await storageTable.ExecuteQuerySegmentedAsync(query, tableContinuation

Token);
 return result.Results as IEnumerable<T>;
}

public async Task CreateTableAsync()
{
 CloudTable table = tableClient.GetTableReference(typeof(T).Name);
 await table.CreateIfNotExistsAsync();
}

private async Task<TableResult> ExecuteAsync(TableOperation operation)
{
 var rollbackAction = CreateRollbackAction(operation);
 var result = await storageTable.ExecuteAsync(operation);
 Scope.RollbackActions.Enqueue(rollbackAction);
 return result;
}

The BaseEntity’s properties are being set in the repository, so that there will not be any redundancy in
the application code. In the Automobile Service Center application, the CreatedBy and UpdatedBy properties
will be set from the logged-in user’s identity.

■■ Note  In the Automobile Service Center application, we will pass the connection string from the
configuration file through IOptions<ApplicationSettings>.

We will now create the IUnitOfWork interface shown in Listing 4-9, which will be the primary face for all
storage interactions. IUnitOfWork will house all the instances of repositories and handle rollback operations
in case of exceptions. IUnitOfWork holds the ConnectionString of Azure Table storage. IUnitOfWork is
inherited from IDisposable.

Listing 4-9.  IUnitOfWork Interface

using Microsoft.WindowsAzure.Storage.Table;
using System;
using System.Collections.Generic;
using System.Text;
using System.Threading.Tasks;

Chapter 4 ■ Overview of Azure Storage

75

namespace ASC.DataAccess.Interfaces
{
 public interface IUnitOfWork : IDisposable
 {
 Queue<Task<Action>> RollbackActions { get; set; }
 string ConnectionString { get; set; }
 IRepository<T> Repository<T>() where T : TableEntity;
 void CommitTransaction();
 }
}

The IUnitOfWork interface is implemented on the UnitOfWork class, as shown in Listing 4-10.
UnitOfWork implements both the IUnitOfWork interface and IDisposable (as IUnitOfWork is inherited
from IDisposable). Implementing IDisposable helps UnitOfWork to fire the Dispose method at the time of
exceptions. The constructor of the UnitOfWork implementation takes ConnectionString as a parameter that
is initialized to the ConnectionString property of UnitOfWork; this ConnectionString is subsequently used
in Repository<> to connect to Azure Table storage.

During disposition of UnitOfWork (the Dispose method), we check whether the UnitOfWork transaction
was completed (based on the complete flag, which is set in the CommitTransaction method). If the
transaction was completed, no action will be taken, and the rollback actions queue (this queue will be filled
with rollback actions by the repositories) will be emptied. If the transaction was not completed, all the
rollback actions will be executed from the queue. Once the disposition method is completed, we revert the
complete flag to false, so that UnitOfWork can be used multiple times in the same scope.

The CommitTransaction method should be called to commit a transaction to Azure Table storage.
Otherwise, the entire transaction will be rolled back.

UnitOfWork will also hold different repositories through the Repository<T> implementation. First
it checks whether the requested repository is available in the pool of repositories (Dictionary<string,
object>). If it is, we return the repository. If the repository is not present, we create a new instance of the
repository, place it in the pool, and return it to the requestor.

Listing 4-10.  UnitOfWork Class

using ASC.DataAccess.Interfaces;
using Microsoft.WindowsAzure.Storage.Table;
using System;
using System.Collections.Generic;
using System.Text;
using System.Threading.Tasks;

namespace ASC.DataAccess
{
 public class UnitOfWork : IUnitOfWork
 {
 private bool disposed;
 private bool complete;
 private Dictionary<string, object> _repositories;
 public Queue<Task<Action>> RollbackActions { get; set; }

 public string ConnectionString { get; set; }
 public UnitOfWork(string connectionString)
 {

Chapter 4 ■ Overview of Azure Storage

76

 ConnectionString = connectionString;
 RollbackActions = new Queue<Task<Action>>();
 }
 public void CommitTransaction()
 {
 complete = true;
 }

 ~UnitOfWork()
 {
 Dispose(false);
 }

 private void Dispose(bool disposing)
 {
 if (disposing)
 {
 try
 {
 if (!complete) RollbackTransaction();
 }
 finally
 {
 RollbackActions.Clear();
 }
 }
 complete = false;
 }

 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 private void RollbackTransaction()
 {
 while (RollbackActions.Count > 0)
 {
 var undoAction = RollbackActions.Dequeue();
 undoAction.Result();
 }
 }

 public IRepository<T> Repository<T>() where T : TableEntity
 {
 if (_repositories == null)
 _repositories = new Dictionary<string, object>();

 var type = typeof(T).Name;

Chapter 4 ■ Overview of Azure Storage

77

 if (_repositories.ContainsKey(type)) return (IRepository<T>)_repositories[type];

 var repositoryType = typeof(Repository<>);

 var repositoryInstance =
 Activator.CreateInstance(repositoryType
 .MakeGenericType(typeof(T)), this);

 _repositories.Add(type, repositoryInstance);

 return (IRepository<T>)_repositories[type];
 }
 }
}

■■ Note T he implementations of the generic repository and Unit of Work patterns that have been
demonstrated so far are one of many possible implementations. Different projects may require different tailored
approaches. The concept of creating a transaction scope was taken from Valery Mizonov [5].

To keep it simple, we created rollback actions only for insert, update, and delete operations on Table storage.
Other table storage operations (for example, InsertOrReplace, InsertOrMerge, and Merge) are also widely
used but beyond the scope of this book.

Sample CRUD Operations
In this section, we will update the console application that we created earlier in order to test the UnitOfWork
implementation with the code from Listings 4-11 to 4-13. First, we create a new entity, as shown in Listing 4-11.

Listing 4-11.  Create a New Entity

using (var _unitOfWork = new UnitOfWork("UseDevelopmentStorage=true;"))
{
 var bookRepository = _unitOfWork.Repository<Book>();
 await bookRepository.CreateTableAsync();

 �Book book = new Book() { Author = "Rami", BookName = "ASP.NET Core With Azure",
Publisher = "APress" };

 book.BookId = 1;
 book.RowKey = book.BookId.ToString();
 book.PartitionKey = book.Publisher;
 var data = await bookRepository.AddAsync(book);
 Console.WriteLine(data);

 _unitOfWork.CommitTransaction();
}

Chapter 4 ■ Overview of Azure Storage

78

■■ Note  The use of Repository.CreateTableAsync() will be automated in later chapters, so that there is no
need to explicitly call this method to create a table.

To update an entity, we first find the entity and then update it, as shown in Listing 4-12.

Listing 4-12.  Find an Entity and Update It

using (var _unitOfWork = new UnitOfWork("UseDevelopmentStorage=true;"))
{
 var bookRepository = _unitOfWork.Repository<Book>();
 await bookRepository.CreateTableAsync();
 var data = await bookRepository.FindAsync("APress", "1");
 Console.WriteLine(data);

 data.Author = "Rami Vemula";
 var updatedData = await bookRepository.UpdateAsync(data);
 Console.WriteLine(updatedData);

 _unitOfWork.CommitTransaction();
}

Figure 4-8.  Updated Book entity in local storage

Figure 4-7.  Inserted Book entity in local storage

To delete an entity, we have to use the code in Listing 4-13. We throw an example to test the rollback
action of IUnitOfWork. As a result of the exception occurring before committing IUnitOfWork, the entire
delete transaction will be rolled back and the entity will be persisted.

Listing 4-13.  Delete an Entity and Roll Back Transaction Support

using (var _unitOfWork = new UnitOfWork("UseDevelopmentStorage=true;"))
{
 var bookRepository = _unitOfWork.Repository<Book>();
 await bookRepository.CreateTableAsync();
 var data = await bookRepository.FindAsync("APress", "1");
 Console.WriteLine(data);

Chapter 4 ■ Overview of Azure Storage

79

 await bookRepository.DeleteAsync(data);
 Console.WriteLine("Deleted");

 // Throw an exception to test rollback actions
 // throw new Exception();

 _unitOfWork.CommitTransaction();
}

Figure 4-9.  Deleting an entity and rolling back the transaction

■■ Note T o test rollback actions, uncomment the code that throws the exception. It will revert the delete
operation.

Auditing Data Through Snapshots
The design of application data should incorporate seamless control over the entire life cycle of critical
entities. At any given point in time, the system should be capable of identifying and analyzing all the changes
that have happened for a particular entity since the point of its generation. This kind of auditing mechanism
helps reinforce reliable data access, enforce secure channels to the data by identifying data thefts and
inconsistent access, and track changes to important business data. In this section, we’ll implement a robust
audit mechanism to the UnitOfWork we created in the previous section.

We will create the IAuditTracker interface to identify the entities that are required to be audited. This
interface should be implemented on all the entities that will participate in auditing. IAuditTracker is shown
in Listing 4-14.

Listing 4-14.  IAuditTracker Interface

public interface IAuditTracker
{
}

Now modify the Book entity to implement the preceding interface as shown in Listing 4-15.

Listing 4-15.  Updated Book Entity with IAuditTracker Implementation

public class Book : BaseEntity, IAuditTracker
 {
 public Book()
 {
 }

Chapter 4 ■ Overview of Azure Storage

80

 public Book(int bookid, string publisher)
 {
 this.RowKey = bookid.ToString();
 this.PartitionKey = publisher;
 }

 public int BookId { get; set; }
 public string BookName { get; set; }
 public string Author { get; set; }
 public string Publisher { get; set; }
 }

We will change the implementation of the ExecuteAsync method of Repository<T> to support data
entries to the audit table. Whenever a record that is supposed to be audited gets inserted, updated, or
deleted, an audit record will be entered into the audit table. We also need to update the CreateTableAsync
method to create the audit table if the main entity supports audit snapshots, as shown in Listing 4-16.

Listing 4-16.  CreateTableAsync and ExecuteAsync Methods with Audit Changes

 public async Task CreateTableAsync()
 {
 CloudTable table = tableClient.GetTableReference(typeof(T).Name);
 await table.CreateIfNotExistsAsync();

 if (typeof(IAuditTracker).IsAssignableFrom(typeof(T)))
 {
 var auditTable = tableClient.GetTableReference($"{typeof(T).Name}Audit");
 await auditTable.CreateIfNotExistsAsync();
 }
 }
private async Task<TableResult> ExecuteAsync(TableOperation operation)
 {
 var rollbackAction = CreateRollbackAction(operation);
 var result = await storageTable.ExecuteAsync(operation);
 Scope.RollbackActions.Enqueue(rollbackAction);

 // Audit Implementation
 if (operation.Entity is IAuditTracker)
 {
 // Make sure we do not use same RowKey and PartitionKey
 var auditEntity = ObjectExtension.CopyObject<T>(operation.Entity);
 auditEntity.PartitionKey = $"{auditEntity.PartitionKey}-{auditEntity.RowKey}";
 auditEntity.RowKey = $"{DateTime.UtcNow.ToString("yyyy-MM-ddTHH:mm:ss.fff")}";

 var auditOperation = TableOperation.Insert(auditEntity);
 var auditRollbackAction = CreateRollbackAction(auditOperation, true);

 var auditTable = tableClient.GetTableReference($"{typeof(T).Name}Audit");
 await auditTable.ExecuteAsync(auditOperation);

 Scope.RollbackActions.Enqueue(auditRollbackAction);
 }

Chapter 4 ■ Overview of Azure Storage

81

 return result;
 }

 �private async Task<Action> CreateRollbackAction(TableOperation operation, bool
IsAuditOperation = false)

 {
 if (operation.OperationType == TableOperationType.Retrieve) return null;

 var tableEntity = operation.Entity;
 �var cloudTable = !IsAuditOperation ? storageTable : tableClient.

GetTableReference($"{typeof(T).Name}Audit");
 switch (operation.OperationType)
 {
 case TableOperationType.Insert:
 return async () => await UndoInsertOperationAsync(cloudTable, tableEntity);
 case TableOperationType.Delete:
 return async () => await UndoDeleteOperation(cloudTable, tableEntity);
 case TableOperationType.Replace:
 �var retrieveResult = await cloudTable.ExecuteAsync(TableOperation.

Retrieve(tableEntity.PartitionKey, tableEntity.RowKey));
 �return async () => await UndoReplaceOperation(cloudTable,

retrieveResult.Result as DynamicTableEntity, tableEntity);
 default:
 �throw new InvalidOperationException("The storage operation cannot be

identified.");
 }
 }

The audit table will be created with the name of the entity followed by the Audit word—for example,
BookAudit. One more important point to remember is to make sure the audit records have different RowKeys
and PartitionKeys because many audit records can exist for a given entity record. In our implementation,
we use DateTime.UtcNow as the RowKey and a combination of the original entity’s PartitionKey and RowKey
as the PartitionKey for the audit record.

■■ Note A udit records should also participate in rollback transaction actions. Otherwise, even if the main entity
is not inserted, updated, or deleted, an audit record will be inserted into the audit table. This behavior creates
data-integrity problems. So the CreateRollbackAction method has been changed to roll back audit entries.

We need to have an Object extension to create a copy of the entity, as shown in Listing 4-17. This is
required to create a copy of the original entity and transform the copy as an audit record.

Listing 4-17.  CopyObject<T> Method

using Newtonsoft.Json;
public static class ObjectExtension
{
 public static T CopyObject<T>(this object objSource)
 {
 var serialized = JsonConvert.SerializeObject(objSource);

Chapter 4 ■ Overview of Azure Storage

82

 return JsonConvert.DeserializeObject<T>(serialized);
 }
}

When we execute the insert, update, and delete operations on the Book entity, audit records will be
created, as shown in Figure 4-10.

Figure 4-10.  Audit records for the Book entity

Create the Unit of Work Project in the Automobile Service
Center Solution
The UnitOfWork and Repository<T> patterns that we have developed are being tested so far in a .NET Core
console application. In this section, we will port this code to our Automobile Service Center solution.

Create a new .NET Core class library project called ASC.Models in the ASC.Solution, as shown in
Figure 4-11. This project is going to hold all the Azure data models for the Automobile Service Center
application that are used for persistence.

Figure 4-11.  ASC.Models project

Chapter 4 ■ Overview of Azure Storage

83

Right-click the ASC.Models project and select the Manage NuGet Packages option. Search for the
WindowsAzure.Storage package and install it.

DOMAIN-DRIVEN DEVELOPMENT

There is a concept in domain-driven development that the core business models should be independent
of any storage or platform. Having independent models helps achieve reusability across various types of
applications without carrying storage dependencies. This concept is subjective in terms of the level of
complexity and maintainability we want to achieve in a given application.

In terms of complexity, when we try to maintain business models independent of a storage platform,
we have to introduce an extra layer of mappings. We have to create business models (independent of
storage dependencies) and data access models (which will have storage dependencies), and introduce
an extra layer to convert business models to data access models, and vice versa. This conversion is
required for each and every data operation.

For the Automobile Service Center application, we are going to implement Azure Table storage’s
TableEntity on each and every model, so that they serve the common goal of data access and
business operations. This way, there is no need to worry about the overhead of model conversion.

Create a folder named BaseTypes, and place BaseEntity and IAuditTracker in different class files.
Create a folder named Models, where we are going to place all the models of the Automobile Service Center
application (for now, leave it empty).

To place all the utility classes, we will create a new .NET Core class library project called ASC.Utilities
to the ASC.Solution, as shown in Figure 4-12.

Figure 4-12.  ASC.Utilities project

Chapter 4 ■ Overview of Azure Storage

84

Right-click the project and select the Manage NuGet Packages option. Search for the Newtonsoft.Json
package and install it.

Create a class file for ObjectExtensions and place the CopyObject<T> method code in it.
To place all the Repository<T> and UnitOfWork-related code, create a new .NET Core class library

project called ASC.DataAccess at ASC.Solution, as shown in Figure 4-13.

Figure 4-13.  ASC.DataAccess project

Right-click the project and select the Manage NuGet Packages option. Search for the WindowsAzure.
Storage package and install it.

Create an Interfaces folder and place the IUnitOfWork and IRepository<T> classes in different class files.
Add references to the ASC.Models and ASC.Utilities projects to ASC.DataAccess, as shown in Figure 4-14.

Chapter 4 ■ Overview of Azure Storage

85

Clean and rebuild the solution. The rebuild should be successful. The entire solution structure should
be as shown in Figure 4-15.

Figure 4-14.  Adding ASC.Models and ASC.Utilities project references to the ASC.DataAccess project

Figure 4-15.  Updated ASC.Solution structure

Chapter 4 ■ Overview of Azure Storage

86

■■ Note  The actual usage of IUnitOfWork and Repository<T> in the Automobile Service Center application
will be discussed in subsequent chapters as we start developing the screens by using business logic.

Business logic will be segregated into a different class library project that will consume IUnitOfWork and
Repository<T> to perform operations on data.

Summary
In this chapter, you learned the importance of scalable, reliable, and resilient data storage for a robust
application design. You explored the Microsoft Azure Cloud platform, which offers services such as
databases, distributed file systems, binary data, queues, big-data platforms and extensions, and NoSQL
databases. Azure Storage is a storage-as-a-service offering from Microsoft that consists of queues, tables,
blobs, disks, and files.

You learned about the performance tiers of Azure Storage, along with security options. You also looked
at replication options such as local, zero, geo, and read-access geo redundant storage to support high
availability.

You installed an Azure Storage emulator, which provides a local development environment by
emulating storage services. Using the emulator, you developed a simple console application that performed
a simple CRUD operations. You also used Visual Studio’s Storage Explorer to explore storage entities.

You learned the common properties for an Azure Storage entity, such as PartitionKey and RowKey.
You developed a Unit of work pattern using the generic repository implementation of Azure Storage services
through the WindowsAzure.Storage NuGet package. The Unit of Work pattern provides transactional
support, which ensures that all operations in a single transaction will be either committed or rolled back.
The Unit of Work implementation was later extended to audit data tracking; the entire history of a given
entity was tracked from the point of its generation.

The chapter concluded by creating different .NET Core class library projects at the Automobile Service
Center solution and porting all the code related to the Unit of Work and repository to them. The practical use
of the Unit of Work at the Automobile Service Center application will be detailed in later chapters.

Reference
	 1.	 http://smallbusiness.chron.com/role-data-business-20405.html

http://smallbusiness.chron.com/role-data-business-20405.html

87© Rami Vemula 2017
R. Vemula, Real-Time Web Application Development, https://doi.org/10.1007/978-1-4842-3270-5_5

CHAPTER 5

Test-Driven Approach Using
xUnit.net

Over the past decade, test-driven development (TDD) has become a widely accepted and key area in the
software development process. In traditional development approaches, most design and technical gaps
were usually identified during the post-development or testing phases. This would not only affect the quality
of the application but also incur severe operational overhead for project timelines and business goals.
TDD techniques help identify design and technical gaps up front, even before development of a particular
functionality begins. TDD consists of small development iterations in which unit test cases are written for an
application feature and then the actual development of the feature starts targeting the 100 percent pass rate
of test cases.

The TDD approach has many advantages. Here are a few important highlights:

•	 TDD identifies design mishaps and edge cases at the early stages of development,
thereby reducing the overall development time by reducing the need to redo work.

•	 Individual components can be tested, which provides better control over the quality
of code.

•	 The quality of technical design will be improved, as unit testing promotes loosely
coupled components.

•	 Understanding and maintaining legacy code can be much easier with unit tests.

•	 Automating unit tests along with build definitions ensures that the right code is in
the repository.

•	 Unit tests can be considered documentation.

•	 The availability of new unit-testing frameworks make tests easy to write.

A good unit-test suite for an application should comprise the following standards:

•	 Unit tests should cover small and independent code blocks.

•	 One test case should have one assertion, which should be confined to the test under
execution. In rare cases, a maximum of two assertions should be made.

•	 Unit tests should be independent of the infrastructure, which means they should not
have any physical dependencies such as databases or file systems.

•	 The code that we write in test classes should not be included in the regular
application code.

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3270-5_5
http://www.allitebooks.org

Chapter 5 ■ Test-Driven Approach Using xUnit.net

88

•	 Unit tests should be able to run independently using test runners and should
support automation.

•	 Proper test data stubs should be created and used to test various scenarios of
parameterized tests.

•	 Unit tests should use mocking frameworks to inject dependencies such as web
services or the data access layer. Fake implementations should be created for
APIs, such as a session or cache, which are frequently used and should persist for
subsequent tests.

•	 Unit tests should be integrated as part of the build process, and reports should be
generated for code coverage metrics.

This chapter presents the basic concepts of test-driven development with the xUnit.net framework. In
the process, we will define the standards for the Automobile Server Center application and develop sample
xUnit tests. We will use MOQ as the mocking framework through which we will mock actual Azure Storage
service calls.

Test-Driven Development Life Cycle
Test-driven development primarily comprises three phases, illustrated in Figure 5-1. These phases repeat in
cycles for every change in the functional requirement. The phases are as follows:

	 1.	 Test-case generation

	 2.	 Application code development

	 3.	 Code optimization

Figure 5-1.  Test-driven development life cycle

Chapter 5 ■ Test-Driven Approach Using xUnit.net

89

During test-case generation, a developer first writes the test cases targeting a business requirement by
using frameworks such as xUnit. These test cases need not necessarily cover the entire functionality, but
should drive some of the goals of end functional results. These test cases should be developed before getting
started with application code. After test cases are completed, they are executed with an expectation that all
will fail. The main intention of this phase is to ensure that the functional requirements are captured in the
form of test cases.

Application code development is the next phase; a developer starts writing application code to meet the
objectives of the test cases developed in the previous phase. This phase ensures that the developer writes
only code that is required for passing the test cases and doesn’t end up writing unwanted code. When the
application code is ready, the test cases are again executed with the expectation that all test cases will pass.

In the code optimization phase, the application code is refactored to meet coding standards and
improve performance to target production readiness. Test cases are executed again, and if any of the test
cases fails, the application code should be fixed accordingly.

After the code optimization phase, a new set of test cases should be developed in order to implement
any missing functionalities. The entire process therefore occurs repetitively until all functionality is achieved.

Understanding xUnit.net
xUnit.net is a free, open source, community-based, unit-testing tool for the .NET Framework and .NET
Core. Developed by James Newkirk and Brad Wilson, xUnit is the latest technology for unit testing in C#, F#,
VB.NET, and other .NET languages. It is part of the .NET Foundation and operates under its code of conduct.
xUnit.net provides an exhaustive API for writing unit test cases, and its test runner can be easily integrated
with Visual Studio and automated build systems including TFS and Travis.

xUnit has a lot of advantages compared to its contemporaries such as MSTest and NUnit:

•	 Can run tests under isolation by creating a new instance per test

•	 Provides more control over the Test class and Test method execution

•	 Has great extensibility support, as we can extend the default attributes and assertions
more easily than in other frameworks

•	 Has good support for passing multiple datasets to the same test by using
parameterized tests

•	 Promotes writing clean and maintainable tests

•	 Encourages writing tests by using default language features instead of relying on a
framework

•	 Has good support for asserting exceptions

•	 Has faster performance than other frameworks

•	 Doesn’t require extra files such as vsmdi to keep track of tests

•	 Requires no dependency on the file system for test execution

xUnit can be used in any application by installing it via NuGet. Visual Studio has good compatibility with
the xUnit runner, which is used to run xUnit tests. All we need to do is to install the xUnit runner from NuGet.

■■ Note  Other frameworks such as NUnit and MSTest are available as alternatives to xUnit, but they fall short
in some of the aforementioned key advantages. The current innovation and new features of xUnit are driven by
its open source community, which clearly makes xUnit stand out among its competitors.

Chapter 5 ■ Test-Driven Approach Using xUnit.net

90

Getting Started with xUnit.net and MOQ
In this section, we will write simple xUnit test cases for our Automobile Service Center application. To get
started, we will focus on writing unit tests for the home controller. To follow the standard of keeping unit-test
code separate from application code, we’ll create a new .NET Core class library named ASC.Tests, as shown
in Figure 5-2.

Figure 5-2.  Creating the ASC.Tests project in ASC.Solution

Figure 5-3.  Installing the xUnit NuGet package in the ASC.Tests project

Install xUnit NuGet as shown in Figure 5-3.

■■ Note  We will install the latest versions of both xUnit and the xUnit Visual Studio runner.

Chapter 5 ■ Test-Driven Approach Using xUnit.net

91

To run xUnit tests in Visual Studio, we need the xUnit Visual Studio test runner. Install xUnit.Runner.
VisualStudio from NuGet as shown in Figure 5-4.

Figure 5-4.  Installing the xUnit test runner on the ASC.Tests project

Because we need to test the home controller, add a reference to the ASC.Web project to the ASC.Tests
project, as shown in Figure 5-5.

Figure 5-5.  Adding ASC.Web Project references on the ASC.Tests project

Create a new class file named HomeControllerTests. This class is going to hold all the tests related
to the home controller. Based on the functional specifications, we understand that the home page should
return a type of ViewResult, should not return any model, and should contain no validation errors. The
basic template to cover these scenarios can be written as shown in Listing 5-1.

Listing 5-1.  Template of HomeController Tests

using System;
using ASC.Web.Controllers;
using Xunit;

namespace ASC.Tests
{
 public class HomeControllerTests
 {

Chapter 5 ■ Test-Driven Approach Using xUnit.net

92

 [Fact]
 public void HomeController_Index_View_Test()
 {
 }

 [Fact]
 public void HomeController_Index_NoModel_Test()
 {
 }

 [Fact]
 public void HomeController_Index_Validation_Test()
 {
 }
 }
}

■■ Note  In xUnit, the Fact attribute is used to test invariant conditions, as the test method takes no
arguments. The Theory attribute, on the other hand, tests the same test for multiple variant conditions by
passing different data to the test method as arguments.

The naming convention is self-explanatory: ControllerName_ActionName_TestCondition_Test. For
simplicity, we will complete the View test, followed by the Model and Validation tests. To test action methods
in the home controller, we need to create an instance of HomeController in the unit test. We get the error
shown in Figure 5-6 when we try to create an instance of HomeController.

Figure 5-6.  Compile error while creating HomeController instance

It is complaining that no arguments of type IOptions are passed to the HomeController constructor.
If we look at the HomeController constructor, we see the IOptions argument being passed, as shown in
Listing 5-2.

Listing 5-2.  HomeController Constructor

private IOptions<ApplicationSettings> _settings;
public HomeController(IOptions<ApplicationSettings> settings)
{
 _settings = settings;
}

Chapter 5 ■ Test-Driven Approach Using xUnit.net

93

■■ Note  Refer to “Setting Up the Application Configuration” in Chapter 2. We are using ASP.NET Core’s
dependency injection to inject the appsettings.json configuration via the IOptions pattern.

We have a lot of possible resolutions for this issue, including the following: -

•	 Read the actual appsettings.json configuration file from the web project and pass
IOptions<ApplicationSettings> to the HomeController instance.

•	 Create mock data for IOptions<ApplicationSettings> and pass it to the
HomeController instance.

•	 Refactor the HomeController code so that IOptions<ApplicationSettings> is not
a constructor injection but instead uses property injection. In unit tests, resolve
IOptions<ApplicationSettings> with the right sample data and assign it to the
property.

As we’ve discussed in this chapter, unit tests should be independent of the infrastructure and should
have minimum dependency on the file system. So we can rule out the first option. Also, constructor injection
is a well-known practice for resolving dependencies, which rules out the third option.

Mocking the dependencies will ease up both infrastructure dependencies and forceful refactoring
of application code. To create mocks in .NET Core, we use MOQ, a popular mocking framework for .NET
applications. Install the MOQ NuGet package on the ASC.Tests project, as shown in Figure 5-7.

Figure 5-7.  Installing the MOQ framework on the ASC.Tests project

Once installed, the MOQ API can be leveraged by importing the MOQ namespace. We need to
import Microsoft.Extensions.Options and ASC.Web.Configuration to use the IOptions<> and
ApplicationSettings classes.

In the constructor, we create an instance of Mock<IOptions<>> and set up the mock to return a new
instance of ApplicationSettings. Then in the unit test, we pass the mock object to the HomeController
instance, as shown in Listing 5-3.

Listing 5-3.  Using MOQ to Resolve the IOptions<> Dependency

xxusing System;
using ASC.Web.Controllers;
using Xunit;
using Moq;
using Microsoft.Extensions.Options;
using ASC.Web.Configuration;

http://dx.doi.org/10.1007/978-1-4842-3270-5_2

Chapter 5 ■ Test-Driven Approach Using xUnit.net

94

namespace ASC.Tests
{
 public class HomeControllerTests
 {
 private readonly Mock<IOptions<ApplicationSettings>> optionsMock;
 public HomeControllerTests()
 {
 // Create an instance of Mock IOptions
 optionsMock = new Mock<IOptions<ApplicationSettings>>();
 // Set IOptions<> Values property to return ApplicationSettings object
 � optionsMock.Setup(ap => ap.Value).Returns(new ApplicationSettings {

ApplicationTitle = "ASC" });
 }

 [Fact]
 public void HomeController_Index_View_Test()
 {
 // Home controller instantiated with Mock IOptions<> object
 var controller = new HomeController(optionsMock.Object);
 }

 [Fact]
 public void HomeController_Index_NoModel_Test() { }
 [Fact]
 public void HomeController_Index_Validation_Test() { }
 }
}

To run our tests, we need to have the Microsoft.TestPlatform.TestHost and Microsoft.NET.Test.
Sdk NuGet packages.

Figure 5-8.  Installing the Microsoft.TestPlatform.TestHost NuGet package on the ASC.Tests project

Figure 5-9.  Installing the Microsoft.NET.Test.Sdk NuGet package on the ASC.Tests project

Chapter 5 ■ Test-Driven Approach Using xUnit.net

95

Figure 5-10.  Opening Test Explorer in Visual Studio

Open Visual Studio’s Test Explorer to discover all the unit tests. Then run all the tests, as shown in
Figures 5-10 and 5-11.

Figure 5-11.  Discovering and running all xUnit test cases from Test Explorer

Chapter 5 ■ Test-Driven Approach Using xUnit.net

96

To demonstrate a failed test result, expect a JsonResult instead of ViewResult and rerun the tests. The
test should fail, as shown Figure 5-12.

Figure 5-12.  Failed test assertion

Complete the other two pending tests, as shown in Listing 5-4.

Listing 5-4.  HomeController Tests

[Fact]
 public void HomeController_Index_NoModel_Test()
 {
 var controller = new HomeController(optionsMock.Object);
 // Assert Model for Null
 Assert.Null((controller.Index() as ViewResult).ViewData.Model);
 }

 [Fact]
 public void HomeController_Index_Validation_Test()
 {
 var controller = new HomeController(optionsMock.Object);
 // Assert ModelState Error Count to 0
 Assert.Equal(0, (controller.Index() as ViewResult).ViewData.ModelState.ErrorCount);
 }

Chapter 5 ■ Test-Driven Approach Using xUnit.net

97

Figure 5-13.  All tests have passed

We can also run the unit test cases from a command-line prompt. Open CMD, navigate to the test
project directory, and execute the dotnet test command, as shown in Figure 5-14.

Figure 5-14.  Executing xUnit test cases from the command prompt

Rerun the tests. All of them should pass, as shown in Figure 5-13.

Chapter 5 ■ Test-Driven Approach Using xUnit.net

98

Similarly, if there are any failed tests, they are also reported in CMD, as shown in Figure 5-15.

Figure 5-15.  Failed test cases display at the command prompt

■■ Note  We have written only a few unit test cases to demonstrate how to get started with xUnit. It is always
advisable to write multiple unit test cases to cover all functionality. The recommended process includes the
following steps:

1.	 Complete functional analysis of the screen or component that has to be developed.

2.	� Write functional test-case documents that outline all the scenarios that have to be
tested as part of development completion sign-off.

3.	 Write xUnit test cases.

4.	� Develop application code and follow the iterative process as suggested in the
“Test-Driven Development Life Cycle” section.

5.	�A fter the screen or component development is completed, evaluate the functional
test-case document along with the xUnit test cases, and sign off on the
development completion report.

As mentioned in Chapter 1, different organizations might follow different approaches, but the core essence of
meeting the functional requirements and achieving code quality remains the same.

http://dx.doi.org/10.1007/978-1-4842-3270-5_1

Chapter 5 ■ Test-Driven Approach Using xUnit.net

99

Setting Up Session-State Middleware and Its
Unit-Testing Fake
So far in this chapter, you have seen how to write unit-test cases and use the MOQ framework to resolve
dependencies with mock data. The MOQ framework helps us achieve unit-test cases that are independent
of the infrastructure and typical system dependencies. But in some scenarios, setting the mock data might
be too cumbersome and might require a lot of code for all the dependent types. For example, if a controller
action is heavily dependent on session and cache providers, then creating all session and cache keys
with relevant mock data is time-consuming and hard to maintain. In these scenarios, we can create fake
implementations of target types, so that unit tests will use these fake implementations instead of actual
providers. In the Automobile Service Center application, we will use session state to demonstrate a fake
implementation.

Session state is the most common API used by almost all present-day web applications to hold and
retrieve user-specific information that is common to multiple pages and shared among different requests.
Previously, applications retrieved this user-specific information from their persistence medium (for
example, a database) every time a new request was made and a new page was visited by the same user. This
is not a scalable and recommended approach because of the unnecessary database hits required to fetch the
same information. To solve this problem, session state is used to hold and retrieve data between requests for
a given user.

In previous versions of ASP.NET, session management is straightforward by using HttpSessionState.
But in an ASP.NET Core MVC application, it is not straightforward. We have to include and configure
ISession middleware to the request-response pipeline. In ASP.NET Core, ISession exposes a new API to
support saving and retrieving objects from the session state.

Install the Microsoft.AspNetCore.Session NuGet package on the ASC.Web project, as shown in
Figure 5-16.

Figure 5-16.  Installing the Microsoft.AspNetCore.Session NuGet package on the ASC.Web project

Open Startup.cs and add the distributed memory cache and session middleware at the
ConfigureServices method, as shown in Listing 5-5. ISession needs IDistributedCache to store and
retrieve items to a persistent medium. AddDistributedMemoryCache is used to store items in the server
memory.

Chapter 5 ■ Test-Driven Approach Using xUnit.net

100

Listing 5-5.  Adding Session and Distributed Memory Cache Services in Startup Class

public void ConfigureServices(IServiceCollection services)
{
 // Add framework services.
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlite(Configuration.GetConnectionString("DefaultConnection")));

 services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

 services.AddOptions();
 services.Configure<ApplicationSettings>(Configuration.GetSection("AppSettings"));
 services.AddDistributedMemoryCache();
 services.AddSession();
 services.AddMvc();

 // Add application services.
 services.AddTransient<IEmailSender, AuthMessageSender>();
 services.AddTransient<ISmsSender, AuthMessageSender>();
}

Now configure the HTTP pipeline to use the session, as shown in Listing 5-6.

Listing 5-6.  Adding Session to HTTP Pipeline

�public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory
loggerFactory)
{
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseDatabaseErrorPage();
 app.UseBrowserLink();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 }
 app.UseSession();
 app.UseStaticFiles();

 app.UseIdentity();

 �// Add external authentication middleware below. To configure them, please see https://
go.microsoft.com/fwlink/?LinkID=532715

Chapter 5 ■ Test-Driven Approach Using xUnit.net

101

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
}

By default in an ASP.NET Core application, saving and retrieving complex objects is not straightforward
(the ISession API supports only Int32 and String types through SetInt32, SetString, GetInt32, and
GetString). We have to serialize the complex object and save it to the session; while retrieving the object
from the session, we have to deserialize it. We will be using JSON serialization (using the Newtonsoft.
Json NuGet package), which is light and easy to use. Create the SessionExtensions helper class in ASC.
Utilities to help the application code perform the aforesaid functionality.

To get the ISession API in the ASC.Utilities project, we need to add the Microsoft.AspNetCore.
Session NuGet package reference, as shown in Figure 5-17.

Figure 5-17.  Adding the Microsoft.AspNetCore.Session NuGet package to the ASC.Utilities project

After adding the session reference, update the SessionExtensions helper class, as shown in Listing 5-7.

Listing 5-7.  SessionExtensions Helper Class

using Microsoft.AspNetCore.Http;
using Newtonsoft.Json;
using System.Text;

namespace ASC.Utilities
{
 public static class SessionExtensions
 {
 public static void SetSession(this ISession session, string key, object value)
 {
 session.Set(key, Encoding.ASCII.GetBytes(JsonConvert.SerializeObject(value)));
 }

 public static T GetSession<T>(this ISession session, string key)
 {
 byte[] value;
 if (session.TryGetValue(key, out value))
 {

Chapter 5 ■ Test-Driven Approach Using xUnit.net

102

 return JsonConvert.DeserializeObject<T>(Encoding.ASCII.GetString(value));
 }
 else
 {
 return default(T);
 }
 }
 }
}

To use these extensions in the ASC.Web project, we need to add the ASC.Utilities project reference to
the ASC.Web project, as shown in Figure 5-18.

Figure 5-18.  Adding the ASC.Utilities project reference to the ASC.Web project

We will modify the Index action of HomeController to use the session and store an arbitrary key and
value for the demonstration, as shown in Listing 5-8.

Listing 5-8.  Session Usage in the Index Action of HomeController

public IActionResult Index()
{
 // Set Session
 HttpContext.Session.SetSession("Test", _settings.Value);
 // Get Session
 var settings = HttpContext.Session.GetSession<ApplicationSettings>("Test");
 // Usage of IOptions
 ViewBag.Title = _settings.Value.ApplicationTitle;
 return View();
}

Run the unit-test cases. All the tests will fail at the same line where we are setting the session variable, as
shown in Figure 5-19.

Chapter 5 ■ Test-Driven Approach Using xUnit.net

103

Tests are failing because HttpContext is null. Unit tests run the Index action of HomeController just
like any other normal C# method, so none of the default web features that are typically populated by the
web server (like IIS) are going to be available under test execution. As HttpContext itself is null, obviously
Session is not available.

To solve this problem, we will create a fake implementation of ISession in the unit-test project and
assign it to a mock HttpContext. Finally, we will associate the mock HttpContext to the controller instance
and execute the tests. Create a new folder in the ASC.Tests project named TestUtilities and create a class
called FakeSession that will implement the ISession interface, as shown in Listing 5-9.

Listing 5-9.  Fake Session Implementation in the ASC.Tests Project

public class FakeSession : ISession
{
 public bool IsAvailable => throw new NotImplementedException();
 public string Id => throw new NotImplementedException();
 public IEnumerable<string> Keys => throw new NotImplementedException();
 private Dictionary<string, byte[]> sessionFactory = new Dictionary<string, byte[]>();

 public void Clear()
 {
 throw new NotImplementedException();
 }

Figure 5-19.  Failing tests caused by session dependency

Chapter 5 ■ Test-Driven Approach Using xUnit.net

104

 public Task CommitAsync()
 {
 throw new NotImplementedException();
 }

 public Task LoadAsync()
 {
 throw new NotImplementedException();
 }

 public void Remove(string key)
 {
 throw new NotImplementedException();
 }

 public void Set(string key, byte[] value)
 {
 if (!sessionFactory.ContainsKey(key))
 sessionFactory.Add(key, value);
 else
 sessionFactory[key] = value;
 }

 public bool TryGetValue(string key, out byte[] value)
 {
 if (sessionFactory.ContainsKey(key) && sessionFactory[key] != null)
 {
 value = sessionFactory[key];
 return true;
 }
 else
 {
 value = null;
 return false;
 }
 }
}

Here we have created a simple Dictionary<string, byte []> that will serve our purpose of holding
session data. We have implemented two methods, Set and TryGetValue, which are primarily used to save
and retrieve values from the session, respectively (in our implementation, it is Dictionary). The next step
is to create a mock HttpContext and assign FakeSession to the mock HttpContext’s Session property, as
shown in Listing 5-10.

Listing 5-10.  Setting Fake Session to Mock HttpContext

private readonly Mock<IOptions<ApplicationSettings>> optionsMock;
private readonly Mock<HttpContext> mockHttpContext;
public HomeControllerTests()
{

Chapter 5 ■ Test-Driven Approach Using xUnit.net

105

 // Create an instance of Mock IOptions
 optionsMock = new Mock<IOptions<ApplicationSettings>>();
 mockHttpContext = new Mock<HttpContext>();
 // Set FakeSession to HttpContext Session.
 mockHttpContext.Setup(p => p.Session).Returns(new FakeSession());

 // Set IOptions<> Values property to return ApplicationSettings object
 �optionsMock.Setup(ap => ap.Value).Returns(new ApplicationSettings { Application

Title = "ASC" });
}

To use the mock HttpContext in unit tests, we have to set ControllerContext.HttpContext with the
mock HttpContext instance, as shown in Listing 5-11.

Listing 5-11.  Setting Mock HttpContext Instance to Controller Context

[Fact]
public void HomeController_Index_View_Test()
{
 // Home controller instantiated with Mock IOptions<> object
 var controller = new HomeController(optionsMock.Object);
 controller.ControllerContext.HttpContext = mockHttpContext.Object;

 Assert.IsType(typeof(ViewResult), controller.Index());
}

Similarly, assign it in other tests and run all the test cases. All tests should pass without any exceptions.
Now we will write a new test case to check that the session contains at least one value. To reuse the session
extensions from the ASC.Utilities project, add a reference of it in ASC.Tests.

Figure 5-20.  Adding a ASC.Utilities project reference to the ASC.Tests project

Chapter 5 ■ Test-Driven Approach Using xUnit.net

106

Write a new test case, as shown in Listing 5-12, to check the session value based on the key Test.

Listing 5-12.  Test Case to Test the Session Value

[Fact]
public void HomeController_Index_Session_Test()
{
 var controller = new HomeController(optionsMock.Object);
 controller.ControllerContext.HttpContext = mockHttpContext.Object;

 controller.Index();

 // Session value with key "Test" should not be null.
 Assert.NotNull(controller.HttpContext.Session.GetSession<ApplicationSettings>("Test"));
}

Execute all the tests. All will pass, as shown in Figure 5-21.

■■ Note  A code coverage report is one more important metric for achieving clean and stable code by
analyzing all the blocks of code that are covered as part of unit tests. Code coverage results are available in
Visual Studio 2017 Enterprise edition. We will integrate xUnit test cases as part of the continuous integration
and deployment workflow, which we will cover later in this book.

Figure 5-21.  Successful execution of xUnit test cases

Chapter 5 ■ Test-Driven Approach Using xUnit.net

107

Summary
You started this chapter by learning about unit testing and its significance in the software development
life cycle. Test-driven development is always recommended in order to achieve a high level of functional
correctness of the system. It is also useful in enhancing code quality and reusability. TDD promotes software
coding standards and ensures that the design is loosely coupled with dependencies.

You became familiar with best practices for writing unit tests; for example, unit tests should be modular
and independent, and should achieve high code coverage. You also learned about the TDD life cycle, which
consists of test-case generation, application code development, and code optimization phases.

You explored the xUnit.net open source framework, which provides an API for developing unit-test
cases. You started by writing simple xUnit test cases in the Automobile Service Center application and
extended the tests to support mocking dependencies through the MOQ framework. You extended the
Automobile Service Center application with session capabilities and created a fake implementation of
ISession to demonstrate the ease of using fakes in unit tests for frequently used web-server-related APIs.

In subsequent chapters, we will include unit tests as part of the build’s automation process, as a first
check to ensure build quality.

109© Rami Vemula 2017
R. Vemula, Real-Time Web Application Development, https://doi.org/10.1007/978-1-4842-3270-5_6

CHAPTER 6

Securing the Application with
ASP.NET Core Identity and the
OAuth 2.0 Protocol

Sophisticated advancements in technology have yielded great results for many industries through numerous
innovations and data analytics. The gradual rise of big-data analytics, machine learning, and the Internet of
Things (IoT) have transformed the traditional ways of data acquisition, transformation, and analysis, and
created new horizons in predictive analysis. The growing importance of data in making business decisions is
creating not only technical challenges but also severe security threats.

Data can be secured via methodologies and tools at various layers of the entire system, such as Network,
Server, Applications, Physical Storage, and Users. Information at these layers can be secured in various ways;
for example, firewalls can be used as a defense strategy at the Network layer, Secure Sockets Layer can be
leveraged at the Server layer, access control lists can be prepared and applied for users, authentication and
authorization concepts are implemented at the Application layer, and encryption and data masking can
make physical data devices more secure.

This chapter focuses on securing our Automobile Service Center application by implementing
authentication and authorization. Authentication is the process of identifying the individual who is trying to
access information. Authorization validates the authenticated user’s access to the secured information by
assigning access roles to users. Fortunately, ASP.NET Core has a very strong Identity system through which
functionalities such as registration, login, changing/resetting a password, and logout can be achieved easily.
ASP.NET Identity has built-in compatibility for OAuth integration with external providers including Gmail.
We use external providers in the Automobile Service Center for authenticating external customers.

The key advantages of ASP.NET Identity are as follows:

•	 Can be used across all ASP.NET frameworks such as MVC and Web Forms, and can
easily be consumed by applications through NuGet packages.

•	 Provides developers more control over the structure of user logins and
authentication information that is persisted.

•	 Has built-in support for integration with external identity providers including
Gmail, Facebook, Microsoft and Twitter.

•	 Can be easily extended to various data stores such as NoSQL databases.

https://doi.org/10.1007/978-1-4842-3270-5_6

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

110

•	 Has default support for role-provider and claims-based authentication.

•	 Offers compatibility with OWIN-based applications.

•	 Provides great support for unit testing.

In subsequent sections, you will learn key concepts of ASP.NET Identity along with its practical
implementation in the Automobile Service Center application.

Creating and Setting Up the Admin Account
As part of the Automobile Service Center application’s requirements, an Admin account should be created
and set up for the application. The Admin should have access to the entire site and should be able to manage
data throughout the entire application. The Admin should also create and manage service engineers. In this
section, you will learn how to get started with ASP.NET Core Identity, evaluate all the necessary artifacts, and
create an Admin account on the application’s first run.

The Automobile Service Center Visual Studio solution was created in Chapter 1 by enabling individual
user accounts for authentication. This option creates the default code that is required to perform
authentication and authorization against a SQL Server Database (SQL Server is the default option). For our
Automobile Service Center application, we need to tweak this implementation to use the same code base
against Microsoft Azure Table storage.

AccountController is an important component of the entire authentication code base and is created by
default by Visual Studio. It consists of the following APIs and methods:

•	 UserManager: This is part of the Microsoft.AspNetCore.Identity API provided by
Microsoft, and it provides the APIs for managing users in a persistence store.

•	 SigninManager: This is part of the Microsoft.AspNetCore.Identity API provided
by Microsoft, and it provides the APIs to manage sign-in operations for users from
different sources.

•	 IEmailSender, ISmsSender, and ILogger:

•	 IEmailSender is used by AccountController to send e-mail for account
confirmation and password resets.

•	 ISmsSender is used for two-factor authentication.

•	 ILogger is used to log messages and information about the user sign-in process.

•	 Action methods: AccountController has default controller actions that are used to
perform various authentication-related activities. Actions are used for the following:
Registration, Login, Logout, External Sources Login, Forgot Password, Reset
Password, Two-Factor Authentication, and Send and Verify Codes.

Other files created by Visual Studio include models to support AccountController. These models are
placed under the Models/AccountViewModels folder. The corresponding views for AccountController are
placed in the Views/Account folder.

http://dx.doi.org/10.1007/978-1-4842-3270-5_1

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

111

The default implementation of ASP.NET Identity works with SQL Server instances. Microsoft is still
working on providing Entity Framework Core support to the Azure Table storage provider; it is currently
listed in the EF Core roadmap as a high-priority item (see https://github.com/aspnet/EntityFramework/
wiki/Roadmap). For our Automobile Service Center implementation, we’ll use the Identityazuretable
NuGet package, which is developed by David Melendez at GitHub.

Identityazuretable abstracts Azure Table storage requests and responses made for authentication
from developers. We will configure ASP.NET Identity to use Identityazuretable’s Azure Table store at
Startup.cs (basically, instead of configuring SQL Server to Identity, we will configure Azure Table storage
through an Identityazuretable implementation for the Automobile Service Center application), so that
AccountController’s UserManager and SigninManager will work seamlessly without any change.

Open the ASC.Web project and install the ElCamino.AspNetCore.Identity.AzureTable NuGet package,
as shown in Figure 6-1.

Figure 6-1.  Installing the ElCamino.AspNetCore.Identity.AzureTable NuGet package to the ASC.Web project

Open the ApplicationUser class and remove the Identity.EntityFrameworkCore reference, shown in
Listing 6-1.

Listing 6-1.  Identity.EntityFrameworkCore reference

using Microsoft.AspNetCore.Identity.EntityFrameworkCore;

Add a reference to ElCamino.AspNetCore.Identity.AzureTable.Model, as shown in Listing 6-2. This
change is required to make sure that we are not using the IdentityUser instance that we got from Entity
Framework Core and at the same time to generate proper keys for Azure table entities.

Listing 6-2.  ElCamino.AspNetCore.Identity.AzureTable.Model reference

using ElCamino.AspNetCore.Identity.AzureTable.Model;

namespace ASC.Web.Models
{
 // Add profile data for application users by adding properties to the ApplicationUser class
 public class ApplicationUser : IdentityUser
 {
 }
}

Now change ApplicationDbContext to inherit from IdentityCloudContext, as shown in Listing 6-3.
This change is required to make sure that we use CloudTable and CloudTableClient instances.

https://github.com/aspnet/EntityFramework/wiki/Roadmap
https://github.com/aspnet/EntityFramework/wiki/Roadmap

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

112

Listing 6-3.  Inherit ApplicationDbContext from IdentityCloudContext

using ElCamino.AspNetCore.Identity.AzureTable;
using ElCamino.AspNetCore.Identity.AzureTable.Model;

namespace ASC.Web.Data
{
 public class ApplicationDbContext : IdentityCloudContext
 {
 public ApplicationDbContext() : base() { }
 public ApplicationDbContext(IdentityConfiguration config) : base(config) { }
 }
}

Let’s modify the Startup class to configure ASP.NET Core Identity to use the modified ApplicationDbContext
and Azure Storage. Remove the Microsoft.AspNetCore.Identity.EntityFrameworkCore reference, and
add the ElCamino.AspNetCore.Identity.AzureTable.Model reference, as shown in Listing 6-4.

Listing 6-4.  ElCamino.AspNetCore.Identity.AzureTable.Model reference

using ElCamino.AspNetCore.Identity.AzureTable.Model;

Change the ConfigureServices method of the Startup class, as shown in Listing 6-5. We configure Azure
Table stores for ASP.NET Core Identity, and the configuration is pulled from the appsettings.json file.

Listing 6-5.  Configure Azure Table stores for ASP.NET Core Identity

public void ConfigureServices(IServiceCollection services)
{
 // Add Elcamino Azure Table Identity services.
 services.AddIdentity<ApplicationUser, IdentityRole>((options) =>
 {
 options.User.RequireUniqueEmail = true;
 })
 .AddAzureTableStores<ApplicationDbContext>(new Func<IdentityConfiguration>(() =>
 {
 IdentityConfiguration idconfig = new IdentityConfiguration();
 �idconfig.TablePrefix = Configuration.GetSection("IdentityAzureTable:IdentityConfigur

ation:TablePrefix").Value;
 �idconfig.StorageConnectionString = Configuration.GetSection

("IdentityAzureTable:IdentityConfiguration:StorageConnectionString").Value;
 �idconfig.LocationMode = Configuration.GetSection("IdentityAzureTable:

IdentityConfiguration:LocationMode").Value;
 return idconfig;
 }))
 .AddDefaultTokenProviders()
 .CreateAzureTablesIfNotExists<ApplicationDbContext>();

 services.AddOptions();
 services.Configure<ApplicationSettings>(Configuration.GetSection("AppSettings"));

 services.AddSession();
 services.AddMvc();

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

113

 // Add application services.
 services.AddTransient<IEmailSender, AuthMessageSender>();
 services.AddTransient<ISmsSender, AuthMessageSender>();
}

Add the Azure Table storage ConnectionString settings to the appsettings.json file, as shown in
Listing 6-6.

Listing 6-6.  Azure Table storage ConnectionString settings

{
 "AppSettings": {
 "ApplicationTitle": "Automobile Service Center Application"
 },
 "ConnectionStrings": {
 "DefaultConnection": "UseDevelopmentStorage=true;"
 },
 "IdentityAzureTable": {
 "IdentityConfiguration": {
 "TablePrefix": "ASC",
 "StorageConnectionString": "UseDevelopmentStorage=true;",
 "LocationMode": "PrimaryOnly"
 }
 },
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Warning"
 }
 }
}

Now that we have configured the ASC.Web project to the Identityazuretable package, we will provision
the Admin user on the application run through custom middleware. Create a StorageDataSeed.cs class in the
Data folder of the ASC.Web project. Create an interface that will serve as a contract for data seeding to Azure
Storage, as shown in Listing 6-7. It takes UserManager, SigninManager, and IOptions<> to seed the data.

Listing 6-7.  IIdentitySeed Interface

public interface IIdentitySeed
{
 �Task Seed(UserManager<ApplicationUser> userManager, RoleManager<IdentityRole>

roleManager, IOptions<ApplicationSettings> options);
}

In the same class, implement the IIdentitySeed interface, as shown in Listing 6-8. The IdentitySeed
class will implement the IIdentitySeed interface. The Seed method first gets all the comma-separated roles
from the IOptions<> instance and splits the roles string by comma. It then iterates all the roles and make
sure the roles are created in Azure Storage (if they don’t already exist). Then it checks for an Admin user; if
an Admin user is not present, it will create the user with the specified configuration and attach that user to
the Admin role. Two claims—Email and IsActive—are attached to the user. Email is used to read the user’s
e-mail, and IsActive will be used in the future to deactivate a user in the system.

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

114

Listing 6-8.  IdentitySeed Class

public class IdentitySeed : IIdentitySeed
{
 �public async Task Seed(UserManager<ApplicationUser> userManager,

RoleManager<IdentityRole> roleManager, IOptions<ApplicationSettings> options)
 {
 // Get All comma-separated roles
 var roles = options.Value.Roles.Split(new char[] { ',' });

 // Create roles if they don’t exist
 foreach (var role in roles)
 {
 if (!await roleManager.RoleExistsAsync(role))
 {
 IdentityRole storageRole = new IdentityRole
 {
 Name = role
 };
 IdentityResult roleResult = await roleManager.CreateAsync(storageRole);
 }
 }

 // Create admin if he doesn’t exist
 var admin = await userManager.FindByEmailAsync(options.Value.AdminEmail);
 if (admin == null)
 {
 ApplicationUser user = new ApplicationUser
 {
 UserName = options.Value.AdminName,
 Email = options.Value.AdminEmail,
 EmailConfirmed = true
 };

 �IdentityResult result = await userManager.CreateAsync(user, options.Value.
AdminPassword);

 �await userManager.AddClaimAsync(user, new System.Security.Claims.Claim("http://
schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress", options.Value.
AdminEmail));

 �await userManager.AddClaimAsync(user, new System.Security.Claims.
Claim("IsActive", "True"));

 // Add Admin to Admin roles
 if (result.Succeeded)
 {
 await userManager.AddToRoleAsync(user, "Admin");
 }
 }
 }
}

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

115

As we are reading the Admin information from IOptions<>, make sure to specify the configuration in
the appsettings.json file, as shown in Listing 6-9.

Listing 6-9.  Admin User Configuration in appsettings.json file

"AppSettings": {
 "ApplicationTitle": "Automobile Service Center Application",
 "AdminEmail": "asc.superuser@gmail.com",
 "AdminName": "Admin",
 "AdminPassword": "P@ssw0rd",
 "Roles": "Admin,User"
},

■■ Note  The use of the Gmail e-mail address is for the sake of this demonstration. In the real world, we would
use organization accounts for registration and communication.

Update the ApplicationSettings class with new properties to hold the configuration related to Admin,
as shown in Listing 6-10.

Listing 6-10.  Updated ApplicationSettings class

public class ApplicationSettings
{
 public string ApplicationTitle { get; set; }
 public string AdminEmail { get; set; }
 public string AdminName { get; set; }
 public string AdminPassword { get; set; }
 public string Roles { get; set; }
}

Resolve the dependency of IIdentitySeed in the Configure method of the Startup class, as shown in
Listing 6-11.

Listing 6-11.  Resolving IIdentitySeed dependency in Startup class

// Add application services.
services.AddTransient<IEmailSender, AuthMessageSender>();
services.AddTransient<ISmsSender, AuthMessageSender>();
services.AddSingleton<IIdentitySeed, IdentitySeed>();

■■ Note  For more information on dependency injection in an ASP.NET Core application, refer to “Using
Dependency Injection in the ASP.NET Core Application” in Chapter 2.

Finally, call the IIdentitySeed’s Seed method in the Configure method, as shown in Listing 6-12.
We pass IIdentitySeed as a parameter to the Configure method and invoke the Seed method.

http://dx.doi.org/10.1007/978-1-4842-3270-5_2

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

116

Listing 6-12.  Invoke IIdentitySeed’s Seed method

public async void Configure(IApplicationBuilder app,
 IHostingEnvironment env,
 ILoggerFactory loggerFactory,
 IIdentitySeed storageSeed)
{
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseDatabaseErrorPage();
 app.UseBrowserLink();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 }
 app.UseSession();
 app.UseStaticFiles();
 app.UseIdentity();

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });

 �await storageSeed.Seed(app.ApplicationServices.GetService<UserManager
<ApplicationUser>>(),

 app.ApplicationServices.GetService<RoleManager<IdentityRole>>(),
 app.ApplicationServices.GetService<IOptions<ApplicationSettings>>());
}

■■ Note  IApplicationBuilder.ApplicationServices is the service container that will hold all the services
in the scope of the application. By using its GetService<T>, we can retrieve a specific service from the service
container based on type.

Run the application. You should see that Roles and Admin are created at the Azure Storage emulator as
specified in the appsettings.json file. These three tables should be created:

•	 ASCAspNetRoles: Stores all roles. Figure 6-2 shows this table in Cloud Explorer on
Visual Studio.

•	 ASCAspNetUsers: Stores all users and their claims and role associations. Figure 6-3
shows this table in Cloud Explorer on Visual Studio.

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

117

•	 ASCAspNetIndex: This table is used internally by Identityazuretable to query
users. When the user ID is unknown, the AspNetIndex table is queried first, either
by the user's e-mail (UserStore.FindByEmailAsync method) or by external login
information (UserStore.FindAsync method) to get the user's ID. A query by user ID
can then complete the user information. See Figure 6-4.

Figure 6-2.  ASCAspNetRoles Azure table

Figure 6-3.  ASCAspNetUsers Azure table

Figure 6-4.  ASCAspNetIndex Azure table

Creating Login and Logout Screens
Now that we have an Admin created in the system, he should be able to log in to the system and perform his
activities. In this section, we will create pages for login and logout functionalities. But before creating a login
page, we have to segregate our controllers into secure and anonymous controllers. Create two controllers,
BaseController and AnonymousController, in the Controllers folder. Decorate BaseController with the
Authorize attribute, as shown in Listing 6-13, so that any action inside this controller, or in any controllers
that are inherited from this BaseController, are completely secured. AnonymousController will not have
the Authorize attribute, as shown in Listing 6-14. Having these controllers will help us share common
functionalities across pages in future development.

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

118

Listing 6-13.  BaseController

BaseController:

using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc;

namespace ASC.Web.Controllers
{
 [Authorize]
 public class BaseController : Controller
 {
 }
}

Listing 6-14.  AnonymousController

AnonymousController:

using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc;

namespace ASC.Web.Controllers
{
 public class AnonymousController : Controller
 {
 }
}

We will inherit HomeController from AnonymousController because we do not want any of these pages
to be secured. Create a new controller named DashboardController that inherits from BaseController.
Move the Dashboard action to DashboardController, as shown in Listing 6-15.

Listing 6-15.  DashboardController

using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Options;
using ASC.Web.Configuration;

namespace ASC.Web.Controllers
{
 public class DashboardController : BaseController
 {
 private IOptions<ApplicationSettings> _settings;
 public DashboardController(IOptions<ApplicationSettings> settings)
 {
 _settings = settings;
 }

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

119

 public IActionResult Dashboard()
 {
 return View();
 }
 }
}

Because we moved the Dashboard action to the dashboard controller, we have to move Dashboard.
cshtml to the Dashboard folder under Views. Create a new folder named Dashboard under the Views folder
and then move Dashboard.cshtml.

HomeController is shown in Listing 6-16.

Listing 6-16.  Updated HomeController

using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Options;
using ASC.Web.Configuration;
using ASC.Utilities;

namespace ASC.Web.Controllers
{

 public class HomeController : AnonymousController
 {
 private IOptions<ApplicationSettings> _settings;
 public HomeController(IOptions<ApplicationSettings> settings)
 {
 _settings = settings;
 }

 public IActionResult Index()
 {
 // Set Session Test
 HttpContext.Session.SetSession("Test", _settings.Value);
 // Get Session Test
 var settings = HttpContext.Session.GetSession<ApplicationSettings>("Test");

 // Usage of IOptions
 ViewBag.Title = _settings.Value.ApplicationTitle;
 return View();
 }

 public IActionResult About()
 {
 ViewData["Message"] = "Your application description page.";
 return View();
 }

 public IActionResult Contact()
 {
 ViewData["Message"] = "Your contact page.";
 return View();
 }

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

120

 public IActionResult Error()
 {
 return View();
 }
 }
}

■■ Note A dd the following RenderSection code at the end of _Layout.cshtml and _SecureLayout.cshtml
to support the JQuery scripts section, to propagate the scripts section to the master layout.

@section Scripts{

 @RenderSection("Scripts", required: false)

}

Now we will design a Login page indicating which users can log in to the system. Whenever an anonymous
user tries to access any secure page in the application, that user will be redirected to this Login page. By default,
a LoginViewModel, login action, and login view comes with AccountController. LoginViewModel, shown in
Listing 6-17, is used to post the user-entered username and password to the POST action.

Listing 6-17.  LoginViewModel

public class LoginViewModel
{
 [Required]
 [EmailAddress]
 public string Email { get; set; }

 [Required]
 [DataType(DataType.Password)]
 public string Password { get; set; }

 [Display(Name = "Remember me?")]
 public bool RememberMe { get; set; }
}

The GET action of the Login view is shown in Listing 6-18; this will sign out the user (if the user is
already logged in) and return the Login view.

Listing 6-18.  GET action of the Login view

[HttpGet]
[AllowAnonymous]
public async Task<IActionResult> Login(string returnUrl = null)
{
 // Clear the existing external cookie to ensure a clean login process
 await HttpContext.Authentication.SignOutAsync(_externalCookieScheme);

 ViewData["ReturnUrl"] = returnUrl;
 return View();
}

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

121

We will use the same action and view for the Automobile Service Center application, but change the
look and feel of the page. Open Login.cshtml under the /Views/Account folder and change the HTML as
shown in Listing 6-19.

We have used Materialize CSS to design the Login view. This view takes LoginViewModel from the GET
action and uses asp-for on input elements to get strongly typed views. The traditional HTML form tag is
used to post the information back to the POST action. All the validations on the page are performed on the
client side by using JQuery’s unobtrusive validation. Error messages are displayed using ASP.NET Core’s
asp-validation-summary attribute. Apart from displaying validation error messages in the summary,
validation-failed controls will be highlighted in red.

■■ Note A Forgot Password link has been placed in the Login view to help users reset their passwords. This
Forgot Password functionality will be explained in the next section.

Listing 6-19.  Login View

@using System.Collections.Generic
@using Microsoft.AspNetCore.Http
@using Microsoft.AspNetCore.Http.Authentication
@model LoginViewModel
@inject SignInManager<ApplicationUser> SignInManager
@{
 ViewData["Title"] = "Log in";
}
<div class="container">
 <div class="row">
 <div class="col s12 m6 offset-m3">
 <�form asp-controller="Account" asp-action="Login" asp-route-returnurl="@

ViewData["ReturnUrl"]" method="post">
 <div asp-validation-summary="All" class="text-danger"></div>

 <div class="row">
 <div class="input-field col s12">
 <input asp-for="Email" type="email" class="validate">
 <�label asp-for="Email" data-error="wrong" data-success="right">

Email</label>
 </div>
 </div>

 <div class="row">
 <div class="input-field col s12">
 <input asp-for="Password" type="password" class="validate">
 <�label asp-for="Password" data-error="wrong" data-success="right">Password

</label>
 </div>
 </div>

 <div class="row padding-left-10px">
 <p>
 <input asp-for="RememberMe" type="checkbox" class="filled-in" />

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

122

 <label asp-for="RememberMe">@Html.DisplayNameFor(m => m.RememberMe)</label>
 </p>
 </div>

 <div class="row center">
 <button class="btn waves-effect waves-light" type="submit">
 Submit
 <i class="material-icons right">send</i>
 </button>
 </div>

 <div class="row center">
 <a asp-action="ForgotPassword">Forgot your password?
 </div>
 </form>
 </div>
 </div>
</div>

Add the styles to style.css, as shown in Listing 6-20, to support validation styles and the Login page.
These styles will make sure all the validation-failed controls will be highlighted in red.

Listing 6-20.  Extended Style.css

.padding-left-10px{
 padding-left: 10px;
}

.input-field .input-validation-error {
 border-bottom: 1px solid #FF4081;
 box-shadow: 0 1px 0 0 #FF4081;
}

.input-field .valid {
 border-bottom: 1px solid #00E676;
 box-shadow: 0 1px 0 0 #00E676;
}

.validation-summary-errors {
 color: #FF4081;
}

We also need to include JQuery’s Validate and Unobtrusive scripts to perform client-side validations on
a page. Make sure _MasterLayout.cshtml has JavaScript references, as shown in Listing 6-21.

Listing 6-21.  JQuery’s Validate and Unobtrusive scripts references

<script src="~/lib/jquery/dist/jquery.min.js"></script>
<script src="~/lib/jquery-validation/dist/jquery.validate.js"></script>
<script src="~/lib/jquery-validation-unobtrusive/jquery.validate.unobtrusive.js"></script>
<script src="~/js/materialize.min.js"></script>
<script src="~/js/init.js"></script>

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

123

■■ Note  To provide easier navigation to the Login page, modify _Layout.cshtml to point the Login link at the
top of the navigation bar to the Login page:

Login

For easier navigation to the home page from anywhere in the application, update the URL of the Logo anchor tag:

Run the application and navigate to the Login page. The page should be displayed as in Figure 6-5.

Figure 6-5.  Login page

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

124

Validation error messages will be displayed, as shown in Figure 6-6.

Figure 6-6.  Validation error messages in the Login view

The POST action of Login is also provided by default when we create the application. We need to make
slight modifications to support proper redirection to the dashboard, as shown in Listing 6-22.

Listing 6-22.  POST action of Login View

[HttpPost]
[AllowAnonymous]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Login(LoginViewModel model, string returnUrl = null)
{
 ViewData["ReturnUrl"] = returnUrl;
 if (ModelState.IsValid)
 {
 // This doesn't count login failures toward account lockout
 �// To enable password failures to trigger account lockout, set lockoutOnFailure: true
 var user = await _userManager.FindByEmailAsync(model.Email);
 if(user == null)
 {
 ModelState.AddModelError(string.Empty, "Invalid login attempt.");
 return View(model);
 }

 �var isActive = Boolean.Parse(user.Claims.SingleOrDefault(p =>
p.ClaimType == "IsActive").ClaimValue);

 if (!isActive)
 {
 ModelState.AddModelError(string.Empty, "Account has been locked.");
 return View(model);
 }

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

125

 �var result = await _signInManager.PasswordSignInAsync(user.UserName, model.Password,
model.RememberMe, lockoutOnFailure: false);

 if (result.Succeeded)
 {
 _logger.LogInformation(1, "User logged in.");
 if(!String.IsNullOrWhiteSpace(returnUrl))
 return RedirectToLocal(returnUrl);
 else
 return RedirectToAction("Dashboard", "Dashboard");
 }
 if (result.RequiresTwoFactor)
 {
 �return RedirectToAction(nameof(SendCode), new { ReturnUrl = returnUrl,

RememberMe = model.RememberMe });
 }
 if (result.IsLockedOut)
 {
 _logger.LogWarning(2, "User account locked out.");
 return View("Lockout");
 }
 else
 {
 ModelState.AddModelError(string.Empty, "Invalid login attempt.");
 return View(model);
 }
 }

The POST action first validates the model. Then it checks whether there is a user in the system with
the specified e-mail, and it also checks the IsActive claim for true or false. On a valid model state,
SigninManager will validate the e-mail and password passed by the user against Azure Table storage. Upon
a successful result, the user will be redirected to either the dashboard or to the requested page. The POST
action also checks whether the logged-in user required two-factor authentication; if required, it will redirect
to an action that will send the code to the user and initiate the two-factor authentication workflow. The
POST action also validates whether the user account has been locked out because of consecutive wrong
authentication information. For any other reason if the login fails, this action will return an Invalid Login
attempt message.

If we enter any details incorrectly in either the Email or Password fields, we will get an error message, as
shown in Figure 6-7.

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

126

■■ Note  We will use the IsActive claim flag for the ApplicationUser class to check whether the user is
active in the system. Going forward in this book, we will implement the service engineer’s login, and Admin can
manage service engineers by activating and deactivating them.

The Remember Me field can be used to indicate whether the sign-in cookie should persist after the browser is
closed, so that the user can get back to the secure pages in a new browser window.

Upon passing correct credentials, the user will be logged in and redirected to the dashboard, as shown
in Figure 6-8.

Figure 6-7.  Invalid Login Attempt

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

127

■■ Note  The Dashboard page displays static content as of now. In subsequent sections, we will make that
screen dynamically load data based on the logged-in user.

To implement logout functionality, we have to make changes to _SecureLayout.cshtml. Give an ID to
the Logout anchor tag, as shown in Listing 6-23.

Listing 6-23.  Logout anchor tag

<i class="material-icons">
exit_to_app</i>Logout

■■ Note  All secure operations such as Logout, Reset Password, Forgot Password, and Edit Profile. should
be POST operations. If these operations are based on GET requests, any malicious user or site can send these
requests on an authenticated user’s behalf, so always make POST requests for greater security.

Place a hidden form tag with asp-controller pointing to Account, and asp-action pointing to
Logout in _SecureLayout.cshtml. We will trigger the submit event of this form tag upon a click of the
Logout anchor tag. Handle the click event of the Logout anchor tag in JQuery in _SecureLayout.cshtml,
as shown in Listing 6-24.

Figure 6-8.  Successful Login redirection to Dashboard view

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

128

Listing 6-24.  JQuery POST event on Logout

<form class="hide" method="post" id="logout_form" asp-controller="Account" asp-action="Logout">
 <input type="submit" value="Logout" />
</form>
@section Scripts{
 <script type="text/javascript">
 $(function () {
 $('#ancrLogout').click(function () {
 $('#logout_form').submit();
 });
 });
 </script>
}

The POST action of the Logout functionality is located in the account controller, as shown in
Listing 6-25. It uses SigninManager and calls its SignOutAsync method to log out and redirect the user to
the Index action of the home controller.

Listing 6-25.  POST action of the Logout

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Logout()
{
 await _signInManager.SignOutAsync();
 _logger.LogInformation(4, "User logged out.");
 return RedirectToAction(nameof(HomeController.Index), "Home");
}

■■ Note  There is one problem with the Logout functionality. When the user logs out and clicks the browser’s
Back button, the cached version of the web page will be displayed. Even though the user cannot perform any
action on the web page, still displaying the cached version might impact security. Many solutions are available
to solve this problem—for example, setting the cache expire headers to make sure the cached version of the
web page is invalidated by the browser. I took a different approach to resolve this problem, by using JQuery to
prevent the user from navigating to a previous page by clicking the browser’s Back button. This feature applies
to the entire Automobile Service Center application.

Open the init.js file and change the code as shown in Listing 6-26. We will manipulate window.history to
always go forward instead of going back to the previous pages.

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

129

Listing 6-26.  JQuery code to prevent navigation on browser back button click

(function ($) {
 $(function () {

 $('.button-collapse').sideNav();
 $('.parallax').parallax();

 //Prevent browser back and forward buttons.
 if (window.history && window.history.pushState) {
 window.history.pushState('forward', '', window.location.href);

 $(window).on('popstate', function (e) {
 window.history.pushState('forward', '', window.location.href);
 e.preventDefault();
 });
 }
 //Prevent right-click on entire window
 $(document).ready(function () {
 $(window).on("contextmenu", function () {
 return false;
 });
 });

 }); // end of document ready
})(jQuery); // end of jQuery name space

Retrieving User Information from ClaimsPrincipal
In the preceding section, we built all the pages required for authentication. In this section, we will retrieve
logged-in user information from ClaimsPrincipal. This information can be fetched from HttpContext.
User, which is of type ClaimsPrincipal. This property will be available all the time, until the user signs out
from the system. The only problem with this approach is that whichever component uses the logged-in
user information will be dependent on the HttpContext API from the Microsoft.AspNetCore.Mvc package.
This unnecessary reference of the MVC package in all components can be addressed by using a simple
class and a utility method. Create a class named ClaimsPrincipalExtensions in the ASC.Utilities project,
as shown in Listing 6-27.

Listing 6-27.  CurrentUser class

public class CurrentUser
 {
 public string Name { get; set; }
 public string Email { get; set; }
 public bool IsActive { get; set; }
 public string[] Roles { get; set; }
 }

Create an extension method for ClaimsPrincipal, as shown in Listing 6-28. It reads all the claims and
returns the CurrentUser object.

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

130

Listing 6-28.  ClaimsPrincipalExtensions class

public static class ClaimsPrincipalExtensions
{
 public static CurrentUser GetCurrentUserDetails(this ClaimsPrincipal principal)
 {
 if (!principal.Claims.Any())
 return null;

 return new CurrentUser
 {
 �Name = principal.Claims.Where(c => c.Type == ClaimTypes.Name).Select(c =>

c.Value).SingleOrDefault(),
 �Email = principal.Claims.Where(c => c.Type == ClaimTypes.Email).Select(c =>

c.Value).SingleOrDefault(),
 �Roles = principal.Claims.Where(c => c.Type == ClaimTypes.Role).Select(c =>

c.Value).ToArray(),
 �IsActive = Boolean.Parse(principal.Claims.Where(c => c.Type == "IsActive").

Select(c => c.Value).SingleOrDefault()),
 };
 }
}

We can use this extension in the ASC.Web project and convert ClaimsPrincipal to the CurrentUser
object, thereby passing the CurrentUser object to any method that requires it. We are going to use this
extension method in _SecureLayout.cshtml to display the logged-in user details.

To access HttpContext in views, we need to resolve the HttpContextAccessor dependency in the
ConfigureServices method of the Startup class, as shown in Listing 6-29.

Listing 6-29.  Resolve HttpContextAccessor dependency

services.AddSingleton<IHttpContextAccessor, HttpContextAccessor>();

We inject IHttpContextAccessor to _SecureLayout.cshtml, as shown in Listing 6-30. The
GetCurrentUserDetails extension method is used to get details of the current user.

Listing 6-30.  Retrieving User Details in Secure Layout

@using Microsoft.AspNetCore.Http
@using ASC.Utilities
@inject IHttpContextAccessor UserHttpContext

@{
 Layout = "_MasterLayout";
 var currentUser = UserHttpContext.HttpContext.User.GetCurrentUserDetails();
}

Change the HTML of _SecureLayout.cshtml to display user details, as shown in Listing 6-31.

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

131

Listing 6-31.  Display user details

<div class="userView">
 <div class="background blue-grey lighten-1"></div>

 @currentUser.Name
 @currentUser.Email
</div>

■■ Note W e will display a generic logged-in user avatar. This functionality can be extended to display user photo.

Run the application and log in as Admin. The Admin details are displayed, as shown in Figure 6-9.

Figure 6-9.  Displaying logged-in Admin user details

Resetting a Password Through MailKit E-mail Library
Integration
In this section, we will implement the Reset Password page through which a logged-in user can reset
his/her password. Whenever the user wants to reset password, an e-mail with a unique user-specific code
embedded in a link will be sent to the user's e-mail. Upon clicking the link, the user will be able to reset
password at the Automobile Service Center application. ASP.NET Core’s account controller already has
default code that is required to implement the Reset Password functionality, and we will slightly modify that
code to meet the Automobile Service Center application’s requirements. We will start by adding the Reset
Password menu item in the left navigation bar for the logged-in user in _SecureLayout.cshtml. Add the
Reset Password link under the Settings menu, as shown in Listing 6-32.

Listing 6-32.  Reset Password Link in Left Menu

<i class="material-icons">perm_data_setting
</i>Service Requests
 <�li><i class="material-icons">message</i>

Service Notifications
 <�li><i class="material-icons">inbox</i>

Promotions

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

132

 <ul class="collapsible collapsible-accordion">

 <�a class="collapsible-header">Settings<i class="material-

icons">settings</i>
 <div class="collapsible-body">

 <�li>

Reset Password<i class="material-icons">lock_outline</i></
li>

 </div>

 <i class="material-
icons">exit_to_app</i>Logout

■■ Note  For a demonstration of e-mail capabilities, we will use Gmail’s SMTP server to send e-mail. I created
a sample e-mail address, autoservicectrnew@gmail. This account will be used to get authenticated at Gmail’s
SMTP server and to send e-mail from the application. We will use the MailKit client library and its rich set of C#
APIs to send e-mail.

To use Gmail’s SMTP server, we need to allow access to less-secure apps at the time of development. Navigate
to https://myaccount.google.com/lesssecureapps?pli=1 and turn on the Allow Less Secure Apps option.

Figure 6-10.  Allowing less-secure applications at the Google account

https://myaccount.google.com/lesssecureapps?pli=1

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

133

Install MailKit to the ASC.Web project, as shown in Figure 6-11.

Figure 6-11.  Installing the MailKit NuGet package to the ASC.Web project

Update the Appsettings.json file to hold the SMTP Server and Port configuration, as shown in
Listing 6-33.

Listing 6-33.  SMTP Configuration in appsettings.json file

"AppSettings": {
 "ApplicationTitle": "Automobile Service Center Application",
 "AdminEmail": "ascadmin@mailinator.com",
 "AdminName": "Admin",
 "AdminPassword": "P@ssw0rd",
 "Roles": "Admin,User",

 "SMTPServer": "smtp.gmail.com",
 "SMTPPort": "465",
 "SMTPAccount": "autoservicenternew@gmail.com",
 "SMTPPassword": "************"
},

Add SMTP configuration properties to the ApplicationSettings class, as shown in Listing 6-34, so that
SMTP configuration will also be available through the site, just like other configuration settings.

Listing 6-34.  Updated ApplicationSettings class with SMTP configuration

public class ApplicationSettings
{
 public string ApplicationTitle { get; set; }
 public string AdminEmail { get; set; }
 public string AdminName { get; set; }
 public string AdminPassword { get; set; }
 public string Roles { get; set; }

 public string SMTPServer { get; set; }
 public int SMTPPort { get; set; }
 public string SMTPAccount { get; set; }
 public string SMTPPassword { get; set; }
}

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

134

An ASP.NET Core application by default comes with a template to send e-mail and texts for Identity
operations. AuthMessageSender is the class, located in the Service folder under the ASC.Web project.
Listing 6-35 shows the default code.

Listing 6-35.  AuthMessageSender class

public class AuthMessageSender : IEmailSender, ISmsSender
{
 public Task SendEmailAsync(string email, string subject, string message)
 {
 // Plug in your email service here to send an email.
 return Task.FromResult(0);
 }

 public Task SendSmsAsync(string number, string message)
 {
 // Plug in your SMS service here to send a text message.
 return Task.FromResult(0);
 }
}

We will modify the SendEmailAsync method to use Gmail’s SMTP server and send e-mail. Listing 6-36
shows the updated code. The SendEmailAsync method first creates a MimeMessage with the logged-in
user’s e-mail. Using MailKit’s SmtpClient, a connection is opened to the specified SMTP server and gets
authenticated with the e-mail and password provided in the appsettings configuration. SmtpClient sends
the message and then disconnects form the SMTP server.

Listing 6-36.  Updated AuthMessageSender class with MailKit API

using ASC.Web.Configuration;
using MailKit.Net.Smtp;
using Microsoft.Extensions.Options;
using MimeKit;
using System.Threading.Tasks;

namespace ASC.Web.Services
{
 public class AuthMessageSender : IEmailSender, ISmsSender
 {
 private IOptions<ApplicationSettings> _settings;
 public AuthMessageSender(IOptions<ApplicationSettings> settings)
 {
 _settings = settings;
 }

 public async Task SendEmailAsync(string email, string subject, string message)
 {
 var emailMessage = new MimeMessage();
 emailMessage.From.Add(new MailboxAddress(_settings.Value.SMTPAccount));
 emailMessage.To.Add(new MailboxAddress(email));
 emailMessage.Subject = subject;
 emailMessage.Body = new TextPart("plain") { Text = message };

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

135

 using (var client = new SmtpClient())
 {
 �await client.ConnectAsync(_settings.Value.SMTPServer, _settings.Value.

SMTPPort, false);
 �await client.AuthenticateAsync(_settings.Value.SMTPAccount, _settings.Value.

SMTPPassword);
 await client.SendAsync(emailMessage);
 await client.DisconnectAsync(true);

 }
 }

 public Task SendSmsAsync(string number, string message)
 {
 // Plug in your SMS service here to send a text message.
 return Task.FromResult(0);
 }
 }
}

Now we will modify the account controller’s ResetPassword action, which will call the
AuthMessageSender’s SendEmailAsync method and send an e-mail to the user with the Reset Password
link, as shown in Listing 6-37. The Reset Password action will find the logged-in user based on the e-mail
from HttpContext.User and generates a unique code that serves as a password-reset token. This token is
appended to the URL generated from the account controller and Reset Password action. Finally, an e-mail is
sent to the user, and a confirmation view is displayed to the user.

Listing 6-37.  InitiateResetPassword action

[HttpPost]
[AllowAnonymous]
public async Task<IActionResult> InitiateResetPassword()
{
 // Find User
 var userEmail = HttpContext.User.GetCurrentUserDetails().Email;
 var user = await _userManager.FindByEmailAsync(userEmail);

 // Generate User code
 var code = await _userManager.GeneratePasswordResetTokenAsync(user);
 �var callbackUrl = Url.Action(nameof(ResetPassword), "Account", new { userId = user.Id,

code = code }, protocol: HttpContext.Request.Scheme);

 // Send Email
 await _emailSender.SendEmailAsync(userEmail, "Reset Password",
 $"Please reset your password by clicking here: link");
 return View("ResetPasswordEmailConfirmation");
}

The Reset Password action is triggered by the Reset Password anchor click of the left navigation menu.
Because this is a POST action, we need to include a hidden form in _SecureLayout.cshtml, as shown in
Listing 6-38. This form is posted to the account controller by using a JQuery click event (similar to the
Logout event).

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

136

Listing 6-38.  JQuery event of Reset Password Link

<form class="hide" method="post" id="resetPassword_form" asp-controller="Account"
asp-action="InitiateResetPassword">
</form>

@section Scripts{
@RenderSection("Scripts", required: false)
 <script type="text/javascript">
 $(function () {
 $('#ancrLogout').click(function () {
 $('#logout_form').submit();
 });

 $('#ancrResetPassword').click(function () {
 $('#resetPassword_form').submit();
 });
 });
 </script>
}

The Reset Password Confirmation view is a simple view that displays the message shown in Listing 6-39.

■■ Note  Add the following styles, which are used by some of the Reset Password views:

.margin-top-50px{

 margin-top: 50px;

}

.margin-bottom-50px{

 margin-bottom: 50px;

}

Listing 6-39.  Reset Password Confirmation view

@{
 ViewData["Title"] = "Reset Password Confirmation";
 Layout = "_Layout";
}

<div class="row">
 <div class="col s12">
 <div class="card-panel orange lighten-1 margin-bottom-50px margin-top-50px">

 Please check your email to reset your password.

 </div>
 </div>
</div>

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

137

After the preceding action, the user receives an e-mail and clicks the unique URL that is included in the
e-mail (see Figure 6-13).

Figure 6-12.  Reset Password confirmation page

Figure 6-13.  E-mail received by the user about the Reset Password action

The user will be redirected to the Reset Password action of the account controller, which will present a
view through which the user can change her password. The Reset Password action is shown in Listing 6-40.

Listing 6-40.  ResetPassword action

[HttpGet]
[AllowAnonymous]
public IActionResult ResetPassword(string code = null)
{
 return code == null ? View("Error") : View();
}

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

138

To collect the e-mail and new password, we define the ResetPasswordViewModel in the
AccountViewModels folder, as shown in Listing 6-41.

Listing 6-41.  ResetPasswordViewModel class

public class ResetPasswordViewModel
{
 [Required]
 [EmailAddress]
 public string Email { get; set; }

 [Required]
 [�StringLength(100, ErrorMessage = "The {0} must be at least {2} and at max {1}

characters long.", MinimumLength = 6)]
 [DataType(DataType.Password)]
 public string Password { get; set; }

 [DataType(DataType.Password)]
 [Display(Name = "Confirm password")]
 [Compare("Password", ErrorMessage = "The password and confirmation password do not match.")]
 public string ConfirmPassword { get; set; }

 public string Code { get; set; }
}

The Reset Password view cshtml is as shown in Listing 6-42. The Reset Password view collects the user’s
e-mail and new password information and POSTs the information to the Reset Password POST action of the
account controller.

At the time of execution, this view looks like in Figure 6-14.

Listing 6-42.  Reset Password view

@model ResetPasswordViewModel
@{
 ViewData["Title"] = "Reset password";
 Layout = "_Layout";
}

<div class="container">
 <div class="row">
 <div class="col s12 m6 offset-m3">
 <�form asp-controller="Account" asp-action="ResetPassword" method="post"

class="form-horizontal">
 <div asp-validation-summary="All" class="text-danger"></div>
 <input asp-for="Code" type="hidden" />
 <div class="row">
 <div class="input-field col s12">
 <input asp-for="Email" type="email" class="validate">
 <�label asp-for="Email" data-error="wrong" data-success="right">Email

</label>
 </div>
 </div>

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

139

 <div class="row">
 <div class="input-field col s12">
 <input asp-for="Password" type="password" class="validate">
 <�label asp-for="Password" data-error="wrong" data-success="right">

Password</label>
 </div>
 </div>

 <div class="row">
 <div class="input-field col s12">
 <input asp-for="ConfirmPassword" type="password" class="validate">
 <�label asp-for="ConfirmPassword" data-error="wrong" data-success="right">

Confirm Password</label>
 </div>
 </div>

 <div class="row center">
 <button class="btn waves-effect waves-light" type="submit">
 Submit
 <i class="material-icons right">Reset</i>
 </button>
 </div>

 <div class="row center">
 <a asp-action="ForgotPassword">Forgot your password?
 </div>
 </form>
 </div>
 </div>
</div>

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

140

Validation messages in the Reset Password view are displayed, as shown in Figure 6-15.

Figure 6-14.  Reset Password view

Figure 6-15.  Validation messages in the Reset Password view

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

141

The POST action of ResetPassword is as shown in Listing 6-43. In this action, we first query the user
based on the e-mail address provided in the form. If the user is found, we will reset the password by calling
UserManager’s ResetPasswordAsync method. After the password has been reset, we will forcefully sign out
and redirect the user to the Reset Password Confirmation action.

Listing 6-43.  POST action of Reset Password

[HttpPost]
[AllowAnonymous]
[ValidateAntiForgeryToken]
public async Task<IActionResult> ResetPassword(ResetPasswordViewModel model)
{
 if (!ModelState.IsValid)
 {
 return View(model);
 }
 var user = await _userManager.FindByEmailAsync(model.Email);
 if (user == null)
 {
 // Don't reveal that the user does not exist
 �return RedirectToAction(nameof(AccountController.ResetPasswordConfirmation),

"Account");
 }
 var result = await _userManager.ResetPasswordAsync(user, model.Code, model.Password);
 if (result.Succeeded)
 {
 if(HttpContext.User.Identity.IsAuthenticated)
 await _signInManager.SignOutAsync();

 �return RedirectToAction(nameof(AccountController.ResetPasswordConfirmation),
"Account");

 }
 AddErrors(result);
 return View();
}

■■ Note  Forcibly logging out the user after a successful password entry ensures that any trace of the old
password is removed.

The Reset Password Confirmation action is shown in Listing 6-44.

Listing 6-44.  Reset Passwork Confirmation action

[HttpGet]
[AllowAnonymous]
public IActionResult ResetPasswordConfirmation()
{
 return View();
}

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

142

The Reset Password Confirmation view is shown in Listing 6-45; this view will present the Login link to
the user. Upon clicking the link, the user will be redirected to the Login page, and can use the new password
and login to the system, as shown in Figure 6-16.

Figure 6-16.  Reset Password confirmation view

Listing 6-45.  Reset Password Confirmation view

@{
 ViewData["Title"] = "Reset password confirmation";
}

<div class="row">
 <div class="col s12">
 <div class="card-panel orange lighten-1 margin-bottom-50px margin-top-50px">

 �Your password has been reset. Please <a asp-controller="Account"

asp-action="Login">Click here to log in.

 </div>
 </div>
</div>

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

143

■■ Note  All the Reset Password action methods of the account controller are made anonymous endpoints to
achieve code reusability for supporting other functionalities such as Forgot Password.

Developing a Forgot Password Option
In this section, we will develop the Forgot Password functionality for the Automobile Service Center
application. We will reuse most of the Reset Password functionality code and artifacts. The main
difference between the Forgot and Reset Password pages is that Reset Password is used by users who are
already authenticated, whereas Forgot Password will be used by users who have an account but forgot
their password. We already placed the Forgot Password link on the Login page; the link points to the
ForgotPassword action of the account controller. The ForgotPassword action is shown in Listing 6-46.

Listing 6-46.  ForgotPassword action

[HttpGet]
 [AllowAnonymous]
 public IActionResult ForgotPassword()
 {
 return View();
 }

■■ Note  The ForgotPassword action is a GET call compared with the ResetPassword action, because Forgot
Password is available for all anonymous users.

The Forgot Password cshtml is shown in Listing 6-47. It will collect the user’s e-mail address and send
that information in a POST operation to the Forgot Password POST action of the account controller.

Listing 6-47.  Forgot Password view

@model ForgotPasswordViewModel
@{
 ViewData["Title"] = "Forgot your password?";
}
<div class="container">
 <div class="row">
 <div class="col s12 m6 offset-m3">
 <�form asp-controller="Account" asp-action="ForgotPassword" method="post"

class="form-horizontal">
 <div asp-validation-summary="All" class="text-danger"></div>
 <div class="row">
 <div class="input-field col s12">
 <input asp-for="Email" type="email" class="validate">
 <�label asp-for="Email" data-error="wrong" data-success="right">

Email</label>
 </div>
 </div>
 <div class="row center">

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

144

 <button class="btn waves-effect waves-light" type="submit">
 Reset
 <i class="material-icons right">send</i>
 </button>
 </div>
 </form>
 </div>
 </div>
</div>

Figure 6-17.  Forgot Password view

The POST action of Forgot Password first validates whether a user in the system is associated with the
e-mail address and then checks whether the e-mail is verified by the user. If all validations pass, an e-mail
with a unique user-specific link will be sent to the user, and an e-mail-confirmation view is displayed. The
Forgot Password POST action is shown in Listing 6-48.

Listing 6-48.  POST action of Forgot Password

[HttpPost]
[AllowAnonymous]
[ValidateAntiForgeryToken]
public async Task<IActionResult> ForgotPassword(ForgotPasswordViewModel model)
{

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

145

 if (ModelState.IsValid)
 {
 var user = await _userManager.FindByEmailAsync(model.Email);
 if (user == null || !(await _userManager.IsEmailConfirmedAsync(user)))
 {
 // Don't reveal that the user does not exist or is not confirmed
 return View("ResetPasswordEmailConfirmation");
 }

 // Send an email with this link
 var code = await _userManager.GeneratePasswordResetTokenAsync(user);
 �var callbackUrl = Url.Action(nameof(ResetPassword), "Account", new { userId = user.

Id, code = code }, protocol: HttpContext.Request.Scheme);
 await _emailSender.SendEmailAsync(model.Email, "Reset Password",
 �$"Please reset your password by clicking here: link");
 return View("ResetPasswordEmailConfirmation");
 }

 // If we got this far, something failed, redisplay form
 return View(model);
}

Starting from this point, the user should follow exactly the same steps required to reset a password. The
user should click the Reset Password link from the e-mail, which will prompt the user to enter an e-mail
and new password. Upon submitting the new password, the user will be prompted to log in to the system by
using that new password.

■■ Note  Refer to the detailed steps indicated previously in the “Resetting a Password Through MailKit E-mail
Library Integration” section of this chapter.

Creating and Managing Service Engineers
The Automobile Service Center employs service engineers with different capabilities to perform
maintenance and repairs on customers’ cars. Previously, we set up an Admin user who can be considered
a superuser to all other roles. In this section, we will extend Admin’s capabilities to set up service engineers
under the Engineer role. In short, the functional requirements for this section are as follows:

	 1.	 The administrator sets up a service engineer under the Engineer role with a
password.

	 2.	 The service engineer will be given a password via an e-mail.

	 3.	 The service engineer logs in to the system and changes his password, and then
continues his daily activities.

	 4.	 For service engineers who are no longer associated with the Automobile Service
Center, the administrator can mark them as Inactive.

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

146

We will first add the Engineer role to the system, as well as a test Service Engineer account that we’ll
associate with Engineer role. To set up an Engineer role on the system, we will append the existing role’s
configuration setting in the appsettings.json file, as shown in Listing 6-49. We will also set the default
credentials of the Service Engineer test account in the same appsettings.json file.

Listing 6-49.  Service engineer test account configuration in appsettings.json file

"AppSettings": {
 "ApplicationTitle": "Automobile Service Center Application",
 "AdminEmail": "asc.superuser@gmail.com",
 "AdminName": "Admin",
 "AdminPassword": "P@ssw0rd",
 "EngineerEmail": "asc.superengineer@gmail.com",
 "EngineerName": "Engineer",
 "EngineerPassword": "P@ssw0rd",
 "Roles": "Admin,User,Engineer",

 "SMTPServer": "smtp.gmail.com",
 "SMTPPort": "587",
 "SMTPAccount": "autoservicenternew@gmail.com",
 "SMTPPassword": "********"
},

■■ Note T he Service Engineer test account is created purely for testing purposes. This account has no
business or technical relevance.

Update the ApplicationSettings class to hold the new configuration settings, as shown in Listing 6-50.

Listing 6-50.  Updated ApplicationSettings class with service engineer test account properties

public class ApplicationSettings
{
 public string ApplicationTitle { get; set; }
 public string AdminEmail { get; set; }
 public string AdminName { get; set; }
 public string AdminPassword { get; set; }
 public string EngineerEmail { get; set; }
 public string EngineerName { get; set; }
 public string EngineerPassword { get; set; }
 public string Roles { get; set; }

 public string SMTPServer { get; set; }
 public int SMTPPort { get; set; }
 public string SMTPAccount { get; set; }
 public string SMTPPassword { get; set; }
}

To support different roles at the C# programming level, we will add a Roles enum to the system. Create a
Constants class file at the ASC.Models project in the BaseTypes folder. The Roles enum is shown in Listing 6-51.

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

147

Listing 6-51.  Roles enum

namespace ASC.Models.BaseTypes
{
 public static class Constants
 {
 }

 public enum Roles
 {
 Admin, Engineer, User
 }
}

■■ Note  Having a Constants class always helps application development to centralize the commonly used
strings and other settings. A developer should be aware of the practice that all the environment-related settings
should go into appsettings.json, and any setting related to C# code should go into the Constants class.

Add the ASC.Models project reference to the ASC.Web project.

Now we will extend the IdentitySeed class to support the new Engineer role and the Service Engineer
test account. As we are already iterating all the comma-separated roles and inserting them one by one to
storage, no additional code or modifications are required to set up the Engineer role.

The highlighted code in Listing 6-52 describes how to set up a Service Engineer account. Similar to
provisioning an administrator account, we first verify whether any user with a specified e-mail exists; if that
user doesn’t exist, we create the user and associated Email claim with that user. Finally, we associate the
account with the Engineer role.

Listing 6-52.  Updated IdentitySeed class to provision service engineer test account

public class IdentitySeed : IIdentitySeed
{
 �public async Task Seed(UserManager<ApplicationUser> userManager,

RoleManager<IdentityRole> roleManager, IOptions<ApplicationSettings> options)
 {
 // Get All comma-separated roles
 var roles = options.Value.Roles.Split(new char[] { ',' });

 // Create roles if they don’t exist
 foreach (var role in roles)
 {
 if (!await roleManager.RoleExistsAsync(role))
 {
 IdentityRole storageRole = new IdentityRole
 {
 Name = role
 };
 IdentityResult roleResult = await roleManager.CreateAsync(storageRole);
 }
 }

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

148

 // Create admin if he doesn’t exist
 var admin = await userManager.FindByEmailAsync(options.Value.AdminEmail);
 if (admin == null)
 {
 ApplicationUser user = new ApplicationUser
 {
 UserName = options.Value.AdminName,
 Email = options.Value.AdminEmail,
 EmailConfirmed = true,
 LockoutEnabled = false
 };

 �IdentityResult result = await userManager.CreateAsync(user, options.Value.
AdminPassword);

 �await userManager.AddClaimAsync(user, new System.Security.Claims.Claim("http://
schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress", options.Value.
AdminEmail));

 �await userManager.AddClaimAsync(user, new System.Security.Claims.Claim("IsActive", "True"));

 // Add Admin to Admin roles
 if (result.Succeeded)
 {
 await userManager.AddToRoleAsync(user, Roles.Admin.ToString());
 }
 }

 // Create a service engineer if he doesn’t exist
 var engineer = await userManager.FindByEmailAsync(options.Value.EngineerEmail);
 if (engineer == null)
 {
 ApplicationUser user = new ApplicationUser
 {
 UserName = options.Value.EngineerName,
 Email = options.Value.EngineerEmail,
 EmailConfirmed = true,
 LockoutEnabled = false
 };

 �IdentityResult result = await userManager.CreateAsync(user, options.Value.
EngineerPassword);

 �await userManager.AddClaimAsync(user, new System.Security.Claims.Claim("http://
schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress", options.Value.
EngineerEmail));

 �await userManager.AddClaimAsync(user, new System.Security.Claims.
Claim("IsActive", "True"));

 // Add Service Engineer to Engineer role
 if (result.Succeeded)
 {
 await userManager.AddToRoleAsync(user, Roles.Engineer.ToString());
 }
 }
 }
}

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

149

■■ Note T o test the preceding changes, we need to clear the previously created Azure development
storage tables.

Run the application. You should see the users set up as shown in Figure 6-18.

Figure 6-19.  Service engineer dashboard view

Figure 6-18.  User records in the ASCAspNetUsers Azure table

Quickly, we will check the newly created service engineer login in our application. As shown in Figure 6-19,
the dashboard view will be displayed to the service engineer user.

■■ Note  So far, the process of setting up a service engineer is useful only at the time that the application is
first set up. But in reality, employees will leave organizations, and new employees will join, so we still need to
create a front-end user interface to set up and manage service engineers. This functionality should be available
to only the Admin user.

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

150

As the next step, we will add new functionalities to Admin so he can manage and set up service
engineers from the front-end user interface rather than from the back end. Modify _SecureLayout.cshtml to
add the Service Engineers menu item, as shown in Listing 6-53. This menu item will navigate the user to the
account controller’s ServiceEngineers action, which we will create in the next step.

Listing 6-53.  Service Engineers menu item in left navigation

 <ul class="collapsible collapsible-accordion">

 <�a class="collapsible-header">User Administration<i class="material-icons">

supervisor_account</i>
 <div class="collapsible-body">

 <�li>Customers<i class="material-icons">account_box</i>

 <�li>Deactivate Customer<i class="material-icons">remove_

circle</i>
 <�li><a asp-controller="Account" asp-action="ServiceEngineers">Service

Engineers<i class="material-icons">person_add</i>

 </div>

The Service Engineers views should provide the following capabilities to Admin:

	 1.	 List all Service Engineers in the system.

	 2.	 Add a new Service Engineer.

	 3.	 Edit an existing Service Engineer.

To support these features, we need to create a view model, which should hold a list of Service
Engineers, and a model to add/update an existing Service Engineer. We will first create the
ServiceEngineerRegistrationViewModel class under the AccountViewModels folder, which will support
adding or updating an existing Service Engineer, as shown in Listing 6-54.
ServiceEngineerRegistrationViewModel will be inherited from the existing RegisterViewModel so that the
properties Email, Password, and Confirm Password can be reused.

Listing 6-54.  ServiceEngineerRegistrationViewModel class

namespace ASC.Web.Models.AccountViewModels
{
 public class ServiceEngineerRegistrationViewModel : RegisterViewModel
 {
 public string UserName { get; set; }
 public bool IsEdit { get; set; }
 public bool IsActive { get; set; }
 }
}

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

151

Now we will create ServiceEngineerViewModel under the AccountViewModels folder, as shown in
Listing 6-55, which will wrap a list of Service Engineers along with ServiceEngineerRegistrationViewModel.

Listing 6-55.  ServiceEngineerViewModel class

namespace ASC.Web.Models.AccountViewModels
{
 public class ServiceEngineerViewModel
 {
 public List<ApplicationUser> ServiceEngineers { get; set; }
 public ServiceEngineerRegistrationViewModel Registration { get; set; }
 }
}

Now that we have our view model ready, we will add the ServiceEngineers action in the account
controller, as shown in Listing 6-56. We get all the users based on the Engineer role and return the view.

Listing 6-56.  GET action of Service Engineers

[HttpGet]
 public async Task<IActionResult> ServiceEngineers()
 {
 �var serviceEngineers = await _userManager.GetUsersInRoleAsync(Roles.Engineer.

ToString());

 // Hold all service engineers in session
 HttpContext.Session.SetSession("ServiceEngineers", serviceEngineers);

 return View(new ServiceEngineerViewModel
 {
 ServiceEngineers = serviceEngineers == null ? null : serviceEngineers.ToList() ,
 Registration = new ServiceEngineerRegistrationViewModel() { IsEdit = false }
 });
 }

We will construct our view in two sections. The top section will display a list of service engineers, with
an Edit option against each engineer. The bottom section will be the details section, which displays the
details of the service engineer who is in edit mode. The details section can also be used to create a new
service engineer.

We will use a JQuery plug-in called DataTables that is highly flexible in displaying content in list format
and comes by default with advanced interaction controls such as pagination, sorting, and filtering for any
HTML table.

■■ Note  More details about the JQuery DataTables plug-in can be found at https://datatables.net/.

To get started with DataTables, we need to refer its JQuery and CSS files in our solution. We will add
those scripts from DataTables’ content-delivery network, as shown in Listing 6-57.

https://datatables.net/

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

152

Listing 6-57.  JQuery DataTables scripts and CSS references

@using Microsoft.Extensions.Options;
@using ASC.Web.Configuration;
@inject IOptions<ApplicationSettings> _configurationSettings

<!DOCTYPE html>
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 <�meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1.0,

user-scalable=no" />
 <title>@_configurationSettings.Value.ApplicationTitle</title>

 <!-- CSS -->
 <link href="https://fonts.googleapis.com/icon?family=Material+Icons" rel="stylesheet">
 <�link href="https://cdn.datatables.net/1.10.15/css/jquery.dataTables.min.css"

type="text/css" rel="stylesheet" media="screen,projection" />
 <�link href="~/css/materialize.css" type="text/css" rel="stylesheet" media="screen,projection" />
 <link href="~/css/style.css" type="text/css" rel="stylesheet" media="screen,projection" />
</head>
<body>
 <!-- Render Body -->
 @RenderBody()

 <script src="~/lib/jquery/dist/jquery.min.js"></script>
 <script src="~/lib/jquery-validation/dist/jquery.validate.js"></script>
 <script src="~/lib/jquery-validation-unobtrusive/jquery.validate.unobtrusive.js"></script>
 <script src="~/js/materialize.min.js"></script>
 <script src="https://cdn.datatables.net/1.10.15/js/jquery.dataTables.min.js"></script>
 <script src="~/js/init.js"></script>

 @RenderSection("Scripts", required: false)
</body>
</html>

Create the Service Engineers view, as shown in Listing 6-58. An HTML table has been defined, and all
the service engineers are iterated and rendered in the same table. By default, we will show Email, Username,
IsActive, and Edit action columns in the table. If no service engineers are available, instead of displaying
the table, a No Records Available message will be rendered. The details section of the view contains a form
tag with the required elements for e-mail, password, active flags. By default, we will not give Admin an
option to change the e-mail of the user. We also maintain hidden fields in the form to identify information
such as type of operation and e-mail.

The view also contains JQuery code that is primarily used to configure DataTables by initializing it with
page size and length options. We also set the required styles for DataTables. In JQuery code, we hide the
IsActive column by default because we will not show a Boolean flag for the IsActive column; instead we
will show green tick or red X.

We will also handle the reset button functionality in JQuery, through which the user changes will be
discarded. Finally, an Edit click event is handled in which we will populate the details section with the
information of the service engineer who is in edit mode. JQuery code is also used to populate the e-mail
hidden field (which is by default disabled on the user interface) upon click of the Submit button.

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

153

Listing 6-58.  Service Engineers view with JQuery code

@model ServiceEngineerViewModel
@{
 Layout = "_SecureLayout";
}

<div class="row"></div>
<div class="row padding-top-20px">

 <div class="row z-depth-3">
 <div class="section white-text padding-left-10px blue-grey lighten-1">
 <h5>Users</h5>
 </div>
 <div class="divider"></div>
 <div class="col s12 padding-bottom-15px">
 @if (Model.ServiceEngineers != null)
 {
 @* Display List of Service Engineers *@
 <table class="highlight centered" id="tblServiceEngineers">
 <thead>
 <tr>
 <th data-field="Email">Email</th>
 <th data-field="UserName">Name</th>
 <th data-field="IsActive">Is Active</th>
 <th data-field="IsActiveImg">Is Active</th>
 <th data-field="Actions">Edit User</th>
 </tr>
 </thead>
 <tbody>
 @foreach (var user in Model.ServiceEngineers)
 {
 <tr>
 <td>@user.Email</td>
 <td>@user.UserName</td>
 <�td>@(Boolean.Parse(user.Claims.SingleOrDefault(p =>

p.ClaimType == "IsActive").ClaimValue))</td>
 <�td><img src="@(Boolean.Parse(user.Claims.SingleOrDefault

(p => p.ClaimType == "IsActive").ClaimValue) ? "/images/
green_tick.png" : "/images/red_cross.png")" /></td>

 <�td><i class="small material-icons edit cursor-hand">mode_
edit</i></td>

 </tr>
 }
 </tbody>
 </table>
 }
 else
 {
 @* In case of No records, display no records message *@
 <div class="card blue-grey lighten-1">
 <div class="card-content white-text">

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

154

 No Service Engineers!!!
 <p>
 No Service Engineers found, please add a Service Engineer to system.
 </p>
 </div>
 </div>
 }
 </div>
 </div>

 <div class="row"></div>

 @* Details Section *@
 <div class="row z-depth-3">
 <div class="col s12 padding-0px">
 <div class="section white-text padding-left-10px blue-grey lighten-1">
 <h5>Service Engineer Details</h5>
 </div>
 <div class="divider"></div>
 <�form asp-controller="Account" asp-action="ServiceEngineers" method="post"

class="col s12" id="fromUser">
 <input type="hidden" asp-for="Registration.IsEdit" />
 <input type="hidden" asp-for="Registration.Email"/>
 <div class="input-field col s4">
 <input asp-for="Registration.Email" id="Input_Registration_Email" />
 <label asp-for="Registration.Email"></label>
 </div>
 <div class="input-field col s4">
 <input asp-for="Registration.UserName" class="validate" />
 <label asp-for="Registration.UserName"></label>
 </div>
 <div class="input-field col s4">
 <input asp-for="Registration.Password" class="validate" />
 <label asp-for="Registration.Password"></label>
 </div>
 <div class="input-field col s4">
 <input asp-for="Registration.ConfirmPassword" class="validate" />
 <label asp-for="Registration.ConfirmPassword"></label>
 </div>
 <div class="input-field col s4">
 <div class="switch">
 <label>
 Is Active
 <input asp-for="Registration.IsActive" class="validate" />

 </label>
 </div>
 </div>
 <div class="input-field col s4 right-align">
 <�button class="btn waves-effect waves-light btnSubmit" type="submit"

name="action">

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

155

 Create
 <i class="material-icons right">send</i>
 </button>
 <�button class="btn waves-effect waves-light reset red lighten-1"

type="button" name="action">
 Reset
 </button>
 </div>
 <div class="row col s12 right-align" asp-validation-summary="All"></div>
 </form>

 </div>
 <div class="row"></div>

 </div>

</div>

@section Scripts{
 <script>
 $(document).ready(function () {
 // Initialize DataTable to show list of Engineers
 var table = $('#tblServiceEngineers').DataTable({
 'pageLength': 3,
 // Number of records to be displayed per page
 'lengthMenu': [[3, 5, 10, -1], [3, 5, 10, 'All']]
 });

 // Set Styles for DataTable and Number of Records to be displayed in drop-down
 $('#tblServiceEngineers').css("width", "100%");
 $('select[name="tblServiceEngineers_length"]').material_select();

 // Get the column API object
 var isActiveColumn = table.column(2);
 isActiveColumn.visible(false);

 // Handle Reset fucntionality
 $(document).on("click", ".reset", function () {
 $('#fromUser')[0].reset();
 $('#Input_Registration_Email').removeAttr('disabled');
 $('.btnSubmit').text('Create');
 $('#Registration_IsEdit').val('False');
 });

 // This is required to disable Email filed on Server-side model validation failure.
 if ($('#Registration_IsEdit').val() === 'True') {
 $('#Input_Registration_Email').attr('disabled', 'disabled');
 }

 // On click of Edit icon, populate the details section with details of service engineer
 $(document).on('click', '.edit', function () {

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

156

 var user = $('#tblServiceEngineers').DataTable().row($(this).parents('tr')).data();

 $('#Registration_IsEdit').val('True');

 $('#Input_Registration_Email').val(user[0]);
 $('#Input_Registration_Email').attr('disabled', 'disabled');

 $('#Registration_UserName').val(user[1]);
 $('#Registration_UserName').addClass('valid');

 $('#Registration_IsActive').prop('checked', user[2] === 'True' ? true : false);

 $('.btnSubmit').text('Save');
 Materialize.updateTextFields();
 });

 // Set hidden Email field to correct value from UI field
 // This is required for
 $(document).on('click', '.btnSubmit', function () {
 $('#Registration_Email').val($('#Input_Registration_Email').val());
 Materialize.updateTextFields();
 });

 });
 </script>
}

Styles in Listing 6-59 are added to style.css to support the Service Engineers view.

Listing 6-59.  Extended Style.css

.padding-bottom-15px{
 padding-bottom : 15px !important;
}

.cursor-hand{
 cursor: pointer
}

■■ Note A dd the following images to the images folder under wwwroot to show active and inactive service
engineers:

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

157

The POST action of Service Engineers is shown in Listing 6-60. It takes the entire ServiceEngineerViewModel
as an input parameter, but it uses primarily ServiceEngineerRegistrationViewModel of the model to edit or
create a new service engineer. The POST action is very simple; it first checks for model validations. If there
are model validations, the POST action will return the same Service Engineers view with all validation error
messages.

If there are no validation errors and if the IsEdit flag is true, then the Service Engineer is first updated
with the given username. The IsActive status is updated to the IsActive claim of the user at Azure Storage.

■■ Note  The IsActive claim is used to toggle the user activation. During the login process, this claim will be
checked to make sure the user who is trying to log in is an active user. Along with this check, the IsLockedOut
check will also be present at the time of login to prevent the user from logging in if that account is locked out.

If the IsEdit flag is false, a new user is created with the given details and password and is added to
the Engineer role. The IsActive claim for a new user is set to the value that the Admin selects on the user
interface.

Finally, an e-mail is sent to the user with e-mail and password details used to create/modify the
account.

Listing 6-60.  POST action of Service Engineers view

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> ServiceEngineers(ServiceEngineerViewModel serviceEngineer)
{
 �serviceEngineer.ServiceEngineers = HttpContext.Session.GetSession<List<ApplicationUser>>

("ServiceEngineers");
 if (!ModelState.IsValid)
 {
 return View(serviceEngineer);
 }

 if (serviceEngineer.Registration.IsEdit)
 {
 // Update User
 var user = await _userManager.FindByEmailAsync(serviceEngineer.Registration.Email);
 user.UserName = serviceEngineer.Registration.UserName;
 IdentityResult result = await _userManager.UpdateAsync(user);

 if (!result.Succeeded)
 {
 result.Errors.ToList().ForEach(p => ModelState.AddModelError("", p.Description));
 return View(serviceEngineer);
 }

 // Update Password
 var token = await _userManager.GeneratePasswordResetTokenAsync(user);
 �IdentityResult passwordResult = await _userManager.ResetPasswordAsync(user, token,

serviceEngineer.Registration.Password);

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

158

 if (!passwordResult.Succeeded)
 {
 �passwordResult.Errors.ToList().ForEach(p => ModelState.AddModelError("",

p.Description));
 return View(serviceEngineer);
 }

 // Update claims
 user = await _userManager.FindByEmailAsync(serviceEngineer.Registration.Email);
 var isActiveClaim = user.Claims.SingleOrDefault(p => p.ClaimType == "IsActive");
 var removeClaimResult = await _userManager.RemoveClaimAsync(user,
 �new System.Security.Claims.Claim(isActiveClaim.ClaimType, isActiveClaim.

ClaimValue));
 var addClaimResult = await _userManager.AddClaimAsync(user,
 �new System.Security.Claims.Claim(isActiveClaim.ClaimType, serviceEngineer.

Registration.IsActive.ToString()));
 }
 else
 {
 // Create User
 ApplicationUser user = new ApplicationUser
 {
 UserName = serviceEngineer.Registration.UserName,
 Email = serviceEngineer.Registration.Email,
 EmailConfirmed = true
 };

 �IdentityResult result = await _userManager.CreateAsync(user, serviceEngineer.
Registration.Password);

 �await _userManager.AddClaimAsync(user, new System.Security.Claims.Claim("http://
schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress", serviceEngineer.
Registration.Email));

 �await _userManager.AddClaimAsync(user, new System.Security.Claims.Claim("IsActive",
serviceEngineer.Registration.IsActive.ToString()));

 if (!result.Succeeded)
 {
 �result.Errors.ToList().ForEach(p => ModelState.AddModelError("",

p.Description));
 return View(serviceEngineer);
 }

 // Assign user to Engineer Role
 �var roleResult = await _userManager.AddToRoleAsync(user, Roles.Engineer.

ToString());
 if (!roleResult.Succeeded)
 {
 �roleResult.Errors.ToList().ForEach(p => ModelState.AddModelError("",

p.Description));
 return View(serviceEngineer);
 }
 }

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

159

 if (serviceEngineer.Registration.IsActive)
 {
 await _emailSender.SendEmailAsync(serviceEngineer.Registration.Email,
 "Account Created/Modified",
 $�"Email : {serviceEngineer.Registration.Email} /n Passowrd : {serviceEngineer.

Registration.Password}");
 }
 else
 {
 await _emailSender.SendEmailAsync(serviceEngineer.Registration.Email,
 "Account Deactivated",
 $"Your account has been deactivated.");
 }

 return RedirectToAction("ServiceEngineers");
}

Run the application and log in as Admin. You should see Service Engineers navigation menu item in the
left navigation bar, as shown in Figure 6-20.

Figure 6-20.  Service Engineers menu option in the left navigation bar

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

160

Click the Service Engineers menu item. The Service Engineer test account will be displayed, as shown in
Figure 6-21.

Figure 6-21.  Service Engineers view

Click the Edit User button. The details of the Service Engineer will be populated in the details section, as
shown in Figure 6-22.

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

161

Figure 6-22.  Service Engineer Details section populated with details based on the edit operation

Change the password and click Save. Now try to log in on any other browser with the new password
for the edited service engineer, and the login should be successful. At the same time, the service engineer
should receive an e-mail message with the new password, as shown in Figure 6-23.

Figure 6-24.  Deactivating a service engineer

Again, edit the same service engineer and turn off the Is Active flag, as shown in Figure 6-24. Click Save.

Figure 6-23.  Account Created/Modified e-mail message for the service engineer

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

162

■■ Note  In the context of this book, every time Admin tries to update a service engineer, it is mandatory to set
change the password of the service engineer. This rule applies even if the Admin tries to deactivate the user.

The deactivated user will receive an e-mail message, as shown in Figure 6-25.

Figure 6-26.  Deactivation message displayed for the service engineer

Figure 6-27.  Updated details of the service engineer in the data table

Figure 6-25.  Deactivation e-mail message to the service engineer

If the deactivated service engineer tries to log in to the system, an error message is displayed, saying that
the account has been locked, as shown in Figure 6-26.

If we look at the Service Engineers grid, we will have updated Is Active status, as shown in Figure 6-27.

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

163

In a similar way, a deactivated service engineer can be reactivated. Upon reactivation, an e-mail
message with the new password will be sent to the service engineer, which he can use to access the system.

Now we will add a new service engineer to the system, as shown in Figure 6-28. Click Save.

Figure 6-28.

The new user should get an e-mail message with e-mail and password credentials. He can use those
credentials and access the system. The Service Engineers grid will be updated with new user details, as
shown in Figure 6-29.

Figure 6-29.  Service Engineers table updated with new service engineer details

Service engineer management is available only to the Admin of the Automobile Service Center. So we
need to restrict other roles from accessing the Service Engineer’s actions in the account controller. Add the
Authorize attribute on top of the actions that are accessible to only Admin, as shown in Listing 6-61.

Listing 6-61.  Grant authorization to Admin role

[Authorize(Roles = "Admin")]

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

164

■■ Note  User management is a vast topic with many possible technical implementations. This chapter
introduces you to the concepts of authentication, authorization, and user management. To broaden your
understanding beyond the scope of this chapter, I suggest you practice with topics such as generating one-time
passwords or performing two-factor authentication using SMS.

Understanding the OAuth 2.0 Protocol
During the days of early web development, most solutions were designed to follow disconnected interfacing;
applications tended to maintain their users and customers in their own databases housed on their private
infrastructure. The difficulty with this design is that every user would have to maintain multiple thumbprints
of security at different web solutions. In this scenario, interfacing between different web applications to
create custom workflows is always a challenge because of the different security protocols and practices
followed by these applications.

Today, most applications tend to not store user information in their own data stores for the following
reasons:

•	 User management is always prone to security threats and identity theft. To mitigate
these risks, organizations need to spend hefty dollar amounts to hire security
consultants.

•	 Maintaining credentials and other information related to user authentication
requires secure vaults and secure certificates for hashing and encryption. These
features require licensed software products.

•	 Additional infrastructure setup is required to secure data and applications.

•	 Organizations need to have extra manpower and build technology capabilities to
address any security concerns, risks, and audit issues at any given time.

•	 Interfacing with partner applications and others within network applications is
always tedious.

Modern-day software advancements along with the OAuth protocol solved most of these problems
by providing the capability to securely share authentication information among platforms and solutions.
OAuth is an open standard for authorization typically used by applications to provide other web sites or
applications secure, authorized access to customer information without giving those sites or applications
any passwords. This mechanism is used by companies such as Google, Facebook, Microsoft, and Twitter to
permit users to share information about their accounts with third-party applications or web sites.

The journey of OAuth 1.0 began in 2006 by Blaine Cook, who was later joined by Chris Messina and
Larry Halff. The OAuth 1.0 protocol was published as RFC 5849 in April 2010. The OAuth 2.0 framework was
published as RFC 6749, and the Bearer Token Usage as RFC 6750 in October 2012. The main differences
between OAuth 1.0 and 2.0 are as follows:

•	 Better support for non-browser-based applications.

•	 Client applications no longer require the usage of cryptography.

•	 Less complicated.

•	 Short-lived tokens with long-lived authorizations.

•	 Improved performance.

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

165

OAuth 2.0 has four major parties:

•	 Resource owner: Typically, a user in the system.

•	 Resource server: A server hosting protected data of the user.

•	 Client: Application requesting access to a resource server.

•	 Authorization server: A server issuing access token to the client. This token will be
used for the client to request the resource server.

The authorization server issues tokens to client applications. Tokens are of two types: access tokens
and refresh tokens. An access token is a short-lived token with a defined scope that is used by the client
application to access user information on the resource server. The access token should be sent in every
request to the resource server though an authorization request header. The refresh token, on the other hand,
is only sent to the authorization server for renewing the access token when it has expired. The OAuth 2.0
authorization flow is depicted in Figure 6-30.

Figure 6-30.  OAuth 2.0 authorization flow

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

166

■■ Note  More details on the OAuth 2.0 protocol can be found at https://oauth.net/2/.

For our Automobile Service Center application, we are going to use the OAuth 2.0 protocol to enable
authorization of customers from Google.

Using a Gmail Authentication Provider for Customer
Authentication
In this section, we will integrate the Automobile Service Center application with a Google identity provider
through the OAuth 2.0 protocol. We need to follow these steps to integrate the Gmail authentication provider
with ASC.Web:

	 1.	 Create an application at the Google API Console.

	 2.	 Configure the Automobile Service Center application with Google middleware.

	 3.	 Sign in with Google credentials.

As the first step, we have to configure the application at the Google API Console, shown in Figure 6-31.
Visit https://console.developers.google.com/projectselector/apis/library, and sign in with the
autoservicenternew@gmail.com account, which we created previously to use as the SMTP account.

Figure 6-31.  Signing in to the Google API library console

https://oauth.net/2/
https://console.developers.google.com/projectselector/apis/library
http://autoservicenternew@gmail.com/

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

167

The Google API Manager Library page opens, as shown in Figure 6-32. Click the Create button.

Figure 6-32.  Google API Manager

Enter a name for the application, as shown in Figure 6-33, and click Create.

Figure 6-33.  Creating a project at the Google library console

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

168

Once the project is created, search for Google+ API in the search bar and select the appropriate result.
The Google+ API is used for accessing user data through the OAuth 2.0 protocol. Click Enable to get access to
the Google+ API, as shown in Figure 6-34.

Figure 6-34.  Enabling Google+ API for the Automobile Service Center project

We have to create credentials for the application that we just created in order to access the Google+ API.
Click the Create Credentials button, shown in Figure 6-35.

Figure 6-35.  Creating credentials to consume the Google+ API

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

169

We need to specify the kind of credentials we need for our application. As shown in Figure 6-36, we
configure our credentials for a Web Server to access User Data from the Google+ API and then click the What
Credentials Do I Need? button.

Figure 6-36.  Configuring credentials to access the Google+ API

As shown in Figure 6-37, give a name to the client and enter the URL of the application, followed by
signin-google.

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

170

Figure 6-37.  Configuring the Automobile Service Center URL with Google OAuth 2.0

As the last step before we create credentials, we need to set up a consent screen that users will see when
they accept the consent at Google, as shown in Figure 6-38.

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

171

Figure 6-38.  Setting up a consent screen for Google+ OAuth 2.0

Google will create a Client ID that allows us to download credentials in JSON format, as shown in
Figure 6-39. Download the JSON file and verify the contents of file. You should find client_id and client_
secret properties with values. These are the important values that are required to configure the ASC.Web
project.

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

172

Figure 6-39.  Downloading the JSON credentials file

Finally, click Done. All credentials are displayed in the Credentials section, as shown in Figure 6-40.

Figure 6-40.  Created credentials at the Google console

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

173

Now that we have a client ID and client secret, we should configure our Automobile Service Center
application with Google authentication middleware. Prior to that, create the Google section in the
appsettings.json file and copy the client ID and secret values as shown in Listing 6-62.

Listing 6-62.  Google identity configuration in appsettings.json file

"Google" :{
 "Identity": {
 "ClientId": "**********************",
 "ClientSecret": "***************"
 }
},

■■ Note  Usually, we will not store sensitive information in the appsettings.json file because it will reside
in a source version-control repository and is accessible to everyone who has access to code. We can use Azure
Key Vault to store sensitive information and access it in a secure way.

For the sake of simplicity, we will use the appsettings.json file of the ASC.Web project to store the client ID
and secret information.

Install the Microsoft.AspNetCore.Authentication.Google NuGet package, as shown in Figure 6-41, to
the ASC.Web project that supports Google OAuth 2.0 authentication workflows.

Figure 6-41.  Installing the Microsoft.AspNetCore.Authentication.Google NuGet package to the ASC.Web
project

Configure the Google middleware in the Configure method of the Startup class, as shown in
Listing 6-63. Make sure to configure the Google middleware after configuring Identity services.

Listing 6-63.  Configure Google authentication in Startup class

public async void Configure(IApplicationBuilder app,
 IHostingEnvironment env,
 ILoggerFactory loggerFactory,
 IIdentitySeed storageSeed)
{
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

174

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseDatabaseErrorPage();
 app.UseBrowserLink();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 }

 app.UseSession();
 app.UseStaticFiles();
 app.UseIdentity();

 app.UseGoogleAuthentication(new GoogleOptions()
 {
 ClientId = Configuration["Google:Identity:ClientId"],
 ClientSecret = Configuration["Google:Identity:ClientSecret"]
 });

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });

 �await storageSeed.Seed(app.ApplicationServices.GetService<UserManager<ApplicationUs
er>>(),

 app.ApplicationServices.GetService<RoleManager<IdentityRole>>(),
 app.ApplicationServices.GetService<IOptions<ApplicationSettings>>());
}

Now we need to change Login.cshtml to include a button that will trigger Google authentication.
Modify Login.cshtml as shown in Listing 6-64. We first get all the external authentication providers by
using the GetExternalAuthenticationSchemes method of SignInManager and then iterate them and create
the required buttons to trigger external authentication. As we only configured Google authentication to
the Automobile Service Center application, we will be getting only a Google Sign-in button. The button is
wrapped in a form that will post to the ExternalLogin action of AccountController, which will initiate
the authentication request with the external provider. Necessary style changes are made to make the view
appealing to users.

Listing 6-64.  External authentication providers buttons on Login page

@using System.Collections.Generic
@using Microsoft.AspNetCore.Http
@using Microsoft.AspNetCore.Http.Authentication
@model LoginViewModel
@inject SignInManager<ApplicationUser> SignInManager
@{

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

175

 ViewData["Title"] = "Log in";
}
<div class="container">
 <div class="row">
 <div class="col s12 m5 offset-m2">
 <�form asp-controller="Account" asp-action="Login" asp-route-

returnurl="@ViewData["ReturnUrl"]" method="post">
 <div asp-validation-summary="All" class="text-danger"></div>

 <div class="row">
 <div class="input-field col s12">
 <input asp-for="Email" type="email" class="validate">
 <�label asp-for="Email" data-error="wrong" data-success="right">

Email</label>
 </div>
 </div>

 <div class="row">
 <div class="input-field col s12">
 <input asp-for="Password" type="password" class="validate">
 <�label asp-for="Password" data-error="wrong" data-success="right">

Password</label>
 </div>
 </div>

 <div class="row padding-left-10px">
 <p>
 <input asp-for="RememberMe" type="checkbox" class="filled-in" />
 <�label asp-for="RememberMe">@Html.DisplayNameFor(m => m.RememberMe)

</label>
 </p>
 </div>

 <div class="row center">
 <button class="btn waves-effect waves-light" type="submit">
 Submit
 <i class="material-icons right">send</i>
 </button>
 </div>

 <div class="row center">
 <a asp-action="ForgotPassword">Forgot your password?
 </div>
 </form>
 </div>
 <div class="col s12 m4 offset-m1">
 <h5>Login using External Providers.</h5>
 <div class="divider"></div>
 @{

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

176

 var loginProviders = SignInManager.GetExternalAuthenticationSchemes().ToList();
 if (loginProviders.Count != 0)
 {
 �<form asp-controller="Account" asp-action="ExternalLogin" asp-

route-returnurl="@ViewData["ReturnUrl"]" method="post" class="form-
horizontal">

 <div>
 <p>
 @foreach (var provider in loginProviders)
 {
 <�button type="submit" class="btn btn-

default" name="provider" value="@provider.
AuthenticationScheme" title="Log in using your
@provider.DisplayName account">@provider.
AuthenticationScheme</button>

 }
 </p>
 </div>
 </form>
 }
 }
 </div>

 </div>

</div>

Run the application and navigate to the Login view. You should see the login screen shown in
Figure 6-42.

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

177

Click the Google button. It will post the form to the ExternalLogin post action of AccountController,
as shown in Listing 6-65. The post action will first fetch the properties of the external authentication provider
and then redirect to the provider’s login page, as shown in Figure 6-43. It will also hold the callback action to
which the redirection should happen on successful login at the external authentication provider.

Listing 6-65.  POST action of external login

[HttpPost]
[AllowAnonymous]
[ValidateAntiForgeryToken]
public IActionResult ExternalLogin(string provider, string returnUrl = null)
{
 // Request a redirect to the external login provider.
 �var redirectUrl = Url.Action(nameof(ExternalLoginCallback), "Account", new { ReturnUrl =

returnUrl });
 �var properties = _signInManager.ConfigureExternalAuthenticationProperties(provider,

redirectUrl);
 return Challenge(properties, provider);
}

Figure 6-42.  Login view with Google authentication button

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

178

The account I used to sign in has two-factor authentication enabled at Gmail. As a result, I got a two-
factor authentication prompt, as shown in Figure 6-44.

Figure 6-44.  Google two-factor authentication screen

Figure 6-43.  Google provider login page

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

179

On successful login at the external authentication provider, the browser will be redirected to the
callback URL mentioned in the previous action. The code for the callback action is shown in Listing 6-66.
The code first gets the login information of the user from the external login; if it is null, the user is redirected
back to the login action. If the login information is a valid object, we need to check whether the received
information already exists in our table storage. If the information exists, then based on the status of the login
(for example, it requires two-factor authentication), we redirect the user to the secure URL; otherwise, we
redirect the user to the registration confirmation view.

Listing 6-66.  External login callback

[HttpGet]
[AllowAnonymous]
�public async Task<IActionResult> ExternalLoginCallback(string returnUrl = null, string
remoteError = null)
{
 if (remoteError != null)
 {
 �ModelState.AddModelError(string.Empty, $"Error from external provider:

{remoteError}");
 return View(nameof(Login));
 }
 var info = await _signInManager.GetExternalLoginInfoAsync();
 if (info == null)
 {
 return RedirectToAction(nameof(Login));
 }

 // Sign in the user with this external login provider if the user already has a login.
 �var result = await _signInManager.ExternalLoginSignInAsync(info.LoginProvider, info.

ProviderKey, isPersistent: false);
 if (result.Succeeded)
 {
 _�logger.LogInformation(5, "User logged in with {Name} provider.", info.

LoginProvider);
 return RedirectToAction("Dashboard", "Dashboard");
 }
 if (result.RequiresTwoFactor)
 {
 return RedirectToAction(nameof(SendCode), new { ReturnUrl = returnUrl });
 }
 if (result.IsLockedOut)
 {
 return View("Lockout");
 }
 else
 {
 // If the user does not have an account, then ask the user to create an account.
 ViewData["ReturnUrl"] = returnUrl;
 ViewData["LoginProvider"] = info.LoginProvider;
 var email = info.Principal.FindFirstValue(ClaimTypes.Email);

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

180

 �return View("ExternalLoginConfirmation", new ExternalLoginConfirmationViewModel
{ Email = email });

 }
}

The External Login Confirmation view is a very simple view with just one input field, which will be
prepopulated with the e-mail information of the authenticated user from the external provider, as shown in
Listing 6-67. The External Login Confirmation view is shown in Figure 6-45.

Figure 6-45.  External Authentication Confirmation view

■■ Note  Most external authenticated providers forward basic user information in the form of claims to the
requested application. The application can therefore uniquely identify a user based on the claims and create a
local user account with the information received from the external provider.

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

181

Listing 6-67.  External login confirmation view

@model ExternalLoginConfirmationViewModel
@{
 ViewData["Title"] = "Register";
}

<div class="container">
 <div class="row">
 <div class="col s12 m6 offset-m3">
 <�form asp-controller="Account" asp-action="ExternalLoginConfirmation" asp-route-

returnurl="@ViewData["ReturnUrl"]" method="post" class="form-horizontal">
 <div asp-validation-summary="All" class="text-danger"></div>
 <p class="text-info">
 �You've successfully authenticated with @ViewData["LoginProvider

"].
 �Please enter an email address for this site below and click the Register

button to finish
 logging in.
 </p>

 <div class="row">
 <div class="input-field col s12">
 <input asp-for="Email" type="email" class="validate">
 <�label asp-for="Email" data-error="wrong" data-

success="right">Email</label>
 </div>
 </div>

 <div class="row center">
 <button class="btn waves-effect waves-light" type="submit">
 Submit
 <i class="material-icons right">send</i>
 </button>
 </div>
 </form>
 </div>
 </div>
</div>

Upon clicking Submit, e-mail will be posted to the ExternalLoginConfirmation post action, as shown
in Listing 6-68, where it will first validate the model and then verify the login information from the external
provider. If the login information is null, we redirect to a failure view. On successful login information, the
user will be created at Azure Table storage, and just as with service engineers, Email and IsActive claims
are added to the user account. Then the user will be added to the User role and saved to storage. As the user
is from an external authentication provider, his login information is attached to the user information and
signs in to the system through SignInManager’s SignInAync method. Finally, the user is redirected to the
dashboard controller’s Dashboard action.

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

182

Listing 6-68.  POST action of External login confirmation

[HttpPost]
[AllowAnonymous]
[ValidateAntiForgeryToken]
�public async Task<IActionResult> ExternalLoginConfirmation(ExternalLoginConfirmationViewMod
el model, string returnUrl = null)
{
 if (ModelState.IsValid)
 {
 // Get the information about the user from the external login provider
 var info = await _signInManager.GetExternalLoginInfoAsync();
 if (info == null)
 {
 return View("ExternalLoginFailure");
 }
 �var user = new ApplicationUser { UserName = model.Email, Email = model.Email,

EmailConfirmed = true };
 var result = await _userManager.CreateAsync(user);

 �await _userManager.AddClaimAsync(user, new System.Security.Claims.Claim
("http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress", user.Email));

 �await _userManager.AddClaimAsync(user, new System.Security.Claims.Claim
("IsActive", "True"));

 if (!result.Succeeded)
 {
 �result.Errors.ToList().ForEach(p => ModelState.AddModelError("",

p.Description));
 return View("ExternalLoginConfirmation", model);
 }

 // Assign user to Engineer Role
 var roleResult = await _userManager.AddToRoleAsync(user, Roles.User.ToString());
 if (!roleResult.Succeeded)
 {
 �roleResult.Errors.ToList().ForEach(p => ModelState.AddModelError("", p.Description));
 return View("ExternalLoginConfirmation", model);
 }

 if (result.Succeeded)
 {
 result = await _userManager.AddLoginAsync(user, info);
 if (result.Succeeded)
 {
 await _signInManager.SignInAsync(user, isPersistent: false);
 _�logger.LogInformation(6, "User created an account using {Name} provider.",

info.LoginProvider);
 return RedirectToAction("Dashboard", "Dashboard");
 }
 }

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

183

 AddErrors(result);
 }

 ViewData["ReturnUrl"] = returnUrl;
 return View(model);
}

The Dashboard view for the user looks like Figure 6-46.

Figure 6-46.  Customer Dashboard view

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

184

Figure 6-47 shows records that are created at Azure Table storage for a user who is authenticated from
external providers. The one extra record is for the login information retrieved from external authentication.
All other records resemble those for Service Engineers and Admin.

Figure 6-47.  ASCAspNetUser table records for customer login

■■ Note  The advantage with the preceding approach of external authentication is that now the user has
two options to log in to the system: one by using the Google authentication provider, and the other by directly
signing in at the Automobile Service Center application by resetting the password.

Exercise 1
Create a page for an authenticated user that will help users change their basic profile information (for
example, username). Ensure that the updated information is displayed at the user information section of the
page. Navigation to this screen should be enabled from the left navigation bar’s Settings menu item (add a
new submenu item called Profile).

■■ Note  A solution to this problem can be found with source code accompanied with this book. Run the
code and log in as a customer. Click the Profile navigation item from the Settings tab. A profile section will be
displayed with the username in an editable field. Update the username and click Save. The username should be
updated in Azure Storage, and the same screen will be refreshed.

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

185

Exercise 2
Create a page to list all the customers in the system in a tabular format (just as for Service Engineers).
Provide an option to deactivate/reactivate a customer in the system. Ensure that deactivated customers
cannot sign in to the system (show the invalid login message at the time of login).

■■ Note  A solution to this problem can be found with source code accompanied with this book. Run the code
and log in as Admin. Click the Customers tab under User Administration. All customers will be listed, and now
Admin can deactivate a customer. In the provided solution, the Deactivate Customer link has been removed from
the left navigation because it is a redundant functionality that is solved on the same page of the customers listing.

Figure 6-48.  Profile view

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

186

Figure 6-49.  Customer management view

Exercise 3
Just as we enabled integrating the Google authentication provider with the Automobile Service Center
application (users were able to log in to the system by using their Google credentials), we should enable
Twitter and Facebook providers.

■■ Note  For more information on how to accomplish this exercise, visit https://docs.microsoft.com/en-
us/aspnet/core/security/authentication/social/.

Summary
You started this chapter by learning about data security and the key advantages of ASP.NET Identity, through
which we can achieve robust security for an ASP.NET web application. You explored the artifacts and APIs
provided by default by an ASP.NET Core application. You set up an Admin account for the Automobile
Service Center application by using ElCamino.AspNetCore.Identity.AzureTable.Model, an open source
NuGet package that supports Azure Table storage as a back end for ASP.NET Core Identity. You also
configured the default Admin account from the appsettings configuration.

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/

Chapter 6 ■ Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol

187

You customized the Login and Logout screens that are provided by default by the ASP.NET Core
Visual Studio template. A custom extension class has been written to retrieve logged-in user information
from claims and display it on the secure layout. You also completed the Reset Password functionality and
integrated it with the MailKit e-mail Library to send an e-mail to users with a password reset link and thereby
allow them to reset their password securely.

You introduced the Engineer role to the system and developed a page to support managing service
engineers. Using this page, an Admin can add, modify, and deactivate a Service Engineer account. All these
functionalities are achieved through custom claims attached to the user identity and stored in Azure Table
storage. Whenever the Admin performs an action on a Service Engineer, he will be via e-mail. Login page
code has been changed accordingly to support service engineer deactivation, so that a deactivated user
cannot log in to the system.

We got familiar with OAuth 2.0 Protocol and understood the concepts and flow of authorization
between different parties. We configured Automobile Service Center to support authentication from Google
OAuth provider. This functionality is primarily used by customers to login in to the system and on successful
authentication a local account is created and associated with user role. A customer can reset the password
for his newly created local account and use either Google’s or local account credentials to access Automobile
Service Center application.

References
	 1.	 https://docs.microsoft.com/en-us/aspnet/core/security/

authentication/social/

	 2.	 https://docs.microsoft.com/en-us/aspnet/core/security/
authentication/social/google-logins

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/google-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/google-logins

189© Rami Vemula 2017
R. Vemula, Real-Time Web Application Development, https://doi.org/10.1007/978-1-4842-3270-5_7

CHAPTER 7

Master Data Management Using
Azure Table Storage

Any real-world application deals with data in three formats: transactional data, batch-processing data,
and master data. Transactional data is data that is accumulated through day-to-day user transactions, and
batch-processing data is from different integrations. Master data is the fine-tuned information that will be
consumed by any application in a given technical solution ecosystem. Typically, it is referential data that
serves the following purposes:

•	 Master data allows only predefined sets of values in business-critical functions.

•	 It will act as a common referential point for integrating various systems.

•	 It helps data storage to always be in a consistent state by maintaining data integrity.

Designing master data for any application should focus on two important criteria. The first criteria
is that master data management should enable data to be easily included or excluded. Preferably, a user
interface should be designed that system administrators can use to manage data.

The second important criteria focuses on the scalability and performance of master data operations.
Because this data is widely used by numerous applications in the ecosystem, frequent queries will occur to
retrieve master data from storage; these queries will result in redundant fetch operations as the same data is
retrieved again and again. A good caching mechanism should be implemented to hold the master data, and
this cache should be invalidated if master data is modified. For the Automobile Service Center application,
we will use Azure Redis Cache to hold master data at the application tier.

The Automobile Service Center is dependent on certain data types such as Vehicle Types, Statuses,
Vehicle Manufacturers, and Vehicle Models. This information is required from day 1 of the application going
live. In this chapter, you will learn key concepts for managing master data in the Automobile Service Center
application.

Managing Master Data in Azure Tables
Master data in the Automobile Service Center application will be stored in two tables: MasterDataKey and
MasterDataValue. The MasterDataKey table stores all the keys; for example, State, County, Vehicle, and
Manufacturer. MasterDataValue stores all the values for the respective keys; for example, California and
Oregon for State; and Sacramento and Orange for County. Both tables are stored in Azure Table storage and
are accessed by using the Unit of Work pattern (which we used in Chapter 4).

First, we need to add the IUnitOfWork dependency to the ASC.Web project. Add the ASC.DataAccess
project reference to the ASC.Web project, as shown in Figure 7-1.

https://doi.org/10.1007/978-1-4842-3270-5_7
http://dx.doi.org/10.1007/978-1-4842-3270-5_4

Chapter 7 ■ Master Data Management Using Azure Table Storage

190

Add IUnitOfWork to IServiceCollection in the ConfigureServices method of the Startup class, as
shown in Listing 7-1. We pass the default connection string from the appsettings configuration.

Listing 7-1.  Resolving IUnitOfWork dependency

services.AddScoped<IUnitOfWork>(p => new UnitOfWork(Configuration.GetSection("ConnectionStri
ngs:DefaultConnection").Value));

■■ Note  We resolve the IUnitOfWork dependency as scoped because we want to have a single instance
of IUnitOfWork in the entire request cycle. We cannot have a singleton instance of IUnitOfWork because it
will be shared across all users, and having a singleton instance would create mishaps in commit and rollback
transactions.

We have to update DefaultConnection in the ConnectionStrings section of the appsettings configuration
file to UseDevelopmentStorage=true;, which points to the local Azure Table storage. Later in the chapters, we
will point it to the actual Azure Table storage connection string.

Create two entities in the Models folder of the ASC.Models project, as shown in Listings 7-2 and 7-3.
MasterDataKey is the entity that will hold all the keys of the master data such as State and County. The
RowKey of the entity is going to be uniquely identified by using Guid, and PartitionKey is going to be name
of the key. MasterDataValue is the entity that will hold the values of master keys. In both entities, we have
the IsActive property, which can be used to turn on/off the entity status in business operations. Finally, we
have the Name property, which is going to hold the name of the entity.

Figure 7-1.  Adding the ASC.DataAccess project reference to the ASC.Web project

Chapter 7 ■ Master Data Management Using Azure Table Storage

191

Listing 7-2.  MasterDataKey Entity

using ASC.Models.BaseTypes;
using System;

namespace ASC.Models.Models
{
 public class MasterDataKey : BaseEntity, IAuditTracker
 {
 public MasterDataKey() { }

 public MasterDataKey(string key)
 {
 this.RowKey = Guid.NewGuid().ToString();
 this.PartitionKey = key;
 }
 public bool IsActive { get; set; }
 public string Name { get; set; }
 }
}

Listing 7-3.  MasterDataValue Entity

using ASC.Models.BaseTypes;
using System;

namespace ASC.Models.Models
{
 public class MasterDataValue : BaseEntity, IAuditTracker
 {
 public MasterDataValue() { }
 public MasterDataValue(string masterDataPartitionKey, string value)
 {
 this.PartitionKey = masterDataPartitionKey;
 this.RowKey = Guid.NewGuid().ToString();
 }
 public bool IsActive { get; set; }
 public string Name { get; set; }
 }
}

As you saw in Chapter 4, we need to call IRepository's CreateTableAsync method to create a table at
Azure Table storage. It is too tedious to call the CreateTableAsync method for all entities that we are going to
create from now on. We will automate the process by updating the Configure method of the Startup class
in the ASC.Web project. First, we need to inject the IUnitOfWork dependency into the Configure method.
We will iterate all the types from the ASC.Models.Models namespace of the ASC.Models assembly. With each
model, we will create an instance of the repository through reflection and call the CreateTableAsync
method, as shown in Listing 7-4, which will create the table in Azure Table storage. This way, when we add
new entities in the ASC.Models.Models namespace, they will be automatically created at Azure Storage.

http://dx.doi.org/10.1007/978-1-4842-3270-5_4

Chapter 7 ■ Master Data Management Using Azure Table Storage

192

Listing 7-4.  Create Azure tables based on types present in ASC.Models

public async void Configure(IApplicationBuilder app,
 IHostingEnvironment env,
 ILoggerFactory loggerFactory,
 IIdentitySeed storageSeed,
 IMasterDataCacheOperations masterDataCacheOperations,
 IUnitOfWork unitOfWork)
{
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseDatabaseErrorPage();
 app.UseBrowserLink();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 }

 app.UseSession();
 app.UseStaticFiles();
 app.UseIdentity();

 app.UseGoogleAuthentication(new GoogleOptions()
 {
 ClientId = Configuration["Google:Identity:ClientId"],
 ClientSecret = Configuration["Google:Identity:ClientSecret"]
 });

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });

 await storageSeed.Seed(app.ApplicationServices.GetService<UserManager<ApplicationUser>>(),
 app.ApplicationServices.GetService<RoleManager<IdentityRole>>(),
 app.ApplicationServices.GetService<IOptions<ApplicationSettings>>());

 �var models = Assembly.Load(new AssemblyName("ASC.Models")).GetTypes().Where(type =>
type.Namespace == "ASC.Models.Models");

 foreach (var model in models)
 {
 �var repositoryInstance = Activator.CreateInstance(typeof(Repository<>).

MakeGenericType(model), unitOfWork);

Chapter 7 ■ Master Data Management Using Azure Table Storage

193

 �MethodInfo method = typeof(Repository<>).MakeGenericType(model).GetMethod("CreateTa
bleAsync");

 method.Invoke(repositoryInstance, new object[0]);
 }

 await masterDataCacheOperations.CreateMasterDataCacheAsync();
}

We will segregate all business logic in a different .NET Core class library. Create a new .NET Core class
library project named ASC.Business, as shown in Figure 7-2.

■■ Note  In a multilayered architecture, a web project will call a business class, which will internally call the
Unit of Work operations. This segregation of code helps achieve code reusability at all layers.

Create a folder named Interfaces in the ASC.Business project. This folder will hold all the business
interfaces. Create an IMasterDataOperations interface in this folder, and its MasterDataOperations
implementation in the root of the ASC.Business project, as shown in Listings 7-5 and 7-6.

Listing 7-5.  IMasterDataOperations interface

using System;
using System.Collections.Generic;
using System.Text;

Figure 7-2.  Creating a .NET Core class library named ASC.Business

Chapter 7 ■ Master Data Management Using Azure Table Storage

194

namespace ASC.Business.Interfaces
{
 public interface IMasterDataOperations
 {
 }
}

Listing 7-6.  MasterDataOperations class

using ASC.Business.Interfaces;

namespace ASC.Business
{
 public class MasterDataOperations : IMasterDataOperations
 {
 }
}

The structure of the project is shown in Figure 7-3.

Because the business project needs to interact with Azure Storage, we need to add references of both
the ASC.DataAccess and ASC.Models projects to the ASC.Business project, as shown in Figure 7-4.

Figure 7-3.  Logical structure of the ASC.Business project

Figure 7-4.  Adding the ASC.DataAccess and ASC.Models project references to the ASC.Business project

Chapter 7 ■ Master Data Management Using Azure Table Storage

195

We will add the actual implementations to MasterDataOperations in order to support retrieving,
adding, and modifying operations to both MasterDataKey and MasterDataValue. IMasterDataOperations
is shown in Listing 7-7.

Listing 7-7.  Updated IMasterDataOperations interface

using ASC.Models.Models;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace ASC.Business.Interfaces
{
 public interface IMasterDataOperations
 {
 Task<List<MasterDataKey>> GetAllMasterKeysAsync();
 Task<List<MasterDataKey>> GetMaserKeyByNameAsync(string name);
 Task<bool> InsertMasterKeyAsync(MasterDataKey key);
 Task<bool> UpdateMasterKeyAsync(string orginalPartitionKey, MasterDataKey key);

 Task<List<MasterDataValue>> GetAllMasterValuesByKeyAsync(string key);
 Task<List<MasterDataValue>> GetAllMasterValuesAsync();
 Task<MasterDataValue> GetMasterValueByNameAsync(string key, string name);
 Task<bool> InsertMasterValueAsync(MasterDataValue value);
 �Task<bool> UpdateMasterValueAsync(string originalPartitionKey, string originalRowKey,

MasterDataValue value);
 }
}

MasterDataOperations is shown in Listing 7-8. MasterDataOperations has all methods that can be
used to read, create, and update both MasterDataKey and MasterDataValue entities. This class uses an
IUnitOfWork instance that is injected through constructor dependency. We use the IUnitOfWork instance
to fetch repositories and perform all operations on them. Finally, we will commit all transactions by using
IUnitOfWork’s CommitTransaction method.

■■ Note  Refer to Chapter 4 for implementation and usage details of the Unit of Work. The IUnitOfWork
dependency is resolved at the ASC.Web project, which will be injected through the constructor to
MasterDataOperations.

Listing 7-8.  Updated MasterDataOperations class

using System.Collections.Generic;
using ASC.Business.Interfaces;
using ASC.Models.Models;
using ASC.DataAccess.Interfaces;
using System.Threading.Tasks;
using System.Linq;

http://dx.doi.org/10.1007/978-1-4842-3270-5_4

Chapter 7 ■ Master Data Management Using Azure Table Storage

196

namespace ASC.Business
{
 public class MasterDataOperations : IMasterDataOperations
 {
 private readonly IUnitOfWork _unitOfWork;
 public MasterDataOperations(IUnitOfWork unitOfWork)
 {
 _unitOfWork = unitOfWork;
 }

 public async Task<List<MasterDataKey>> GetAllMasterKeysAsync()
 {
 var masterKeys = await _unitOfWork.Repository<MasterDataKey>().FindAllAsync();
 return masterKeys.ToList();
 }

 public async Task<List<MasterDataKey>> GetMaserKeyByNameAsync(string name)
 {
 �var masterKeys = await _unitOfWork.Repository<MasterDataKey>().FindAllBy

PartitionKeyAsync(name);
 return masterKeys.ToList();
 }

 public async Task<bool> InsertMasterKeyAsync(MasterDataKey key)
 {
 using (_unitOfWork)
 {
 await _unitOfWork.Repository<MasterDataKey>().AddAsync(key);
 _unitOfWork.CommitTransaction();
 return true;
 }
 }

 public async Task<List<MasterDataValue>> GetAllMasterValuesByKeyAsync(string key)
 {
 �var masterKeys = await _unitOfWork.Repository<MasterDataValue>().FindAllBy

PartitionKeyAsync(key);
 return masterKeys.ToList();
 }

 public async Task<MasterDataValue> GetMasterValueByNameAsync(string key, string name)
 {
 �var masterValues = await _unitOfWork.Repository<MasterDataValue>().

FindAsync(key, name);
 return masterValues;
 }

 public async Task<bool> InsertMasterValueAsync(MasterDataValue value)
 {
 using (_unitOfWork)
 {
 await _unitOfWork.Repository<MasterDataValue>().AddAsync(value);

Chapter 7 ■ Master Data Management Using Azure Table Storage

197

 _unitOfWork.CommitTransaction();
 return true;
 }
 }

 �public async Task<bool> UpdateMasterKeyAsync(string orginalPartitionKey,
MasterDataKey key)

 {
 using (_unitOfWork)
 {
 �var masterKey = await _unitOfWork.Repository<MasterDataKey>().

FindAsync(orginalPartitionKey, key.RowKey);
 masterKey.IsActive = key.IsActive;
 masterKey.IsDeleted = key.IsDeleted;
 masterKey.Name = key.Name;

 await _unitOfWork.Repository<MasterDataKey>().UpdateAsync(masterKey);
 _unitOfWork.CommitTransaction();
 return true;
 }
 }

 �public async Task<bool> UpdateMasterValueAsync(string originalPartitionKey, string
originalRowKey, MasterDataValue value)

 {
 using (_unitOfWork)
 {
 �var masterValue = await _unitOfWork.Repository<MasterDataValue>().

FindAsync(originalPartitionKey, originalRowKey);
 masterValue.IsActive = value.IsActive;
 masterValue.IsDeleted = value.IsDeleted;
 masterValue.Name = value.Name;

 await _unitOfWork.Repository<MasterDataValue>().UpdateAsync(masterValue);
 _unitOfWork.CommitTransaction();
 return true;
 }
 }

 public async Task<List<MasterDataValue>> GetAllMasterValuesAsync()
 {
 �var masterValues = await _unitOfWork.Repository<MasterDataValue>().

FindAllAsync();
 return masterValues.ToList();
 }
 }
}

To consume business project methods in the web project, we need to add the reference of
ASC.Business to the ASC.Web project, as shown in Figure 7-5.

Chapter 7 ■ Master Data Management Using Azure Table Storage

198

We will resolve the IMasterDataOperations dependency by adding it to the services in the
ConfigureServices method of the Startup class, as shown in Listing 7-9.

Listing 7-9.  Resolving the IMasterDataOperations dependency

services.AddScoped<IMasterDataOperations, MasterDataOperations>();

Now we will create two pages in the ASC.Web project, through which Admin can manage
the MasterDataKey and MasterDataValue entities. First, we will create a new controller named
MasterDataController, as shown in Listing 7-10, and inject IMasterDataOperations through the controller's
constructor.

Listing 7-10.  MasterDataController

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Authorization;
using ASC.Business.Interfaces;

namespace ASC.Web.Controllers
{
 [Authorize(Roles = "Admin")]
 public class MasterDataController : BaseController
 {
 private readonly IMasterDataOperations _masterData;
 public MasterDataController(IMasterDataOperations masterData)
 {
 _masterData = masterData;
 }
 }
}

Figure 7-5.  Adding the ASC.Business project reference to the ASC.Web project

Chapter 7 ■ Master Data Management Using Azure Table Storage

199

We will create new view models named MasterKeysViewModel and MasterDataKeyViewModel, which
will be used by both the controller and view to display a list of master keys and to add/update a new/existing
master key. Create a folder named MasterDataViewModels under the Models folder of the ASC.Web project,
and place the view models as shown in Listing 7-11.

Listing 7-11.  MasterKeysViewModel class

using ASC.Models.Models;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;

namespace ASC.Web.Models.MasterDataViewModels
{
 public class MasterKeysViewModel
 {
 public List<MasterDataKeyViewModel> MasterKeys { get; set; }
 public MasterDataKeyViewModel MasterKeyInContext { get; set; }
 public bool IsEdit { get; set; }
 }
}

MasterDataKeyViewModel is shown in Listing 7-12.

Listing 7-12.  MasterDataKeyViewModel class

using System.ComponentModel.DataAnnotations;

namespace ASC.Web.Models.MasterDataViewModels
{
 public class MasterDataKeyViewModel
 {
 public string RowKey { get; set; }
 public string PartitionKey { get; set; }
 public bool IsActive { get; set; }

 [Required]
 public string Name { get; set; }
 }
}

■■ Note  We use AutoMapper to map business models to our web view models. AutoMapper is an object-to-
object mapper that uses a fluent configuration API to define an object-to-object mapping strategy.

Install the AutoMapper and AutoMapper.Extensions.Microsoft.DependencyInjection NuGet
packages to the ASC.Web project, as shown in Figures 7-6 and 7-7.

Chapter 7 ■ Master Data Management Using Azure Table Storage

200

Add AutoMapper to the ASP.NET Core services in the ConfigureServices method of the Startup class,
as shown in Listing 7-13.

Listing 7-13.  Add AutoMapper service

services.AddAutoMapper();

We inject AutoMapper through the constructor of MasterDataController, and in the GET action we
map the list of MasterDataKey to the list of MasterDataKeyViewModel. In the POST action, we will map
MasterDataKeyViewModel to MasterDataKey and save it to Azure Table storage.

Create a class in the Models folder of the ASC.Web project named MappingProfile, which will have
AutoMapper mappings for MasterDataKey and MasterDataKeyViewModel, as shown in Listing 7-14.

Listing 7-14.  Automapper’s MappingProfile class

using ASC.Models.Models;
using ASC.Web.Models.MasterDataViewModels;
using AutoMapper;

namespace ASC.Web.Models
{
 public class MappingProfile : Profile
 {
 public MappingProfile()
 {
 CreateMap<MasterDataKey, MasterDataKeyViewModel>();
 CreateMap<MasterDataKeyViewModel, MasterDataKey>();
 }
 }
}

Figure 7-6.  Installing the AutoMapper NuGet package to the ASC.Web project

Figure 7-7.  Installing the AutoMapper.Extensions.Microsoft.DependencyInjection NuGet package to the
ASC.Web project

Chapter 7 ■ Master Data Management Using Azure Table Storage

201

The GET and POST actions to manage master keys are shown in Listing 7-15. The GET action gets
all the master keys and transforms MasterDataKey to MasterDataKeyViewModel and passes the model to
MasterKeys.cshtml. The POST action first validates the model and then based on IsEdit flag it will either
update or insert a master key.

Listing 7-15.  GET and POST actions of Master Keys

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Authorization;
using ASC.Business.Interfaces;
using System.Threading.Tasks;
using ASC.Utilities;
using ASC.Models.Models;
using System.Collections.Generic;
using System.Linq;
using ASC.Web.Models.MasterDataViewModels;
using System;
using AutoMapper;

namespace ASC.Web.Controllers
{
 [Authorize(Roles = "Admin")]
 public class MasterDataController : BaseController
 {
 private readonly IMasterDataOperations _masterData;
 private readonly IMapper _mapper;
 public MasterDataController(IMasterDataOperations masterData, IMapper mapper)
 {
 _masterData = masterData;
 _mapper = mapper;
 }

 [HttpGet]
 public async Task<IActionResult> MasterKeys()
 {
 var masterKeys = await _masterData.GetAllMasterKeysAsync();
 �var masterKeysViewModel = _mapper.Map<List<MasterDataKey>, List<MasterDataKey

ViewModel>>(masterKeys);

 // Hold all Master Keys in session
 HttpContext.Session.SetSession("MasterKeys", masterKeysViewModel);

 return View(new MasterKeysViewModel
 {
 �MasterKeys = masterKeysViewModel == null ? null : masterKeysViewModel.ToList(),
 IsEdit = false
 });
 }

Chapter 7 ■ Master Data Management Using Azure Table Storage

202

 [HttpPost]
 [ValidateAntiForgeryToken]
 public async Task<IActionResult> MasterKeys(MasterKeysViewModel masterKeys)
 {
 �masterKeys.MasterKeys = HttpContext.Session.GetSession<List<MasterDataKeyView

Model>>("MasterKeys");
 if (!ModelState.IsValid)
 {
 return View(masterKeys);
 }

 �var masterKey = _mapper.Map<MasterDataKeyViewModel, MasterDataKey>(masterKeys.
MasterKeyInContext);

 if (masterKeys.IsEdit)
 {
 // Update Master Key
 �await _masterData.UpdateMasterKeyAsync(masterKeys.MasterKeyInContext.

PartitionKey, masterKey);
 }
 else
 {
 // Insert Master Key
 masterKey.RowKey = Guid.NewGuid().ToString();
 masterKey.PartitionKey = masterKey.Name;
 await _masterData.InsertMasterKeyAsync(masterKey);
 }

 return RedirectToAction("MasterKeys");
 }
 }
}

In MasterKeys.cshtml, Admin can create a new master key or edit an existing one. Create a folder
named MasterData in the Views folder, and place MasterKeys.cshtml as shown in Listing 7-16.

An HTML table has been defined, and all the master keys are iterated and rendered in the same table.
By default, we will show RowKey, Name, IsActive, and Edit action columns in the table. If no master keys
are available, no record message will be displayed in the table. The details section of the view contains a
form tag with the required elements for RowKey, PartitionKey, Name, and Active flags. By default, we will not
give Admin an option to change the RowKey of the master key. We also maintain hidden fields in the form to
identify information such as type of operation (Create or Update) and PartitionKey.

The view also contains JQuery code that is primarily used to configure DataTable by initializing it with
page size and length options. We also set the required styles of DataTable. In JQuery code, we also hide the
IsActive column by default because we will not show a Boolean flag for the IsActive column; instead, we
will show a green tick or red X. The PartitionKey column is also hidden by default.

We will also handle the reset button functionality in JQuery, through which users can discard their
changes. Finally, an Edit click event is handled, in which we will populate the details section with the
information of the master key that is in edit mode. JQuery code is also used to populate the RowKey and
PartitionKey hidden fields, which are used by the POST action to identity the entity that is being edited.

Chapter 7 ■ Master Data Management Using Azure Table Storage

203

Listing 7-16.  Master Keys View with JQuery code

@model ASC.Web.Models.MasterDataViewModels.MasterKeysViewModel
@{
 Layout = "_SecureLayout";
}

<div class="row"></div>
<div class="row padding-top-20px">

 <div class="row z-depth-3">
 <div class="section white-text padding-left-10px blue-grey lighten-1">
 <h5>Master Keys</h5>
 </div>
 <div class="divider"></div>
 <div class="col s12 padding-bottom-15px">
 @if (Model.MasterKeys != null)
 {
 @* Display List of Master Keys *@
 <table class="highlight centered" id="tblMasterKeys">
 <thead>
 <tr>
 <th data-field="RowKey">Row Key</th>
 <th data-field="PartitionKey">Partition Key</th>
 <th data-field="Name">Name</th>
 <th data-field="IsActive">Is Active</th>
 <th data-field="IsActiveImg">Is Active</th>
 <th data-field="Actions">Edit</th>
 </tr>
 </thead>
 <tbody>
 @foreach (var masterKey in Model.MasterKeys)
 {
 <tr>
 <td>@masterKey.RowKey</td>
 <td>@masterKey.PartitionKey</td>
 <td>@masterKey.Name</td>
 <td>@masterKey.IsActive</td>
 �<td><img src="@(masterKey.IsActive ? "/images/green_tick.

png" : "/images/red_cross.png")" /></td>
 �<td><i class="small material-icons edit cursor-hand">mode_

edit</i></td>
 </tr>
 }
 </tbody>
 </table>
 }
 else

Chapter 7 ■ Master Data Management Using Azure Table Storage

204

 {
 @* In case of No records, display no records message *@
 <div class="card blue-grey lighten-1">
 <div class="card-content white-text">
 No Service Engineers!!!
 <p>
 No Master Keys found, please add a Master Key to system.
 </p>
 </div>
 </div>
 }
 </div>
 </div>

 <div class="row"></div>

 @* Details Section *@
 <div class="row z-depth-3">
 <div class="col s12 padding-0px">
 <div class="section white-text padding-left-10px blue-grey lighten-1">
 <h5>Master Key Details</h5>
 </div>
 <div class="divider"></div>
 �<form asp-controller="MasterData" asp-action="MasterKeys" method="post"

class="col s12" id="formMasterKey">
 <div class="row">
 <input type="hidden" asp-for="IsEdit" />
 <input type="hidden" asp-for="MasterKeyInContext.RowKey" />
 <input type="hidden" asp-for="MasterKeyInContext.PartitionKey" />
 <div class="input-field col s4">
 �<input asp-for="MasterKeyInContext.RowKey" id="Input_MasterKey_

RowKey" disabled="disabled" />
 <label asp-for="MasterKeyInContext.RowKey"></label>
 </div>
 <div class="input-field col s4">
 <input asp-for="MasterKeyInContext.Name" class="validate" />
 <label asp-for="MasterKeyInContext.Name"></label>
 </div>
 <div class="input-field col s4">
 <div class="switch">
 <label>
 Is Active
 �<input asp-for="MasterKeyInContext.IsActive"

class="validate" />

 </label>
 </div>
 </div>
 </div>

Chapter 7 ■ Master Data Management Using Azure Table Storage

205

 <div class="row">
 <div class="input-field col s12 right-align">
 �<button class="btn waves-effect waves-light btnSubmit"

type="submit" name="action">
 Create
 <i class="material-icons right">send</i>
 </button>
 �<button class="btn waves-effect waves-light reset red

lighten-1" type="button" name="action">
 Reset
 </button>
 </div>
 �<div class="row col s12 right-align" asp-validation-summary="All">

</div>
 </div>
</form>

 </div>
 <div class="row"></div>

 </div>

</div>

@section Scripts{
 <script>
 $(document).ready(function () {
 // Initialize DataTable to show list of Engineers
 var table = $('#tblMasterKeys').DataTable({
 'pageLength': 3,
 // Number of records to be displayed per page
 'lengthMenu': [[3, 5, 10, -1], [3, 5, 10, 'All']]
 });

 // Set Styles for DataTable and Number of Records to be displayed in dropdown
 $('#tblMasterKeys').css("width", "100%");
 $('select[name="tblMasterKeys_length"]').material_select();

 // Get the column API object
 var partitionKeyColumn = table.column(1);
 partitionKeyColumn.visible(false);

 var isActiveColumn = table.column(3);
 isActiveColumn.visible(false);

 // Handle Reset functionality
 $(document).on("click", ".reset", function () {
 $('#formMasterKey')[0].reset();
 $('.btnSubmit').text('Create');
 $('#IsEdit').val('False');
 });

Chapter 7 ■ Master Data Management Using Azure Table Storage

206

 �// On click of Edit icon, populate the details section with details of service engineer
 $(document).on('click', '.edit', function () {
 var user = $('#tblMasterKeys').DataTable().row($(this).parents('tr')).data();

 $('#IsEdit').val('True');
 // Map Row Key
 $('#MasterKeyInContext_RowKey').val(user[0]);
 $('#Input_MasterKey_RowKey').val(user[0]);
 // Map Partition Key
 $('#MasterKeyInContext_PartitionKey').val(user[1]);
 // Map Name
 $('#MasterKeyInContext_Name').val(user[2]);
 $('#MasterKeyInContext_Name').addClass('valid');
 // Map IsActive
 �$('#MasterKeyInContext_IsActive').prop('checked', user[3] === 'True' ?

true : false);

 $('.btnSubmit').text('Save');
 Materialize.updateTextFields();
 });

 });
 </script>
}

Modify SecureLayout to support navigation to the MasterKeys view, as shown in Listing 7-17.

Listing 7-17.  Master Keys menu item in left navigation

 <ul class="collapsible collapsible-accordion">

 �Master Data<i class="material-icons">

perm_data_setting</i>
 <div class="collapsible-body">

 �<a asp-controller="MasterData" asp-action="MasterKeys"

class="collapsible-header">Master Keys<i class="material-icons">data_
usage</i>

 �<a class="collapsible-header" href="#!"
id="ancrResetPassword">Master Values<i class="material-icons">settings_
system_daydream</i>

 </div>

Chapter 7 ■ Master Data Management Using Azure Table Storage

207

Run the application and login as Admin. You should see the Master Data section in the left navigation
menu, as shown in Figure 7-8.

Click the Master Keys menu item. You should see the Master Keys view, as shown in Figure 7-9.

Figure 7-8.  Master Data section in the left navigation menu

Chapter 7 ■ Master Data Management Using Azure Table Storage

208

Enter a Master Key value (for example, Status), set Is Active to True, and click Create. We should have a
master key created in Azure Storage, and the grid will be updated as shown in Figure 7-10.

Figure 7-9.  Master Keys page

Chapter 7 ■ Master Data Management Using Azure Table Storage

209

Click the Edit icon. Change the value of the Master Key name from Status to any other value, and then
click Save, as shown in Figure 7-11.

Figure 7-10.  Newly added master key in the Master Keys table

Figure 7-11.  Edit operation on the master key

Chapter 7 ■ Master Data Management Using Azure Table Storage

210

The master key will be updated in Azure Storage, and the Master Keys grid will be updated as shown in
Figure 7-12.

If we look at Azure Storage, we will see the updated value, as shown in Figure 7-13.

Because we enabled IAuditTracker on the MasterDataKey entity, we should see audit entries for the
master key, as shown in Figure 7-14.

Figure 7-12.  Edit operation on master key

Figure 7-13.  MasterDataKey table updated with new values

Figure 7-14.  MasterDataKeyAudit records

Chapter 7 ■ Master Data Management Using Azure Table Storage

211

■■ Note  To learn more about implementing IAuditTracker, refer to the “Auditing Data Through Snapshots”
section of Chapter 4.

Now we will create a page to manage master values for a given master key. First, we will create new view
models named MasterValuesViewModel and MasterDataValueViewModel in the MasterDataViewModels
folder of the ASC.Web project. These view models will be used by both controller and view to display list of
master values based on a master key and add/update a new/existing master value.

MasterDataValueViewModel is shown in Listing 7-18.

Listing 7-18.  MasterDataValueViewModel class

using System.ComponentModel.DataAnnotations;

namespace ASC.Web.Models.MasterDataViewModels
{
 public class MasterDataValueViewModel
 {
 public string RowKey { get; set; }
 [Required]
 [Display(Name = "Partition Key")]
 public string PartitionKey { get; set; }
 public bool IsActive { get; set; }

 [Required]
 public string Name { get; set; }
 }
}

Similarly, MasterValuesViewModel is shown in Listing 7-19.

Listing 7-19.  MasterValuesViewModel class

using System.Collections.Generic;

namespace ASC.Web.Models.MasterDataViewModels
{
 public class MasterValuesViewModel
 {
 public List<MasterDataValueViewModel> MasterValues { get; set; }
 public MasterDataValueViewModel MasterValueInContext { get; set; }
 public bool IsEdit { get; set; }
 }
}

We need to create the necessary AutoMapper mappings for MasterDataValueViewModel to the
MasterDataValue business model to support data transformation from page to business methods. Add
mappings in the MappingProfile class, as shown in Listing 7-20.

http://dx.doi.org/10.1007/978-1-4842-3270-5_4

Chapter 7 ■ Master Data Management Using Azure Table Storage

212

Listing 7-20.  Updated AutoMapper’s MappingProfile class

using ASC.Models.Models;
using ASC.Web.Models.MasterDataViewModels;
using AutoMapper;

namespace ASC.Web.Models
{
 public class MappingProfile : Profile
 {
 public MappingProfile()
 {
 CreateMap<MasterDataKey, MasterDataKeyViewModel>();
 CreateMap<MasterDataKeyViewModel, MasterDataKey>();
 CreateMap<MasterDataValue, MasterDataValueViewModel>();
 CreateMap<MasterDataValueViewModel, MasterDataValue>();
 }
 }
}

■■ Note  We will follow a different approach in displaying and modifying data related to master values. We will
take AJAX-based JSON data to bind master values to a DataTable based on the selected master key.

To support AJAX-based JSON data, we need two actions. The first action is to render the view with all
master keys in a select tag. Upon selecting a master key in the select tag, we will need to make an AJAX call
to the server to fetch all the related master values associated with the master key. The second action is used
to fetch the master values based on the master key, as shown in Listing 7-21.

Listing 7-21.  Action methods of Master Values

[HttpGet]
public async Task<IActionResult> MasterValues()
{
 // Get All Master Keys and hold them in ViewBag for Select tag
 ViewBag.MasterKeys = await _masterData.GetAllMasterKeysAsync();

 return View(new MasterValuesViewModel
 {
 MasterValues = new List<MasterDataValueViewModel>(),
 IsEdit = false
 });
}

[HttpGet]
public async Task<IActionResult> MasterValuesByKey(string key)
{
 // Get Master values based on master key.
 return Json(new { data = await _masterData.GetAllMasterValuesByKeyAsync(key) });
}

Chapter 7 ■ Master Data Management Using Azure Table Storage

213

■■ Note  By default, ASP.NET Core MVC serializes JSON data by using camel casing. To prevent that, we need
to add the following configuration to MVC in the ConfigureServices method of the Startup class:

Services.AddMc().AddJsonOptions(options => options.SerializerSettings.ContractResolver =

newDefaultContactResolver ());

The POST action of master values is a simple action that is similar to the POST action of master keys, as
shown in Listing 7-22. The POST action will first validate ModelState, and if it passes, it will either update
or insert based on the IsEdit flag passed from the user interface. Finally, it will send a JSON true response
back to the user interface.

Listing 7-22.  POST action of Master Values

[HttpPost]
[ValidateAntiForgeryToken]
�public async Task<IActionResult> MasterValues(bool isEdit, MasterDataValueViewModel
masterValue)
{
 if (!ModelState.IsValid)
 {
 return Json("Error");
 }

 �var masterDataValue = _mapper.Map<MasterDataValueViewModel,
MasterDataValue>(masterValue);

 if (isEdit)
 {
 // Update Master Value
 �await _masterData.UpdateMasterValueAsync(masterDataValue.PartitionKey,

masterDataValue.RowKey, masterDataValue);
 }
 else
 {
 // Insert Master Value
 masterDataValue.RowKey = Guid.NewGuid().ToString();
 await _masterData.InsertMasterValueAsync(masterDataValue);
 }

 return Json(true);
}

We will now create the view for master values, as shown in Listing 7-23. This view will have two sections.
The top section will have a select tag with all master keys populated from the ViewBag data. This section also
holds the empty Table tag, which will be populated with master values based on the selected master key.

The bottom section of the view is a typical details section. This details section will be populated based
on the edit operation made in the top section of the table. The details section also holds a select tag for
PartitionKey, which is again prepopulated with all master keys from the ViewBag data. This is used to
associate a particular master value to a master key at the time of creation. The user can perform insert or
update operations in this section for a specific master value.

Chapter 7 ■ Master Data Management Using Azure Table Storage

214

During an edit operation, the user cannot modify the RowKey and PartitionKey associated with a
master value. In an insert operation, users cannot enter a RowKey because it is generated automatically with
a unique GUID, but they can select a PartitionKey to associate the new master value that is about to be
created.

Listing 7-23.  Master values view

@model ASC.Web.Models.MasterDataViewModels.MasterValuesViewModel
@{
 Layout = "_SecureLayout";
}

<div class="row"></div>
<div class="row padding-top-20px">

 <div class="row z-depth-3">
 <div class="section white-text padding-left-10px blue-grey lighten-1">
 <h5>Master Values</h5>
 </div>
 <div class="divider"></div>
 <div class="col s4 padding-bottom-15px">
 �<select id="ddlMasterKeys" asp-items="@(new SelectList(ViewBag.MasterKeys,

"RowKey","PartitionKey"))">
 <option>--Select--</option>
 </select>
 <label>Partition Key</label>
 </div>
 <div class="col s12 padding-bottom-15px">
 @* Display List of Master Values *@
 <table class="highlight centered" id="tblMasterValues">
 <thead>
 <tr>
 <th data-field="RowKey">Row Key</th>
 <th data-field="PartitionKey">Partition Key</th>
 <th data-field="Name">Name</th>
 <th data-field="IsActive">Is Active</th>
 <th data-field="Actions">Edit</th>
 </tr>
 </thead>
 </table>
 </div>
 </div>

 <div class="row"></div>

 @* Details Section *@
 <div class="row z-depth-3">
 <div class="col s12 padding-0px">
 <div class="section white-text padding-left-10px blue-grey lighten-1">
 <h5>Master Value Details</h5>
 </div>
 <div class="divider"></div>

Chapter 7 ■ Master Data Management Using Azure Table Storage

215

 �<form asp-controller="MasterData" asp-action="MasterValues" method="post"
class="col s12" id="formMasterValue">

 <div class="row">
 <input type="hidden" asp-for="IsEdit" />
 <input type="hidden" asp-for="MasterValueInContext.RowKey" />
 <input type="hidden" asp-for="MasterValueInContext.PartitionKey" />
 <div class="input-field col s4">
 �<input asp-for="MasterValueInContext.RowKey" id="Input_MasterKey_

RowKey" disabled="disabled" />
 <label asp-for="MasterValueInContext.RowKey"></label>
 </div>
 <div class="input-field col s4">
 <select id="Select_MasterValueInContext_PartitionKey"
 asp-for="MasterValueInContext.PartitionKey"
 �asp-items="@(new SelectList(ViewBag.MasterKeys,"RowKey",

"PartitionKey"))"
 required="required">
 <option value="">--Select--</option>
 </select>
 <label>Partition Key</label>
 </div>
 <div class="input-field col s4">
 <input asp-for="MasterValueInContext.Name" class="validate" />
 <label asp-for="MasterValueInContext.Name"></label>
 </div>
 </div>
 <div class="row">
 <div class="input-field col s4">
 <div class="switch">
 <label>
 Is Active
 �<input asp-for="MasterValueInContext.IsActive"

class="validate" />

 </label>
 </div>
 </div>
 <div class="input-field col s8 right-align">
 �<button class="btn waves-effect waves-light btnSubmit" type="button"

name="action">
 Create
 <i class="material-icons right">send</i>
 </button>
 �<button class="btn waves-effect waves-light reset red lighten-1"

type="button" name="action">
 Reset
 </button>
 </div>
 <div class="row col s12 right-align" asp-validation-summary="All"></div>
 </div>
 </form>

Chapter 7 ■ Master Data Management Using Azure Table Storage

216

 </div>
 <div class="row"></div>
 </div>
</div>

To support the Master Values view, we have JQuery code written in the view, as shown in Listing 7-24.
The script consists of the following main concepts:

•	 Anti-forgery request validation: By default, ASP.NET MVC Core creates a request
verification token and places in HTML. This token should be sent in all POST
requests to the server to validate a request for forgery. This security flow happens
seamlessly for normal POST operations, as the server posts hidden fields by default.
But for AJAX POST operations, we need to explicitly get the hidden field value and
pass it in the request headers. This is achieved as part of setting up the default for
AJAX requests by using the $.ajaxSetup method.

•	 Initialize DataTable: The Master Values screen’s DataTable is going to be based on
the data sent in response to the AJAX request on the MasterValuesByKey action. We
initialize DataTable by indicating the necessary AJAX endpoint and type of operation
(GET, in this case). Then we configure the settings for page length and number of
records per page. We define the columns that need to be displayed in DataTable.
Finally, we define the custom render functions for the InActive and Actions
columns.

•	 Styles: We set up the basic styles for the Material CSS Dropdown and DataTable.

•	 Reset: This function resets all the controls in the details section and enables the
PartitionKey select tag, so that the user can proceed with creating the new master
value.

•	 Edit: This function is invoked whenever the user clicks the Edit icon of any master
value record in the DataTable. This function populates the details section with the
details of the record that is the context of the edit operation. It also sets the hidden
fields such as RowKey that will be used in the POST action for identifying the master
value record that is being edited.

•	 Master keys select change: This event will be triggered whenever the user changes
the master key option in the select tag. This event will reload the master values
DataTable from Azure Storage by making an AJAX call to the MasterValuesByKey
action with the selected master key.

•	 Submit: This function will be triggered whenever the users clicks the Save/Create
button in the Details section. It will create a JQuery object of the master value (which
is being created or modified) and send it to the MasterValues POST action through
the AJAX call. Upon a successful POST operation, the master values DataTable is
reloaded with the selected option in the master keys select tag.

■■ Note  We need the following code to fire a mandatory validation on the select list. This is a known
workaround for material select list.

$("select[required]").css({ display: "block", position: 'absolute', visibility: 'hidden' });

Chapter 7 ■ Master Data Management Using Azure Table Storage

217

Listing 7-24.  JQuery code on Master Values view

@section Scripts{
 <script>
 $(document).ready(function () {
 // Need to pass Verification Token to get Request Validated for Forgery
 �var token = $('input[type=hidden][name=__RequestVerificationToken]',

document).val();
 $.ajaxSetup({
 // Disable caching of AJAX responses
 cache: false,
 headers: { 'RequestVerificationToken': token }
 });

 // Initialize DataTable to show list of Master Values
 var table = $('#tblMasterValues').DataTable({
 // Make AJAX call based to get Master Values from Server
 'ajax': {
 'url': '@Url.Action("MasterValuesByKey", "MasterData")',
 'type': 'GET'
 },
 'pageLength': 3,
 // Number of records to be displayed per page
 'lengthMenu': [[3, 5, 10, -1], [3, 5, 10, 'All']],
 // Set Columns
 'columns': [
 { 'data': 'RowKey' },
 { 'data': 'PartitionKey' },
 { 'data': 'Name' },
 { 'data': 'IsActive' },
 { 'data': 'Actions', }
],
 // Set Custom Column definitions and define their render HTML.
 "aoColumnDefs": [
 {
 "aTargets": [3],
 "mData": "IsActive",
 "mRender": function (data, type, full) {
 if (data === true)
 return '';
 else
 return '';
 }
 },
 {
 "aTargets": [4],
 "mData": "Actions",
 "mRender": function (data, type, full) {
 �return '<i class="small material-icons edit cursor-hand">

mode_edit</i>';

Chapter 7 ■ Master Data Management Using Azure Table Storage

218

 }
 }
]
 });

 // Set Styles for DataTable and Number of Records to be displayed in drop-down
 $('#tblMasterValues').css("width", "100%");
 $('select[name="tblMasterValues_length"]').material_select();
 �$("select[required]").css({ display: "block", position: 'absolute', visibility:

'hidden' });
 // Initialize Master Key Select
 $('select').material_select();

 // Handle Reset functionality
 $(document).on("click", ".reset", function () {
 $('#formMasterValue')[0].reset();
 $('.btnSubmit').text('Create');
 $('#IsEdit').val('False');

 // Remove Partition key disabled attribute
 $('#Select_MasterValueInContext_PartitionKey').material_select('destroy');
 $('#Select_MasterValueInContext_PartitionKey').removeAttr('disabled');
 $('#Select_MasterValueInContext_PartitionKey').material_select();

 // Remove the validation error messages.
 $('.validation-summary-valid').find("ul").html('');
 });

 �// On click of Edit icon, populate the details section with details of service
engineer

 $(document).on('click', '.edit', function () {
 �var user = $('#tblMasterValues').DataTable().row($(this).parents('tr')).data();

 $('#IsEdit').val('True');
 // Map Row Key
 $('#MasterValueInContext_RowKey').val(user["RowKey"]);
 $('#Input_MasterKey_RowKey').val(user["RowKey"]);

 // Map Partition Key
 $('#MasterValueInContext_PartitionKey').val(user["PartitionKey"]);
 // Set Partition Key Dropdown and re-initialize Material Select
 $('#Select_MasterValueInContext_PartitionKey').material_select('destroy');
 �$('#Select_MasterValueInContext_PartitionKey option:contains(' +

user['PartitionKey'] + ')').prop('selected', true);
 $('#Select_MasterValueInContext_PartitionKey').attr('disabled', 'disabled');
 $('#Select_MasterValueInContext_PartitionKey').material_select();

 // Remove valid class for dropdownlist, as it is disabled
 $('.select-wrapper').removeClass('valid');

Chapter 7 ■ Master Data Management Using Azure Table Storage

219

 // Map Name
 $('#MasterValueInContext_Name').val(user["Name"]);
 $('#MasterValueInContext_Name').addClass('valid');
 // Map IsActive
 �$('#MasterValueInContext_IsActive').prop('checked', user["IsActive"] ===

true ? true : false);

 $('.btnSubmit').text('Save');
 Materialize.updateTextFields();
 });

 // Dropdown change event
 $(document).on('change', '#ddlMasterKeys', function () {
 �table.ajax.url('@Url.Action("MasterValuesByKey","MasterData")' + '?key=' +

$('#ddlMasterKeys option:selected').text());
 table.ajax.reload();
 });

 // Save/Create Button Click Event
 $(document).on('click', '.btnSubmit', function () {
 var form = $("#formMasterValue");
 if ($(form).valid()) {
 // Create the POST Object
 var masterData = new Object();
 masterData.Name = $('#MasterValueInContext_Name').val();
 �masterData.PartitionKey = $('#Select_MasterValueInContext_PartitionKey

option:selected').text();
 �masterData.IsActive = $('#MasterValueInContext_IsActive').is(':checked');

 if ($('#IsEdit').val())
 masterData.RowKey = $('#MasterValueInContext_RowKey').val();

 // POST the data to server
 $.post('@Url.Action("MasterValues", "MasterData")',
 { masterValue: masterData, isEdit: $('#IsEdit').val() },
 function (data, status, xhr) {
 �table.ajax.url('@Url.Action("MasterValuesByKey","MasterData")' +

'?key=' + $('#ddlMasterKeys option:selected').text());
 table.ajax.reload();
 });

 // Reset the form
 $('.reset').click();

 �// Remove valid class for materialize css dropdown, otherwise there is a
CSS distortion

 $('.select-wrapper').removeClass('valid');
 }
 });
 });
 </script>
}

Chapter 7 ■ Master Data Management Using Azure Table Storage

220

Run the application and navigate to the Master Values screen by clicking the left navigation menu
option, as shown in Figure 7-15.

Enter data into the Details section as shown in Figure 7-16 and click Create. Similarly, add other values
such as InProgress and Completed.

Figure 7-15.  Master Values screen

Chapter 7 ■ Master Data Management Using Azure Table Storage

221

Select Status in the master keys select tag in the Master Values section. All the newly added values
should be displayed in the table, as shown in Figure 7-17.

Click the Edit icon of the Pending value. The corresponding details should be visible in the details
section, as shown in Figure 7-18.

Figure 7-16.  Creating a new master value

Figure 7-17.  Master Values section

Chapter 7 ■ Master Data Management Using Azure Table Storage

222

Update the Pending value to OnHold and click Save. The value should be updated, and the table should
be refreshed, as shown in Figure 7-19.

Similarly, we can add values to any master key. Figure 7-20 shows the values associated with the
County key.

Figure 7-18.  Edit operation on the master value

Figure 7-19.  Updated master value shown in the Master Values table

Chapter 7 ■ Master Data Management Using Azure Table Storage

223

Importing Master Data to Azure Tables from Excel
In the previous section, you saw how an Admin can use custom-built web pages to manage master data.
These pages are very useful for managing master data on a day-to-day basis, but they might not be helpful
for initial data setup that requires migrating a large amount of master data to storage. Usually, administrators
use Excel or CSV sheets to manage this static data, and almost all modern applications provide the capability
to process data from Excel or other file types and store it. In this section, we are going to build a simple Excel
parser through which an Admin can upload master data to Azure Storage in one attempt.

Prepare an Excel workbook, as shown in Figure 7-21, to hold the master data. The first column has
the master keys, and the second column holds the master values. The third column has a Boolean value,
marking the value for IsActive.

Figure 7-20.  Master Values table displaying values for the County key

Chapter 7 ■ Master Data Management Using Azure Table Storage

224

We will first create a provision for the Admin to upload the Excel file to the Automobile Service Center
application. Once it is uploaded, the entire dataset is loaded into memory, processed further, and finally
uploaded to Azure Storage.

■■ Note  Paste the following image, which is used to open the File Upload dialog box, in the Images folder
under the wwwroot.

We will modify MasterValues.cshtml to support the Excel upload. First, we will add the Excel icon as
shown in Listing 7-25.

Listing 7-25.  Excel icon on Master Values view

<div class="row z-depth-3">
 <div class="section white-text padding-left-10px blue-grey lighten-1">
 <h5>Master Values</h5>
 </div>
 <div class="divider"></div>
 <div class="col s4 padding-bottom-15px">
 �<select id="ddlMasterKeys" asp-items="@(new SelectList(ViewBag.MasterKeys,

"RowKey","PartitionKey"))">
 <option>--Select--</option>
 </select>
 <label>Partition Key</label>
 </div>

Figure 7-21.  Master values in Excel

Chapter 7 ■ Master Data Management Using Azure Table Storage

225

 <div class="col s4 offset-s4 padding-bottom-15px right-align">

 </div>
 <div class="col s12 padding-bottom-15px">
 @* Display List of Master Values *@
 <table class="highlight centered" id="tblMasterValues">
 <thead>
 <tr>
 <th data-field="RowKey">Row Key</th>
 <th data-field="PartitionKey">Partition Key</th>
 <th data-field="Name">Name</th>
 <th data-field="IsActive">Is Active</th>
 <th data-field="Actions">Edit</th>
 </tr>
 </thead>
 </table>
 </div>
</div>

Upon clicking the Excel icon, we will open a Materialize CSS modal dialog box with the file input tag.
Listing 7-26 shows the Modal pop-up design, where we have one input file type tag and a button inside a
form tag that we will use to post the file to the UploadExcel action of MasterDataController (we will code
the UploadExcel action later in this section). We will use JQuery to POST the file to the server. The modal
pop-up also contains a div to display all errors; this div will be hidden by default. Based on the success or
failure of the file upload, we will toggle the visibility of this div. The modal pop-up also contains a div to
show the progress bar that will display the progress of the Excel file processing.

Listing 7-26.  Modal popup for excel file upload

<!-- Modal Structure -->
<div id="modal1" class="modal modal-fixed-footer">
 <div class="modal-content">
 <h4>Upload Excel</h4>
 <p>Upload the Excel file that contains all the master values.</p>
 <!-- Div to display Errors-->
 <div class="row hide divErrors">
 <div class="col s12">
 <div class="card-panel red lighten-1">

 </div>
 </div>
 </div>
 <!-- Div to display progress -->
 <div class="progress hide">
 <div class="indeterminate"></div>
 </div>
 <form action="UploadExcel" controller="MasterData" method="post">
 <div class="file-field input-field">
 <div class="btn">
 File

Chapter 7 ■ Master Data Management Using Azure Table Storage

226

 <input type="file" id="files">
 </div>
 <div class="file-path-wrapper">
 <input class="file-path validate" type="text">
 </div>
 <div class="input-field row right">
 �<button class="btn waves-effect waves-light btnUpload" type="button"

name="action">
 Upload
 <i class="material-icons right">send</i>
 </button>
 </div>
 </div>
 </form>
 </div>
</div>

Finally, the modal pop-up is associated with the Excel icon by initializing the modal. Place the code
from Listing 7-27 in JQuery code inside the document ready function.

Listing 7-27.  Initialize Modal popup

// the "href" attribute of .modal-trigger must specify the modal ID that wants to be
triggered
$('.modal').modal();

Run the application and navigate to the Master Values view. You should see the Excel icon shown in
Figure 7-22.

Click the Excel icon. A modal pop-up opens, as shown in Figure 7-23.

Figure 7-22.  Excel icon on Master Values view

Chapter 7 ■ Master Data Management Using Azure Table Storage

227

We will expand our business component to support bulk insert/update operations. Add the
UploadBulkMasterData method to the IMasterDataOperations interface, as shown in Listing 7-28.

Listing 7-28.  Updated IMasterDataOperations interface

Task<bool> UploadBulkMasterData(List<MasterDataValue> values);

Create the implementation of UploadBulkMasterData in the MasterDataOperations class, as shown in
Listing 7-29. We will iterate all the master values. For each value, we first we check whether the associated
master key of the master value is present in the storage. If it is not, we will create the master key. The same
process is followed for the master value as well; we will first check whether the master value is present in
storage, and if not, we will create the master value in storage.

Listing 7-29.  UploadBulkMasterData method

public async Task<bool> UploadBulkMasterData(List<MasterDataValue> values)
{
 using (_unitOfWork)
 {
 foreach (var value in values)
 {
 // Find, if null insert MasterKey
 var masterKey = await GetMaserKeyByNameAsync(value.PartitionKey);
 if (!masterKey.Any())
 {
 �await _unitOfWork.Repository<MasterDataKey>().AddAsync(new MasterDataKey()

Figure 7-23.  Modal popup to upload excel file

Chapter 7 ■ Master Data Management Using Azure Table Storage

228

 {
 Name = value.PartitionKey,
 RowKey = Guid.NewGuid().ToString(),
 PartitionKey = value.PartitionKey
 });
 }

 // Find, if null Insert MasterValue
 �var masterValuesByKey = await GetAllMasterValuesByKeyAsync(value.PartitionKey);
 �var masterValue = masterValuesByKey.FirstOrDefault(p => p.Name == value.Name);
 if (masterValue == null)
 {
 await _unitOfWork.Repository<MasterDataValue>().AddAsync(value);
 }
 else
 {
 masterValue.IsActive = value.IsActive;
 masterValue.IsDeleted = value.IsDeleted;
 masterValue.Name = value.Name;

 �await _unitOfWork.Repository<MasterDataValue>().UpdateAsync(masterValue);
 }
 }

 _unitOfWork.CommitTransaction();
 return true;
 }
}

Now we will set up the controller action that will process the uploaded Excel file. ASP.NET Core doesn’t
have built-in support to process Excel files. To achieve Excel file parsing, we will use the EPPlus.Core

NuGet package, which is an open source library that supports Excel parsing in .NET Core apps. Add the
EPPlus.Core package reference to the ASC.Web project, as shown in Figure 7-24.

Figure 7-24.  Installing the EPPlus.Core NuGet ptackage to the ASC.Web project

■■ Note  EPPlus.Core is an unofficial port of the EPPlus library to .NET Core (see https://www.nuget.org/
packages/EPPlus/).

https://www.nuget.org/packages/EPPlus/
https://www.nuget.org/packages/EPPlus/

Chapter 7 ■ Master Data Management Using Azure Table Storage

229

Create a private method in MasterDataController that will parse the Excel file, as shown in Listing 7-30.
This private method will return a processed list of MasterDataValue objects to the caller (which is going to
be an Action method). ParseMasterDataExcel will read the Excel file into MemoryStream, and then create
an EPPlus ExcelPackage object out of MemoryStream. It then iterates all the rows of the Excel worksheet and
creates a list of MasterDataValues and returns the list to the caller.

Listing 7-30.  ParseMasterDataExcel method

private async Task<List<MasterDataValue>> ParseMasterDataExcel(IFormFile excelFile)
{
 var masterValueList = new List<MasterDataValue>();
 using (var memoryStream = new MemoryStream())
 {
 // Get MemoryStream from Excel file
 await excelFile.CopyToAsync(memoryStream);
 // Create a ExcelPackage object from MemoryStream
 using (ExcelPackage package = new ExcelPackage(memoryStream))
 {
 // Get the first Excel sheet from the Workbook
 ExcelWorksheet worksheet = package.Workbook.Worksheets[1];
 int rowCount = worksheet.Dimension.Rows;

 // Iterate all the rows and create the list of MasterDataValue
 // Ignore first row as it is header
 for (int row = 2; row <= rowCount; row++)
 {
 var masterDataValue = new MasterDataValue();
 masterDataValue.RowKey = Guid.NewGuid().ToString();
 �masterDataValue.PartitionKey = worksheet.Cells[row, 1].Value.ToString();
 masterDataValue.Name = worksheet.Cells[row, 2].Value.ToString();
 �masterDataValue.IsActive = Boolean.Parse(worksheet.Cells[row, 3].

Value.ToString());

 masterValueList.Add(masterDataValue);
 }
 }
 }
 return masterValueList;
}

■■ Note E xcel parsing logic can be made more generic to support any form of Excel file. But that code will
deviate from the scope of our requirement, so I am refraining from creating a generic component for Excel file
parsing.

Now we will create the POST action to which the Excel file will be posted from the page, as shown in
Listing 7-31. The UploadExcel action reads all the files uploaded from Request.Form.Files collections. It then
validates the files to contain a minimum of one file with length greater than zero. If validations are passed, the
Excel file is parsed with the EPPlus ExcelPackage (as shown in the private method in Listing 7-30).

Chapter 7 ■ Master Data Management Using Azure Table Storage

230

Upon successful parsing of the Excel file, we will pass the list of master values to the
UploadBulkMasterData method of the MasterDataOperations business component. Once all keys and
values are stored, we will return the result in a JSON message.

Listing 7-31.  UploadExcel action

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> UploadExcel()
{
 var files = Request.Form.Files;
 // Validations
 if (!files.Any())
 {
 return Json(new { Error = true, Text = "Upload a file" });
 }

 var excelFile = files.First();
 if(excelFile.Length <= 0)
 {
 return Json(new { Error = true, Text = "Upload a file" });
 }

 // Parse Excel Data
 var masterData = await ParseMasterDataExcel(excelFile);
 var result = await _masterData.UploadBulkMasterData(masterData);

 return Json(new { Success = result });
}

The UploadExcel POST action is called from the MasterValues view by using a JQuery AJAX POST
operation, as shown in Listing 7-32. The JQuery click function processes all the files from the input file
tag and creates a FormData object. It then displays the progress bar and makes an AJAX POST call to the
UploadExcel action. Upon success of the AJAX call, the page will be refreshed; upon failure, the error
messages will be displayed in a pop-up.

Listing 7-32.  JQuery code to POST excel file to UploadExcel action

// Excel Upload
$(document).on('click', '.btnUpload', function () {
 // Get all files from input file tag
 var fileUpload = $("#files").get(0);
 var files = fileUpload.files;
 var data = new FormData();

 // Process the file and create FormData object
 $.each(files, function (i) {
 data.append(files[i].name, files[i]);
 });

 // Show progress bar
 $(".progress").removeClass("hide");

Chapter 7 ■ Master Data Management Using Azure Table Storage

231

 $.ajax({
 type: "POST",
 url: "/MasterData/UploadExcel",
 contentType: false,
 processData: false,
 data: data,
 success: function (message) {
 // Hide progress bar
 $(".progress").addClass("hide");

 if (message.Success) {
 // Reload the page on success
 window.location.reload();
 }

 if (message.Error) {
 // Show Errors
 $(".divErrors").removeClass("hide");
 $(".errors").html("");
 $(".errors").html(message.Text);
 }
 },
 error: function () { }
 });
});

Run the application and navigate to the MasterValues action. Click the Excel icon and click Submit
without selecting any file. You should see the error message displayed in the pop-up, as shown in Figure 7-25.

Figure 7-25.  Validation error in the Upload Excel dialog box

Chapter 7 ■ Master Data Management Using Azure Table Storage

232

Now select the Excel file that we created at the start of this section and click Upload. A progress bar
showing the status of the upload is displayed, as shown in Figure 7-26.

Figure 7-26.  Displaying a progress bar during Excel file processing

Figure 7-27.  Master values uploaded through the Excel file

Upon a successful upload operation, the page will get reloaded, and we should see all the entities in the
MasterDataKey and MasterDataValue tables of Azure Storage, as shown in Figures 7-27 and 7-28.

Chapter 7 ■ Master Data Management Using Azure Table Storage

233

■■ Note  For the Automobile Service Center application, we have used simple logic to maintain master data.
In large applications, this management logic might differ, based on business requirements and operations.

Enabling Redis Memory Caching
The most frequent operation on master data by any application is a GET operation (fetching the master
data from data storage and using it in the application). This operation can be redundant if the same master
data is being used at multiple places in the application. In these scenarios, using a cache can improve the
performance of the application by storing master data in memory to the server instead of obtaining data for
every request from external resources such as databases, storage, or services.

■■ Note  A cache can be used for multiple purposes, not only to store master data, but also to store sessions.
Instead of storing sessions in memory on a server, storing them in a cache can provide scalability of the
application that is distributed across multiple servers.

Especially for cloud solutions, we should use a distributed cache instead of an in-memory cache because cloud
platforms are virtualized and load-balanced.

In this section, we will use Azure Redis Cache to enable the caching mechanism for the Automobile
Service Center application. Azure Redis Cache is a cache offering from Microsoft Azure that uses the open
source Redis Cache framework (an in-memory data structure store).

Just as with Azure Storage emulator, we can use the Redis local installation to support cache
implementation at development time on a local development machine. At the time of production, we can
create a new Redis cache at Azure Redis Cache. Toggling between a development and production cache is
going to be accomplished with a simple ConnectionString setting change.

Figure 7-28.  Master keys uploaded through the Excel file

Chapter 7 ■ Master Data Management Using Azure Table Storage

234

First, we need to install Redis on a local machine. To do so, we need to install Chocolatey (a package
manager for Windows). Open the command-line prompt in Administrator mode and run the following
command, also shown in Figure 7-29:

@powershell -NoProfile -ExecutionPolicy Bypass -Command “iex ((New-Object System.
Net.WebClient).DownloadString(‘https://chocolatey.org/install.ps1’))” && SET
“PATH=%PATH%;%ALLUSERSPROFILE%\chocolatey\bin”

Figure 7-29.  Installing Chocolatey on a local machine

Install Redis Cache by using the following command, as shown in Figure 7-30:

https://chocolatey.org/install.ps1

Chapter 7 ■ Master Data Management Using Azure Table Storage

235

choco install redis-64

Start the Redis server on a local machine by running the following command, as shown in Figure 7-31:

Figure 7-30.  Installing Redis Cache on a local machine

Figure 7-31.  Starting Redis Cache on a local machine

Chapter 7 ■ Master Data Management Using Azure Table Storage

236

Redis-server

Redis Cache is up and running. Now we will enable Redis Cache in the ASC.Web project by installing the
Microsoft.Extensions.Caching.Redis NuGet package, as shown in Figure 7-32.

Add the cache configuration to the appsettings.json file, as shown in Listing 7-33.

Listing 7-33.  Cache configuration in appsettings.json file

"CacheSettings": {
 "CacheConnectionString": "localhost",
 "CacheInstance": "ASCInstance"
},

We need to add the Redis Cache service in the Startup class, as shown in Listing 7-34, with the
configuration being pulled from the appsettings.json file. Comment the AddDistributedMemoryCache and
use AddDistributedRedisCache.

Listing 7-34.  Configuring Redis Cache in Startup class

//services.AddDistributedMemoryCache();
services.AddDistributedRedisCache(options =>
{
 �options.Configuration = Configuration.GetSection("CacheSettings:Cache

ConnectionString").Value;
 �options.InstanceName = Configuration.GetSection("CacheSettings:Cache

Instance").Value;
});

Now we can use the Redis distributed cache in our application by injecting IDistributedCache in any
class and using the SetString/Set and GetString/Get extension methods of IDistributedCache to set and
retrieve objects, respectively.

Create a class file in the Data folder of the ASC.Web project named MasterDataCache, as shown in
Listing 7-35. This class will be populated from Azure Storage and saved in the cache.

Listing 7-35.  MasterDataCache class

public class MasterDataCache
{
 public List<MasterDataKey> Keys { get; set; }
 public List<MasterDataValue> Values { get; set; }
}

Figure 7-32.  Installing the Microsoft.Extensions.Cachine.Redis NuGtet package to the ASC.Web project

Chapter 7 ■ Master Data Management Using Azure Table Storage

237

■■ Note  Except in MasterDataController, which is primarily used to manage master data, we are going to
use MasterDataCache throughout the application, wherever we have a requirement with master data.

We will create the IMasterDataCacheOperations interface in the same class file as MasterDataCache, as
shown in Listing 7-36. IMasterDataCacheOperations has methods to perform the following cache-related
operations:

•	 Creating all master data in the cache

•	 Retrieving the master data from the cache

Listing 7-36.  IMasterDataCacheOperations interface

public interface IMasterDataCacheOperations
{
 Task<MasterDataCache> GetMasterDataCache();
 Task CreateMasterDataCache();
}

The implementation of IMasterDataCacheOperations is created in the same class file and is
shown in Listing 7-37. MasterDataCacheOperations uses IMasterDataOperations methods and creates
the MasterDataCache object and saves it to the cache. The GetMasterDataCache method will read
MasterDataCache from the cache and return it to the caller. The retrieved master keys and values are filtered
based on the IsActive flag before caching them.

■■ Note  We use JSON serialization to serialize the MasterDataCache object to the string before we store it
to the cache. Similarly, we deserialize the string back to the MasterDataCache object after reading it back from
the cache.

Listing 7-37.  MasterDataCacheOperations class

public class MasterDataCacheOperations : IMasterDataCacheOperations
{
 private readonly IDistributedCache _cache;
 private readonly IMasterDataOperations _masterData;
 private readonly string MasterDataCacheName = "MasterDataCache";
 �public MasterDataCacheOperations(IDistributedCache cache, IMasterDataOperations

masterData)
 {
 _cache = cache;
 _masterData = masterData;
 }

Chapter 7 ■ Master Data Management Using Azure Table Storage

238

 public async Task CreateMasterDataCacheAsync()
 {
 var masterDataCache = new MasterDataCache
 {
 �Keys = (await _masterData.GetAllMasterKeysAsync()).Where(p => p.IsActive ==

true).ToList(),
 �Values = (await _masterData.GetAllMasterValuesAsync()).Where(p =>

p.IsActive == true).ToList()
 };

 �await _cache.SetStringAsync(MasterDataCacheName, JsonConvert.SerializeObject
(masterDataCache));

 }

 public async Task<MasterDataCache> GetMasterDataCacheAsync()
 {
 �return JsonConvert.DeserializeObject<MasterDataCache>(await _cache.GetString

Async(MasterDataCacheName));
 }
}

To use the MasterDataCache API, we need to resolve IMasterDataCacheOperations in the
ConfigureServices method of the Startup class, as shown in Listing 7-38.

Listing 7-38.  Resolve the dependency of IMasterDataCacheOperations

services.AddSingleton<IMasterDataCacheOperations, MasterDataCacheOperations>();

As part of starting the application, we will invoke the CreateMasterDataCache method in the Configure
method of the Startup class, as shown in Listing 7-39.

Listing 7-39.  Updated Configure method of Startup class with MasterDataCacheOperations

public async void Configure(IApplicationBuilder app,
 IHostingEnvironment env,
 ILoggerFactory loggerFactory,
 IIdentitySeed storageSeed,
 IMasterDataCacheOperations masterDataCacheOperations,
 IUnitOfWork unitOfWork)
{
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseDatabaseErrorPage();
 app.UseBrowserLink();
 }

Chapter 7 ■ Master Data Management Using Azure Table Storage

239

 else
 {
 app.UseExceptionHandler("/Home/Error");
 }

 app.UseSession();
 app.UseStaticFiles();
 app.UseIdentity();

 app.UseGoogleAuthentication(new GoogleOptions()
 {
 ClientId = Configuration["Google:Identity:ClientId"],
 ClientSecret = Configuration["Google:Identity:ClientSecret"]
 });

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });

 �await storageSeed.Seed(app.ApplicationServices.GetService<UserManager<ApplicationUser>>(),
 app.ApplicationServices.GetService<RoleManager<IdentityRole>>(),
 app.ApplicationServices.GetService<IOptions<ApplicationSettings>>());

 �var models = Assembly.Load(new AssemblyName("ASC.Models")).GetTypes().Where
(type => type.Namespace == "ASC.Models.Models");

 foreach (var model in models)
 {
 �var repositoryInstance = Activator.CreateInstance(typeof(Repository<>).

MakeGenericType(model), unitOfWork);
 �MethodInfo method = typeof(Repository<>).MakeGenericType(model).

GetMethod("CreateTableAsync");
 method.Invoke(repositoryInstance, new object[0]);
 }

 await masterDataCacheOperations.CreateMasterDataCacheAsync();
}

Run the application and navigate to any screen that we have developed so far. To check whether the
cache has been created properly, open another command-line prompt and execute the following redis-cli
commands, as shown in Figure 7-33. You should see the created master data cache.

redis-cli
keys *
hgetall ASCInstanceMasterDataCache

Chapter 7 ■ Master Data Management Using Azure Table Storage

240

We can retrieve the master data cache in code by injecting IMasterDataCacheOperations to any
controller or class and calling the GetMasterDataCacheAsync method.

■■ Note  The Session implementation in ASP.NET Core requires IDistributedCache to be configured as a
store for the Session save and retrieval. As we configured the Redis distributed cache for the entire application,
even Session will use the Redis cache as its store.

Navigate to the Master Keys page after login. Now if we check keys in redis-cli, we will have a new
one created for the session value for MasterKeys that we are storing in the MasterValues action, as shown in
Figure 7-34.

The last change that we have to make is to invalidate the cache whenever a master key or value
changes or when a new master key or value is created. To invalidate the cache, we need to call the
CreateMasterDataCacheAsync method from the POST actions of MasterKeys, MasterValues, and
UploadExcel, which will re-create the cache once again with complete data from Azure Storage.

Figure 7-33.  Master data in the the Redis Cache console

Figure 7-34.  Session data in the Redis Cache console

Chapter 7 ■ Master Data Management Using Azure Table Storage

241

■■ Note  The code changes required to invalidate the cache at MasterKeys, MasterValues, and UploadExcel
POST actions can be found in code samples accompanied with this book.

Summary
You started this chapter by learning about the types of data an application is going to deal with throughout
its life cycle. Master data plays a crucial role in maintaining data integrity, and it acts as a common
referential point for systems integration. For the Automobile Service Center application, you identified
master keys (for example, Vehicle Types and Status) and their corresponding values.

You created master data entities that are used to persist master keys and values to Azure Storage. Later
you created a class library to hold business logic for managing master data operations. You configured
dependency injection at the web project for the business project and injected Unit of Work to the master
data operations layer, through which you received a decoupling of layers. You then developed screens to
manage master keys and master values, and in the process you used AutoMapper to map data models to view
models.

Later in the chapter, you built a simple Excel parser by using the EPPlus.Core NuGet package, so an
admin can upload master data to Azure Storage via an Excel file. You also developed a modal pop-up by
using Materialize so an admin can upload an Excel file of master data to the server.

Finally, to improve application performance and remove redundant storage calls to master data, you
enabled Redis Cache for the Automobile Service Center. The configuration for Redis Cache is stored in the
appsettings.json file, which will be replaced with the Azure Redis Cache ConnectionString. Redis Cache
will be used by the Automobile Service Center application not only to hold master data, but also to hold
session values, as ASP.NET Core’s session implementation is dependent on a distributed cache for storage.

243© Rami Vemula 2017
R. Vemula, Real-Time Web Application Development, https://doi.org/10.1007/978-1-4842-3270-5_8

CHAPTER 8

Logging and Exception Handling

Logging and exception-handling frameworks are key players that account for the robustness and reliability
in the design of an application. The logging framework ensures that all key information, messages, and errors
are logged to the persistent medium. The exception-handling framework ensures that users are presented
with standard but meaningful error messages in case of system failure or unhandled exceptions.

Generally, exception-handling and logging frameworks go hand in hand, with the former handling
exceptions, and the latter logging exception details to storage. The key advantages of having standard logging
and exception-handling frameworks are as follows:

•	 Captures all system-generated and unhandled exceptions in one place and provides
standard and user-friendly error messages

•	 Improves security of the system by not disclosing vulnerable exception details to
end users

•	 Captures the user footprint in the application to help identify the most frequently
used functionalities and improve the overall application experience

•	 Stores important information related to system integrations, which helps in
troubleshooting and identifying issues in production

•	 Captures diagnostic information that helps improve performance of the system

For the Automobile Service Center, we are going to design a centralized exception-handling mechanism
that will capture all exceptions at all levels through a global handler. Having a global handler helps get rid
of redundant, traditional, try-catch exception-handling code that is otherwise required throughout the
application.

We’ll also create a unified logging framework for the Automobile Service Center application by using
ASP.NET Core’s logging features. We’ll use a logging framework to log messages and exceptions to Azure
Table storage. In the case of exceptions, a unique identification ID will be generated and communicated
back to users for technical assistance.

Creating a Logging Framework
In this section, we will create a logging framework to log messages and exceptions to Azure Table storage.
Log messages can be of different levels: Trace, Debug, Information, Warning, Error, and Critical, for example.
We will tailor our logging framework to capture messages of specific levels.

We will start by creating Log and ExceptionLog entities in the ASC.Models project, as shown in
Listings 8-1 and 8-2. These entities are similar to other entities we’ve created that are used to persist
information in Azure Table storage. Both entities will have a Message property that is used to capture the
message we want to log. ExceptionLog will have a Stacktrace property to hold the exception’s stacktrace.

https://doi.org/10.1007/978-1-4842-3270-5_8

Chapter 8 ■ Logging and Exception Handling

244

The RowKey of both entities is generated automatically through Guid, whereas the PartitionKey for the Log
entity is going to be Log level, and for the ExceptionLog entity, it is going to be UTC DateTime.

Listing 8-1.  Log entity

public class Log : BaseEntity
{
 public Log() { }
 public Log(string key)
 {
 this.RowKey = Guid.NewGuid().ToString();
 this.PartitionKey = key;
 }
 public string Message { get; set; }
}

Listing 8-2.  ExceptionLog entity

public class ExceptionLog : BaseEntity
{
 public ExceptionLog() { }
 public ExceptionLog(string key)
 {
 this.RowKey = Guid.NewGuid().ToString();
 this.PartitionKey = DateTime.UtcNow.ToString();
 }
 public string Message { get; set; }
 public string Stacktrace { get; set; }
}

■■ Note  Log and ExceptionLog entities aren’t inherited from IAuditTracker because we will not capture
audit records for log entries.

Now we are going to write the business component methods for the Log and ExceptionLog entities.
Create an ILogDataOperations interface in the Interfaces folder of the ASC.Business project, as shown in
Listing 8-3.

Listing 8-3.  ILogDataOperations interface

public interface ILogDataOperations
{
 Task CreateLogAsync(string category, string message);
 Task CreateExceptionLogAsync(string id, string message, string stacktrace);
}

We will create a LogDataOperations class that will implement the ILogDataOperations interface, as
shown in Listing 8-4. LogDataOperations gets an instance of IUnitOfWork through dependency injection
from the ASC.Web project. CreateExceptionLog will create an instance of the ExceptionLog entity based on
the inputs and insert it into the ExceptionLog table of Azure Storage and commit the transaction. Similarly,
CreateLog will insert the Log entity to the Log entity of Azure Storage.

Chapter 8 ■ Logging and Exception Handling

245

Listing 8-4.  LogDataOperations class

public class LogDataOperations : ILogDataOperations
{
private readonly IUnitOfWork _unitOfWork;
 public LogDataOperations(IUnitOfWork unitOfWork)
 {
 _unitOfWork = unitOfWork;
 }
 public async Task CreateExceptionLogAsync(string id, string message, string stacktrace)
 {
 using (_unitOfWork)
 {
 await _unitOfWork.Repository<ExceptionLog>().AddAsync(new ExceptionLog()
 {
 RowKey = id,
 PartitionKey = "Exception",
 Message = message,
 Stacktrace = stacktrace
 });

 _unitOfWork.CommitTransaction();
 }
 }
 public async Task CreateLogAsync(string category, string message)
 {
 using (_unitOfWork)
 {
 await _unitOfWork.Repository<Log>().AddAsync(new Log()
 {
 RowKey = Guid.NewGuid().ToString(),
 PartitionKey = category,
 Message = message
 });

 _unitOfWork.CommitTransaction();
 }
 }
}

Resolve the dependency of ILogDataOperations at the ASC.Web project, as shown in Listing 8-5.

Listing 8-5.  Resolve the dependency of ILogDataOperations

services.AddScoped<ILogDataOperations, LogDataOperations>();

Now we will create the logger at the ASC.Web project to provide an interface for logging messages and
exceptions. Create a folder with the name Logger in the ASC.Web project and create a class file named
LogExtensions that will hold all log extension methods. Create the class AzureStorageLogger and
implement ILogger of ASP.NET Core on the AzureStorageLogger class, as shown in Listing 8-6. We will use
ILogger throughout the ASC.Web project to log messages and exceptions. AzureStorageLogger’s constructor
takes ILogDataOperations as one of its parameters, which it will use internally to persist log entries to Azure

Chapter 8 ■ Logging and Exception Handling

246

Storage. The other parameters include the category name, which primarily holds the fully qualified method
name that is creating the log entry, and a filter function to filter the log entries based on the category name
and log level.

First we will focus on the Log method of the ILogger implementation. We use this method to check
whether logging is enabled for a given log level and message category (which is in context of execution)
by calling the IsEnabled method. This method simply executes the filter function that is passed in the
filter parameter by passing the category name and log-level parameters. If logging is enabled for the given
message, we will call ILogDataOperations’ CreateLog or CreateExceptionLog method to perform actual
storage logging.

The BeginScope method is used to group some log operations based on scope. We can attach the same
data to each log that is created as part of the group. In the Automobile Service Center application, we do not
have a requirement to group the log operations, so we simply return null in this method for now.

Listing 8-6.  AzureStorageLogger class

public class AzureStorageLogger : ILogger
{
 private readonly string _categoryName;
 private readonly Func<string, LogLevel, bool> _filter;
 private readonly ILogDataOperations _logOperations;

 �public AzureStorageLogger(string categoryName, Func<string, LogLevel, bool> filter,
ILogDataOperations logOperations)

 {
 _categoryName = categoryName;
 _filter = filter;
 _logOperations = logOperations;
 }
 public IDisposable BeginScope<TState>(TState state)
 {
 return null;
 }

 public bool IsEnabled(LogLevel logLevel)
 {
 return (_filter == null || _filter(_categoryName, logLevel));
 }
 �public void Log<TState>(LogLevel logLevel, EventId eventId, TState state, Exception

exception, Func<TState, Exception, string> formatter)
 {
 if (!IsEnabled(logLevel))
 return;

 if (exception == null)
 _logOperations.CreateLogAsync(logLevel.ToString(), formatter(state, exception));
 else
 �_logOperations.CreateExceptionLogAsync(eventId.Name, exception.Message,

exception.StackTrace);
 }
}

Chapter 8 ■ Logging and Exception Handling

247

We have to create the implementation of ILoggingProvider that is used to create the instance of
ILogger types; in our case, this is the AzureStorageLogger type. AzureStorageLoggerProvider takes the
filter function and ILogDataOperations as parameters to the constructor, which are eventually passed as
parameters to the AzureStorageLogger instance. The CreateLogger method is used to create the instance of
AzureStorageLogger, as shown in Listing 8-7.

Listing 8-7.  AzureStorageLoggerProvider class

public class AzureStorageLoggerProvider : ILoggerProvider
{
 private readonly Func<string, LogLevel, bool> _filter;
 private readonly ILogDataOperations _logOperations;

 �public AzureStorageLoggerProvider(Func<string, LogLevel, bool> filter,
ILogDataOperations logOperations)

 {
 _logOperations = logOperations;
 _filter = filter;
 }

 public ILogger CreateLogger(string categoryName)
 {
 return new AzureStorageLogger(categoryName, _filter, _logOperations);
 }

 public void Dispose()
 {
 }
}

Finally, we will create an extension method to add AzureStorageLoggerProvider to the logger factory,
as shown in Listing 8-8.

Listing 8-8.  Extension method to add AzureStorageLoggerProvider to logger factory

public static class EmailLoggerExtensions
{
 �public static ILoggerFactory AddAzureTableStorageLog(this ILoggerFactory factory,

ILogDataOperations logOperations, Func<string, LogLevel, bool> filter = null)
 {
 factory.AddProvider(new AzureStorageLoggerProvider(filter, logOperations));
 return factory;
 }
}

■■ Note  All the code from Listing 8-6 to Listing 8-8 is created in the same LogExtensions physical class file
in the ASC.Web project.

Chapter 8 ■ Logging and Exception Handling

248

To add the created AzureStorageLoggerProvider, we will call the AddAzureTableStorageLog method
in the Configure method of the Startup class, as shown in Listing 8-9. The filter condition that we use will
filter all log messages that are not generated from any of the namespaces that contain the word Microsoft,
so that our log table will not be loaded up with messages generated by ASP.NET Core. Also, the same filter
condition filters messages that fall under the Information log level and above.

■■ Note  The default log levels and order of priority provided by ASP.NET Core are Trace = 0, Debug = 1,
Information = 2, Warning = 3, Error = 4, Critical = 5, and None = 6.

Listing 8-9.  Updated Configure method of Startup class with AddAzureTableStorageLog invocation

public async void Configure(IApplicationBuilder app,
 IHostingEnvironment env,
 ILoggerFactory loggerFactory,
 IIdentitySeed storageSeed,
 IMasterDataCacheOperations masterDataCacheOperations,
 ILogDataOperations logDataOperations,
 IUnitOfWork unitOfWork)
{
 //loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 //loggerFactory.AddDebug();

 �// Configure Azure Logger to log all events except the ones that are generated by
default by ASP.NET Core.

 �loggerFactory.AddAzureTableStorageLog(logDataOperations,
 �(categoryName, logLevel) => !categoryName.Contains("Microsoft") &&

logLevel >= LogLevel.Information);

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseDatabaseErrorPage();
 app.UseBrowserLink();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 }

 app.UseSession();
 app.UseStaticFiles();
 app.UseIdentity();

 app.UseGoogleAuthentication(new GoogleOptions()
 {
 ClientId = Configuration["Google:Identity:ClientId"],
 ClientSecret = Configuration["Google:Identity:ClientSecret"]
 });

Chapter 8 ■ Logging and Exception Handling

249

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });

 �await storageSeed.Seed(app.ApplicationServices.GetService<UserManager<ApplicationUser>>(),
 app.ApplicationServices.GetService<RoleManager<IdentityRole>>(),
 app.ApplicationServices.GetService<IOptions<ApplicationSettings>>());

 �var models = Assembly.Load(new AssemblyName("ASC.Models")).GetTypes().Where(type =>
type.Namespace == "ASC.Models.Models");

 foreach (var model in models)
 {
 �var repositoryInstance = Activator.CreateInstance(typeof(Repository<>).

MakeGenericType(model), unitOfWork);
 �MethodInfo method = typeof(Repository<>).MakeGenericType(model).

GetMethod("CreateTableAsync");
 method.Invoke(repositoryInstance, new object[0]);
 }

 await masterDataCacheOperations.CreateMasterDataCacheAsync();
 }

To use the logger that we created, change the account controller code as shown in Listing 8-10; we are
injecting the logger into the constructor and associating it with the AccountController type.

Listing 8-10.  Updated AccountController class with ILogger

private readonly UserManager<ApplicationUser> _userManager;
private readonly SignInManager<ApplicationUser> _signInManager;
private readonly IEmailSender _emailSender;
private readonly ISmsSender _smsSender;
private readonly string _externalCookieScheme;
private readonly ILogger<AccountController> _logger;

public AccountController(
 UserManager<ApplicationUser> userManager,
 SignInManager<ApplicationUser> signInManager,
 IOptions<IdentityCookieOptions> identityCookieOptions,
 IEmailSender emailSender,
 ISmsSender smsSender,
 ILogger<AccountController> logger)
{
 _userManager = userManager;
 _signInManager = signInManager;
 _externalCookieScheme = identityCookieOptions.Value.ExternalCookieAuthenticationScheme;
 _emailSender = emailSender;
 _smsSender = smsSender;
 _logger = logger;

}

Chapter 8 ■ Logging and Exception Handling

250

By default, we have some log entries being made in AccountController, especially when users register
into the system, log in to the system either from an external identity provider or through a username and
password, or log out from the system. Sample code for logging normal information is shown in Listing 8-11.

Listing 8-11.  LogInformation method usage

_logger.LogInformation(1, "User logged in.");

Run the application and log in to the system as the administrator and then log out. You should see the
log messages shown in Figure 8-1.

Figure 8-1.  Log entries created at Azure Table storage

■■ Note  We will test exception logging later in this chapter, when we implement global exception handling.

Capturing User Activity Through an Action Filter
Most modern web applications capture user activity on the site. Analyzing this data enables us to improve
the user experience and provide better navigation and ease in operations. This data log also helps us find out
what actions were performed by any user and when they were performed. We will implement this feature in
our Automobile Service Center application through ASP.NET Core's Action filter.

Filters in ASP.NET Core MVC help us execute code for every request at a particular state in the request
pipeline. There are five kinds of filters: authorization, resource, action, exception, and result filters.

As shown in Figure 8-2, authorization filters are used to determine whether the current user is
authorized for the current request. These filters are executed first before any other filter. Resource filters are
executed after the authorization filter. They can execute code before and after the rest of the filters. Action
filters can run code immediately before and after an individual action method is called. Exception filters are
used to handle unhandled exceptions at a global level. Result filters can run code immediately before and
after the execution of individual action results.

Chapter 8 ■ Logging and Exception Handling

251

First we will create a UserActivity entity in the ASC.Models project, as shown in Listing 8-12. The RowKey
of the entity is going to be autogenerated by Guid, and the PartitionKey is going to be the e-mail of the user.

Listing 8-12.  UserActivity entity

public class UserActivity : BaseEntity
{
 public UserActivity() { }
 public UserActivity(string email)
 {
 this.RowKey = Guid.NewGuid().ToString();
 this.PartitionKey = email;
 }
 public string Action { get; set; }
}

Authorization Filters

Result Filters

Resource Filters

Model Binding

Action Filters

Exception Filters

Result Execution

Action

Figure 8-2.  Filter excecution flow

Chapter 8 ■ Logging and Exception Handling

252

Update the ILogDataOperations interface to support the CreateUserActivity method, as shown in
Listing 8-13.

Listing 8-13.  Updated ILogDataOperations interface

public interface ILogDataOperations
{
 Task CreateLogAsync(string category, string message);
 Task CreateExceptionLogAsync(string id, string message, string stacktrace);
 Task CreateUserActivityAsync(string email, string action);
}

Update LogDataOperations with the implementation of the CreateUserActivity method, as shown in
Listing 8-14.

Listing 8-14.  CreateUserActivityAsync method

public async Task CreateUserActivityAsync(string email, string action)
{
 using (_unitOfWork)
 {
 await _unitOfWork.Repository<UserActivity>().AddAsync(new UserActivity()
{
 RowKey = Guid.NewGuid().ToString(),
 PartitionKey = email,
 Action = action
 });

 _unitOfWork.CommitTransaction();
 }
}

Now we will create an action filter in the ASC.Web project. First create a folder named Filters and
create a class with UserActivityFilter and inherit it from ActionFilterAttribute. We have to override
the OnActionExecutionAsync method of ActionFilterAttribute, which is capable of executing the
custom business logic asynchronously after the action method is executed. After the action execution,
we will get an instance of ILogDataOperations from RequestServices of HttpContext and call the
CreateUserActivityAsync method, which will create the user activity log at Azure Table storage, as shown
in Listing 8-15.

Listing 8-15.  UserActivityFilter class

public class UserActivityFilter : ActionFilterAttribute
{
 �public override async Task OnActionExecutionAsync(ActionExecutingContext context,

ActionExecutionDelegate next)
 {
 await next();
 �var logger = context.HttpContext.RequestServices.GetService(typeof(ILogDataOperatio

ns)) as ILogDataOperations;

Chapter 8 ■ Logging and Exception Handling

253

 �await logger.CreateUserActivityAsync(context.HttpContext.User.
GetCurrentUserDetails().Email, context.HttpContext.Request.Path);

 }
}

As the final step, update the base controller with the UserActivityFilter attribute, as shown in
Listing 8-16.

Listing 8-16.  Update the base controller with the UserActivityFilter attribute

[Authorize]
[UserActivityFilter]
public class BaseController : Controller
{
}

■■ Note  We set up UserActivityFilter on BaseController because we want to capture the user activity
only for secured pages.

Run the application and navigate to any of the secure pages. You should see user activity log messages,
as shown in Figure 8-3.

Figure 8-3.  User activity entries in Azure Storage

Implementing Global Exception Handling
In this section, we will develop a robust exception-handling mechanism for our Automobile Service Center
application. By default, ASP.NET Core provides good exception-handling capabilities. We are going to extend
that default framework to provide additional functionality that logs exceptions to Azure Table storage. We
will handle all unhandled exceptions that occur in controller creation, model binding, action filters, action
methods, or typically in an entire web project.

In ASP.NET Core, a developer exception page is configured by default in the Configure method of the
Startup class, as shown in Listing 8-17. We can follow the same approach and handle exceptions in the /
Home/Error controller action. But instead, we will create an exception filter and capture all exceptions.
Comment out the highlighted lines shown in Listing 8-17.

Listing 8-17.  Default exception handler in Configure method of Startup class

if (env.IsDevelopment())
{
 app.UseDeveloperExceptionPage();
 app.UseDatabaseErrorPage();

Chapter 8 ■ Logging and Exception Handling

254

 app.UseBrowserLink();
}
else
{
 app.UseExceptionHandler("/Home/Error");
}

Create a class named CustomExceptionFilter in the Filters folder of the ASC.Web project. Inherit
the class from ExceptionFilterAttribute, as shown in Listing 8-18. The ILogger instance is injected
through the constructor that is used in the OnExceptionAsync method to log the exception details to Azure
Table storage. Once an exception has been logged, a custom error view will be presented to the user.
IModelMetadataProvider is also required to initiate ViewDataDictionary for the Error view.

Listing 8-18.  CustomExceptionFilter class

public class CustomExceptionFilter : ExceptionFilterAttribute
{
 private readonly ILogger<CustomExceptionFilter> _logger;
 private readonly IModelMetadataProvider _modelMetadataProvider;
 �public CustomExceptionFilter(ILogger<CustomExceptionFilter> logger,

IModelMetadataProvider modelMetadataProvider)
 {
 _logger = logger;
 _modelMetadataProvider = modelMetadataProvider;
 }

 public override async Task OnExceptionAsync(ExceptionContext context)
 {
 var logId = Guid.NewGuid().ToString();
 �_logger.LogError(new EventId(1000, logId), context.Exception, context.Exception.Message);

 var result = new ViewResult { ViewName = "CustomError" };
 result.ViewData = new ViewDataDictionary(_modelMetadataProvider, context.ModelState);
 result.ViewData.Add("ExceptionId", logId);
 context.Result = result;
 }
}

The CustomError view is a simple view, as shown in Listing 8-19. It checks whether the user is logged in.
If the user is logged in, it uses _SecureLayout; otherwise, it uses _Layout to display a standard error message
along with the ExceptionId.

Listing 8-19.  CustomError view

@using Microsoft.AspNetCore.Http
@inject IHttpContextAccessor UserHttpContext
@{
 ViewData["Title"] = "Error";
 �Layout = !UserHttpContext.HttpContext.User.Identity.IsAuthenticated ? "_layout" : "_

SecureLayout";
}

Chapter 8 ■ Logging and Exception Handling

255

<div class="row">
 <div class="col s12">
 <div class="card-panel orange lighten-1 margin-bottom-50px margin-top-50px">

 �An error occurred while processing your request. Please contact customer

service with following
 Ticket No. @ViewData["ExceptionId"]

 </div>
 </div>
</div>

Now we need to add CustomExceptionFilter to the services collection in the ConfigureServices
method of the Startup class, as shown in Listing 8-20.

Listing 8-20.  Configure CustomExceptionFilter in Startup class

services.AddScoped<CustomExceptionFilter>();

■■ Note  Because CustomExceptionFilter is dependent on ILogger, we need to add
CustomExceptionFilter to IServiceCollection.

Finally, add the filter to the filters collection in the ConfigureServices method of the Startup class, as
shown in Listing 8-21.

Listing 8-21.  Add CustomExceptionFilter to filters collection

services.AddMvc(o => { o.Filters.Add(typeof(CustomExceptionFilter)); })
 .AddJsonOptions(options => options.SerializerSettings.ContractResolver = new
DefaultContractResolver());

To test the exception logging, we will throw an exception in a TestException action in the Dashboard
controller, as shown in Listing 8-22.

Listing 8-22.  TestException action

public IActionResult TestException()
{
 var i = 0;
 // Should through Divide by zero error
 var j = 1 / i;
 return View();
}

Chapter 8 ■ Logging and Exception Handling

256

Run the application, log in as an administrator, and navigate to /Dashboard/TestException. You
should see the error page shown in Figure 8-4.

Figure 8-4.  Custom exception page

Explore Azure Table storage for the ExceptionLog table. You should see exception log entries, as shown
in Figure 8-5.

Figure 8-5.  Exception log entries in Azure Table storage

■■ Note  We are not going to handle exceptions that occur in the Program and Startup classes. By default,
when an exception occurs in these classes, the web host will exit and the application will not start. These
exceptions should be identified as part of an initial sanity check that we perform immediately after the
deployment.

Configuring Status Code Pages
Common problems for any web application are the requests sent for nonexistent pages or unauthorized
modules. For such requests, the application should gracefully display an error page with standard information.
ASP.NET Core provides built-in capabilities to handle error status responses such as 404 (Page Not Found).
In this section, we will implement status code pages for our Automobile Service Center application.

Chapter 8 ■ Logging and Exception Handling

257

First we will configure status code pages by using UseStatusCodePagesWithRedirects middleware in
the Configure method of the Startup class, as shown in Listing 8-23. It will redirect to the home controller’s
Error action with the status code. The status code can be anywhere between 400 and 599.

Listing 8-23.  Configure UseStatusCodePagesWithRedirects middleware

public async void Configure(IApplicationBuilder app,
 IHostingEnvironment env,
 ILoggerFactory loggerFactory,
 IIdentitySeed storageSeed,
 IMasterDataCacheOperations masterDataCacheOperations,
 ILogDataOperations logDataOperations,
 IUnitOfWork unitOfWork)
{
 �// Configure Azure Logger to log all events except the ones that are generated by

default by ASP.NET Core.
 loggerFactory.AddAzureTableStorageLog(logDataOperations,
 �(categoryName, logLevel) => !categoryName.Contains("Microsoft") && logLevel >=

LogLevel.Information);

 if (env.IsDevelopment())
 {
 // app.UseDeveloperExceptionPage();
 // app.UseDatabaseErrorPage();
 app.UseBrowserLink();
 }
 else
 {
 // app.UseExceptionHandler("/Home/Error");
 }

 app.UseStatusCodePagesWithRedirects("/Home/Error/{0}");
 app.UseSession();
 app.UseStaticFiles();
 app.UseIdentity();

 app.UseGoogleAuthentication(new GoogleOptions()
 {
 ClientId = Configuration["Google:Identity:ClientId"],
 ClientSecret = Configuration["Google:Identity:ClientSecret"]
 });

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });

Chapter 8 ■ Logging and Exception Handling

258

 �await storageSeed.Seed(app.ApplicationServices.GetService<UserManager<ApplicationUser>>(),
 app.ApplicationServices.GetService<RoleManager<IdentityRole>>(),
 app.ApplicationServices.GetService<IOptions<ApplicationSettings>>());

 �var models = Assembly.Load(new AssemblyName("ASC.Models")).GetTypes().Where(type =>
type.Namespace == "ASC.Models.Models");

 foreach (var model in models)
 {
 �var repositoryInstance = Activator.CreateInstance(typeof(Repository<>).

MakeGenericType(model), unitOfWork);
 �MethodInfo method = typeof(Repository<>).MakeGenericType(model).

GetMethod("CreateTableAsync");
 method.Invoke(repositoryInstance, new object[0]);
 }

 await masterDataCacheOperations.CreateMasterDataCacheAsync();
}

The home controller’s Error action is a simple action that will check for the status code and return an
appropriate view, as shown in Listing 8-24.

Listing 8-24.  Error action

public IActionResult Error(string id)
{
 if (id == "404")
 return View("NotFound");
 else
 return View();
}

■■ Note  In Listing 8-24, we handled only the 404 status code. We can handle any other status codes similarly.

The Not Found view simply displays a standard message, as shown in Listing 8-25. It checks whether the
user is logged in or anonymous, and then based on that, chooses an appropriate layout to render the view.

Listing 8-25.  Not Found view

@using Microsoft.AspNetCore.Http
@inject IHttpContextAccessor UserHttpContext
@{
 ViewData["Title"] = "Error";
 �Layout = !UserHttpContext.HttpContext.User.Identity.IsAuthenticated ? "_layout" :

"_SecureLayout";
}

<div class="row">
 <div class="col s12">
 <div class="card-panel orange lighten-1 margin-bottom-50px margin-top-50px">

Chapter 8 ■ Logging and Exception Handling

259

 Page not found.

 </div>
 </div>
</div>

Run the application and go to any nonexistent URL. You should see an error page, as shown in Figure 8-6.

Figure 8-6.  Page Not Found error view

■■ Note  We are not going to log 404 status messages to Azure Table storage because these status codes can
occur frequently, and this information has no business relevance.

Chapter 8 ■ Logging and Exception Handling

260

For an authenticated user, you should see the page shown in Figure 8-7.

Figure 8-7.  Logged-in user Page Not Found error view

In a similar way, we can get custom status code pages for a 401 Unauthorized Response. First, we need to
make sure that Identity redirects to custom status code pages rather than to the default AccessDenied action;
we need to make the code change to the Configure method of the Startup class, as shown in Listing 8-26.

Listing 8-26.  Setting AutomaticChallenge to false

services.AddIdentity<ApplicationUser, IdentityRole>((options) =>
 {
 options.User.RequireUniqueEmail = true;
 options.Cookies.ApplicationCookie.AutomaticChallenge = false;
 })

Modify the Error action in the home controller to support unauthorized responses, as shown in Listing 8-27.

Listing 8-27.  Updated Error action

public IActionResult Error(string id)
{
 if (id == "404")
 return View("NotFound");

 if (id == "401" && User.Identity.IsAuthenticated)
 return View("AccessDenied");
 else
 return RedirectToAction("Login", "Account");

 return View();
}

The Access Denied view is a simple view that displays a standard error message, as shown in
Listing 8-28.

Chapter 8 ■ Logging and Exception Handling

261

Listing 8-28.  Access Denied view

@using Microsoft.AspNetCore.Http
@inject IHttpContextAccessor UserHttpContext
@{
 ViewData["Title"] = "Error";
 �Layout = !UserHttpContext.HttpContext.User.Identity.IsAuthenticated ? "_layout" : "_

SecureLayout";
}

<div class="row">
 <div class="col s12">
 <div class="card-panel orange lighten-1 margin-bottom-50px margin-top-50px">

 Access Denied.

 </div>
 </div>
</div>

Run the application and log in as a customer. Try to access any secure page that is available only to the
admin user. You should see the Access Denied screen shown in Figure 8-8.

Figure 8-8.  Access Denied error view

■■ Note  After the preceding change, when an anonymous user tries to access an authorized page, the program
will redirect him to the Login view. The user needs to submit his credentials to navigate to the dashboard.

Chapter 8 ■ Logging and Exception Handling

262

Summary
You started this chapter by learning about the importance of logging and exception handling for any
software application. Both exception-handling and logging frameworks make an application more robust,
secure, and user-friendly by providing the required diagnostic and debugging information.

You proceeded to create a logging framework for our Automobile Service Center application by
leveraging ASP.NET Core’s default logging features. The logging framework takes an implementation of the
Azure Storage repository as a dependency and uses it to store various types of logs to Azure Storage. The
logging framework is configured in the Startup class and has been tested with the default log entries in the
account controller.

You started off with user activity logging functionality by learning about the types of ASP.NET Core's
action filters. Then you created a new Azure Storage entity and implemented the storage persistence method
that is used to store user activity logs to Azure Storage. Finally, you created an action filter to log each and
every URL requested by users, through a storage persistence method created earlier.

Exception handling for the Automobile Service Center is achieved through an Exception filter that
displays a standard error page to end users with a unique ExceptionId. Later we configured status code
pages through which any response status code between 400 and 599 can be handled by a custom action.
For the Automobile Service Center application, we handled 404 Not Found and 401 Access Denied status
codes and displayed their respective custom error pages.

263© Rami Vemula 2017
R. Vemula, Real-Time Web Application Development, https://doi.org/10.1007/978-1-4842-3270-5_9

CHAPTER 9

Creating Areas and Navigation
by Using View Components

Often the development of web applications starts at a slow pace, with limited functionalities and fixed
deliverables. But over the course of time, the complexity of technical components increases as more and
more functional requirements arise and integration is needed between modules. With this ever-growing
code, along with its complexity, projects can suffer from issues of code maintainability and version control.
It is a recommended practice to have proper code structure and segregation of functionalities and technical
components throughout the entire code base.

ASP.NET MVC areas are used to organize code based on related functionalities into different physical
folders and namespaces. In an area, all logical components (such as the model, controller, and view)
are kept in different folders, and the same namespace is used for all the related components. For our
Automobile Service Center application, we are going to create separate areas for user account management,
service requests, and configuration-related pages.

After the application code is segregated into different areas, the next biggest challenge for any
application is to provide easy and seamless navigation throughout the site. The complexity in providing
a good navigation flow is directly proportional to the user roles that are supported by the system, along
with the overall functionalities (modules and submodules). In this chapter, we will develop a reusable
navigational component for the Automobile Service Center’s secure pages by using ASP.NET Core’s view
components.

ASP.NET Core has good support for bundling and minification, which are used to improve the
page-load performance of a web application. Bundling combines multiple files into a single file, whereas
minification performs optimizations on JS and CSS scripts. In this chapter, we will enable bundling and
minification optimizations for the Automobile Service Center.

■■ Note  My main intention in this chapter is to show you how to handle project structure changes in the
middle of development. Typically, areas should be implemented at the architectural design phase. I delayed our
implementation of areas specifically to demonstrate design changes at the time of development.

https://doi.org/10.1007/978-1-4842-3270-5_9

Chapter 9 ■ Creating Areas and Navigation by Using View Components

264

Implementing Areas for the Automobile Service Center
Application
In this section, we will segregate the code of our Automobile Service Center application by using ASP.NET
Core’s areas feature. We will categorize the entire application code into the following modules:

•	 User Account Management: This module will hold all the code artifacts related to
Automobile Service Center users such as service engineers.

•	 Service Requests: This module will hold all the code related to managing service
requests, and communication between customers and service engineers.

•	 Configuration: All the screens related to configuration (for example, MasterData) will
be held in this module.

Areas are primarily used for code segregation, but at the same time we should be careful about
duplicating code to achieve proper segregation. For example, the error controller is common to all modules,
so the ideal place for this controller and its associated views is still the common Controllers and Views
folder. Following are the key points to remember while creating areas for our Automobile Service Center
application:

•	 Anonymous pages and common user authentication pages (such as Login and Reset
Password) are not included in areas.

•	 Common types (for example, view models related to user account management) are
not included in areas.

•	 Base and anonymous controllers are exempted from areas.

•	 Shared views across modules are not included in areas.

•	 The Service Requests module will be developed in Chapters 10 and 11.

Create a new folder named Areas and then create three subfolders inside Areas that are named for the
modules: Accounts, ServiceRequests, and Configuration. Create Controllers, Models and Views folders
in all the modules, as shown in Figure 9-1.

http://dx.doi.org/10.1007/978-1-4842-3270-5_10
http://dx.doi.org/10.1007/978-1-4842-3270-5_11

Chapter 9 ■ Creating Areas and Navigation by Using View Components

265

■■ Note  In the Automobile Service Center application, we are not using Manage Controller and its related
views and models. Delete the controller and its related artifacts.

Remove the ManageViewModels reference from the _ViewImports.cshtml file.

First, we will focus on the Configuration module. Cut and paste the MasterData controller to the
Controllers subfolder under the Configuration area. Change the namespace as shown in Listing 9-1.

Listing 9-1.  Configuration namespace

namespace ASC.Web.Areas.Configuration.Controllers

Decorate MasterDataController with the Area attribute, as shown in Listing 9-2.

Listing 9-2.  Area attribute for configuration module

[Area("Configuration")]
[Authorize(Roles = "Admin")]
public class MasterDataController : BaseController

Make sure to copy the MasterData view models (including MappingProfile) to the Models folder of the
Configuration area, and change the namespace for all master data models, as shown in Listing 9-3.

Figure 9-1.  The areas folder structure for the Automobile Service Center application

Chapter 9 ■ Creating Areas and Navigation by Using View Components

266

Listing 9-3.  Configuration models namespace

namespace ASC.Web.Areas.Configuration.Models

■■ Note W hile moving the code, we will have to resolve certain dependencies by including using statements,
or in some cases, removing old using statements. Resolving these dependencies is not detailed in this book.
Most of the dependencies can be resolved by pressing the Ctrl+period (.) shortcut and then selecting the
appropriate resolution.

Move the MasterData controller views from the Views/MasterData folder to the Configuration/Views
folder. Make sure to change the fully qualified name (ASC.Web.Areas.Configuration.Models) of the model
in each view to reflect the new namespace changes of the models. Copy _ViewImports.cshtml to the root of
the Configuration/Views folder.

■■ Note  One change is required in the MasterValues view, where we are bulk-uploading the data by
using a Microsoft Excel file. Instead of having the URL hard-coded like /MasterData/UploadExcel, change it to
@Url.Action("UploadExcel", "MasterData").

Before we make routing changes, build the entire ASC.Web project to make sure no compile errors are
present.

We need to include areas in the route template in the Configure method of the Startup class, as shown
in Listing 9-4. Here, a new route has been created to hold the area name in the route if it exists.

Listing 9-4.  Routes configuration

app.UseMvc(routes =>
{
 routes.MapRoute(name: "areaRoute",
 template: "{area:exists}/{controller=Home}/{action=Index}");

 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

Chapter 9 ■ Creating Areas and Navigation by Using View Components

267

The folder structure should look like Figure 9-2.

Figure 9-2.  The Configuration area’s folder structure

Run the application. You should see the home page as usual, without any errors.
Now we will move the code artifacts related to service engineers and customers to the Accounts

module. Move the ProfileViewModel, CustomerRegistrationViewModel, CustomersViewModel,
ServiceEngineerRegistrationViewModel, and ServiceEngineerViewModel models from the
Models/AccountViewModels folder to the Areas/Accounts/Models folder. Change the namespace of the
models as shown in Listing 9-5.

Listing 9-5.  Accounts namespace

namespace ASC.Web.Areas.Accounts.Models

Create a new controller named AccountController in the Accounts/Controllers folder. Decorate
the controller with the Area attribute and pass the relevant area name (in this case, it is Account). Inject the
dependencies (for example, of UserManager) as shown in Listing 9-6.

Extract all the actions related to the profile, customers, and service engineers from the old account
controller and place them in the newly created controller.

■■ Note  The account controller that is present from the start of the application will be used for generic
functionalities such as logging in, logging out, and resetting a password. The newly created account controller
will be used to perform actions on customers, service engineers, and the profile.

Chapter 9 ■ Creating Areas and Navigation by Using View Components

268

Listing 9-6.  Account module controller

using ASC.Models.BaseTypes;
using ASC.Utilities;
using ASC.Web.Areas.Accounts.Models;
using ASC.Web.Controllers;
using ASC.Web.Models;
using ASC.Web.Services;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Options;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

namespace ASC.Web.Areas.Accounts.Controllers
{
 [Authorize]
 [Area("Account")]
 public class AccountController: BaseController
 {
 private readonly UserManager<ApplicationUser> _userManager;
 private readonly SignInManager<ApplicationUser> _signInManager;
 private readonly IEmailSender _emailSender;

 public AccountController(
 UserManager<ApplicationUser> userManager,
 SignInManager<ApplicationUser> signInManager,
 IOptions<IdentityCookieOptions> identityCookieOptions,
 IEmailSender emailSender)
 {
 _userManager = userManager;
 _signInManager = signInManager;
 _emailSender = emailSender;
 }

 [HttpGet]
 [Authorize(Roles = "Admin")]
 public async Task<IActionResult> ServiceEngineers()
 {
 // Code removed for brevity. This is moved from the other AccountController.
 }

 [HttpPost]
 [ValidateAntiForgeryToken]
 [Authorize(Roles = "Admin")]
 public async Task<IActionResult> ServiceEngineers(ServiceEngineerViewModel serviceEngineer)
 {
 // Code removed for brevity. This is moved from the other AccountController.
 }

Chapter 9 ■ Creating Areas and Navigation by Using View Components

269

 [HttpGet]
 [Authorize(Roles = "Admin")]
 public async Task<IActionResult> Customers()
 {
 // Code removed for brevity. This is moved from the other AccountController.
 }

 [HttpPost]
 [ValidateAntiForgeryToken]
 [Authorize(Roles = "Admin")]
 public async Task<IActionResult> Customers(CustomersViewModel customer)
 {
 // Code removed for brevity. This is moved from the other AccountController.
 }

 [HttpGet]
 public async Task<IActionResult> Profile()
 {
 // Code removed for brevity. This is moved from the other AccountController.
 }

 [HttpPost]
 [ValidateAntiForgeryToken]
 public async Task<IActionResult> Profile(ProfileViewModel profile)
 {
 // Code removed for brevity. This is moved from the other AccountController.
 }

 private void AddErrors(IdentityResult result)
 {
 // Code removed for brevity. This is moved from the other AccountController.
 }
 }
}

Create an Accounts folder under the Accounts/Views folder. Copy the Profile, Customers, and
Service Engineers views from the normal Views folder to the Accounts/Views/Account folder. Change the
namespace of the model to ASC.Web.Areas.Accounts.Models. Copy _ViewImports.cshtml to the root of the
Accounts/Views folder. The Accounts area should look like in Figure 9-3.

Chapter 9 ■ Creating Areas and Navigation by Using View Components

270

Finally, we will move code related to the dashboard to the ServiceRequests module. We have to move
the dashboard controller to the ServiceRequests/Controllers folder. Decorate the controller with the Area
attribute and pass the relevant area name (in this case, it is ServiceRequests). Change the namespace on
the dashboard controller as shown in Listing 9-7.

Listing 9-7.  ServiceRequests namespace

namespace ASC.Web.Areas.ServiceRequests.Controllers

Move the Dashboard view from the Views/Dashboard folder to the ServiceRequests/Views/Dashboard
folder. Copy _ViewImports.cshtml to the root of the ServiceRequests /Views folder. The ServiceRequests
area should look like Figure 9-4.

Figure 9-3.  The Accounts area’s folder structure

Figure 9-4.  The ServiceRequests area’s folder structure

Chapter 9 ■ Creating Areas and Navigation by Using View Components

271

As we have moved Dashboard to the ServiceRequests area, we need to handle the redirections to this
action from different controllers by including the area in the route. Open both account controllers and find
all the places where a request is redirected to the Dashboard action of the Dashboard controller and replace
it with code shown in Listing 9-8.

Listing 9-8.  Redirect to Dashboard action

return RedirectToAction("Dashboard", "Dashboard", new { Area = "ServiceRequests" });

The last change that we need to make is to fix the broken links in the left navigation bar by including the
area in the anchor tags, as shown in Listing 9-9.

Listing 9-9.  Updated left navigation by including Areas

 <ul id="nav-mobile" class="side-nav fixed">

 <div class="userView">
 <div class="background blue-grey lighten-1"></div>

 @currentUser.Name
 @currentUser.Email
 </div>

 �<a asp-area="ServiceRequests" asp-controller="Dashboard" asp-action="Dashboard"

class="collapsible-header"><i class="material-icons">dashboard</i>Dashboard

 <ul class="collapsible collapsible-accordion">

 �User Administration<i class="material-

icons">supervisor_account</i>
 <div class="collapsible-body">

 <�li><a asp-area="Accounts" asp-controller="Account" asp-

action="Customers">Customers<i class="material-icons">
account_box</i>

 <�li><a asp-area="Accounts" asp-controller="Account" asp-action="
ServiceEngineers">Service Engineers<i class="material-icons">
person_add</i>

 </div>

 �<i class="material-icons">perm_data_

setting</i>Service Requests
 �<i class="material-icons">message</i>

Service Notifications
 �<i class="material-icons">inbox</i>

Promotions

 <ul class="collapsible collapsible-accordion">

Chapter 9 ■ Creating Areas and Navigation by Using View Components

272

 �Master Data<i class="material-icons">

perm_data_setting</i>
 <div class="collapsible-body">

 �<a asp-area="Configuration" asp-controller="MasterData"

asp-action="MasterKeys" class="collapsible-header">Master Keys
<i class="material-icons">data_usage</i>

 �<a asp-area="Configuration" asp-controller="MasterData"
asp-action="MasterValues" class="collapsible-header">Master Values
<i class="material-icons">settings_system_daydream</i>

 </div>

 <ul class="collapsible collapsible-accordion">

 �Settings<i class="material-icons">settings</

i>
 <div class="collapsible-body">

 �<a asp-area="Accounts" asp-controller="Account" asp-action="Profile"

class="collapsible-header">Profile<i class="material-icons">
system_update_alt</i>

 �<a class="collapsible-header" href="#!"
id="ancrResetPassword">Reset Password<i class="material-icons">
lock_outline</i>

 </div>

 �<i class="material-

icons">exit_to_app</i>Logout

The Logout and Reset Password form tags are broken and need to be fixed as part of upgrading the
areas. Open _SecureLayout.cshtml and update the form tags as shown in Listing 9-10.

Listing 9-10.  Areas configuration in logout and reset password form tags

<form class="hide" method="post" id="logout_form" asp-area="" asp-controller="Account" asp-
action="Logout">
 <input type="submit" value="Logout" />
</form>

<form class="hide" method="post" id="resetPassword_form" asp-area="" asp-
controller="Account" asp-action="InitiateResetPassword">
</form>

Chapter 9 ■ Creating Areas and Navigation by Using View Components

273

Run the application and test all the functionalities that we have developed so far. Everything should
work seamlessly, without errors.

Creating a Dynamic JSON-Driven Navigation Menu
In this section, we will create a dynamic left navigation menu for our Automobile Service Center application.
So far, we have used a static left menu that has predefined menu items in _SecureLayout.cshtml. Although
this approach works fine for small applications with a few pages, it won’t work for larger applications
because of the complex navigation requirements based on the roles of logged-in users.

For our Automobile Service Center application, we have modules such as Master Data and User
Administration that are supposed to be accessible only to the admin user. Users with roles other than Admin
should not be able to view those modules in navigation. We will use ASP.NET Core’s view components
feature to build a dynamic left navigation menu that supports user access levels. We will use a JSON file to
hold all the configuration of menu items with user access mappings.

First, you’ll learn about view components in ASP.NET Core. These components are primarily used to
achieve reusable view code by leveraging the principle of separation of concerns. View components can be
considered traditional ASP.NET MVC partial views, but these have overwhelming advantages in terms of
data binding and testability features. The following are the key features of view components:

•	 View components can have their own business logic and parameters.

•	 These are not dependent on model binding, but only on the data that we pass to them.

•	 They can be easily testable.

•	 View components can render as chunks rather than as a whole response.

We will create a Navigation.json file (by using any text editor), as shown in Listing 9-11. Then we’ll
create a folder named Navigation in the ASC.Web project and place the Navigation.json file in it.

■■ Note  We will use the ASC.Web project navigation folder to house the configuration of the JSON navigation
menu items. But we will use the ASC.Utilities project to hold all navigation-related code artifacts. This way,
it will be easy to share and reuse code across multiple projects. In addition, if we want to update any navigation
menu items in the future, we can simply edit the Navigation.json file, and the changes will be reflected
automatically on the web interface.

Listing 9-11.  Navigation.json file

{
 "MenuItems": [
 {
 "DisplayName": "Dashboard",
 "MaterialIcon": "dashboard",
 "Link": "/ServiceRequests/Dashboard/Dashboard",
 "IsNested": false,
 "Sequence": 1,
 "UserRoles": ["User", "Engineer", "Admin"],
 "NestedItems": []
 },

Chapter 9 ■ Creating Areas and Navigation by Using View Components

274

 {
 "DisplayName": "User Administration",
 "MaterialIcon": "supervisor_account",
 "Link": "",
 "IsNested": true,
 "Sequence": 2,
 "UserRoles": ["Admin"],
 "NestedItems": [
 {
 "DisplayName": "Customers",
 "MaterialIcon": "account_box",
 "Link": "/Accounts/Account/Customers",
 "IsNested": false,
 "Sequence": 1,
 "UserRoles": ["Admin"],
 "NestedItems": []
 },
 {
 "DisplayName": "Service Engineers",
 "MaterialIcon": "person_add",
 "Link": "/Accounts/Account/ServiceEngineers",
 "IsNested": false,
 "Sequence": 2,
 "UserRoles": ["Admin"],
 "NestedItems": []
 }
]
 },
 {
 "DisplayName": "Service Requests",
 "MaterialIcon": "perm_data_setting",
 "Link": "/ServiceRequests/Dashboard/Dashboard",
 "IsNested": false,
 "Sequence": 3,
 "UserRoles": ["User", "Engineer", "Admin"],
 "NestedItems": []
 },
 {
 "DisplayName": "Service Notifications",
 "MaterialIcon": "message",
 "Link": "/ServiceRequests/Dashboard/Dashboard",
 "IsNested": false,
 "Sequence": 4,
 "UserRoles": ["User", "Engineer", "Admin"],
 "NestedItems": []
 },
 {
 "DisplayName": "Promotions",
 "MaterialIcon": "inbox",
 "Link": "/ServiceRequests/Dashboard/Dashboard",
 "IsNested": false,

Chapter 9 ■ Creating Areas and Navigation by Using View Components

275

 "Sequence": 5,
 "UserRoles": ["User", "Engineer", "Admin"],
 "NestedItems": []
 },
 {
 "DisplayName": "Master Data",
 "MaterialIcon": "perm_data_setting",
 "Link": "",
 "IsNested": true,
 "Sequence": 6,
 "UserRoles": ["Admin"],
 "NestedItems": [
 {
 "DisplayName": "Master Keys",
 "MaterialIcon": "data_usage",
 "Link": "/Configuration/MasterData/MasterKeys",
 "IsNested": false,
 "Sequence": 1,
 "UserRoles": ["Admin"],
 "NestedItems": []
 },
 {
 "DisplayName": "Master Values",
 "MaterialIcon": "settings_system_daydream",
 "Link": "/Configuration/MasterData/MasterValues",
 "IsNested": false,
 "Sequence": 2,
 "UserRoles": ["Admin"],
 "NestedItems": []
 }
]
 },
 {
 "DisplayName": "Settings",
 "MaterialIcon": "settings",
 "Link": "",
 "IsNested": true,
 "Sequence": 7,
 "UserRoles": ["User", "Engineer", "Admin"],
 "NestedItems": [
 {
 "DisplayName": "Profile",
 "MaterialIcon": "system_update_alt",
 "Link": "/Accounts/Account/Profile",
 "IsNested": false,
 "Sequence": 1,
 "UserRoles": ["User", "Engineer", "Admin"],
 "NestedItems": []
 },

Chapter 9 ■ Creating Areas and Navigation by Using View Components

276

 {
 "DisplayName": "Reset Password",
 "MaterialIcon": "lock_outline",
 "Link": "#!",
 "IsNested": false,
 "Sequence": 2,
 "UserRoles": ["User", "Engineer", "Admin"],
 "NestedItems": []
 }
]
 },
 {
 "DisplayName": "Logout",
 "MaterialIcon": "exit_to_app",
 "Link": "#!",
 "IsNested": false,
 "Sequence": 8,
 "UserRoles": ["User", "Engineer", "Admin"],
 "NestedItems": []
 }
]
}

The content of Navigation.json will hold all the menu items and the associated information. Each
navigation menu item has the following properties:

•	 DisplayName: Text that needs to be displayed on the user interface.

•	 MaterialIcon: Icon from Material Design that needs to be displayed along with the
display name.

•	 Link: URL to which the menu item should be redirected.

•	 IsNested: This property indicates whether the current menu item has child menu
items. In the processing logic that we are going to come up with, if any menu item
has child menu items, then the URL link of the parent will be ignored.

•	 Sequence: The display sequence of the menu items in the entire menu.

•	 UserRoles: User roles that are allowed to view the current menu item.

•	 NestedItems: If IsNested is True, the child navigation menu items will be stored in
this array. Each child navigation item will share the same structure as any top-level
menu item.

Ensure that you set the Content of the output directory to Copy Always for the Navigation.json file
properties (right-click the file in Visual Studio and select Properties), as shown in Figure 9-5.

Chapter 9 ■ Creating Areas and Navigation by Using View Components

277

Create a new folder named Navigation in the ASC.Utilities project. Create a new class named
NavigationModels in this Navigation folder. We will create a NavigationMenuItem class that resembles the
JSON structure, as shown in Listing 9-12. The NavigationMenu class will hold a list of NavigationMenuItem
instances.

Listing 9-12.  Navigation models

using System.Collections.Generic;

namespace ASC.Utilities.Navigation
{
 public class NavigationMenu
 {
 public List<NavigationMenuItem> MenuItems { get; set; }
 }

 public class NavigationMenuItem
 {
 public string DisplayName { get; set; }
 public string MaterialIcon { get; set; }
 public string Link { get; set; }
 public bool IsNested { get; set; }
 public int Sequence { get; set; }
 public List<string> UserRoles { get; set; }
 public List<NavigationMenuItem> NestedItems { get; set; }
 }
}

Now in the ASC.Web project, we will create the INavigationCacheOperations interface and its
associated implementation, as shown in Listing 9-13. On initial startup of the application, we will call the
CreateNavigationCacheAsync method to get the Navigation.json string and store it in a Redis cache.
Then, on page-to-page navigation, instead of reading the navigation configuration from the JSON file again
and again, we will get the JSON string from the Redis cache, deserialize it, and consume it in the menu view
component (which we are going to create).

Figure 9-5.  Setting the Content option to Copy Always for the Navigation.json file

Chapter 9 ■ Creating Areas and Navigation by Using View Components

278

Listing 9-13.  Navigation Cache

using ASC.Utilities.Navigation;
using Microsoft.Extensions.Caching.Distributed;
using Newtonsoft.Json;
using System.IO;
using System.Threading.Tasks;

namespace ASC.Web.Data
{
 public interface INavigationCacheOperations
 {
 Task<NavigationMenu> GetNavigationCacheAsync();
 Task CreateNavigationCacheAsync();
 }

 public class NavigationCacheOperations : INavigationCacheOperations
 {
 private readonly IDistributedCache _cache;
 private readonly string NavigationCacheName = "NavigationCache";
 public NavigationCacheOperations(IDistributedCache cache)
 {
 _cache = cache;
 }

 public async Task CreateNavigationCacheAsync()
 {
 �await _cache.SetStringAsync(NavigationCacheName, File.ReadAllText("Navigation/

Navigation.json"));
 }

 public async Task<NavigationMenu> GetNavigationCacheAsync()
 {
 �return JsonConvert.DeserializeObject<NavigationMenu>(await _cache.GetStringAsync

(NavigationCacheName));
 }
 }
}

Resolve the INavigationCacheOperations dependency in the ConfigureServices method of the
Startup class, as shown in Listing 9-14.

Listing 9-14.  Resolve the dependency of INavigationCacheOperations

services.AddSingleton<INavigationCacheOperations, NavigationCacheOperations>();

We will call the CreateNavigationCacheAsync method from the Configure method of the Startup
class, as shown in Listing 9-15.

Chapter 9 ■ Creating Areas and Navigation by Using View Components

279

Listing 9-15.  Create Navigation cache in Startup class

public async void Configure(IApplicationBuilder app,
 IHostingEnvironment env,
 ILoggerFactory loggerFactory,
 IIdentitySeed storageSeed,
 IMasterDataCacheOperations masterDataCacheOperations,
 ILogDataOperations logDataOperations,
 INavigationCacheOperations navigationCacheOperations,
 IUnitOfWork unitOfWork)
{
 loggerFactory.AddConsole();
 �// Configure Azure Logger to log all events except the ones that are generated by

default by ASP.NET Core.
 loggerFactory.AddAzureTableStorageLog(logDataOperations,
 �(categoryName, logLevel) => !categoryName.Contains("Microsoft") && logLevel >=

LogLevel.Information);

 if (env.IsDevelopment())
 {
 // app.UseDeveloperExceptionPage();
 // app.UseDatabaseErrorPage();
 app.UseBrowserLink();
 }
 else
 {
 // app.UseExceptionHandler("/Home/Error");
 }

 app.UseStatusCodePagesWithRedirects("/Home/Error/{0}");
 app.UseSession();
 app.UseStaticFiles();
 app.UseIdentity();

 app.UseGoogleAuthentication(new GoogleOptions()
 {
 ClientId = Configuration["Google:Identity:ClientId"],
 ClientSecret = Configuration["Google:Identity:ClientSecret"]
 });

 app.UseMvc(routes =>
 {
 routes.MapRoute(name: "areaRoute",
 template: "{area:exists}/{controller=Home}/{action=Index}");
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });

Chapter 9 ■ Creating Areas and Navigation by Using View Components

280

 �await storageSeed.Seed(app.ApplicationServices.GetService<UserManager<ApplicationUser>>(),
 app.ApplicationServices.GetService<RoleManager<IdentityRole>>(),
 app.ApplicationServices.GetService<IOptions<ApplicationSettings>>());

 �var models = Assembly.Load(new AssemblyName("ASC.Models")).GetTypes().Where(type =>
type.Namespace == "ASC.Models.Models");

 foreach (var model in models)
 {
 �var repositoryInstance = Activator.CreateInstance(typeof(Repository<>).

MakeGenericType(model), unitOfWork);
 �MethodInfo method = typeof(Repository<>).MakeGenericType(model).

GetMethod("CreateTableAsync");
 method.Invoke(repositoryInstance, new object[0]);
 }

 await masterDataCacheOperations.CreateMasterDataCacheAsync();

 await navigationCacheOperations.CreateNavigationCacheAsync();
}

Now we will start building the navigation view component. To get started, we need to install the
Microsoft.AspNetCore.Mvc NuGet package to the ASC.Utilities project, as shown in Figure 9-6.

Create a class named LeftNavigationViewComponent under the Navigation folder of the ASC.
Utilities project, as shown in Listing 9-16. This class will be inherited for ASP.NET Core’s ViewComponent
class, which is used to create view components. ViewComponent uses the Invoke method to process business
logic; in our case, this method accepts a NavigationMenu instance and returns a view corresponding to left
navigation by sorting the menu items in ascending order. ASC.Utilities.Navigation.LeftNavigation is
used as a unique name for the left navigation view component.

Listing 9-16.  Left Navigation view component

using Microsoft.AspNetCore.Mvc;
using System.Linq;

namespace ASC.Utilities.Navigation
{
 [ViewComponent(Name = "ASC.Utilities.Navigation.LeftNavigation")]
 public class LeftNavigationViewComponent : ViewComponent
 {

Figure 9-6.  Installing the Microsoft.AspNetCore.Mvc NuGet package to the ASC.Utilities project

Chapter 9 ■ Creating Areas and Navigation by Using View Components

281

 public IViewComponentResult Invoke(NavigationMenu menu)
 {
 menu.MenuItems = menu.MenuItems.OrderBy(p => p.Sequence).ToList();
 return View(menu);
 }
 }
}

We have to create a view named Default.cshtml in the ASC.Utilities project under Views/Shared/
Components/LeftNavigation, as shown in Figure 9-7. As the project type is a class library, we do not have
the option to add cshtml to the project; we have to create a physical file with the cshtml extension and
include it in the project.

Figure 9-7.  The Default.cshtml file in the ASC.Utilities project

Default.cshtml will be used by LeftNavigation to render the left navigation menu items.

■■ Note  As ASC.Utilities is a class library project, by default we will not get IntelliSense for Razor views.
As per Microsoft, this feature is supported only from Visual Studio 2017 Update 3 Preview 2 (https://github.
com/aspnet/Razor/issues/1136). We have to carefully construct the view without any errors.

https://github.com/aspnet/Razor/issues/1136
https://github.com/aspnet/Razor/issues/1136

Chapter 9 ■ Creating Areas and Navigation by Using View Components

282

Include Default.cshtml as an embedded resource in the ASC.Utilities project, as shown in Figure 9-8,
so that the ASC.Web project can consume the left navigation view component and its associated view.

The HTML of Default.cshtml is straightforward, as shown in Listing 9-17. We will iterate each menu
item and check whether the logged-in user role is eligible to view the menu item. If it is not, we will go to
processing the next menu item. For each menu item, if it has nested submenu items, then we will display
an unordered list of parent menu items and insert the submenu items as anchors in the respective list item
(only after checking for user access). If the menu item is not nested, we will render a list item with the anchor
tag. To identify each menu item differently, we will give a different ID to anchor tags based on the display
name.

Listing 9-17.  Left Navigation menu HTML

@using Microsoft.AspNetCore.Http
@using ASC.Utilities
@model ASC.Utilities.Navigation.NavigationMenu
@inject IHttpContextAccessor UserHttpContext
@{
 var currentUser = UserHttpContext.HttpContext.User.GetCurrentUserDetails();
}
@foreach (var menuItem in Model.MenuItems)
{
 if (currentUser.Roles.Intersect(menuItem.UserRoles).Any())
 {
 if (menuItem.IsNested)
 {

 <ul class="collapsible collapsible-accordion">

 �<a class="collapsible-header" id="@string.Format("ancr{0}",

menuItem.DisplayName.Replace(" ",""))">@menuItem.DisplayName<i
class="material-icons">@menuItem.MaterialIcon</i>

 <div class="collapsible-body">

 �@foreach (var subMenuItem in menuItem.NestedItems.OrderBy(p

=> p.Sequence).ToList())

Figure 9-8.  Including Default.cshtml as an embedded resource

Chapter 9 ■ Creating Areas and Navigation by Using View Components

283

 {
 if (currentUser.Roles.Intersect(subMenuItem.UserRoles).Any())
 {
 �<a href="@subMenuItem.Link" id="@string.Format

("ancr{0}", subMenuItem.DisplayName.Replace(" ",""))">
@subMenuItem.DisplayName<i class="material-icons">
@subMenuItem.MaterialIcon</i>

 }
 }

 </div>

 }
 else
 {

 �<a href="@menuItem.Link" id="@string.Format("ancr{0}",menuItem.DisplayName.

Replace(" ",""))" class="collapsible-header"><i class="material-icons">@
menuItem.MaterialIcon</i>@menuItem.DisplayName

 }
 }
}

To consume the left navigation view component, we need to install the Microsoft.Extensions.
FileProviders.Embedded NuGet package to the ASC.Web project, as shown in Figure 9-9.

Figure 9-9.  Installing the Microsoft.Extensions.FileProviders.Embedded NuGet package to the ASC.Web project

Now we need to configure the Razor view engine to support views that are embedded resources in an
external class library. We need to create a new EmbeddedFileProvider instance in the ConfigureServices
method of the Startup class. The EmbeddedFileProvider instance will be associated with the ASC.
Utilities namespace, and it should be added as one of the FileProviders to the Razor view engine, as
shown in Listing 9-18.

Chapter 9 ■ Creating Areas and Navigation by Using View Components

284

Listing 9-18.  Adding support to embedded views

public void ConfigureServices(IServiceCollection services)
 {
 // Code removed for brevity

 services.AddSession();
 services
 .AddMvc(o => { o.Filters.Add(typeof(CustomExceptionFilter)); })
 �.AddJsonOptions(options => options.SerializerSettings.ContractResolver = new

DefaultContractResolver());

 services.AddAutoMapper();

 // Add support to embedded views from ASC.Utilities project.
 �var assembly = typeof(ASC.Utilities.Navigation.LeftNavigationViewComponent).

GetTypeInfo().Assembly;
 var embeddedFileProvider = new EmbeddedFileProvider(assembly, "ASC.Utilities");
 services.Configure<RazorViewEngineOptions>(options =>
 {
 options.FileProviders.Add(embeddedFileProvider);
 });

 // Add application services.
 services.AddTransient<IEmailSender, AuthMessageSender>();
 // Code removed for brevity.
 }

Finally, we will render the view component in _SecureLayout.cshtml, as shown in Listing 9-19.

Listing 9-19.  Rendering Left Navigation view component

<!-- Side NavBar -->
<ul id="nav-mobile" class="side-nav fixed">

 <div class="userView">
 <div class="background blue-grey lighten-1"></div>

 @currentUser.Name
 @currentUser.Email
 </div>

 �@await Component.InvokeAsync("ASC.Utilities.Navigation.LeftNavigation", await

navigationCache.GetNavigationCacheAsync())

Chapter 9 ■ Creating Areas and Navigation by Using View Components

285

Figure 9-10.  Left menu navigation for the Admin login

Run the application and navigate to the dashboard by signing in as Admin. You should see the left
navigation menu, as shown in Figure 9-10.

Chapter 9 ■ Creating Areas and Navigation by Using View Components

286

Using Bundling and Minification
Bundling and minification techniques are primarily used to improve the page-load performance of a web
application. Bundling combines multiple files into a single file, whereas minification performs optimizations
on JS and CSS scripts (for example, removing unnecessary whitespace and comments, and renaming
variables). We achieve the following key improvements with the help of bundling and minification:

•	 Reduced number of requests to the server for JavaScript and stylesheets

•	 Reduced size of JavaScript and stylesheets

■■ Note  Bundling and minification don’t affect the actual code files in a Visual Studio solution. A new set of
output files is created as part of the bundling and minification process, and the layout typically references the
output files.

Now log in as a service engineer. You should see the left navigation menu shown in Figure 9-11.

Figure 9-11.  Left navigation menu for a service engineer login

Chapter 9 ■ Creating Areas and Navigation by Using View Components

287

In this section, we will configure the Automobile Service Center application to use bundling and
minification optimization in Production mode. We will not optimize JS and CSS files in Development mode
because developers would be extensively using client-side development tools to debug and troubleshoot JS
and CSS issues, and optimizing code would hamper the developer’s debugging capabilities.

■■ Note  Before we start with bundling and minification, download DataTable CSS (https://cdn.
datatables.net/1.10.15/css/jquery.dataTables.min.css) and DataTable JS (https://cdn.datatables.
net/1.10.15/js/jquery.dataTables.min.js) and create the jquery.dataTable.css and jquery.
dataTables.js files in the CSS and JS folders of the wwwroot directory.

We are making this change to ensure that all the CSS and JS files are merged into logical files through bundles.

Make sure to refer to the already minified JQuery validation libraries by changing jquery.validate.js to
jquery.validate.min.js, and jquery.validate.unobtrusive.js to jquery.validate.unobtrusive.min.
js in _MasterLayout.cshtml.

Open _MasterLayout.cshtml and make changes as shown in Listing 9-20. We primarily use the
environment tag helper of ASP.NET Core, which can be used to include certain sections in the view based on
the current application’s environment settings. In Development mode, we configure the regular CSS and JS
files that we have been using throughout the application so far. For now, leave the Staging and Production
section empty; soon we will fill this section with bundled and minified file references. The Material Icons
reference is configured to be common for all modes.

Listing 9-20.  Usage of environment tag helper

@using Microsoft.Extensions.Options;
@using ASC.Web.Configuration;
@inject IOptions<ApplicationSettings> _configurationSettings

<!DOCTYPE html>
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 �<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1.0,

user-scalable=no" />
 <title>@_configurationSettings.Value.ApplicationTitle</title>

 <!-- CSS Files -->
 <link href="https://fonts.googleapis.com/icon?family=Material+Icons" rel="stylesheet">
 <environment names="Development">
 �<link href="~/css/jquery.dataTables.css" type="text/css" rel="stylesheet"

media="screen,projection" />
 �<link href="~/css/materialize.css" type="text/css" rel="stylesheet"

media="screen,projection" />
 �<link href="~/css/style.css" type="text/css" rel="stylesheet"

media="screen,projection" />
 </environment>

https://cdn.datatables.net/1.10.15/css/jquery.dataTables.min.css
https://cdn.datatables.net/1.10.15/css/jquery.dataTables.min.css
https://cdn.datatables.net/1.10.15/js/jquery.dataTables.min.js
https://cdn.datatables.net/1.10.15/js/jquery.dataTables.min.js

Chapter 9 ■ Creating Areas and Navigation by Using View Components

288

 <environment names="Staging,Production">
 </environment>
</head>
<body>
 <!-- Render Body -->
 @RenderBody()

 <!-- JS Files -->
 <environment names="Development">
 <script src="~/lib/jquery/dist/jquery.min.js"></script>
 <script src="~/lib/jquery-validation/dist/jquery.validate.min.js"></script>
 �<script src="~/lib/jquery-validation-unobtrusive/jquery.validate.unobtrusive.min.js">

</script>
 <script src="~/js/materialize.min.js"></script>
 <script src="~/js/jquery.dataTables.js"></script>
 <script src="~/js/init.js"></script>
 </environment>
 <environment names="Staging,Production">
 </environment>

 @RenderSection("Scripts", required: false)
</body>
</html>

Run the application. Because we’ve already configured the ASC.Web project to run in Development
mode, everything should work as expected.

To get started with bundling and minification, we need to add the BundlerMinifier.Core package as
a DotNetCliToolReference in the ASC.Web.csproj file. This package is primarily required to do the heavy
lifting of bundling and minification of CSS, JS, and HTML files. Right-click the ASC.Web project in Visual
Studio and select the Edit ASC.Web.csproj option, as shown in Figure 9-12.

Figure 9-12.  The Edit option for the csproj file

Chapter 9 ■ Creating Areas and Navigation by Using View Components

289

Add the BundlerMinifier.Core package, as shown in Listing 9-21.

Listing 9-21.  Add BundlerMinifier.Core reference

<ItemGroup>
 <DotNetCliToolReference Include="BundlerMinifier.Core" Version="2.4.337" />
 <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet" Version="1.0.0" />
 �<DotNetCliToolReference Include="Microsoft.Extensions.SecretManager.Tools" Version="1.0.0" />
 �<DotNetCliToolReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Tools"
Version="1.0.0" />

</ItemGroup>

In ASP.NET Core, bundling and minification are configured in the bundleconfig.json file. Open this
file and add the configuration shown in Listing 9-22. We are going to create one bundle for all CSS files with
site.min.css as the bundle name. When it is generated, it will be placed in the same location (wwwroot/css)
as the other CSS files.

We are going to create three bundles for JS files, one for JQuery libraries, one for third-party libraries
such as DataTables, and one for custom application scripts such as init.js. We specify outputFileName
with the location and bundle name (for example, wwwroot/js/jqueryBundle.min.js) for each bundle and
then we specify the inputFiles with the files that need to be included in the bundle. We specify the optional
configuration to turn on/off minification for each bundle by using the minify section.

Listing 9-22.  bundleconfig.json file configuration

// Configure bundling and minification for the project.
// More info at https://go.microsoft.com/fwlink/?LinkId=808241
[
 {
 "outputFileName": "wwwroot/css/site.min.css",
 // An array of relative input file paths. Globbing patterns supported
 "inputFiles": [
 "wwwroot/css/jquery.dataTables.css",
 "wwwroot/css/materialize.css",
 "wwwroot/css/style.css"
]
 },
 {
 "outputFileName": "wwwroot/js/jqueryBundle.min.js",
 "inputFiles": [
 "wwwroot/lib/jquery/dist/jquery.js",
 "wwwroot/lib/jquery-validation/dist/jquery.validate.js",
 "wwwroot/lib/jquery-validation-unobtrusive/jquery.validate.unobtrusive.js"
],
 // Optionally specify minification options
 "minify": {
 "enabled": true
 }
 },
 {

Chapter 9 ■ Creating Areas and Navigation by Using View Components

290

 "outputFileName": "wwwroot/js/libraryBundle.min.js",
 "inputFiles": [
 "wwwroot/js/materialize.min.js",
 "wwwroot/js/jquery.dataTables.js"
],
 // Optionally specify minification options
 "minify": {
 "enabled": true
 }
 },
 {
 "outputFileName": "wwwroot/js/appBundle.min.js",
 "inputFiles": [
 "wwwroot/js/init.js"
],
 // Optionally specify minification options
 "minify": {
 "enabled": true
 }
 }
]

Now we will update _MasterLayout.cshtml with the bundleconfig.json outputFileName as shown in
Listing 9-23. We will update the files to target only the Production and Staging section of the layout.

Listing 9-23.  Update master layout with JQuery and CSS bundle files

@using Microsoft.Extensions.Options;
@using ASC.Web.Configuration;
@inject IOptions<ApplicationSettings> _configurationSettings

<!DOCTYPE html>
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 �<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1.0,

user-scalable=no" />
 <title>@_configurationSettings.Value.ApplicationTitle</title>

 <!-- CSS Files -->
 <link href="https://fonts.googleapis.com/icon?family=Material+Icons" rel="stylesheet">
 <environment names="Development">
 �<link href="~/css/jquery.dataTables.css" type="text/css" rel="stylesheet"

media="screen,projection" />
 �<link href="~/css/materialize.css" type="text/css" rel="stylesheet"

media="screen,projection" />
 �<link href="~/css/style.css" type="text/css" rel="stylesheet"

media="screen,projection" />
 </environment>
 <environment names="Staging,Production">

Chapter 9 ■ Creating Areas and Navigation by Using View Components

291

 �<link href="~/css/site.min.css" type="text/css" rel="stylesheet"
media="screen,projection" />

 </environment>
</head>
<body>
 <!-- Render Body -->
 @RenderBody()

 <!-- JS Files -->
 <environment names="Development">
 <script src="~/lib/jquery/dist/jquery.min.js"></script>
 <script src="~/lib/jquery-validation/dist/jquery.validate.min.js"></script>
 �<script src="~/lib/jquery-validation-unobtrusive/jquery.validate.unobtrusive.min.

js"></script>
 <script src="~/js/materialize.min.js"></script>
 <script src="~/js/jquery.dataTables.js"></script>
 <script src="~/js/init.js"></script>
 </environment>
 <environment names="Staging,Production">
 <script src="~/js/jqueryBundle.min.js"></script>
 <script src="~/js/libraryBundle.min.js"></script>
 <script src="~/js/appBundle.min.js"></script>
 </environment>

 @RenderSection("Scripts", required: false)
</body>
</html>

As the last step of the bundling process, we need to automate the build process to make sure the bundle
files are created on every build.

Edit the ASC.Web.csproj file and add the PreBuildScript section, as shown in Listing 9-24. The
commands mentioned in the target node execute before the code build. The dotnet bundle clean
command deletes the existing bundle artifacts, and dotnet bundle creates the new bundles.

Listing 9-24.  PreBuildScript

<Target Name="PreBuildScript" BeforeTargets="Build">
 <Exec Command="dotnet bundle clean" />
 <Exec Command="dotnet bundle" />
</Target>

■■ Note  During development, developers can always remove these commands from their csproj files so that
the regular dev builds will not take more time to finish.

Another way to run these commands is to use the command prompt. Navigate to the ASC.Web project directory
from the command prompt and run both commands. Running commands manually will also yield the same
results.

Chapter 9 ■ Creating Areas and Navigation by Using View Components

292

Now build the solution in Visual Studio. You should see all the bundles created, as shown in Figure 9-13.

Figure 9-13.  Created bundles in the Visual Studio solution

Run the application either in Development mode or Production mode. The application should run
without any errors.

Summary
You started this chapter by learning about the importance segregating code into modules by using ASP.
NET Core's areas feature. For our Automobile Service Center application, you created User Account
Management, Service Requests, and Configuration areas in Visual Studio Solution. First, you created the
physical folders under the Areas folder, one for each module. Then, in each module you organized code
into controllers, models, and views. Finally, you moved the existing source code to respective folders with
appropriate namespaces.

Later in the chapter, you designed an easy-to-use and seamless left navigation menu system for our
Automobile Service Center application. You created a JSON-based navigation configuration and loaded it
into a Redis cache on application initialization. You then created an ASP.NET Core view component that
renders the left navigation menu by using JSON configuration. The left navigation menu also supports
restricted visibility of menu items based on the logged-in user role. As a last step, you configured the view
component's view as an embedded resource and consumed it in the ASC.Web project’s secure layout.

In the last section of the chapter, you implemented bundling and minification for our Automobile
Service Center application. Bundling combines multiple files into a single file, whereas minification performs
optimizations. You configured one CSS bundle and three JQuery bundles for the application and loaded them
in the master layout based on environment variables (in Development mode, we load normal CSS and JQuery
files, and for other modes we load bundles). You automated bundling and minification tasks by including
pre-build commands for the ASC.Web project that will clean and regenerate bundles on every build.

293© Rami Vemula 2017
R. Vemula, Real-Time Web Application Development, https://doi.org/10.1007/978-1-4842-3270-5_10

CHAPTER 10

Forms and Validations

The main business motive behind designing Automobile Service Center application is to drive the car
servicing business through transparent and highly efficient automated system which will provide seamless
communication between customers and service engineers. Customers should be able to reach out to service
engineers to raise the service requests and in return service engineers should respond back to customers on
a timely basis with the specific details of service progress. To establish the aforesaid communication channel
between business and customers, we need to design data input screens which are traditionally called Forms.

In this chapter, we will define a workflow for new service request which will be created by customer,
monitored by Admin and organized by service engineers. We are going to create a service request form
which will be used by customers to initiate new service requests. A common view to display list of associated
service requests will be created which will display all the service requests based on user role.

We will create a service request detail view which will help customers, service engineers and admin
to view the details of an on-going or completed service. Customers and Service Engineers can use service
request details view to send and receive messages thereby sharing information and particulars about an on-
going car service.

We will also focus on user input validations through ASP.NET Core’s DataAnnotation attributes.
Wherever custom validations are required, we will develop custom validation attributes by implementing
ValidationAttribute and IClientModelValidator. Client side custom validations will be achieved by creating
Unobtrusive JQuery adapters and attaching custom validation functions to JQuery validator framework.

Lastly we will implement internationalization for Automobile Service Center application to support
different cultures and languages.

Service Request Workflow
In this section, we will define a custom workflow for Automobile Service Center application through which
we can ensure highest level of transparency and good communication between customers and service
engineers.

The workflow will be triggered when a customer submits a new service request for his automobile. The
request lands up in Admin queue with status as ‘New’. Admin then reviews the request and makes a decision
to either assign the request to an available service engineer (by marking request status as ‘Initiated’) or to
communicate back with customer for more information (based on the information, request status would be
‘Pending’ or ‘Denied’). Service Engineer takes charge of servicing and continues with the operations, at this
point, service request status would be ‘InProgress’. On service completion, Service Engineer will flip the status
to ‘PendingCustomerApproval’. At this stage, customer can review his car and service request details and if
he is pleased with the quality of service, he can mark the status as ‘Completed’ otherwise he can update the
status to ‘RequestForInformation’. Admin will monitor his service request queue for RequestForInformation
tagged services and appropriately connects with customers to resolve any pending actions.

https://doi.org/10.1007/978-1-4842-3270-5_10

Chapter 10 ■ Forms and Validations

294

Customer submits a new
Service Request

Admin
assigns to a

Service
Engineer

Status: New

Service Engineer starts
Processing.

Comments will be
shared with Customer.

Status: Initiated Status: Denied /Pending

Service Engineer
completes servicing .

Status: InProgress

Status: PendingCustomerApproval

Customer
Approved ?

Completed

Status: Completed

Status: Request For Information

Admin connects with
Customer and closes the

Service.

Figure 10-1.  Service Request workflow for Automobile Service Center application

Automobile Service Center Serive Request workflow is as shown in Figure 10-1.

Chapter 10 ■ Forms and Validations

295

Service Request Form
In this section we will create Service Request form using which a customer can submit a new service request.
Service Requests can also be created by Service Engineers and Admin because some customers may directly
walk into service station and request for a new service.

■■ Note  In the scope of this book, we will implement a simple Service Request form, but in reality a service
request form might be complex and large.

We will get start by creating an entity model in ASC.Models project as shown in Listing 10-1.
ServiceRequest entity consists of properties which captures information like Vehicle Name, Vehicle type,
Status, Services which are requested by customer, Service Engineer who is responsible for providing the
services, Requested date and Date of completion. The RowKey of ServiceRequest entity is going to be a
unique Guid value and PartitionKey will be the email address of the customer who is requesting the service.

Listing 10-1.  ServiceRequest Entity

using ASC.Models.BaseTypes;
using System;

namespace ASC.Models.Models
{
 public class ServiceRequest : BaseEntity, IAuditTracker
 {
 public ServiceRequest() { }

 public ServiceRequest(string email)
 {
 this.RowKey = Guid.NewGuid().ToString();
 this.PartitionKey = email;
 }

 public string VehicleName { get; set; }
 public string VehicleType { get; set; }
 public string Status { get; set; }
 public string RequestedServices { get; set; }
 public DateTime? RequestedDate { get; set; }
 public DateTime? CompletedDate { get; set; }
 public string ServiceEngineer { get; set; }
 }
}

Now we will create IServiceRequestOperations interface in ASC.Business Project under Interfaces
folder as shown in Listing 10-2. This interface will hold all the key methods which are used to insert and
update a service request details in Azure Table storage.

Chapter 10 ■ Forms and Validations

296

Listing 10-2.  IServiceRequestOperations interface

using ASC.Models.Models;
using System.Threading.Tasks;

namespace ASC.Business.Interfaces
{
 public interface IServiceRequestOperations
 {
 Task CreateServiceRequestAsync(ServiceRequest request);
 Task<ServiceRequest> UpdateServiceRequestAsync(ServiceRequest request);
 �Task<ServiceRequest> UpdateServiceRequestStatusAsync(string rowKey, string

partitionKey, string status);
 }
}

Create a class with name ServiceRequestOperations which will implement IServiceRequestOperations
as shown in Listing 10-3. CreateServiceRequestAsync method will create a new service request at Azure
table storage. UpdateServiceRequestAsync will update a service request details in Azure table storage.
UpdateServiceRequestStatusAsync method will update the status of service request with the value passed in
status parameter.

Listing 10-3.  ServiceRequestOperations class

using ASC.Business.Interfaces;
using ASC.DataAccess.Interfaces;
using ASC.Models.Models;
using System;
using System.Threading.Tasks;

namespace ASC.Business
{
 public class ServiceRequestOperations : IServiceRequestOperations
 {
 private readonly IUnitOfWork _unitOfWork;
 public ServiceRequestOperations(IUnitOfWork unitOfWork)
 {
 _unitOfWork = unitOfWork;
 }
 public async Task CreateServiceRequestAsync(ServiceRequest request)
 {
 using (_unitOfWork)
 {
 await _unitOfWork.Repository<ServiceRequest>().AddAsync(request);
 _unitOfWork.CommitTransaction();
 }
 }

Chapter 10 ■ Forms and Validations

297

 public async Task<ServiceRequest> UpdateServiceRequestAsync(ServiceRequest request)
 {
 using (_unitOfWork)
 {
 await _unitOfWork.Repository<ServiceRequest>().UpdateAsync(request);
 _unitOfWork.CommitTransaction();

 return request;
 }
 }

 �public async Task<ServiceRequest> UpdateServiceRequestStatusAsync(string rowKey,
string partitionKey, string status)

 {
 using (_unitOfWork)
 {
 �var serviceRequest = await _unitOfWork.Repository<ServiceRequest>().

FindAsync(partitionKey, rowKey);

 if (serviceRequest == null)
 throw new NullReferenceException();

 serviceRequest.Status = status;

 await _unitOfWork.Repository<ServiceRequest>().UpdateAsync(serviceRequest);
 _unitOfWork.CommitTransaction();

 return serviceRequest;
 }
 }
 }
}

Resolve the dependency of IServiceRequestOperations in ConfigureServices method of Startup class at
ASC.Web project as shown in Listing 10-4.

Listing 10-4.  Resolve the dependency of IServiceRequestOperations

services.AddScoped<IServiceRequestOperations, ServiceRequestOperations>();

To support Controller actions and Views, we will create a class with name NewServiceRequestViewModel
under Models folder of ServiceRequests area as shown in Listing 10-5. This is the view model which we will
use in creating a new service request. The Required attribute makes the property mandatory in the model and
Display attribute is used to give a name to the property which can be used for display purpose.

Chapter 10 ■ Forms and Validations

298

Listing 10-5.  NewServiceRequestViewModel class

using System;
using System.ComponentModel.DataAnnotations;

namespace ASC.Web.Areas.ServiceRequests.Models
{
 public class NewServiceRequestViewModel
 {
 [Required]
 [Display(Name ="Vehicle Name")]
 public string VehicleName { get; set; }
 [Required]
 [Display(Name = "Vehicle Type")]
 public string VehicleType { get; set; }
 [Required]
 [Display(Name = "Requested Services")]
 public string RequestedServices { get; set; }
 [Required]
 [Display(Name = "Requested Date")]
 public DateTime? RequestedDate { get; set; }
 }
}

Create a class with name ServiceRequestMappingProfile under Models folder of ServiceRequests area
as shown in Listing 10-6. ServiceRequestMappingProfile will be used to create AutoMapper map between
ServiceRequest Azure Table Storage entity and NewServiceRequestViewModel which is ver useful in
transforming business models with view models and vice versa.

Listing 10-6.  AutoMapper mappings in ServiceRequestMappingProfile class

using ASC.Models.Models;
using AutoMapper;

namespace ASC.Web.Areas.ServiceRequests.Models
{
 public class ServiceRequestMappingProfile : Profile
 {
 public ServiceRequestMappingProfile()
 {
 CreateMap<ServiceRequest, NewServiceRequestViewModel>();
 CreateMap<NewServiceRequestViewModel, ServiceRequest>();
 }
 }
}

Now we will create two Enum types - MasterKeys and Status in Constants file of ASC.Models project
as shown in Listing 10-7. These enums are useful in referencing master data keys in the project instead of
hardcoding master data strings. Status Enum is used to refer to the status of service request. VehicleName
and VehicleType keys are used to retrieve master data related to vehicles.

Chapter 10 ■ Forms and Validations

299

Listing 10-7.  Enum types

public enum MasterKeys
{
 VehicleName, VehicleType
}

public enum Status
{
 New, Denied, Pending, Initiated, InProgress, PendingCustomerApproval,
 RequestForInformation, Completed
}

Create a new controller with name ServiceRequestController under ServiceRequests area as shown
in Listing 10-8. ServiceRequestController constructor takes IServiceRequestOperations, IMapper and
IMasterDataCacheOperations dependencies, which are used in controller actions.

ServiceRequestController got two actions, one for GET and another for POST operation. GET action is
used to render the ServiceRequest view which is used to create a new service request. In GET action, we get
required master data from Redis cache and hold it in ViewBag dictionary. This master data information is
used to populate the select options on view.

On valid ModelState, POST action will save the new service request to Azure Table storage and redirects
user to Dashboard on successful save operation.

■■ Note  Use Master Data management screens which we developed in Chapter 7 to setup reference data for
Vehicle Names, Vehicle types and Status.

Listing 10-8.  ServiceRequestController class

using Microsoft.AspNetCore.Mvc;
using ASC.Web.Controllers;
using ASC.Business.Interfaces;
using ASC.Models.Models;
using ASC.Utilities;
using System;
using System.Threading.Tasks;
using ASC.Web.Areas.ServiceRequests.Models;
using AutoMapper;
using ASC.Web.Data;
using System.Linq;
using ASC.Models.BaseTypes;

namespace ASC.Web.Areas.ServiceRequests.Controllers
{
 [Area("ServiceRequests")]
 public class ServiceRequestController : BaseController
 {
 private readonly IServiceRequestOperations _serviceRequestOperations;
 private readonly IMapper _mapper;
 private readonly IMasterDataCacheOperations _masterData;

http://dx.doi.org/10.1007/978-1-4842-3270-5_7

Chapter 10 ■ Forms and Validations

300

 �public ServiceRequestController(IServiceRequestOperations operations, IMapper
mapper, IMasterDataCacheOperations masterData)

 {
 _serviceRequestOperations = operations;
 _mapper = mapper;
 _masterData = masterData;
 }

 [HttpGet]
 public async Task<IActionResult> ServiceRequest()
 {
 var masterData = await _masterData.GetMasterDataCacheAsync();
 �ViewBag.VehicleTypes = masterData.Values.Where(p => p.PartitionKey ==

MasterKeys.VehicleType.ToString()).ToList();
 �ViewBag.VehicleNames = masterData.Values.Where(p => p.PartitionKey ==

MasterKeys.VehicleName.ToString()).ToList();
 return View(new NewServiceRequestViewModel());
 }

 [HttpPost]
 public async Task<IActionResult> ServiceRequest(NewServiceRequestViewModel request)
 {
 if (!ModelState.IsValid)
 {
 var masterData = await _masterData.GetMasterDataCacheAsync();
 �ViewBag.VehicleTypes = masterData.Values.Where(p => p.PartitionKey ==

MasterKeys.VehicleType.ToString()).ToList();
 �ViewBag.VehicleNames = masterData.Values.Where(p => p.PartitionKey ==

MasterKeys.VehicleName.ToString()).ToList();
 return View(request);
 }

 // Map the view model to Azure model
 �var serviceRequest = _mapper.Map<NewServiceRequestViewModel,

ServiceRequest>(request);

 // Set RowKey, PartitionKey, RequestedDate, Status properties
 serviceRequest.PartitionKey = HttpContext.User.GetCurrentUserDetails().Email;
 serviceRequest.RowKey = Guid.NewGuid().ToString();
 serviceRequest.RequestedDate = request.RequestedDate;
 serviceRequest.Status = Status.New.ToString();

 await _serviceRequestOperations.CreateServiceRequestAsync(serviceRequest);

 return RedirectToAction("Dashboard", "Dashboard", new { Area = "ServiceRequests" });
 }
 }
}

Chapter 10 ■ Forms and Validations

301

The service request cshtml is shown in Listing 10-9. It is a simple view where we display two select
options for Vehicle type and name, a textarea for Requested services and a date picker for requested date.
JQuery code is used to initialize date picker and select controls with Material design.

Listing 10-9.  New service request view

@model ASC.Web.Areas.ServiceRequests.Models.NewServiceRequestViewModel
@using System.Globalization
@{
 Layout = "_SecureLayout";
}

<div class="row"></div>
<div class="row padding-top-20px">

 @* Details Section *@
 <div class="row z-depth-3">
 <div class="col s12 padding-0px">
 <div class="section white-text padding-left-10px blue-grey lighten-1">
 <h5>New Service Request</h5>
 </div>
 <div class="divider"></div>
 �<form asp-controller="ServiceRequest" asp-action="ServiceRequest" method="post"

class="col s12">
 <div class="row">
 <div class="input-field col s4">
 <select asp-for="VehicleName"
 �asp-items="@(new SelectList(ViewBag.VehicleNames,"RowKey","

Name"))"
 class="" required="required">
 <option value="">Please select one</option>
 </select>
 <label asp-for="VehicleName"></label>
 </div>
 <div class="input-field col s4">
 <select asp-for="VehicleType"
 �asp-items="@(new SelectList(ViewBag.VehicleTypes,"RowKey","

Name"))"
 class="validate" required="required">
 <option value="">Please select one</option>
 </select>
 <label asp-for="VehicleType"></label>
 </div>
 <div class="input-field col s4">
 �<input asp-for="RequestedDate" type="date" class="datepicker" data-

value="@(Model.RequestedDate.HasValue ?
 �Model.RequestedDate.Value.ToString("dd MMMM, yyyy", CultureInfo.InvariantCulture) :

string.Empty)" />
 <label asp-for="RequestedDate"></label>
 </div>
 </div>

Chapter 10 ■ Forms and Validations

302

 <div class="row">
 <div class="input-field col s8">
 �<textarea asp-for="RequestedServices" class="materialize-textarea

validate"></textarea>
 <label asp-for="RequestedServices"></label>
 </div>
 </div>
 <div class="row">
 <div class="input-field col s12 right-align">
 �<button class="btn waves-effect waves-light btnSubmit" type="submit"

name="action">
 Create
 <i class="material-icons right">send</i>
 </button>
 </div>
 <div class="row col s12 right-align" asp-validation-summary="All"></div>
 </div>
 </form>
 </div>
 <div class="row"></div>
 </div>
</div>

@section Scripts{
 <script>
 $(document).ready(function () {
 $('.datepicker').pickadate({
 selectMonths: true,
 selectYears: 15
 });
 $('select').material_select();
 �$("select[required]").css({ display: "block", position: 'absolute',

visibility: 'hidden' });
 });
 </script>
}

Chapter 10 ■ Forms and Validations

303

■■ Note  We need following code to invoke mandatory validation on select list. This is a known workaround for
material select list.

$("select[required]").css({ display: "block", position: 'absolute', visibility: 'hidden' });

One more important point to be remembered is to use data-value attribute which is required for Materialize
Date picker to populate the date on page load. In listing 10-9, we are formatting date using ‘dd MMM, yyyy’
format to keep in sync with the default materialize date format.

To provide navigation to service request screen, we need to update Navigation.json file as shown in
Listing 10-10 to reflect new menu item in left navigation.

Listing 10-10.  Updated Navigation.json file to include Service Request view

{
 "DisplayName": "Service Requests",
 "MaterialIcon": "local_laundry_service",
 "Link": "",
 "IsNested": true,
 "Sequence": 3,
 "UserRoles": ["User", "Engineer", "Admin"],
 "NestedItems": [
 {
 "DisplayName": "New Service Request",
 "MaterialIcon": "insert_invitation",
 "Link": "/ServiceRequests/ServiceRequest/ServiceRequest",
 "IsNested": false,
 "Sequence": 1,
 "UserRoles": ["User", "Engineer", "Admin"],
 "NestedItems": []
 }
]
},

Chapter 10 ■ Forms and Validations

304

Run the application and login as any user, we should see left menu item as shown in Figure 10-2.

Navigate to New Service Request Screen by clicking left navigation menu item. New Service Request
screen will be displayed as shown in Figure 10-3.

Figure 10-2.  New Service Request left navigation menu option

Chapter 10 ■ Forms and Validations

305

If we do not enter any values and click on create, we will get validation error messages displayed as
shown in Figure 10-4.

Figure 10-3.  New Service Request Screen

Figure 10-4.  Validation messages on Service Request screen

Chapter 10 ■ Forms and Validations

306

Enter information and click on create button. A new Service Request will be created at ServiceRequest
Azure Table storage as shown in Figure 10-5 and user will be redirected back to Dashboard.

Dashboard View
In the last section we have created a New Service Request form which is primarily used by customers to raise
new service requests. In this section we will construct dashboard view for all user roles. The primary goals
for dashboard view are as follows.

	 1.	 For a Customer

a.	 It should provide list of his own service requests during the past one year
sorted from latest to oldest.

	 2.	 For a Service Engineer

a.	 It should provide list of his associated on-going service requests in
last 7 days which are holding status of New, Initiated, InProgress
and RequestForInformation and finally sorted by Requested Date in
descending order.

b.	 It should also provide the top 20 recent service updates of the service
requests associated with him.

	 3.	 For an Admin

a.	 It should provide list of on-going service requests during the last week which
are holding status of New, Initiated, InProgress and RequestForInformation
sorted by Requested Date in descending order.

b.	 It should also provide the top 20 recent updates across all service requests.

c.	 It should provide statistics about service engineer to his associated on-going
service requests.

As a first step to get relevant information from Service Requests Azure Table Storage based on different
filters for different user roles and status, we should extend IRepository and its implementation to support
query execution with multiple conditions. Extend IRepository class to have FindAllByQuery method as
shown in Listing 10-11.

Listing 10-11.  FindAllByQuery method in IRepository<T> interface

Task<IEnumerable<T>> FindAllByQuery(string query);

Implement the FindAllByQuery method in Repository class as shown in Listing 10-12. FindAllByQuery
method takes a string query parameter. The query is passed to ExecuteQuerySegmentedAsync method and
finally results are returned to the calling method.

Figure 10-5.  New Service Request create at Azure Table Storage

Chapter 10 ■ Forms and Validations

307

Listing 10-12.  FindAllByQuery method

public async Task<IEnumerable<T>> FindAllByQuery(string query)
{
 TableContinuationToken tableContinuationToken = null;
 �var result = await storageTable.ExecuteQuerySegmentedAsync(new TableQuery<T>().

Where(query), tableContinuationToken);
 return result.Results as IEnumerable<T>;
}

Before getting started with the query generation, add the following constant values in Constants static
class of ASC.Models project as shown in Listing 10-13. These constant values are useful in creating where
clause ocnditions for Azure Table Storage.

Listing 10-13.  Constants class

public static class Constants
{
 public const string Equal = "eq";
 public const string NotEqual = "ne";
 public const string GreaterThan = "gt";
 public const string GreaterThanOrEqual = "ge";
 public const string LessThan = "lt";
 public const string LessThanOrEqual = "le";
}

Now we need to create different queries which we can pass to FindAllByQuery repository method.
Create a folder with name Queries in ASC.Models project. Create a static class inside Queries folder with
name Queries and add GetDashboardQuery method to it which will create the necessary query to retrieve
data for Dashboard as shown in Listing 10-14. The Dashboard query includes service requested date as the
first clause and then checks for optional parameters of status, user email and service engineer email. User
email and service engineer email clauses are used to retrieve the service requests which are only associated
with them. The sample query would be as shown below.

(RequestedDate ge datetime‘2016-06-24T03:39:09.4174760Z’) and (Email eq ‘intstrings@gmail.com’)
and (Status eq ‘New’or Status eq 'InProgress’or Status eq ‘Initiated’or Status eq ‘RequestForInformation’)

Listing 10-14.  GetDashboardQuery method in Queries class

using ASC.Models.BaseTypes;
using Microsoft.WindowsAzure.Storage.Table;
using System;
using System.Collections.Generic;

namespace ASC.Models.Queries
{
 public class Queries
 {
 public static string GetDashboardQuery(DateTime? requestedDate,
 List<string> status = null,
 string email = "",
 string serviceEngineerEmail = "")
 {

Chapter 10 ■ Forms and Validations

308

 var finalQuery = string.Empty;
 var statusQueries = new List<string>();
 // Add Requested Date Clause
 if (requestedDate.HasValue)
 {
 �finalQuery = TableQuery.GenerateFilterConditionForDate("RequestedDate",

Constants.GreaterThanOrEqual, requestedDate.Value);
 }

 // Add Email clause if email is passed as a parameter
 if (!string.IsNullOrWhiteSpace(email))
 {
 finalQuery = !string.IsNullOrWhiteSpace(finalQuery) ?
 �TableQuery.CombineFilters(finalQuery, TableOperators.And, TableQuery.Gen

erateFilterCondition("PartitionKey", Constants.Equal, email)) :
 �TableQuery.GenerateFilterCondition("PartitionKey", Constants.Equal,

email);
 }

 // Add Service Engineer Email clause if email is passed as a parameter
 if (!string.IsNullOrWhiteSpace(serviceEngineerEmail))
 {
 finalQuery = !string.IsNullOrWhiteSpace(finalQuery) ?
 �TableQuery.CombineFilters(finalQuery, TableOperators.And, TableQuery.

GenerateFilterCondition("ServiceEngineer", Constants.Equal,
serviceEngineerEmail)) :

 �TableQuery.GenerateFilterCondition("ServiceEngineer", Constants.Equal,
serviceEngineerEmail);

 }

 // Add Status clause if status is passed a parameter.
 // Individual status clauses are appended with OR Condition
 if (status != null)
 {
 foreach (var state in status)
 {
 �statusQueries.Add(TableQuery.GenerateFilterCondition("Status",

Constants.Equal, state));
 }
 �var statusQuery = string.Join(string.Format("{0} ", TableOperators.Or),

statusQueries);

 finalQuery = !string.IsNullOrWhiteSpace(finalQuery) ?
 �string.Format("{0} {1} ({2})", finalQuery, TableOperators.And,

statusQuery) :
 string.Format("({0})", statusQuery);
 }

 return finalQuery;
 }
 }
}

Chapter 10 ■ Forms and Validations

309

We will add GetServiceRequestsByRequestedDateAndStatus method in IServiceRequestOperations as
shown in Listing 10-15.

Listing 10-15.  GetServiceRequestsByRequestedDateAndStatus method in IServiceRequestOperations
interface

�Task<List<ServiceRequest>> GetServiceRequestsByRequestedDateAndStatus
(DateTime? requestedDate,
 List<string> status = null,
 string email = "",
 string serviceEngineerEmail = "");

The GetServiceRequestsByRequestedDateAndStatus method implementation is shown in Listing 10-16.
This method takes Requested Date as mandatory parameter and status, email, service EngineerEmail as
optional parameters, it then calls GetDashboardQuery method of Queries class to get the constructed query
and pass it to FindAllByQuery method of IRepository<ServiceRequest>. The results of the query execution
are send back to the caller.

Listing 10-16.  GetServiceRequestsByRequestedDateAndStatus method

�public async Task<List<ServiceRequest>> GetServiceRequestsByRequestedDateAndStatus
(DateTime? requestedDate,
 List<string> status = null,
 string email = "",
 string serviceEngineerEmail = "")
{
 �var query = Queries.GetDashboardQuery(requestedDate, status, email,

serviceEngineerEmail);
 �var serviceRequests = await _unitOfWork.Repository<ServiceRequest>().

FindAllByQuery(query);
 return serviceRequests.ToList();
}

Now as we have the backend query logic ready, we will start with front end implementation in ASC.Web
project. Create a DashboardViewModel under Models folder of ServiceRequests area as shown in Listing 10-17.
The Dashboard view model will hold all the necessary properties which are required to display data on
Dashboard, for example ServiceRequests are used display the recent service requests based on user roles
and status.

Listing 10-17.  DashboardViewModel class

using ASC.Models.Models;
using System.Collections.Generic;

namespace ASC.Web.Areas.ServiceRequests.Models
{
 public class DashboardViewModel
 {
 public List<ServiceRequest> ServiceRequests { get; set; }
 }
}

Chapter 10 ■ Forms and Validations

310

The existing Dashboard action code from Dashboard controller is modified as shown in Listing 10-18.
ServiceRequestOperations and MasterDataCacheOperations dependencies are injected to Dashboard
controller’s constructor. Dashboard action will invoke GetServiceRequestsByRequestedDateAndStatus
method with appropriate parameters based on user role. The return results are mapped to ServiceRequests
property of DashboardViewModel and returned to the view.

Listing 10-18.  Updated Dashboard action

private readonly IServiceRequestOperations _serviceRequestOperations;
private readonly IMasterDataCacheOperations _masterData;
�public DashboardController(IServiceRequestOperations operations, IMasterDataCacheOperations
masterData)
{
 _serviceRequestOperations = operations;
 _masterData = masterData;
}

public async Task<IActionResult> Dashboard()
{
 // List of Status which were to be queried.
 var status = new List<string>
 {
 Status.New.ToString(),
 Status.InProgress.ToString(),
 Status.Initiated.ToString(),
 Status.RequestForInformation.ToString()
 };

 List<ServiceRequest> serviceRequests = new List<ServiceRequest>();

 if (HttpContext.User.IsInRole(Roles.Admin.ToString()))
 {
 �serviceRequests = await _serviceRequestOperations.

GetServiceRequestsByRequestedDateAndStatus(
 DateTime.UtcNow.AddDays(-7),
 status);
 }
 else if (HttpContext.User.IsInRole(Roles.Engineer.ToString()))
 {
 �serviceRequests = await _serviceRequestOperations.

GetServiceRequestsByRequestedDateAndStatus(
 DateTime.UtcNow.AddDays(-7),
 status,
 serviceEngineerEmail: HttpContext.User.GetCurrentUserDetails().Email);
 }
 else
 {
 �serviceRequests = await _serviceRequestOperations.

GetServiceRequestsByRequestedDateAndStatus(
 DateTime.UtcNow.AddYears(-1),
 email: HttpContext.User.GetCurrentUserDetails().Email);
 }

Chapter 10 ■ Forms and Validations

311

 �return View(new DashboardViewModel { ServiceRequests = serviceRequests.
OrderByDescending(p => p.RequestedDate).ToList()});

}

■■ Note  Currently we are building common dashboard feature to display Service Requests based on
user role. The additional dashboard features for Admin and Service Engineer role will be developed in the later
part of the chapter.

The next step is to modify the Dashboard.cshtml to reflect the service requests table. The dashboard
view will primarily consists of a table which is populated through ServiceRequests property of
DashboardViewModel. This table is initialized with JQuery DataTable so that we get the default pagination,
sorting and filtering features.

The columns of Service request table are populated with customer email, status of service request, date
on which service requested, email of service engineer who is handling the service. Status column is given
color coding to differentiate status of service request. In the last column we have view icon which can be
used navigate to corresponding service details page.

To get a reusable view, we will create a partial view for service requests DataTable. Create a view with
name _ServiceRequestGrid.cshtml in Views/Shared folder (create a new folder with name Shared under
Views folder of ServiceRequests area) of ServiceRequests area as shown in Listing 10-19. This partial view
will take list of ServiceRequest as model and iterate each item to render in a tabular format. The name of
the section and Id of the table are passed from the Dashboard page to uniquely identify the sections on the
same dashboard view. _ServiceRequestGrid also uses one more parameter from ViewBag to check if the
partial view is rendered for audit mode, in case of audit mode, an additional column of Requested Services
along with other columns will be displayed to end user. If the content length of Requested Services property
is more than 50 characters then we display a trimmed text of first 50 characters otherwise we will show the
entire text.

Listing 10-19.  Service Request List partial view

@model IEnumerable<ASC.Models.Models.ServiceRequest>
@using ASC.Models.BaseTypes
@{
 var isAudit = ViewBag.IsAudit;
}
<div class="row"></div>
<div class="row padding-top-20px">

 <div class="row z-depth-3">
 <div class="section white-text padding-left-10px blue-grey lighten-1">
 <h5>@ViewBag.SectionName</h5>
 </div>
 <div class="divider"></div>
 <div class="col s12 padding-bottom-15px">
 @* Display List of Service Requests *@
 <table class="highlight centered tblServiceRequests" id="@ViewBag.Id">
 <thead>
 <tr>
 <th data-field="RowKey">RowKey</th>
 <th data-field="PartitionKey">PartitionKey</th>
 <th data-field="PartitionKey">User</th>

Chapter 10 ■ Forms and Validations

312

 <th data-field="Status">Status</th>
 <th data-field="RequestedDate">Requested Date</th>
 <th data-field="ServiceEngineer">Service Engineer</th>
 @if (isAudit)
 {
 <th data-field="RequestedServices">Requested Services</th>
 }
 <th data-field="Actions">View</th>
 </tr>
 </thead>
 <tbody>
 @foreach (var serviceRequest in Model)
 {
 <tr>
 <td>@serviceRequest.RowKey</td>
 <td>@serviceRequest.PartitionKey</td>
 <td>
 @(!serviceRequest.PartitionKey.Contains('-') ?
 serviceRequest.PartitionKey :
 serviceRequest.PartitionKey.Split(new char[] { '-' })[0])
 </td>
 <td>
 �@switch ((Status)Enum.Parse(typeof(Status), serviceRequest.

Status))
 {
 case Status.New:
 case Status.Initiated:
 case Status.InProgress:
 case Status.Completed:
 <div class="white-text teal lighten-1 center-align">
 @serviceRequest.Status
 </div>
 break;
 case Status.RequestForInformation:
 case Status.Pending:
 case Status.Denied:
 <div class="white-text red lighten-1 center-align">
 @serviceRequest.Status
 </div>
 break;
 case Status.PendingCustomerApproval:
 <div class="white-text orange lighten-1 center-align">
 @serviceRequest.Status
 </div>
 break;
 default:
 break;

 }
 </td>

Chapter 10 ■ Forms and Validations

313

 �<td>@(serviceRequest.RequestedDate == null ? "" : serviceRequest.
RequestedDate.Value.ToString("dd/MM/yyyy"))</td>

 <td>@serviceRequest.ServiceEngineer</td>
 @if (isAudit)
 {
 �var trimText = String.IsNullOrWhiteSpace(serviceRequest.

RequestedServices) ?
 string.Empty :
 serviceRequest.RequestedServices.Length > 50 ?
 �string.Format("{0}...",serviceRequest.RequestedServices.

Substring(0, 50)) :
 serviceRequest.RequestedServices;
 <td title="@serviceRequest.RequestedServices">@trimText</td>
 }
 <td><i class="small material-icons view cursor-hand">pageview</i></td>
 </tr>
 }
 </tbody>
 </table>
 </div>
 </div>
</div>

Update the Dashboard view as shown in Listing 10-20. In the view we call _ServiceRequestGrid partial
view and pass ServiceRequests property from model. We also pass Service Requests as the name of the
section, tblServiceRequests as Id and false for IsAudit. In JQuery code we initialize tblServiceRequests with
DataTable and all select tags with material design.

Listing 10-20.  Dashboard view

@model ASC.Web.Areas.ServiceRequests.Models.DashboardViewModel
@using ASC.Models.BaseTypes
@{
 Layout = "_SecureLayout";
}

<div class="row"></div>
@await Html.PartialAsync("_ServiceRequestGrid", Model.ServiceRequests, new
ViewDataDictionary(ViewData) {
 { "SectionName", "Service Requests" },
 { "Id", "tblServiceRequests" },
 { "IsAudit", false }
})

@section Scripts{
 <script>
 $(document).ready(function () {
 // Initialize DataTable to show list of Service Requests
 var table = $('#tblServiceRequests').DataTable({
 'pageLength': 3,
 // Number of records to be displayed per page
 'lengthMenu': [[3, 5, 10, -1], [3, 5, 10, 'All']],

Chapter 10 ■ Forms and Validations

314

 // Remove default Sorting
 'sorting': [],
 �'columns': [{ "visible": false }, { "visible": false }, null, { "width":

"20%" }, null, null, null]
 });
 // Set Styles for DataTable and Number of Records to be displayed dropdown
 $('.tblServiceRequests').css("width", "100%");
 $('select[name$="ServiceRequests_length"]').material_select();

 });
 </script>
}

Run the application, if admin login to the application he should service requests for past 7 days as
shown in Figure 10-6.

If a customer login to system, he should see his service requests as shown in Figure 10-7.

Figure 10-6.  Dashboard view on Admin login

Chapter 10 ■ Forms and Validations

315

If a Service Engineer login to system, he should see service requests which are associated with him in
last 7 days. As there are no service requests associated to service engineer, there will be no records displayed
as shown in Figure 10-8.

Figure 10-8.  No records Dashboard view for Service Engineer

Figure 10-7.  Dashboard view on Customer login

Chapter 10 ■ Forms and Validations

316

Now we will extend Dashboard for Admin and Service Engineer roles to display the top 20 recent
updates to the Service requests. Over the period of time for any given service request following properties
can change.

	 1.	 Requested Services

	 2.	 Status

	 3.	 Service Engineer

As we are already capturing all this information in ServiceRequestAudit table, we need to first query this
table to get the top 20 service requests which are changed in chronological order.

We will get started by extending IRepository to expose a method which will query Audit table as shown
in Listing 10-21.

Listing 10-21.  FindAllInAuditByQuery method

Task<IEnumerable<T>> FindAllInAuditByQuery(string query);

Implement FindAllInAuditByQuery method on Repository class as shown in Listing 10-22.
FindAllInAuditByQuery methods first gets the instance of audit CloudTable and executes the query (which
is passed as a parameter to the method) by limiting the results to top 20. Finally it returns the results to the
calling method.

Listing 10-22.  FindAllInAuditByQuery method

public async Task<IEnumerable<T>> FindAllInAuditByQuery(string query)
{
 var auditTable = tableClient.GetTableReference($"{typeof(T).Name}Audit");
 TableContinuationToken tableContinuationToken = null;
 �var result = await auditTable.ExecuteQuerySegmentedAsync(new TableQuery<T>().Take(20).

Where(query), tableContinuationToken);
 return result.Results as IEnumerable<T>;
}

To get results from Audit table, we will create a method which will return the query similar to the
Dashboard query. Create a method GetDashboardAuditQuery in Queries class of ASC.Models project as
shown in Listing 10-23. If service engineer email is passed, this method will create a where clause based on
email otherwise it will return empty string.

Listing 10-23.  GetDashboardAuditQuery method in Queries class

public static string GetDashboardAuditQuery(string email = "")
{
 var finalQuery = string.Empty;

 // Add Email clause if email is passed as a parameter
 if (!string.IsNullOrWhiteSpace(email))
 {
 �finalQuery = TableQuery.GenerateFilterCondition("ServiceEngineer", Constants.Equal,

email);
 }

 return finalQuery;
}

Chapter 10 ■ Forms and Validations

317

Create GetServiceRequestsFromAudit method in IServiceRequestOperations interface as shown in
Listing 10-24 which will server a business method to retrieve service request audit information.

Listing 10-24.  GetServiceRequestsFormAudit method in IServiceRequestOperations interface

Task<List<ServiceRequest>> GetServiceRequestsFormAudit(string serviceEngineerEmail = "");

We need to implement GetServiceRequestsFromAudit method in ServiceRequestOperations as shown
in Listing 10-25. GetServiceRequestsFromAudit calls GetDashboardAuditQuery to get the service request
audit query and return the results to the invoking method.

Listing 10-25.  GetServiceRequestsFormAudit method

�public async Task<List<ServiceRequest>> GetServiceRequestsFormAudit(string
serviceEngineerEmail = "")
{
 var query = Queries.GetDashboardAuditQuery(serviceEngineerEmail);
 �var serviceRequests = await _unitOfWork.Repository<ServiceRequest>().

FindAllInAuditByQuery(query);
 return serviceRequests.ToList();
}

Now update the DashboardViewModel to hold the list of service requests from audit table as shown in
Listing 10-26.

Listing 10-26.  Updated DashboardViewModel class

using ASC.Models.Models;
using System.Collections.Generic;

namespace ASC.Web.Areas.ServiceRequests.Models
{
 public class DashboardViewModel
 {
 public List<ServiceRequest> ServiceRequests { get; set; }
 public List<ServiceRequest> AuditServiceRequests { get; set; }
 }
}

Update the Dashboard action from Dashboard controller to call GetServiceRequestsFromAudit method
and pass the results back to view as shown in Listing 10-27.

Listing 10-27.  Updated Dashboard action

 public async Task<IActionResult> Dashboard()
 {
 // List of Status which were to be queried.
 var status = new List<string>
 {
 Status.New.ToString(),
 Status.InProgress.ToString(),

Chapter 10 ■ Forms and Validations

318

 Status.Initiated.ToString(),
 Status.RequestForInformation.ToString()
 };

 List<ServiceRequest> serviceRequests = new List<ServiceRequest>();
 List<ServiceRequest> auditServiceRequests = new List<ServiceRequest>();
 if (HttpContext.User.IsInRole(Roles.Admin.ToString()))
 {
 �serviceRequests = await _serviceRequestOperations.

GetServiceRequestsByRequestedDateAndStatus(
 DateTime.UtcNow.AddDays(-7),
 status);

 �auditServiceRequests = await _serviceRequestOperations.
GetServiceRequestsFormAudit();

 }
 else if (HttpContext.User.IsInRole(Roles.Engineer.ToString()))
 {
 �serviceRequests = await _serviceRequestOperations.

GetServiceRequestsByRequestedDateAndStatus(
 DateTime.UtcNow.AddDays(-7),
 status,
 serviceEngineerEmail: HttpContext.User.GetCurrentUserDetails().Email);

 �auditServiceRequests = await _serviceRequestOperations.
GetServiceRequestsFormAudit(

 HttpContext.User.GetCurrentUserDetails().Email);
 }
 else
 {
 �serviceRequests = await _serviceRequestOperations.

GetServiceRequestsByRequestedDateAndStatus(
 DateTime.UtcNow.AddYears(-1),
 status,
 email: HttpContext.User.GetCurrentUserDetails().Email);
 }

var orderedAudit = auditServiceRequests.OrderByDescending(p => p.Timestamp).ToList();
 return View(new DashboardViewModel {
 �ServiceRequests = serviceRequests.OrderByDescending(p => p.RequestedDate).

ToList(),
 AuditServiceRequests = orderedAudit
 });
 }

Finally we will have to do modifications to the Dashboard.cshtml, we will add the same partial view
which we added for Service Requests, but this time we will pass data from AuditServiceRequests property
from Model and set IsAudit property to true as shown in Listing 10-28. We need to add a check to display the
second partial view if user is in role of Admin or Engineer. In JQuery code, we will initialize the DataTable.

Chapter 10 ■ Forms and Validations

319

Listing 10-28.  Updated Dashboard view

@model ASC.Web.Areas.ServiceRequests.Models.DashboardViewModel
@using Microsoft.AspNetCore.Http
@inject IHttpContextAccessor UserHttpContext
@using ASC.Models.BaseTypes
@{
 Layout = "_SecureLayout";
}

<div class="row"></div>
@await Html.PartialAsync("_ServiceRequestGrid", Model.ServiceRequests, new
ViewDataDictionary(ViewData) {
 { "SectionName", "Service Requests" },
 { "Id", "tblServiceRequests" },
 { "IsAudit", false }
})

@if (UserHttpContext.HttpContext.User.IsInRole(Roles.Admin.ToString()) ||
 UserHttpContext.HttpContext.User.IsInRole(Roles.Engineer.ToString()))
{
 �@await Html.PartialAsync("_ServiceRequestGrid", Model.AuditServiceRequests,

new ViewDataDictionary(ViewData) {
 { "SectionName", "Recent Updates" },
 { "Id", "tblAuditServiceRequests" },
 { "IsAudit", true }
})
}

@section Scripts{
 <script>
 $(document).ready(function () {
 // Initialize DataTable to show list of Service Requests
 var table = $('#tblServiceRequests').DataTable({
 'pageLength': 3,
 // Number of records to be displayed per page
 'lengthMenu': [[3, 5, 10, -1], [3, 5, 10, 'All']],
 // Remove default Sorting
 'sorting': [],
 �'columns': [{ "visible": false }, { "visible": false }, null,

{ "width": "20%" }, null, null, null]
 });

 var table = $('#tblAuditServiceRequests').DataTable({
 'pageLength': 3,
 // Number of records to be displayed per page
 'lengthMenu': [[3, 5, 10, -1], [3, 5, 10, 'All']],
 // Remove default Sorting
 'sorting': [],
 �'columns': [{ "visible": false }, { "visible": false }, null,

{ "width": "20%" }, null, null, null, null]
 });

Chapter 10 ■ Forms and Validations

320

 // Set Styles for DataTable and Number of Records to be displayed dropdown
 $('.tblServiceRequests').css("width", "100%");
 $('select[name$="ServiceRequests_length"]').material_select();

 });
 </script>
}

Run the application and login as admin or service engineer, we should see both the tables with
service requests and audit information as shown in Figure 10-9. Now when a customer login and visits his
dashboard, there will be only one table which displays his own service requests.

Figure 10-9.  Dashboard view with Service Request Audit information

Chapter 10 ■ Forms and Validations

321

The last change which is required on dashboard view is to get statistics for admin role, where he can
find the statistics about active service requests (which are in Initiated and InProgress status) are being
handled by different service engineers. As we already have Repository methods in place, we need to come
up with a query which will support to retrieve service requests which are in Initiated and InProgress status.
Add GetDashboardServiceEngineersQuery method which will return query as shown in Listing 10-29. This
method will take list of status as parameter and iterate all the statuses and finally return the concatenated
where conditions to the invoking method.

Listing 10-29.  GetDashboardServiceEngineersQuery method in Queries class

public static string GetDashboardServiceEngineersQuery(List<string> status)
{
 var finalQuery = string.Empty;
 var statusQueries = new List<string>();

 // Add Status clause if status is passed a parameter.
 foreach (var state in status)
 {
 �statusQueries.Add(TableQuery.GenerateFilterCondition("Status", Constants.Equal,

state));
 }
 �finalQuery = string.Join(string.Format("{0} ", TableOperators.Or), statusQueries);

 return finalQuery;
}

Create GetActiveServiceRequests method in IServiceRequestOperations interface as shown in
Listing 10-30 which will serve as business method.

Listing 10-30.  GetActiveServiceRequests method in IRequestServiceOperations class

Task<List<ServiceRequest>> GetActiveServiceRequests(List<string> status);

We need to implement GetActiveServiceRequests method in ServiceRequestOperations as shown in
Listing 10-31. GetActiveServiceRequests calls GetDashboardServiceEngineersQuery to get the active service
request query and call repository's FindAllByQuery method which will return the results.

Listing 10-31.  GetActiveServiceRequests method

�public async Task<List<ServiceRequest>> GetActiveServiceRequests(List<string> status)
{
 var query = Queries.GetDashboardServiceEngineersQuery(status);
 �var serviceRequests = await _unitOfWork.Repository<ServiceRequest>().

FindAllByQuery(query);
 return serviceRequests.ToList();
}

Update the DashboardViewModel to hold the list of active service requests as shown in Listing 10-32.

Chapter 10 ■ Forms and Validations

322

Listing 10-32.  Updated DashboardViewModel class

using ASC.Models.Models;
using System.Collections.Generic;

namespace ASC.Web.Areas.ServiceRequests.Models
{
 public class DashboardViewModel
 {
 public List<ServiceRequest> ServiceRequests { get; set; }
 public List<ServiceRequest> AuditServiceRequests { get; set; }
 public Dictionary<string,int> ActiveServiceRequests { get; set; }
 }
}

Update the Dashboard action from Dashboard controller to call GetActiveServiceRequests method and
pass the results back to view as shown in Listing 10-33. All the results which are returned from the business
components are grouped by service engineer property and then converted to Dictionary<string, int> which
will contain total count of services against each service engineer. The dictionary is then assigned to the
ActiveServiceRequests property of DashboardViewModel.

Listing 10-33.  Updated Dashboard action

public async Task<IActionResult> Dashboard()
{
 // List of Status which were to be queried.
 var status = new List<string>
 {
 Status.New.ToString(),
 Status.InProgress.ToString(),
 Status.Initiated.ToString(),
 Status.RequestForInformation.ToString()
 };

 List<ServiceRequest> serviceRequests = new List<ServiceRequest>();
 List<ServiceRequest> auditServiceRequests = new List<ServiceRequest>();
 Dictionary<string, int> activeServiceRequests = new Dictionary<string, int>();
 if (HttpContext.User.IsInRole(Roles.Admin.ToString()))
 {
 �serviceRequests = await _serviceRequestOperations.

GetServiceRequestsByRequestedDateAndStatus(
 DateTime.UtcNow.AddDays(-7),
 status);

 �auditServiceRequests = await _serviceRequestOperations.
GetServiceRequestsFormAudit();

 �var serviceEngineerServiceRequests = await _serviceRequestOperations.
GetActiveServiceRequests(new List<string>

 {
 Status.InProgress.ToString(),
 Status.Initiated.ToString(),
 });

Chapter 10 ■ Forms and Validations

323

 if (serviceEngineerServiceRequests.Any())
 {
 activeServiceRequests = serviceEngineerServiceRequests
 .GroupBy(x => x.ServiceEngineer)
 .ToDictionary(p => p.Key, p => p.Count());
 }
 }
 else if (HttpContext.User.IsInRole(Roles.Engineer.ToString()))
 {
 �serviceRequests = await _serviceRequestOperations.

GetServiceRequestsByRequestedDateAndStatus(
 DateTime.UtcNow.AddDays(-7),
 status,
 serviceEngineerEmail: HttpContext.User.GetCurrentUserDetails().Email);

 �auditServiceRequests = await _serviceRequestOperations.GetServiceRequestsFormAudit(
 HttpContext.User.GetCurrentUserDetails().Email);
 }
 else
 {
 �serviceRequests = await _serviceRequestOperations.

GetServiceRequestsByRequestedDateAndStatus(
 DateTime.UtcNow.AddYears(-1),
 status,
 email: HttpContext.User.GetCurrentUserDetails().Email);
 }

 �var orderedAudit = auditServiceRequests.OrderByDescending(p => p.Timestamp).ToList();
 return View(new DashboardViewModel {
 �ServiceRequests = serviceRequests.OrderByDescending(p => p.RequestedDate).ToList(),
 AuditServiceRequests = orderedAudit,
 ActiveServiceRequests = activeServiceRequests
 });
}

Now we need to extend Dashboard.cshtml to include active service requests statistics for admin role.
Append Dashboard.cshtml with code show in Listing 10-34. It first checks if the logged-in user is an admin,
if not then it will not render the statistics collection. For admin, it will iterate all the active service requests
dictionary items and render using li tag. If there are no active services going, then a generic message will be
shown to admin.

Listing 10-34.  Service Engineers statistics markup code

@if (UserHttpContext.HttpContext.User.IsInRole(Roles.Admin.ToString()))
{
 <div class="row">
 <div class="col s6">
 <ul class="collection with-header height-300px overflow-y">
 <li class="collection-header"><h5>Active Service Engineers</h5>
 @if (Model.ActiveServiceRequests.Any())
 {
 @foreach (var activeServiceRequest in Model.ActiveServiceRequests)

Chapter 10 ■ Forms and Validations

324

 {
 <li class="collection-item">
 <div>
 �<span class="new badge" data-badge-

caption="">@activeServiceRequest.Value</
span>@activeServiceRequest.Key

 </div>

 }
 }
 else
 {
 <li class="collection-item">
 �<div class="card-panel teal lighten-2 white-text">No Activer Service

Requests.</div>

 }

 </div>
 </div>
}

■■ Note  Add the following styles to style.css to support vertical scroll bar for active service engineers section.

.height-300px{
 height: 300px;
}
.overflow-y{
 overflow-y: auto;

}

Run the application and login as admin, we should see the collection of service engineers and their
active service requests as shown in Figure 10-10. When a customer or service engineer login to the system,
they will not be able to see this section.

■■ Note  For demonstration, I manually updated Service Engineer property with asc.superengineer@gmail.com
account for couple of ServiceRequest entities in local development Azure Table Storage. I also updated the
Status property of entities to InProgress and Initiated values.

Once testing is done, we need to revert the values to old values.

Chapter 10 ■ Forms and Validations

325

Figure 10-10.  Active Service Engineers section in Dashboard view

Chapter 10 ■ Forms and Validations

326

In case if there are no active service requests, ‘No Active Service Requests’ message will be displayed for
admin as shown in Figure 10-11.

Service Request Details View
So far in this chapter, we have developed pages to create a new service request and a dashboard view which
is common to all user roles but displays different information based on the role of logged in user. In both
these pages we do not have an option to update a service request with new information or to change the
status of service request. In this section we will create service request details view which can be used to view
the details of a service along with options to update the information. User can navigate to service request
details view from dashboard by clicking the view icon of a particular service.

First we will create a GET action with name ServiceRequestDetails in ServiceRequestController of
ServiceRequests area as shown in Listing 10-35 which will return the Service Request Details view.

Listing 10-35.  ServiceRequestDetails action

[HttpGet]
public async Task<IActionResult> ServiceRequestDetails(string id)
{
 return View();
}

Create a corresponding ServiceRequestDetails.cshtml in Views/ServiceRequest folder of
ServiceRequests area as shown in Listing 10-36. For now, the view is blnak, we will add more display logic
later in this section.

Listing 10-36.  ServiceRequestDetails view

@{
 Layout = "_SecureLayout";
}

<div class="row"></div>

Figure 10-11.  No Active Service Requests message

Chapter 10 ■ Forms and Validations

327

Now we will add the redirection from dashboard view to service request details view. Add the JQuery
click event for View icon in Dashboard.cshtml as shown in Listing 10-37. In the click event, we will get the
RowKey from the corresponding DataTable (either main service requests table or audit table) based on the
view icon. We will then navigate to the service details action with the id of service request.

Listing 10-37.  JQuery click event of view icon on Dashboard view

�// On click of View icon, redirect to Service Request Details View based on RowKey
$(document).on('click', '.view', function () {
 var tableId = '#' + $(this).parents('table').attr('id');
 �var serviceRequest = $(tableId).DataTable().row($(this).parents('tr')).data();

 // For Service Request Table, populate id with RowKey
 var id = serviceRequest[0];
 �// For Service Request Audit Table, populate id by spliting the Partition key with '-'
 if (tableId.indexOf('Audit') >= 0)
 �id = serviceRequest[1].substring(serviceRequest[1].indexOf('-') + 1,

serviceRequest[1].length);

 window.location.href = '@Url.Action("ServiceRequestDetails",
 "ServiceRequest",
 new { Area = "ServiceRequests" })?Id=' + id;
});

In service request details view, we will display the details along with audit information of service
request. To get both service request along with audit data, we need to construct the query which can be
used to retrieve data from ServiceRequest Azure table storage. Add GetServiceRequestDetailsQuery and
GetServiceRequestAuditDetailsQuery methods in Queries class of ASC.Models project as shown in Listing 10-38.

Listing 10-38.  Service Request Details query methods in Queries class

public static string GetServiceRequestDetailsQuery(string id)
{
 return TableQuery.GenerateFilterCondition("RowKey", Constants.Equal, id);
}

public static string GetServiceRequestAuditDetailsQuery(string id)
{
 return TableQuery.GenerateFilterCondition("PartitionKey", Constants.Equal, id);
}

To get the service request and its audit details, we need to add GetServiceRequestByRowKey and
GetServiceRequestAuditByPartitionKey methods in IServiceRequestOperations interface as shown in
Listing 10-39. These methods will serve as business methods which will be invoked from Web project.

Listing 10-39.  GetServiceRequestByRowKey and GetServiceRequestAuditByPartitionKey methods in
IServiceRequestOperations interface

Task<ServiceRequest> GetServiceRequestByRowKey(string id);
Task<List<ServiceRequest>> GetServiceRequestAuditByPartitionKey(string id);

Chapter 10 ■ Forms and Validations

328

We need to implement GetServiceRequestByRowKey and GetServiceRequestAuditByPartitionKey
methods in ServiceRequestOperations as shown in Listing 10-40. GetServiceRequestByRowKey calls
GetServiceRequestDetailsQuery to get the details of service request query and return the results to the
invoking method. GetServiceRequestAuditByPartitionKey calls GetServiceRequestAuditDetailsQuery to get
the audit details of service request and return the results to the caller method.

Listing 10-40.  GetServiceRequestByRowKey and GetServiceRequestAuditByPartitionKey methods

public async Task<ServiceRequest> GetServiceRequestByRowKey(string id)
{
 var query = Queries.GetServiceRequestDetailsQuery(id);
 �var serviceRequests = await _unitOfWork.Repository<ServiceRequest>().

FindAllByQuery(query);
 return serviceRequests.FirstOrDefault();
}

�public async Task<List<ServiceRequest>> GetServiceRequestAuditByPartitionKey(string id)
{
 var query = Queries.GetServiceRequestAuditDetailsQuery(id);
 �var serviceRequests = await _unitOfWork.Repository<ServiceRequest>().

FindAllInAuditByQuery(query);
 return serviceRequests.ToList();
}

Create a new view model in ASC.Web project under ServiceRequests area with name
UpdateServiceRequestViewModel by extending NewServiceRequestViewModel as shown in
Listing 10-41. This view model is primarily used to update the service request information and it holds
properties like RowKey, PartitionKey etc. which are not present in NewServiceRequestViewModel.

Listing 10-41.  UpdateServiceRequestViewModel class

using System;
using System.ComponentModel.DataAnnotations;

namespace ASC.Web.Areas.ServiceRequests.Models
{
 public class UpdateServiceRequestViewModel : NewServiceRequestViewModel
 {
 public string RowKey { get; set; }
 public string PartitionKey { get; set; }
 [Required]
 [Display(Name = "Service Engineer")]
 public string ServiceEngineer { get; set; }
 [Required]
 [Display(Name = "Status")]
 public string Status { get; set; }
 }
}

Create the ServiceRequestDetailViewModel class in Models folder of ServiceRequests area as shown in
Listing 10-42. For now, it will have two properties to hold data of service request and its corresponding audit
information.

Chapter 10 ■ Forms and Validations

329

Listing 10-42.  ServiceRequestDetailViewModel class

using ASC.Models.Models;
using System.Collections.Generic;

namespace ASC.Web.Areas.ServiceRequests.Models
{
 public class ServiceRequestDetailViewModel
 {
 public UpdateServiceRequestViewModel ServiceRequest { get; set; }
 public List<ServiceRequest> ServiceRequestAudit { get; set; }
 }
}

Update the AutoMapper’s mappings in ServiceRequestMappingProfile class to support
UpdateServiceRequestViewModel transformation to ServiceRequest model as vice versa as shown in
Listing 10-43.

Listing 10-43.  Updated ServiceRequestMappingProfile class

CreateMap<ServiceRequest, UpdateServiceRequestViewModel>();
CreateMap<UpdateServiceRequestViewModel, ServiceRequest>();

Update the ServiceRequest controller’s ServiceRequestDetails action as shown in Listing 10-44.
In the action, we are calling GetServiceRequestByRowKey and GetServiceRequestAuditByPartitionKey
methods and getting service request related information. User access check is performed to make sure the
logged in user is authorized to view the details of service request. Vehicle names and types are populated
from master data cache, status is retrieved from Status Enum and all users in service engineer roles
are fetched using UserManager<>. All the collections are stored in ViewBag to display in view. Finally
ServiceRequestDetailViewModel is returned to the view.

Listing 10-44.  Updated ServiceRequestDetails action

using Microsoft.AspNetCore.Mvc;
// Using Statements removed for brevity.

namespace ASC.Web.Areas.ServiceRequests.Controllers
{
 [Area("ServiceRequests")]
 public class ServiceRequestController : BaseController
 {
 private readonly IServiceRequestOperations _serviceRequestOperations;
 private readonly IMapper _mapper;
 private readonly IMasterDataCacheOperations _masterData;
 private readonly UserManager<ApplicationUser> _userManager;
 �public ServiceRequestController(IServiceRequestOperations operations, IMapper

mapper, IMasterDataCacheOperations masterData, UserManager<ApplicationUser>
userManager)

 {
 _serviceRequestOperations = operations;
 _mapper = mapper;

Chapter 10 ■ Forms and Validations

330

 _masterData = masterData;
 _userManager = userManager;
 }

// Code removed for brevity.

 [HttpGet]
 public async Task<IActionResult> ServiceRequestDetails(string id)
 {
 �var serviceRequestDetails = await _serviceRequestOperations.

GetServiceRequestByRowKey(id);

 // Access Check
 if (HttpContext.User.IsInRole(Roles.Engineer.ToString())
 �&& serviceRequestDetails.ServiceEngineer != HttpContext.User.

GetCurrentUserDetails().Email)
 {
 throw new UnauthorizedAccessException();
 }

 if (HttpContext.User.IsInRole(Roles.User.ToString())
 �&& serviceRequestDetails.PartitionKey != HttpContext.User.

GetCurrentUserDetails().Email)
 {
 throw new UnauthorizedAccessException();
 }

 �var serviceRequestAuditDetails = await _serviceRequestOperations.
GetServiceRequestAuditByPartitionKey(

 serviceRequestDetails.PartitionKey + "-" + id);

 // Select List Data
 var masterData = await _masterData.GetMasterDataCacheAsync();
 �ViewBag.VehicleTypes = masterData.Values.Where(p => p.PartitionKey ==

MasterKeys.VehicleType.ToString()).ToList();
 �ViewBag.VehicleNames = masterData.Values.Where(p => p.PartitionKey ==

MasterKeys.VehicleName.ToString()).ToList();
 �ViewBag.Status = Enum.GetValues(typeof(Status)).Cast<Status>().Select(v =>

v.ToString()).ToList();
 �ViewBag.ServiceEngineers = await _userManager.GetUsersInRoleAsync(Roles.

Engineer.ToString());

 return View(new ServiceRequestDetailViewModel
 {
 �ServiceRequest = _mapper.Map<ServiceRequest, UpdateServiceRequestViewModel>(

serviceRequestDetails),
 �ServiceRequestAudit = serviceRequestAuditDetails.OrderByDescending(p =>

p.Timestamp).ToList()
 });
 }
 }
}

Chapter 10 ■ Forms and Validations

331

Service Request Details view is a simple view which has two sections, the details section and audit
section. In the details section, we show all the details related to service request, whereas in audit section we
show a grid with all audit items.

In the details section, only admin can edit service engineer field. Whereas an admin or service engineer
can edit status field (customer can edit status field only if status is PendingCustomerApproval). At any point
of time, nobody can edit the basic information of a service request like Vehicle Name, Type and Requested
Date. Requested Services can be changed at any time by customer, admin and service engineer.

All the controls in the details view are rendered with traditional HTML tags with asp-for bindings.
Vehicle Name, Type and Requested Date are disabled using disabled attribute. RowKey, PartitionKey and
RequestedDate are placed in hidden fields, so that they will be posted along with form in update operation.
All the controls are placed inside a form which can be posted to server action on update button click.
Audit details section is rendered using _ServiceRequestGrid partial view and passing ServiceRequestAudit
parameter of ServiceRequestDetailViewModel model. DataTable, Select and Date picker controls are
initialized with Materialize styles in JQuery. Service Request Details view is shown in Listing 10-45.

Listing 10-45.  Service Request Details view

@model ASC.Web.Areas.ServiceRequests.Models.ServiceRequestDetailViewModel
@using Microsoft.AspNetCore.Http
@using ASC.Models.BaseTypes
@inject IHttpContextAccessor UserHttpContext
@{
 Layout = "_SecureLayout";
}

@{
 // Compute Service Engineer and Status Disable logic
 string serviceEngineerDisabled = null;
 if (!UserHttpContext.HttpContext.User.IsInRole(Roles.Admin.ToString()))
 {
 serviceEngineerDisabled = "disabled";
 }

 string statusDisabled = null;
 if (!UserHttpContext.HttpContext.User.IsInRole(Roles.Admin.ToString()) &&
 !UserHttpContext.HttpContext.User.IsInRole(Roles.Engineer.ToString()))
 {
 statusDisabled = "disabled";
 }

 // �Customer can update the status only if the original status is Customer pending
approval.

 if (UserHttpContext.HttpContext.User.IsInRole(Roles.User.ToString()) &&
 Model.ServiceRequest.Status == Status.PendingCustomerApproval.ToString())
 {
 statusDisabled = null;
 ViewBag.Status = new List<string> { "Completed", "RequestForInformation" };
 }
}

Chapter 10 ■ Forms and Validations

332

<div class="row"></div>
<div class="row padding-top-20px">

 @* Details Section *@
 <div class="row z-depth-3">
 <div class="col s12 padding-0px">
 <div class="section white-text padding-left-10px blue-grey lighten-1">
 <h5>Service Request Details</h5>
 </div>
 <div class="divider"></div>
 �<form asp-controller="ServiceRequest" asp-action="UpdateServiceRequestDetails"

method="post" class="col s12">
 <input type="hidden" asp-for="ServiceRequest.RowKey" />
 <input type="hidden" asp-for="ServiceRequest.PartitionKey" />
 <input type="hidden" asp-for="ServiceRequest.RequestedDate" />
 <div class="row">
 <div class="input-field col s4">
 <select asp-for="ServiceRequest.VehicleName"
 �asp-items="@(new SelectList(ViewBag.VehicleNames,"RowKey","

Name"))"
 class="" required="required" disabled>
 <option value="">Please select one</option>
 </select>
 <label asp-for="ServiceRequest.VehicleName"></label>
 </div>
 <div class="input-field col s4">
 <select asp-for="ServiceRequest.VehicleType"
 �asp-items="@(new SelectList(ViewBag.VehicleTypes,"RowKey","

Name"))"
 class="validate" required="required" disabled>
 <option value="">Please select one</option>
 </select>
 <label asp-for="ServiceRequest.VehicleType"></label>
 </div>
 <div class="input-field col s4">
 �<input asp-for="ServiceRequest.RequestedDate" type="text"

disabled="disabled" class="datepicker"/>
 <label asp-for="ServiceRequest.RequestedDate"></label>
 </div>
 </div>
 <div class="row">
 <div class="input-field col s8">
 �<textarea asp-for="ServiceRequest.RequestedServices"

class="materialize-textarea validate"></textarea>
 <label asp-for="ServiceRequest.RequestedServices"></label>
 </div>
 </div>

Chapter 10 ■ Forms and Validations

333

 <div class="row">
 <div class="input-field col s4">
 <select asp-for="ServiceRequest.ServiceEngineer"
 �asp-items="@(new SelectList(ViewBag.ServiceEngineers,

"Email", "Email"))"
 �class="" required="required" disabled=@service

EngineerDisabled>
 <option value="">Please select one</option>
 </select>
 <label asp-for="ServiceRequest.ServiceEngineer"></label>
 </div>
 <div class="input-field col s4">
 <select asp-for="ServiceRequest.Status"
 asp-items="@(new SelectList(ViewBag.Status))"
 �class="validate" required="required"

disabled=@statusDisabled>
 <option value="">Please select one</option>
 </select>
 <label asp-for="ServiceRequest.Status"></label>
 </div>
 <div class="input-field col s12 right-align">
 �<button class="btn waves-effect waves-light btnSubmit" type="submit"

name="action">
 Update
 <i class="material-icons right">send</i>
 </button>
 </div>
 <div class="row col s12 right-align" asp-validation-summary="All"></div>
 </div>
 </form>

 </div>
 <div class="row"></div>
 </div>

 �@await Html.PartialAsync("_ServiceRequestGrid", Model.ServiceRequestAudit, new
ViewDataDictionary(ViewData) {

 { "SectionName", "Recent Updates" },
 { "Id", "tblAuditServiceRequests" },
 { "IsAudit", true }
 })
</div>

@section Scripts{
 <script>
 $(document).ready(function () {
 // Initialize DataTable to show list of Service Requests
 var table = $('.tblServiceRequests').DataTable({
 'pageLength': 3,
 // Number of records to be displayed per page
 'lengthMenu': [[3, 5, 10, -1], [3, 5, 10, 'All']],

Chapter 10 ■ Forms and Validations

334

 // Remove default Sorting
 'sorting': [],
 �'columns': [{ "visible": false }, { "visible": false }, null,

{ "width": "20%" }, null, null, null, { "visible": false }]
 });

 // Set Styles for DataTable and Number of Records to be displayed dropdown
 $('.tblServiceRequests').css("width", "100%");
 $('select[name$="ServiceRequests_length"]').material_select();

 // Initialize DatePicker
 $('.datepicker').pickadate({
 selectMonths: true,
 selectYears: 15
 });

 // initialize Material Select
 $('select').material_select();
 �$("select[required]").css({ display: "block", position: 'absolute',

visibility: 'hidden' })
 });
 </script>
}

Create a POST action with name UpdateServiceRequestDetails in ServiceRequest controller as shown in
Listing 10-46. The POST action will take UpdateServiceRequestViewModel as input and updates the service
request using UpdateServiceRequestAsync method of IServiceRequestOperations. Action method will update
Status and Service Engineer fields based on user role who is trying to update the values. Customer can only
update the status of the service request only if it is in PendingCustomerApproval. On successful update, the
control will be redirected to ServiceRequestDetails action with corresponding RowKey.

Listing 10-46.  UpdateServiceRequestDetails action

[HttpPost]
�public async Task<IActionResult> UpdateServiceRequestDetails(UpdateServiceRequestViewModel
serviceRequest)
{
 �var originalServiceRequest = await _serviceRequestOperations.GetServiceRequestByRowKey(s

erviceRequest.RowKey);
 originalServiceRequest.RequestedServices = serviceRequest.RequestedServices;

 // Update Status only if user role is either Admin or Engineer
 // Or Customer can update the status if it is only in Pending Customer Approval.
 if (HttpContext.User.IsInRole(Roles.Admin.ToString()) ||
 HttpContext.User.IsInRole(Roles.Engineer.ToString()) ||
 �(HttpContext.User.IsInRole(Roles.User.ToString()) && originalServiceRequest.Status

== Status.PendingCustomerApproval.ToString()))
 {
 originalServiceRequest.Status = serviceRequest.Status;
 }

Chapter 10 ■ Forms and Validations

335

 // Update Service Engineer field only if user role is Admin
 if (HttpContext.User.IsInRole(Roles.Admin.ToString()))
 {
 originalServiceRequest.ServiceEngineer = serviceRequest.ServiceEngineer;
 }

 await _serviceRequestOperations.UpdateServiceRequestAsync(originalServiceRequest);

 return RedirectToAction("ServiceRequestDetails", "ServiceRequest",
 new { Area = "ServiceRequests", Id = serviceRequest.RowKey });
}

Run the application and login as admin, navigate to any service request from dashboard by clicking the
view icon. We should see service request details view as shown in Figure 10-12.

Figure 10-12.  Service Request Details View

Chapter 10 ■ Forms and Validations

336

Assign a service engineer and change the status of service request from New to Initiated and click
update button. Service Request details will be updated and redirected to the same service request details
view. Updated service request details along with audit details are shown in Figure 10-13.

Figure 10-13.  Updated Service Request Details View

Chapter 10 ■ Forms and Validations

337

When a service engineer logs in to the system, he should the initiated service request in his queue and
can view details as shown in Figure 10-14.

Figure 10-14.  Service Request Details view for Service Engineer

Chapter 10 ■ Forms and Validations

338

Service engineer can change the status to InProgress and continue with the service request progress.
When a customer logs into the system, he should see updated service request details as shown in Figure 10-15.

As time progress, service engineer might complete the all the services required and mark the status of
service as PendingCustomerApproval. At this time when customer logs into the system, he should see the
status field enabled with only two options Completed and RequestForInformation which are used to mark
the service request as complete or seeking for more information. Customer can select any of the status and
click on update and subsequent work flow from Admin and Service Engineer will kick off.

Figure 10-15.  Service Request Details view for Customer

Chapter 10 ■ Forms and Validations

339

When an Admin logs in he will not be able to see the service request in his service requests queue
(because of the service request status filter which we applied in Dashboard Service Requests table), but he can
navigate to the service request from recent updates grid. Now he can perform actions on service request similar
to pervious operations. In the same way service engineer can also update the status of the service request.

Figure 10-16.  Completed Service Request Details View

Chapter 10 ■ Forms and Validations

340

Custom Validations using DataAnnotation Attributes
Data integrity and consistency are crucial factors for the success of any modern day application. With
ever growing data interfaces and different channels for data acquisition and ingestion, maintaining data
quality is a typical challenge faced by many applications. Furthermore the complex business requirements
and complicated integrations add more risks to maintain consistent superior data quality conditions. The
current day trend shows that many organizations spend more time and effort on data cleansing techniques
than ever before to make sure the automated business decisions are accurate.

One way to mitigate the risk of data fragility is to design a good validation framework which will ensure
all the data is thoroughly validated before making to business component methods. Fortunately ASP.NET
Core provides a good validation attributes through which an application can validate data for type, size,
format, range etc. This validation is typically called as Model Validation.

Following are some of the prominent DataAnnotation attributes provided by ASP.NET Core which can
be decorated on top of any property of a model.

	 1.	 Required: Makes a property required.

	 2.	 StringLength: Validates that a string property has at most the given maximum
length.

	 3.	 Range: Validates the property value falls within the given range.

	 4.	 RegularExpression: Validates that the data matches the specified regular
expression.

	 5.	 Phone: Validates the property has a telephone format.

	 6.	 Compare: Validates two properties in a model match.

	 7.	 EmailAddress: Validates the property has an email format.

	 8.	 Url: Validates the property has a URL format.

In ASP.NET Core, Model Validation happens before even reaching the controller action and all the
model validation errors will be present in ModelState. In controller action, we need to inspect ModelState.
IsValid to check if there are any model validation errors and take appropriate action.

Sometimes the default ASP.NET Core provided validation attributes will not suffice to achieve the
business validation requirements. Those custom validations can be achieved by creating custom validation
attributes from ValidationAttribute or by implementing IValidatableObject on model. In Automobile Service
Center application, we will take following uses cases to define custom validations.

	 1.	 A Service Request cannot be submitted if Requested Date is after 90 days from
current date.

	 2.	 A Customer cannot submit a service request, if admin has denied his service
request in past 90 days.

We will get started by creating a folder with name ValidationAttributes in ASC.Utilities project. Create
a class with name FutureDateAttribute in ValidationAttributes folder as shown in Listing 10-47. This class
implements ValidationAttribute and IClientModelValidator which are used to achieve server and client side
validations respectively. FutureDateAttribute takes an int as a parameter through which we can specify the
number of days the validation attribute should take into consideration while validating a DateTime value.
We will override IsValid method of ValidationAttribute within which we check for DateTime value is in the
permissible limit of the number of day’s parameter from current date.

We will implement AddValidation method of IClientModelValidator interface which will help us
in setting the client side data-val custom attributes through which we can achieve client side custom
validation.

Chapter 10 ■ Forms and Validations

341

Listing 10-47.  FutureDateAttribute class

using Microsoft.AspNetCore.Mvc.ModelBinding.Validation;
using System;
using System.ComponentModel.DataAnnotations;

namespace ASC.Utilities.ValidationAttributes
{
 public class FutureDateAttribute : ValidationAttribute, IClientModelValidator
 {
 private readonly int _days;
 �private readonly string _errorMessage = "Date cannot be after {0} days from current

date.";

 private FutureDateAttribute() { }
 public FutureDateAttribute(int days)
 {
 _days = days;
 }

 �protected override ValidationResult IsValid(object value, ValidationContext
validationContext)

 {
 var date = (DateTime)value;

 if (date > DateTime.UtcNow.AddDays(_days))
 return new ValidationResult(string.Format(_errorMessage, _days));

 return ValidationResult.Success;
 }

 public void AddValidation(ClientModelValidationContext context)
 {
 �context.Attributes.Add("data-val-futuredate", string.Format(_errorMessage,

_days));
 context.Attributes.Add("data-val-futuredate-days", _days.ToString());
 }
 }
}

Decorate the FutureDate attribute on RequestedDate property of NewServiceRequestViewModel as
shown in Listing 10-48.

Listing 10-48.  Usage of FutureDate attribute

[Required]
[FutureDate(90)]
[Display(Name = "Requested Date")]
public DateTime? RequestedDate { get; set; }

Run the application and navigate to New Service Request page. Enter a future date which is more than 90
days from current date and click create. We should be custom validation error message as shown in Figure 10-17.

Chapter 10 ■ Forms and Validations

342

The validation which we have implemented is server side validation. Now we will implement client
side validation. Update init.js file as shown in Listing 10-49 to include a validation method which actually
performs the validation and an adapter which adds the validation function to the validation list for the input
field (in our case Requested Date). The validation adapter attaches the parameters, especially days values
from data-val-futuredate-days to the validation function. Validation function gets the selected requested
date and compares with the computed future data (current UTC date + data-val-futuredate-days value), if
the requested date is before the computed future date, then validation function returns true otherwise false.
Validation error message will be pulled from data-val-futuredate attribute and will be displayed in validation
summary div.

Listing 10-49.  JQuery validation function for FutureDate validation

(function ($) {
 $(function () {
 $('.button-collapse').sideNav();
 $('.parallax').parallax();

 //Prevent browser back and forward buttons.
 if (window.history && window.history.pushState) {
 window.history.pushState('forward', '', '');

 $(window).on('popstate', function (e) {
 window.history.pushState('forward', '', '');
 e.preventDefault();
 });
 }

 //Prevent right click on entire window
 $(document).ready(function () {
 $(window).on("contextmenu", function () {
 return false;
 });

Figure 10-17.  Future date validation on New Service Request screen

Chapter 10 ■ Forms and Validations

343

 $('#selectCulture').material_select();
 });
 }); // end of document ready

 // Future Date Vallidation method.
 $.validator.addMethod('futuredate', function (value, element, params) {
 var selectedDate = new Date(value),
 now = new Date(),
 futureDate = new Date(),
 �todaysUtcDate = new Date(now.getUTCFullYear(), now.getUTCMonth(),

now.getUTCDate(), now.getUTCHours(), now.getUTCMinutes(), now.getUTCSeconds());
 futureDate.setDate(todaysUtcDate.getDate() + parseInt(params[0]));
 if (selectedDate >= futureDate) {
 return false;
 }
 return true;
 });

 // Add Future Date adapter.
 $.validator.unobtrusive.adapters.add('futuredate',
 ['days'],
 function (options) {
 options.rules['futuredate'] = [parseInt(options.params['days'])];
 options.messages['futuredate'] = options.message;
 });
})(jQuery); // end of jQuery name space

Run the application and navigate to new service request screen. Enter a future date which is greater
than 90 days from current data and click create. We should see validation error message as shown in
Figure 10-18.

Figure 10-18.  Client side future date validation on New Service Request screen

Chapter 10 ■ Forms and Validations

344

The next validation which we will implement will check if the customer who is about to submit a
new service request has a service denial in last 90 days. If there is a denied service request, then customer
needs to contact Automobile Service Center to process the new service request. We will use ASP.NET Core’s
Remote validation feature to achieve this validation.

Decorate RequestedDate property of NewServiceRequestViewModel with RemoteAttribute as shown
in Listing 10-50. RemoteAttribute takes action, controller and area as parameters, this configuration tells
remote validation to use the specified action for validating data.

Listing 10-50.  Usage of Remote attribute

[Required]
[FutureDate(90)]
�[Remote(action: "CheckDenialService", controller: "ServiceRequest", areaName:
"ServiceRequests")]
[Display(Name = "Requested Date")]
public DateTime? RequestedDate { get; set; }

Now we will create the action in ServiceRequest controller of ServiceRequests area as shown in
Listing 10-51.

Listing 10-51.  CheckDenialService action

public async Task<IActionResult> CheckDenialService(DateTime requestedDate)
{
 �var serviceRequests = await _serviceRequestOperations.

GetServiceRequestsByRequestedDateAndStatus(
 DateTime.UtcNow.AddDays(-90),
 new List<string>() { Status.Denied.ToString() },
 HttpContext.User.GetCurrentUserDetails().Email);

 if (serviceRequests.Any())
 �return Json(data: $"There is a denied service request for you in last 90 days.

Please contact ASC Admin.");

 return Json(data: true);
}

Run the application and navigate to New Service Request screen and enter a service request details click
create. A Validation error message should appear as shown in Figure 10-19.

■■ Note  Make sure to have at least one denied service in last 90 days for the user who is trying to create the
service request.

Chapter 10 ■ Forms and Validations

345

Adding Internationalization Support
Automobile Service Center application is a system designed for a fictitious US Automobile servicing
company. Even though English is the primary language which is supported by the application, to reach
broader audience, Automobile Service Center application should be extended for multiple cultures and
languages.

Internationalization is the process of converting a web application into a global application by adding
multilingual support. Internationalization is a combination of two main important process, Globalization
and Localization. Globalization is the process of extending an application to support multiple cultures
(languages and regions). Localization is the process of customization of application for a particular culture.
ASP.NET Core provides good support to create localized web applications. For Automobile Service Center
application, we will configure US English (en-US) and Mexican Spanish (es-MX).

We will get start by configuring Localization in ConfigureServices method of Startup class as shown
in Listing 10-52. AddLocalization adds localization services to the services container and configure the
Resources path to Resource folder in the project. AddViewLocalization is used to support localized view
files (for example Index.es.cshtml file). AddDataAnnotationsLocalization adds support for localized
DataAnnotation validation messages. The list of cultures which are supported by the application are also
configured at ConfigureServices method of Startup class. The default culture for every request is configured
to en-US.

Listing 10-52.  Add Localization Service in Startup class

services.AddLocalization(options => options.ResourcesPath = "Resources");

services
 .AddMvc(o => { o.Filters.Add(typeof(CustomExceptionFilter)); })
 �.AddJsonOptions(options => options.SerializerSettings.ContractResolver = new

DefaultContractResolver())
 �.AddViewLocalization(LanguageViewLocationExpanderFormat.Suffix, options => { options.

ResourcesPath = "Resources"; })
 .AddDataAnnotationsLocalization();

Figure 10-19.  Denial Service Validation

Chapter 10 ■ Forms and Validations

346

services.Configure<RequestLocalizationOptions>(
opts =>
{
 var supportedCultures = new List<CultureInfo>
 {
 new CultureInfo("en-US"),
 new CultureInfo("es-MX")
 };

 opts.DefaultRequestCulture = new RequestCulture("en-US");
 // Formatting numbers, dates, etc.
 opts.SupportedCultures = supportedCultures;
 // UI strings that we have localized.
 opts.SupportedUICultures = supportedCultures;
});

We use RequestLocalization middleware as shown in Listing 10-53 to configure the default providers
to preserve the culture. The RequestLocalization middleware supports three default culture providers. The
middleware is configured in Configure method of Startup class.

	 1.	 QueryStringRequestCultureProvider

	 2.	 AcceptLanguageHeaderRequestCultureProvider

	 3.	 CookieRequestCultureProvider

Listing 10-53.  RequestLocalization middleware configuration

var options = app.ApplicationServices.GetService<IOptions<RequestLocalizationOptions>>();

app.UseRequestLocalization(options.Value);

Now we will add separate resource files, one for English and other for Spanish content. By default
we will use English language throughout the application and we will hold all the corresponding Spanish
translated text in Spanish resource file. So whenever a new user with es-MX culture uses the application, all
the English text will be replaced with its corresponding Spanish version.

Create a folder with name Resources in ASC.Web Project. Right click the folder and select add new item,
select Resource file and give it a name SharedResources.es.resx. Add an entry with name SectionHeader_
ServiceRequests_Text and add ‘Solicitudes de servicio’ (Spanish translation of ‘Service Requests’) as its
corresponding value as shown in Figure 10-20.

Figure 10-20.  Spanish Resource File

Chapter 10 ■ Forms and Validations

347

Similarly add a resource file for English with name SharedResources.resx as shown in Figure 10-21.

Create a class at the root of the project with name SharedResources as shown in Listing 10-54. This is
required for resources which are being shared across multiple pages and across entire application.

Listing 10-54.  SharedResources class

namespace ASC.Web
{
 public class SharedResources
 {
 }
}

■■ Note  The SharedResources class should have the same namespace as of root of the project. One more
important point to remember is that resource files should have the same name as of SharedResources class.

We will create a simple partial view which will allow users to select a culture of their interest, so that it
will be applied throughout the application. Create _SelectCutlure.cshtml in ASC.Web project under Views/
Shared folder as shown in Listing 10-55. In the partial view, we will get all the SupportedUICultures (which
was configured at Startup class) and display them in the Select tag. When we click on save button, the
selected culture will be posted to SetCulture action of Home controller.

Listing 10-55.  Select Culture partial view

@using System.Threading.Tasks
@using Microsoft.AspNetCore.Builder
@using Microsoft.AspNetCore.Localization
@using Microsoft.AspNetCore.Mvc.Localization
@using Microsoft.Extensions.Options

@inject IViewLocalizer Localizer
@inject IOptions<RequestLocalizationOptions> LocOptions

@{
 var requestCulture = Context.Features.Get<IRequestCultureFeature>();
 var cultureItems = LocOptions.Value.SupportedUICultures
 .Select(c => new SelectListItem { Value = c.Name, Text = c.DisplayName })
 .ToList();
}

Figure 10-21.  English Resource File

Chapter 10 ■ Forms and Validations

348

<div title="@Localizer["Request culture provider:"] @requestCulture?.Provider?.GetType().
Name">
 �<form id="selectLanguage" asp-controller="Home" asp-action="SetCulture" asp-area=""

asp-route-returnUrl="@Context.Request.Path@Context.Request.QueryString"
 method="post" role="form">
 <div class="row">
 <div class="col s8">
 <select name="culture" id="selectCulture" class="col s12"
 �asp-for="@requestCulture.RequestCulture.UICulture.Name" asp-

items="cultureItems"></select>
 </div>
 <div class="input-field col s4 right-align">
 �<button class="btn waves-effect waves-light btnSubmit" type="submit"

name="action">
 Save
 <i class="material-icons right">send</i>
 </button>
 </div>
 </div>
 </form>
</div>

To initialize the Material style for select tag. Make the following code change in init.js file as shown in
Listing 10-56.

Listing 10-56.  Material style for Select tag of Culture

//Prevent right click on entire window
$(document).ready(function () {
 $(window).on("contextmenu", function () {
 return false;
 });

 $('#selectCulture').material_select();
});

Now we need to update _Layout.cshtml and _SecureLayout.cshtml to include select culture partial
view. We will include the partial view in the footer section of layouts. _Layout.cshtml is modified as shown in
Listing 10-57.

Listing 10-57.  Updated layout to include Select Culture partial view

<div class="footer-copyright">
 <div class="container row">
 <div class="col s8">
 �Powered by

Materialize
 </div>
 <div class="col s4">
 @await Html.PartialAsync("_SelectCulture")
 </div>
 </div>
</div>

Chapter 10 ■ Forms and Validations

349

_SecureLayout.cshtml is modified as shown in Listing 10-58.

Listing 10-58.  Updated secure layout with Select Culture partial view

<div class="footer-copyright row margin-bottom-0px">
 <div class="col s12">
 <div class="col s8">
 �Powered by <a class="brown-text text-lighten-3" href="http://materializecss.

com">Materialize
 </div>
 <div class="col s4">
 @await Html.PartialAsync("_SelectCulture")
 </div>
 </div>
</div>
<div class="footer-copyright row margin-bottom-0px"></div>

■■ Note  In _SecureLayout.cshtml, I have used one more footer-copyright css style (from MaterializeCSS) to
avoid a small css glitch of having white space at the bottom of the screen. There is no other specific reason for
the extra footer div tag.

The SetCulture action of Home controller is shown in Listing 10-59. The action takes culture and return
url as parameters, it sets the Culture cookie and redirects to the return url.

Listing 10-59.  SetCulture action

[HttpPost]
public IActionResult SetCulture(string culture, string returnUrl)
{
 Response.Cookies.Append(
 CookieRequestCultureProvider.DefaultCookieName,
 CookieRequestCultureProvider.MakeCookieValue(new RequestCulture(culture)),
 new CookieOptions { Expires = DateTime.UtcNow.AddYears(1) }
);

 return LocalRedirect(returnUrl);
}

The last change which is required is to be done is at View where we should use localized string (string
content from Resource file) to render the text. We will use created localized string in Dashboard view. Add
the Localization namespace and inject IHtmlLocalizer in Dashboard.cshtml as shown in Listing 10-60.

Listing 10-60.  Localization namespace

@using Microsoft.AspNetCore.Mvc.Localization
@inject IHtmlLocalizer<SharedResources> SharedLocalizer

To consume the localized key, change the Service Requests grid section name in Dashboard.cshtml as
shown in Listing 10-61.

Chapter 10 ■ Forms and Validations

350

Listing 10-61.  Usage of localized key

@await Html.PartialAsync("_ServiceRequestGrid", Model.ServiceRequests, new
ViewDataDictionary(ViewData) {
 { "SectionName", SharedLocalizer["SectionHeader_ServiceRequests_Text"] },
 { "Id", "tblServiceRequests" },
 { "IsAudit", false }
})

Run the application, Culture partial should be visible as shown in Figures 10-22 & 10-23 for normal
layout and secure layout respectively.

Change the culture to Spanish and click save, the section name of service requests grid will be used
from Spanish resource file as shown in Figure 10-24. Switch the culture back to English, section name should
be reverted accordingly. In the similar way, the entire application can be localized.

Figure 10-23.  Culture partial in Secure layout

Figure 10-22.  Culture partial in Normal layout

Figure 10-24.  Localized name display in Dashboard

Chapter 10 ■ Forms and Validations

351

■■ Note  We used Shared Resources approach to achieve Localization for Automobile Service Center
application. This way we can achieve key reusability, say for example the same string is used in multiple places
on multiple pages. Also shared resources help in migrating existing resource files to ASP.NET Core application.

Another approach is to have different resource files for different views and have similar folder structure as of
views for resources as well, for example HomeController Spanish resource file should be placed at Resources/
Controllers/HomeController.es.resx.

We will now localize validation error messages which are displayed to user on client side or server
side DataAnnotation validations. We need to configure DataAnnotation localization in ConfigureServices
method of Startup class to use SharedResources as shown in Listing 10-62.

Listing 10-62.  DataAnnotations localization configuration in Startup class

services
 .AddMvc(o => { o.Filters.Add(typeof(CustomExceptionFilter)); })
 �.AddJsonOptions(options => options.SerializerSettings.ContractResolver = new

DefaultContractResolver())
 �.AddViewLocalization(LanguageViewLocationExpanderFormat.Suffix, options => { options.

ResourcesPath = "Resources"; })
 �.AddDataAnnotationsLocalization(options => { options.DataAnnotationLocalizerProvider =

(type, factory) =>
 factory.Create(typeof(SharedResources));
 });

To demonstrate DataAnnotation error messages localization, we will take
NewServiceRequestViewModel and update the Required DataAnnotation attribute of VehicleName property
as shown in Listing 10-63.

Listing 10-63.  Required attribute with SharedResource key

[Required(ErrorMessage = "Error_VehicleName_Message")]
[Display(Name ="Vehicle Name")]
public string VehicleName { get; set; }

Create the Error_VehicleName_Message key in both the SharedResources.resx and SharedResources.
es.resx files as shown in respective Figures 10-25 & 10-26.

Figure 10-25.  Vehicle name error messagein English resource file

Chapter 10 ■ Forms and Validations

352

Run the application and with es-US as culture we should see validation error message as shown in
Figure 10-27.

Change the culture to Spanish and we should see Spanish error message as shown in Figure 10-28.

Figure 10-26.  Vehicle name error message in Spanish Resource file

Figure 10-27.  Error message display for en-US culture

Chapter 10 ■ Forms and Validations

353

■■ Note  We can use IStringLocalizer<SharedResources> to access localized string in Controller code.
Typically we used IStringLocalizer for normal localized strings and IHtmlLocalizer for HTML content. As most
of the cases, we only localize string content, IStringLocalizer is most widely used option to retrieve localized
content.

Similarly we can use IViewLocalizer to find the localized content from respective view resource files.

Exercise 1
Send an Email alert to customer when his service request is marked as PendingCustomerApproval either by
Admin and Service Engineer. Based on the email notification, customer can login to application and check
the service updates.

■■ Note S olution to this problem can be found in code samples accompanied with this book. Login as Admin
or Service Engineer and modify any service request status to PendingCustomerApproval and save it. Customer
should receive email as shown in figure.

Figure 10-28.  Error message display for es-MX culture

Chapter 10 ■ Forms and Validations

354

Exercise 2
Create a Search Service Request page which will allow admin and service engineers to search for service
requests based on email and requested date. All search results should be displayed in tabular format and
admin should see all results whereas service engineer should see results of service requests which are
associated to him. Every service request result should have view icon, clicking on which should take the user
to service request details page (just like from Dashboard).

■■ Note  Solution to this problem can be found in code samples accompanied with this book. View
models which are used to perform search can be found at Models folder of ServiceRequests area. Search
Service Requests actions and corresponding views can be found at ServiceRequest controller and views of
ServiceRequests area. Left navigation is configured at Navigation.json file. Search Service Requests view is as
shown in Figure 10-30.

Figure 10-29.  Email alert to customer when his service request is marked as Pending customer approval

Chapter 10 ■ Forms and Validations

355

Figure 10-30.  Search Service Request View

Summary
We started of this chapter by understanding the importance of data input forms which are traditionally
used by web applications to capture information related to the user or to a particular event. In context of
Automobile Service Center application, forms play a crucial role in establishing an effective communication
channel between customers, service engineers and administrator. We defined a custom workflow to manage
the life cycle of a service request between customers, service engineers and administrator.

We have implemented the service request workflow through the new service request screen and its
associated details screen which is accessible to all user roles. Custom logic is implemented on service details
screen to restrict access to update certain fields (for example a service engineer cannot assign a service
request to another service engineer, customer cannot change the status of service request until it is in
PendingCustomerApproval state).

Chapter 10 ■ Forms and Validations

356

We created a Dashboard view which is common to all users but displays different sets of information
based on user role. To support different queries for Azure Table Storage, we extended IRepository<T>
implementation with FindAllByQuery method which is primarily used by Dashboard controller to fetch
different sets of information based on different conditions. A common partial view is created to display list
of service requests, which is used in Dashboard to present both service requests and latest audit information
to user. We also provided statistics to admin with number of active service requests handled by each service
engineer.

We learned about performing validations using default ASP.NET Core's DataAnnotation attributes.
We wrote custom DataAnnotation attribute and its client side validation function and unobtrusive adapter
to validate the new service for requested date cannot be greater than 90 days from current date. We
implemented remote validation which will prevent user to submit a new service request, if in case he got a
service denial in last 90 days.

To support multiple languages and cultures, we extended Automobile Service Center application
to support Localization. We configured ASC.Web solution for Localization with US English and Mexican
Spanish as supported cultures. We created a shared Resource files to maintain English and Spanish texts. We
then created a partial view and its corresponding action to create a provision for user to update the culture
anytime and anywhere in the application. We also learned how to localize DataAnnotation validation error
messages from Resource files based on selected culture. We tested the localization changed on Dashboard
and New Service Request views.

357© Rami Vemula 2017
R. Vemula, Real-Time Web Application Development, https://doi.org/10.1007/978-1-4842-3270-5_11

CHAPTER 11

Real-Time Communication
with SignalR

Advancements in software solutions that have been provided by modern technology have not only
revolutionized business workflows and collaborations, but also improved communication between
businesses and customers. Providing a sophisticated communication platform boosts the success of
software solutions by passing the right information to all business stakeholders on a timely basis and by
establishing interactive channels of communication with customers in order to provide better support and
services. Effective communication helps improve the efficiency and productivity of employees as well as
their decision-making capabilities by enabling them to exchange critical information.

Real-time communication includes many channels, including telephone, instant messaging, VoIP,
and live chat. As part of addressing the Automobile Service Center’s business requirements, we’ll define a
scope item to provide a reliable and effective communication channel that customers and service engineers
can use to exchange information about ongoing service request. The affordable and cost-optimized
communication solution for the Automobile Service Center is to have a web-based instant messaging system
within the Automobile Service Center application.

A real-time web-based instant messaging system can be developed using SignalR, an open source
(under .NET Foundation) library that enables servers to push content to all connected clients instantly, as
and when data becomes available, rather than the client making a request for new data. SignalR maintains a
persistent connection between the server and clients and subsequently pushes notifications to all or specific
clients by using remote procedure calls (RPCs).

In this chapter, we are going to use the SignalR library to build a real-time communication system
between customers and service engineers in the Automobile Service Center application.

■■ Note  The traditional ASP.NET’s SignalR will not work with ASP.NET Core applications because of the
groundbreaking changes in .NET Core application models. At the time of writing this book, SignalR for ASP.NET
Core is still in the development stage. A stable version of SignalR for ASP.NET Core is expected after the ASP.
NET Core 2.0 release, which means there is still a long way to go before getting a stable version.

For the Automobile Service Center application, we will use the 0.2.0-preview2-22683 version of Microsoft.
AspNetCore.SignalR.Server from the MyGet feed of the ASP.NET Core team. The ASP.NET Core team uses
MyGet repositories to push their nightly builds (bits from latest source, which might be unstable). We will also
use Microsoft’s SignalR JavaScript Library (jquery.signalr-2.2.0), which is primarily to build a JQuery client
for the Automobile Service Center application.

https://doi.org/10.1007/978-1-4842-3270-5_11

Chapter 11 ■ Real-Time Communication with SignalR

358

Because we are using a preview version, some functionalities could break, and it is not advisable to go to
a production release with this solution without proper testing. Knowing the cons of the preview version, we
will still build a two-way communication channel in the Automobile Service Center application to showcase
the potentiality of SignalR. Also, expect groundbreaking changes in the SignalR Core version (for example,
implementing transport channels using duplex communication, working along with ASP.NET Core’s dependency
injection, and having a JavaScript client rewritten in TypeScript).

Introducing SignalR
SignalR is a library from Microsoft that offers real-time web development for ASP.NET applications.
SignalR is primarily used by applications that require push notifications from server to client; for example,
applications such as chat, stock market, gaming, and dashboards. Prior to SignalR, application developers
used to implement real-time web functionalities by using pooling methods such as long/short polling
in which a client will poll the server for new information based on a time interval. This approach is
always performance intense, network offensive, and requires more hardware. SignalR solves the problem
by providing a persistent connection between the client and the server. It uses the Hubs API to push
notifications from server to client, and it supports multiple channels such as WebSocket, server-sent events,
and long polling. SignalR supports multiple clients ranging from C#/C++ to JavaScript. SignalR supports SQL
Server, Redis, Azure Service Bus, and more to achieve scalability.

As the development paradigm shifts toward ASP.NET Core, Microsoft is redesigning and rebuilding its
traditional SignalR to support a new ASP.NET Core framework. The new SignalR is a complete rewrite from
scratch, because ASP.NET Core has a lot of new features such as new HttpContext, dependency injection,
and configuration. At the same time, the .NET Core’s SignalR version should be portable with the .NET
Standard. Some of the new changes in the latest SignalR for .NET Core are as follows [1].

•	 No dependency on JQuery. This will make the new SignalR run on the client side
without JQuery references. The ASP.NET Core team plans to use most of the default
features of the latest browsers.

•	 Hubs are mapped to routes, through which the single connection dependency
was removed. Different clients can connect to hubs of their choice through
different URLs.

•	 Just like traditional SignalR, the new version also supports WebSocket, server-sent
events, and long polling transport types.

•	 Extensive support for binary data.

•	 The new SignalR will implement a new scale-out design that is more flexible than the
existing one.

•	 User presence support, which can be used to track a user’s lost or idle connections.

•	 The reconnection feature from traditional SignalR has been removed because of
memory leaks and complicated unnecessary logic inside SignalR to make sure
messages are durable.

•	 Traditional SignalR was used to allow clients to change servers between
reconnections, but in new SignalR except WebSocket, all other connections require
sticky sessions.

Chapter 11 ■ Real-Time Communication with SignalR

359

The ASP.NET Core SignalR high-level architecture is shown in Figure 11-1. At a high level, SignalR is
host agnostic and supports numerous transports. Microsoft replaced the traditional connection API with
hub endpoints, which are generic endpoints on the server. These endpoints are flexible, because the same
endpoint can be leveraged across multiple transports and hosts. ASP.NET Core applications use HTTP
transport to communicate with different hub endpoints.

Hubs

HubEndpoints

HTTP Transports TCP Transport

ASP.NET Core WebHost &
Middleware TCP Server

Figure 11-1.  High-level architecture of SignalR

■■ Note  As we already discussed in the introduction, most of the new SignalR changes are still under
development. We will not be implementing all of these concepts for the Automobile Service Center application.

Enabling Two-Way Communication Between Customers
and Service Engineers
In this section, we will implement basic two-way communication between the customer and service
engineer in the context of the service request. We will use SignalR and WebSocket to achieve this
functionality.

Chapter 11 ■ Real-Time Communication with SignalR

360

Configure Automobile Service Center with SignalR
We will start by adding SignalR and WebSocket MyGet packages. Open the Package Manager console, shown
in Figure 11-2.

Figure 11-2.  Package Manager console

Figure 11-3.  Installing the Microsoft.AspNetCore.SignalR.Server package on the ASC.Web project from the
MyGet feed

To add the Microsoft.AspNetCore.SignalR.Server MyGet Package, execute the command as shown
in Figure 11-3.

Similarly, install the Microsoft.AspNetCore.WebSockets MyGet Package by executing the command
shown in Figure 11-4.

Chapter 11 ■ Real-Time Communication with SignalR

361

■■ Note  The same MyGet packages can also be restored by using the dotnet restore command. To restore
the MyGet packages, we need to configure the MyGet repository in Nuget.Config. Add Nuget.Config, as
shown in Listing 11-1. This configuration is useful at the time of the build and continuous integration.

Listing 11-1.  Nuget.config configured with ASP.NET Core’s MyGet feed

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <packageSources>
 <clear/>
 �<add key="aspnetcidev" value="https://dotnet.myget.org/F/aspnetcore-dev/api/v3/

index.json"/>
 <add key="api.nuget.org" value="https://api.nuget.org/v3/index.json"/>
 </packageSources>
</configuration>

Now we will configure SignalR and WebSocket at the ASC.Web project. Add the SignalR service to
IServiceCollection in the ConfigureServices method of the Startup class, as shown in Listing 11-2.

Listing 11-2.  Configure SignalR in Startup class

services.AddLocalization(options => options.ResourcesPath = "Resources");

services.AddSignalR(options =>
{
 options.Hubs.EnableDetailedErrors = true;
});

services
 .AddMvc(o => { o.Filters.Add(typeof(CustomExceptionFilter)); })
 �.AddJsonOptions(options => options.SerializerSettings.ContractResolver = new

DefaultContractResolver())
 �.AddViewLocalization(LanguageViewLocationExpanderFormat.Suffix, options => { options.

ResourcesPath = "Resources"; })
 �.AddDataAnnotationsLocalization(options => { options.DataAnnotationLocalizerProvider =

(type, factory) =>

Figure 11-4.  Installing the Microsoft.AspNetCore.WebSockets package to the ASC.Web project from
the MyGet feed

Chapter 11 ■ Real-Time Communication with SignalR

362

 factory.Create(typeof(SharedResources));
 });

We will add SignalR and WebSocket to the HTTP pipeline through the Configure method of the
Startup class, as shown in Listing 11-3.

Listing 11-3.  Configure HTTP pipeline with WebSockets and SignalR

app.UseMvc(routes =>
{
 routes.MapRoute(name: "areaRoute",
 template: "{area:exists}/{controller=Home}/{action=Index}");
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

app.UseWebSockets();
app.UseSignalR();

await storageSeed.Seed(app.ApplicationServices.GetService<UserManager<ApplicationUser>>(),
 app.ApplicationServices.GetService<RoleManager<IdentityRole>>(),
 app.ApplicationServices.GetService<IOptions<ApplicationSettings>>());

Create SignalR Hub to Enable-Two Way Communication
Using JQuery
To create a SingalR hub, we first must focus on creating back-end data models. We create a
ServiceRequestMessage model in the Models folder of the ASC.Models project. This class will be used to
persist all the communication messages to Azure Table storage. The ServiceRequestMessage model is
shown in Listing 11-4. It contains properties that will hold information about the message’s sender, content,
and date.

Listing 11-4.  ServiceRequestMessage entity

using ASC.Models.BaseTypes;
using System;

namespace ASC.Models.Models
{
 public class ServiceRequestMessage : BaseEntity
 {
 public ServiceRequestMessage() { }

 public ServiceRequestMessage(string serviceRequestId)
 {
 this.RowKey = Guid.NewGuid().ToString();
 this.PartitionKey = serviceRequestId;
 }

Chapter 11 ■ Real-Time Communication with SignalR

363

 public string FromDisplayName { get; set; }
 public string FromEmail { get; set; }
 public string Message { get; set; }
 public DateTime? MessageDate { get; set; }
 }
}

■■ Note  We are not going to store to whom the message is sent, because all the messages will be running
in the context of a service request. If a customer sends a message on a service request, it will be pushed to
the administrator and the service engineer handling that service request. Similarly, the messages from the
administrator and service engineer will be broadcasted to customer.

We will create the IServiceRequestMessageOperations interface in the Interfaces folder of the
ASC.Business project to handle all service request message operations related Azure Table storage.
IServiceRequestMessageOperations is shown in Listing 11-5.

Listing 11-5.  IServiceRequestMessageOperations interface

using ASC.Models.Models;
using System;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace ASC.Business.Interfaces
{
 public interface IServiceRequestMessageOperations
 {
 Task CreateServiceRequestMessageAsync(ServiceRequestMessage message);
 Task<List<ServiceRequestMessage>> GetServiceRequestMessageAsync(string
serviceRequestId);
 }
}

Create a class named ServiceRequestMessageOperations in the ASC.Business project. We will
implement IServiceRequestMessageOperations on the ServiceRequestMessageOperations class, as
shown in Listing 11-6.

Listing 11-6.  ServiceRequestMessageOperations class

using ASC.Business.Interfaces;
using ASC.DataAccess.Interfaces;
using ASC.Models.Models;
using System.Threading.Tasks;
using System.Collections.Generic;
using System.Linq;

namespace ASC.Business
{
 public class ServiceRequestMessageOperations : IServiceRequestMessageOperations

Chapter 11 ■ Real-Time Communication with SignalR

364

 {
 private readonly IUnitOfWork _unitOfWork;
 public ServiceRequestMessageOperations(IUnitOfWork unitOfWork)
 {
 _unitOfWork = unitOfWork;
 }

 public async Task CreateServiceRequestMessageAsync(ServiceRequestMessage message)
 {
 using (_unitOfWork)
 {
 await _unitOfWork.Repository<ServiceRequestMessage>().AddAsync(message);
 _unitOfWork.CommitTransaction();
 }
 }

 �public async Task<List<ServiceRequestMessage>> GetServiceRequestMessageAsync(string
serviceRequestId)

 {
 �var serviceRequestMessages = await _unitOfWork.Repository<ServiceRequest

Message>()
 .FindAllByPartitionKeyAsync(serviceRequestId);
 return serviceRequestMessages.ToList();
 }
 }
}

Resolve the dependency of IServiceRequestMessageOperations in the ConfigureServices method of
the Startup class at the ASC.Web project, as shown in Listing 11-7.

Listing 11-7.  Resolve the dependency of IServiceRequestMessageOperations

services.AddScoped<IServiceRequestMessageOperations, ServiceRequestMessageOperations>();

Now we will focus on constructing the view and its associated JQuery code. The real-time
communication will be enabled on the Service Request Details view, and it supports two basic operations:

•	 Providing a chat area where users can have real-time communication

•	 Showing online/offline status of the user

■■ Note  Using SignalR, we can achieve more functionalities and real-time features. In the Automobile Service
Center application, we will limit the scope to support basic features.

As we will be using the Service Request Details view to display real-time communication, we can remove the
Service Notifications menu item from the left navigation pane (Navigation.json):

{

 "DisplayName": "Service Notifications",

 "MaterialIcon": "message",

Chapter 11 ■ Real-Time Communication with SignalR

365

 "Link": "/ServiceRequest/Dashboard/Dashboard",

 "IsNested": false,

 "Sequence": 4,

 "UserRoles": ["User", "Engineer", "Admin"],

 "NestedItems": []

},

To get started, we will first update ServiceRequestController to get
IServiceRequestMessageOperations and IConnectionManager dependencies in the constructor, as shown
in Listing 11-8. IConnectionManager is part of the SignalR API, which is used to manage connections.

Listing 11-8.  Inject dependencies into ServiceRequestController class

private readonly IServiceRequestOperations _serviceRequestOperations;
private readonly IServiceRequestMessageOperations _serviceRequestMessageOperations;
private readonly IConnectionManager _signalRConnectionManager;
private readonly IOptions<ApplicationSettings> _options;
private readonly IMapper _mapper;
private readonly IMasterDataCacheOperations _masterData;
private readonly UserManager<ApplicationUser> _userManager;
private readonly IEmailSender _emailSender;
public ServiceRequestController(IServiceRequestOperations operations,
 IServiceRequestMessageOperations messageOperations,
 IConnectionManager signalRConnectionManager,
 IMapper mapper,
 IMasterDataCacheOperations masterData,
 UserManager<ApplicationUser> userManager,
 IEmailSender emailSender,
 IOptions<ApplicationSettings> options)
{
 _serviceRequestOperations = operations;
 _serviceRequestMessageOperations = messageOperations;
 _signalRConnectionManager = signalRConnectionManager;
 _mapper = mapper;
 _masterData = masterData;
 _userManager = userManager;
 _emailSender = emailSender;
 _options = options;
}

Create an action named ServiceRequestMessages that will retrieve all the messages of that service
request, as shown in Listing 11-9. This action method will be invoked by the Service Request Details view,
using a JQuery Ajax call to display all the messages.

Listing 11-9.  ServiceRequestMessages action

[HttpGet]
public async Task<IActionResult> ServiceRequestMessages(string serviceRequestId)
{

Chapter 11 ■ Real-Time Communication with SignalR

366

 �return Json((await _serviceRequestMessageOperations.GetServiceRequestMessageAsync(servic
eRequestId)).OrderByDescending(p => p.MessageDate));

}

Now we will update ServiceRequestDetails.cshtml to display the messages associated with a service
request. Append the HTML shown in Listing 11-10 to ServiceRequestDetails.cshtml. We hold the current
customer e-mail in the hidden field, which will be used later in JQuery to show different color themes for
messages sent by a customer, administrator, or service engineer. We fix the height of the message div and use
overflow-y to get a scrollbar when more messages are being exchanged. All messages will be displayed in a
list format using standard li HTML tags. When there are no messages, a No Messages text will be displayed
(which is by default hidden in the UI and will be toggled based on the message count).

To post a message, we have a simple HTML input text tag. When the user enters a message and presses
Enter on the keyboard, the message (using the JQuery Keypress event) will be transmitted to other users.

Listing 11-10.  Service Request messages HTML code

@* Messages Section *@
<input type="hidden" id="hdnCustomerEmail" value="@Model.ServiceRequest.PartitionKey" />
<div class="row">
 <div class="col s6">
 <ul class="collection with-header">
 <li class="collection-header"><h5>Service Request Messages</h5>
 <li class="collection-item height-300px overflow-y messages">
 <ul id="messagesList">
 �<div class="card-panel teal lighten-2 white-text noMessages hide">No

Messages.</div>

 <div class="input-field col s12">
 <input type="text" id="txtMessage" />
 <label for="txtMessage">Type message here and press enter.</label>
 </div>
 </div>
</div>

■■ Note  The following styles should be added to Style.css and are used in the service request messages
section.

.padding-10px{

 padding: 10px;

}

.font-size-12px{

 font-size : 12px;

}

.padding-top-10px{

 padding-top: 10px !important;

}

Chapter 11 ■ Real-Time Communication with SignalR

367

.padding-left-50px{

 padding-left: 50px;

}

To get the SignalR functionality on the client side, we need to refer to jquery.signalr-2.2.0.min.
js and /signalr/hubs (which is an autogenerated SignalR script). We will refer to the scripts in
_SecureLayout.cshtml, as shown in Listing 11-11. We have to start the SignalR connection by using the
$.connection.hub.start() method.

Listing 11-11.  SignalR JQuery library reference

@section Scripts{
@RenderSection("Scripts", required: false)
<script src="http://ajax.aspnetcdn.com/ajax/signalr/jquery.signalr-2.2.0.min.js"></script>
<script src="/signalr/hubs"></script>
 <script type="text/javascript">
 $(function () {
 $('#ancrLogout').click(function () {
 $('#logout_form').submit();
 });

 $('#ancrResetPassword').click(function () {
 $('#resetPassword_form').submit();
 });

 @* Start the client side HUB *@
 $.connection.hub.start();
 });
 </script>
}

Now update ServiceRequestDetails.cshtml with the JQuery code shown in Listing 11-12. This code is
required to broadcast and display messages.

Here, we make an Ajax call to the ServiceRequestMessages action, which will pass all the messages in
the system for that particular service request till date. The message’s response is processed on the client side
and displayed in the list by using the displayMessage function. The displayMessage function will construct
dynamic HTML based on the user who sent the message (a different style is applied for the customer and
service engineer/Admin) and appends to the messsageList unordered list.

If there no messages are available, a No Messages text will be displayed by removing the hide CSS class
of noMessages div.

The client-side JQuery SignalR hub proxy can be retrieved from $.connection.serviceMessagesHub,
and then we will associate the addMessage function that will be invoked when a new message is broadcasted
from server to this client. The addMessage function will check whether the PartitionKey that is returned in
the message is equal to the service request’s RowKey. If it matches, then only the message will be displayed;
otherwise, the message is ignored. A common function, scrollToLatestMessages, is used to set the focus to
the latest message on the client side. This function is called whenever a new message is added and also on
the page load, when we load all the previous messages.

Chapter 11 ■ Real-Time Communication with SignalR

368

Listing 11-12.  JQuery code to handle service request messages

@section Scripts{
 <script>
 $(document).ready(function () {
 // Initialize DataTable to show list of Service Requests
 var table = $('.tblServiceRequests').DataTable({
 'pageLength': 3,
 // Number of records to be displayed per page
 'lengthMenu': [[3, 5, 10, -1], [3, 5, 10, 'All']],
 // Remove default Sorting
 'sorting': [],
 �'columns': [{ "visible": false }, { "visible": false }, null, { "width":

"20%" }, null, null, null, { "visible": false }]
 });

 // Set Styles for DataTable and Number of Records to be displayed in drop-down
 $('.tblServiceRequests').css("width", "100%");
 $('select[name$="ServiceRequests_length"]').material_select();

 // Initialize DatePicker
 $('.datepicker').pickadate({
 selectMonths: true,
 selectYears: 15
 });

 // initialize Material Select
 $('select').material_select();
 �$("select[required]").css({ display: "block", position: 'absolute', visibility:

'hidden' })

 @* Need to pass Verification Token to get Request Validated for Forgery *@
 �var token = $('input[type=hidden][name=__RequestVerificationToken]', document).

val();
 $.ajaxSetup({
 // Disable caching of AJAX responses
 cache: false,
 �headers: { 'RequestVerificationToken': token, 'ServiceRequestId':

$('#ServiceRequest_RowKey').val() }
 });

 @* Get all previous messages for the service request *@
 �$.get('/ServiceRequests/ServiceRequest/ServiceRequestMessages?serviceRequestId='

+ $('#ServiceRequest_RowKey').val(),
 function (data, status) {
 addMessagesToList(data);
 });

 @* Function to scroll the messages panel to latest message *@
 function scrollToLatestMessages() {
 $('.messages').animate({ scrollTop: 10000 }, 'normal');
 };

Chapter 11 ■ Real-Time Communication with SignalR

369

 @* Function which is used to list of messages to UI *@
 function addMessagesToList(messages) {
 if (messages.length === 0) {
 $('.noMessages').removeClass('hide');
 }

 $.each(messages, function (index) {
 var message = messages[index];
 displayMessage(message);
 });

 scrollToLatestMessages();
 };

 @* Function which is invoked by SignalR Hub when a new message is broadcasted *@
 function addMessage(message) {
 if (message.PartitionKey !== $('#ServiceRequest_RowKey').val()) {
 return;
 }

 if (message !== null) {
 $('.noMessages').addClass('hide');
 }
 displayMessage(message);
 scrollToLatestMessages();
 };

 @* Function used to display message on UI *@
 function displayMessage(message) {
 �var isCustomer = $("#hdnCustomerEmail").val() === message.FromEmail ? 'blue

lighten-1' : 'teal lighten- 2';

 $('#messagesList').append(
 '<li class="card-panel ' + isCustomer + ' white-text padding-10px">' +
 '<div class="col s12 padding-0px">' +
 �'<div class="col s8 padding-0px">' + message.FromDisplayName + '</

b></div>' +
 �'<div class="col s4 padding-0px font-size-12px right-align">' + (new

Date(message.MessageDate)).toLocaleString() + '</div>' +
 '</div>
' + message.Message + ''
);
 };

 @* Get the proxy of SignalR Hub and associate client side function. *@
 $.connection.serviceMessagesHub.client.publishMessage = addMessage;

 @* Function used to post message to server on keypress *@
 $('#txtMessage').keypress(function (e) {
 var key = e.which;
 if (key == 13) {
 var message = new Object();

Chapter 11 ■ Real-Time Communication with SignalR

370

 message.Message = $('#txtMessage').val();
 message.PartitionKey = $('#ServiceRequest_RowKey').val();

 $.post('/ServiceRequests/ServiceRequest/CreateServiceRequestMessage',
 { message: message },
 function (data, status, xhr) {
 if (data) {
 $('.noMessages').addClass('hide');
 $('#txtMessage').val('');
 }
 });
 scrollToLatestMessages();
 }
 });
 });
 </script>
}

Now we need to create a server-side SignalR hub that is used to broadcast messages to different
connected clients. Create a folder named ServiceHub in the ASC.Web project and create a class named
ServiceMessagesHub inside the ServiceHub folder, as shown in Listing 11-13. ServiceMessagesHub is
derived from the SignalR Hub class in which we can create any number of methods that can be accessed
from the client side to send information.

Listing 11-13.  ServiceMessagesHub class

using Microsoft.AspNetCore.SignalR;

namespace ASC.Web.ServiceHub
{
 public class ServiceMessagesHub : Hub
 {
 }
}

We need to finally create an HTTP POST action named CreateServiceRequestMessage that will be
invoked from the client side whenever a user creates a new message. CreateServiceRequestMessage
validates the message, retrieves the Service Request Details, and associates the message with the service
request by populating the details of the user who created the message and message date. Then the
message is saved to Azure Table storage by using the CreateServiceRequestMessageAsync method of the
IServiceRequestMessageOperations contract.

Finally, the message is broadcasted to clients by getting a hub context of type ServiceMessagesHub and
calling the associated publishMessage method (which is associated with the addMessage function on the
client-side JQuery). SignalR can push a message to all clients that are connected to the hub, but the messages
on a particular service request should be sent only in the context of a service request, so we filter the client
by specifying customer, service engineer, and admin names as users. Once the message is broadcasted, the
action method returns a true value to the client.

Chapter 11 ■ Real-Time Communication with SignalR

371

Listing 11-14.  CreateServiceRequestMessage action

[HttpPost]
public async Task<IActionResult> CreateServiceRequestMessage(ServiceRequestMessage message)
{
 �// Message and Service Request Id (Service request Id is the partition key for a

message)
 �if (string.IsNullOrWhiteSpace(message.Message) || string.IsNullOrWhiteSpace(message.

PartitionKey))
 return Json(false);

 // Get Service Request details
 �var serviceRequesrDetails = await _serviceRequestOperations.GetServiceRequestByRowKey

(message.PartitionKey);

 // Populate message details
 message.FromEmail = HttpContext.User.GetCurrentUserDetails().Email;
 message.FromDisplayName = HttpContext.User.GetCurrentUserDetails().Name;
 message.MessageDate = DateTime.UtcNow;
 message.RowKey = Guid.NewGuid().ToString();

 // Get Customer and Service Engineer names
 �var customerName = (await _userManager.FindByEmailAsync(serviceRequesrDetails.

PartitionKey)).UserName;
 var serviceEngineerName = string.Empty;
 if (!string.IsNullOrWhiteSpace(serviceRequesrDetails.ServiceEngineer))
 {
 �serviceEngineerName = (await _userManager.FindByEmailAsync(serviceRequesrDetails.

ServiceEngineer)).UserName;
 }
 �var adminName = (await _userManager.FindByEmailAsync(_options.Value.AdminEmail)).

UserName;

 // Save the message to Azure Storage
 await _serviceRequestMessageOperations.CreateServiceRequestMessageAsync(message);

 var users = new List<string> { customerName, adminName };
 if (!string.IsNullOrWhiteSpace(serviceEngineerName))
 {
 users.Add(serviceEngineerName);
 }
 // Broadcast the message to all clients asscoaited with Service Request
 _signalRConnectionManager.GetHubContext<ServiceMessagesHub>()
 .Clients
 .Users(users)
 .publishMessage(message);
 // Return true
 return Json(true);
}

Run the application. Open three browsers and log in as admin, customer, and service engineer in each
browser. Navigate to a particular Service Request Details screen. On the details screen, for all users, we
should see a messages panel with no messages, as shown in Figure 11-5.

Chapter 11 ■ Real-Time Communication with SignalR

372

Now the customer can type in a message to the service engineer, as shown in Figure 11-6, and press
Enter on the keyboard.

Figure 11-5.  No Messages text in the Service Request Messages section

Figure 11-6.  Customer typing a message to a service engineer

Chapter 11 ■ Real-Time Communication with SignalR

373

The message will be posted to the service engineer who is associated with the service request, as shown
in Figure 11-7. At the same time, the message will be posted to the administrator as well for his reference.
After a successful message, the customer’s messages panel will be refreshed with the latest message.

Figure 11-7.  Customer posted message

Now the service engineer or administrator can post their messages, and those messages will be posted
to the customer. At the same time, the service engineer and admin messages panel will be refreshed with the
latest messages, as shown in Figures 11-8 and 11-9.

Chapter 11 ■ Real-Time Communication with SignalR

374

The overall screen will look like in Figure 11-10.

Figure 11-8.  Service engineer communicating with the customer

Figure 11-9.  Admin sent message to customer

Chapter 11 ■ Real-Time Communication with SignalR

375
Figure 11-10.  Service Request Details view with messages section

Chapter 11 ■ Real-Time Communication with SignalR

376

Enable User Online/Offline Notifications Using SignalR
In this section, we will work on showing the online/offline status of Admin, Service Engineer, and Customer
on a given Service Request Details page. There are many ways to push online/offline notifications to various
SignalR clients; for example, sending a notification to all clients who are connected to a hub, creating a
persistent connection, and broadcasting the message to all clients. For the Automobile Service Center
application, we will use the following approach.

Whenever a user navigates to the Service Request Details view, we will capture user details by using
SignalR Hub’s OnConnected event and store the details of the user (can be admin, service engineer, or
customer) who came online to Azure Table storage. Finally, we will send the push notification, which
consists of the status of each user who is associated with the service request, to other users (admin, service
engineer, and customer). On receiving the notification, the client-side JQuery will flip the status of the
respective user to online/offline based on the notification data.

To notify the user of offline status, we will handle SignalR Hub’s OnDisconnected event, in which we will
mark the corresponding OnlineUser entity’s IsDeleted flag to true and send the push notification to the
remaining users who are associated with the service request.

■■ Note  The online/offline status notifications can be made more exhaustive to cover each and every screen
of the Automobile Service Center application. This book limits the scope to show the online/offline status only
when a user navigates to a Service Request Details view and to send push notifications to all other users who
are associated with that particular service request.

Create the OnlineUser entity in the Models folder of ASC.Models project, as shown in Listing 11-15. It
is used to persist the user who came online to Azure Table storage. This entity consists only of the name of
the user who visited a Service Request Details screen, and it is mapped to the PartitionKey of the entity.
RowKey is assigned with an autogenerated GUID value.

Listing 11-15.  OnlineUser entity

using ASC.Models.BaseTypes;
using System;

namespace ASC.Models.Models
{
 public class OnlineUser : BaseEntity
 {
 public OnlineUser() { }
 public OnlineUser(string name)
 {
 this.RowKey = Guid.NewGuid().ToString();
 this.PartitionKey = name;
 }
 }
}

To perform Azure storage operations for the OnlineUser entity, create an interface named
IOnlineUsersOperations in the Interfaces folder of the ASC.Business project, as shown in Listing 11-16.
This interface contains basic methods to create, delete, and get an online user based on the name.

Chapter 11 ■ Real-Time Communication with SignalR

377

Listing 11-16.  IOnlineUsersOperations interface

using System.Threading.Tasks;

namespace ASC.Business.Interfaces
{
 public interface IOnlineUsersOperations
 {
 Task CreateOnlineUserAsync(string name);
 Task DeleteOnlineUserAsync(string name);
 Task<bool> GetOnlineUserAsync(string name);
 }
}

Create a class named OnlineUsersOperations in the ASC.Business project and implement
IOnlineUsersOperations, as shown in Listing 11-17. The CreateOnlineUserAsync method will create
the user with the IsDeleted flag set to false in Azure Storage. If there is an existing user, it will flip the
IsDeleted flag to false. The DeleteOnlineUserAsync method will soft-delete the OnlineUser entity by
setting the IsDeleted flag to true. The GetOnlineUserEntity will return true if the user exists in Azure
Table storage and the status of the IsDeleted flag is false; otherwise, it will return false.

Listing 11-17.  OnlineUsersOperations class

using ASC.Business.Interfaces;
using ASC.DataAccess.Interfaces;
using ASC.Models.Models;
using System.Linq;
using System.Threading.Tasks;

namespace ASC.Business
{
 public class OnlineUsersOperations : IOnlineUsersOperations
 {
 private readonly IUnitOfWork _unitOfWork;
 public OnlineUsersOperations(IUnitOfWork unitOfWork)
 {
 _unitOfWork = unitOfWork;
 }

 public async Task CreateOnlineUserAsync(string name)
 {
 using (_unitOfWork)
 {
 �var user = await _unitOfWork.Repository<OnlineUser>().FindAllByPartitionKey

Async(name);
 if (user.Any())
 {
 var updateUser = user.FirstOrDefault();
 updateUser.IsDeleted = false;
 await _unitOfWork.Repository<OnlineUser>().UpdateAsync(updateUser);
 }
 else

Chapter 11 ■ Real-Time Communication with SignalR

378

 {
 �await _unitOfWork.Repository<OnlineUser>().AddAsync(new OnlineUser(name)

{ IsDeleted = false });
 }
 _unitOfWork.CommitTransaction();
 }
 }

 public async Task DeleteOnlineUserAsync(string name)
 {
 using (_unitOfWork)
 {
 �var user = await _unitOfWork.Repository<OnlineUser>().FindAllByPartitionKey

Async(name);
 if (user.Any())
 {
 �await _unitOfWork.Repository<OnlineUser>().DeleteAsync(user.ToList().

FirstOrDefault());
 }
 _unitOfWork.CommitTransaction();
 }
 }

 public async Task<bool> GetOnlineUserAsync(string name)
 {
 �var user = await _unitOfWork.Repository<OnlineUser>().FindAllByPartitionKeyAsy

nc(name);
 return user.Any() && user.FirstOrDefault().IsDeleted != true;
 }
 }
}

■■ Note  We store the user status in Azure Table storage to support the online/offline status push notifications
in a multiserver environment.

Having users connect from multiple browser tabs in the same browser window is beyond the scope of this book.

Resolve the dependency of IOnlineUsersOperations in the ConfigureServices method of the Startup
class at the ASC.Web project, as shown in Listing 11-18.

Listing 11-18.  Resolve the dependency of IOnlineUsersOperations

services.AddScoped<IOnlineUsersOperations, OnlineUsersOperations>();

Now we will update ServiceMessagesHub to handle connected and disconnected events, as shown
in Listing 11-20. ServiceMessagesHub will get all the dependencies from its constructor through ASP.NET
Core’s dependency system. The constructor also fetches ServiceRequestId from the HTTP request headers.

Chapter 11 ■ Real-Time Communication with SignalR

379

■■ Note  For a demonstration of how to pass service-related information in each and every request, I included
ServiceRequestId as one of the headers in the HTTP request. On the Service Request Details screen, we
included this header as part of the Ajax setup, as shown in Listing 11-19. This ensures that on every Ajax call
to the server, ServiceRequestId will be passed, and we can retrieve this information from the server by using
HttpContext.Request.Headers["ServiceRequestId"].

Listing 11-19.  Passing ServiceRequestId in HTTP header

@* Need to pass Verification Token to get Request Validated for Forgery *@
 �var token = $('input[type=hidden][name=__RequestVerificationToken]', document).

val();
 $.ajaxSetup({
 // Disable caching of AJAX responses
 cache: false,
 �headers: { 'RequestVerificationToken': token, 'ServiceRequestId':

$('#ServiceRequest_RowKey').val() }
 });

ServiceMessagesHub will have OnConnected and OnDisconnected events that will create and delete
the user from Azure Table storage and call the UpdateServiceRequestClients method, which will send
notifications to all users who are associated with the service request. UpdateServiceRequestClients will
check the details of the customer, service engineer, and admin who are associated with the service request
and check their status in the OnlineUser Azure table. Based on the status, it will send the notifications to
connected users by invoking the client-side JQuery’s online method (we will see this method in the later part
of the section). The data in the push notification will hold the separate Boolean flags isAd, isSe, and isCu,
respectively, for admin, service engineer, and customer, which will reflect the current status of the user.

Listing 11-20.  Updated ServiceMessagesHub class with OnConnected and OnDisconnected events

using ASC.Business.Interfaces;
using ASC.Utilities;
using ASC.Web.Configuration;
using ASC.Web.Models;
using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.SignalR;
using Microsoft.AspNetCore.SignalR.Infrastructure;
using Microsoft.Extensions.Options;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace ASC.Web.ServiceHub
{
 public class ServiceMessagesHub : Hub
 {
 private readonly IConnectionManager _signalRConnectionManager;
 private readonly IHttpContextAccessor _userHttpContext;
 private readonly IServiceRequestOperations _serviceRequestOperations;

Chapter 11 ■ Real-Time Communication with SignalR

380

 private readonly UserManager<ApplicationUser> _userManager;
 private readonly IOnlineUsersOperations _onlineUserOperations;
 private readonly IOptions<ApplicationSettings> _options;
 private readonly string _serviceRequestId;
 public ServiceMessagesHub(IConnectionManager signalRConnectionManager,
 IHttpContextAccessor userHttpContext,
 IServiceRequestOperations serviceRequestOperations,
 UserManager<ApplicationUser> userManager,
 IOnlineUsersOperations onlineUserOperations,
 IOptions<ApplicationSettings> options)
 {
 _signalRConnectionManager = signalRConnectionManager;
 _userHttpContext = userHttpContext;
 _serviceRequestOperations = serviceRequestOperations;
 _userManager = userManager;
 _onlineUserOperations = onlineUserOperations;
 _options = options;

 �_serviceRequestId = _userHttpContext.HttpContext.Request.
Headers["ServiceRequestId"];

 }

 public override async Task OnConnected()
 {
 if (!string.IsNullOrWhiteSpace(_serviceRequestId))
 {
 �await _onlineUserOperations.CreateOnlineUserAsync(_userHttpContext.

HttpContext.User.GetCurrentUserDetails().Email);
 await UpdateServiceRequestClients();
 }
 await base.OnConnected();
 }

 public override async Task OnDisconnected(bool stopCalled)
 {
 if (!string.IsNullOrWhiteSpace(_serviceRequestId))
 {
 �await _onlineUserOperations.DeleteOnlineUserAsync(_userHttpContext.

HttpContext.User.GetCurrentUserDetails().Email);
 await UpdateServiceRequestClients();
 }
 await base.OnDisconnected(stopCalled);
 }

 private async Task UpdateServiceRequestClients()
 {
 // Get Hub Context
 var hubContext = _signalRConnectionManager.GetHubContext<ServiceMessagesHub>();

 // Get Service Request Details

Chapter 11 ■ Real-Time Communication with SignalR

381

 �var serviceRequest = await _serviceRequestOperations.GetServiceRequestByRowKey(_
serviceRequestId);

 // Get Customer and Service Engineer names
 �var customerName = (await _userManager.FindByEmailAsync(serviceRequest.

PartitionKey)).UserName;
 var serviceEngineerName = string.Empty;
 if (!string.IsNullOrWhiteSpace(serviceRequest.ServiceEngineer))
 {
 �serviceEngineerName = (await _userManager.FindByEmailAsync(serviceRequest.

ServiceEngineer)).UserName;
 }
 �var adminName = (await _userManager.FindByEmailAsync(_options.Value.

AdminEmail)).UserName;

 // check Admin, Service Engineer and customer are connected.
 �var isAdminOnline = await _onlineUserOperations.GetOnlineUserAsync(_options.

Value.AdminEmail);
 var isServiceEngineerOnline = false;
 if (!string.IsNullOrWhiteSpace(serviceRequest.ServiceEngineer))
 {
 �isServiceEngineerOnline = await _onlineUserOperations.GetOnlineUserAsync(ser

viceRequest.ServiceEngineer);
 }
 �var isCustomerOnline = await _onlineUserOperations.GetOnlineUserAsync(serviceReq

uest.PartitionKey);

 List<string> users = new List<string>();
 if (isAdminOnline) users.Add(adminName);
 if (!string.IsNullOrWhiteSpace(serviceEngineerName))
 {
 if (isServiceEngineerOnline) users.Add(serviceEngineerName);
 }
 if (isCustomerOnline) users.Add(customerName);

 // Send notifications
 hubContext
 .Clients
 .Users(users)
 .online(new
 {
 isAd = isAdminOnline,
 isSe = isServiceEngineerOnline,
 isCu = isCustomerOnline
 });
 }
 }
}

Update the ServiceRequestDetails.cshtml with the messages section, as shown in Listing 11-21.
We have added extra div tags that are decorated with Materialize CSS chips, which are used to display
the online/offline status of the customer, administrator, and service engineer. The image tags inside each

Chapter 11 ■ Real-Time Communication with SignalR

382

individual div are initiated with a red dot, indicating that by default all are offline. Based on the data received
from SignalR’s push notification, we will toggle the red dot with a green dot. A custom data-id attribute is
used for image tags, through which we can identify which image tag corresponds to which user.

■■ Note  Add the images of the green dot and red dot to the images folder of the wwwroot folder in the ASC.
Web project. These images are used to display the status of online/offline.

Listing 11-21.  User online/offline status HTML code

@* Messages Section *@
<input type="hidden" id="hdnCustomerEmail" value="@Model.ServiceRequest.PartitionKey" />
<div class="row">
 <div class="col s8">
 <ul class="collection with-header">
 <li class="row collection-header">
 <div class="col s6"><h5>Service Request Messages</h5></div>
 <div class="col s6 padding-top-10px right">
 <div class="col chip right">
 User

 </div>
 <div class="col chip right">
 Admin

 </div>
 <div class="col chip right">
 Engineer

 </div>
 </div>

 <li class="collection-item height-300px overflow-y messages">
 <ul id="messagesList">
 �<div class="card-panel teal lighten-2 white-text noMessages hide">No

Messages.</div>

 <div class="input-field col s12">
 <input type="text" id="txtMessage" />
 <label for="txtMessage">Type message here and press enter.</label>
 </div>
 </div>
</div>

Chapter 11 ■ Real-Time Communication with SignalR

383

Finally, the JQuery code in ServiceRequestDetails.cshtml should be updated as shown in
Listing 11-22. First the SignalR Hub’s online method is mapped to the updateUserStatus function in JQuery.
In the updateUserStatus method, we will simply get the image tags for corresponding individuals and
toggle the src attribute based on the SignalR notification data.

Listing 11-22.  JQuery code to toggle user online/offline status

$.connection.serviceMessagesHub.client.online = updateUserStatus;

@* Function which will toggle the status of online/offline of users. *@
function updateUserStatus(data) {
 $('div.chip img[data-id="isAd"]').attr('src', data.isAd ?
 '/images/green_dot.png' : '/images/red_dot.png');

 $('div.chip img[data-id="isCu"]').attr('src', data.isCu ?
 '/images/green_dot.png' : '/images/red_dot.png');

 $('div.chip img[data-id="isSe"]').attr('src', data.isSe ?
 '/images/green_dot.png' : '/images/red_dot.png');
}

@* Unload function to make sure the user is marked as offline. *@
$(window).unload(function () {
 $.get('/ServiceRequests/ServiceRequest/MarkOfflineUser',
 function (data, status) {
 });
});

■■ Note  Sometimes in this SignalR implementation (especially on the initial load of the service request
screen), the disconnected event doesn’t get called immediately when a user navigates away from the page or
closes the browser. To provide a concrete solution, I handled the window’s unload JQuery event to make an Ajax
call to the MarkOfflineUser action of the Service Request controller, which typically runs the same code as the
OnDisconnected event.

The MarkOfflineUser action of the ServiceRequest controller is shown in Listing 11-23. The code in
the MarkOfflineUser action is similar to SignalR Hub’s OnDisconnected event, where we check the Azure
online storage for the service request associated with the user’s status and then send a push notification with
data containing the status of the users associated with that service request to online users.

Listing 11-23.  MarkOfflineUser action

[HttpGet]
public async Task<IActionResult> MarkOfflineUser()
{
 // Delete the current logged-in user from OnlineUsers entity
 �await _onlineUsersOperations.DeleteOnlineUserAsync(HttpContext.User.GetCurrentUser

Details().Email);

Chapter 11 ■ Real-Time Communication with SignalR

384

 string serviceRequestId = HttpContext.Request.Headers["ServiceRequestId"];
 // Get Service Request Details
 �var serviceRequest = await _serviceRequestOperations.GetServiceRequestByRowKey(serviceR

equestId);

 // Get Customer and Service Engineer names
 �var customerName = (await _userManager.FindByEmailAsync(serviceRequest.PartitionKey)).

UserName;
 var serviceEngineerName = string.Empty;
 if (!string.IsNullOrWhiteSpace(serviceRequest.ServiceEngineer))
 {
 �serviceEngineerName = (await _userManager.FindByEmailAsync(serviceRequest.

ServiceEngineer)).UserName;
 }
 �var adminName = (await _userManager.FindByEmailAsync(_options.Value.AdminEmail)).

UserName;

 // check Admin, Service Engineer, and customer are connected.
 �var isAdminOnline = await _onlineUsersOperations.GetOnlineUserAsync(_options.Value.

AdminEmail);
 var isServiceEngineerOnline = false;
 if (!string.IsNullOrWhiteSpace(serviceRequest.ServiceEngineer))
 {
 �isServiceEngineerOnline = await _onlineUsersOperations.GetOnlineUserAsync(serviceReq

uest.ServiceEngineer);
 }
 �var isCustomerOnline = await _onlineUsersOperations.GetOnlineUserAsync(serviceRequest.

PartitionKey);

 List<string> users = new List<string>();
 if (isAdminOnline) users.Add(adminName);
 if (!string.IsNullOrWhiteSpace(serviceEngineerName))
 {
 if (isServiceEngineerOnline) users.Add(serviceEngineerName);
 }
 if (isCustomerOnline) users.Add(customerName);

 // Send notifications_signalRConnectionManager.GetHubContext<ServiceMessagesHub>()
 .Clients
 .Users(users)
 .online(new
 {
 isAd = isAdminOnline,
 isSe = isServiceEngineerOnline,
 isCu = isCustomerOnline
 });

 return Json(true);
}

Chapter 11 ■ Real-Time Communication with SignalR

385

Run the application and log in as Customer. Navigate to a specific Service Request Details screen. You
should see a green dot indicating online status for the user, as shown in Figure 11-11.

Figure 11-11.  Customer online status

Now log in as Admin and Service Engineer in different browsers. You should see the online status for all
users, as shown in Figure 11-12.

Chapter 11 ■ Real-Time Communication with SignalR

386

Similarly, if any user navigates away to a different view from the Service Request Details view, then that
user’s online status is flipped to offline for this Service Request Details view.

Providing Service Updates via Text and Web Notifications
This section shows how to send SMS and web notifications to customers to keep them informed about the
progress of their service requests. The built-in configurable HTTP pipeline and dependency injection system
of ASP.NET Core provides an easy way to configure and send notifications. ASP.NET Core by default has no
support to send SMS messages, but by using third-party communication provider Twilio, we can use SMS
notifications with much less effort.

■■ Note  Twilio is a cloud-based communications company that allows software developers to make
and receive phone calls and send and receive text messages by using its web service APIs. Twilio offers a
pay-as-you-go pricing model, which makes it easy to get the required services at the right time. Twilio also
offers volume pricing for high-volume requirements.

Send SMS Notifications to Customers by Using Twilio API
To achieve SMS notifications, we need to capture the user’s phone number. We will use the Profile view,
which we already created, to capture the phone number. Update the Profile view model as shown in
Listing 11-24.

Figure 11-12.  Status of Admin, Service Engineer, and Customer when they are online

Chapter 11 ■ Real-Time Communication with SignalR

387

Listing 11-24.  Phone property in ProfileViewModel

public class ProfileViewModel
{
 [Required]
 [Display(Name = "Username")]
 public string Username { get; set; }

 [Required]
 [Display(Name = "Mobile")]
 public string Phone { get; set; }

 public bool IsEditSuccess { get; set; }
}

Now update the GET and POST actions of Profile in AccountController under the Accounts area, as
shown in Listing 11-25. We included phone information to be sent to the screen in a GET action call, and
update the same in a POST action call.

Listing 11-25.  Updated profile actions

[HttpGet]
public async Task<IActionResult> Profile()
{
 �var user = await _userManager.FindByEmailAsync(HttpContext.User.GetCurrentUserDetails().

Email);
 �return View(new ProfileViewModel { Username = user.UserName, Phone = user.PhoneNumber,

IsEditSuccess = false });
}

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Profile(ProfileViewModel profile)
{
 �var user = await _userManager.FindByEmailAsync(HttpContext.User.GetCurrentUserDetails().

Email);
 user.UserName = profile.Username;
 user.PhoneNumber = profile.Phone;
 var result = await _userManager.UpdateAsync(user);
 await _signInManager.SignOutAsync();
 await _signInManager.SignInAsync(user, false);

 profile.IsEditSuccess = result.Succeeded;
 AddErrors(result);

 if(ModelState.ErrorCount > 0)
 {
 return View(profile);
 }

 return RedirectToAction("Profile");
}

Chapter 11 ■ Real-Time Communication with SignalR

388

Finally, update Profile.cshtml to capture the phone number, as shown in Listing 11-26.

Listing 11-26.  Updated profile view

@* Details Section *@
<div class="row z-depth-3">
 <div class="col s12 padding-0px">
 <div class="section white-text padding-left-10px blue-grey lighten-1">
 <h5>Profile</h5>
 </div>
 <div class="divider"></div>
 �<form asp-controller="Account" asp-action="Profile" method="post" class="col s12"

id="fromUser">
 <div class="input-field col s4">
 <input asp-for="Username" class="validate" />
 <label asp-for="Username"></label>
 </div>
 <div class="input-field col s4">
 <input asp-for="Phone" class="validate" />
 <label asp-for="Phone"></label>
 </div>
 <div class="input-field col s4 right-align">
 �<button class="btn waves-effect waves-light btnSubmit" type="submit"

name="action">
 Save
 <i class="material-icons right">send</i>
 </button>
 �<button class="btn waves-effect waves-light reset red lighten-1"

type="button" name="action">
 Reset
 </button>
 </div>
 <div class="row col s12 right-align" asp-validation-summary="All"></div>
 </form>
 </div>
 <div class="row"></div>
</div>

Run the application and log in as a Customer. Navigate to the Profile view. You should see a phone field,
as shown in Figure 11-13. Enter a phone number and click Save. The updated details should persist in the
ASCAspNetUsers Azure table.

Figure 11-13.  Capturing the user’s phone number

Chapter 11 ■ Real-Time Communication with SignalR

389

Now we will create an account at Twilio. Go to Twilio.com and click Sign Up. Then fill in the details and
click Submit, as shown in Figure 11-14.

Figure 11-14.  Signing up at Twilio

We have to verify the account by providing a valid phone number, as shown in Figures 11-15 and 11-16.

Chapter 11 ■ Real-Time Communication with SignalR

390

Figure 11-15.  Providing a phone number for the Twilio account

Figure 11-16.  Verifying the Twilio account by entering the verification code

Upon successful verification, we should find the account details on the dashboard, as shown in
Figure 11-17.

Chapter 11 ■ Real-Time Communication with SignalR

391

■■ Note  For security reasons, I have masked the secured information from the screenshot.

Navigate to www.twilio.com/console/phone-numbers/incoming to create a Twilio account and
associate it with a phone number, as shown in Figure 11-18.

Figure 11-17.  Account details on the Twilio dashboard

Figure 11-18.  Twilio Phone Numbers dashboard

https://www.twilio.com/console/phone-numbers/incoming

Chapter 11 ■ Real-Time Communication with SignalR

392

Click the Get Started button to access the screen in Figure 11-19.

Figure 11-19.  Getting started with Twilio phone numbers

Figure 11-20.  The assigned Twilio phone number

Click the Get Your First Twilio Phone Number option, which will create a Twilio phone number, as
shown in Figure 11-20.

Click the Choose This Number option, and a confirmation dialog box will appear, as shown in
Figure 11-21.

Chapter 11 ■ Real-Time Communication with SignalR

393

Now store the Account SID, auth token, and phone number in the appsettings.json file, as shown in
Listing 11-27.

Listing 11-27.  Twilio configuration in appsettings.json file

"AppSettings": {
 "ApplicationTitle": "Automobile Service Center Application",
 "AdminEmail": "asc.superuser@gmail.com",
 "AdminName": "Admin",
 "AdminPassword": "P@ssw0rd",
 "EngineerEmail": "asc.superengineer@gmail.com",
 "EngineerName": "Engineer",
 "EngineerPassword": "P@ssw0rd",
 "Roles": "Admin,User,Engineer",
 "SMTPServer": "smtp.gmail.com",
 "SMTPPort": "587",
 "SMTPAccount": "autoservicenternew@gmail.com",
 "SMTPPassword": "P@ssw0rd!@#",
 "TwilioAccountSID": "XXXXXXXXXXXXXXXXXXXXXXXXX",
 "TwilioAuthToken": "e3XXXXXXXXXXXXXXXXXXXXXXXXX",
 "TwilioPhoneNumber": "+12108019873"
 },

■■ Note  I have masked the secured information from the code to protect the integrity of the book. In reality, it
should have actual values.

Modify the ApplicationSettings class to have Twilio properties from appsettings.json, as shown in
Listing 11-28.

Listing 11-28.  Updated ApplicationSettings class with Twilio configuration properties

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

Figure 11-21.  Twilio phone number confirmation

Chapter 11 ■ Real-Time Communication with SignalR

394

namespace ASC.Web.Configuration
{
 public class ApplicationSettings
 {
 public string ApplicationTitle { get; set; }
 public string AdminEmail { get; set; }
 public string AdminName { get; set; }
 public string AdminPassword { get; set; }
 public string EngineerEmail { get; set; }
 public string EngineerName { get; set; }
 public string EngineerPassword { get; set; }
 public string Roles { get; set; }

 public string SMTPServer { get; set; }
 public int SMTPPort { get; set; }
 public string SMTPAccount { get; set; }
 public string SMTPPassword { get; set; }

 public string TwilioAccountSID { get; set; }
 public string TwilioAuthToken { get; set; }
 public string TwilioPhoneNumber { get; set; }
 }
}

As the next step, install the Twilio NuGet package on the ASC.Web project, as shown in Figure 11-22.

Figure 11-22.  Installing Twilio NuGet package to the ASC.Web project

Now update the AuthMessageSender class in the Service folder of the ASC.Web project to include
the SendSmsAsync method, as shown in Listing 11-29. SendSmsAsync will accept two parameters: the
number to which the SMS message needs to be sent, and the message itself. Then the method will create a
TwilioClient and call its Init method with the configuration values of AccountSID and AuthToken from
the appsettings.json file. Finally, it will call Twilio’s MessageResource.CreateAsync method to send the
message. From phone number is passed to the CreateAsync method from the configuration value.

Listing 11-29.  SendSmsAsync method

using ASC.Web.Configuration;
using MailKit.Net.Smtp;
using Microsoft.Extensions.Options;
using MimeKit;
using System.Threading.Tasks;
using Twilio;

Chapter 11 ■ Real-Time Communication with SignalR

395

using Twilio.Rest.Api.V2010.Account;
using Twilio.Types;

namespace ASC.Web.Services
{
 public class AuthMessageSender : IEmailSender, ISmsSender
 {
 private IOptions<ApplicationSettings> _settings;
 public AuthMessageSender(IOptions<ApplicationSettings> settings)
 {
 _settings = settings;
 }

 public async Task SendEmailAsync(string email, string subject, string message)
 {
 var emailMessage = new MimeMessage();
 emailMessage.From.Add(new MailboxAddress(_settings.Value.SMTPAccount));
 emailMessage.To.Add(new MailboxAddress(email));
 emailMessage.Subject = subject;
 emailMessage.Body = new TextPart("plain") { Text = message };

 using (var client = new SmtpClient())
 {
 �await client.ConnectAsync(_settings.Value.SMTPServer, _settings.Value.

SMTPPort, false);
 �await client.AuthenticateAsync(_settings.Value.SMTPAccount, _settings.Value.

SMTPPassword);
 await client.SendAsync(emailMessage);
 await client.DisconnectAsync(true);

 }
 }
 public async Task SendSmsAsync(string number, string message)
 {
 �TwilioClient.Init(_settings.Value.TwilioAccountSID, _settings.Value.

TwilioAuthToken);

 var smsMessage = await MessageResource.CreateAsync(
 to: new PhoneNumber(number),
 from: new PhoneNumber(_settings.Value.TwilioPhoneNumber),
 body: message);
 }
 }
}

Make sure to resolve the ISmsSender dependency in the ConfigureServices method of the Startup
class, as shown in Listing 11-30.

Chapter 11 ■ Real-Time Communication with SignalR

396

Listing 11-30.  Resolve the dependency of ISmsSender

services.AddTransient<ISmsSender, AuthMessageSender>();

We will update ServiceRequestController to have the ISmsSender dependency injected to the
constructor, as shown in Listing 11-31.

Listing 11-31.  Inject ISmsSender dependency into ServiceRequestController class

private readonly IServiceRequestOperations _serviceRequestOperations;
private readonly IServiceRequestMessageOperations _serviceRequestMessageOperations;
private readonly IConnectionManager _signalRConnectionManager;
private readonly IMapper _mapper;
private readonly IMasterDataCacheOperations _masterData;
private readonly UserManager<ApplicationUser> _userManager;
private readonly IEmailSender _emailSender;
private readonly IOptions<ApplicationSettings> _options;
private readonly IOnlineUsersOperations _onlineUsersOperations;
private readonly ISmsSender _smsSender;
public ServiceRequestController(IServiceRequestOperations operations,
 IServiceRequestMessageOperations messageOperations,
 IConnectionManager signalRConnectionManager,
 IMapper mapper,
 IMasterDataCacheOperations masterData,
 UserManager<ApplicationUser> userManager,
 IEmailSender emailSender,
 IOptions<ApplicationSettings> options,
 IOnlineUsersOperations onlineUsersOperations,
 ISmsSender smsSender)
{
 _serviceRequestOperations = operations;
 _serviceRequestMessageOperations = messageOperations;
 _signalRConnectionManager = signalRConnectionManager;
 _mapper = mapper;
 _masterData = masterData;
 _userManager = userManager;
 _emailSender = emailSender;
 _onlineUsersOperations = onlineUsersOperations;
 _options = options;
 _smsSender = smsSender;
}

Create a private method named SendSmsAndWebNotifications in ServiceRequestController, as shown
in Listing 11-32. This method sends the actual notifications to the customer. To send an SMS notification, we
will call the SendSmsAsync method with the customer’s phone number and a status change message.

Listing 11-32.  SendSmsAndWebNotifications method

private async Task SendSmsAndWebNotifications(ServiceRequest serviceRequest)
{
 // Send SMS Notification
 �var phoneNumber = (await _userManager.FindByEmailAsync(serviceRequest.PartitionKey)).

PhoneNumber;

Chapter 11 ■ Real-Time Communication with SignalR

397

 if (!string.IsNullOrWhiteSpace(phoneNumber)) {
 await _smsSender.SendSmsAsync(string.Format("+91{0}", phoneNumber),
 string.Format("Service Request Status updated to {0}", serviceRequest.
Status));
 }
}

Finally, update the UpdateServiceRequestDetails POST action to include a call to the
SendSmsAndWebNotifications method, as shown in Listing 11-33. We will track the service request
status change by using the isServiceRequestStatusUpdated flag. Based on the flag, we will call the
SendSmsAndWebNotifications method by passing the ServiceRequest object that is in context.

Listing 11-33.  Updated UpdateServiceRequestDetails action

[HttpPost]
�public async Task<IActionResult> UpdateServiceRequestDetails(UpdateServiceRequestViewModel
serviceRequest)
{
 var originalServiceRequest = await _serviceRequestOperations.GetServiceRequestByRowKey(s
erviceRequest.RowKey);
 originalServiceRequest.RequestedServices = serviceRequest.RequestedServices;

 var isServiceRequestStatusUpdated = false;
 // Update Status only if user role is either Admin or Engineer
 // Or Customer can update the status if it is only in Pending Customer Approval.
 if (HttpContext.User.IsInRole(Roles.Admin.ToString()) ||
 HttpContext.User.IsInRole(Roles.Engineer.ToString()) ||
 �(HttpContext.User.IsInRole(Roles.User.ToString()) && originalServiceRequest.

Status == Status.PendingCustomerApproval.ToString()))
 {
 if (originalServiceRequest.Status != serviceRequest.Status)
 {
 isServiceRequestStatusUpdated = true;
 }
 originalServiceRequest.Status = serviceRequest.Status;
 }

 // Update Service Engineer field only if user role is Admin
 if (HttpContext.User.IsInRole(Roles.Admin.ToString()))
 {
 originalServiceRequest.ServiceEngineer = serviceRequest.ServiceEngineer;
 }

 await _serviceRequestOperations.UpdateServiceRequestAsync(originalServiceRequest);

 if(HttpContext.User.IsInRole(Roles.Admin.ToString()) ||
 �HttpContext.User.IsInRole(Roles.Engineer.ToString()) || originalServiceRequest.

Status == Status.PendingCustomerApproval.ToString())
 {
 await _emailSender.SendEmailAsync(originalServiceRequest.PartitionKey,
 "Your Service Request is almost completed!!!",
 "Please visit the ASC application and review your Service request.");
 }

Chapter 11 ■ Real-Time Communication with SignalR

398

 if (isServiceRequestStatusUpdated)
 {
 await SendSmsAndWebNotifications(originalServiceRequest);
 }

 return RedirectToAction("ServiceRequestDetails", "ServiceRequest",
 new { Area = "ServiceRequests", Id = serviceRequest.RowKey });
}

Run the application and log in as Admin. Navigate to any Service Request Details view and change the
status. The customer should get a text message, as shown in Figure 11-23.

Figure 11-23.  Text message received on mobile phone

■■ Note  I have prefixed +91 to all the phone numbers because I am testing this functionality with mobile
numbers issued from Indian mobile providers. For the US mobile numbers, we’d have to use +1.

We have used Twilio’s free account for the entire demonstration. For a real-world production, it is advisable to
get a subscription from Twilio and use it accordingly.

Chapter 11 ■ Real-Time Communication with SignalR

399

Enable Web Notifications to Customers by Using SignalR
Now we will work on enabling web notifications for service request status changes. Primarily, we will send
notifications to the customer if he is active in the Automobile Service Center application (on any screen on
the application) at the time of event (we will not store the notification messages in Azure Storage). Update
the SendSmsAndWebNotifications private method in ServiceRequestController, as shown in Listing 11-34.

Listing 11-34.  Updated SendSmsAndWebNotifications method

private async Task SendSmsAndWebNotifications(ServiceRequest serviceRequest)
{
 // Send SMS Notification
 �var phoneNumber = (await _userManager.FindByEmailAsync(serviceRequest.PartitionKey)).

PhoneNumber;
 if (!string.IsNullOrWhiteSpace(phoneNumber)) {
 await _smsSender.SendSmsAsync(string.Format("+91{0}", phoneNumber),
 �string.Format("Service Request Status updated to {0}", serviceRequest.

Status));
 }

 // Get Customer name
 �var customerName = (await _userManager.FindByEmailAsync(serviceRequest.PartitionKey)).

UserName;

 // Send web notifications
 _signalRConnectionManager.GetHubContext<ServiceMessagesHub>()
 .Clients
 .User(customerName)
 .publishNotification(new
 {
 status = serviceRequest.Status
 });
}

We will use the feature discovery concept of Materialize CSS to show a bubble notification to the end
user. (Even though feature discovery is used to showcase new features to users, we will use the same concept
to display notifications.) We have to include tap target HTML in _SecureLayout.cshtml, as shown in Listing
11-35, which is hidden by default. The HTML contains static text with a {$} placeholder that will be filled
with push notification data from the server.

Listing 11-35.  Tap Target HTML code

 <!-- Tap Target Structure -->
<div class="tap-target cyan hide" data-activates="serviceNotification">
 <div class="tap-target-content white-text" >
 <h5 class="padding-left-50px">Status Updated!!!</h5>
 �<p class="white-text padding-left-50px divNotification">The Status of your Service

Request has been changed to {$}.</p>
 </div>
</div>

Chapter 11 ■ Real-Time Communication with SignalR

400

Finally, we have to create a client-side JQuery function that will be invoked by the SignalR hub when
broadcasting a message to the client. Create the showNotification JQuery function in _SecureLayout.
cshtml, as shown in Listing 11-36, and associate it with the hub by assigning it to the publishNotification
proxy. The showNotification method fetches the data from the push notification and replaces the {$}
placeholder with the data, removes the hide class, and finally calls Materialize CSS’s tapTarget JQuery
extension with open as a parameter to show the notification bubble. The notification will be displayed for 5
seconds; later it will be closed through a close operation by using the same tapTarget method. Finally, the
tap target is hidden in HTML.

Listing 11-36.  JQuery code to show tap target notification

$.connection.serviceMessagesHub.client.publishNotification = showNotification;

function showNotification(data) {
 var notificationText = $('.divNotification').html();
 $('.divNotification').html(notificationText.replace('{$}', data.status));
 $('.tap-target').removeClass('hide');

 $('.tap-target').tapTarget('open');
 setTimeout(function () {
 $('.tap-target').tapTarget('close');
 $('.tap-target').addClass('hide');;
 }, 5000);
};

Run the application, and log in as Admin and Customer in two different browsers. Let Admin change
the service request status to any value. The customer should see the notification shown in Figure 11-24.

Figure 11-24.  Web notification of the service request status change

Chapter 11 ■ Real-Time Communication with SignalR

401

Notifying Customers with Promotions
One of the important challenges that the Automobile Service Center is facing with its traditional marketing
strategies is its inability to effectively promote discounts and offers to its customers. We are going to solve
this challenge by providing an intuitive way to showcase all discounts, offers, and promotions through the
Automobile Service Center application. In this section, we are going to build a promotions functionality for
our application. The Admin user will be able to input promotional offers from time to time, and customers
will receive web notifications of those offers. A common view for both the administrator and customers will
be developed so they can glance at all the promotional offers.

Build the Promotional Offers Capability
We will start by creating a Promotion entity class in the Models folder of the ASC.Models project, which will
serve as an Azure Storage entity, shown in Listing 11-37. It contains Header and Content properties that will
hold the text displayed as the header and main body content for a promotion. The Promotion entity takes
type as a parameter, which it uses as PartitionKey; the type can represent various types of promotions such
as Discount or Voucher.

Listing 11-37.  Promotion entity

using ASC.Models.BaseTypes;
using System;

namespace ASC.Models.Models
{
 public class Promotion : BaseEntity
 {
 public Promotion() { }
 public Promotion(string type)
 {
 this.RowKey = Guid.NewGuid().ToString();
 this.PartitionKey = type;
 }

 public string Header { get; set; }
 public string Content { get; set; }
 }
}

Now we will create IPromotionOperations in the Interfaces folder of the ASC.Business project, as
shown in Listing 11-38. This interface will serve for all Azure Storage—related operations on the Promotion
entity.

Listing 11-38.  IPromotionOperations interface

using ASC.Models.Models;
using System;
using System.Collections.Generic;
using System.Threading.Tasks;

Chapter 11 ■ Real-Time Communication with SignalR

402

namespace ASC.Business.Interfaces
{
 public interface IPromotionOperations
 {
 Task CreatePromotionAsync(Promotion promotion);
 Task<Promotion> UpdatePromotionAsync(string rowKey, Promotion promotion);
 Task<List<Promotion>> GetAllPromotionsAsync();
 }
}

Create a class named PromotionOperations in the ASC.Business project, as shown in Listing 11-39.
We will implement IPromotionOperations on the PromotionOperations class. The CreatePromotionAsync
method creates a promotion, UpdatePromotionAsync updates a promotion based on RowKey. The
GetAllPromotionsAsync method will return all promotions.

Listing 11-39.  PromotionOperations class

using ASC.Business.Interfaces;
using ASC.DataAccess.Interfaces;
using ASC.Models.Models;
using System.Linq;
using System.Threading.Tasks;
using System;
using System.Collections.Generic;

namespace ASC.Business
{
 public class PromotionOperations : IPromotionOperations
 {
 private readonly IUnitOfWork _unitOfWork;
 public PromotionOperations(IUnitOfWork unitOfWork)
 {
 _unitOfWork = unitOfWork;
 }

 public async Task CreatePromotionAsync(Promotion promotion)
 {
 using (_unitOfWork)
 {
 await _unitOfWork.Repository<Promotion>().AddAsync(promotion);
 _unitOfWork.CommitTransaction();
 }
 }

 public async Task<List<Promotion>> GetAllPromotionsAsync()
 {
 var promotions = await _unitOfWork.Repository<Promotion>().FindAllAsync();
 return promotions.ToList();
 }

 �public async Task<Promotion> UpdatePromotionAsync(string rowKey, Promotion
promotion)

Chapter 11 ■ Real-Time Communication with SignalR

403

 {
 �var originalPromotion = await _unitOfWork.Repository<Promotion>().

FindAsync(promotion.PartitionKey, rowKey);
 if(originalPromotion != null)
 {
 originalPromotion.Header = promotion.Header;
 originalPromotion.Content = promotion.Content;
 originalPromotion.IsDeleted = promotion.IsDeleted;
 }
 using (_unitOfWork)
 {
 await _unitOfWork.Repository<Promotion>().UpdateAsync(originalPromotion);
 _unitOfWork.CommitTransaction();
 }
 return originalPromotion;
 }
 }
}

Resolve the dependency at the ASC.Web project by adding PromotionOperations to
IServiceCollection at the method of the Startup class, as shown in Listing 11-40.

Listing 11-40.  Resolve the dependency of IPromotionOperations

services.AddScoped<IPromotionOperations, PromotionOperations>();

Before we proceed to creating the controller actions and views, we will update the Navigation.json
file in the ASC.Web project to hold the Promotions left navigation menu item, as shown in Listing 11-41. This
Promotion menu item will have options to create a new promotion and view all active promotions.

Listing 11-41.  Promotions left navigation menu items

{
 "DisplayName": "Promotions",
 "MaterialIcon": "inbox",
 "Link": "",
 "IsNested": true,
 "Sequence": 4,
 "UserRoles": ["User", "Engineer", "Admin"],
 "NestedItems": [
 {
 "DisplayName": "New Promotion",
 "MaterialIcon": "insert_invitation",
 "Link": "/Promotions/Promotions/Promotion",
 "IsNested": false,
 "Sequence": 1,
 "UserRoles": ["Admin"],
 "NestedItems": []
 },
 {
 "DisplayName": "All Promotions",
 "MaterialIcon": "search",

Chapter 11 ■ Real-Time Communication with SignalR

404

 "Link": "/Promotions/Promotions/Promotions",
 "IsNested": false,
 "Sequence": 2,
 "UserRoles": ["User", "Engineer", "Admin"],
 "NestedItems": []
 }
]
},

We will create a new area inside the ASC.Web project named Promotions and create corresponding
Controllers, Views, and Models folders, as shown in Figure 11-25.

Figure 11-25.  Promotions area folder structure

■■ Note  Make sure to place _ViewImports.cshtml at the root of the Promotions area (just as in other
areas).

We will create new view models named PromotionsViewModel and PromotionViewModel that will be
used by the controller and view to display a list of promotions and add/update a new/existing promotion.
Create a PromotionsViewModel class under the Models folder of the Promotions area of the ASC.Web project,
as shown in Listing 11-42.

Listing 11-42.  PromotionsViewModel class

using System.Collections.Generic;

namespace ASC.Web.Areas.Promotions.Models
{
 public class PromotionsViewModel
 {
 public List<PromotionViewModel> Promotions { get; set; }
 public PromotionViewModel PromotionInContext { get; set; }
 public bool IsEdit { get; set; }
 }
}

Chapter 11 ■ Real-Time Communication with SignalR

405

Create a PromotionViewModel class under the Models folder of the Promotions area of the ASC.Web
project, as shown in Listing 11-43.

Listing 11-43.  PromotionViewModel class

using System.ComponentModel.DataAnnotations;

namespace ASC.Web.Areas.Promotions.Models
{
 public class PromotionViewModel
 {
 public string RowKey { get; set; }
 public bool IsDeleted { get; set; }

 [Required]
 [Display(Name = "Type")]
 public string PartitionKey { get; set; }

 [Required]
 [Display(Name = "Header")]
 public string Header { get; set; }

 [Required]
 [Display(Name = "Content")]
 public string Content { get; set; }
 }
}

■■ Note  We use AutoMapper to map business models to our web view models. AutoMapper is an object-to-
object mapper that uses a fluent configuration API to define an object-to-object mapping strategy.

Create a class named MappingProfile under the Models folder of the Promotions area in the ASC.
Web project, as shown in Listing 11-44. It will contain AutoMapper’s mappings for the Promotion entity and
PromotionViewModel.

Listing 11-44.  AutoMapper’s Promotion mappings in MappingProfile class

using ASC.Models.Models;
using AutoMapper;

namespace ASC.Web.Areas.Promotions.Models
{
 public class MappingProfile : Profile
 {
 public MappingProfile()
 {

Chapter 11 ■ Real-Time Communication with SignalR

406

 CreateMap<Promotion, PromotionViewModel>();
 CreateMap<PromotionViewModel, Promotion>();
 }
 }
}

■■ Note  Add PromotionType in the MasterKeys enum, as shown in Listing 11-45. This will be used to
prepopulate the Promotions type combo box. Use the MasterKeys and MasterValues screens to create values
for PromotionType (for example, Discount and Voucher).

Listing 11-45.  PromotionType in MasterKeys enum

public enum MasterKeys
{
 VehicleName, VehicleType, PromotionType
}

Now we will create PromotionsController in the Promotions area of the ASC.Web project, as shown in
Listing 11-46. All the dependencies are injected into the constructor of PromotionsController, especially
IPromotionOperations, which is used to perform Azure Storage operations on the Promotion entity, and
IMasterDataCacheOperations, which is used to retrieve the promotion types.

The GET operation gets all the promotions from Azure Storage and maps the list of promotions to
PromotionViewModel. It also fetches the PromotionType reference data from the master data cache and holds
it in, which can be used in the view. Finally, the view model is stored in the session, and Promotion.cshtml
is returned with the consolidated model.

The POST action will first check for ModelState, and in case of any errors, the same model is returned
to the view with errors. If ModelState succeeds, based on the mode of the operation, the Promotion entity is
either inserted or updated. Finally, the control is redirected to the GET action.

Listing 11-46.  GET and POST actions of PromotionsController

using Microsoft.AspNetCore.Mvc;
using ASC.Web.Controllers;
using ASC.Business.Interfaces;
using ASC.Web.Data;
using System.Linq;
using System.Threading.Tasks;
using AutoMapper;
using System.Collections.Generic;
using ASC.Utilities;
using ASC.Models.Models;
using System;
using ASC.Models.BaseTypes;
using ASC.Web.Areas.Promotions.Models;

namespace ASC.Web.Areas.Promotions.Controllers
{
 [Area("Promotions")]
 public class PromotionsController : BaseController

Chapter 11 ■ Real-Time Communication with SignalR

407

 {
 private readonly IPromotionOperations _promotionOperations;
 private readonly IMapper _mapper;
 private readonly IMasterDataCacheOperations _masterData;
 public PromotionsController(IPromotionOperations promotionOperations,
 IMapper mapper,
 IMasterDataCacheOperations masterData)
 {
 _promotionOperations = promotionOperations;
 _mapper = mapper;
 _masterData = masterData;
 }

 [HttpGet]
 public async Task<IActionResult> Promotion()
 {
 var promotions = await _promotionOperations.GetAllPromotionsAsync();
 �var promotionsViewModel = _mapper.Map<List<Promotion>, List<PromotionViewModel>

>(promotions);

 // Get All Master Keys and hold them in ViewBag for Select tag
 var masterData = await _masterData.GetMasterDataCacheAsync();
 �ViewBag.PromotionTypes = masterData.Values.Where(p => p.PartitionKey ==

MasterKeys.PromotionType.ToString()).ToList();

 // Hold all Promotions in session
 HttpContext.Session.SetSession("Promotions", promotionsViewModel);

 return View(new PromotionsViewModel
 {
 �Promotions = promotionsViewModel == null ? null : promotionsViewModel.

ToList(),
 IsEdit = false,
 PromotionInContext = new PromotionViewModel()
 });
 }

 [HttpPost]
 [ValidateAntiForgeryToken]
 public async Task<IActionResult> Promotion(PromotionsViewModel promotions)
 {
 �promotions.Promotions = HttpContext.Session.GetSession<List<PromotionView

Model>>("Promotions");
 if (!ModelState.IsValid)
 {
 return View(promotions);
 }

 �var promotion = _mapper.Map<PromotionViewModel, Promotion>(promotions.
PromotionInContext);

 if (promotions.IsEdit)

Chapter 11 ■ Real-Time Communication with SignalR

408

 {
 // Update Promotion
 �await _promotionOperations.UpdatePromotionAsync(promotions.

PromotionInContext.RowKey, promotion);
 }
 else
 {
 // Insert Promotion
 promotion.RowKey = Guid.NewGuid().ToString();
 await _promotionOperations.CreatePromotionAsync(promotion);
 }

 return RedirectToAction("Promotion");
 }
 }
}

The Promotion.cshtml view will consist of two sections: one to display the list of promotions, and
the other to display the details of a particular promotion, as shown in Listing 11-47. An HTML table has
been defined, and all the promotions are iterated and rendered in the same table. By default, we will show
Type, Header, IsDeleted, and Edit action columns in the table. If no promotions are available, a No Records
message will be displayed in the table.

The details section of the view contains a form tag with the required elements for PartitionKey
(promotion type), Header, Content, and IsDeleted flags. We also maintain a hidden field inside the form to
identify RowKey on the POST action.

Listing 11-47.  Promotions View

@model ASC.Web.Areas.Promotions.Models.PromotionsViewModel
@{
 Layout = "_SecureLayout";
}

<div class="row"></div>
<div class="row padding-top-20px">
 <div class="row z-depth-3">
 <div class="section white-text padding-left-10px blue-grey lighten-1">
 <h5>Promotions</h5>
 </div>
 <div class="divider"></div>
 <div class="col s12 padding-bottom-15px">
 @if (Model.Promotions != null)
 {
 @* Display List of Promotions *@
 <table class="highlight centered" id="tblPromotions">
 <thead>
 <tr>
 <th data-field="RowKey">Row Key</th>
 <th data-field="PartitionKey">Type</th>
 <th data-field="Header">Header</th>
 <th data-field="Content">Content</th>
 <th data-field="IsActive">Is Deleted</th>

Chapter 11 ■ Real-Time Communication with SignalR

409

 <th data-field="IsActiveImg">Is Deleted</th>
 <th data-field="Actions">Edit</th>
 </tr>
 </thead>
 <tbody>
 @foreach (var promotion in Model.Promotions)
 {
 <tr>
 <td>@promotion.RowKey</td>
 <td>@promotion.PartitionKey</td>
 <td>@promotion.Header</td>
 <td>@promotion.Content</td>
 <td>@promotion.IsDeleted</td>
 �<td><img src="@(promotion.IsDeleted ? "/images/green_tick.

png" : "/images/red_cross.png")" /></td>
 �<td><i class="small material-icons edit cursor-hand">mode_

edit</i></td>
 </tr>
 }
 </tbody>
 </table>
 }
 else
 {
 @* In case of No records, display no records message *@
 <div class="card blue-grey lighten-1">
 <div class="card-content white-text">
 No Promotions!!!
 <p>
 No Promotions found, please add a Promotion to system.
 </p>
 </div>
 </div>
 }
 </div>
 </div>

 <div class="row"></div>

 @* Details Section *@
 <div class="row z-depth-3">
 <div class="col s12 padding-0px">
 <div class="section white-text padding-left-10px blue-grey lighten-1">
 <h5>Promotion Details</h5>
 </div>
 <div class="divider"></div>
 �<form asp-controller="Promotions" asp-action="Promotion" method="post"

class="col s12" id="formPromotion">
 <div class="row">
 <input type="hidden" asp-for="IsEdit" />
 <input type="hidden" asp-for="PromotionInContext.RowKey" />

Chapter 11 ■ Real-Time Communication with SignalR

410

 <div class="input-field col s4">
 <select id="PromotionInContext_PartitionKey"
 asp-for="PromotionInContext.PartitionKey"
 �asp-items="@(new SelectList(ViewBag.PromotionTypes,"Name","

Name"))"
 required="required">
 <option value="">--Select--</option>
 </select>
 <label>Type</label>
 </div>
 <div class="input-field col s4">
 <input asp-for="PromotionInContext.Header" class="validate" />
 <label asp-for="PromotionInContext.Header"></label>
 </div>
 <div class="input-field col s4">
 <div class="switch">
 <label>
 Is Deleted
 �<input asp-for="PromotionInContext.IsDeleted"

class="validate" />

 </label>
 </div>
 </div>
 </div>
 <div class="row">
 <div class="input-field col s12">
 �<textarea asp-for="PromotionInContext.Content" class="materialize-

textarea validate"></textarea>
 <label asp-for="PromotionInContext.Content"></label>
 </div>
 </div>
 <div class="row">
 <div class="input-field col s12 right-align">
 �<button class="btn waves-effect waves-light btnSubmit" type="submit"

name="action">
 Create
 <i class="material-icons right">send</i>
 </button>
 �<button class="btn waves-effect waves-light reset red lighten-1"

type="button" name="action">
 Reset
 </button>
 </div>
 <div class="row col s12 right-align" asp-validation-summary="All"></div>
 </div>
 </form>

 </div>
 <div class="row"></div>
 </div>
</div>

Chapter 11 ■ Real-Time Communication with SignalR

411

The Promotion.cshtml view also contains JQuery code, as shown in Listing 11-48, which is primarily
used to configure DataTables by initializing it with page size and length options. In JQuery code, we also set
the required styles of DataTable and hide the RowKey, Content, and IsDeleted columns. Instead of showing
the IsDeleted Boolean flag, we will show green tick or red X.

We will also handle the reset button functionality in JQuery, through which user changes will be
discarded. Finally, an Edit click event is handled, in which we will populate the details section with the
promotion information that is under edit mode. JQuery code is also used to populate the RowKey hidden
field that is used by the POST action to identity the entity being edited.

Listing 11-48.  JQuery code on Promotions view

@section Scripts{
 <script>
 $(document).ready(function () {
 // Initialize DataTable to show list of Promotions
 var table = $('#tblPromotions').DataTable({
 'pageLength': 3,
 // Number of records to be displayed per page
 'lengthMenu': [[3, 5, 10, -1], [3, 5, 10, 'All']]
 });

 // Set Styles for DataTable and Number of Records to be displayed in drop-down
 $('#tblPromotions').css("width", "100%");
 $('select[name="tblPromotions_length"]').material_select();

 �$("select[required]").css({ display: "block", position: 'absolute', visibility:
'hidden' });

 // Initialize Select
 $('select').material_select();

 // Get the column API object
 var rowKeyColumn = table.column(0);
 rowKeyColumn.visible(false);

 var contentColumn = table.column(3);
 contentColumn.visible(false);

 var isActiveColumn = table.column(4);
 isActiveColumn.visible(false);

 // Handle Reset functionality
 $(document).on('click', '.reset', function () {
 $('#formPromotion')[0].reset();
 $('.btnSubmit').text('Create');
 $('#IsEdit').val('False');

 // Remove Partition key disabled attribute
 $('#PromotionInContext_PartitionKey').material_select('destroy');
 $('#PromotionInContext_PartitionKey').removeAttr('disabled');
 $('#PromotionInContext_PartitionKey').material_select();

Chapter 11 ■ Real-Time Communication with SignalR

412

 // Remove the validation error messages.
 $('.validation-summary-valid').find("ul").html('');
 });

 �// On click of Edit icon, populate the details section with details of service
engineer

 $(document).on('click', '.edit', function () {
 �var promotion = $('#tblPromotions').DataTable().row($(this).parents('tr')).

data();

 $('#IsEdit').val('True');
 // Map Row Key
 $('#PromotionInContext_RowKey').val(promotion[0]);

 // Set Partition Key Dropdown and re-initialize Material Select
 $('#PromotionInContext_PartitionKey').material_select('destroy');
 �$('#PromotionInContext_PartitionKey option:contains(' + promotion[1] + ')').

prop('selected', true);
 $('#PromotionInContext_PartitionKey').material_select();

 // Map Header
 $('#PromotionInContext_Header').val(promotion[2]);
 $('#PromotionInContext_Header').addClass('valid');
 // Map Header
 $('#PromotionInContext_Content').val(promotion[3]);
 $('#PromotionInContext_Content').addClass('valid');
 // Map IsActive
 �$('#PromotionInContext_IsDeleted').prop('checked', promotion[4] === 'True' ?

true : false);

 $('.btnSubmit').text('Save');
 Materialize.updateTextFields();
 });

 });
 </script>
}

Run the application and log in as Admin. You should see New Promotion in the left navigation menu, as
shown in Figure 11-26.

Chapter 11 ■ Real-Time Communication with SignalR

413

Click the New Promotion menu item. You should see all existing promotions, as shown in Figure 11-27.

Figure 11-26.  Promotion menu items in the left navigation pane

Chapter 11 ■ Real-Time Communication with SignalR

414

Enter a new promotion in the bottom section and click Create, as shown in Figure 11-28.

Figure 11-27.  Promotions view

Chapter 11 ■ Real-Time Communication with SignalR

415

We should see the newly created promotion in the top section of the Promotions list, as shown in
Figure 11-29.

Figure 11-28.  Creating a new promotion

Figure 11-29.  Newly added promotion in list of promotions

Now we will edit an existing promotion, and details will be displayed in the details section, as shown in
Figure 11-30.

Chapter 11 ■ Real-Time Communication with SignalR

416

Edit the record and click Save. The updated record will be shown in the list of promotions, as shown in
Figure 11-31.

Figure 11-30.  Updating an existing promotion

Figure 11-31.  Updated promotion in list of promotions

Figure 11-32.  Promotion Azure Storage table

If we look at the Promotion Azure table, the created entities are persisted, as shown in Figure 11-32.

Chapter 11 ■ Real-Time Communication with SignalR

417

Display Promotional Offers to Customers
In this section, we will create a view for customers so they can view all the promotions. Create the
Promotions action in PromotionsController, as shown in Listing 11-49. This action gets all promotions,
filters them based on the IsDeleted flag, and sorts the results based on an entity’s Timestamp property.
Finally, the action method returns the results to the Promotions.cshtml view.

Listing 11-49.  Promotions action

[HttpGet]
public async Task<IActionResult> Promotions()
{
 var promotions = await _promotionOperations.GetAllPromotionsAsync();
 var filteredPromotions = new List<Promotion>();
 if(promotions != null)
 {
 �filteredPromotions = promotions.Where(p => !p.IsDeleted).OrderByDescending(p =>

p.Timestamp).ToList();
 }

 return View(filteredPromotions);
}

We will create Promotions.cshtml, which will display all the promotions as shown in Listing 11-50.
If there are any promotions, we will display them in chronological order using Materialize CSS Card styles.
If there are no styles, no promotion messages will be displayed.

Listing 11-50.  Promotions view

@model IEnumerable<ASC.Models.Models.Promotion>
@{
 Layout = "_SecureLayout";
}

<div class="row"></div>
<div class="row padding-top-20px">
 <div class="row z-depth-3">
 <div class="section white-text padding-left-10px blue-grey lighten-1">
 <h5>Promotions</h5>
 </div>
 <div class="divider"></div>
 <div class="col s12 padding-bottom-15px divPromotions">
 @if (Model != null && Model.Any())
 {
 foreach (var promotion in Model)
 {
 @* Display List of Promotions *@
 <div class="col s12 m5">
 �<div class="card @(promotion.PartitionKey == "Discount" ? "light-

green darken-2" : " light-blue darken-2") ">
 <div class="card-content white-text">
 @promotion.Header
 <p>

Chapter 11 ■ Real-Time Communication with SignalR

418

 @promotion.Content
 </p>
 </div>
 </div>
 </div>
 }
 }
 else
 {
 @* In case of No records, display no records message *@
 <div class="card blue-grey lighten-1">
 <div class="card-content white-text">
 No Promotions!!!
 <p>
 No Promotions found.
 </p>
 </div>
 </div>
 }
 </div>
 </div>

 <div class="row"></div>
</div>

@section Scripts{

}

Run the application, log in as a Customer, and navigate to the All Promotions navigation menu item.
The promotions should be displayed, as shown in Figure 11-33.

Chapter 11 ■ Real-Time Communication with SignalR

419

Enable Web Notifications to Customers on New Promotions
Now we will work on displaying web notifications for new promotions that are added by the administrator.
Whenever a new promotion is added, we will show a notification number on the Promotions left navigation
menu item, and it also will be appended to the Promotions list.

■■ Note  The notification number that we display in the left navigation menu will not be persisted upon screen
refresh or navigation to any other screen.

As a first step, we have to inject SignalR’s IConnectionManager into PromotionsController, as shown in
Listing 11-51.

Listing 11-51.  Inject IConnectionManager dependency into PromotionsController

private readonly IPromotionOperations _promotionOperations;
private readonly IMapper _mapper;
private readonly IMasterDataCacheOperations _masterData;
private readonly IConnectionManager _signalRConnectionManager;
public PromotionsController(IPromotionOperations promotionOperations,
 IMapper mapper,
 IMasterDataCacheOperations masterData,
 IConnectionManager signalRConnectionManager)
{
 _promotionOperations = promotionOperations;
 _mapper = mapper;

Figure 11-33.  Promotions view

Chapter 11 ■ Real-Time Communication with SignalR

420

 _masterData = masterData;
 _signalRConnectionManager = signalRConnectionManager;
}

To send a push notification to all SignalR clients, we need to update the POST action of Promotion, as
shown in Listing 11-52. We will get the SignalR hub context and then send a push notification to all clients by
using the publishPromotion proxy method by passing the newly added promotion data.

Listing 11-52.  Updated Promotion action

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Promotion(PromotionsViewModel promotions)
{
 �promotions.Promotions = HttpContext.Session.GetSession<List<PromotionViewModel>>

("Promotions");
 if (!ModelState.IsValid)
 {
 return View(promotions);
 }

 �var promotion = _mapper.Map<PromotionViewModel, Promotion>(promotions.
PromotionInContext);

 if (promotions.IsEdit)
 {
 // Update Promotion
 �await _promotionOperations.UpdatePromotionAsync(promotions.PromotionInContext.

RowKey, promotion);
 }
 else
 {
 // Insert Promotion
 promotion.RowKey = Guid.NewGuid().ToString();
 await _promotionOperations.CreatePromotionAsync(promotion);

 if (!promotion.IsDeleted)
 {
 // Broadcast the message to all clients associated with new promotion
 _signalRConnectionManager.GetHubContext<ServiceMessagesHub>()
 .Clients
 .All
 .publishPromotion(promotion);
 }
 }

 return RedirectToAction("Promotion");
}

Now update _SecureLayout.cshtml to hold a promotion HTML template that is hidden by default,
as shown in Listing 11-53. The promotion template contains placeholders for header, content, and style
information. Whenever a push notification comes from the server, we use JQuery code to retrieve the

Chapter 11 ■ Real-Time Communication with SignalR

421

promotion template, clone it, and then replace the placeholder information with actual information. Finally,
we will prepend the updated promotion div on the promotions screen.

Listing 11-53.  New Promotion HTML template

<!-- Promotion Template -->
<div class="promotionTemplate hide">
 <div class="col s12 m5">
 <div class="card {Style}">
 <div class="card-content white-text">
 {Header}
 <p>
 {Content}
 </p>
 </div>
 </div>
 </div>
</div>

Finally, we will update the JQuery code in _SecureLayout.cshtml to hook up publishPromotion with
the showPromotion JQuery function, as shown in Listing 11-54. We declare the counter variable, which is
used to track the number of promotion updates published to the client. This counter variable is incremented
in the showPromotion function. The function will also get the promotion template that we defined earlier
and replaces the Header and Content placeholders with the newly added promotion data. The function also
replaces the style for different types of promotions and finally prepends to the promotions div tag.

Listing 11-54.  showPromotion JQuery function

$.connection.serviceMessagesHub.client.publishPromotion = showPromotion;

var counter = 0
function showPromotion(data) {
 counter++;
 var promotionTemplate = $('.promotionTemplate').clone().html();
 promotionTemplate = promotionTemplate.replace('{Header}', data.Header);
 promotionTemplate = promotionTemplate.replace('{Content}', data.Content);
 �promotionTemplate = promotionTemplate.replace('{Style}', data.PartitionKey ==

'Discount' ? 'light-green darken-2' : 'light-blue darken-2');

 // Prepend newly added promotion to to divPromotions on Promotions view.
 $('.divPromotions').prepend(promotionTemplate);

 // show notification counter on the left navigation menu item.
 $('#ancrPromotions .badge').remove();
 $('#ancrPromotions').prepend('' + counter + '');
};

Run the application and log in as an administrator and customer on different browsers. Let the
administrator add a promotion by using the New Promotion screen. The customer should see the
notifications in the left navigation Promotions menu item, as shown in Figure 11-34.

Chapter 11 ■ Real-Time Communication with SignalR

422

Figure 11-34.  Promotion notification to the customer

If the customer is on the Promotions screen, he should see the left navigation count notification along
with the new promotion listed with other promotions, as shown in Figure 11-35.

Chapter 11 ■ Real-Time Communication with SignalR

423

Figure 11-35.  Promotions view with newly added promotion

Summary
You started this chapter by learning about the importance of real-time communication between businesses
and their customers. Real-time communication will empower businesses to reach their customers at the
right time and with the right information. It also helps businesses gain more insight and perform powerful
analysis to build next-generation features for their customers. For Automobile Service Center application,
real-time communication helps service engineers and customers exchange service request information. The
real-time notifications about the progress of service requests will help customers know more about their
car's service requirements and help them to be more confident with the Automobile Service Center's work
capabilities. On the other end, real-time communication helps administrators and service engineers reach
out to their customers on a timely basis and share crucial updates about the ongoing service request.

SignalR is an open source library from Microsoft that offers real-time web development features for ASP.
NET applications. You used SignalR to build real-time communication for our Automobile Service Center
application. SignalR uses the Hubs API to push notifications from the server to the client and supports
multiple channels such as WebSocket, server-sent events, and long polling. Older versions of SignalR are
not compatible with the ASP.NET Core platform, so Microsoft is in the process of developing and delivering
a ground-up version to support new features of .NET Core and .NET Standard. As the stable version of the
new SignalR will be available soon, you used preview versions (0.2.0-preview2-22683) to develop real-time
communication for our application.

Chapter 11 ■ Real-Time Communication with SignalR

424

You installed and configured SignalR for the Automobile Service Center application and created
relevant Azure entities, contracts, and operation classes. The Service Request Details view and
corresponding controller action methods were updated to store and push notifications to all other users
associated with a specific service request. Service Request Details view HTML was updated to display
messages section, where users can type and send messages to other users. The corresponding JQuery
code was updated to receive push notification data from the SignalR hub and process it and display it in
the messages section. In the similar way, you implemented the user online/offline status display feature; if
any user navigates away from the Service Request Details screen, his status will be turned to offline for that
particular service request, and otherwise he is marked as an online user.

The Twilio API from Twilio, a cloud-based communications company, allows software developers to
make and receive phone calls and send and receive text messages by using its web service APIs. You used
Twilio to send SMS notifications to customers from our Automobile Service Center application upon the
status change of an ongoing service request. You updated the Profile view to capture a customer’s phone
number and save it to Azure Table storage. Similarly, you updated the Service Request Details view to send
web notifications when the status of service request changes. You have used Materialize CSS’s feature
discovery to highlight the web notification using Materialize CSS tap target styles.

Finally you enabled Automobile Service Center application to showcase its promotional offers
and discounts. You created an Azure Storage entity to store all promotional offers and developed the
corresponding business component contract and implementation. You also developd a new promotion
screen that administrators can use to add or manage promotions in the system. A common view has been
developed that will display all the active promotions in the system. When a new promotion is added to the
system, a web notification is issued by using the SignalR hub, which will notify the customer by showing a
new promotion badge on the Promotion left navigation menu;a the promotions screen also is updated with
the latest promotion details.

Reference
	 1.	 www.youtube.com/watch?v=1TrttIkbs6c&t=96s

https://www.youtube.com/watch?v=1TrttIkbs6c&t=96s

425© Rami Vemula 2017
R. Vemula, Real-Time Web Application Development, https://doi.org/10.1007/978-1-4842-3270-5_12

CHAPTER 12

Code Version Control Using
GitHub Platform

As we enter a new era of software development, the complexity of business requirements is growing
exponentially because of the very nature of exploring new business opportunities, which requires
collaboration and integration among different systems. With increased demand for connectivity between
business systems and for potential automation, managing and maintaining source code has become
increasingly complex. Version-control systems play a crucial role in managing and tracking artifacts of
source code. The technical advancements in code version-control systems and tools not only has made
software development more resilient and effective, but also opened new global opportunities for people
across the world to collaborate without worrying about source-code dependencies.

A version-control system (VCS) can make a project self-sufficient in the following ways:

•	 It helps effectively manage and maintain a code repository across large teams

•	 Version change history can be used to compare and revert code changes.

•	 Branching and merging source code helps maintain different versions of code for
different environments and releases.

•	 Associating code artifacts and versions with specific business requirements and
defects helps in easily identifying and tracing the code.

Many code version-control systems are on the market. Some of the popular VCSs are Git, Team
Foundation Server, and Subversion. Git, one the most powerful and popular version-control systems, was
created by Linus Torvalds in 2005. The power of Git comes when dealing with decentralized repositories: a
developer can work on a local repository, and after the code is stable in that repository, the developer can
push the code to a remote repository. Any organization can have its own infrastructure and manage Git
repositories internally or can subscribe to online providers that provide Git services.

GitHub is a hosting service for Git repositories. In addition to providing source-code management,
GitHub also provides collaboration features such as bug tracking, feature requests, task management, wikis,
and access control for all projects. GitHub is free to use for public and open source projects. It also offers
paid plans to support developers, teams, and businesses with unlimited private repositories. GitHub allows
developers to fork a project repository and create their own centralized repository from the source code of
the forked project. From a forked project, developers can modify code and send pull requests with updated
code to the main project, which can be merged to the main project based on the project owner’s decision.

In this chapter, we are going to use the GitHub platform to version the Automobile Service Center’s
source code. You will see how to use Git commands from Windows to manage and version source code.

https://doi.org/10.1007/978-1-4842-3270-5_12

Chapter 12 ■ Code Version Control Using GitHub Platform

426

Getting Started with GitHub
In this section, we will create a GitHub account for the Automobile Service Center application. After the
account is created, we will install GitHub for Windows and configure it to manage code versions from the
command line.

Go to GitHub.com and sign up for a new account, as shown in Figure 12-1.

GitHub will prompt you to select a plan. For now, leave it as Unlimited Public Repositories for Free.
Click the Continue button, shown in Figure 12-2.

Figure 12-1.  Signing up at GitHub.com

Chapter 12 ■ Code Version Control Using GitHub Platform

427

The next step would be to enter preliminary information about the developer experience, but this is not
mandatory. Click the Skip This Step option, shown in Figure 12-3.

Figure 12-2.  Selecting a GitHub plan

Figure 12-3.  GitHub.com capturing a developer experience

Chapter 12 ■ Code Version Control Using GitHub Platform

428

Now that we have a GitHub account, we can navigate to our GitHub profile by choosing Your Profile
from the drop-down menu, as shown in Figure 12-4.

Because we do not have any repositories yet, we will have an empty view, shown in Figure 12-5.

Figure 12-4.  Profile navigation at GitHub.com

Figure 12-5.  GitHub profile

Chapter 12 ■ Code Version Control Using GitHub Platform

429

■■ Note  We need to validate the e-mail address that we have used to create the account. There should be an
e-mail from GitHub with a link to verify our e-mail address. Proceed with the link and verify the e-mail.

In the Profile view, navigate to the Repositories tab. You should see a No Public Repositories message,
as shown in Figure 12-6.

Click the New button to create a new public repository. We are going to use this repository to store the
source code of the Automobile Service Center application. Enter the name as AutomobileServiceCenter.
Core and a description of the repository, and click Create Repository, as shown in Figure 12-7.

Figure 12-6.  GitHub repositories

Chapter 12 ■ Code Version Control Using GitHub Platform

430

Upon successful creation of the repository, we will find the Git HTTPS path (https://github.com/
AutomobileServiceCenter/AutomobileServiceCenter.Core.git), which we will use later in this chapter to
push code from the local machine to this remote repository. We can also see quick code setup guidelines, as
shown in Figure 12-8.

Figure 12-7.  Creating a new repository for the Automobile Service Center source code

https://github.com/AutomobileServiceCenter/AutomobileServiceCenter.Core.git
https://github.com/AutomobileServiceCenter/AutomobileServiceCenter.Core.git

Chapter 12 ■ Code Version Control Using GitHub Platform

431

Now we will set up Git Bash on the local machine (Windows environment). Download the GitHub
for Windows executable from https://desktop.github.com/. After the download is complete, run the
executable.

■■ Note  There might be no confirmation upon a successful installation, but there will be a GitHub desktop
icon created on Windows Desktop. Restart the machine, and everything should be good.

Open GitHub Desktop by clicking the Windows Desktop icon. You should see the GitHub Desktop
application, as shown in Figure 12-9.

Figure 12-8.  GitHub quick setup guidelines

https://desktop.github.com/

Chapter 12 ■ Code Version Control Using GitHub Platform

432

■■ Note  We will not use the GitHub Desktop GUI to manage the Automobile Service Center application’s
source code. We will use Git commands to perform all the necessary code-versioning tasks. The last section of
this chapter shows how to perform the same code versioning by using Visual Studio. This way, we can explore
both Git commands and Visual Studio interaction with GitHub.

Managing Local GitHub Credentials and Adding Collaborators
to GitHub Repository
Before we proceed with Git Bash and start committing the code to a GitHub repository, make sure to remove
the cached GitHub credentials (if any) from Windows Credential Manager, as shown in Figure 12-10. This
will ensure that we display the login prompt on the first commit (after we enter credentials in the login
prompt, they will again be cached by Credential Manager).

Figure 12-9.  The GitHub Desktop application

Chapter 12 ■ Code Version Control Using GitHub Platform

433

■■ Note  I created a new GitHub account named AutomobileServiceCenterDev, which will be used to
simulate a dev user who will make code commits.

We need to add an AutomobileServiceCenterDev account as one of the collaborators to the
AutomobileServiceCenter.Core repository. Navigate to the Settings tab and then click Collaborators in the
left navigation menu, as shown in Figure 12-11.

Figure 12-10.  Cached GitHub credentials in Windows Credential Manager

Chapter 12 ■ Code Version Control Using GitHub Platform

434

Enter AutomobileServiceCenterDev in the search box and click Add Collaborator, as shown in Figure 12-12.

After the collaborator is added, an e-mail will be sent to AutomobileServiceCenterDev’s e-mail, which
he needs to accept to contribute to the repository. Until he accepts the invitation, he cannot perform any
activities on the remote repository, and his status in the collaborator’s section is maintained at Awaiting
Response, as shown in Figure 12-13.

Figure 12-11.  Project collaborators

Figure 12-12.  Adding AutomobileServiceCenterDev as a collaborator

Chapter 12 ■ Code Version Control Using GitHub Platform

435

The e-mail sent to the collaborator from GitHub will look like Figure 12-14.

Figure 12-13.  Awaiting the collaborator's response

Figure 12-14.  Collaborator e-mail invitation

Chapter 12 ■ Code Version Control Using GitHub Platform

436

Click the View Invitation button. Then proceed to accept the invitation, as shown in Figure 12-15.

If we now look at the Collaborators tab in the AutomobileServiceCenter.Core repository, we should
see that the newly added collaborator is active, as shown in Figure 12-16.

■■ Note  Before we start committing the changes to the public repository (in our case,
AutomobileServiceCenter.Core), we have to make sure secure information is not present in the appsettings.
json configuration file (for example, password or keys). Replace the secure settings with placeholders (such as
##########).

Figure 12-15.  Accepting a collaborator invitation

Figure 12-16.  Activated collaborator

Chapter 12 ■ Code Version Control Using GitHub Platform

437

Managing Automobile Service Centre source code using
Git Bash
Create and commit source code to a Local Git Repository

Open Git Bash by searching for Git Bash in Windows Search, as shown in Figure 12-17.

Click the Git Bash option to open a Bash shell, as shown in Figure 12-18.

Navigate to the Automobile Service Center project location in the Bash shell, as shown in Figure 12-19.

Figure 12-17.  Git bash

Figure 12-18.  Git Bash shell

Chapter 12 ■ Code Version Control Using GitHub Platform

438

We will create a local Git repository, as shown in Figure 12-20.

Set up the Git user local configuration for the repository, as shown in Figure 12-21.

Now we will add a .gitignore file that we can configure to exclude certain folders and files from remote
repository commits. This feature is extremely useful in ignoring the bin, obj, and packages folders. Run the
touch command, as shown in Figure 12-22, to create a .gitignore file at the root of ASC.Solution.

Figure 12-21.  Git user configuration

Figure 12-22.  Creating the .gitignore file

Figure 12-20.  Creating a local Git repository

Figure 12-19.  Setting the Automobile Service Center project location in context

Chapter 12 ■ Code Version Control Using GitHub Platform

439

Add the content shown in Listing 12-1 to the .gitignore file by using any text editor (for example,
Notepad++). These entries will ignore bin, obj, and packages folders and any other solution and user files.

Listing 12-1.  gitignore file

*.suo
*.user
bin
obj
packages

We can now add all the code artifacts to stage a subsequent commit to the master branch on the remote
Git repository, as shown in Figure 12-23.

We can check the status of all files on the master branch, as shown in Figure 12-24.

Now we will commit the changes to the local repository's master branch, as shown in Figure 12-25.

Figure 12-23.  Adding all files to stage a Git commit

Figure 12-24.  Git status

Chapter 12 ■ Code Version Control Using GitHub Platform

440

Create and push source code to a Remote Git Repository
We will create a remote handle called origin at https://github.com/AutomobileServiceCenter/
AutomobileServiceCenter.Core.git, as shown in Figure 12-26, so that from now on we can always refer to
the remote with the origin name.

Finally, we will push the commits from the master local branch to the remote named origin, as shown
in Figure 12-27.

■■ Note  Because we removed the credential cache, we will get a GitHub login prompt when we make the first
push to the remote repository.

Figure 12-26.  Adding a remote repository named origin

Figure 12-25.  Commiting changes to the Git local repository

https://github.com/AutomobileServiceCenter/AutomobileServiceCenter.Core.git
https://github.com/AutomobileServiceCenter/AutomobileServiceCenter.Core.git

Chapter 12 ■ Code Version Control Using GitHub Platform

441

After successful login, all the changes are pushed to the remote repository, as shown in Figure 12-28.

■■ Note  If the login is unsuccessful or the user is not authorized, an Unable to Access 403 error message will
be displayed on the bash.

Figure 12-27.  Pushing changes to a remote repository

Figure 12-28.  Successful Git push to a remote repository

Chapter 12 ■ Code Version Control Using GitHub Platform

442

If we go to the AutomobileServiceCenter.Core repository at GitHub, we should see that all the code is
available in the repository. It also shows that the user AutomobileServiceCenterDev makes the commit with
the comment Initial Commit.

Branching and merging source code
We have the latest code in the master branch in the AutomobileServiceCenter.Core repository. In large
projects, we cannot maintain all of the code base in one branch. For example, let’s say that version 1 (v1) of
the code is deployed to production from the master branch, and developers start their work toward version
2 (v2) of the application. And let’s assume there is a sudden issue in production, and we have to provide a
hotfix right away. In this scenario, we cannot push a build to production from the master branch, because
it contains unfinished work of V2, so we will hit a roadblock. So it is always advisable to have a master and
multiple other branches to support releases and ongoing development and merge them accordingly, based
on a release schedule.

For the Automobile Service Center application, we will create a Dev branch, and all developers will
work on that branch. After we decide to push a production build, we will have to merge dev to the master
branch and take a build from the master branch.

We will create a dev branch from the existing master branch, as shown in Figure 12-30.

Figure 12-29.  Latest code at the GitHub repository

Chapter 12 ■ Code Version Control Using GitHub Platform

443

Now we will push the newly created dev branch to a remote repository, as shown in Figure 12-31.

We can check the GitHub repository and see the dev branch, as shown in Figure 12-32.

We have both master and dev branches pointing to the same version of code, as shown in Figure 12-33.

Figure 12-30.  Dev local branch

Figure 12-31.  Pushing the dev branch to the remote repository

Figure 12-32.  Dev branch at GitHub repository

Chapter 12 ■ Code Version Control Using GitHub Platform

444

Now let’s say some other developer added a README file to the dev branch, as shown in Figures 12-34
and 12-35. In the context of the dev branch, we can click the Add a README button to add a README
document to the existing code.

Figure 12-34.  Adding a README file at the GitHub respository

Initial Commit

Master

Dev

Figure 12-33.  Status of master and dev branches

Chapter 12 ■ Code Version Control Using GitHub Platform

445

After we have updated the README text, enter a title and description of the commit and click Commit
New File. Because the option Commit Directly to the Dev Branch is selected, the new file will be added only
to the dev branch but not to the master branch, as shown in Figure 12-36.

Figure 12-35.  Adding content to the README file at the GitHub repository

Figure 12-36.  README file committed to the dev branch

Chapter 12 ■ Code Version Control Using GitHub Platform

446

The current status of branches is depicted in Figure 12-37.

Now we will get the latest code of dev (which includes the README file) onto the developer machine,
as shown in Figure 12-38. First we will get all the changes from the remote repository and put them in the
local repository's object database by using the git fetch command. In our case, all the changes from the
dev branch are located at the origin/dev remote tracking branch. Then we will merge the remote changes
to local by using the git merge command. We merge the origin/dev remote-tracking branch (a branch
fetched from a remote repository) with our local dev branch.

Initial Commit

Master

Dev

README File

Figure 12-37.  Status of master and dev branches

Figure 12-38.  Fetching and merging remote changes to the local repository

Chapter 12 ■ Code Version Control Using GitHub Platform

447

Now let’s assume the developer made the code change in the dev branch on his local machine. The
developer made the change to the ApplicationTitle entry in the appsettings.json file by changing the value
from Automobile Service Center Application to Automobile Service Center App, as shown in Listing 12-2.

Listing 12-2.  appsettings.json file

 "AppSettings": {
 "ApplicationTitle": "Automobile Service Center App",
 "AdminEmail": "#########################",
 "AdminName": "Admin",
 "AdminPassword": "###########",
 "EngineerEmail": "#########################",
 "EngineerName": "Engineer",
 "EngineerPassword": "#########################",
 "Roles": "Admin,User,Engineer",
 "SMTPServer": "smtp.gmail.com",
 "SMTPPort": "587",
 "SMTPAccount": "#########################",
 "SMTPPassword": "#########################",
 "TwilioAccountSID": "#########################",
 "TwilioAuthToken": "#########################",
 "TwilioPhoneNumber": "#########################"
 },

We will push this change to the dev branch on the remote repository, as shown in Figure 12-39. First we
will find the status of the local repository, and then we will add all the modified/deleted files to the commit.
We will do one more status check to see whether all the files are properly staged for the commit. Finally, we
will do a commit followed by a push to the remote dev branch.

Chapter 12 ■ Code Version Control Using GitHub Platform

448

Figure 12-39.  Pushing changes from the local dev branch to the remote dev branch

Chapter 12 ■ Code Version Control Using GitHub Platform

449

If we look at the commit history at GitHub’s AutomobileServiceCenter.Core repository, we will find
the latest commit, as shown in Figure 12-40.

The current state of all branches is shown in Figure 12-41.

Figure 12-40.  Dev branch commit history at the GitHub repository

Initial Commit

Master

Dev

README File App Name Change

Figure 12-41.  Status of master and dev branches

Chapter 12 ■ Code Version Control Using GitHub Platform

450

Now that we have the master and dev branches at different versions, we’ll merge the dev branch with
the master so that the master branch will be updated with all changes from dev. We have to first check out
the master branch and then merge it with the dev branch. Finally, push the master branch to origin, as
shown in Figure 12-42.

If we go to the AutomobileServiceCenter.Core repository at GitHub and explore the master branch, we
should see the latest commits, as shown in Figure 12-43.

Figure 12-42.  Merging dev with the master branch

Figure 12-43.  Master branch commit history at GitHub

Chapter 12 ■ Code Version Control Using GitHub Platform

451

The current state of all branches is shown in Figure 12-44.

Reset an unwanted commit from Local Repository
Now let’s say the developer makes a mistake with a file and accidently commits the changes to the local
branch (but never pushes the changes to the remote). We will see how to revert the changes to the previous
version. Let’s assume the developer made a mistake in the appsettings.json file, as shown in Listing 12-3.

Listing 12-3.  Application title mistake

"ApplicationTitle": "Automobile Service Center Appp",

To find out which files have been changed from the last commit, we can use the git diff command, as
shown in Figure 12-45.

The developer accidently commits the code, as shown in Figure 12-46.

Initial Commit

Master

Dev

README File App Name Change

Figure 12-44.  Status of master and dev branches

Figure 12-45.  Finding files that are modified

Chapter 12 ■ Code Version Control Using GitHub Platform

452

To find out which files are included in the commit, we can use the git show command, as shown in
Figure 12-47.

Figure 12-46.  Commiting an unwanted change to the master repository

Chapter 12 ■ Code Version Control Using GitHub Platform

453

To revert the changes in the commit to the previous state, we need to use the git reset command, as
shown in Figure 12-48. --hard tells Git to discard the changes. If we do not want to discard the changes, we
should use --soft. HEAD~1 tells Git to move to one before the current revision, which means undoing the
current commit.

Reset an unwanted commit from Remote Repository
Now let’s say we pushed a wrong commit to the GitHub remote repository, as shown in Figure 12-49. The
Settings Change commit is the wrong commit that got pushed to the master branch.

Figure 12-47.  Finding the included files in the commit

Figure 12-48.  Undoing the latest commit from the local branch

Chapter 12 ■ Code Version Control Using GitHub Platform

454

If we want to revert that commit from the remote repository, we can use the git reset and push
commands.

If we now check GitHub’s AutomobileServiceCenter.Core repository, the wrong commit is reverted, as
shown in Figure 12-51.

Figure 12-49.  Unwanted commit in the remote repository

Figure 12-50.  Undoing the commit at the remote respository

Chapter 12 ■ Code Version Control Using GitHub Platform

455

Figure 12-51.  Unwanted commit is reverted at the GitHub repository

Resolve merge conflicts in source code

Now we will see how to resolve merge conflicts. When a developer changes a code file in his local respository
that was also changed and pushed to a remote branch by another developer, there will be conflicts at the time
of the code merge. When the first developer fetches the latest code from the same branch, he will be prompted
with conflicts. The developer should then decide which changes he wants to persist in the code base.

Let’s assume one developer commits the appsettings.json file with the application title set to ASC
App to the dev branch of the remote repository, as shown in Figure 12-52.

At the same time, another developer changes the same setting of the appsettings.json file to
Automobile Service Center Application, as shown in Listing 12-4.

Figure 12-52.  First developer commits the application title

Chapter 12 ■ Code Version Control Using GitHub Platform

456

Listing 12-4.  appsettings.json file

 "AppSettings": {
 "ApplicationTitle": "Automobile Service Center Application",
 "AdminEmail": "#########################",
 "AdminName": "Admin",
 "AdminPassword": "###########",
 "EngineerEmail": "#########################",
 "EngineerName": "Engineer",
 "EngineerPassword": "#########################",
 "Roles": "Admin,User,Engineer",
 "SMTPServer": "smtp.gmail.com",
 "SMTPPort": "587",
 "SMTPAccount": "#########################",
 "SMTPPassword": "#########################",
 "TwilioAccountSID": "#########################",
 "TwilioAuthToken": "#########################",
 "TwilioPhoneNumber": "#########################"
 },

When the developer who has local changes on the dev branch tries to fetch changes from the remote origin
and merge them with his local code, he will get an Operation Aborted message, as shown in Figure 12-53.

So the developer who has local changes on the dev branch should first stash all his local changes, and
then fetch all the latest sources from the dev branch, as shown in Figure 12-54. Then the developer should
resolve all conflicts and finally commit/push his changes to the remote repository.

Figure 12-53.  Aborting merge due to conflicts

Chapter 12 ■ Code Version Control Using GitHub Platform

457

■■ Note  Stashing will get work-in-progress changes and staged changes from the working directory and
save them on the stack of unfinished changes. The changes stored in the stack can later be retrieved and
applied at any time.

We need to manage the conflict by visiting the source code file and selecting the appropriate content to
persist. Stashed and upstream changes are shown in Listing 12-5.

Listing 12-5.  Conflicts in source code file

 "AppSettings": {
<<<<<<< Updated upstream
 "ApplicationTitle": "ASC App",
=======
 "ApplicationTitle": "Automobile Service Center Application",
>>>>>>> Stashed changes
 "AdminEmail": "#########################",
 "AdminName": "Admin",

Provide the resolution by updating the conflicting code, as shown in Listing 12-6.

Listing 12-6.  Resolving conflict in source code

 "AppSettings": {
 "ApplicationTitle": "Automobile Service Center App",
 "AdminEmail": "#########################",
 "AdminName": "Admin",

Figure 12-54.  Stashing local changes and retrieving the stashed changes

Chapter 12 ■ Code Version Control Using GitHub Platform

458

Now we can add the file to commit and push the changes to the dev branch on the remote origin, as
shown in Figure 12-55.

We can check the history of commits at GitHub and should see both commits, as shown in Figure 12-56.

Now we will set up a GUI-based tool to resolve conflicts. We will use the KDiff3 tool, an open source diff
tool. Download and install the latest version of KDiff3 from https://sourceforge.net/projects/kdiff3/
files/. When installation is completed, we can open the KDiff3 tool from the Windows Start menu, and it
should look like Figure 12-57.

Figure 12-55.  Committing and pushing merged code to the remote repository

Figure 12-56.  Dev branch commits history at GitHub

https://sourceforge.net/projects/kdiff3/files/
https://sourceforge.net/projects/kdiff3/files/

Chapter 12 ■ Code Version Control Using GitHub Platform

459

Figure 12-58.  Configuring the KDiff3 tool with Git

We need to configure Git to use the KDiff3 tool as the default diff tool. Run the git config commands
as shown in Figure 12-58.

Let’s simulate the same scenario of merge conflict that we dealt with previously. This time we will merge
the conflicts in the KDiff3 tool. After we pull the local changes by using git stash pop, we have to use the git
mergetool command to open KDiff3, as shown in Figure 12-59. KDiff3 will open the file compare view with
the file in context, as shown in Figure 12-60.

Figure 12-57.  KDiff3 tool

Chapter 12 ■ Code Version Control Using GitHub Platform

460

Figure 12-59.  Opening the KDiff3 tool to resolve conflict

Figure 12-60.  Resolving conflicts by using the KDiff3 tool

Chapter 12 ■ Code Version Control Using GitHub Platform

461

We can now use shortcuts such as Ctrl+1, Ctrl+2, or Ctrl+3 to merge the appropriate change, and the
same will be reflected in the output pane, as shown in Figure 12-61.

KDiff3 supports other options, shown in Figure 12-62, that can be used to merge files in different
combinations.

Figure 12-61.  The resolved conflict in KDiff3

Chapter 12 ■ Code Version Control Using GitHub Platform

462

After the merge is performed, save the file and close the KDiff3 window. If we use mergetool again,
we will get a message that there are no pending files to be merged, as shown in Figure 12-63. Now we can
proceed with the push operation on the dev branch.

Figure 12-64 shows the status of all branches of the AutomobileServiceCenter.Core repository at
GitHub.

Figure 12-62.  Merge options provided by KDiff3

Figure 12-63.  Checking pending files to merge

Chapter 12 ■ Code Version Control Using GitHub Platform

463

As the last part in this section, we will merge the master and dev branches when both branches are
moved forward with commits. Let’s update and commit the appsettings title setting on the master branch,
as shown in Figure 12-65.

Now the status of branches on the AutomobileServiceCenter.Core repository is shown in Figure 12-66.

Initial
Commit

Master

Dev

README File App Name
Change

ASC App Title
Change

Title conflict
merged

ASC Title
Change KDiff3 Merge

Figure 12-64.  Status of master and dev branches at GitHub

Figure 12-65.  Updating and committing appsettings.json to the master branch

Initial
Commit

Master

Dev

README File App Name
Change

ASC App Title
Change

Title conflict
merged

ASC Title
Change KDiff3 Merge

Master Title
Chng

Figure 12-66.  Status of the master and dev branches at GitHub

Chapter 12 ■ Code Version Control Using GitHub Platform

464

We will try to take all changes from the dev branch and merge them to the master branch. First we will
check out the master branch, and then use the git merge command to merge it with the dev branch, which
will ensure that all the changes in the local branches are merged. Then we will do a git fetch and merge
with the remote origin (which might require KDiff3 to resolve conflicts) to make sure we get all the remote
commits and merge them in the local master repository. Finally, we will commit and push the changes to the
remote master branch, as shown in Figure 12-67.

Figure 12-67.  Advanced merging between master and dev branches

Chapter 12 ■ Code Version Control Using GitHub Platform

465

■■ Note  In this demo, we have only one file in the dev branch to be merged with the master (appsettings.
json). But in reality, you might have different files.

Instead of using the merge command, we can also use the rebase command, which performs the same
merging operation but in a different way. With rebase, we will patch one of the branch’s commits, and that
patch will be reapplied on top of the other branch commit. This command is beyond the scope of this book; you
can find more information at the Git SCM web site, https://git-scm.com.

If we look at GitHub’s AutomobileServiceCenter.Core repository, we will have a combined history of
commits, as shown in Figure 12-68.

If we want to look at the history of a particular file, we can use the git log command, as shown in
Figure 12-69.

Figure 12-68.  Master branch commit history at GitHub

https://git-scm.com/

Chapter 12 ■ Code Version Control Using GitHub Platform

466

Figure 12-69.  Version history of a specific file

Chapter 12 ■ Code Version Control Using GitHub Platform

467

■■ Note  If we want to delete a branch from the system, we can use the git branch –d <branch name>
command.

By default, the .gitignore file is not checked in to the remote repository. Use git add .gitignore and later
commit/push changes to the remote origin.

Using GitHub with Visual Studio
The preceding section showed how to manage code with the help of the GitHub repository, using Git
Bash and Git commands. Git Bash is a good option in a development environment when we do not have a
sophisticated IDE that provides a graphical user interface to interact with GitHub repositories. Fortunately,
Visual Studio has good compatibility with GitHub tools and commands. This section demonstrates how to
use the Visual Studio IDE and perform GitHub operations.

Open Visual Studio and expand Team Explorer, as shown in Figure 12-70.

Click the Clone option in the Local Git Repositories section and enter the AutomobileServiceCenter.
Core GIT URL (which we got while setting up the GitHub repository), as shown in Figure 12-71.

Figure 12-70.  Visual Studio Team Explorer

Chapter 12 ■ Code Version Control Using GitHub Platform

468

After the solution is cloned, we have the ASC.Solution listing in the Git repositories, as shown in
Figure 12-72.

Double-click ASC.Solution. You should see project’s home screen, as shown in Figure 12-73.

From the project home screen, we can perform multiple operations such as git push and fetch,
maintain branches, and manage settings. First we will set the user settings by navigating to the Settings tab,
as shown in Figure 12-74.

Figure 12-71.  Cloning the Automobile Service Center GitHub repository

Figure 12-72.  Automobile Service Center solution in the local Git repositories

Figure 12-73.  Git project home screen in Team Explorer

Chapter 12 ■ Code Version Control Using GitHub Platform

469

Navigate to Global settings, and enter the AutomobileServiceCenterDev’s credentials, as shown in
Figure 12-75. Click the Update button.

We can open ASC.Solution in Visual Studio and explore the code. We can switch branches by using the
Branches tab, as shown in Figure 12-76. We need to double-click the branch to set the focus for that branch.

Figure 12-74.  Setting up Git user settings

Figure 12-75.  Updating the user configuration

Chapter 12 ■ Code Version Control Using GitHub Platform

470

All the Git remote repository operations are performed from the Sync tab, as shown in Figure 12-77.

Figure 12-76.  Local and remote branches in Team Explorer

Figure 12-77.  Sync tab in Team Explorer

Chapter 12 ■ Code Version Control Using GitHub Platform

471

Now we will see how to make code changes in Visual Studio and make the commit to the dev branch.
Open ASC.Solution in Visual Studio and make a change in HomeController by removing the about action
and delete About.cshtml from the Views folder. All the changes are displayed in the Changes tab, as shown
in Figure 12-78.

We can ignore files in the .vs folder from the commit by right-clicking and selecting the Ignore These
Local Items option, as shown in Figure 12-79. After ignoring the .vs folder, Visual Studio will automatically
update the .gitignore file.

Figure 12-78.  Changes tab in Team Explorer

Chapter 12 ■ Code Version Control Using GitHub Platform

472

We can also manually modify the .gitignore file to ignore the .vs folder, as shown in Listing 12-7.

Listing 12-7.

*.suo
*.user
bin
obj
packages
.vs

Enter the commit comments and click the Commit All button, shown in Figure 12-80.

Figure 12-79.  Ignoring unwanted files from the commit

Chapter 12 ■ Code Version Control Using GitHub Platform

473

The code is committed to the local repository, as shown in Figure 12-81.

If we go to the Sync tab, we should see that the commit is staged and we can push the change to the
remote repository, as shown in Figure 12-82.

Figure 12-80.  Committing the pending changes

Figure 12-81.  Successful commit to the local repository

Chapter 12 ■ Code Version Control Using GitHub Platform

474

Click the Push option, and the changes are pushed to the remote origin. We can check the GitHub
AutomobileServiceCenter.Core repository to see the latest commit, as shown in Figure 12-83.

Now we will see how to merge code from the master to the dev branch from Visual Studio. Navigate
to the Branches tab and click the dev branch to be the focus. In the Merge from Branch option, select the
master to indicate that master should be merged with dev, as shown in Figure 12-84.

Figure 12-82.  Commit staged in the Sync tab for a remote repository push

Figure 12-83.  Master branch commit history at GitHub

Chapter 12 ■ Code Version Control Using GitHub Platform

475

Click the Merge button, and we’ll get a confirmation after the merge is completed, as shown in
Figure 12-85.

Figure 12-84.  Master branch merge into dev branch

Figure 12-85.  Successful merge of master to dev branch

Chapter 12 ■ Code Version Control Using GitHub Platform

476

The changes are merged locally, and we need to push those changes to the dev branch. Navigate to
the Sync tab, and we should see all the pending commits (due to the merge) to the dev branch, as shown in
Figure 12-86.

Click the Push option, and all the changes will be pushed to the remote repository. All commits for the
dev branch are shown in Figure 12-87.

Figure 12-86.  Pending commits to the remote repository push operation

Figure 12-87.  Dev branch commits history at GitHub

Chapter 12 ■ Code Version Control Using GitHub Platform

477

Now we will see how to resolve merge conflicts by using Visual Studio. Let’s assume that another
developer changed the text in the contact action of HomeController in the dev branch, as shown in
Figure 12-88.

At the same time, another developer made a different change to the same text of the contact action in
HomeController in his local repository, as shown in Listing 12-8.

Listing 12-8.  Contact action

public IActionResult Contact()
{
 ViewData["Message"] = "ASC contact page.";
 return View();
}

Now navigate to the Sync tab and click the Fetch option. This should fetch the remote commits, as
shown in Figure 12-89.

Figure 12-88.  Contact action changes at the GitHub dev branch

Chapter 12 ■ Code Version Control Using GitHub Platform

478

We need to create a commit for the changes that we had in the local Visual Studio instance. Navigate
to the Changes tab and create a commit as we did earlier. Now get back to the Sync tab and click Pull. We
should see the conflicts shown in Figure 12-90.

Figure 12-89.  Fetching remote commits from the dev branch

Figure 12-90.  Merging conflicts between outgoing and incoming commits

Chapter 12 ■ Code Version Control Using GitHub Platform

479

Click the Conflicts option, which should open the Resolve Conflicts section with HomeController listed
in the Conflicts section, as shown in Figure 12-91.

Select HomeController and click the Merge button to open KDiff3 (which we already configured for Git
at Git Bash), as shown in Figure 12-92.

Figure 12-91.  Resolving conflicts on HomeController

Chapter 12 ■ Code Version Control Using GitHub Platform

480

Complete the merge in KDiff3, save the file, and close the tool. The merge will be resolved at Visual
Studio, and the Resolve Conflicts section shows no remaining conflicts message, as shown in Figure 12-93.

Figure 12-93.  No pending conflicts message in the Resolve Conflicts section

Figure 12-92.  Merging conflicts in the KDiff3 tool

Chapter 12 ■ Code Version Control Using GitHub Platform

481

Click the Commit Merge button, and this will take us to the Changes section. Enter the comment and
click the Commit All button, as shown in Figure 12-94.

All the merge changes are staged in a commit. Now we can go to the Sync tab and see all the pending
commits, as shown in Figure 12-95.

Figure 12-94.  Committing merged changes

Figure 12-95.  Pushing the merged commit to the remote repository

Chapter 12 ■ Code Version Control Using GitHub Platform

482

Click the Push option. All the commits are pushed to the remote origin, and we can verify the commits,
as shown in Figure 12-96.

If we have to look at the history of a particular code file, we right-click the file in Visual Studio and select
View History, as shown in Figure 12-97.

The History view will be displayed, as shown in Figure 12-98.

Figure 12-97.  Version history of a particular file

Figure 12-96.  Dev branch commit history on GitHub

Chapter 12 ■ Code Version Control Using GitHub Platform

483

Now let’s assume there are some changes on the remote repository and we want to fetch the latest to
our local branch. The dev branch of the remote repository has a commit on the appsettings.json file, as
shown in Figure 12-99.

To fetch this change to the local repository, navigate to the Sync tab and click the Pull option in the
Incoming Commits section. The changes will be retrieved from the remote repository and merged to the
local repository, as shown in Figure 12-100.

Figure 12-98.  Displaying the history view

Figure 12-99.  appsettings.json file changes on the dev branch

Chapter 12 ■ Code Version Control Using GitHub Platform

484

Now we will see how to revert the changes that are pushed in a commit to the remote repository.
Navigate to the Changes section and select the View History options from the Actions menu, as shown in
Figures 12-101 and 12-102.

Figure 12-101.  View history of changes

Figure 12-100.  Pull the latest changes to the local repository from the remote

Chapter 12 ■ Code Version Control Using GitHub Platform

485

In history mode, right-click a particular commit that we want to revert and select the revert option.
There will be a confirmation dialog box. Select yes, as shown in Figure 12-103.

The revert operation will be completed, and the corresponding commit will be performed. Now if we
navigate to the Sync tab, we should see the reverted commit in the Outgoing Commits section, as shown in
Figure 12-104.

Figure 12-102.  History of all commits

Figure 12-103.  Confirmation for reverting a commit

Chapter 12 ■ Code Version Control Using GitHub Platform

486

Click the Push option, and the commit will be reverted on the remote origin.

■■ Note  GitHub also supports forking a repository; GitHub makes a copy of the original repository and
associates the copy with the individual account owner who forked the repository.

Repository fork concepts are beyond the scope of this book. For more information, visit https://help.github.
com/articles/fork-a-repo/.

Similarly, a lot of other features and functionalities are supported by both Git Bash and Visual Studio Git tools.
This book shares the basic operational knowledge that every developer should possess to perform day-to-day
activities with code maintenance and management. For more details and advanced concepts related to Git
operations, I advise you to go through the following documentation:

Git with Visual Studio: www.visualstudio.com/en-us/docs/git/gitquickstart

Git with Git Bash: https://git-scm.com/book/en/v2

Summary
In this chapter, you learned the importance of having a sophisticated and reliable version-control system to
manage and maintain source code. Today’s code-versioning systems provide resilient and effective solutions
to deal with business requirements and integrations that are highly complex. Version-control systems provide
mission-critical features such as branching and merging, revising and reverting to historical versions, and
collaborating with project management tools to map business requirements with code artifacts.

Figure 12-104.  Commit created due to revert operation

https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/fork-a-repo/
https://www.visualstudio.com/en-us/docs/git/gitquickstart
https://git-scm.com/book/en/v2

Chapter 12 ■ Code Version Control Using GitHub Platform

487

Git, one of the most popular version-control systems, is capable of providing decentralized repositories
in which a developer can maintain multiple local and remote repositories. GitHub is a hosting service for
Git repositories that is free for public and open source projects. GitHub, in addition to providing source code
management, provides other features such as bug tracking, feature requests, task management, wikis, and
access control for projects.

For our Automobile Service Center application, you created a new GitHub account with a new public
repository. You installed GitHub for Windows, which provides both Git Bash and a graphical user interface
to manage source code. You focused on the Git Bash shell to perform Git operations. You added a developer
account as a collaborator for the AutomobileServiceCenter.Core repository and followed the developer
invitation acceptance flow.

You performed the following operations by using Git Bash:

•	 Configured Git Bash with developer details.

•	 Configured a gitignore file to ignore folders such as bin and obj.

•	 Initiated Git, committed all changes, and pushed to the remote repository.

•	 Created dev and master branches.

•	 Fetched and merged the latest changes from the remote origin to the local branch.

•	 Merged the master and dev branches when they are on different commits.

•	 Reset commits in both local and remote.

•	 Configured the KDiff3 merge tool, which you used to resolve merge conflicts by
stashing the local changes.

•	 Merged branches when all the branches are fast-forwarded with commits.

•	 Checked version logs and deleted a branch.

In the last section of this chapter, you configured Git in Visual Studio 2017. You learned about the
sections provided by Visual Studio, such as Sync, Changes, and Settings. You performed operations such as
fetching from the remote, committing to a branch, merging branches with and without merge conflicts, filing
historical versions, reverting a commit on the remote origin.

Code version management using Git is a vast topic that can’t be completely covered in one chapter
of any book. I advise you to go through specific Git-related books to gain more expertise. Pro Git by Scott
Chacon and Ben Straub (Apress, 2014) provides in-depth knowledge on performing advanced operations
using Git.

References
	 1.	 https://git-scm.com/

	 2.	 www.visualstudio.com/en-us/docs/git/overview

https://git-scm.com/
https://www.visualstudio.com/en-us/docs/git/overview

489© Rami Vemula 2017
R. Vemula, Real-Time Web Application Development, https://doi.org/10.1007/978-1-4842-3270-5_13

CHAPTER 13

Configuring a Continuous Build
with Travis CI

The increasing complexity of business requirements not only increases the complexity of code but also
creates numerous challenges in delivering exceptional code quality along with stability. As you saw in
the preceding chapter, source-code version-control systems help projects in code maintenance through
local and remote repositories by providing good control for managing different versions of code through
branches. Having a source version-control system alone is not enough to achieve code stability. With ever-
changing business requirements and development team dynamics, managing code stability in version
systems is a challenging task.

Many modern tools and platforms provide continuous integration (CI) with various version-control
repositories, through which we can configure automatic builds and tests to run on the source code. Building
is the process of compiling the source code to get an executable package, which can then be used to run
the application on either a server or a client. Testing is the process of running automated unit-test cases (for
example, xUnit tests) as part of the build to make sure the source code is properly aligned with its business
and technical objectives.

Without continuous integration for building and testing, we can commit bad code to the
repository—which poses a serious threat to the entire development team, because anyone can fetch
committed code and assume it to be a stable version. With new continuous integration platforms, we can
configure the repository with a CI provider to validate each commit and notify all the stakeholders if the
build or test fails. Continuous integration ensures good code quality, minimizes the impact of build errors in
code, and automates repetitive tasks.

Many third-party providers offer online services for building and testing source code. Travis CI is a
hosted and distributed continuous integration provider for GitHub projects.

The key features of Travis CI are as follows:

•	 Is easy to get started. Because Travis is a hosted service, there is no need to install
and configure any other tools or components.

•	 Builds, tests, and deploys the source code.

•	 Provides notifications when the build or test fails.

•	 Provides static code analysis.

•	 Offers good support for applications based on .NET Core.

•	 Provides out-of-the-box support for multiple languages.

In this chapter, we are going to use the Travis CI platform to build and test the source code of the
AutomobileServiceCenter.Core GitHub repository.

https://doi.org/10.1007/978-1-4842-3270-5_13

Chapter 13 ■ Configuring a Continuous Build with Travis CI

490

Introducing Travis CI
Travis CI is a distributed and hosted continuous integration service for building and testing the source
code of software projects hosted at GitHub. Travis CI builds can be enabled on GitHub public repositories
for free. For private repositories, Travis CI offers paid subscriptions. Apart from supporting build and test
functionalities, Travis CI is capable of deploying builds to various environments from different branches of
GitHub. Travis CI supports several providers for deployments, including AWS, Azure, Heroku, and npm.

Travis CI is capable of running builds concurrently (this can be limited though settings). It also
is capable of automatically cancelling builds when new commits arrive as well as supporting multiple
languages.

The Travis CI build process is shown in Figure 13-1. When a commit is pushed to a GitHub branch,
GitHub triggers the Travis CI build process. Travis CI will then check out the relevant branch and run the
commands specified in .travis.yml to execute automated builds and tests.

.travis.yml is a YAML text file that should be configured at the root directory of the GitHub repository.
This configuration file specifies the programming languages that are used in the project, the dependencies
that need to be installed before the build process starts on the source code, the desired environment
specifications where the build should happen, and the branches from which the source code should be used
to execute the build.

Typically, a Travis YAML file consists of the following steps:

	 1.	 Before Install

	 2.	 Install

	 3.	 Before Script

	 4.	 Script

	 5.	 After Success/Failure

	 6.	 Before Deploy

	 7.	 Deploy

	 8.	 After Deploy

	 9.	 After Script

Travis uses the Before Install and Install steps to fetch all the dependencies. The Before Script and Script
steps are used to set up the environment and run the build script. The After Success/Failure step is useful
if you want to perform any operation—for example, creating log files for a successful or failed build. The
Before Deploy, Deploy, and After Deploy steps are used to prepare and deploy the generated build packages
to Travis-supported deployment providers. The After Script step is the last step, which runs after the entire
script is executed.

Push code to GitHub
Repository.

GitHub triggers Travis CI
Build.

Travis builds and tests
source code.

If deployment is
configured, Travis CI
deploys the build.

Travis CI notifies all the
stakeholders.

Figure 13-1.  Travis CI workflow

Chapter 13 ■ Configuring a Continuous Build with Travis CI

491

■■ Note  For more information on customizing the .travis.yml file, visit https://docs.travis-ci.com/
user/customizing-the-build/.

If deployment is configured in the YAML file, Travis CI will deploy the generated build package to the
specified environment. Finally, Travis CI notifies all the stakeholders (primarily developers and project
managers) about the status (success or failure) of the build/test execution.

■■ Note W e will use Travis CI only to build and test the source code of the AutomobileServiceCenter.
Core repository’s Dev branch. Even though Travis CI supports continuous deployment, we are not going to
use its deployment feature. We will use Docker containers (which are described in later chapters) to achieve
continuous deployment through containerization.

Creating a Travis CI Account and Associating It with the
GitHub Repository
In this section, we will integrate the AutomobileServiceCenter.Core repository with the Travis CI build.
Let’s get started by creating an account at Travis CI. Visit https://travis-ci.org/, as shown in Figure 13-2.

Click the Sign In with GitHub button and enter the same credentials that you used to create the GitHub
account. Then click the Sign In button, shown in Figure 13-3.

Figure 13-2.  Travis CI sign-up

https://docs.travis-ci.com/user/customizing-the-build/
https://docs.travis-ci.com/user/customizing-the-build/
https://travis-ci.org/

Chapter 13 ■ Configuring a Continuous Build with Travis CI

492

Figure 13-3.  Signing in to Travis CI by using GitHub credentials

Chapter 13 ■ Configuring a Continuous Build with Travis CI

493

GitHub will display an authorize prompt that allows Travis CI to access account information from
GitHub, as shown in Figure 13-4. Click the Authorize travis-ci button.

Figure 13-4.  Authorizing Travis CI to access GitHub account information

Chapter 13 ■ Configuring a Continuous Build with Travis CI

494

Upon successful authorization, a success message will be displayed, as shown in Figure 13-5.

Figure 13-5.  Successful synchronization of account details from GitHub to Travis CI

Figure 13-6.  Accounts fly-out menu option

Hover over the AutomobileServiceCenter account name at the top-right corner and click the Accounts
option, shown in Figure 13-6.

Chapter 13 ■ Configuring a Continuous Build with Travis CI

495

You will see all the public repositories of the GitHub account, including AutomobileServiceCenter.Core,
as shown in Figure 13-7.

Figure 13-7.  GitHub public repositories listed at the Travis CI platform

Figure 13-8.  Activating the Travis CI build for the AutomobileServiceCenter.Core GitHub repository

■■ Note I f you are not able to see the public repositories, click the Sync Account button, which will fetch all
the public repositories from the GitHub account.

You can activate the AutomobileServiceCenter.Core repository with the Travis CI build by toggling the
status, as shown in Figure 13-8.

Configuring the GitHub Repository with Travis.yml
In this section, we will create a .travis.yml file at the root of the GitHub’s AutomobileServiceCenter.Core
repository in the Dev branch, as shown in Listing 13-1.

We first set the language to C# and set the Linux distribution to trusty. We then give access to sudo and
turn off mono because we are running on .NET Core. We need to specify the Dotnet Core version as 1.0.3, so
the build will happen on the specified version.

The important section is the script section, where we specify the commands that will be run as part
of the build process. First we do a dotnet restore (we need to specify both NuGet and MyGet source feeds
because we need to get the SignalR dependency from MyGet repositories), followed by dotnet test, which

Chapter 13 ■ Configuring a Continuous Build with Travis CI

496

will run all the xUnit test cases in the specific project (which is ASC.Tests). Lastly, we will run dotnet build,
which will build the entire solution.

Listing 13-1.  .travis.yml file

language: csharp
dist: trusty
sudo: required
mono: none
dotnet: 1.0.3
script:
 - �dotnet restore -s https://dotnet.myget.org/F/aspnetcore-dev/api/v3/index.json -s

https://api.nuget.org/v3/index.json
 - dotnet test ./ASC.Tests/ASC.Tests.csproj
 - dotnet build

■■ Note W e need to set the distribution to trusty so that the build will run on Ubuntu 14.04, because .NET
Core doesn’t work on Ubuntu 12.04 (which is the default Linux build environment on Travis right now).

Commit the .travis.yml file, as shown in Figure 13-9.

Figure 13-9.  Committing Travis CI to the GitHub repository

Chapter 13 ■ Configuring a Continuous Build with Travis CI

497

Immediately after the push operation is completed, Travis CI will trigger a build, as shown in Figure 13-11.

Figure 13-10.  Pushing the commit to the GitHub repository

Figure 13-11.  Travis CI build in progress

Figure 13-12.  Travis CI build failure

Push the change to the remote origin from Visual Studio, as shown in Figure 13-10.

After some time, we can check the progress of the Travis build. When you check, you’ll see that the build
failed, as shown in Figure 13-12.

Chapter 13 ■ Configuring a Continuous Build with Travis CI

498

We can check the job log at the bottom of the page, where we can find the details about the build failure,
as shown in Figure 13-13.

Figure 13-13.  Job log of Travis CI build

As the error says, Duplicate 'Content items were included. The .NET SDK includes Content items
from your project directory by default. You can either remove these items from your project file, or set the
EnableDefaultContentItems property to false if you want to explicitly include them in your project file. We
need to set the EnableDefaultContentItems property to false in ASC.Web.csproj as shown in Listing 13-2.

■■ Note E dit the CSPROJ file by right-clicking the ASC.Web project in Visual Studio and selecting the Edit ASC.
Web.csproj option.

Listing 13-2.  Setting EnableDefaultContentItems to false

<PropertyGroup>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 <UserSecretsId>aspnet-ASC.Web-9D645DBB-9112-4508-9007-84D07A1B38F0</UserSecretsId>
 <PackageTargetFallback>portable-net45+win8</PackageTargetFallback>
 <EnableDefaultContentItems>false</EnableDefaultContentItems>
 <PreBuildEvent></PreBuildEvent>
</PropertyGroup>

Chapter 13 ■ Configuring a Continuous Build with Travis CI

499

■■ Note  To simulate other types of build fails, especially failing a build on running an xUnit test case, explicitly
comment out the session-related code in the Index action of HomeController.

After some time, we can see that the build still fails, as shown in Figure 13-15. If we analyze the job
details, we can see the dotnet test command is exited with code 1. The root cause is that one of the four
xUnit test cases failed, and the failed test case is HomeController_Index_Session_Test.

Figure 13-14.  Travis CI build in progress

Figure 13-15.  Travis CI build failed because of failed xUnit test cases

Commit and push the CSPROJ change to the Dev branch. You should see the Travis build triggered, as
shown in Figure 13-14.

The HomeController_Index_Session_Test test method is shown in Listing 13-3. It checks for a not-null
assertion on the session variable Test, but in reality we are getting the Test session variable as null.

Chapter 13 ■ Configuring a Continuous Build with Travis CI

500

Listing 13-3.  HomeController Index action Session test

[Fact]
public void HomeController_Index_Session_Test()
{
 var controller = new HomeController(optionsMock.Object);
 controller.ControllerContext.HttpContext = mockHttpContext.Object;

 controller.Index();

 // Session value with key "Test" should not be null.
 Assert.NotNull(controller.HttpContext.Session.GetSession<ApplicationSettings>("Test"));
}

Now let’s check the actual method under test (the Index action of HomeController), as shown in
Listing 13-4. The code related to the session is in a commented state, which is why the Test session variable
is not getting set, and that results in the test failing.

Listing 13-4.  Index action of HomeController

public IActionResult Index()
{
 // Set Session Test
 // HttpContext.Session.SetSession("Test", _settings.Value);
 // Get Session Test
 // var settings = HttpContext.Session.GetSession<ApplicationSettings>("Test");

 // Usage of IOptions
 ViewBag.Title = _settings.Value.ApplicationTitle;
 return View();
}

Uncomment the code as shown in Listing 13-5. Then commit and push the code to the Dev branch.

Listing 13-5.  Updated Index action of HomeController

public IActionResult Index()
{
 // Set Session Test
 HttpContext.Session.SetSession("Test", _settings.Value);
 // Get Session Test
 var settings = HttpContext.Session.GetSession<ApplicationSettings>("Test");

 // Usage of IOptions
 ViewBag.Title = _settings.Value.ApplicationTitle;
 return View();
}

Chapter 13 ■ Configuring a Continuous Build with Travis CI

501

Now the build will be passed, as shown in Figure 13-16.

Figure 13-17.  Job log of a successful Travis CI build

Figure 13-16.  Travis CI build success

If you look at the job log, you should see that dotnet build is completed, as shown in Figure 13-17.

Chapter 13 ■ Configuring a Continuous Build with Travis CI

502

■■ Note  Sometimes the build status will not be properly reflected at Travis-CI.org. This issue is being
tracked at https://github.com/travis-ci/travis-ci/issues/3996.

It will open a pop-up where we can select the markup text for the Build icon, as shown in Figure 13-19.
Select Markdown in the combo box and then select the text displayed below it.

Displaying the Travis Build Status at the GitHub Repository
Home Page
In this section, you will see how to display the build status on GitHub’s AutomobileServiceCenter.Core
repository home page, which is README.md. Click the Build icon on the Travis repository page, as shown in
Figure 13-18.

Figure 13-18.  Build icon at Travis CI portal for the AutomobileServiceCenter.Core repository

Figure 13-19.  Build icon markup text

Change the branch name from master to dev, as shown in Listing 13-6.

https://github.com/travis-ci/travis-ci/issues/3996

Chapter 13 ■ Configuring a Continuous Build with Travis CI

503

Listing 13-6.  Changing the source code branch name in markdown

[![Build Status](https://travis-ci.org/AutomobileServiceCenter/AutomobileServiceCenter.Core.
svg?branch=dev)](https://travis-ci.org/AutomobileServiceCenter/AutomobileServiceCenter.Core)

Now go to the Dev branch of the AutomobileServiceCenter.Core repository in GitHub and edit the
README.md file in the web browser itself, as shown in Figure 13-20.

Figure 13-20.  Updatig the README.md file with the Build icon markup text

Enter a commit comment and click the Commit Changes button.

Figure 13-21.  Committing the README.md changes to the GitHub repository

Chapter 13 ■ Configuring a Continuous Build with Travis CI

504

The Travis build status is updated in the Dev branch of GitHub’s AutomobileServiceCenter.Core
repository, as shown in Figure 13-23.

Figure 13-24.  The build’s failed status at the AutomobileServiceCenter.Core GitHub repository

Committing the change to the Dev branch will again trigger the Travis build, and it will be completed as
shown in Figure 13-22.

Figure 13-22.  Travis CI build success

Figure 13-23.  The build status at the AutomobileServiceCenter.Core GitHub repository

■■ Note  It might take some time for the correct build status to be reflected on the GitHub repository.

Simulate a build failure by explicitly making an xUnit test case fail. Then the failed build status would be
as shown in Figure 13-24.

Chapter 13 ■ Configuring a Continuous Build with Travis CI

505

Enabling Travis Build Notifications to Users
This section demonstrates how to send notifications to specific users on the events of successful and failed
builds. By default, a build e-mail is sent to the committer and the author, but only if they have access to the
repository that the commit was pushed to, and they should be registered on the Travis CI system. To send
e-mail to different users, regardless of whether they have a registered account, we can update .travis.
yml as shown in Listing 13-7. In the notifications section, we need to specify all the e-mail recipients’
addresses. We can also configure Travis to always send e-mail notifications on a notification event such as
on_success and on_failure.

Listing 13-7.  Email notification configuration in .travis.yml file

language: csharp
dist: trusty
sudo: required
mono: none
dotnet: 1.0.3
script:
 - dotnet restore -s https://dotnet.myget.org/F/aspnetcore-dev/api/v3/index.json -s
https://api.nuget.org/v3/index.json
 - dotnet test ./ASC.Tests/ASC.Tests.csproj
 - dotnet build
notifications:
 email:
 recipients:
 - autoservicenternew@gmail.com
 - automobileservicecenterdev@gmail.com
 on_success: always
 on_failure: always

Commit and push the .travis.yml file to the Dev branch. A Travis build will be triggered, and the
status would be sent in an e-mail as shown in Figure 13-25.

Chapter 13 ■ Configuring a Continuous Build with Travis CI

506

■■ Note  The Travis build is failing because to test the build status, we simulated a failed build scenario.

Now we will fix the build issue and push to the remote repository. We should get a success e-mail as
shown in Figure 13-26.

Figure 13-25.  Failed Travis CI build e-mail notification

Chapter 13 ■ Configuring a Continuous Build with Travis CI

507

Summary
You started this chapter by learning about the importance of continuous integration tools and platforms in
maintaining code quality for complex applications. Even though version-control systems help applications
maintain and resolve issues for large code bases, managing code stability is always a challenge. This
challenge can be overcome by leveraging platforms such as Travis CI, which is an online hosted and
distributed continuous integration provider for GitHub. Travis CI can build, test, and deploy the source code
and can send notifications on build success and fail events.

Travis CI is primarily based on a .travis.yml configuration file through which the entire build script
can be configured for various program languages, dependencies, and environment specifications. The Travis
configuration file contains events such as Before Script, After Success, and After Failure, through which you
can perform specific actions.

You created an account for the Automobile Service Center at the Travis platform by using the same
credentials that you used to create a GitHub account. Upon successful creation of an account, Travis pulls
the details of public repositories that can be activated for continuous integration. You then proceeded to
activate the CI for the AutomobileServiceCenter.Core repository at the Travis platform. Later you created
the .travis.yml file for the Automobile Service Center application with dotnet commands and committed
the code to the remote repository. after the commit was pushed, Travis automatically started the build
process, which included restoring the dependencies, running the xUnit tests, and building the source code.
In the process of achieving a successful build, you configured ASC.Solution to not include default content
items and fixed the broken xUnit tests.

Figure 13-26.  Successful Travis CI build e-mail notification

Chapter 13 ■ Configuring a Continuous Build with Travis CI

508

You updated the README.md file on the Dev branch of GitHub's AutomobileServiceCenter.Core
repository to include the markdown that will display the latest build status from Travis. Finally, you updated
.travis.yml to include e-mail addresses of all stakeholders who need to receive notifications on successful
or failed builds.

References
	 1.	 https://git-scm.com/

	 2.	 www.visualstudio.com/en-us/docs/git/overview

https://git-scm.com/
https://www.visualstudio.com/en-us/docs/git/overview

509© Rami Vemula 2017
R. Vemula, Real-Time Web Application Development, https://doi.org/10.1007/978-1-4842-3270-5_14

CHAPTER 14

Preparing an Application for
Production and Creating a
Docker Image

The build and deployment are two crucial phases in the software development life cycle. In these phases, the
product is released not only to different stakeholders for evaluation, but also to the market, where customers
can adopt and use the product. Even though the terms build and deployment are often used interchangeably,
they are quite different. The build is the process of compiling the source code and associated artifacts,
thereby generating deployment-ready packages. Deployment is the process of copying the package that was
generated by the build to the server (or any targeted machine) and making it available for customers or
stakeholders.

In the preceding chapter, we explored build concepts through Travis CI integration, and you became
familiar with how to trigger automated builds for our Automobile Service Center application. In this chapter,
we’ll focus on the deployment strategy for our application. There are many ways to deploy an application
to servers; for example, we could use modern continuous integration services from hosted providers such
as Travis CI, or we could integrate source version-control repositories such as GitHub directly with Azure
Cloud.

A typical problem faced during most deployments is packaging both the application and environment
dependencies and making sure they are available on the targeted server. A successful deployment strategy
should ensure that the targeted server is equipped with all the necessary dependencies and artifacts so
that the application works seamlessly, just as it did on the developer’s machine. In these scenarios, we
can use container technology to plan a deployment strategy to ensure that all the required environmental
dependencies (such as runtimes and tools) are packaged along with the compiled code and shipped to the
server in small, executable units called containers. On the server, the containers are isolated from other
software and run independently by using container technology.

In a way, containers abstract the application from the operating system and infrastructure. Even though
containers are similar to virtual machines, there are significant differences. The major difference is that
containers share the same kernel from the host machine, whereas virtual machines have kernels of their
own. The key advantages of container technology are as follows:

•	 Containers are isolated units, so the crashing of one container will not impact other
containers on the same server.

•	 Containers are lightweight compared to virtual machines.

•	 Creating and deploying a new container is quick, which provides more horizontal
scalability on higher loads.

https://doi.org/10.1007/978-1-4842-3270-5_14

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

510

•	 Containers are less intensive than virtual machines, so more containers can be
provisioned on the same server.

•	 Containers are more reliable in delivering stable applications because they can
package all dependencies of the application.

•	 They are cost-effective.

•	 Containers improve development team productivity because they remove the
operational overhead of environment inconsistencies.

In this chapter, we will use the Docker container platform to build, ship, and run the Automobile
Service Center application on a server. You will first learn about Docker and its associated concepts
(including Docker images and Docker Hub). Then we will build and test a Docker image for the Automobile
Service Center source code.

Exploring Docker
Docker is an open source container technology platform promoted by the Docker company. It provides
isolation, abstraction, and automation to software applications by using virtualization concepts on Linux
and Windows operating systems. In short, Docker isolates the applications from infrastructure and
host operating systems. When an application is “Dockerized,” all the required libraries, dependencies,
environment runtimes, and configuration files are packaged into a container. Docker containers can be
taken to any Dockerized environment and can run seamlessly without users worrying about installation of
any prerequisites. Because containers are lightweight and don’t require a hypervisor (which is required for
VMs), we can run more containers on a given host machine.

Docker uses a client/server architecture, as shown in Figure 14-1. The Docker client is the primary
system where users interact with Docker through commands. The Docker client talks to the Docker daemon,
which does the heavy lifting of building, running, and distributing the Docker containers. The Docker client
and daemon can run on the same system, or a Docker client can connect to a remote Docker daemon.
When the Docker client sends a docker pull command to the daemon, the Docker daemon interacts with a
Docker registry to fetch the required Docker images. Similarly, when we use the docker push command, the
Docker daemon will save the image to a Docker registry. Docker Hub is a publicly available Docker registry
and is the default option configured for Docker images. Docker Cloud is one more such registry.

Docker Client Docker RegistryContainers Images

Docker Daemon

Figure 14-1.  Docker architecture

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

511

A Docker image is a read-only template with instructions for creating a Docker container. We can use
an existing Docker image or create a new one from an already existing Docker image by using a Dockerfile.
When we change the Dockerfile and rebuild the image, only those layers that have changed are rebuilt,
making the images lightweight, small, and fast when compared to other virtualization technologies.

A Docker container is a runnable instance of an image. Docker commands can be used to manage
containers. A Docker container can connect to one or more networks, can have storage attached to it, and
can be used to create a new Docker image based on the container’s state.

Docker Swarm provide cluster management and orchestration features that are required to manage
multiple Docker engines in a cluster. This feature is used to provide high scalability and reliable service
through Docker integration.

■■ Note  Docker Swarm is beyond the scope of this book.

Installing Docker and Reviewing Prerequisites
In this section, we will install Docker for Windows. Docker for Windows should be installed to configure a
Docker development environment on Windows 10 and on Windows Server 2016 (at the time of writing this
chapter, Docker supports only these two Windows OS variants). We can develop both Linux and Windows
containers by using Docker for Windows.

■■ Note  Before we proceed with installation, read the installation requirements at https://docs.docker.
com/docker-for-windows/install/#what-to-know-before-you-install. (My machine meets the
requirements; I am using Windows 10 Enterprise, 64-bit, Build 10586).

Download a stable version of Docker for Windows from https://docs.docker.com/docker-for-
windows/install/, as shown in Figure 14-2.

https://docs.docker.com/docker-for-windows/install/#what-to-know-before-you-install
https://docs.docker.com/docker-for-windows/install/#what-to-know-before-you-install
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

512

Before installation, make sure Hyper-V is enabled on your machine, as shown in Figure 14-3.

Figure 14-2.  Downloading Docker installation for Windows

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

513

■■ Note  If you have a development environment on Azure, you need to have nested virtualization enabled
on your virtual machine to install Docker. Nested virtualization is supported in Azure from Dv3 or Ev3 virtual
machines (https://azure.microsoft.com/en-in/blog/nested-virtualization-in-azure/).

Double-click the Docker installation file and intall it as shown in Figure 14-4.

Figure 14-3.  Enabling Hyper-V on Windows

https://azure.microsoft.com/en-in/blog/nested-virtualization-in-azure/

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

514

Once installation is completed, you will see the confirmation shown in Figure 14-5.

Figure 14-4.  Installing Docker

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

515

Restart the machine and then click the Docker shortcut that is created on the desktop as part of the
installation. It might take some time for Docker to start. After it is started, a stable Docker tray icon appears,
as shown in Figure 14-6.

Figure 14-5.  Docker installation confirmation

Figure 14-6.  Docker icon in the Windows tray

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

516

To make sure Docker is installed, open the command-line prompt and execute docker version, as
shown in Figure 14-7.

Preparing the Application with an Azure Key Vault
Configuration
In this section, we will prepare the Automobile Service Center application to have all its configuration
details maintained at Azure Key Vault. This Azure-hosted service helps safeguard configuration data such
as passwords and keys. The Automobile Service Center application is dependent on many configuration
settings that are driven from the appsettings.json file. It is a security threat to have a production
configuration defined in the physical appsettings.json file for the following reasons:

•	 The appsettings.json file version is controlled using GitHub; by having production
settings in source version control, they are open to everyone and can be updated by
mistake.

•	 The application’s production configuration should be stored safely and securely in a
centralized vault with limited user access.

•	 The production configuration should be updated and invalidated easily.

•	 Some of the configuration (for example, passwords) should not be stored in
plain text.

Figure 14-7.  Docker version command

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

517

■■ Note  To create a free Azure subscription, visit https://azure.microsoft.com/en-us/.

Set Up Azure Key Vault and Configure the Access Policy
We will start by creating an Azure Key Vault instance at the Azure portal, as shown in Figure 14-8.

Select Key Vault to access the Create Key Vault dialog box, shown in Figure 14-9. Create a new instance
by specifying the Name as ASCVault; set the Location to East US and the Resource Group name to ASC.

Figure 14-8.  Azure Key Vault service

https://azure.microsoft.com/en-us/

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

518

■■ Note  The ASC resource group will be used to group all Automobile Service Center Azure resources. Later
in the chapter, we are going to create Azure Storage and Azure Redis cache instances, and these are tied to the
ASC resource group.

Figure 14-9.  Creating a new Azure Key Vault service

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

519

We can navigate to ASCVault from the Resource Groups tab. Select the ASC resource group and finally
select ASCVault, as shown in Figure 14-10.

To access Azure Key Vault from the Automobile Service Center application code, we need to first
register the hosted ASC application. From Azure Active Directory, click App Registrations and then click New
Application Registration, as shown in Figure 14-11.

Figure 14-10.  Exploring the newly created Azure Key Vault instance

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

520

In the Create dialog box that opens, enter the application details as shown in Figure 14-12. Then click
Create.

■■ Note  Because we never hosted the application, we provide a random sign-on URL.

Figure 14-11.  Application registration at the Azure portal

Figure 14-12.  Creating a new application registration for the Automobile Service Center application

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

521

Now we need to generate security keys for the registered application. Using the keys, our application
code can connect to Azure Key Vault and resolve the application settings. Navigate to the registered
application and click Keys, as shown in Figure 14-13.

Enter the Description as ASCKey and select a one-year expiration, as shown in Figure 14-14. Click Save.
The key will be generated. Copy the key, so we can use it in our application code.

Figure 14-13.  The Keys section of our registered application

Figure 14-14.  Creating a new key for the registered application

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

522

■■ Note  Do not forgot to copy the key, because after you leave this page, you cannot retrieve the key again.
If you lose a key or forget to copy it, you can delete the key and create a brand-new one by repeating the
preceding steps.

The security key we created is listed in the Keys section, as shown in Figure 14-15.

In addition to a security key, we also need an application ID. We can retrieve the application ID from
the Overview section of the registered application, as shown in Figure 14-16.

Figure 14-15.  List of security keys

Figure 14-16.  Registered application overview section

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

523

Now that we have a registered application, we need to configure ASCVault with the registered ASCWeb
application as a principle for authentication. This step is required to grant access for the security key and
application ID (of the registered application) to ASCVault.

Navigate to ASCVault and go to the Access Policies tab, as shown in Figure 14-17.

Click Add New. Select the ASCWeb registered application from the options and then click the Select
button, as shown in Figure 14-18.

Figure 14-17.  Access policies of ASCVault

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

524

Select Key & Secret Management from the available templates, as shown in Figure 14-19. This will
provide access permissions to the keys and secrets in Azure Vault for the configured application. Click OK.

Figure 14-18.  Adding the ASCWeb registered application as a principal to ASCVault

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

525

After the access policy is added, click Save.

Set Up Azure Table Storage and Azure Redis Cache Services
Now that we have created the Azure Key Vault instance, we need the following services and credentials to be
configured at Azure Key Vault instead of in the appsettings.json file.

•	 Azure Table storage

•	 Azure Redis cache

•	 Google Identity—client ID and secret

•	 Twilio account

•	 SMTP credentials

Figure 14-19.  Setting key and secret permissions to the ASCWeb principal

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

526

■■ Note  We will use SMTP credentials and Twilio account details, which we created in Chapter 6 and Chapter 11,
respectively.

For Google Identity, we will follow the instructions listed in Chapter 6 and create a different client ID and client
secret for the production host’s IP address. (For now, use localhost as one of the redirected URIs because we
do not know the production details yet. When we host the application in Linux Ubuntu Azure Virtual Machine in
Chapter 15, we will take that IP and configure it back at Google Identity.).

We can also make other application settings such as Admin credentials as part of the Azure Key Vault
configuration.

Let’s start by creating a new Azure Table storage service, as shown in Figure 14-20.

Enter the name and other details, as shown in Figure 14-21, and click Create to create a new storage
service.

Figure 14-20.  Provisioning of new Azure storage

http://dx.doi.org/10.1007/978-1-4842-3270-5_6
http://dx.doi.org/10.1007/978-1-4842-3270-5_11
http://dx.doi.org/10.1007/978-1-4842-3270-5_6
http://dx.doi.org/10.1007/978-1-4842-3270-5_15

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

527

Once the new service is created, we can go to the Access keys tab of the created storage and find the
connection string.

Now we will create an Azure Redis Cache instance, as shown in Figure 14-22.

Figure 14-21.  Entering details for new Azure storage

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

528

Select Redis Cache. Then enter ASCCache as the Name, ASC as the Resource Group, and opt to unblock
port 6379, as shown in Figure 14-23. Click Create.

Figure 14-22.  Provisioning of new Azure Redis Cache instance

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

529

Once the instance is created, we can go to the Access keys tab of the created Redis cache and find the
connection string.

■■ Note  There is a known issue of getting a DNS resolution exception when trying to connect to Azure Redis
Cache from a Linux environment. The workaround involves configuring Azure Redis Service to unblock port
6379 (not SSL encrypted).

The ConnectionString should include resolveDns=true, as shown here:

sample.redis.cache.windows.net:6379,password=[Encrypted password],ssl=False,abortConnect=

False,resolveDns=true

Figure 14-23.  Entering details for the new Azure Redis Cache instance

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

530

Create Secrets at Azure Key Vault
As the last step in securing application settings, we will create all secrets in Azure Key Vault, as shown in
Figure 14-24.

The created secrets are listed in the Secrets tab, as shown in Figure 14-25.

Figure 14-24.  Adding a new secret in Azure Key Vault

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

531

■■ Note  The keys of nested section settings should be created by using the -- separator.

Integrate Application Code with Azure Key Vault
Now we have to make changes to the Automobile Service Center application code in order to read the
configuration from Azure Key Vault. First, we need to add a reference of the Microsoft.Extensions.
Configuration.AzureKeyVault NuGet package to the ASC.Web Project.

■■ Note  We need to add the NewtonsoftJson NuGet package to the ASC.Web project to get Azure Key Vault
working in the ASP.NET Core application.

Figure 14-25.  Listing of secrets that are created at Azure Key Vault

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

532

Add the NuGet packages to the ASC.Web.csproj file, as shown in Listing 14-1.

Listing 14-1.  Nuget package references

<PackageReference Include="Newtonsoft.Json" Version="10.0.2" />
 <PackageReference Include="Microsoft.Extensions.Configuration.AzureKeyVault" Version="1.0.0" />

Update the constructor of the Startup class, as shown in Listing 14-2. We will read the vault URL, client
ID, and client secret of the Azure Key Vault from the environment variables.

Listing 14-2.  Configure Azure Key Vault in Startup class

public Startup(IHostingEnvironment env)
{
 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json", optional: false, reloadOnChange: true)
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true);

 if (env.IsDevelopment())
 {
 �// For more details on using the user secret store see https://go.microsoft.com/

fwlink/?LinkID=532709
 builder.AddUserSecrets<Startup>();
 }

 builder.AddEnvironmentVariables();
 Configuration = builder.Build();

 if (env.IsProduction())
 {
 builder.AddAzureKeyVault(Environment.GetEnvironmentVariable("VaultUrl"),
 Environment.GetEnvironmentVariable("ClientId"),
 Environment.GetEnvironmentVariable("ClientSecret"));
 Configuration = builder.Build();
 }
}

We will add the environment variables in the Debug tab of Project Properties in Visual Studio, as shown
in Figure 14-26.

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

533

■■ Note  We maintain the environment variables in debug mode of Visual Studio Project in order to simulate
a production environment while running the project on a local machine. In production, we will set these values
through the deployment configuration.

Run the application in local. The application should run smoothly based on the Azure Key Vault
configuration.

Creating a Docker File
In this section, we will create a Docker file for the Automobile Service Center application. A Dockerfile
is a text document with a set of commands that are executed to build a Docker image. To build a Docker
image, we need a Dockerfile along with a context. A context is nothing but a set of files that get the required
functionality from a Docker container. We use the docker build command to build an image from the
Dockerfile; the actual building of the image will be done by a Docker daemon. A typical docker build
command is shown in Listing 14-3. The period (.) gives the current directory as the context, and –t ascapp
gives a name to the image.

Listing 14-3.  Docker build command

docker build -t ascapp .

Figure 14-26.  Adding environment variables in the Debug configuration of the ASC.Web project

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

534

The Docker daemon runs the instructions in the Dockerfile in sequence, from top to bottom. At each
step, a new image will be created, if required, before creating the final image. The Docker daemon will
automatically clean up the context at the end of creating the new image.

Create a file named Dockerfile (without any extension) at the root of the ASC.Solution folder. The
Dockerfile has 13 steps (each line corresponds to a step), shown in Listing 14-4.

Listing 14-4.  Dockerfile

FROM microsoft/dotnet:1.0.5-sdk

COPY . /app
WORKDIR /app
RUN dotnet restore -s https://dotnet.myget.org/F/aspnetcore-dev/api/v3/index.json -s
https://api.nuget.org/v3/index.json

WORKDIR /app/ASC.Tests
RUN dotnet test

WORKDIR /app
RUN dotnet build

EXPOSE 5000/tcp
ENV ASPNETCORE_URLS http://*:5000
ENV ASPNETCORE_ENVIRONMENT Production

WORKDIR /app/ASC.Web
ENTRYPOINT dotnet run

The steps are as follows:

	 1.	 The Docker daemon fetches microsoft/dotnet:1.0.5-sdk from the Docker
repository to serve as the base image for the Automobile Service Center
application’s Docker image. Microsoft manages public images at Docker Hub
(https://hub.docker.com/r/microsoft/dotnet/) that can serve as base images
for various requirements. The base image (microsoft/dotnet:1.0.5-sdk) that
we are going to use will come with the preinstalled dotnet 1.0.5 SDK (the latest
stable .NET Core SDK from Microsoft).

	 2.	 Copy all the current directory folders and files recursively from the host to
the Docker container. In our case, this copies all the code artifacts to the /app
directory.

	 3.	 WORKDIR sets the working directory for the subsequent commands. We set /app as
the working directory, as we have all the code artifacts in that location.

	 4.	 Run dotnet restore to restore all the NuGet and MyGet package dependencies
for all projects in the Automobile Service Center solution.

	 5.	 Change the working directory to /app/ASC.Tests. This is required to run xUnit
test cases.

	 6.	 Execute the dotnet test command to run all the xUnit test cases that are found
at the ASC.Tests project.

	 7.	 Change the working directory to /app. This is required to build the entire
solution.

https://hub.docker.com/r/microsoft/dotnet/

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

535

	 8.	 Execute the dotnet build command, which will build the entire solution.

	 9.	 The EXPOSE instruction is used to configure the Docker container to listen to a
specific port. We specify port 5000.

	 10.	 We set the environment variable ASPNETCORE_URLS to http://*:5000, the port
that the Kestrel server used to host the Automobile Service Center application
inside the Docker container.

	 11.	 Set the ASPNETCORE_ENVIRONMENT environment variable to Production.

	 12.	 Change the working directory to /app/ASC.Web. This is required to run the
application.

	 13.	 Configure the application to run by pointing the entry point to the dotnet run
command.

To build the Docker image, open the command-line prompt and navigate to the root of the project.
Execute the docker build command, as shown in Figure 14-27. This command will process all the steps, as
shown in Figures 14-28 to 14-33.

Figure 14-27.  Executing the docker build command

Figure 14-28.  Output status of step 1

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

536

Figure 14-29.  Output status of steps 2 to 4

Figure 14-30.  Completion status of step 4

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

537

Figure 14-31.  Output status of steps 5 to 7

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

538

Figure 14-32.  Output status of steps 8 to 11

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

539

Figure 14-33.  Output status of steps 12 to 13

Figure 14-34.  Created Docker image

We can check the created Docker image by running the docker images command, as shown in
Figure 14-34.

To create a container (on a local machine and test the Docker image) out of the Docker image and run
the application, we should execute the docker run command, as shown in Listing 14-5. –p 55641:5000 is
used to bind port 55641 of the host machine with the exposed port 5000 of the Docker container. –e is used
to set the environment variables. We need to set the Azure Key Vault URL, client ID, and client secret to
the Automobile Service Center application to retrieve all the secrets (such as connection strings and Redis
configuration) from Azure Key Vault. The last parameter of the docker run command is the docker image
name that should be used to create the container. Run the command as shown in Figure 14-35.

Listing 14-5.  Docker run command

docker run -p 55641:5000 -e "ClientSecret=[Your app Secret]" -e "ClientId=[Your app Id]" -e
"ASPNETCORE_ENVIRONMENT=Production" -e "VaultUrl=https://[Vault Name].vault.azure.net/" ascapp

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

540

Now we can access the application via http://locallhost:55641, as shown in Figure 14-36.

To check the list of containers created, we can run the docker ps- a command, as shown in Figure 14-37.

To find out the Linux distro and version that is running the Docker container, we need to run the docker
exec container_name cat /etc/os-release command, as shown in Figure 14-38.

Figure 14-35.  The docker run command

Figure 14-37.  List of Docker containers

Figure 14-36.  The Automobile Service Center application running inside the Docker container

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

541

Now we are running a Debian GNU/Linux 8 distro–based Docker container and hosting an ASP.
NET Core–based Automobile Service Center application that is configured with Azure Key Vault secrets to
connect with Azure Table storage and Azure Redis Cache.

Summary
You started this chapter by learning about the basic concepts of build and deployment in the software
development life cycle. A build is the process of compiling the source code and generating a package,
whereas deployment copies the build package to the hosted environment. You explored the traditional
problem of environment inconsistencies across various machines, which can make an application unstable.
Modern-day container technology solves the problem by packaging all the required environmental
dependencies along with compiled code into small container units that are shipped to the targeted machine
for deployment. You evaluated the potential advantages of containers over traditional VMs.

Docker is an open source container technology platform that provides isolation, abstraction, and
automation for software applications from infrastructure and host operation systems. You learned about the
client/server architecture of Docker, where a Docker client interacts with the Docker daemon, which does
the heavy lifting of building, running, and distributing Docker containers. The Docker daemon interacts with
the Docker registry (for example, Docker Hub) to pull and push various Docker images. A Docker image is
a read-only template with instructions for creating a Docker container. A Docker container is a runnable
instance of the environment with an application on it (based on the configuration specified in the Docker
image). You installed Docker on a local machine to begin the containerization process of the Automobile
Service Center application.

As the first step in preparing the Automobile Service Center application for production deployment,
we moved all the configuration to Azure Key Vault. Otherwise, configuration details would be prone to
security threats if stored in a physical configuration file such as appsettings.json. Azure Key Vault is a
Microsoft Azure-hosted secure service that protects all the configuration data including passwords and
connection strings. You then created the Azure Table storage, Azure Redis Cache instance, and Google
Identity configuration and stored all the settings in Azure Key Vault. Later, the Automobile Service Center
application code was upgraded to read the configuration from Azure Key Vault by installing the Microsoft.
Extensions.Configuration.AzureKeyVault NuGet package and calling its AddAzureVault extension on
ConfigurationBuilder in the constructor of the Startup class.

Figure 14-38.  Checking the OS version of the Docker container

Chapter 14 ■ Preparing an Application for Production and Creating a Docker Image

542

You created a Dockerfile that uses microsoft:dotnet:1.0.5-sdk as the base image and creates a
Docker image for the Automobile Service Center application. The Dockerfile will restore, test, build, and
run the Automobile Service Center application. You built the Docker image by using the docker build
command. Finally, you ran the Docker image by using the docker run command and passing the Azure Key
Vault's URL, client ID, and client secret as environment variables. You were able to access the Automobile
Service Center application, which is hosted in a Debian GNU/Linux 8 distro-based Docker container and is
configured with Azure Key Vault secrets to connect with Azure Table storage and Azure Redis Cache.

Reference
	 1.	 https://docs.docker.com/

https://docs.docker.com/

543© Rami Vemula 2017
R. Vemula, Real-Time Web Application Development, https://doi.org/10.1007/978-1-4842-3270-5_15

CHAPTER 15

Continuous Deployment to
Azure Linux Virtual Machines
by Using Docker Cloud

Deployment, a crucial phase in the software development life cycle, is considered almost the last step in
the process of making software available to end customers and stakeholders. The process of deployment
has evolved and matured over the last decade, with the invention of sophisticated automated tools
and platforms. Today’s deployment technologies not only provide reliable automation techniques but
also improve overall system performance by reducing build/deployment time with minimal resource
consumption. Some of the key advantages of automated build systems are as follows:

•	 Reliable with less proximity to errors because of less manual intervention.

•	 One-click deployments are easy and simple to manage by any stakeholder in the
project.

•	 Quite a few redundant tasks.

•	 Accurate and time-effective.

•	 Easy-to-manage multiple environment deployments.

•	 Effortless management of environment dependencies and prerequisites.

•	 Version history and logs for traceability.

•	 Quick dev builds and deployments, and an automated process of unit testing.

Continuous integration is the process of building and testing the source code whenever a commit
happens in a source version-control system such as GitHub. Continuous deployment is the process of
propagating successful build output to different environments such as test, staging, and production. Many
continuous deployment platforms are available to automatically deploy the build to host machines that have
continuous integration with a source version-control system. Travis CI, Circle CI, and Docker Cloud are
some of the continuous deployment providers. The deployment strategy for the Automobile Service Center
application includes building the latest source code from GitHub and creating Docker containers that are
subsequently deployed to Azure-based Linux virtual machines.

In the preceding chapter, we prepared the Automobile Service Center application to easily cater
to production deployments and explored the basic concepts of Docker containerization. We created a
Dockerfile through which a Docker image was generated and ran it in a local environment to create a Docker
container. We successfully ran the application in a Debian Linux-based container connected to Azure
Storage.

https://doi.org/10.1007/978-1-4842-3270-5_15

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

544

In this chapter, we will use Docker Cloud to build Docker images and containers on the fly, based on
continuous integration with GitHub commits. The generated containers will be deployed to Linux-based
Azure virtual machines through continuous deployment from Docker Cloud.

■■ Note  This chapter is a continuation of the previous chapter. I advise you to go through Chapter 14 in order
to understand the basic concepts of the Docker containerization process for the Automobile Service Center
application.

Introduction to Docker Cloud
Docker Cloud is a service provided by the Docker platform that primarily helps orchestrate build and
deployment pipelines. Docker Cloud provides services to create Docker images, generate Docker containers,
deploy containers to different nodes, integrate security into an automation pipeline, and more. Its major
services are as follows:

•	 Continuous integration: Build Docker images from the latest source code from
various source version-control systems such as GitHub. Configure automated tests
with notifications to monitor the quality of the build.

•	 Cloud registry: Create public or private repositories of images and configure
automated builds for images.

•	 Continuous deployment: Set up automated deployments to host nodes by creating
containers. Send notification when deployments succeed or fail.

•	 Teams and organizations: Create teams with different roles and responsibilities.
Grant permissions to different users. Maintain separate projects for different teams.

•	 Application deployment: Link to cloud services such as AWS and Azure as
infrastructure for deployments. We can bring our own host machines as well.

Docker orchestration for the Automobile Service Center application is shown in Figure 15-1. The
developer commits the code to GitHub, which triggers the orchestration process. Docker Cloud will check
out the code from the GitHub branch and autobuild the image and store it in the Docker repository.
The Docker service kicks in immediately and generates the containers, and then finally autodeploys the
containers to various nodes that are configured at Docker Cloud.

Figure 15-1.  Docker orchestration for the Automobile Service Center application

Let’s get started by creating a Docker cloud account. Visit https://cloud.docker.com/, as shown in
Figure 15-2.

http://dx.doi.org/10.1007/978-1-4842-3270-5_14
https://cloud.docker.com/

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

545

Figure 15-2.  Docker Cloud home page

Figure 15-3.  Docker Cloud activation e-mail

Upon successful sign-up, an activation link will be sent to the registered e-mail account, as shown in
Figure 15-3.

Click the Confirm Your Email link and activate the account by signing into Docker Cloud, as shown in
Figure 15-4.

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

546

Turn off Swarm mode by toggling the Swarm Mode option (to the left of the Docker cloud logo, as
shown in Figure 15-5). We won’t be working with Docker Swarm in this book.

Figure 15-4.  Successful login at Docker Cloud

Figure 15-5.  Docker Swarm mode turned off

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

547

Create Azure Nodes for Continuous Deployment
In this section, we will create an Azure virtual machine that will serve as a host machine for the Automobile
Service Center application. First, we need to activate an Azure account at Docker Cloud. Go to the Cloud
Settings tab, shown in Figure 15-6.

Figure 15-6.  Docker Cloud settings

Figure 15-7.  Connecting with the Microsoft Azure provider

Click the Connect Provider option for Microsoft Azure, as shown in Figure 15-7.

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

548

Click the Download Management Certification, which will download a certificate file. Log in to the
Azure portal and upload the downloaded certificate under the Subscriptions tab, as shown in Figure 15-9.

Figure 15-8.  Add Azure Credentials pop-up

Figure 15-9.  Uploading the certificate to Azure Subscription Management Certificates

The Add Azure Credentials pop-up opens, as shown in Figure 15-8.

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

549

Click Save. Upon a successful save, the Azure subscription is enabled at the Docker portal, as shown in
Figure 15-11.

Figure 15-10.  Azure subscription ID configuration at Docker Cloud

Figure 15-11.  Azure connection enabled at Docker Cloud

Once uploaded, copy the Azure subscription ID and paste it in the Subscription ID field of the pop-up
at the Docker portal, as shown in Figure 15-10.

Now we will create Azure VM node, which can be used as a host machine to the Automobile Service
Center application. Navigate to the Node Clusters tab, as shown in Figure 15-12.

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

550

Click the Create button to access the Node Clusters/Wizard page, shown in Figure 15-13, and to start
creating a node at the Azure cloud. Type in the name of the cluster, set the Provider to Microsoft Azure, and
set the Region to East Asia (or select any other region). We will create a Basic A0 virtual machine. Select the
default size of 60GB and set the number of nodes to 1.

Figure 15-12.  Node Clusters tab at Docker Cloud

Figure 15-13.  Creating a new Node cluster at Docker Cloud with Azure as the infrastructure provider

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

551

■■ Note  Docker Cloud will prompt for payment information for additional nodes. In a free plan, we can set up
only one managed node. For now, provision only one node.

Click the Launch Node Cluster button. Docker will start provisioning Azure nodes, as shown in
Figure 15-14.

Figure 15-14.  Status of setting up a new Node cluster at Azure

Figure 15-15.  Successful provision of new Node cluster at Azure

It will take some time to set up a node. After it is done, we will see a Deployed message, as shown in
Figure 15-15. If we want to terminate this node, we click Terminate.

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

552

If we visit the Azure portal, we should see the created virtual machine along with its cloud service and
storage, as shown in Figure 15-16.

Figure 15-16.  Created virtual machine at the Azure portal

Figure 15-17.  Source providers at Docker Cloud settings

■■ Note B y default, the virtual machines that are created through Docker Cloud do not have any credentials to
access through SSH, so we will not be able to SSH into VM.

Docker Cloud Continuous Integration with GitHub
Repository
In this section, we will configure Docker Cloud to connect with the Automobile Service Center source code
that is versioned at GitHub. Go to the Cloud Settings tab in Docker Cloud and check the Source Providers
section, as shown in Figure 15-17.

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

553

Click the Connect Provider option. The GitHub login screen opens, as shown in Figure 15-18. Enter the
credentials for the Automobile Service Center repository’s owner and login.

Figure 15-18.  GitHub login prompt for associating GitHub with Docker Cloud

Upon successful login, an Authorize consent page will be displayed. Click the Authorize Docker button,
shown in Figure 15-19.

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

554

Figure 15-19.  Authorizing GitHub to allow access for Docker Cloud

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

555

Continuous Deployment to Azure Nodes from Docker Cloud
In previous sections, we created an Azure node to serve as a host machine, and integrated Docker Cloud
with GitHub to fetch the latest source code of the Automobile Service Center application. In this section, we
will build an image from the GitHub source code and hold it in the Docker repository. We will also build a
Docker container from the created image and push it to the Azure node.

Let’s start by creating a Docker repository. Navigate to the Repositories tab and click Create, as shown in
Figure 15-21.

Upon successful authorization, we will see GitHub connected to Docker Cloud, as shown in Figure 15-20.

Figure 15-20.  GitHub associated with Docker Cloud

Figure 15-21.  Repositories tab at Docker Cloud

Enter the name, description, and visibility of the image, as shown in Figure 15-22. Select the
AutomobileServiceCenter.Core GitHub repository as the repository from which this image should be built.
Click the Create button.

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

556

Figure 15-22.  New Docker repository details

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

557

Click the Configure Automated Builds button. Select the Build On My Own Nodes option. Make sure
to select the master branch as the source, set the Build Context to a period (.), and turn on Autobuild. Turn
off Build Caching, which is enabled by default. Enter all the environment variables that the Automobile
Service Center application is dependent on—ClientSecret, ClientId, ASPNETCORE_ENVIRONMENT, and
VaultUrl—as shown in Figure 15-24. The environment variable configuration is required for the application
to fetch all the configuration information from Azure Key Vault. Click Save.

Now we will configure an automated image build on every GitHub repository commit or push. Navigate
to the Builds tab of the created ascimage Docker repository, as shown in Figure 15-23.

Figure 15-23.  Build tab of the Docker repository

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

558

At this logical point, we can test the build process. Merge the AutomobileServiceCenter.Core
repository’s dev branch with the master branch at GitHub, and it should trigger a Docker build, as shown in
Figure 15-25.

Figure 15-24.  Automatic builds for the Docker repository

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

559

Figure 15-25.  Build in progress at Docker Cloud that is triggered by a GitHub commit

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

560

Figure 15-26.  Intermediate Docker repository build status

Once the build starts, we will have intermediate status, as shown in Figure 15-26.

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

561

The overall build status is shown in Figure 15-28. The builds that are marked in red are failed ones from
my earlier tries.

And once it is completed, we have the status shown in Figure 15-27.

Figure 15-27.  Successful Docker repository build status

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

562

On successful build, we should find the Docker image in Docker Hub, as shown in Figure 15-29. Docker
Hub is the cloud-based registry that holds all the Docker images and links them to code repositories.

Figure 15-28.  Build activity of the Docker repository

Figure 15-29.  Docker image listed at Docker Hub

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

563

Now we will deploy the container that is built using the Docker image. To deploy a container, we need to
create a service. Navigate to the Services tab, as shown in Figure 15-30.

Figure 15-30.  Services tab at Docker Cloud

Figure 15-31.  Creating a Docker service with ascimage

Click the Create button and then navigate to the My Repositories tab. Select ascimage, as shown in
Figure 15-31.

Set the Deployment Strategy to Every Node and set Deployment Constraints to nodecluster-name=asc1,
as shown in Figure 15-32.

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

564

Turn on the Autoredeploy option, as shown in Figure 15-33.

Figure 15-34.  Configuring 80 as the node port

Figure 15-32.  Deployment strategy and constraints for the Docker service

Figure 15-33.  Turning on the Autoredeploy option for the Docker service

Enter port 80 as the published port, as shown in Figure 15-34. The container’s port 5000 is mapped to
the node’s port 80.

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

565

Click the Create and Deploy option. Navigate to the Containers tab, and you should see the container
being created, as shown in Figure 15-36.

Figure 15-35.  Environment variable configuration at the Docker service

Enter the Automobile Service Center application’s environment variables, as shown in Figure 15-35.

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

566

After some time, the container will be up and running, as shown in Figure 15-37.

Figure 15-36.  Creating and deploying a Docker container

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

567

Find the virtual machine IP address in the General settings of the node, as shown in Figure 15-38.

Figure 15-37.  Created container at Docker Cloud

Figure 15-38.  Node details at Docker Cloud

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

568

Navigate to the IP address. You should see the hosted application, as shown in Figure 15-39.

Figure 15-39.  Automobile Service Center application hosted at the Azure node

Figure 15-40.  Virtual machine details at the Azure portal

At the same time, we can also access the application by using the DNS name, which we can get from an
overview of the virtual machine from the Azure portal, as shown in Figure 15-40.

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

569

Figure 15-41.  Updating the Google Identity redirect URIs

Now that we know the domain name, we can update the Google Identity settings with the DNS name, as
shown in Figure 15-41.

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

570

We can now perform commits to the master branch of the AutomobileServiceCenter.Core repository
at GitHub. Immediately, the entire continuous integration and continuous deployment orchestration will
kick off. In no time, the latest code will be deployed to the Azure node and will be available for customers.

Bring Our Own Node for Docker Integration
In the previous section, we created an Azure virtual machine from Docker Cloud and orchestrated the
entire continuous integration and continuous deployment workflow. In this section, we will bring our own
host machine (any machine on any network). To simulate our own machine, we will create an Azure-based
Ubuntu virtual machine, as shown in Figure 15-43.

Figure 15-42.  Accessing the Automobile Service Center application through Google single sign-on

Now we can access the application with the DNS name and can log in with Google Identity, as shown in
Figure 15-42.

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

571

Enter basic information, as shown in Figure 15-44. We are configuring the virtual machine with a
username and password. Select the DS1_V2 Standard 1 Core 3.5GB RAM virtual machine template for the
size. Leave all the other default settings to create the virtual machine.

Figure 15-43.  Creating an Ubuntu server at the Azure platform

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

572

Once the virtual machine in set up, we’ll have the services shown in Figure 15-45 created in the Azure
portal.

Figure 15-44.  Ubuntu virtual machine configuration

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

573

Now that we have the Azure virtual machine created, we can bring that as a node into Docker Cloud.
Navigate to the Nodes section, as shown in Figure 15-46.

Figure 15-45.  Created virtual machine at the Azure portal

Figure 15-46.  Nodes section at Docker Cloud

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

574

■■ Note  I deleted the Azure node that we created in the previous section to demonstrate how to bring our
own node into Docker Cloud.

Click the Bring Your Node button.. A pop-up with a curl command opens, as shown in Figure 15-47. It
also recommends to open ports 2375, 6783/tcp, and 6783/udp at the virtual machine. Along with these ports,
we add port 80, which will serve HTTP traffic.

Figure 15-47.  Generated curl command at Docker Cloud

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

575

Select Inbound Security Rules. Click Add to add a new inbound rule. Add ports 2375, 6783/tcp, 6783/
udp and 80, as shown in Figures 15-49 to 15-52; then click OK.

Figure 15-48.  Network Security Group of the Ubuntu virtual machine

To add ports for the Azure virtual machine, navigate to Network Security Group (associated with our
newly created virtual machine), as shown in Figure 15-48.

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

576

Figure 15-49.  Creating inbound rules for port 2375 for the Ubuntu virtual machine

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

577

Figure 15-50.  Creating inbound rules for port 6783/UDP for the Ubuntu virtual machine

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

578

Figure 15-51.  Creating inbound rules for port 6783/TCP for the Ubuntu virtual machine

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

579

All the ports that are added are displayed, as shown in Figure 15-53.

Figure 15-52.  Creating inbound rules for HTTP port 80 for the Ubuntu virtual machine

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

580

To run the curl command that we got from Docker, we need to access the virtual machine terminal.
To access the terminal, download and install Putty SSH and the Telnet client (www.putty.org) to the local
environment.

Run the Putty client and enter the VM IP address (which can be found in the Overview tab of the virtual
machine), as shown in Figure 15-54. Then click Connect.

Figure 15-53.  Created inbound port rules for the Ubuntu virtual machine

Figure 15-54.  Connecting to the Ubuntu virtual machine terminal by using the Putty client

http://www.putty.org/

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

581

We will get an alert to cache the virtual machine’s host key, as shown in Figure 15-55. Click No.

Figure 15-55.  Alert displayed to cache the virtual machine’s host key

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

582

Figure 15-56.  Ubuntu virtual machine terminal after successful login

To become the root user on the virtual machine, run the sudo –s command, as shown in Figure 15-57.

Figure 15-57.  Becoming the root user at the terminal

Now run the curl command, which we got from Docker Cloud, as shown in Figure 15-58. It will
download and install the Docker Cloud agent on the virtual machine.

Log in to the console by providing the username and password (which we provided at the time of
creating the VM), as shown in Figure 15-56.

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

583

Figure 15-58.  Executing the curl command at the Ubunti virtual machine's terminal

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

584

Figure 15-59.  Docker Cloud detects the node connection.

The newly created node is shown in the Nodes tab, as shown in Figure 15-60.

Figure 15-60.  Onboarded node listed in the Nodes section of Docker Cloud

The pop-up at the Docker Cloud portal will detect the curl command execution, as shown in
Figure 15-59.

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

585

Click the Labels icon and add asc1 as the label, as shown in Figure 15-61.

Figure 15-61.  Adding a label to the node at Docker Cloud

Figure 15-62.  Configuring the Docker service with the asc1 label as a deployment constraint

Now we will associate the newly added node to the Docker service. Edit the Docker service and add the
asc1 label as a deployment constraint, as shown in Figure 15-62.

Save the changes. From the Action menu, select the Redeploy option, as shown in Figure 15-63.

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

586

A confirmation pop-up appears, as shown in Figure 15-64. Click the Redeploy button.

Figure 15-63.  Redeploying the containers present in the Docker service

Figure 15-64.  Confirmation of redeploying the containers present in the Docker service

Figure 15-65.  New containers deployed to nodes

The existing containers will be terminated, and new containers will be created. When new containers
are available, Docker will deploy them to the nodes that are specified in the asc1 label, as shown in
Figure 15-65.

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

587

Access the Automobile Service Center application by using the virtual machine IP address. You should
be able to see the application, as shown in Figure 15-66.

Figure 15-66.  Access ing the Automobile Service Center application with the Ubuntu server virtual machine's
IP address

Automobile Service Center and .NET Core 2.0
The incredible pace of technical shifts in technology is inevitable in the process to equip developers with
new tools and platforms to solve complex problems. We started this chapter with .NET Core 1.0.3 as the base
version, and now we have 1.1.2 as the Long Term Support version. Microsoft also shipped the next major
release of .NET Core, which is 2.0.

We have the following major roadblocks to upgrading the Automobile Service Center application to
.NET Core 2.0:

•	 ASP.NET Core SignalR is not yet released. Based on the latest information on GitHub,
it will be released in the next few weeks (https://github.com/aspnet/SignalR/iss
ues/429#issuecomment-323562878).

•	 We have used the ElCamino NuGet package to integrate ASP.NET Core Identity
with Azure cloud storage. This NuGet package is not compatible with ASP.NET Core
Identity 2.0 (https://github.com/dlmelendez/identityazuretable/issues/23).

https://github.com/aspnet/SignalR/issues/429#issuecomment-323562878
https://github.com/aspnet/SignalR/issues/429#issuecomment-323562878
https://github.com/dlmelendez/identityazuretable/issues/23

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

588

•	 The Entity Framework Core team is still working on including a provider for
nonrelational databases such as Azure Table storage (https://github.com/aspnet/
EntityFrameworkCore/wiki/Roadmap).

■■ Note  The compatibility of package dependencies should be evaluated before upgrading to the latest .NET
Core 2.0 versions.

Because of the preceding roadblocks, we are not going to upgrade the Automobile Service Center
application to .NET Core 2.0.

ASP.NET Core 2.0 has a lot of new features, including the following:

•	 Support for .NET Standard 2.0, which gives access to broader APIs.

•	 The ASP.NET Core metapackage will house all the required ASP.NET and EF Core
packages.

•	 ASP.NET Core Razor pages can be used to create pages without controllers.

•	 Option to configure Razor and view compilation to an assembly instead of
CSHTMLs.

•	 Improvements to Kestrel server that make it more suitable for Internet-based
applications.

•	 IConfiguration, ILogger, and IHostingEnvironment can be configured at the web-
host layer.

•	 Extended OS support. All the distributions (for example, the Linux distro) under an
OS are going to be considered as one version. For example, all Linux variations will
be considered as Linux.

•	 Improvements to TempData, IHostedServices, IHostingStartup, and Logging APIs.

•	 Support for the Visual Basic language.

•	 Great support for application insights without even needing to write a single line of
code in the application.

We can plan an Automobile Service Center code upgrade to .NET Core 2.0 in Q1 of 2018 or later only
when we get support for SignalR and other required dependencies. Until then, we can explore the new
features of .NET and ASP.NET Core.

Recommended Exercises
I propose the following exercises to extend the Automobile Service Center application which will give you
more technical exposure:

	 1.	 Develop a module to manage a spare parts inventory. These pages can be similar
to the master data management module. Associate the created spare parts with a
particular service request.

	 2.	 Create a screen that displays an invoice generated for a service request based on
spare parts and labor costs. Notify the customer with the overall detailed invoice.

https://github.com/aspnet/EntityFrameworkCore/wiki/Roadmap
https://github.com/aspnet/EntityFrameworkCore/wiki/Roadmap

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

589

	 3.	 Integrate service engineer accounts with two-factor authentication.

	 4.	 Explore the Azure container service and transform the Automobile Service
Center application’s deployment strategy to support Docker Swarm.

	 5.	 Complete xUnit test cases to cover the entire code base.

	 6.	 Integrate single sign-on with Facebook and Twitter authentication providers.

■■ Note  The solutions to the preceding proposed exercises are beyond the scope of this book.

Summary
In this chapter, you learned about the relevance and importance of automated deployment systems in
the software development life cycle. The new automated deployment systems provide easy, reliable, and
accurate deployment strategies that support multiple environments with minimal redundant manual
tasks to maximize overall system productivity. Many continuous deployment platforms are available to
automatically trigger deployment to host machines with continuous integration and source version-control
systems. We are going to use the Docker platform for the Automobile Service Center application to build the
latest source code from GitHub and deploy it to Azure-based Linux virtual machines.

Docker Cloud is a service provided by the Docker platform that primarily helps orchestrate the build
and deployment pipelines. You learned about the Docker orchestration, which is initiated by fetching the
latest source code from the source version-control system, followed by autobuilding the Docker image from
source code with specifications mentioned in the Dockerfile. Upon a successful image build, Docker services
will kick in and generate Docker containers, which are finally deployed to host machines configured with the
Docker engine. You then proceeded to create a free subscription account at Docker Cloud.

You connected Docker with an Azure subscription, which helps set up new nodes or onboard existing
nodes to the Docker platform. Later you proceeded to create a new node cluster with a single node in the
East Asia Azure datacenter. This node can be maintained at the Azure portal, and at the same time, the
node can be terminated from the Docker portal. You then connected Docker with GitHub, and created a
Docker repository with GitHub’s AutomobileServiceCenter.Core as the source code repository. The Docker
repository is configured with the master branch of the GitHub repository, and autobuild is turned on. The
environment variables required for the Automobile Service Center application are specified as parameters
with values. You triggered a Docker build by merging the dev with the master branch at GitHub. Upon the
successful Docker build, the generated image will be available at Docker Hub.

You created a Docker service from the Docker image and configured the service to deploy the container
on every node with a specific label. You also configured other options including autoredeploy, HTTP port,
and environment variables. Once configuration was completed, the container was deployed to the virtual
machine node. You were able to access the Automobile Service Center application by using the virtual
machine’s IP address.

In the final section of the chapter, you learned how to bring our own node to Docker Cloud. To simulate
our own host machine, you created an Azure-based Ubuntu server and configured it with the required ports
for Docker integration. Using Putty, you ran the curl command given by Docker at the virtual machine’s
terminal, which installed the Docker Cloud agent. You then triggered a Docker service redeploy, which
regenerated and deployed the container of the Automobile Service Center application to the virtual
machine. By using the virtual machine’s IP address, you are able to access the application.

Chapter 15 ■ Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud

590

The Final Word
The key mantra for the success of any business lies in providing the right solutions to the right problems with
a customer-centric approach. The software industry is no exception. The exceptional pace of progress in the
software industry not only opens different business opportunities but also provides exceptional solutions to
technical challenges. Understanding and implementing the right technologies to enrich a business solution
and building eminence around current technologies have been the most common problems faced by most
organizations in the recent past. This book showcases one software development approach to providing
end-to-end application development, and thereby building eminence capabilities around some of the
modern technologies.

Throughout the journey of this book, you have seen various technologies used for different purposes, to
cater to the overall business workflow: performing authentication with the Google platform and storing user
information in Azure storage, running an ASP.NET Core application by using Docker containers, sending
SMS notifications by using Twilio and sending web notifications with SignalR, and maintaining the master
data cache in Azure Redis Cache. These integrations became a reality through the evolution of strong open
source technologies and communities.

I sincerely thank the developers at Microsoft and in the open source communities for providing a great
platform and toolkits that are continuously used in this book. I hope you enjoyed the content and have
learned something new and interesting. I hope to see you soon in another interesting venture.

Reference
	 1.	 https://docs.docker.com/

https://docs.docker.com/

591© Rami Vemula 2017
R. Vemula, Real-Time Web Application Development, https://doi.org/10.1007/978-1-4842-3270-5

�       � A
AccountController, 110
Admin account, setting up, 110

AccountController, 110
APIs and methods, 110
ApplicationDbContext, 111
ApplicationSettings class, 115
ASCAspNetIndex table, 117
ASCAspNetRoles table, 116
ASCAspNetUsers table, 116
ASC.Web project, 113
Azure Table storage, 111
Configure method, 115
ConnectionString settings, 113
Entity Framework Core, 111
IIdentitySeed interface, 113, 114
Seed method, 115, 116

Application code development, 89
ApplicationSettings class, 32
ASP.NET Core framework, 10, 15, 263
ASP.NET Identity

advantages, 109–110
implementation, 111

Atomicity, consistency, isolation, and durability
(ACID) properties, 69

Authentication, 109
Authorization, 109
Automated build systems

advantages, 543
Automobile Service Center application, 1, 4, 6,

20–24, 26–28, 263
dynamic JSON-driven navigation menu, 273

ASC.Utilities project, 280–283
ASC.Web project, 273–276
CreateNavigationCacheAsync

method, 277–278, 280
features, 273
INavigationCacheOperations

interface, 277, 278
NavigationMenuItem instances, 277

properties, 276
_SecureLayout.cshtml, 284
service engineer, 286

implementing areas, 264
Accounts module, 267–269
configuration, 264
Configuration area, 265, 266
Configure method, 266
Dashboard action, 271, 272
folder structure, 264–265, 267
Logout and Reset Password form, 272
MasterData controller, 265
service requests, 264
ServiceRequests module, 270
user account management, 264

and .NET Core 2.0, 587–588
Azure Key Vault configuration, 516

access policy, 517
application registration, 519–521
ASC resource group, 517, 519
ASCVault, 523
ASCWeb registered application, 523–524
keys and secrets permissions, 524–525
security key, 522

application code, integrating, 531–533
Azure Table storage and Azure

Redis cache, 525–529
creating secrets, 530–531

Azure Storage, 10
advantages, 62
auditing data through snapshots, 79–82
Automobile Service Center solution, 82–85
autopartitioning system, 62
Azure Table Storage Unit of Work Pattern, 69

BaseEntity’s properties, 74
CommitTransaction method, 75
CreateRollbackAction method, 71
CreateTableAsync method, 73, 74
custom rollback logic, 71
databases, 69
ExecuteAsync method, 73

Index

■ INDEX

592

IRepository interface, 70
IUnitOfWork interface, 74–75
Repository<T> class, 70–71
transaction, 69
UnitOfWork class, 75–77

blob storage, 62
CRUD operations, 77–78
defining, 62
diverse operating systems, 62
entities, 63
file storage, 62
PartitionKey and RowKey, 63
performance tiers, 62
queue storage, 62
replication options, 63
scalability, 63
SDK and storage emulator, 64

Book entity, 69
CloudStorageAcccount instance, 67
entity, 65–66
.NET Core console application, 64, 66–67
WindowsAzure.Storage NuGet package, 65

storage services, 62
table storage, 62
Timestamp property, 63

�       � B
Blob storage, 62
Build process, 509
Bundling and minification techniques, 286

bundleconfig.json file, 289
BundlerMinifier.Core package, 289
Development mode, 287
Edit ASC.Web.csproj option, 288
improvements, 286
Material Icons reference, 287–288
PreBuildScript section, 291
Production mode, 287
Visual Studio solution, 292

Business Intelligence (BI) tools, 61

�       � C
ClaimsPrincipal, user information, 129

Admin details, 131
ClaimsPrincipalExtensions, 129
CurrentUser object, 129–130
GetCurrentUserDetails, 130
HttpContextAccessor dependency, 130
user details, display, 130–131

Code optimization phase, 89
Command-line interface (CLI), 16

Commercial off-the-shelf (COTS), 3
ConfigureServices method, 37
Containers, 509
Container technology

advantages, 509–510
Docker (see Docker)

Continuous deployment (CD), 10–11, 543
Azure nodes, 547, 555

Automated Builds button, 557–558
Autoredeploy option, 564
Azure portal, 552
Builds tab, 557
build status, 560–562
container, 566–567
Credentials pop-up, 548
Deploy option, 565
Docker image, 562–563
Download Management

Certification, 548
environment variables, 565
Google Identity settings, 569–570
hosted application, 568
Node Clusters tab, 549–551
port 80 as published port, 564
Repositories tab, 555
Services tab, 563
service with ascimage, 563
strategy and constraints, 564
subscription ID, 549
virtual machine, 568

Continuous integration (CI), 10–11, 489, 543–544
building, 489
with GitHub repository, 552

authorization, 555
source provider, 553

testing, 489
third-party providers, 489 see also Travis CI

Create, Read, Update and Delete (CRUD)
operations, 61, 77–78

Customer management view, 186

�       � D
Dashboard view

Active Service Engineers, 325
Admin and Service Engineer roles, 316
Audit table, 316
customer login, 314–315
Dashboard.cshtml, 323–324
DashboardViewModel, 309–311, 317
DataTable, 318–319
extend IRepository class, 306
FindAllByQuery method, 306
GetActiveServiceRequests method, 321–323

Azure Storage (cont.)

■ INDEX

593

GetDashboardServiceEngineersQuery
method, 321

GetServiceRequestsByRequestedDate
AndStatus method, 309

GetServiceRequestsFromAudit method, 317–318
goals, 306
No Active Service Requests message, 326
no service requests, 315
reusable view, 311
Service Request Audit information, 320
_ServiceRequestGrid partial view, 313–314
static class, 307

Dependency injection (DI), 37–38
Deployment technologies, 509, 543
Docker, 510

architecture, 510
container, 511
file (see Dockerfile)
image, 511
installing, 511–516
Swarm, 511
version command, 516

Docker Cloud, 544
activation e-mail, 545
application deployment, 544
cloud registry, 544
continuous deployment, 544
continuous integration, 544, 570

alert, 581
asc1 as label, 585
containers, 586
curl command, 574, 582–583
deployment constraint, 585
with GitHub repository, 552–555
inbound security rules, 575–579
Network Security Group, 575
node connection, 584
nodes section, 574
Putty client, 580
Redeploy option, 585–586
root user, 582
virtual machine, 571–573

home page, 545
login, 546
Swarm mode turned off, 546
teams and organizations, 544

Dockerfile, 533
completion status, 536
docker build command, 533, 535
Docker containers, 540–541
Docker image, 539
docker run command, 539–540
output status, 535, 537–539

Domain-driven development (DDD), 3

�       � E
Exception-handling framework, 243

advantages, 243
implementing, 253

Configure method, 253
ConfigureServices method, 255
CustomError view, 254
CustomExceptionFilter, 255
ExceptionFilterAttribute, 254
ExceptionLog table, 256
TestException action, 255–256

�       � F
Fluid image technique, 42
Forgot Password functionality, 143

POST action, 143–145
Forms, 293

�       � G, H
Geo redundant storage, 63
Git Bash, Automobile Service Center

source code, 432
ApplicationTitle entry, 447
AutomobileServiceCenterDev’s

e-mail, 434–435
changes on dev branch, 456
collaborator invitation, 436
commit history, 449
conflicting code, 457
dev branch, 442–444
git diff command, 451
git fetch command, 446
GitHub credentials, 432–433
.gitignore file, 438
Git local repository, changes, 440
git log command, 465
gitmerge command, 464
git reset command, 453–454
git show command, 453
Git user configuration, 438
KDiff3 tool, 458–462
local Git repository, 438
Operation Aborted message, 456
master branch to origin, 450
project collaborators, 433–434
project location, 437–438
README file, 444–445
remote repository, 440–441
shell, 437
stashed and upstream changes, 457
status, 439

■ INDEX

594

GitHub, 425
Desktop application, 431–432
developer experience, 427
profile navigation, 428
quick setup guidelines, 430–431
repositories, 429–430
selecting plan, 427
signing up, 426
with Visual Studio, 467

Branches tab, 469–470
Changes tab, 471, 478
Clone option, 467–468
commit comments, 472
committing merged changes, 481
confirmation dialog box, 485
Conflicts option, 479
contact action of HomeController, 477
dev branch commits, 476
Fetch option, 477
History view, 482–484
Ignore These Local Items option, 471
KDiff3 tool, 479–480
Merge from Branch option, 474
pending commits, 476
project’s home screen, 468
revert operation, 486
Sync tab, 470, 473
Team Explorer, 467
user configuration, 469
user settings, 468–469

Gmail authentication provider, 166
Automobile Service Center application, 186
Azure Table storage, 184
client ID and secret, 171, 173
Create Credentials button, 168
Dashboard view, 183
ExternalLogin post action, 177
ExternalLoginConfirmation post action, 181, 182
External Login Confirmation view, 180
Google+ API, 168–169
Google console, 172
Google middleware, 173–174
JSON credentials file, 172
Login.cshtml, 174
login screen, 176–177
registration confirmation view, 179–180
two-factor authentication screen, 178

Google’s Material Design, see Material Design

�       � I
IEmailSender and ISmsSender services, 37
Internationalization, 345

ConfigureServices method, 345
_Layout.cshtml, 348

localized string, 349–350
Material style, 348
RequestLocalization middleware, 346
resource file, 346–347
_SecureLayout.cshtml, 349
_SelectCutlure.cshtml, 347
SetCulture action, 349
SharedResources, 347
validation error messages, 351–353

Internet of Things (IoT), 61, 109

�       � J, K
JQuery validator framework, 293

�       � L
Linux, 15
Locally redundant storage, 63
Logging framework, 243

advantages, 243
Automobile Service Center application, 243
creating, 243, 245

account controller code, 249
AddAzureTableStorageLog method, 248
ASC.Web project, 245
BeginScope method, 246
CreateLogger method, 247
extension method, 247
ILogDataOperations interface, 244–245
ILoggingProvider, 247
logging normal information, 250

Login and logout screens, 117
controllers, 117–119
GET action, 120
JavaScript references, 122
LoginViewModel, 120
Logout anchor tag, 127
logout functionality, 127
POST action, 124–125
SignOutAsync method, 128
styles, 122
validation error messages, 124

�       � M
Master data

to Azure Tables from Excel, 223
EPPlus.Core NuGet package, 228
error message, 231
Excel file processing, 232
MasterDataController, 229
MasterDataKey and MasterDataValue

tables, 232–233
MasterValues.cshtml, 224–225

■ INDEX

595

POST action, 229
UploadBulkMasterData method, 230
UploadExcel POST action, 230, 231

in Azure Tables, managing, 189
AJAX-based JSON data, 212
anti-forgery request validation, 216
appsettings configuration, 190
ASC.Business project, 194–195
AutoMapper mappings, 211
AutoMapper NuGet package, 200
ConfigureServices method, 198
CreateTableAsync method, 191, 192
edit, 216
Edit icon of Pending value, 221
edit operation on master key page, 210
GET and POST actions, 201–202, 213
HTML table, 202
IMasterDataOperations interface, 193, 198
Initialize DataTable, 216
JQuery code, 202
MasterDataKeyAudit records, 210
MasterDataKey entity, 190
Master Data section, 207
MasterDataViewModels, 199
Master Keys menu item, 207
Master Keys page, 208
master keys select change, 216
MasterKeys view, 206
master values, 213–215
Master Values screen, 220
navigation menu option, 220
.NET Core class library, 193
reset, 216
styles, 216
submit, 216

defining, 189
scalability and performance, 189 see also Redis

memory caching
Material Design, 41

elements, 43
features, 43
goals, 42
Materialize CSS (see Materialize CSS)
responsive design and new approaches, 41–43
style sheet, 44

Materialize CSS, 41, 43
Automobile Service Center application, 45

ASC.Web project, 45
ASP.NET Core, 47
home page, 53
layout for secured pages, 54–59
master layout, 48–52
Parallax theme, 45
public pages, 46–47
solution structure, 46

features, 43
themes, 44

Media queries, 42
Microsoft Azure Storage, 7
Mobile development frameworks, 42
Modern real-world web application

ASP.NET MVC, 2
Automobile Service Center, 4, 6
auxiliary system, 1
CI and CD, 10–11
deployment, 3
development, 3
digital innovation, 2
logical architecture, 8, 10
maintenance and operations, 3
planning, 3
requirements, 2
scope of application, 6
software development life cycle, 2
software industry, 2
software prerequisites, 12–13
system design, 3
technology development, 7
testing, 3

�       � N
.NET Core, 15

application configuration, 31–36
ApplicationSettings class, 32
appsettings.json File, 30, 31
appsettings.Production.json File, 35
Configuration Builder, 35
dependency injection, 34
IOptions Pattern, 33
Nav Bar updation, 33
Production configuration, 36
setting environment variables, 36

ASP.NET Core, 17–18
Automobile Service Center

application, 20–24, 26–28
bower.json, 30
bundleconfig.json, 30
controllers, 29
data folder, 29
dependencies, 29
dependency injection, 37–38
ecosystem architecture, 16
features, 15
Program.cs, 30
Properties and launchSettings.json, 29
services, 29
SQL Server, 15
Startup.cs, 30
versions and roadmap, 19–20

■ INDEX

596

Views folder, 30
web application View models, 29
wwwroot folder, 29

.NET Core 2.0, 587–588
NuGet packages, 10

�       � O
OAuth 2.0 protocol, 164

access token, 165
applications, 164
authorization flow, 165
OAuth 1.0 and, 164
refresh token, 165

�       � P, Q
Promotions, customer, 401

action method, 417
AutoMapper’s mappings, 405, 406
Azure table, 416
displaying, 417–418
IPromotionOperations, 401
JQuery code, 411–412
Models folder, 404
navigation menu item, 403–404
POST action, 406–408
Promotion entity class, 401
PromotionOperations, 402–403
web notifications, 419–421, 423

�       � R
Read-access geo redundant storage, 63
Real-time communication, 357

RPCs, 357
SignalR library (see SignalR library)

Redis memory caching, 233
Administrator mode, 234
appsettings.json file, 236
ASC.Web project, 236
Azure Storage emulator, 233
CreateMasterDataCacheAsync method, 240
GetMasterDataCacheAsync method, 240
IMasterDataCacheOperations interface, 237
installing, 234–235
MasterDataCache API, 236, 238, 239
MasterDataCacheOperations, 237–238
redis-cli commands, 239
Redis server, 235
Startup class, 236

Remote procedure calls (RPCs), 357
Reset Password functionality, 131

account controller, 137
ApplicationSettings class, 133

appsettings.json file, 133
AuthMessageSender class, 134
confirmation view, 135
Reset Password view cshtml, 138
JQuery click event, 135
MailKit, 133
POST action, 141
Reset Password Confirmation action, 141–142
Reset Password Confirmation view, 136–137
Reset Password link, 131–132
Reset Password view cshtml, 138
ResetPasswordViewModel, 138
SendEmailAsync method, 134, 135
validation messages, 140

Responsive web design
applications, 41
Bootstrap, 42
defining, 41
fluid grid design, 42
fluid image technique, 42
frameworks, 42
media queries, 42
trends, 42

�       � S
Search Service Request View, 355
Service engineers, 145

AccountViewModels folder, 150
application, 149
ApplicationSettings class, 146
appsettings.json file, 146
capabilities to Admin, 150
create/modify the account, 157–158
in data table, 162
DataTables, 151–152
deactivating, 161–162
e-mail message, 161
functional requirements, 145
highlighted code, 147–148
JQuery code, 152
menu item, 150
new user details, 163
POST action, 157
Roles enum, 146, 147
ServiceEngineers action, 151
Service Engineers navigation menu item, 159
styles, 156

Service request details view, 326
AutoMapper’s mappings, 329
business methods, 327
caller method, 328
for customer, 338
DataTable, Select and Date picker

controls, 331–334
disabled attribute, 331

.NET Core (cont.)

■ INDEX

597

GET action, 326
GetServiceRequestDetailsQuery method, 327
new view model, 328
POST action, 334–335
service engineer, 336–337
ServiceRequestDetails.cshtml, 326
ServiceRequestDetailViewModel class, 328

Service Request form, 295
Azure Table storage, 306
entity model, 295
enum types, 298
error messages, 305
IServiceRequestOperations interface, 295–296
JQuery code, 301–302
navigation, 303–304
NewServiceRequestViewModel, 297–298
ServiceRequestController, 299–300
ServiceRequestMappingProfile, 298
ServiceRequestOperations, 296–297

Service request workflow, 293–294
Service updates, 386

SMS notifications to
customers, 386–388, 390–397

web notifications to customers, 399–400
Shared access signature (SAS) keys, 63
SignalR library

defining, 358
enabling web notifications, 399–400
high-level architecture, 359
for .NET Core, 358
two-way communication, 359

Automobile Service Center, 360–362
creating hub using JQuery, 362–371,

373, 375
user online/offline notifications, 376–385

Software development life cycle (SDLC), 1
SQL Server, 15
SQL Server Database, 110
Status code pages, 257

Access Denied view, 260–261
Configure method, 257, 258
Configure method
Error action, 258, 260
Not Found view, 258–260

�       � T
Test-driven development (TDD), 3, 87

advantages, 87
life cycle, 88–89
session state middleware, 99–100

AddDistributedMemoryCache, 99
ASC.Utilities project, 102, 105
ASP.NET Core application, 101
failed tests, 103

FakeSession, 103–104
HttpContext, 104–105
HttpSessionState, 99
Index action of HomeController, 102
SessionExtensions Helper Class, 101–102
test case, 106
xUnit test cases, 106

unit-test suite, 87
xUnit.net (see xUnit.net)

Transactional data, 189
Travis CI

features, 491
GitHub repository, 491

account information, 493
AutomobileServiceCenter account, 494
AutomobileServiceCenter.Core

repository, 495
build failure, 497–499
build status, 502–504
credentials, 491
sign-up, 491
synchronization of account details, 494
.travis.yml file, 495–501

integration, 509
notifications to users, 505

e-mail notification, 506–507
.travis.yml, 505

YAML file, 490–491

�       � U
User activity, 250

action filters, 250
ASC.Models project, 251
authorization filters, 250
Azure Storage, 253
CreateUserActivityAsync method, 252, 253
exception filters, 250
filter execution flow, 251
ILogDataOperations interface, 252
LogDataOperations, 252
resource filters, 250
result filters, 250
UserActivityFilter attribute, 253

User information from ClaimsPrincipal, see
ClaimsPrincipal, user information

�       � V, W
Validations, custom, 340

AddValidation method, 340–341
DataAnnotation attributes, 340
error message, 343
FutureDate attribute, 341–342
init.js file, 342

■ INDEX

598

model validation, 340
RequestedDate property, 344
ServiceRequest controller, 344
ValidationAttribute, 340

Version-control systems (VCSs), 425

�       � X, Y
xUnit.net, 89

advantages, 89
and MOQ, 90

ASC.Tests project, 91
dotnet test command, 97

failed test result, 96, 98
HomeController constructor, 92
HomeController instance, 92–94
HomeControllerTests, 91–92, 96
mocking framework, 93
NuGet, 90
Open Visual Studio’s Test

Explorer, 95
resolutions, 93
Visual Studio, 91

�       � Z
Zero redundant storage, 63

Validations, custom (cont.)

	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Designing a Modern Real-World Web Application
	Overview of Application Development Strategies and Processes
	Requirements Gathering and Analysis
	Planning
	System Design
	Development
	Testing
	Deployment
	Maintenance and Operations

	Introduction to the Automobile Service Center Application
	Scope of the Application
	Technologies Used in Building the Application
	Logical Architecture of the Application
	Continuous Integration and Deployment Architecture
	Software Prerequisites
	Summary

	Chapter 2: The New Era of .NET Core
	Introduction to .NET Core
	Introduction to ASP.NET Core
	Versions and Roadmap of .NET Core and ASP.NET Core
	Creating the Automobile Service Center Application
	Understanding the ASP.NET Core Web Project Artifacts
	Dependencies
	Properties and launchSettings.json
	wwwroot
	Controllers
	Data
	Models
	Services
	Views
	appsettings.json
	bower.json
	bundleconfig.json
	Program.cs
	Startup.cs

	Setting Up the Application Configuration
	Using Dependency Injection in the ASP.NET Core Application
	Summary
	References

	Chapter 3: Designing a Theme by Using Material Design
	Responsive Design and New Approaches
	About Materialize CSS
	Materialize CSS Themes
	Using Materialize CSS in the Automobile Service Center Application
	Adding a Master Layout
	Designing a Layout for Secure Pages

	Summary
	Reference

	Chapter 4: Overview of Azure Storage
	Introduction to Azure Storage
	Getting Started with Azure SDK and Storage Emulator
	Azure Table Storage Unit of Work Pattern
	Sample CRUD Operations
	Summary
	Reference

	Chapter 5: Test-Driven Approach Using xUnit.net
	Test-Driven Development Life Cycle
	Understanding xUnit.net
	Getting Started with xUnit.net and MOQ
	Summary

	Chapter 6: Securing the Application with ASP.NET Core Identity and the OAuth 2.0 Protocol
	Creating and Setting Up the Admin Account
	Creating Login and Logout Screens
	Retrieving User Information from ClaimsPrincipal
	Resetting a Password Through MailKit E-mail Library Integration
	Developing a Forgot Password Option
	Creating and Managing Service Engineers
	Understanding the OAuth 2.0 Protocol
	Using a Gmail Authentication Provider for Customer Authentication
	Exercise 1
	Exercise 2
	Exercise 3
	Summary
	References

	Chapter 7: Master Data Management Using Azure Table Storage
	Managing Master Data in Azure Tables
	Importing Master Data to Azure Tables from Excel
	Enabling Redis Memory Caching
	Summary

	Chapter 8: Logging and Exception Handling
	Creating a Logging Framework
	Capturing User Activity Through an Action Filter
	Implementing Global Exception Handling
	Configuring Status Code Pages
	Summary

	Chapter 9: Creating Areas and Navigation by Using View Components
	Implementing Areas for the Automobile Service Center Application
	Creating a Dynamic JSON-Driven Navigation Menu
	Using Bundling and Minification
	Summary

	Chapter 10: Forms and Validations
	Service Request Workflow
	Service Request Form
	Dashboard View
	Service Request Details View
	Custom Validations using DataAnnotation Attributes
	Adding Internationalization Support
	Exercise 1
	Exercise 2
	Summary

	Chapter 11: Real-Time Communication with SignalR
	Introducing SignalR
	Enabling Two-Way Communication Between Customers and Service Engineers
	Configure Automobile Service Center with SignalR
	Create SignalR Hub to Enable-Two Way Communication Using JQuery
	Enable User Online/Offline Notifications Using SignalR

	Providing Service Updates via Text and Web Notifications
	Send SMS Notifications to Customers by Using Twilio API
	Enable Web Notifications to Customers by Using SignalR

	Notifying Customers with Promotions
	Build the Promotional Offers Capability
	Display Promotional Offers to Customers
	Enable Web Notifications to Customers on New Promotions

	Summary
	Reference

	Chapter 12: Code Version Control Using GitHub Platform
	Getting Started with GitHub
	Managing Local GitHub Credentials and Adding Collaborators to GitHub Repository
	Managing Automobile Service Centre source code using Git Bash
	Create and commit source code to a Local Git Repository
	Create and push source code to a Remote Git Repository
	Branching and merging source code
	Reset an unwanted commit from Local Repository
	Reset an unwanted commit from Remote Repository
	Resolve merge conflicts in source code

	Using GitHub with Visual Studio
	Summary
	References

	Chapter 13: Configuring a Continuous Build with Travis CI
	Introducing Travis CI
	Creating a Travis CI Account and Associating It with the GitHub Repository
	Configuring the GitHub Repository with Travis.yml
	Displaying the Travis Build Status at the GitHub Repository Home Page
	Enabling Travis Build Notifications to Users
	Summary
	References

	Chapter 14: Preparing an Application for Production and Creating a Docker Image
	Exploring Docker
	Installing Docker and Reviewing Prerequisites
	Preparing the Application with an Azure Key Vault Configuration
	Set Up Azure Key Vault and Configure the Access Policy
	Set Up Azure Table Storage and Azure Redis Cache Services
	Create Secrets at Azure Key Vault
	Integrate Application Code with Azure Key Vault

	Creating a Docker File
	Summary
	Reference

	Chapter 15: Continuous Deployment to Azure Linux Virtual Machines by Using Docker Cloud
	Introduction to Docker Cloud
	Create Azure Nodes for Continuous Deployment
	Docker Cloud Continuous Integration with GitHub Repository
	Continuous Deployment to Azure Nodes from Docker Cloud
	Bring Our Own Node for Docker Integration
	Automobile Service Center and .NET Core 2.0
	Recommended Exercises
	Summary
	The Final Word
	Reference

	Index

